
Simone Cavalheiro · José Fiadeiro (Eds.)
LN

CS
 1

06
23

20th Brazilian Symposium, SBMF 2017
Recife, Brazil, November 29 – December 1, 2017
Proceedings

Formal Methods:
Foundations
and Applications

 123

Lecture Notes in Computer Science 10623

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Simone Cavalheiro • José Fiadeiro (Eds.)

Formal Methods:
Foundations
and Applications
20th Brazilian Symposium, SBMF 2017
Recife, Brazil, November 29 – December 1, 2017
Proceedings

123

Editors
Simone Cavalheiro
Universidade Federal de Pelotas
Pelotas
Brazil

José Fiadeiro
Royal Holloway, University of London
Egham
UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-70847-8 ISBN 978-3-319-70848-5 (eBook)
https://doi.org/10.1007/978-3-319-70848-5

Library of Congress Control Number: 2017959597

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG 2017
The chapter “Rapidly Adjustable Non-intrusive Online Monitoring for Multi-core Systems” is licensed under
the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/
licenses/by/4.0/). For further details see license information in the chapter.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-7442-7379
http://orcid.org/0000-0003-2797-8685
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Preface

This volume contains the papers presented at SBMF 2017: the 20th Brazilian Sym-
posium on Formal Methods. The conference was held in Recife, Brazil, from
November 29 to December 1, 2017.

The Brazilian Symposium on Formal Methods (SBMF) is an event devoted to the
dissemination of the development and use of formal methods for the construction of
high-quality computational systems, aiming to promote opportunities for researchers
with an interest in formal methods to discuss the recent advances in this area. SBMF is
a consolidated scientific–technical event in the software area. Its first edition took place
in 1998, reaching the 20th edition in 2017. The proceedings of the last editions have
been published in Springer’s Lecture Notes in Computer Science series as volumes
5902 (2009), 6527 (2010), 7021 (2011), 7498 (2012), 8195 (2013), 8941 (2014), 9526
(2015), and 10090 (2016).

The conference included three invited talks, given by Ana Cavalcanti (University of
York, UK), Christoph Benzmüller (University of Luxembourg, Luxembourg; Freie
Universität Berlin, Germany; and Saarland University, Germany) and Patrícia Machado
(UFCG, Brazil). A total of 16 papers were presented at the conference and are included
in this volume. They were selected from 37 submissions that came from 16 different
countries: Australia, Belgium, Brazil, Canada, China, Colombia, France, Germany,
India, Ireland, Norway, Portugal, Spain, Sweden, the UK, and the USA. The Program
Committee comprised 46 members from the national and international community of
formal methods. Each submission was reviewed by three Program Committee mem-
bers. Submissions, reviews, deliberations, decisions, as well as the compilation of these
proceedings were all handled via EasyChair, which provided excellent support
throughout the whole process.

We are grateful to the Program Committee and to the additional reviewers for their
hard work in evaluating submissions and suggesting improvements. We are very
thankful to the general chair of SBMF 2017, Gustavo Carvalho (UFPE), and the local
organization team, who made everything possible for the conference to run smoothly,
and to CIn-UFPE for kindly hosting the event. SBMF 2017 was organized by the
Federal University of Pernambuco (UFPE), promoted by the Brazilian Computer
Society (SBC), and sponsored by the following organizations, which we thank for their
generous support: CAPES, CNPq, CIn/UFPE, FACEPE and UFPE. Finally, we would
like to thank Springer for agreeing to publish the proceedings as a volume of Lecture
Notes in Computer Science.

November 2017 Simone Cavalheiro
José Fiadeiro

Organization

Local Organizers

Gustavo Carvalho UFPE, Brazil
Sidney Nogueira UFRPE, Brazil

Program Chairs

Simone Cavalheiro UFPel, Brazil
José Fiadeiro Royal Holloway, University of London, UK

Steering Committee

Christiano Braga UFF, Brazil
Simone Cavalheiro UFPel, Brazil
Márcio Cornélio UFPE, Brazil
José Fiadeiro Royal Holloway, University of London, UK
Thierry Lecomte ClearSy Systems Engineering, France
Narciso Martí-Oliet Universidad Complutense de Madrid, Spain
Leila Ribeiro UFRGS, Brazil
Bill Roscoe University of Oxford, UK

Program Committee

Aline Andrade UFBA, Brazil
Luís Barbosa Universidade do Minho, Portugal
Christiano Braga UFF, Brazil
Michael Butler University of Southampton, UK
Sérgio Campos UFMG, Brazil
Ana Cavalcanti University of York, UK
Simone Cavalheiro UFPel, Brazil
Márcio Cornélio UFPE, Brazil
Andrea Corradini Università di Pisa, Italy
Jim Davies University of Oxford, UK
Ana De Melo USP, Brazil
David Deharbe ClearSy Systems Engineering, France
Ewen Denney SGT/NASA Ames, USA
Clare Dixon University of Liverpool, UK
Rachid Echahed CNRS and University of Grenoble, France
José Fiadeiro Royal Holloway, University of London, UK
Luciana Foss UFPel, Brazil
Rohit Gheyi UFCG, Brazil

Stefan Hallerstede Aarhus University, Denmark
Reiko Heckel University of Leicester, UK
Rolf Hennicker Ludwig-Maximilians-Universität München, Germany
Juliano Iyoda UFPE, Brazil
Thierry Lecomte ClearSy Systems Engineering, France
Michael Leuschel University of Düsseldorf, Germany
Patrícia Machado UFCG, Brazil
Rodrigo Machado UFRGS, Brazil
Marcelo Maia UFU, Brazil
Narciso Martí-Oliet Universidad Complutense de Madrid, Spain
Tiago Massoni UFCG, Brazil
Álvaro Moreira UFRGS, Brazil
Anamaria Martins Moreira UFRJ, Brazil
Alexandre Mota UFPE, Brazil
Arnaldo Moura UNICAMP, Brazil
David Naumann Stevens Institute of Technology, USA
Daltro José Nunes UFRGS, Brazil
José Oliveira Universidade do Minho, Portugal
Marcel Vinicius Medeiros

Oliveira
UFRN, Brazil

Fernando Orejas UPC, Spain
Arend Rensink University of Twente, The Netherlands
Leila Ribeiro UFRGS, Brazil
Augusto Sampaio UFPE, Brazil
Leila Silva UFS, Brazil
Adenilso Simão USP, Brazil
Neeraj Singh University of Toulouse, France
Sofiene Tahar Concordia University, Canada
Jim Woodcock University of York, UK

Additional Reviewers

Bonifácio, Adilson
Brenas, Jon Hael
Gawanmeh, Amjad
Helali, Ghassen

Klein Galli, Jaqueline
Lahiouel, Ons
Salehi Fathabadi, Asieh
Souza, Marlo

VIII Organization

Contents

Invited Talks

Formal Methods for Robotics: RoboChart, RoboSim, and More 3
Ana Cavalcanti

Recent Successes with a Meta-Logical Approach to Universal
Logical Reasoning (Extended Abstract) . 7

Christoph Benzmüller

Formal Methods Integration and Experience Reports

Abstract State Machines and System Theoretic Process Analysis
for Safety-Critical Systems . 15

Farah Al-Shareefi, Alexei Lisitsa, and Clare Dixon

From Scenarios to Timed Automata . 33
Neda Saeedloei and Feliks Kluźniak

Graph Grammar Extraction from Source Code . 52
Lucio Mauro Duarte and Leila Ribeiro

Applying a Formal Method in Industry: A 25-Year Trajectory 70
Thierry Lecomte, David Deharbe, Etienne Prun,
and Erwan Mottin

Model Checking

Encoding Floating-Point Numbers Using the SMT Theory in ESBMC:
An Empirical Evaluation over the SV-COMP Benchmarks 91

Mikhail Y.R. Gadelha, Lucas C. Cordeiro, and Denis A. Nicole

Local Analysis of Determinism for CSP. 107
Rodrigo Otoni, Ana Cavalcanti, and Augusto Sampaio

OptCE: A Counterexample-Guided Inductive Optimization Solver. 125
Higo F. Albuquerque, Rodrigo F. Araújo, Iury V. Bessa,
Lucas C. Cordeiro, and Eddie B. de Lima Filho

Formal Analysis of the Information Leakage of the DC-Nets and Crowds
Anonymity Protocols . 142

Arthur Américo, Artur Vaz, Mário S. Alvim, Sérgio V.A. Campos,
and Annabelle McIver

http://dx.doi.org/10.1007/978-3-319-70848-5_1
http://dx.doi.org/10.1007/978-3-319-70848-5_2
http://dx.doi.org/10.1007/978-3-319-70848-5_2
http://dx.doi.org/10.1007/978-3-319-70848-5_3
http://dx.doi.org/10.1007/978-3-319-70848-5_3
http://dx.doi.org/10.1007/978-3-319-70848-5_4
http://dx.doi.org/10.1007/978-3-319-70848-5_5
http://dx.doi.org/10.1007/978-3-319-70848-5_6
http://dx.doi.org/10.1007/978-3-319-70848-5_7
http://dx.doi.org/10.1007/978-3-319-70848-5_7
http://dx.doi.org/10.1007/978-3-319-70848-5_8
http://dx.doi.org/10.1007/978-3-319-70848-5_9
http://dx.doi.org/10.1007/978-3-319-70848-5_10
http://dx.doi.org/10.1007/978-3-319-70848-5_10

Refinement and Verification

A Refinement Relation for Families of Timed Automata 161
Guillermina Cledou, José Proença, and Luís S. Barbosa

Rapidly Adjustable Non-intrusive Online Monitoring
for Multi-core Systems . 179

Normann Decker, Philip Gottschling, Christian Hochberger,
Martin Leucker, Torben Scheffel, Malte Schmitz,
and Alexander Weiss

Sound Transpilation from Binary to Machine-Independent Code 197
Roberto Metere, Andreas Lindner, and Roberto Guanciale

Using Linear Logic to Verify Requirement Scenarios
in Composite Web Service . 215

Kênia Santos de Oliveira and Stéphane Julia

Checking Static Properties Using Conservative SAT Approximations
for Reachability . 233

Pedro Antonino, Thomas Gibson-Robinson, and A.W. Roscoe

Semantics and Languages

UTCP: Compositional Semantics for Shared-Variable Concurrency 253
Andrew Butterfield

On Kleene Algebras for Weighted Computation . 271
Leandro Gomes, Alexandre Madeira, and Luís S. Barbosa

Capturing Stochastic and Real-Time Behavior in Reo Connectors 287
Yi Li, Xiyue Zhang, Yuanyi Ji, and Meng Sun

Author Index . 305

X Contents

http://dx.doi.org/10.1007/978-3-319-70848-5_11
http://dx.doi.org/10.1007/978-3-319-70848-5_12
http://dx.doi.org/10.1007/978-3-319-70848-5_12
http://dx.doi.org/10.1007/978-3-319-70848-5_13
http://dx.doi.org/10.1007/978-3-319-70848-5_14
http://dx.doi.org/10.1007/978-3-319-70848-5_14
http://dx.doi.org/10.1007/978-3-319-70848-5_15
http://dx.doi.org/10.1007/978-3-319-70848-5_15
http://dx.doi.org/10.1007/978-3-319-70848-5_16
http://dx.doi.org/10.1007/978-3-319-70848-5_17
http://dx.doi.org/10.1007/978-3-319-70848-5_18

Invited Talks

Formal Methods for Robotics: RoboChart,
RoboSim, and More

Ana Cavalcanti(B)

Department of Computer Science,
University of York, York YO105GH, UK

Ana.Cavalcanti@york.ac.uk

A report from 2014 indicates that “The UK Government has identified ‘eight
great technologies’ which will propel the UK to future growth”; one of them is
robotics and autonomous systems. Currently, robotics is at the heart of the UK
economic plans (www.tinyurl.com/mtut23s). A 13 billion pounds global market
is predicted for 2025 (www.tinyurl.com/nyf64av). A limiting factor, however,
is safety. The UK Technology Strategy Board reports that we are sitting on a
“robotics goldmine” (www.tinyurl.com/o2u2ts7), but “Regulation and certifica-
tion will also be a vital part of RAS deployment...”.

Although many factors are involved in establishing safety of a robotic sys-
tem, software poses a key challenge for design and assurance (www.tinyurl.com/
o2u2ts7). Full verification is beyond the state of the art due to the complexity
of models and properties for decision-making systems. Lack of customised tech-
niques and tools means that, in spite of the modern outlook of the applications,
the current practice of software engineering for robotics is outdated.

Main players in industry like Microsoft, Amazon, and Facebook have started
using formal methods to improve their products [13]. What is routine in many
engineering disciplines, that is, use of tools and techniques justified by mathe-
matical principles, is becoming feasible for software developers.

The practical use of formal methods in many specific areas of application is,
however, still an open challenge that is being tackled by scientists and engineers
worldwide. What we propose is to face this challenge in the exciting area of
development of controller software for mobile and autonomous robots.

The importance of Software Engineering has been recognised by the robotics
community. There is an open-access journal on the subject (Journal of Soft-
ware Engineering for Robotics - www.joser.org/). A premier conference in the
area, the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), has organised a Special Session on Robotics Software Engineering last
year. Several domain-specific languages are available in the literature [9], but, by
far and large, their focus is support for programming and simulation. Modern
verification techniques have not been widely explored, with a few notable excep-
tions [1,4,5,7]. Applications of general-purpose formal techniques have shown
the value that they can add to robotics. Due to lack of specialisation and diffi-
culties with automation, however, the cost involved and scalability achieved do
not indicate a clear prospect of wide practical application.

c© Springer International Publishing AG 2017
S. Cavalheiro and J. Fiadeiro (Eds.): SBMF 2017, LNCS 10623, pp. 3–6, 2017.
https://doi.org/10.1007/978-3-319-70848-5_1

www.tinyurl.com/mtut23s
www.tinyurl.com/nyf64av
www.tinyurl.com/o2u2ts7
www.tinyurl.com/o2u2ts7
www.tinyurl.com/o2u2ts7
www.joser.org/

4 A. Cavalcanti

As part of a five-year EPSRC project, called RoboCalc (www.cs.york.ac.uk/
Circus/RoboCalc), we are developing a framework for modelling and simulation
of mobile and autonomous robots. We have devised RoboChart [8], a graphical
domain-specific language from which we can generate CSP [11] mathematical
models automatically. As opposed to other languages for robotics, RoboChart
targets software design, rather than simulation. RoboChart has an associated
tool, called RoboTool, that supports graphical modelling and automatic gener-
ation of CSP scripts, and is integrated with the model checker FDR4 [6].

We are also designing RoboSim, a graphical language to describe simulations.
It makes it possible to verify a simulation with respect to a RoboChart model.
We are also extending RoboChart to deal with systems comprising a collec-
tions of robots and tackle the important area of swarm robotics. The RoboCalc
framework will ensure that models and simulations are consistent, and proper-
ties established by analysis and simulation are preserved in the robotic platform.
This will cover timed, continuous, and probabilistic properties.

RoboChart and RoboSim provide a solid foundation to deal with the engi-
neering of software for robotics. They are notations akin to those already in
widespread use, but enriched with facilities that enable use of modern verifica-
tion techniques. Further work, however, is needed to realise their full potential
to the economic benefit of industry and to encourage adoption.

Current practice in robotics is normally based on standard state machines
[2,3,10,12], without formal semantics, to specify the robot controller only. The
environment is either not explicitly considered or described in English. The state
machine that gives an abstract account of the robot controller guides the devel-
opment of a simulation, but no rigorous connection between them is established.
For implementation in a robotic platform, ad hoc adjustments are normally
required to cater for the reality gap between the simulation and actual environ-
ment. Here, different running conditions may be considered for testing. There is
no rigorous approach for the use of simulation and testing. Numerous iterations
of (re)development and testing, tool dependency, and low-level programming are
prevalent, with impact on cost, maintainability, and reliability. This is outdated
even when compared with practice in other safety-critical domains.

RoboChart and RoboSim address the issues of principled modelling, verifica-
tion, and sound simulation generation. Beyond the scope of RoboCalc, however,
are a model-based framework for sound and automated testing of robotic sys-
tems. This is essential to ensure that the simulations generated from RoboChart
models are used in an effective and cost-efficient way.

Another major hurdle for safety assurance is the highly complex environ-
ments in which critical robotic applications work; examples are autonomous
vehicles and home-assistance robots. A safety argument needs to ensure absence
of undesirable behaviour in all possible environments. Currently, however, even
characterising all valid scenarios is not feasible using existing tools.

In the agenda for future work, we ought to consider testing based on simula-
tions, with full control of the robots and their environment, and tests for use on
robots operating in the real world. We need sound test generation and execution
techniques to support systematic and automated simulation experiments.

www.cs.york.ac.uk/Circus/RoboCalc
www.cs.york.ac.uk/Circus/RoboCalc

Formal Methods for Robotics: RoboChart, RoboSim, and More 5

We will also investigate the design of a modelling language that can identify
essential properties of the environment in which a robotic system is expected to
work. It needs to support verification by simulation via automatic generation of
explicit environment specifications for use with simulators, by deployment testing
via automatic generation of test cases, and by proof of properties considering all
environments for which a robotic system is suited.

The challenges are (1) a rich semantic model to underpin sound and sys-
tematic testing techniques; (2) test generation based on timed, probabilistic,
and hybrid models for the robots and their environment; (3) tractability for a
variety of simulation tools; (4) design of a language that is accessible by practi-
tioners, supports abstraction in the modelling of environments, and has a formal
semantics; (5) techniques for model-based generation of simulation environment
definitions or programs for use with a variety of simulators; (6) techniques for
model-based generation of environment definitions for use in tests; and (7) tech-
niques for proof-based verification of properties.

Our vision is a 21st-century toolbox for robot-controller developers. In this
toolbox, a developer can find unambiguous diagrammatic notations to specify
models for the environment, the robotic platform, and the controller. For com-
monly used environments and robotic platforms, the toolbox includes a range
of ready-made models. Because these models are precise, there is no scope for
misunderstanding and, most importantly, the toolbox includes techniques for
desirable properties of the models: deadlock freedom, speed limits, and so on.

Since the technique for validation that robot controller developers favour
nowadays is simulation, in the 21st-century toolbox, there are tools for automatic
generation of these simulations. The ingenuity of the developer is now focused in
the optimisation of the simulation and of the associated deployed code. Because
the languages used for simulation and programming are high-level, the results
are tool independent, and can be deployed in a variety of robotic platforms.
Moreover, the toolbox provides techniques to generate tests automatically, for
use with the simulation and the deployed system. Test drivers support the use
of simulations described in RoboSim running on top of customised simulators,
or off-the-shelf tools like Simulink and Webots.

With the 21st-century toolbox, the costly cycles of iterations of design
and testing, with problems found very late, even just at deployment time, are
reduced. Moreover, the developer can demonstrate that the controller produced
satisfies essential properties established during modelling. Software for mobile
and autonomous robot is cheaper and more reliable.

Acknowledgements. The work mentioned is a collaboration with colleagues at the
University of York and Universidade Federal de Pernambuco: André Didier, Wei Li,
Alvaro Miyazawa, Alexandre Mota, Pedro Ribeiro, Augusto Sampaio, Jon Timmis,
and Jim Woodcock. Work on testing has been extensively discussed with Rob Hierons.
The author’s work is funded by the EPSRC grant EP/M025756/1, and INES, grants
CNPq/465614/2014-0 and FACEPE/APQ/0388-1.03/14. No new primary data was
created as part of the study reported here.

6 A. Cavalcanti

References

1. Abdellatif, T., Bensalem, S., Combaz, J., de Silva, L., Ingrand, F.: Rigorous
design of robot software: a formal component-based approach. Robot. Auton. Syst.
60(12), 1563–1578 (2012)

2. Brunner, S.G., Steinmetz, F., Belder, R., Domel, A.: Rafcon: a graphical tool for
engineering complex, robotic tasks. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 3283–3290 (2016)

3. Dhouib, S., Kchir, S., Stinckwich, S., Ziadi, T., Ziane, M.: RobotML, a domain-
specific language to design, simulate and deploy robotic applications. In: Noda,
I., Ando, N., Brugali, D., Kuffner, J.J. (eds.) SIMPAR 2012. LNCS (LNAI),
vol. 7628, pp. 149–160. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-34327-8 16

4. Fleurey, F., Solberg, A.: A domain specific modeling language supporting spec-
ification, simulation and execution of dynamic adaptive systems. In: Schürr, A.,
Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 606–621. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-04425-0 47

5. Foughali, M., Berthomieu, B., Dal Zilio, S., Ingrand, F., Mallet, A.: Model checking
real-time properties on the functional layer of autonomous robots. In: Ogata, K.,
Lawford, M., Liu, S. (eds.) ICFEM 2016. LNCS, vol. 10009, pp. 383–399. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-47846-3 24

6. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 - a
modern refinement checker for CSP. In: Tools and Algorithms for the Construction
and Analysis of Systems, pp. 187–201 (2014)

7. Kapellos, K., Simon, D., Jourdant, M., Espiau, B.: Task level specification and
formal verification of robotics control systems: State of the art and case study. Int.
J. Syst. Sci. 30(11), 1227–1245 (1999)

8. Miyazawa, A., Ribeiro, P., Li, W., Cavalcanti, A.L.C., Timmis, J.: Automatic prop-
erty checking of robotic applications. In: The International Conference on Intelli-
gent Robots and Systems (2017)

9. Nordmann, A., Hochgeschwender, N., Wigand, D., Wrede, S.: A survey on domain-
specific modeling and languages in robotics. J. Softw. Eng. Robot. 7(1), 75–99
(2016)

10. Pembeci, I., Nilsson, H., Hager, G.: Functional reactive robotics: an exercise in
principled integration of domain-specific languages. In: 4th ACM SIGPLAN Inter-
national Conference on Principles and Practice of Declarative Programming, pp.
168–179. ACM (2002)

11. Roscoe, A.W.: Understanding Concurrent Systems. Texts in Computer Science.
Springer, London (2011)

12. Wachter, M., Ottenhaus, S., Krohnert, M., Vahrenkamp, N., Asfour, T.: The
armarx statechart concept: graphical programing of robot behavior. Front. Robot.
AI 3, 33 (2016)

13. Woodcock, J.C.P., Larsen, P.G., Bicarregui, J., Fitzgerald, J.S.: Formal methods:
practice and experience. ACM Comput. Surv. 41(4), 1–36 (2009)

https://doi.org/10.1007/978-3-642-34327-8_16
https://doi.org/10.1007/978-3-642-34327-8_16
https://doi.org/10.1007/978-3-642-04425-0_47
https://doi.org/10.1007/978-3-319-47846-3_24

Recent Successes with a Meta-Logical Approach
to Universal Logical Reasoning

(Extended Abstract)

Christoph Benzmüller1,2(B)

1 University of Luxembourg, Esch-sur-Alzette, Luxembourg
2 Freie Universität Berlin, Berlin, Germany

c.benzmueller@gmail.com

The quest for a most general framework supporting universal reasoning is very
prominently represented in the works of Leibniz. He envisioned a scientia gen-
eralis founded on a characteristica universalis, that is, a most universal formal
language in which all knowledge about the world and the sciences can be encoded.
A quick study of the survey literature on logical formalisms suggests that quite
the opposite to Leibniz’ dream has become reality. Instead of a characteristica
universalis, we are today facing a very rich and heterogenous zoo of different log-
ical systems, and instead of converging towards a single superior logic, this logic
zoo is further expanding, eventually even at accelerated pace. As a consequence,
the unified vision of Leibniz seems farther away than ever before. However, there
are also some promising initiatives to counteract these diverging developments.
Attempts at unifying approaches to logic include categorial logic algebraic logic
and coalgebraic logic.

My own research draws on another alternative at universal logical reasoning:
the shallow semantical embeddings (SSE) approach. This approach has a very
pragmatic motivation, foremost reuse of tools, simplicity and elegance. It utilises
classical higher-order logic [21] as a unifying meta-logic in which the syntax and
semantics of varying other logics can be explicitly modeled and flexibly combined
(cf. [3] and the references therein). Off-the-shelf higher-order interactive and
automated theorem provers [6] can then be employed to reason about and within
the shallowly embedded logics.

Respective experiments have e.g. been conducted in metaphysics. An initial
focus thereby has been on computer-supported assessments of modern variants
of the ontological argument for the existence of God, where the SSE approach has
been utilised in particular for automating variants of higher-order (multi-)modal
logics [8].

In the course of these experiments (cf. [13–18] for details), my prover LEO-II
[9] detected an previously unnoticed inconsistency in Kurt Gödel’s [25] promi-
nent variant of the ontological argument, while the slightly modified variant by
Dana Scott [31] was verified in the interactive proof assistants Isabelle/HOL [29]
and Coq [19]. Further modern variants of the argument have subsequently been
studied with the approach, and theorem provers have even contributed to the
clarification of an unsettled philosophical dispute [12].

c© Springer International Publishing AG 2017
S. Cavalheiro and J. Fiadeiro (Eds.): SBMF 2017, LNCS 10623, pp. 7–11, 2017.
https://doi.org/10.1007/978-3-319-70848-5_2

8 C. Benzmüller

Another, more ambitious study has focused on Ed Zalta’s Principia Logico-
Metaphysica (PLM) [37], which aims at a foundational logical theory for all of
metaphysics and the sciences. This includes mathematics, and in this sense it
is more ambitious than Russel’s Principia Mathematica. The semantical embed-
ding of PLM in HOL has been very challenging, since in addition to its size, its
foundational theory is complicated: the PLM is based on hyperintensional higher-
order modal logic S5 defined on top of a relational (as opposed to a functional)
type theory that comes with restricted comprehension principles (the use of full
comprehension in the PLM has been known to cause paradoxes and inconsisten-
cies [30]). The PLM has meanwhile been successfully encoded in Isabelle/HOL
by my student Daniel Kirchner [26]. As an unexpected highlight of this project,
Kirchner, supported by the Isabelle/HOL system, detected an previously unno-
ticed issue: a deeply rooted and known paradox is reintroduced in PLM when the
logic of complex terms is adjoined to PLM’s specially-formulated comprehension
principle for relations. Kirchner is now using the framework to support Zalta in
fixing this issue.

Other logics, for which the SSE approach applies, and which are relevant
for theoretical philosophy, include quantified conditional logics and multi-valued
logic [4,5,34].

Motivated by the successful experiments on the ontological argument, and
supported by my research group at Freie Universität (FU) Berlin, I have set-up
a worldwide new lecture course on computational metaphysics [36], which has
received FU Berlin’s central teaching award in 2015/16. Student projects origi-
nating from this course have led to impressive new contributions (cf. [1,24,26];
further papers are submitted), including Kirchner’s already mentioned embed-
ding of the PLM in HOL, a computer-assisted reconstruction of an ontological
argument by Leibniz and a verification of (main parts of) prominent textbooks
by Fitting [22] and Boolos [20]. A key factor in the successful implementation
of the course has been, that a single methodology and overall technique (the
SSE approach) was used throughout, enabling the students to quickly adopt a
wide range of different logic variants in short time within a single proof assistant
(Isabelle/HOL). The course concept seems in fact well suited to significantly
improve interdisciplinary, university level logic education.

Another interesting application area for the SSE approach is mathematics,
where e.g. the proper treatment of partiality and undefinedness in computer-
formalisations constitute unsettled challenges. Free logic [28,32] adapts classical
logic in a way particularly suited for addressing them. Free logics have interest-
ing applications, e.g. in natural language processing and as a logic of fiction. In
mathematics, free logics are particularly suited in application domains such as
category theory or projective geometry (e.g. morphism composition in category
theory is a partial operation). In a collaboration with Dana Scott, I have shown
that free logics can be elegantly embedded and automated in HOL [10]. Utilis-
ing this embedding, we have conducted an exemplary theory exploration study
in category theory [11], in the course of which theorem provers have revealed

Recent Successes with a Meta-Logical Approach 9

a previously unnoticed technical flaw (constricted inconsistency resp. missing
axioms) in a prominent category theory textbook [23].

The SSE approach is, of course, relevant also for artificial intelligence and
computer science. For example, the knowledge and belief of intelligent agents
can be modelled with epistemic and doxastic logics, which are directly amenable
to the SSE approach, since they are just particular modal logics. To demon-
strate this, prominent AI puzzles about knowledge and belief, including the well
known wise men puzzle, have been successfully automated [3,35]. Moreover, the
semantic web description logic ALC is just a reinvention of basic multi-modal
logic K and, hence, the SSE approach is immediately applicable to it. Access
control logics have applications e.g. in computer security; again the SSE app-
roach applies [2]. Further ongoing work e.g. adresses intuitionistic modal logic
[27] and predicate dynamic logic.

In summary, the SSE approach is the most widely applied universal logical
reasoning approach to date. Note, however, the difference to Leibniz’ original
idea (and to various strands of related work). Instead of a single, universal logic
formalism, the SSE approach supports many different competing object logics
from the logic zoo. No ontological commitment is thus enforced at the object
logic level (e.g. the approach well supports both classical and intuitionistic object
logics, and can even combine them [7]). The concrete selection of (a range of)
object logic candidates is typically determined by the specific requirements of
the application at hand. Only at meta-level a single, unifying logic is provided,
namely HOL (or any richer logic incorporating HOL). By unfolding the embed-
dings of the object logics, problem representations are uniformly mapped to
HOL. This way Leibniz’ vision is realised in an indirect way: universal logical
reasoning is established (only) at the meta-level in HOL.

References

1. Bentert, M., Benzmüller, C., Streit, D., Woltzenlogel Paleo, B.: Analysis of an
ontological proof proposed by Leibniz. In: Tandy, C. (ed.) Death and Anti-Death.
Four Decades after Michael Polanyi, Three Centuries after G.W. Leibniz, vol. 14.
Ria University Press (2016)

2. Benzmüller, C.: Automating access control logics in simple type theory with LEO-
II. In: Gritzalis, D., Lopez, J. (eds.) SEC 2009. IAICT, vol. 297, pp. 387–398.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01244-0 34

3. Benzmüller, C.: Combining and automating classical and non-classical logics in
classical higher-order logic. Ann. Math. Artif. Intell. (Special Issue Computational
logics in Multi-agent Systems (CLIMA XI)) 62(1–2), 103–128 (2011)

4. Benzmüller, C.: Automating quantified conditional logics in HOL. In: Rossi, F.
(ed.) IJCAI 2013, pp. 746–753. AAAI Press (2013)

5. Benzmüller, C.: Cut-elimination for quantified conditional logic. J. Philos. Logic
46(3), 333–353 (2017)

6. Benzmüller, C., Miller, D.: Automation of higher-order logic. In: Gabbay, D.M.,
Siekmann, J.H., Woods, J. (eds.) Handbook of the History of Logic. Computational
Logic, vol. 9, pp. 215–254. North Holland, Elsevier (2014)

https://doi.org/10.1007/978-3-642-01244-0_34

10 C. Benzmüller

7. Benzmüller, C., Paulson, L.: Multimodal and intuitionistic logics in simple type
theory. Logic J. IGPL 18(6), 881–892 (2010)

8. Benzmüller, C., Paulson, L.: Quantified multimodal logics in simple type theory.
Logica Univ. (Special Issue on Multimodal Logics) 7(1), 7–20 (2013)

9. Benzmüller, C., Paulson, L.C., Sultana, N., Theiß, F.: The higher-order prover
LEO-II. J. Autom. Reasoning 55(4), 389–404 (2015)

10. Benzmüller, C., Scott, D.: Automating Free Logic in Isabelle/HOL. In: Greuel,
G.-M., Koch, T., Paule, P., Sommese, A. (eds.) ICMS 2016. LNCS, vol. 9725, pp.
43–50. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42432-3 6

11. Benzmüller, C., Scott, D.S.: Axiomatizing category theory in free logic (2016).
arXiv, http://arxiv.org/abs/1609.01493

12. Benzmüller, C., Weber, L., Woltzenlogel Paleo, B.: Computer-assisted analysis of
the Anderson-Hájek controversy. Logica Univ. 11(1), 139–151 (2017)

13. Benzmüller, C., Woltzenlogel Paleo, B.: Gödel’s God in Isabelle/HOL. Archive of
Formal Proofs (2013). (Formally verified)

14. Benzmüller, C., Woltzenlogel Paleo, B.: Automating Gödel’s ontological proof of
God’s existence with higher-order automated theorem provers. In: Schaub, T.,
Friedrich, G., O’Sullivan, B. (eds.) ECAI 2014. Frontiers in Artificial Intelligence
and Applications, vol. 263, pp. 93–98. IOS Press (2014)

15. Benzmüller, C., Woltzenlogel Paleo, B.: Interacting with modal logics in the
coq proof assistant. In: Beklemishev, L.D., Musatov, D.V. (eds.) CSR 2015.
LNCS, vol. 9139, pp. 398–411. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-20297-6 25

16. Benzmüller, C., Woltzenlogel Paleo, B.: The inconsistency in Gödel’s ontological
argument: a success story for AI in metaphysics. In: Kambhampati, S. (ed.) IJCAI
2016. vol. 1–3, pp. 936–942. AAAI Press (2016)

17. Benzmüller, C., Paleo, B.W.: The ontological modal collapse as a collapse of the
square of opposition. In: Béziau, J.-Y., Basti, G. (eds.) The Square of Opposition:
A Cornerstone of Thought. SUL, pp. 307–313. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-45062-9 18

18. Benzmüller, C., Woltzenlogel Paleo, B.: Experiments in Computational Meta-
physics: Gödel’s proof of God’s existence. Savijnanam: scientific exploration for
a spiritual paradigm. J. Bhaktivedanta Inst. 9, 43–57 (2017)

19. Bertot, Y., Casteran, P.: Interactive Theorem Proving and Program Development.
Springer, Heidelberg (2004)

20. Boolos, G.: The Logic of Provability. Cambridge University Press, Cambridge
(1993)

21. Church, A.: A formulation of the simple theory of types. J. Symbolic Logic 5, 56–68
(1940)

22. Fitting, M.: Types, Tableaus, and Gödel’s God. Kluwer, Amsterdam (2002)
23. Freyd, P.J., Scedrov, A.: Categories. North Holland, Allegories (1990)
24. Fuenmayor, D., Benzmüller, C.: Automating emendations of the ontological argu-

ment in intensional higher-order modal logic. In: Kern-Isberner, G., Fürnkranz, J.,
Thimm, M. (eds.) KI 2017. Lecture Notes in Computer Science, vol. 10505, pp.
114–127. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67190-1 9

25. Gödel, K.: Appx. A: Notes in Kurt Gödel’s Hand. In: Sobel [33], pp. 144–145 (1970)
26. Kirchner, D.: Representation and partial automation of the principia logico-

metaphysica in Isabelle/HOL. Archive of Formal Proofs (2017). formally verified
with Isabelle/HOL

https://doi.org/10.1007/978-3-319-42432-3_6
http://arxiv.org/abs/1609.01493
https://doi.org/10.1007/978-3-319-20297-6_25
https://doi.org/10.1007/978-3-319-20297-6_25
https://doi.org/10.1007/978-3-319-45062-9_18
https://doi.org/10.1007/978-3-319-45062-9_18
https://doi.org/10.1007/978-3-319-67190-1_9

Recent Successes with a Meta-Logical Approach 11

27. Lachnitt, H.: Systematic verification of the intuitionistic modal logic cube in
isabelle/hol. Bachelor Thesis at the Freie Universität Berlin, Institut für Infor-
matik (2017)

28. Lambert, K.: Free Logic. Selected Essays. Cambridge University Press, Cambridge
(2012)

29. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

30. Oppenheimer, P.E., Zalta, E.N.: Relations versus functions at the foundations of
logic: type-theoretic considerations. J. Log. Comput. 21(2), 351–374 (2011)

31. Scott, D.: Appx. B: Notes in Dana Scott’s Hand. In: Sobel [33], pp. 145–146 (1972)
32. Scott, D.: Existence and description in formal logic. In: Schoenman, R. (ed.)

Bertrand Russell: Philosopher of the Century, pp. 181–200. George Allen & Unwin,
London (1967). (Reprinted with additions. In: Philosophical Application of Free
Logic, edited by K. Lambert. Oxford Universitry Press, 1991, pp. 28–48)

33. Sobel, J.: Logic and Theism. Cambridge U. Press, Cambridge (2004)
34. Steen, A., Benzmüller, C.: Sweet SIXTEEN: automation via embedding into clas-

sical higher-order logic. Logic Logical Philos. 25, 535–554 (2016)
35. Steen, A., Wisniewski, M., Benzmüller, C.: Tutorial on reasoning in expressive

non-classical logics with Isabelle/HOL. In: Benzüller, C., Rojas, R., Sutcliffe, G.
(eds.) GCAI 2016. EPiC Series in Computing, vol. 41, pp. 1–10. EasyChair (2016)

36. Wisniewski, M., Steen, A., Benzmüller, C.: Einsatz von Theorembeweisern in der
Lehre. In: Schwill, A., Lucke, U. (eds.) Hochschuldidaktik der Informatik: 7. Fach-
tagung des GI-Fachbereichs Informatik und Ausbildung/Didaktik der Informatik.
Commentarii informaticae didacticae (CID), Universitätsverlag Potsdam, Pots-
dam, Germany (2016)

37. Zalta, E.N.: Principia logico-metaphysica (2016). draft version, preprint https://
mally.stanford.edu/principia.pdf

https://doi.org/10.1007/3-540-45949-9
https://mally.stanford.edu/principia.pdf
https://mally.stanford.edu/principia.pdf

Formal Methods Integration and
Experience Reports

Abstract State Machines and System Theoretic
Process Analysis for Safety-Critical Systems

Farah Al-Shareefi(B), Alexei Lisitsa, and Clare Dixon

Department of Computer Science, University of Liverpool,
Liverpool L69 3BX, UK

{F.M.A.Al-Shareefi,lisitsa,cldixon}@liverpool.ac.uk

Abstract. The Abstract State Machine (ASM) method is a formal spec-
ification and modeling technique that allows us to specify computational
systems at the required abstraction level and facilitates formal analysis
and verification. System Theoretic Process Analysis (STPA) is a semi-
formal hazard analysis method that aims to identify safety requirements
emerging from the analysis of potential interactions among components
and inadequate control in the system’s design. In this paper, we combine
these two techniques to develop a methodology capturing both the for-
mal representation of ASM with the ability to generate safety properties
from the STPA hazard analysis. This has the advantages of verifying the
STPA requirements in a formal way, and giving insights for the improve-
ment of the ASM specification, depending on these requirements. We
illustrate our methodology by applying it to an insulin pump control
system case study, showing what safety issues it highlights.

Keywords: Abstract State Machines · System Theoretic Process
Analysis · Temporal logic · Validation · Verification

1 Introduction

Due to the increasing adoption of software in safety critical systems, together
with their potential failure, it has become imperative to develop safe and efficient
systems before deployment. We address this issue by combining a particular
formal method with the results of a particular safety analysis technique.

Within the existing variety of formal methods, the Abstract State Machine
(ASM) method can seamlessly direct the development process of computational
systems, from capturing the requirements to practical implementation [11]. Sev-
eral modeling and analysis tools have been developed for ASMs. In this paper, we
have chosen the set of interoperable tools integrated in a meta modelling frame-
work called ASMETA [9], which includes automatic tools for the editing [13],
validation [12], and verification [6] of ASM models. These tools help the modeler
to develop an appropriate model for the functional requirements.

System Theoretic Process Analysis (STPA) is a safety analysis technique
from the safety engineering domain [19]. It was developed to analyse com-
plex modern systems that involve interactions between their software, hardware,
c© Springer International Publishing AG 2017
S. Cavalheiro and J. Fiadeiro (Eds.): SBMF 2017, LNCS 10623, pp. 15–32, 2017.
https://doi.org/10.1007/978-3-319-70848-5_3

16 F. Al-Shareefi et al.

human and environment components. This technique uses a non-linear accident
causation model for the whole system, where the failure of interaction between
the system’s components or component failures can lead to unsafe states. It has
been demonstrated that this technique is able to identify a wide range of haz-
ard causes and safety requirements in a semi-formal manner [24]. Recently, the
STPA technique has been used, in [1,3], as an integrated tool with verification
activity by supplying it with the formulated safety requirements. However, the
formalization process of safety requirements is both cumbersome and does not
accurately capture some of the temporal aspects of the requirements.

In this paper, we present a methodology for developing correct and safe
critical systems, that is based on the ASM method, the STPA technique, and
temporal logic. It starts with modelling the system in the AsmetaL (ASMETA
Language) to obtain an accurate mathematical representation. Then, using the
AsmetaV validation tool, the model validation process is applied to ensure that
it meets the functional requirements. Next the STPA technique is utilized to
elicit safety requirements. These requirements are formalized into Linear Tem-
poral Logic (LTL) that can be verified against an AsmetaL model using the
AsmetaSMV verification tool.

The methodology is illustrated through the Insulin Pump Control System
(IPCS) [23]. This system is chosen because its design provides a plausible level
of complexity for research, and its safety aspects are still under scrutiny.

The main contributions of this paper are: a systematic methodology for devel-
oping safety critical systems through combining ASM with STPA, with the target
of developing safe specifications, and adequate and concise temporal formaliza-
tions of the STPA requirements.

The rest of the paper is organized as follows: Sect. 2 is an overview of the
tools and techniques of our methodology. Section 3 presents our case study. In
Sect. 4, we describe our methodology. The application of this methodology is
explained in Sect. 5. In Sect. 6, we evaluate our methodology. Section 7 discusses
the related work. Section 8, finally, concludes the paper.

2 Background

2.1 Abstract State Machines

Abstract State Machines (ASMs), were originally introduced by Gurevich [15]
as a versatile and extended way of representing Finite State Machines, where
unstructured control states are replaced by multi-sorted first order structure
states. Using ASMs, the modeler can specify the system from a high-level of
abstraction, called a ground model, to the required detailed one [11]. ASM is
based on abstract states, to model the system’s structure, and on transition
rules, to model the system’s dynamic behavior. An ASM state is denoted by a
pair (location, location value). The location is represented by an n-ary function
name and its list of first-order terms, while the location value is a value assigned
to that location. The ASM locations or functions can be static, which never
change during any run of the machine, or dynamic, which may be changed by

Abstract State Machines and System Theoretic Process Analysis 17

the environment or by machine updates. The dynamic functions are also dif-
ferentiated between controlled (read and write by the machine), and monitored
(read by the machine and write by the environment).

Changing an ASM state is performed by a control logic rule that has the
following format: “if Condition then Update”. This rule is invoked at the current
state to produce the subsequent state. In addition to if-then, there is a set of rule
constructors, such as par (parallel execution of the grouped rules), choose (non
deterministic selection) and switch case (extension of the control logic rule).

A set of tools have been developed around ASMs to support the ASM
method, and to help the developer in performing different analysis activities
within the same development platform. These tools are included in a meta mod-
elling framework called ASMETA (ASM mETAmodelling)1 [9]. The ASMETA
tools that have been utilized in this paper are as follows: (1) The ASMETA
Simulator (AsmetaS) tool [13], which executes ASM models that are written in
ASMETA Language (AsmetaL). (2) The ASMETA Validator (AsmetaV) tool [12]
which validates AsmetaL specifications by scenarios written in ASMETA valida-
tion language, named Avalla. Avalla expresses the execution for a scenario in an
algorithmic manner via a set of constructs: set (determine the values for moni-
tored functions), check (inspect the machine state), step (perform one transition
into another state), and step until (perform several transitions). The AmetaV tool
captures any violation of Avalla scenario by producing only success or fail valida-
tion verdicts. (3) The ASMETA SMV (AsmetaSMV) model checker tool [6] which
is for formal verification of ASMs. The inputs for this tool are the AsmetaL
model and temporal properties, which can be written in either LTL or CTL.
The AsmetaSMV translates these inputs into the NuSMV model checker. In this
paper, we will use only LTL properties. The propositional and future-time con-
nectives that are available for writing LTL properties in AsmetaL are: ! (not),
iff (‘if and only if’, Ø), and (^), or (_), implies (Ñ), x (‘next state’, ©), g
(‘globally’, l), and u(p, q) (‘until’, p U q).

2.2 System Theoretic Process Analysis

System Theoretic Process Analysis (STPA) is a hazard analysis technique that
was proposed by Leveson [17] to address safety as a control problem. It con-
siders the system’s component interaction and dynamic behavior, rather than
considering component failure only.

Typically, in this technique, the system is deemed as a safety control loop
which consists of a controller, actuator, sensor and controlled process. The con-
troller includes a model of the process it is controlling, in order to identify
the requisite control action to be issued. The actuator executes this action on
the controlled process, and the sensor returns the current status data about
the controlled process to the controller. The analysis through STPA focuses on
identifying the context and timing conditions that affect the action to make it a
hazardous action.

1 http://asmeta.sourceforge.net/.

http://asmeta.sourceforge.net/

18 F. Al-Shareefi et al.

Implementation of this technique is outlined in five steps [18], as follows: (1)
Identify system analysis fundamentals by determining expected accidents, and
the potential hazards that can lead to these accidents. (2) Identify unsafe control
actions under different timing conditions (provided at any time, provided too
early/too late, not provided), as well as determining the controller process model
(a set of environmental and system variables) which can contribute to providing
the control action. (3) Ask an expert to determine which control action, with
which combination of values taken by the environmental and system variables,
and under which timing conditions, is a hazardous action. (4) Translate the
hazardous control actions into safety requirements. (5) Determine the potential
causes of each unsafe control action depending on the expert. In our work, we
will focus on the first four steps.

3 Case Study: The Insulin Pump Control System

The Insulin Pump Control System (IPCS) is a therapeutic system used to
improve diabetes treatment. The problem with traditional treatments is the pos-
sibility of taking an insulin overdose or insufficient dose due to focusing only on
the current glucose value and ignoring the last insulin injection time. It has been
chosen as a case study for software analysis of safety-critical systems in [23]. The
IPCS works in three different modes: automatic, manual, and switching off. In
the automatic mode, the software controller can implement one of the following
two activities at a time: running (performed every 10 min) or testing (performed
every 30 s). In addition, the software controller resets the cumulative dose to 0
every 24 h. The running activity starts with sensing the current glucose value,
then it analyses this value by comparing it with two saved values (10 and 20 min
prior) to calculate the required dose. Before delivering the dose, it does a safety
check, considering the maximum daily dose and maximum single dose. During
the delivery of the dose, the controller sends pulses equivalent to each unit of
the delivered dose. Within the running activity, the warning alarm must be run
when the received glucose value is less than the minimum safe limit, the available
insulin is less than or equal to four maximum single doses, or delivering the dose
will exceed the maximum daily dose. The testing activity involves detecting any
hardware unit failure (sensor, battery, needle, insulin reservoir) to suspend the
IPCS work and to run the failure alarm. In the manual mode, the system will
deliver the dose manually, hence the software controller will not perform safety
checking, but it will update the quantity of the available insulin and the cumu-
lative dose. The complete requirements are documented and specified in the Z
language in [22], and part of the specification is provided in [23].

4 The Proposed Methodology

Our proposed methodology is based on: AsmetaL, AsmetaV, AsmetaSMV,
STPA, and temporal logic. Using this methodology, we aim to guide the modeller
to improve the ASM model, depending on the detection of any violations to the

Abstract State Machines and System Theoretic Process Analysis 19

functional and safety requirements via the validation and verification tools, and
to provide the verification tool with the STPA requirements in a formal way.

Figure 1 shows an overview of our methodology which includes the following
steps: (1) Modelling the system using the AsmetaL to capture the system’s
requirements. (2) Validating that the AsmetaL model satisfies the functional
requirements, which relate to the user needs about the system through using
the AsmetaV tool. This tool allows construct particular scenarios describing the
interactions between the system and its environment. The AsmetaV tool reads a
scenario written by the user in Avalla, and invokes the AsmetaS tool to simulate
this scenario and checks if the AsmetaL model satisfies this scenario or not.
In the event that any of these scenarios are not satisfied, the AsmetaL model
must be modified. (3) Eliciting safety requirements for the system via STPA.
(4) Formalizing the elicited STPA safety requirements into LTL specifications
using the formula in Sect. 5.4 that captures the four STPA timing requirements
of control actions. (5) Verifying that the AsmetaL model satisfies the formulated
STPA safety requirements. If any of these requirements are not satisfied, then a
counter example will guide the modeller to improve the AsmetaL model.

Informal System Description

Eliciting Safety Requirements via STPA

Determine control actions

Identify the process model

Create context table that documents the
hazardous action with certain combinations

Get safety requirements from hazardous
actions

Formalising the STPA Safety Requirements

Formalise the safety requirements

Rewrite the formulated requirements into
accepted ones by AsmetaSMV

Modelling
the System

Behavior via
AsmetaL

Validating the AsmetaL
Model

Verifying the STPA Safety Requirements

Extend the AsmetaL model with the resultant formulated
safety requirements and verify them via AsmetaSMV

AsmetaL model
meet safety

requirements

Informal Requirements Interactions between System and Environment Accidents and Hazards

Identify Avalla scenarios
and run them via AsmetaV

AsmetaL
satisfy

scenario

4

5

31

2

No Yes

No

Property is satisfied

couter
example

A
S

M
E

T
A

 F
ram

ew
ork

S
T

PA
 S

afety A
n

alysis an
d

 F
orm

alization

Yes

Fig. 1. The proposed methodology

20 F. Al-Shareefi et al.

5 Methodology Applied to IPCS Case Study

In this section, we apply our methodology to the IPCS case study.

5.1 Modeling the System Behavior via AsmetaL

In this stage, we present an abstract model or what is called a ground model, for
the IPCS, written in AsmetaL2. The ground model is shown in Code 1. Through
this model, we want to show how AsmetaL specifies the issues that have not
been addressed by [22], such as switching between the system operation mode
(automatic, manual, or switching off) at any state by the user, and timing details
of the software controller activities: setting the cumulative dose to 0, running,
and testing, which occurring at different times: 24 h, 10 min, 30 s, respectively.
We do not discuss the following in detail: the switching off and manual operat-
ing modes, and the running activity stages, which include sensing the glucose
value, analysing it, calculating the insulin dose, checking the calculated dose and
delivering it, since they are explained in [22,23].

In the AsmetaL model, we first define several data types, followed by a num-
ber of functions, as discussed below. Finally a number of rules are defined to
show how the IPCS works. We declared the btn monitored function that rep-
resents the operation mode of the system, which can be on (automatic mode),
manual (manual mode), or off (switching off mode). The transition from any
state into another one in the model is derived by the btn function in the r main
rule. We also declared the function cS whose value represents the state of the soft-
ware controller, which can be sns (sensing the current glucose value), anlscal
(analysing the current glucose value and calculating the dose), sftck (safety
checking for the computed dose before delivering it), dlvr (delivering the dose),
or tst (testing). The value of cS function, when the system works automatically
(btn=on), determines what the software controller can perform during the run-
ning activity or can exclusively perform the testing activity. Running activity,
which is modelled by the r run rule, starts when the controller state is sns. If it is
so, then the controller gets the value from the sensor via the valS function, and
the state of the controller is set to anlscal. After calculating the dose, the value
of cS function becomes sftck. Following safety checking for the computed dose,
the cS value changes into dlvr. After delivering the dose, the running activity
is finished and the cS function turns into tst to perform the testing activity.

Performing the testing activity will be through inspecting the values for the
iA, ndl, rsv, fl functions in the r test rule. The iA function is the available insulin
value, which must not be less than the maximum single dose (mSD=4). The rsv
function records whether the reservoir has presented (prs) or not (not), and
the same role for the ndl function of the needle. The fl function shows if there
is a failure in any hardware unit, such as the sensor, pump, needle, or battery.
Showing hardware units failure in one rather than several monitored functions

2 All the rules for the refined model are available online at http://cgi.csc.liv.ac.uk/
∼hsfalsha/Insulin Pump Control System.html.

http://cgi.csc.liv.ac.uk/~hsfalsha/Insulin_Pump_Control_System.html
http://cgi.csc.liv.ac.uk/~hsfalsha/Insulin_Pump_Control_System.html

Abstract State Machines and System Theoretic Process Analysis 21

helps to keep the model size small. If any of the monitored functions indicate a
failure, then the system must be put in a suspension state by updating the value
of the controlled function spn to true, and at the same time a command must
be given to the alarm through the alarmCommand function.

asm insulinpump
signature :

domain Seconds subsetof In t ege r
domain Dose subsetof In t ege r
domain ThirtyC subsetof In t ege r
domain TenC subsetof In t ege r
domain Insul inRange subsetof In t ege r
enum domain Cont ro l l e rS ta t e={SNS ,

ANLSCAL, SFTCK, DLVR, TST}
enum domain Button={ON, OFF, MANUAL}
enum domain Present={NOT, PRS}
monitored pas : Seconds−>Boolean
monitored valS : Dose
monitored mD: Dose
monitored f l : Boolean
monitored ndl : Present
monitored rsv : Present
monitored btn : Button
controlled cR : Dose
controlled cS : Cont ro l l e rS ta t e
controlled spn : Boolean
controlled alarmCommand : Boolean
controlled manualD : Dose
controlled iA : Insul inRange
controlled sC30 : ThirtyC
controlled mC10 :TenC
domain Seconds={30}
domain ThirtyC={1..20}
domain TenC={1..144}
domain Dose={0..35}
domain Insul inRnge ={0..100}
function mSD=4
function mDD=25

rule r manua lde l i v e r ing=
i f updateiACommand=f a l s e then
i f iA<=100 then //This must be modi f ied

i f e x i s t $md in Dose with ($md=mD and
($md>=1 and $md<=5)) then
par

manualD:=mD
updateiACommand:=true

endpar
endif

endif
e lse

par
iA:=iA−manualD
updateiACommand:= f a l s e

endpar
endif

rule r s a f e t y ch e ck=
par
cS:=DLVR
i f comD=0 then

dD:= 0
else

i f (comD+cD)>mDD then
dD:=mDD−cD

else
i f (comD+cD)<mDD then//No equa l i t y

i f (comD<=mSD) then
dD:=comD

else
dD:=mSD

endif
endif
.

rule r t e s t=
i f (f l=true) or (rsv=NOT) or (ndl=NOT)

or (iA<mSD) then
par

spn:=true
alarmCommand:=true

endpar
endif

rule r s e n s e=
i f e x i s t $x in Dose with $x=valS then

par
cR:=valS
cS:=ANLSCAL

endpar
endif

rule r run=
switch cS
case SNS : r s e n s e []
case ANLSCAL: cS:=SFTCK
case SFTCK: r s a f e t y ch e ck []
case DLVR: cS:=TST

endswitch
rule r au tope ra t ing=
i f spn=f a l s e then
par
i f sC30=1 and cS!=TST then

r run []
endif
i f sC30>=1 and sC30<=19
and cS=TST then
i f pas (30)=true then

par
r t e s t []
sC30:=sC30+1

endpar
endif

endif
i f sC30=20 then
i f pas (30)=true then

par
cS:=SNS
sC30:=1
i f mC10=144 then

par
mC10:=1
cD:=0

endpar
else

mC10:=mC10+1
endif

. . .
endpar

rule r c e a s i n g=
main rule r Main =
switch btn
case ON: r autope ra t ing []
case MANUAL: r manua lde l i v e r ing []
case OFF: r c e a s i n g []

endswitch
default in i t s0 :
function sC30=1
function mC10=1
function cS=SNS
function spn=f a l s e
function iA=100
function cD=0
function updateiACommand=f a l s e

Code 1. The AsmetaL ground model for IPCS

Executing the testing and running activities are also restricted by time (30 s
and 10 min). This is carried out by guards in the r autoperating rule. As there

22 F. Al-Shareefi et al.

is no tool to deal with time within the ASMETA framework, we treat time
in an abstract manner. To achieve this, we use the controlled function sC30
to represent the number of 30 s cycles in 10 min. The maximum value for this
function is 20. As the controller performs the running activity every 10 min and
the testing activity every 30 s (but running and testing can not take place at the
same time), one of these 20 cycles is for running and the other cycles are for
testing. During the running activity, the controller sets the cumulative dose cD
to 0 every 24 h. We use the controlled function mC10 to represent the number of
10 min cycles in 24 h (its maximum value is 144). When this function reaches 144
and the sC30 function reaches 20, then the controller will set the cumulative dose
to 0. Furthermore, we deal with increasing these functions in an abstract manner
via the boolean monitored function pas(30). This means, when the pas(30)=true,
some function should be increased, and at the same time, some activity should
be performed. For example, if sC30=20 and 30 s has passed since the last update
of sC30 to 20, then the running activity must be started by changing cS into
sns, sC30 becomes 1, and at the same time mC10 is checked. If it has reached
144, it is set to 1, otherwise it is increased to the next value. If 30 s has passed
since the last update of sC30 to a value within 1–19, then the testing activity
must be performed and sC30 is increased to the next value.

5.2 Validating the AsmetaL Model

This stage attempts to validate the AsmetaL model by running particular Avalla
scenarios, and obtaining a fail/success outcome. The scenario describes the iden-
tifiable interactions between the system and its environment to represent infor-
mal functional requirements. In the IPCS, the interactions are represented by
the current glucose value and the delivered dose. We identify 14 scenarios that
correspond to the delivered dose quantity requirements. From these scenarios,
we only discuss the scenario that has a fail verdict (see Code 2). Code 2 is the
scenario that is written in Avalla as input to the AsmetaV tool. This scenario
corresponds to the following requirements: if the cumulative dose does not exceed
the maximum daily dose, and the computed dose itself is less than or equal to
the maximum single dose, then the delivered dose is equal to the computed dose.

// s e t t i n g the i n i t i a l 250 s t a t e s
set btn :=ON;
set valS :=22;
step
check cR=22 and cS=ANLSCAL;
step unti l cS=TST;
check cD=22;
set btn :=ON;
set pas (30) :=true ;
set f l := f a l s e ;
set rsv :=PRS;
set ndl :=PRS;
step unti l sC30=20;

check spn=f a l s e ;
set btn :=ON;
step
check cS=SNS ;
set btn :=ON;
set valS :=34;
step
check cR=34 and cS=ANLSCAL;
step
check comD=3 and comD+cD<=25
and comD<=mSD;
step
check dD=comD;

Code 2. The scenario that has a fail verdict

Abstract State Machines and System Theoretic Process Analysis 23

The scenario in Code 2 can be described as follows: the system is operating
in automatic mode, the current glucose value is 34, the previous glucose value
from 10 min earlier is 22, the cumulative dose is equal to 22, there is no suspen-
sion situation, the computed dose is 3 units, and the requirement that must be
checked is: the delivered dose should be equal to the computed dose.

The simulation of the scenario in Code 2 is illustrated in Fig. 2. In this figure,
we use the following abbreviations: vdct (verdict), succ (succeed). The comD and
dD functions represent the computed dose and the delivered dose, respectively.
The simulation shows that we obtain the succ verdict for: the first received glu-
cose value (22), the cumulative dose, no suspension, the second received glucose
value (34), the sum of the computed dose and the cumulative dose equals the
maximum daily dose (25), and the computed dose is less than the maximum
single dose (4), while a fail verdict is obtained at state 283, due to missing the
equality operator in the safety condition on the computed dose before deliv-
ering it (see r safetycheck rule in Code 1). This condition checks whether the
summation of the computed dose plus the cumulative dose is greater or less
than the maximum daily dose, but it does not checks the equality situation
((comD(3)+cD(22))=mDD(25)). Therefore, the delivered dose is not calculated
and we obtained a fail verdict. Thus, we have shown that ignoring the equality
testing in the [22] specification may lead to a serious issue in the IPCS.

state 251

btn=ON
cS=SNS
valS=22

state 252

btn=ON
cS=ANLSCAL
cR=22

.... state 258

btn=ON
cS=TST
cD=22

state 259

btn=ON
pas(30)=true
fl=false
ndl=PRS
rsv=PRS

.... state 279

btn=ON
spn=false
sC30=20

state 280

btn=ON
cS=SNS
sC30=1

state 281

btn=ON
cS=ANLSCAL
cR=34

state 282

btn=ON
comD=3

state 283
btn=ON
cD=22
dD=0

fail vdct: dD=comDsucc vdct: comD=3 and
comD+cD<=25 and comD<=mSD

succ vdct: cR=34

succ vdct: spn=falsesucc vdct: cD=22succ vdct: cR=22

Fig. 2. Simulation of the scenario shown in Code 2

5.3 Eliciting Safety Requirements via STPA

Next we employ the STPA technique for eliciting the safety requirements of the
IPCS, and it consists of the following steps:

– Indicating the main expected accidents, e.g. damage to the patient’s eyes or
kidneys if the required insulin dose is not taken.

– Identifying the possible hazards that can lead to the previous accidents, such
as the user’s unawareness of warning or failure conditions.

– Determining the actions issued by the controller that can lead to hazards in
the previous step, such as: run the alarm, update the available insulin, deliver
the dose.

24 F. Al-Shareefi et al.

– Identifying the process model for the controller. We define this as a set of
monitored and controlled functions of the AsmetaL model. Each member of
this set consists of a function name and its values, e.g., the process model that
affects the run warning alarm action is: {btn=(on, off, manual), spn=(true,
false), cR=(�sMin, <sMin), cS=(sns, anlscal, sftck, dlvr), nP=(0, 1, 2,
3, 4), iA=(>4×mSD, �4×mSD), sCC=(>mDD, �mDD)}. Where the meaning
of cR is the current reading of glucose, sMin is the minimum safe limit (6),
mDD is the maximum daily dose, sCC is the summation of the computed and
cumulative doses, and nP is the number of pulses issued by the controller to
deliver the insulin.

– Evaluating the combination of function values for each control action under
four contexts: ‘provided’, ‘provided too early’, ‘provided too late’ and ‘not
provided’. The evaluation process is performed through asking a question to
an expert of the following form: if the controller receives a certain combination
of function values, will (provide, provide too early/too late, not provide) the
action in the next state by the controller lead to a hazard? The results of the
evaluation are documented in Table 1. This Table is only for the run warning
alarm. The no/fun answer represents no actual hazard will happen, but there
is a flaw with the system function, e.g. it is not hazardous if the alarm action
is provided earlier than realizing that the current glucose is less than the
minimum safe limit.

– Translate each combination that has a yes answer in the table into informal
safety requirements using the phrases “must” (for ‘not provided’) and “must
not” (for ‘provided’, ‘provided too early’, ‘provided too late’. According to
Table 1, we have 6 safety requirements corresponding to the 6 yes answers.

Table 1. The context table for the run alarm action with warning conditions

Process model Hazardous action?

btn spn cR cS nP iA sCC Provided Provided

too early

Provided

too late

Not

provided

on false any dlvr =0 �4mSD any no no/fun yes yes

on false any dlvr >0 and �4 �4mSD any no/fun no/fun no/fun no

on false any dlvr =0 >4mSD any no/fun no/fun no/fun no

on false any sns any any any no/fun no/fun no/fun no

on false any sftck any any �mDD no/fun no/fun no/fun no

on false any sftck any any >mDD no no/fun yes yes

on false <sMin anlscal any any any no no/fun yes yes

on false �sMin anlscal any any any no/fun no/fun no/fun no

on true any any any any any no/fun no/fun no/fun no

manual any any any any any any no/fun no/fun no/fun no

off any any any any any any no/fun no/fun no/fun no

Abstract State Machines and System Theoretic Process Analysis 25

5.4 Formalizing the STPA Safety Requirements

Here we formalize the elicited requirements. The formalization steps are:

– Determine the combination of the function values that have yes answers
in the ‘not provided’ condition only. The purposes for this are: to ensure
that the action is provided with these combinations, and to avoid repeti-
tion, e.g. the combination that has a yes answer when the action is ‘not
provided’ is the same as that which has a yes answer when the action is ‘pro-
vided too late’. Regarding Table 1, the combinations that have been identi-
fied are: (1) btn=on, spn=false, cS=dlvr, nP=0, and iA�4mSD. (2) btn=on,
spn=false, cS=sftck, and sCC>mDD. (3) btn=on, spn=false, cS=anlscal,
and cR<sMin.

– Formulate these combinations, using the following formula:

l((comi1 _ comi2 _ ...comin) Ø l(CAi)) (1)

Where: CAi is the ith control action, comin is the nth combination that
relates to the ith action, and the formula informally means that the control
action is always provided in the next state, if and only if one of the determined
combination occurs. The Ø operator puts a strong condition on providing the
action, i.e. the action will not be provided with another combination or lat-
er/earlier than satisfying the determined combination. Furthermore, employ-
ing the Ø and _ operators helps to reduce the number of properties to be
verified (6 safety requirements are reduced to only 1).

– Rewriting the formulated requirements into ones accepted by the AsmetaSMV
tool via its propositional and future-time connectives.

5.5 Verifying the STPA Safety Requirements

This stage is intended to verify the resultant formulated requirements against
the AsmetaL model, to improve it. As we here use the AsmetaSMV tool, we
rewrite the resultant formulated requirements into other ones accepted by this
tool. We will present only the verification results from the AsmetaSMV tool, for
the properties that are not met, as follows:

– LTLSPEC g(((btn=ON and spn=false and cS=dlvr and nP=0 and
iA<=4mSD) or (btn=on and spn=false and cS=sftck and sCC>mDD)
or (btn=on and spn=false and cS=anlscal and cR<sMin)) iff
x(alarmCommand=true)). This property informally means that the warn-
ing run alarm action is always provided in the next state if and only if one of
the warning combinations occurs. The bold font for the first combination in
this property indicates that this combination is the reason for the unsatisfied
property. In Fig. 3 we show the failing trace for providing the run alarm action
when the available insulin quantity is equal or less than 4 maximum single

26 F. Al-Shareefi et al.

doses. The new abbreviation that we use in this figure is: pR (previous glucose
reading). From state 1.1, onwards the system is operating under the automatic
mode shown by the value on. At state 1.1, there is no alarm action (alarmcom-
mand=false) and the insulin quantity is 18 (iA=18). At state 1.2 the controller
receives the current glucose value (cR=22) from the sensor (valS=22), and it
computes the dose at state 1.3 (comD=(22(cR)-14(pR))/4(mSD)). Deliver-
ing the dose starts at state 1.4, and at state 1.5 it finishes and the available
insulin becomes 16 which is equal to (4×(maxSingleDose=4)). The loop starts
at state 1.6 showing that the run alarm action is not provided (alarmCom-
mand=false), when iA=16. This happens because the initial version of the
AsmetaL model relies on the specification in [22], which does not consider
running the alarm at cautionary situations for the available insulin quantity.

– LTLSPEC g((btn=manual and iA<=100 and mD!=0) iff x (updateiACom-
mand=true)). Where the mD is the manual dose, and the property informally
means that the action of updating the available insulin according to the man-
ual dose is always provided in the next state, if and only if the system works
under the manual mode, the available insulin is less than or equal the capacity
(100 units), and there is a manual dose. In Fig. 4 we provide a failing trace for
providing the update available insulin action when the system is in manual
mode. From state 1.1 onwards, the system is in the manual mode via the value
manual. At state 1.1, the insulin quantity is 10 (iA=10), the manual dose is
6, and updating the available insulin action is not provided (updateiACom-
mand=false). At state 1.2, the action is provided and has been executed at
state 1.3 through changing the value of iA to 4. The loop starts at state 1.3
showing that insulin quantity is not updated, when the iA=4 and the mD=5.
The loop arises from a lack of a constraint, in the [22] specification, on the
available insulin before delivering the manual dose (see r manualdelivering
rule in Code 1). This constraint must check if the available insulin is equal or
greater than the maximum manual dose (5) before delivering it3.

alarmCommand

State
btn
cS
valS
iA
cD
cR
pR

SNS

false

ANLSCAL

false

SFTCK

false

DLVR

false

DLVR

false

TST

false false

1.1 1.2 1.3 1.4 1.5 1.6

22
18
3

14
14

ON ON ON ON ON ON ON
TST

22 22 22 22 22 22

3 3 3 5
18 18

5 5
22 22 22 22 22 22
14 141414 22 22

0
00

0

16

dD
comD

0
0

0
0

0
2

2
2

2
2

0nP 0 2

16 16

1 0 0 0

17

1.7

Fig. 3. Failing trace for the running alarm action when the available insulin is equal
to the 4 maximum single doses

3 All the modified specifications are available online at http://cgi.csc.liv.ac.uk/
∼hsfalsha/Insulin Pump Correct Version.txt.

http://cgi.csc.liv.ac.uk/~hsfalsha/Insulin_Pump_Correct_Version.txt
http://cgi.csc.liv.ac.uk/~hsfalsha/Insulin_Pump_Correct_Version.txt

Abstract State Machines and System Theoretic Process Analysis 27

State

false falseupdateiACommand
mD

MANUAL MANUALMANUAL MANUAL MANUAL

false

10
6

10
6

4
5

4 4
5 5

1.1 1.2 1.51.41.3

true true

iA
btn

Fig. 4. Failing trace for updating the available insulin action when the manual dose
is greater than the available insulin

6 Evaluation

In this section, we present two comparisons. The first is comparing results of the
development procedure for the IPCS, in [23] with ours. The second is between
the formalization process for the STPA requirements of [3] and ours.

With regard to the development methodology for IPCS, we can compare
our methodology’s results with the results in [23]. Our methodology starts with
specifying the system via AsmetaL, while [23] employs the Z language for spec-
ification. Our specification tries to represent the timing aspects for the system
via using an abstract time representation, while the [23] specification uses the
input variable clock? to obtain the current time, but it does not specify how
the implementation of RUN and TEST schemas responds to this variable. In our
methodology, we use the validation and verification tools to develop a safe sys-
tem, whereas [23] utilizes the safety arguments method for performing manual
verification. This method starts with an unsafe state, then all paths in the sys-
tem code must be proven to be contradictory to this state. This method does not
address the unsafe conditions determined by our methodology, which includes:
(1) The patient does not take the automatic dose when the sum of the computed
dose and the cumulative dose equals the maximum daily dose. (2) The system
can deliver a manual dose even if it exceeds the available insulin. (3) The system
does not give an alarm if the insulin reservoir is less than the sum of 4 maximum
single doses. We believe that these unsafe conditions are not highlighted by other
methods.

Regarding the formalization process for the STPA requirements, in [3] four
types of safety requirements have been elicited and formalized, which are:

– The control action must always be provided at the next state (without being
too early or too late) when a combination occurs. It has been formalized as:

l (Comij Ñ l (CAi)) (2)

Where: CAi is the ith control action, and Comij is the jth combination that
relates to the ith action. Such formula is formulated for each combination
presented in a line of context table with a yes answer in the ‘not provided’
column.

– The control action must always be provided no later than a certain combi-
nation occurrence. This requirement is elicited according to the combination
line with a yes answer in the ‘provided too late’ column of the context table.

28 F. Al-Shareefi et al.

The corresponding safety property is formulated as:

l ((Comij Ñ CAi) ^ ¬(Comij U CAi)) (3)

The authors of [3] claim that this formalization of the requirement “the soft-
ware controller should always (...) not provide a control action CAi too late
while the occurrences of the critical set of combinations has become previ-
ously true in the execution path.” However, a simple semantic analysis does
not support their claim. Indeed, the right hand side of conjunction ensures
that either (1) no action occurred, or (2) an action should be occurred, such
that at some point before that a combination should not hold, which is dif-
ferent from the statement of the claim.

– The control action must always be provided not earlier than the occurrence
of a combination. This requirement is elicited according to the combination
line with a yes answer in the ‘provided too early’ column of the context table.
Regarding safety requirement is formulated as:

l ((CAi Ñ Comij) ^ ¬(CAi U Comij)) (4)

The authors of [3] claim that this formalization of the requirement “a soft-
ware controller should always (...) not provide control action CAi before the
occurrence of critical combinations set (...) still not become true in the exe-
cution path and that it well provides the CAi when the combination of (...)
holds.” Now again, a simple semantic analysis does not support their claim.
Furthermore, the left hand side of conjunction can not be ensured when the
control action emerges from more than one combination.

– The control action must always not be provided when a combination occurs.
It has been formalized in the following form:

l (Comij Ñ ¬CAi) (5)

This formalization is formulated for each combination line with a yes answer
in the ‘provided’ column of the context table.

In our approach all these requirements are captured by a single formula (1):
l((comi1 _ comi2 _ ...comin) Ø l(CAi)). In this formula, the if and only
if, always, and or operators strict providing the control action only with the
determined combination of the function values, not with another one. Fur-
thermore, the biconditional (if and only if) operator ensures that when one of
the determined combinations is satisfied then the control action is provided
in the next state (not too late), and when the control action is provided, then
one of the determined combinations must be satisfied at the previous state
(the action is not provided earlier than satisfying the combination).

7 Related Work

Here, we discuss related work that uses hazard analysis techniques, formal meth-
ods, or both for analysing safety-critical systems. In [25], an integrated approach

Abstract State Machines and System Theoretic Process Analysis 29

for combining the results of Fault Tree Analysis (FTA) and Failure Mode and
Effects Analysis (FMEA) techniques into the requirements specification. The
FTA results are the identification of combinations of component failures, while
the FMEA identifies the failure modes and the minor errors that lead to com-
ponent failure. That paper uses statecharts to bridge the semantics gap between
the results of safety analysis and software requirements. In [21], a method for
formalizing and verifying the safety requirements elicited by the FTA technique,
is presented.

The safety analysis techniques that have been used for eliciting safety require-
ments in these papers rely mainly on component failure, and only partially
on unintended interactions between system’s components. Leveson [19] presents
the STPA technique to identify the safety requirements for inadequate control
actions that affect whole system functions and its components’ behavior. Accord-
ing to STPA, the accidents do not simply arise from sequences of component
failures, rather, they arise when the safety constraints related to the functional
interactions among system components are not enforced. In [1,3] the authors pro-
pose a software safety verification methodology based on the STPA technique to
elicit the safety requirements and verify them to identify software risks. First,
they elicit and formalize the STPA requirements (with respect to providing and
not providing actions) into LTL properties and they verify them based on an
SMV manual constructed model. Next they formalize the STPA requirements
(with respect to providing actions too early and too late), and they build a safe
behavior model of a software controller constrained by the STPA results with
UML statechart, as well as they provide an algorithm to transform the safe model
into an input model of the NuSMV model checker. However, the formalization
process does not reflect the requirements for too early/late actions. In our work,
we reformulate the four STPA requirements (‘provide’, ‘provide too early’, ‘pro-
vide too late’, and ‘not provide’) into one formula capturing these requirements,
and we exploit ASMs to model the functional behavior of the system and we do
not constrained the ASM model by STPA results. We choose ASM method as
it supports several characteristics, including: flexibility in modelling any algo-
rithm at an appropriate level of abstraction, and feasibility of being used in an
automatic and tool supported manner during the system development process.
Furthermore, ASMs have simple and well-defined formal semantics [11].

The advantages of using formal methods for developing safety-critical systems
have been shown in [14]. In [26] a Structured Object-Oriented Formal Language
(SOFL) is adopted to build a formal specification for the IPCS. That paper
shows that the SOFL provides an effective means to allow the developer to take
a gradual process to build a formal specification for the system, but it does not
show how to verify or validate the resulted specifications. In [16], timed automata
is chosen to model the railyard interlocking system, and UPPAAL model checker
is used to verify the safety properties of that system. On one hand, UPPAAL,
unlike ASM, lacks structuring mechanism to achieve abstraction [20], and on the
other hand, UPPAAL does not fully support CTL model checking [10]. In [5,8],
it is shown how the ASM method serves in supporting the design, validation,

30 F. Al-Shareefi et al.

and verification activities within the ASMETA framework. However, in this work
the verification of safety requirements is guided only by the modeller experience,
not by a safety analysis technique. Our approach utilizes the same framework
(ASMETA) for developing systems, but we employ the STPA procedure for
deriving the safety requirements.

8 Conclusion and Future Work

In this paper, we combine the ASM method and STPA technique in a devel-
opment methodology. Our methodology shows how functional requirements val-
idation and STPA requirements verification help us to modify the ASM spec-
ification. We have demonstrated how to capture the four STPA requirements
adequately via using disjunction and if and only if operators in our formaliza-
tion for the requirements. The next step will be formalizing and generalizing the
STPA requirements in terms of Allen’s interval algebra [4].

We have shown how the timing aspects for the IPCS have been modelled in
an abstract manner. We modelled the start point of the controller activities via
using two controlled functions mC10 and sC30, and we modelled the time passing
since last activity by a boolean monitored function pas. This abstract handling
specifies when the activity starts but it ignores dealing with durative action,
while a certain activity is performed, e.g. run alarm for 10 s during running
activity. In the future, we hope to use improved abstractions to deal with timing
aspects.

In the specification analysis presented here, we did not consider the static
analysis for the completeness and consistency properties. In the future work, we
are going to address this by applying the AsmetaMA tool [7] to the specification.

To further our methodology we intend to design an algorithm to automate
the part of eliciting STPA requirements. Although an automatic tool has been
proposed to achieve this [2], it seems only to work for up to 6 variables in a
process model for the software controller. Hence, we plan to make the integration
between ASM and STPA automatic, without the need for user input.

Acknowledgments. We gratefully acknowledge Dr. Paolo Arcaini for his advice on
ASMETA framework.

References

1. Abdulkhaleq, A., Wagner, S.: Integrated safety analysis using systems-theoretic
process analysis and software model checking. In: Koornneef, F., van Gulijk, C.
(eds.) SAFECOMP 2015. LNCS, vol. 9337, pp. 121–134. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24255-2 10

2. Abdulkhaleq, A., Wagner, S.: XSTAMPP: an extensible STAMP platform as tool
support for safety engineering. In: 2015 STAMPWorkshop. MIT, Boston. Stuttgart
University (2015)

https://doi.org/10.1007/978-3-319-24255-2_10

Abstract State Machines and System Theoretic Process Analysis 31

3. Abdulkhaleq, A., Wagner, S.: A systematic and semi-automatic safety-based
test case generation approach based on systems-theoretic process analysis. arXiv
preprint arXiv:1612.03103 (2016)

4. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM
26(11), 832–843 (1983)

5. Arcaini, P., Bonfanti, S., Gargantini, A., Mashkoor, A., Riccobene, E.: Formal
validation and verification of a medical software critical component. In: 2015
ACM/IEEE International Conference on Formal Methods and Models for Codesign
(MEMOCODE), pp. 80–89. IEEE (2015)

6. Arcaini, P., Gargantini, A., Riccobene, E.: AsmetaSMV: a way to link high-level
ASM models to low-level NuSMV specifications. In: Frappier, M., Glässer, U.,
Khurshid, S., Laleau, R., Reeves, S. (eds.) ABZ 2010. LNCS, vol. 5977, pp. 61–74.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11811-1 6

7. Arcaini, P., Gargantini, A., Riccobene, E.: Automatic review of abstract state
machines by meta-property verification. In: NASA Formal Methods Symposium,
pp. 4–13. NASA (2010)

8. Arcaini, P., Gargantini, A., Riccobene, E.: Modeling and analyzing using ASMs:
the landing gear system case study. In: Boniol, F., Wiels, V., Ait Ameur, Y.,
Schewe, K.-D. (eds.) ABZ 2014. CCIS, vol. 433, pp. 36–51. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-07512-9 3

9. Arcaini, P., Gargantini, A., Riccobene, E., Scandurra, P.: A model-driven process
for engineering a toolset for a formal method. Softw. Pract. Exp. 41(2), 155–166
(2011)

10. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30080-9 7

11. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level Sys-
tem Design and Analysis. Springer, Heidelberg (2003). https://doi.org/10.1007/
978-3-642-18216-7

12. Carioni, A., Gargantini, A., Riccobene, E., Scandurra, P.: A scenario-based vali-
dation language for ASMs. In: Börger, E., Butler, M., Bowen, J.P., Boca, P. (eds.)
ABZ 2008. LNCS, vol. 5238, pp. 71–84. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-87603-8 7

13. Gargantini, A., Riccobene, E., Scandurra, P.: A metamodel-based language and a
simulation engine for abstract state machines. J. UCS 14(12), 1949–1983 (2008)

14. Gerhart, S., Craigen, D., Ralston, T.: Experience with formal methods in critical
systems. IEEE Softw. 11(1), 21–28 (1994)

15. Gurevich, Y.: Evolving algebras 1993: Lipari guide. In: Börger, E. (ed.) Specifica-
tion and Validation Methods, pp. 9–36. Oxford University Press, Inc. (1995)

16. Khan, U., Ahmad, J., Saeed, T., Mirza, S.H.: On the real time modeling of inter-
locking system of passenger lines of Rawalpindi Cantt train station. Complex
Adapt. Syst. Model. 4(1), 17 (2016)

17. Leveson, N.: A new accident model for engineering safer systems. Saf. Sci. 42(4),
237–270 (2004)

18. Leveson, N., Thomas, J.: An STPA Primer, Cambridge (2013)
19. Leveson, N.G.: A new approach to hazard analysis for complex systems. In: Inter-

national Conference of the System Safety Society (2003)
20. Ouimet, M., Berteau, G., Lundqvist, K.: Modeling an electronic throttle controller

using the timed abstract state machine language and toolset. In: Kühne, T. (ed.)
MODELS 2006. LNCS, vol. 4364, pp. 32–41. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-69489-2 5

http://arxiv.org/abs/1612.03103
https://doi.org/10.1007/978-3-642-11811-1_6
https://doi.org/10.1007/978-3-319-07512-9_3
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-540-87603-8_7
https://doi.org/10.1007/978-3-540-87603-8_7
https://doi.org/10.1007/978-3-540-69489-2_5
https://doi.org/10.1007/978-3-540-69489-2_5

32 F. Al-Shareefi et al.

21. Santiago, I.B., Faure, J.M.: From fault tree analysis to model checking of logic
controllers. IFAC Proc. 38(1), 86–91 (2005)

22. Sommerville, I.: Insulin Pump – Z schemas. http://iansommerville.com/
software-engineering-book/files/2014/07/Insulin-Pump-Z-schemas.pdf

23. Sommerville, I.: Software Engineering, 9th edn. Addison Wesley, Boston (2010)
24. Thomas, J.: Extending and Automating a Systems-Theoretic Hazard Analysis for

Requirements Generation and Analysis. Ph.D. thesis, Massachusetts Institute of
Technology (2013)

25. Troubitsyna, E.: Elicitation and Specification of Safety Requirements. In: Third
International Conference on Systems (ICONS 2008), pp. 202–207. IEEE (2008)

26. Wang, J., Liu, S., Qi, Y., Hou, D.: Developing an insulin pump system using the
SOFL method. In: 14th Asia-Pacific Software Engineering Conference (APSEC
2007), pp. 334–341. IEEE (2007)

http://iansommerville.com/software-engineering-book/files/2014/07/Insulin-Pump-Z-schemas.pdf
http://iansommerville.com/software-engineering-book/files/2014/07/Insulin-Pump-Z-schemas.pdf

From Scenarios to Timed Automata

Neda Saeedloei1(B) and Feliks Kluźniak2

1 Southern Illinois University, Carbondale, USA
neda@cs.siu.edu

2 Logic Blox, Atlanta, USA
feliks.kluzniak@logicblox.com

Abstract. We describe a new method of synthesizing a formal model for
real-time systems from scenarios. Scenarios, formally defined as Timed
Event Sequences, together with mode graphs are used to describe behav-
iors of real-time systems. Given a set of Timed Event Sequences and a
mode graph, our synthesis method constructs a minimal, acyclic, timed
automaton that models the specified aspects of the system. We formalize
criteria that a set of scenarios must satisfy in order to make it feasible
to generate such an automaton.

Keywords: Formal models · Scenarios · Timed automata

1 Introduction

Model-based design has been used as an effective approach to the process of
designing, analysis, and verification of complex systems. The process can greatly
benefit from building a formal model, i.e., one that is expressed in a formal
language with well-defined semantics. An important advantage of modeling is
that one obtains insight into how a physical realisation of the system would
behave in the real world.

A formal model can be used as a high-level “prototype”: it can be experi-
mented with and iteratively improved. (The cost of doing so is significantly lower
than that of experimenting with and improving a real implementation of the sys-
tem.) Depending on how the model is constructed, such experimentation usually
takes the form of either formally deriving logical conclusions, or of automatic
simulation. The overall purpose is to obtain a validated model, i.e., one whose
“behavior” does indeed comply with the desired behavior of the modeled system.
The insight mentioned in the preceding paragraph arises out of the necessity of
formulating very clear criteria for (or examples of) desirable and undesirable
behaviors.

While the use of model-based design is promising and rapidly growing, a
major problem is the lack of good formal requirements, which are the starting
point in building a model. System requirements are often incomplete, ambiguous

The preliminary research was carried out while the first author was at the University
of Minnesota, Duluth.

c© Springer International Publishing AG 2017
S. Cavalheiro and J. Fiadeiro (Eds.): SBMF 2017, LNCS 10623, pp. 33–51, 2017.
https://doi.org/10.1007/978-3-319-70848-5_4

34 N. Saeedloei and F. Kluźniak

or very low level. Incomplete requirements cannot be used for building realis-
tic systems, as some parameters and functionalities are missing and must be
guessed. Real-time systems, in particular, are often safety-critical systems, and
unspecified behaviors and missing cases cannot be tolerated. Ambiguous require-
ments must be made more precise before the formal model is complete (and the
act of analysing and attempting to model ambiguous requirements can be very
helpful in detecting the ambiguities). Finally, very low level requirements are
difficult to understand and reason about, so tend to be less useful for modeling
purposes. It is exactly the unavailability of satisfactory requirements specifica-
tions that makes modeling such an important step in the process of constructing
a system.

In this paper we focus on two important questions: (1) how to express require-
ments, and (2) how to obtain formal models of real-time systems from require-
ments. Our formal models will take the form of timed automata [1].

We propose a new method for synthesizing a timed automaton model of a
real-time system from scenarios. A scenario can be viewed as a description of a
set of partial behaviors of a real-time system during a time interval: it describes
not only the events that occur in the system, but also the timing relations among
the events. All behaviors “allowed” by a particular scenario must satisfy the same
time constraints.

The events in a scenario include both the system’s internal events and its
interactions with users or the environment. A set of scenarios can capture the
important aspects of the required system behaviors, and be the starting point
for constructing a formal model of the system.

We introduce Timed Event Sequences (TES)1 to describe scenarios formally,
precisely, and at a high level of abstraction. We also use mode graphs (others
have called them “mode diagrams” [8]) to specify the events that are possible at
various points in the history of the system. Our scenarios, together with mode
graphs, can be viewed as high level descriptions of real-time systems. As such,
they are easy to understand and use by practitioners who utilise scenarios to elicit
system requirements. The other alternative would be to build timed automata
directly. But people who provide information about the requirements will not
always be comfortable with timed automata: for some of them mode graphs and
scenarios might be easier to handle (this observation seems to have motivated
different work by others [8]).

Our method constructs a timed automaton from a set of TES and a mode
graph. The constructed automaton is an acyclic2 automaton with a minimum
number of locations, which captures all those behaviors of the system that are
described by the set of TES. All the possible runs of the constructed timed
automaton are possible behaviors of the system in the sense of being runs of the
mode graph. The principal value of the constructed automaton is that it caters
for the time constraints introduced in the scenarios.

