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Abstract. In this paper, a marginal-free measure of mutually complete depen-
dence for discrete random vectors through subcopulas is defined, which gener-
alizes the corresponding results for discrete random variables. Properties of the
measure are studied and an estimator of the measure is introduced. Several exam-
ples are given for illustration of our results.
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1 Introduction

Complete dependence (or functional dependence) is an important concept in many
aspects of our life, such as econometrics, insurance, finance, etc. Recently, measures
of (mutually) complete dependence have been defined and studied by many authors,
e.g. Rényi [8], Schweizer and Wolff [9], Lancaster [5], Siburg and Stoimenov [12],
Trutschnig [16], Dette et al. [3], Tasena and Dhompongsa [14], Shan et al. [11], Tasena
and Dhompongsa [15] and Boonmee and Tasena [2]. However, measures in above
papers have some drawbacks. Some measures only work for continuous random vari-
ables or vectors and some measures rely on marginal distributions (See Sect. 2 for a
summary of several important measures). To the best of our knowledge, none of pre-
viously proposed measures are marginal-free and can describe (mutually) complete
dependence for discrete random vectors. To overcome this issue, in this paper, we define
a marginal-free measure of (mutually) complete dependence for discrete random vec-
tors by using subcopluas, which extends the corresponding results of discrete random
variables given in [11] to multivariate cases.

This paper is organized as follows. Some necessary concepts and definitions, and
several measures of (mutually) complete dependence are reviewed briefly in Sect. 2. A
marginal-free measure of (mutually) complete dependence for discrete random vectors
is defined and properties of this measure are studied in Sect. 3. An estimator of the
measure is introduced in Sect. 4.
c© Springer International Publishing AG 2018
V. Kreinovich et al. (eds.), Predictive Econometrics and Big Data, Studies in Computational
Intelligence 753, https://doi.org/10.1007/978-3-319-70942-0_22



304 X. Zhu et al.

2 Preliminaries

Let (Ω,A ,P) be a probability space, where Ω is a sample space,A is a σ -algebra of Ω
and P is a probability measure onA . A random variable is a measurable function from
Ω to the real line R, and for any integer n ≥ 2, an n-dimensional random vector is a
measurable function from Ω to Rn. For any a= (a1, · · · ,an) and b= (b1, · · · ,bn) ∈ R

n,
we say a ≤ b if and only if ai ≤ bi for all i = 1, · · · ,n. Let X and Y be random vectors
defined on the same probability space. X and Y are said to be independent if and only if
P(X ≤ x,Y ≤ y) = P(X ≤ x)P(Y ≤ y) for all x and y.Y is completely dependent (CD) on
X if Y is a measurable function of X almost surely, i.e., there is a measurable function
φ such that P(Y = φ(X)) = 1. X and Y are said to be mutually completely dependent
(MCD) if X and Y are completely dependent on each other.

Let E1, · · · ,En be nonempty subsets of R and Q a real-valued function with the
domainDom(Q) =E1×·· ·×En. Let [a,b] = [a1,b1]×·· ·× [an,bn] such that all vertices
of [a,b] belong to Dom(Q). The Q-volume of [a,b] is defined by

VQ([a,b]) = ∑sgn(c)Q(c),

where the sum is taken over all vertices c= (c1, · · · ,cn) of [a,b], and

sgn(c) =

{
1, if ci = ai for an even number of i′s,

−1, if ci = ai for an odd number of i′s.

An n-dimensional subcopula (or n-subcopula for short) is a functionC with the follow-
ing properties [7].

(i) The domain of C is Dom(C) = D1 × ·· · ×Dn, where D1, · · · ,Dn are nonempty
subsets of the unit interval I = [0,1] containing 0 and 1;

(ii) C is grounded, i.e., for any u = (u1, · · · ,un) ∈ Dom(C), C(u) = 0 if at least one
ui = 0;

(iii) For any ui ∈ Di, C(1, · · · ,1,ui,1, · · · ,1) = ui, i= 1, · · · ,n;
(iv) C is n-increasing, i.e., for any u, v ∈ Dom(C) such that u ≤ v, VC([u,v]) ≥ 0.

