
Chapter 4
Abstract Mathematical Framework

We first introduce basic notions on Banach and Hilbert spaces. Afterwards, we recall
some well-known results, which help prove the well-posedness of the various sets
of equations we study throughout this book. Unless otherwise specified, the proofs
of these classic results can be found in [62, 92, 157, 207]. By well-posedness, it
is usually understood that the problem admits one, and only one, solution, which
depends continuously on the data. In the case of linear problems, the continuity
property amounts to proving that the norm of the solution is bounded by a constant,
times the norm of the data. The crucial point is that the norm, that measures the
solution, and the norm, that measures the data, have to be chosen carefully, in
order to derive the ad hoc constant. Particular attention is paid to problems whose
formulation includes constraints on the solution.

4.1 Basic Results

To begin with, let us recall some familiar notions regarding topological, separable,
Banach or Hilbert vector spaces (overC), and (anti)linear mappings. All notions are
easily extended to vector spaces over R, and linear mappings.

By definition, a topological space is separable if it contains a countable dense
subset; a Banach space is a complete vector space with a norm; a Hilbert space is a
vector space endowed with a scalar product, which is complete with respect to the
norm induced by the scalar product.1

1In a vector space, a scalar product (·, ·) exhibits the following properties:

• It is linear with respect to the first variable:
∀a1, a2 ∈ C, ∀v1, v2, w ∈ V, (a1v1 + a2v2, w) = a1(v1, w) + a2(v2, w).

• It is antilinear with respect to the second variable:

© Springer International Publishing AG, part of Springer Nature 2018
F. Assous et al.,Mathematical Foundations of Computational
Electromagnetism, Applied Mathematical Sciences 198,
https://doi.org/10.1007/978-3-319-70842-3_4

147

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-70842-3_4&domain=pdf
https://doi.org/10.1007/978-3-319-70842-3_4


148 4 Abstract Mathematical Framework

Let X be a Banach space (with norm ‖ ·‖X). Throughout this chapter, IX denotes
the identity mapping in X and, givenZ as a vector subspace ofX, iZ→X denotes the
canonical imbedding of Z in X. Let Y be a second Banach space (with norm ‖ · ‖Y ),
and letA be a linear mappingA : x �→ Ax defined onD(A), a vector subspace ofX,
with values in Y . Its kernel (respectively range) is denoted by ker(A) (respectively
R(A)).

We have the following incremental definitions and notations (cf. [62, 207]).

Definition 4.1.1

– The linear mapping A is called an unbounded operator.
– The subspace D(A) is called the domain of the unbounded operator A.
– The unbounded operator A is continuous if

∃C > 0, ∀x ∈ D(A), ‖Ax‖Y ≤ C ‖x‖X.

– A continuous unbounded operator A with domain D(A) equal to X is called a
bounded operator. The space of all bounded operators from X to Y is denoted by
L(X, Y ), with operator norm

|||A|||L(X,Y ) = sup
x∈X\{0}

‖Ax‖Y

‖x‖X

.

When X = Y , one uses the notation L(X), instead of L(X,X).
– A bounded operator A is a Fredholm operator if dim(ker(A)) < ∞, R(A) is

closed and codim(R(A)) < ∞. In this case, its index is equal to dim(ker(A)) −
codim(R(A)).

– A bounded bijective operator with a bounded inverse is called an isomorphism.
– An unbounded operator A is closed if its graph

G(A) = {(x,Ax) : x ∈ D(A)}

is closed in X × Y .
– A bounded operatorA is compact if the closure of the image by A of the unit ball

BX(0, 1) = {x ∈ X : ‖x‖X ≤ 1} is compact in Y .

Once the basic results are recalled, we will often write “operator” instead of
“unbounded operator”.

∀a1, a2 ∈ C, ∀v,w1, w2 ∈ V, (v, a1w1 + a2w2) = a1(v,w1) + a2(v,w2).
• It is Hermitian:

∀v,w ∈ V, (v,w) = (w, v).
• It is positive-definite:

∀v ∈ V \ {0}, (v, v) > 0.

Then, ‖ · ‖ : V → R, defined by ‖v‖ = (v, v)1/2, is a norm on V . Furthermore, the Cauchy-
Schwarz inequality holds: ∀v,w ∈ V, |(v,w)| ≤ ‖v‖ ‖w‖.
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In practical situations, one usually proves closedness or compactness as follows.
An unbounded operator A : X → Y with domain D(A) is closed provided that,
for any sequence (xk)k of elements of D(A) such that xk → x in X and Axk → y

in Y , one has both x ∈ D(A) and y = Ax. On the other hand, a bounded operator
A ∈ L(X, Y ) is compact, provided that, for any bounded sequence (xk)k of elements
of X, one can extract a subsequence of (Axk)k that converges in Y .