1 We will use the abbreviation for both the singular and the plural form of the term.
2 The acyclicity of our automaton does not prevent it from being used as a timed

automaton with infinite runs, as will be explained in Sect. 6.

From Scenarios to Timed Automata 35

Our goal of synthesizing timed automata with a minimal number of locations
is motivated by the fact that the “state explosion problem” has been a major
challenge in model checking concurrent systems [5].

We construct acyclic timed automata, because the conventional formalism
of timed automata does not allow inclusion of variables other than clocks. By
allowing cycles the formalism would have to be extended in order to express a
limit on the number of iterations (e.g., the number of attempts to enter a PIN).

From a bird’s eye perspective, our approach can be described as follows:

1. A mode graph M defines the universe BM of all the possible behaviors of the
system: these are, roughly, the runs of M when treated as a finite automaton.

2. A scenario A imposes timing constraints on certain kinds of concrete behav-
iors, thus defining Allowed(A) ⊂ BM: the set of those possible behaviors that
are allowed by A.

3. Two scenarios, A and B , together define the set of allowed behaviors as
Allowed(A) ∩ Allowed(B).

4. The constructed timed automaton exhibits behaviors that are allowed by all
the scenarios and are described by some of them. If the set of exhibited behav-
iors is smaller than expected, then either the constraints in some scenarios
are too strict, or certain kinds of behaviors have not yet been specified. The
activity of specifying a system must of necessity be iterative: that is why the
automaton must be constructed automatically.

2 Timed Automata

We now present a brief overview of timed automata [1].
For a set C of clock variables, the set Φ(C) includes clock constraints of the

form c ∼ a, where ∼∈ {≤,≥, <,>,=}, c ∈ C, and a is a constant in the set of
rational numbers, Q.

A timed automaton is a tuple A = 〈E,Q,Q0, Qf , C,R〉, where

– E is a finite alphabet;
– Q is the (finite) set of locations;
– Q0 ⊂ Q is the set of initial locations;
– Qf ⊆ Q is the set of final locations;
– C is a finite set of clock variables;3

– R ⊆ Q×Q×E ×2C ×2Φ(C) is the set of transitions of the form (q, q′, e, λ, φ),
where the set λ ⊆ C is the set of clocks to be reset with this transition, and
φ is a set of clock constraints over C.

A time sequence τ = τ1τ2... is an infinite sequence of (time) values τi ∈ R≥0,
satisfying two requirements:

– Monotonicity : τ increases strictly monotonically, i.e., τi < τi+1 for all i ≥ 1.
– Progress: For every t ∈ R≥0, there is some i ≥ 1 such that τi > t.

3 We will follow the usual convention and use “clocks” instead of “clock variables”.

36 N. Saeedloei and F. Kluźniak

Fig. 1. A mode graph corresponding to the ATM

A timed word over an alphabet E is a pair (σ, τ) where σ = σ1σ2... is an infinite
word over E and τ is a time sequence.

A clock interpretation for a set C of clocks assigns a value in R≥0 to each
clock; that is, it is a mapping from C to R≥0. We say that a clock interpretation
ν for C satisfies a set of clock constraints φ over C iff every clock constraint in
φ evaluates to true after replacing each clock variable c with ν(c).

For τ ∈ R, ν + τ denotes the clock interpretation which maps every clock c
to the value ν(c) + τ . For Y ⊆ C, [Y �→ τ]ν denotes the clock interpretation for
C which assigns τ to each c ∈ Y , and agrees with ν over the rest of the clocks.

A run ρ of A over a timed word (σ, τ) is an infinite sequence of the form

ρ : 〈q0, ν0〉 σ1−→
τ1

〈q1, ν1〉 σ2−→
τ2

〈q2, ν2〉 σ3−→
τ3

. . .

with qi ∈ Q and νi ∈ [C �→ R≥0], for all i ≥ 0, satisfying two requirements:

– q0 ∈ Q0, and ν0(c) = 0 for all clocks c ∈ C;
– for every i ≥ 1 there is a transition in R of the form (qi−1, qi, σi, λi, φi), such

that (νi−1 + τi − τi−1) satisfies φi, and νi equals [λi �→ 0](νi−1 + τi − τi−1).

3 Specifying Scenarios

We will now describe our representation of scenarios. We will use the initial
behavior of an Automatic Teller Machine (ATM) to illustrate some terms and
definitions.

From Scenarios to Timed Automata 37

Intuitively, a scenario describes a set of partial behaviors of a system during
a time interval. We use mode graphs to describe all the possible behaviors of a
system. A mode graph (cf. [8]) is a deterministic state machine that describes
the high level behavior of a system. Modes can be viewed as visible states of
a system. A transition is triggered by an event allowable in the current mode
and brings the system to a new mode. For example, Fig. 1 shows the mode
graph that outlines the initial behavior of the ATM controller and a potential
customer (user). The transition from pin-entered to user-verified is triggered by
a correct-pin event.

Scenarios are used to put various constraints on certain behaviors of a system.
Examples of constraints include time constraints on certain events or constraints
on the number of occurences of some events, e.g., a limit on the number of times
a PIN can be re-entered.

We use Timed Event Sequences to formally represent scenarios. A Timed
Event Sequence (formally defined in Sect. 4) contains:

– The initial and the final mode of the specified scenario.
– A sequence of timed events. We assume each event occurs at some time w,

shown by the wall clock when the event occurs. An event may be augmented
with a set of time annotations that impose restrictions on relations between
the time of the event and the times of some earlier events in the scenario.

Figure 2 shows two scenarios, which specify the ATM’s initial behavior. Scenario
1 describes behaviors in which the user enters an incorrect PIN, and then the
correct PIN in the second attempt. It includes a sequence of seven timed events,
along with the initial and the final modes. Initially the mode of the system is
m0 (card-not-inserted). After inserting the card at time t0, the user enters the
PIN at time w > t0, such that the time difference between the two events, i.e.,
w − t0 is within [5, 60] seconds. Upon receiving the PIN, the ATM notifies the
user that the PIN was incorrect. The user then enters another PIN within [5, 60]
seconds since inserting the card. Once the user is verified (mode m4), the system
displays the menu within the next 5 seconds. The new mode at this point is m6

(menu-displayed). Please note that tj , where 0 ≤ j ≤ 7, is used to denote the
time of leaving mode mj (most recently).

Scenario 2 describes behaviors in which the user enters the correct PIN on
the first try. The time annotations are a subset of those in scenario 1.

It is easy to see that each of these scenarios allows an infinite number of
slightly different behaviors: a scenario directly captures the salient features of a
class of allowable behaviors.

4 A Formal Description of Mode Graphs and TES

Mode Graphs. A mode graph is a tuple M = (M,m0,mf , Σ, T), where M is
a finite set of modes, m0 is the initial mode, mf is the final mode (which can
be identical to m0), Σ is a set of events, and T : M × Σ → M is a transition
function. The latter will be represented as a set of transitions, i.e., triples of the

38 N. Saeedloei and F. Kluźniak

Fig. 2. Two scenarios showing two alternative sets of initial behaviors of the ATM

form (mi, e,mj), where mi and mj , are modes in M , and e is an event in Σ.
We assume events are unique in the mode graph: for an event e ∈ Σ, there is at
most one transition in T that is labelled with e.4

A run r of M is a (possibly infinite) sequence of the form r : s1
e1−→ s2

e2−→
s3

e3−→ . . . (where s1 = m0 and si ∈ M), such that for every i ≥ 1 there is a
transition in T of the form (si, ei, si+1). Any contiguous subsequence of a run is
called a partial run (so a run is also a partial run).

We define source(e) = m, if (m, e, n) ∈ T , for any mode n ∈ M .
If m and n are modes in M , then m dominates n if and only if all paths from

the initial mode to n pass through m [9]. We denote the dominance relation on
M by : m n iff m dominates n (we also say that n is dominated by m). We
write m � n to denote that m n and m �= n. (is a partial order.)

We extend the definition of dominated modes to dominated events: an event
e is dominated by mode m iff m source(e). For example, in Fig. 1, card-not-
inserted, card-inserted, pin-entered, user-verified and waiting-for-bank are all the
dominating modes of waiting-for-bank. The event display-menu is dominated by
all the modes that dominate waiting-for-bank.

Let V = {t1, t2, ..., tn} be a set of time variables, such that |V | ≥ |M |.
To each mode mi of M that appears in a scenario we assign ti ∈ V , which

is interpreted as the time of leaving mi. If there is a cycle involving mode mi,
then ti corresponds to the time of the most recent event occurrence at mi in
that scenario (since the most recent visit at m0). For example, if a scenario for
the mode graph of Fig. 1 describes an iteration between modes m2 and m3, then
t2 corresponds to the time of the most recent notification of an incorrect PIN in
the scenario.

We use Φ(V) to denote the set of time annotations of the form w − tj ∼ a,
where w is the time currently shown by the global wall clock, tj is a time variable
in V , ∼∈ {≤,≥, <,>,=}, and a is a constant in the set of rational numbers.

Timed Event Sequences. Given a mode graph M = (M,m0,mf , Σ, T), a
Timed Event Sequence ξ is a tuple of the form 〈minitial , Ψ,mfinal 〉, where minitial

4 This is just a convenient convention, not a real restriction.

From Scenarios to Timed Automata 39

Fig. 3. A mode graph and a few TES

and mfinal are in M , and Ψ is a non-empty sequence of timed events of the form
(ek, φk), 1 ≤ k ≤ n, where ek ∈ Σ, and φk ∈ 2Φ(V) is a set of time annotations
associated with ek. minitial and mfinal are the first and last modes of ξ.

We define initial mode(ξ) = minitial and final mode(ξ) = mfinal . We also
define events(ξ) to be the sequence e1e2 . . . en of events in ξ.

Compatibility with Mode Graph. A TES ξ = 〈minitial , Ψ,mfinal〉 is compat-
ible with M, if

– for events(ξ) = e1 . . . en, there exists a partial run s1
e1−→ s2 . . .

en−→ sn+1 of
M, such that s1 = minitial , sn+1 = mfinal and si ∈ M , for 1 ≤ i ≤ n;

– for a timed event (ek, φk) in Ψ and time annotation w − ta ∼ b ∈ φk, ta
corresponds to the time of the most recent event ej that occurred before ek

in ξ, such that sj = ma and ma � sk.

The second requirement means that a time annotation accompanying an event
e can refer only to the times of previous events which originated in modes that
dominate e. This fundamental dominance assumption guarantees that all time
variables are well-defined (i.e., each time variable used in a time annotation on
a transition is being defined on every path that reaches the transition).

This notion is best illustrated by an example. In the mode graph of Fig. 3,
each mode mi is associated with time ti. In scenario ξ1, the time annotation
on event h refers to the time of leaving m2, which dominates h. Hence, t2 is
well-defined regardless of the path taken from m0 to m5.

If h were annotated with a reference to t3, t3 would not be well-defined, as
m3 does not dominate h: if m5 were reached through m4, t3 would be undefined.

Observe that the TES ξ2 of Fig. 3 is not compatible with the mode graph
of Fig. 3, as the sequence abf does not correspond to a partial run of the mode
graph. The rest of the TES in Fig. 3 are compatible with the mode graph.

40 N. Saeedloei and F. Kluźniak

Behaviors. Given a mode graph M = (M,m0,mf , Σ, T), we define a behavior
as a finite timed word (e, w) over Σ, where e = e1e2e3...en, such that there exists
a run m0

e1−→ s2
e2−→ s3

e3−→ . . .
en−→ mf of M (in which m0 and mf occur only

once), and w = w1w2w3 . . . wn is a monotonically increasing sequence of real
numbers. Each wi represents the value of the wall clock when ei occurs. We use
BM to denote the set of all such behaviors.

A non-empty contiguous subsequence (ek...em, wk...wm) of a behavior B =
(e, w) is covered by a TES ξ iff ek...em = events(ξ).

A behavior B is relevant to TES ξ iff it includes a subsequence that is covered
by ξ. Otherwise, it is irrelevant to ξ.

All the behaviors in B1 = {(abceik , w1w2w3w4w5w6) | ∀1<i≤6 wi > wi−1}
are relevant to ξ3 of Fig. 3, as their subsequence (abce, w1w2w3w4) is covered
by ξ3. Similarly, the behaviors are relevant to ξ6 on account of the subsequence
(ab, w1w2). But the behaviors are irrelevant to ξ4, for example.

A behavior B is covered by a set of TES, Ξ, iff B can be partitioned into
a series of non-empty contiguous subsequences, such that each subsequence is
covered by a different ξ in Ξ. (Different, to avoid unwanted loops.)

All the behaviors in B2 = {(abcegj , w1w2w3w4w5w6) | ∀1<i≤6 wi > wi−1} are
covered by the set {ξ3, ξ4} of TES in Fig. 3.

We define Covered(Ξ) = {B ∈ BM | B is covered by Ξ}.
A behavior B = (e1e2 . . . en, w1w2 . . . wn) is allowed by a TES ξ iff, for every

non-empty contiguous subsequence (ek . . . em, wk . . . wm) of B that is covered by
ξ, the following holds: for every k ≤ i ≤ m, w− tj ∼ a ∈ φi in ξ evaluates to true
when w is replaced by wi and tj by the time of leaving mode mj (for the last
time before ei in this covered subsequence). The dominance assumption ensures
that the latter will be well-defined.

Notice that a behavior that is irrelevant to ξ is allowed by ξ.
All the behaviors in B3 = {(abceh, w1w2w3w4w5) | (∀1<i≤5 wi > wi−1) ∧

w2 −w1 > 1∧w5 −w3 ≤ 3} are allowed by ξ3, ξ5 and ξ6 in Fig. 3. The behaviors
in B3 are allowed also by ξ4, as they are irrelevant to ξ4.

The set of behaviors allowed by a TES ξ is denoted by Allowed(ξ)⊂BM.
With a slight abuse of notation, we define the set of behaviors allowed by Ξ

as Allowed(Ξ) =
⋂

ξ∈Ξ Allowed(ξ).

5 Synthesis of Timed Automata from Scenarios

Given a mode graph M and a set of TES, Ξ, the objective is to build a timed
automaton A, such that each behavior that is allowed and covered by Ξ corre-
sponds to a run of A, and vice versa. The automaton should contain the smallest
possible number of locations.

Observe that the constructed timed automaton cannot, in general, be
replaced by a suitably annotated mode graph. For instance, if the original mode
graph contains a cycle to allow multiple attempts to enter a PIN, just adding
time annotations would not let us express that the number of attempts must
not exceed three, and that all must take place within a given time. That would
require adding extensions to the conventional formalism of timed automata.

From Scenarios to Timed Automata 41

Fig. 4. A timed automaton Fig. 5. A TAG synthesized from
{ξ1, ξ3, ξ4, ξ5, ξ6} of Fig. 3

As another example consider the mode graph and the set of TES Ξ1 =
{ξ1, ξ5} of Fig. 3. The goal is to construct an automaton, which captures all
and only those behaviors that are both covered and allowed by Ξ1. Anno-
tating the “relevant” parts of the mode graph with appropriate time con-
straints, and hence obtaining the automaton of Fig. 4, for instance, would cre-
ate unsatisfactory results: the automaton would also “show” the behaviors in
{(abceh,w1w2w3w4w5)| ∀1<i≤5 wi > wi−1} which are clearly not covered by Ξ1.

A requirement of the synthesis algorithm is that the overall automaton have
only one initial location and one final location. Moreover, the automaton should
be connected : each location must be reachable from the initial location and there
must be a path from each location to the final location.

We introduce five criteria that a set of TES must satisfy in order to make
generation of such an automaton feasible. A set of TES that complies with these
criteria is called complete.

Given a mode graph M = (M,m0,mf , Σ, T), a set Ξ of TES is complete if:

1. Every ξ ∈ Ξ is compatible with M.
2. For every ξ ∈ Ξ, either initial mode(ξ) = m0 or there exist ξ1, ξ2, ..., ξj ∈ Ξ,

such that ξj = ξ and:
– initial mode(ξ1) = m0,
– initial mode(ξk) = final mode(ξk−1), for each ξk, 1 < k ≤ j.

3. For every ξ ∈ Ξ, either final mode(ξ) = mf or there exist ξ1, ξ2, ..., ξj ∈ Ξ,
such that ξ = ξ1 and:

– final mode(ξj) = mf ,
– final mode(ξk−1) = initial mode(ξk), for each ξk, 1 < k ≤ j.

4. For every ξ ∈ Ξ, initial mode(ξ) �= final mode(ξ). Moreover, there is
no sequence of TES ξ1, . . . , ξj such that ξ = ξ1, final mode(ξk−1) =
initial mode(ξk) for 1 < k ≤ j, and final mode(ξj) = initial mode(ξ).

42 N. Saeedloei and F. Kluźniak

5. All occurrences of an event e must have (textually) identical time annotations.

Considering the mode graph of Fig. 3, the set Ξ1 = {ξ1, ξ5} is not complete. But
it can be made complete, either by removing ξ5 or by adding ξ6. The automaton
of Fig. 4 corresponds to the complete set of TES Ξ2 = {ξ1, ξ5, ξ6}.

Given a set of TES, checking that the set is complete (based on the criteria
defined above) is straightforward. In the rest of the paper, we assume that the
given set of TES is complete.

Next, we formally define the problem.
Given a mode graph M = (M,m0,mf , Σ, T) and a complete set of TES

Ξ = {ξ1, ξ2, ..., ξn}, the goal is to construct an acyclic, minimal automaton A
such that: A has a run on behavior B iff B ∈ Allowed(Ξ) ∩ Covered(Ξ).

6 Constructing Locations and Transitions

Our synthesis method is implemented in two major steps. First, the timed events
in each ξi ∈ Ξ along with the mode graph M are used to build a graph, which
we call a time-annotated graph. The graph consists of nodes5 connected by time-
annotated transitions. Second, clocks are allocated and time annotations are
rewritten in terms of these clocks: the result is a timed automaton A.

Before describing our method, we formally define time-annotated graphs. Let
P be a set of labels, e.g., atomic propositions, etc.

A time-annotated graph (TAG) is a tuple G = 〈E,Q, q0, qf , R, L〉, where

– E is a finite alphabet;
– Q is the (finite) set of nodes;
– q0 ∈ Q is the initial node;
– qf ∈ Q is the final node;
– R ⊆ Q×Q×E × 2Φ(Q) is the set of transitions of the form (q, q′, a, φ), where

φ is a set of time annotations of the form w − s ∼ a, where s ∈ Q;
– L : Q → P is a total function that maps each node to a label.

When we construct a time-annotated graph from a set of scenarios and a mode
graph M = (M,m0,mf , Σ, T), we will use E = Σ and P = M .

The first step of our synthesis is preceded by a preprocessing step in which
the following three tasks are performed on the set of TES Ξ:

1. For each TES ξ = 〈minitial , ψ1 . . . ψn,mfinal〉, if there is a sequence of TES
ξ1, . . . , ξj in Ξ, such that events(ξ) = events(ξ1)⊕ · · ·⊕ events(ξj) (where ⊕
concatenates sequences), then ξ is removed from Ξ.
Intuitively, if a TES ξ can be broken up into several parts, each of which is a
TES in Ξ, then ξ can be safely discarded.

2. For each TES ξ, both the first and the last element of ξ (which name the
initial and final modes) is “marked” as a Join. In the constructed graph a
Join will correspond to a node that may have several incoming transitions
and several outgoing transitions.

5 The nodes will be the locations of the synthesized automaton.

From Scenarios to Timed Automata 43

3. For each TES ξi, if there is no TES ξk, k �= i, such that final mode(ξi) =
final mode(ξk), the final element of ξi (which names the final mode) are
marked as Fork (i.e., not a general Join: the corresponding node cannot have
more than one incoming transition).

After the preprocessing step is performed, Algorithm 1 constructs the nodes
and transitions corresponding to the first TES, ξ1, thus obtaining the initial
TAG, G1. It then repeatedly takes a partial TAG Gk (constructed so far) and
integrates a new TES ξk+1 with Gk to obtain the augmented graph Gk+1.

As the algorithm constructs the corresponding nodes and transitions of each
ξi, it also labels the nodes. A newly constructed node q is labelled with mode
mj , i.e., L(q) = mj , if there is a transition on event e from node s to q such that
L(s) = mi, and (mi, e,mj) ∈ T . Moreover, the algorithm sets the status of each
node in the constructed graph. The status of q will be set to Open (Openf), if
mj is a Join (Fork) in ξi; otherwise it will be set to Closed .

Every time the algorithm chooses a new TES ξ, it takes one whose initial
mode is already represented by a node s whose status is not Closed . It then tries
to identify a common prefix between events(ξ) and the sequence of events in
a path beginning at s. In doing so, the algorithm avoids merging (i) a Closed
node q in the graph, where L(q) = m, with a mode m that is a Join in ξ, and
(ii) an Open node q in the graph, where L(q) = m, with mode m, if m is not a
Join in ξ. This avoids introduction of new behaviors that are not covered by Ξ.
For example, consider the set of TES {ξ1, ξ5} in Sect. 5. We already mentioned
that the automaton of Fig. 4 is not correct for this set. This is because the node
corresponding to mode m2 in the automaton is Closed , but is merged with a
Join in ξ5.

Criterion 2 on ensures that, as long as Ξ is not empty, it will always contain
at least one TES such that there is a node s in the constructed graph such that
L(s) = initial mode(ξ) and the status of s is not Closed . So the algorithm will
terminate.

Procedure rename deserves a comment. When the current node is q and a
timed event (e, φ) of some ξ is processed, we rename tj in w − tj ∼ a ∈ φ to
s, where s is the latest predecessor of q in G, such that L(s) = mj . Since ξ
is compatible with the mode graph, that predecessor must be one of the states
that were visited during the integration of ξ, hence there is no possibility of two
paths joining between s and q, hence the “latest predecessor” is well-defined.

Figure 5 shows the time-annotated graph constructed by Algorithm 1 from
the mode graph and the set {ξ1, ξ3, ξ4, ξ5, ξ6} of TES in Fig. 3. Circles in dashed
and dotted lines indicate Open and Openf nodes, respectively. Note that the
path ab corresponds to the common prefix of ξ1, ξ3 and ξ6, as mode m2 in ξ6 is
not a Join, but a Fork (task 3 of the preprocessing step).

The graph, G, built by Algorithm 1 has the following properties:

1. It is acyclic: we never introduce a transition from a node to its predecessor.
2. By construction, every scenario corresponds to a partial path in the graph,

and every path can be partitioned into partial paths that correspond to
scenarios.

44 N. Saeedloei and F. Kluźniak

Algorithm 1. Building nodes and transitions with time annotations
Input : A mode graph M = (M, m0, mf , Σ, T), and a complete,

non-empty set of TES Ξ = {ξ1, ..., ξn}
Output: Time-annotated graph Gn = 〈En, Qn, q0, qf , Rn, Ln〉
k := 0; E0 := ∅; Q0 := ∅; R0 := ∅; L0 := ∅;
create a new node s: Q0 := {s};
set the status of s to Open;
add label m0 to node s: L0 := {(s, m0)};
while Ξ �= ∅ do

Ek+1 := Ek; Qk+1 := Qk; Rk+1 := Rk; Lk+1 := Lk;

choose a ξ = 〈minitial , ψ . . . ψl, m
final〉 in Ξ, such that there is a node s in

Qk+1 whose status is not Closed and Lk+1(s) = minitial ;
Ξ := Ξ \ {ξ};
sc := s; // sc always indicates the current source
j := 1;
// Identify a common prefix:
while j ≤ l ∧ ψj = (e, φ) ∧ (m, e, m′) ∈ T ∧ m′ is not a Join in ξ ∧

(sc, q, e, rename(sc, ψj , Gk+1)) ∈ Rk+1 ∧ q is not Open do
sc := q;
if j = l then

set the status of q to Openf ; // status of mfinal in ξ

j := j + 1;

// Create the rest of the nodes and transitions (if any):
while j ≤ l and ψj = (e, φ), where (m, e, m′) ∈ T do

φ′ := rename(sc, ψj , Gk+1);
if j = l and there is a node q ∈ Qk+1 such that

L(q) = m′ and q is Open then
create a new transition r := (sc, q, e, φ

′); // last transition for ξi
else

create a new node q: Qk+1 := Qk+1 ∪ {q};
add label m′ to node q: Lk+1 := {(q, m′)} ∪ Lk+1;
create a new transition: r := (sc, q, e, φ

′);
if j = l then

if the status of mfinal in ξ is Fork then
set the status of q to Openf ;

else
set the status of q to Open;

else
set the status of q to Closed ;
sc := q;

Rk+1 := {r} ∪ Rk+1; Ek+1 := Ek+1 ∪ {e};
j := j + 1;

k := k + 1;

qf := f , where f is the node with no outgoing transitions; // property (6)

From Scenarios to Timed Automata 45

Procedure rename(location q, timed event (e, φ), TAG G)
φ′ := true;
foreach w − ti ∼ a ∈ φ do

φ′ := φ′ ∧ w − s ∼ a, where s is the nearest predecessor of q in G such that
L(s) = mi;

Return φ′;

3. By construction, several nodes in G might be labelled m, but only one of
them will not be Closed .

4. For every ξ added to the graph the node that corresponds to initial mode(ξ) is
already in the graph. So the partial path corresponding to ξ will be connected
to the graph at node s, i.e., every node will be reachable from the initial one.

5. The order in which the TES are selected from Ξ does not affect the shape
of the constructed graph. By property 3 at most one node with a label m is
not Closed . We connect TES only on nodes that are Open or Openf , and the
merging of prefixes does not depend on ordering.

6. There must be at least one node with no outgoing transitions, because the
graph is finite and acyclic. Each such node is labelled with mf , because the
set of TES is complete (criterion 3 on implies that a node whose label is not
mf must have outgoing transitions). But by property (3) at most one node
with label mf is not Closed . So all the TES whose final mode is mf must
join at this node. Therefore the final node is unique.

7. Property 6 and criterion 3 on imply that the final node can be reached from
all the other nodes in the graph.

8. When one considers the labels of the nodes, every run of G is also a run of
the mode graph. This is because a transition from s to q is introduced only
if there is a transition from L(s) to L(q) in the mode graph.

The TAG constructed by the algorithm might not yet be minimal: there might
exist paths ending in the same (Open) node that have common suffixes. Such
common suffixes should be merged, with appropriate attention given to the sta-
tus of nodes in order to avoid introduction of new behaviors: the process is very
similar to that of merging prefixes.

The resulting automaton (Sect. 7) will be minimal, in the sense that merging
any two nodes or transitions would create a cycle or introduce a new behavior.

7 Building the Target Timed Automaton

Algorithm 1 generates the locations and time-annotated transitions of the overall
timed automaton in the form of a TAG. The next step of our synthesis method
is to transform this TAG to the final automaton. For this, the time annotations
of the graph must be replaced by clock operations, i.e., clock resets and clock
constraints. There are three tasks: (i) determining the number of clocks required,
(ii) identifying transitions at which each clock must get reset and adding the

46 N. Saeedloei and F. Kluźniak

Algorithm 2. Generating clock resets and constraints
Input : A time annotated graph G = 〈E, Q, q0, qf , R, L〉
Output: A timed automaton A = 〈E, Q, q0, qf , C, Θ〉
C := ∅; Θ := ∅; clock assign := ∅;
foreach transition (q1, q2, e, φ) ∈ R do

foreach time annotation w − s ∼ a ∈ φ do
if (s, ci) /∈ clock assign, for some clock ci then

create a new clock ci: C := C ∪ {ci};
clock assign := clock assign ∪ {(s, ci)};

foreach transition r = (q1, q2, e, φ) ∈ R do
λ := ∅; δ := ∅;
if (q1, ci) ∈ clock assign, for some clock ci then

λ := {ci};

foreach time annotation w − s ∼ a ∈ φ do
δ := δ ∪ {(cj ∼ a)}, where (s, cj) ∈ clock assign

resets, (iii) rewriting the time annotations of the graph as clock constraints. The
three tasks mentioned above are performed by Algorithm 2.

The dominance assumption and our construction ensure that in the con-
structed TAG every path leading to a transition r annotated with w − s ∼ a
must have previously passed through location s. Therefore, the clock assigned
to s is well defined, i.e., it will always be initialized (reset) before it is used for
the first time.

The number of clocks allocated by this algorithm may be greater than strictly
necessary. Moreover, some of the resets may be redundant. A method for com-
puting an optimal allocation of clocks, too involved to present here, is described
in another paper [13].

After the construction is completed, we identify the final location with the ini-
tial location. This allows runs to be infinite. The dominance assumption ensures
that the value of a clock from a previous iteration will not be used before it is
reset in the current iteration.

From property 2 on it follows that the set of runs of the final automaton will
correspond exactly to all those behaviours in BM that are covered by Ξ. Each
such behaviour will also be allowed by Ξ. This follows from our assumption that
all the occurrences of a particular event in the members of Ξ have exactly the
same time annotations: our construction ensures that all the supbaths in the
automaton that correspond to those partial behaviours that are relevant to a
particular scenario will have equivalent constraints.

Figure 6 shows the minimal TAG and the automaton synthesized from the
two TES in Fig. 2. Without the optimization step mentioned at the end of Sect. 6
the automaton would include two additional states and two more transitions.

From Scenarios to Timed Automata 47

8 The Class of Synthesized Timed Automata

Each of our synthesized timed automata has the following properties:

– It has a unique initial location, q0. There is a path from q0 to every location.
– Each clock cj is always reset upon leaving a unique state sj .
– A clock constraint on a transition r that leaves a state s can refer only to a

clock that has been reset upon leaving a state that dominates s.

We call the class of such timed automata TADS . All automata in TADS share
some interesting properties. These properties allowed us to formulate a clock
allocation algorithm whose results are, for all practical purposes, optimal: the
details are discussed in another paper [13] (its theoretical underpinings are exam-
ined elsewhere [12]). The pivotal role of the dominance assumption makes the
class TADS somewhat restricted, but it can be used to model interesting prop-
erties of real-time systems, e.g., safety properties such as bounded-response and
bounded-invariance.

Fig. 6. The synthesized TAG and the automaton for the initial behavior of the ATM

For instance, Fig. 7 shows a variant of a monitor automaton [10], which checks
the property that “a is always followed by b within at most 10 time units”.

48 N. Saeedloei and F. Kluźniak

Fig. 7. Bounded response Fig. 8. Bounded invariance Fig. 9. Periodic behavior

Figure 8 shows an automaton that checks a bounded-invariance property that “b
will never occur within 10 time units after a’s occurrence”.

Periodic behaviors can also be specified quite easily. For instance, the automa-
ton shown at the top of Fig. 9 [1] can be simulated by an automaton in TADS

(shown at the bottom of Fig. 9), by introducing a new location and a silent
transition.

9 Related Work

Synthesizing formal models of systems from scenarios has been an active area
of research in the last two decades. The research has been focused mostly on
formalizing scenarios and developing techniques for scenario-based synthesis of
formal models. For scenarios to be used in automatic synthesis methods, they
must be both expressive and formal. Choosing the right level of abstraction
for representing scenarios is a very important step in this process. Scenarios
should formally specify the high level behavior of systems, without going into
unnecessary details. The choice of formalisms for representing scenarios also has
a great impact on the synthesis method that will be used for building formal
models from them.

Recently, Event Sequence Charts (ESCs) have been proposed for expressing
scenarios of systems, and a method for synthesizing finite state machines from
ESCs has been introduced [8]. Our TES are different from ESCs: ESCs use
the notion of monitored, term and controlled variables along with modes, all
borrowed from SCR (Software Cost Reduction) [8]. The relation between various
actions in ESCs and transitions of mode diagrams are specified by numeric labels.
Our Timed Event Sequences accompanied by mode graphs provide a somewhat
higher-level representation of scenarios. Our synthesis method is also different,
in that it constructs timed automata and not finite state machines.

Various extensions of Message Sequence Charts (MSCs) with time constraints
have been proposed for describing scenarios for real-time systems [3]. Different
notations for modeling time and expressing timing requirements are used in each
of these extensions, e.g., timers with reset and time-outs, and delay intervals for

From Scenarios to Timed Automata 49

events and activities [2]. UML features sequence diagrams: timing constraints
are included by drawing message arrows or by including timing markers [11].

Most of the work on scenario-based synthesis of formal models has been
focused on synthesizing state machine models [6,15,16]. While the resulting mod-
els are useful for reasoning about the overall behavior of systems, they are less
useful for reasoning about time and behavioral properties related to time.

To the best of our knowledge the problem of constructing timed automata
from a set of scenarios has been addressed only by Somé et al. [14]. However, it
is not very clear how clocks, clock resets, and clock constraints are generated,
and to which transitions the clock resets are assigned. Moreover, the use of con-
tradictory scenarios may cause “unwanted non-determinism” in the constructed
automata, which seems undesirable. The authors use the concept of “character-
istic conditions” for generating locations and identifying identical locations, but
the concept is not formally defined: in particular, it is not obvious whether clock
constraints are also considered as characteristic conditions. Moreover, arbitrary
variables (e.g., a variable that counts the number of attempts for entering a
PIN) are allowed in the constructed automata: this is beyond the conventional
formalism of timed automata, which can feature only clock variables [1].

By contrast, in our approach we formally define a set of criteria for a complete
set of scenarios from which a synthesis to a timed automaton is possible. We use
modes, which are formally defined, as location labels, and use these labels for
identifying identical locations. Our algorithm precisely determines the transitions
along which each clock must be reset and the transitions where clock constraints
must be added.

There has been also some work in scenario-based synthesis of parametric
timed automata [7], where scenarios with parametric timing constraints in the
form of upper and lower time bounds are considered. Allowing parametric con-
straints in scenarios makes the corresponding synthesis methods difficult to scale
up to larger problems, though there are some indications that this might not be
a problem in practice [4].

10 Conclusions

We presented a new technique for specifying the required behaviors of real-time
systems in terms of a mode graph and a set of scenarios, and of generating a
timed automaton from these scenarios.

Intuitively, scenarios put time constraints on the possible partial behaviors
of systems. We have used Timed Event Sequences to formally describe scenarios.

We have presented a synthesis method for generating a minimal, acyclic
timed automaton from a set Ξ of such scenarios, provided that Ξ satisfies our
completeness requirements (see Sect. 5). Each behavior allowed by a scenario in
Ξ can be viewed as a run of this timed automaton. Moreover, every run of the
automaton corresponds to a behavior that is both covered and allowed by the
set of scenarios (see Sect. 4).

Our algorithm for constructing a timed automaton comprises two steps. The
first step is to generate a time-annotated graph which includes the locations

50 N. Saeedloei and F. Kluźniak

and transitions of the target timed automaton, where transitions are augmented
with time annotations from scenarios. Having constructed the skeleton of the
target timed automaton, the algorithm performs the second step: clock alloca-
tion. The time annotations are used to determine the number of clocks and their
reset locations in the target timed automaton, and then to transform the time
annotations to clock constraints. The clock allocation algorithm presented here
is not optimal: the description of a more sophisticated version is presented in
another paper [13].

Acknowledgements. The authors would like to thank one of the anonymous referees
of an earlier version of the paper for detailed and helpful comments.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

2. Alur, R., Holzmann, G.J., Peled, D.: An analyzer for message sequence charts. In:
Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 35–48. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-61042-1 37

3. Ben-Abdallah, H., Leue, S.: Timing constraints in message sequence chart
specifications. In: Mizuno, T., Shiratori, N., Higashino, T., Togashi, A. (eds.)
FORTE 1997. IFIP, vol. 107. Springer, Boston (1997). https://doi.org/10.1007/
978-0-387-35271-8 6

4. Cimatti, A., Palopoli, L., Ramadian, Y.: Symbolic computation of schedulability
regions using parametric timed automata. In: RTSS (2008)

5. Clarke, E.M., Klieber, W., Nováček, M., Zuliani, P.: Model checking and
the state explosion problem. In: Meyer, B., Nordio, M. (eds.) LASER 2011.
LNCS, vol. 7682, pp. 1–30. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-35746-6 1

6. Damas, C., Lambeau, B., Roucoux, F., van Lamsweerde, A.: Analyzing critical
process models through behavior model synthesis. In: Proceedings of the 31st
International Conference on Software Engineering, pp. 441–451. IEEE Computer
Society (2009)

7. Giese, H.: Towards scenario-based synthesis for parametric timed automata. In:
Proceedings of the 2nd International Workshop on Scenarios and State Machines:
Models, Algorithms, and Tools (SCESM), Portland, USA (2003)

8. Heitmeyer, C.L., Pickett, M., Leonard, E.I., Archer, M.M., Ray, I., Aha, D.W.,
Trafton, J.G.: Building high assurance human-centric decision systems. Autom.
Softw. Eng. 22(2), 159–197 (2015)

9. Lengauer, T., Tarjan, R.E.: A fast algorithm for finding dominators in a flowgraph.
ACM Trans. Program. Lang. Syst. 1(1), 121–141 (1979)

10. Nicolescu, G., Mosterman, P.J.: Model-Based Design for Embedded Systems, 1st
edn. CRC Press Inc., Boca Raton (2009)

11. Rational Software: Unified Modeling Language, version 1.1, September 1997
12. Saeedloei, N., Kluźniak, F.: Clock allocation in timed automata and graph colour-

ing. http://www2.cs.siu.edu/∼neda/report3.pdf
13. Saeedloei, N., Kluźniak, F.: Optimal clock allocation for a class of timed automata.

http://www2.cs.siu.edu/∼neda/report2.pdf

https://doi.org/10.1007/3-540-61042-1_37
https://doi.org/10.1007/978-0-387-35271-8_6
https://doi.org/10.1007/978-0-387-35271-8_6
https://doi.org/10.1007/978-3-642-35746-6_1
https://doi.org/10.1007/978-3-642-35746-6_1
http://www2.cs.siu.edu/~neda/report3.pdf
http://www2.cs.siu.edu/~neda/report2.pdf

From Scenarios to Timed Automata 51

14. Somé, S., Dssouli, R., Vaucher, J.: From scenarios to timed automata: building
specifications from users requirements. In: Proceedings of the Second Asia Pacific
Software Engineering Conference, pp. 48–57. IEEE Computer Society (1995)

15. Uchitel, S., Brunet, G., Chechik, M.: Synthesis of partial behavior models from
properties and scenarios. IEEE Trans. Softw. Eng. 35(3), 384–406 (2009)

16. Uchitel, S., Kramer, J., Magee, J.: Synthesis of behavioral models from scenarios.
IEEE Trans. Softw. Eng. 29(2), 99–115 (2003)

Graph Grammar Extraction from Source Code

Lucio Mauro Duarte(B) and Leila Ribeiro

Institute of Informatics, Federal University of Rio Grande do Sul (UFRGS),
15.064, Porto Alegre, RS 91.501-970, Brazil

{lmduarte,leila}@inf.ufrgs.br

Abstract. We present an approach for the extraction of Graph Gram-
mars (GGs) from Java source code. A GG consists of an initial graph,
describing the initial state of a system, and a set of rules, modeling the
possible changes of state. We generate a GG based on execution traces
collected from annotated code, following the main ideas from an exist-
ing approach for extracting Labelled Transition Systems (LTS) based on
context information (combination of block of code, values of attributes,
and evaluated path conditions). Since GGs are data-driven, in contrast
to the action-based formalism of LTS, we have adapted the existing tech-
nique to focus on data information. The approach is partially supported
by a tool and the generated GGs can serve as input to existing analy-
sis tools. We illustrate the approach with a case study and compare the
resulting GG with a GG manually created by an expert for the same
system.

Keywords: Graph Grammars · Model extraction · Model analysis

1 Introduction

Formal behavior models are important artefacts for the development of software
systems. They not only provide a precise way of describing the expected behavior
of systems, but can also serve for several purposes, such as program documenta-
tion, understanding, and analysis. Model extraction [14] offers the possibility of
(semi-)automatically generating models from existing implementations. Hence, it
eases the burden of building models from scratch and also allows the application
of techniques of model analysis to systems already in use.

In this work, we discuss a model extraction approach to construct Graph
Grammars (GG) [19] from existing Java code. GG is a generalisation of Chomsky
grammars from strings to graphs. Graphs are a very natural means to explain
complex situations on an intuitive level and graph transformation rules may be
used to capture the dynamic aspects of systems. The basic idea is to model the
states of a system as graphs and describe the possible state changes as rules that
transform the graph describing the current state into a new graph, representing
the new state. Due to their declarative nature, GGs are well suited for the
specification of a wide variety of applications [11].

This work is partially supported by CNPq/Brazil.
c© Springer International Publishing AG 2017
S. Cavalheiro and J. Fiadeiro (Eds.): SBMF 2017, LNCS 10623, pp. 52–69, 2017.
https://doi.org/10.1007/978-3-319-70848-5_5

Graph Grammar Extraction from Source Code 53

Our approach follows the main ideas of an existing extraction approach
[10] that generates Labeled Transitions Systems (LTS) [15] from Java source
code, which is based on contexts. Contexts are identified in execution traces
and abstract a combination of control flow information and values of attributes,
thus merging static and dynamic information to create a program state. In [17],
we proposed an adaptation of the LTS extraction approach to be used for the
extraction of GG. In contrast to the action-based, operational semantics of LTS,
which is more suited for model checking [2], GG is declarative and data-driven,
which allows a different view of the system and, thus, enables the use of other
types of verification techniques, such as theorem proving [6], and tools, such as
Groove [18] and AGG [20].

In the proposed approach, the main difficulty was the large number of rules
that would be generated. To a large extent, this was due to the fact that GG
is data-driven but the extraction technique takes into account not only infor-
mation about data but also about control flow. Although the number of rules
does not affect analysis results on the extracted GG, a large set of rules may
hinder model visualization, increase the time for running analyses, and even
make the model intractable in the available tools. Thus, in this paper, we revisit
the extraction process, proposing improvements to the approach, including opti-
mization strategies that allow the merging/elimination of rules without affecting
the behavior of the extracted models, whilst reducing the number of rules. We
have (partially) implemented the approach to generate the resulting grammar
in the format used by the AGG tool. We apply the approach to a case study
and compare the resulting GG to a GG manually created by an expert for the
same application. The comparison shows that, apart from abstractions that the
expert introduces in their models, these models and the extracted GG represent
the same behavior, considering analyses carried out using tool support.

The article is organized as follows: Sect. 2 revises the main concepts of model
extraction and Graph Grammars; Sect. 3 describes the details of the approach
and the methods used for mapping traces with context information to GG
rules; Sect. 4 presents the proposed optimization strategies; in Sect. 5, we dis-
cuss related work; finally, in Sect. 6, some results, status of the work and future
work are presented.

2 Background

2.1 Model Extraction

Model extraction [14] is a reverse engineering technique used to obtain a model
from an implementation of a system. Existing model extraction approaches can
be classified according to the type of information they use. Approaches based on
static information (such as [13,14]) build models considering only information
collected directly from the source or compiled code. This information generally
includes control flow information. They provide a complete view of the system
behavior, however analyses on the model may have to deal with many false
alarms due to behaviors that seem possible statically but are actually infeasible

54 L.M. Duarte and L. Ribeiro

when the system runs. Models constructed based on dynamic information (such
as [3,16,21]), on the other hand, consider only feasible behavior, since they are
inferred from observed execution traces. The drawback is that each trace is
collected in isolation and there is usually not enough information on how to
safely (i.e., without introducing invalid behaviours) combine these samples of
execution into one single, general model.

The approach proposed in [10] to extract Labelled Transition Systems (LTS)
[15] from code belongs to a hybrid category, where static and dynamic informa-
tion are combined [12]. This combination is obtained using the abstraction of
contexts, which includes control-flow and data information. A context represents
a specific situation during system execution, including the point of code being
executed and the current valuation of program variables (attributes). Using con-
texts, it is possible to safely merge multiple traces of execution, as each context
is unique during execution. The approach is partially supported by the LTS
Extractor (LTSE) tool, which creates a context table to store information about
all identified contexts during trace analysis, assigning an ID number to each one
of them (CID), and converts traces to context traces, which are sequences of iden-
tified contexts (CIDs) and the names of actions that happened in between them.
Action names are obtained based on the names of executed methods or from
specific annotations in the code, called user-defined actions [8], which allows a
user to represent their own types of actions, other than method-related actions.
Based on the context table and traces, the tool constructs an LTS model: each
context in the table corresponds to a state and each two consecutive contexts
in the traces represent a state transition; action names become transition labels
and transitions with no labels are silent transitions. For detailed information on
this approach, the reader is referred to [9].

2.2 Graph Grammar

Graphs are structures that consist of a set of nodes and a set of edges. Each edge
connects two nodes of the graph, one representing a source and another repre-
senting a target. Graph Grammars (GG) [11,19] is a formal, intuitive method
for modelling concurrent and distributed systems using graphs and graph trans-
formations. The basic idea is that system states are represented by graphs
and state transitions are described by transformation rules, which may cre-
ate/delete/preserve nodes and/or edges.

A Graph Rule r : L → R describes a relationship between two graphs. It
consists of: a left-hand side (LHS) L, which is a graph describing items that must
be present for this rule to be applied; a right-hand side (RHS) R, describing items
that will be present after the application of the rule; and a mapping from LHS
to RHS r, which is a (partial) graph homomorphism mapping items that will
be preserved by the application of the rule (a homomorphism between graphs
is a pair of mappings of nodes and edges that is compatible with source and
target of edges). Items that are in the LHS and are not mapped to the RHS
are deleted, whereas items that are in the RHS and are not in the image of the
mapping from the LHS are created. We assume that rules do not merge items,

Graph Grammar Extraction from Source Code 55

that is, r is injective. A GG is defined by an initial graph, representing the initial
state of a system, and a set of rules. Its behavior is defined by the successive
application of rules to the states of the system. The application of a rule to a
particular graph is called derivation step and is only performed if an occurrence
(image) of the LHS of the rule exists in the system graph. We use typed graphs
with attributes, i.e. graphs that may have different types of nodes and edges and
may have values of data types associated to nodes. For formal definitions, see
e.g. [19].

In this work, we propose to extract a GG from Java code. Thus, the generated
rules will have a specific format, similar to Object-Based Graph Grammars [7].
Objects are represented by attributed nodes, references to other objects are
represented by edges. Methods are modelled by messages that represent the
method’s call and return whereas the effect of the execution of the method is
described by rules. Each rule may describe a behavior of at most one object
(since objects are autonomous), and treat at most one message (representing
the execution of a call or return of a method). In this paper we use rectangles
to represent nodes and attributes are drawn inside the nodes.

An example of a GG corresponding to a Java code shown in Fig. 1 is depicted
in Fig. 2. This GG was manually created from the code. The application simulates
a traffic lights system that alternates between a green light and a red light. The
TrafficLights GG has two kinds of nodes: a system node (TL) and a message
node (representing method calls/returns and commands). The system node has
two attributes: one boolean variable (isGreen), which models whether the lights
are currently green or not, and an integer opt, that contains the result of the
read command (which is used to switch the traffic light from green to red and
vice versa, and to end the execution). In the initial state of the system (graph
Ini), there is a node TL in which the attributes are initialized and a message
node representing that the do loop of the code should be executed. Rule Read
represents the start of the do-loop, triggering the read command, that may have
three different outcomes, described by three distinct rules: ReadGreen models the
input of number 0, ReadRed the input of number 1, and ReadEnd the input of
number 2. Rules that describe the behavior for red lights are analogous to the
green lights and are thus omitted in Fig. 2. The remaining rules model how the
actual change of traffic light color occurs (according to the given code). Note
that, whenever a method is called, a corresponding message is created, and a
message to indicate the end of method execution is also created.

3 Approach

As mentioned before, we follow the same initial steps of the LTS extraction
approach [10] and then use the resulting information to generate a GG. Figure 3
presents the basic steps of our approach, where the boxes represent the different
phases and the arrows indicate the sequence of steps. The initial input is the
source code of the application, which is annotated to collect context information.
In Step 1, the instrumented code is executed to produce traces; in Step 2, the

56 L.M. Duarte and L. Ribeiro

Fig. 1. Source code of the running example.

Fig. 2. Graph Grammar for the traffic lights system.

collected traces are fed to the LTSE tool for context identification, generating
the context table and the set of context traces; in Step 3, the context table and
traces serve as inputs to our tool, called GGExtractor, producing GG rules. The
rules are produced in the input format of the AGG tool [20], where analyses such
as conflict and dependency detection can be executed.

Next, we present each step of the approach in more detail. We will use the
traffic lights application presented in Fig. 1 to illustrate the process.

3.1 Step 1: Generating Traces

We use the TXL language [4] to instrument the code and include the neces-
sary annotations to produce context information. These annotations follow the
same rules applied in the original approach [10]. The execution of the instru-
mented code produces traces. Each trace is a sequence of annotations, where

Graph Grammar Extraction from Source Code 57

Fig. 3. Overview of process flow of our approach.

each annotation contains the block of code executed, identified by a type (repe-
tition, selection, method call, method body, etc.) and an ID number (can be seen
as an abstract program counter), a condition (if any) tested and its value, the
value of a set of selected program variables, and the current call stack (names
of methods still in execution). The set of variables used determines the level
of abstraction of contexts, which means that including more program variables
refines the model [10]. The call stack is mainly used to identify other actions
happening whilst a method is still running, such as in the case of a method that
calls another method. It is also important when representing concurrent systems,
especially if they implement some blocking mechanism.

3.2 Step 2: Identifying Contexts

The execution traces are then processed by the LTSE tool, creating the context
table and the context traces. The LTSE tool combines the results of the analysis
of multiple traces of a particular component into a single model, hence the model
represents a generalization of the set of observed behaviours. Figure 4 presents
part of the context table (CT) generated for our running example based on a set
of 4 traces. It contains, for each identified context: a context ID (CID), which is a
number used to identify each different context (column S); the control predicate
(condition) tested for that context (column P); the block of code ID (column
ID) executed in that context; the value of the control predicate (column V); the
values of the attributes (column A), and the state of the call stack (column CS).
For instance, context 3 is defined by a command block in which the predicate
(opt!=END) is tested, its value is true, the attribute value (isGreen) is false,
the BID is 10, and the call stack is empty. Any change in at least one of these
values causes the identification of a different context. For example, context 4
has similar information, but the value of the predicate is false at this point,
indicating that the system is running within a new context. Note that all traces
of a system always start at an initial context (INITIAL) and that, in case of
contexts related to method calls, the associated predicate is the name of the
method and its value is always set to true.

Figure 5 shows a fragment of one of the context traces produced for the traf-
fic lights application. CIDs are prefixed with a # and the sequence of contexts

58 L.M. Duarte and L. Ribeiro

Fig. 4. Example of a context table.

Fig. 5. Example of context trace.

(from top to bottom, left to right in the figure) follows the order of the infor-
mation recorded in the original trace, transforming each annotation into the
CID assigned to the corresponding context when it was included in the CT. The
names not preceded by a # are action names. Action names representing internal
method calls are prefixed with the word call ; action names representing calls to
methods of other classes are prefixed with an identifier (e.g., c); and the exe-
cution of method bodies are described using only the method name. The suffix
enter is used to denote the action representing the beginning of the execution
of the method call/body, whereas the suffix exit represents the its termination.
This allows us to know when some other method call/body was executed while
a previous method call/execution was in process.

3.3 Step 3: Constructing the GG

Our approach proposes a mapping from the CT and set of context traces to
GG rules. This translation is automated by a tool we have developed, called
GGExtractor [17]. This process is based on the analysis of context sequences,
which is a sequence of elements (x, ..., y) from a context trace where the elements
of the sequence are either a CID or an action name. In a context sequence, the
first and the last elements are CIDs and the elements in between are action

Graph Grammar Extraction from Source Code 59

names. Therefore, a context sequence identifies a possible transition between
two contexts and the actions that happen in this transition. We create one
or more rules (depending on the number of actions) to describe each context
sequence. We also consider the contents of the call stack to identify pending
actions, representing actions that come from a previous transition.

Each rule is a tuple r = (Lstate, Lmsg, Rstate, Rmsg), where Lstate is the state
(context) represented in the LHS of the rule, Lmsg is the message (action name)
present in the LHS of the rule, and Rstate and Rmsg are the same elements but
for the RHS of the rule. Lmsg and Rmsg can assume the value ε, representing
an empty list of actions. We divide the analysis of this rule creation process into
the cases presented below, where c1 and c2 are CIDs representing contexts C1

and C2, respectively, a and b are action names, and cs is the call stack:

1. Sequence (c1, c2): Indicates a change of context with no action, hence, it is
mapped to a rule r = (C1, ε,C2, ε);

2. Sequence (c1,a, c2) and CS = 〈〉: Indicates a transition with an action a,
with no pending action, hence it is mapped to a rule r = (C1, ε,C2,a);

3. Sequence (c1,a, c2) and CS = 〈b〉: Indicates a transition with an action a,
with a pending action b, hence it is mapped to a rule r = (C1,b,C2,a);

4. Sequence (c1,a,b, c2) and CS = 〈〉: Indicates a transition with two actions
a and b, with no pending action, hence it is mapped to rules r1 = (C1, ε,C1,a)
and r2 = (C1,a,C2,b);

5. Sequence (c1,a,b, c2) and CS = 〈c〉: Indicates a transition with actions a
and b, and a pending action c, hence it is mapped to two rules that describe
a sequence: r1 = (C1, c,C1,a) and r2 = (C1,a,C2,b).

The idea behind this mapping is that sequences of contexts indicate changes
of state, hence they are represented, respectively, as the LHS and RHS of the
rule. A single action name between two contexts indicates an action that occurs
during the transition and, therefore, is represented as a message created by the
rule. Two consecutive actions are modelled by a rule with messages, where one
message is consumed and the next is created by the rule. Pending actions are
treated as messages created in some previous rule and consumed by the current
rule. In cases 4 and 5, intermediate rules are created in the same way as rule r1
for each pair of actions. For instance, for a sequence (c1, a, b, c, c2) with CS = 〈〉,
we would have rules r1 = (C1, ε, C1, a), r2 = (C1, a, C1, b), and r3 = (C1, b, C2, c).

Figure 6 shows two rules that illustrate the mapping with our running exam-
ple, using the CT and the trace shown in Figs. 4 and 5, respectively. In the first
case, the change from context 8 to context 9, with no messages between them
(case 1), resulted in a simple rule where the LHS represents the former context
whereas the RHS represents the latter. In the second example, we have a single
action that is placed in the form of a message in the RHS of the rule (case 2).

Note that the quality of the model heavily depends on the quality of the
traces used to build it, as it happens with any other approach based on samples
of execution. We do not use any particular technique for selecting the traces used
to build the GG. However, we usually use test cases to produce the behaviours

60 L.M. Duarte and L. Ribeiro

Fig. 6. Examples of rules generated by our algorithm.

Fig. 7. Some generated rules

we would like to observe. Even though this may prevent the model from being
complete, it is possible to customise it for specific purposes. Moreover, a complete
model might not even be necessary, as some times only part of the code may need
to be analysed. We also currently do not have a formal proof of the correctness
of our mapping. However, based on visual inspection and analysis outcomes, the
resulting GGs we have produced represent the behaviors observed in the corre-
sponding traces and described in the code (given the level of abstraction). Our
mapping (explained earlier) considers how to translate contexts to states of the
GG, sequences of contexts to rules, and action names to messages. As GG is
data-driven, we use context information to define states and messages to rep-
resent control-flow structures, such that selection structures are represented by
multiple rules that can consume a certain message, whereas iteration structures
are defined by rules or set of rules that can be apply multiple times in a row.

For the TrafficLights code the algorithm generated 43 rules (42 actually rep-
resent behavior, as the first rule is just the initialization of variables). Some of
these rules are presented in Fig. 7. This number is relatively large, considering
the size of the code and that a manually generated GG for the same code has
only 15 rules. Therefore, we provide, in the next section, two strategies to reduce
the size of the generated set of rules.

4 Optimizing the Set of Rules

The aim of optimizing the set of rules is to obtain the smallest number of rules
while preserving the overall observable effect, in terms of the variables of the

Graph Grammar Extraction from Source Code 61

original program. Since in this paper we did not present the formal definitions
of GGs due to space limitations, we will only provide informal argumentation
about the preservation of observable semantics of the optimizations. But, as
another justification for the approach, at the end of this section we compare the
grammar resulting from the optimizations with the grammar that was manually
obtained for the traffic lights example, showing that they are very similar.

In order to build a more compact set of rules, we have to identify rules that
could be either removed or merged with other rules, while keeping the same
observable effect. We will provide two ways to perform this task: one based on
method calls and another based on block IDs (BIDs). These two optimizations
operate on different elements, thus they may be performed in any order (yielding
the same resulting set of rules). Both optimizations are based on the conflicts
and dependencies that exist between rules.

The notion of conflict and dependency between rules in GG is defined based
on the items that a rule deletes, preserves, and creates. In the following, we will
explain these notions in the context of rules generated from execution traces (i.e.,
this is not the general definition, but specific to our type of GG). Given two rules
r1 = (C1L,msg1L, C1R,msg1R) and r2 = (C2L,msg2L, C2R,msg2R), where
the BID of a context C is depicted by BID(C), we define

(WCR) Weak conflict relation: r1 and r2 are in weak conflict, denoted by
r1 → r2 if both have the same BID, r1 does not change this BID and r2
changes it, i.e., BID(C1L) = BID(C2L) = BID(C1R) and BID(C1R) �=
BID(C2)R;

Conflict relation: r1 and r2 are in conflict, denoted by r1 − r2 if one of the
following situations occur:
(BCR) BID conflict: both have the same BID in the LHS, and both

change it, i.e., BID(C1L) = BID(C2L) and BID(C1L) �= BID(C1R)
and BID(C2L) �= BID(C2R); or

(MCR) message conflict: both delete the same message, i.e., msg1L =
msg2L;

Dependency relation: r2 depends on r1, denoted by r1 ��� r2, if one of the
following situations occur:
(BDR) BID dependency: r1 generates the BID that r2 needs, i.e.,

BID(C1R) = BID(C2L) and BID(C1L) �= BID(C1R); or
(BNR) message dependency: r1 creates the message for r2, i.e.,

msg1R = msg2L

Note that if two rules are in weak conflict they are not necessarily mutually
exclusive, since it is possible to apply first rule r1 and then r2 (but not vice
versa). If rules are in conflict they are mutually exclusive.

The graph that has as nodes the rules and as arcs the relations defined above
is called CPA graph (CPA stands for critical pair analysis). The BID-cpa
graph contains only arcs representing the context conflicts and dependencies

62 L.M. Duarte and L. Ribeiro

Fig. 8. CPA-graph of the generated TL grammar (Color figure online)

(WCR, BCR and BDR) whereas the message-cpa graph contains only arcs
representing the message conflicts and dependencies (MCR and MDR). In a
CPA graph, we say that a rule r is a choice point iff considering dependencies
and conflicts based on the BID, there are more than one other rule that depend on
r and these rules are mutually exclusive. A rule is a merge point iff considering
dependencies based on the BID, r depends on more than one other rules.

Example 1. The CPA graph for the grammar automatically generated from the
code of Fig. 1 is shown in Fig. 8. Solid (red) arrows denote weak conflicts (edges
with no arrow tips denote conflicts) and dashed (blue) arrows denote dependen-
cies. Rule4 is a choice point and Rule8 is a merge point.

4.1 First Optimization: Merging Rules

For this optimization we will identify sequences of rules with no observable effect
and merge them into a single rule that has the effect of this sequence of execu-
tions. This is performed by the construction of the concurrent rule that sum-
marizes the sequence. This is a standard construction in the theory of graph
transformations, see e.g. [19], and it is well known that the application of the
concurrent rule has the same effect that the application of its underlying rules.
Therefore, we will identify sequences of rules that have no observable effect con-
sidering the variables of the program and the exchanged messages, such that no

Graph Grammar Extraction from Source Code 63

rule in these sequences is be a merge or choice point (thus, assuring that there
is only one possible sequence in which these rules are present, and thus it is safe
to substitute them by the corresponding concurrent rule).

Step 1: Select candidates for merging. A rule r is a candidate for merging
if it satisfies all of the following conditions:
(i) r does not change the value of any attribute, except the BID;
(ii) r either creates or deletes some message, or does not contain messages;
(iii) r is not a choice point;
(iv) r is not a merge point.

Step 2: Partition the set of candidate rules. Each rule is grouped with the
rule(s) that are dependent on it in the set of candidates (based on the BID).

Step 3: Construct concurrent rules. For each partition that has more than
one rule in step 2, a concurrent rule is constructed and inserted in the set of
rules, and the rules that belong to the corresponding partition are deleted
from the set of rules.

Step 2 is well defined because, by the way the rules are constructed (from an
execution of the original program), for each rule r that is in the set of candidates,
there can only be at most one rule dependent on it in the set of merge candidates.
This follows basically from to the fact that r is not a choice point (condition
(iii)), that is, either there is at most one rule that depends on r or, if there are
more, say r1 and r2, they are not mutually exclusive. In this situation, either r1
or r2, or none of them will be in the set of candidates.

Example 2. For the TL grammar, we get the following candidates for merging:

{Rule2,Rule5,Rule6,Rule7,Rule9,Rule10,Rule11,Rule12,Rule21,Rule23,
Rule26,Rule27,Rule28,Rule29,Rule30,Rule39,Rule40,Rule41,

Rule42,Rule43}

Note that Rule8 is not a candidate for merging because it does not satisfy con-
dition (iv): it depends on three different rules (merge point). Rule4 is also not a
candidate because rules that depend on it (Rule5, Rule9, Rule10 and Rule43) are
mutually exclusive (choice point).

Then we obtain the following partitions:

{[Rule2], [Rule5,Rule6,Rule7], [Rule9], [Rule10,Rule11,Rule12], [Rule21],
[Rule23], [Rule26], [Rule27], [Rule28,Rule29,Rule30], [Rule39], [Rule40,Rule41,
Rule42], [Rule43]}

Rule2 and Rule21 are alone in partitions because no rule is dependent on
them (Rule3 and Rule22, that depends on them, are not in the set of merge
candidates).

Now we build concurrent rules. For example, rules Rule5, Rule6 and Rule7
(see Fig. 9) are substituted by rule R5+R6+R7.

64 L.M. Duarte and L. Ribeiro

Fig. 9. Concurrent rule

4.2 Second Optimization: Method Execution

For this optimization, we must build the message-cpa and the BID-cpa graphs.
The former gives us the information about which rules generate messages that
may be used by others (independent of the BID and attribute values), whereas
the later relates rules based on the execution point (considering the BID). The
aim of this optimization is to identify method executions that (a) have no observ-
able effect, and (b) occur immediately when called (in case of concurrent systems,
there may be a delay between a method call and its execution due to interleaving
of processes). For the first case, we will remove the enter/exit tags of messages
(removing also rules that create/delete these tags) and for the latter we will
remove the call tags of method calls (removing also the rules that create/delete
messages with such tags).

Step 1: Identify candidate method executions. Rules representing method
executions that have no observable effect may take the forms (i) or (ii) in
Fig. 10, where neither attributes nor the BID are changed. We construct sets
Cand(i), of rules of type (i) and Cand(ii), of (triples of) rules of type (ii) –
these sets must be disjoint, rules that appear in both should be kept only
in Cand(ii). The union of these sets is called Cand(i),(ii). Rules representing
method executions that occur immediately when called follow pattern (iii)
depicted in Fig. 10, where there must be a chain of BID-dependent rules
R6 → ... → R7, and no message m.enter is generated in the chain.

Step 2: Treat candidates with no observable effect.
1. For each method m that has some rule in the set Cand(i),(ii), let

Callm: set of all rules that are not in Cand(i),(ii) that generate m.enter,
in case m is of type (i), or call.m.enter, in case m is type (ii);

Retm: set of all rules that are not in Cand(i),(ii) that delete m.exit, in
case m is of type (i), or call.m.exit, in case m is type (ii);

2. For each rule r in Cand(i) corresponding to method m, check that no
rule that is not in Cand(i),(ii) is in conflict with r (this assures that there
is no other executions of m that may be compromised by removing the
enter/exit tags);

3. In case all rules rule in Cand(i) for a method call m pass the test, delete
them from the set of rules and update all rules in Callm, substituting
m.enter by m, and all rules in Retm, substituting m.exit by m;

4. For each triple (r1, r2, r3) in Cand(ii) corresponding to method m, check
that no rule that is not in Cand(i),(ii) is in conflict with r1 (the rule that
deletes call.m.enter);

Graph Grammar Extraction from Source Code 65

Fig. 10. Patterns (i) R1 (ii) R2, R3, R4 (iii) R5, R6, R7, R8

5. In case all rule triples in Cand(ii) that correspond to method calls to m
pass the test, delete them from the set of rules and update all rules in
Callm, substituting call.m.enter by m, and all rules in Retm, substituting
call.m.exit by m.

Step 3: Treat candidates that occur immediately. For each method m
that has some rule in the set Cand(iii), construct the sets:
Callm: set of all rules that are not in Cand(iii) that generate call.m.enter;
Retm: set of all rules that are not in Cand(iii) that delete call.m.exit.
Perform steps analogous to 4. and 5. below for the quadruples of Cand(iii).

The CPA graph of the resulting grammar is shown in Fig. 11 (green circles
will be discussed below). We have a total of 20 rules instead of the 42 original
rules.

Comparison. The manually generated grammar for the TL example has 15
rules (9 of which are shown in Fig. 2, the remaining 6 are analogous to the rules
that handle green lights). We consider this as the optimum number of rules
that faithfully represent the behavior of this program (since this grammar was
manually generated by an expert inspecting the code). The grammar obtained
following our algorithm has 20 rules for the same code. For a comparison with the
manually generated grammar, we included in Fig. 11 the rules of this grammar
in circles. For example, Rule4 of the generated GG corresponds to ReadGreen,
rules Rule19 and Rule37 correspond to ChangeColor (rules that are duplicated in
the generated grammar are marked with ∗). This duplication occurs because in
the generation we consider the values of attributes, for example, Rule19 changes
color when it is green. In the manually generated grammar, there is a generic
rule that changes the color, no matter the current color. There are also rules of
the generated grammar, such as the composed rule Rule10+Rule11+Rule12, that
do not appear in the original grammar but we could not remove hem because
it would change the conflict/dependencies relations and, thus, might change the
behavior of the system (without manual inspection, it is not possible to deter-
mine whether this change is acceptable or not). But note that the automatically
generated GG is quite close in the number of rules and has essentially the same
behavior as the manually created GG.

66 L.M. Duarte and L. Ribeiro

Fig. 11. CPA graph after Otimizations (Color figure online)

Another indication of correctness of the generated GG with respect to the
original code is its similarity with the LTS generated for the same code with the
LTSE tool [9]. The GG generated by our approach has 20 rules, and the LTS
has 23 states. By comparing the CPA graph of Fig. 11 with the LTS, we have
practically identical graphs, but the LTS has some extra nodes and transitions:
one for initialization and two because actions described by rules 13 and 14 (resp.
31 and 32) could not be merged in the LTS.

5 Related Work

Considering research specifically on the extraction of GG, the approach described
in [22] uses grammar inference from traces to construct nested hierarchical call
graphs from Java bytecodes. Their goal is to check this call graph against desired
properties, representing valid call sequences. Even though we also generate a GG
based on trace information, unlike their work, we take into account more than
just sequences of method calls, defining abstract states based also on data (values
of attributes). Thus, we explore the data-driven characteristic of the formalism
to achieve a description of a system behavior.

To the best of our knowledge, the approaches closest to ours are the ones
presented in [5] and [1]. In [5], the authors propose an approach for constructing
a GG from Java programs. However, the methodology used to translate from Java
to GG is based only on the source code and on the Java grammar. Moreover,
this translation can be applied to a very limited subset of the Java language or
require some conversion between program structures (e.g., while-do structures

Graph Grammar Extraction from Source Code 67

are not allowed and must be replaced by calls of recursive functions). We do not
require any modification in the original code apart from the introduction of the
necessary annotations. Even though our models contain only those rules that
can be inferred from the observed traces, which means that we cannot guarantee
completeness, we only create rules that can actually occur. In [1] a technique is
presented to extract rules from the observation of the transformations from an
initial state to a final state of a system based only on traces. The goal is not to
generate a model of a Java source code, but generate a model to explain a set
of observations. Hence, they aim to create a model that could improve program
understanding considering pre- and post-conditions of method executions. All
preconditions become the LHS of a rule and the post-conditions become the
RHS. To restrict the set of objects included in each rule, they need to identify
which objects of the system are affected and/or required for a rule to be applied.
This is not the case in our approach, as we build rules for each element of the
system. Because we follow the idea of encapsulation, only the state of the object
for which we are building the rule is visible, we only include objects referenced
by this main object that are necessary to describe a state change. Moreover, we
intend to produce models that (partially) describe the behavior of the system
with the goal of applying analyses to detect real and potential problems as well
as for program understanding and documentation.

6 Conclusions and Future Work

This article proposed a way to extract a model in terms of GG from Java code.
The aim of this extraction is twofold: on the one hand, the model corresponding
to code may serve as documentation and as basis for maintenance and evolution;
on the other hand, analysis of this model may reveal properties and bugs of the
code. The main difficulty in the extraction process was the large number of rules
that were generated. To a large extent, this is due to the fact that GG is data-
driven and since our extraction technique takes also executions into account, not
only information about the application but also about control flow of executions
was considered (for example, block identifier). Thus, we proposed optimisations
for the extraction technique, leading to a considerable reduction in the number
of generated rules. We have (partially) implemented the approach to generate
the resulting grammar in the format used by the AGG tool.

As future work, we intend to evaluate the application of this technique to
more complex software, such as concurrent systems, and also to large-scale appli-
cations. Since the LTS extraction approach allows a compositional construction
of a model based on the models of each element of the system [9], we believe this
part of the approach could also be adapted for GGs. In order to complement our
work, we also plan to use the generated models to validate their corresponding
implementations. The idea is to use the GG rules to construct test cases that
could be run on the implementation to check whether those behaviors are valid.

68 L.M. Duarte and L. Ribeiro

References

1. Alshanqiti, A., Heckel, R.: Towards dynamic reverse engineering visual contracts
from Java. Electron. Commun. EASST 67, 1–12 (2014)

2. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press,
Cambridge (1999)

3. Cook, J.E., Wolf, A.L.: Discovering models of software processes from event-based
data. ACM Trans. Softw. Eng. Methodol. 7(3), 215–249 (1998)

4. Cordy, J.R., Dean, T.R., Malton, A.J., Schneider, K.A.: Source transformation in
software engineering using the TXL transformation system. Inf. Softw. Technol.
44(13), 827–837 (2002)

5. Corradini, A., Dotti, F.L., Foss, L., Ribeiro, L.: Translating Java code to graph
transformation systems. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg,
G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 383–398. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30203-2_27

6. da Costa Cavalheiro, S.A., Foss, L., Ribeiro, L.: Theorem proving graph grammars
with attributes and negative application conditions. Theor. Comput. Sci. 686, 25–
77 (2017). https://doi.org/10.1016/j.tcs.2017.04.010

7. Dotti, F.L., Ribeiro, L., dos Santos, O.M., Pasini, F.: Verifying object-based graph
grammars. Soft. Syst. Model. 5(3), 289–311 (2006)

8. Duarte, L.M.: Behaviour Model Extraction using Context Information. Ph.D. the-
sis, Imperial College London, University of London, November 2007

9. Duarte, L.M., Kramer, J., Uchitel, S.: Using contexts to extract models from code.
Softw. Syst. Model. 16(2), 523–557 (2017)

10. Duarte, L.M., Kramer, J., Uchitel, S.: Towards faithful model extraction
based on contexts. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS,
vol. 4961, pp. 101–115. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-78743-3_9

11. Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.): Handbook of Graph
Grammars and Computing by Graph Transformation, Applications, Languages,
and Tools, vol. II. World Scientific, Singapore (1999)

12. Ernst, M.D.: Static and dynamic analysis: Synergy and duality. In: Workshop on
Dynamic Analysis, Portland, OR, USA, pp. 24–27, May 2003

13. Henzinger, T., Jahla, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: ACM Sym-
posium on Principles of Programming Languages, pp. 58–70. ACM Press, Portland,
January 2002

14. Holzmann, G., Smith, M.: A practical method for verifying event-driven soft-
ware. In: International Conference on Software Engineering, pp. 597–607. ACM,
New York, May 1999

15. Keller, R.: Formal verification of parallel programs. Commun. ACM 19(7), 371–384
(1976)

16. Lorenzoli, D., Mariani, L., Pezze, M.: Inferring state-based behavior models. In:
WODA 2006: Proceedings of the 2006 International Workshop on Dynamic Systems
Analysis, pp. 25–32. ACM Press, New York (2006)

17. de Oliveira, M., Ribeiro, L., Mauro Duarte, L., Cota, E.: Specification of mod-
els based on contexts using graph grammars. In: 2013 2nd Workshop-School on
Theoretical Computer Science (WEIT), pp. 129–134, October 2013

18. Rensink, A.: The GROOVE simulator: a tool for state space generation. In: Pfaltz,
J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 479–485.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25959-6_40

https://doi.org/10.1007/978-3-540-30203-2_27
https://doi.org/10.1016/j.tcs.2017.04.010
https://doi.org/10.1007/978-3-540-78743-3_9
https://doi.org/10.1007/978-3-540-78743-3_9
https://doi.org/10.1007/978-3-540-25959-6_40

Graph Grammar Extraction from Source Code 69

19. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformation: Foundations, vol. I. World Scientific, Singapore (1997)

20. Taentzer, G.: AGG: a graph transformation environment for modeling and vali-
dation of software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003.
LNCS, vol. 3062, pp. 446–453. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-25959-6_35

21. Walkinshaw, N., Taylor, R., Derrick, J.: Inferring extended finite state machine
models from software executions. In: 20th Working Conference on Reverse Engi-
neering (WCRE), pp. 301–310 (2013)

22. Zhao, C., Kong, J., Zhang, K.: Program behavior discovery and verification: a
graph grammar approach. IEEE Trans. Softw. Eng. 36(3), 431–448 (2010)

https://doi.org/10.1007/978-3-540-25959-6_35
https://doi.org/10.1007/978-3-540-25959-6_35

Applying a Formal Method in Industry:
A 25-Year Trajectory

Thierry Lecomte(B), David Deharbe, Etienne Prun, and Erwan Mottin

ClearSy, 320 Avenue Archimède, Aix en Provence, France
thierry.lecomte@clearsy.com

Abstract. Industrial applications involving formal methods are still
exceptions to the general rule. Lack of understanding, employees without
proper education, difficulty to integrate existing development cycles, no
explicit requirement from the market, etc. are explanations often heard
for not being more formal. Hence the feedback provided by industry to
academics is not as constructive as it might be.

Summarizing a 25-year return of experience in the effective applica-
tion of a formal method – namely B and Event-B – in diverse application
domains (railways, smartcard, automotive), this article makes clear why
and where formal methods have been applied, explains the added value
obtained so far, and tries to anticipate the future of these two formalisms
for safety critical systems.

Keywords: B method · Event-B · Integrated development environ-
ment · Code generation · Formal data validation

1 Introduction

Formal methods and industry are not so often associated in the same sentence as
the formers are not seen as an enabling technology but rather as difficult to apply
and linked with increased costs. In [11], the introduction of the B method and the
Event-B language into several industrial development processes was witnessed
with more or less success, even if new tools and new practices were available to
ease acceptance in industry. At that time, these two formal methods had been
backed by a number of research projects and non-trivial industrial applications.

Almost 10 years later, after several real size experiments in diverse application
domains, the situation has slightly evolved. Some standards, like the D0-178C
for aeronautics, are now accepting formal methods in their certification process
with sometimes some restrictions on the perimeter where they are applied (unit
testing replaced by unit proof for example). The newborn ISO 26262 automo-
tive functional safety standard is also recommending the use of formal methods
during development. On the opposite side, the Common Criteria 3.1 standard
(compared to its version 2.3) has decreased the need for formal methods that are
now only required at level 6+ and higher (instead of 5+ previously) while the
maximum security is reached at level 7 (EAL). However, even if the standards
have made some room for them, these methods haven’t spread much out of the
c© Springer International Publishing AG 2017
S. Cavalheiro and J. Fiadeiro (Eds.): SBMF 2017, LNCS 10623, pp. 70–87, 2017.
https://doi.org/10.1007/978-3-319-70848-5_6

Applying a Formal Method in Industry 71

railway sphere as it might have been expected. Their usage though have slightly
evolved over the years as a reaction to industry needs in direct relation with
fierce international competition.

This article presents in a first chapter the different ways B and Event-B were
used for modeling software, systems and data, and for proving static and dynamic
properties. In a second chapter, new technology and techniques are presented.
Their tight combination is expecting to converge to a new, more automated way
of developing safety critical applications that are not restricted to the railways.

2 Modeling

2.1 B for Software

The B Method was introduced in the late 80’s to correctly design safe software.
The main idea was to avoid introducing errors by proving the software while
being built, instead of trying to find errors with testing after the software was
produced.

Promoted and supported by RATP, B and Atelier B1 have been success-
fully applied to the industry of transportation, through metros automatic pilots
installed worldwide. Paris Meteor line 14 driverless metro is the first reference
application with over 110,000 lines of B models, translated into 86 000 lines of
Ada. No bugs were detected after the proof was completed, neither at the func-
tional validation, at the integration validation, and at the on-site testing, nor
since the beginning of the metro line operation (October 1998).

For years, Alstom Transportation Systems and Siemens Transportation Sys-
tems (representing a major part of the worldwide metro market) have been the
two main actors in the development of B safety-critical software. Both compa-
nies have a product based strategy and reuse as much as possible existing B
models for future metros. As an example, the Alstom Urbalis 400 CBTC (Radio
communication based train control) equips more than 100 metros in the world,
representing 1250 Km of lines and 25 % of the CBTC market.

2.1.1 Structure and Metrics
For such applications, B modeling is used for safety critical functions for both
track-side (zone controller, interlocking) and on-board (automatic train pilot or
ATP) software. The interlocking part has to avoid having two trains on the
same track section. It computes boolean equations that represent the tracks
status as seen from diverse sensors. The automatic pilot is mainly in charge of
triggering the emergency brake in case of over-speed. It requires several functions
such as the localization (where is the train ?) that involve several graph-based
algorithms, and the energy control which computes the braking curve of the
train, based on the geometry of the tracks (in particular the positive and negative
slopes). Data types used are: integer for the energy control, booleans for the
interlocking and tables of integer for the tracks.

A typical ATP software model is made of one top-level function executed
every cycle.
1 The tool implementing the B method.

72 T. Lecomte et al.

Fig. 1. Example of a non-deterministic post-condition of a function

The specification of this function (see Fig. 1) is non-deterministic and is
expressed as a large “variables become such as” substitution. The specification
of the function, contained in the post-condition, is sufficiently abstract and dif-
ferent from the implementation2 to avoid to prove the copy-paste from the spec-
ification to the implementation. This implementation imports 55 components.
The complete B project is made of 233 machines (50 kloc3), 46 intermediate
refinements (6 kloc) and 213 implementations (45 kloc), as well the handwritten
code for non-safety critical parts (110 kloc). It also contains 3000 definitions
reused among several components. 23,000 proof obligations are generated, 83 %
of these of proved automatically, the remaining 17 % requires interactive proof.
3000 mathematical rules were added to ease the proof process, 85 % of these are
proved automatically, the remaining 15 % requires human manual proof.

To date, the biggest B software is a XML compiler enabling the execution
of safety critical embedded applications by an interpreter. More than 300,000
lines of Ada code are generated from B models, for this SIL4 T3-compliant
(EN50128) program4. 300,000 lines do not represent the limit of the method as
no bottleneck has been met until now. So the method is likely to scale up to
larger, non-threaded software. A the other end of the scale, with platform screen
doors controllers less demanding in term of computation, smaller applications
are generated for both programmable logic controllers (PLC) and PIC32 micro-
controllers, with a maximum of 64 KB in memory per software.

2.1.2 Organization and Acceptance
Since 1998, Atelier B has been slightly improved in order to obtain proven
software more quickly:

– proof obligations (PO) contain traceability information (which parts of the
B models have been used to obtain a PO), helping to better locate modeling
errors and to improve modeling style

– a model editor allowing to navigate models (abstraction, refinement) and
operations (caller, callee)

2 Which contains the algorithm (statements, operation calls).
3 Thousands lines of code.
4 T3 means that the tool is able to generate a (faulty) binary program and as such

requires a special attention in the safety process.

Applying a Formal Method in Industry 73

Fig. 2. Text-based model editor combining proof information with modeling

– a model editor merging model and proof (see Fig. 2) by displaying the number
of proof obligations associated to any line of a B model, its current proof status
(fully proved or not) and the body of the related proof obligations.

– a framework to automatically prove and review user added mathematical
proof rules, that generates a report for the safety case.

From a human point-of-view, usual organization requires a local guru acting
as a technical referee (usually - but not necessarily - a PhD) and a team of soft-
ware engineers able to handle abstraction. Introductory B courses (B language,
projects with B) and close support during the first months have been enough
to set up development teams. The forthcoming MOOC on B5 and a dedicated
YouTube channel for Atelier B practitioners would speed up the learning process.

The B software development process is now well-oiled, accepted by certi-
fication bodies and several rail operators worldwide. Without being formally
developed, Atelier B 3.6 was used for METEOR in 1998 while Atelier B 4.2/4.3
is used for Alstom Urbalis 400/500 product line. Atelier B 4.2 is at the core of
the SIL4 certificate obtained for the platform screen-doors controller installed in
2017 in Stockholm (line Citybanan).

2.2 B for Systems

A broader use of B appeared in the mid ‘90s, called Event-B, to analyze, study
and specify not only software, but also systems (system is here considered in
its widest definition). It extends the usage of B to systems that might contain
software, hardware and pieces of equipment, but also to intangible objects like
process, procedure, business rule, etc. In that respect, one of the outcome of

5 https://moocs.imd.ufrn.br.

https://moocs.imd.ufrn.br

74 T. Lecomte et al.

Event-B is the proved definition of systems architecture and, more generally,
the proved development of, so called, “system studies”, which are performed
before the specification and design of the software. This enlargement allows
one to perform failure studies right from the beginning, even in a large system
development.

2.2.1 Research and Development
Several European projects were required to set-up Event-B, among them:

– MATISSE aimed at providing a first definition of the language,
– PUSSEE specifically aimed at hardware/software embedded systems,
– Rodin for the development of the eponymous platform and
– DEPLOY for its deployment in the industry.

Several system studies from diverse application domains (banking, air traffic
control, defense, satellites, etc.) were initially performed with Atelier B before
naturally moving to the Rodin platform. The modeling of the Mazurkiewicz enu-
meration algorithm ands its proof during the project RIMEL6 was the perfect
demonstration of the suitability of Event-B for small, distributed systems. In
2008, during the certification for a smart-card microcircuit, Event-B was seam-
lessly integrated to Atelier B7. The supported language slightly differs from the
one supported by Rodin but doesn’t restrict its usability regarding target appli-
cations. Several EAL5+ (CC2.3) and EAL6+ (CC3.1) certifications were per-
formed in France, Germany and Spain, and functional specification were proved
to comply with security policies.

A follow-up project, FORCOMENT [2], was initiated with STMicroelectron-
ics and aimed at providing a proven path from specification to VHDL. Spe-
cific proof obligations were added to ensure a deterministic behavior. Result-
ing VHDL was quite different from the one developed manually (similar num-
bers of gates, but architecture more easily analyzable) and went successfully
through product test benches. However the technology failed to find its audi-
ence because of:

– (the complexity of) the input formalism,
– the necessity to specify the target system several tens of times (refinements)

with different levels of detail,
– the time and the number of iterations8 to converge to a final model,
– the obligation to allocate our best practitioners to complete the duty.

6 http://rimel.loria.fr/.
7 Because of the inability, at that time, for the Rodin platform to handle a model with

17 levels of refinement.
8 Our maximum is 190 iterations and 5 major refactoring, many modifications having

a slight impact on the structure of the model.

http://rimel.loria.fr/

Applying a Formal Method in Industry 75

Fig. 3. All the dependencies between the sub-systems of a military vehicle analyzed
with composys, and used for defining a non-trivial efficient integration testing policy.
This drawing is for illustrating the complexity of the model.

2.2.2 Flat Specification
Event-B was also used as a descriptive language for behavioral specification (flat
specification, no refinement), mainly for document generation, structural analy-
sis (dependencies among variables) and model animation with application in
the automotive (enhanced diagnosis – Peugeot), in the defense (military vehi-
cles integration testing scheduling – CNIM) and in the railways (platform screen
doors preliminary studies – RATP).

The main reason for not modeling with refinement was the complexity of
the target systems and the level of detail required to perform an analysis that
would have led to both practical and economical impossibilities (models too large
to be handled by human modelers; too much effort to complete, if reachable).
The Event-B models were sided by a dictionary containing natural language
descriptions of the variables, events and substitutions, allowing for the automatic
generation of document. Events were allocated to “sub-systems”, allowing to
analyze data-flows (see Fig. 3) between these sub-systems (where the variables
are read/modified).

A dedicated tool, Composys [10], was developed and maintained to support
this approach until 2012.

This approach was more aimed at finding ambiguities in the existing technical
documentation, and at animating the specification than at proving a correct
behavior and was finally abandoned.

2.2.3 Collection of Separate Models
Instead of developing a model of the whole signaling system , verbose, com-
plex and not containing enough details9 to ensure a definitive conclusion on the

9 This demonstration requires for example to know the algorithm used for the odome-
ter, to rediscover how the distance between signals and switches is computed based
on the minimum curve radius, tunnel width, maximum slope, minimum train braking
capability, etc.

76 T. Lecomte et al.

safety of the system, another approach was tried. The fundamental goal was to
extract the rigorous reasoning establishing that the considered system ensures
its requested properties, and to assert that this reasoning is correct and fully
expressed. At system level, this rigorous reasoning involves the properties of
different kind of subsystems (from computer subsystems to operational proce-
dures), that the formal proof shall all encompass. Event-B is used to formalize
the reasoning with a collection of separate models: each model is readable and
understandable by a non-expert and doesn’t require to dig into hundreds of
events and tens of refinement levels. This approach was used for the system for-
mal verification for the CBTC of New York subway line 7 in 2012 and Flushing in
2014 (effort divided by two due to models reuse). It is now deployed in Paris for
all the new automatic metro lines [15]. Even if based on refinement, the formal
modeling effort is now manageable (each model is one or two pages long) and
only requires engineers able to reason (not our best practitioners any more). The
Event-B language as implemented in Atelier B in 2008 is still enough to support
this modeling approach.

2.3 Formal Data Validation

The verification of a behavior, based on Event-B system specification or B soft-
ware specification, is achievable by semi-automated proof. However the verifica-
tion of static properties of parameters (that tune the system or the software)
against properties may turn out to be a nightmare in case of large data sets
(10,000+ items) and complex relationships among data, as the built-in Atelier
B prover is not able to handle them properly. In the early 2000’s data valida-
tion in the railways [8] used to be entirely human, leading to painful, error-prone,
long-term activities (usually more than six months to manually check constantly
changing10 100,000 items of data against 1,000 rules).