For any n random variables X1, · · · ,Xn, by Sklar’s Theorem [13], there is a unique
n-subcopula such that

H(x1, · · · ,xn) =C(F1(x1), · · · ,Fn(xn)), for all (x1, · · · ,xn) ∈ R
n
,

where R = R∪ {−∞,∞}, H is the joint cumulative distribution function (c.d.f.) of
X1, · · · ,Xn, and Fi is the marginal c.d.f. of Xi, i= 1, · · · ,n. In addition, if X1, · · · ,Xn are
continuous, then Dom(C) = In and the unique C is called the n-copula of X1, · · · ,Xn.
For more details about the copula theory, see [7].

Next, we are going to recall some measures of MCD and CD, which are equal to
0 if and only if two random variables (or vectors) are independent, and equal to 1 if
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and only if they are MCD or CD. In 2010, Siburg and Stoimenov [12] defined an MCD
measure for continuous random variables as

ω(X ,Y ) =
(
3‖C‖2 −2

) 1
2 , (1)

where X and Y are continuous random variables with the copula C and ‖ · ‖ is the
Sobolev norm of bivariate copulas given by

‖C‖ =
(∫ ∫

|∇C(u,v)|2 dudv
) 1

2

,

where ∇C(u,v) is the gradient of C(u,v).
In 2013, Tasena and Dhompongsa [14] generalized Siburg and Stoimenov’s mea-

sure to multivariate cases as follows. Let X1, · · · ,Xn be continuous variables with the
n-copula C. Define

δi(X1, · · · ,Xn) = δi(C) =
∫ · · ·∫ [∂iC(u1, · · · ,un)−πiC(u1, · · · ,un)]2 du1 · · ·dun∫ · · ·∫ πiC(u1, · · · ,un)(1−πiC(u1, · · · ,un))du1 · · ·dun ,

where ∂iC is the partial derivative on the ith coordinate ofC and πiC : In−1 → I is defined
by πiC(u1, · · · ,un−1) =C(u1, · · · ,ui−1,1,ui, · · · ,un−1), i= 1,2, · · · ,n. Let

δ (X1, · · · ,Xn) = δ (C) =
1
n

n

∑
i=1

δi(C). (2)

Then δ is an MCD measure of X1, · · · ,Xn.
In 2015, Shan et al. [11] considered discrete random variables. Let X and Y be two

discrete random variables with the subcopulaC. An MCD measure of X and Y is given
by

μt(X ,Y ) =
(‖C‖2t −Lt

Ut −Lt

) 1
2

, (3)

where t ∈ [0,1] and ‖C‖2t is the discrete norm of C defined by

‖C‖2t = ∑
i
∑
j

{(
tC2

Δ i, j+(1− t)C2
Δ i, j+1

) Δv j
Δui

+
(
tC2

i,Δ j+(1− t)C2
i+1,Δ j

) Δui
Δv j

}
,

CΔ i, j =C(ui+1,v j)−C(ui,v j), Ci,Δ j =C(ui,v j+1)−C(ui,v j),

Δui = ui+1 −ui, Δv j = v j+1 − v j,

Lt = ∑
i
(tu2i +(1− t)u2i+1)Δui+∑

j
(tv2j +(1− t)v2j+1)Δv j,

and
Ut = ∑

i
(tui+(1− t)ui+1)Δui+∑

j
(tv j+(1− t)v j+1)Δv j.
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In 2016 Tasena and Dhompongsa [15] defined a measure of CD for random vectors.
Let X and Y be two random vectors. Define

ωk(Y |X) =
[∫ ∫ ∣∣∣∣FY |X (y|x)−

1
2

∣∣∣∣
k

dFX (x)dFY (y)

] 1
k

,

where k ≥ 1. The measure of Y CD on X is given by

ωk(Y |X) =
[

ωk
k (Y |X)−ωk

k (Y
⊥|X⊥)

ωk
k (Y |Y )−ωk

k (Y
⊥|X⊥)

] 1
k

, (4)

where X⊥ and Y⊥ are independent random vectors with the same distributions as X and
Y , respectively.

In the same period, Boonmee and Tasena [2] defined a measure of CD for contin-
uous random vectors by using linkages which were introduced by Li et al. [6]. Let X
and Y be two continuous random vectors with the linkage C. The measure of Y being
completely dependent on X is defined by

ζp(Y |X) =
[∫ ∫ ∣∣∣ ∂

∂u
C(u,v)−Π(v)

∣∣∣pdudv]
1
p

, (5)

where Π(v) =
n

Π
i=1

vi for all v= (v1, · · · ,vn) ∈ In.