Proposition 4.1.2 The vector subspace of compact operators is closed in L(X, Y )

with respect to the norm ||| · |||L(X,Y ).
Let Z be a third Banach space, and let A ∈ L(X, Y ) and B ∈ L(Y,Z). Then,
B ◦ A ∈ L(X,Z). In addition, if A or B is compact, then B ◦ A is also compact.

Theorem 4.1.3 (Closed Graph) Let A be a closed unbounded operator with
domain equal to X ; then, A is a bounded operator.

Theorem 4.1.4 (Banach-Schauder, or Open Mapping) Let A be a bounded,
bijective, operator from X to Y ; then, its inverse A−1 is a bounded operator from
Y to X.

Next, let us introduce a useful norm.

Definition 4.1.5 Given an unbounded operator A, the norm defined by

∀v ∈ D(A), ‖v‖D(A) =
(
‖v‖2X + ‖Av‖2Y

)1/2
,

is called the graph norm.

When the operator is bounded, ‖ · ‖D(A) is equivalent to ‖ · ‖X on X.
Let us then consider the spectrum of a bounded operator.2

Definition 4.1.6 Let A ∈ L(X).

– Its resolvent is ρ(A) = {λ ∈ C : (A − λIX) is bijective}.
– Its spectrum is σ(A) = C \ ρ(A).
– Its point spectrum is Eig(A) = {λ ∈ σ(A) : ker(A − λIX) �= {0}}.
An element λ of Eig(A) is called an eigenvalue of A. The vector space Eλ(A) =
ker(A − λ IX) is the corresponding eigenspace. Non-zero elements of Eλ(A) are

2More generally, one may define the resolvent and spectrum of an unbounded operator A from
D(A) ⊂ X to X. In this case, the resolvent is

ρ(A) = {λ ∈ C : (A − λIX)(D(A)) is dense in X ;
(A − λIX)−1 exists and is continuous from (A − λIX)(D(A)) to X} ;

the spectrum is σ(A) = C \ ρ(A), and it can further be decomposed into the disjoint union of the
point spectrum, the continuous spectrum and the residual spectrum (see [93, Chapter VIII, §1] for
details). As a rule, the notions of a continuous or residual spectrum will not be needed for the study
of operators in this book.
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called eigenvectors. The geometric multiplicity of λ is equal to dim(Eλ(A)), and its
ascent is the smallest integer α such that ker(A − λ IX)α+1 = ker(A − λ IX)α . The
vector space Rλ(A) = ker(A−λ IX)α is the corresponding generalized eigenspace.
Non-zero elements of Rλ(A) are called generalized eigenvectors. The algebraic
multiplicity of λ is equal to dim(Rλ(A)).

By definition, for a given eigenvalue, its geometric multiplicity is lower than, or
equal to, its algebraic multiplicity. Specifically, let us recall some results on the
spectrum of compact operators.3

Theorem 4.1.7 Let A ∈ L(X) be a compact operator. Then:

– The spectrum σ(A) is countable.
– 0 ∈ σ(A) (it is assumed here that dim(X) = ∞).
– σ(A) \ {0} = Eig(A) \ {0} (all non-zero elements of the spectrum are

eigenvalues).
– The multiplicities of all non-zero eigenvalues are finite.

Furthermore, one of the following (exclusive) assertions holds:

• σ(A) = {0},
• σ(A) \ {0} is finite,
• σ(A) \ {0} is a sequence whose limit is 0.

Let us turn our attention to Hilbert spaces. Let V be a Hilbert space, with scalar
product (·, ·)V and associated norm ‖ ·‖V . Recall that its dual space4 V ′ is the space
of continuous antilinear forms on V , endowed with the norm

‖f ‖V ′ = sup
v∈V \{0}

|〈f, v〉V |
‖v‖V

.

Above, 〈f, v〉V denotes the action of f on v. Whenever it is clear from the context,
we denote it simply by 〈f, v〉.
Definition 4.1.8 A bounded operator A ∈ L(V ) is positive if

∀v ∈ V, (Av, v)V ≥ 0.

A bounded operator A ∈ L(V ) is positive-definite if

∀v ∈ V \ {0}, (Av, v)V > 0.

If a bounded operator is positive-definite, then its kernel reduces to {0}.

3Some of these results are consequences of the Fredholm alternative, which we choose to state
hereafter within the framework of Hilbert spaces.
4V ′ can also be called the antidual space. We choose the denomination dual space, which also
applies for vector spaces defined over R, and continuous linear forms. Given v ∈ V , fv : w �→
(v,w)V defines an element of V ′. According to the Riesz Theorem 4.2.1 below, v �→ fv is a
bijective isometry from V to V ′. In addition, V ′ can be made into a Hilbert space by defining its
scalar product via (fv, fw)V ′ = (v,w)V , for all v,w ∈ V .
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Definition 4.1.9 Let A be an unbounded operator of V with domain D(A). It is
said to be monotone if

∀v ∈ D(A), (Av, v)V ≥ 0.