In 2003, this human process was made more formal while:

– formalizing data properties with the B mathematical language (set theory,
first order logic)

– generating a B machine containing the properties (the data model) and
instantiated with the data to verify,

– checking the correctness of the B machine

2.3.1 Rules
Properties, issued from international standards, national regulations, local prac-
tices, rail operator requirements, metro manufacturer constraints, are modeled
as rules (see Fig. 4). The clause WHERE allows the selection and filtering of
data11. The clause VERIFY specifies the conditions expected for all filtered
signals. In case the predicates of this clause are not verified, an error message is
displayed for each signal found.
10 CAD data is replaced by real plant data, topology is modified after in situ testing,

etc.
11 That could be stored in files like JSON, Xml, Ecxel, CSV, TXT, etc.

Applying a Formal Method in Industry 77

Fig. 4. Example of verification rule. Signals belonging to an interlocking territory are
searched; such signals have to be linked to this interlocking. If not, an error message is
displayed for each faulty signal found.

Most of the rules fit in one page, but some rules are really large, up to
10 pages, as they embed several small steps or they contain a lot of implicit
information. To ensure compliance with safety standard, rules have to be cross-
read and tested by independent engineers. A specific testing environment has
been developed to ease to set up of testing scenarios demonstrating that a rule
triggers a KO conclusion for all error classes.

2.3.2 Deployment
The PredicateB predicate evaluator was first used for checking the correctness.
The PredicateB tool is a symbolic calculator able to manipulate B mathemat-
ical language predicates in order to animate a B formal model: constants and
variables initial values are calculated, then operations are executed depending
on enabling conditions and their substitutions. Symbolic values are scalars, sets,
functions, etc. PredicateB has limited capabilities for non-deterministic compu-
tations and was replaced by ProB [9]. The ProB model-checker embeds several
well performing heuristics for reducing search space (symmetry detection for
example), is able to better handle non-deterministic substitution and to provide
a more complete set of counter examples. It has been modified in order to pro-
duce a file containing all counter examples detected and slightly improved to
better support some B keywords.

The major outcome of this decision to introduce formalities and to automate
the verification [13] was a dramatic reduction of the validation duration from
about six months of human verification to some minutes of computation (if we
set aside the time to formalize verification rules). Since then the resulting tools
(certified as T2 and T3 compliant, EN50128 standard) have been experimented

78 T. Lecomte et al.

Table 1. Summary of the main tools used during the last 25 years for industrial
projects. B/E/D columns refer to B language (B), Event-B language (E) and formal
data validation (D) supports.

Tool B E D Usage Availability

Atelier B X X Modeling environment 100+

automatic metro lines

Free

http://www.atelier.eu/en

ProB X X Model-checker Free

https://www3.hhu.de/stups/prob

BMotionWeb X X Model animator Free

http://wiki.event-b.org/index.php/

BMotion Studio

PredicateB X Model animator Free

https://sourceforge.net/p/

rodin-b-sharp

PredicateB++ X Model animator Proprietary (ClearSy)

Rodin X Modeling environment Free

http://www.event-b.org/

DTVT X Data validation environment 20+

metro and tramway lines

Proprietary (Alstom)

Dave X Data validation environment

Singapour metro line

Proprietary (General Electrics)

Ovado X Data validation environment

Paris metro lines

Proprietary (RATP)

with success12 on several metro lines worldwide for different metro manufactur-
ers. In this context, more than 2,500 rules have been developed, cross-verified
and applied. The French Railways (SNCF) is going to deploy these tools for
the main lines to check new interlocking parameters for the 10 coming years,
requiring the development of 2,500 more rules.

From a human point-of-view, usual organization requires engineers able to
manipulate mathematical predicates and to understand railways signaling. A
technical referee provides feedback and support on how to model certain tricky
aspects like non-deterministic choices (“find a bijection such as ...”), quantified
predicates, etc. The verification process is well accepted by certification bodies
and by several rail operators worldwide, and is ready to be deployed in other
industries with safety-critical constraints.

2.4 Adoption by Industry

From our experience, industry is not particularly interested in using formal meth-
ods except if it is required by the standards (1) or by the customers (2), or if it
allows to speed up a process by an order of magnitude (3).

In our history, (1) is related to smartcard industry (Sect. 2.2.1), (2) is associ-
ated with Meteor/RATP (Sect. 2.1) and with L7/NYCT (Sect. 2.2.3), while (3)
is represented by the formal data validation (Sect. 2.3).

In any case, a formal method without a proper tool support is useless. We
have used several tools over the years (Table 1) that were applied in industrial
12 Metro line fully and positively analyzed, results validated by certification body and

independent expert.

http://www.atelier.eu/en
https://www3.hhu.de/stups/prob
http://wiki.event-b.org/index.php/BMotion_Studio
http://wiki.event-b.org/index.php/BMotion_Studio
https://sourceforge.net/p/rodin-b-sharp
https://sourceforge.net/p/rodin-b-sharp
http://www.event-b.org/

Applying a Formal Method in Industry 79

settings. As such, formal data validation is much appreciated because as a V&V
tool, it doesn’t impact the development cycle (on the contrary of B for software
development) and the verification phase is a “push-button” activity (once the
formal data model is completed).

3 Convergence

We have seen from the previous chapter that B and Event-B have matured
over the last decade and are addressing well safety-critical industry topics13, at
system level, at software level, and at configuration level. However using a formal
method is not enough to demonstrate safety. For example, a software can’t be
SIL4-compliant by itself, even if it is developed with B. The hardware executing
it has to be considered, especially its failure modes, and a sound specification at
system level has to be elaborated accordingly. A safety demonstration requires
a lot of experience, skills, time and energy to complete successfully.

We present in this chapter several new features, linked with B, that are
directly contributing to the safety demonstration and that would ease the devel-
opment and the certification processes of safety-critical systems.

3.1 Low Cost High Integrity Platform

LCHIP14 is a new technology, combining a complete software development envi-
ronment based on the B language and a secured execution hardware platform, to
ease the development of safety critical applications. It relies on several building
blocks already used in certified railways products.

LCHIP relies on a software factory that automatically transforms function
into binary code that runs on redundant hardware. The starting point is a text-
based, B formal model that specifies the function to implement. This model may
contain static and dynamic properties that define the functional boundaries of
the target software.

This formal specification is then refined automatically into a B implementable
model. Transformation rules are applied to the specification to gradually replace
abstract variables and substitutions with concrete ones.

The implementable model is then translated using two different chains:

– Translation into C ANSI code, with the C4B Atelier B code generator
(instance I1). This C code is then compiled into HEX15 binary code with
an off-the-shelf compiler.

– Translation into MIPS Assembly then to HEX binary code, with a specific
compiler developed for this purpose (instance I2). The translation in two steps
allows to better debug the translation process as a MIPS assembly instruction
corresponds to a HEX line.

13 Even if re-targeted to address more specific issues.
14 A short form of Low Cost High Integrity Platform.
15 A file format that conveys binary information in ASCII text form. It is commonly

used for programming micro-controllers.

80 T. Lecomte et al.

Fig. 5. The safe generation and execution of a function on the double processor.

3.1.1 Safety
These two different instances I1 and I2 of the same function are then executed
in sequence, one after the other, on two PIC32 micro-controllers. Each micro-
controller hosts both I1 and I2, so at any time 4 instances of the function are
being executed on the micro-controllers. The results obtained by I1 and I2 are
first compared locally on each micro-controller then they are compared between
micro-controllers by using messages. In case of a divergent behavior (at least one
of the four instances exhibits a different behavior), the faulty micro-controller
reboots. The sequencer and the safety functions are developed once for all in
B by the IDE design team and come along as a library. This way, the safety
functions are out of reach of the developers and can’t be altered. The safety
is based on several features such as the detection of a divergent behavior, the
detection of the inability for a processor to execute an instruction properly16

and the ability to command outputs17. Memory areas (code, data for the two
instances) are also checked (no overlap, no address outside memory range).

3.1.2 Target Software
The execution platform is based on two PIC32 micro-controllers and provides
an available power of 100 MIPS. This processing power is sufficient to update
50k interlocking Boolean equations per second, compatible with light-rail signal-
ing requirements. The execution platform can be redesigned seamlessly for any
kind of mono-core processor if a higher level of performance is required. Similar
secured platforms are operating platform-screen doors in São Paulo L15 metro

16 All instructions are tested regularly against an oracle.
17 Outputs are read to check if commands are effective, a system not able to change

the state of its outputs has to shutdown.

Applying a Formal Method in Industry 81

and in Stockholm City line. The Brazilian one has been recently certified at level
SIL3 by CERTIFER on the inopportune opening failure of the doors.

The IDE provides a restricted modeling framework for software where:

– No operating system is used
– Software behavior is cyclic (no parallelism)
– No interruption modifies the software state variables
– Supported types are Boolean and integer types (and arrays of)
– Only bounded-complexity algorithms are supported (the price to pay to keep

the refinement and proof process automatic)

The whole process, starting from the B model and finishing with the software
running on the hardware platform, is expected to be fully automatic with the
integration of the results obtained from some R&D projects18. In addition several
in-house projects have helped to optimize the automatic refinement process by
improving the refinement engine and by defining a subset of the B language,
Simple B.

3.1.3 Research and Development
LCHIP [12] is developed by the eponymous French R&D project. It is aimed
at allowing any engineer to develop a function by using its usual Domain Spe-
cific Language and to obtain this function running safely on a hardware plat-
form. With the automatic development process, the B formal method will remain
“behind the curtain” in order to avoid expert transactions.

As the safety demonstration doesn’t require any specific feature for the input
B model, it could be handwritten or the by-product of a translation process. So
several DSL are planned to be supported at once (relays schematic, grafcet)
based on an Open API (Bxml). The translation from relays schematic is being
studied for the French Railways with a strong focus on the feedback between
DSL and B: in case of unproven B proof obligations, it is mandatory to exhibit
its source in the DSL model.

The project reuses a number of building blocks such as the C4B19 C code
generator extended to support PIC memory model, and the B to Hex binary file
in-house compiler supporting PIC32.

The IDE will be based on Atelier B 5.0, providing a simplified process-
oriented GUI. A first starter kit, containing the IDE and the execution platform,
will be publicly released by the end of 2017.

3.2 Proof Support Advances

3.2.1 Proof Support in Atelier B
A formal development demands that different aspects are verified using a math-
ematical proof. To this end, Atelier B produces automatically a number of proof
18 To implement automatic refinement (ANR-RIMEL) and improve automatic proof

performances (ANR-BWARE).
19 Atelier B C code generator.

82 T. Lecomte et al.

obligations (POs). To assist the user in discharging POs, Atelier B has included
a theorem prover since its inception. This “historical” theorem prover is an infer-
ence engine and an (extensible) rule database. It has been certified in the railway
domain by expert review of both the inference engine and a core rule base. The
architecture of the theorem prover is such that it can be used interactively, or
automatically, at different force levels.

The user applies the theorem prover in batch to all the proof obligations,
and is then left with a number of open POs. The remaining POs can be clas-
sified in three categories: valid, the theorem prover being unable to find the
proof; unprovable, because the rule database is essentially incomplete; unprov-
able, because the user made a mistake in the formal development.

The top priority of the user is to ensure that there is no mistake, i.e., there
is no PO of the last category. Visually inspecting the POs is often enough to
detect most such errors, although there are also trickier mistakes that are only
uncovered in the course of an interactive proof.

The user has then to discharge the unproved POs by interactive proof, and
this is the most time-consuming task in a formal development. The prover
of Atelier-B supports a number of commands to develop interactive proofs:
hypotheses selection, case split, quantifier instantiation, equality rewriting, rule
application, etc. A proof script is successful when the proof obligation has been
shown valid. One a script is successful, it is saved in the project data base, and
can be applied to other proof obligations. Actually, a script is often successful for
more than one PO. To improve scripting capabilities and efficiency, the language
has been enriched with pattern-matching constructs that enable more general
proofs. However, we feel that the interactive proof process should be improved
so that the user would only need to address “interesting” goals and sub-goals
that require some human insight.

Since the specification language of the B method is undecidable, the user
is allowed to write new rules to be taken into account by the inference engine.
The risk of introducing inconsistencies is mitigated by two measures. The first
measure consists in the inclusion of an alternative prover, based on tableaux, that
is able to prove some of the rules automatically. The second measure applies to
those rules that could not be proved automatically. It consists in the user writing
a textual proof in natural language, that is then subject to validation by a third-
party.

In the past year, Atelier B support for PO verification has been improved
with two different tools, addressing this issue at different levels:

iapa (Interface to Automatic Proof Agents) for batch processing of POs;
drudges of the theorem prover for rapid processing of sub-goals in the

interactive prover.

They are presented in turn in the following.

Applying a Formal Method in Industry 83

3.2.2 Iapa
The iapa extension for Atelier B gives access to a number of third-party provers
to discharge POs [5]. In iapa, POs are not translated directly to the input for-
mat of these provers; instead the translation targets the format of a program
verification platform that plays here the role of a gateway to such automatic
provers, namely Why3 [3]. Each PO thus includes a prelude where the logic of
the B expression language is formalized in Why3 [14]. The axiomatization of
the B operators in Why3 has been fine tuned based on an industrial bench-
mark, resulting in significant improvement of the automatic proving capabilities
in Atelier B on that benchmark [6].

As the proof obligations are produced automatically, they include all the
hypotheses that are in scope at the point the PO is concerned about. It is often
the case that the validity of the goal only depends on a small number of such
hypotheses. However, at times, provers are not able to identify these relevant
hypotheses and end up lost in the proof search space.

In order to address this issue, iapa includes a hypotheses selection functional-
ity, where the user can identify a subset of the hypotheses, and only this subset
is included in the proof obligation that is translated to Why3 and eventually
processed by the provers. This functionality is available both through a graph-
ical, point-and-click, interface and through a command line language. Subsets
of hypotheses can be created according to the presence of some identifier or set
of identifiers, then added to the proof obligation. Of course iapa also provides a
function to extract a set of free identifiers from the goal or from some subset of
hypotheses. These functionalities are built upon two kinds of entities that the
user can create and manipulate: contexts (subsets of hypotheses) and lexicons

Fig. 6. An annotated screenshot of iapa

84 T. Lecomte et al.

(subsets of identifiers). Full details are available in [5]; iapa is part of Atelier B
starting from version 4.5.

3.2.3 Drudges of the Interactive Prover
The motivation for this functionality was born out of the feeling of frustration
that the user of the interactive prover sometimes feels when she is faced with a
seemingly trivial sub-goal, yet single command is able to discharge it. An example
of such situation is when the current goal can be shown to be a consequence of
the hypotheses using the theory of equality and propositional reasoning, but the
terms involved are large or contain operators that get the automatic prover lost.

A general rule is that the less proficient the proof engine, the more efficient
it is. So the rationale of the drudges of the interactive prover is to use automatic
provers for simpler logics that are able to produce not only the result of the
validity check, but also information on how they have reached their conclusion,
and this information is then processed to produce guidance for the automatic
prover of Atelier B.

Candidate drudges are provers that are either proof producing, or at least
able to generate a so-called unsat core, i.e. a subset of the hypotheses that are
actually used in the proof. Such functions have been standardized through at
least two initiatives: TPTP [16] and SMT [1]. The drudges currently in the
latter category only (veriT [4] and Z3 [7]), as they implement the unsat core
functionality. Given the unsat core, a proof rule for the Atelier B prover can be
produced automatically, compiled and applied to the current goal. The drudges

Fig. 7. Interface to the drudges in the window of the interactive prover

Fig. 8. State after the successful completion of the drudges : with a single click, a new
rule has been created (right panel) and applied (left panel) automatically, discharging
the goal.

Applying a Formal Method in Industry 85

are available as a single click on a new button in the tool bar of the interactive
prover (see Fig. 7). If the drudges are successful, the current goal is automatically
discharged and the proof rule is added to the rule base of the component (see
Fig. 8).

4 Conclusion and Perspectives

4.1 Aimed at Industry

Introducing formal methods in industry is difficult. We have experienced this
situation with B in almost all industries, with a wide range of arguments:

– “we do not want to change of development cycle”
– “we do not recruit PhD”
– “formal methods work for train in 1-D, but planes flight in 3-D”
– “trains and planes have professional drivers, but car drivers are mostly non-

professional”
– “we are not able to understand your deliverable”
– etc.

The real chance for the B-method was the very difficult development of the
automatic speed control system for rapid transit railways in Paris, SACEM, in
1977, and the decision by the RATP to promote the B-method for the develop-
ment of the first driver-less metro Meteor in 1993.

Several new usages at system-level and at configuration level have emerged
over the last decade, scaling up to industry-strength deployments and offering
new verification means with increased levels of confidence. These techniques
allow to better manage complexity when dealing with large systems. However,
since 1994, B uses have been contained to a narrow scope of industrial software
applications in the railways because of:

– the specific development cycle where unit and integration testing almost com-
pletely disappears,

– the mandatory ability to handle abstraction for efficient modeling,
– a specific code generator per target application to address hardware specifics.

The LCHIP technology, combined with improved proof performances and
provers diversity, pave the way to an easier way of developing SIL4 functions
(including both hardware and software). The platform safety being out of reach
of the software developer, the automation of the redundant binary code gen-
eration process and the certificates already obtained for products embedding
LCHIP building blocks, would enable the repetition of similar performances
without requiring highly qualified engineers. The hardware platform is generic
enough to host a large number of complexity-bounded industry applications,
with a special focus on the IoT and nuclear energy20 domains.
20 In France several nuclear plants will have to be decommissioned in the coming years,

requiring to develop supervision systems complying with current standards.

86 T. Lecomte et al.

4.2 Challenges

Safety-critical systems are certainly privileged targets when considering the
application formal methods. The risk to injure or kill people may entitle to con-
sider more easily “exotic” development, verification or validation means. With
the raise of the IoT and the “connect-anything-to-anything” paradigm, secu-
rity adds a new dimension to analyze and being able to model and prove at
the same time safety and security properties could facilitate the acceptance of
formal methods in the forthcoming standards releases.

Every industry has its own challenges. Based on our experience, our advice
is to know and understand very well a particular application domain, especially
its problems and imagine a usage of your formal method, even for a tiny/very
specific scope21. Aim for the most automated process as industry is very fond of
any “push-button” tool22 .

References

1. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB standard: version 2.5. Tech-
nical report, Department of Computer Science, The University of Iowa (2015).
www.SMT-LIB.org

2. Benveniste, M.V.: On using B in the design of secure micro-controllers: an experi-
ence report. Electr. Notes Theor. Comput. Sci. 280, 3–22 (2011)

3. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: shepherd your herd of
provers. In: Boogie 2011: 1st International Workshop on Intermediate Verification
Languages, pp. 53–64. Wroc�law, Poland, August 2011

4. Bouton, T., Caminha B. de Oliveira, D., Déharbe, D., Fontaine, P.: Verit: an open,
trustable and efficient SMT-solver. In: Schmidt, R.A. (ed.) CADE 2009. LNCS
(LNAI), vol. 5663, pp. 151–156. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-02959-2 12

5. Burdy, L., Déharbe, D., Prun, É.: Interfacing automatic proof agents in atelier
B: introducing “iapa”. In: Dubois, C., Masci, P., Méry, D. (eds.) Proceedings of
the Third Workshop on Formal Integrated Development Environment, F-IDE@FM
2016. EPTCS, vol. 240, pp. 82–90. Limassol, Cyprus, 8 November 2016

6. Conchon, S., Iguernelala, M.: Tuning the Alt-Ergo SMT Solver for B
Proof Obli-gations, pp. 294–297. Springer (2014). https://doi.org/10.1007/
978-3-662-43652-3 27

7. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

8. Falampin, J., Le-Dang, H., Leuschel, M., Mokrani, M., Plagge, D.: Improving rail-
way data validation with prob. In: Romanovsky, A., Thomas, M. (eds.) Indus-
trial Deployment of System Engineering Methods, pp. 27–43. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-33170-1 4

21 As such, LCHIP is a potential solution for small memory footprint safety-critical
systems.

22 Formal data validation is “usual” model-checking connected to a Domain Specific
Language and traceability means to support certification.

http://www.SMT-LIB.org
https://doi.org/10.1007/978-3-642-02959-2_12
https://doi.org/10.1007/978-3-642-02959-2_12
https://doi.org/10.1007/978-3-662-43652-3_27
https://doi.org/10.1007/978-3-662-43652-3_27
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-33170-1_4

Applying a Formal Method in Industry 87

9. Hansen, D., Schneider, D., Leuschel, M.: Using B and prob for data validation
projects. In: Butler, M., Schewe, K.-D., Mashkoor, A., Biro, M. (eds.) ABZ 2016.
LNCS, vol. 9675, pp. 167–182. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-33600-8 10

10. Lecomte, T.: Safe and reliable metro platform screen doors control/command
systems. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008. LNCS, vol.
5014, pp. 430–434. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-68237-0 32

11. Lecomte, T.: Applying a formal method in industry: a 15-year trajectory. In:
Alpuente, M., Cook, B., Joubert, C. (eds.) FMICS 2009. LNCS, vol. 5825, pp.
26–34. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04570-7 3

12. Lecomte, T.: Double cœur et preuve formelle pour automatismes sil4. 8E-Modèles
formels/preuves formelles-sûreté du logiciel (2016)

13. Lecomte, T., Burdy, L., Leuschel, M.: Formally checking large data sets in the
railways. CoRR abs/1210.6815 (2012)

14. Mentré, D., Marché, C., Filliâtre, J.-C., Asuka, M.: Discharging proof obligations
from atelier B using multiple automated provers. In: Derrick, J., Fitzgerald, J.,
Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S., Riccobene, E. (eds.) ABZ 2012.
LNCS, vol. 7316, pp. 238–251. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-30885-7 17

15. Sabatier, D.: Using formal proof and B method at system level for industrial
projects. In: Lecomte, T., Pinger, R., Romanovsky, A. (eds.) RSSRail 2016.
LNCS, vol. 9707, pp. 20–31. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-33951-1 2

16. Sutcliffe, G.: The tptp problem library and associated infrastructure. J. Autom.
Reasoning 43(4), 337 (2009)

https://doi.org/10.1007/978-3-319-33600-8_10
https://doi.org/10.1007/978-3-319-33600-8_10
https://doi.org/10.1007/978-3-540-68237-0_32
https://doi.org/10.1007/978-3-540-68237-0_32
https://doi.org/10.1007/978-3-642-04570-7_3
https://doi.org/10.1007/978-3-642-30885-7_17
https://doi.org/10.1007/978-3-642-30885-7_17
https://doi.org/10.1007/978-3-319-33951-1_2
https://doi.org/10.1007/978-3-319-33951-1_2

Model Checking

Encoding Floating-Point Numbers Using
the SMT Theory in ESBMC: An Empirical
Evaluation over the SV-COMP Benchmarks

Mikhail Y.R. Gadelha1(B), Lucas C. Cordeiro2, and Denis A. Nicole1

1 Electronics and Computer Science, University of Southampton, Southampton, UK
myrg1g14@soton.ac.uk, dan@ecs.soton.ac.uk

2 Department of Computer Science, University of Oxford, Oxford, UK
lucas.cordeiro@cs.ox.ac.uk

Abstract. This paper describes the support for encoding C/C++ pro-
grams using the SMT theory of floating-point numbers in ESBMC: an
SMT-based context-bounded model checker that provides bit-precise ver-
ification of C and C++ programs. In particular, we exploit the availabil-
ity of two different SMT solvers (MathSAT and Z3) to discharge and
check the verification conditions produced by our encoding using the
benchmarks from the International Competition on Software Verification
(SV-COMP). The experimental results show that our encoding based on
MathSAT is able to outperform not only Z3, but also other existing
approaches that participated in the most recent edition of SV-COMP.

Keywords: Floating-point arithmetic · Satisfiability modulo theories ·
Software verification · Formal methods

1 Introduction

Over the years, computer manufacturers have experimented with different
machine representations for real numbers [1]. The two basic ways to encode
a real number are the fixed-point representation, usually found in embedded
microprocessors and microcontrollers [2], and the floating-point representation,
in particular, the IEEE floating-point standard (IEEE 754-2008), which has been
adopted by many processors [3,4].

Each encoding can represent a range of real numbers depending on the word-
length and how the bits are distributed. A fixed-point representation of a number
consists of an integer component, a fractional component and a bit for the sign,
while the floating-point representation consists of an exponent component, a
mantissa component and a bit for the sign. Numbers represented using a floating-
point encoding have a much higher dynamic range than the fixed-point one
(e.g., a float in C has 24 bits of accuracy, but can have values up to 2127),
while numbers represented using a fixed-point representation can have a greater
precision than floating-point, but less dynamic range [5]. Furthermore, the IEEE
floating-point standard contains definition that have no direct equivalent in a

c© Springer International Publishing AG 2017
S. Cavalheiro and J. Fiadeiro (Eds.): SBMF 2017, LNCS 10623, pp. 91–106, 2017.
https://doi.org/10.1007/978-3-319-70848-5_7

92 M.Y.R. Gadelha et al.

1 int main ()
2 {
3 f loat x ;
4 f loat y = x ;
5 assert (x==y) ;
6 return 0 ;
7 }

Fig. 1. Simple floating-point program with a bug.

fixed-point encoding, e.g., two infinities (+∞ and −∞) and for signalling and
quiet NaNs (Not a Number, used to represent an undefined or unrepresentable
value), denormal numbers, rounding modes, etc.

In this paper, we present ESBMC, a bounded model checker that uses Satis-
fiability Modulo Theories (SMT) solvers to verify single- and multi-threaded
C/C++ code [6,7]. The tool is able to encode the programs using either
fixed-point arithmetics (using bitvectors) or floating-point arithmetic (using the
SMT theory of floating-point numbers [8]). Initially, ESBMC was only able to
encode float, double and long double using a fixed-point encoding (used in
a wide range of applications in the verification of digital filters [9,10] and con-
trollers [11,12]); the lack of a proper floating-point encoding, however, meant
that ESBMC was not able to find an entire class of bugs, such as the one shown
in Fig. 1.

The program shown in Fig. 1 will never fail if verified with a fixed-point
encoding. However, when using a floating-point encoding, x can be NaN and
comparing NaNs, even with themselves, is always false [3]. In this scenario, the
assertion in line 5 does not hold.

Support for verifying programs that rely on floating-point arithmetic is
an important contribution to the software verification community, as it helps
demonstrate the applicability of SMT-based verification to real-world systems.

The main original contributions of this paper are:

– We describe the verification process in ESBMC from the C program to
the SMT formula encoding, including the solvers that support floating-point
arithmetic, special cases when encoding the program, unused operators from
the SMT standard and an illustrative example (Sect. 3).

– We demonstrate that our floating-point encoding based on MathSAT is able
to outperform not only ESBMC with Z3, but also all the other approaches
that participated in the most recent round of SV-COMP [13]. In particular,
ESBMC/MathSAT is able to verify 169 benchmarks in 9977.4 s, while ESBM-
C/Z3 verifies 127 in 44992.7 s. ESBMC was the most efficient verifier for the
floating-point subcategory in SV-COMP 2017, with 308 scores, followed by
Ceagle [14] (298 scores), and CBMC [15] (264 scores) (Sect. 4).

Encoding Floating-Point Numbers Using the SMT Theory in ESBMC 93

2 The Efficient SMT-Based Context-Bounded Model
Checker (ESBMC)

In this section, we present ESBMC, an open source, permissively licensed
(Apache 2), cross platform bounded model checker for C and C++ programs.
ESBMC was developed to perform bounded model checks on both sequential and
concurrent programs using a range of SMT solvers, and has a proven track of
bug finding in real-world applications [6,7,16]. The tool also implements a tech-
nique to prove the correctness of (some) unbounded programs: the k -induction
algorithm; this approach has been applied to a large number of benchmarks and
has produced more correct results than similar competing tools [17]. Figure 2
shows the tool architecture. Rounded white rectangles represent input and out-
put; squared gray rectangles represent the verification steps.

ESBMC has two alternative front-ends to parse the input program and gener-
ate an Abstract Syntax Tree (AST). There is the legacy CBMC-based front-end
that supports both C and C++, and a new clang-based front-end that currently
only supports C. The data types are created in the front-end when parsing the
code, setting variable types to either fixed-point or floating-point for float,
double and long double, depending on the options set by the user. Bitvector
representations of constants are also created by the frontend, according to the
fixed-point or floating-point semantics. The bitvector representation [7] of other
data types (e.g., int, char) were not changed by the work described in this
paper.

Regardless of the chosen front-end, the output is an AST that will be used
by the GOTO converter to generate a GOTO program, which has simplified
control flow and is suitable for bounded unwinding. The next step is the sym-
bolic execution, when the GOTO program is executed (unrolling loops up to the
bound k) and converted to Static Single Assignments (SSA) [18] form. During
the symbolic execution, ESBMC aggressively tries to simplify the program; it
propagates all constants and solves any assertions that can be statically deter-
mined. This is an important step for the verification; ESBMC can fully verify
programs without calling a solver, if the inputs are deterministic.

The SSA expressions are then encoded using the chosen SMT solver; ulti-
mately we are attempting to determine whether a formula, which is the disjunction

Old front-end

C Parser C type-
checker

GOTO
Converter

Symbolic
Execution

Enconding
C and P

SMT
SolverC source

C++
source

C++
Parser

C++ type-
checker

Verification
Successful

Clang front-end

clang AST
ConverterC source

Counter-
example

Fig. 2. ESBMC architecture for floating-point verification.

94 M.Y.R. Gadelha et al.

of all possible errors, can be satisfied. If the SMT formula is shown to be satisfiable,
a counterexample is presented; if the formula is found to be unsatisfiable, there are
no errors up to the unwinding bound k, and this result is presented. ESBMC sup-
ports 5 SMT solvers: Boolector (default) [19], Z3 [20], MathSAT [21], Yices [22]
and CVC4 [23]. In order to support and maintain this number of solvers, an SMT
layer was developed, in such way that the support for new solvers, or new features
like the floating-point support, only requires the implementation of the specific
API calls for each solver.

It is in this layer that most of our contribution is concentrated. We imple-
mented the new floating-point API in the SMT layer and the corresponding func-
tion calls for Z3 and MathSAT. The remaining solvers do not support floating-
point arithmetic so ESBMC aborts the verification if an user tries to use this
functionality with them.

3 Floating-Point SMT Encoding

Here we describe our main contribution, the bit-precise encoding for ANSI-C pro-
grams using the SMT theory of floating-point. The SMT theory of floating-point
covers almost all the operations performed at program level so the conversion is
one-to-one and follows the encoding as described by Cordeiro et al. [7]. Given
that, we focus on the limitations of the SMT theory of floating-point (casts to
boolean types in Sect. 3.1 and the equality operator in Sect. 3.2) and how they
were circumvented. In this section we also show operators from the SMT theory
that are not being used in our implementation in Sect. 3.3 and an illustrative
example of verification using the SMT theory of floating-point in Sect. 3.4; in this
section we show the encoding and the counterexample generated by ESBMC, and
the models generated by the solvers.

The SMT floating-point theory is an addition to the SMT standard, first
proposed in 2010 by Rümmer and Wahl [8]. The current version of the theory
largely follows the IEEE standard 754-2008 [3] and formalises the floating-point
arithmetic, positive and negative infinities and zeroes, NaNs, comparison and
arithmetic operators, and five rounding modes: round nearest with ties choosing
the even value, round nearest with ties choosing away from zero, round towards
positive infinity, round towards negative infinity and round towards zero. There
are, however, some functionalities from the IEEE standard that are not yet
supported by the SMT theory as described by Brain et al. [24].

Encoding programs using the SMT floating-point theory has several advan-
tages over a fixed-point encoding, but the main one is the correct modeling
of ANSI-C/C++ programs that use IEEE floating-point arithmetic. We cre-
ated models for most of the current C11 standard functions [25]; floating-point
exception handling, however, is not yet supported.

Currently, only two SMT solvers support the SMT floating-point theory:
Z3 [20] and MathSAT [21] and ESBMC implements the floating-point encoding
for both. In terms of the support from the solvers, Z3 implements all opera-
tors, while MathSAT implements all but two: fp.rem (remainder operator) and
fp.fma (fused multiply-add).

Encoding Floating-Point Numbers Using the SMT Theory in ESBMC 95

Both solvers offer two (non-standard) functions to convert floating-point
numbers to and from bitvectors: fp as ieeebv and fp from ieeebv, respec-
tively. These functions can be used to circumvent any lack of operators, and
only require the user to write the missing operators.

3.1 Casts to Boolean

The SMT standard defines conversion operations to and from signed and
unsigned bitvectors, reals, integers and other floating-point types, but does not
define a conversion operation for boolean types. ESBMC, however, generates
these operations, as shown by the program in Fig. 3. The program in Fig. 3
forces ESBMC to generate two casts: one from boolean to double in line 5 and
one from double to boolean in line 8. Figure 4a and b present the SMT formula
generated by these lines, respectively. When casting from booleans to floating-
point numbers (Fig. 4a), an ite operator is used, such that the result of the
cast is 1.0 if the boolean is true; otherwise the result is 0.0. When casting from

1 int main () {
2 Bool c ;
3 double b = 0 .0 f ;
4

5 b = c ;
6 assert (b != 0 .0 f) ;
7

8 c = b ;
9 assert (c != 0) ;

10 }

Fig. 3. Program to demonstrate the casts to and from boolean generated by ESBMC.

(assert (= (ite |main::c|
(fp #b0 #b01111111111 #x0000000000000)
(fp #b0 #b00000000000 #x0000000000000))

|main::b|))

(a) SMT generated when casting from boolean to floating-point.

(assert (= (not (fp.eq |main::b|
(fp #b0 #b00000000000 #x0000000000000)))

|main::c|))

(b) SMT generated when casting from floating-point to boolean.

Fig. 4. SMT formula generated by ESBMC to encode the casts to and from boolean
types in Fig. 3.

96 M.Y.R. Gadelha et al.

floating-point numbers to booleans (Fig. 4b), we encode as a conditional assign-
ment: the result of the cast is true when the floating is not 0.0; otherwise the
result is false.

3.2 The fp.eq operator

Figure 4b also shows the second special cases when encoding ANSI-C programs.
When encoding the program, both assignments and comparison operations are
encoded using equalities. This must be changed, however, as the SMT standard
defines a custom operator for floating-point equalities, fp.eq operator:

:note
"(fp.eq x y) evaluates to true if x evaluates to -zero and y to
+zero, or vice versa. fp.eq and all the other comparison operators
evaluate to false if one of their arguments is NaN."

In this case, the operator is defined to handle the special symbols from the
IEEE floating-point standard, in particular, NaNs. It would not be correct to
use the ordinary operator equality for comparison; it should only be used for
assignments, while fp.eq is used for comparing floating-point numbers.

3.3 Unused Operators from the SMT Standard

When implementing the floating-point encoding, we did not use four operators
defined by the SMT standard: fp.max, fp.min, fp.rem and fp.isSubnormal,
instead we reimplemented them for enhanced perfomance:

1. fp.max: returns the larger of two floating-point numbers; equivalent to the
fmax, fmaxf, fmaxl functions. Our model of the functions is shown in Fig. 5.

2. fp.min: returns the smaller of two floating-point numbers; equivalent to the
fmin, fminf, fminl functions. Our model of the functions is shown in Fig. 6.

3. fp.rem: returns the floating-point remainder of the division operation x/y;
equivalent to the fmod, fmodf, fmodl functions. Our model of the functions
is shown in Fig. 7.

1 double fmax (double x , double y) {
2 // I f both argument are NaN, NaN i s returned
3 i f (i snan (x) && isnan (y)) return NAN;
4

5 // I f one arg i s NaN, the other i s returned
6 i f (i snan (x)) return y ;
7 i f (i snan (y)) return x ;
8

9 return (x > y ? x : y) ;
10 }

Fig. 5. Model for fmax.

Encoding Floating-Point Numbers Using the SMT Theory in ESBMC 97

1 double fmin (double x , double y) {
2 // I f both argument are NaN, NaN i s returned
3 i f (i snan (x) && isnan (y)) return NAN;
4

5 // I f one arg i s NaN, the other i s returned
6 i f (i snan (x) | | i snan (y)) {
7 i f (i snan (x))
8 return y ;
9 return x ;

10 }
11

12 return (x < y ? x : y) ;
13 }

Fig. 6. Model for fmin.

1 double fmod (double x , double y) {
2 // I f e i t h e r argument i s NaN, NaN i s returned
3 i f (i snan (x) | | i snan (y)) return NAN;
4

5 // I f x i s +i n f /− i n f and y i s not NaN, NaN i s returned
6 i f (i s i n f (x)) return NAN;
7

8 // I f y i s +0.0/−0.0 and x i s not NaN, NaN i s returned
9 i f (y == 0 . 0) return NAN;

10

11 // I f x i s +0.0/−0.0 and y i s not zero , r e tu rn s +0.0/−0.0
12 i f ((x == 0 . 0) && (y != 0 . 0))
13 return s i g n b i t (x) ? −0.0 : +0.0 ;
14

15 // I f y i s +i n f /− i n f and x i s f i n i t e , x i s returned .
16 i f (i s i n f (y) && i s f i n i t e (x)) return x ;
17

18 return x − (y ∗ (int) (x/y)) ;
19 }

Fig. 7. Model for fmod.

4. fp.isSubnormal: checks if a number is subnormal, i.e., a non-zero floating-
point number with magnitude less than the magnitude of that format’s small-
est normal number. A subnormal number does not use the full precision avail-
able to normal numbers of the same format [3]. We could not find any user
case for it when modelling C11 standard functions.

98 M.Y.R. Gadelha et al.

3.4 Illustrative Example

As an illustrative example of the SMT encoding using the floating-point arith-
metic, Fig. 8 shows the full SMT formula generated by ESBMC1 for the program
in Fig. 1, as printed by Z3.

; declaration of x and y
(declare-fun |main::x| () (_ FloatingPoint 8 24))
(declare-fun |main::y| () (_ FloatingPoint 8 24))

; symbol created to represent a nondeteministic number
(declare-fun |nondet_symex::nondet0| () (_ FloatingPoint 8 24))

; Global guard, used for checking properties
(declare-fun |execution_statet::\\guard_exec| () Bool)

; assign the nondeterministic symbol to x
(assert (= |nondet_symex::nondet0| |main::x|))

; assign x to y
(assert (= |main::x| |main::y|))

; assert x == y
(assert (let ((a!1 (not (=> true

(=> |execution_statet::\\guard_exec|
(fp.eq |main::x| |main::y|))))))

(or a!1)))

Fig. 8. SMT formula generated by ESBMC for the program shown in Fig. 1.

The SMT formula contains all the symbol declaration (main::x and
main::y), nondeteministic symbols (nondetsymex::nondet0) and a boolean
variable (execution statet::\\guard exec), that evaluates to true if there
is a property violation in the program. The pervasive occurrence of
FloatingPoint 8 24 derives from the exponent and mantissa lengths of sin-
gle precision floats.

1 ESBMC actually generates a slightly different SMT formula, which includes all the
symbols used for the memory model. The variable names are also more elaborate
as the generated SSA has to reflect different valuations of the variable: the variable
storage in memory, the thread to which the variable is associated, the specific thread
interleaving the variable is related to, and the valuation of the variable at different
points in the program. Each valuation is represented by a symbol (@, !, & and #) and
an index. They were omitted to make the formula easier to read.

Encoding Floating-Point Numbers Using the SMT Theory in ESBMC 99

Both SMT solvers correctly find a failure model for the program; Z3
produces:

sat
(model

(define-fun |main::x| () (_ FloatingPoint 8 24)
(_ NaN 8 24))

(define-fun |main::y| () (_ FloatingPoint 8 24)
(_ NaN 8 24))

(define-fun |nondet_symex::nondet0| () (_ FloatingPoint 8 24)
(_ NaN 8 24))

(define-fun |execution_statet::\\\\guard_exec| () Bool
true)

)

and MathSAT produces:

sat
((|main::x| (_ NaN 8 24))

(|main::y| (_ NaN 8 24))
(|nondet_symex::nondet0| (_ NaN 8 24))
(|execution_statet::\\guard_exec| true))

Counterexample:

State 1 file main3.c line 3 function main thread 0
main
--

main3::main::1::x=-NaN (11111111100000000000000000000001)

State 2 file main3.c line 4 function main thread 0
main
--

main3::main::2::y=-NaN (11111111100000000000000000000001)

State 3 file main3.c line 5 function main thread 0
main
--
Violated property:

file main3.c line 5 function main
assertion
(_Bool)(x == y)

VERIFICATION FAILED

Fig. 9. Counterexample generated by ESBMC when verifying the program in Fig. 1.

100 M.Y.R. Gadelha et al.

This is the expected result from the verification of the program in Fig. 1; the
program violates the assertion if x (and consequently y) is NaN. This happens
because x is left uninitialized.

The model generated by both solvers is converted back to SSA by ESBMC,
that prints the assignments that lead to a property violation2. Figure 9 shows
the counterexample presented by ESBMC when verifying the program in Fig. 1,
using the floating-point arithmetic to encode the program. This is the coun-
terexample generated when verifying the program with MathSAT; the coun-
terexample generated by Z3 presents a positive NaN, but it is otherwise the same
(both solvers are correct and either a positive or a negative NaN will lead to a
property violation in the program). ESBMC also presents the IEEE bitvector
representation of the values assigned to the variables, whenever possible.

4 Experimental Evaluation

This section is split into three parts. The description of benchmarks and setup
is described in Sect. 4.1, while Sect. 4.2 describes the experimental objectives.
In Sect. 4.3, we evaluate our encoding using two state-of-the-art SMT solvers
(MathSAT and Z3) and compare our best approach to other verifiers that sup-
port floating-point arithmetic in Sect. 4.4.

4.1 Description of Benchmarks and Setup

We evaluate our approach using a set of verification tasks in the ReachSafety-
Floats sub-category of SV-COMP, which contains programs using floating-point
arithmetic [13]. As defined by the competition rules, we assume a 32-bit archi-
tecture and, for all benchmarks, we check the following property as specified by
the SV-COMP rules:

CHECK(init(main()), LTL(G, !call(__VERIFIER_error())))

which means that from the main() function, we check the reachability of the
function VERIFIER error() through any possible program execution. If there
is a path from the program start to VERIFIER error(), the program contains
a bug.

All experiments were conducted on a computer with an Intel Core i7-2600
running at 3.40 GHz and 24 GB of RAM under Fedora 25 64-bit. For each
benchmark, we set time and memory limits of 900 s (15 min) and 16 GB respec-
tively. We provide a package with the latest version of ESBMC, all the bench-
marks and the scripts to run the experiments at http://esbmc.org/benchmarks/
pack-sbmf2017.tar.gz.

2 In comparison, no model is generated by the solver when verified using the fixed-
point arithmetic.

http://esbmc.org/benchmarks/pack-sbmf2017.tar.gz
http://esbmc.org/benchmarks/pack-sbmf2017.tar.gz

Encoding Floating-Point Numbers Using the SMT Theory in ESBMC 101

4.2 Objectives

Using the SV-COMP floating-point benchmarks given in Sect. 4.1, our experi-
mental evaluation aims to answer two research questions:

RQ1 (performance) does our encoding generate verifications conditions that
can be checked by state-of-the-art SMT solvers in a reasonable amount of
time?

RQ2 (sanity) are the verification results sound and can their reproducibility
be confirmed outside of our verifier?

4.3 Solver Performance Comparisons

Table 1 compares the results of ESBMC using both solvers on 172 benchmarks
from SV-COMP’17, using a fixed unwind approach. Here, Correct true is the
number of correct positive results (i.e., the tool reports SAFE correctly), Correct
false is the number of correct negative results (i.e., the tool reports UNSAFE
correctly), Timeout represents the number of time-outs (i.e., the tool was aborted
after 900 s) and Total time is the total verification time, in seconds. Bold numbers
represent better results. There is no case where ESBMC reports an incorrect
result or exhausts the memory, so we are omitting them from the table.

When verifying the programs, ESBMC is able to statically verify 76 out of
the 172 benchmarks (44.18%). This is due to the fact that the these programs are
deterministic and, as described in Sect. 2, ESBMC is able to verify the program
without calling a solver.

For the programs that ESBMC requires a solver for the verification, the
verification time for both solvers is considerably longer when arrays are
present, in comparison to array-free programs. Given the set of benchmarks,
ESBMC/MathSAT is able to solve all but three (within the time limit), while
ESBMC/Z3 times-out for most array programs with an increased verification
time for the others.

ESBMC/Z3 also fails to verify the same 3 benchmarks as ESBMC/MathSAT.
The 3 programs3 were created by Delmas et al. [26] and try to calculate a sine

Table 1. Comparative results of ESBMC using MathSAT v5.3.14 and Z3 v4.5.0.

ESBMC (MathSAT v5.3.14) ESBMC (Z3 v4.5.0)

Correct true 139 111
Correct false 30 16
Timeout 3 45
Total time (s) 9977.40 44992.76

3 sin interpolated index true-unreach-call.c,
sin interpolated bigrange loose true-unreach-call.c

and sin interpolated bigrange tight true-unreach-call.c.

102 M.Y.R. Gadelha et al.

over a range of nondeteministic values, using an interpolation table. These pro-
grams assume a range of nondeterministic input and contains arrays, requiring
a great deal of time to find the solution.

We provide a table that includes the number of variables, the num-
ber of clauses as well as the number of conflicts on the package pre-
viously mentioned in Sect. 4.1. However, we are unable to draw conclu-
sions based on the provided numbers since we do not identify any pattern.
For instance, one of the benchmarks that cannot be solved by MathSAT,
sin interpolated bigrange tight true-unreach-call.c generates 545667
variables and 2240257 clauses, while 794852 variables and 3263282 clauses are
generated when verifying sin interpolated negation true-unreach-call.c
and the latter can be verified in 61.3 s.

We can, however, compare these numbers, generated by both solvers. It is
clear that MathSAT is more aggressively simplifying the program before bit-
blasting. The total numbers are: Z3 generates 1.4×1010 variables and 1.4×1010

clauses in 44992.76 s (12.5 h), while MathSAT generated 1.21 × 107 variables
4.73 × 107 clauses in 9977.40 s (2.8 h). In terms of total numbers of conflicts,
MathSAT generates 1.7 × more conflicts than Z3. However, Z3 was not able
to finish the verification of 26.1% of the benchmarks, so this number is at best
an approximation of the real value (this is not true for the number of vari-
ables and clauses, since they do not change during the execution of the DPLL
algorithm [27]).

4.4 Comparison to Other Software Verifiers

ESBMC with MathSAT greatly outperforms Z3 when verifying the competition’s
benchmarks and was the solver we used for the competition. Figure 10 shows the
results of all verifiers on the ReachSafety-Floats sub-category of SV-COMP’17.

Figure 10 relates each tool score (y-axis) to the time spent during verification,
in seconds (x-axis). Note that verifiers which actually give incorrect results can
accumulate negative scores [13]. Using the fixed unwind approach, ESBMC was
able to verify all but the 3 benchmarks previously mentioned, with a final score
of 308 out of 316, in 5200 s, followed by Ceagle [14], with final score of 298 int
15000 s, and CBMC [15], with a final score of 264 in 3000 s. ESBMC also com-
peted with other approaches in the competition, ESBMC-falsi, an incremental
approach focused on finding bugs, ESBMC-incr, an incremental approach that
provides a successful answer when it unrolled all loops, and ESBMC-kind, that
tries to find bugs and prove correctness using induction [17]; these 3 approaches
use Z3 as it performs better in other categories. The results from SV-COMP’17
are on par with the results presented in Sect. 4.3, where MathSAT outperforms
Z3 when verifying programs with floating-point arithmetic.

These results allow us to answer both the research questions proposed in
Sect. 4.2. The first inquires after the performance of our solver. Under the limits
imposed by SV-COMP’17 (15 min and 16 GB of RAM), ESBMC with Math-
SAT or Z3 is able to verify 98.2% and 73.8% of the benchmarks, respectively.

Encoding Floating-Point Numbers Using the SMT Theory in ESBMC 103

2LS; 248
CBMC; 264

Ceagle; 298

CPA-BAM-BnB; -56

CPA-kInd; 107

CPA-Seq; 129

DepthK; 100

ESBMC; 308

ESBMC-falsi; 18

ESBMC-Incr; 194

ESBMC-kind; 173 SMACK; 153

Symbio c; 86
Uautomizer; 109

Ukojak; 62

Utaipan; 109

-100

-50

0

50

100

150

200

250

300

350

-2000 0 2000 4000 6000 8000 10000 12000 14000 16000

Sc
or

e

Time (s)

Fig. 10. Tool score versus time spent during verification over the ReachSafety-Floats
sub-category of SV-COMP’17.

The verification time is almost half of the presented in our results, due to the
fact that SV-COMP has faster processors [13].

The second research question enquiries about the soundness and reproducibil-
ity of the results. The benchmarks from SV-COMP are thoroughly tested by all
the verifiers, months before the actual competition, to ensure that all the verdicts
are correct. ESBMC was able to encode all benchmarks and no wrong result was
provided by our tool. However, SV-COMP still lacks the ability to automatically
reproduce the counterexamples produced by verifiers in the ReachSafety-Floats
sub-category, mainly because of the availability of witness checkers; these cur-
rently do not handle floating-point arithmetic [13].

5 Related Work

SMT solvers are an improving technology, being able to reason about ever grow-
ing formulas. These constant improvements feed the creation of a number of
SMT-based software verification tools to the extent that they are already being
applied in industry (e.g., Static Driver Verifier [28]). Here, we present other tools
that bridge the gap between a C/C++ program and the SMT solver.

Wang et al. [14] describe Ceagle, an automated verification tool for C pro-
grams. The tool applies 4 different approaches when verifying a program: (1) a
bounded model checker with a fixed unwind approach that uses SMT to check for
satisfiability; (2) a predicate lazy abstraction engine which verifies the program
with a predicate-based abstract model and uses CEGAR to refine spurious coun-
terexamples; (3) a structural abstraction engine which tries to reason about the
program behaviour based on the program structure; and (4) an execution engine,

104 M.Y.R. Gadelha et al.

which is executed when all parameters are deterministic. The tool competed in
SV-COMP’17 and was ranked 2nd, if we consider only the ReachSafety-Floats
sub-category. Ceagle was the only tool that was able to verify the 3 programs
that ESBMC/MathSAT could not handle under the 15 min constraint; it was
able to verify each one of them in less than 10 s.

Clarke et al. [15] describe CBMC, a C/C++ SAT/SMT bounded model
checker. ESBMC originated as a fork of this tool with an improved SMT backend
and support for the verification of concurrent programs using an explicit inter-
leaving approach. CBMC uses SAT solvers as their main engine, but offers sup-
port for the generation of an SMT formula for an external SMT solver. ESBMC
supports SMT solvers directly, through their APIs, along with the option to out-
put SMT formulae. CBMC also competed in SV-COMP’17 with a fixed unwind
approach, and was ranked 3rd in the ReachSafety-Floats sub-category.

Brain et al. [29] describe 2LS, C/C++ SAT/SMT bounded model checker.
2LS is a tool developed using the CPROVER framework [15] and aims to combine
a k -induction algorithm with abstract interpretation. As CBMC, 2LS uses SAT
solvers but instead of a fixed unwind approach, 2LS uses an incremental bounded
model checking approach, where it first checks for property violations for a given
bound, then tries to generate (and refine) invariants using abstract interpretation
and then builds a proof using the k -induction algorithm. 2LS competed in SV-
COMP’17 and was ranked 4th in the ReachSafety-Floats sub-category.

Compared to these tools, ESBMC is able to verify a program either using a
fixed unwind approach (as Ceagle and CBMC) or an incremental BMC (as 2LS).
Similar to Ceagle, ESBMC directly uses the solver API to encode the SMT
formula, but ESBMC supports more SMT solvers than Ceagle (in particular,
Ceagle only supports Z3).

Regarding the SMT solvers, after MathSAT and Z3, we expect the SMT
solver CVC4 to support the floating-point theory shortly, as the code appears to
be ready and waiting to be merged on its public repository. XSAT [30] is another
solver that claims to be a “fast floating-point satisfiability solver”: up to 700x
faster than MathSAT and Z3 on the benchmarks from the International SMT
competition. We were, however, unable to find the solver online to experiment
with it.

6 Conclusions and Future Work

This paper presents a BMC approach to encoding C programs using SMT
floating-point theory, evaluates the encoding using the SMT solvers that sup-
port this theory, and compares our approach with other existing floating-point
verification tools.

The encoding was implemented in ESBMC, an SMT-based bounded model
checker for C and C++ programs. ESBMC supports most of the current C11
standard functions and part of the floating-point environment behaviour; we cur-
rently support changing rounding modes, but floating-point exception handling
is not yet supported.

Encoding Floating-Point Numbers Using the SMT Theory in ESBMC 105

We evaluated the results using two state-of-art SMT solvers, MathSAT and
Z3, over a set of public benchmarks from the International Competition on Soft-
ware Verification (SV-COMP) and the results show that, when using MathSAT,
ESBMC is not only able to produce better results than Z3, but it is also able to
produce better results than all other verifiers in SV-COMP.

For future work, we intend to create our own floating-point backend, so we
are able to encode all the floating-point operations defined by the standard using
bitvectors; this will allow us to use all available SMT solvers that support QF BV
when verifying programs with floating-point numbers.

Regarding the benchmarks, although we have reported a favourable assess-
ment of ESBMC over a diverse set of floating-point benchmarks, this set of
benchmarks is still of limited scope and ESBMC’s performance needs to be
assessed on a larger benchmark set in future.

References

1. Gerrity, G.W.: Computer representation of real numbers. IEEE Trans. Comput.
C–31(8), 709–714 (1982)

2. Frantz, G., Simar, R.: Comparing fixed- and floating-point DSPs. SPRY061, Texas
Instruments (2004)

3. IEEE: IEEE standard for floating-point arithmetic. Technical report, August 2008
4. Goldberg, D.: What every computer scientist should know about floating point

arithmetic. ACM Comput. Surv. 23(1), 5–48 (1991)
5. Nikolić, Z., Nguyen, H.T., Frantz, G.: Design and implementation of numerical lin-

ear algebra algorithms on fixed point DSPs. EURASIP J. Adv. Sig. Proc. 2007(1)
(2007)

6. Cordeiro, L.C., Fischer, B.: Verifying multi-threaded software using SMT-based
context-bounded model checking. In: ICSE, pp. 331–340 (2011)

7. Cordeiro, L.C., Fischer, B., Marques-Silva, J.: SMT-based bounded model checking
for embedded ANSI-C software. IEEE Trans. Softw. Eng. 38(4), 957–974 (2012)

8. Rümmer, P., Wahl, T.: An SMT-lib theory of binary floating-point arithmetic. In:
SMT Workshop (2010)

9. Ismail, H.I., Bessa, I.V., Cordeiro, L.C., Lima Filho, E.B., Chaves Filho, J.E.:
DSVerifier: a bounded model checking tool for digital systems. In: Fischer, B.,
Geldenhuys, J. (eds.) SPIN 2015. LNCS, vol. 9232, pp. 126–131. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-23404-5 9

10. Abreu, R.B., Gadelha, M.Y.R., Cordeiro, L.C., Filho, E.B.D.L., de Silva Jr., W.S.:
Bounded model checking for fixed-point digital filters. J. Braz. Comput. Soc. 22(1),
1:1–1:20 (2016)

11. Bessa, I., Ismail, H., Cordeiro, L.C., Filho, J.E.C.: Verification of fixed-point digital
controllers using direct and delta forms realizations. Des. Autom. Embed. Syst.
20(2), 95–126 (2016)

12. Bessa, I., Ismail, H., Palhares, R., Cordeiro, L.C., Filho, J.E.C.: Formal non-fragile
stability verification of digital control systems with uncertainty. IEEE Trans. Com-
put. 66(3), 545–552 (2017)

13. Beyer, D.: Software verification with validation of results. In: Legay, A., Margaria,
T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 331–349. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54580-5 20

https://doi.org/10.1007/978-3-319-23404-5_9
https://doi.org/10.1007/978-3-662-54580-5_20

106 M.Y.R. Gadelha et al.

14. Wang, D., Zhang, C., Chen, G., Gu, M., Sun, J.G.: C code verification based on the
extended labeled transition system model. In: D&P@MoDELS, pp. 48–55 (2016)

15. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 15

16. Ramalho, M., Freitas, M., Sousa, F., Marques, H., Cordeiro, L.C., Fischer, B.:
SMT-based bounded model checking of C++ programs. In: ECBS, pp. 147–156
(2013)

17. Gadelha, M.Y.R., Ismail, H.I., Cordeiro, L.C.: Handling loops in bounded model
checking of C programs via k-induction. STTT 19(1), 97–114 (2017)

18. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: An efficient
method of computing static single assignment form. In: POPL, pp. 25–35 (1989)

19. Brummayer, R., Biere, A.: Boolector: an efficient SMT solver for bit-vectors
and arrays. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS,
vol. 5505, pp. 174–177. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-00768-2 16

20. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

21. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
93–107. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 7

22. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS,
vol. 8559, pp. 737–744. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-08867-9 49

23. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22110-1 14

24. Brain, M., Tinelli, C., Ruemmer, P., Wahl, T.: An automatable formal semantics
for IEEE-754 floating-point arithmetic. In: ARITH, pp. 160–167 (2015)

25. Smith, R.: Working Draft, Standard for Programming Language C++ (2016).
Accessed Jan 2017

26. Delmas, D., Goubault, E., Putot, S., Souyris, J., Tekkal, K., Védrine, F.: Towards
an industrial use of FLUCTUAT on safety-critical avionics software. In: Alpuente,
M., Cook, B., Joubert, C. (eds.) FMICS 2009. LNCS, vol. 5825, pp. 53–69. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04570-7 6

27. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Commun. ACM 5(7), 394–397 (1962)

28. Ball, T., Bounimova, E., Levin, V., Kumar, R., Lichtenberg, J.: The static driver
verifier research platform. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 119–122. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14295-6 11

29. Brain, M., Joshi, S., Kroening, D., Schrammel, P.: Safety verification and refuta-
tion by k -invariants and k -induction. In: Blazy, S., Jensen, T. (eds.) SAS 2015.
LNCS, vol. 9291, pp. 145–161. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48288-9 9

30. Fu, Z., Su, Z.: XSat: a fast floating-point satisfiability solver. In: Chaudhuri, S.,
Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 187–209. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-41540-6 11

https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-642-00768-2_16
https://doi.org/10.1007/978-3-642-00768-2_16
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-04570-7_6
https://doi.org/10.1007/978-3-642-14295-6_11
https://doi.org/10.1007/978-3-642-14295-6_11
https://doi.org/10.1007/978-3-662-48288-9_9
https://doi.org/10.1007/978-3-662-48288-9_9
https://doi.org/10.1007/978-3-319-41540-6_11

Local Analysis of Determinism for CSP

Rodrigo Otoni1(B), Ana Cavalcanti2, and Augusto Sampaio1

1 Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil
{rbo2,acas}@cin.ufpe.br

2 Department of Computer Science, University of York, York, UK
ana.cavalcanti@york.ac.uk

Abstract. Nondeterminism is an inevitable constituent of any theory
that describes concurrency. For the validation and verification of con-
current systems, it is essential to investigate the presence or absence
of nondeterminism, just as much as deadlock or livelock. CSP is a well
established process algebra; the main tool for practical use of CSP, the
model checker FDR, checks determinism using a global analysis. We pro-
pose a local analysis, in order to improve performance and scalability.
Our strategy is to use a compositional approach where we start from
basic deterministic processes and check whether any of the composition
operators introduce nondeterminism. We present the algorithms used in
our strategy and experiments that show the efficiency of our approach.

Keywords: Model checking · FDR · Performance · Experiments

1 Introduction

Deadlock, livelock, and nondeterminism analyses are crucial in the specification
and design of concurrent systems. Nondeterminism is expected in abstract mod-
els, but may indicate problems in concrete designs. Verification techniques to
investigate the presence or absence of all these properties in a model are essen-
tial for validation and verification of concurrent systems.

Deadlock and livelock have been investigated in depth, and there are very
efficient tools available [1–5,8]. Determinism has been less studied. It is, how-
ever, specially important in notations for refinement, where nondeterminism is
used for abstraction. It is an inevitable constituent of any theory that describes
concurrency where some form of arbitration is present [9].

CSP is a well established process algebra that is accompanied by a set of
robust tools that allow its practical use both in academia and in industry. In
particular, CSP is capable of modelling both explicit and implicit nondetermin-
ism, such as the ones that can be introduced by parallelism, internal communi-
cations, or renaming. Its versatility in modelling nondeterminism together with
its tool support makes CSP ideal for the analysis of determinism.

FDR [5] is the main tool for practical use of CSP; it is a model checker
that takes as input specifications in CSPM , a machine readable version of CSP.
Other tools for CSP (or CSP dialects) like ProB [7] and PAT [11] also implement
c© Springer International Publishing AG 2017
S. Cavalheiro and J. Fiadeiro (Eds.): SBMF 2017, LNCS 10623, pp. 107–124, 2017.
https://doi.org/10.1007/978-3-319-70848-5_8

108 R. Otoni et al.

analysis strategies for these classical properties. The approach taken by all these
tools for checking determinism is, however, based on global analysis, where the
entire model is expanded and exhaustively checked. Here, we propose a local
analysis strategy for determinism, to improve performance and scalability.

Local analysis has been adopted in verification of deadlock [1–3] and livelock
[4]. Here, we present a local strategy for the verification of determinism in models
written using a subset of CSP that includes most of its basic operators, with some
restrictions on how they can be used in compositions. As far as we know, this
is the first approach to local analysis of determinism, not only in the context of
CSP, but also of any other formal or semi-formal modelling notation (such as
UML), as well as concurrent programming languages.

Next we present CSP and how it defines determinism. In Sect. 3 we present
our strategy. Our experiments and their results are discussed in Sect. 4. Finally
we present our final remarks and future work in Sect. 5.

2 Background

We present here the background material to our work: CSP in Sect. 2.1 and its
notion of determinism in Sect. 2.2.

2.1 CSP

CSP is a process algebra that can be used to describe systems as interacting
components. These components, called processes, are independent entities that
interact among themselves and with the environment. The interactions, called
events, are atomic, instantaneous, and synchronous messages. The main CSP
constructs are presented below; further information can be found in [6,9].

CSP has two basic processes, SKIP and STOP ; the former does nothing
and terminates, and the latter deadlocks. A prefixing a → P is initially capable
of performing the event a and then behaves like the process P . Events can be
compound to communicate data. For instance, c.5 is the event that represents
the transmission of the value 5 through the channel c.

Guards and conditionals are used in processes g &P and if b then P else Q .
The former behaves as P if g is true, and as STOP otherwise. The latter behaves
as P if b is true, and as Q otherwise. Sequential composition is written as P ;Q ,
which behaves as P , until it finishes, and then behaves as Q .

The process P � Q is the external choice between P and Q , resolved in
favour of either of them when the environment agrees on their initials, the sets
of events that they initially offers. In the internal choice, P � Q , the environment
has no control over how the choice is resolved, which is nondeterministic. To make
events internal to the process P we can write P \ X , which hides the events in
the set X from the environment.

To model parallelism in CSP we have various options. The process P ||| Q is
the interleaving of P and Q ; in this composition P and Q behave independently.
Another composition is the generalised parallelism, P [[X]]Q , in which P and Q

Local Analysis of Determinism for CSP 109

synchronise on the events in the set X , but allow the events outside of X to
occur independently; if X is the empty set, the operator behaves as interleaving.

As an example, we present a specification of a railway network from [10]. It
is composed by a series of segments of tracks, with a signal between every two
adjacent segments used to control the flow of trains. The segments are organised
in overlapping pairs, as shown in Fig. 1(a), with segment pairs P1, P2 and P3.
In its initial state the railway can have a number of trains in specific segments.
A safety requirement is that no two trains should be in adjacent segments.

Fig. 1. Three overlapping pairs of segments (a), and signals of a pair of segments (b);
modified from [10].

Each pair of segments has three signals: e, which indicates a train entering
the pair; f , which indicates the train moving from the first to the second segment;
and g , which indicates the train leaving the pair. A pair of segments is modelled
as a process that can communicate three events, signal .e, signal .f , and signal .g ,
corresponding to the signals e, f , and g . A graphical representation of a pair
of segments can be seen in Fig. 1(b). To deal with all possible initial states of
a pair, three processes are defined. Pair Empty specifies a pair that is initially
empty, Pair First , a pair in which a train is initially in its first segment, and
Pair Second , a pair in which a train is initially in its second segment.

Pair Empty = signal .e → signal .f → signal .g → Pair Empty
Pair First = signal .f → signal .g → signal .e → Pair First
Pair Second = signal .g → signal .e → signal .f → Pair Second

To model a network we compose a number of instances of pairs of segments
in parallel, with each instance having its own signals defined according to its
position in the network. In Fig. 2 we present an example of a cyclic network
that has four pairs and four segments, with the last and the first segments being
adjacent to each other. Figure 2(a) gives an overview of the complete network,
in which there is initially a single train in the segment demarcated by signal.0
and signal.1. Figure 2(b) shows the four segment pairs (from Pair0 to Pair3).

The CSP processes that describe the four segment pairs are presented in
Fig. 3. Note that these processes define the initial state of each segment pair.
Therefore, although the Pair0 segment pair is formed of the two segments demar-
cated by signal .0 and signal .1, and signal .1 and signal .2, the process is written
as Pair0 = signal .1 → signal .2 → signal .0 → Pair0, because the train is in

110 R. Otoni et al.

Fig. 2. Graphical representation of a network (a), and its pairs (b).

the first segment of this pair, and the next relevant event it must communicate
is signal .1, indicating the train moving from the first to the second segment of
Pair0. So Pair0 follows the form of Pair First , previously explained. Similarly,
Pair1 and Pair2 are modelled as Pair Empty , since the train is not in any of
their segments. Finally, Pair3 is modelled as Pair Second , as the train is in
the second segment of this pair. The composition of the pairs is made using the
generalised parallel operator, since the signals of a pair need to synchronise with
the signals of its adjacent pairs.

Pair0 = signal .1 → signal .2 → signal .0 → Pair0
Pair1 = signal .1 → signal .2 → signal .3 → Pair1
Pair2 = signal .2 → signal .3 → signal .0 → Pair2
Pair3 = signal .1 → signal .3 → signal .0 → Pair3
SyncSet1 = {signal .1, signal .2}
SyncSet2 = {signal .0, signal .2, signal .3}
SyncSet3 = {signal .0, signal .1, signal .3}
RailwayNetwork = ((Pair0[[SyncSet1]]Pair1)[[SyncSet2]]Pair2)[[SyncSet3]]Pair3

Fig. 3. CSP model of the network in Fig. 2

The process RailwayNetwork can initially communicate signal .1, and after-
wards signal .2, signal .3, signal .0, signal .1, signal .2 and so on. Each pair syn-
chronises its first two signals with the pair on its left and its last two signals
with the pair on its right, so when the network communicates signal .1, it means
that a train is, simultaneously: moving from segment 1 to segment 2 of Pair0,
entering segment 1 of Pair 1, and leaving Pair3.

Local Analysis of Determinism for CSP 111

2.2 Semantic Models and Determinism

A deterministic system can be thought of as one that always produces the
same output, given a fixed input. CSP has different definitions for this property,
depending on the semantic model being used. There are three well established
semantic models for CSP: traces, failures, and failures-divergences.

In the traces model, a process P is represented by traces(P), which is the
set that contains all sequences of events that P can engage. This model does not
allow us to determine if the process is deterministic or not.

In the failures model, a process P is represented by the pair (traces(P),
failures(P)), with failures(P) being a set of pairs (s,X), where s is a trace
of P and X is a set of events that P can refuse after performing s. This model
captures not only how a process can behave, but also how it cannot behave. The
definition of determinism in the failures model is presented below.

Definition 1 (Determinism in the failures model). Process P is determin-
istic if, ∀ tr : traces(P), a : Σ • ¬(tr 〈̂a〉 ∈ traces(P) ∧ (tr , {a}) ∈ failures(P))

This definition captures the essence of determinism: a process cannot have the
possibility of both accepting and refusing an event at any given state, which can
lead to different observable behaviours given the same input.

Example 1. The process Ex1a = Pair1 � Pair2 is deterministic, since Pair1
and Pair2 are deterministic and the intersection of their initials is empty. With-
out initial events in common, the environment has a clear choice between Pair1
and Pair2, which, with their traces and failures, do not violate Definition 1.

The process Ex1b = Pair1 � Pair3, on the other hand, is nondeterministic,
because signal .1 is in the initials of both Pair1 and Pair3, so, by perform-
ing signal .1, the environment has no control over how the external choice is
resolved, allowing Ex1b to both accept or refuse signal .2 afterwards, depending
on whether Pair1 or Pair3 is chosen; the trace 〈signal .1, signal .2〉 and the failure
(〈signal .1〉,{signal .2}), for instance, break the condition of Definition 1. �

Example 2. The composition in Ex2 = Pair1 ||| Pair2 is nondeterminitic
because we have an event, signal .3, after which Pair1 and Pair2 behave differ-
ently. In terms of Definition 1, we note that 〈signal .1, signal .2, signal .3, signal .1〉
is a trace of Ex2 and (〈signal .1, signal .2, signal .3〉,{signal .1}) is a failure
of Ex2. �

Nondeterminism can also arise from divergence, that is captured by the failures-
divergences model [6,9]. Since there are tools that verify divergence in a compo-
sitional way [4], our strategy is based on determinism in the failures model.

3 Strategy for Local Analysis of Determinism

Our analysis of a process is compositional. If the possibility of nondeterminism
is found, the analysis stops and indicates the nondeterministic component.

112 R. Otoni et al.

Our strategy is sound for the verification of determinism, but not complete.
When nondeterminism is indicated, we may have found a source of nondeter-
minism or it may be an inconclusive result. Local approaches to the analysis
of classical concurrency properties tend to give up completeness in favour of
efficiency gains; see [1–3], for deadlock analysis, and [4], for livelock analysis.

Example 3. We consider the following processes.

Ex3a = a → b → Ex3a Ex3c = Ex3a � Ex3b
Ex3b = c → d → SKIP Ex3d = Ex3a[[{a}]]Ex3c

The process Ex3c is nondeterministic, due to its internal choice. The process
Ex3d , on the other hand, is deterministic. When analysing Ex3d , however, our
strategy indicates the nondeterminism in Ex3c and stops. �

In Sect. 3.1 we present the subset of CSP that our strategy can currently handle,
and the metadata gathered for the component processes. In Sect. 3.2, the rules
to check for determinism are presented.

3.1 Process Structure and Metadata

In our strategy we deal with two categories of processes, Basic Processes and
Composite Processes, defined in Fig. 4. Event, Condition, ProcessName, and
SetOfEvents are the syntactic categories of the possible events, logical conditions,
names of processes, and sets of events of CSP. We assume that all processes are
divergence free and do not have parameters.

Due to the nature of the set of operators that can be used to create Basic
Processes, they are deterministic by definition. A Composite Process is the result
of a composition of Basic Processes or other Composite Processes.

Fig. 4. BNF of the subset of CSP considered.

The subset of CSP that we deal with, as can be seen in Fig. 4, includes
most of the basic operators of CSP. They are, however, restricted on their use.

Local Analysis of Determinism for CSP 113

Prefixing, guards, conditionals, and sequential composition can only be used in
the definition of Basic Processes, while external and internal choice, interleaving,
generalized parallel, and hiding are restricted to Composite Processes.

Each process in our strategy, upon being verified to be deterministic, is asso-
ciated with a Set of Possible Behaviours (SPB). This is a set of sets of pairs, with
each set of pairs in an SPB representing an alternative behaviour of the process,
and each pair in a set representing a parallel behaviour. The first component of
each pair in the set is a sequence that represents part of the syntactic structure
of the process, and its second component is a set, which stores data relative to
synchronisations among components of the process.

Example 4. The processes Ex3a and Ex3b, from Example 3, have the SPBs:
SPB(Ex3a) = {{(〈a, b,Ex3a〉, ∅)}}, and SPB(Ex3b) = {{(〈c, d , SKIP 〉, ∅)}}.
Each one has one set, because they do not have choices, with one pair, which
holds the structure of the process, since there is no parallelism; the second ele-
ment of the pairs is the empty set, also because we do not have any synchroni-
sations between processes. For the process Ex4 = Ex3a � Ex3b we have that
SPB(Ex4) = {{(〈a, b,Ex3a〉, ∅)}, {(〈c, d , SKIP 〉, ∅)}}, which captures its two
alternative behaviours, that depend on how the choice is resolved. �

Each element of a synchronisation set is itself a pair, with an integer value as
the first component, and a set of events as the second component; the events in
the set are the ones being synchronised. The integer values identify the sets that
match in a synchronisation.

Example 5. We consider the following processes.

Ex5a = a → STOP Ex5c = b → Ex5c
Ex5b = Ex5a[[{a}]]Ex3a Ex5d = Ex5b[[{b}]]Ex5c

With the generalised parallel operator we add the synchronisation set to all
pairs of the SPB of the composition, so, for the process Ex5b, we have that
SPB(Ex5b) = {{(〈a, STOP 〉,{(1,{a})}), (〈a, b,Ex3a〉,{(-1,{a})})}}; the module
of the integer value uniquely identifies the synchronisation and its signal is used
to differentiate between the two argument processes of the parallelism.

If Ex5b is used in a composition with generalised parallel, we add the new
synchronisation set to its pairs. For Ex5d , we have the set shown below.

SPB(Ex5d) =

⎧
⎨

⎩

⎧
⎨

⎩

(〈a, STOP 〉, {(1, {a}), (2, {b})}),
(〈a, b,Ex3a〉, {(−1, {a}), (2, {b})}),
(〈b,Ex5c〉, {(−2, {b})})

⎫
⎬

⎭

⎫
⎬

⎭

When more than one pair has a synchronisation set with the same integer, in
this case 2, only one of those pairs need to synchronise with a counterpart with
the opposite integer, in this case −2. �

Now we present the formal definition of SPB. It is important to record whether
a sequence leads to a recursion or not. To this end, we add the name of the

114 R. Otoni et al.

process that represents the final behaviour of the sequence as its last element.
We call the set that contains these new sequences Valid Sequences (VS). With
VS it is possible to know if a Basic Process, which can only have one sequence,
is cyclic or not just by checking if the last element of its sequence is a process
name (indicating a recursion), or if it is SKIP or STOP .

Definition 2 (Valid Sequences (VS)).

VS = {a : Σ∗, b : N ∪ {SKIP , STOP} • a�〈b〉}
where N is the set that contains all the valid names of processes.

To record a trace of behaviour in a parallel process with synchronisations, we
use Synchronisation Sets, which is the set that contains integers associated with
all possible sets of events on which a process can synchronise.

Definition 3 (Syncronisation Sets (SyncSets)). SyncSets = P(Z × P(Σ))

Finally we define the eTraces (a shorthand for Enhanced Traces) of a given
process P . Its elements are pairs whose first element is a VS sequence and the
second one is a set of SyncSets.

Definition 4 (Enhanced Traces of P (eTraces(P))).

eTraces(P) =

⎧
⎪⎪⎨

⎪⎪⎩

et : VS × SyncSets | front(first(et)) ∈ traces(P) ∧⎛

⎝∃n ∈ N ∪ {SKIP , STOP} •
P/front(first(et)) ≡F n
∧
last(first(et)) = n

⎞

⎠

⎫
⎪⎪⎬

⎪⎪⎭

where P/t represents the behaviour of P after it has performed the trace t, and
≡F indicates equivalence in the failures model [9].

An element of eTraces represents a possible Basic Process. The restrictions in
Definition 4 ensure that each sequence leads the process to a recursive behav-
iour, or to SKIP or STOP . For a process P , the set SPB(P) is a subset of
P(eTraces(P)). The eTraces pairs in a set of an SPB represent Basic Processes
in parallel, and pairs in different sets represent choices.

Now we present how SPB is calculated. For the Basic Processes, we calculate
SPB as shown below; P and Q are processes, and n is a process name.

– SPB(n) = {{(〈n〉, ∅)}}
– SPB(a → P) = {setP : SPB(P) • prefixing � {a} × setP �}
– SPB(g & P) = SPB(P)
– SPB(if g then P else Q) = SPB(P)
– SPB(P ; Q) = {setP : SPB(P) ; setQ : SPB(Q) • seqComp � setP × setQ �}
– prefixing(event , eTrace) = (〈event〉�first(eTrace), ∅)
– seqComp(eTrace1, eTrace2) = if last(first(eTrace1)) = SKIP

then (front(first(eTrace1))�first(eTrace2), ∅)
else eTrace1

Local Analysis of Determinism for CSP 115

For a process call, we create a sequence with the call. For a prefixing, a → P , we
apply prefixing to all pairs formed of the event a and a sequence in a set of the
SPB of P; �... � is the relational image operator. The function prefixing yields
the original sequence with the new event as its head.

We assume that the predicates in guards and conditionals are always true;
in those cases we simply keep the SPB of P . In the conditional, if the processes
P and Q are not equivalent, the strategy returns the possibility of nondeter-
minism. With this approach, we record behaviours for the processes that may
not be actually possible. The addition of behaviours, however, can only lead to
nondeterminism, never remove it. So, as already explained, it is possible that
we indicate a nondeterminism that does not exist, but a process defined to be
deterministic is guaranteed to be so.

For sequential composition we apply seqComp to all pairs of SPB(P) and
SPB(Q), using relational image. This function returns the front of the first
sequence appended with the second sequence, if the first one ends in SKIP ,
or the first sequence unmodified otherwise.

Example 6. The calculation of SPB(Ex3a) is shown below.

SPB(Ex3a) = {{(〈Ex3a〉, ∅)}}
SPB(b → Ex3a) = {{(〈b,Ex3a〉, ∅)}}
SPB(a → b → Ex3a) = {{(〈a, b,Ex3a〉, ∅)}}
SPB(Ex3a) = SPB(a → b → Ex3a)

We differentiate between the process Ex3a and its recursive call. For sequential
composition, SPB(Ex3a ;Ex3b) = SPB(Ex3a), since the sequence of Ex3a ends
in a recursion, and SPB(Ex3b ;Ex3a) = {{(〈c, d , a, b,Ex3a〉, ∅)}}, because the
sequence of Ex3b ends in SKIP . �

We now present the SPB for the Composite Processes; X is a set of events, and
i is a fresh integer, different from zero.

– SPB(P � Q) = SPB(P) ∪ SPB(Q)
– SPB(P � Q) = SPB(P)
– SPB(P ||| Q) = {setP : SPB(P) ; setQ : SPB(Q) • setP ∪ setQ}

– SPB(P [[X]]Q) =

⎧
⎪⎪⎨

⎪⎪⎩

setP : SPB(P) ; setQ : SPB(Q)•
addSync � setP × {X } × {i} �
∪
addSync � setQ × {X } × {−i} �

⎫
⎪⎪⎬

⎪⎪⎭

– SPB(P \ X) = {setP : SPB(P) • remove � setP × {X } �}

– addSync(eTrace,X , id) = (first(eTrace), second(eTrace) ∪ {(id ,X)})
– remove((T ,S),X) = (removeT (T ,X), removeS (S ,X))
– removeT (〈〉,X) = 〈〉

removeT (〈a〉�t ,X) = if a ∈ X then remove(t ,X) else 〈a〉�remove(t ,X)
– removeS (∅,X) = ∅

removeS ({(id , evSet)} ∪ s,X) = {(id , evSet \ X)} ∪ removeS (s,X)

116 R. Otoni et al.

For external choice, we get the union of the sets of the operands. For internal
choice, since the composition is only deterministic if both operands are equiv-
alent, we simply keep the SPB of one of them. For interleaving, for every pair
of sets of SPB(P) and SPB(Q), we record their union. The calculation for a
generalised parallel is similar to that of an interleaving, but we also add the
new synchronisation to the elements of the sets, using the function addSync. For
hiding we remove the elements in X from SPB(P), with the function remove.

Example 7. Considering the processes Ex7a = a → b → c → Ex7a, and
Ex7b = Ex7a[[{b}]]Ex7a, we calculate SPB(Ex7b \ {b}).

SPB(Ex7b) = {{(〈a, b, c,Ex7a〉,{(1,{b})}), (〈a, b, c,Ex7a〉,{(-1,{b})})}}
SPB(Ex7b \ {b}) = {{(〈a, c,Ex7a〉,{(1,{})}), (〈a, c,Ex7a〉,{(-1,{})})}}

�

If a synchronisation introduces deadlock or if a synchronisation channel is hidden,
there is the possibility that our strategy considers invalid behaviours of the
process. This, however, can only introduce nondeterminism, never remove it.

Example 8. We consider the following processes.

Ex8a = b → a → c → d → Ex8a Ex8b = Ex7a[[{a, b}]]Ex8a

The process Ex8b is deterministic, because it is deadlocked from the start. Our
strategy, however, predicts a nondeterministic behaviour when both Ex7a and
Ex8a offer event c to the environment, which never happens. �

Pairs of a set of a SPB are equivalent, ≡, if the front of their sequences are equal,
both either recurse or end in SKIP or STOP , and they have the same mean-
ingful synchronisations with equivalent pairs. A synchronisation is meaningful if
it involves at least one of the events in the sequence of the pair.

Definition 5 (Meaningful Synchronisations). Given a pair (Seq, SetOf
Syncs), a synchronisation set sync ∈ SetOfSyncs is meaningful if sync ∩
ran(Seq) = ∅.

Example 9. We consider the following SPBs.

SPB(Ex9a) = {{(〈a, b, c,P〉,{(1,{r})}), (〈x , y , SKIP 〉,{(-1,{r})})}}
SPB(Ex9b) = {{(〈a, b, c,P〉,{(2,{r})}), (〈x , y , SKIP 〉,{(-2,{r})})}}
SPB(Ex9c) = {{(〈a, b, c,Q〉, ∅), (〈x , y , SKIP 〉, ∅)}}

They are all equivalent, since the only difference between them is their synchro-
nisation sets, with the synchronisations of Ex9a and Ex9b not being meaningful,
as they do not affect the sequences, and Ex9c not having synchronisations. �

In the next section, we present the algorithms that use the SPB of component
processes to check determinism of a composite process.

Local Analysis of Determinism for CSP 117

3.2 Composition Rules

The algorithms that verify if the compositions are deterministic return true if
the given composition is deterministic, and false otherwise. We present here
the algorithms for external choice, and parallelism. The algorithms for internal
choice and hiding can be found in the extended version of this paper1.

External Choice

The external choice, with our restrictions, can only introduce nondeterminism
if its two operands have at least one common initial event, since these are their
only points of interaction. In this scenario the composition is deterministic only
if the two processes have the same behaviour after every common initial event.
The algorithm for this operator can be seen in Fig. 5. It checks for all pairs of sets
of SPB(P) and SPB(Q) if they have sequences that start with the same event.
If they do, those sets need to be equivalent not to introduce nondeterminism.

Fig. 5. Algorithm to check if external choice introduces nondeterminism.

Internal Choice

An internal choice only results in a deterministic process if its operands have
the same behaviour. The algorithm for this operator simply checks if the SPBs
of both operands are equivalent, that is, if the SPBs have equivalent sets.

Parallelism

We deal with parallelism in two forms: interleaving and generalised parallel.
We first discuss how interleaving can introduce nondeterminism. Afterwards,
we present our considerations about generalised parallel. Finally, we show the
algorithm for the verification of parallel compositions.

Differently from external and internal choice, with interleaving, as well as
with the other parallel operators, both operands execute at the same time, so we

1 http://www.cin.ufpe.br/∼rbo2/SBMF2017.zip.

http://www.cin.ufpe.br/~rbo2/SBMF2017.zip

118 R. Otoni et al.

must take into account all of their events, not only the initials. With interleaving,
we need to consider that when one of its operands is offering a specific event to
the environment, the other operand can be offering any of its events.

The condition for a composition using interleaving to be deterministic is that,
after each event in common to both processes, the composition needs to offer the
same events to the environment, no matter which process performs the event, so
the environment does not observe any different behaviour.

Example 10. We consider the following processes.

Ex10a = a → b → Ex10a Ex10d = Ex10a ||| Ex10b
Ex10b = a → Ex10b Ex10e = Ex10b ||| Ex10c
Ex10c = b → Ex10c Ex10f = Ex10a ||| Ex10e

The process Ex10d is nondeterministic, because after performing event a, the
environment can synchronise on either a again or on a and b, depending if a was
performed by Ex10a or Ex10b. The process Ex10e is deterministic, because the
alphabets of its components are disjoint, so there are no events in common. The
composition in Ex10f is deterministic, because, although there is an intersection
of the alphabets, events a and b are always available to the environment. �

Generalised parallel allows us to have parallelism with synchronisations. The
events that are not in the synchronisation set are analysed in a similar way
to what is done with interleaving, and the events in the synchronisation set
cannot introduce nondeterminism on their own, because each synchronised event
happens only once and both operands engage in this event.

Example 11. The process Ex11 = Ex10a[[{a}]]Ex10b, differently from Ex10d ,
is deterministic, because the event a is in the synchronisation set, so, after it
occurs, the only possibility for the parallel composition is to offer event b. �

We use the same algorithm for the two forms of parallelism discussed. It receives
the processes being composed and the synchronisation set. For interleaving, the
synchronisation set is empty. The algorithm is presented Fig. 6.

Algorithm 2 iterates over all pairs of behaviours of P and Q , evaluating all
scenarios. In each iteration, it initially defines avEvents (line 2), the set of events
that is always available to the environment, in the given pair of behaviours.

To calculate avEvents we use setOfAvailableEvents, which yields a set of
events that must belong to an Enhanced Trace that has only one event in its
sequence and is recursive. These sequences stand out because they do not lead
to a change in the state of the composition. Another requirement is that these
events need to be able to occur freely, which can be denied by synchronisations.

Example 12. We consider the following SPBs.

SPB(Ex12a) = {{(〈a, b,P〉, ∅), (〈c,Q〉, ∅), (〈d , SKIP 〉, ∅), (〈e,R〉, ∅)}}
SPB(Ex12b) = {{(〈x ,S 〉,{(1,{x})}), (〈x , y ,T 〉,{(-1,{x})}), (〈e, f ,U 〉, ∅)}}

Local Analysis of Determinism for CSP 119

Fig. 6. Algorithm to check if parallelism introduces nondeterminism.

If we execute Parallelism(Ex12a, Ex12b,{e}), we have one iteration of the algo-
rithm with avEvents = {c}. The pairs with the sequences 〈a, b,P〉, 〈x , y ,T 〉,
and 〈e, f ,U 〉 are discarded for having more than one event. The pair with
〈d , SKIP 〉 is discarded for not being recursive. The pairs with sequences 〈x ,S 〉,
and 〈e,R〉 are discarded due to their synchronisations, the former with the pair
(〈x , y ,T 〉,{(-1,{x}), and the latter with the synchronisation being introduced in
this composition, through the synchronisation set {e}. �

With avEvents calculated, Algorithm 2 starts checking each pair of elements of
the behaviour of P and Q . If we have two elements with the same initial events
(line 4), then, for each operand, all the sets in its SPB need to be equivalent,
which is checked by allSetsEquiv .

Example 13. We consider the following processes.