From above summaries we can see that measures given by (1), (2) and (5) only work
for continuous random variables or vectors. The measure defined by (3) only works
for bivariate discrete random variables. The measure given by (4) relies on marginal
distributions of random vectors. Thus it is worth considering marginal-free measures of
CD and MCD for discrete random vectors.

3 An MCDMeasure for Discrete Random Vectors

In this section, we identify Rn1+···+nk with Rn1 ×·· ·×R
nk , where n1, · · · ,nk are positive

integers. So any n-dimensional random vector X can be viewed as a tuple of n random
variables, i.e., X = (X1, · · · ,Xn), where X1, · · · ,Xn are random variables. Also, if Y =
(Y1, · · · ,Ym) is an m-dimensional random vector, we use (X ,Y ) to denote the (n+m)-
dimensional random vector (X1, · · · ,Xn,Y1, · · · ,Ym). Let ψ = (ψ1, · · · ,ψn) :Rn →R

n be
a function. ψ is said to be strictly increasing if and only if each component ψi :R→R is
strictly increasing, i.e., for any ai and bi ∈R such that ai < bi, we have ψi(ai)< ψi(bi),
i= 1, · · · ,n.

We will focus on discrete random vectors in this section, i.e., they can take on
at most a countable number of possible values. Let X = (X1, · · · ,Xn) ∈ L1 ⊆ R

n and
Y = (Y1, · · · ,Ym) ∈ L2 ⊆ R

m be two discrete random vectors defined on the same prob-
ability space (Ω,A ,P). Their joint c.d.f. H, marginal c.d.f.’s F and G, and marginal
probability mass functions (p.m.f.) f and g are defined, respectively, as follows.
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H(x,y) = P(X ≤ x,Y ≤ y), F(x) = P(X ≤ x), G(y) = P(Y ≤ y),

f (x) = P(X = x), and g(y) = P(Y = y), for allx ∈ R
nandy ∈ R

m.

Also, we use Fi and fi to denote the marginal c.d.f. and p.m.f. of the ith component Xi
of X , i= 1, · · · ,n, and use Gj and g j to denote the marginal c.d.f. and p.m.f. of the jth
component Yj of Y , j = 1, · · · ,m, respectively. For simplicity, we assume that f (x) �= 0
and g(y) �= 0 for all x∈L1 and y∈L2. IfC is the subcopula of the (n+m)-dimensional
random vector (X ,Y ), i.e.,

H(x,y) =C(u(x),v(y)), for allx ∈ R
n
andy ∈ R

m
,

where
u(x) = (u1(x1), · · · ,un(xn)) = (F1(x1), · · · ,Fn(xn)) ∈ In,

and
v(y) = (v1(y1), · · · ,vm(ym)) = (G1(y1), · · · ,Gm(ym)) ∈ Im,

for all x∈L1 and y∈L2, thenC is said to be the subcopula of X and Y . In addition, for
each vector e ∈ E1 ×·· ·×En, where Ei is a countable subset of R, let eL be the greatest
lower bound of e with respect to the coordinate-wise order, i.e., eL = (e′

1, · · · ,e′
n) such

that if there exists some element in Ei that is less than ei, then e′
i is the greatest element

in Ei so that e′
i < ei, otherwise e′

i = ei, i = 1, · · · ,n. We use 1n and ∞n to denote the
n-dimensional constant vector (1, · · · ,1) and (∞, · · · ,∞) ∈ R

n
.

To construct desired measures, a distance between two discrete random vectors is
defined as follows.

Definition 1. Let X and Y be discrete random vectors. The distance between the con-
ditional distribution of Y given X and marginal distribution of Y is defined by

ω2(Y |X) = ∑
y∈L2,

∑
x∈L1

[P(Y ≤ y|X = x)−G(y)]2 f (x)g(y). (6)

From the above definition, we can obtain the following two results.

Lemma 1. For any discrete random vectors X and Y , we have ω2(Y |X) ≤ ω2
max(Y |X),

where
ω2
max(Y |X) = ∑

y∈L2

[
G(y)− (G(y))2

]
g(y).