It is said to be maximal monotone if:

(i) it is monotone;
(ii) iD(A)→V + A is surjective from D(A) to V .

Definition 4.1.10 An unbounded operator A : D(A) → V is symmetric if

∀v,w ∈ D(A), (Av,w)V = (v,Aw)V .

Let W be a second Hilbert space.

Definition 4.1.11 Let A : D(A) → W be an unbounded operator with a dense
domain in V . Its adjoint is the unbounded operator A∗ : D(A∗) → V , with

D(A∗) = {w ∈ W : ∃v ∈ V, ∀v′ ∈ D(A), (w,Av′)W = (v, v′)V }, and A∗w = v.

Definition 4.1.12 Let A : D(A) → V be an unbounded operator with a dense
domain in V . It is self-adjoint if A = A∗. It is skew-adjoint if A = −A∗.

There are several possibilities for proving that an operator is self-adjoint.

Proposition 4.1.13 Let A ∈ L(V ). Then, A is self-adjoint if, and only if, it is
symmetric.

Proposition 4.1.14 Let A : D(A) → V be a maximal monotone unbounded
operator. Then, A is self-adjoint if, and only if, it is symmetric.

This last result is often used in conjunction with the next one.

Proposition 4.1.15 Let A : D(A) → V be an unbounded operator. Then, A is
maximal monotone if, and only if, A is closed with a dense domain, and A and A∗
are monotone.

We also have an alternative characterisation of compact operators in terms of
weakly convergent sequences.

Definition 4.1.16 (Weak Convergence) A sequence (vk)k≥0 of elements of V is
weakly convergent if

∃v ∈ V, ∀w ∈ V, lim
k→∞(vk,w)V = (v,w)V .

One writes vk ⇀ v in V .

Proposition 4.1.17 Let A ∈ L(V ,W). Then, given elements (vk)k≥0 and v of V ,
vk ⇀ v in V implies Avk ⇀ Av in W .
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Moreover, A is compact if, and only if,

∀(vk)k≥0, v ∈ V, vk ⇀ v in V �⇒ lim
k→∞ Avk = Av in W.

Let us now state an important result in regard to compact operators.

Theorem 4.1.18 Let A ∈ L(V ) be a compact operator. Then,

– ker(IV − A) is a finite-dimensional vector space.
– R(IV − A) is closed; more precisely, R(IV − A) = (ker(IV − A∗))⊥.
– ker(IV − A) = {0} ⇐⇒ R(IV − A) = V .
– dim(ker(IV − A)) = dim(ker(IV − A∗)).

Evidently, given λ ∈ C \ {0}, one can replace IV with λIV in the above Theorem ;
in particular, λIV − A is a Fredholm operator. It follows that the multiplicities of
any non-zero eigenvalue λ of a compact operator are finite: 0 < dim(Eλ(A)) ≤
dim(Rλ(A)) < ∞ (whereas 0 ≤ dim(E0(A)) ≤ ∞).
Also, it allows one to solve the following classical problem.
Let A ∈ L(V ), λ ∈ C and f ∈ V ,

{
Find u ∈ V such that
λu − Au = f.

(4.1)

According to Theorem 4.1.18, one can simply prove the following result when the
operator is compact.

Corollary 4.1.19 (Fredholm Alternative) Let A ∈ L(V ) be a compact operator
and λ ∈ C \ {0}. Then:
– either, for all f ∈ V , Problem (4.1) has one, and only one, solution u;
– or, the homogeneous equation λu − Au = 0 has nλ > 0 linearly independent

solutions. In this case, given f ∈ V , Problem (4.1) has solutions if, and only if,
f satisfies nλ orthogonality conditions. Then, the space of solutions is affine, and
the dimension of the corresponding vector space is equal to nλ.

This proposition has many practical applications, in particular, for solving
Helmholtz-like problems (see the upcoming Sect. 4.5).

As one can check readily, in the case of a self-adjoint operator, all eigenvalues
are real numbers. In addition, let us mention an important result in regard to the
eigenvectors of compact and self-adjoint operators in a separable Hilbert space.

Theorem 4.1.20 (Spectral) Assume that V is separable. Let A ∈ L(V ) be a
compact and self-adjoint operator. Then, there exists a Hilbert basis5 of V made of
eigenvectors of A.

5 A Hilbert basis of V is a countable set (ek)k∈� of elements of V , such that, for all k, �, (ek, e�)V =
δk�, and span(e1, e2, · · · ) is dense in V . Then, for all v ∈ V , one has v = ∑

k∈�(v, ek)V ek and
‖v‖2V = ∑

k∈�(v, ek)
2
V (Bessel-Parseval identity).
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With this result, one can write a compact and self-adjoint operator as a sum
of scaled projection operators onto its eigenspaces: this is the so-called spectral
decomposition of a compact, self-adjoint operator.