Ex13a = Ex10a � Ex10c Ex13b = Ex13a ||| Ex10c

The composition Ex13b is nondeterministic, because, after performing b, the
environment does not know if a is still available, since b can be performed by
Ex13a or Ex9c, so it is possible to accept or refuse a, given the circumstances.
Algorithm 2 returns false because the conditional in line 4 returns true, having
allSetsEquiv(SPB(Ex13a)) = false. �

Requiring that the SPB of each process have all sets equal is, however, not
enough to ensure determinism, as we can see in the next example.

Example 14. We consider the following processes.

Ex14a = a → b → a → Ex14a Ex14b = Ex14a ||| Ex14a

120 R. Otoni et al.

The process Ex14b is nondeterministic, because after the environment performs
the trace 〈a, b, a〉 it is possible to accept or refuse b. During the evaluation,
the conditional in line 4 returns true, allSetsEquiv(SPB(Ex14a)) = true, so
nondeterminism is not identified by Algorithm 2 at this point. �

We then have the core of Algorithm 2 (line 6). The algorithm checks, for each
event e that is in the intersection of the alphabets, if the events available to the
environment, after e in P is performed, is equal to the events available after e
in Q is performed. If they are not, then a source of nondeterminism has been
found. This verification is only carried out if e is not in the synchronisation set.

We assume that the two sequences that we are analysing at a given moment
are offering specific events, but we do not assume anything of the other sequences.
The events available to the environment after the execution of the event in each
process are given by the union of three sets: avEvents; the set of events that are
available in the process that performed the event, after its execution; and the set
that contains the event in question, that is still available in the other process.

The function nextEvents (lines 8 and 9) returns the set of events that a
process offers to the environment after one of its events, e, has occurred; in
Algorithm 2, e can be evP or evQ . First it adds the event that comes after
e, if any, to the return set. Afterwards it checks if the pair that contains e
synchronises with other pairs, and if e is present in those pairs, which leads to
a change in their states as well. If e is indeed present, then the events after it in
these events will also be included in the return set.

Example 15. For process Ex14b, we have avEvents = ∅. The conditional in
line 7 returns true for the first events in both Ex14a operands, with eventsP and
eventsQ being both the result of ∅ ∪ {b} ∪ {a}, so eventsP == eventsQ (line
10). For the first event of the first operand, a, and the second event of the second
operand, b, the conditional in line 7 returns false. For the first event of the first
operand, a, and the third event of the second operand, a, the conditional in line
7 returns true, but eventsP = ∅ ∪ {b} ∪ {a}, and eventsQ = ∅ ∪ {a} ∪ {a}, so
Algorithm 2 returns false in line 11. �

Example 16. We consider the following processes.

Ex16a = a → b → c → Ex16a Ex16d = Ex16a ||| Ex16b
Ex16b = d → e → f → Ex16b Ex16e = Ex16c[[{d}]]Ex16d
Ex16c = d → e → g → Ex16c

To check if Ex16e is deterministic we use SPB(Ex16c) = {{(〈d , e, g ,Ex16c〉,
∅)}}, and SPB(Ex16d) = {{(〈a, b, c,Ex16a〉, ∅), (〈d , e, f ,Ex16b〉, ∅)}}. There
is one set in SPB(Ex16a) and in SPB(Ex16b), so Algorithm 2 performs one
iteration, with avEvents = ∅, since there is no sequence with a freely occurring
event.

We check every pair being analysed (line 3). For the pairs (〈d , e, g ,Ex16c〉, ∅)
and (〈a, b, c,Ex16a〉, ∅), the conditional in line 4 returns false, since the head of
the sequences is different, and so does all six occurrences of the conditional in line

Local Analysis of Determinism for CSP 121

7, inside the loop in line 6, because the two sequences have no event in common.
For (〈d , e, g ,Ex16c〉, ∅) and (〈d , e, f ,Ex16b〉, ∅), the conditional in line 4 also
returns false, this time because d ∈ X , but when the loop in line 6 executes for
the second event of each sequence, the conditional in line 7 returns true. In this
case we have that eventsP = ∅ ∪ {g} ∪ {e} and eventsQ = ∅ ∪ {f } ∪ {e}, so
Algorithm 2 returns false. �

Example 17. We consider the following processes.

Ex17a = Ex16a � Ex16b Ex17b = Ex17a[[{e}]]Ex16c

We have SPB(Ex17a) = {{(〈a, b, c,Ex16a〉, ∅)}, {(〈d , e, f ,Ex16b〉, ∅)}}. The
application of Algorithm 2 to Ex17b occurs similarly to that of Ex16e, but
two iterations occur. The first iteration, with the sets {(〈a, b, c,Ex16a〉, ∅)},
and {(〈d , e, g ,Ex16c〉, ∅)} occurs without problems. The second iteration, with
the sets {(〈d , e, f ,Ex16b〉, ∅)} and {(〈d , e, g ,Ex16c〉, ∅)}, however, leads the
conditional in line 4 to return true when analysing the only two pairs, because
allSetsEquiv(Ex17a) = false, leading Algorithm 2 to return false. �

The way we calculate the available events after an event occurs is the main source
of efficiency gain when we deal with parallelism. A global analysis would con-
sider all possible states of the other sequences to carry out the verification. Our
strategy, with the use of avEvents, considers only a small part of the state space.
The sequences that perform various events before a recursion, SKIP , or STOP ,
can offer different events, depending of their state, but, more importantly, can
refuse to offer them. Since we cannot rely on the events of these sequences to
ensure determinism we discard them altogether. For Ex16d , for instance, FDR4
visits 54 states, while our strategy only considers 9 states.

We have implemented all the algorithms presented in this section, plus the
algorithm to check hiding, to construct a prototype determinism checker. In the
next section, we show the results of experiments carried out using this prototype.

4 Experimental Results

We performed a number of experiments to compare FDR4 with our prototype.
The railway network described in Sect. 2.1 is our main case study. To evaluate
every algorithm, we also considered processes involving external and internal
choice, interleaving, and hiding. The prototype and the files used in the experi-
ments are available online, on the link referenced in footnote 1.

We used two models of the railway network: the original, deterministic,
model, and a modified nondeterministic model, with an error in the last two
pairs of tracks. For each model we consider three scenarios, consisting of one,
six, and eleven trains, respectively. For each scenario, eight instances are eval-
uated, with an increasing number of pairs of tracks. The instance number indi-
cates the number of pairs of tracks in it. The results of the experiments with
the railway network can be seen in Tables 1, 2, 3, 4, 5 and 6; the * indicates an
out-of-memory error.

122 R. Otoni et al.

Table 1. Deterministic instances
with one train in the railway.

Instance FDR4 Prototype

25 0.12 s 0.35 s

50 0.22 s 0.46 s

75 0.32 s 0.50 s

100 0.37 s 0.56 s

500 2.94 s 1.38 s

1000 8.67 s 2.19 s

5000 4 m 20.06 s 20.13 s

10000 * 1 m 29.63 s

Table 2. Nondeterministic
instances with one train in the
railway.

Instance FDR4 Prototype

25 0.13 s 0.38 s

50 0.23 s 0.43 s

75 0.30 s 0.53 s

100 0.48 s 0.61 s

500 3.65 s 1.38 s

1000 12.76 s 2.21 s

5000 10 m 33.92 s 19.74 s

10000 * 1 m 26.83 s

Table 3. Deterministic instances
with six trains in the railway.

Instance FDR4 Prototype

25 0.52 s 0.35 s

50 3 m 6.67 s 0.44 s

75 * 0.50 s

100 * 0.60 s

500 * 1.37 s

1000 * 2.18 s

5000 * 19.55 s

10000 * 1 m 24.65 s

Table 4. Nondeterministic
instances with six trains in the
railway.

Instance FDR4 Prototype

25 0.17 s 0.35 s

50 2.16 s 0.45 s

75 22.56 s 0.50 s

100 2 m 11.05 s 0.55 s

500 * 1.36 s

1000 * 2.07 s

5000 * 19.88 s

10000 * 1 m24.16 s

Table 5. Deterministic instances
with eleven trains in the railway.

Instance FDR4 Prototype

25 0.18 s 0.34 s

50 * 0.43 s

75 * 0.51 s

100 * 0.58 s

500 * 1.37 s

1000 * 2.20 s

5000 * 19.97 s

10000 * 1 m 22.75 s

Table 6. Nondeterministic instances with
eleven trains in the railway.

Instance FDR4 Prototype

25 0.13 s 0.37 s

50 12.77 s 0.43 s

75 8 m 25.50 s 0.51 s

100 * 0.58 s

500 * 1.45 s

1000 * 2.13 s

5000 * 19.98 s

10000 * 1 m23.92 s

Local Analysis of Determinism for CSP 123

The experiments were run in a server with an Intel Core i7-2600k, 16 GB of
RAM, 160 GB of SSD, and Ubunto 17.94 64-bit. We used FDR 4.2.0. The results
show that while for smaller examples FDR has a better performance, due to the
overhead of calculation of metadata in our approach, it struggles to analyse large
parallel systems. Our prototye was able to analyse the largest instance in less
than two minutes, a very promising result.

To analyse the impact of external choice, our experiments consist of a number
of processes in the form Basici = a.i → b.i → c.i → Basici , all composed with
this operator. Nondeterministic instances were created by modifying the last
process to Basici = a.(i − 1) → b.i → c.i → Basici . For the evaluation of the
hiding operator, we modified the instances of the external choice experiments
by hiding event b.i after each composition, with the nondeterministic instances
hiding a.i , instead of b.i , after the last composition.

The experiments with internal choice consist of compositions of processes
of the form Basici = a.0 → b.0 → c.0 → Basici , with the nondeterministic
instances having b.1, instead of b.0, in the last process. For interleaving, we
compose processes with the same structure of the processes used in the external
choice experiments, with the nondeterministic instances having their last two
processes ending with new events, ... → c.(i − 1) → d → e → f → Basic(i − 1)
and ... → c.i → d → e → g → Basici .

The results of our additional experiments are in the extended version of this
paper. With them we identified that FDR4 does not scale well, specially with
interleaving. For all problems considered, except the 10000 instance of our hiding
experiment, the prototype completed its analysis in less than two minutes. It is
fair to remember that, while FDR4 would correctly identify processes like Ex3d
as deterministic, our prototype would indicate the possibility of nondeterminism.

5 Conclusion

In this paper we propose a local analysis for the verification of determinism,
considering a subset of CSP. We analyse each composition that is part of the
process being verified, gathering metadata about them. With the metadata we
gather, we are able to guarantee determinism by only checking conditions on the
argument processes of the composition. We performed some experiments and the
results show that our approach scales better than that of FDR4, the main tool
for verification of CSP models, specially when dealing with interleaving.

Local analysis has been used for the verification of properties of concurrency.
For livelock, a compositional strategy that handles a subset of CSP similar to
our own is presented in [4]. For deadlock, there are works aimed at CSP that
involve adherence to deadlock-free patters [2,3], with a focus on the analysis of
cyclic networks of processes. Recent improvements on local deadlock analysis for
CSP are reported in [1], but this work also presents an incomplete strategy. As
already mentioned, we are not aware of any other approach to compositional
analysis of determinism, so our work is an original contribution in this direction.

124 R. Otoni et al.

The composition of techniques that verify deadlock, livelock, and determin-
ism locally is possible. By identifying a subset of CSP shared by all of them, an
integrated approach to analyse all the three classical properties is viable.

Our strategy can be improved. We will widen the considered subset of CSP,
removing some of the restrictions, to allow non-tail recursion and parameters. We
will also prove the correctness of the algorithms and perform more case studies.

Acknowledgements. This work was partially supported by INES (grants
CNPq/465614/2014-0, and FACEPE/APQ/0388-1.03/14) and FACEPE (grant IBPG-
0074-1.03/16). We thank Madiel Conserva Filho and Joabe Jesus Júnior for the helpful
discussions.

References

1. Antonino, P., Gibson-Robinson, T., Roscoe, A.W.: Tighter reachability criteria for
deadlock-freedom analysis. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou,
A. (eds.) FM 2016. LNCS, vol. 9995, pp. 43–59. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-48989-6 3

2. Antonino, P.R.G., Oliveira, M.M., Sampaio, A.C.A., Kristensen, K.E., Bryans,
J.W.: Leadership election: an industrial SoS application of compositional deadlock
verification. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp.
31–45. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06200-6 3

3. Antonino, P., Sampaio, A., Woodcock, J.: A refinement based strategy for local
deadlock analysis of networks of CSP processes. In: Jones, C., Pihlajasaari, P., Sun,
J. (eds.) FM 2014. LNCS, vol. 8442, pp. 62–77. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-06410-9 5

4. Filho, M.S.C., Oliveira, M.V.M., Sampaio, A., Cavalcanti, A.: Local livelock analy-
sis of component-based models. In: Ogata, K., Lawford, M., Liu, S. (eds.) ICFEM
2016. LNCS, vol. 10009, pp. 279–295. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-47846-3 18

5. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 — a
modern refinement checker for CSP. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014. LNCS, vol. 8413, pp. 187–201. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54862-8 13

6. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall Inc, Upper
Saddle River (1985)

7. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45236-2 46

8. Ramos, R., Sampaio, A., Mota, A.: Systematic development of trustworthy
component systems. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS,
vol. 5850, pp. 140–156. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-05089-3 10

9. Roscoe, A.: Understanding Concurrent Systems, 1st edn. Springer, New York
(2010)

10. Schneider, S.: Concurrent and Real Time Systems: The CSP Approach, 1st edn.
Wiley, New York (1999)

11. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: towards flexible verification under
fairness. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–
714. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4 59

https://doi.org/10.1007/978-3-319-48989-6_3
https://doi.org/10.1007/978-3-319-48989-6_3
https://doi.org/10.1007/978-3-319-06200-6_3
https://doi.org/10.1007/978-3-319-06410-9_5
https://doi.org/10.1007/978-3-319-06410-9_5
https://doi.org/10.1007/978-3-319-47846-3_18
https://doi.org/10.1007/978-3-319-47846-3_18
https://doi.org/10.1007/978-3-642-54862-8_13
https://doi.org/10.1007/978-3-642-54862-8_13
https://doi.org/10.1007/978-3-540-45236-2_46
https://doi.org/10.1007/978-3-642-05089-3_10
https://doi.org/10.1007/978-3-642-05089-3_10
https://doi.org/10.1007/978-3-642-02658-4_59

OptCE: A Counterexample-Guided Inductive
Optimization Solver

Higo F. Albuquerque1, Rodrigo F. Araújo2, Iury V. Bessa1,
Lucas C. Cordeiro1,3(B), and Eddie B. de Lima Filho1,4

1 Federal University of Amazonas, Manaus, Brazil
2 Federal Institute of Amazonas, Manaus, Brazil

3 University of Oxford, Oxford, UK
lucas.cordeiro@cs.ox.ac.uk

4 Samsung Electronics, Manaus, Brazil

Abstract. This paper presents optimization through counterexamples
(OptCE), which is a verification tool developed for optimizing target
functions. In particular, OptCE employs bounded model checking tech-
niques based on boolean satisfiability and satisfiability modulo theo-
ries, which are able to obtain global minima of convex and non-convex
functions. OptCE is implemented in C/C++, performs all optimization
steps automatically, and iteratively analyzes counterexamples, in order
to inductively achieve global optimization based on a verification ora-
cle. Experimental results show that OptCE can effectively find optimal
solutions for all evaluated benchmarks, while traditional techniques are
usually trapped by local minima.

1 Introduction

Optimization is a tool employed in several research fields, such as biology (e.g.,
biomolecular modeling energy functions) [1], computer science (e.g., complexity
reduction) [2], engineering (e.g., filter design for digital signal processing) [3], and
business (e.g., profit increase) [4], with the goal of obtaining maximum system
performance. Although there are several available optimization techniques (e.g.,
simulated annealing [5], particle swarm [6], and genetic algorithms [7]), their
main difficulty lies on locating the global minima of functions. As a consequence,
they often present suboptimal solutions, i.e., they are trapped by local minima,
which commonly lead to low performance [8].

The present work introduces a tool based on the counterexample-guided
inductive optimization (CEGIO) algorithms proposed by Araújo et al. [9,10],
which is named as Optimization through Counter-Examples (OptCE). Indeed,
OptCE is a tool instantiation of the approach developed by Araújo et al.
[9], which now presents further evaluation regarding other function classes
(broader applicability) and verifiers. OptCE is inspired by syntax-guided syn-
thesis (SyGuS) and performs inductive generalization based on counterexam-
ples provided by a verification oracle [11]. In particular, OptCE employs non-
deterministic representation of decision variables and then iteratively constrains
c© Springer International Publishing AG 2017
S. Cavalheiro and J. Fiadeiro (Eds.): SBMF 2017, LNCS 10623, pp. 125–141, 2017.
https://doi.org/10.1007/978-3-319-70848-5_9

126 H.F. Albuquerque et al.

the state-space search based on counterexamples produced by boolean satisfia-
bility (SAT) or satisfiability modulo theories (SMT) solvers via inductive gen-
eralization, i.e., OptCE exploits the counterexample provided by the solver to
achieve complete global optimization [3] about an objective function.

The mentioned techniques (CEGIO) do employ model checking based verifi-
cation procedures to guide the global convergence and extract information from
counterexamples. Unlike meta-heuristic optimization techniques (e.g., genetic
algorithms and simulated annealing), CEGIO always finds the global minima
for all evaluated benchmarks, which is also true for the benchmarks evaluated
by Araújo et al. [9,10]. In addition, OptCE requires only one file with the spec-
ification and constraints for a given objective function.

Although the resulting optimization times associated to the approach
employed here are often higher than what is obtained with other traditional
techniques [10], the present inductive optimization technique based on the coun-
terexamples guarantees global coverage and is capable of handling convex and
non-convex functions, since it performs inductive generalization based on the
counterexamples provided by a verification oracle [12]. Our main novel contri-
butions are:

– Development of the first CEGIO-based tool that is able to perform global
optimization of several function classes (e.g., convex, discontinuous, nonlinear,
and non-convex);

– Extensive experimental evaluation of the CEGIO algorithms;
– Comparison regarding optimization performances provided by different veri-

fiers (CBMC [13] and ESBMC [14]) and SAT/SMT solvers (MathSAT [15],
Z3 [16], Boolector [17], and MiniSAT [18]).

Our experiments are based on a set of publicly available benchmarks and all
related tools, scripts, benchmarks, and results can be obtained online through
this link http://esbmc.org/benchmarks/optce.zip.

2 Inductive Optimization Based on Counterexamples

OptCE is an optimization tool based on CEGIO, which processes a function
through three basic steps: modeling, specification, and verification. In order to
illustrate the OptCE’s optimization process, we consider the adjiman test objec-
tive function in Eq. (1) and its minimization process.

f(x1, x2) = cos(x1)sin(x2) − x1

x2
2 + 1

. (1)

In particular, the adjiman function is a non-convex, non-separable, and dif-
ferentiable function; it is defined on 2-dimensional space [19].

(i) Modeling. In the modeling step, the optimization problem is defined for
a cost function (e.g., Eq. (1)) and then its constraints are introduced, in

http://esbmc.org/benchmarks/optce.zip

OptCE: A Counterexample-Guided Inductive Optimization Solver 127

order to avoid the state-space explosion in model checking [20]. Regard-
ing the Eq. (1), the optimization problem with its associated restrictions is
described in Eq. (2).

min f(x1, x2)
s.t. −1 ≤ x1 ≤ 2

−1 ≤ x2 ≤ 1.
(2)

In particular, the optimization problems are modeled through the CEGIO
approach and using ANSI-C code, with the directive ASSUME, which repre-
sents the associated constraints and search space. The use of such directive
(e.g., __ESBMC_assume()) is illustrated in the code fragment as shown in
Fig. 1.

(ii) Specification. This step consists in describing system behavior and proper-
ties to be checked, which results in a file according to the method proposed
by Araújo et al. [9,10]. Indeed, the property specification is stated with
ASSERT directives, which are used to check satisfiability and to control
the verification procedure, i.e., to search for violations of a given prop-
erty, which, in the present case, consists of finding a function value that
is smaller than the previous one. In summary, they represent calls to spe-
cific functions provided by the verification engine and also entry points
for the proposed optimization. The mentioned resulting file contains the
modeling and properties to be checked, as shown in Fig. 1 for the func-
tion adjiman. In this example, ESBMC is used as verification engine, where
__ESBMC_assume() restricts the state-space, according to the performed
modeling, and __ESBMC_assert() checks properties.

(iii) Verification. Finally, the C code generated in step 2 is checked by the
underlying verifier, which can return “verification successful” or “verification
failed”. When “verification successful” is obtained, it means that the code
is correct and no property has been violated; otherwise, “verification failed”
indicates that the verification engine has found a violation, i.e., a value
smaller than the previous one, for a particular target function. It is worth
noticing that when a violation is found, the associated counterexample,
which is usually provided by such tools, already indicates a smaller value. As
a consequence, this new limit can then be used for updating the respective
variable (i.e., f_i in the example shown in Fig. 1), which might iteratively
lead to a minimum.

Araújo et al. [10] proposed three algorithms for the specification stage, which
are suitable for different situations: the Generalized Algorithm (CEGIO-G), the
Simplified Algorithm (CEGIO-S), and the Fast Algorithm (CEGIO-F). Figure 1
shows the specification for the function adjiman in CEGIO-G format, which can
also be applied to any function class (i.e., convex and non-convex ones). CEGIO-
S is suitable for functions about which we have some prior knowledge (e.g., semi-
and positive-definite functions) and uses that to generate several properties in
the specification step, which will be checked by the underlying verifier, with
potentially increased chance of violation and reduced optimization times. Finally,
CEGIO-F can be applied to convex functions and uses their properties to restrict

128 H.F. Albuquerque et al.

Fig. 1. C code after the specification step for the function adjiman.

the associated state-space, according to the results presented by Araújo et al.
[10], which show considerable improvement regarding optimization times. Each
algorithm follows a fixed structure, which changes regarding only variable values.

3 OptCE: A Counterexample-Guided Inductive
Optimization Solver

OptCE can be regarded as a front-end for model checkers that process C pro-
grams through CEGIO, where decision variables, which are in charge of gener-
ating the smallest value of a function, are checked. Such a tool can be called
from a shell, via command line, and is able to optimize convex and non-convex
functions, where users only need to describe, in a file, the specification and con-
straints regarding them, through a few code lines. In summary, OptCE is based
on the CEGIO technique, which allows the discovery of global minima, while
other techniques are usually trapped by local ones.

3.1 OptCE Architecture

As shown in Fig. 2, users need to provide an input .func file (cf. Sect. 3.2) con-
taining a function’s specification and constraints: this is the modeling phase.
Indeed, such a task reveals that some knowledge about the target problem is
necessary, in order to provide a correct basis.

The first step is the specification, which receives an input file and the desired
settings for optimization, such as verifier, solver, algorithm type, and precision. In
Fig. 2, α represents the number of decimal places of a solution, which is indicated

OptCE: A Counterexample-Guided Inductive Optimization Solver 129

Fig. 2. An overview of the proposed OptCE architecture.

by the user. Based on the provided inputs, OptCE generates a specification file
in ANSI-C (cf. Fig. 1), named as min_<function>.c.

During the first execution of Step 1, ρ, which is used to establish the solution
accuracy throughout the optimization process, is initialized with zero, which
indicates an optimization with integer precision solutions only (i.e., no decimal
digits are considered). In addition, an arbitrary minimum candidate is also con-
sidered, which is actually the algorithm’s initialization value and can be provided
by the user with the flag --start-value; otherwise, it is randomly generated,
which is performed during the specification step.

During Step 2, the verification task occurs, i.e., the ANSI-C file with a func-
tion’s specification is checked by a verification engine, whose main output is a log
file with the respective verification result. If “verification failed” is obtained, that
means the underlying verification engine detected a property violation through
the inserted assertions and consequently generated a counterexample. In the
CEGIO context, a property violation indicates that the minimum candidate is
not the global minimum for that value of ρ and then the tool flow proceeds to
Step 3.

In Step 3, a .log file with the respective counterexample is used to obtain new
decision variables, which provide a new global minimum candidate lower than
the previous one, i.e., the initialization value or the minimum candidate of the
last OptCE iteration. Then, the new minimum candidate value is obtained (i.e.,
extracted and computed from the counterexample), and used to perform Step
1 again, starting a new iteration and generating a new specification file. Such a
procedure is iteratively performed until the verification step (Step 2) returns a
.log file with “verification successful”, which means that there are no decision
variables capable of finding a minimum value smaller than the current one,
considering the current value of the precision variable (ρ). When the verification
result is “verification successful”, OptCE proceeds to Step 4.

In Step 4, ρ is increased by one, i.e., the precision associated to the optimal
solution is increased by one decimal place, which is followed by a check that
evaluates whether it is smaller than or equal to the desired accuracy (indicated

130 H.F. Albuquerque et al.

by the user). If ρ is larger than α (the condition ρ ≤ α is false), OptCE has found
the solution (global minimum), considering the desired precision; otherwise, the
OptCE’s general flow (Steps 1–3) is repeated with the updated precision ρ, i.e.,
the algorithm returns to Step 1 and generates a new specification file.

3.2 Input File for OptCE

The present input file consists of two parts: function specification and associated
constraints, which are separated by a character “#” isolated in a row. At the top
of an input file, a function must be described with an ANSI-C variable assignment
ending with “;” and using variable fobj that represents the objective function
(see Fig. 3). We summarize the OptCE input language in Fig. 3.

Fig. 3. OptCE input program language.

Equation 3 presents the format adopted for constraint matrices, where the
associated number of lines indicates the amount of decision variables and columns
1 and 2 represent the lower and upper bounds, respectively.

⎡
⎢⎢⎣

x11 x12

x21 x22

. . .
xn1 xn2

⎤
⎥⎥⎦ (3)

The constraints of the considered optimization problem (Eq. (2)) can be rep-
resented by A = [−1 2 ;−1 1] and an input file containing the entire optimization
problem (related to Eq. (2)) is illustrated in Fig. 4.

Fig. 4. Input file for function adjiman.

OptCE: A Counterexample-Guided Inductive Optimization Solver 131

3.3 OptCE Features

The current OptCE version allows us to define different configurations regarding
the optimization process (i.e., optimization algorithm and verification engine),
which is used to reduce optimization times. Thus, users have to add suitable flags
during a call via command-line. The following configurations are supported:

– BMC configuration: chooses between model checkers CBMC (--cbmc) and
ESBMC (--esbmc);

– Solver configuration: chooses between solvers Boolector (--boolector),
Z3 (--z3), MathSAT (--mathsat), and MiniSAT (--minisat);

– Algorithm configuration: chooses between the proposed algorithms, where
the flag --generalized implements the CEGIO-G algorithm (cf. Sect. 2),
which is used when there is no prior knowledge about the objective function,
the flag --positive implements the CEGIO-S algorithm (cf. Sect. 2), which
is used when a function is semi- and positive-definite, and the flag --convex
implements the CEGIO-F algorithm (cf. Sect. 2), which is used for convex
functions.

– Initialization: assigns an initial minimum candidate value (--start-value
=value), which is random by default;

– Insert library: users can include their own library containing implementa-
tions of operators and functions used in the objective function’s description
(--library=name-library);

– Timeout: configures the time limit, in seconds (--timeout=value).
– Precision: sets the desired precision, i.e., the number of decimal places of a

solution (--precision=value).

3.4 Optimizing via OptCE

The user must create a description input file to find the global minimum of a
function using the OptCE tool, as explained in Subsect. 3.2. Figure 5 shows all
possible OptCE calls with input file and set of properties. Here, we employ the
function adjiman to illustrate the use of OptCE, considering the input file shown
in Fig. 4.

Fig. 5. OptCE configuration options.

Currently, OptCE supports two verifiers: CBMC [13] and ESBMC [21]. Opti-
mization employing CBMC as model checker (-cbmc) uses MiniSAT as default

132 H.F. Albuquerque et al.

solver, while ESBMC (--esbmc) uses MathSAT. In our evaluation, we also tried
to use the SMT solvers available in CBMC, but it failed to check all benchmarks
reported in Table 1 due to problems in the SMT back-end. Regarding ESBMC,
the user can choose between solvers Z3 (--z3) or Boolector (--boolector);
however, we did not further evaluate other SMT solvers (e.g., CVC4 and Yices).
Indeed, verification times vary according to the selected verifier and solver and,
as already mentioned, the user has the possibility to choose different configu-
rations. If a given user is unsure about which verifier and solver to select, then
a default choice would be to employ ESBMC with MathSAT or CBMC with
MiniSAT, given that they normally present the shortest execution times; how-
ever, our experimental evaluation does not conclusively show that they are the
best possible configurations (given the small benchmark set). As future work,
we intend to automatically select the verifier and solver pair, using machine
learning techniques that take into account objective functions, with a large set
of benchmarks. Indeed, such an approach is similar to the work done by Hutter
et al. [22], who apply a parameter optimization tool to improve SAT solvers
for large, real-world bounded model-checking instances, via automatic tuning of
decision procedures.

Another important parameter is the algorithm type, which can be --convex,
for convex functions, --positive, for semi- and definite-positive functions, and
--generalized, for functions about which we do not have any prior knowl-
edge. Since Eq. (1) is not convex and it is not possible to ensure that it is non-
negative, the suggested setup uses flag --generalized (./optCE adjiman.func
--generalized).

Following the execution flow illustrated in Fig. 5, the flag --start-value
is used to specify the proposed algorithm’s initialization (./optCE<name>
.func --start-value=20) and, when it is not adopted, such a value is assigned in
a random way. We noticed that variations regarding initialization values do not sig-
nificantly influence convergence times, since OptCE evaluates only the integer part
of the solutions, at the beginning of the optimization tasks. In addition, checking
with integer values is fast, it is normal to get “verification failed” in the first round,
and a “verification failed” result is generally faster than a “verification successful”
one, as also experimentally observed by Araújo et al. [9,10].

If the input function consists of arithmetic operators, then it is not mandatory
to use the flag --library; however, when mathematical functions are present, it
is necessary to implement them in ANSI-C. Such implementations considerably
influence the verification results and the simpler they are, i.e., the smaller their
number of operations and loops is, the easier it is for the proposed approach to
conclude the verification tasks. In the case of the adjiman function, which uses
mathematical functions such as sin() and cos(), the library math2.h was created,
with our own implementation, which was included using the flag --library
(./optCE adjiman.func --library=math2.h). This library contains an improved
implementation of the original math.h, which includes pre- and post-conditions
to ensure that a (given) predicate holds before and after the execution of a
(given) math function, respectively.

OptCE: A Counterexample-Guided Inductive Optimization Solver 133

Our mathematical functions in math2.h have the same name of the corre-
sponding elements in the ANSI-C library, except that we appended the character
2 (e.g., cos2(), sin2(), abs2()).

The --timeout flag is used to interrupt optimization processes, if they reach
the indicated time limit (./optCE<name_function>.func --timeout=3600).
Finally, the user has the option to define the OptCE’s solution accuracy, i.e., the
--precision flag indicates the number of decimal places of a solution. When a
reference value is not provided, OptCE finds a global minimum with 3 decimal
places, by default.

4 Experimental Evaluation

This section reports the performed experiments configuration and execution,
along with an analysis of the results obtained with OptCE.

4.1 Experimental Objectives

Our experiments have been carried out seeking answers to the following questions:

RQ1 (correctness) Is OptCE able to find the global minima of functions?
RQ2 (sanity check) Does the settings choice between BMC tools and solvers

influence optimization results?
RQ3 (performance) What are the advantages and disadvantages of OptCE, in

comparison with traditional optimization techniques?

4.2 Description of the Benchmarks

In order to evaluate the proposed tool and answer those research questions pre-
sented in Sect. 4.1, a benchmark suite with 10 convex and nonconvex functions
was created, with functions related to optimization problems extracted from the
available literature [19]. They have different characteristics: continuous, differ-
entiable, separable, non-separable, scalable, non-scalable, uni-modal, and multi-
modal, including sine, cosine, polynomials, floor, sum, and square root. The cho-
sen benchmarks are shown in Table 1, as follows: benchmark name, optimization
domain, and global minimum.

All functions were used to evaluate the flag --generalized, which imple-
ments the CEGIO-G algorithm (cf. Sect. 2). In order to evaluate the flag
--positive, which implements the CEGIO-S algorithm (cf. Sect. 2), semi-
definite positive functions Booth, Himmelblau, and Leon were used. Lastly, func-
tions Zettl, Rotated Ellipse, and Sum Square were used to evaluate the flag
--convex, which implements the CEGIO-F algorithm (cf. Sect. 2).

The results of the proposed approach were compared with the ones presented
by other techniques (i.e., genetic algorithm, particle swarm, pattern search, sim-
ulated annealing, and nonlinear programming), where all benchmarks were exe-
cuted with the MATLAB’s optimization toolbox (2016b) [23].

134 H.F. Albuquerque et al.

Table 1. Benchmark suite.

Benchmark Domain Global minimum

1 Alpine 1 −10 ≤ xi ≤ 10 f(0, 0) = 0

2 Cosine −1 ≤ xi ≤ 1 f(0, 0) = −0.2

3 Styblinski Tang −5 ≤ xi ≤ 5 f(2.903, 2.903) = −78.332

4 Zirilli −10 ≤ xi ≤ 10 f(1.046, 0) ≈ −0.3523

5 Booth −10 ≤ xi ≤ 10 f(1, 3) = 0

6 Himmeblau −5 ≤ xi ≤ 5 f(3, 2) = 0

7 Leon −2 ≤ xi ≤ 2 f(1, 1) = 0

8 Zettl −5 ≤ xi ≤ 10 f(0.029, 0) = −0.0037

9 Sum Square −10 ≤ xi ≤ 10 f(0, 0) = 0

10 Rotated Ellipse −500 ≤ xi ≤ 500 f(0, 0) = 0

Similarly to the experiments performed by Araújo et al. [9,10], the elapsed
times presented in the following tables are related to the average CPU time mea-
sured with the times system call (POSIX system) of 20 consecutive executions
for each benchmark, where the measurement unit is always in seconds. Finally,
our experiments were set for obtaining the global minima with 3 decimal places
and were conducted on an otherwise idle computer equipped with Intel Core
i7-4790 CPU 3.60GHz, 16GB of RAM, and Linux OS Ubuntu 14.10.

4.3 Experimental Results

The experimental results are presented in four tables. Tables 2, 3, and 4 refer
to the benchmarks with the flags --generalized, --positive, and --convex,
respectively. Table 5 refers to a comparison between OptCE v1.0 and other tra-
ditional techniques. Each column of Table 2 is described as follows: column 1 is
related to functions of the reference benchmark suite, columns 2, 3 and 4 are
related to the ESBMC v3.1.0 configuration with MathSAT v.5.3.13, Z3 v4.5.0,
and Boolector v2.2.0 solvers, respectively, and column 5 is related to the CBMC
v4.5 configuration with MiniSat v2.2.0.

The overall minimum was found in all benchmarks, considering all combi-
nations between BMC tools and solvers. As presented by Araújo et al. [10],
those algorithms ensure the global minimum, considering the desired accuracy,
which was described in previous section; their proofs of convergence are pro-
vided in [10], which confirm the experimental results. The optimization times
varied significantly in Table 2, which makes it difficult to reason about the best
configuration; however, according to Fig. 6, the total optimization time with the
configuration ESBMC + MathSAT (the best one) was 2.8 times faster than the
one presented by CBMC + MiniSAT, while the configuration ESBMC + Z3
presented the longest execution time, being 40 times longer than the best case.

OptCE: A Counterexample-Guided Inductive Optimization Solver 135

Table 2. Execution times for the generic algorithm (CEGIO-G [10]), in seconds.

ESBMC CBMC
MathSAT Z3 Boolector MiniSAT

1 1068 105192 3387 5344
2 4130 80481 5003 8509
3 443 37778 2027 2438
4 468 387 190 1143
5 7 1244 4016 2
6 12 14205 6217 4
7 5 2443 212 2
8 13 753 389 9
9 18 4171 4438 13

10 3 72 39 2

Fig. 6. Histogram of the total optimization time for the adopted benchmark suite, in
logarithmic scale.

Another interesting observation regarding Table 2 is that although CBMC +
MiniSAT provided the second best performance, considering the entire bench-
mark suite, such a configuration was the best in 60% of the benchmarks, i.e., a
few cases required long run times, but they were exceedingly time consuming.
Benchmarks #1−4 are non-convex and presented long times when searching for
the global minima, considering all possible settings. Benchmarks #5−7 are semi-
and positive-definite functions, while #8− 10 are convex ones. Regarding them,
OptCE was able to find solutions using the algorithms CEGIO-S and CEGIO-F,
by providing, respectively, the flags --positive and --convex.

Nonetheless, in order to evaluate the implementation of CEGIO-G, all bench-
marks were optimized with the flag --generalized. The experiments were

136 H.F. Albuquerque et al.

repeated for different combinations of model checkers and SAT/SMT solvers,
i.e., ESBMC was combined with three solvers (MathSAT, Z3, and Boolector) and
CBMC with MiniSAT only. Particularly, the combinations ESBMC + MathSAT
and CBMC + MiniSAT presented results significantly better than the ones pro-
vided by other configurations of OptCE, given that Boolector does not support
floating-point arithmetic [17]. In particular, MathSAT (the one that obtained the
best results) supports both fixed- and floating-point arithmetic and, surprisingly,
the performance for floating-point optimization is significantly better if compared
to the fixed-point one. As a consequence, when using the flag --generalized, the
configurations ESBMC + MathSAT and CBMC + MiniSAT are recommended.

Table 3 presents the results for the flag --positive, which is suitable for
semi- and positive-definite functions. As a consequence, we used only benchmarks
#5−7, in this experiment. Those functions make use of modules with high even
powers, i.e., by mathematical inspection we can ensure that such functions can
not reach one global negative minimum. Table 3 compares the use of the flags
--generalized and --positive, for this class of problems. One may notice that
the implementation of the CEGIO-S algorithm with the flag --positive does
indeed work, since optimization times were significantly reduced, if compared
to the flag --generalized, in all possible configurations. This happens because
the solution search space is reduced, by ignoring the negative part.

Table 3. Execution times for the positive algorithm (CEGIO-S [10]), in seconds.

--positive --generalized
ESBMC CBMC ESBMC CBMC
MathSAT Z3 Boolector MiniSAT MathSAT Z3 Boolector MiniSAT

5 3 <1 1 3 7 1244 4016 2
6 4 1 1 2 12 14205 6217 4
7 3 <1 1 2 5 2443 212 2

The CEGIO-F algorithm implementation is assigned with the flag --convex.
In order to evaluate its performance, benchmarks #8 − 10 were used, because
they are convex functions, and their results are presented in Table 4. The opti-
mization times using a specific algorithm for this function class were consider-
ably lower than the times presented by the generalized algorithm. That happens
because, in this algorithm and with each performed check, the search space is
reduced according to the found global minimum candidate, which then decreases
verification and, consequently, optimization times.

The best results using the proposed tool, for each benchmark, are presented
in Table 5, along with results for other techniques. The configuration column
shows the combinations regarding algorithm types (by the initials of flags “G”
for --generalized, “P” for --positive, and “C” for --convex), BMC tools, and
solvers. The comparison is performed with traditional optimization techniques:

OptCE: A Counterexample-Guided Inductive Optimization Solver 137

Table 4. Execution times for the convex algorithm (CEGIO-F [10]), in seconds.

--convex --generalized
ESBMC CBMC ESBMC CBMC
MathSAT Z3 Boolector MiniSAT MathSAT Z3 Boolector MiniSAT

8 15 6 21 5 13 753 389 9
9 14 3 19 5 18 4171 4438 13
10 3 1 2 2 3 72 39 2

genetic algorithm (GA), particle swarm (ParSwarm), pattern search (PatSearch),
simulated annealing (SA), and nonlinear programming (NLP). All evaluated
benchmarks were executed 1000 times with the traditional techniques, using
MATLAB, and 20 times with CEGIO, using OptCE. The number of repetitions
was selected to ensure the convergence of hit rate for all algorithms.

Table 5. Experimental results for traditional techniques and the best proposed CEGIO
algorithms, in seconds.

OptCE GA ParSwarm PatSearch SA NLP

Configuration R% T R% T R% T R% T R% T R% T

1 G + ESBMC + MathSAT 100 1068 29.1 1 22.2 3 16 4 0.4 1 4.8 9

2 G + ESBMC + MathSAT 100 4130 100 9 9.8 1 96.7 3 88.5 2 28.4 2

3 G + ESBMC + MathSAT 100 443 68.1 9 47.8 1 51.8 3 99.5 1 35.8 2

4 G + ESBMC + Boolector 100 190 95.7 9 53.9 1 98.8 3 74.4 1 62.5 2

5 P + ESBMC + Z3 100 < 1 100 10 100 2 100 6 93.5 1 100 2

6 P + ESBMC + Z3 100 1 42.4 9 43.9 1 26 3 21 1 35 2

7 P + ESBMC + Z3 100 < 1 84.4 1 80.3 2 1 7 24.3 1 100 4

8 C + CBMC + MiniSAT 100 5 100 9 48.1 1 99.8 4 26.4 1 100 3

9 C + ESBMC + Z3 100 3 100 9 71.5 1 100 4 96.9 1 100 2

10 C + ESBMC + Z3 100 1 100 9 100 2 100 7 99.8 1 100 2

OptCE’s hit rate is 100% for this benchmark suite, considering the domain
established in Table 1, for each benchmark. The present experiments show that
OptCE generally takes longer than other techniques, in order to locate the global
minima; however, its hit rate is always higher. In particular, the time results with
the flags --positive (CEGIO-S) and --convex (CEGIO-F) are similar to what
is provided by the other techniques, but with superior hit rates. The chosen
traditional optimization techniques, in many cases, failed to obtain solutions
for the adopted benchmarks, considering the established precision of 3 decimal
places. That happened because they are sensitive to non-convexity and, in many
cases, they get trapped by local minima, which resulted in sub-optimal solutions.
If only benchmarks 8, 9, and 10, in Table 1, are evaluated, which are convex

138 H.F. Albuquerque et al.

functions, the rate obtained by existing methods is 100%, since those functions
do not have local minima that can compromise their results.

In summary, the proposed technique can be used in any optimization prob-
lem, but there are always restrictions regarding the time and number of variables.
Usually, cost functions in practical problems are distance or power functions,
i.e., they are semi- and positive-definite. Therefore, as OptCE has the CEGIO-S
algorithm implemented in its structure, which is specific to this function class,
it implies that OptCE is able to solve those particular optimization problems.

OptCE presents good performance with non-convex functions, if compared
to the traditional techniques, because the global minima are found in all bench-
marks. Traditional techniques, in turn, are lost at local minimum and return
sub-optimal solutions, which then reduces their hit rate.

The performance of OptCE using specific flags for convex and positive-
definite functions proved to be competitive, once the obtained execution times
were very close to the ones from other techniques, given that global minima were
found in all cases. Depending on the problem type, the number of solution deci-
mal places might be lower than the amount used in this experimental evaluation.
For those cases, execution times regarding the location of optimal solutions are
reduced, once there are fewer decimal places to check, which then implies fewer
verifications and fewer states to be considered.

5 Related Work

Since the earliest research with SMT application to solve optimization problems,
which was presented by Nieuwenhuis and Oliveras [24], several satisfiability-
theory based tools have emerged, with the purpose of solving optimization prob-
lems. Conversely, various SAT/SMT specialized solvers have been developed,
which employ optimization techniques in their engines to improve solving per-
formance (e.g., ABsolver [25], and CalCs [26]). Shoukry et al. [27] proposed
the Satisfiability Modulo Convex (SMC) Optimization [28] to solve satisfiability
problems over SMC formulas, which generalizes several formulas over Boolean
and nonlinear real arithmetic.

Recently, νZ [29] extended the SMT solver Z3 [16] for linear optimization
problems and Li et al. proposed the SYMBA algorithm [30], which is an SMT-
based symbolic optimization algorithm that uses linear real arithmetic theory
and SMT solvers, as black boxes. Similarly, OptiMathSat presented by Sebastiani
and Trentin [31] is also an optimization tool that extends MathSAT5 SMT solver
to allow solving linear functions in the boolean, rational, and integer domains,
or a combination of them. Although the OptCE tool presented in this study is
based on satisfiability theories, it does not employ SAT/SMT solvers directly,
in contrast to other techniques [29–31]. OptCE incorporates the model checking
approach and employs SAT- and SMT-based model checkers to model, specify,
and verify ANSI-C representations of optimization problems by exploiting the
counterexample provided by them.

Model-checking has already been employed to model and solve optimization
problems, in some previous studies. Trindade et al. [32,33] used the ESBMC

OptCE: A Counterexample-Guided Inductive Optimization Solver 139

tool to solve optimization problems over booleans decision variables related to
hardware/software partition, in embedded systems. Araújo et al. [9,10] proposed
the CEGIO algorithms to globally optimize non-convex functions on the rational
domain, with adjustable precision.

Most previous studies related to SMT-based optimization can only solve
linear problems over integer, rational, and Boolean domains, in specific cases.
Indeed, only a few studies [27] are able to solve non-linear problems, but they
are also constrained to convex functions. In contrast, this paper proposes a new
tool that implements the CEGIO algorithms [9,10] and is able to globally mini-
mize a wide variety of functions: linear or non-linear, convex or non-convex, and
continuous or discontinuous.

6 Conclusion

OptCE is a novel optimization tool that models a wide range of constrained
optimization problems (convex, nonlinear, and nonconvex) as a model checking
problem and inductively analyzes counterexamples, in order to achieve global
optimization of functions, by employing SAT- or SMT-based verification. In par-
ticular, this tool is based on a class of optimization algorithms, named CEGIO,
and it is able to ensure the global optimal convergence with a given preci-
sion. OptCE supports the following features: three different CEGIO algorithms
(CEGIO-G, CEGIO-S, and CEGIO-F), two state-of-art BMC tools (CBMC and
ESBMC), and four SAT/SMT solvers (MiniSAT, Boolector, Z3, and MathSAT).

Our experiments showed that OptCE achieved 100% of hit rate, being able
to ensure the global optimization. In contrast, other traditional techniques (GA,
PatSearch, ParSwarm, NLP, and SA) employed for comparison were usually
trapped by local minima. In addition, the experimental results indicated that
the most flexible CEGIO algorithm (CEGIO-G), which is suitable for every func-
tion class supported by OptCE, presented times significantly longer than the
others from the CEGIO algorithms and traditional techniques, despite ensuring
the global optimization. Nonetheless, the other two CEGIO algorithms (CEGIO-
S and CEGIO-F), which are suitable for nonnegative and convex optimization
problems, respectively, were able to solve global optimization problems with
times similar to the ones provided by the traditional techniques, but with supe-
rior hit rate.

OptCE is available for free download (Linux x86 version)1, including docu-
mentation, benchmarks, results, publications, and source code. Although the
OptCE’s time performance is slow, it has been and will be continuously
improved, given that verifiers and SAT/SMT solvers evolve, even with the inclu-
sion of new and adaptive techniques, such as machine learning [22]. Future
work includes parallelization and state space partitioning, thus linearly reduc-
ing checking times. We also intend to enhance our model-checking procedure
for reducing the verification time by means of automatic invariant genera-
tion [34,35].
1 Available at http://esbmc.org/benchmarks/optce.zip.

http://esbmc.org/benchmarks/optce.zip

140 H.F. Albuquerque et al.

Acknowledgements. This research was supported by FAPEAM and CNPq. Higo
Albuquerque was also supported by a CAPES studentship.

References

1. Park, H., Bradley, P., Greisen Jr., P., Liu, Y., Mulligan, V.K., Kim, D.E., Baker,
D., DiMaio, F.: Simultaneous optimization of biomolecular energy functions on
features from small molecules and macromolecules. J. Chem. Theory Comput.
12(12), 6201–6212 (2016)

2. Cooper, K.D., Torczon, L.: Engineering a Compiler. Morgan Kaufmann, San Fran-
cisco (2004)

3. Deb, K.: Optimization for Engineering Design: Algorithms and Examples. Prentice-
Hall of India, New Delhi (2004)

4. Vergidis, K., Tiwari, A., Majeed, B.: Business process analysis and optimization:
beyond reengineering. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 38(1), 69–82
(2008)

5. Laarhoven, P.J.M., Aarts, E.H.L. (eds.): Simulated Annealing: Theory and Appli-
cations. Kluwer Academic Publishers, Norwell (1987)

6. Olsson, A.: Particle Swarm Optimization: Theory, Techniques and Applications,
Engineering tools, Techniques and Tables. Nova Science Publishers, USA (2011)

7. Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning,
Artificial Intelligence. Addison-Wesley Publishing Company, Boston (1989)

8. Floudas, C.: Deterministic Global Optimization. Nonconvex Optimization and Its
Applications. Springer, Berlin (2000). https://doi.org/10.1007/978-1-4757-4949-6

9. Araújo, R., Bessa, I., Cordeiro, L., Filho, J.E.C.: SMT-based verification applied
to non-convex optimization problems. In: SBESC, pp. 1–8 (2016)

10. Araújo, R., Bessa, I., Cordeiro, L., Filho, J.E.C.: Counterexample guided inductive
optimization, pp. 1–32 (2017). arXiv:1704.03738 [cs.AI]

11. Alur, R., Bodik, R., Juniwal, G., Martin, M.M.K., Raghothaman, M., Seshia, S.A.,
Singh, R., Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In:
FMCAD, pp. 1–8 (2013)

12. Solar-Lezama, A.: The sketching approach to program synthesis. In: Hu, Z. (ed.)
APLAS 2009. LNCS, vol. 5904, pp. 4–13. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-10672-9_3

13. Kroening, D., Tautschnig, M.: CBMC – C bounded model checker. In: Ábrahám,
E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 389–391. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_26

14. Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-based bounded model checking
for embedded ANSI-C software. IEEE TSE 38(4), 957–974 (2012)

15. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 93–
107. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7_7

16. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

17. Brummayer, R., Biere, A.: Boolector: an efficient SMT solver for bit-vectors
and arrays. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS,
vol. 5505, pp. 174–177. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-00768-2_16

https://doi.org/10.1007/978-1-4757-4949-6
http://arxiv.org/abs/1704.03738
https://doi.org/10.1007/978-3-642-10672-9_3
https://doi.org/10.1007/978-3-642-10672-9_3
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-00768-2_16
https://doi.org/10.1007/978-3-642-00768-2_16

OptCE: A Counterexample-Guided Inductive Optimization Solver 141

18. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3_37

19. Jamil, M., Yang, X.: A literature survey of benchmark functions for global opti-
mization problems, CoRR abs/1308.4008. http://arxiv.org/abs/1308.4008

20. Baier, C., Katoen, J.-P.: Principles of Model Checking (Representation and Mind
Series). The MIT Press, Cambridge (2008)

21. Morse, J., Ramalho, M., Cordeiro, L., Nicole, D., Fischer, B.: ESBMC 1.22. In:
Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 405–407.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_31

22. Hutter, F., Babic, D., Hoos, H.H., Hu, A.J.: Boosting verification by automatic
tuning of decision procedures. In: FMCAD, pp. 27–34 (2007)

23. The Mathworks Inc, Matlab Optimization Toolbox User’s Guide (2016)
24. Nieuwenhuis, R., Oliveras, A.: On SAT modulo theories and optimization problems.

In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 156–169. Springer,
Heidelberg (2006). https://doi.org/10.1007/11814948_18

25. Bauer, A., Pister, M., Tautschnig, M.: Tool-support for the analysis of hybrid
systems and models. In: DATE, pp. 924–929 (2007)

26. Nuzzo, P., Puggelli, A.A.A., Seshia, S.A., Sangiovanni-Vincentelli, A.L.: CalCS:
SMT solving for non-linear convex constraints, Technical report UCB/EECS-2010-
100, EECS Department, University of California, Berkeley, Jun 2010

27. Shoukry, Y., Nuzzo, P., Saha, I., Sangiovanni-Vincentelli, A.L., Seshia, S.A., Pap-
pas, G.J., Tabuada, P.: Scalable lazy smt-based motion planning. In: CDC, pp.
6683–6688 (2016)

28. Shoukry, Y., Nuzzo, P., Sangiovanni-Vincentelli, A.L., Seshia, S.A., Pappas, G.J.,
Tabuada, P.: SMC: satisfiability modulo convex optimization. In: HSCC, pp. 19–28
(2017)

29. Bjørner, N., Phan, A.-D., Fleckenstein, L.: VZ - an optimizing SMT solver. In:
Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 194–199. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_14

30. Li, Y., Albarghouthi, A., Kincaid, Z., Gurfinkel, A., Chechik, M.: Symbolic opti-
mization with SMT Solvers. In: POPL, pp. 607–618 (2014)

31. Sebastiani, R., Trentin, P.: OptiMathSAT: a tool for optimization modulo theories.
In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 447–454.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_27

32. Trindade, A., Ismail, H., Cordeiro, L.: Applying multi-core model checking to
hardware-software partitioning in embedded systems. In: SBESC, pp. 102–105
(2015)

33. Trindade, A., Cordeiro, L.: Applying SMT-based verification to hardware/software
partitioning in embedded systems. Des. Autom. Embed. Syst. 20(1), 1–19 (2016)

34. Rocha, H., Ismail, H., Cordeiro, L., Barreto, R.: Model checking embedded C soft-
ware using k-induction and invariants. In: SBESC, pp. 90–95 (2015)

35. Gadelha, M.Y.R., Ismail, H.I., Cordeiro, L.C.: Handling loops in bounded model
checking of C programs via k-induction. STTT 19(1), 97–114 (2017)

https://doi.org/10.1007/978-3-540-24605-3_37
http://arxiv.org/abs/1308.4008
https://doi.org/10.1007/978-3-642-54862-8_31
https://doi.org/10.1007/11814948_18
https://doi.org/10.1007/978-3-662-46681-0_14
https://doi.org/10.1007/978-3-319-21690-4_27

Formal Analysis of the Information Leakage
of the DC-Nets and Crowds Anonymity

Protocols

Arthur Américo1(B), Artur Vaz1, Mário S. Alvim1, Sérgio V.A. Campos1,
and Annabelle McIver2

1 Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
aamerico@dcc.ufmg.br

2 Macquarie University, Sydney, Australia

Abstract. A crucial goal in computer security is to protect sensitive
information from unwanted disclosure. However, some leakage is often
unavoidable, be it by design of the system or by technological limitations.
The field of Quantitative Information Flow (QIF) is concerned with the
quantification, and limitation, of information leakage in systems.

The QIF framework models systems as information-theoretic chan-
nels taking (secret) inputs and producing (observable) outputs, thereby
increasing the adversary’s knowledge about the secret value, as measured
by some information metric.

In this paper we use probabilistic model checking to obtain channels
modeling two popular anonymity protocols, the Dining Cryptographers
(a.k.a. DC-Nets) and Crowds, in two versions each. We then derive the
systems’ capacities w.r.t. the g-leakage framework, which are robust upper
bounds on information leakage that hold irrespectively of the probability
distribution on secret values, or of the interests and goals of the adversary.
To the best of our knowledge, this is the most general QIF analyses of such
protocols.

Keywords: Quantitative Information Flow · Formal methods · Model
checking · Dining Cryptographers · Crowds · g-leakage

1 Introduction

Protecting sensitive information is a crucial goal of computational security, and
the more dependent human affairs are on computational systems, the more press-
ing becomes the matter. Ideally, we would like to prevent all leakage of sensitive
information, but this might not be achievable in practice. For example, a pass-
word checker on an ATM will always leak some information—either by accepting
the user’s input (which completely reveals the password value), or by rejecting
it (which rules out one possible value).

Nevertheless we use ATMs regularly, and many other systems suffering from
similar issues. We are comfortable in doing so not because they do not leak
c© Springer International Publishing AG 2017
S. Cavalheiro and J. Fiadeiro (Eds.): SBMF 2017, LNCS 10623, pp. 142–158, 2017.
https://doi.org/10.1007/978-3-319-70848-5_10

Formal Analysis of the Information Leakage of Anonymity Protocols 143

sensitive information, but because we consider the amount of information they
leak to be “acceptable”. In fact, most systems, either by technical limitation or
by design, leak some information, and developing ways to measure how much
information is leaked is essential in order to analyze the security of such systems.
However, quantifying leakage or guaranteeing that it is limited is a difficult task.

Quantitative Information Flow (QIF) is the branch of security that studies
the amount of information leaked by a system. It has seen growing interest over
the past decade, including foundational works [4,8,11,15,22,27,35], verification
of information flow properties [6,10,13,14,16,24,36], detection of real system
vulnerabilities [20,23], and, of course, methods to reduce information leakage.

In QIF, security systems are modeled as information-theoretical channels,
from which various properties of interest can be deduced. One crucial, and in
general non-trivial task, however, is to compute the channel corresponding to the
behavior of a given computational system—even for small but intricate protocols.

In this paper we describe a general procedure to derive such channels using
probabilistic model checking. Using this procedure we model the Dining Cryp-
tographers (a.k.a. DC-Nets) [12], and Crowds [33], two well-known anonymity
protocols, in two variations each: (i) the standard DC-Nets, in which nodes are
organized in a ring; (ii) a version of DC-Nets in which nodes are all connected to
each other; (iii) the standard Crowds protocols; and (iv) a version of Crowds in
which nodes are organized in a grid and each node can only communicate with its
immediate neighbors. We then analyze them using the state of art in QIF met-
rics: the g-vulnerability framework [5]. More precisely, we derive g-capacities [3]
of such channels, which are robust upper bounds on the information leakage they
may present in any possible context of execution. This means that the bounds
computed hold irrespectively of the probability distribution on secret values, or
of the interests and goals of an adversary. To the best of our knowledge, this is
the most general information-flow analyses of such protocols.

The main contributions of this paper are:

1. Allowing anonymity protocols to be expressed in a precise modeling language
which closely reflects their implementation.

2. A direct computation of the relevant channels.
3. The first characterization of the g-capacities of the Dining Cryptographers

and the Crowds anonymity protocols, which are state-of-the-art robust mea-
sures of information flow.

4. A detailed comparison of the superiority of one variant of each protocol over
the other in terms of information leakage guarantees.

Future work could lead to a general purpose tool support to allow the com-
putation of critical information flow properties.

This remaining of this paper is organized as follows. Section 2 reviews nec-
essary background on QIF and on probabilistic model checking, including the
PRISM tool. Section 3 describes the Dining Cryptographers and the Crowds
anonymity protocols, in two variations each. Section 4 describes the general pro-
cedure using probabilistic model checking to derive channels from protocols, and
presents the channels produced for the protocols we study. Section 5 analyzes the

144 A. Américo et al.

channels obtained the in light of QIF metrics. Finally, Sect. 6 discusses related
work, and Sect. 7 discusses future work, and concludes.

2 Preliminaries

In this section we review basic concepts from quantitative information flow, and
from probabilistic model checking.

2.1 Quantitative Information Flow

Secrets and Vulnerability. A secret is some piece of sensitive information the
defender wants to protect, such as a user’s password, social security number, or
current location. The attacker usually only has some partial knowledge about
the value of a secret, represented as a probability distribution on secrets called
a prior. We denote by X the set of possible secrets, and we typically use π to
denote a prior belonging to the set DX of probability distributions over X .

The vulnerability of a secret is a measure of the utility of the attacker’s knowl-
edge about the secret. Several notions of vulnerability (or their dual concept,
entropy) have been proposed in the literature, including Shannon entropy [34],
guessing entropy [25], and Bayes vulnerability/risk [11,35].

Recently, the g-vulnerability framework [5] has been proposed, consisting of a
family of vulnerability measures that capture various adversarial models. It has
been shown that these functions coincide with the set of continuous and convex
functions on DX , and are, in a precise sense, the most general information mea-
sures w.r.t. a set of basic axioms.1 In this paper we shall adopt g-vulnerabilities
as our measures of information.

The operational scenario captured by g-vulnerabilities is parameterized by
a set W of guesses (possibly infinite) that the attacker can take w.r.t. a secret,
and a gain function g : W × X → R. The gain g(w, x) expresses the attacker’s
benefit for making guess w when the actual secret is x. Given a distribution π,
(prior) g-vulnerability measures the attacker’s success as the expected gain of
an optimal guess, being defined as

Vg [π] def= max
w∈W

∑

x∈X
π(x)g(w, x).

Channels, Posterior Vulnerability, and Leakage. Systems can be modeled
as information theoretic channels. A channel matrix, or simply a channel, C :
X × Y → R is a function in which X is a set of input values, Y is a set of
output values, and C(x, y) represents the conditional probability of the channel
producing output y ∈ Y when input x ∈ X is provided. Every channel C satisfies
0 ≤ C(x, y) ≤ 1 for all x ∈ X and y ∈ Y, and

∑
y∈Y C(x, y) = 1 for all x ∈ X .

1 More precisely, if posterior vulnerability is defined as the expectation of the vulnera-
bility of posterior distributions, the measure respects the data-processing inequality
and yields non-negative leakage iff vulnerability is convex.

Formal Analysis of the Information Leakage of Anonymity Protocols 145

A distribution π ∈ DX and a channel C with inputs X and outputs Y
induce a joint distribution p(x, y) = π(x)C(x, y) on X × Y, producing joint
random variables X,Y with marginal probabilities p(x) =

∑
y p(x, y) and p(y) =∑

x p(x, y), and conditional probabilities p(x|y) = p(x,y)/p(y) if p(y) �= 0. For a
given y (s.t. p(y) �= 0), the conditional probabilities p(x|y) for each x ∈ X form
the posterior distribution pX|y.2

A channel C in which X is a set of secret values and Y is a set of observable
values produced by a system can be used to model computations on secrets.
Assuming the attacker has prior knowledge π about the secret value, knows how
a channel C works, and can observe the channel’s outputs, the effect of the
channel is to update the attacker’s knowledge from a prior π to a collection of
posteriors pX|y, each occurring with probability p(y).3

Example 1. Given X = {x1, x2, x3} and Y = {y1, y2, y3, y4}, and the channel
matrix C below, the (uniform) prior π = (1/3, 1/3, 1/3) combined with C leads to
the joint matrix J as follows.

C y1 y2 y3 y4
x1 1 0 0 0
x2 0 1/2 1/4 1/4
x3

1/2 1/3 1/6 0

π−→
J y1 y2 y3 y4
x1

1/3 0 0 0
x2 0 1/6 1/12 1/12
x3

1/6 1/9 1/18 0

Summing the columns of J gives the marginal distribution pY =
(1/2, 5/18, 5/36, 1/12), and normalizing gives the posterior distributions pX|y1 =
(2/3, 0, 1/3), pX|y2 = (0, 3/5, 2/5), pX|y3 = (0, 3/5, 2/5), and pX|y4 = (0, 1, 0). ��

The posterior vulnerability is the vulnerability of the secret after the attacker
observed the output of the channel. Formally, given a g-vulnerability Vg, the
posterior g-vulnerability w.r.t. a prior π and a channel C is defined as

Vg[π,C] def=
∑

y∈Y
p(y)Vg(p(X|y)

=
∑

y∈Y
max
w∈W

∑

x∈X
π(x)C(x, y)g(w, x).

The information leakage of a channel C under a prior π is a compari-
son between the vulnerability of the secret before the system was run—called
prior vulnerability—and the posterior vulnerability of the secret. Leakage, then,
reflects by how much the observation of the system’s outputs increases the utility
of the attacker’s knowledge about the secret. It can be defined either

multiplicatively: Lg[π,C] =
Vg[π,C]
Vg[π]

,

2 To avoid ambiguity, we may write probabilities with subscripts, e.g., pXY or pY .
3 This collection of posterior distributions is, in fact, a distribution on (posterior)

distributions, and is called a hyper-distribution on secrets [27].

146 A. Américo et al.

which measures the relative increase in the adversary’s information about the
secret; or

additively: L+
g [π,C] = Vg[π,C] − Vg[π],

which measures the absolute increase in the adversary’s information.
Multiplicative and additive versions of leakage provide complimentary infor-

mation about the behavior of a channel. Depending on the system itself, on the
nature of the secret inputs, and even on the interests of the adversary, one def-
inition of leakage may be more suitable than the other to express information
leakage on a certain scenario, but in general a proper assessment of leakage may
have to take both versions into consideration [3].

Capacities. Although both multiplicative and additive g-leakages represent
useful quantities, to properly compute them one needs to know not only the
channel C representing the system, but also the prior π and the gain-function
g, and both can vary depending on the adversary’s knowledge and interests.
For robustness, we can consider capacities, which are leakage measures that
universally quantify over the prior π, over the gain function g, or over both,
making the measurements less dependent on the particular context in which the
system will run.

Quantifying over the prior π acknowledges that, in many situations, it is
unknown and the assumption that it is uniform is not reasonable. Quantifying
over the gain function g acknowledges that we might not know the value to the
adversary of different sorts of partial information about the secret, neither now
nor even in the future. Combining all ways of quantifying over π and g (one,
other, or both), and the two versions of leakage (multiplicative and additive),
we arrive at a total of six types of capacities, which are depicted in Table 1.

Table 1. Types of capacities.

Types of capacities Multiplicative leakage Additive leakage

For all π, fixed g Lg[∀, C] = max
π

Lg[π, C] L+
g [∀, C] = max

π
L+

g [π, C]

Fixed π, for all g L∀[π, C] = max
g

Lg[π, C] L+
∀ [π, C] = max

g
L+

g [π, C]

For all π, for all g L∀[∀, C] = max
π,g

Lg[π, C] L+
∀ [∀, C] = max

π,g
L+

g [π, C]

Although finding a way to compute the capacities Lg[∀, C] and L+
∀ [∀, C] is

still an open problem, there are known algorithms for computing the other four
capacities [3]. More precisely, L∀[π,C], L∀[∀, C], and L+

∀ [π,C] can be computed
in time linear on the size of the channel C. L+

g [∀, C], however, is NP-hard. We
will use these capacities to compare our protocols in Sect. 5.

Capacities are upper bounds on the information leakage of a protocol over a
variety of combinations of adversarial prior knowledge about the secret (captured

Formal Analysis of the Information Leakage of Anonymity Protocols 147

by different priors), and of adversarial intentions and interests (captured by
different gain functions). For this reason, they are particularly useful bounds on
the leakage of channels that will execute in possibly unknown contexts.

2.2 Probabilistic Model Checking

Here we briefly review key concepts from probabilistic model checking, and some
of the basic features of the model checker we use, PRISM [1]. Our formalism
and notation are similar to that used by C. Baier and J.-P. Katoen [7], and
D. Parker [31].

Discrete Time Markov Chains. Probabilistic model checking works by mod-
eling the system of interest as a probabilistic automaton. All protocols in this
paper are modeled as discrete-time Markov chains (DTMC).

A discrete-time Markov chain M is a tuple M = (S, P, i, AP,L) such that S
is a (finite and nonempty) set of states, P : S × S → [0, 1] is the probabilistic
transition function, i ∈ S is the initial state, AP is the set of atomic propositions,
and L : S → 2AP is a labeling function. We also require that, for all s ∈ S,∑

s′∈S P (s, s′) = 1.
A path ω in a DTMC is a infinite sequence of states s0s1... such that, for

all k ≥ 0, P (sk, sk+1) > 0. Any execution of a DTMC corresponds to a path.
Therefore, in order to reason about probabilities over executions of a DTMC,
we must first associate a probability to each path. For each s ∈ S, we define
Paths to be the set of all paths that start on s. A probability distribution Probs

over Paths is defined as follows. Let ωf = s s1 ... sn be any finite path starting
in s, and Cyl(ωf) be the set of (infinite) paths that have ωf as a prefix. Let
Σs be the smallest σ-algebra on Paths that contains Cyl(ωf) for all ωf starting
in s. We define Probs as the unique probability distribution on Σs such that
Probs(Cyl(ωf)) = P (s, s1)...P (sn−1, sn) for all finite paths ωf starting in s.

PCTL [18]. The temporal logic used by PRISM to verify properties of DTMCs
is the PCTL (Probabilistic Computational Tree Logic), whose syntax is given by:

φ ::= true | a | φ1 ∧ φ2 | ¬φ | P��p(ψ)

ψ ::= Xφ | φ1U≤kφ2 | φ1Uφ2

Here φ represents state formulas and ψ path formulas, a is an atomic proposition,
p ∈ [0, 1], and �� is a symbol to represent either ≤, <,> or ≥. The semantics of
the probabilistic path operators P�� p is s |= P�� p(ψ) ⇔ Probs({ω ∈ Paths|ω |=
ψ}) �� p, for all s ∈ S. The operators next (X), bounded until (U≤k) and until
(U) are defined as usual.

Intuitively, P��p(ψ) is satisfied by a state s if the probability of taking a path
starting at s which satisfies ψ is in the interval determined by �� p. This operator
allows PRISM to calculate probabilities of certain event occurring, a feature that
is extremely useful in calculating channels, as we discuss in Sect. 4.

148 A. Américo et al.

3 The Dining Cryptographers and the Crowds
Anonymity Protocols

In this section we describe two well-known anonymity protocols from the liter-
ature, and their variations, the leakage analyses of which we performed.

3.1 The Dining Cryptographers Protocol

The Dining Cryptographers (DC) anonymity protocol was proposed by David
Chaum [12]. It is usually described within the following setting. Three cryptog-
raphers are invited by the NSA (The U.S. National Security Agency) to have
dinner at a restaurant. Along with the invitation, one of them might have been
secretly told by the NSA to pay the bill. Otherwise, the NSA itself would pay.
The cryptographers wish to know whether one of them was asked to pay the bill
(as opposed to the NSA paying the bill), without revealing, however, which one
of them is the payer. In order to do so, they execute the following protocol.

Sitting in a round table, each cryptographer flips a coin, and shares the result
with the cryptographer to their right. In this way each cryptographer sees the
results of only two of the coins: the one he himself flipped, and the one flipped
by the cryptographer sitting to his left. Each cryptographer then makes a public
announcement. If he is not paying the bill, he announces 0 if the results of the
two coins he sees are the same (i.e., both heads or both tails), and announces 1
if they are different. However, if the cryptographer is the payer, he announces 1
if the results of the two coins coincide, and announces 0 otherwise.

The cryptographers now can learn whether the NSA is paying: if the sum
of all three announcements (modulo 2) equals 0, the NSA is paying. If the sum
equals 1, then one of them is paying. This can be easily seen from the fact that
the announcement of each cryptographer not paying the bill is the number of
heads he has seen (modulo 2). If no one is paying, then the final result is equal to
twice the number of coins that landed heads up to modulo 2, which is certainly
0. If one of them is paying, however, the final result will be 1.

If the coins are fair, the identity of the cryptographer who pays the bill is
totally preserved, both in relation to the other two cryptographers and to any
external observer. If the coins are biased, however, the announcements made by
the cryptographers might make one of them more likely to be the payer than
the others. For example, if the coin tosses are very likely to yield tails, and only
one cryptographer announces 1, then he is probably paying the bill.

We are specially interested in scenarios with a biased coin, for some informa-
tion is leaked by the protocol. We can use QIF to precisely quantify this leakage
and we can determine by how much the attacker can improve his guessing strat-
egy. In this paper we study two different generalizations of the DC protocol,
which expand the number of cryptographers involved.

The Cycle-DC Variation. Our first variation of the DC protocol is akin to
the original, but the number of cryptographers can be any integer greater than 2.

Formal Analysis of the Information Leakage of Anonymity Protocols 149

Similarly to the original protocol, the cryptographers are arranged in a circu-
lar table, each tosses a coin and shares the result to the cryptographer at his
right. The announcements are made in the same manner as before. Also in this
scenario, one of the cryptographers is the payer if, and only if, the sum of the
announcements (modulo 2) equals 1.

The Complete-DC Variation. In our second variation of the DC protocol,
all pairs of cryptographers share a coin toss result (i.e., they form a clique). If
there are N cryptographers, each one has access to N −1 coin-toss results. After
all the coin tosses are made, each cryptographer computes the number of heads
he has seen (modulo 2). If he is not paying for the bill, this is the number that
he announces. If he is paying, however, he inverts the announcement. Since each
heads is counted twice, we also have that one of the cryptographers is paying if,
and only if, the sum of the announcements (modulo 2) equals 1.

3.2 The Crowds Protocol

The Crowds protocol was first devised to protect anonymity on web transactions.
Suppose there is a group of users who wish to make requests to a server, without
revealing their identities to that server.

The users agree to cooperate on the protocol, and take the following steps.
(1) If a user wants to send a request (we call such user an initiator), he chooses
at random a user in the group (including himself), and forwards the request to
this user. (2) If a user receives a request, he forwards it to a random user with
probability pf , and forwards it directly to the server with probability 1 − pf .
The second step is repeated until the request reaches the server.

The protocol protects the initiator’s identity because, after being forwarded
for the first time, the request has an equal probability of landing at any user of
the system. Therefore, the server does not acquire any information by observing
which user sent the request to him at the end of the process.

The analysis of the protocol becomes more interesting when there are some
corrupt users in the group. These corrupt users are in collusion with the server,
and reveal to it the identity of any regular user that sent them a request—in this
case, we say that the regular user in question was detected. Because the initiator
must be in any path of the message on its way to the server, whenever a user
is detected, he is the most likely to be the initiator. As expected, the level of
anonymity provided by the protocol in this scenario depends on the number of
users, on the number of corrupt users, and on the probability pf .

In this paper we consider two variants of the Crowds protocol.

The (original) Crowds Variation. In this variation, each user can commu-
nicate with any other user (they form a clique), and there is no restriction on
who can forward a message to whom.

150 A. Américo et al.

The Grid-Crowds Variation. A common variation of this protocol occurs
when a user is able to forward a request only to a subset of the remaining
users. One particular instance of this scenario is when users are placed on a
grid, as illustrated in Fig. 1. Edges represent users who can communicate, and
we consider the edges going off the grid to connect users at opposite sides, e.g.,
user 1 is connected to users 2, 3, 4 and 7. We consider that every user can also
communicate directly with the server.

Fig. 1. 3×3 instance
of grid-Crowds.

Other than this limitation, the protocol works as the
original: upon receiving a request, each user forwards to a
user with whom he can communicate (including himself)
with probability pf , or sends it directly to the server with
probability 1−pf . In this scenario, even if there are no
corrupt users, the server can infer some information about
the originator of the request. For example, if the server
receives a request from user 2 in Fig. 1, there is a greater
chance that it was originated by user 1 than by user 6.

On this grid variation, the information leakage of the
protocol depends not only on the number of corrupt users
and on pf , but also on where the corrupt users are located in the grid. One of our
goals is to study the effects these topological variations have on QIF measures.

4 Deriving the Channels Corresponding
to the Protocols

In this section we show how to use the PRISM model checker [1] to derive the
channels representing the behavior of the protocols we analyze.

The general procedure to compute the channel corresponding to a protocol
is the following. (1) We identify the sets X and Y representing, respectively, the
secret and observable values of the protocol. (2) We implement the protocol in
PRISM, creating variables that can uniquely identify each element on the sets
X and Y. A variable that signals the end of the protocol’s execution is used.
(3) We set the variables accordingly for each value x ∈ X , and use PRISM to
calculate the conditional probability p(y | x) for each y ∈ Y.

The third step can easily be accomplished by observing the first step, with
the aid of an operator present in PRISM. Given a model, it is possible to verify
the probability of taking a path from the initial state that respects a property
pathprop with the operator P =? [pathprop]. If the second step is correctly
observed, there is, for any y ∈ Y, a way to make pathprop equivalent to the
path formula Fy, where F is the finally operator. This path formula holds if and
only if the system’s output equals y. By setting the variables of the system to
make the secret value x ∈ X for all x, we can use this operator to systematically
calculate p(y|x) for every pair x, y, which defines our channel.

Next we illustrate how our general procedure can be applied to derive the
channels corresponding to all variations of the protocols we consider.

Formal Analysis of the Information Leakage of Anonymity Protocols 151

4.1 Modeling the Dining Cryptographers

We now discuss how to derive the channel for both variations of the DC protocol:
cycle-DC, and complete-DC. The first task is to characterize X and Y, and to
devise a suitable representation of them to implement in our code.

Let N denote the number of cryptographers in an instance of the Dining
Cryptographers protocol. In both variations of the protocol, the secret value is
the identity of who pays the bill. We have, then, X = {c1, c2, ..., cN , n} where each
ci represents the case in which cryptographer ci is the payer, and n represents
in which the case the NSA pays.

The observable values of the protocol, in both variations, are the public
announcements made by all cryptographers. We can represent these announce-
ments by a string of N bits, where the value of the bit at position i corresponds
to the announcement of the cryptographer ci. To illustrate, consider a protocol
with four cryptographers. If c1 and c2 announced 1, and c3 and c4 announced
0, this would be represented by the string 1100. Hence, we can represent all
possible outputs by taking Y = {0, 1}N .

Having established X and Y, as well as how to translate their elements into
variables in the code, we can write the protocol in PRISM language. Our imple-
mentation is available online [2]. Table 2 depicts the channels (omitting the NSA
output) computed by PRISM for cycle- and complete-DC, with the probability
of heads equal to 0.7.

Table 2. Channels for both variations of the Dining Cryptographers protocol, with the
probability of heads equal to 0.7

4.2 Modeling Crowds

We now discuss how to derive the channel for both variations of the Crowds
protocol: original Crowds, and grid-Crowds. The first step is to identify what
the sets X and Y shall represent, and to find a suitable implementation of them.

152 A. Américo et al.

In both variations of the protocol, the secret value is the identity of the
initiator of the request. There is no need to represent corrupt users, as we assume
they do not initiate requests. Therefore, we can represent the secret values set
of Crowds with N honest users by X = {u1, u2, ..., uN}.

The observable values are different in the two variations. In original Crowds,
the server does not gain any information by identifying the user who forwarded
the request to him, therefore we must have one output value di representing the
scenario in which each honest user ui was detected by a corrupt one, and another
case s representing the scenario where the server receives the request. Therefore,
we have Y = {d1, ..., dN , s}. In grid-Crowds, however, the identity of a user that
forwards a request to the server is relevant. We need, therefore, to break the
output s into multiple ones, indicating which user forwarded the request to the
server. Thus, in this second variation, we must have Y = {d1, ..., dN , s1, ..., sN}.

Having determined X and Y, it is possible to implement the protocols in the
PRISM language. Our implementation of all protocols are available online [2].

5 QIF Analyses of the Protocols

We now analyze the information-leakage of the channels corresponding to the
protocols. Recall that the smaller the capacity of a channel (c.f.r. Sect. 2.1),
the less information an adversary will obtain about the secret by observing the
output of that channel, and the safer, hence, the channel is considered.

5.1 Analyses of the Dining Cryptographers

We implemented both variations of the Dining cryptographers for 5, 6, 7, 8, and
9 cryptographers. Our results suggest the complete-DC variation is safer than
the cycle-DC variation, yielding smaller values for all capacities measured.

Results for Multiplicative Capacities. It has been proven [3] that the mul-
tiplicative capacity L∀[π,C] (which quantifies over all gain-functions g for a fixed
prior π) collapses into the multiplicative capacity L∀[∀, C] (which quantifies over
all priors and gain-functions) when the prior π has full-support. Since we con-
sider any cryptographer can be the payer, the prior has full support, and we can
focus only on the latter capacity, which can be computed as follows.

Theorem 1 ([9]). Given channelC:X×Y→R,L∀[∀, C]= log
∑

y∈Y max
x∈X

C(x, y).

Figure 2 shows the values of this capacity for both variants of the DC protocol,
and varying values of the probability p of heads. Note that the graph of capacity
must be symmetric w.r.t. p = 0.5, for a coin with probability of heads 1−p is
nothing more than a coin with probability of tails p.

Note also that in all instances of both variations, the minimum capacity is 1,
and occurs at p = 0.5. This reflects the fact that, if the coins are fair, the only
information leaked is whether the NSA is paying the bill. When p = 1, however,

Formal Analysis of the Information Leakage of Anonymity Protocols 153

Fig. 2. Capacities for both variations of the Dining Cryptographers, and different prob-
abilities of heads. The x-axis, for the value of probability, is not in scale.

all coin tosses yield heads, and any observer can deduce with certainty who is
paying the bill from the announcements of the cryptographers. In this case the
capacity reaches its maximum, being log(n + 1) for n cryptographers, for the
outputs of the protocol always reveal the payer’s identity.

It is clear from the graph that the complete variation leaks less than the
cycle one. Also, while the capacity of the cycle variation increases rapidly even
when p approaches 0.5, the complete variation is less susceptible to these small
changes, maintaining information leakage close to 0.

Results for Additive Capacity. The additive capacity L+
∀ [π,C] (quantifying

over all gain functions g, for a given prior π) can be computed by L+
∀ [π,C] =∑

x,y π(x)|C(x, y) − ∑
x′ π(x′)C(x′, y)| [3]. Note that, unlike its multiplicative

counterpart, this capacity actually depends on the prior π.
Figure 2 shows the values for this capacity for an uniform prior πu, and

varying probabilities p of heads. The graphs confirm that the minimum and
maximum values of information leakages occur, respectively, for p = 0.5 and

154 A. Américo et al.

p = 1. We can see that complete-DC is always more secure than cycle-DC, and
its capacity keeps almost unaltered until p deviates substantially from 0.5.

5.2 Analyses of Crowds

We implemented both variants of the Crowds protocol for 9 users, and from 1
up to 3 corrupted users.

In particular, in grid-Crowds, we need to consider another variable: the posi-
tion of the corrupt users makes a great difference in the channels’ capacities.
Figure 3 shows all possible positions for three corrupt users on a 3× 3 grid,
up to symmetry. (Recall that the edges going off the grid connect at opposite
sides—e.g., user 1 can communicate with user 3 and with user 7.) If, for instance,
the corrupt users are 1, 2 and 3, each honest user would be connected to only
one corrupt user. If the corrupt were 1, 5 and 9, however, each honest user would
be connected to two corrupt ones. Therefore, the chance that the initiator will
forward a message directly to a corrupt user is 20% on the first scenario, and
40% on the second one (please recall that the initiator may send the message
to itself). Thus, it is natural to expect that the capacities for the former will be
smaller than for the latter.

Fig. 3. All positions (up to symmetry) for three corrupted users (colored in dark) on
a 3 × 3 grid.

Results for Multiplicative Capacities. We compute L∀[∀, C] using Theo-
rem 1. Figure 4 shows the corresponding values for 9 users, both in original DC
and in grid-DC. Note that the probability pf of forwarding does not influence
multiplicative capacity in the original DC, which confirms a known result from
the literature [17]. However, we can see that it does for the grid variation. To
understand this, notice that even if the originator does not forward the message
to a corrupt user at first, his immediate neighbors are more likely to receive the
message than the users he cannot communicate with. For example, if user 8 is
detected in the 3 × 3 grid, it is more probable that the originator was user 7
than user 4. Therefore, as the expected number of interactions between users
decreases with pf , the more likely it is that a message is detected by a corrupt
user or forwarded to the server near its originator.

As we can verify, the capacities of the channels on the grid variation varies
considerably according to the position of the corrupt users. The results also reit-
erate our intuition that, for the 3× 3 grid with three corrupt users, the protocol
where 1, 2 and 3 are the corrupt users would be the safer one.

Formal Analysis of the Information Leakage of Anonymity Protocols 155

Fig. 4. Capacities for both variations of Crowds, and varying number of corrupt users.
The brackets in the captions indicate positions of corrupt users.

It is also interesting to notice that some choice of corrupt users in grid-DC
actually yield smaller capacities than the original variation. For 9 users with 3
corrupt ones, for instance, the odds of the initiator being detected are 33%. As
we have seen, when the corrupt users are 1, 2 and 3 in the 3× 3 grid, this chance
is 20%, and our data suggest that this difference is sufficient to compensate the
extra leakage usually caused by the grid structure.

Results for Additive Capacity. To calculate this capacity, we again use the
equation on Sect. 5.1 and consider a uniform prior πu. The results are shown
on Fig. 4. We can verify that the additive capacities for the original Crowds
protocol also do not vary with pf . Also, they behave quite differently from their
multiplicative counterparts. For example, consider again the protocol with 3
corrupt users in positions 1, 2 and 3 in the 3× 3 grid. The multiplicative capacity

156 A. Américo et al.

of this scenario is always smaller that of the regular protocol, but this is not true
at all for the additive capacity.

6 Related Work

In this paper we have explored the use of model checking to compute bounds on
quantitative information flow. Our approach is to express protocols as transition
systems and then to use probabilistic model checking to compute a channel
abstraction. The benefits of this approach are that protocols can be expressed
in a direct way, and their abstraction as a channel can be easily computed.
By computing the whole channel, rather than say a specific leakage or capacity
measure, we make it available for use with any appropriate gain function.

Other work on computing information flow [28] gives a semantics of pro-
grams as hidden Markov models, of which channels are a special case. This
allows hyper-distributions—a compact form of posterior joint distributions—to
be computed directly. With this generality the monadic features of functional
programming languages can be exploited to compute leakage w.r.t. arbitrary
gain functions [29].

Other approaches to computing information flow typically use alternative
measures. For example, McCamant and Ernst [26] provide estimates for the
quantity of bits flowing from input to output (of programs) using network flow
capacity. Novakovic [30] uses a model based on mutual information (Shannon)
and min-entropy; the starting point for the analysis is a program expressed in
a probabilistic imperative language, with an interpretation based on DTMCs.
High Order Logic theorem provers were used by Hölz and Nipkow [21] to study
properties of the Crowds protocol and its behavior regarding Shannon entropy,
and by Helali et al. [19] to derive general results regarding min-entropy and belief
min-entropy. Finally, Phan et al. [32] use reliability analysis to quantify leaks,
also based on Shannon- and min-entropy.

7 Conclusions and Future Work

In this work we presented a systematic way of deriving channels representing
the behavior of security protocols, and used these channels to derive robust
information-flow guarantees about these protocols. More precisely, we provided
the first analyses of additive and multiplicative g-capacities of two versions of
the Dining Cryptographers and the Crowds anonymity protocols. The bounds
provided hold irrespectively of the probability distribution on secret values, or of
the interests and goals of an adversary, constituting, to the best of our knowledge,
the most general information-flow analyses of such protocols ever performed.

Future work could lead to a general purpose tool support to allow the com-
putation of critical information flow properties. Moreover, we want to explore
algorithms for computing capacities for systems whose possible contexts of exe-
cution are limited in a more restricted set of priors and gain-functions.

Formal Analysis of the Information Leakage of Anonymity Protocols 157

Acknowledgments. Arthur Américo, Artur Vaz, Mário S. Alvim, and Sérgio V. A.
Campos were supported by CNPq, CAPES, and FAPEMIG.