Proof. By the definition,

ω2(Y |X) = ∑
y∈L2,

∑
x∈L1

[P(Y ≤ y|X = x)−G(y)]2 f (x)g(y)

= ∑
y∈L2,

∑
x∈L1

[P(Y ≤ y|X = x)2 −2P(Y ≤ y|X = x)G(y)+(G(y))2] f (x)g(y)

≤ ∑
y∈L2,

∑
x∈L1

[P(Y ≤ y|X = x)−2P(Y ≤ y|X = x)G(y)+(G(y))2] f (x)g(y)
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= ∑
y∈L2,

∑
x∈L1

[P(X = x,Y ≤ y)−2P(X = x,Y ≤ y)G(y)+(G(y))2 f (x)]g(y)

= ∑
y∈L2

[
G(y)− (G(y))2

]
g(y).

�

Lemma 2. Let X and Y be discrete random vectors. There is a function φ :L1 → L2

such that φ(X) = Y if and only if ω2(Y |X) = ω2
max(Y |X), i.e., P(Y ≤ y|X = x) = 0 or 1

for all (x,y) ∈ L1 ×L2.

Proof. For “if” part, suppose that P(Y ≤ y|X = x) = 0 or 1 for all (x,y) ∈ L1 ×L2.
Then ∑

t≤y
P(Y = t|X = x) = 0 or 1. So ∑

t≤y
P(X = x,Y = t) = 0 or P(X = x). Thus there

exists a unique y(x) ∈ L2, which depends on x, such that P(X = x,Y = y(x)) = P(X =
x), and P(X = x,Y = y) = 0 for all y ∈ L2 with y �= y(x). Now if we define φ(x) = y(x)
for all x ∈ L1, then φ(X) = Y .

For “only if” part, suppose that φ(X) = Y . Fix x ∈ L1. It is sufficient to show that
P(X = x,Y = y) = 0 for all y �= φ(x). Suppose that, on the contrary, there is y′ ∈ L2

such that y′ �= φ(x) and P(X = x,Y = y′) �= 0, then there exists ω ∈ Ω so that X(ω) = x
and Y (ω) = y′. So we have φ(X)(ω) �= Y (ω). It’s a contradiction. �

Now we can define a measure of CD for two discrete random vectors as follows.

Definition 2. For any discrete random vectors X and Y , the measure of Y being com-
pletely dependent on X is given by

μ(Y |X) =
[

ω2(Y |X)
ω2
max(Y |X)

] 1
2

=

⎡
⎢⎣

∑
y∈L2,

∑
x∈L1

[P(Y ≤ y|X = x)−G(y)]2 f (x)g(y)

∑
y∈L2

[
G(y)− (G(y))2

]
g(y)

⎤
⎥⎦

1
2

. (7)

Properties of the measure μ(Y |X) are given as follows.

Theorem 1. For any discrete random vectors X and Y , the measure μ(Y |X) has the
following properties:

(i) 0 ≤ μ(Y |X) ≤ 1;
(ii) μ(Y |X) = 0 if and only if X and Y are independent;
(iii) μ(Y |X) = 1 if and only if Y is a function of X;
(iv) μ(Y |X) is invariant under strictly increasing transformations of X and Y , i.e., if

ψ1 and ψ2 are strictly increasing functions defined on L1 and L2, respectively,
then μ (ψ2(Y )|ψ1(X)) = μ(Y |X).

Proof. Property (i) is obvious by Lemma 1. For Property (ii), note that μ(Y |X) = 0
if and only if ω2(Y |X) = 0. It is equivalent to P(Y ≤ y|X = x) = G(y) for all (x,y) ∈
L1×L2, i.e., X andY are independent. Property (iii) follows Lemma 2. Lastly, since ψ1

and ψ2 are strictly increasing, we have P(ψ1(X) ≤ ψ1(x)) = P(X ≤ x) and P(ψ2(Y ) ≤
ψ2(y)) = P(Y ≤ y). Thus Property (iv) holds. �
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Remark 1. (i) It can be shown that the measure given by (7) is a discrete version of
the measure ωk(Y |X) for random vectors given by (4) with k = 2. The difference
here is that based on (7), we are going to define a marginal-free measure by using
subcopulas for discrete random vectors.

(ii) The above measure may be simplified into

μ ′(Y |X) =

⎡
⎢⎣ ∑

y∈L2,
∑

x∈L1

[P(Y ≤ y|X = x)−G(y)]2 f (x)

∑
y∈L2

[G(y)− (G(y))2]

⎤
⎥⎦

1
2

. (8)

As indicated by Shan [10], μ ′(Y |X) is well defined only if Y is a finite discrete
random vector, i.e., if L2 is a finite set. Otherwise, ∑

y∈L2

[
G(y)− (G(y))2

]
may

diverge. However, the measure μ(Y |X) given by (7) is well defined for all discrete
random vectors.