Let us mention some results on interpolation theory, in a Hilbert space V (see
[157, Chapter 1, §2]). In this setting, W is a second Hilbert space, and it is also a
dense, strict subspace (with continuous imbedding) of V . Classically, there exists
a self-adjoint, positive unbounded operator Λ of V with domain D(Λ) = W .
Moreover, ‖ · ‖W and the graph norm (‖ · ‖2V + ‖Λ · ‖2V )1/2 are equivalent norms
on W . On the other hand, given a self-adjoint, positive unbounded operator A of V ,
one can define the unbounded operators Aθ for θ ≥ 0, with the help of the spectral
representation of the unbounded operator A.6 This leads to the . . .

Definition 4.1.21 (Interpolated Space) Given θ ∈ [0, 1], the Hilbert space
[W,V ]θ = D(Λ1−θ ) is the interpolated space of order θ between W and V , with
norm

‖ · ‖[W,V ]θ =
(
‖ · ‖2V + ‖Λ1−θ · ‖2V

)1/2
.

We now list some properties of interpolated spaces.7

Proposition 4.1.22 Let ([W,V ]θ )θ∈[0,1] be the interpolated spaces.

• The definition of the interpolated space is independent of the choice of the
unbounded operator Λ.

6 Let us explain briefly this construction when the imbedding W ⊂c V is compact; this condition
will hold in all the cases encountered in this book. Using Corollary 4.5.12 below, which is a
straightforward consequence of Theorem 4.1.20, one constructs a Hilbert basis (ek)k∈� of V whose
elements belong to W , and a nondecreasing sequence of strictly positive numbers (μk)k∈� tending
to +∞ such that:

∀w ∈ W, (ek,w)W = μ2
k (ek, w)V .

Clearly, ‖ek‖W = μk , thus the space W can be alternatively defined as

W = {w =
∑
k∈�

wk ek ∈ V :
∑
k∈�

μ2
k |wk |2 < +∞} = D(Λ), where: Λ =

∑
k∈�

μk Pk,

and Pk denotes the projection onto span{ek}. Then, for any α ∈ R+, one defines the unbounded
operator power Λα as

D(Λα) = {w =
∑
k∈�

wk ek ∈ V :
∑
k∈�

μ2α
k |wk |2 < +∞} and: Λα =

∑
k∈�

μα
k Pk.

When the imbedding W ⊂ V is not compact, the above discrete sums are replaced with Stieltjes
integrals that take into account the whole spectrum (see [207, §XI]).
7In the compact imbedding framework, the next two propositions follow immediately from
Definition 4.1.21 and footnote6.



154 4 Abstract Mathematical Framework

• Given θ ∈ [0, 1], there exists Cθ > 0 such that

∀w ∈ W, ‖w‖[W,V ]θ ≤ Cθ ‖w‖1−θ
W ‖w‖θ

V .

• Given 0 ≤ θ1 ≤ θ2 ≤ 1, it holds that

W ⊂ [W,V ]θ1 ⊂ [W,V ]θ2 ⊂ V,

with continuous imbeddings.
• Assume that the imbedding of W into V is compact ; then, given 0 < θ1 < θ2 <

1, all above imbeddings are compact.

One can also apply interpolation theory to bounded operators (below, V �, W� are
two other Hilbert spaces, with W� a dense, strict subspace of V �, with continuous
imbedding).

Proposition 4.1.23 (Interpolated operator) Given A ∈ L(V , V �) ∩ L(W,W�),
then for all θ ∈ [0, 1], A belongs to L([W,V ]θ , [W�, V �]θ ).

Also, we will frequently make use of sesquilinear8 continuous forms on V × W .
Let a : V × W → C, (v,w) �→ a(v,w): a(·, ·) is continuous if the quantity

|||a||| = sup
v∈V \{0},w∈W\{0}

|a(v,w)|
‖v‖V ‖w‖W

is bounded. When a(·, ·) is sesquilinear and continuous on V × W , it defines a
unique bounded operator A from V to W ′:

∀(v,w) ∈ V × W, 〈Av,w〉W = a(v,w).

Respectively, one can also define its conjugate transpose A† from W to V ′:

∀(v,w) ∈ V × W, 〈A†w, v〉V = a(v,w).

For a bilinear form a defined on Hilbert spaces V,W over R, one defines A from V

to W ′ as above, respectively the transpose At from W to V ′ without conjugation.
Evidently, given a bounded operator A from V to W ′, one could define a

sesquilinear continuous form on V × W .