References

1. PRISM: A Probabilistic Symbolic Model Checker. www.prismmodelchecker.org/
2. http://homepages.dcc.ufmg.br/∼arturvaz/sbmf/
3. Alvim, M.S., Chatzikokolakis, K., McIver, A., Morgan, C., Palamidessi, C., Smith,

G.: Additive and multiplicative notions of leakage, and their capacities. In: Pro-
ceedings of CSF, pp. 308–322. IEEE (2014)

4. Alvim, M.S., Chatzikokolakis, K., McIver, A., Morgan, C., Palamidessi, C., Smith,
G.: Axioms for information leakage. In: Proceedings of CSF, pp. 77–92 (2016)

5. Alvim, M.S., Chatzikokolakis, K., Palamidessi, C., Smith, G.: Measuring informa-
tion leakage using generalized gain functions. In: Proceedings of CSF, pp. 265–279
(2012)

6. Andrés, M.E., Palamidessi, C., Rossum, P., Smith, G.: Computing the leakage of
information-hiding systems. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010.
LNCS, vol. 6015, pp. 373–389. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-12002-2 32

7. Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press (2008)
8. Boreale, M., Pampaloni, F.: Quantitative information flow under generic leakage

functions and adaptive adversaries. Logical Methods Comput. Sci. 11(4:5), 1–31
(2015)

9. Braun, C., Chatzikokolakis, K., Palamidessi, C.: Quantitative notions of leakage
for one-try attacks. Electron. Theoret. Comput. Sci. 249, 75–91 (2009)

10. Chatzikokolakis, K., Chothia, T., Guha, A.: Statistical measurement of infor-
mation leakage. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS,
vol. 6015, pp. 390–404. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-12002-2 33

11. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: On the Bayes risk in
information-hiding protocols. J. Comp. Security 16(5), 531–571 (2008)

12. Chaum, D.: The dining cryptographers problem: Unconditional sender and recipi-
ent untraceability. J. Cryptology 1(1), 65–75 (1988)

13. Chothia, T., Kawamoto, Y., Novakovic, C.: LeakWatch: estimating information
leakage from Java Programs. In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014.
LNCS, vol. 8713, pp. 219–236. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11212-1 13

14. Chothia, T., Kawamoto, Y., Novakovic, C., Parker, D.: Probabilistic point-to-point
information leakage. In: Proceedings of CSF, pp. 193–205. IEEE Computer Society
(2013)

15. Clark, D., Hunt, S., Malacaria, P.: Quantitative information flow, relations and
polymorphic types. J. Logic Comput. 18(2), 181–199 (2005)

16. Clark, D., Hunt, S., Malacaria, P.: A static analysis for quantifying information
flow in a simple imperative language. J. Comp. Security 15(3), 321–371 (2007)

17. Espinoza, B., Smith, G.: Min-entropy as a resource. Inf. Comp. 226, 57–75 (2013)
18. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal

Aspects Comput. 6(5), 512–535 (1994)

www.prismmodelchecker.org/
http://homepages.dcc.ufmg.br/~arturvaz/sbmf/
https://doi.org/10.1007/978-3-642-12002-2_32
https://doi.org/10.1007/978-3-642-12002-2_32
https://doi.org/10.1007/978-3-642-12002-2_33
https://doi.org/10.1007/978-3-642-12002-2_33
https://doi.org/10.1007/978-3-319-11212-1_13
https://doi.org/10.1007/978-3-319-11212-1_13

158 A. Américo et al.

19. Helali, G., Hasan, O., Tahar, S.: Formal analysis of information flow using min-
entropy and belief min-entropy. In: Iyoda, J., de Leonardo, M. (eds.) SBMF 2013.
LNCS, vol. 8195, pp. 131–146. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-41071-0 10

20. Heusser, J., Malacaria, P.: Quantifying information leaks in software. In: Proceed-
ings of ACSAC, pp. 261–269. ACM (2010)

21. Hölzl, J., Nipkow, T.: Interactive verification of Markov Chains: two distributed
protocol case studies, p. 103 (2012)

22. Köpf, B., Basin, D.A.: An information-theoretic model for adaptive side-channel
attacks. In: Proceedings of CCS, pp. 286–296. ACM (2007)

23. Köpf, B., Mauborgne, L., Ochoa, M.: Automatic quantification of cache
side-channels. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS,
vol. 7358, pp. 564–580. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-31424-7 40

24. Köpf, B., Rybalchenko, A.: Approximation and randomization for quantitative
information-flow analysis. In: Proceedings of CSF, pp. 3–14. IEEE (2010)

25. Massey, J.L.: Guessing and entropy. In: Proceedings of the IEEE International
Symposium on Information Theory, p. 204. IEEE (1994)

26. McCamant, S., Ernst, M.D.: Quantitative information flow as network flow capac-
ity. In: Proceedings of SIGPLAN, Tucson, AZ, USA, 9–11 June 2008, pp. 193–205
(2008)

27. McIver, A., Meinicke, L., Morgan, C.: Compositional closure for Bayes risk in
probabilistic noninterference. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer
auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 223–235.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14162-1 19

28. McIver, A., Morgan, C., Rabehaja, T.M.: Abstract hidden Markov Models: a
monadic account of quantitative information flow. In: Proceedings of LICS, pp.
597–608 (2015)

29. Morgan, C.: A Haskell program to compute hyper distributions for measuring infor-
mation leakage (2017). http://www.cse.unsw.edu.au/∼carrollm/Hypers170731.zip

30. Novakovic, C.: Computing and estimating information leakage with a quantitative
point-to-point information flow model. PhD thesis, Birmingham University, UK
(2014)

31. Parker, D.: Implementation of symbolic model checking for probabilistic systems.
PhD thesis, University of Birmingham (2002)

32. Phan, Q., Malacaria, P., Pasareanu, C.S., d’Amorim, M.: Quantifying information
leaks using reliability analysis. In: Proceedings of SPIN, pp. 105–108 (2014)

33. Reiter, M.K., Rubin, A.D.: Crowds: anonymity for Web transactions. ACM Trans.
Inform. Syst. Secur. 1(1), 66–92 (1998)

34. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J.
27(379–423), 625–56 (1948)

35. Smith, G.: On the foundations of quantitative information flow. In: Alfaro, L. (ed.)
FoSSaCS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00596-1 21

36. Yasuoka, H., Terauchi, T.: Quantitative information flow as safety and liveness
hyperproperties. Theor. Comp. Sci. 538, 167–182 (2014)

https://doi.org/10.1007/978-3-642-41071-0_10
https://doi.org/10.1007/978-3-642-41071-0_10
https://doi.org/10.1007/978-3-642-31424-7_40
https://doi.org/10.1007/978-3-642-31424-7_40
https://doi.org/10.1007/978-3-642-14162-1_19
http://www.cse.unsw.edu.au/~carrollm/Hypers170731.zip
https://doi.org/10.1007/978-3-642-00596-1_21
https://doi.org/10.1007/978-3-642-00596-1_21

Refinement and Verification

A Refinement Relation for Families
of Timed Automata

Guillermina Cledou(B), José Proença, and Lúıs S. Barbosa

HASLab INESC TEC, University of Minho, Braga, Portugal
mgc@inesctec.pt, {jose.proenca,lsb}@di.uminho.pt

Abstract. Software Product Lines (SPLs) are families of systems that
share a high number of common assets while differing in others. In
component-based systems, components themselves can be SPLs, i.e.,
each component can be seen as a family of variations, with different
interfaces and functionalities, typically parameterized by a set of features
and a feature model that specifies the valid combinations of features.
This paper explores how to safely replace such families of components
with more refined ones. We propose a notion of refinement for Interface
Featured Timed Automata (IFTA), a formalism to model families of
timed automata with support for multi-action transitions. We separate
the notion of IFTA refinement into behavioral and variability refinement,
i.e., the refinement of the underlying timed automata and feature model.
Furthermore, we define behavioral refinement for the semantic level, i.e.,
transition systems, as an alternating simulation between systems, and
lift this definition to IFTA refinement. We illustrate this notion with
examples throughout the text and show that refinement is a pre-order
and compositional.

Keywords: Software product lines · Refinement · Timed automata

1 Introduction

A Software Product Line (SPL) is a set of software systems that share a high
number of features while differing in others, where concrete configurations are
derived from a core of common assets in a prescribed way. A feature is referred
as a characteristic of the system visible to the user. A concrete configuration of
the SPL results in a particular product and is given by a selection of features.
The set of all valid feature selections, i.e., the products that can be derived from
the SPL, is determined by a feature model.

As in the development of any complex system, common and variable assets of
an SPL, such as software components, can be designed and developed by different
engineers agreeing on a common specification of what their interfaces should be.
In this sense, being able to reason about how standalone components, and in this
case families of components, implemented separately satisfy a given specification
becomes crucial. In this paper, we propose a notion of refinement for real timed

c© Springer International Publishing AG 2017
S. Cavalheiro and J. Fiadeiro (Eds.): SBMF 2017, LNCS 10623, pp. 161–178, 2017.
https://doi.org/10.1007/978-3-319-70848-5_11

162 G. Cledou et al.

software product lines that are modeled as Interface Featured Timed Automata
(IFTA), a formalism to model families of timed automata. We introduced IFTA
in [7] as an extension to Featured Timed Automata, in turn introduced by Cordy
et al. [8], which incorporates interfaces in order to reason about variability during
composition and prepare the way to reason about refinement. Figure 1 shows an
example of an IFTA representing a family of coffee machines (left), and its cor-
responding projections into its concrete products (right), a coffee machine that
serves coffee and cappuccino (top right) and a coffee machines that serves only
coffee (bottom right), both represented as Timed Automata (TA). Projections
are obtained by selecting a valid feature selection. The necessary background on
(Interface Featured) Timed Automata is introduced in Sect. 2. Briefly, an IFTA
is a TA with: logic guards over transitions, restricting the set of products where
the transitions are present; a logic guard associated to the automaton represent-
ing the feature model; interface actions representing communication points with
other automata; and inferred logic guards associated to interfaces, indicating the
set of products where the interface action was designed to be present in.

Fig. 1. Example of an IFTA representing a family of coffee machines (left), and its two
projections into concrete products, represented as Timed Automata (right).

Refinement allows us to compare two models of the same system presented
at different levels of abstraction. The most abstract one is referred to as the
specification, while the most detailed one is referred to as an implementation
of the system. If an implementation refines the specification, it agrees with the
requirements of the specification in the sense that one may replace the imple-
mentation in any context where the specification is used, and still obtain an
equivalent system. However, since we are dealing with families of components,
we need to reason about how a set of implementations refine a set of specifica-
tions. Figure 2 exemplifies this problem. The figure shows two composed systems
(top): one (top left), composed by an IFTA C, representing a context (here left
undefined), and an IFTA CM corresponding to the coffee machine in Fig. 1; and
the other (top right), which is a refinement of the system on the left, is com-
posed by the same context C, and a new family of coffee machines CM’ (defined
in Fig. 4). Because refinement is compositional (up to some pre-conditions), as
will be discussed in Sect. 3, it suffices to verify if CM’ refines CM (in addition to

A Refinement Relation for Families of Timed Automata 163

such pre-conditions). However, both IFTA, CM and CM’, are actually families
of components which model different concrete automata, as depicted in Fig. 2
(bottom). Thus, we need to consider if each of the new automaton CM’i, for
i = 1, . . . , 4 refines an automaton CMj , for j = 1, 2.

In order to simplify this reasoning and allow greater flexibility we separate
the notion of refinement into variability refinement – which deals with feature
model refinement, i.e., when is a set of features considered a refinement of another
one; and behavioral refinement – which captures timed automata refinement,
i.e., when a specific system refines another one. Refinement of timed automata
is defined in terms of refinement of timed transition systems, their semantic
representation.

Fig. 2. Example scenario when reasoning about refinement of families of components.
A system composed by two IFTA, C and CM (left), is refined by a more detailed system
composed by the same IFTA C and a new IFTA CM’ (right).

There are not many publications in the literature that explore the notion of a
refinement relation between two feature models. In [10] the authors reason about
four kinds of relations between feature models. However, we believe neither of
these aligns with the notion of refinement. Intuitively, a feature model refines
another one if it preserves its variability, i.e., allows the same set of products,
and such that new variability can only be defined in terms of new features.

There exist various notions of automata refinement in the literature, differing
on requirements made over the set of actions of the systems being compared,
properties inherent to the models used to specify the systems, and properties
that the relation should preserve, among others. Commonly, when dealing with
closed systems, i.e., systems that do not interact with the environment through
inputs or outputs, refinement is defined as a simulation relation [4]. The advan-
tage is that it preserves all safety properties from the specification. However,
when dealing with open systems, as in our case, simulation is a too strict rela-
tion, since it requires the implementation to have the same or less inputs than
the specification. On the one hand, this means that a refinement can not incor-
porate new behavior in terms of new inputs, which would not be a problem since
it would imply no behavioral changes in the resulting system, provided that we

164 G. Cledou et al.

can guarantee that the new inputs are not used. On the other hand, it allows
the refinement to have less inputs than the specification. But, in the case of
reactive systems, we can not replace a system for another that reacts to less
inputs than the original one. This would limit the behavior of the system, since
there will be output actions that are now not capture by the system, but are
left unattended. Then, when dealing with open systems it is common to define
refinement in terms of an alternating simulation relation [1–3,9], in which the
implementation must simulate all input behavior of the specification, while the
latter must simulate all output behavior from the implementation. For exam-
ple, de Alfaro et al. [2] introduce Interface Automata, without time, and define
the notion of refinement in terms of alternating simulation, extended to support
internal steps, i.e., internal actions from both automata which are independent
from each other. In [9] David et al. provide a complete specification theory for
Timed I/O Automata where they define refinement, logical conjunction, struc-
tural composition, and a quotient operator. However, their theory is based on
input enabled automata.

Our notion of refinement can be seen as an adaptation of [2] for families of
timed systems with support for multi-action transitions. We as well define refine-
ment as an alternating simulation, however, we relax some of the requirements
as discussed in Sect. 3.2. We show that refinement is a pre-order and congruent
with respect to IFTA operations, meaning refinement is compositional.

The rest of this document is structured as follows. Section 2 presents the
required theory to understand IFTA. Section 3 proposes a refinement relation
for IFTA. Finally, Sect. 4 concludes and hints on future work.

2 Interface Featured Timed Automata

Interface Featured Timed Automata is a mechanism introduced in [7] to enrich
Featured Timed Automata (FTA) [8] with (1) interfaces that restrict the way
multiple automata interact, and (2) transitions labelled with multiple actions
that simplify the design of synchronous coordination. Interfaces are input-output
synchronisation actions that can be linked to interfaces of other automata when
composing automata in parallel.

First, we recall some basic notions of timed automata and variability, and the
definition of IFTA. Then, we deconstruct IFTA into another formalisms, namely,
Interface Transition Systems (ITS), and Interface Featured Transition Systems
(IFTS), upon which we base the definition of refinement proposed here. Finally,
we explain IFTA operations and their properties.

2.1 IFTA Preliminaries

Informally, an IFTA is an automaton whose edges are enriched with clocks,
clock constraints (CC), feature expressions (FE), and multiple synchronisation
actions. A clock c ∈ C is a logical entity that captures the (continuous and
dense) time that has passed since it was last reset. When a timed automaton

A Refinement Relation for Families of Timed Automata 165

evolves over time, all clocks are incremented simultaneously. A clock constraint
is a logic condition over the value of a clock. A feature expression (FE) is a
logical constraint over a set of features F . Each feature denotes a unit of vari-
ability; by selecting a desired combination of features one can map an IFTA into
an (Interface) Timed Automaton. The synchronization actions can be input or
output actions, and represent the interface of the automaton, i.e., the actions
through which an automaton can communicate with other automata. Each syn-
chronization action has associated an inferred feature expression that expresses
the valid set of products in which such action was designed to be present. Finally,
an IFTA has a special feature expression representing its feature model, which
imposes restrictions over possible combinations of features.

For example, consider the IFTA CM from Fig. 1 (left). It has two locations,
�0 and �1, with a clock c and two features cf and mk , standing for the support for
brewing coffee and for including milk in the coffee. There are two input actions,
coffee?, and cappuccino?, and one output action, serve!, standing, respectively,
for the selection of coffee, cappuccino, and the action of serving the beverage. Ini-
tially the automaton is in location �0, indicated by a double-edge node (following
Uppaal1 real time model checker notation), and it can evolve either by waiting
for time to pass (incrementing the clock c) or by taking one of its two transitions
to �1. The top transition, for example, is labelled by the action coffee? and is
only active when the feature cf is present. Taking this transition triggers the
reset of the clock c back to 0, evolving to the state �1. Here it can again wait for
the time to pass, but for at most 5 time units, determined by the invariant c ≤ 5
in �1. The synchronization actions are lifted to the interface of the automaton,
depicted with and associated to the corresponding inferred feature expression.
Finally, the lower expression fm = cf defines the feature model, i.e., how the
features relate to each other. We model this as restrictions, thus, in this case cf
is a mandatory feature, however nothing is expressed about mk , meaning it can
either be present or absent.

Formally, clock constraints, feature expressions, and IFTA can be defined as
follows.

Definition 1 (Clock Constraints (CC), valuation, and satisfaction). A
clock constraint over a set of clocks C, written g ∈ CC(C) is defined by

g ::= c < n | c ≤ n | c = n | c > n | c ≥ n | g ∧ g | � (clock constraint)

where c ∈ C, and n ∈ N.
A clock valuation η for a set of clocks C is a function η : C → R≥0 that

assigns each clock c ∈ C to its current value η(c). We use RC to refer to the set
of all clock valuations over a set of clocks C. Let η0(c) = 0 for all c ∈ C be the
initial clock valuation that sets to 0 all clocks in C. We use η + d, d ∈ R≥0, to
denote the clock assignment that maps all c ∈ C to η(c) + d, and let [r �→ 0]η,
r ⊆ C, be the clock assignment that maps all clocks in r to 0 and agrees with η
for all other clocks in C \ r.

1 http://www.uppaal.org.

http://www.uppaal.org

166 G. Cledou et al.

The satisfaction of a clock constraint g by a clock valuation η, written η |= g,
is defined as follows

η |= � always
η |= c � n if η(c) � n
η |= g1 ∧ g2 if η |= g1 ∧ η |= g2

(clock satisfaction)

where � ∈ {<,≤,=, >,≥}.
Definition 2 (Feature Expressions (FE), satisfaction, and semantics).
A feature expression ϕ over a set of features F , written ϕ ∈ FE(F), is defined by

ϕ ::= f | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | � (feature expression)

where f ∈ F is a feature. The other logical connectives can be encoded as usual:
⊥ = ¬�; ϕ1 → ϕ2 = ¬ϕ1 ∨ ϕ2; and ϕ1 ↔ ϕ2 = (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1).

Given a feature selection FS ⊆ F over a set of features F , and a feature
expression ϕ ∈ FE(F), FS satisfies ϕ, noted FS |= ϕ, if

FS |= � always
FS |= f ⇔ f ∈ FS
FS |= ϕ1 ∧ ϕ2 ⇔ FS |= ϕ1 and FS |= ϕ2

FS |= ϕ1 ∨ ϕ2 ⇔ FS |= ϕ1 or FS |= ϕ2

FS |= ¬ϕ ⇔ FS �|= ϕ

(FE satisfaction)

The semantics of a feature expression ϕ with respect to a set of features F ,
denoted �ϕ�F , is the set of valid feature selections over F that satisfy ϕ, formally,

�ϕ�F = {FS ⊆ F | FS |= ϕ} (FE semantics)

Definition 3 (Interface Featured Timed Automata). An IFTA is a tuple
A = (L, l0, A,C,E, Inv , F, fm, γ) where L is a finite set of locations, l0 is the
initial location, A = I �O �H is a finite set of actions, where I is a set of input
ports, O is a set of output ports, and H is a set of hidden (internal) actions,
C is a finite set of clocks, E ⊆ L × CC(C) × 2A × 2C × L is the set of edges,
Inv : L → CC(C) is the invariant, a total function that assigns clock constraints
to locations, F is a finite set of features, fm ∈ FE (F) is a feature model defined
as a Boolean formula over features in F , and γ : E → FE (F) is a total function
that assigns feature expressions to edges.

Notation: When not clear from the context, we will use LA, l0A , AA, . . . to refer
to the elements of an IFTA A, and when using automata names with subscripts
such as A1,A2, . . . , we will simply use L1, L2, l01 , l02 , For simplicity, some-
times we write l

g,ω,r−−−−→A l′ instead of (l, g, ω, r, l′) ∈ EA, and use l
g,ω,r−−−→

ϕ
A l′ to

express that (l, g, ω, r, l′) ∈ EA and γA(l, g, ω, r, l′) = ϕ.
The interface of an IFTA A is the set PA = IA � OA of all input and output

ports of A. Given a port p ∈ PA we write p? and p! to denote that p is an input
or output port, respectively, and write p instead of {p} when clear from context.

A Refinement Relation for Families of Timed Automata 167

Notice that at this point, the definition of IFTA only incorporates the notion
of feature expressions associated to transitions through function γ, but does
not incorporate the notion of feature expressions associated to interfaces. Before
doing this, we define the notion of feature expression of an action. Given an
IFTA A, it is possible to infer for each action a ∈ AA a feature expression
based on the feature expressions of the edges in which a appears. Intuitively,
this feature expression determines the set of products requiring a. The formal
definition follows.

Definition 4 (Feature Expression of an Action). Given an IFTA A, the
inferred feature expression of any action a is the disjunction of the feature expres-
sions of all of its associated edges, defined as

̂ΓA(a) =
∨

{γA(l
g,ω,r−−−−→A l′) | a ∈ ω} (FE of an action)

Now we can associate feature expressions to the actions of an IFTA. In order
to do this, we incorporate a new function Γ to the definition of an IFTA A, and
we say that A is grounded. Thus, given an IFTA A we can construct a grounded
A = (LA, l0A , AA, CA, EA, InvA, FA, fmA, γA, Γ), where Γ : AA → FE (FA) is
a total function that assigns a feature expression to each action of A, and is
constructed based on ̂ΓA. By doing this association only once, we are fixing the
feature expressions associated to each action, such that it represents the set of
products where each action was originally design to be present in.

The need for this function and for fixing it instead of using directly ̂Γ has to
do with the way we define the composition of IFTA and the properties that we
expect from it. We discuss this in Sect. 2.3.

2.2 Semantics

The above definition of IFTA, introduced in [7], is built on top of Featured
Transition Systems [5] extended with multi-action transitions. This section dis-
cusses the decomposition of an IFTA into Interface Featured Transition Systems
(IFTS) and Interface Transition Systems (ITS). These two formalisms can be
seen as an infinite transition system semantics for IFTA, and as an IFTS with-
out variability, respectively. The notion of refinement will be presented in Sect. 3
based on the semantics of IFTA as an IFTS.

We define an ITS as a regular transition system with multi-action tran-
sitions and with an interface, i.e., we distinguish between input, output and
internal actions. An IFTS is then defined by extending ITS with variability, by
incorporating features and a feature model.

Definition 5 (Interface Transition System). An ITS is a tuple S = (St, s0,
A, T), where St is the set of states, s0 is the initial state, A = I�O�H is the set
of actions where I, O, and H are the set of input, output, and hidden actions,
respectively, and T ⊆ St × (2A ∪ R≥0) × St is the transition relation.

168 G. Cledou et al.

Definition 6 (Interface Featured Transition System). An IFTS is a tuple
S = (St, s0, A, T, F, fm, γ, Γ), where St, s0, A, T are defined as in ITS, F is a
set of features, fm is the feature model, γ : T → FE (F), is a total function
that assigns feature expressions to transitions, and Γ : A → FE(F), is a total
function that assigns feature expressions to actions.

Notation: As before, when not clear from the context, we will use StS , s0S ,
AS , . . . to refer to the elements of an I(F)TS S.

We may now present the formal definition of semantics of a grounded IFTA
in terms of an IFTS.

Definition 7 (Semantics of an IFTA as an IFTS). The semantics of a
grounded IFTA A = (L, l0, A,C,E, Inv , F, fm, γ, Γ) written �A�, is an IFTS
S = (St, s0, A, T, F, fm, γ′, Γ), where St ⊆ L × RC is the set of states, s0 =
〈�0, η0〉 is the initial state, T ⊆ St × (2A ∪ R≥0) × St is the transition relation,
and γ′ : T → FE (F) is the total function that assigns feature expressions to
transitions in T , both defined as follows.

〈�, η〉 d−→
�

〈�, η + d〉 if η |= Inv(�) and (η + d) |= Inv(�), (1)

for d ∈ R≥0

〈�, η〉 ω−→
ϕ

〈�′, η′〉 if ∃ �
g,ω,r−−−→

ϕ
�′ ∈ E s.t. η |= g, (2)

η |= Inv(l), η′ = [r �→ 0]η, and η′ |= Inv(�′)

Given a feature selection FS it is possible to project an IFTS into an ITS.
Only transitions and actions satisfied by FS are preserved by the projection.

Definition 8 (IFTS Projection). The projection of an IFTS S over a set of
features FS is an ITS S ↓FS= (StS , s0S , A, T), where A and T are defined as

T = {t ∈ TS | FS |= γS(t)}
A = {a ∈ AS | FS |= ΓS(a)}

2.3 Operations on IFTA

Two IFTA can be composed by combining their feature models and linking
interfaces, imposing new restrictions over them. The composition is built on top
of two operations: product and synchronisation. The product operation for IFTA,
unlike the classical product of timed automata, is defined over grounded IFTA
with disjoint sets of actions, clocks and features, performing their transitions in
an interleaving or synchronous-step fashion.

Definition 9 (Product of IFTA). Let A1 and A2, be two different grounded
IFTA with disjoint actions, clocks and features; then, the product of A1 and A2,
denoted A1 × A2, is

A = (L1 × L2, �01 × �02 , A, C1 ∪ C2, F1 ∪ F2, E, Inv , fm1 ∧ fm2, γ, Γ)

where A, E, Inv, γ and Γ are defined as follows

A Refinement Relation for Families of Timed Automata 169

– A = I � O � H, where I = I1 ∪ I2, O = O1 ∪ O2, and H = H1 ∪ H2.
– E and γ are defined by the rules below, for any ω1 ⊆ A1, ω2 ⊆ A2.

�1
g1,ω1,r1−−−−−→

ϕ1
1 �′

1

〈�1, �2〉 g1,ω1,r1−−−−−→
ϕ1

〈�′
1, �2〉

�2
g2,ω2,r2−−−−−→

ϕ2
2 �2

′

〈�1, �2〉 g2,ω2,r2−−−−−→
ϕ2

〈�1, �′
2〉

�1
g1,ω1,r1−−−−−→

ϕ1
1 �′

1 �2
g2,ω2,r2−−−−−→

ϕ2
2 �′

2

〈�1, �2〉 g1∧g2,ω1∪ω2,r1∪r2−−−−−−−−−−−−→
ϕ1∧ϕ2

〈�′
1, �

′
2〉

– Inv(�1, �2) = Inv1(�1) ∧ Inv2(�2).
– ∀ a∈PA · Γ (a) = Γi(a) if a ∈ Ai, for i = 1, 2.

Both top transitions represent the interleaving of both automata. The bottom
transition represents the synchronous execution of transitions from A1 and A2,
for every combination of outgoing transitions from a state �1 ∈ L1 and �2 ∈ L2.

The synchronisation operation over an IFTA A connects and synchronises
two actions a and b in AA. The resulting automaton has transitions without
neither a and b, nor both a and b. The latter become internal transitions.

Definition 10 (Synchronisation). Given a grounded IFTA A = (L, �0, A,
C, F,E, Inv , fm, γ, Γ) and two actions a, b ∈ A, the synchronisation of a and b
is given by Δa,b(A) = (L, �0, A

′, C, F,E′, Inv , fm ′, γ, Γ) where A′, E′ and fm ′

are defined as follows

– A′ = I ′ �O′ �H ′, where I ′ = I \ {a, b}, O′ = O \ {a, b}, and H ′ = H ∪{a, b}.
– E′ = {�

g,ω,r−−−−→ �′ ∈ E | a /∈ ω and b /∈ ω} ∪
{�

g,ω\{a,b},r−−−−−−−−→ �′ | �
g,ω,r−−−−→ �′ ∈ E and a ∈ ω and b ∈ ω}

– fm ′ = fm ∧ (ΓA(a) ↔ ΓA(b)).

The resulting feature model imposes new restrictions over the set of features
based on the actions being synchronised. Intuitively, if two actions a and b are
synchronised, they depend on each other. Thus, we require that they should both
be present or both absent in any valid set of features. This is done based on Γ
which gives us the original set of products in which a and b where design to be
present in.

Together, the product and the synchronisation can be used to obtain in a
compositional way, a complex IFTA built out of primitive ones. The composition
of IFTA is made by linking ports and by combining their variability models.
Thus, we define the composition of two IFTA as their product, followed by the
explicit binding of actions through synchronization. The composition is defined
for interface actions synchronized on an input-output fashion only.

Definition 11 (Composition of IFTA). Given two grounded IFTA, A1 and
A2, with disjoint set of actions, features and clocks; and a possible empty set of

170 G. Cledou et al.

bindings {(a1, b1), . . . , (an, bn)}, such that for each pair ai and bi, for 1 ≤ i ≤ n,
we have that

(ai, bi) ∈ I1 × O2 or (ai, bi) ∈ O1 × I2 (io-only)

then, their composition is a new grounded IFTA defined as follows

A1 �(a1,b1),...,(an,bn) A2 = Δa1,b1 . . . Δan,bn(A1 × A2)

Figure 3 exemplifies the composition of the coffee machine CM (top right)
from Fig. 1, and a new IFTA R, representing a router (top left), which receives
an input i?, and executes simultaneously one of its outputs, if they are present,
or receives i? and does nothing if neither output are present. The composition
is done by linking the ports o1! with coffee?, and o2! with cappuccino?. The
resulting IFTA combines the feature models of both IFTA, imposing additional
restrictions given by the binded ports, e.g., the binding (o1!, coffee?) imposes
that o1! will be present, if and only if, coffee? is present, which depends on the
feature expressions of each port, i.e., (fi ∧ fo1) ↔ cf . In the composed IFTA,
transitions with binded actions transition together, while transitions with non-
binded actions (i? and serve!) can transition independently or together.

Notice that because we define composition as the product followed by the
synchronization, the product will produce many transitions that are later cut by
the synchronization when linking actions. Then, the order in which actions are

Fig. 3. Composition of an IFTA R (top left), representing a router coordination com-
ponent, with the IFTA CM (top right), defined in Fig. 1, by binding ports (o1, coffee)
and (o2, cappuccino), yielding the IFTA at the bottom.

A Refinement Relation for Families of Timed Automata 171

linked, and therefore, the order in which transitions are cut by the synchroniza-
tion operation affects the inferred feature expression of actions. Thus, if we were
to use ̂Γ instead of Γ , synchronization would not be commutative. By fixing the
feature expression of an action before doing the product, we avoid this issue and
the synchronization remains commutative.

By allowing each IFTA to have its own feature model and taking into account
variability during composition, we can reason about how composing families of
timed automata in parallel affects the presence of interfaces and the variability
of the composed system.

Operations over IFTA satisfy the usual properties up to strong bisimulation
(∼) and are discussed in [7]. We recall them in the following theorem.

Theorem 1. Given any IFTA A1,A2 and A3, and actions a, b, c, d ∈ AA1 , such
that a, b, c, d are different actions, the following properties hold.

A1 × A2 ∼ A2 × A1 (×-commutativity)
A1 × (A2 × A3) ∼ (A1 × A2) × A3 (×-associativity)
Δa,bΔc,dA1 ∼ Δc,dΔa,bA1 (Δ-commutativity)
(Δa,bA1) × A2 ∼ Δa,b(A1 × A2) (Δ interacts well with ×)

3 Refinement

As mentioned in the introduction, there are two different aspects to be taken
into account when discussing a notion of refinement for IFTA. The first concerns
refinement of the feature model, which we call variability refinement. The second
one is refinement of timed automata obtained by projection onto a feature selec-
tion, which we call behavioural refinement. Thus, refinement of an IFTA will be
defined as a refinement of both its feature model and its projections.

3.1 Variability Refinement

Thum et al. [10] recognize four type of relations between two feature models fm1

and fm2, based on their set of products, even when their set of features, may
not coincide: fm1 refactors or is equivalent to fm2 if they model the same set
of products; fm1 specializes fm2 if the set of products of fm1 is a subset of the
products of fm2; fm1 generalizes fm2 if the set of products of fm1 is a superset
of the products of fm2; and fm1 and fm2 are arbitrarily related otherwise.

However, in order to reason about refinement of families of timed automata
we also would like to relate feature models in terms of a refinement relation.
Intuitively, a feature model fm1 refines a feature model fm2 if, when considering
the set of features of fm2, fm1 expresses exactly the same set of products as
expressed by fm2. Thus, fm1 can add new variability or details only in terms of
new features. Formally, if we consider feature models with only terminal features
[10], i.e., no abstract features, we define feature model refinement as follows.

172 G. Cledou et al.

Definition 12 (Feature model refinement). Given two feature models
fmi ∈ FE(Fi) over a set of features Fi, i = 1, 2, fm1 refines fm2, denoted
fm1 � fm2, if and only if,

F1 ⊇ F2 (preserves features)

�fm1�
F1 |F2

= �fm2�
F2 (fm1 refines fm2)

where �fm�F |F ′ = {FS ∩ F ′ | FS ∈ �fm�F }.
For example, if we consider the coffee machines CM and CM’ from Fig. 4,

we have that �fmCM � = {{cf }, {cf ,mk}} and �fmCM ′� = {{cf }, {cf ,wt}, {cf ,
mk}, {cf ,mk ,wt}}. When we restrict fmCM ′ to only features in FCM , we have
�fmCM ′�|FCM

= {{cf }, {cf ,��wt}, {cf ,mk}, {cf ,mk ,��wt}} = �fmCM �, where ��wt
means that feature wt is removed from the set. Thus, fmCM ′ � fmCM . However,
let us assume that the feature model of CM’ is fmCM ′ = cf ∧ mk instead of
just cf , then we have �fmCM ′�|FCM ′

= {{cf ,mk}, {cf ,mk ,��wt}}. In this case
fmCM ′ �� fmCM , since it does not preserves variability by not allowing a coffee
machine that only serves coffee.

Theorem 2 (� is a partial order). For any feature model fmi, for i = 1, 2, 3,
fm1 � fm1; if fm1 � fm2 and fm2 � fm3, then fm1 � fm3; and if fm1 � fm2

and fm2 � fm1, then fm1 ≡ fm2.

Proof. Immediate by unfolding definitions and set-theoretic properties.

3.2 Behavioral Refinement

Intuitively, an automata A that refines an automata B should be able to replace
B in every environment that B appears in, yielding an equivalent system. Refine-
ment allows to check if a given implementation agrees with a specification. We
consider implementations as automata that are more detailed specifications. Our
notion of refinement is similar to the one in [2], where there is an alternating
simulation between both automata: A must simulate all input behavior of B,
while B must simulate all output behavior from A. Thus, A can allow more legal
inputs, and fewer outputs, than B.

Similarly to [9] we define refinement at the semantic level, i.e., IFTS, and
then we define refinement of IFTA in terms of IFTS refinement. However, first
we define the notion of refinement for Interface Transition Systems, separating
the notion of behavioral refinement from variability refinement.

Our notion of refinement can be seen as an extension of [2] for timed systems
and multi-action transitions. Here as well, the definition of refinement must con-
sider the fact that both automata have internal actions which are independent
from each other. Since we are dealing with timed transition systems, the def-
inition of refinement must consider that internal steps can incorporate delays.
Thus, we define a transition relation that captures all transition steps that can
be done from a state s to a state s′, by any combination of internal and delay
steps.

A Refinement Relation for Families of Timed Automata 173

Definition 13. Given an ITS S and states s, s′ ∈ StS, we write s
d=⇒S s′ if

there is a sequence of transition steps from TS, such that

∃ s
d0∪τ−−−−→S s1 . . . sn

dn∪τ−−−−→S s′ and d =
n

∑

i=0

di

where di ∈ R≥0, and τ represents any internal action. For simplicity, we write
s

ω=⇒d
S s′ if there is a sequence of transition steps from TS, such that

∃ s
d=⇒S sn

ω−−→S s′

In this context, ITS refinement is defined as follows.

Definition 14 (Refinement of ITS). Given two ITS, S and T , such that
IT ⊆ IS and OS ⊆ OT , S refines T , denoted S � T , if and only if, ∃ R ⊆
StS × StT , such that (s0, t0) ∈ R and for each (s, t) ∈ R, we have

1. s
d=⇒S s′, d ∈ R≥0 then t

d=⇒T t′ and (s′, t′) ∈ R, for some t′ ∈ StT

2. s
OIs===⇒d

S s′, d ∈ R≥0, O �= ∅ then t
OIs===⇒d

T t′ and (s′, t′) ∈ R for some t′ ∈ StT

3. t
IO==⇒d

T t′, d ∈ R≥0, I �= ∅ then s
IO==⇒d

S s′ and (s′, t′) ∈ R for some s′ ∈ StS

where Is is either ∅, or has only inputs shared by both automata, Is ⊆ IT .

Condition 1 expresses that any delay d allowed by s, possibly through internal
steps, must be a delay allowed from t, possibly through internal steps. Condition
2 expresses that any transition with output O, with a possible empty set of
inputs Is ⊆ IT that are shared by both systems, which can be taken from s
after a delay d, possibly through internal steps, must simulate a (sequence of)
transition(s) from t. In case there is a multi-action transition with outputs and
inputs, such that the inputs include new inputs in IS , is considered as new
behavior incorporated by the new inputs, and as such, it is ignored. Condition 3
expresses that any transition with inputs I, with a possible empty set of outputs
O, which can be taken from t after a delay d, possibly through internal steps,
must be simulated by a (sequence of) transition(s) from s.

In comparison with de Alfaro et al., we relax some of the requirements made
over the states being compared, s and t. In particular, when considering input
labeled transitions (Condition 3), de Alfaro et al. defines that s and t are in a
refinement relationship, only if, whenever in t is possible to receive and input,
s may receive the same input. Here, we require that whenever in t is possible
to receive an input within certain time, possibly through a sequence of internal
steps, s may receive the same input within the same time, possibly through a
series of internal steps.

174 G. Cledou et al.

3.3 IFTA Refinement

Before considering refinement for families of timed automata, let us consider
refinement for IFTS. Informally, given two IFTS, S and T , S refines T if for
each product in S, the projection of S onto such product refines the projection
of T onto the same product. However, depending on the relation existing between
the set of products of S and T , this can lead to different notions of refinement.
Ideally, S should preserve the variability of T , i.e., S should allow exactly the
products in T , although it may also increase the set of features and allow more
products when considering the new features. Formally, the refinement of IFTS
and IFTA are defined as follows.

Definition 15 (Refinement of IFTS). Given two IFTS, S and T , S refines
T , denoted S � T , if and only if,

fmS � fmT (variability refinement)

∀ FS ∈ �fmS�FS · S ↓FS � T ↓FS (behaviour refinement)

Definition 16 (Refinement of IFTA). Given two grounded IFTA A and B,
A refines B, denoted A � B, if and only if, �A� � �B�.

Figure 4 shows an implementation of a family of coffee machines, CM’ (right),
which refines the IFTA CM (left). The new automaton introduces a new input,
water? that depends on a new feature wt which represents the support for serving
water. In addition, CM’ ensures that coffee is served faster than in CM, as
indicated by the invariant c ≤ 3 .

Fig. 4. Example of a family of coffee machines CM’ with new variability, interfaces and
time restrictions, refining the family CM introduced in Fig. 1.

Figure 5 shows a more complex example of refinement incorporating internal
actions. The IFTA on the left, P1, specifies a payment system using PayPal, and
is part of a larger system composed of various automata, which models a family
of licensing services introduced in [7]. The IFTA on the right, P2, represents a
more detailed implementation of P1. The specification requires that whenever
the user makes a payment through PayPal, the system will issue an error or
a success signal in less than ten units of time. The implementation deals with

A Refinement Relation for Families of Timed Automata 175

Fig. 5. An example of IFTA refinement with internal actions, where P2 � P1.

the actual login into PayPal and confirmation of the payment. In P2, after the
user requests to issue a payment through PayPal, the user must login within 5
units of time, or an error is issued. The log in can be successful or it can issue
an error in less than one unit of time. In case the user logs in successfully, a
confirmation of the payment must be issued in less than one unit of time after
which the system issues a signal of error or success. Both, P1 and P2, share
the same feature model. In addition, P2 guarantees that whenever a payment
is made through PayPal, the system will issue an error or success signal in less
than seven units of time, satisfying the requirements of P1. Thus, P2 � P1.

Refinement of IFTA is a pre-order and it is compositional. The latter allows
decomposition of refinement proofs, improving efficiency in refinement checking.
In order to be compositional, refinement must be congruent with respect to
IFTA operations, product and synchronization. The former is straightforward,
however stronger pre-conditions are required to ensure congruence with respect
to synchronization.

The problem arises with feature model refinement. Intuitively, by definition
of refinement, in the implementation an input can be present in more products
and an output can be present in less products, than in the specification. Thus, it
is natural that the feature expressions associated to the input and output that we
want to synchronize in the implementation differ from the feature expressions
in the specification. Thus, if an implementation refines a specification, after
synchronization, the feature model of the implementation does not necessarily
refine the feature model of the specification.

Intuitively, a possible solution is to require that an implementation can only
replace the specification if it does not add new interface bindings and maintains
all bindings already in the specification. This means that, for each valid product
in the implementation, the corresponding automata in the implementation can
be synchronized over a given set of input and outputs, if and only if, the corre-
sponding automata in the specification can be synchronized over the same inputs

176 G. Cledou et al.

and outputs. The following theorems capture the pre-order and compositional
properties of IFTA refinement.

Theorem 3 (� is a pre-order). For any grounded IFTA A1, A2 and A3,
A1 � A1, and if A1 � A2 and A2 � A3, then A1 � A3.

Proof. A1 � A1 is trivial by definition of �. In the case of transitivity, feature
model refinement follows immediately from Theorem 2. Behavioral refinement
follows by induction on the structure of IFTA for each case of Definition 14.

Theorem 4 (� is congruent w.r.t. ×). For any grounded IFTA A1, A2,
and B, such that Ai and B have disjoint set of actions and features, i = 1, 2, if
A1 � A2, then A1 × B � A2 × B.

Proof. Feature model refinement follows by definition of semantics of a feature
expression. Behavioral refinement follows by induction on the structure of IFTA
for each case of Definition 14.

Theorem 5 (� is congruent w.r.t. Δ). For any grounded IFTA A1, A2,
and actions i, o such that (i, o) ∈ Ii ×Oi for i = 1, 2, if A1 � A2, then Δi,oA1 �
Δi,oA2, only if, fm1 → ((Γ1(i) ↔ Γ1(o)) ↔ (Γ2(i) ↔ Γ2(o))).

Proof. Feature model refinement follows by definition of semantics of a feature
expression, and by the precondition on Γi for i ∈ {1, 2}. Behavioral refinement
follows by induction on the structure of IFTA for each case of Definition 14.

To meet strict space limitations, detailed proofs of all results are omitted in
the paper, but will appear in [6].

Let us consider again the IFTA CM composed with the router R (Fig. 3).
If we want to check if we can replace CM by CM’ (Fig. 4) in the system com-
posed by CM and R, because refinement is compositional, instead of checking
CM ′ �(coffee,o1),(cappuccino,o2) R � CM �(coffee,o1),(cappuccino,o2) R it suffices to
check the following conditions:

1. fm1 → ((ΓCM ′(coffee) ↔ ΓCM ′(o1)) ↔ (ΓCM (coffee) ↔ ΓCM (o1)))
2. fm1 → ((ΓCM ′(cappuccino) ↔ ΓCM ′(o2)) ↔ (ΓCM (cappuccino) ↔ ΓCM (o2)))
3. CM’ � CM

Conditions 1 and 2 correspond to the precondition for Δ congruence. In our
example, both conditions are satisfied. However, let us assume now that we have
an IFTA CM” which differs from CM only by changing the feature expres-
sion associated to the transition labeled with cappuccino!, from cf ∧ mk to
(cf ∧ mk) ∨ instc, where instc represents the support for instant cappuccino. In
this case, when we try to replace CM by CM”, condition 2 does not hold. This
is because in CM, cappuccino appears only when cf and mk are both present,
however in CM” cappuccino can appear when cf and instc are present but not
mk . Thus, the resulting composed system with CM” and R, models a concrete
automaton that enables a synchronization between o2! and cappuccino? that was
not possible before.

A Refinement Relation for Families of Timed Automata 177

4 Conclusions

We proposed a refinement relation for families of timed automata which are
modeled as Interface Featured Timed Automata. Since each IFTA can be seen as:
(1) a feature model, which determines a set of valid feature combinations; and (2)
a set of concrete automata, where each of the concrete automata is determined by
a valid set of features; we separated the notion of IFTA refinement into variability
refinement and behavioral refinement. Furthermore, we decompose IFTA into
other formalisms on which we based such notions of refinement, namely Interface
Featured Transition System (IFTS) and Interface Transition Systems (ITS).

The refinement relation proposed here is a pre-order and congruent with
respect to IFTA product and synchronization, meaning refinement is compo-
sitional. However, in order to be congruent with respect to synchronization,
stronger conditions must be made over the synchronization actions used in the
composition. In particular, the implementation can only replace the specifica-
tion in a composed environment, if it does not add new interface connections
and maintains all connections of the specification. Although the requirement of
not allowing new connections and maintain existed ones is reasonable, it can be
too strict. For example, in alignment with the notion of ITS refinement, which
allows to incorporate new behavior through new inputs, it will be desirable to
incorporate new behavior in terms of new features, in a way that the example
of CM”, introduced in Sect. 3.3, can be considered a refinement of CM. In fact,
in [2], de Alfaro et al. only require that no new connections with the environment
are made, while some connections can be lost, however, this is not sufficient to
ensure that IFTA refinement is compositional. In this sense, as a future work we
would like to explore and formalize other notions of refinement and how these
can affect the properties that we can expect from the relation. For example, in
the case of behavioral refinement, we could have defined that A refines B, if
and only if, for every feature selection FS in fmB (instead of fmA), �A� ↓FS �
�B� ↓FS . The advantage is that we can now incorporate behavior in terms of
new features, aligning better with the notion of refinement. However, on the one
hand, this requires that fmA contains at least all feature selections allowed by
fmB, meaning fmA can not incorporate mandatory features; and on the other
hand, it can be too flexible, since we can not account for how the system will
behave for new variability.

Currently, we are working on defining a notion of refinement over IFTS that
takes advantage of the variability to perform a refinement checking on the entire
family instead of a product by product approach. In addition, previously we
developed a prototype tool2 to specify IFTA, compose them and translate them
to other formalisms, including Uppaal Timed Automata to verify properties,
and we plan to extend it to support refinement checking.

2 https://github.com/haslab/ifta.

https://github.com/haslab/ifta

178 G. Cledou et al.

Acknowledgements. The first author is supported by the European Regional Devel-
opment Fund (ERDF) through the Operational Programme for Competitiveness and
Internationalisation (COMPETE 2020), and by National Funds through the Portuguese
funding agency, FCT, within project TRUST, POCI-01-0145- FEDER-016826. In addi-
tion the first and second author are supported by FCT grants PD/BD/52238/2013 and
SFRH/BPD/91908/2012, respectively.

References

1. de Alfaro, L., Henzinger, T.A.: Interface automata. SIGSOFT Softw. Eng. Notes
26(5), 109–120 (2001). http://doi.acm.org/10.1145/503271.503226

2. de Alfaro, L., Henzinger, T.A.: Interface-based design. In: Broy, M., Grünbauer,
J., Harel, D., Hoare, T. (eds.) Engineering Theories of Software Intensive Systems.
NATO Science Series (Series II: Mathematics, Physics and Chemistry), vol. 195.
Springer, Dordrecht (2005)

3. Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.Y.: Alternating refinement
relations. In: Sangiorgi, D., Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466,
pp. 163–178. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055622

4. Baier, C., Katoen, J.P., Larsen, K.G.: Principles of model checking (2008)
5. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A.: Symbolic model checking

of software product lines. In: International Conference on Software Engineering
(ICSE), pp. 321–330 (2011). http://dl.acm.org/citation.cfm?id=1985838

6. Cledou, G.: A Virtual Factory for Smart City Service Integration (forthcoming).
Ph.D. thesis, Universidades do Minho, Aveiro and Porto (Joint MAP-i Doctoral
Programme) (2018, to appear)

7. Cledou, G., Proença, J., Barbosa, L.: Composing families of timed automata.
FSEN 2017. LNCS, vol. 10522. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-68972-2 4

8. Cordy, M., Schobbens, P.Y., Heymans, P., Legay, A.: Behavioural modelling and
verification of real-time software product lines. In: Proceedings of the 16th Inter-
national Software Product Line Conference, vol. 1, pp. 66–75. ACM (2012)

9. David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Timed I/O
automata: a complete specification theory for real-time systems. In: Proceedings
of the 13th ACM International Conference on Hybrid Systems: Computation and
Control (HSCC 2010), pp. 91–100. ACM, New York (2010). http://doi.acm.org/
10.1145/1755952.1755967

10. Thum, T., Batory, D., Kastner, C.: Reasoning about edits to feature models. In:
Proceedings of the 31st International Conference on Software Engineering (ICSE
2009), pp. 254–264. IEEE Computer Society, Washington (2009). http://dx.doi.
org/10.1109/ICSE.2009.5070526

http://doi.acm.org/10.1145/503271.503226
https://doi.org/10.1007/BFb0055622
http://dl.acm.org/citation.cfm?id=1985838
https://doi.org/10.1007/978-3-319-68972-2_4
https://doi.org/10.1007/978-3-319-68972-2_4
http://doi.acm.org/10.1145/1755952.1755967
http://doi.acm.org/10.1145/1755952.1755967
http://dx.doi.org/10.1109/ICSE.2009.5070526
http://dx.doi.org/10.1109/ICSE.2009.5070526

Rapidly Adjustable Non-intrusive Online
Monitoring for Multi-core Systems

Normann Decker1(B), Philip Gottschling2(B), Christian Hochberger2(B),
Martin Leucker1(B), Torben Scheffel1(B), Malte Schmitz1(B),

and Alexander Weiss3(B)

1 Institute for Software Engineering and Programming Languages,
Universität zu Lübeck, Lübeck, Germany

{decker,leucker,scheffel,schmitz}@isp.uni-luebeck.de
2 Rechnersysteme, Technische Universität Darmstadt, Darmstadt, Germany

{gottschling,hochberger}@rs.tu-darmstadt.de
3 Accemic Technologies GmbH, Kiefersfelden, Germany

aweiss@accemic.com

Abstract. This paper presents an approach for rapidly adjustable
embedded trace online monitoring of multi-core systems, called RETOM.
Today, most commercial multi-core SoCs provide accurate runtime infor-
mation through an embedded trace unit without affecting program exe-
cution. Available debugging solutions can use it to reconstruct the run
offline, but usually for up to a few seconds only. RETOM employs a
novel online reconstruction technique that makes the program run avail-
able outside the SoC and allows for evaluating a specification formu-
lated in the stream-based specification language TeSSLa in real time.
The necessary computing performance is provided by an FPGA-based
event processing system. In contrast to other hardware-based runtime
verification techniques, changing the specification requires no circuit syn-
thesis and thus seconds rather than minutes or hours. Therefore, iter-
ated testing and property adjustment during development and debug-
ging becomes feasible while preserving the option of arbitrarily extend-
ing observation time, which may be necessary to detect rarely occurring
errors. Experiments show the feasibility of the approach.

1 Introduction

Software for resource-constrained environments demands for an application-
specific and highly optimised implementation. Testing and debugging is chal-
lenging in this setting because of strong limitations regarding the acquisition
and analysis of execution information. On one hand, comprehensive logging out-
put provided by the software decreases the performance significantly and requires
to anticipate the information needed in the debugging and testing process. On

This work is supported in part by the European Cooperation in Science and Tech-
nology (COST Action ARVI), the BMBF projects ARAMIS II with funding ID
01 IS 16025 and CONIRAS with funding ID 01 IS 13029, and the European Horizon
2020 project COEMS under number 732016.

c© The Author(s) 2017
S. Cavalheiro and J. Fiadeiro (Eds.): SBMF 2017, LNCS 10623, pp. 179–196, 2017.
https://doi.org/10.1007/978-3-319-70848-5_12

180 N. Decker et al.

the other hand, runtime information can be observed dynamically using auto-
matic code instrumentation, producing suitable program output, or standard
breakpoint-based debugging features of the processor. The latter methods, how-
ever, are highly intrusive as they modify the software temporarily for the analysis
or interrupt the execution. This is especially problematic for concurrent pro-
grams running on multi-core processors or real-time applications. Errors due to
race conditions or inappropriate timing may be introduced or hidden.

To allow for a non-intrusive observation of the program trace, many modern
microprocessors feature an embedded trace unit (ETU) [2,12,14,28]. An ETU
delivers runtime information to a debug port of the processor in a highly com-
pressed format. State-of-the-art debugging solutions, such as ARM DSTREAM
[3], allow the user to record this information for offline reconstruction and analy-
sis. The essential disadvantage of this technology is, however, that traces can be
recorded for at most a few seconds because high-performance memory with very
fast write access is required to store the delivered information. For example, the
ARM DSTREAM solution offers a trace buffer of 4 GB for a recording speed of
10 Gbit/s or more which means that the buffer can only hold data of less than
four seconds. While the majority of errors can be found immediately within
a short program trace, some of them may only be observable on long-running
executions or under specific, rarely occurring (logical or physical) conditions. It
is therefore desirable for the developer and maintainer to be able to monitor
the program execution for an arbitrary amount of time during development and
testing and even in the field after deployment.

Contribution. To overcome the limitations of current technology we propose
a novel runtime verification methodology for evaluating long-term program exe-
cutions that is suitable for development and debugging, testing, and in-field
monitoring. Based on the runtime information provided by the ETU, we per-
form a real-time reconstruction of the program trace. The latter is evaluated with
respect to a specification formulated by the user in the stream-based specification
language TeSSLa [18]. To deliver sufficient performance for online analysis, both
reconstruction and monitoring system are implemented using FPGA hardware.

FPGAs have become a very popular technology to implement digital systems.
Designing digital circuits with FPGAs typically starts from hardware descrip-
tion languages like VHDL or Verilog. Synthesis software is responsible to map
such designs to the elements available in an FPGA and then these elements
must be positioned and routed on the FPGA fabric. Even for moderately large
designs, this process can take hours. In case the design should run at high clock
speed, this time is dramatically increased. Our monitoring system is therefore
designed to not only evaluate a specific property specification. Instead, it builds
on a flexibly and quickly configurable FPGA-based event processing platform
described in [13]. We provide a tool chain for mapping TeSSLa specifications to
the platform automatically within seconds. Formulating hypotheses, adapting
property specification and checking them on the target system can be iterated
quickly without time-intensive synthesis.

Rapidly Adjustable Non-intrusive Online Monitoring for Multi-core Systems 181

Fig. 1. General overview of the RETOM workflow cycle.

Figure 1 provides an overview of the proposed workflow based on our app-
roach to rapidly adjustable embedded trace online monitoring (RETOM). The
user, e.g. the developer, tester, or maintainer, specifies the correct behaviour of
the program under test based on program events such as a function call or vari-
able access. The program is compiled and the binary is uploaded to the processor
as usual. The property compiler automatically generates a corresponding config-
uration for the monitoring and trace reconstruction units that is then uploaded
to the platform. When running the program on the processor, the monitoring
platform reports the computed output stream to the user who can then use the
information to adjust the program or the property.

We show the feasibility of RETOM in terms of a prototype implementation
using the ARM CoreSight technology as specific but widely available variant
of an ETU. A concurrent scenario is used to demonstrate the characteristics of
parallel and time-critical applications and how corresponding runtime properties
can be specified in TeSSLa and evaluated using our monitoring system.

Related Work. This paper focuses on runtime monitoring techniques which
analyzes one particular program execution. For a general introduction into the
field of runtime verification especially in comparison with static verification tech-
niques such as model checking see [16,17]. Non-intrusive observation of pro-
gram executions is a long-standing issue [23] that becomes increasingly chal-
lenging with high circuit integration. On the other hand, integrated hardware
extensions were described, e.g., in [29] and today many standard (“commercial
off-the-shelf”) products feature advanced observation facilities [28]. Alternative
approaches that aim at more powerful and flexible evaluation were developed
based on programmable logic. Systems with on-chip programmable logic (SoPC)
allow for direct observation and property evaluation by using specifically syn-
thesised designs [26]. While this is appealing from a technical point of view,
it introduces significant additional costs per unit. In [19] the authors propose
similarly a partial reconfiguration of a (soft-core) processor. An external alter-
native based on a side channel is discussed in [22]. However, a lot of training is
required in order to identify specific system behaviour. Extending the system by
an external FPGA-based device using peripheral buses [25] seems more realistic,
although it comes with the restriction that only the external communication on

182 N. Decker et al.

Table 1. Comparison of hardware-supported monitoring frameworks. ETU refers to
standard processors with embedded trace unit.

Framework Non-intrusive Online Rapid adjustment Trace source

QSTL mon. [15] n/a � – n/a

P2V [19] � � – cust.

HidICE [5] � � – cust.

ptMTL mon. [24] (�) � � cust./dbg. port

BusMOP [25] � � – periph. bus

SoPC monitoring [27] – � – SoPC

ARM DSTREAM [3] � – � ETU

RETOM � � � ETU

the used bus can be observed. A custom high-bandwidth trace interface is used
in [5] to obtain trace data but the practical drawback is again, that this is not
available in any standard product.

While many of these approaches have the merit of unbounded online evalua-
tion, they are inconvenient in an iterative development or testing process because
the properties to be evaluated are synthesised directly to programmable logic
which is extremely time-consuming. The same applies to the monitor construc-
tion presented in [15]. A solution that allows for a rapidly adjustable evaluation
of past-time MTL properties is given in [24]. Compared to ETU-based solutions,
however, the used interfaces are not available on commonly available hardware
or provide less runtime information, operate at low speeds and are, like JTAG,
possibly intrusive. Table 1 provides an overview of related approaches.

This paper is organized as follows: In Sect. 2 we explain the online trace
reconstruction on the FPGA. Section 3 describes TeSSLa, the language used to
specify the monitors. How data flow graphs are constructed out of the specifi-
cation and how monitors are synthesized on the FPGA is discussed in Sect. 4.
Finally we present a case study in Sect. 5.

2 Trace Reconstruction

Figure 2 shows an overview of the RETOM setup: The cores of the multi-core
processor are communicating with periphery, such as the memory, through the
system bus. Every core is observed by its own tracer. The trace data is sent
through the trace bus to the trace port without affecting the core. The trace bus
is separated from the system bus and does not interfere with it. The trace port
of the processor is connected to the FPGA on which the trace reconstruction
and interpretation and the actual monitoring are located. The final monitoring
output is displayed and reported on a standard PC connected via USB.

In this paper we use the ARM CoresSight [2] debugging technology as a
widely available example of an ETU, which is included in every current ARM

Rapidly Adjustable Non-intrusive Online Monitoring for Multi-core Systems 183

processor (Cortex M, R and A). In particular, we use the Program Flow Trace
(PFT) [1] to acquire trace data of the operations executed by the ARM proces-
sors.

As stated in the PFT manual [1] the “PFT identifies certain instructions
in the program, and certain events, as waypoints. A waypoint is a point where
instruction execution by the processor might involve a change in the program
flow.” With PFT we only observe as waypoints conditional and unconditional
direct branches as well as all indirect branches and all other events, e.g. interrupts
and other exceptions, that affect the program counter other than incrementing
it. In order to save bandwidth on the trace bus, the Program Flow Trace Protocol
(PFTP) does not report the current program counter address for every cycle.
Especially for direct branches, the target address is not provided but only the
information whether a (conditional) jump was executed or not. The full program
counter address is sent irregularly for synchronization (I-Sync message). In case
of an indirect branch those address bits that have changed since the last indirect
branch or the last I-Sync message are outputted.

For RETOM we employ an online (real time) trace-reconstruction method
implemented on the FPGA hardware [30,31]: From a static analysis of the binary
running on the CPU we know all the jump targets of conditional direct jumps
and can store those in a lookup table in the memory of the FPGA. Due to the
high parallelism of the FPGA, we can split the trace data stream and reconstruct
the program trace using the lookup table. The trace data stream can be split
at the synchronization points that contain the full program counter address. A
FIFO buffer stores the trace data stream until we reach the next synchroniza-
tion point. The buffer must be able to store at least the trace data between
two synchronization points. For further processing we then immediately filter
the reconstructed trace by comparing the reconstructed addresses to a list of
addresses, called tracepoints, that correspond to the input events used in the
TeSSLa specification to be evaluated. This comparison is realized by adding
an additional tracepoint flag to the lookup table. After putting the slices back

Fig. 2. Overview of the RETOM setup. Operations of the cores are traced by the ETU,
the trace is then reconstructed, filtered and monitored on the FPGA.

184 N. Decker et al.

together in the right order we end up with a stream of tracepoints. Every tra-
cepoint contains an ID and a timestamp. The timestamp is either assigned by
the ARM processor if cycle accurate tracing is enabled or during the reconstruc-
tion on the FPGA otherwise. Cycle accurate tracing is only available for certain
processor architectures, because it requires high bandwidth on the trace port in
order to attach timing information to every message. This trace-reconstruction
approach can also be used for execution time measurement [9,10].

Note that PFT traces logical addresses used in the CPU before the memory
management unit (MMU) translates them to physical addresses, which are used
to address certain cells in the memory. Because logical addresses are used in the
program binary and by the CPU, RETOM does not need to handle physical
addresses.

In a typical multithreaded application, we have multiple threads running on
different cores and multiple threads running on the same core using any kind
of scheduling. While we can distinguish instructions traced from the different
CPUs, we have to consider the actual thread ID in order to distinguish different
threads running on the same core. This information is provided by a so-called
context ID message [2], sent every time when the operation system changes the
context ID register of the CPU. The logical addresses for different threads might
be exactly the same, because the MMU is reconfigured in the context switch to
point to another physical memory region. If we see a context switch to another
process, we have to change the lookup table for the program flow reconstruction
information.

3 Specification of Trace Properties

In order to specify correctness properties as well as to describe the computation
of statistical and numerical metrics based on the trace data, we use TeSSLa1.
This temporal stream-based specification language is described and analyzed in
detail in [18] and was specifically designed for program traces derived from ETUs.
TeSSLa reasons over asynchronous input streams by deriving new streams from
the input streams. This key concept supports both, the computation of metrics
and specifying desired behavior of the observed program trace.

TeSSLa can be seen as an asynchronous extension of the stream based lan-
guage LOLA [8]. LOLA is based on synchronous streams, but as we want to
observe multi-core systems, we can not assume synchronization between the
streams coming in from different cores. Because of that, TeSSLa uses asynchro-
nous streams as underlaying model, similar to Signal Temporal Logic (STL) [20].
However, TeSSLa provides rich data domains that allow for formulating quanti-
tative specifications computing statistics and numerical temporal metrics. Fur-
thermore, STL lacks a clean separation of the evaluation (expressed explicitly in
terms of dependencies) and the data manipulation (expressed by each individual
operation).

1 For more information on TeSSLa see http://www.isp.uni-luebeck.de/tessla.

http://www.isp.uni-luebeck.de/tessla

Rapidly Adjustable Non-intrusive Online Monitoring for Multi-core Systems 185

3.1 Syntax and Semantics of TeSSLa

TeSSLa supports signals and event streams, a concept which has already been
used for example for the definition of Timed Regular Expressions [4]. Let in
the following T be a suitable time domain, e.g. Q. An event stream is a partial
function η : T ⇁ D where D is a data domain. This partial function is only
allowed to be defined for finitely many timestamps in a finite interval. We call
the set of time points at which an event stream η is defined E(η). The set of all
event streams over D is denoted by ED.

In addition to the definition in terms of partial functions, an event stream
η ∈ ED can be naturally represented as a timed word with a sequence sη =
(t0, η(t0))(t1, η(t1)) · · · ∈ (E(η)×D)∞ ordered by time (ti < ti+1) and containing
all event points, i.e. {t | (t, v) occurs on sη} = E(η).

In contrast to event streams, a signal defines a value for every point in time.
It is a piece-wise constant function σ : T → D that can be represented as an
event stream of value update events and can thus only change its value a finite
number of times within a finite time interval. We denote the set of time points
at which the value of a signal changes by Δ(σ). The set of all signals over a
data domain D is denoted by SD. Section 5 provides some practical examples of
signals and event streams.

Structure of TeSSLa Specifications. The syntax of TeSSLa is inspired by
existing stream-based specification languages like LOLA [8] and the underlying
concept of functional reactive programming [11]. TeSSLa is built around the
basic concept of deriving internal or output streams by applying functions to
input streams or already derived internal streams. Because it is designed to be
readable with prior knowledge of C-style programming languages, the derived
streams are defined in an imperative manner. Consider the following example of
a TeSSLa specification where we assume two input streams, an event stream e
whose events are counted and an event stream trigg which is used as trigger.

define numberOfEvents := eventCount(e)
define triggerInLast2Sec := inPast(trigg, 2s)
define error :=

filter(e, triggerInLast2Sec && numberOfEvents < 5)
out error

It defines the signal numberOfEvents as the result of applying the function
eventCount : ED → SN to the input stream e. At every time point t ∈ T the
signal provides the number of events that occurred on e up to t. Also, the signal
triggerInLast2Sec is true as long as trigg had an event at most two seconds ago.
Further, an event occurs on the event stream error whenever an event occurs on
e while during the past two seconds an event occurred on trigg and the number of
events on e has not reached the limit of five, i.e. the event on e is not filtered out
by the filter function. For readability, type annotations can be omitted and are
inferred at compile time. The semantics of a TeSSLa specification is a mapping
from a set of input streams to a set of output streams and the keyword out

186 N. Decker et al.

defines error to be one of the latter. These are visible outside of the monitor
and can be used for further processing or be presented to the user.

TeSSLa does not allow for recursive definitions of streams in any way. This leads
to a large library of built in functions which incorporate specific recursive function-
ality. The big advantage of this approach is that the dependency graph of a TeSSLa
specification is a directed acyclic graph. In combination with restricting real-time
operators to refer only to the current and past events, this enables us to use more
effective algorithms for synthesizing a specification onto an FPGA which leads to
greater flexibility. The concrete process of doing so is described in Sect. 4.

By providing a set of built-in functions we can use an optimized translation
for FPGA synthesis. Consider the idea of summing up the values of the events
of an event stream. If the user would define this in a recursive fashion, the
evaluation on the FPGA would typically consist of an adder and a delay unit
storing the result of the adder such that it is used with the next input event of
the stream to be summed up. By using a specialized function called sum, just
one operation unit needs to be synthesized onto the FPGA that internally stores
the last output in a register and adds it to the next value of the event stream.

Next, a selection of important functions available in TeSSLa is provided.
An in-depth discussion of the TeSSLa design and an exhaustive list of available
functions can be found in [18].

Available Functions. There are five different types of functions in TeSSLa:
simple arithmetic functions, aggregations, stream manipulators, timing functions
and temporal property functions.

Simple arithmetic functions combine multiple input signals with an arith-
metic operation into one output signal. All operations available in common pro-
gramming languages can also be used in TeSSLa, for example a function add for
point-wise summation of the value of two signals or a function mul for multipli-
cation. More complex calculation functions in TeSSLa are aggregations. These
generally take event streams as input and produce a signal. For example the
function sum : EN → SN computes the sum of the data of all events on an event
stream and always outputs the current sum. Variants for other additive types,
like rational numbers Q or time points T, are also available; polymorphism is
resolved at compile time. The function eventCount counts the events on an event
stream that occurred until a certain point in time, ignoring the values carried
by events. Another important function in this category is mrv : ED × D → SD

that computes the most recent value of an event stream. It returns the value of
the last event that happened or the default value given as second parameter as
long as no event occurred, yet. With mrv one can transform event streams into
signals and then apply arithmetic functions on them.

Conversely, sampling functions convert signals into event streams. The func-
tion changeOf : SD → ED returns an event stream with an event at those
points in time where the value of the input signal changes. The function
sample : SD × ED → ED samples a signal clocked by an event stream and
thus returns for every input event an event containing the values of the signal
at the respective point in time.

Rapidly Adjustable Non-intrusive Online Monitoring for Multi-core Systems 187

With stream manipulators one can split and combine streams. Typical func-
tions are filter, that works like a mask and deletes events by a certain criteria, and
merge, that combines two event streams into one. Constructs like if-then-else are
also stream manipulators essentially combining filter and merge functionality.

With timing functions one can refer to the past or future given a (real) time
offset. The functions delay and shift are delaying a signal for a certain amount of
time or shifting the values of the events of an event stream by a certain number
of events, respectively. The two functions inPast and inFuture let us describe if
an event happened on an event stream a certain amount of time in the past or
future, respectively.

Finally there is the generic monitor function. This function provides a closed
scope for specifying properties in different propositional temporal logics. For
example, LTL or SALT [7] can be used with classical (finitary) semantics or more
informative ones like LTL3 [6]. Especially for the last one, this closed scope is
needed because the LTL formula has to be processed in a complex way to build
the monitor. Hence it has to be known what exactly belongs to the formula.
The input consists of a set of boolean signals as propositions and an arbitrary
event stream as clock for stepping the monitor. The type of the output stream
depends on the output type of the used semantics.

3.2 Observation Specification

With the observation specification we can define in the TeSSLa specification
certain streams based on the tracepoints generated by the online trace recon-
struction. Such an observation can be defined on three different levels: (1) On
the level of the C code, (2) on the level of the binary and (3) on the level of
the processor. Because in the end we need to define the tracepoints for the trace
reconstruction in terms of logical addresses in the binary, we need to translate
the code level and the processor level to the binary level. On the binary level
we can simply define streams with an event each time a given logical address
is executed. On the code level we can define streams with an event each time
a function is entered or left or each time a certain line of code gets executed.
This information can be translated to the execution of logical addresses in the
binary using the debug information in the binary. On the processor level we can
for example specify streams with an event each time a floating point instruction
is executed. This could be translated to the execution of logical addresses in the
binary by simply analysing the binary for all floating point operations and listing
all their addresses. In this paper we will use the following TeSSLa functions to
define streams on the code level:

– functionCalls("〈file〉:〈function〉") creates an event each time the
function with the specified name in the given five file is entered,

– functionReturns("〈file〉:〈function〉") creates an event for leaving the
function and

– codeLine("〈file〉:〈line〉") creates an event each time the given line in the
given file is executed.

188 N. Decker et al.

4 Monitor Synthesis and FPGA Implementation

The observation specification is compiled into tracepoint declarations as already
sketched in the previous section. Unique IDs are assigned to every tracepoint.
The first stage of the trace evaluation is a filter that creates the logical streams
based on the tracepoint IDs attached to the events generated by the trace recon-
struction unit. As depicted in Fig. 2 on page 5 in order to monitor a certain
property the generated tracepoints for that property must be configured in the
reconstruction engine on the FPGA using the PC interface.

In our setup the FPGA fulfills three major functions. First, it realizes the
reconstruction explained in Sect. 2. Second, it implements the monitor system
that evaluates the reconstructed trace stream as described in the next sections.
Third, it provides a softcore processor as a communication interface to the host
system for configuration and monitor evaluation.

4.1 Merging Data Flow Graphs

Each TeSSLa specification (monitor) produces a new control and dataflow graph
(CDFG) that can be transformed into a datapath (DP), i.e. the hardware imple-
mentation that executes the operations given by its CDFG on the FPGA. To be
able to check all specifications in parallel one would assemble all specified mon-
itors into a directly synthesized monitor system consisting of different DPs, one
for each specification. This approach has a major drawback: As soon as only one
monitor specification changes the whole system has to be resynthesized. Long
FPGA-synthesis time, however, would render the interactive RETOM workflow
impossible in which TeSSLA specifications are adapted frequently. To overcome
this problem, we follow [13] by merging several CDFGs into one super CDFG
with reconfiguration capabilities. Now the monitoring system consists of multi-
ple instances of the same reconfigurable DP, which can implement at least all of
the previously specified monitors. This is even more flexible: It is no longer nec-
essary to know how many monitors of a certain type are required in the monitor
system as now all DPs can be reconfigured to implement the desired monitor.

Consider the two CDFGs CDFGA and CDFGB given in Fig. 3a and b. We
want to merge those CDFGs into a new CDFG that can implement both of them.
It can be seen that the CDFGs contain identical operations among each other.
These operations can be shared instead of adding every operation from both
graphs into the new one. Finding a preferably large amount of sharable opera-
tions is essential for merging two CDFGs. A higher amount of shared operations
reduces the resulting CDFG size and thereby, reduces the resulting hardware
resources required for the DP.

Therefore, we have to create a matching in which every operation of CDFGA

matches to either exactly one or no other node in CDFGB. We use a generated
compatibility graph (CG) as described in a formal way by Moreano et al. in [21].
Here, compatible matches are represented as edges between them. We search for
a preferably large fully connected subgraph in the CG, also known as a maximal
clique. This clique only contains matchings that can be applied simultaneously

Rapidly Adjustable Non-intrusive Online Monitoring for Multi-core Systems 189

and do not conflict. The resulting merged CDFG (CDFGM) is given in Fig. 3c.
Operations that are used by both input CDFGs are filled.

4.2 Implementing Datapaths

A CDFG can be translated into a hardware description language – more precisely,
a Verilog module to implement the configurable datapath. The CDFG has to be
preprocessed, as there are some premises. In Fig. 3c it is clear, that the output
of the CDFG can only have one input, either the “less than” or the finite state
machine (FSM). Therefore, multiplexers are inserted at every operand input
that has more than one predecessor. These allow later configuration at runtime
to select the desired functionality. To further increase the degree of freedom,
constants are never hardcoded into the module. As they change most often,
they are replaced by configurable registers, so that their value can be changed
quickly during runtime. The FSM is implemented as a microprogrammable state
machine whose behavior only depends on the context of a memory. This context
can be exchanged during runtime as well and thereby, offers a huge amount of
flexibility.

The resulting DP copes without any kind of control logic. It works like a
pipeline that can accept new data at its input in every clock cycle. Hence, the
amount of time to calculate a result is constant and determined by the number
of pipeline stages in the DP. At last, a configuration interface that connects all
configurable elements is added.

4.3 Programming Monitors

After loading the monitor system onto the FPGA, the context for program-
ming one of the monitors has to be created. During the preprocessing phase for

Fig. 3. Example of two CDFGs (a, b) merged into one (c)

190 N. Decker et al.

Fig. 4. Overview of the ring buffer scenario. The producer and consumer threads are
distributed over two cores. On core 0 the producer and one consumer is located, on
core 1 two consumers are located. The ring buffer is located in a memory section shared
between the two cores.

generating the Verilog module, additional information about configurable oper-
ations is stored. From that information and the CDFG to program, it can be
calculated which operation is executed on which resource on the DP. Another
matching is constructed for the edges. The input CDFG does not necessarily
need to be a CDFG of the merging set. As shown in [13] disjoint problems can
be matched on already synthesized datapaths when the required resources are
available.

As each edge match automatically implies two node matches, it is sufficient
to find a complete matching for the edges. The matching is said to be complete
when every edge in the input CDFG is matched to an edge in the implemented
DP. It is automatically constrained by the node matchings. When an edge match
matches operation Ai onto resource Rj , no other operation may be matched on
this resource. If one complete matching is found, the search can be stopped, as
all complete solutions are of equivalent quality. Neither resources nor processing
time can be reduced at this point as the DPs are already synthesized.

From a complete matching the context for the elements can be extracted: a
register’s value is then determined by the constant that matches to it. Multi-
plexers use the incoming edge to determine if their control signal must be 0 or 1.
The microprogram for the FSM can be generated from the states, transitions,
and output values of the FSM that was created by the TeSSLa compiler for a
monitor function. Programming a DP with this context turns it into an active
monitor.

5 Case Study

We have implemented a multi-core program to show the feasibility and flexibility
of our RETOM approach. We used a dual-core ARM Cortex-A9 processor with a
clock frequency of 866 MHz embedded in a Zynq-7000 SoC that provides us easy
access to the processor’s trace port. The trace reconstruction and monitoring
took place on separate FPGAs with clock frequencies of about 200 MHz.

Our case study is a concurrent producer/consumer setting written in C. The
architecture can be seen in Fig. 4. The C-file core0.c runs on core 0 containing
the producer and one consumer as well as a start and stop mechanism for the

Rapidly Adjustable Non-intrusive Online Monitoring for Multi-core Systems 191

Fig. 5. Evaluation of the TeSSLa streams on an example run.

consumers on both cores. The C-file core1.c runs on core 1 containing two iden-
tical consumer threads. We use the FreeRTOS scheduler independently on both
physical cores to run multiple threads per core. The producer writes elements
into a ring buffer and the three consumers read these elements from the buffer.
After an element is read, the read pointer (read ptr) is moved to the next ele-
ment by the consumer that reads it. Each time the producer writes an element
to the buffer it increments the write pointer (write ptr).

We introduced a bug in core1.c such that the section where the ring buffer
is read and the read pointer is moved is no longer thread exclusive. This leads
to a data race which we want to detect using RETOM.

Property (a). We want to check if the start and stop mechanism for the
consumers works. Therefore, we use TeSSLa to specify a monitor which checks
that when all consumers are stopped, the read pointer must not be changed
anymore until they are started again:

define ptrChanged := merge(codeLine("core0.c:27"),
codeLine("core1.c:27"))

define stop := functionCalls("core0.c:stopConsumers")
define start := functionCalls("core0.c:startConsumers")
define clk := merge(stop, ptrChanged, start)
define output :=

monitor("always(stop implies
(not(ptrChanged) until start))",
step := clk)

out output

The two codeLine streams reference the code line in which the read pointer
is moved on. stop and start reference a call to the respective function. All these
streams have an event whenever the piece of code referenced by them is executed.
The clock stream clk is defined to be used to step the monitor. An example run
for this property can be found in Fig. 5a. Here, the LTL3 semantics is used and
therefore the monitor outputs ? as long as the property can still be fulfilled and
violated, while ⊥ or � occurs as soon as the property is certainly violated or
fulfilled, respectively.

192 N. Decker et al.

Property (b). We want to check multi-processing of elements in the ring buffer:
If the consumers process more elements then the producer writes we spot a bug.
Hence, we compare the number of observed read and write accesses to the buffer:

define write := codeLine("core0.c:37")
define read0 := codeLine("core0.c:24")
define read1 := codeLine("core1.c:24")
define err := eventCount(read0) + eventCount(read1)

> eventCount(write)
out err

The input streams contain an event if an element is written or read, respec-
tively. Then err is defined by counting the number of written elements and the
number of read elements. If more elements are read from than written to the
buffer, some elements have been processed twice. The diagram in Fig. 5b shows
an example evaluation of the streams.

For both properties (a) and (b) it is necessary to observe the system for an
arbitrary amount of time because errors can occur randomly due to scheduling
and timing differences on the cores. This means that the time when the error
may occur also varies per execution. Because of that it is not feasible to just
log data and evaluate that to find a possible bug. Also, a non-intrusive observa-
tion method is crucial for this property, because intrusiveness would change the
timing of the code execution.

If we synthesize the monitors for property (a) and (b) on the FPGA, connect
the FPGA to the processor running the ring buffer example and execute the
program, we detect a violation of the property (b). The time needed to detect
this violation differs for every execution due to scheduling reasons. Property
(a) always produces ? which means that no error occurred yet. Property (b)
states that some elements in the ring buffer are processed multiple times. To
investigate this issue further we write another property to check if a data race
already happens locally on one of the cores.

Property (c). We observe the accesses to the memory and to the read pointer
to see if, after one consumer thread accessed the memory, another one accesses
the memory before the read pointer is moved. This property can be expressed
as follows in TeSSLa:

out doubleRead(
read := codeLine("core0:24"),
ptrChanged := codeLine("core0:27"))

where doubleRead is a macro defined as follows:

macro doubleRead(read, ptrChanged) := {
define clk := merge(read, ptrChanged)
monitor("always(read implies

next(not(read) until ptrChanged))",
step := clk)

}

Rapidly Adjustable Non-intrusive Online Monitoring for Multi-core Systems 193

Fig. 6. Evaluation of the TeSSLa streams of Property (c) on an example run.

Using this macro the property can be expressed for core 1 by changing core0
to core1. All macros are fully expanded by the TeSSLa compiler before the
monitor synthesis. The diagram in Fig. 6 shows an example run.

With RETOM we can now adjust the monitor system on the FPGA to check
property (c) without the need to re-synthesize the FPGA.

As shown in Fig. 4, there is only one consumer thread on core 0, so on that
core we only check if this consumer does not read an element twice. But on core
1, we found the data race because one of the consumer threads sometimes read
the ring buffer before the other one increments the read pointer.

In the properties (a), (b) and (c) tracepoints happen rather seldomly dur-
ing the program execution with an average event rate of about 1 kHz, because
the main filtering happens already in the tracepoint matching during the trace
reconstruction. Nevertheless with the RETOM approach one can also moni-
tor high-frequency events like quantitative analysis on how many certain CPU
instructions are performed. The synthesized monitoring pipeline on the FPGA
can process a new external event with every clock cycle. With a clock frequency
of 200 MHz the monitors are capable of processing up to 200 million events per
second. For the properties described above we needed 196 lookup tables (LUTs)
and 414 flip-flops (FFs). As a comparison, the Virtex 7 xc7vx485t that we used
has 303600 LUTs and 607200 FFs available. Hence, one could synthesize on one
FPGA about 1400 monitors of the size we used in this case study, all checking
possibly different properties in parallel.

6 Conclusion

In this paper we proposed non-intrusive online monitoring for multi-core sys-
tems. Our approach RETOM utilises the embedded trace unit (ETU) of the
system under test, which allows non-intrusive observation not only for collabo-
rative software with debug statements, but for arbitrary software. With online
monitoring one can react almost immediately to events of interest without hav-
ing any limits regarding the execution length of the system under test. Using the
stream-based specification language TeSSLa we can express correctness proper-
ties as well as statistics and numeric metrics, both with support for real-time
operations. The control and data flow graph (CDFG) created from a TeSSLa
specification contains no cyclic dependencies which simplifies its realization on
FPGA hardware. By using merged CDFGs on the FPGA we can change the
currently evaluated TeSSLa specification without the need of re-synthesizing the
FPGA. This rapid adjustment is suitable for a debugging workflow where the

194 N. Decker et al.

user incrementally updates the specification based on the last monitoring output
in order to understand the system under test. We have shown the feasibility of
RETOM in a case study involving three properties spotting a race condition in
a multi-core system by detecting a bug due to a long time observation of the
system. With the possibility to interactively adjust the specification, one can
have iterative debugging sessions in order to find more specific causes based on
previous results. The next step to show the feasibility in a broader scale would
be an industry case study which we are planning for the future.

Acknowledgements. We thank Jannis Harder and Sebastian Hungerecker for their
work on TeSSLa, its compiler and the case study.

References

1. ARM Limited: ARM IHI 0035B: CoreSight Program Flow Trace: PFTv1.0 and
PFTv1.1 - Architecture Specification, Issue B, March 2011

2. ARM Limited: ARM IHI 0029B: CoreSightTM Architecture Specification v2.0,
Issue D (2013)

3. ARM Limited: DS-5 ARM DSTREAM User Guide Version 5.27 (2017)
4. Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. J. ACM 49(2), 172–206

(2002)
5. Backasch, R., Hochberger, C., Weiss, A., Leucker, M., Lasslop, R.: Runtime veri-

fication for multicore SoC with high-quality trace data. ACM Trans. Des. Autom.
Electr. Syst. 18(2), 18:1–18:26 (2013)

6. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 14:1–14:64 (2011)

7. Bauer, A., Leucker, M., Streit, J.: SALT—structured assertion language for tem-
poral logic. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 757–775.
Springer, Heidelberg (2006). https://doi.org/10.1007/11901433 41

8. D’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W., Finkbeiner, B.,
Sipma, H.B., Mehrotra, S., Manna, Z.: LOLA: runtime monitoring of synchronous
systems. In: TIME, pp. 166–174. IEEE (2005)

9. Dreyer, B., Hochberger, C., Lange, A., Wegener, S., Weiss, A.: Continuous non-
intrusive hybrid WCET estimation using waypoint graphs. In: WCET. OASICS,
vol. 55, pp. 4:1–4:11. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

10. Dreyer, B., Hochberger, C., Wegener, S., Weiss, A.: Precise continuous non-
intrusive measurement-based execution time estimation. In: WCET. OASICS, vol.
47, pp. 45–54. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)

11. Eliot, C., Hudak, P.: Functional reactive animation. In: Proceedings of ICFP 2007,
pp. 163–173. ACM (1997)

12. Freescale Semiconductor, Inc.: P4080 Advanced QorIQ Debug and Performance
Monitoring Reference Manual, Rev. F (2012)

13. Gottschling, P., Hochberger, C.: ReEP: a toolset for generation and programming of
reconfigurable datapaths for event processing. In: 2017 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), pp. 141–149 (2017)

14. Intel Corporation: Intel(R) 64 and IA-32 Architectures Software Developer’s Man-
ual (2016)

https://doi.org/10.1007/11901433_41

Rapidly Adjustable Non-intrusive Online Monitoring for Multi-core Systems 195

15. Jakšić, S., Bartocci, E., Grosu, R., Ničković, D.: Quantitative monitoring
of STL with edit distance. In: Falcone, Y., Sánchez, C. (eds.) RV 2016.
LNCS, vol. 10012, pp. 201–218. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-46982-9 13

16. Leucker, M.: Teaching runtime verification. In: Khurshid, S., Sen, K. (eds.) RV
2011. LNCS, vol. 7186, pp. 34–48. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29860-8 4

17. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Alge-
braic Program. 78(5), 293–303 (2009)

18. Leucker, M., Sánchez, C., Scheffel, T., Schmitz, M., Schramm, A.: TeSSLa: runtime
verification of non-synchronized real-time streams (2017). unpublished

19. Lu, H., Forin, A.: Automatic processor customization for zero-overhead online soft-
ware verification. IEEE Trans. VLSI Syst. 16(10), 1346–1357 (2008)

20. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous sig-
nals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS,
vol. 3253, pp. 152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-540-30206-3 12

21. Moreano, N., Borin, E., de Souza, C., Araujo, G.: Efficient datapath merging for
partially reconfigurable architectures. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 24(7), 969–980 (2005)

22. Moreno, C., Fischmeister, S.: Non-intrusive runtime monitoring through power
consumption: a signals and system analysis approach to reconstruct the trace. In:
Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp. 268–284. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46982-9 17

23. Nutt, G.J.: Tutorial: computer system monitors. SIGMETRICS Perform. Eval.
Rev. 5(1), 41–51 (1976)

24. Reinbacher, T., Függer, M., Brauer, J.: Runtime verification of embedded real-time
systems. Form. Methods Syst. Des. 44(3), 203–239 (2014)

25. Roşu, G., Chen, F., Ball, T.: Synthesizing monitors for safety properties: this time
with calls and returns. In: Leucker, M. (ed.) RV 2008. LNCS, vol. 5289, pp. 51–68.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89247-2 4

26. Shobaki, M.E., Lindh, L.: A hardware and software monitor for high-level system-
on-chip verification. In: ISQED, pp. 56–61. IEEE Computer Society (2001)

27. Solet, D., Béchennec, J., Briday, M., Faucou, S., Pillement, S.: Hardware runtime
verification of embedded software in SoPC. In: SIES, pp. 171–176. IEEE (2016)

28. Stollon, N.: On-Chip Instrumentation: Design and Debug for Systems on Chip, 1st
edn. Springer, London (2010). https://doi.org/10.1007/978-1-4419-7563-8

29. Tsai, J.J.P., Fang, K., Chen, H., Bi, Y.: A noninterference monitoring and replay
mechanism for real-time software testing and debugging. IEEE Trans. Softw. Eng.
16(8), 897–916 (1990)

30. Weiss, A., Lange, A.: Trace-data processing and profiling device. EP Patent EP
2873983 A1, May 2015

31. Weiss, A., Lange, A.: Trace-data processing and profiling device. US Patent
9286186 B2, March 2016

https://doi.org/10.1007/978-3-319-46982-9_13
https://doi.org/10.1007/978-3-319-46982-9_13
https://doi.org/10.1007/978-3-642-29860-8_4
https://doi.org/10.1007/978-3-642-29860-8_4
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-319-46982-9_17
https://doi.org/10.1007/978-3-540-89247-2_4
https://doi.org/10.1007/978-1-4419-7563-8

196 N. Decker et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Sound Transpilation from Binary
to Machine-Independent Code

Roberto Metere1(B), Andreas Lindner2(B), and Roberto Guanciale2(B)

1 Newcastle University, Newcastle upon Tyne, UK
r.metere2@ncl.ac.uk

2 KTH Royal Institute of Technology, Stockholm, Sweden
{andili,robertog}@kth.se

Abstract. In order to handle the complexity and heterogeneity of mod-
ern instruction set architectures, analysis platforms share a common
design, the adoption of hardware-independent intermediate representa-
tions. The usage of these platforms to verify systems down to binary-level
is appealing due to the high degree of automation they provide. How-
ever, it introduces the need for trusting the correctness of the translation
from binary code to intermediate language. Achieving a high degree of
trust is challenging since this transpilation must handle (i) all the side
effects of the instructions, (ii) multiple instruction encoding (e.g. ARM
Thumb), and (iii) variable instruction length (e.g. Intel). We overcome
these problems by formally modeling one of such intermediate languages
in the interactive theorem prover HOL4 and by implementing a proof-
producing transpiler. This tool translates ARMv8 programs to the inter-
mediate language and generates a HOL4 proof that demonstrates the
correctness of the translation in the form of a simulation theorem. We
also show how the transpiler theorems can be used to transfer properties
verified on the intermediate language to the binary code.