(iii) It is easy to see that ω2
max(Y |X) = 0 if and only if Y is a constant random vector,

i.e., if and only if there is y ∈ R
m such that P(Y = y) = 1. In this case, Y is clearly

a function of X . Thus, without loss of generality, we assume that X and Y are not
constant random vectors.

Since most multivariate dependence properties of random variables can be deter-
mined by their subcopula C, we are going to redefine the measure μ(Y |X) by using
subcopulas such that μ(Y |X) is free of marginal distributions of X and Y . First, note
that for any x ∈ L1 and y ∈ L2, we have

G(y) = H(∞n,y) =C(1n,v(y)), (9)

f (x) = VH([(xL,∞m),(x,∞m)]) = VC([(u(x)L,1m),(u(x),1m)]), (10)

g(y) = VH([(∞n,yL),(∞n,y)]) = VC([(1n,v(y)L),(1n,v(y))]), (11)

and

P(Y ≤ y|X = x) =
P(X = x,Y ≤ y)

P(X = x)

=
VH([(xL,y),(x,y)])

VH([(xL,∞m),(x,∞m)])

=
VC([(u(x)L,v(y)),(u(x),v(y))])
VC([(u(x)L,1m),(u(x),1m)])

(12)

Thus, from Eqs. (9)–(12), we can redefine μ(Y |X) as follows.
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Definition 3. Let X and Y be two discrete random vectors with the subcopula C. Sup-
pose that the domain of C is Dom(C) = L ′

1 ×L ′
2, where L ′

1 ⊆ In and L ′
2 ⊆ Im. The

measure of Y being completely dependent on X based on C is given by

μC(Y |X) =
[

ω2(Y |X)
ω2
max(Y |X)

] 1
2

=

⎡
⎢⎢⎢⎣

∑
v∈L ′

2

∑
u∈L ′

1

[
VC ([(uL ,v),(u,v)])

VC ([(uL ,1m),(u,1m)]) −C(1n,v)
]2

VC([(uL,1m),(u,1m)])VC([(1n,vL),(1n,v)])

∑
v∈L ′

2

[C(1n,v)− (C(1n,v))2]VC([(1n,v),(1n,vL])

⎤
⎥⎥⎥⎦

1
2

. (13)

Remark 2. Based on the same idea, if X and Y are continuous random vectors with the
unique copula C, the measure μC(Y |X) given by (13) can be rewritten as

μC(Y |X)) =

⎡
⎢⎣

∫ ∫ (
∂C

∂CX
−CY

)2 ∂CX
∂u

∂CY
∂v dudv∫

CY (1−CY ) ∂CY
∂v dv

⎤
⎥⎦

1
2

,

where CX and CY are copulas of X and Y . This is a marginal-free measure of CD for
continuous random vectors.

By using μC(Y |X) defined in Definition 3, we can define a marginal-free measure
of mutual complete dependence for two discrete random vectors as follows.

Definition 4. For any discrete random vectors X and Y with the subcopulaC, theMCD
measure of X and Y is defined by

μC(X ,Y ) =
[

ω2(Y |X)+ω2(X |Y )
ω2
max(Y |X)+ω2

max(X |Y )
] 1

2

, (14)

where ω2(·|·) and ω2
max(·|·) are the same as those given in Definition 3.

The properties of the measure μC(X ,Y ) are given in the following theorem. The
proof is straightforward.

Theorem 2. Let X and Y be two discrete random vectors with the subcopula C. The
measure μC(X ,Y ) has following properties,

(i) μC(X ,Y ) = μC(Y,X);
(ii) 0 ≤ μC(X ,Y ) ≤ 1;
(iii) μC(X ,Y ) = 0 if and only if X and Y are independent;
(iv) μC(X ,Y ) = 1 if and only if X and Y are MCD;
(v) μC(X ,Y ) is invariant under strictly increasing transformations of X and Y.