8A sesquilinear form is linear with respect to the first variable, and antilinear with respect to the
second variable.
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4.2 Static Problems

Let H be a Hilbert space. Then, let f be an element of H ′, and define
{
Find u ∈ H such that
∀v ∈ H, (u, v)H = 〈f, v〉. (4.2)

Item (4.2) is called a Variational Formulation. It is the first instance in a long
sequence of such Formulations.

The first result is the Riesz Theorem.

Theorem 4.2.1 (Riesz) Problem (4.2) admits one, and only one, solution u in H .
Moreover, it holds that ‖u‖H = ‖f ‖H ′ .

An interesting consequence of the Riesz Theorem 4.2.1 is the notion of pivot space.
Indeed, the mapping f �→ u is a bijective isometry from H ′ to H . Then, one can
choose to identify H ′ with H .

Definition 4.2.2 (Pivot Space) LetH be a Hilbert space.WheneverH ′ is identified
with H—with the mapping f �→ u—H is called the pivot space.

Thus follows . . .

Proposition 4.2.3 Let H be a Hilbert space. Let V be a second Hilbert space such
that V is a dense, vector subspace of H , and such that the canonical imbedding
iV→H is continuous. Then, when H is chosen as the pivot space, one can identify
H with a vector subspace of V ′.

Indeed, given two Hilbert spaces H and V as in the above proposition, the
imbedding iH→V ′ is injective, continuous, and iH→V ′H is dense in V ′. As a
consequence, one can write

V ⊂ H
(pivot)= H ′ ⊂ V ′,

with continuous and dense imbeddings.
Given two Hilbert spaces V , W , given a continuous sesquilinear form a on

V × W , and given an element f of W ′, let us introduce another Variational
Formulation

{
Find u ∈ V such that
∀w ∈ W, a(u,w) = 〈f,w〉. (4.3)

Definition 4.2.4 (Well-Posedness, Hadamard) Problem (4.3) is well-posed in
the Hadamard sense if, for all f ∈ W ′, it has one, and only one, solution u ∈ V with
continuous dependence, i.e.,

∃C > 0, ∀f ∈ W ′, there exists a unique u ∈ V satisfying (4.3)
and ‖u‖V ≤ C‖f ‖W ′ .
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We note that it is possible to reformulate Problem (4.3) as follows:

{
Find u ∈ V such that
Au = f in W ′. (4.4)

We see in Problem (4.3) that u is characterized by two items: first, the fact that it
belongs to a specified space V so that it is measured by ‖ · ‖V , and second, either by
its action on all elements of W , or by an equation, set in W ′.

Clearly, the operator A−1 is well-defined (and continuous) from W ′ to V if, and
only if, Problem (4.3) is well-posed in the Hadamard sense.

Proposition 4.2.5 Problem (4.3) is well-posed in the Hadamard sense if, and only
if, the operator A of Problem (4.4) is an isomorphism.

We will usually write well-posed instead of well-posed in the Hadamard sense.
Then, we proceed with the second result, which generalizes Riesz’s Theorem

in the case when V = W . It is called the Lax-Milgram Theorem, and provides a
condition sufficient to achieve well-posedness for Problem (4.3).

Definition 4.2.6 Let a(·, ·) be a continuous sesquilinear form on V × V . It is
coercive if

∃α > 0, ∀v ∈ V, |a(v, v)| ≥ α ‖v‖2V .

Remark 4.2.7 One could also choose to define the coerciveness of continuous
sesquilinear forms by assuming

∃α > 0, ∃θ ∈ [0, 2π[, ∀v ∈ V, �[exp(ıθ) a(v, v)] ≥ α ‖v‖2V .

This definition is equivalent to Definition 4.2.6. We shall use the latter for
coerciveness throughout this monograph.
Moreover, with real-valued forms a(·, ·) (defined on a Hilbert space V over R), both
definitions boil down to

∃s ∈ {−1,+1}, ∃α > 0, ∀v ∈ V, s a(v, v) ≥ α ‖v‖2V .

Theorem 4.2.8 (Lax-Milgram) When V = W , assume that the continuous and
sesquilinear form a is coercive. Then, Problem (4.3) is well-posed.

Instead of imposing coerciveness, one can assume a stability condition, also called
an inf-sup condition. This can be useful when the arguments v and w do not belong
to the same space.

Definition 4.2.9 Let a(·, ·) be a continuous sesquilinear form on V × W .
It verifies a stability condition if

∃α′ > 0, ∀v ∈ V, sup
w∈W\{0}

|a(v,w)|
‖w‖W

≥ α′ ‖v‖V . (4.5)
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It verifies the solvability condition if

{w ∈ W : ∀v ∈ V, a(v,w) = 0} = {0}. (4.6)

Remark 4.2.10 Condition (4.5) can be equivalently stated as the inf-sup condition

∃α′ > 0, inf
v∈V \{0} sup

w∈W\{0}
|a(v,w)|

‖v‖V ‖w‖W

≥ α′.