Keywords: Binary analysis · Formal verification · Proof producing
analysis · Theorem proving

1 Introduction

Despite the existence of formally verified compilers, the verification of binary
code is a critical task to guarantee trustworthiness of critical systems. This is
particularly necessary for software mixing high-level language with assembly
(system software), using ad-hoc languages and compilers (specialized software),
in presence of instruction set extensions (like encryption and decryption), and
when the source code is not available (binary blobs). This necessity is not only
limited to the general-purpose computing scenario but also applies to connected
embedded systems, where software bugs can enable a remote attacker to tamper
with the security of automobiles, payment services, and smart IoT devices.

c© Springer International Publishing AG 2017
S. Cavalheiro and J. Fiadeiro (Eds.): SBMF 2017, LNCS 10623, pp. 197–214, 2017.
https://doi.org/10.1007/978-3-319-70848-5_13

198 R. Metere et al.

The need of semi-automatic analysis techniques for binary code has lead to
the development of several tools [7,24,25]. To handle the complexity and hetero-
geneity of modern instruction set architectures (ISAs), all these tools followed
a common design: They have introduced a platform independent intermediate
representation that allows to implement analysis independently of (i) names and
number of registers, (ii) instruction decoding, (iii) endianness of memory access,
and (iv) instruction side-effects (like updating conditional flags or the stack
pointer). This intermediate representation is often a dialect of the Valgrind’s
IR [21]. Soundness of the transpiler (i.e. the tool translating from machine code
to intermediate language) should not be foregone: It may have to handle mul-
tiple instruction encoding (e.g. ARM Thumb), variable instruction length (e.g.
Intel), and complex side effects of instructions (e.g. ARM branch with link and
conditional executions). Clearly, a transpiler bug jeopardizes the soundness of
all analyses done on the intermediate representation.

Our strategy to handle this issue is to use formal models of the ISA and of the
intermediate language of the analyses platform, and to formally demonstrate that
the transpilation is correct. We chose ARMv8 [17] as demonstrating ISA, reusing
the model for the HOL4 theorem prover that was previously developed in [9,10].
For the target language, we implemented a deep-embedding of the Intermediate
Language of the Binary Analysis Platform [7] (BIL) in the HOL4 logic and
implemented its small-step semantics. Verification of the transpilation is done
via a HOL4 proof producing transpiler, which translates ARMv8 programs to
BIL programs, and yields the HOL4 proof that demonstrates its correctness.
The theorem establishes a simulation between the input binary program and the
generated BIL program, showing that the two programs have the same behavior.
Our contribution enables a verifier to prove properties of the generated BIL
program (i.e. by directly using the theorem prover or proof-producing analysis
techniques) and to transfer them to the original ARMv8 program using the
generated simulation theorems.

Outline. We present the state of the art and the previous works relating to
our contribution in Sect. 2. Section 3 introduces the HOL4 formal models of the
ARMv8 ISA and the BIL language. Section 4 presents the certifying transpiler.
We demonstrate that the theorems produced by the transpiler can be used to
transfer verification conditions in Sect. 5, where we test and evaluate our devel-
opment too. We give concluding remarks in Sect. 6.

2 Related Work

Recent works have shown that formal techniques are ready to achieve detailed
verification of real software, making it possible to provide low-level platforms
with unprecedented security guarantees [1,8,13]. For such system software,
limiting the verification to the source code level is undesirable. A modern
compiler (e.g. GCC) consists of several millions of lines of code, in contrast to

Sound Transpilation from Binary to Machine-Independent Code 199

micro-kernels that consist of few thousand lines of code, making it difficult to
trust the compiler output even when optimization is disabled1.

To overcome this limitation, formally verified compilers [6,14,15] and
proof/producing compilers [16] have been developed. Similarly to our work, these
compilers use detailed models of the underlying ISA to show the correctness of
their output. This usually involves a simulation theorem, which demonstrates
that the behavior of the produced binary code resembles the one specified by
the semantics of the high level language (e.g. C or ML). These theorems per-
mit properties verified at the source-level to be automatically transferred to the
binary-level. For instance, CompCert has been used in [3] to verify security of
OpenSSL HMAC by transferring functional correctness of the source code to the
produced binary.

Even if formally verified compilers obviate the need for trusting their output,
they do not fulfill all the needs of verified system software. Some of these com-
pilers target languages that are unsuitable for developing system software (e.g.
ML cannot be used to develop a microkernel due to its garbage collector). Also,
they do not support mixing the high-level language with assembly code, which
is necessary for storing and restoring the CPU context or for managing the page
table. Some of the effects of these operations can break the assumptions made
to define a precise semantics of the high level language (e.g. a memory write
can alter the page table which in turn affects the virtual memory layout). Also,
some properties (e.g. absence of side channels due to non-secure accesses to the
caches) cannot be verified at the source code level; the analysis must be aware
of the exact sequence of memory accesses performed by the software. Finally,
binary blob analysis is imperative for verifying memory safety of binary code
whose source code is not available (e.g. the power management of ARM trusted
firmware).

Unfortunately, detailed formal specifications of machine languages (e.g. the
ones used to verify compiler correctness [11]) consist of thousands of lines of
definitions. The complexity of these models makes them unusable to directly
verify any binary code that is not a toy example. Moreover, the target verification
tools, usually interactive theorem provers, provide little or no support for either
automatic reasoning or reuse of algorithms among different hardware models.
To make machine-code verification proofs reusable by different architectures,
Myreen et al. [20] developed a proof-producing decompilation procedure. Those
tools have been implemented in the HOL4 system and have been used by the
seL4 project to check that the binary code produced by the compiler is correct,
permitting to transfer properties verified at the source code level to the actual
binary code executed by the CPU [22]. The same framework has been used
to verify a bignum integer library [19]. However, the automatism provided by
this framework is still far from what is provided by today’s binary analysis
platforms (e.g. [7,24,25]). These provide tools to compute and analyze control-
flow graphs, to perform abstract interpretation and symbolic execution, to verify

1 An example of a very recent bug found in GCC: https://gcc.gnu.org/bugzilla/
show bug.cgi?id=80180.

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80180
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80180

200 R. Metere et al.

contracts, and to verify information flow properties [2]. On the other hand, their
usage requires to trust the used transpiler. Due to the complexity of writing
a transpiler for each architecture, recent work has been done to synthesize the
transpiler from compiler backends [12]. However, this requires to trust both: the
synthesis procedure and the compiler backend.

In this paper, we address this issue by providing sound transpilation of
ARMv8 binary code to the intermediate language of BAP. BAP is an analy-
sis platform that provides utilities to compute and analyze control-flow graphs,
to transform programs (e.g. by unrolling cycles), to verify contracts via genera-
tion of weakest preconditions and their export to SMT solvers. The platform has
also been externally extended with tools for information flow security based on
relational analysis. We developed a HOL4 formal model of the BAP intermediate
language, which can be used to provide precise semantics of programs expressed
in BIL and to verify soundness of analysis tools. This allows us to implement
a proof-producing transpiler, which can translate an ARMv8 program to a BIL
program while generating a HOL4 proof that demonstrates its correctness.

3 Formal HOL4 Models

3.1 The ARMv8 Model

In our work, we use the ARMv8 model developed by Fox [10], which is con-
structed from the pseudocode described in the ARM specification [17] and pro-
vides a detailed HOL4 formalization of the effects of the instructions, taking
into account the different execution modes, flags, and other characteristics of
the processor behavior.

The system state is modeled as a tuple s = 〈r, sr, p, c,m〉. Here, r represents
a sequence of 64-bit general purpose registers. We identify the i-th register with
r(i). The tuple sr = 〈pc, sp, lr〉 contains the special registers representing the
program counter, the stack pointer, and the link register respectively. The tuple
p representing the current processor state and contains the arithmetical flags,
the execution mode, and the interrupt disabling. The tuple c encodes the system
and coprocessor registers, it also contains the current endianness and the con-
figuration of the Memory Management Unit. The 64-bit addressable memory is
modeled as the function m : B64 → B8. Finally, the system behavior is repre-
sented by the deterministic transition relation s → s′, describing how the ARM
state s reaches the state s′ by executing a single instruction. Hereafter, we use .
to access tuple fields; for example s.sr.pc states for the program counter of the
state s.

The HOL4 model consists of hundreds of definitions and its complexity makes
it difficult to analyze large programs. To simplify the analyses, the model is
equipped with a mechanism to statically compute the effects of a single instruc-
tion via the arm step function. Let i be the binary encoding of an instruc-
tion and ad be the address where the instruction is stored, then the function

Sound Transpilation from Binary to Machine-Independent Code 201

arm step(i, ad) returns a list of step theorems [st1, . . . , stn]. Each theorem stj
has the following structure:

∀s. read32(s.m, s.sr.pc) = i ∧ s.sr.pc = ad ∧ cj(s) ⇒ s → tj(s)

where read32 is a function that reads 32 bits from the memory. Intuitively, each
step theorem describes one of the possible behaviors of the instruction and con-
sists of the guard condition cj that enables the transition and the function tj
that transforms the starting state into the next state. We use three examples to
illustrate this mechanism.

Let the instruction stored at the address 0x1000000c be the addition of the
registers x0 and x1 into the register x0 (whose encoding is 0x8b000020), the
step function produces the following step theorem:

∀s. read32(s.m, s.sr.pc) = 0x8b000020 ∧ s.sr.pc = 0x1000000c ⇒
s → (

λs′.s′ with r(0) = s′.r(0) + s′.r(1) with sr.pc = s′.sr.pc + 4
)
s

(where s′ with r(0) = v updates the register zero of the state s′ with v). In this
case, only one theorem is generated, and there is no guard condition (i.e. c1 is a
tautology).

Some ARMv8 instructions (i.e. conditional branches) can have different
behavior according to the value of some state components. In these cases, the
step function produces as many theorems as the number of possible execution
cases. For example, the output of the step function for the Signed Greater Than
(GT) branch consists of the following two theorems:

∀s. read32(s.m, s.sr.pc) = 0x54fffe8c ∧ s.sr.pc = 0x1000000c
∧ s.p.Z = 0 ∧ s.p.N = s.p.V ⇒
s → (λs′.s′ with sr.pc = s′.sr.pc − 0x30)s

∀s. read32(s.m, s.sr.pc) = 0x54fffe8c ∧ s.sr.pc = 0x1000000c
∧¬ (s.p.Z = 0 ∧ s.p.N = s.p.V) ⇒
s → (λs′.s′ with sr.pc = s′.sr.pc + 4)s

That is, if the test succeeds (i.e. c1 = s.p.Z = 0 ∧ s.p.N = s.p.V holds) then the
jump is taken (in this case jumping back in a loop to the address pc − 0x30),
otherwise (i.e. c2 = ¬(s.p.Z = 0 ∧ s.p.N = s.p.V) holds) the jump is not taken
(the program counter is updated to point to the next instruction). Notice that
for every state s the condition c1 ∨ c2 hold.

Finally, some ARMv8 instructions (i.e. memory stores) can have unsound
behavior if some conditions are not met. In these cases, the step function gener-
ates the step theorems only for the correct behaviors; for a given instruction, let
st1, . . . , stn be the generated theorems and c1, . . . , cn the corresponding guards,
the behavior of the instruction is soundly deduced by the step function for every

202 R. Metere et al.

state s such that
∨

j cj(s) holds and can not be deduced otherwise. For example,
the output of the step function for a memory store consists of the theorem:

∀s. read32(s.m, s.sr.pc) = 0xf90007e0 ∧ s.sr.pc = 0x1000000c
∧ aligned(s.sr.sp + 8) ⇒
s →

(
λs′.s′ with m = write64(s′.m, s′.sr.sp + 8, s′.r(0))

with sr.pc = s′.sr.pc + 4

)
s

Intuitively, the step function can predict the behavior only for states having the
target address (i.e. s.sr.sp + 8) aligned.

3.2 The BIL Model

The target of our transpilation is BIL. In this language, a statement has only
explicit state changes, i.e. there are no implicit side effects, and it can only affect
one variable.

BIL’s syntax is depicted in Table 1. A program is a list of blocks, each one
consisting of a uniquely identifying label (i.e. a string or an integer) and a list of
atomic statements. A statement can affect the state by (i) assigning the evalua-
tion of an expression to a variable, (ii) (conditionally or unconditionally) modi-
fying the control flow, (iii) halting the system in a successful state, and (iv) ter-
minating the system in a failure state if an assertion does not hold. As usual,
labels are used to refer to the specific locations in the program and can be the
target of jump statements. BIL expressions are built using constants (i.e. strings
and integers), conditionals (i.e. ifthenelse), standard binary and unary oper-
ators (ranged over by ♦b and ♦u respectively) for finite integer arithmetic,
and accessing variables of the environment (i.e. var). Additionally, two types of
expressions can operate on memories. The expression load (exp1, exp2, τreg,n)
reads n bytes from the memory exp1 starting from the address exp2. The expres-
sion store (exp1, exp2, exp3, τreg,n) returns a new memory in which all the loca-
tions have the same values as the initial memory exp1 except the addresses
exp2 + i where i ∈ [0 . . . n − 1] that contain the chunks of exp3.

Hereafter we use Δ to represent the set of all possible strings. These can be
used to identify both labels and variable names. We use τ to range over BIL
data types; let n ∈ {1, 8, 16, 32, 64}, the type for words of n-bits is denoted by
τreg,n and the type for memories addressed using n-bits is denoted by τmem,n.
We use T and V to represent the set of all BIL types and values respectively.

A program b is well-defined if it has no duplicate block labels and each block
has at least one statement. In the following we assume that all programs are
well defined. Notice that the program b is not part of the state, since it is not
allowed to be changed dynamically.

A BIL environment σ maps variable names (given as strings) to pairs of type
and value; σ : Δ → (T × V). Types of variables are immutable and any wrongly
typed operation produces a run-time failure. The semantics of BIL expressions
is modeled by the evaluation function eval: It takes an expression α and an
environment σ and yields either a value having a type in T or ⊥. The evaluation

Sound Transpilation from Binary to Machine-Independent Code 203

Table 1. BIL’s syntax

intuitively follows the semantics of operations by recursively evaluating the sub-
expressions given as operands. The value ⊥ results when operators and types are
incompatible, thus modeling a type error, which in turn is used by the statement
semantics to cause the program counter to transition to the error state ⊥.

A BIL state γ = (σ, p) ∈ Γ is a pair of an environment σ and a program
counter p. Let L = Δ ∪ B64 be the set of all labels, a program counter p is an
element of the set Λ = (L×N)∪{⊥,�}. While executing a program, the program
counter is (l, n) ∈ L × N, where l is the label of the executing block and n is
the index for the executing statement within this block. A successfully halting
program results in the program counter being �. Failures (e.g. type mismatch
or failing assertion) terminate the program and set the program counter to ⊥.

The system behavior is modeled by the deterministic transition relation b :
γ � γ′, which describes the execution of one BIL statement. In HOL4, this
relation is modeled by the execution function exc, which defines the small step
semantics of one statement.

The execution of assign(X,α) assigns the evaluation of the expression α to
the variable X. Let v = eval (α, σ) and t be the type of v, the value of the
variable is updated in the context (σ [X ← (t, v)]) and the program counter is
incremented. The statement fails in case of a type mismatch: v = ⊥ or σ(X) =
(t′,) ∧ t �= t′.

The statement halt sets the program counter to � and thereby terminates
execution. The statement assert (α) just increments the program counter if the
expression evaluates to true (i.e. (τreg,1, 1) = eval (α, σ)) and terminates in an
error state otherwise.

The execution of jmp (α) jumps to the beginning of the referenced block, by
setting the program counter to (eval (α, σ) , 0). If the type of α is neither string
nor integer then the statement fails. The statement cjmp (αc, α1, α2) changes
the control flow based on the condition αc. The statement fails if the type of the
condition is not τreg,1 or the the targets (i.e. eval (α1, σ) or eval (α2, σ)) are not
valid labels. Notice that the targets of the jump are evaluated using the current
context, allowing BIL to express indirect jumps that are resolved at run-time.

204 R. Metere et al.

4 The Transpiler

The translation procedure uses a mapping of HOL4 ARM states to BIL states.
Every ARM state field is mapped to a BIL variable or to the program counter:
For example, the variable R0 represents the register number zero, the variable
MEM represents the system memory, and the BIL program counter reflects the
ARM program counter. This mapping induces a simulation relation ∼⊆ Γ × S
that relates BIL states to ARM states.

To transform an ARM program to the corresponding BIL fragment we need
to capture all the possible effects of the program execution in terms of affected
registers, flags and memory locations. The generated BIL fragment should emu-
late the behaviour of the instructions executed on an ARM machine. This goal
is accomplished by reusing the arm step function and the following three HOL4
certifying procedures.

– A procedure to translate HOL4 word terms (i.e. those having type B64, B8, B
etc.) to BIL expressions. This procedure is used to convert the guards of the
step theorems and the expressions contained in the transformation functions.

– A procedure to translate a single instruction to the corresponding BIL frag-
ment. This procedure computes the possible effects of an instruction using the
transformation functions of the step theorems. It also symbolically executes
the resulting BIL fragment to demonstrate that it emulates the effects of the
translated instruction.

– A procedure that glues together the theorems produced for the instructions
to translate the entire ARM program.

To phrase the theorem produced by the transpiler we introduce the following
notations. An ARM program π is represented by a finite set of pairs (adj , ij),
where each pair represents that the instruction ij is located at the address adj .
The predicate stored(s, π) states that the program π is stored in the memory of
the state s (formally, stored(s, π) def= ∀(adj , ij) ∈ π. read32(s.m, adj) = ij). The
predicate start-block(p) holds if a BIL program counter p points to the first state-
ment of a block. For readability, let γ = (σ, p), we use γ �= ⊥ and start-block(γ)
to denote p �= ⊥ and start-block(p) respectively. We denote n transitions of ARM
states with →n, and n transitions of BIL states with �n. The translation pro-
cedure produces a theorem that resembles compiler correctness2:

Theorem 1. Let ad0 be the entry point of the ARM program π. For every
ARM state s and BIL state γ, if stored(s, π), s.sr.pc = ad0, and γ ∼ s, then

1. for every n > 0 if s →n s′ then
∃n′ > 0. b : γ �n′

γ′ ∧ (γ′ = ⊥ ∨ γ′ ∼ s′), and
2. for every n′ > 0 if b : γ �n′

γ′ ∧ start-block(γ′) ∧ γ′ �= ⊥ then
∃n > 0. s →n s′ ∧ γ′ ∼ s′.

2 The ARM and BIL transition systems are deterministic and live, thus the transition
relations are total functions. For this reason we omit quantifiers over the states on
the right hand side of transitions, since they always exist and are unique.

Sound Transpilation from Binary to Machine-Independent Code 205

The meaning of the transpiler theorem is depicted in Fig. 1a. Each ARM instruc-
tion is translated to a single BIL block consisting of multiple statements. Assum-
ing that the program is stored in the ARM memory, the state is configured to
start the execution from the entry point ad0 of the program, and the initial
HOL4 ARM state resembles the initial BIL states, then (1) for every state s′

reachable by the ARM model, there is an execution of the BIL program b that
results (after n′ statements) in either an error state (γ′ = ⊥) or in a state γ′

that resembles s′, and (2) for every state γ′ reachable by the BIL program after
the competition of a block (start-block(γ′)), there is an execution of the ARM
program that re-establishes the simulation relation.

Error states permit to identify if an initial configuration can cause a program
to reach a state that cannot be handled by the transpiler (e.g. self-modifying pro-
grams or programs containing instructions whose behavior can not be predicted
by the step function). It is worth noticing that these cases can not be identified
statically without knowing the program preconditions (e.g. misaligned memory
accesses can be caused by the initial content of the stack where pointers are
stored).

4.1 Translation of Expressions

In order to build the transpiler on top of the step function, the HOL4
expressions occurring in the guards and the transformation functions must be
converted to BIL expressions. For example, while translating the binary instruc-
tion 0x54fffe8c of Sect. 3.1 to a conditional jump, the expressions s.p.Z =
0 ∧ s.p.N = s.p.V and s′.sr.pc − 0x30 must be expressed in BIL to generate the
condition and the target of the jump respectively.

Let e be a HOL4 expression, the output of the transpiler is the theorem
∀σ.A(σ) ⇒ (eval (α, σ) = e), stating that, if the environment satisfies the
assumption A, then the evaluation of α is e. These assumptions usually con-
strain the values of the variables in the environment to match the free variables
of the HOL4 expressions. For instance, for the expression s.p.N = s.p.V the
transpiler generates the theorem ∀σ, s.(σ(′′N ′′) = (τ1, s.p.N) ∧ σ(′′V ′′) =
(τ1,V)) ⇒ (eval ((var ′′N ′′ = var ′′V ′′), σ) = (N = V)).

If a HOL4 operator has no direct correspondence in BIL, the transpiler uses
a set of manually verified theorems to justify the emulation of the operator via
a composition of the primitive BIL operators. This is the case for expressions
that involve conversion of words to natural numbers and arithmetic operations
with arbitrary precision. A relevant example is the computation of the carry
(overflow) flag in 64-bit additions. Following the pseudocode of the ARMv8 ref-
erence manual [17], the step theorem contains the expression [x] + [y] < 264,
where x, y ∈ B64 and [·] : B64 → N is their interpretation as natural numbers.
Both the inequality and the addition cannot be directly converted as BIL expres-
sion, because BIL can only handle numbers up to 64 bits. For the carry flag the
transpiler uses the theorem ∀n > 0. ∀x, y ∈ Bn. ([x]+ [y] < 2n) ⇔ (x � 2+ y �
2 + (x & 1) ∗ (y & 1) < 2n−1).

206 R. Metere et al.

4.2 Translation of Single Instructions

The transpilation of a single instruction takes three arguments: the binary code
i of the instruction, the address ad of the instruction in memory, and a HOL4
predicate qm : B64 → B. The latter argument identifies which memory addresses
should not be modified by the instruction and is used to guarantee that the
ARM program is not self-modifying. In fact, a self-modifying program cannot
be transformed to equivalent BIL programs (due to BIL following the Harvard
architecture). If an instruction modifies the program code then then the trans-
lated BIL program must terminate in an error state. The predicate qm is used
to instrument the instruction transpiler with the information about where the
program code is stored.

Fig. 1. Translating procedure

An ARM instruction is translated to a single BIL block, following the tem-
plate of Fig. 1b. Hereafter we detail its generation and the verification of its
correctness.

The transpiler uses the arm step function to compute the behavior of the
input instruction i and to generate the step theorems [st1, . . . , stn]. These are
used to demonstrate ∀s.(read32(s.m, s.sr.pc) = i ∧ s.sr.pc = ad) ⇒ s → t(s)
where t(s) = if c1(s) then t1(s) else if . . . else if cn(s) then tn(s), and cj and
tj are the guards and transformation functions of the step theorems respectively.

The behavior of the instruction can be soundly deduced by the step func-
tion only if one of the cj predicate holds (see Sect. 3.1). The transpiler sim-
plifies the disjunction of the guards demonstrating ∀s.

∨
j cj(s) = ec (where ec

is a HOL4 predicate) and translates it to a BIL expression αc (demonstrating
∀σ, s.((σ, p) ∼ s) ⇒ (eval (αc, σ) = ec)). The BIL statement assert (αc) is gen-
erated as preamble of the instruction. Intuitively, if an ARM state s does not
satisfy any guard, then any similar BIL state (σ, p) does not satisfy the assertion,
causing the BIL program to terminate in a error state. On the other hand, if the

Sound Transpilation from Binary to Machine-Independent Code 207

BIL state satisfies the assertion, then every similar ARM state satisfies at least
one of the guards, thus the instruction’s behavior can be deduced by the step
function.

The second task is to translate the effects of the instruction on every field of
the ARM state. Let f be one field of the ARM state (e.g. f = r(0) is the register
zero) and let F be the corresponding variable of BIL according to the relation ∼.
The transpiler uses HOL4 rewriting to compute the new value eF of the field (and
demonstrating ∀s.(t(s)).f = eF). If eF = s.f then the ARM field is not affected
by the instruction and the corresponding variable F should not be modified by
the generated BIL block, otherwise the variable F must be updated accordingly.
The expression eF is translated to obtain the theorem ∀σ.eval (αF , σ) = eF
and the BIL statement assign (F, αF) is generated. A complication raises when
there are instructions affecting several state variables, and whose resulting values
depend on each other (i.e. imagine an instruction swapping registers zero and
one, where t(s) = s with {r(0) = s.r(1) and r(1) = s.r(0)}). To handle these
cases, the translation procedure generates a statement assign (tmpF,var F),
which backups the value of the variable F into the temporary variable tmpF .

Special care is needed for memory updates (i.e. f = m). The BIL program
should fail if it updates a memory location where qm holds. The transpiler
inspects the expression eMEM to identify the addresses that can be changed by
the instruction and extracts the corresponding set of B64 expressions e1, . . . , en
(in ARM a single instruction can store multiple registers). To ensure that this
identification is complete, the transpiler proves ∀s, a.(

∧
i a �= ei) ⇒ (eMEM (a) =

s.m(a)). The expression
∧

i ¬qm(ei) (which guarantees that no modified address
belongs to the reserved memory region) is translated to obtain the theorem
∀σ.eval (αm, σ) =

∧
i ¬qm(ei). Finally the BIL statement assert(αm) is added as

further preamble of the instruction. If the ARM instruction modifies an address
in qm, then the corresponding BIL state does not satisfy the assertion, causing
the BIL program to terminate in an error state.

Symbolic evaluation of the program counter field is used to generate state-
ments that update the control flow. If epc is syntactically equivalent to if c then
e1 else e2, then the expressions c, e1 and e2 are translated to αc, α1 and α2, and
the statement cjmp(αc, α1, α2) is appended as last statement of the BIL frag-
ment. Otherwise, epc is directly translated to α and jmp(α) is appended to the
BIL fragment. Whenever possible, e1, e2, or epc are first simplified to constants,
thus reducing the number of indirect jumps in the BIL program.

To compute the effects of the generated BIL block, the transpiler uses a small
symbolic execution engine. The transpiler uses the intermediate theorems gener-
ated during the process to discard the hypotheses of the symbolic execution and
to instantiate the expression evaluations. Finally, it establishes the instruction-
theorem.

Theorem 2. Let i be the binary encoding of the instruction, ad be its loca-
tion in memory, and qm the predicate identifying the memory region used to
store the complete program. Also, let block be the generated BIL block, n be
the corresponding number of BIL statements, and b[ad] be the BIL block of the

208 R. Metere et al.

BIL program b having label ad. For every ARM state s, BIL state γ, and BIL
program b if read32(s.m, s.sr.pc) = i, s.pc = ad, γ ∼ s, and b[ad] = block, then

1. if s → s′ and b : γ �n γ′ then
((γ′ = ⊥) ∨ (γ′ ∼ s′ ∧ ∀a.qm(a) ⇒ s′.m(a) = s.m(a))), and

2. for every n′ < n, if b : γ �n′
γ′′ then ¬start-block(γ′′).

The theorem shows (1) that if the complete execution of the block succeeds
then it behaves equivalently to the ARM instruction and memory in qm is not
modified, and (2) that completing the block requires exactly n steps.

4.3 Transpiling Programs

The theorems generated for every instruction are composed to verify Theorem 1.
Property (1) is verified by induction over n, using the predicate qmem(a) � a ∈
{ad | (ad, i) ∈ π}. This ensures that the ARM program is in memory after
the execution of each instruction, thus allowing to make the precondition of the
translation theorem (i.e. ∀(adj , ij) ∈ π. read32(s.m, adj) = ij) an invariant.

Property (2) is verified by induction over n′. We split the execution of n′

steps (leading from the initial state to γ′) in two parts: n′
0 < n′ steps from the

initial state to the last state γ0 satisfying start-block and n′
1 = n′ − n′

0 steps
from γ0 to γ′. By inductive hypothesis there must exists n0 such that the ARM
program reaches a state γ0 ∼ s0 in n0 steps. Since γ0 ∼ s0 then the program
counter of γ0 points to one of the blocks produced by the transpiler. If γ′ satisfies
start-block then we can use the corresponding instruction-theorem to show that
n′
1 is equal to the length of the block. This and the fact that the ARM transition

relation is total enables part (1) of the instruction-theorem, showing that the
ARM instruction behaves equivalently to the BIL block.

4.4 Support for More Architectures

In the following, we review the modifications of the certifying procedures needed
to support other common computer architectures, like MIPS, x86 and ARMv7.

The transpiler has three main dependencies: A formal model of the archi-
tecture, a function producing step theorems, and the definitions of a simulation
relation. There exist HOL4 models for x86, x64, ARMv7-M, and MIPS that are
equipped with the corresponding step function. On the other hand, the simula-
tion relation can differ for each architecture since it maps machine state fields
to BIL variables. In fact, the name, the number, and the type of registers can
be very different among unrelated architectures.

The expression translation has to handle the expressions of guard conditions
and transformation functions that are present in the step theorems. Since these
use HOL4 number and word theories, independently of the architecture, big
parts of the translation of Sect. 4.1 can be reused. There are two exceptions:
One is the possible usage different word lengths, and the other is the need of

Sound Transpilation from Binary to Machine-Independent Code 209

proving helper theorems to justify the emulation of operators that have no direct
correspondence in BIL (e.g. for the computation of carry flag in ARM).

The transpilation of single instructions of Sect. 4.2 would produce BIL blocks
with a similar structure. However, the changed simulation relation can affect the
transpilation procedure. In fact, the BIL variables that have to be temporarily
saved and the ones that must be modified can be different, matching the different
registers. On the other hand, the expressions computing the state transformation
are the result of the expression translation and do not require changes. Also, a
jump instruction must terminate the instruction block to steer the control flow
dependent on program counter changes.

The verification of Theorem 1 by the program transpilation of Sect. 4.3
involves only reasoning on BIL and the theorems generated for the individual
instructions. This reasoning can be largely reused since the structure of these
individual theorems is unchanged. Even though our proof procedure for this is
fairly general, differences in the simulation relation might require slight changes.

5 Using the Transpiler to Verify Binary Programs

The output of the transpiler can be used to verify properties of the translated
ARM program. The verification work flow consists of three tasks, (1) proving
that the BIL program does not reach error states, (2) proving that the desired
properties of the BIL program hold, and (3) using the refinement relation to
transfer these properties to the original ARM program. Here, we show that the
transpiler output fulfills this purpose for four common verification tasks: Con-
trol Flow Graph (CFG) analysis, contract-based verification, partial correctness
refinement, and verification of termination.

Program’s CFG is essential to many compiler optimizations and static analy-
sis tools. Furthermore, proving control flow integrity ensures resiliency against
return-oriented programming [23] and jump-oriented programming attacks [4].
In its simplest form, the CFG consists of a directed connected graph G, whose
node set is B64, and a root node ad0: The graph G contains (ad1, ad2) if the
program can flow from the address ad1 to the address ad2 by executing a single
instruction; The root node represents the entry point of the program.

Analyzing the CFG of a binary program requires to deal with indirect jumps.
Even if the source program avoids using function pointers, indirect jumps are
introduced by the compiler, e.g. to handle function exits and exceptions. For
instance, the ARM link register is used to track the return address of functions
and can be pushed to and popped from the stack. For this reason, the correctness
of the control flow depends on the integrity of the stack itself. Thus, verifying
the CFG (G, ad0) of a program π requires assuming a precondition P , which
constraints the content of the heap, stack and registers.

Definition (Control flow graph integrity). For every ARM state s such
that stored(s, π), s.sr.pc = ad0, and P (s), for every n, if s →n s1 and s1 → s2
then (s1.sr.pc, s2.sr.pc) ∈ G.

210 R. Metere et al.

It is straightforward to show that CFG integrity can be verified using the
transpiler theorem, by defining a BIL precondition P ′ that corresponds to P ,
and by proving the following verification conditions.

Condition (BIL control flow integrity). Let lbl(γ) = pc be the label of the
program counter of the state γ, which is undefined when pc =⊥. For every γ such
that P ′(γ) and for every n1 and n2, if b : γ �n1 γ1 �n2 γ2, start-block(γ1) and
start-block(γ2), and (∀n3 < n2.b : γ1 �n3 γ3 ⇒ ¬start-block(γ3)) then γ1 �= ⊥,
γ2 �= ⊥, and (lbl(γ1), lbl(γ2)) ∈ G.

Condition (Transfer of precondition). For every γ, s such that γ ∼ s, if
P (s) then P ′(γ).

Contract based verification consists in verification of Hoare triples to establish
partial correctness. Let P (s) and Q(s, s′) be two predicates, representing the
pre- and post-condition of a contract, verifying that a program π (starting from
the entry point ad0) meets the contract (P,Q) means establishing the following
property.

Definition (Contract verification). For every s such that stored(s, π),
s.sr.pc = ad0 and P (s), for every n1, if s →n1 s1 then Q(s, s1).

Let PCend be the set of exit points of the program and End(s1) be
s1.sr.pc ∈ PCend. Usually Q has the form End(s1) ⇒ Q1(s, s1), meaning that if
the program reached one of its exit points then the post-condition Q1 is satis-
fied. This property can be verified using the theorem produced by the transpiler,
by identifying a BIL contract (P ′, Q′), and by proving the following verification
conditions:

Condition (BIL contract verification). For every γ such that P ′(γ) and for
every n, if b : γ �n γ′ then γ′ �= ⊥ and Q′(γ, γ′).

Condition (Transfer of contracts). For every γ, γ′, s, s′ such that γ ∼ s
and γ′ ∼ s′, if P (s) then P ′(γ) and if Q′(γ, γ′) then Q(s, s′).

Partial correctness is proved as a refinement using an abstract specification
and reusing contract verification. With composability of specifications in mind,
we assume that the specification is phrased such that domain and codomain are
the same. Let aout = fspec(ain) be a functional specification with the signature
fspec : A → A.

Definition (Partial correctness refinement). For every s, a such that
R(s, a), forall n1 such that s →n1 s1, if End(s1) then R(s1, fspec(a)).

Notice, that the refinement relation R(s, a) implicitly contains the mapping
from a to s and an invariant to enable establishing the refinement. By using the
assumption R(s, a), we can simply derive a verification condition in the shape of
the definition for contract-based verification, which can be proved as described
before. We call this the binary correctness condition in this context, where P (s)

Sound Transpilation from Binary to Machine-Independent Code 211

resembles the invariant of the refinement relation, and Q1(s, s1) incorporates the
functional specification fspec with respect to the mapping of R.

The assertion of total correctness (or functional correctness) additionally
requires termination. Therefore, we consider the following definition, where the
precondition P should be not stronger than the precondition we used for partial
correctness (i.e. the invariant of the refinement relation).

Definition (Termination verification). For every s such that stored(s, π),
s.sr.pc = ad0 and P (s), exists an n1 such that s →n1 s1 and End(s1).

To prove this property, we use the theorem produced by the transpiler (i.e.
the second clause of Theorem 1), identify an appropriate BIL precondition P ′,
and prove the following conditions.

Condition (BIL termination verification). For every γ such that P ′(γ),
exists an n such that b : γ �n γ′ and End′(γ).

Condition (Transfer of termination conditions). For every γ, s such that
γ ∼ s, if P (s) then P ′(γ) and if End′(γ) then End(s).

5.1 Evaluation

Our contribution counts ∼4600 lines of HOL4 code: (1) ∼1000 lines for the syn-
tax and the semantics of BIL, the most of which are for the (signed an unsigned)
cast operators between bitvectors of different size; (2) ∼2000 for the expression
transpiler, a fourth of which proves the theorems handling arithmetic conver-
sions; (3) ∼1500 for the instruction transpiler, one third of which generates the
BIL fragments, and the remaining two thirds generate the proofs of correct-
ness; and (4) the remainder for merging the instruction theorems together and
generate the translation of a complete ARM program.

The whole proof-producing transpilation of an instruction takes ∼9 s on a
modern computer (Intel Core i7-6650U 2.2 GHz). We follow a backward-proof
strategy; firstly, we generate the proof goal by invoking the step function, merg-
ing its output, translating the expressions and generating the supposedly cor-
responding BIL code. This first part takes ∼1 s. The second part symbolically
evaluates the BIL statements. This takes ∼6.5 s, with each BIL statement requir-
ing between ∼0.5 s and ∼1.5 s. In the third and last part, which takes ∼2 s, we
prove that the simulation relation is established.

As described in Sect. 4.2, the translation of one instruction follows two steps:
(i) it translates the ARM instruction to a BIL block, establishing several inter-
mediate theorems (i.e. for translation of expressions), and setting up the goal
of Theorem 2, (ii) it demonstrates Theorem 2 in a backward proof, by sym-
bolically evaluating the BIL block and by using the intermediate theorems.
The usage of a backward-proof for this procedure provides a naive strategy
to speed up analyses: the user can rely on the goal produced in step (1) to
translate the ARM program to BIL without generating the corresponding certi-
fication theorem. This certificate can be generated offline later. Step (2) can be

212 R. Metere et al.

optimized with additional engineering effort by using a forward-proof strategy.
Furthermore, program independent helper theorems can be verified once and
reused in this process.

We experimented with the transpiler using various unmodified binary pro-
grams produced by a standard GCC, including a bignum library and an imple-
mentation of AES encryption. The three C functions internal mul, newbn, and
freebn of the bignum library consist of 38 lines of C code, which are compiled
to 141 instructions. After transpilation, we obtain 907 lines of BIL code for
these functions. The encryption function of AES consists of 131 lines of C code
(excluding the constant lookup tables used for the S-Boxes), which are compiled
to 535 instructions. With this example, we obtain 3920 lines of BIL code. We
observe that the average binary instruction consists of 6 to 7 BIL statements.

6 Concluding Remarks

We presented the HOL4 formal model of the intermediate language of BAP
and the implementation of a transpiler for ARMv8 programs. This is the first
work toward this approach, and its results overcome two of the main barriers
in adopting binary analysis platforms to formally verifying binary code: the
lack of a formal ground to prove analysis correctness and the need for trusting
translation soundness.

The formal model of BIL can be used for verifying BAP tools, which are ISA
independent and analyze BIL programs, e.g., Dijkstra’s weakest precondition
propagation, transformation to single static assignment, loop unrolling.

In this paper, we focus on the ARMv8 architecture. To handle other machine
architectures (e.g. x86, x64, ARMv7-M, MIPS), new transpilers must be devel-
oped. Fortunately, the majority of the transpiler code does not depend on spe-
cific ARMv8 features, but on the theorems produced by the step function.
There are several other HOL4 models for the main commodity architectures
that are equipped with the same functionality [10]. We comment on the required
transpiler modifications to support these architectures in Sect. 4.4.

Further research is needed to develop a complete trustworthy binary analy-
sis platform. For example, a trustworthy semi-automatic verification tool based
on pre/post conditions for binary code can be implemented by completing two
additional tasks: (i) a trustworthy verification condition generator to compute
the weakest precondition needed by the BIL program to meet the postcondition,
and (ii) a sound satisfiability solver for bitvectors to check if the precondition
entails the weakest precondition. For the first task, Vogels et al. [26] verified the
soundness of an algorithm for weakest precondition generation in Coq. For the
second task, Satisfiability Modulo Theory (SMT) solvers can be used. Böhme et
al. [5] demonstrated HOL4 proof reconstruction for Z3 [18] capable of handling
the theory of fixed-size bit-vectors.

Sound Transpilation from Binary to Machine-Independent Code 213

Acknowledgments. Partially funded by framework grant “IT 2010” from the
Swedish Foundation for Strategic Research, and by the KTH CERCES Center for
Resilient Critical Infrastructures, which is supported by the Swedish Civil Contingen-
cies Agency.

References

1. Alkassar, E., Hillebrand, M.A., Leinenbach, D., Schirmer, N.W., Starostin, A.:
The verisoft approach to systems verification. In: Shankar, N., Woodcock, J. (eds.)
VSTTE 2008. LNCS, vol. 5295, pp. 209–224. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-87873-5 18

2. Balliu, M., Dam, M., Guanciale, R.: Automating information flow analysis of low
level code. In: SIGSAC Conference on Computer and Communications Security,
pp. 1080–1091. ACM (2014)

3. Beringer, L., Petcher, A., Katherine, Q.Y., Appel, A.W.: Verified correctness and
security of OpenSSL HMAC. In: USENIX Security Symposium, pp. 207–221 (2015)

4. Bletsch, T., Jiang, X., Freeh, V.W., Liang, Z.: Jump-oriented programming: a
new class of code-reuse attack. In: Symposium on Information, Computer and
Communications Security, pp. 30–40. ACM (2011)

5. Böhme, S., Fox, A.C.J., Sewell, T., Weber, T.: Reconstruction of Z3’s bit-vector
proofs in HOL4 and Isabelle/HOL. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP
2011. LNCS, vol. 7086, pp. 183–198. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25379-9 15

6. Boldo, S., Jourdan, J., Leroy, X., Melquiond, G.: A formally-verified C compiler
supporting floating-point arithmetic. In: Symposium on Computer Arithmetic, pp.
107–115. IEEE (2013)

7. Brumley, D., Jager, I., Avgerinos, T., Schwartz, E.J.: BAP: a binary analy-
sis platform. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 463–469. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-22110-1 37

8. Dam, M., Guanciale, R., Nemati, H.: Machine code verification of a tiny ARM
hypervisor. In: Workshop on Trustworthy Embedded Devices, Co-located with
CCS, pp. 3–12. ACM (2013)

9. Fox, A.: Directions in ISA specification. In: Beringer, L., Felty, A. (eds.) ITP 2012.
LNCS, vol. 7406, pp. 338–344. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-32347-8 23

10. Fox, A.: L3: a specification language for instruction set architectures. http://www.
cl.cam.ac.uk/∼acjf3/l3/. Accessed 2015

11. Fox, A.C., Gordon, M.J., Myreen, M.O.: Specification and verification of ARM
hardware and software. In: Hardin, D. (ed.) Design and Verification of Micro-
processor Systems for High-Assurance Applications, pp. 221–247. Springer, Boston
(2010). https://doi.org/10.1007/978-1-4419-1539-9 8

12. Hasabnis, N., Sekar, R.: Lifting assembly to intermediate representation: a novel
approach leveraging compilers. ACM SIGOPS Oper. Syst. Rev. 50(2), 311–324
(2016)

13. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P.,
Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., et al.: seL4: formal ver-
ification of an OS kernel. In: Operating systems principles, pp. 207–220. ACM
(2009)

https://doi.org/10.1007/978-3-540-87873-5_18
https://doi.org/10.1007/978-3-540-87873-5_18
https://doi.org/10.1007/978-3-642-25379-9_15
https://doi.org/10.1007/978-3-642-25379-9_15
https://doi.org/10.1007/978-3-642-22110-1_37
https://doi.org/10.1007/978-3-642-22110-1_37
https://doi.org/10.1007/978-3-642-32347-8_23
https://doi.org/10.1007/978-3-642-32347-8_23
http://www.cl.cam.ac.uk/~acjf3/l3/
http://www.cl.cam.ac.uk/~acjf3/l3/
https://doi.org/10.1007/978-1-4419-1539-9_8

214 R. Metere et al.

14. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified implemen-
tation of ML. SIGPLAN Not. 49, 179–191 (2014). ACM

15. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

16. Li, G., Owens, S., Slind, K.: Structure of a proof-producing compiler for a subset of
higher order logic. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 205–
219. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71316-6 15

17. Arm Limited: ARM Architecture Reference Manual (ARMv8, for ARMv8-
A architecture profile) (2013). http://infocenter.arm.com/help/index.jsp?topic=/
com.arm.doc.ddi0487a.h/index.html

18. Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-78800-3 24

19. Myreen, M.O., Curello, G.: Proof pearl: a verified bignum implementation in x86-
64 machine code. In: Gonthier, G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307,
pp. 66–81. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03545-1 5

20. Myreen, M.O., Gordon, M.J.C., Slind, K.: Machine-code verification for multiple
architectures - an application of decompilation into logic. In: Formal Methods in
Computer-Aided Design, pp. 1–8. IEEE Press (2008)

21. Nethercote, N., Seward, J.: Valgrind: a program supervision framework. Electron.
Notes Theor. Comput. Sci. 89(2), 44–66 (2003)

22. Sewell, T.A.L., Myreen, M.O., Klein, G.: Translation validation for a verified OS
kernel. In: SIGPLAN Conference on Programming Language Design and Imple-
mentation, pp. 471–482. ACM (2013)

23. Shacham, H.: The geometry of innocent flesh on the bone: return-into-libc without
function calls (on the x86). In: Conference on Computer and Communications
Security, pp. 552–561. ACM (2007)

24. Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N., Polino, M., Dutcher, A.,
Grosen, J., Feng, S., Hauser, C., Krügel, C., Vigna, G.: SOK: (state of) the art
of war: offensive techniques in binary analysis. In: Symposium on Security and
Privacy, pp. 138–157. IEEE (2016)

25. Song, D., et al.: BitBlaze: a new approach to computer security via binary analysis.
In: Sekar, R., Pujari, A.K. (eds.) ICISS 2008. LNCS, vol. 5352, pp. 1–25. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-89862-7 1

26. Vogels, F., Jacobs, B., Piessens, F.: A machine-checked soundness proof for an
efficient verification condition generator. In: Symposium on Applied Computing,
pp. 2517–2522. ACM (2010)

https://doi.org/10.1007/978-3-540-71316-6_15
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0487a.h/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0487a.h/index.html
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-03545-1_5
https://doi.org/10.1007/978-3-540-89862-7_1

Using Linear Logic to Verify Requirement
Scenarios in Composite Web Service

Kênia Santos de Oliveira(B) and Stéphane Julia

Computing Faculty, Federal University of Uberlândia, Uberlândia, MG, Brazil
keniasoli@gmail.com, stephane@ufu.br

Abstract. This paper presents a method for requirements verification
in Web service models based on workflow modules. In this approach,
a requirement model (a service contract publication) only specify tasks
which are of interest of all parties involved in the corresponding Web
service. Architectural models (detailed Web service) contain the detailed
tasks of all the individual workflow processes that interact through asyn-
chronous communication mechanisms in order to produce the services
specified in the requirement model. In the proposed approach, services
correspond to scenarios of workflow modules. For each scenario of the
requirement and architectural models, a proof tree of Linear Logic is
produced and transformed into a precedence graph that specifies task
sequence requirements. Precedence graphs of the requirement and archi-
tectural models are then compared in order to verify if all the exist-
ing scenarios of the requirement model also exist in the architectural
model. The comparison of the models is based on the notion of branch-
ing bisimilarity that prove behavioral equivalence between distinct finite
automatas.

Keywords: Web service · Service Oriented Architecture · Workflow
module · Petri nets · Linear Logic · Bisimilarity

1 Introduction

In the context of distributed architecture, Service Oriented Computing (SOC)
has been detached. SOC is a generic term representing a new generation of
distributed computing platform [4]. This computing paradigm uses services as
fundamental elements for applications/solutions development [10]. According to
[10], to build the service model, SOC relies on the Service Oriented Architecture
(SOA) which is a way of reorganizing software applications and infrastructure
into a set of interacting services. SOA has been widely used in order to integrate
systems through services that can be reusable by several systems. The archi-
tectural model establish by SOA aims to improve the efficiency, agility and the
productivity of a business by positioning services as primary means [4].

A service is an organization’s business capability that is implemented and
available in a distributed environment, on the Internet (or intranet), for that
other applications can access it [10]; it is also called a Web service. A service

c© Springer International Publishing AG 2017
S. Cavalheiro and J. Fiadeiro (Eds.): SBMF 2017, LNCS 10623, pp. 215–232, 2017.
https://doi.org/10.1007/978-3-319-70848-5_14

216 K.S. de Oliveira and S. Julia

performs functions that can be simple requisitions or complex business processes.
A distinct functional context is assigned to each service and each service is
composed by a set of capabilities related to this context. The capabilities suitable
for invocation by external consumer programs are then usually expressed through
a service contract publication [4].

One of the main characteristic of Web services is the weak coupling existing
between services and the existence of interoperability standards that allows cer-
tain services to be grouped together. Service compositions can be implemented
in several ways, like orchestration and choreography, for example [3]. In both
cases, the composition mechanisms are based on synchronous and asynchronous
interaction mechanisms.

For the specification and analysis of Web service compositions, many stud-
ies have already considered Petri nets as an appropriate model [7,8,13,18]. In
[13], for example, a method was presented for the identification of deadlock-
free scenarios in Web service compositions based on the analysis of Linear Logic
proof trees. The approach presented by the authors detects specific safe scenarios
which ensures that no deadlock situation will be reached during the execution
of the composite system. In [8], the services, named modules, are classified as
usable (modules that can be used in any composition) or not usable (modules
that cannot be used in any composition). In the proposed approach, a frame-
work for the modeling and analysis of Web services based on business processes
by help of Petri nets was presented. In [7], the authors address the problem of
abstracting and checking correctness of Web service compositions, taking into
consideration four variants of Soundness property (Soundness, Weak Soundness,
Relaxed Soundness and Easy Soundness).

An important issue in software projects is to ensure that the architectural
models reproduce the behavior of the requirement analysis models. Such verifica-
tion will minimize risks of failure in projects, increasing the guarantee of software
quality and avoiding rework costs [6]. Therefore, in this paper, an approach based
on a kind of comparative analysis between requirement and architectural models
in the context of Web services is presented. The analysis will be based on Linear
Logic proofs produced from workflow modules modeled by acyclic Petri nets.
A definition of semantic equivalence in the context of Linear Logic will then
be introduced, as it has already be performed, for example, in the context of
process algebras with the notion of bisimulation [1]. The requirement and archi-
tectural models will be based on workflow modules. The approach will consider
sound requirement models but the architectural models will not be necessarily
sound and may lead the system to a deadlock situation. The proposed approach
will accept in particular relaxed sound processes (when all the activities of the
system appeared in at least one process that ended correctly).

The remainder of the paper is organized as follows. In Sect. 2, the definition of
a workflow module is presented as well as an overview of Linear Logic and of the
notion of Branching Bisimilarity. The approach to formally detect requirements
present in architectural models based on Web services is proposed in Sect. 3.
Finally, Sect. 4 concludes this work.

Using LL to Verify Requirement Scenarios in Composite Web Service 217

2 Theoretical Background

2.1 Workflow Module

In general, a Web service is seen as an application accessible to other applications
over the Web [9]. The service has a published interface which allows access to
the service and can be invoked across the Internet.

According to [8], a Web service can be modeled through the help of an acyclic
Petri net called a workflow module. A Petri net, N = (P, T, F), consists of a set
of transitions T, a set of places P and a flow relation F. Therefore, a workflow
module is defined as a Petri net N = (P, T, F) such as [8]:

1. The set of places is divided into three disjoint sets: internal places PN , input
places P I and output places PO.

2. The flow relation is divided into internal flow FN ⊆ (PN × T) ∪ (T × PN)
and communication flow FC ⊆ (P I × T) ∪ (T × PO).

3. The net PN = (PN , T, FN) is a WorkFlow net (an acyclic Petri net that
models a workflow process).

4. No transition of the model is connected at the same time to an input place
and an output place.

To clarify the concepts defined above, the synthetic example presented in
Fig. 1(a) can be considered, where two modules A and B exist. For example,
considering the module A, the internal places are iA, PA1 and oA, the input
places are PC2 and PC3, and the output places is PC1.

When two modules are composed, their common places are merged and the
dangling input and output places become the new interface [8]. To achieve a
syntactically correct workflow module, it is necessary to add new components

Fig. 1. (a) Workflow modules. (b) Composite workflow modules (A ⊕ B).

218 K.S. de Oliveira and S. Julia

for initialization and termination. Therefore, a composite system is defined as
follow [8]:

– Let A = (Pa, Ta, Fa) and B = (Pb, Tb, Fb) be two syntactically compatible
modules (if both internal processes are disjoint and each common place is an
output place of one module and an input place of the other).

– Let i, o /∈ (Pa ∪ Pb) be two new places and ti, to /∈ (Ta ∪ Tb) two new
transitions.

– The composite system A ⊕ B is given by (Ps, Ts, Fs), such that Ps = Pa ∪ Pb ∪
{i, o}, Ts = Ta ∪ Tb ∪ {ti, to} and Fs = Fa ∪ Fb{(i, ti), (ti, αa), (ti, ab), (ωa, to),
(ωb, to), (to, o)}.

Figure 1(b) shows the composite system A ⊕ B of the workflow modules
shown in Fig. 1(a).

2.2 Linear Logic

Linear Logic [5] emphasizes the role of formulas as resources instead of empha-
sizing truth, as in classical logic, or proof, as in intuitionistic logic.

In the Linear Logic, there are several connectives, but in this paper only two
connectives will be used [15]:

– The times connective, denoted by ⊗, represents simultaneous availability of
resources. For instance, A ⊗ B represents the simultaneous availability of
resources A and B.

– The linear implies connective, denoted by �, represents a state change. For
instance, A � B denotes that consuming A, B is produced; after the pro-
duction of B, A will not be available anymore.

To translate a Petri net model into a Linear Logic formula, the following
definition presented in [15] are used:

– A marking M is a monomial in ⊗ and is represented by M = A1 ⊗ A2 ⊗ ...⊗
Ak, where Ai are place names.

– A sequent M, ti � M ′ represents a scenario, where M and M′ are respectively
the initial and final markings, and ti is a list of non-ordered transitions.

To prove a sequent of the Linear Logic a proof tree is built applying rules.
In this paper, only three Linear Logic rules are considered. To achieve this, F,
G and H will be considered formulas, and Γ and Δ as blocks of formulas. The
following rules will be those used in this paper [15]:

– The �L rule,
Γ � F Δ,G � H

Γ,Δ,F � G � H
�L, expresses a transition firing and gen-

erates two sequents. The right sequent represents the subsequent remaining
to be proved and the left sequent represents the consumed tokens by this
firing.

Using LL to Verify Requirement Scenarios in Composite Web Service 219

– The ⊗L rule,
Γ, F,G � H

Γ,F ⊗ G � H
⊗L, is used to transform a marking in an atoms

list.
– The ⊗R rule,

Γ � F Δ � G

Δ,Γ � F ⊗ G
⊗R, transforms a sequent such as A,B � A ⊗ B

into two identity ones A � A and B � B.

Linear Logic proof tree is read from the bottom-up. The proof stops when
the identity sequent o � o (‘o’ correspond to a sink place) is produced, when
there is not any rule that can be applied or when all the leaves of the proof tree
are identity sequents.

The Linear Logic proof trees can be transformed into precedence graphs, as
shown in [2], by labeling the corresponding proof trees. To label a proof tree, each
time the �L rule is applied, the corresponding transition ti label the application
of the rule, as well as the atoms produced and consumed. Furthermore, the initial
event must be labeled by ii and the final event must be labeled by fi. Once the
labeling is performed, each identity sequence represents the association of two
views of the same atom: the left part of an identity sequent is labeled by the
event that produced it and the right part of on identity sequent is labeled by
the event that consumed it. The labels are shown in the proof tree above the
atoms and below the rules �L. In a precedence graph, the vertices are events
and the arcs are identity sequent, i.e. relation between the event that produced
the atom and event that consumed the atom [2]. The Sect. 3 shows how proof
trees and the corresponding labelings are built.

2.3 Branching Bisimilarity

In the bisimilarity equivalence relation [11], two processes are equivalent if and
only if they can always copy or simulate the actions of each other. Bisimilar-
ity is not a suitable equivalence concept for processes with internal behavior,
because it does not make the distinction between external actions and internal
actions. The distinction between external and internal behavior captures the
idea that an environment observing two processes might not be able to see any
differences in their behavior while internally the two processes perform different
computations [1].

Branching bisimilarity [17] is a variant of bisimilarity; however, it distin-
guishes external behavior from internal behavior. In case we are interested in
processes with the same observable behavior, but with eventually different inter-
nal behavior, branching bisimilarity corresponds then to an equivalence concept
that can satisfy the kind of requirements (in term of equivalent behavior) that
have to be verified in Web services.

To be able to make a distinction between external and internal behavior
(hidden events), silent actions can be introduced. Silent actions are actions that
cannot be observed. Usually, silent actions are denoted with the action label τ .

220 K.S. de Oliveira and S. Julia

Fig. 2. The essence of branching bisimulation.

According to [1], to define branching bisimilarity, two auxiliary definitions
are needed:

1. a relation expressing that a process can evolve into another process by exe-
cuting a sequence of zero or more τ actions;

2. a predicate expressing that a process can terminate by performing zero or
more τ actions.

The Fig. 2, presented in [1], shows the essence of a branching bisimula-
tion. In this figure, τ represents a silent action, α represents an observable
action, p, q, p′, q′, q′′ represent processes and the relation ‘=⇒’ represents that
one processe can evolve into another process by executing a sequence of zero or
more τ actions. The Fig. 2 shows, for example, that the process q can evolve into
another process q′′ by executing a sequence of zero or more τ actions.

On the left side of the Fig. 2, it is possible to observe that the process p has
an equivalence relation with the processes q and q′′ and the process p′ has an
equivalence relation with the process q′′. These facts clearly state that two equiv-
alent processes will continue equivalent after the introduction of some additional
silent actions in one of the processes or even in both.

On the right side of the Fig. 2, it is possible to observe that the process
p has an equivalence relation with the processes q and q′′, and the process p′

has an equivalence relation with the process q′. These facts clearly state that
two equivalent processes will continue equivalent after the introduction of some
additional observable actions in one of the processes only if the same observable
actions also exists in the other process and respect the same sequence constraints
in both processes.

3 Requirement Verification in Composite Web Services

The approach proposed in this paper considers that the requirement model is a
Web service contract containing the capabilities suitable for invocation by exter-
nal consumer. The Web service contract specifies the expected system require-
ments the parties involved will have to perform; therefore, it only contains the
tasks which are of interest to all parties. Figure 3, shows an example of compos-
ite Web service contract modeled by workflow modules. This example involves
two business partners: a contractor and a subcontractor. As it can be observed
in Fig. 3, first the contractor sends an order to the subcontractor. Then, the
contractor sends a detailed specification to the subcontractor and the subcon-
tractor sends a cost statement to the contractor. Based on the cost statement,

Using LL to Verify Requirement Scenarios in Composite Web Service 221

Fig. 3. Composite Web service contract (requirement model).

the contractor can confirm the order or cancel the order. If the order is canceled
the process is finalized in both sides. If the order is confirmed, the subcontrac-
tor manufactures the desired product and, during this process, it sends a status
report to the contractor. Finally, it sends the final product to the contractor.

Considering this composition, it is possible to identify the scenarios that the
parties involved in the process will have to perform. In this context a scenario
corresponds to a well defined route mapped into the corresponding workflow
module and, if the workflow module has more than one route (places with two
or more output arcs), more than one scenario will have to be considered then.
The approach presented in this paper considers that the composite Web service
contract is sound. Such a statement does not necessarily mean that the corre-
sponding architectural model will be sound too, which may lead the system to
a deadlock situation.

An architectural model typically contains several tasks which are only of local
interest and which do not appear in the service contract. In this approach, the
architectural model is also modeled by workflow modules; however, it contains
the detailed tasks of the internal workflow processes. Therefore, the architectural
model corresponds to a more detailed Web Service.

Figure 4 shows the detailed composition of the Web service, which in this
approach, corresponds to the architectural model related to the Web service
contract shown in Fig. 3.

222 K.S. de Oliveira and S. Julia

Fig. 4. Composite detailed Web service (architectural model).

To verify if the scenarios of the requirement model are present in the archi-
tectural model, the composite models of the Web service contract (Fig. 3) and of
the detailed Web service (Fig. 4) are considered. We will call the detailed com-
posite Web service of detailed composite Web Service architecture. Therefore,
the proposed method in this work respects the following sequence of steps:

1. build the Linear Logic proof trees for each scenario of the composite Web ser-
vice contract and transformed the obtained proof trees into the corresponding
precedence graphs;

2. build the Linear Logic proof trees for each scenario of the detailed composite
Web service architecture and transformed the obtained proof trees into the
corresponding precedence graphs;

3. verify the equivalence between the precedence graphs of the composite Web
service contract and the precedence graphs of the detailed composite Web
service architecture.

Using LL to Verify Requirement Scenarios in Composite Web Service 223

Because the precedence graphs show in a formal way the sequencing con-
straints of a set of activities performed by a workflow module, they can be seen
as a kind of operational semantic associated to a workflow process.

The equivalence between composite Web service contract and the detailed
composite Web service architecture can consequently be verified using the
branching bisimilarity concept presented in Sect. 2.3, whose purpose is to com-
pare operational semantics of distinct formal behavioral models.

In our approach, the activities of the detailed composite Web service archi-
tecture that do not appear in the composite Web service contract are considered
as silent actions. When removing the silent actions of the precedence graphs
of the detailed composite Web service architecture, the obtained reduced graph
has to be the same as the one of the composite Web service contract when the
behavior of the architectural model reproduces the behavior of the requirement
model.

To illustrate the approach, we consider the examples of Figs. 3 (compos-
ite Web service contract) and 4 (detailed composite Web service architecture).
The transitions of the models are named according to the initial letters of the
activities associates to them. For example, send order and receive order are rep-
resented by tso and tro, respectively.

The transitions (activities) of the requirement model (composite Web service
contract, Fig. 3) are represented by the following formulas of Linear Logic:

start = ts = i � Ci ⊗ Si, send order = tso = Ci � C1 ⊗ P1,
receive order = tro = Si ⊗ P1 � S1, p specification = tps = S1 ⊗ P2 � S2,
creat specification = tcs = C1 � C2 ⊗ P2,
p cost statement = tpcs = C2 ⊗ P3 � C3,
creat cost statement = tccs = S2 � S3 ⊗ P3,
confirm order = tcfo = C3 � C4 ⊗ P4,
receive confirm = trcf =S3 ⊗P4 � S4, status report= tsr = S4 � S5 ⊗P6,
view status = tvs = C4 ⊗ P6 � C5, cancel order = tco = C3 � C6 ⊗ P5,
receive cancel = trc = S3 ⊗ P5 � So ⊗ P8,
ship product = tsp = S5 � So ⊗ P7, canceled order = tcdo = C6 ⊗ P8 � Co,
handle product = thp = C5 ⊗ P7 � Co, end = te = Co ⊗ So � o.

The requirement model contains two scenarios called respectively Sr1 and
Sr2. The first one corresponds to the situation that the order was canceled by
the contractor and the second one corresponds to the situation that the order
was confirmed by the contractor.

Before the construction of the precedence graph, it is necessary to prove
that the sequent corresponding to a possible scenario is syntactically correct in
accordance with the Linear Logic theory.

Considering the scenario Sr1 of the composite Web service contract of Fig. 3,
the following sequent needs to be proven:

i, ts, tso, tro, tcs, tps, tccs, tpcs, tco, trc, tcdo, te � o.

224 K.S. de Oliveira and S. Julia

The corresponding proof tree for scenario Sr1 is the following:

So�So Co�Co
So,Co�So ⊗ Co ⊗R

o�o �L

C6�C6 P8�P8
C6,P8�C6⊗P8 ⊗R

So,Co,Co⊗So�o�o �L

C6,So,P8,C6⊗P8�Co,te�o ⊗L

S3�S3 P5�P5
S3,P5�S3⊗P5 ⊗R

C6,So⊗P8,C6⊗P8�Co,te�o �L

S3,C6,P5,S3⊗P5�So⊗P8,tcdo,te�o ⊗L

C3�C3 S3,C6⊗P5,S3⊗P5�So⊗P8,tcdo,te�o �L

C2�C2 P3�P3
C2,P3�C2⊗P3 ⊗R

S3,C3,C3�C6⊗P5,trc,tcdo,te�o �L

C2,P3,S3,C2⊗P3�C3,tco,trc,tcdo,te�o ⊗L

S2�S2 C2,S3⊗P3,C2⊗P3�C3,tco,trc,tcdo,te�o �L

S1�S1 P2�P2
S1,P2�S1⊗P2 ⊗R

C2,S2,S2�S3⊗P3,tpcs,...,tcdo,te�o �L

S1,P2,C2,S1⊗P2�S2,tccs,...,tcdo,te�o ⊗L

C1�C1 S1,C2⊗P2,S1⊗P2�S2,tccs,...,tcdo,te�o �L

Si�Si P1�P1
Si,P1�Si⊗P1 ⊗R

C1,S1,C1�C2⊗P2,tps,...,tcdo,te�o �L

Si,C1,P1,Si⊗P1�S1,tcs,...,tcdo,te�o ⊗L

Ci�Ci Si,C1⊗P1,Si⊗P1�S1,tcs,...,tcdo,te�o �L

Ci,Si,Ci�C1⊗P1,tro,tcs,...,tcdo,te�o ⊗L

i�i Ci⊗Si,Ci�C1⊗P1,tro,tcs,...,tcdo,te�o �L

i,i�Ci⊗Si,tso,tro,tcs,tps,tccs,tpcs,tco,trc,tcdo,te�o

To generate the precedence graph, the proof tree must be labeled as explained
in Subsect. 2.2. The simplified labeled proof tree of scenario Sr1 is the following:

trc
So �

tte
So

tcdo
Co �

te
Co

trc
So ,

tcdo
Co �

te
So⊗

te
Co

⊗R

te
o�fi

o �L
te

.

.

.

ii
i �

ts
i

ts
Ci⊗

ts
Si,Ci�C1⊗P1,tro,tcs,...,tcdo,te�o �L

ts

ii
i ,i�Ci⊗Si,tso,tro,tcs,tps,tccs,tpcs,tco,trc,tcdo,te�o

The complete precedence graph of scenario Sr1 for the requirement model
is presented in Fig. 5. In this graph, the vertices represented the activities, and
the arcs the conditions that activate the activities. Such a graph corresponds to
the formal specification of the requirement in terms of behavior. It represents
too a possible view of the operational semantic associated to the corresponding
workflow process.

Considering the scenario Sr2 of the composite Web service contract (require-
ment model) of Fig. 3, the following sequent needs to be proven:
i, ts, tso, tro, tcs, tps, tccs, tpcs, tcfo, trcf , tsr, tvs, tsp, thp, te � o

Using LL to Verify Requirement Scenarios in Composite Web Service 225

Fig. 5. Precedence graph for scenario Sr1.

For the next proof trees only the beginning and the end of the proof are pre-
sented. The simplified corresponding proof tree for scenario Sr2 is the following:

So�So Co�Co
So,Co�So⊗Co ⊗R

o�o �L

.

.

.

i,ts,tso,tro,tcs,tps,tccs,tpcs,tcfo,trcf ,tsr,tvs,tsp,thp,te�o

The simplified labeled proof tree of scenario Sr2 is the following:

tps
So �

te
So

thp
Co �

te
Co

tps
So ,

thp
Co �

te
So⊗

te
Co

⊗R

te
o�fi

o �L

.

.

.

i,ts,tso,tro,tcs,tps,tccs,tpcs,tcfo,trcf ,tsr,tvs,tsp,thp,te�o

The precedence graph for scenario Sr2 of the composite Web service contract
(requirement model) is presented in Fig. 6.

The detailed composite Web service architecture of Fig. 4 contain four sce-
narios called respectively Sa1, Sa2, Sa3 and Sa4. The scenario Sa1 corresponds to
the situation that order was confirmed by the contractor but he did not request
to see the product status. The scenario Sa2 corresponds to the situation that
order was confirmed by the contractor and he requested to see the product sta-
tus. The scenario Sa3 corresponds to the situation that the order was canceled
by the contractor. The scenario Sa4 corresponds to the situation that order was
confirmed by the contractor but he did not request to see the product status;
however, even so the subcontractor sent the status report.

Iterative routes of workflow module will be replaced by simple global tasks,
as it is generally the case of hierarchical approaches based on the notion of well
formed blocks [16]. The iterative route constraint that exists in the detailed
composite Web service architecture of Fig. 4 will be transformed into a global
single task bill’, as shown in the Fig. 7, that corresponds to the many possible
iterations of the activity bill each time the condition nok is valid.

226 K.S. de Oliveira and S. Julia

Fig. 6. Precedence graph for scenario Sr2.

Fig. 7. Transformation of an iterative route constraint into a single task.

The transitions of the architectural model are represented by the following
formulas of Linear Logic:

start = ts = i � Ci ⊗ Si, send order = tso = Ci � C ′
1 ⊗ C2 ⊗ P1,

receive order = tro = Si ⊗ P1 � S1, p order = tpo = S1 � S2,
bill′ = tb = C ′

1 � C ′
3, ok = tok = C ′

3 � C5,
check = tc = C5 � C7, creat specification = tcs = C2 � C4 ⊗ P2,
p specification = tps = P2 ⊗ S2 � S3,
evaluating = tev = S3 � S4, p cost statement = tpcs = C4 ⊗ P3 � C6,
creat cost stament = tccs = S4 � P3 ⊗ S5, decide = td = C6 � C8,
cancel order = tco = C8 � C11 ⊗ P6,
receive confirm = trc = S5 ⊗ P6 � P8 ⊗ So,
canceled order = tcdo = C7 ⊗ C11 ⊗ P8 � Co,
proceed = tp = S7 � S8, confirm order = tcfo = C8 � C9 ⊗ P4,
receive confirm = trcf = P4 ⊗ S5 � S6, prepare product = tpp = S6 � S7,
view status = tvs = C9 ⊗ P5 � C10,
status report = tsr = S7 � P5 ⊗ S8, waiting product = twp = C9 � C10,
handle product = thp = C7 ⊗ C10 ⊗ P7 � Co,
ship product = tsp = S8 � P7 ⊗ So, end = te = Co ⊗ So � o.

Using LL to Verify Requirement Scenarios in Composite Web Service 227

Considering each scenario of the detailed composite Web Service architecture
of Fig. 4, the following sequents needs to be proven:

– (scenario Sa1)
i, ts, tso, tro, tb, tcs, tok, tc, tpo, tps, tev, tccs, tpcs, td, tcfo, trcf , twp, tpp, tp, tsp, thp,
te � o

– (scenario Sa2)
i, ts, tso, tro, tb, tcs, tok, tc, tpo, tps, tev, tccs, tpcs, td, tcfo, trcf , tvs, tpp, tsr, tsp, thp,
te � o

– (scenario Sa3)
i, ts, tso, tro, tb, tcs, tok, tc, tpo, tps, tev, tccs, tpcs, td, tco, trc, tcdo, te � o

– (scenario Sa4)
i, ts, tso, tro, tb, tcs, tok, tc, tpo, tps,tev, tccs, tpcs, td, tcfo, trcf , twp,tpp, tsr, tsp, thp,
te � o

The simplified corresponding proof tree for scenario Sa1 is the following:

So�So Co�Co
So,Co�So⊗Co ⊗R

o�o �L

.

.

.

i,ts,tso,...,tc,tpo,tps,tev,tccs,tpcs,td,tcfo,trcf ,twp,tpp,tp,tsp,thp,te�o

The labeled proof tree for the scenarios Sa1, Sa2, Sa3 and Sa4 will not be
shown.

The precedence graph for scenario Sa1 is presented in Fig. 8(a). In this graph,
all sequences of activities performed in the detailed composite Web service archi-
tecture are clearly specified. In this graph, dashed lines are used when an arc
corresponds to a link to a silent activity (one of its vertices corresponds to a
silent activity). As a matter of fact, these activities are of interest only to their
respective local workflow module. By removing a silent action from a precedence
graph, it is necessary to connect the precedent activity that is connected to the
silent activity to the successor activity of the silent activity. For example, by
removing the activity td in Fig. 8(a), a new directed arc is created between the
activities tpcs and tcfo. By removing all the silent activities of the precedence
graph in Fig. 8(a), the reduced precedence graph of Fig. 8(b) is obtained.

The simplified corresponding proof tree for scenario Sa2 is the following:

So�So Co�Co
So,Co�So⊗Co ⊗R

o�o �L

.

.

.

i,ts,tso,...,tc,tpo,tps,tev,tccs,tpcs,td,tcfo,trcf ,tvs,tpp,tsr,tsp,thp,te�o

The precedence graph for scenario Sa2 is presented in Fig. 9(a). By remov-
ing all the silent activities from the precedence graph in Fig. 9(a), the reduced
precedence graph of Fig. 9(b) is obtained.

The simplified corresponding proof tree for scenario Sa3 is the following:

So�So Co�Co
So,Co�So⊗Co ⊗R

o�o �L

.

.

.

i,ts,tso,...,tc,tpo,tps,tev,tccs,tpcs,td,tco,trc,tcdo,te�o

228 K.S. de Oliveira and S. Julia

(a) (b)

Fig. 8. (a) Precedence graph for scenario Sa1. (b) Reduced precedence graph for sce-
nario Sa1.

(a) (b)

Fig. 9. (a) Precedence graph for scenario Sa2. (b) Reduced precedence graph for sce-
nario Sa2.

The precedence graph for scenario Sa3 is presented in Fig. 10(a). By removing
all the silent activities from the precedence graph in Fig. 10(a), the reduced
precedence graph of Fig. 10(b) is obtained.

Using LL to Verify Requirement Scenarios in Composite Web Service 229

(a) (b)

Fig. 10. (a) Precedence graph for scenario Sa3. (b) Reduced precedence graph for
scenario Sa3.

The simplified proof tree corresponding to scenario Sa4 is the following one:

So�So Co�Co
So,Co�So⊗Co ⊗R

P5,o�o �L

.

.

.

i,i�Ci⊗Si,tso,tro,tb,tcs,tpo,tps,...,tsr,tsp,thp,te�o

The last line of the proof tree clearly shows that even with the last place
‘o’ of the detailed composite Web service architecture marked, another token is
present in the process in place P5. This means that scenario Sa4, in case it is
executed, will produce a kind of information duplication; such a scenario does
not correspond then to a sound behavior and will not be considered as part of
the scenarios necessary to cover the business requirement of the composite Web
service contract. As a direct consequence, the precedence graph for scenario Sa4
is not produced.

The last step of the approach is to compare the precedence graphs of the
composite Web service contract with the precedence graphs of the detailed com-
posite Web service architecture to verify if the requirements specified in term of
behavior in the Web service contract are also present in the architectural pro-
posal specified in the detailed composite Web service architecture. The prece-
dence graphs obtained from scenarios Sr1 and Sr2 have then to be compared
with precedence graphs obtained from scenarios Sa1, Sa2 and Sa3.

The precedence graph for scenario Sr1 (Fig. 5) and the reduced precedence
graph for scenario Sa3 (Fig. 10(b)) execute the same activities respecting the
same sequential constraints. The additional arc C ′

1C
′
3C5C7 that exist in the

graph of Fig. 10(b), and that do not exist in the graph of Fig. 5, are simply
redundant constraints that can be removed without modifying the requirement
specification. As a matter of fact, the arc C ′

1C
′
3C5C7 of Fig. 10(b) simply states

230 K.S. de Oliveira and S. Julia

that the activity tso has to happen before activity tcdo. However, this statement
already exists through the sequence of arcs C2, C4, C6C8, C11, for example. By
removing the redundant arc from the graph of Fig. 10(b), the precedence graphs
of Figs. 5 and 10(b) are exactly the same.

The precedence graph for scenario Sr2 (Fig. 6) and the reduced precedence
graph for scenario Sa2 (Fig. 9(b)) execute the same activities respecting the
same sequential constraints. By removing the redundant arc from the graph in
Fig. 9(b), the precedence graphs of Figs. 6 and 9(b) are exactly the same too.

The scenario Sa1 produces a behavior that was not specified in the contract
model. This fact was expected since the architecture model is a set of private
workflow modules that contains several tasks which are only of local interest and
which do not appear in the Web service contract.

Although the architectural model (Fig. 4) is not sound (scenario Sa4), the
scenarios Sa2 and Sa3 are correctly executed and verify the requirements speci-
fied in the Web service contract. According to the definition presented in [12], it
can be verified that the model is relaxed sound, i.e. each transaction (activity)
appears in, at least, one scenario that finishes correctly. Therefore, even though
the detailed composite Web service architecture is not sound, which may lead the
system to a deadlock situation, it is possible to verify that it possesses the sce-
narios that correctly satisfy the business needs defined in the contract model. For
the example shown in this work, one concludes that the requirements defined in
the analysis model are well defined in the architectural model. In particular, the
scenarios Sr1 and Sr2 of the conctrat model are also present, through scenarios
Sa3 and Sa2, in the architectural model.

4 Conclusion

This paper presented an approach for requirement verification in Web service
models based on workflow modules and Linear Logic. Our purpose was to present
an approach to verify that, in the context of Web services, all scenarios present in
a requirement model (Web service contract) are also present in the corresponding
architectural model (detailed composite Web service architecture).

This approach was based in particular on the construction of Linear Logic
proof trees and of precedence graphs that show the operational semantic of dis-
tinct models. Building a precedence graph for each scenario of the requirement
model and for each scenario of the architecture model, it was possible to com-
pare and check the behavioral equivalence between a composite Web service
contract and a detailed Web service architecture model, in particular when the
obtained models simulate each other’s behavior, respecting the notion of branch-
ing bisimilarity. In this approach, precedence graphs were in particular built for
the sequents of Linear Logic syntactically correct, i.e. sound scenarios that ended
correctly the modeled business process. The time complexity to prove a linear
sequent of Linear Logic that represents a scenario of a WorkFlow net is O(n),
where n is the number of transitions; besides that the additional complexity the
parallel structure of a Petri net produced in the state oriented reachability graph
will disappear in the proof tree of the sequent calculus of Linear Logic [14].

Using LL to Verify Requirement Scenarios in Composite Web Service 231

One of the main advantage of this approach is to propose, through the use of
Linear Logic and precedence graphs, a kind of operational semantic associated
to business processes that allows to verify in a formal way business requirements
within the Web service context. The presented approach considers architectural
models not necessarily sound. The organizations do not have then to be con-
strained by external actors to build their private workflow processes, as it is
the case generally when considering existing enterprise systems. Therefore, the
organizations involved can simply verify if the set of requirement scenarios of
a contract model are also present in an available Web service model candidate
for the implementation of the required service. In this sense, the impacts and
deviations generated by collaboration between different organizations can be
minimized.

In this article, only a kind of functional requirement was verified in the mod-
els. As a future work proposal, we will associate explicit time constraints in the
models to evaluate the performance of the models and apply a kind of quanti-
tative analysis in the context of Web services.

References

1. Basten, A.A.: In Terms of Nets: System Design with Petri Nets and Process Alge-
bra. Eindhoven University of Technology (1998)

2. Diaz, M.: Petri Nets: Fundamental Models, Verification and Applications. Wiley-
IEEE Press, Reading, Massachusetts (2009)

3. Erl, T.: Service-Oriented Architecture Concepts, Technology, and Design. Prentice
Hall, Upper Saddle River (2005)

4. Erl, T.: SOA Principles of Service Design. Prentice Hall, Upper Saddle River (2009)
5. Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987). Elsevier Science

Publishers Ltd
6. Goknil, A., Kurtev, I., Van Den Berg, K.: Generation and validation of traces

between requirements and architecture based on formal trace semantics. J. Syst.
Softw. 88, 112–137 (2014). Elsevier

7. Klai, K., Ochi, H., Tata, S.: Formal abstraction and compatibility checking of web
services. In: IEEE 20th International Conference on Web Services, pp. 163–170.
IEEE (2013)

8. Martens, A.: Analyzing web service based business processes. In: Cerioli, M. (ed.)
FASE 2005. LNCS, vol. 3442, pp. 19–33. Springer, Heidelberg (2005). https://doi.
org/10.1007/978-3-540-31984-9 3

9. Nghiem, A.: IT Web Services: A Roadmap for the Enterprise. Prentice Hall Pro-
fessional Technical Reference (2002)

10. Papazoglou, M.P.: Service-oriented computing: concepts, characteristics and direc-
tions. In: Fourth International Conference on Web Information Systems Engineer-
ing, pp. 03–12. IEEE Computer Society Press (2003)

11. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)
GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981). https://
doi.org/10.1007/BFb0017309

12. Passos, L.M.S.: A Metodology based on Linear Logic for Interorganizational Work-
flow Processes Analysis. Ph.D. Dissertation, Federal Univerty of Uberlândia (2016)

https://doi.org/10.1007/978-3-540-31984-9_3
https://doi.org/10.1007/978-3-540-31984-9_3
https://doi.org/10.1007/BFb0017309
https://doi.org/10.1007/BFb0017309

232 K.S. de Oliveira and S. Julia

13. Passos, L.M.S., Julia, S.: Deadlock-freeness scenarios detection in web service com-
position. In: 12th International Conference on Information Technology - New Gen-
erations, pp. 780–783. IEEE (2015)

14. Passos, L.M.S., Julia, S.: Linear Logic as a Tool for Qualitative and Quantitative
Analysis of Work OW Processes. Int. J. Artif. Intell. Tools 25, 1650008–01-25
(2016). World Scientifc Publishing Company

15. Riviere, N., Pradin-Chezalviel, B., Valette, R.: Reachability and temporal conflicts
in t-time Petri nets. In: 9th International Workshop on Petri Nets and Performance
Models, pp. 229–238. IEEE (2001)

16. Valette, R.: Analysis of Petri nets by stepwise refinements. J. Comput. Syst. Sci.
18, 35–46 (1979). Elsevier

17. van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimula-
tion semantics. J. ACM 43, 555–600 (1996). ACM

18. Xiong, P., Fan, Y., Zhou, M.: A Petri net approach to analysis and composition of
web services. IEEE Trans. Syst. Man Cybern. Part A: Syst. Humans 40, 376–387
(2010). IEEE

Checking Static Properties Using Conservative
SAT Approximations for Reachability

Pedro Antonino(B), Thomas Gibson-Robinson, and A.W. Roscoe

Department of Computer Science, University of Oxford, Oxford, UK
{pedro.antonino,thomas.gibson-robinson,bill.roscoe}@cs.ox.ac.uk

Abstract. The use of specialised approximations for reachability,
instead of exact reachability, has given rise to scalable methods to verify
deadlock freedom in the context of distributed finite-state systems. In
this work, we extend these approaches to check static properties. These
properties capture the immediate/static behaviour of a system. The sta-
tic nature of these properties make them a good match for the sort of
over-approximations we use. Local-deadlock freedom and mutual exclu-
sion are two commonly desired properties for distributed systems that
naturally fit into our framework. Local-deadlock freedom, in particular,
specifies that no subsystem can reach a permanently blocked state. We
show by a series of experiments that our approximate framework can
prove such properties for a number of interesting systems, and it can do
so more efficiently compared to complete approaches.

1 Introduction

The main shortcoming of verification frameworks for concurrent and distributed
systems is, arguably, their lack of scalability. Generally, the main driving force
behind the inefficiency of such frameworks is the state-space explosion problem:
the state space of these systems grows exponentially with the linear increase
in the number of components. Approximative frameworks are an alternative to
deal with the state space explosion; these methods give up precision to achieve
scalability. In a series of papers, we have demonstrated the effectiveness of meth-
ods based on replacing exact reachability by approximations calculated by SAT
solving for achieving scalable deadlock-freedom verification for finite-state dis-
tributed systems [1–3]. Due to the use of reachability over-approximations, when
our framework finds a blocked state, it produces an inconclusive result: it does
not know whether this state is reachable or not. If no blocked state is found,
however, the system is deadlock free. Unlike complete frameworks, we are happy
to precisely tackle only a class of systems as long as verification results are effi-
ciently provided for most systems, be it inconclusive or not. We believe this
incompleteness is a small price to pay to achieve better scalability. An inconclu-
sive result can be understood as a quick alert to the user that our framework is
unable to precisely tackle the input system.

These frameworks try to generate a candidate counter-example, i.e. a possible
deadlock, by assigning to each component one of its states in a way they satisfy
c© Springer International Publishing AG 2017
S. Cavalheiro and J. Fiadeiro (Eds.): SBMF 2017, LNCS 10623, pp. 233–250, 2017.
https://doi.org/10.1007/978-3-319-70848-5_15

234 P. Antonino et al.

some overall SAT constraints; these constraints test whether a given assignment
(i.e. system state) is in some reachability approximation and is blocked. Deadlock
freedom is a natural target for such frameworks because a blocked system state
can be easily recognised based on the analysis of the interactions available for
this combination of component states, and such an analysis can be naturally
encoded into the sort of overall constraints we use.

In this paper, we show how the same ideas work for further properties. We
introduce a notation to capture properties that can be specified based on the
static (i.e. immediate) behaviour available in a system state, i.e. the events the
system can (or cannot) perform when in the given state. We call such properties
static properties. One property that naturally fits into this notation is local-
deadlock freedom, namely, the property that no subsystem can become irretriev-
ably blocked. This is a naturally desirable property that is quite hard to specify
and efficiently check using conventional techniques. Like deadlock freedom, this
property can be characterised by the interactions available for a combination
of component states. Mutual exclusion and safe invocation, namely, ensuring
components only invoke services that are properly initialised, are other relevant
properties that can be seamlessly specified and effectively checked in our frame-
work.