Remark 3. (i) The insufficiency of 2-copulas to describe joint distributions with given
multivariate marginal distributions was discussed by Genest et al. [4]. Let C be a
2-copula. They showed that

H(x1, · · · ,xn1 ,xn1+1, · · · ,xn1+n2) =C(H1(x1, · · · ,xn1),H2(xn1+1, · · · ,xn1+n2))
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defines a (n1+ n2) dimensional c.d.f., where n1+ n2 ≥ 3, for all marginal c.d.f.’s
H1 and H2 with dimensions n1 and n2, respectively, only if C is the bivariate inde-
pendence copula, i.e.,

C(u,v) = uv, for all (u,v) ∈ I2.

Thus, in this work, we have to use the (n+m)-subcopula of (X ,Y ) to construct a
marginal-free measure.

(ii) Both Shan et al. [11] and Tasena and Dhompongsa [15] tried to use copulas to
construct measures of functional dependence for discrete random variables or vec-
tors. However, we do not think that copulas should be used to construct measures
for discrete random variables or vectors because, for fixed discrete random vari-
ables or vectors, the corresponding copulas may not be unique. Thus, as shown in
their papers, if we have different copulas for two fixed discrete random variables,
copula-based measures may give us different results.

(iii) Boonmee and Tasena [2] used linkages to construct a marginal-free measure of
CD for continuous random vectors, but linkages have some defects. First, linkages
are defined for continuous random vectors. Second, to find the linkage of two
random vectors, they need to be transformed to uniform random vectors. It is not
convenient in applications (See Li et al. [6] for more details of linkages). Thus,
in this work, we prefer to use the subcopula of (X ,Y ) to construct marginal-free
measures, since subcopulas are not only good for discrete random vectors but also
more popular than linkages.

(iv) If both X and Y are discrete random variables with the 2-subcopula C, then we
have

ω2(Y |X) = ∑
v∈L ′

2

∑
u∈L ′

1

[
C(u,v)−C(uL,v)2

u−uL
− v

]2
(u−uL)(v− vL),

ω2(X |Y ) = ∑
u∈L ′

1

∑
v∈L ′

2

[
C(u,v)−C(u,vL)2

v− vL
−u

]2
(u−uL)(v− vL),

ω2
max(Y |X) = ∑

v∈L ′
2

(v− v2)(v− vL) and ω2
max(X |Y ) = ∑

u∈L ′
1

(u−u2)(u−uL).

In this case, the measure μC(X ,Y ) =
[

ω2(Y |X)+ω2(X |Y )
ω2
max(Y |X)+ω2

max(X |Y )
] 1
2
is identical to the mea-

sure given by (3) with t = 0.
(v) If both X and Y are continuous random variables, i.e., max{u− uL,v− vL} → 0,

then it can be show that

μC(X ,Y ) =
[

ω2(Y |X)+ω2(X |Y )
ω2
max(Y |X)+ω2

max(X |Y )
] 1

2

=

{
3

∫ ∫ [(
∂C
∂u

)2

+
(

∂C
∂v

)2
]
dudv−2

} 1
2

,

which is identical to the measure given by (1).
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Next, we use two examples to illustrate our above results.

Example 1. Let X = (X1,X2) be a random vector with the distribution given in Table 1.
LetY = (Y1,Y2) = (X2

1 ,X
2
2 ). Then the distribution ofY , the joint distribution of X andY ,

and the corresponding subcopula are given in Tables 2, 3 and 4, respectively. It is easy to
show that ω2(Y |X) = ω2

max(Y |X) = 161/1458, ω2(X |Y ) = 2699/38880, ω2
max(X |Y ) =

469/2916. So μC(Y |X) = 1. μC(X |Y ) = 0.6569 and μC(X ,Y ) = 0.8142.

Table 1. Distribution of X .

X2 X1 X2
−1 0 1

−1 1/18 2/18 3/18 6/18

0 1/18 2/18 2/18 5/18

1 1/18 3/18 3/18 7/18

X1 3/18 7/18 8/18 1

Table 2. Distribution of Y .

Y2 Y1 Y2
0 1

0 2/18 3/18 5/18

1 5/18 8/18 13/18

Y1 7/18 11/18 1

Table 3. Joint distribution of X and Y .

Y X Y

(−1,1) (−1,0) (−1,1) (0,−1) (0,0) (0,1) (1,−1) (1,0) (1,1)

(0,0) 0 0 0 0 2
18 0 0 0 0 2

18

(0,1) 0 0 0 2
18 0 3

18 0 0 0 5
18

(1,0) 0 1
18 0 0 0 0 0 2

18 0 3
18

(1,1) 1
18 0 1

18 0 0 0 3
18 0 3

18
8
18

X 1
18

1
18

1
18

2
18

2
18

3
18

3
18

2
18

3
18 1
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Table 4. Subcopula of X and Y .