When V = W , the coerciveness of a sesquilinear form implies both a stability
condition (with α′ = α), together with a solvability condition, on the same form.

Then, one has the result below.

Proposition 4.2.11 Assume that the continuous and sesquilinear form a verifies a
stability condition (4.5) with a suitable α′. Then, ker(A) = {0}, R(A) is closed
in W ′, and A is a bijective mapping from V to R(A). As a consequence, given
any f ∈ R(A), Problem (4.3) admits one, and only one, solution u in V , and
moreover, α′ ‖u‖V ≤ ‖f ‖W ′ . Furthermore, if the form a satisfies the solvability
condition (4.6), R(A) = W ′, and as a consequence, Problem (4.3) is well-posed.

Theorem 4.2.12 (Banach-Necas-Babuska) Problem (4.3) is well-posed if, and
only if, the continuous and sesquilinear form a verifies a stability condition (4.5)
and a solvability condition (4.6).

Let us now introduce an a priori intermediate condition (cf. [56]).

Definition 4.2.13 Let a(·, ·) be a continuous sesquilinear form on V × W . It is
T-coercive if

∃T ∈ L(V ,W), bijective, ∃α > 0, ∀v ∈ V, |a(v,Tv)| ≥ α ‖v‖2V .

Proposition 4.2.14 Let a(·, ·) be a continuous and sesquilinear form: the form a is
T-coercive if, and only if, it satisfies a stability condition and a solvability condition.

Remark 4.2.15 So, to ensure that Problems (4.3) or (4.4) are well-posed:

• a necessary and sufficient condition is that the form a verifies a stability condition
and a solvability condition (see Theorem 4.2.12);

• a necessary and sufficient condition is that the form a is T-coercive (see
Proposition 4.2.14);

• when V = W , a sufficient condition is that the form a is coercive (see the Lax-
Milgram Theorem 4.2.8).

Within the framework of the inf-sup theory, the operator T is sometimes called an
inf-sup operator.
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Remark 4.2.16 If the form a is Hermitian (when V = W ), the stability of a(·, ·) is
sufficient to guarantee well-posedness. In the same spirit, for a Hermitian form a,
the Definition 4.2.13 of T-coercivity can be simplified to

∃T ∈ L(V ), ∃α > 0, ∀v ∈ V, |a(v,Tv)| ≥ α ‖v‖2V .

In other words, it is not required for T to be bijective.

The next result is slightly more complicated, in the sense that it allows one to solve
a Variational Formulation, which includes some constraints. More precisely, let Q

be a third Hilbert space, and let:

• a(·, ·) be a continuous sesquilinear form on V × V ;
• b(·, ·) be a continuous sesquilinear form on V × Q;
• f ∈ V ′;
• g ∈ Q′.

Let us consider the mixed problem, or constrained problem:

⎧⎨
⎩
Find (u, p) ∈ V × Q such that
∀v ∈ V, a(u, v) + b(v, p) = 〈f, v〉,
∀q ∈ Q, b(u, q) = 〈g, q〉.

(4.7)

In the above, the last line expresses the fact that u has to fulfill some constraints,
with respect to its action on elements of Q. In terms of operators, recall that one can
introduce the bounded operators B and B†, respectively from V to Q′ and from Q

to V ′:

∀(v, q) ∈ V × Q, 〈Bv, q〉 = b(v, q) = 〈B†q, v〉. (4.8)

Problem (4.7) can be reformulated equivalently:

⎧⎨
⎩
Find (u, p) ∈ V × Q such that
Au + B†p = f in V ′,
Bu = g in Q′.

(4.9)

Remark 4.2.17 When the forms are real-valued and when a(·, ·) is symmetric, (4.7)
is also referred to as a saddle-point problem. The expression mixed problem is
generally used in the framework of variational analysis, whereas the term saddle-
point formulation refers merely to the context of optimization under constraints.
In the following, we will use, without distinction, the one or the other term,
as they appear as two different sides of the same problem. Indeed, the mixed
formulation (4.7) corresponds to the optimality conditions of the problem, which
consists in minimizing the quadratic functional J (v) = 1

2a(v, v) − 〈f, v〉 on v

under the constraint (4.7-bottom). The bilinear form a being symmetric, the couple
(u, p) solution to the mixed problem can be viewed, in this case, as the saddle-point
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of the Lagrangian L(v, q) = J (v) + b(v, q) − 〈g, q〉. Recall that the saddle-point
is defined as the couple (u, p) such that

∀v ∈ V, ∀q ∈ Q, L(u, q) ≤ L(u, p) ≤ L(v, p).