This new framework generalises our frameworks for deadlock analysis; it tries
to generate a candidate counter-example for a given static property by finding a
system state that satisfy some similar overall SAT constraints. Instead of looking
for blocked states, however, it generates a constraint to analyse whether a given
system state constitutes a violation for the input static property. Furthermore,
we combine all constraints that approximate reachability in [1–3] to enhance the
precision of our framework. These reachability approximations are designed to
capture some common interaction mechanisms used by systems to avoid unde-
sired states. For instance, the technique in [1] captures token-based interactions:
it can predict how tokens flow in a system and whether a given combination
of component states is consistent with token invariants it discovers. Finally,
we capture distributed systems using supercombinator machines. This notation
describes a system by its components and the way these components interact. It
is notably used to capture CSP systems [14,22] within the FDR4 checker [12],
but it should be able to capture systems in other formalisms as long as these
systems can be expressed in terms of finite-state interacting components.

We implement our framework in a tool called ApprOx. The efficiency and
precision of this tool is assessed by practical experiments where we test our
implementation in some systems described in CSP. The core of our framework
should be easily adaptable to similar formalisms. To the best of our knowledge,
in the context of distributed systems, our framework is the first approximate
approach to directly tackle such a general class of properties.
Outline. Section 2 briefly introduces CSP’s operational semantics, which is the
formalism upon which our strategy is based. Section 3 introduces some tech-
niques to approximate reachability. In Sect. 4, we introduce a notation to cap-
ture static properties, whereas in Sect. 5, we propose an approximate framework

Checking Static Properties Using Conservative SAT Approximations 235

to check static properties using SAT solving. Section 6 presents two experiments
conducted to evaluate ApprOx. In Sect. 7, we present our concluding remarks.

2 Background

In the CSP notation, distributed systems are modelled as processes that
exchange messages. Here, we describe some structures used by the refinement
checker FDR4 in implementing CSP’s operational semantics. As this work does
not depend on the details of CSP, we do not describe the details of this notation.
These can be found in [22]. FDR4 interprets CSP terms as a labelled transition
system (LTS).

Definition 1. A labelled transition system is a 4-tuple (S,Σ,Δ, ŝ) where S is
a set of states, Σ is the alphabet, Δ ⊆ S × Σ × S is a transition relation, and
ŝ ∈ S is the starting state.

FDR4 represents distributed systems as supercombinator machines. A super-
combinator machine consists of a set of component LTSs along with a set of
rules that describe how components transitions should be combined. We restrict
ourselves to systems with pairwise communication, as per [2]. Many systems are
naturally, or can be easily made, triple-disjoint.

Definition 2. A triple-disjoint supercombinator machine is a pair (L,R) where:

– L = 〈L1, . . . , Ln〉 is a sequence of component LTSs;
– R is a set of rules of the form (e, a) where:

• e ∈ (Σ−)n specifies the event that each component must perform, where
− indicates that the component performs no event. e must also be triple-
disjoint: at most two components must be involved in a rule.
∗ triple disjoint(e) =̂ ∀ i, j, k : {1 . . . n} | i �= j ∧ j �= k ∧ i �= k•

ei = − ∨ ej = − ∨ ek = −
• a ∈ Σ is the event the supercombinator machine performs.

Given a supercombinator machine, a corresponding LTS describing the sys-
tem’s behaviour can be constructed.

Definition 3. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine where
Li = (Si, Σi,Δi, ŝi). The LTS induced by S is the tuple (S,Σ,Δ, ŝ) such that:

– S = S1 × . . . × Sn;
– Σ = {a | (e, a) ∈ R};
– Δ = {((s1, . . . , sn), a, (s′

1, . . . , s
′
n)) | ∃((e1, . . . , en), a) ∈ R • ∀ i ∈ {1 . . . n}•

(ei = − ∧ si = s′
i) ∨ (ei �= − ∧ (si, ei, s

′
i) ∈ Δi)};

– ŝ = (ŝ1, . . . , ŝn).

We write s
e−→ s′ iff (s, e, s′) ∈ Δ, and s

e−→ iff ∃ s′ • (s, e, s′) ∈ Δ. There is a
path from s to s′ with the sequence of events 〈e1, . . . , en〉 ∈ Σ∗, represented by

s
〈e1,...,en〉−−−−−−→ s′, if there exist s0, . . . , sn such that s0

e1−→ s1 . . . sn−1
en−→ sn, s0 = s

and sn = s′. A state s ∈ S is reachable iff reachable(s) =̂ ∃ t ∈ Σ∗ • ŝ
t−→ s.

236 P. Antonino et al.

Henceforth, we use system state (component state) to designate a state in the
system’s (component’s) LTS. Note a system state is a combination of component
states that might not be reachable within the system’s induced LTS. Also, for the
sake of decidability, we only analyse machines with a finite number of components,
which are themselves represented by finite LTSs with finite alphabets.

3 Related Work

The majority of the papers on incomplete/approximate verification techniques
propose frameworks for deadlock-freedom analysis [1–3,5–8,10,15–18]. Most of
these frameworks were designed around the principle that under reasonable
assumptions about the system, any deadlock state would contain a proper cycle
of ungranted requests amongst components. This characterisation, however, is
rather imprecise [2], as a cycle of ungranted requests is only a necessary condi-
tion for a deadlock. Furthermore, this characterisation is inextricably linked to
deadlock, so it does not generalise to other properties.

In [1–3], we improve on this by being imprecise only in terms of reachability.
These frameworks characterise a deadlock as a system state that is blocked and
passes a reachability test that over-approximates reachability. Roughly speaking,
they look through an over-approximation of the system’s state space and either
show that no blocked state exists or they find a blocked state. Thanks to the over-
approximation, in the former case the system has to be deadlock free, whereas in
the latter the framework’s result is inconclusive: the blocked state found might
not be reachable. The reachability approximations in these works are completely
independent from the fact that we are checking for a blocked state. So, they
could be re-used to check other properties. The approximations proposed in
these works are tailored to capture some common mechanisms employed by
distributed systems to avoid “bad” states.

In [2], we approximate reachability based on the behaviour of pairs of com-
ponents in the system. Broadly speaking, this approximation, captured by pred-
icate reachPair

1, considers a system state s = (s1, . . . , sn) unreachable if there
exists a pair of component states (si, sj) that is not reachable considering the
(sub)system that runs components i and j independently from the rest of the sys-
tem. This technique can show that some systems that use a resource-allocation
mechanism or a client-server architecture are deadlock free [16].

In [3], we combine global invariants (i.e. notions of consistency for component
states) with information about how individual components participate on shared
rules to approximate reachability. It proposes four approximations for reacha-
bility: reachNC , reachNA, reachSC , reachSA

2. While reachNC tries to show
that a system state is unreachable by showing that components cannot agree
on the number of times they perform a given system rule, reachSC attempts to
1 The predicate reachPair corresponds to pairwise reachable in [2]. This new name

is introduced for uniformity.
2 These predicates correspond to reachableCN , reachableAN , reachableCS , and
reachableAS in [3], respectively. This renaming is for uniformity.

Checking Static Properties Using Conservative SAT Approximations 237

demonstrate that a system state is unreachable by proving they cannot agree on
the order in which they perform some system rules. reachNA and reachSA are
techniques that mirror reachNC and reachSC , respectively, and perform some
additional data abstraction. These approximations can be used to prove deadlock
freedom for some systolic-array-like and token-based systems.

In [1], we improve on [3] in dealing with token-based systems. We use SAT
queries to detect implicit token invariants. These token invariants are in turn
used as reachability definitions. While reachC uses SAT queries to find a token-
conservation invariants, reachE synthesises a existential-token invariant. For
instance, the technique in reachC assigns a boolean value to each state of each
component that denotes whether the component holds a token at that point.
This assignment is made in a way that if there is a system transitions from s
to s′, the number of tokens held by components in s and s′ are the same. Thus,
reachC can approximate reachability by ensuring that the state being tested has
the same number of tokens as the initial state.

Theorem 1. For x ∈ {Pair,NC, SC,NA, SA,C,E} and s a state of the sys-
tem, reachable(s) implies reachx(s)3.

Our reachability tests can be seen as interaction invariants in the sense
of [10]. They seem to tackle a different class of systems when compared to the
interaction invariant in [10], so they could complement it.

In this paper, we propose a framework to specify and check a general class
of safety properties that we call static properties, generalising the above work.
We build on these approximations to effectively verify such properties. In-depth
knowledge of these reachability approximations is not required to understand the
rest of this paper. It suffices to keep in mind that they can be more efficiently cal-
culated in comparison to exact reachability, they can precisely tackle some inter-
esting classes of systems (such as token-based, systolic-array-like, client-server,
etc.), and they are sound reachability over-approximations as per Theorem 1.

4 Capturing Static Properties

In this section, we propose a framework to specify static properties of a distrib-
uted system. A static property takes the form: “the system can never reach a
bad state”. In our framework, bad states are described based on the system and
its components’ immediate possible behaviour. Hence the term static; it does
not attempt to address things like traces.

4.1 Static Properties

A static property is described by a pair (V,∼) where V is a violation formula
and ∼ is a satisfiability relation. A violation for this property is a system state
s such that s ∼ V. Roughly speaking, V describes some bad behaviour and

3 Proofs are given in reports associated to original papers.

238 P. Antonino et al.

∼ is a relation that captures whether a state behaves badly. A violation formula
describes some immediate behaviour of a system by a propositional formula
where atomic propositions correspond to system events.

Definition 4. Let Σ be the alphabet of the system under analysis, which can
include τ (invisible event) or � (successful-termination signal), and ev ∈ Σ. A
violation formula V is inductively constructed as follows.

V =̂ Event ev | Not V | Or P(V) | And P(V)

The following formula is an example of a violation formula:

Violation formula 1. V1 =̂ And {Not Event ev | ev ∈ Σ}
We propose two satisfiability relations that give rise to two different types of

violations. The first relation is based on the overall system’s behaviour. We call
violations of this type global violations. For this relation, the atomic proposition
“Event ev” holds for states in which the system can perform event ev.

Definition 5. Let V be a violation formula, S a supercombinator machine,
(S,Σ,Δ, ŝ) its induced LTS, and ev ∈ Σ. A state s is a global violation for
formula V iff s |= V holds. Let V ′ be a violation formula and VS be a set of
violation formulas, s |= V can be calculated using the following clauses:

s |= Event ev iff s
ev−→ s |= Or VS iff

∨

V′∈VS s |= V ′

s |= Not V ′ iff s �|= V ′ s |= And VS iff
∧

V′∈VS s |= V ′

This relation and Violation formula 1 characterise the blocked states of a
system, i.e. {s ∈ S | s |= V1} for a system with states S.

The second relation is interpreted based on the behaviour of subsystems.
We call violations of this type local violations. We analyse the behaviour of
a subsystem through the following projection. Given a subsystem (i.e. a non-
empty set of component indices), it restricts the behaviour of the system to the
transitions involving components in this subsystem.

Definition 6. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine where
Li = (Si, Σi,Δi, ŝi), ss ⊆ {1 . . . n} such that ss �= ∅ a subsystem, and ei be the
i-th element of tuple e. The projection of S on ss is given by Sss defined as:

(〈L1, . . . , Ln〉, {(ess, a) | (e, a) ∈ R ∧ ∃ i ∈ ss • ei �= −})

where ess is the tuple e′ such that e′
i = ei if i ∈ ss, and e′

i = − otherwise.

We use s
ev−→ss to denote the predicate s

ev−→ with respect to the LTS induced
by Sss. For this local relation, a violation occurs when one subsystem engages
in some bad behaviour. Hence, a violation formula is evaluated with respect to
every subsystem ss of the system under analysis. The atomic proposition “Event
ev”, in particular, holds whenever a subsystem ss can perform ev.

Checking Static Properties Using Conservative SAT Approximations 239

Definition 7. Let V be a violation formula, S = (〈L1, . . . , Ln〉,R) a supercom-
binator machine, (S,Σ,Δ, ŝ) its induced LTS, and ev ∈ Σ. A state s satisfies
the formula V under the local interpretation iff s ||= V holds, where s ||= V is a
shorthand for ∃ ss ⊆ {1 . . . n} | ss �= ∅ • s ||=ss V. Let V ′ be a violation formula
and VS a set of violation formulas, s ||=ss V can be calculated as follows:

s ||=ss Event ev iff s
ev−→ss s ||=ss Or VS iff

∨

V′∈VS s ||=ss V ′

s ||=ss Not V ′ iff s �||=ss V ′ s ||=ss And VS iff
∧

V′∈VS s ||=ss V ′

The second relation and Violation formula 1 characterise locally blocked states,
namely, {s ∈ S | s ||= V1} are the states for which a subsystem is blocked.

We make a few remarks about these two satisfiability relations. Firstly, one
should note that |= is equivalent to ||=ss when ss is the set containing all the
component indices in the system under analysis. Secondly, we point out that for
a given state s and a given violation V, from our first remark and our definition
of ||= it follows that if s |= V then s ||= V. So, the second relation gives rise to
a much weaker/looser sort of violation compared to the first one; it only takes
one violating subsystem to establish a violation. Thirdly, we point out to the
fact that the task of analysing local violations should be more demanding as it
involves the analysis of the behaviour of all subsystems of a system.

4.2 Checking Static Properties

A system without reachable violations satisfies the corresponding static property.

Definition 8. Let V be a violation formula, ∼∈ {|=, ||=} a satisfiability relation,
S a supercombinator machine and S the set of states for its induced LTS. The
system S satisfies the static property (V,∼) iff ¬∃ s ∈ S•reachable violation(s)
where reachable violation(s) =̂ reachable(s) ∧ s ∼ V.

For instance, (V1, |=) captures deadlock freedom, since reachable violations
are deadlocks. (V1, ||=), on the other hand, captures local-deadlock freedom, as
reachable violations represent local deadlocks.

Local static properties, i.e. static properties employing the local relation,
should provide an interesting tool to show that a system respects a given property
thanks to the good behaviour of its subsystems. Ensuring that all subsystems
respect a given property might be more desirable than showing the property for
the global system, and this fact is often neglected. For instance, let us examine
the relationship between deadlock and local-deadlock freedom. Usually, deadlock
freedom is checked as a first step to show that a system behaves as expected.
A system, however, might be deadlock free, not because it behaves well, but
because an individual component is always making the system progress, even
though the rest of the system is blocked. So, in general, checking local-deadlock
freedom, which ensures that no subsystem gets to a state in which it is forever
stuck, seems like a better initial step in showing that a system behaves well.

We point out that a local static property is stronger than its global counter-
part. The local satisfiability relation weakly defines that a violation occurs when

240 P. Antonino et al.

one subsystem behaves badly but when plugged into a static property it requires
all subsystems to be violation free. Note this generalisation to local properties
does not scale well in most verification frameworks. For most frameworks, check-
ing this property would entail carrying out exponentially many checks; one for
each subsystem of the original system.

4.3 Capturing Some Other Static Properties

In this section, we move away from properties involving blocked states and
show how to capture mutual-exclusion properties and a sort of safe-invocation
property.

It is often the case that distributed systems implement a mutual-exclusion
mechanism to ensure that the system behaves well. We capture a general mutual-
exclusion property by the sets CSi of component states, defining the critical
section of component i. So, this property states that no two components can be
simultaneously in their critical sections.

To capture this property, components’ critical sections must be identified.
The special (fresh) event mxi annotates each state of component i that belongs
to its critical section. This annotation is made with a self-loop transition using
mxi. Furthermore, we add some system rules that allow the system to perform
this new special event so they can be used in static properties.

Definition 9. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine where
Li = (Si, Σi,Δi, ŝi), (S,Σ,Δ, ŝ) its induced LTS, CSi ⊆ Si the critical
section of component i, and mxi /∈ Σi. We use the modified system SMX =̂
(〈L′

1, . . . , L
′
n〉,R ∪ R′) to verify general mutual-exclusion properties.

– L′
i = (Si, Σi ∪ {mxi},Δi ∪ {(s,mxi, s) | s ∈ CSi}, ŝi)

– R′ = {([i,mxi],mxi) | i ∈ {1 . . . n}}
– [i, e] is the tuple of events where event e is in position i and − is in all others.

A violation occurs when any two components i and j are simultaneously
in their critical sections. In our modified system, this corresponds to a state in
which the events mxi and mxj can be performed, i.e. a state s satisfying s |= V2.

Violation formula 2. For components {1 . . . n}:
V2 =̂ Or{And{Event mxi,Event mxj} | i, j ∈ {1 . . . n} ∧ i �= j}

So, a system S satisfies the general mutual-exclusion property with respects
to the critical sections CSi iff the modified system SMX satisfies (V2, |=).

Many systems, however, implement a more fine grained type of mutual exclu-
sion. For instance, concurrent access to read from a storage space is often not
harmful but concurrent access to read and write or to write is. We propose a
read-write mutual-exclusion property that is specified by the pairs of sets Ri and
Wi, which represent the reading and writing sections of component i. We employ
the same annotation method as before and use self-loops with events ri and wi to
annotate the component states in the reading and writing sections, respectively,
of component i.

Checking Static Properties Using Conservative SAT Approximations 241

Definition 10. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine where
Li = (Si, Σi,Δi, ŝi), (S,Σ,Δ, ŝ) its induced LTS, Ri,Wi ⊆ Si the reading and
writing sections of component i, respectively, and ri, wi /∈ Σi events. The modi-
fied read-write system is given by SRW =̂ (〈L′

1, . . . , L
′
n〉,R ∪ R′) where:

– L′
i = (Si, Σi ∪ {ri, wi},Δi ∪ {(s, ri, s) | s ∈ Ri} ∪ {(s, wi, s) | s ∈ Wi}, ŝi)

– R′ = {([i, ri], ri), ([i, wi], wi) | i ∈ {1 . . . n}}
A violation to the read-write mutual-exclusion property occurs when a com-

ponent i is in its writing section and another components j is either in its writing
or reading section. Hence, such a violating state s satisfies s |= V3.

Violation formula 3. For components {1 . . . n}:
V3 =̂ Or{And{Event wi,Or{Event rj ,Event wj}} | i, j ∈ {1 . . . n} ∧ i �= j}

So, a system S satisfies the read-write mutual-exclusion property for sections
Ri and Wi iff the modified system SRW satisfies the static property (V3, |=).

In addition to these two mutual-exclusion properties, we propose a way to
ensure components only invoke services that are properly initialised. We describe
a safe-invocation property by sets Ii. The set Ii contains pairs (ev, U): the event
ev represents a service offered by component i and U the states of component i
where this service has not been initialised yet. We identify component states in
the sets U by annotating them with self-loops using events sii,ev.

Definition 11. Let S = (〈L1, . . . , Ln〉,R) be a supercombinator machine where
Li = (Si, Σi,Δi, ŝi), (S,Σ,Δ, ŝ) its induced LTS, Ii ⊆ Σi × P(Si), where if
(ev, U), (ev, U ′) ∈ Ii then U = U ′, the initialisation requirements for component
i, and sii,ev /∈ Σi events such that sii,ev �= sii,ev′ if ev �= ev′. We use the modified
system SSI =̂ (〈L′

1, . . . , L
′
n〉,R ∪ R′) to capture a safe-invocation property.

– L′
i = (Si, Σi ∪ {sii,ev},Δi ∪ ⋃

(ev,U)∈Ii
{(s, sii,ev, s) | s ∈ U}, ŝi)

– R′ = {([i, sii,ev], sii,ev) | i ∈ {1 . . . n} ∧ (ev, U) ∈ Ii}
A violation to the safe-initialisation property occurs when a service ev is

invoked but the corresponding provider component is uninitialised, namely, in a
component state in U . Such a violating state s satisfies s |= V4.

Violation formula 4. For components {1 . . . n} and sets Ii:

V4 =̂ Or{And{Event ev,Event sii,ev}} | i ∈ {1 . . . n} ∧ (ev, U) ∈ Ii}
A system S satisfies the safe-invocation property for sets Ii if and only if SSI

satisfies the static property (V4, |=).
Note that to capture these properties we systematically identify some special

states of components and specify a violation based on some combination of these
special states. So, as long as our violation formula is able to capture the desired
violating behaviour for the system, this systematic process can be used to capture
any such property. The design of our notation to capture static properties was

242 P. Antonino et al.

driven by the properties presented here and our event-based system description.
Nevertheless, we do not anticipate any difficulties in generalising this language
to accommodate, for instance, special sets of marked states (which could replace
our annotated states) or quantification in terms of specific subsystems. Note our
annotation of states using self-loops with special events is already an implicit
representation of a set of marked states, and handling quantification for specific
subsystems should be simpler than handling quantification over all subsystems.

5 Approximate Verification of Static Properties

One way to check static properties is to explicitly look for a violation in the
reachable states of the system. Explicit state exploration, however, tends to be
very inefficient due to the state-space explosion problem. Many approaches have
proposed the use of symbolic techniques to tackle this problem in the context of
distributed systems but they have not significantly improved on the scalability
of property checking. In this section, we introduce a verification framework that
combines SAT checking with reachability approximations [1–3].

The framework we propose combines the reachability-approximating tech-
niques in Sect. 3 to check static properties. So, it can tackle systems implement-
ing a combination of the mechanisms captured by each individual technique.

Definition 12. Let S be a supercombinator machine and (S,Σ,Δ, ŝ) its induced
LTS. For a s ∈ S, we define:

reachAp(s) =̂ reachPair(s) ∧ reachNC(s) ∧ reachSC(s) ∧ reachNA(s)
∧ reachSA(s) ∧ reachC(s) ∧ reachE(s)

The combination of reachability approximations we use is itself an over-
approximation. This follows from Theorem 1.

Theorem 2. Let S be a supercombinator machine and (S,Σ,Δ, ŝ) its induced
LTS. For all s ∈ S, we have that reachable(s) implies reachAp(s).

Instead of looking through the reachable states of the system, our frame-
work looks for a candidate violation, namely, a violating state that passes the
reachability test reachAp.

Definition 13. Let (S,Σ,Δ, ŝ) be the induced LTS under analysis, and (∼,V)
a static property. For s ∈ S, candidate violation(s) =̂ reachAp(s) ∧ s ∼ V.

Our framework is imprecise as a candidate might pass our reachability test
and yet be unreachable. Nevertheless, by conjoining these approximations, we
tighten the state space analysed; it only takes one failed test to consider a
state unreachable. Furthermore, as our framework over-approximates reacha-
bility (Theorem 2), it is sound in the sense that if no candidates are found, the
corresponding static property must hold.

Theorem 3. Given a static property, if a system is candidate-violation free it
must also be free of reachable violations.

Checking Static Properties Using Conservative SAT Approximations 243

5.1 Violation Candidate Search as a SAT Problem

We built upon [1–3] to create an efficient implementation for our framework.
So, we encode the search of a candidate violation as a satisfiability problem to
be later checked by a SAT solver. For the remainder of this section, let S =
(〈L1, . . . , Ln〉,R), where Li = (Si, Σi,Δi, ŝi), be a supercombinator machine
and (S,Σ,Δ, ŝ) its induced LTS.

In our propositional encoding, sti,s is the boolean variable representing the
state s of component i. The assignment sti,s = true indicates this component
state belongs to a candidate, whereas sti,s = false means it does not. We propose
SAT formula SP to look for a candidate violation for a static property. The
combination of component states assigned to true in a satisfying assignment
forms a candidate violation.

SP =̂ State ∧ ReachAp ∧ V iolation

Sub-formula State holds if the combination of component states assigned to
true forms a valid system state.

State =̂
∧

i∈{1...n}
((

∨

s∈Si

sti,s) ∧ (
∧

s,s′∈Si

∧s 	=s′

(¬sti,s ∨ ¬sti,s′)))

To implement ReachAp, we reuse the propositional formulas presented in
[1–3]. Each formula Reachx where x ∈ {Pair,NC, SC,NA, SA,C,E} cap-
tures the corresponding reachability approximation4. So, the component states
assigned to true in a satisfying assignment pass our reachability test.

ReachAp =̂ ReachPair ∧ ReachNC ∧ ReachSC ∧ ReachNA

∧ ReachSA ∧ ReachC ∧ ReachE

The sub-formula Violation is encoded differently depending on whether the
static property to be checked is global or local. For global static property (V, |=),
Violation captures that the state currently assigned to true satisfies s |= V. To
encode s |= V, we only need to introduce a way to encode s |= Event ev. Given
an encoding for s |= Event ev, the satisfiability of s |= V for any violation
formula V is trivially encoded based on its propositional structure.

To encode s |= Event ev, we need to encode the events available in a sys-
tem state and, consequently, system rules. We use variable V i

ev to encode that
component i is in a state in which it can perform ev.

V i
ev ⇔

∨

(s,ev′,s′)∈Δi∧ev′=ev

sti,s

4 ReachPair corresponds to the formula Reachable in [2] where the pairs in NPR
are calculated over sets Si and Sj instead of RequireSynci and RequireSyncj . The
sets RequireSynci represent an optimisation for checking deadlock freedom that
is not valid to all static properties. ReachNC , ReachSC , ReachNA and ReachSA

correspond to formulas ReachC
N , ReachC

S , ReachA
N and ReachA

S in [3], respectively.

244 P. Antonino et al.

Then, we capture that rule r = (e, ev), where ei is the element at position
i, can be applied by variable Vr. This variable holds whenever the system in a
state where components can perform their corresponding events, set in e.

Vr ⇔
∧

i∈{1...n}∧ei 	=−
V i

ei

Variable VEvent ev holds for states in which the system can perform ev,
namely, whenever a rule triggering event ev can be applied. rev denotes the
system event performed by rule r. Finally, the sub-formula Violation is then
constructed by replacing Event ev in V by VEvent ev.

VEvent ev ⇔
∨

r∈R∧rev=ev

Vr

For local static property (V, ||=), Violation captures that the system state s
currently assigned to true satisfies s ||= V. We reuse the encoding for V i

ev pro-
posed for a global property. To encode quantification on subsystems, we intro-
duce participation variables pi. Variable pi is true if and only if component i
is part of the subsystem ss under analysis and add the clause

∨

i∈{1...n} pi to
ensure that ss �= ∅. As SAT checkers are designed to efficiently handle existen-
tial quantification, they should be particularly effective in tackling the sort of
subsystem quantification we use in our local properties.

The encoding of rule variables Vr has to take into account subsystem pro-
jections. So, rule r = (e, ev), where ei is the element at position i, can be fired
with respect to the system projection on the subsystem currently assigned to
true (according to variables pi) if and only if the following variable Vr holds.
Note that if a component does not participate on a subsystem, its participation
on rules is not required as per Definition 6. Hence, the disjunct ¬pi.

Vr ⇔
∧

i∈{1...n}∧ei 	=−
(V i

ei
∨ ¬pi)

Variable VEvent ev has to take into account the subsystem projections as
well. For rule r = (e, ev), rC represents the components participating in r (i.e.
components for which ei �= −) and rev denotes the system event performed by
rule r, namely, ev. We encode variable ronr ⇔ ∨

i∈rC
pi to represent whether

rule r is on or off for the assigned subsystem: rules that do not involve the
participation of any component in this subsystem must be disregarded, that is,
they are off. So, event ev can only be performed by on rules.

VEvent ev ⇔
∨

r∈R∧rev=ev

(Vr ∧ ronr)

As SP captures candidate violations, if it is unsatisfiable, the system is
candidate-violation free and, therefore, must satisfy the static property being
checked. Otherwise, the solver returns an appropriate candidate violation.

Checking Static Properties Using Conservative SAT Approximations 245

6 Practical Evaluation

In this section, we evaluate our new framework. FDR4’s ability to analyse CSP
and generate supercombinator machines is used in generating our SAT encoding,
which is then checked by the Glucose 4.0 solver [9]. Our framework is imple-
mented in the ApprOx tool. For efficiency purposes, it incrementally constructs
and makes use of the proposed reachability test. It initially queries the solver
using only reachPair as its reachability test, then it conjoins reachC and reachE ,
then reachNA and reachSA, and finally, reachNC and reachSC . If at some point
the combination of reachability predicates so-far conjoined is enough to prove
the desired property, it can stop and save the time that would take to construct
the following reachability predicates. ApprOx and the system models used in
this section are available at [4].

We carried out two experiments: the first analyses how our framework fares
in checking deadlock freedom and local-deadlock freedom, while the second eval-
uates how it fares for the verification of mutual-exclusion and safe-invocation
properties. These experiments were conducted on a dedicated machine with a
quad-core Intel Core i5-4300U CPU @ 1.90 GHz, and 8 GB of RAM.

6.1 Checking Deadlock and Local-Deadlock Freedom

We compare ApprOx to: CSDD and FSDD (which are implemented in Deadlock
Checker [16]); FDR4’s built-in deadlock freedom assertion [12], and its combina-
tion with partial order reduction [13] or compression techniques [21]. Note, only
FDR4 techniques take advantage of the multicore setting.

We analyse 9 triple-disjoint local-deadlock-free systems: a distributed data-
base (DDB), a matrix multiplication system (Mat), a token ring system with
N/2 tokens (TkHF), the mad-postman routing network (Rout), a grid network
implementing Tarry’s algorithm (Tarry) [23], a central lock system (Lock), a cen-
tral priority-queue-lock system (PrLock), a priority-token ring system (PrRing),
and a grid network implementing a simplified implementation of Raymond’s
algorithm (Ray) [20]. Table 1 presents the results that we obtain for them.

While ApprOx proves that 8 of these systems are deadlock free and 7 local-
deadlock free, CSDD and FSDD combine to check only 4 systems. We point out
that CSDD and FSDD are examples of methods that try to prove the system’s
ungranted-request graph is acyclic. Hence, whenever a system passes their tests,
it is free of deadlocks and local deadlocks. The difference in precision between our
method and FSDD or CSDD can be justified by the fact that we exactly charac-
terise blocked and locally-blocked states while these other methods imprecisely
assume that a cycle of ungranted request characterises them. Also, the approxi-
mation that we use seems to be more precise than theirs. So, these results show
that ApprOx can handle a larger class of systems while scaling similarly when
compared to other incomplete frameworks. We have not compared ApprOx to
the different versions of the DeadlOx tool [1–3], since it must be as efficient
and more accurate thanks to code re-use and the incremental construction of
our tighter reachability test. We point out that checking local-deadlock freedom

246 P. Antonino et al.

Table 1. Results for local-deadlock and deadlock freedom comparison.

Incomplete Complete

N ApprOx CSDD Best

Deadlock Local +FSDD

DDB 5 0.21 0.26 - 0.11

10 3.27 3.37 - *

20 115.20 118.66 - *

Mat 10 2.06 5.47 0.27 0.31

15 10.43 39.89 0.37 4.42

20 24.11 * 0.67 23.04

Rout 10 0.16 0.21 0.37 0.71

20 0.66 1.21 1.28 4.42

50 18.49 39.44 21.97 115.77

TkHF 50 1.16 1.36 - *

100 9.93 11.68 - *

200 124.32 136.39 - *

Tarry 5 0.06 0.06 - 0.06

10 1.46 - - 0.11

20 * - - *

Lock 100 0.16 0.16 0.27 0.31

200 0.41 0.46 0.67 0.11

500 2.81 3.37 4.58 0.26

PrLock 5 - - - 0.86

10 - - - *

20 - - - *

PrRing 5 0.11 0.11 - 0.16

10 0.61 0.61 - *

20 14.39 14.64 - *

Ray 20 0.06 0.11 0.19 1.16

30 0.11 0.16 0.22 290.20

50 0.21 0.26 0.22 *

N is a parameter that is used to alter the size of the system.
We measure in seconds the time taken to verify each system.
* means that the method took longer than 300 s. - means
that the method is unable to prove deadlock freedom. For
ApprOx, Deadlock presents the time taken to verify dead-
lock freedom, whereas Local local-deadlock freedom. The
column Best gives the fastest result amongst the complete
methods we analysed. For the complete methods only dead-
lock freedom is checked, while FSDD and CSDD check a
property stronger than local-deadlock freedom.

Checking Static Properties Using Conservative SAT Approximations 247

should be more difficult for systems where components are highly interconnected.
The complex behavioural dependency between components in such systems com-
plicates the sort of analysis we propose. So, verifying ring-like systems should be
easier than verifying grid-like systems.

Note that for the Tarry example our tool only manages to prove local-
deadlock freedom for N = 5. The components in this system are arranged in
a 5 ×(N/5) grid that uses a token mechanism to construct a spanning tree for
this grid. For N = 5, we have a 5 x 1-grid network where components can only
communicate with their left and right neighbours, whereas for N = 10 and
N = 20, we have a 5× 2 and 5× 4 grids, respectively, where components can
communicate additionally with up and down neighbours. For N = 5, a pairwise
analysis (carried out by reachPair) can keep track of the token and show that
subsystems are never blocked. For N = 10 and N = 20, however, this added
behaviour makes the identification of the underlying token structured required.
The approximation reachC finds a conservative token structure but not the one
that is required to prove local-deadlock freedom. The PrLock example is deadlock
and local-deadlock free thanks to the fact that no two components can acquire a
ticket with the same priority. This sort of invariant, however, cannot be captured
by any of the approximations we use. We believe that an enhanced reachPair

approximation, where triples of interacting components are also analysed, could
capture it, though.

For the complete approaches, i.e. FDR4 techniques, we only evaluate
deadlock-freedom, as no built-in check for local-deadlock freedom is available
in FDR4 and nor is it possible to formulate one efficiently. Approximate frame-
works are consistently faster than complete approaches while being able to prove
deadlock freedom for almost all analysed systems. The combination of FDR4’s
deadlock assertion with compression techniques comes closer to our approach in
terms of verification time. We point out, however, that the effective use of com-
pression techniques requires a careful and skilful application of those, whereas
our method is fully automatic. For instance, a careful analysis of Mat’s structure
has pointed us to craft a compression strategy that is very effective. Slight modifi-
cations to this strategy, however, lead to compression strategies that are utterly
inefficient. Unsurprisingly, FDR4’s deadlock assertion outperforms our frame-
work for the Lock and Tarry examples. For these systems, a single token/lock
moves around the system and only components having a token/lock are allowed
to perform actions. Hence, the state spaces of these systems are fairly small.

6.2 Checking Mutual Exclusion and Safe Invocation

To the best of our knowledge, our tool is the first one to propose an approximate
approach to check mutual exclusion and safe invocation for distributed systems.
So, we only compare our framework against refinement expressions that capture
the same notions; verifying them using FDR4 creates a complete/precise app-
roach. We check these expressions using FDR4’s refinement-checking engine and
its combination with partial order reduction or compression techniques.

We analyse 8 systems: a central lock system (Lock), a central priority-queue-
lock system (PrLock), Milner’s scheduler (Sched), a priority-token ring system

248 P. Antonino et al.

Table 2. Results for component-states other properties comparison

Incomplete Complete
N ApprOx Best

Lock
100 0.51 0.41
200 20.52 2.20
500 278.82 17.29

PrLock
5 0.16 0.41
10 9.33 *
20 * *

Sched
50 0.11 171.84
100 0.41 143.90
200 1.96 *

PrRing
5 0.11 0.21
10 0.57 *
20 14.09 *

Incomplete Complete
N ApprOx Best

Grid
10 0.11 5.72
20 0.11 *
50 0.21 *

Ray
20 0.16 1.51
30 0.36 244.41
50 1.51 *

RWLock
5 0.06 0.06
10 0.36 0.36
20 * *

SafeInv
10 0.11 0.11
20 0.36 *
50 5.34 *

N is a parameter that is used to alter the size of the system. We measure
in seconds the time taken to verify systems. * means that the method took
longer than 300 s. The Best column shows the time taken by the fastest
complete method to verify the refinement expression we propose.

(PrRing), a token-based message-passing grid system (Grid), and a simplified
implementation of Raymond’s algorithm (Ray), a central read-write lock system
(RWLock), and root-based initialisation system (SafeInv). The first 6 systems
implement general mutual-exclusion mechanisms, while the last two implement
a read-write mutual-exclusion mechanism and a safe-invocation mechanism,
respectively. The SafeInv system is designed so it passes from an initialising
to a running phase via fairly loose coordination. Table 2 presents the results
that we obtain for checking their corresponding properties.

ApprOx is able to verify for all systems their associated properties. Our
implementation offers a more scalable approach if compared to the verification
of the proposed refinement expression, at least for the systems tested, since it
only exceeds the timeout set for two instances of the systems tested.

7 Conclusion

Motivated by the success of using reachability approximations for the verification
of deadlock freedom, we have created a framework that can check static prop-
erties for distributed systems. Local-deadlock freedom, mutual exclusion, and
safe invocation are some of the properties, other than deadlock freedom, that
can be conveniently described in our framework. Unlike traditional frameworks,
our approximative framework can effectively tackle local static properties. To
the best of our knowledge, it is the first approximate approach to check this
class of property for the kind of distributed system we tackle. Our experiments
show that our framework can efficiently check static properties for some prac-
tical distributed systems that are out of the reach of complete methods. Thus,
it represents a valid alternative to cope with the state space explosion problem.
Finally, there is nothing CSP-specific in our methods, other than that we have a

Checking Static Properties Using Conservative SAT Approximations 249

system described as a network of pairwise interacting LTSs. Therefore, the ideas
in this paper should transfer to formalisms where systems are described as such.

Liveness properties do not seem to fit well with the kind of reachability
approximations we use. To capture such properties, we would probably need
to add complex regulator components to the system to transform the sort of
path-based behaviour leading to a violation into a static property. The complex
behaviour of such regulators, however, is likely to interfere and excessively dam-
age the sort of analysis made by the approximations we use. A few approximate
frameworks have been proposed to check liveness properties [11,19] but they use
rather different types of system analysis.

We intend to extend this framework to check some of CSP’s refinement rela-
tions. Also, we hope to add new reachability tests. For instance, to tackle the
PrLock example in Sect. 6, we could create a new approximation that captures
the fact that two components cannot acquire tickets with the same priority.

Acknowledgements. The first author is a CAPES Foundation scholarship holder
(Process no: 13201/13-1). The other authors are partially sponsored by EPSRC under
agreement number EP/N022777.

References

1. Antonino, P., Gibson-Robinson, T., Roscoe, A.W.: The automatic detection of
token structures and invariants using SAT checking. In: Legay, A., Margaria, T.
(eds.) TACAS 2017. LNCS, vol. 10206, pp. 249–265. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54580-5 15

2. Antonino, P., Gibson-Robinson, T., Roscoe, A.W.: Efficient deadlock-freedom
checking using local analysis and SAT solving. In: Ábrahám, E., Huisman, M.
(eds.) IFM 2016. LNCS, vol. 9681, pp. 345–360. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-33693-0 22

3. Antonino, P., Gibson-Robinson, T., Roscoe, A.W.: Tighter reachability criteria for
deadlock-freedom analysis. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou,
A. (eds.) FM 2016. LNCS, vol. 9995, pp. 43–59. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-48989-6 3

4. Antonino, P., Gibson-Robinson, T., Roscoe, A.W.: Experiment package (2017).
www.cs.ox.ac.uk/people/pedro.antonino/sppkg.zip

5. Antonino, P.R.G., Oliveira, M.M., Sampaio, A.C.A., Kristensen, K.E., Bryans,
J.W.: Leadership election: an industrial SoS application of compositional deadlock
verification. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp.
31–45. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06200-6 3

6. Antonino, P., Sampaio, A., Woodcock, J.: A refinement based strategy for local
deadlock analysis of networks of CSP processes. In: Jones, C., Pihlajasaari, P., Sun,
J. (eds.) FM 2014. LNCS, vol. 8442, pp. 62–77. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-06410-9 5

7. Attie, P.C., Bensalem, S., Bozga, M., Jaber, M., Sifakis, J., Zaraket, F.A.: An
abstract framework for deadlock prevention in BIP. In: Beyer, D., Boreale, M.
(eds.) FMOODS/FORTE -2013. LNCS, vol. 7892, pp. 161–177. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-38592-6 12

https://doi.org/10.1007/978-3-662-54580-5_15
https://doi.org/10.1007/978-3-319-33693-0_22
https://doi.org/10.1007/978-3-319-33693-0_22
https://doi.org/10.1007/978-3-319-48989-6_3
https://doi.org/10.1007/978-3-319-48989-6_3
http://www.cs.ox.ac.uk/people/pedro.antonino/sppkg.zip
https://doi.org/10.1007/978-3-319-06200-6_3
https://doi.org/10.1007/978-3-319-06410-9_5
https://doi.org/10.1007/978-3-319-06410-9_5
https://doi.org/10.1007/978-3-642-38592-6_12

250 P. Antonino et al.

8. Attie, P.C., Chockler, H.: Efficiently verifiable conditions for deadlock-freedom
of large concurrent programs. In: Cousot, R. (ed.) VMCAI 2005. LNCS,
vol. 3385, pp. 465–481. Springer, Heidelberg (2005). https://doi.org/10.1007/
978-3-540-30579-8 30

9. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: IJCAI 2009, San Francisco, CA, USA, pp. 399–404 (2009)

10. Bensalem, S., Bozga, M., Legay, A., Nguyen, T.-H., Sifakis, J., Yan, R.:
Component-based verification using incremental design and invariants. Softw. Syst.
Model. 15(2), 427–451 (2016)

11. Filho, M.S.C., Oliveira, M.V.M., Sampaio, A., Cavalcanti, A.: Local livelock analy-
sis of component-based models. In: Ogata, K., Lawford, M., Liu, S. (eds.) ICFEM
2016. LNCS, vol. 10009, pp. 279–295. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-47846-3 18

12. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 — a
modern refinement checker for CSP. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014. LNCS, vol. 8413, pp. 187–201. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54862-8 13

13. Gibson-Robinson, T., Hansen, H., Roscoe, A.W., Wang, X.: Practical partial order
reduction for CSP. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015.
LNCS, vol. 9058, pp. 188–203. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-17524-9 14

14. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs (1985)

15. Lambertz, C., Majster-Cederbaum, M.: Analyzing component-based systems on
the basis of architectural constraints. In: Arbab, F., Sirjani, M. (eds.) FSEN 2011.
LNCS, vol. 7141, pp. 64–79. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-29320-7 5

16. Martin, J.M.R.: The Design and Construction of Deadlock-Free Concurrent Sys-
tems. Ph.D. thesis, University of Buckingham (1996)

17. Martin, J.M.R., Jassim, S.A.: An efficient technique for deadlock analysis of large
scale process networks. In: Fitzgerald, J., Jones, C.B., Lucas, P. (eds.) FME 1997.
LNCS, vol. 1313, pp. 418–441. Springer, Heidelberg (1997). https://doi.org/10.
1007/3-540-63533-5 22

18. Oliveira, M.V.M., Antonino, P., Ramos, R., Sampaio, A., Mota, A., Roscoe, A.W.:
Rigorous development of component-based systems using component metadata
and patterns. Formal Aspects Comput. 28(6), 937–1004 (2016). https://doi.org/
10.1007/s00165-016-0375-1. ISSN:1433-299X

19. Ouaknine, J., Palikareva, H., Roscoe, A.W., Worrell, J.: A static analysis frame-
work for livelock freedom in CSP. Logical Methods Comput. Sci. 9(3) September
2013. https://doi.org/10.2168/LMCS-9(3:24)2013

20. Raymond, K.: A tree-based algorithm for distributed mutual exclusion. ACM
Trans. Comput. Syst. (TOCS) 7(1), 61–77 (1989)

21. Roscoe, A.W., Gardiner, P.H.B., Goldsmith, M., Hulance, J.R., Jackson, D.M.,
Scattergood, J.B.: Hierarchical compression for model-checking CSP or how to
check 1020 dining philosophers for deadlock. In: TACAS, pp. 133–152 (1995)

22. Roscoe, A.W.: Understanding Concurrent Systems. Springer, Heidelberg (2010)
23. Tarry, G.: Le probleme des labyrinthes. Nouvelles annales de mathématiques, jour-

nal des candidats aux écoles polytechnique et normale 14, 187–190 (1895)

https://doi.org/10.1007/978-3-540-30579-8_30
https://doi.org/10.1007/978-3-540-30579-8_30
https://doi.org/10.1007/978-3-319-47846-3_18
https://doi.org/10.1007/978-3-319-47846-3_18
https://doi.org/10.1007/978-3-642-54862-8_13
https://doi.org/10.1007/978-3-642-54862-8_13
https://doi.org/10.1007/978-3-319-17524-9_14
https://doi.org/10.1007/978-3-319-17524-9_14
https://doi.org/10.1007/978-3-642-29320-7_5
https://doi.org/10.1007/978-3-642-29320-7_5
https://doi.org/10.1007/3-540-63533-5_22
https://doi.org/10.1007/3-540-63533-5_22
https://doi.org/10.1007/s00165-016-0375-1
https://doi.org/10.1007/s00165-016-0375-1
https://doi.org/10.2168/LMCS-9(3:24)2013

Semantics and Languages

UTCP: Compositional Semantics
for Shared-Variable Concurrency

Andrew Butterfield(B)

Lero@TCD, School of Computer Science and Statistics,
Trinity College Dublin, Dublin 2, Ireland

butrfeld@tcd.ie

Abstract. We present a Unifying Theories of Programming (UTP)
semantics of shared variable concurrency that is fully compositional. Pre-
vious work was based on mapping such programs, using labelling of deci-
sion points and atomic actions, to action systems, which themselves were
provided with a UTP semantics. The translation to action systems was
largely compositional, but their dynamic semantics was based on having
all the actions collected together. Here we take a more direct approach,
albeit inspired by the action-systems view, based on an abstract notion
of label generation, that then exploits the standard use of substitution
in UTP, to obtain a fully compositional semantics.

1 Introduction

In this paper we present a compositional semantics for a simple abstract shared-
variable concurrent language, called the “Command” language presented in
Fig. 1. The Command language is very simple, with sequential composition
(C1 ;; C2), and only non-deterministic choices, for alternative execution paths
(C1 + C2) or deciding when to terminate a loop (C∗). The parallel composition
(C1 ‖ C2) allows arbitrary interference by each side on any variables, all of which
are considered here to be global and shared. The semantics we present does not
itself need to deal explicitly with any shared variables, but simply assumes a
shared state s and the existence of atomic state-change actions a. This Com-
mand language corresponds directly to Concurrent Kleene Algebra (CKA) [14].

Our interest in this language stems from our general work within the Unify-
ing Theories of Programming (UTP) framework [13], in which we seek to find
ways to unify the semantics of a wide range of programming and specification
languages, and language features, in order to be able to reason formally about
systems built using a mix of such languages. The Command language in this
paper is based on that introduced in the “Views” paper [10], which describes
how a range of approaches to reasoning about shared-variable concurrency can

This work was supported, in part, by Science Foundation Ireland grants 10/CE/I1855
and 13/RC/2094 to Lero - the Irish Software Engineering Research Centre
(www.lero.ie).

c© Springer International Publishing AG 2017
S. Cavalheiro and J. Fiadeiro (Eds.): SBMF 2017, LNCS 10623, pp. 253–270, 2017.
https://doi.org/10.1007/978-3-319-70848-5_16

http://orcid.org/0000-0002-2337-2101
http://www.lero.ie

254 A. Butterfield

a ∈ Atom Atomic state-change actions
C ::= 〈a〉 Atomic Command

| C ;; C Sequential Compostion
| C + C Non-deterministic Choice
| C ‖ C Parallel Compostion
| C∗ Non-deterministic Iteration

Fig. 1. Command language syntax

be mapped down onto CKA, and the Command language. Approaches covered
in [10] include various Separation logics [8], type-theories, Owicki-Gries [20], and
Rely-Guarantee [17], among others. Our intention in developing a UTP seman-
tics of the Command language is to be able to use it as a foundation on which to
build UTP theories of the above approaches that will be easy to link together. In
effect we hope to use the results of the Views paper as a conceptual architecture
to organise our work.

Another independent motivation for this work is a research collaboration
that led us to give a UTP semantics to a process modelling language called
PML [1], which has the notion of basic actions that require certain resources
to run, and which provide further resources as a result. Actions can be com-
bined using sequencing, selection, branching and iteration. We published initial
work on a UTP semantics for PML [7], noting that it is essentially the same as
the Command language. The semantics we gave in [7] was not compositional,
however, and finding a fully compositional semantics was noted for future work.

Compositionality is important. By it we mean the property that the semantics
of a composite construct can determined from the semantics of its parts, so for
example, the meaning of the construct C1 ;; C2 would be determined by the
meanings of C1 and C2, combined with the meaning of ;;. This property is
desirable as without it both the semantics and any reasoning principle based on
it would not scale up to large programs or systems.

The structure of the rest of this paper is as follows: we describe some related
work (Sect. 2), followed by an introduction to the UTP methodology (Sect. 3).
We then explain various aspects of our UTP semantics, touching on labels
(Sect. 4), observations (Sect. 5), atomic actions (Sect. 6), and healthiness condi-
tions (Sect. 7). We can then present the semantics in Sect. 8. Finally we discuss
some calculations that contribute to the validation of the semantics (Sect. 9) and
conclude in Sect. 10.

2 Related Work

Key work was done on concurrent semantics in the 80s and 90s, with a strong
focus on fully abstract denotational semantics. Notable work form this period
includes that by Stephen Brookes [5] and Frank de Boer and colleagues [3]. Both
looked at denotations based on the notion of sets of transition traces, these

UTCP: Compositional Semantics for Shared-Variable Concurrency 255

being sequences of pairs of before-after states. In order to get compositional-
ity the traces of any program fragment had to have arbitrary “stuttering” and
“mumbling” state-pairs added to capture the notion of outside interference. Full
abstraction meant that the semantics had to identify programs like skip ;; skip
with skip, while distinguishing between x := 2 and x := 1 ;; x := x + 1.

The first UTP theory in this area was presented in the UTPP paper [23].
This combined guarded commands [9] with the idea of action systems [2], inter-
preted in UTP as non-deterministic choice over guarded atomic actions, where
disabled actions behave like the unit for that choice. This basic lattice-theoretic
architecture for the UTPP semantics forms the foundation and inspiration for
the UTCP semantics presented here.

More recently, also inspired by [10], the “UTP Views” paper by van Staden
[21], starts algebraically, looking at Kleene algebras over languages. Languages
here are sets of strings over an alphabet A. He then takes A = Σ × Σ, which
in effect encodes the Brookes model [5]. His semantics fits with the usual UTP
approach to concurrency, in that it is based on traces as sequences of some notion
of event.

All the compositional semantic frameworks we have discussed in this section
are based on this notion of sets of transition traces, but we are seeking a semantics
based on direct relations between before- and after-program states, without any
explicit notion of traces. The reason for this is that the resulting UTP theory
will have a form that will make it easier to link to concurrency approaches such
as rely-guarantee, or separation logic, that are used with languages that are
imperative and program-variable based.

There is however a semantics for shared-variable concurrency that is much
closer in form to the one developed in this paper. This is the “actions with
axioms” approach of Lamport [18]. In this, the semantics of each language con-
struct is given by a set of axioms, that are predicates over both program variables,
and additional “auxiliary” variables that manage flow of control. The meaning
of a composite is given by taking the axioms that describe each of its compo-
nents, and combining them with appropriate renamings. This requires being able
to identify specific sub-components of any given component, and a syntactical
method for doing this is described.

We were not aware of this work when we developed the UTCP theory in this
paper, but there are very strong parallels between the features of our semantics
and those in [18]. In some sense our semantics is a re-working of his within UTP.
We shall point out specific correspondences as we proceed with our presentation.

3 UTP

The Unifying Theories of Programming framework [13] uses predicate calculus to
define before-after relationships over appropriate collections of free observation
variables. The before-variables are undashed, while after-variables have dashes.
A simple approach would be to simply observe the values of program variables,

256 A. Butterfield

in which case the before- and after-values of program variable v would be repre-
sented by observational variables v and v′ respectively. For example, the meaning
of an assignment statement might be given as follows:

x := e =̂ x′ = e ∧ ν′ = ν

The definition says that the assignment terminates, with the final value of vari-
able x set equal to the value of expression e in the before-state, while the other
variables, denoted collectively here by ν, remain unchanged. This leads to a
theory of partial correctness for imperative programs.

The theory can be extended to cover total correctness by introducing Boolean
observations of program starting (ok) and termination (ok′). In this case, we
find that we need a technique that allows us to identify predicates whose inter-
pretation is nonsense, and eliminate them from any semantic theory we might
construct. For example, the predicate ¬ok ∧ ok′ describes a situation in which a
program has not started, but has terminated.

In UTP we use the concept of healthiness conditions to specify which predi-
cates are meaningful in the context of our theory. For the total correctness theory
to work, we need to ensure that all predicates have the form ok∧P =⇒ ok′ ∧Q,
where P and Q do not refer to ok or ok′. This is interpreted as saying, if the pro-
gram is started and P holds true at the start, then the program will terminate
with Q being satisfied at the end.

A standard UTP approach is to define healthy predicates as being fixed-
points of suitable idempotent, monotonic predicate transformers. For exam-
ple, in the total correctness theory, we can define a predicate transformer
H(P) =̂ ok =⇒ P . A predicate D that satisfies D = (ok =⇒ D) is one
that only asserts its behaviour once it is started (ok = true). Our healthiness
conditions (Sect. 7) are expressed in this fashion.

An important characteristic of both the UTP theories referred to above, is
that their predicates are interpreted as a relation between the before-state and
after-state of a complete program execution.

The “standard” treatment of concurrency in UTP [13, Chps. 7, 8], is focussed
on local-state concurrency, without any mutable state variables. Here it becomes
necessary to observe the program state at intermediate points in its execution,
typically when the program is waiting for external events to occur. This neces-
sitates another pair of Boolean observations, wait and wait′ that indicate such
waiting. We do not give any further details regarding these theories, but instead
mention them simply to make the observation that here the predicates are inter-
preted as a relation between the before-state, and some subsequent intermediate
or final state of the complete execution.

Our focus in this introduction on how the predicates are interpreted in terms
of program state is important, because the theory presented in this paper involves
yet more adjustments in interpretation, as explained in Sects. 5 and 9.

In order to present our UTP semantics of shared-variable concurrency, we
have to address an issue that Lamport’s semantics [18] faced, namely how to refer
to sub-components and their semantics from within a composite. In particular

UTCP: Compositional Semantics for Shared-Variable Concurrency 257

he enunciates a number of principles at the start of his semantics. One identifies
the need to know “who” carries out a specific action, while another says that
we need to be able to transform a statement about command C into one about
command C within the context of some enclosing construct.

In the next section we introduce labels and their generators, which are our
approach to addressing these concerns. We then follow-up with a description of
the observation variables for our theory, how we handle atomic actions, healthi-
ness conditions, and then the semantic definitions.

4 Labels

In order to manage flow-of-control, we need to be able to identify when every
construct starts, is running, and ends. In some approaches in the literature, the
program syntax allows for and requires explicit labels which are used for this
purpose. In our semantics, and that in [19], these identifying labels are generated
in a systematic way from the abstract syntax tree. We adopt the idea from [23]
that flow of control is managed by an auxiliary variable whose value is the set
of all labels of constructs that are able to execute.

We adopted the idea of a label-generator. Given some notion of labels (l ∈
Lbs), we want a notion of a generator (g ∈ Gen) that supports two operations:
new : Gen → Lbl × Gen that produces a new label and a new generator; while
split : Gen → Gen × Gen splits a generator into two new ones. In all cases we
require that any labels obtained from new generators will not have been obtained
previously from any of their parent generators.

To avoid long nested calls of new, split and projections π1, π2, we define the
following terse label and generator expression syntax:

g ∈ GV ar Generator variables
G ∈ GExp : := g | G: | G1 | G2

L ∈ LExp : := �G

Here G: denotes the generator left once new has been run on G, with �G

denoting the label so generated. Expressions G1 and G2 denote the two outcomes
of applying split to G. We use labs(G) to denote all the labels that G can generate
and we require the following laws to hold:

labs(G) = {�G} ∪ labs(G:) ∪ labs(G1) ∪ labs(G2)
�G /∈ labs(G:)
∅ = labs(G1) ∩ labs(G2)

The simplest model for a generator that satisfies the above constraints is one that
represents the label �G by the expression G itself. The reason for this shorthand
is that without it we would have to write something like the following1

π1(new(π2(new(π2(split(π2(new(π1(split(g)))))))))).
1 “Split g, take the first one, generate a label and take the resulting generator, split

it and take the second, take two new labels and give me the last one”.

258 A. Butterfield

instead of �g1:2:. This notation is compact, and may appear very contrived. How-
ever it has one very strong advantage: it makes generators and their labels “relo-
catable”, in much the same way as some program code can be so considered. The
variable g can be viewed as a sort of “base”, with all of the labels generated from
it being relative to that base. We can do this, in one way only, by substituting
any generator expression for g. If we replace g with something different, then we
“shift” all the associated labels accordingly. If γ and σ range over sequences of
:, 1 and 2, then

(�gγ)[gσ/g] = �gσγ (1)

In effect the substitution “relocates” generator g by running new and split on
it as specified by σ, and any labels are in effect generated by this relocated
generator using their γ specification. This simple use of substitution gives us a
really easy way to compose program fragments in terms of their semantics. In
fact this ability to “relocate” is how we manage Lamport’s principle that we
must be able to talk about command C in the context of an enclosing construct.

5 Observations

Any UTP theory has to clearly define its alphabet, that is, the set of observa-
tional variables that define its domain of discourse. The theory presented here
is inspired by UTPP [23] and uses some of the observations presented there: the
values associated with all (shared) variables are not mentioned individually, but
instead are lumped together; and we assume that all actions are labelled and
that we can observe the set of labels that are considered to be “active”.

s, s′ : State (2)
ls, ls′ : P Lbl (3)

Here s and s′ denote the before- and after-values of the shared (variable) state,
while ls and ls′ denote the before- and after-values of the active label-set used
for control-flow. In Lamport’s semantics [18] a series of temporal logic axioms
are provided to track the dynamics of which constructs are starting, in progress,
or finishing. We achieve the same effect using the label-sets.

The role of label-generators is rather different, however. They will be used
to generate labels for statements, and we do not want these to change during
the lifetime of the program. We will also want to be able to refer in a general
way to two key labels associated with any language construct, namely the label
(in) that is used to enable the starting of a construct, and the label (out) that
is used to signal that the construct has just terminated.

in, out : Lbl (4)
g : Gen (5)

These observations are static, in that their values do not change during pro-
gram execution. Instead, these variables record context-sensitive information

UTCP: Compositional Semantics for Shared-Variable Concurrency 259

about how a language construct is situated with respect to its “neighbours”,
in a way that permits a compositional approach. For details of how this works,
see Sect. 8.3.

In effect we are exploiting the fact that our language is block-structured with
only one entry and exit point for each construct, in order to be able to decouple
the semantics of an atomic action from whatever might come next. Dealing with
that is the responsibility of the semantics of language composites.

To summarise, our semantics is will be built using observable variables
s, s′, ls, ls′, g, in, out to describe basic atomic state-change actions that modify
global shared state s. The concurrent flow of control will be managed using the
global dynamic label-set ls and the static association of a label generator g and
two distinguished labels in, out, with every language construct.

This brings us to an important distinction between the usual approach taken
by UTP regarding the distinction between syntax and semantics. The usual app-
roach, inspired by the slogan “programs are predicates” [11,12], is to treat syntax
and semantics as the same thing. A program’s syntax is simply a shorthand nota-
tion for its semantics. So, the program text x := x+y is a predicate, a shorthand
for the more verbose x′ = x+ y ∧ y′ = y2 . in particular, the notation for sequen-
tial composition, P ;Q, is a shorthand for ∃obsm • P [obsm/obs′] ∧ Q[obsm/obs],
where obs (obs′) refers to all the before- (after-) observations. This “punning”
between syntax and semantics largely works for theories of sequential pro-
grams or local-state concurrency, mainly because sequences of code lead to sim-
ple semantic sequencing. However, in global shared-variable concurrency, code
sequences get broken up by interference from parallel execution threads, and
there is no longer a simple correspondence between syntactical and semantic
sequencing.

Here we shall use the notation P ;Q to denote semantic sequential compo-
sition, which means that the execution of P is immediately followed by the
execution of Q, without any intervening external interfence. We define it as fol-
lows:

P ;Q =̂ ∃sm, lsm • P [sm, lsm/s′, ls′] ∧ Q[sm, lsm/s, ls] (6)

The key thing to note is that this definition makes no reference at all to g, in or
out, as these are static observations.

We also define semantic skip (II), the unit for semantic sequential composi-
tion, as

II =̂ ls′ = ls ∧ s′ = s (7)

6 Atomic Actions

An atomic action (a) is simply a global state transformer whose effects, once
started, occur immediately and completely, without any external interference.
We can consider it be a relational predicate that only mentions s and s′. Flow of
control is managed by keeping a dynamic record of which labels are considered

2 Assuming x and y are the only variables.

260 A. Butterfield

current, or “enabled”. The behaviour of an atomic action is that it exhibits
none until its label is enabled. Noting that many atomic actions can be enabled
at once, what happens is that one of actions is selected non-deterministically to
run. The action so selected transforms the global state, and then the control-flow
management marks its label as disabled, and enables labels of atomic action that
can immediately follow it according to the control-flow structure of the program.

As already stated, we use a to denote the predicate describing the core global
state-changes, and use ls and ls′ to record the set of enabled labels both before
and after the atomic action has run. We can define a predicate that captures the
basic behaviour of such “flow-controlled” atomic action:

in ∈ ls ∧ a ∧ (ls′ = (ls \ {in}) ∪ {out}) (8)

In short: the action when its in-label is in ls, is that it performs the state-change
specified by a, and replaces the in-label by the out-label, in the updated set ls′

of enabled labels. If in is not in ls, or predicate a is not satisfied by the current
value of s, then the semantic predicate reduces to false.

The semantics of a running composite program, as per the action systems
approach used in [23], is to imagine all of the labelled atomic actions collected
into one large non-deterministic choice, itself in a loop that runs until some
distinguished stop-label appears in the enabled label-set. The whole thing is ini-
tialised by enabling at least one atomic action in-label. The result of initialising
and running this loop once will be one possible complete execution sequence of
the program (assuming it terminates). In effect, the meaning of a shared-variable
concurrent program is all the interleavings of atomic actions that are consistent
with flow-of-control restrictions, with each interleaving being a series of atomic
actions sequentially composed semantically, using ; as defined in Eq. 6.

Given that we will be sequentially composing a lot of predicates like 8, we
shall introduce a shorthand notation that we refer to as a “basic action”, which
refers to sets of labels called E (enablers) and N (new):

A(E | a | N) =̂ E ⊆ ls ∧ a ∧ ls′ = (ls \ E) ∪ N 〈〈·A-def·〉〉

The plan is to then produce some laws governing the semantic sequential
compositions of basic actions (A(E1 | a1 | N1);A(E2 | a1 | N2)), but we quickly
discover that in general the outcome cannot be expressed as a single instance of
the form A(E | a | N). Consider A(l1 | a | l2);A(l2 | b | l3), in a starting state
where both l1 and l2 are in ls. The overall result is a combined action that needs
l1 to start, and adds in l3 at the end, but also removes both l1 and l2. So, in
order to effectively calculate with the theory (see Sect. 9), we need to generalise
the basic action idea to an eXtended basic action, where we explicitly identify
the labels that we remove (R):

X(E | a | R | A) =̂ E ⊆ ls ∧ a ∧ ls′ = (ls\R) ∪ A 〈〈·X-def·〉〉

UTCP: Compositional Semantics for Shared-Variable Concurrency 261

Clearly A(E | a | N) = X(E | a | E | N). We can now prove the following
composition law:

X(E1 | a | R1 | A1);X(E2 | b | R2 | A2) 〈〈·X-then-X·〉〉

= E2 ∩ (R1\A1) = ∅
∧ X(E1 ∪ (E2\A1) | a ; b | R1 ∪ R2 | (A1\R2) ∪ A2)

The condition E2 ∩ (R1\A1) = ∅ characterises all those cases were the second
X is enabled immediately after the first X terminates (i.e., without any outside
interference). This brings us to a very important aspect of how these predicates
are to be interpreted. The semantic sequential composition of two basic actions
captures the occurrence of both actions in sequence without any intervening
interference, known as a mumbling step. This means that the first action once
enabled, must be able to enable the second one without relying on some external
agent. The expression E2 ∩ (R1\A1) is all of the labels in E2 that are removed
(R1) by the first action, but are not added back in (A1). If this not empty then
some of the labels from E2 will not be present, and so the second action has
been disabled by the first. So the whole predicate reduces to false, indicating
that it is not possible to observe those two actions in sequence, unless some
other execution thread manages to add in the missing E2 labels in-between, as
an interference step.

7 Healthiness

7.1 Wheels-within-Wheels

We are building a semantics based on predicates that define before-after relations
on program state s, s′ and label-sets ls, ls′, using the static observations to put
things in their syntactical context. In order to be able to extract the correct
behaviour from this semantics, it was necessary to have a healthiness condition
that effectively said that every program component, atomic or composite, has
to be viewed as being willing to run as many times as necessary whenever its
labels would appear in ls. At its simplest, the semantics required every construct
to be embedded in its own infinite loop, to ensure it was always ready to “go”.
This lead to our use of the phrase “Wheels within Wheels” (WwW) to refer to
this principle. This did not mean that everything ran forever, but that, in some
sense, it should always be ready.

Technically we require any healthy UTCP program predicate to be equivalent
to a non-deterministic choice of how many times it repeats itself, including zero,
using UTP semantic sequential composition.

P 0 =̂ II 〈〈·seq-0·〉〉

P i+1 =̂ P ; P i 〈〈·seq-i-plus-1·〉〉

WwW(P) =̂
∨

i∈N
P i 〈〈·WWW-as-NDC·〉〉

Here we have introduced a stuttering step, denoted by UTP’s semantic skip (II).
We note also, that WwW is monotonic and idempotent.

262 A. Butterfield

It should be noticed that this theory underwent a large number of iterations
before the WwW principle was finally elucidated properly and shown to give
the right results. The number and complexity of the test calculations needed to
debug, develop and validate the theory presented in this paper necessitated the
development of a bespoke “UTP Calculator” [6].

7.2 Label-Set Invariants

The semantics we propose here depends on the careful management of when
specific labels are, or are not, present in the global label-set ls. Key to the
success of this semantics is a collection of label-set invariants which characterise
proper label-set contents, which are preserved by all label-set manipulations
performed by our semantic definitions. We have two kinds of invariants, both of
which are concerned with the mutual disjointness, in some sense, of a collection
of sets of labels. We introduce some shorthand notations to avoid excessively
long predicates and expressions. We use ‘|’ as a separator between things meant
to be disjoint, and commas to list subsets and/or set- elements that should be
unioned together. So the fragment A, b | M,N | x, Y is shorthand for the mutual
disjointness of A∪{b} and M ∪N and {x}∪Y . To assert mutual set disjointness,
we use the following shorthand, where the Li are label-sets,

{L1 | L2 | . . . | Ln} =̂ ∀i,j∈1...n • i = j =⇒ Li ∩ Lj = ∅
〈〈·short-disj-lbl·〉〉

We also want to assert that certain sets, necessarily mutually disjoint, can
never have any of their elements in the global label-set, if any element from one
of the other sets is present. Again, we have a shorthand:

[L1 | L2 | . . . | Ln] =̂ ∀i,j∈1...n • i = j =⇒ (Li ∩ ls = ∅ =⇒ Lj ∩ ls = ∅)
〈〈·short-lbl-exclusive·〉〉

The first invariant we have, Disjoint Labels (DL) is simply one that asserts,
for every construct, that in, out and the labels of g are all different.3

DL =̂ {in | labs(g) | out} 〈〈·Disjoint-Labels·〉〉

We shall simplify further by stating that in the shorthands presented here that
we use just simple g to denote labs(g), so DL can we written as {in | g | out}.
We also need stronger Label Exclusivity invariants, regarding which labels can,
or cannot, occur in the global label set at any one time. There is not one such

3 The theory can be developed using only g as a static observation, and letting �g
and �g: play the role of in and out respectively, in which case Disjoint Labels is
automatically satisfied. However, while this results in an entirely equivalent theory,
it is notationally more obscure making it harder to interpret and check.

UTCP: Compositional Semantics for Shared-Variable Concurrency 263

invariant, but rather we have that some language constructs may define their
own variation, in order to ensure that flow of control is correctly managed.

There is a general version of the invariant (LE) that holds for all language
constructs that asserts that any point in time, only elements from of one of in,
labs(g) or out can be present in ls or ls′ at any point in time:

LE =̂ [in | g | out] ∧ [in | g | out]′ 〈〈·Exclusive-Labels·〉〉

Note that [in | g | out]′ is simply indicates that it refers to ls′ rather than ls.
So, in summary, we have that every healthy predicate describing a shared-

variable concurrent program’s behaviour is of the form WwW(C) for some
predicate C and also satisfies DL and LE.

W(P) =̂ DL ∧ LE ∧ WwW(P) 〈〈·W-def·〉〉

We note that many of the axioms for a given construct in the semantics of
Lamport [18] exist to ensure the same properties regarding construct activation
as the healthiness conditions described here.

8 Command Semantics

We present the full semantics of atomic commands first, then describe an impor-
tant classification of expressions and substitutions, before describing the seman-
tics of the four composite command forms.

8.1 Atomic Commands

The atomic command 〈a〉 can be very simply expressed as basic action with the
addition of healthiness conditions:

W(P) =̂ DL ∧ LE ∧ WwW(P) 〈〈·W-def·〉〉

〈a〉 =̂ W(A(in | a | out))) 〈〈·sem:atomic·〉〉

Here we would expect that if LE holds when this action starts, i.e. when
in ∈ ls and it gets to run, that LE′ should also hold, with out ∈ ls′.

8.2 Grounded and Sound

Given that we have a distinction between static observations (g, in, out), and
dynamic ones (s, s′, ls, ls′) it is worth extending this distinction to expressions
and substitutions. The reason for this is to do with the fact that, by design,
semantic sequential composition ignores the static variables. An expression or
predicate is “ground” if the only variables present are static. The DL healthiness
condition is ground, but LE is not, as it refers to ls and ls′. Ground predicates

264 A. Butterfield

K satisfy some important laws, and LE satisfies something similar:

K ; K = K
(K ∧ P) ; Q = K ∧ (P ; Q) = P ; (K ∧ Q)

K ∧ WwW(P) = WwW(K ∧ P)
(LE ∧ P) ; (LE ∧ Q) = LE ∧ ((LE ∧ P) ; (LE ∧ Q))

A substitution is also deemed “ground”, if all the replacement expressions
are ground, and the target variables are all static. A desired consequence of
this is that ground substitutions γ will distribute through semantic sequential
composition, semantic skip, both disjoint label-set notations, and WwW.

(P ; Q)γ = Pγ ; Qγ 〈〈·seq-gnd-distr·〉〉

IIγ = II 〈〈·skip-gamma·〉〉

{L1 | . . . | Ln}γ = {L1γ | . . . | Lnγ} 〈〈·DL-gamma-subst·〉〉

[L1 | . . . | Ln]γ = [L1γ | . . . | Lnγ] 〈〈·LE-gamma-subst·〉〉

(WwW(P))γ = WwW(Pγ) 〈〈·WwW-gamma-subst·〉〉

Groundness is not enough, we also require substitutions to be “sound” in
the sense that they cannot transform a situation that satisfies DL or LE into
one that does not. A ground substitution ς, of the form [labs(G), I, O/g, in, out]
is sound if {labs(G) | I | O} holds. We will see that all substitutions in the
semantic definitions are sound, and that this is easy to check by inspection.

8.3 Composing Actions

The semantics of composite actions basically involves using the generator to
produce a suitable number of labels, that are then used in zero or more “control-
flow” actions of the form A(E | ii | N), where ii is atomic skip that simply
asserts s′ = s. The left-over generator is then split as required, and then the
components are “connected” into the relevant new labels and generators using
sound substitutions. Finally the relevant healthiness conditions are applied. A
key principle is to ensure that when any sub-component is “active”, that is, at
least one of its labels is present in ls, that none of the labels of the parent,
other than those explicitly shared with the sub-component, are themselves in ls.
This prevents a parent starting a spurious copy of a sub-component while that
sub-component is actually running. The semantic definitions are listed in Fig. 2.

We will explain the semantics of parallel in more detail, aided by the diagram
in Fig. 3. We take the generator g and split it to obtain g1 and g2. From g1 we
generate two labels �g1 and �g1:, and leftover generator g1::. We then use a
substitution to replace all references by P to g, in and out with g1::, �g1 and �g1:,
respectively. We do something similar with g2 and Q. We also add a top-level
control action that is enabled by label in, and adds both �g1 and �g2 into ls,
so enabling both P and Q to start. We then have another control-flow action
that waits for both of �g1: and �g2: to appear in ls, at which point they will be
replaced by the top-level out label.

The similarity between our labels and the sub-statement notation of Lam-
port is quite striking. His parallel construct, called cobegin, labels the

UTCP: Compositional Semantics for Shared-Variable Concurrency 265

P ;; Q =̂ W(P [g:1, �g/g, out] ∨ Q[g:2, �g/g, in]) 〈〈·sem:seq·〉〉

P ‖ Q =̂ W(A(in | ii | �g1, �g2) ∨ 〈〈·sem:par·〉〉
P [g1::, �g1, �g1:/g, in, out] ∨
Q[g2::, �g2, �g2:/g, in, out] ∨
A(�g1:, �g2: | ii | out))

P + Q =̂ W(P [g1/g] ∨ Q[g2/g]) 〈〈·sem:NDC·〉〉

P ∗ =̂ W(A(in | ii | �g) ∨ 〈〈·sem:star·〉〉
A(�g | ii | �g:) ∨
A(�g | ii | out) ∨
P [g::, �g:, �g/g, in, out])

Fig. 2. Composite Semantics

g

in

out

lg1

1g

P out
g

in

Q
g

in out

P || Q

2g

1:g 1::g

2:g
2::g

lg1:

lg2:lg2

Fig. 3. Label and Generator “plumbing” for P ‖ Q.

subcomponents with numbers from 1 upwards. So he refers to P within
cobegin P � Q coend as (cobegin P � Q coend, 1). We call it
P [g1::, . . . /g, . . .]. When for a construct P , we assert that in ∈ ls, he uses a
predicate at(P). In the parallel case here, an assertion by us that �g1 ∈ ls,
corresponds to his assertion at(cobegin P � Q coend, 1).

Given that the invariant LE, which is [in | labs(g) | out], is part of the
definition of W, then we have it satisfied, by definition, by any sub-components.
From the perspective of the parent composite, this means that LEς also holds,
where ς ranges over all the sound substitutions used in the definition of the
parent’s semantics. For example, for program sequential composition, we not
only assert [in | g | out], but can also infer [in | g:1 | �g] and [�g | g:2 | out].

In summary, we have predicate semantics for atomic and composite program
constructs, in which everything at every level is wrapped in an infinite loop.
This seems to be completely counter-intuitive: a program that consists of a sin-
gle atomic action may wait for a while external interference rumbles on, but
eventually it should get “scheduled”, perform its atomic action and then effec-
tively stop. How is this consistent with looping forever? To see the answer to

266 A. Butterfield

this question, it helps to consider such simple examples, and this brings up the
issue of calculation.

9 Calculations

Part of the validation of this semantic theory was by a series of test calculations
done to ensure that it was making the right predictions about program behav-
iour. This typically involved taking small programs with a few atomic actions
and trying to simplify their semantic predicates down to a non-deterministic
choice of atomic action sequences. Some of the calculations proved to be very
long, repetitive and tedious, motivating the UTP-calculator development [6].

We shall start by sketching out a test calculation for 〈a〉, where the objective
is to reduce it down to a predicate involving just basic atoms.

〈a〉
= W(A(in | a | out))) 〈〈·sem:atomic·〉〉

= DL ∧ LE ∧ WwW(A(in | a | out)) 〈〈·W-def·〉〉

= DL ∧ LE ∧ ∨

i A(in | a | out)i 〈〈·WWW-as-NDC·〉〉

At this point what remains is to compute A(in | a | out)i for i ∈ N. The
cases of i = 0, 1 are straightforward. Computing i = 2 is easy:

A(in | a | out) ; A(in | a | out) 〈〈·X-def·〉〉

= X(in | a | in | out) ; X(in | a | in | out) 〈〈·X-then-X·〉〉

= {in} ∩ ({in} \ {out}) = ∅ ∧ X(. . .) set theory
= false ∧ X(. . .)

We see that A(in | a | out)2 = false, and as false is a zero for semantic
sequential composition, we can deduce that A(in | a | out)i = false for all i ≥ 2.
So our final result is

〈a〉 = DL ∧ LE ∧ (II ∨ A(in | a | out)) (9)

Ignoring the healthiness conditions, this boils down to two possible observations
we can make of 〈a〉: either we observe stuttering—no change in state or label-sets
(II) or we see the complete execution of the underlyng basic action A(in | a |
out).

Test calculations for simple usage of most of the composites is essentially the
same. One slight complication is that the contents of WwW in theses cases is a
disjunction of terms, rather than a single basic action, so we first simplify these
out, applying all substitutions, to get a term Q of the form (II ∨ basic actions).
We need to compute Qi for i ≥ 2, and sequential composition distributes through
disjunction, so we obtain resulting terms of the same form, by repeated appli-
cation of law 〈〈·X-then-X·〉〉. A large number of these have results with the set
side-condition that evaluates to false, as per the i = 2 example above—these
terms vanish. There are other terms produced that do not vanish, but some

UTCP: Compositional Semantics for Shared-Variable Concurrency 267

〈a〉 ;; 〈b〉 = II ∨ A(in | a | �g) ∨ A(�g | b | out) ∨ A(in | ab | out)
〈a〉 + 〈b〉 = II ∨ A(in | ii | �g1) ∨ A(in | ii | �g2) ∨ A(�g1 | a | out)

∨ A(�g2 | b | out) ∨ A(in | a | out) ∨ A(in | b | out)
〈a〉 ‖ 〈b〉 = II ∨ A(in | ii | �g1, �g2) ∨ A(�g1:, �g2: | ii | out) ∨ A(�g1 | a | �g1:)

∨ A(�g2 | b | �g2:) ∨ A(in | a | �g1:, �g2) ∨ A(in | b | �g2:, �g1)
∨ A(�g1, �g2 | ba | �g1:, �g2:) ∨ A(�g1, �g2 | ab | �g1:, �g2:)
∨ A(�g2:, �g1 | a | out) ∨ A(�g1:, �g2 | b | out) ∨ A(in | ba | �g1:, �g2:)
∨ A(in | ab | �g1:, �g2:) ∨ A(�g1, �g2 | ba | out) ∨ A(�g1, �g2 | ab | out)
∨ A(in | ba | out) ∨ A(in | ab | out)

Fig. 4. Some Test Calculation Results. Here ab (ba) is short for a; b (b; a), and we have
omitted the DL and LE invariants for clarity.

of these can also be eliminated, because their enabling set violates the Label
Exclusivity invariant. All remaining terms have the form X(E | a | R | N), and
some of these can be immediately re-written to A(E | a | N), if R = E. In every
test calculation we have done it turns out that the others, where R = E can
also be re-written, because LE says that none of R \ E can be present in ls
when anything from E is present, so the removal of those labels is ineffective,
as they are never present when that action is enabled. So, the outcome is that
we get final results where every basic action can be written in the A-form. All
of these aspects of these test calculations are supported by current versions of
the tool described in [6]. If there is no use of the iteration construct (P ∗), then
all calculations terminate because there is always some i for which Qi evaluates
to false. Any use of the language iteration construct however results in having
terms for all values of i.

Some calculation results are shown in Fig. 4. If we look at the result for
〈a〉 ;; 〈b〉 we have II, the stuttering step, and A(in | ab | out) which is the complete
exection of both actions without interference (mumbling), and A(in | a | �g) that
shows the execution of a, to an intermediate point where b has yet to occur. These
three observations are consistent with the idea that our predicates are relations
between a starting state and some subsequent or final state. However we also
have action A(�g | b | out), which is an observation that begins after action
a has already occured, and just observes the behaviour of b alone. What has
happened with this UTP theory of concurrency is that it is now no longer insists
that the “before” observation is pinned to be the start of the program. Now we
are able to observe program behaviour that can both start and end at what are
intermediate points in the lifetime of the program.

If we look at 〈a〉+ 〈b〉, we also explictly see the control-flow “decisions”, such
as A(in | ii | �g1) where the decision to execute a is made. This will remove in
from ls if it runs, so disabling the other choice, denoted by A(in | ii | �g2). By
contrast, in 〈a〉 ‖ 〈b〉 the initially enabled action is A(in | ii | �g1, �g2), which
activates both a and b. The control flow action A(�g1:, �g2: | ii | out) delays
termination until both atomic actions are done.

268 A. Butterfield

Finally, we stress that the explicit inclusion of labels in the final results is
essential in order to ensure compositionality. In [7] we had the explicit run form,
and this reduced the semantics of 〈a〉 to a, that of 〈a〉+ 〈b〉 to a∨ b and 〈a〉 ‖ 〈b〉
to ab ∨ ba. While this looks cleaner, it has lost too much information, and we
cannot compose these further to get correct answers. With the explicitly labelled
semantics presented here for UTCP, we can, for example, correctly compute
(〈a〉 ;; 〈b〉) ‖ 〈c〉 by replacing the first ;; term by its expansion from Fig. 4.

10 Conclusions and Future Work

We have presented a compositional, denotational UTP semantics of shared-
variable concurrency. It is “explicit” in the sense that it can enumerate all the
observations that it is possible make of the program’s own behaviour, in any
time-slot. As already explained, our semantics has a lot of similarities to the
axiomatic action semantics of Lamport [18].

The usefulness of this theory is that it is in a form that makes it very easy for
us to specialise it to cover other approaches to concurrency in the Views paper
[10], as that paper shows how thay all link to the simple concurrent language
whose semantics we have just supplied. These concurrency approaches include
Rely-Guarantee [15,22], Owicki-Gries [20], and Concurrent Separation Logic [4].
This is precisely because it is formulated as a before-after relation, with the
twist that before and after observations can occur at any time during program
execution, with the obvious proviso that “before” precedes “after”.

While careful inspection and test calculations give us a high level of confi-
dence in the validity of our semantics, we still need to demonstrate that the alge-
braic laws of Concurrent Kleene Algebra [14] can be derived from our semantics.
We also need to show how the standard operational semantics can be recovered.

We also hope to use this semantics as a baseline for a program to apply
UTP to model the various linked approaches discussed in the Views paper [10].
Of particular interest is to explore the connection between UTCP and rely-
guarantee [16] approaches. In particular, given our idea of “before” and “after”
being able to refer intermediate execution points, and that we can explicitly
provide all atomic actions and their mumblings, we see a good opportunity to
explore how this can be exploited to analyse how well one or more program steps
satisfy their guarantee obligation, given a reliable environment.

Given the similarities between our approach and that of Lamport, it also
raises the possibility of bringing our observations and notation closer in line
with his.

References

1. Atkinson, D.C., Weeks, D.C., Noll, J.: Tool support for iterative software process
modeling. Inform. Softw. Technol. 49(5), 493–514 (2007). https://doi.org/10.1016/
j.infsof.2006.07.006

https://doi.org/10.1016/j.infsof.2006.07.006
https://doi.org/10.1016/j.infsof.2006.07.006

UTCP: Compositional Semantics for Shared-Variable Concurrency 269

2. Back, R.J.R., Kurki-Suonio, R.: Decentralization of process nets with centralized
control. In: Proceedings of the Second Annual ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing, Montreal, Quebec, Canada, pp. 131–142,
17–19 August 1983

3. Boer, F.S., Kok, J.N., Palamidessi, C., Rutten, J.J.M.M.: The failure of failures
in a paradigm for asynchronous communication. In: Baeten, J.C.M., Groote, J.F.
(eds.) CONCUR 1991. LNCS, vol. 527, pp. 111–126. Springer, Heidelberg (1991).
https://doi.org/10.1007/3-540-54430-5 84

4. Brookes, S.: A revisionist history of concurrent separation logic. Electr. Notes
Theor. Comput. Sci. 276, 5–28 (2011). https://doi.org/10.1016/j.entcs.2011

5. Brookes, S.D.: Full abstraction for a shared-variable parallel language. Inf. Comput.
127(2), 145–163 (1996). https://doi.org/10.1006/inco.1996.0056

6. Butterfield, A.: UTPCalc — a calculator for UTP predicates. In: Bowen, J.P.,
Zhu, H. (eds.) UTP 2016. LNCS, vol. 10134, pp. 197–216. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-52228-9 10

7. Butterfield, A., Mjeda, A., Noll, J.: UTP semantics for shared-state, concurrent,
context-sensitive process models. In: Bonsangue, M., Deng, Y. (eds.) TASE 2016
10th International Symposium on Theoretical Aspects of Software Engineering,
pp. 93–100. IEEE, July 2016

8. Calcagno, C., O’Hearn, P.W., Yang, H.: Local action and abstract separation
logic, pp. 366–378. IEEE Computer Society (2007). http://ieeexplore.ieee.org/xpl/
mostRecentIssue.jsp?punumber=4276538

9. Dijkstra, E.W.: A Discipline of Programming. Series in Automatic Computation.
Prentice-Hall, Englewood Cliffs (1976)

10. Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M.J., Yang, H.: Views:
compositional reasoning for concurrent programs. In: Giacobazzi, R., Cousot, R.
(eds.) The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2013, Rome, Italy, 23–25 January 2013, pp. 287–
300. ACM (2013)

11. Hehner, E.C.R.: Predicative programmingpart i& ii. Commun.ACM27(2), 134–151
(1984)

12. Hoare, C.A.R.: Programs are predicates. In: Proceedings of a discussion meeting of
the Royal Society of London on Mathematical Logic and Programming Languages,
pp. 141–155. Prentice-Hall Inc., Upper Saddle River (1985)

13. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice-Hall Interna-
tional, Englewood Cliffs (1998)

14. Hoare, C.A.R.T., Möller, B., Struth, G., Wehrman, I.: Concurrent kleene algebra.
In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 399–
414. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04081-8 27

15. Jones, C.B.: Developing methods for computer programs including a notion of
interference. Ph.D. thesis, University of Oxford, UK (1981)

16. Jones, C.B.: Development methods for computer programs including a notion of
interference (PRG-25), p. 265, June 1981

17. Jones, C.B.: Tentative steps toward a development method for interfering pro-
grams. ACM Trans. Program. Lang. Syst. 5(4), 596–619 (1983). http://doi.acm.
org/10.1145/69575.69577

18. Lamport, L.: An axiomatic semantics of concurrent programming languages.
In: Apt, K.R. (eds.) Logics and Models of Concurrent Systems. NATO ASI
Series (Series F: Computer and Systems Sciences), vol. 13, pp. 77–122. Springer,
Heidelberg (1985). https://doi.org/10.1007/978-3-642-82453-1 4

https://doi.org/10.1007/3-540-54430-5_84
https://doi.org/10.1016/j.entcs.2011
https://doi.org/10.1006/inco.1996.0056
https://doi.org/10.1007/978-3-319-52228-9_10
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4276538
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4276538
https://doi.org/10.1007/978-3-642-04081-8_27
http://doi.acm.org/10.1145/69575.69577
http://doi.acm.org/10.1145/69575.69577
https://doi.org/10.1007/978-3-642-82453-1_4

270 A. Butterfield

19. Lamport, L.: Turing lecture: the computer science of concurrency: the early years.
Commun. ACM 58(6), 71–76 (2015). http://doi.acm.org/10.1145/2771951

20. Owicki, S.S., Gries, D.: An axiomatic proof technique for parallel programs I. Acta
Inf. 6, 319–340 (1976). https://doi.org/10.1007/BF00268134

21. Staden, S.: Constructing the views framework. In: Naumann, D. (ed.) UTP 2014.
LNCS, vol. 8963, pp. 62–83. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-14806-9 4

22. Staden, S.: On rely-guarantee reasoning. In: Hinze, R., Voigtländer, J. (eds.) MPC
2015. LNCS, vol. 9129, pp. 30–49. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-19797-5 2

23. Woodcock, J., Hughes, A.: Unifying theories of parallel programming. In: George,
C., Miao, H. (eds.) ICFEM 2002. LNCS, vol. 2495, pp. 24–37. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-36103-0 5

http://doi.acm.org/10.1145/2771951
https://doi.org/10.1007/BF00268134
https://doi.org/10.1007/978-3-319-14806-9_4
https://doi.org/10.1007/978-3-319-14806-9_4
https://doi.org/10.1007/978-3-319-19797-5_2
https://doi.org/10.1007/978-3-319-19797-5_2
https://doi.org/10.1007/3-540-36103-0_5

On Kleene Algebras for Weighted Computation

Leandro Gomes1(B), Alexandre Madeira1,2, and Lúıs S. Barbosa1

1 HASLab INESC TEC, University Minho, Braga, Portugal
leandro.r.gomes@inesctec.pt

2 CIDMA, University Aveiro, Aveiro, Portugal

Abstract. Kleene algebra with tests (KAT) was introduced as an alge-
braic structure to model and reason about classic imperative programs,
i.e. sequences of discrete actions guarded by Boolean tests.