V U (1,1)
( 3
18 ,

6
18 ) ( 3

18 ,
11
18 ) ( 3

18 ,1) ( 1018 ,
6
18 ) ( 1018 ,

11
18 ) ( 1018 ,1) (1, 6

18 ) (1, 1118 )

( 7
18 ,

5
18 ) 0 0 0 0 2

18
2
18 0 2

18
2
18

( 7
18 ,1) 0 0 0 2

18
4
18

7
18

2
18

4
18

7
18

(1, 5
18 ) 0 1

18
1
18 0 3

18
3
18 0 5

18
5
18

(1,1) 1
18

2
18

3
18

3
18

6
18

10
18

6
18

11
18 1

Example 2. Let X = (X1,X2) be a discrete random vector, where X1 is a geometric
random variable with the success rate p = 1

2 , X2 is a binomial random variable with
the number of trails n = 2 and the success rate p = 1

2 , and X1 and X2 are indepen-
dent. Let Y = X1 −X2. Then the joint distribution and subcopula of X and Y are given
in Tables 5 and 6. By calculation, ω2(Y |X) = ω2

max(Y |X) = 1223/7168, ω2(X |Y ) =
3407543/30965760 and ω2

max(X |Y ) = 1/3. So μC(Y |X) = 1, μC(X |Y ) = 0.3301 and
μC(X ,Y ) = 0.5569.

Table 5. Joint distribution of X and Y .

X Y · · · X

−1 0 1 2 3 4 5

(1,0) 0 0 1
23 0 0 0 0 1

23

(1,1) 0 1
22 0 0 0 0 0 1

22

(1,2) 1
23 0 0 0 0 0 0 1

23

(2,0) 0 0 0 1
24 0 0 0 1

24

(2,1) 0 0 1
23 0 0 0 0 1

23

(2,2) 0 1
24 0 0 0 0 0 1

24

(3,0) 0 0 0 0 1
25 0 0 1

25

(3,1) 0 0 0 1
24 0 0 0 1

24

(3,2) 0 0 1
25 0 0 0 0 1

25

(4,0) 0 0 0 0 0 1
26 0 1

26

(4,1) 0 0 0 0 1
25 0 0 1

25

(4,2) 0 0 0 1
26 0 0 0 1

26

(5,0) 0 0 0 0 0 0 1
27

1
27

(5,1) 0 0 0 0 0 1
26 0 1

26

(5,2) 0 0 0 0 1
27 0 0 1

27
...

...

Y 1
23

22+1
24

23+1
25

23+1
26

23+1
27

23+1
28

23+1
29 · · · 1
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Table 6. Subcopula of X and Y .

U V · · ·
1
23

22+2+1
24

24+22+2+1
25

25+24+22+2+1
26

26+25+24+22+2+1
27

( 12 ,
1
22 ) 0 0 1

23
1
23

1
23

( 12 ,
3
22 ) 0 1

22
2+1
23

2+1
23

2+1
23

( 12 ,1)
1
23

2+1
23

1
2

1
2

1
2

( 2+1
22 , 1

22 ) 0 0 1
23

2+1
24

2+1
24

( 2+1
22 , 3

22 ) 0 1
22

1
2

22+1
24

22+1
24

( 2+1
22 ,1) 1

23
22+2+1

24
6+22+1

24
2+1
22

2+1
22

( 2
2+2+1
22 , 1

22 ) 0 0 1
23

2+1
24

22+2+1
25

( 2
2+2+1
22 , 3

22 ) 0 1
22

1
2

22+1
23

24+221
25

( 2
2+2+1
22 ,1) 1

23
22+2+1

24
24+22+2+1

25
24+23+2+1

25
22+2+1

23
...