Before stating the main result for the solution of (4.7–4.9), let us introduce the
inf-sup condition on the form b for the mixed problem, where the infimum is taken
over elements of Q:

∃β > 0, inf
q∈Q\{0} sup

v∈V \{0}
|b(v, q)|

‖v‖V ‖q‖Q

≥ β. (4.10)

Now, let

K = {v ∈ V : ∀q ∈ Q, b(v, q) = 0} and K0 = {h ∈ V ′ : ∀v ∈ K, 〈h, v〉 = 0}.

The subspace K of V is the kernel of B (when no confusion is possible, one writes
that K is the kernel of b(·, ·)), and K0 is called its polar set. Provided b(·, ·) is
continuous, K is a closed subspace of V , so that one can write: V = K ⊕ K⊥. It
holds that

Lemma 4.2.18 Let b(·, ·) be a continuous sesquilinear form on V × Q. The three
assertions are equivalent:

• there exists β > 0 such that b(·, ·) satisfies (4.10);
• the operator B† is a bijective mapping from Q onto K0, and moreover,

∃β > 0, ∀q ∈ Q, ‖B†q‖V ′ ≥ β‖q‖Q;

• the operator B is a bijective mapping from K⊥ onto Q′, and moreover,

∃β > 0, ∀v ∈ K⊥, ‖Bv‖Q′ ≥ β‖v‖V .

We finally reach . . .

Theorem 4.2.19 (Babuska-Brezzi [25, 63]) Let a, b, f, g be defined as above.
Assume that

(i) the sesquilinear form a is coercive on K × K;
(ii) the sesquilinear form b satisfies an inf-sup condition.

Then, Problem (4.7) admits one, and only one, solution (u, p) in V × Q. Moreover,
there exists a constantC independent of f such that (‖u‖V +‖p‖Q) ≤ C (‖f ‖V ′ +
‖g‖Q′).

There exist variations of this result, which rely on weaker assumptions than the
coerciveness of the form a on K × K and the inf-sup condition on b(·, ·): we refer
the reader to [49].
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Proof (of Theorem 4.2.19) Let us call α > 0 and β > 0, respectively, a coercivity
constant for a(·, ·) on K ×K (cf. Definition 4.2.6) and an inf-sup constant for b(·, ·)
(cf. (4.10)).

1. Uniqueness is proven as follows. Assume that two solutions (u1, p1) and
(u2, p2) to Problem (4.7) exist, then (δu, δp) = (u1 − u2, p1 − p2) solves

⎧⎨
⎩
Find (δu, δp) ∈ V × Q such that
∀v ∈ V, a(δu, v) + b(v, δp) = 0,
∀q ∈ Q, b(δu, q) = 0.

The second equation states that δu belongs to K . Next, using v = δu in the first
equation leads to a(δu, δu) = 0, so that δu = 0, thanks to hypothesis (i). It
follows that one has, for all v ∈ V , b(v, δp) = 0 or, in other words, B†(δp) = 0.
Thanks to hypothesis (ii) and Lemma 4.2.18, one gets that δp = 0.

2. On the other hand, again using hypothesis (ii) and Lemma 4.2.18, we know that

∃!u⊥ ∈ K⊥, Bu⊥ = g and β‖u⊥‖V ≤ ‖g‖Q′ .

(Note that Bu⊥ = g can be rewritten: ∀q ∈ Q, b(u⊥, q) = 〈g, q〉.)
3. Then, according to hypothesis (i), one can solve

{
Find u‖ ∈ K such that
∀v‖ ∈ K, a(u‖, v‖) = 〈f, v‖〉 − a(u⊥, v‖) ,

with the help of the Lax-Milgram Theorem 4.2.8. Its solution u‖ exists and is
unique, and moreover,

α ‖u‖‖V ≤ {‖f ‖V ′ + |||a||| ‖u⊥‖V } ≤
{
‖f ‖V ′ + |||a||| β−1‖g‖Q′

}
.

4. Let us aggregate steps 2. and 3. Introduce the candidate solution

u = u‖ + u⊥, (4.11)

and consider v ∈ V , which we split as v = v‖ + v⊥, with (v‖, v⊥) ∈ K × K⊥.
According to the definition of u‖, one finds that

〈f, v〉 − a(u, v) = 〈f, v⊥〉 − a(u, v⊥).

Then, h ∈ V ′ defined as 〈h, v〉 = 〈f, v⊥〉−a(u, v⊥) actually belongs to the polar
set K0 of K . Thanks again to Lemma 4.2.18, we obtain that

∃!p ∈ Q, B†p = h and β‖p‖Q ≤ ‖h‖V ′ ≤ {‖f ‖V ′ + |||a||| ‖u‖V } . (4.12)

(Note that B†p = h can be rewritten: ∀v ∈ V, b(v, p) = 〈h, v〉.)