This paper introduces two generalisations of this structure able to
express programs as weighted transitions and tests with outcomes in a
not necessary bivalent truth space, namely graded Kleene algebra with
tests (GKAT) and Heyting Kleene algebra with tests (HKAT).

On these contexts, in analogy to Kozen’s encoding of Propositional
Hoare Logic (PHL) in KAT [10], we discuss the encoding of a graded
PHL in HKAT and of its while-free fragment in GKAT.

1 Introduction

1.1 Roadmap

Kleene algebra is pervasive in computer science: it arises in relational algebra,
semantics and logics of programs, automata and formal language theory, and
design and analysis of algorithms. In the specific context of program calculi, the
axiomatisation of Kleene algebra forms a purely equational system to manipu-
late programs [8]. Its applications typically deal with conventional, imperative
programming constructs such as conditional and loops. In order to reason equa-
tionally about them, a notion of test is required, which lead D. Kozen to define -
Kleene algebra with tests (KAT) [9], which plays a major role in reasoning about
programs.

Hoare logic (HL) was the first formal system proposed for verification of pro-
grams. Introduced in as early as 1969, its wide influence transformed Hoare’s
work in a cornerstone of program correctness, a reference for most current
research in the area. HL encompasses a syntax to reason about partial cor-
rectness assertions (PCA) of the form {b}p{c}, also called a Hoare triple, and a

This work is financed by the ERDF – European Regional Development Fund
through the Operational Programme for Competitiveness and Internationalisation
- COMPETE 2020 Programme and by National Funds through the Portuguese
funding agency, FCT - Fundação para a Ciência e a Tecnologia, within projects
POCI-01-0145-FEDER-016692 and UID/MAT/04106/2013. The second author is also
supported by the individual grant SFRH/BPD/103004/2014.

c© Springer International Publishing AG 2017
S. Cavalheiro and J. Fiadeiro (Eds.): SBMF 2017, LNCS 10623, pp. 271–286, 2017.
https://doi.org/10.1007/978-3-319-70848-5_17

272 L. Gomes et al.

deductive system to reason about them [5]. In a PCA, b and c stand for pred-
icates, representing pre and post conditions, respectively, and p is a program
statement.

In particular, propositional Hoare logic (PHL) can be seen as a fragment of
HL, in which PCAs are reduced to static assertions about the underlying domain
of computation [10]. In [10] the authors show that this fragment can be encoded
in a Kleene algebra with tests. The translation is based on equational logic,
transforming PCAs into equations and the rules of inference into equational
implications.

As originally presented, KAT is suitable to reason about classic imperative
programs. In fact, such programs are particularly “well tractable”: they repre-
sent a sequence of discrete steps, which can be modelled as atomic transition
systems in a standard automaton. Moreover, the assertions about theses pro-
grams have an outcome in a bivalent truth space. However, current complex
dynamic systems are based in new computing domains, namely probabilistic
[15] or continuous [13], which entail the need for computing paradigms able to
deal with quantitative program executions (e.g. weighted, valued, probabilistic).
Moreover, the assertions about these programs can have a graded outcome. In
this context, the development of algebraic structures to model weighted compu-
tations becomes a must. This work builds on such motivations to introduce two
generalisations of KAT able to express programs as weighted computations and
tests as predicates evaluated in graded truth space - the graded Kleene algebra
with tests (GKAT) and the Heyting Kleene algebra with tests (HKAT). GKAT,
for example, has a myriad of interesting examples, from continuous �Lukasiewicz
lattice to the discrete finite hoops. HKAT, on the other hand, allows to address
full imperative languages.

In analogy to KAT [10], we intend to encode PHL into GKAT, in the context
of a research agenda to extend the classical area of program correctness. However,
we can only partially generalise such an encoding. More specifically, we can only
encode while-free programs. To achieve a complete encoding of Hoare logic, we
propose to refine the basic structure, obtaining HKAT as a generalisation of
the classical KAT. HKAT is, indeed, a subclass of GKAT. As a consequence,
however, its set of examples is smaller. It includes, in particular, the lattice 3
to deal with partial programs and uncertainty on tests, and Gödel algebra, a
well-known basic structure used in logics whose truth values are closed subsets
of the interval [0, 1].

The remaining of the paper is organised as follows: Subsect. 1.2 recaps some
fundamental concepts needed to understand the definitions and results presented
in this work. Section 2 introduces graded Kleene algebra with tests as a gener-
alisation of KAT, including its axiomatisation, a few examples and proofs of
basic properties. It also presents a partial encoding of classical PHL in GKAT.
Section 3 introduces Heyting Kleene algebra with tests as another generalisation
of the standard KAT and a refinement of GKAT, enjoying of a complete encod-
ing of PHL. Section 4 sums up some related research, concludes, and enumerates
some topics for future work.

On Kleene Algebras for Weighted Computation 273

1.2 Preliminaries

Definition 1. A Kleene algebra with tests (KAT) is a tuple

(K,T,+, ; ,∗ ,̄ , 0, 1)

where T ⊆ K, 0 and 1 are constants, + and ; are binary operators in K and T ,
∗ is a unary operator in K, and ¯ is a unary operator defined only on T such
that:

– (K,+, ; ,∗ , 0, 1) is a Kleene algebra;
– (T,+, ; ,̄ , 0, 1) is a Boolean algebra;
– (T,+, ; , 0, 1) is a subalgebra of (K,+, ; , 0, 1).

The elements of K, denoted by lower case letters p, q, r, s, x, y, z, stand for pro-
grams and the elements of T , denoted by a, b, c, d are called tests. Kleene algebra
with tests induces an abstract programming language, where conditionals and
while loops programming constructs are encoded as follows:

if b then p
def= b; p + b̄

if b then p else q
def= b; p + b̄; q

while b do p
def= (b; p)∗; b̄

As stated in Sect. 1, Hoare logic allows to verify imperative programs by validat-
ing PCAs of the form {b}p{c} through a deductive system [5]. The validity of
a Hoare triple assures that whenever precondition b is met, after the execution
of program p, if and when p halts, the postcondition c is guaranteed to hold.
The set of logical rules is shown in Fig. 1. Although the importance of HL for
reasoning about program correctness is unquestionable, proofs in PHL can be
more easily done in terms of purely equational calculation on KAT, as presented
in [10]. In fact, it is shown that PHL can be encoded in KAT, in such a way
that the inference rules Composition, Conditional, While and Weakening become
derived theorems of KAT.

– Composition rule:

{b}p{c} {c}q{d}
{b}p; q{d}

– Conditional rule:

{b ∧ c}p{d}, {¬b ∧ c}q{d}
{c} if b then p else q {d}

– While rule:

{b ∧ c}p{c}
{c} while b do p{¬b ∧ c}

– Weakening rule:

b′ → b, {b}p{c}, c → c′

{b′} p{c′}

Fig. 1. Hoare logic rules

274 L. Gomes et al.

As presented in [10], the PCA {b}p{c} can be encoded in KAT as b; p; c̄ = 0,
which is equivalent to b; p = b; p; c. The first equation means, intuitively, that the
execution of p with precondition b and postcondition c̄ does not halt. Equation
b; p = b; p; c, on the other hand, states that the verification of the post condition
c after the execution of b; p is redundant.

Moreover, the inference rules of Hoare logic can be encoded in KAT, as shown
below:

– Composition:

b; p = b; p; c ∧ c; q = c; q; d ⇒ b; p; q = b; p; q; d

– Conditional :

b; c; p = b; c; p; d ∧ b̄; c; q = b̄; c; q; d ⇒ c; (b; p + b̄; q) = c; (b; p + b̄; q); d

– While:
b; c; p = b; c; p; c ⇒ c; (b; p)∗; b̄ = c; (b; p)∗; b̄; b̄; c

– Weakening :

b′ ≤ b ∧ b; p = b; p; c ∧ c ≤ c′ ⇒ b′; p = b′; p; c′

2 Graded Kleene Algebra with Tests

2.1 The Basic Structure

The approach proposed here, to reason about program executions in a many-
valued context, is based on redefining the interpretation of the assertions about
programs. Since such assertions take the form of tests, we start by modifying
the part of the axiomatisation of KAT that deals with properties of tests, i.e.,
the Boolean algebra (T,+, ·,̄ , 0, 1).

Instead of having a Boolean outcome, as happens in KAT, tests are graded,
taking values from a truth space with more than two possible outcomes (0 and 1).
As a consequence, the expression b; p represents a weighted execution of program
p, conditioned by the value of b. In order to reason about computations in this
graded setting, we introduce the following generalisation of KAT:

Definition 2. A graded Kleene algebra with tests (GKAT) is a tuple

(K,T,+, ; ,∗ ,→, 0, 1)

where K and T are sets, with T ⊆ K, 0 and 1 are constants and + and ; are
binary operations in K and T , ∗ is a unary operator in K, and → is an operator
only defined in T , satisfying the axioms enumerated in Fig. 2, where relation ≤
is induced by + in the usual way: p ≤ q iff p + q = q. Note that (T,+, ; , 0, 1) is
a subalgebra of (K,+, ; , 0, 1).

On Kleene Algebras for Weighted Computation 275

Again, programs are denoted by lower case letters p, q, r, s, x, y, z and tests by
a, b, c, d. Note that, differently from what happens in KAT, negation is not explic-
itly denoted, although it can be derived as a → 0, for a ∈ T . Indeed, this
operator, along with a more relaxed subalgebra (which will replace the Boolean
subalgebra of KAT) are introduced to support a proper truth space, for possible
non bivalent interpretation of assertions.

p+ (q + r) = (p+ q) + r (1)

p+ q = q + p (2)

p+ p = p (3)

p+ 0 = 0 + p = p (4)

p; (q; r) = (p; q); r (5)

p; 1 = 1; p = p (6)

p; (q + r) = (p; q) + (p; r) (7)

(p+ q); r = (p; r) + (q; r) (8)

p; 0 = 0; p = 0 (9)

1 + p; p∗ = p∗ (10)

1 + p∗; p = p∗ (11)

q + p; r ≤ r ⇒ p∗; q ≤ r (12)

q + r; p ≤ r ⇒ q; p∗ ≤ r (13)

a; b ≤ c ⇔ b ≤ a → c (14)

a → b ≤ a → (b+ c) (15)

b ≤ a → (a; b) (16)

a+ 1 = 1 + a = 1 (17)

a; b = b; a (18)

a+ (a; b) = a (19)

Fig. 2. Axiomatisation of graded Kleene algebra with tests

Some operators in GKAT play a different role when acting on programs
or tests. Such is the case of “+” and “;”. The former one plays the role of
non-deterministic choice, when interpreting programs, and of logical disjunction,
when acting on tests. The latter is taken as sequential composition of actions
when applied to elements of K, and as a conjunction when applied to elements of
T . In the domain of programs, the constants 0 and 1 refer to halt and skip, while
when applied on tests, stand for false and true, respectively. However, there are
operations specific to just one of these domains. For instance, while operation ∗

is taken as iterative execution of programs, operation → plays the role of logical
implication over tests. Let us now discuss some instances of GKAT.

Example 1. (2 - the Boolean lattice). Our first example is the well known binary
structure

2 = ({�,⊥}, {�,⊥},∨,∧,∗ ,→,⊥,�)

with the standard interpretation of Boolean connectives. Operator ∗ maps each
element of {�,⊥} to � and → is defined as logical implication.

Example 2. A second example is provided by the three-element linear lattice,
which introduces an explicit denotation for “unknown” (or undefined).

3 = ({�, u,⊥}, {�, u,⊥},∨,∧,∗ ,→,⊥,�)

276 L. Gomes et al.

where

∨ ⊥ u �
⊥ ⊥ u �
u u u �
� � � �

∧ ⊥ u �
⊥ ⊥ ⊥ ⊥
u ⊥ u u
� ⊥ u �

→ ⊥ u �
⊥ � � �
u ⊥ � �
� ⊥ u �

∗
⊥ �
u �
� �

Example 3. For a fixed, finite set A, let us consider the structure

2A = (P (A), P (A),∪,∩,∗ ,→, ∅, A)

where P (A) denotes the powerset of A, ∪ and ∩ are set union and intersection,
respectively, ∗ maps each set X ∈ P (A) into A and X → Y = XC ∪ Y , where
XC = {x ∈ A|x /∈ X}.

Example 4. This example is based on the well-known �Lukasiewicz arithmetic
lattice.

�L = ([0, 1], [0, 1],max,�,∗ ,→, 0, 1)

where x → y = min{1, 1 − x + y}, x � y = max{0, x + y − 1} and ∗ maps each
point of the interval [0, 1] to 1.

Example 5. Let us consider now the example given by the standard Π-algebra

Π = ([0, 1], [0, 1],max, .,∗ ,→, 0, 1)

where . is the usual multiplication for real numbers and

x → y =

{
1, if x ≤ y

y/x, if y < x

with/being the usual division for real numbers and ∗ mapping each point of the
interval [0, 1] to 1.

Example 6. Another example is provided by the Gödel algebra

G = ([0, 1], [0, 1],max,min,∗ ,→, 0, 1)

where

x → y =

{
1, if x ≤ y

y, if y < x

and ∗ maps each point of the interval [0, 1] to 1.

On Kleene Algebras for Weighted Computation 277

Example 7. We consider now a GKAT endowing the finite Wajsberg hoop with a
star operator, as presented in [1]. For a fixed natural k and a generator a, define
the structure

Wk = (Wk,Wk,+, ; ,∗ ,→, 0, 1)

where Wk = {a0, a1, ..., ak−1}, 1 = a0 and 0 = ak−1. Moreover, for any m,n ≤
k − 1, am + an = amin{m,n}, am; an = amin{m+n,k−1}, (am)∗ = a0 and am →
an = amax{n−m,0}.

Example 8. The (min,+) Kleene algebra of [6], known as the tropical semiring,
can be extended to a GKAT by adding residuation →. First let R+ denote the
set {x ∈ R|x ≥ 0} and let ∞ be a new element. Thus, define

R = (R+ ∪ {∞}, R+ ∪ {∞},min,+,∗ ,→,∞, 0)

where, for any x, y ∈ R+ ∪ {∞}, x∗ = 0 and x → y = max{y − x, 0}.

Note that in all examples considered, T = K, that is, the set of tests and the
set of programs coincide.

For the purpose of this work, i.e., for reasoning about graded computations
and assertions in a multi-valued truth space, Example 4 is particularly relevant.
Indeed, this is a very well known model for fuzzy and multi-valued logics.

A main particularity of the GKAT axiomatization concerns rules (17)-(19),
which form a weakened version of the axiomatization of a Boolean algebra. Note,
however, that this is, in fact, a generalisation:

Lemma 1. Any KAT is a GKAT.

Proof. For a fixed KAT

A = (K,T,+, ; ,∗ ,̄ , 0, 1)

let us consider the structure

M = (K,T,+, ; ,∗ ,→, 0, 1)

inheriting the operators +, ;, ∗ and constants 0 and 1 from A. Define a → 0 := ā
and a → b := ā + b, for a, b ∈ T .
Actually, axioms (14)-(16) hold for M , for all a, b, c ∈ T . For (14), assume
a; b ≤ c, i.e. by definition of ≤, a; b + c = c. Then,

a → c

= { definition of → and hypothesis}
ā + ((a; b) + c)

= { BA (+, ;)-dist.}
(ā + (a + c)); (ā + (b + c))

= { (1), BA: a+ ā=1, (17) and (6)}
ā + b + c

= { (2) and definition of →}
a → c + b

278 L. Gomes et al.

Thus, a; b ≤ c ⇒ b ≤ a → c. Now, assume b ≤ a → c, i.e. by definition of M ,
b; (ā + c) = b, and reason

a; b + c

= { b; (ā+ c) = b}
a; (b; (ā + c)) + c

= { BA (+, ;)-dist.}
a; b; ā + a; b; c + c

= { BA comm, a; ā = 0, (9), (4) and (8)}
(a; b + 1); c

= { (17) and (6)}
c

Hence, b ≤ c → c ⇒ a; b ≤ c. To prove (15), consider

a → b + a → (b + c)
= { by definition of →}

(ā + b) + (ā + (b + c))

= { (1), (2) and (3)}
ā + (b + c)

= { by definition of →}
a → (b + c)

Axiom (16) is proved as follows:

a → (a; b)
= { definition of →}

ā + (a; b)
= { BA (+, ;)-dist., BA: a+ ā = 1 and (6)}

ā + b

= { definition of →}
a → b

We have that b ≤ a → b, so, by transitivity, b ≤ a → (a; b), for all a, b ∈ T .
We concluded the proof that axioms (14)-(16) hold for any a, b, c ∈ T in M .

Since axioms (1)-(13), (17)-(19) are axioms of A, M is, indeed, a GKAT. �

As stated above, while tests in KAT have an outcome of two possible values
(0 and 1), GKAT deals with graded tests. This entails the need to weaken the
Boolean subalgebra (T,+, ·,∗ , 0, 1,̄) of KAT. In any GKAT, for any test a ∈ T ,
a; (a → 0) = 0 , which follows immediately from definition of ≤ and axiom (14).
However, it is not necessarily true that a + (a → 0) = 1. In order to show this,
let us consider the following GKAT structure over the set {0, n,m, 1}, where
{0,m, 1} ⊆ T and n ∈ K, in which the operation ∗ maps all points to the top
element of T , 1, and the remaining operations are defined as follows:

+ 0 n m 1
0 0 n m 1
n n n m 1
m m m m 1
1 1 1 1 1

; 0 n m 1
0 0 0 0 0
n 0 0 0 n
m 0 0 0 m
1 0 n m 1

→ 0 n m 1
0 1 1 1 1
n m 1 1 1
m m m 1 1
1 0 n m 1

On Kleene Algebras for Weighted Computation 279

In this structure, and considering a = m, we have m + (m → 0) = m + m =
m �= 1. Recall that in KAT, a program execution is guarded by a test with only
two possible outcomes: 0 or 1. Thus, an expression b; p intuitively means that
program p is executed when b = 1 and is not executed when b = 0.

It is therefore safe to state that GKAT has embedded a weakened Boolean
subalgebra and, consequently, tests can assume other values besides 0 and 1,
representing the truth degree of the statement “b is true”. Consequently, the
expression b; p means that the execution of program p is guarded by that par-
ticular truth (graded) value.

2.2 Graded Propositional Hoare Logic

Kleene algebra with tests provides a theoretical basis to reason about classic
imperative programs by using purely equational reasoning. Actually, its presen-
tation in [10] aimed at the reduction of PHL to ordinary equations and quasi-
equations, as mentioned in the introduction. In particular, the inference rules of
Hoare logic are derived as theorems in KAT.

Following an analogous approach [10], mentioned in Subsect. 1.2, we now
encode propositional Hoare logic in GKAT. Since this new structure deals with
graded tests, both the meaning of PCAs and the inference rules need to be
adjusted. This reinterpretation unfolds a generalised version of classic Hoare
logic, that we call here graded propositional Hoare logic (GPHL).

In the presence of graded tests, the interpretation of a triple {b}p{c}, and
hence, the correctness of a program, relies on the idea that whenever b; p executes
with a truth degree b, if and when it halts, it is guaranteed that (b; p); c holds
with at least the same degree of truth. By other words, correctness of a program
can only grow with execution. Therefore, the encoding in GKAT is captured by
the following inequality:

b; p ≤ b; p; c

However, the equivalence

b; p ≤ b; p; c ⇔ b; p = b; p; c, (20)

also holds in GKAT, following immediately from (7), (17) and (6). Note, also,
that the equivalence

b; p = b; p; c ⇔ b; p ≤ p; c

does not hold in GKAT, as it does in KAT.
The inference rules of Hoare logic can also be encoded in GKAT, as presented

in the following theorem.

Theorem 1. The following equational implications are theorems in GKAT.

1. Composition rule:
b; p ≤ b; p; c ∧ c; q ≤ c; q; d ⇒ b; p; q = b; p; q; d

280 L. Gomes et al.

2. Conditional rule:
b; c; p ≤ b; c; p; d ∧ (b → 0); c; q ≤ (b → 0); c; q; d
⇒ c; (b; p + (b → 0); q) ≤ c; (b; p + (b → 0); q); d

3. Weakening rule:
b′ ≤ b ∧ b; p ≤ b; p; c ∧ c ≤ c′ ⇒ b′; p ≤ b′; p; c′

Proof. 1. Let us assume that b; p ≤ b; p; c and c; q ≤ c; q; d. By (20), these
inequalities are equivalent to b; p = b; p; c and c; q = c; q; d, respectively. So,
we have

b; p; q
= { b; p = b; p; c}

b; p; c; q

= { c; q = c; q; d}
b; p; c; q; d

= { b; p = b; p; c}
b; p; q; d

2. Assume b; c; p ≤ b; c; p; d and (b → 0); c; q ≤ (b → 0); c; q; d.
First of all, observe that, for any p, q, r, s ∈ K

p ≤ q & r ≤ s ⇒ p + r ≤ q + s (21)

To prove this, assume that p ≤ q and r ≤ s, i.e. p + q = q and r + s = s.
Then, by (1) and (2), (p+ r)+(q +s) = (p+ q)+(r +s) = q +s. So, by (21),

b; c; p + (b → 0); c; q ≤ b; c; p; d + (b → 0); c; q; d.

⇔ { (18), (7) and (8)}
c; (b; p + (b → 0); q) ≤ c; (b; p + (b → 0); q); d

3. Finally, for the Weakening rule, observe that, for all b, c ∈ T and p ∈ K,

b; p ≤ b; p; c ⇒ b; p; (c → 0) ≤ 0 (22)

Using (20) to rewrite (22) as

b; p = b; p; c ⇒ b; p; (c → 0) = 0 (23)

and, assuming b; p = b; p; c, we have

b; p; (c → 0)
= { b; p = b; p; c assumption}

b; p; c; (c → 0)
= { a; (a → 0) = 0) and (9)}

0

Using (23), the Weakening rule can be rewritten as

a ≤ b ∧ b; p; (c → 0) = 0 ∧ (d → 0) ≤ (c → 0) ⇒ a; p; (d → 0) = 0

which follows from the monotonicity of “;”. �

On Kleene Algebras for Weighted Computation 281

The attentive reader certainly noticed the absence of a While rule in the graded
setting. In analogy with what was done before, such a rule would take the form:

b; c; p ≤ b; c; p; c ⇒ c; (b; p)∗; (b → 0) ≤ c; (b; p)∗; (b → 0); (b → 0); c (24)

However, this is not necessarily true for all p ∈ K and b, c ∈ T .
To see this, consider the following GKAT structure over the set {0, n,m, 1},

in which the operator ∗ maps all points to the top element 1 and the remaining
operators are defined as follows:

+ 0 n m 1
0 0 n m 1
n n n m 1
m m m m 1
1 1 1 1 1

; 0 n m 1
0 0 0 0 0
n 0 0 0 n
m 0 0 0 m
1 0 n m 1

→ 0 n m 1
0 1 1 1 1
n m 1 1 1
m m m 1 1
1 0 n m 1

In this structure, {0,m, 1} ⊆ T and n ∈ K. If b = 0, c = m, p = 0, the instantia-
tion of b; c; p ≤ b; c; p; c becomes, using axioms (9) and (3),
0;m; 0 + 0;m; 0;m = 0;m; 0;m ⇔ 0 = 0
and that of c; (b; p)∗; (b → 0) ≤ c; (b; p)∗; (b → 0); (b → 0); c becomes, by axioms
(9), (10), (6) and (4),
m; (0)∗; 1 + m; (0)∗; 1; 1;m = m; (0)∗; 1; 1;m ⇔ m = 0.

Using these two equations, the equational implication which could represent
the While rule (24) boils down to 0 = 0 ⇒ m = 0, which is obviously false.
In the next section we will discuss this problem, by presenting an alternative
algebraic structure with complete Hoare logic encoding.

3 Heyting Kleene Algebra with Tests

3.1 The Basic Structure

By carefully looking at the while rule proof for the Hoare logic encoding in KAT
it is easy to note that one cause for the failure of the analogous encoding in
GKAT, mentioned in the previous section, is the impossibility of duplicating
graded tests. Actually, in GKAT, we don’t have that b; b = b, but only b; b ≤ b.
In fact, the duplication is a requirement for the proof of the While rule. The
solution we propose here is to refine the GKAT structure with some additional
properties, capturing two crucial aspects for the purpose of this work: allowing for
a complete encoding of Hoare logic and, at the same time, capturing non-classical
examples, with degrees of uncertainty in program executions and evaluation of
tests. The idea is to use a Heyting algebra to model the tests, instead of the
Boolean algebra implicit on KAT.

282 L. Gomes et al.

Definition 3. A Heyting Kleene algebra with tests (HKAT) is a tuple

(K,T,+, ; ,∗ ,→, 0, 1)

where K and T are sets, with T ⊆ K, 0 and 1 are constants and + and ; are
binary operations in K and T , ∗ is a unary operator in K, and → is an operator
only defined in T , satisfying the axioms enumerated in Fig. 2 plus three axioms
from KAT, listed in Fig. 3. The relation ≤ is induced by + in the usual way
p ≤ q iff p + q = q such that:

– (K,+, ; ,∗ , 0, 1) is a Kleene algebra;
– (T,+, ; ,→, 0, 1) is a Heyting algebra;
– (T,+, ; , 0, 1) is a subalgebra of (K,+, ; , 0, 1).

a; a = a (25)

a; (a+ b) = a (26)

a+ (b; c) = (a+ b); (a+ c) (27)

Fig. 3. New axioms added to the axiomatisation of GKAT, to form the axiomatisation
of Heyting Kleene algebra with tests

Note that, as in GKAT, negation is not explicitly denoted and can be derived
as a → 0.

Let us also enhance that HKAT is a subclass of GKAT. Examples 1, 2, 3
and 6 illustrate this structure. The set of examples discussed for GKAT and
HKAT, as well as which ones are also KAT is summarised in Fig. 4.

HKAT

GKAT

2

Π
�L
Wk,k=2

R

G

P(A)
2

KAT

W2

Fig. 4. Examples of KAT, GKAT and HKAT

In HKAT, we can think about the intuitive meaning of the execution
of a program guarded by a test as an uncertain execution. For instance, in
Example 2, if b = u, the expression u; p means that we are not sure if program
p could be executed or not.

Just as GKAT, HKAT is also a generalisation of KAT.

On Kleene Algebras for Weighted Computation 283

Lemma 2. Any KAT is a HKAT.

Proof. It suffices to show that axioms (14), (15) and (16) hold for all a, b, c ∈ T .
The proof is the same as Lemma 1.

3.2 Heyting Propositional Hoare Logic

Let us now discuss how to encode propositional Hoare logic in HKAT. We call
this generalisation Heyting propositional Hoare logic (HPHL). Differently from
what happens in GKAT, the three encodings proposed by D. Kozen for Hoare
logic are equivalent in HKAT:

b; p = b; p; c ⇔ b; p ≤ b; p; c ⇔ b; p ≤ p; c

Hence, the inference rules of Hoare logic can be encoded in HKAT as in
classical propositional Hoare logic.

Theorem 2. The following equational implications are theorems in HKAT.

1. Composition rule:
b; p = b; p; c ∧ c; q = c; q; d ⇒ b; p; q = b; p; q; d

2. Conditional rule:
b; c; p = b; c; p; d ∧ (b → 0); c; q = (b → 0); c; q; d
⇒ c; (b; p + (b → 0); q) = c; (b; p + (b → 0); q); d

3. While rule:
b; c; p = b; c; p; c ⇒ c; (b; p)∗; (b → 0) = c; (b; p)∗; (b → 0); (b → 0); c

4. Weakening rule:
b′ ≤ b ∧ b; p = b; p; c ∧ c ≤ c′ ⇒ b′; p = b′; p; c′

Proof. The proofs for rules 1, 2 and 4 are as in Theorem 1. To prove rule 3,
consider

c; b; p ≤ c; b; p; c ⇒ c; (b; p)∗ ≤ c; (b; p)∗; c.

Assuming

c; b; p ≤ c; b; p; c (28)

by (13), it is enough to show

c + c; (b; p)∗; c; b; p ≤ c; (b; p)∗; c

But

284 L. Gomes et al.

c + c; (b; p)∗; c; b; p
≤ { by (28)}

c + c; (b; p)∗; c; b; p; c
≤ { by B.A}

c; 1; c + c; (b; p)∗; c; b; p; c

≤ { by distributivity}
c; (1 + (b; p)∗; c; b; p); c

≤ { by monotonicity}
c; (1 + (b; p)∗; b; p); c

≤ { by (11)}
c; (b; p)∗; c

Note that, as in classical case, for both encodings of PHL previously discussed,
the way to reason about the correctness of a program is settled in a bivalent
truth space.

4 Conclusion and Further Work

This paper aimed at generalising Kleene algebra with tests, to reason equation-
ally about graded computations and assertions evaluated in a multi-valued truth
space. Moreover, the propositional fragment of classic Hoare logic was revisited.

A similar attempt is discussed in [15], which introduces a complete theory
of probabilistic KAT to deal with regular programs with probabilities. However,
instead of focusing on the possible range of values for tests, or in adding an
uncertainty concretisation to them, which have an immediate consequence on
program executions, the authors add a new operator +α to the algebraic struc-
ture, where α is a probability value. Thus, in their work, a probabilistic Kleene
algebra with Tests is defined as

(K,T,+,+α, ·,∗ , 0, 1,̄)

where expression p +α q represents the probabilistic choice between executing
a program p with probability α or a program q with probability 1 − α. More
related work on this matter include references [3] and [12]. However, the main
ideas behind these approaches is to introduce probabilities at the syntactic level,
namely a new choice operator. Our approach, on the other hand, opted by
redefining the notions of test and program execution.

The approach taken in this paper for GKAT, of adding a residual as a logical
implication to capture a multi-valued setting, is based on previous work reported
in [11], where an action lattice is adopted as the basic algebraic structure to
generate many-valued dynamic logics.

Originally derived from action algebras [7], an action lattice entails both
a generic space of computations, with choice, composition and iteration, and,
supported by residuation, a proper truth space for a non bivalent interpretation
of the assertions (as a residuated lattice). V. Pratt thought about residuation as a
pure technicality to obtain a finitely-based equational variety [14]. Subsequently,
the work of D. Kozen [7] extended this notion by adding and axiomatizing a meet

On Kleene Algebras for Weighted Computation 285

operation, in order to recover the closure under matricial formation typical of
the Kleene algebras [2].

The attentive reader may wonder about the lack of concrete illustrations
for the introduced formalism, like simple imperative programs as in [10]. Note,
however, that programs are interpreted here as weighted relations and tests as
truth degrees. Hence, as it happens in propositional Hoare logic derived from
standard KAT, there is no first-order structure to interpret program variables.
Consequently, there is no assignment rule neither for GPHL nor for HPHL, as
presented here. Extending the formalism in this direction, in order to deal with
imperative fuzzy programs is, naturally, in our agenda.

Another important aspect to note is that, since both GKAT and HKAT are
generalisations of KAT, as stated by lemmas 1 and 2, all the classical models
of KAT, namely relational algebra over a set, languages over an alphabet and
traces are naturally examples of our structures. In all these cases, the set of
programs K and the set of tests T do not coincide, contrary to what happens
with all the examples presented in this paper. Nevertheless, since the introduced
structures intend to formalise over fuzzy programs, we want to go a step fur-
ther: the tentative to formalise fuzzy relations and fuzzy languages, as they are
presented in [4], as models of GKAT and HKAT is a priority in our agenda.

In all variants of dynamic logic discussed in the literature, even when some
forms of structured computations are taken into consideration, the validity of
assertions (for example, of Hoare triples annotating a program) is always stated
in classical terms. This means that, even when the object of reasoning is e.g.
a fuzzy program or a quantum system, the validity of an assertion over it is
discussed in classical, two-valued logic.

In this work we assume, as in classic PHL, that a PCA is valid if b; p = b; p; c.
In GKAT, this expression states that, after the execution of p guarded by the
truth degree of precondition b, a state is reached where the truth degree of the
post condition does not modify the value of the execution. In HKAT, for the
case considered in Example 2, the variation from the classical case comes when
b = u. Thus, the expression b; p can be interpreted as “we are not sure if program
p can be executed”. Due to the nature of the expression (an equality relation),
this is clearly tied to the classical, two-valued logic: despite the graded nature
of the computations, their correctness is evaluated in a bivalent truth space.

This limitation motivates an approach to be addressed in future work: the
intention is to go a step further and resort to the same algebraic structure used
to specify the computing paradigm, in order to give semantics to the logic used
to reason about it. This makes it possible to discuss the validity of an assertion
over a fuzzy or a quantum program in terms of a logic capturing itself fuzzy or
quantum reasoning, respectively.

References

1. Blok, W.J., Ferreirim, I.: On the structure of hoops. Algebra Univers. 43, 233–257
(2000)

286 L. Gomes et al.

2. Conway, J.: Regular Algebra and Finite Machines. Dover Publications, New York
(1971)

3. den Hartog, J., de Vink, E.P.: Verifying probabilistic programs using a Hoare like
logic. Int. J. Found. Comput. Sci. 13(3), 315–340 (2002)

4. Guilherme, R.: A coalgebraic approach to fuzzy automata. Master’s thesis, Facul-
dade de Ciências e Tecnologia - Universidade Nova de Lisboa, Lisboa (2016)

5. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

6. Kozen, D.: The Design and Analysis of Algorithms. Springer-Verlag, New York
(1992)

7. Kozen, D.: On action algebras. In Logic and the Flow of Information, Amsterdam
(1993)

8. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. Inf. Comput. 110, 366–390 (1994)

9. Kozen, D.: Kleene algebra with tests. ACM Trans. Program. Lang. Syst. 19(3),
427–443 (1997)

10. Kozen, D.: On Hoare logic and Kleene algebra with tests. ACM Trans. Comput.
Logic 1(212), 1–14 (2000)

11. Madeira, A., Neves, R., Martins, M.A.: An exercise on the generation of many-
valued dynamic logics. J. Logical Algebraic Methods Program. 1, 1–29 (2016)

12. McIver, A.K., Cohen, E., Morgan, C.C.: Using probabilistic Kleene algebra for
protocol verification. In: Schmidt, R.A. (ed.) RelMiCS 2006. LNCS, vol. 4136, pp.
296–310. Springer, Heidelberg (2006). https://doi.org/10.1007/11828563 20

13. Platzer, A.: Logical Analysis of Hybrid Systems - Proving Theorems for Complex
Dynamics. Springer, Heidelberg (2010)

14. Pratt, V.: Action logic and pure induction. In: Eijck, J. (ed.) JELIA 1990.
LNCS, vol. 478, pp. 97–120. Springer, Heidelberg (1991). https://doi.org/10.1007/
BFb0018436

15. Qiao, R., Wu, J., Wang, Y., Gao, X.: Operational semantics of probabilistic Kleene
algebra with tests. In: Proceedings of IEEE Symposium on Computers and Com-
munications, pp. 706–713 (2008)

https://doi.org/10.1007/11828563_20
https://doi.org/10.1007/BFb0018436
https://doi.org/10.1007/BFb0018436

Capturing Stochastic and Real-Time Behavior
in Reo Connectors

Yi Li, Xiyue Zhang, Yuanyi Ji, and Meng Sun(B)

Department of Informatics and LMAM, School of Mathematical Sciences,
Peking University, Beijing, China

{liyi math,zhangxiyue,jyy,sunm}@pku.edu.cn

Abstract. Modern distributed systems are often coupled with flexible
architectures, composed of heterogenous components, and deployed on
different execution nodes. Under such frameworks, connectors (or middle-
wares) are widely used to organize the separated components and make
them functioning. Apparently, reliability of such systems highly depends
on the correctness of their connectors. Reo is a channel-based coordina-
tion language where complex connectors are constructed from simpler
ones through a compositional approach. In this paper, we propose a sto-
chastic and real-time extension of Reo, including a set of new primitive
channels and an expressive semantics named Stochastic Timed Automata
for Reo (STAr). With the support of STAr, different coordination sce-
narios in existing Reo extensions can be easily encoded, integrated, and
analyzed.

Keywords: Coordination · Stochastic · Real-time · Distributed systems

1 Introduction

Distributed systems have been booming everywhere in the past decades. On
the one hand, The Internet of Things (IoTs) are bringing network systems to
daily life. Conventional devices are replaced by smart terminals, and in turn
collected by central controllers to construct ‘Smart Cities’. On the other hand,
high-performance computation is being adapted from local workstations and
clusters to cloud platform and elastic computation frameworks like Amazon EC2
[15] and Microsoft Azure [12]. These architectures are so popular that even small
companies are starting to deploy their own private cloud systems.

In modern systems, the component-based method is widely used to speed
up the development process. Long-tested functional units are encapuslated as
components, and get integrated in different systems through connectors. Under
this developing model, a connector often implements the core software protocol,
and consequently, suffers frequently from different kind of vulnerabilities.

Reo [2], as one of the most popular coordination languages, was designed
to formalize the hierarchy and communication patterns between components.
Based on channels and nodes, Reo provides a compositional approach where
c© Springer International Publishing AG 2017
S. Cavalheiro and J. Fiadeiro (Eds.): SBMF 2017, LNCS 10623, pp. 287–304, 2017.
https://doi.org/10.1007/978-3-319-70848-5_18

288 Y. Li et al.

complex connectors are built from simpler ones. In this paper, we extend Reo
with three primitive channels, Map, StochasticChoice and pTimer, to capture
data evolution, real-time and stochastic behavior. A new semantics named STAr

is also provided as the theoretical basis of the primitive channels.
Compared with existing timed and stochastic (or probabilistic) semantics of

Reo [4,7,13,14], our work provides a more powerful and universal solution.

1. Both timed behavior and stochastic behavior are supported, but declared sep-
arately. This makes it convenient to model various coordination scenarios by
different combination patterns.

2. Timelocks are avoided in this semantics, making the timed connectors fully
implementable. In the common semantics of timed Reo [3,13], Timer channels
may get trapped in timelock. Under such cases, the behavior of Timer is
undefined, which makes it impossible to obtain an equivalent implementation.

The paper is organized as follows. Section 2 introduces Reo, the coordination
language, and shows how we extend this language by adding new primitive chan-
nels. Then, in Sect. 3 we provide an adapted stochastic timed automata STAr

as its formal semantics. Related work and comparison are discussed in Sect. 4.
Section 5 presents several examples. Finally, Sect. 6 summarizes the paper and
comes up with some future work we are going to work on.

2 Extending Reo for Stochastic and Timed Behavior

In this section, we introduce Reo, the channel-based coordination language, and
its stochastic and timed extensions. These extensions are realized through adding
new channels to the primitive channel set of Reo.

2.1 Reo

Reo is a channel-based exogenous coordination language proposed by F. Arbab
in [2], where concurrency protocols are manifested as connectors. Basically, con-
nectors are constructed through a compositional approach: complex ones are
composed of simpler ones, where the atomic ones are called channels. Channels
are glued on nodes, and they together perform the behavior of connectors.

Nodes. There are three types of nodes in Reo: source nodes, sink nodes and mixed
nodes, as shown in Fig. 1.

Source Node Sink Node Mixed Node

Fig. 1. Three types of nodes

Capturing Stochastic and Real-Time Behavior in Reo Connectors 289

Essentially, a source node performs replicating behavior. That is, any coming
data values will be broadcasted synchronously if and only if all its successors are
ready to accept. A sink node performs merging behavior, accepting data values
from its predecessors randomly (this can be a non-deterministic choice if more
than one predecessors are ready to write). And a mixed node, literally, performs
both behavior at the same time, randomly picking one input and broadcasting
it to all outputs.

Channels. As the basic functional units in Reo, channels are supposed to describe
basic coordination behavior among channel ends. A channel ends can be either
a source end or a sink end, indicating the direction of its data flow. A set of
primitive channels can be found in Fig. 2, where we use arrows to indicate the
type of channel ends.

Sync LossySync SyncDrain AsyncDrain Fifo1 Filter〈P 〉
P

Fig. 2. Primitive channels

Channels can be either synchronous or asynchronous. A channel is synchro-
nous if and only if the read and write operations on its channel ends are always
performed simultaneously. The behavior of the primitive channels shown in Fig. 2
are specified as follows, where the channels are denoted as Name(Channel Ends).

Sync(A:source, B:sink) is a synchronous channel that delivers data values from
its source end A to its sink end B if possible. A synchronous channel is fired
only when A is prepared for reading and B is ready for writing.

LossySync(A:source, B:sink) is an input-enabled synchronous channel with a
source end A and a sink end B. Such channels are always prepared to accept
data from A. However, the transmission process could be unreliable. If B is
also ready for writing, the received data will be sent to B. Otherwise the
data will be dropped immediately.

SyncDrain(A B:source) is a synchronous channel with two source ends A and
B. It only accepts input from both A and B simultaneously and drop them
together after being received.

AsyncDrain(A B:source) is an asynchronous variation of SyncDrain. The most
important difference is that it accepts data only from one end at a time. If
both ends are ready to read, one of them (randomly picked) should wait.

FIFO1(A:source, B:sink) is an asynchronous channel with a source end A and
a sink end B. A FIFO1 channel can temporarily store one data value from
its source end A for an arbitrary duration, and deliver it anytime when B
is ready to write. When the buffer is full, a FIFO1 cannot accept any more
data values.

290 Y. Li et al.

Filter〈P 〉(A:source, B:sink) is a synchronous channel with a source end A, a
sink end B and a boolean function P as its parameter. When data comes to
end A, first we have to check whether the it satisfies the filter predicate P .
If the answer is yes, the channel will behave just as Sync, otherwise the data
will be simply dropped.

Composition. Formalization of nodes sometimes becomes rather complicated,
especially when an arbitrary number of incoming and outgoing edges are
involved. Usually, we prefer using two ternary channels Replicator, Merger and
use their combinations to capture the behavior of mixed nodes (Fig. 3).

Fig. 3. Replicator and merger

Replicator(A:source, B C:sink) is a synchronous broadcast channel with a source
end A and two sink ends B,C. The channel accepts data values from A, and
broadcasts them to B,C iff both B and C are ready to write.

Merger(A B:source, C:sink) is an asynchronous channel that collects inputs from
either A or B and sends them to C simultaneously if C is prepared.

Replicators and Mergers can reduce the number of incoming and outgoing edges
for mixed nodes. For example, if we replace two outgoing edges with a Replicator
channel, the number of edges would be reduced by 1. After a finite number of
replacements, all the mixed nodes can be simplified as nodes with one incoming
edge and one outgoing edge, which are called flow-through. When processing the
semantics of connectors, we assume that all the mixed nodes are flow-through
ones. But in the figures we still draw the mixed nodes in their original form to
make it clear and easy to understand.

2.2 Capturing Timed and Stochastic Behavior

In this subsection, we come up with some primitive channels, which extend Reo
and make it capable to specify timed and stochastic behavior. Compared with
other formal languages, Reo provides a framework which can be easily extended
by adding new channel types to the primitive channel set. Usually, new channels
should be simple enough, and orthogonal to the existing ones. Following this
idea, here we propose three channel types, capturing data evolution, stochastic
choice, and time delay.

In the following definitions, we use 〈p〉 to denote the parameter of a channel.
Value of parameters should be provided while declaring the channel, and would
never be updated during the execution (Fig. 4).

Capturing Stochastic and Real-Time Behavior in Reo Connectors 291

Map StochasticChoice pTimer

T

f
�

dist t0

Fig. 4. Extended primitive channels

Map〈f〉(A:source, B:sink) is a synchronous channel with a source end A, a sink
end B and a mapping function f as its parameter. A Map channel accepts
incoming values from its source end A (only when B is ready for writing)
and then it writes f(dA) to B simultaneously (dA denotes the data accepted
from A).

StochasticChoice〈dist〉(A:source, B:sink) is a synchronous randomizer channel
that accepts data values from its source node A (only when B is ready for
writing) and writes a random value to B simultaneously. The random value
is sampled from the distribution parameter dist.

pTimer〈t0〉(A T:source,B:sink) is a parameterized version of t-Timer in [13]. The
channel accepts data values from its source end A and starts counting down.
Then after a certain delay, it will send a TIMEOUT signal to B if writable,
and otherwise do nothing. In both cases, the channel will reset itself and
prepare to accept the next incoming value.
Value of the delay is initialized by the parameter t0, and can be overridden by
incoming values from the source end T . When the pTimer is not in counting
down stage, an incoming value from T will simply update the delay value.
Otherwise the incoming value will reset it, update the delay value, and write
nothing to B. When the new delay value is provided exactly at the same
time when counting down process terminates, the channel will still generate
the timeout signal.

3 Stochastic Timed Automata for Reo

In this section, first we introduce the formal model STAr that yields the basis
for reasoning about timed and stochastic behavior of connectors. Then we define
the new semantics for primitive Reo channels based on STAr, and explain how
to construct STAr for complex connectors by applying the product and hiding
operators to STAr of simpler ones.

3.1 STAr

Stochastic timed automata (STA) [8] is a powerful formalism to describe stochas-
tic behavior and real-time behavior. Both continuous distributions and discrete
distributions are supported in STA. In this paper, we slightly adapt STA as
STAr so that Reo channels can be depicted more naturally and clearly. Before

292 Y. Li et al.

touching the technical details of STAr, we first introduce some notations that
will be used later.

During the rest of this paper, we will use D to denote the data scope, which
can be either a) any finite set, b) the set of real numbers R, or their union.
Namely, D is finite, or D\R is finite (if R ⊆ D). When the data scope is restricted
to finite sets, stochastic assignments are no longer supported. For example, if
D = {1, 2}, v := norm(e, σ) is an invalid assignment while v′ := 1 + B(1, 0.5)
is acceptable, where norm and B stand for normal and binomial distribution
respectively. We use Dist(S) to denote the set of continuous or discrete distrib-
utions on S.

Definition 1 (Evaluations). Suppose V is a finite set of variables, an eval-
uation on V is defined as a function evV : V → D that maps a variable iden-
tifier to its valuation. Similarly, we can also define clock evaluations on C as
evC : C → R, where C is a set of clock variables. Natually, we can use EVV

to denote the set of all evaluations on V , EVC to denote the set of all clock
evaluations on C, and EV to denote their combination, i.e.

EV =

{
ev : V ∪ C → D ∪ R|ev(v) =

{
evv(v) v ∈ V
evc(v) v ∈ C

, evv ∈ EVV , evc ∈ EVC

}

In practice, evaluations are usually represented by a set of assignment state-
ments. E.g., {a := TIMEOUT, b := 1, c := 0.5, · · · }.

In STAr, there is a very different concept named adjoint variable. That is,
for each external action A, when it is provided by the environment, there must
be a data value coming along, and assigned to its adjoint variable dA. Adjoint
variables are used to describe the channels’ behavior, where the basic idea is:
channel ends are triggered iff data values come (or leave).

Definition 2 (STAr). Stochastic Timed Automata for Reo (STAr) is defined
as an 8-tuple 〈L, l0, Acts, V, V0, C, Inv,E〉 where:

– L is a finite set of locations,
– l0 ∈ L is an initial location,
– Acts is a finite set of actions,
– V is a finite set of variables that satisfies ∀A ∈ Acts, dA ∈ V ,
– V0 ∈ EV is an initialized function for variables,
– C is a finite set of clocks (we always assume that V ∩ C = ∅),
– Inv : L → (EV → Bool) is a function that maps locations to their corre-

sponding invariants,
– E is a finite set of edges. An edge in E is defined as a 5-tuple 〈l, acts, g, u, l′〉

where
• l ∈ L is the source location,
• acts ∈ P (Acts) is a finite set of actions (internal action is denoted by the

empty set),

Capturing Stochastic and Real-Time Behavior in Reo Connectors 293

• g : EV → Bool is the guard constraint that maps an evaluation (for both
variables and clocks) to a boolean value true or false,

• u : EV → Dist(EV) is a random assignment that updates the cur-
rent evaluation with a random sample following a certain distribution of
Dist(EV),

• l′ ∈ L is the target location.

In the following, we write l
acts,g,u−−−−−→E l′ instead of 〈l, acts, g, u, l′〉 ∈ E, or simply

l
acts,g,u−−−−−→ l′ if it does not lead to ambiguity. Meanwhile, in a STAr graph we

use [acts, g]u to label such a transition (see in Fig. 5). For simplicity reasons,
tautology guards and internal actions are omitted.

3.2 Semantics of Primitive Channels

As mentioned before, the STAr for a given Reo connector is constructed in a
compositional way. In this subsection, we provide semantics of the primitive
channels as STAr, including both original and extended ones. The [[·]] operator
is used to denote semantics map which maps a Reo connector to its semantics
as STAr.

The following figures (Figs. 5 and 6) provide a graphical representations of
the primitive channels’ semantics (both standard and extended ones included).
In these figures, we use the following notations:

– Initial location is decorated with double-line border.
– Actions of edges are denoted by bold font and embraced with ‘[]’, e.g. [A,
B]. If an edge is internal, i.e. its action set is empty, we will use ‘[]’ instead.

– Guards of edges are denoted by an italic formula just next to the actions, e.g.
P (dA), t > 0. Tautology guards (e.g. true) are omitted.

– An update is denoted by a set of assignments. For example, dA, dB :=
exp1, exp2 is an update, in which the value of dA and dB are overwritten
by exp1 and exp2 (both are calculated under the original evaluation).

[[Sync(A:source,B:sink)]] in Fig. 5(a) has only one single location and a self-
loop edge with two actions [A, B], indicating that reading operation from
its source end A and writing operation to its sink end B should be fired
simultaneously. The data transform process is captured by the assignment
dB := dA.

[[LossySync(A:source,B:sink)]] in Fig. 5(b) has one more edge than Sync. The
extra edge with one action [A], capturing the lossy behavior, is fired only
when A is ready to read but B is not ready to write.

[[SyncDrain(A:source,B:source)]] in Fig. 5(c), also has only one self-loop edge
with label [A, B]. Compared with Sync, there is no assignment here because
both A and B are source ends, i.e. from both ends the channel reads data
values and simply drops them.

294 Y. Li et al.

S0 S0

(a) [[Sync(A,B)]] (b) [[LossySync(A,B)]]

[A, B]
dB := dA

[A, B]
dB := dA

[A] S0

S0

(c) [[SyncDrain(A,B)]]

(d) [[AsyncDrain(A,B)]]

[A, B]

[B][A]

S0 [A], ¬P(dA)
[A, B], P(dA)

dB := dA FullEmpty

(e) [[Filter〈P 〉(A,B))]]

(f) [[FIFO1(A,B)]]

[B], t > 0, dB := buf

[A] buf := dA, t := 0

S0
[A, B, C]

dB := dA, dC := dA

S0
[B, C]

dC := dB
[A, C]

dC := dA

(g) [[Replicator(A,B,C)]]

(h) [[Merger(A,B,C)]]

S0
[A, B]

dB := f(dA)

(i) [[Map〈f〉(A,B)]]

Init Ready

(j) [[StochasticChoice〈dist〉(A,B)]]

[] buf := dist()

[A, B] dB := buf

Fig. 5. Semantics of primitive channels

[[AsyncDrain(A:source,B:source)]] in Fig. 5(d) is an asynchronous variation of
SyncDrain.1 In its corresponding STAr, there are two edges with single action
[A] or [B], indicating that the channel is fired only one of the source end is
ready to read. In other words, it only drops data values asynchronously.

[[Filter〈P 〉(A:source,B:sink)]] in Fig. 5(e) has two edges. One captures the data
transfer process when the filter predicate is satisfied, and the other captures
the data loss when the filter predicate is not satisfied. In the former case,
with actions [A, B] and guard P (dA), the data transfer happens only when
its source end A is ready to read, its sink end B is ready to write, and its
incoming value dA satisfies the given predicate P . In the later one, it only
reads from A and drops it.

[[FIFO1(A:source,B:sink)]] in Fig. 5(f) consists of two locations and two edges.
The first location is the initial location, where the buffer is empty. And in
the second one indicates the buffer is assigned. Local variable buf is used to
store the value in the buffer. As mentioned earlier, data items are supposed
to stay in the buffer for a positive delay, so we also need a clock t even if it’s
not a timed channel. The reading edge, with action [A], reads a value from
A, stores it in buf and reset the delay t. This value will be written to B,
through firing the writing edge with action [B], when the delay is large than
0 and B is prepared for writing.

1 Different interpretations of AsyncDrain have been proposed in [2,6]. For simplicity
we choose the later one in [6], and don’t consider fairness issues.

Capturing Stochastic and Real-Time Behavior in Reo Connectors 295

[[Replicator(A:source,B:sink,C:sink)]] in Fig. 5(g) has only one location and
one edge. Actions of this edge include all of its ends [A, B, C], which shows
that it is fired only when A is ready to read and both B, C are ready to
write. The value from A will be broadcasted to B and C.

[[Merger(A:source,B:source, C:sink)]] in Fig. 5(h) has two edges for two cases,
transferring from A to C (with actions [A, C]) or transferring from B to C
(with actions [B, C]).

[[Map〈f〉(A:source,B:sink)]] in Fig. 5(i) is a synchronous channel where the
mapping function f will be applied to any flow-through data values. In the
assignment of its only edge, it writes the calculated value f(dA) to B.

[[StochasticChoice〈dist〉(A:source,B:sink)]] in Fig. 5(j) is a synchronous chan-
nel including two locations, init and ready. In the init location, the channel
accepts data values from its source end A but write random values (sampled
just before) to its sink end B synchronously.
The basic idea is that the random sampling should not be performed simulta-
neously. Otherwise, you may meet the case where two edges can be triggered
at the same time, but guard of the later edge relies on the random assign-
ment of the previous one. It’s hard to describe such semantics naturally,
so we always assume that the random process is done before triggering the
assignment.

[[pT imer〈t0〉(A:source, T :source,B:sink)]] in Fig. 6 consists of two locations and a
large family of edges.Various border behavior is covered in this semanticmodel,
making it capable to meet different requirements. When the channel is in init
state, it is able to accept values from T and update its delay time, or accept
values from A, jump to the activated state and start counting down process. In
the activated state, the channel may accept values from A, B and T :
– When counting down process is not finished yet, only T is writable and any

incoming values from T will reset the timer to init state.
– When counting down finishes, all combinations in P (A,B, T) is acceptable.

If B is writable, a TIMEOUT signal will be sent to B. If A has an incoming
value, it will trigger a new counting down process immediately. And if T
has an incoming value, the delay time will be overridden.

3.3 Composition of Connectors as STAr

As mentioned before, connectors in Reo are constructed from simpler ones in a
compositional approach. Now we show how connectors are composed by product
and hiding operations on STAr.

The product operator is used to combine two connectors by joining their
shared nodes (shared actions in STAr). In product operations, we always assume
that shared actions have the same identifiers, while other variables and clocks
are all named without repetition. Before showing the formal definition of the
product operator, first we introduce a predicate compatible.

296 Y. Li et al.

Init
Activated
t ≤ delay

[A] t := 0

[A,T] t := 0, delay := dT

[T] delay := dT

[B], t = delay, dB := TIMEOUT

[T] delay := dT

[], t = delay

[A,B,T], t = delay
delay := dT

t := 0
dB := TIMEOUT

[A,T]
delay := dT

t := 0

[A], t = delay
t := 0

[B,T], t = delay
delay := dT

dB := TIMEOUT

[A,B], t = delay
t := 0

dB := TIMEOUT

Fig. 6. Semantics of pTimer

Definition 3 (Compatible STAr). Let Ai = 〈Li, l0,i, Actsi, Vi, V0,i, Ci,
Invi, Ei〉 be two STAr (i=1, 2), they are compatible if

– there’s no conflicting initialization on shared variables, formalized as ∀v ∈
V1 ∩ V2, V0,1(v) = V0,2(v), and

– shared variables can only be assigned in one of them, i.e. if v ∈ V1 ∩ V2 and
v := expr (expr is an expression) appears in the assignments of A1, then
∀e ∈ E2, e should not contain any assignment on v, and vice versa.

In other words, we don’t allow two connectors to write on the same node simul-
taneously.

Definition 4 (Product). Let Ai = 〈Li, l0,i, Actsi, Vi, V0,i, Ci, Invi, Ei〉(i =
1, 2) be two compatible STAr, their product A = A1 �� A2 is defined as:

A1 �� A2 = 〈L1 × L2, (l0,1, l0,2), Acts1 ∪ Acts2, V1 ∪ V2, V0, C1 ∪ C2, Inv,E〉
where

– V0(v) is equal to V0,1(v) if v ∈ V1\V2, or V0,2(v) otherwise,
– Inv(l1, l2)(ev) = Inv1(l1)(ev �V1∪C1) ∧ Inv2(l2)(ev �V2∪C2), where � is used

to restrict a function on certain domain,
– E is obtained through the following rules:

l1
acts1,g1,u1−−−−−−−→E1 l′1, acts1 ∩ Acts2 = ∅

〈l1, l2〉 acts1,g1,u1−−−−−−−→E 〈l′1, l2〉
(1)

l2
acts2,g2,u2−−−−−−−→E2 l′2, acts2 ∩ Acts1 = ∅

〈l1, l2〉 acts2,g2,u2−−−−−−−→E 〈l1, l′2〉
(2)

l1
acts1,g1,u1−−−−−−−→E1 l′1, l2

acts2,g2,u2−−−−−−−→E2 l′2, acts1 ∩ Acts2 = acts2 ∩ Acts1

〈l1, l2〉 acts1∪acts2,g,u−−−−−−−−−−→E 〈l′1, l′2〉
(3)

Capturing Stochastic and Real-Time Behavior in Reo Connectors 297

In rule (3), guard formula is the logical conjunction of g1 and g2, formally
g(ev) = g1(ev �V1∪C1) ∧ g2(ev �V2∪C2) is defined simply following Inv. However,
the definition of u is much more complicated. For example, in Fig. 7 we may have
dB := dA as u1, and dC := dB as u2. Their direct product is dB := dA, dC := dB.
Obviously, we need an order here to resolve the dependency between variables
(otherwise these statements could become a great mess), which is provided as
follows.

1. Check all the assignment statements v := expr in u1, and use expression expr
to replace all the existence of v in both u2 and g2,

2. Reversely, check all v := expr in u2, and replace their existence in both u1

and g1 (note that this replacement will also affect g),
3. Repeat the previous steps until nothing can be replaced,
4. Suppose u′

1 and u′
2 are the resolved assignment statements, we have

u(v) =
{

u′
1(v) v is assigned in v1,

u′
2(v) otherwise

With the product operator, we can obtain a rough combination of Reo con-
nectors (as STAr). But there are still redundant statements that should have
been simplified. We now introduce the hiding operator which can be used to
omit such unnecessary parts.

Definition 5 (Hideable Action). Let A = 〈L, l0, Acts, V, V0, C, Inv,E〉 be a
STAr and A ∈ Acts is an action. We say A is hideable in A if (a) all the
assignment statements do not depend on the value of dA (i.e. dA never appears
on the right-hand side of any assignment statement), and (b) dA doesn’t appear
in any guard or invariant.

Definition 6 (Hiding). Let A = 〈L, l0, Acts, V, V0, C, Inv,E〉 be a STAr and
A ∈ Acts is a hideable action in A . The hiding operator A \{A} is defined as

A \{A} = 〈L, l0, V \{dA}, V0 �V \{dA}, C,Acts\{A}, Inv,E′〉

where E′ = {〈l, acts\{A}, g, u �V \{dA}, l′〉|〈l, acts, g, u, l′〉 ∈ E}.
Hiding operation can be also used to remove multiple hideable actions at a

time. For example, we introduce the following notation, and it easy to prove that
this notation is well-defined, and satisfies the law of commutation (since all we
do in hiding is to remove things from existing terms).

A \{A1, · · · , An} := A \{A1}\{A2} · · · \{An}

We consider a simple example in Fig. 7, where we use product and hiding
operators to combine a Sync and a FIFO1 channel. In Fig. 7, we show the
combined connector in different stages and its corresponding STAr step by step.

Next we consider two Reo connectors both consisting of a StochasticChoice
channel and a FIFO1 channel but placed in a different order.

298 Y. Li et al.

Before Product

After Product

After Hiding

A B B C

A
B

C

A C

S0, Empty S0, Full

[C, t > 0] dC := buf

[A,B] dB := dA, buf := dA, t := 0

S0, Empty S0, Full

[C, t > 0] dC := buf

[A] buf := dA, t := 0

S0
[A, B]

dB := dA
FullEmpty

[C, t > 0] dC := buf

[B] buf := dB, t := 0

Fig. 7. Product and Hiding of Sync(A,B) and FIFO1(B,C)

A1 C1 A2 C2B1 B2dist dist

Fig. 8. Composition of StochasticChoice and FIFO1 channel.

As StochasticChoice channel is a synchronous channel, here we omit the Ready
state and the internal action. The two connectors are shown in Fig. 8, where dist
is a random distribution.

In the first Reo connector, data items arriving in B1 are stochastic. Following
that, whatever the data item is, it is stored into the buffer of FIFO1 determinis-
tically. Nevertheless, in the second Reo connector, no matter what the data item
taken from the buffer is, the output of the connector will totally depend on the
parameter dist of StochasticChoice channel (Fig. 9).

S0, Empty S0, Full

[C1] t > 0, dC1 := buf

[A1] buf := dist(), t := 0

(a) 1

S0, Empty S0, Full

[C2] t > 0, dC2 := dist()

[A2] buf := dA2, t := 0

(b) 2

Fig. 9. Final product of StochasticChoice and FIFO1

Capturing Stochastic and Real-Time Behavior in Reo Connectors 299

3.4 Well-Definedness of Composition Operators

To specify the well-definedness of composition operators listed above, here we
present the commutative law and the associative law for them. Before starting,
first we introduce the isomorphism of STAr.

Definition 7 (Isomorphism). Two STAr are isomorphic (A1
∼= A2, where

Ai = 〈Li, l0,i, Acts, Vi, V0,i, Ci, Invi, Ei〉), if the 1-to-1 mappings fL : L1 → L2,
fV : V1 → V2 and fC : C1 → C2 exist and satisfy:

– fL(l0,1) = l0,2,
– ∀v ∈ V1, V0,1(v) = V0,2(fV (v)),
– ∀l ∈ L1, Inv1(l) and Inv2(fL(l)) can be obtained from each other by variables’

replacement specified by fV and fC ,
– ∀e = 〈l, acts, g, u, l′〉 ∈ E1, we can find a corresponding exclusive edge e′ ∈

E2 = 〈fL(l), acts, g′, u′, fL(l′)〉 where g′, u′ and g, u can be obtained from each
other by variables’ replacement specified by fV and fC .

Informally speaking, two STAr are isomorphic if they have the same graphical
structure and homologous behavior, despite the slight difference of location labels
or variable identifiers. The commutative and associative laws we present in the
following are essentially based on the definition of isomorphism.

Theorem 1 (Commutative2). Let A1,A2 be two STAr, A1 �� A2
∼=

A2 �� A1.

Theorem 2 (Associative). Let A1,A2,A3 be three STAr, (A1 �� A2) �� A3
∼=

A1 �� (A2 �� A3).

From the two theorems above, it’s clear that orders make only little difference
in composition of STAr. No matter how we label the identifiers and write the
composing expression, finally the connectors we obtain have the same behavior.
Similar to the isomorphism of graphs, these laws can be easily proved through
a constructive approach.

4 Discussion

In the coordination community, Reo is well known for its variety on extensions
and semantics [11]. This paper is not the first work on its timed or stochas-
tic extension. Here we take timed Reo, probabilistic Reo, and stochastic Reo as
examples to illustrate how our model differs from its predecessors.

2 Proof can be found at https://github.com/liyi-david/ReoSTA.

https://github.com/liyi-david/ReoSTA

300 Y. Li et al.

Timed Reo. Time was natively involved in Reo from its very beginning [2], where
FIFO1 channel needs time constraints to ensure its retardancy. However, time
was involved only implicitly in [2] instead of syntax. And in some other semantic
models like constraint automata, time is even simplified as temporal order. A set
of raw t-Timer channels was proposed in [3] to capture timed delays. This work
was then followed and extended in [13,14] with different types of timed models.

The pTimer channel proposed in this paper is basically an improvement of
t-Timer in [13]. A t-Timer channel accepts data values and produce timeout
signals after a certain delay t. However, it does not describe what happens if the
timeout signal fails to deliver. In some cases, this may lead to timelock.

Timelock has different meaning in different semantic models. Informally
speaking, a timed model falls into timelock if and only if there is no possible
evolution that satisfies the model constraints, and hence the model execution is
forced to stop. From a practical perspective, a connector suffering from timelock
can not be simulated or implemented.

Example 1 (Timelock in Timed Reo). The t-Timer channel may easily lead to
timelock. Given two t-Timers, one is located between A and C, the other between
B and D. According to the definition of t-Timer in [3,13] we knows,

∀i ∈ N, ti(C) = ti(A) + 0.5, ti(D) = ti(B) + 1, ti(A) = ti(B), ti(C) = ti(D) (4)

where t(X) indicates the time stream on node X. It is easy to derive that ti(C) =
ti(C) + 0.5, which only For example, if A accepts the first value at time 0, and
the second value at 1, then t0(A) = 0, t1(A) = 1, · · · . From (4), it’s easy to derive
that t(A) = t(A)+0.5. This connector will be trapped in timelock once A starts
accepting values (Fig. 10).

A

B

C

D

0.5

1

Fig. 10. Timelock caused by abuse of t-Timer

In comparison, pTimer channels are timelock-free. If its sink end is not ready,
the timeout signal will be dropped, and it channel will become available to accept
new data items again. Furthermore, pTimer channels also support reconfigura-
tion of delays, which make it able to encode other timer channels (such as EXP-
Timer, OFFTimer and RSTTimer in [13]) through simple combination patterns
(refer to Example 3, Sect. 5).

Capturing Stochastic and Real-Time Behavior in Reo Connectors 301

Probabilistic Reo. A probabilistic extension of constraint automata was proposed
in [5] to formalize the potential lossy behavior in connectors. In [5], probabilistic
loss of data may happen while the data is being transmitted or waiting in the
buffer. Definition of the former case is rather trivial, but in the latter one, the
discrete time model is required. The authors assume that in each time unit, a
buffer failure may happen with a probability τ , and data items may get lost due
to this failure.

Probabilistic lossy behavior of connectors can be represented by combination
of StochasticChoice channels and SyncDrain channels (an example of which can
be found in Sect. 5). Actually, pTimer channels can also produce discrete time
signals. Thus, we can use probabilistic lossy channels and discrete time counters
to reproduce probabilistic connectors like the LossyFIFO1 in [5].

Stochastic Reo. Baier and Wolf proposed the first stochastic extension for Reo
in [7] based on Continuous-time Constraint Automata (CCA). The work was
later extended with different semantics. For example, Quantitative Intentional
Automata in [4] and interactive Markov Chain in [16].

Basically, most of those stochastic semantics are based on continuous-time
Markov Chains. Delays and arrival rates are attached to primitive channels, giv-
ing them randomized or unreliable behavior. This approach has a defect that
random behavior is bounded with time. We can produce random delays but not
random values. That is the reason why we split off stochastic delays as Sto-
chasticChoice. StochasticChoice has nothing to do with time, but we can always
combine it with pTimer to produce different timed connectors with stochastic
behavior.

There are also other coordination models that supports stochastic and timed
behavior except for Reo. For example, Probabilistic KLAIM in [17], Stochastic
π-caculus in [18], etc. However, in most of them timed and stochastic behavior
are supported in components, instead of coordinators. Compared with these
approaches, our framework supports more complicated coordination behaviors
and more intuitive modeling interfaces (graphical representation), which also
keep connector designers away from potential failures.

5 Case Studies

With support of the composition operators, Reo can be used to capture various
coordination scenarios in the real world. In this section, we present two examples:
Probabilistic Router and Expiring Timer.

Example 2 (Probabilistic Router). Router is a widely used connector example
[3,6]. As shown in Fig. 11(a), a Router uses two LossySync channels and a
SyncDrain channel to make sure that a coming data value is only sent to one of
its sink ends. This choice is made nondeterministically at C, where the Merger
channel exists. Here we show how the nondeterministic behavior is resolved as
probabilistic behavior through the StochasticChoice channel.

302 Y. Li et al.

(dist0) follows a binomial distribution B(1, 0.5)

(a) Router (b) Probabilistic Router

A

E

F

C

B

D

A

E

F

C

B
A’

B’

D

dist0

x=1?

Fig. 11. From router to probabilistic router

We attach a new path A → A′ → B′ → B to the original Router, including a
StochasticChoice, a Filter and a SyncDrain, as depicted in Fig. 11(b). When the
StochasticChoice channel is triggered, numeric value 0 or 1 will be generated,
and in turn passed to the Filter channel. If the value is 1, it will be sent to the
SyncDrain channel BB′. In this case, the incoming value has to go through the
path A → B → E. Otherwise, if the sampled value is 0, it will be dropped by
the Filter, the incoming value will be sent to F as B cannot accept any data
from A.

The corresponding STAr of a Probabilistic Router can be deduced on the
basis of primitive channels’ semantics and product/hiding operators. There are
two locations in the product STAr, since only one primitive channel in the con-
nector (StochasticChoice) has two locations. According to the product operator,
the locations should be labelled as tuples like (S0,..., Init,...). Here for simplic-
ity we use Init and Ready instead. The final result STAr, after hiding all the
internal nodes except A,E,F, is shown in Fig. 12.

Init Ready
[i] buf := B(1,0.5)

[A,F] buf = 0, dF := dA

[A,E] buf = 1, dE := dA

Fig. 12. STAr of probabilistic router

Example 3 (Expiring Timer). In Timed Reo [13], different types of timer chan-
nels are proposed to capture real-time behaviors in different practical scenarios,
including: OffTimer that allows the timer to terminate the counting process

Capturing Stochastic and Real-Time Behavior in Reo Connectors 303

when a certain signal is received, RSTTimer that allows the timer to reset and
restart its counting process, and EXPTimer that makes the timer produce the
TIMEOUT signal immediately when a certain signal is received.

In this paper we take EXPTimer as an example to show how pTimer is used
to encode the previous timers. In this example, the default delay time is denoted
by t. (See Fig. 13)

Basically, this connector divide the incoming data values into two classes:
expiring signals and normal values. For a normal value, it goes into the pTimer
channel, and its copy is temporarily stored in the FIFO1 channel to show that
the pTimer is activated. When the counting process finished successfully without
interruption, the buffered value will be dropped due to the SyncDrain channel,
and a TIMEOUT signal will be sent to H.

On the other hand, when an expiring signal is caught, it will be replaced by
the default delay value t and sent to the T end of the pTimer. According to the
semantics, the pTimer will be reset immediately, and the buffered value will be
dropped while sending out the TIMEOUT signal.

A

B

C

D

E

F G

H

dA
�= EXP

dA
=

EXP dF := t
�

dH
:=

T
IM

EO
U
T

�

t

Fig. 13. Encode EXPTimer with pTimer

6 Conclusion and Future Work

This paper comes up with an approach using Reo connectors to capture sto-
chastic and real-time behavior in distributed systems. With an extended set of
primitive channels, stochastic choices and timed delays are encapsulated as indi-
vidual channels. Theoretically, our approach supports partial reconfiguration (by
rewritable pTimer) and various stochastic distributions (by highly customizable
StochasticChoice). The case studies illustrate its capacity to formalize complex
coordination scenarios in the real world. We use STAr as the formal semantics of
stochastic and timed connectors, which is purely operational and timelock-free.

The framework, however, is still in its infancy. We need an implementation to
make it compatible with existing popular tools for formal modeling and verifica-
tion. Currently, our plan is to encode STAr in JANI (JSON Automata Network
Interface) [1], which is a unified analysis framework including a shared model
specification that covers STA, and a standard analyzing interface supported by
various probabilistic model checking tools (Modest [10], IscasMC [9], etc.).

304 Y. Li et al.

Acknowledgements. The work was partially supported by the National Natural Sci-
ence Foundation of China under grant no. 61532019, 61202069 and 61272160.

References

1. The JANI specification of the jani-model format and the jani-interaction protocol.
http://www.jani-spec.org/

2. Arbab, F.: Reo: a channel-based coordination model for component composition.
Math. Struct. Comput. Sci. 14(3), 329–366 (2004)

3. Arbab, F., Baier, C., de Boer, F.S., Rutten, J.J.M.M.: Models and temporal logical
specifications for timed component connectors. Softw. Syst. Model. 6(1), 59–82
(2007)

4. Arbab, F., Chothia, T., Mei, R., Meng, S., Moon, Y.J., Verhoef, C.: From coordina-
tion to stochastic models of QoS. In: Field, J., Vasconcelos, V.T. (eds.) COORDI-
NATION 2009. LNCS, vol. 5521, pp. 268–287. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-02053-7 14

5. Baier, C.: Probabilistic models for Reo connector circuits. J. Univ. Comput. Sci.
11(10), 1718–1748 (2005)

6. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in
Reo by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006)

7. Baier, C., Wolf, V.: Stochastic reasoning about channel-based component connec-
tors. In: Ciancarini, P., Wiklicky, H. (eds.) COORDINATION 2006. LNCS, vol.
4038, pp. 1–15. Springer, Heidelberg (2006). https://doi.org/10.1007/11767954 1

8. Hahn, E.M., Hartmanns, A., Hermanns, H.: Reachability and reward checking for
stochastic timed automata. Electron. Commun. Eur. Assoc. Softw. Sci. Technol.
70 (2014)

9. Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: iscasMc: a web-based
probabilistic model checker. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014.
LNCS, vol. 8442, pp. 312–317. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-06410-9 22

10. Hartmanns, A.: Modest a unified language for quantitative models. In: Proceedings
of FDL 2012, pp. 44–51. IEEE (2012)

11. Jongmans, S.S.T.Q., Arbab, F.: Overview of thirty semantic formalisms for Reo.
Sci. Ann. Comput. Sci. 22(1), 201–251 (2012)

12. Li, H.: Introducing Windows Azure. Apress, Berkely (2009)
13. Meng, S.: Connectors as designs: the time dimension. In: Proceedings of TASE

2012, pp. 201–208. IEEE Computer Society (2012)
14. Meng, S., Arbab, F.: On resource-sensitive timed component connectors. In: Bon-

sangue, M.M., Johnsen, E.B. (eds.) FMOODS 2007. LNCS, vol. 4468, pp. 301–316.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72952-5 19

15. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.:
How amazon web services uses formal methods. Commun. ACM 58(4), 66–73
(2015)

16. Oliveira, N., Barbosa, L.S.: An enhanced model for stochastic coordination. Elec-
tron. Proc. Theor. Comput. Sci. 228, 35–45 (2016)

17. Pierro, A., Hankin, C., Wiklicky, H.: Probabilistic KLAIM. In: Nicola, R., Ferrari,
G.-L., Meredith, G. (eds.) COORDINATION 2004. LNCS, vol. 2949, pp. 119–134.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24634-3 11

18. Priami, C.: Stochastic pi-calculus. Comput. J. 38(7), 578–589 (1995)

http://www.jani-spec.org/
https://doi.org/10.1007/978-3-642-02053-7_14
https://doi.org/10.1007/978-3-642-02053-7_14
https://doi.org/10.1007/11767954_1
https://doi.org/10.1007/978-3-319-06410-9_22
https://doi.org/10.1007/978-3-319-06410-9_22
https://doi.org/10.1007/978-3-540-72952-5_19
https://doi.org/10.1007/978-3-540-24634-3_11

Author Index

Albuquerque, Higo F. 125
Al-Shareefi, Farah 15
Alvim, Mário S. 142
Américo, Arthur 142
Antonino, Pedro 233
Araújo, Rodrigo F. 125

Barbosa, Luís S. 161, 271
Benzmüller, Christoph 7
Bessa, Iury V. 125
Butterfield, Andrew 253

Campos, Sérgio V.A. 142
Cavalcanti, Ana 3, 107
Cledou, Guillermina 161
Cordeiro, Lucas C. 91, 125

de Lima Filho, Eddie B. 125
de Oliveira, Kênia Santos 215
Decker, Normann 179
Deharbe, David 70
Dixon, Clare 15
Duarte, Lucio Mauro 52

Gadelha, Mikhail Y.R. 91
Gibson-Robinson, Thomas 233
Gomes, Leandro 271
Gottschling, Philip 179
Guanciale, Roberto 197

Hochberger, Christian 179

Ji, Yuanyi 287
Julia, Stéphane 215

Kluźniak, Feliks 33

Lecomte, Thierry 70
Leucker, Martin 179
Li, Yi 287
Lindner, Andreas 197
Lisitsa, Alexei 15

Madeira, Alexandre 271
McIver, Annabelle 142
Metere, Roberto 197
Mottin, Erwan 70

Nicole, Denis A. 91

Otoni, Rodrigo 107

Proença, José 161
Prun, Etienne 70

Ribeiro, Leila 52
Roscoe, A.W. 233

Saeedloei, Neda 33
Sampaio, Augusto 107
Scheffel, Torben 179
Schmitz, Malte 179
Sun, Meng 287

Vaz, Artur 142

Weiss, Alexander 179

Zhang, Xiyue 287

	Preface
	Organization
	Contents
	Invited Talks
	Formal Methods for Robotics: RoboChart, RoboSim, and More
	References

	Recent Successes with a Meta-Logical Approach to Universal Logical Reasoning (Extended Abstract)
	References

	Formal Methods Integration and Experience Reports
	Abstract State Machines and System Theoretic Process Analysis for Safety-Critical Systems
	1 Introduction
	2 Background
	2.1 Abstract State Machines
	2.2 System Theoretic Process Analysis

	3 Case Study: The Insulin Pump Control System
	4 The Proposed Methodology
	5 Methodology Applied to IPCS Case Study
	5.1 Modeling the System Behavior via AsmetaL
	5.2 Validating the AsmetaL Model
	5.3 Eliciting Safety Requirements via STPA
	5.4 Formalizing the STPA Safety Requirements
	5.5 Verifying the STPA Safety Requirements

	6 Evaluation
	7 Related Work
	8 Conclusion and Future Work
	References

	From Scenarios to Timed Automata
	1 Introduction
	2 Timed Automata
	3 Specifying Scenarios
	4 A Formal Description of Mode Graphs and TES
	5 Synthesis of Timed Automata from Scenarios
	6 Constructing Locations and Transitions
	7 Building the Target Timed Automaton
	8 The Class of Synthesized Timed Automata
	9 Related Work
	10 Conclusions
	References

	Graph Grammar Extraction from Source Code
	1 Introduction
	2 Background
	2.1 Model Extraction
	2.2 Graph Grammar

	3 Approach
	3.1 Step 1: Generating Traces
	3.2 Step 2: Identifying Contexts
	3.3 Step 3: Constructing the GG

	4 Optimizing the Set of Rules
	4.1 First Optimization: Merging Rules
	4.2 Second Optimization: Method Execution

	5 Related Work
	6 Conclusions and Future Work
	References

	Applying a Formal Method in Industry: A 25-Year Trajectory
	1 Introduction
	2 Modeling
	2.1 B for Software
	2.2 B for Systems
	2.3 Formal Data Validation
	2.4 Adoption by Industry

	3 Convergence
	3.1 Low Cost High Integrity Platform
	3.2 Proof Support Advances

	4 Conclusion and Perspectives
	4.1 Aimed at Industry
	4.2 Challenges

	References

	Model Checking
	Encoding Floating-Point Numbers Using the SMT Theory in ESBMC: An Empirical Evaluation over the SV-COMP Benchmarks
	1 Introduction
	2 The Efficient SMT-Based Context-Bounded Model Checker (ESBMC)
	3 Floating-Point SMT Encoding
	3.1 Casts to Boolean
	3.2 The fp.eq operator
	3.3 Unused Operators from the SMT Standard
	3.4 Illustrative Example

	4 Experimental Evaluation
	4.1 Description of Benchmarks and Setup
	4.2 Objectives
	4.3 Solver Performance Comparisons
	4.4 Comparison to Other Software Verifiers

	5 Related Work
	6 Conclusions and Future Work
	References

	Local Analysis of Determinism for CSP
	1 Introduction
	2 Background
	2.1 CSP
	2.2 Semantic Models and Determinism

	3 Strategy for Local Analysis of Determinism
	3.1 Process Structure and Metadata
	3.2 Composition Rules

	4 Experimental Results
	5 Conclusion
	References

	OptCE: A Counterexample-Guided Inductive Optimization Solver
	1 Introduction
	2 Inductive Optimization Based on Counterexamples
	3 OptCE: A Counterexample-Guided Inductive Optimization Solver
	3.1 OptCE Architecture
	3.2 Input File for OptCE
	3.3 OptCE Features
	3.4 Optimizing via OptCE

	4 Experimental Evaluation
	4.1 Experimental Objectives
	4.2 Description of the Benchmarks
	4.3 Experimental Results

	5 Related Work
	6 Conclusion
	References

	Formal Analysis of the Information Leakage of the DC-Nets and Crowds Anonymity Protocols
	1 Introduction
	2 Preliminaries
	2.1 Quantitative Information Flow
	2.2 Probabilistic Model Checking

	3 The Dining Cryptographers and the Crowds Anonymity Protocols
	3.1 The Dining Cryptographers Protocol
	3.2 The Crowds Protocol

	4 Deriving the Channels Corresponding to the Protocols
	4.1 Modeling the Dining Cryptographers
	4.2 Modeling Crowds

	5 QIF Analyses of the Protocols
	5.1 Analyses of the Dining Cryptographers
	5.2 Analyses of Crowds

	6 Related Work
	7 Conclusions and Future Work
	References

	Refinement and Verification
	A Refinement Relation for Families of Timed Automata
	1 Introduction
	2 Interface Featured Timed Automata
	2.1 IFTA Preliminaries
	2.2 Semantics
	2.3 Operations on IFTA

	3 Refinement
	3.1 Variability Refinement
	3.2 Behavioral Refinement
	3.3 IFTA Refinement

	4 Conclusions
	References

	Rapidly Adjustable Non-intrusive Online Monitoring for Multi-core Systems
	1 Introduction
	2 Trace Reconstruction
	3 Specification of Trace Properties
	3.1 Syntax and Semantics of TeSSLa
	3.2 Observation Specification

	4 Monitor Synthesis and FPGA Implementation
	4.1 Merging Data Flow Graphs
	4.2 Implementing Datapaths
	4.3 Programming Monitors

	5 Case Study
	6 Conclusion
	References

	Sound Transpilation from Binary to Machine-Independent Code
	1 Introduction
	2 Related Work
	3 Formal HOL4 Models
	3.1 The ARMv8 Model
	3.2 The BIL Model

	4 The Transpiler
	4.1 Translation of Expressions
	4.2 Translation of Single Instructions
	4.3 Transpiling Programs
	4.4 Support for More Architectures

	5 Using the Transpiler to Verify Binary Programs
	5.1 Evaluation

	6 Concluding Remarks
	References

	Using Linear Logic to Verify Requirement Scenarios in Composite Web Service
	1 Introduction
	2 Theoretical Background
	2.1 Workflow Module
	2.2 Linear Logic
	2.3 Branching Bisimilarity

	3 Requirement Verification in Composite Web Services
	4 Conclusion
	References

	Checking Static Properties Using Conservative SAT Approximations for Reachability
	1 Introduction
	2 Background
	3 Related Work
	4 Capturing Static Properties
	4.1 Static Properties
	4.2 Checking Static Properties
	4.3 Capturing Some Other Static Properties

	5 Approximate Verification of Static Properties
	5.1 Violation Candidate Search as a SAT Problem

	6 Practical Evaluation
	6.1 Checking Deadlock and Local-Deadlock Freedom
	6.2 Checking Mutual Exclusion and Safe Invocation

	7 Conclusion
	References

	Semantics and Languages
	UTCP: Compositional Semantics for Shared-Variable Concurrency
	1 Introduction
	2 Related Work
	3 UTP
	4 Labels
	5 Observations
	6 Atomic Actions
	7 Healthiness
	7.1 Wheels-within-Wheels
	7.2 Label-Set Invariants

	8 Command Semantics
	8.1 Atomic Commands
	8.2 Grounded and Sound
	8.3 Composing Actions

	9 Calculations
	10 Conclusions and Future Work
	References

	On Kleene Algebras for Weighted Computation
	1 Introduction
	1.1 Roadmap
	1.2 Preliminaries

	2 Graded Kleene Algebra with Tests
	2.1 The Basic Structure
	2.2 Graded Propositional Hoare Logic

	3 Heyting Kleene Algebra with Tests
	3.1 The Basic Structure
	3.2 Heyting Propositional Hoare Logic

	4 Conclusion and Further Work
	References

	Capturing Stochastic and Real-Time Behavior in Reo Connectors
	1 Introduction
	2 Extending Reo for Stochastic and Timed Behavior
	2.1 Reo
	2.2 Capturing Timed and Stochastic Behavior

	3 Stochastic Timed Automata for Reo
	3.1 STAr
	3.2 Semantics of Primitive Channels
	3.3 Composition of Connectors as STAr
	3.4 Well-Definedness of Composition Operators

	4 Discussion
	5 Case Studies
	6 Conclusion and Future Work
	References

	Author Index