4 Estimators of μ(Y |X) and μ(X ,Y )

In this section, we are going to construct estimators of measures μ(Y |X) and μ(X ,Y ).
Let X ∈ L1 and Y ∈ L2 be two discrete random vectors and [nxy] be their observed
multi-way contingency table. Suppose that the total number of observation is n. For
every x ∈ L1 and y ∈ L2, let nxy, nx· and n·y be numbers of observations of (x,y),
x and y, respectively, i.e., nx· = ∑

y∈L2

nxy and n·y = ∑
x∈L1

nxy. If we define p̂xy = nxy/n,

p̂x· = nx·/n, p̂·y = n·y/n, p̂y|x = p̂xy/p̂x· = nxy/nx· and p̂x|y = p̂xy/p̂·y = nxy/n·y, then
estimators of measures μ(Y |X) and μ(X ,Y ) can be defined as follows.

Definition 5. Let X ∈L1 and Y ∈L2 be two discrete random vectors with a multi-way
contingency table [nxy]. Estimators of μ(Y |X) and μ(X ,Y ) are given by

μ̂(Y |X)
[

ω̂2(Y |X)
ω̂2
max(Y |X)

] 1
2

,

and

μ̂(X ,Y ) =
[

ω̂2(Y |X)+ ω̂2(X |Y )
ω̂2
max(Y |X)+ ω̂2

max(X |Y )
] 1

2

,

where

ω̂2(Y |X) = ∑
y∈L2,

∑
x∈L1

[
∑
y′≤y,

(
p̂y′|x − p̂·y′

)]2

p̂x· p̂·y,

ω̂2
max(Y |X) = ∑

y∈L2

⎡
⎣ ∑
y′≤y,

p̂·y′ −
(

∑
y′≤y,

p̂·y′

)2
⎤
⎦ p̂·y,
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and ω̂2(X |Y ) and ω̂2
max(X |Y ) are similarly defined as ω̂2(Y |X) and ω̂2

max(Y |X) by inter-
changing X and Y .

From the above definition, we have the following result. The proof is trivial.

Theorem 3. Let X and Y be discrete random vectors. Estimators μ̂(Y |X) and μ̂(X ,Y )
have following properties,

(i) 0 ≤ μ̂(Y |X), μ̂(X ,Y ) ≤ 1;
(ii) X and Y are empirically independent, i.e., p̂xy = p̂x· p̂·y for all (x,y) ∈ L1 ×L2 if

and only if μ̂(Y |X) = μ̂(X ,Y ) = 0;
(iii) μ̂(Y |X) = 1 if and only if Y is a function of X. And μ̂(X ,Y ) = 1 if and only if X

and Y are functions of each other.

Next, we use two example to illustrate our results.

Example 3. Suppose that we have the following multi-way contingency tables. Then
from Table 7, we have μ̂(Y |X) = 0.0516, μ̂(X |Y ) = 0.0762 and μ̂(X ,Y ) = 0.0642, so
X andY have very weak functional relations. However, from Table 8, we have μ̂(Y |X)=
0.5746, μ̂(X |Y ) = 0.0465 and μ̂(X ,Y ) = 0.3485, so the functional dependence of Y on
X is much stronger than the functional dependence of X on Y .

Example 4. The data given in Table 9 [1] is from a survey conducted by the Wright
State University School of Medicine and the United Health Services in Dayton, Ohio.
The survey asked students in their final year of a high school near Dayton, Ohio,

Table 7. Contingency table of X and Y .

Y X n·y
(1,1) (1,2) (2,1) (2,2)

(1,1) 10 20 5 10 45

(1,2) 15 25 10 5 55

(2,1) 5 35 10 5 55

(2,2) 25 5 10 5 45

nx· 55 85 35 25 200

Table 8. Contingency table of X and Y .

Y X n·y
(1,1) (1,2) (2,1) (2,2)

(1,1) 43 2 3 40 88

(1,2) 4 42 40 6 92

(2,1) 2 3 3 2 10

(2,2) 1 4 2 3 10

nx· 50 51 48 51 200
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Table 9. Alcohol (A), Cigarette (C), and Marijuana (M) use for high school seniors.

Alcohol use Cigarette use Marijuana use

Yes No

Yes Yes 911 538

No 44 456

No Yes 3 43

No 2 279

whether they had ever used alcohol, cigarettes, or marijuana. Denote the variables by
A for alcohol use, C for cigarette use, and M for marijuana use. By Pearson’s Chi-
squared test (A,C) and M are not independent. The estimations of functional depen-
dence between M and (A,C) are μ̂(M|(A,C)) = 0.3097, μ̂((A,C)|M) = 0.2776 and
μ̂((A,C),M) = 0.2893.
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