4.2 Static Problems 161

5. Existence of a solution to Problem (4.7) is a consequence of the previous steps.
Consider u and p as in (4.11) and (4.12), respectively. Then, for all v ∈ V , and
for all q ∈ Q, one finds

a(u, v) + b(v, p) = a(u, v) + 〈h, v〉 = 〈f, v〉 ,

b(u, q) = b(u⊥, q) = 〈g, q〉 .

Moreover, one has the estimates

‖u‖V ≤ α−1‖f ‖V ′ + β−1
{
1 + |||a||| α−1

}
‖g‖Q′ ,

‖p‖Q ≤ β−1 {‖f ‖V ′ + |||a||| ‖u‖V } .

Remark 4.2.20 We carried out the proof over five steps. This process can be
reproduced in other situations, such as time-dependent, or time-harmonic, problems
with constraints.

We have so far defined a series of well-posed static problems, under ad hoc
assumptions. To bridge the gap with time-harmonic problems (see Sect. 1.2.1), let
us briefly consider forms associated with Fredholm operators of index 0.9

Definition 4.2.21 (Well-Posedness, Fredholm) Problem (4.3) is well-posed in the
Fredholm sense if the associated operator of Problem (4.4) is a Fredholm operator
of index 0.

In this setting, one may introduce a weak stability condition, respectively a weak
T-coercivity condition.

Definition 4.2.22 Let a(·, ·) be a continuous sesquilinear form on V × W .
It verifies a weak stability condition if

∃C ∈ L(V ,W) compact, ∃α′ > 0, β ′ ≥ 0, ∀v ∈ V,

sup
w∈W\{0}

|a(v,w)|
‖w‖W

≥ α′ ‖v‖V − β ′‖Cv‖W .

Definition 4.2.23 Let a(·, ·) be a continuous sesquilinear form on V × W . It is
weakly T-coercive if

∃T ∈ L(V ,W) bijective, ∃C ∈ L(V ,W) compact, ∃α > 0, β ≥ 0, ∀v ∈ V,

|a(v,Tv)| ≥ α ‖v‖2V − β ‖Cv‖2W .

9When the sesquilinear form in Problem (4.3) is Hermitian (V = W ), if the associated operator is
Fredholm, then its index is always equal to 0.
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Regarding the weak stability and weak T-coercivity conditions, one may prove the
results below for Hermitian forms.

Proposition 4.2.24 When V = W , let a(·, ·) be a sesquilinear, continuous and
Hermitian form on V × V . For Problem (4.3) to be well-posed in the Fredholm
sense:

• a necessary and sufficient condition is that the form a verifies a weak stability
condition;

• a necessary and sufficient condition is that the form a is weakly T-coercive.

4.3 Time-Dependent Problems

Up to now, the abstract framework we have developed allows us to solve the so-
called static problems in practical applications. In other words, problems in which
the function spaces of solutions and of test functions, and the (anti)linear forms,
depend only on the space variable. We turn now to problems that include some
explicit dependence with respect to both the time and space variables (t, x). Within
the framework of the theory we recall hereafter, the solution u is not considered
directly as a function of (t, x). Instead, it is a function of t—and, as such, written as
u(t)—with values in a function space that depends solely on the space variable:

u : t �→ u(t), u(t) : x �→ u(t, x).

4.3.1 Problems Without Constraints

LetA be an unbounded operator of V with domainD(A), u0 ∈ V and f : R+ → V .
Then, the first-order time-dependent problem to be solved is formulated as

⎧
⎪⎪⎨
⎪⎪⎩

Find u such that
du

dt
+ Au = f, t > 0,

u(0) = u0.

(4.13)

Above, u(0) = u0 is called an initial condition.
We now introduce the important notion of strong solutions with respect to the

time variable t . Here, we mostly follow the teaching material of Joly [144].

Definition 4.3.1 u is a strong solution to Problem (4.13), provided that

(i) u ∈ C1(R+; V );
(ii) ∀t ≥ 0, u(t) ∈ D(A) and, moreover, u ∈ C0(R+,D(A));
(iii) ∀t > 0, u′(t) + Au(t) = f (t) in V , and u(0) = u0.
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According to the requested regularity in time, we note that a strong solution satisfies
Problem (4.13) in the classical sense. Also, provided that f belongs to C0(R+∗ ; V ),
conditions (i) and (iii) imply that u ∈ C0(R+∗ ; D(A)), when D(A) is endowed with
its graph norm. Then, one has the fundamental result below.

Theorem 4.3.2 (Hille-Yosida [62, 171, 207]) Let A be an unbounded operator of
V with domain D(A). Assume that there exists μ ∈ R such that A+μIV is maximal
monotone. Then, given f ∈ C1(R+; V ) and u0 ∈ D(A), Problem (4.13) admits
one, and only one, strong solution in the sense of Definition 4.3.1. In addition, the
solution can be bounded as follows:

∀t ∈ R+, ‖u(t)‖V ≤ ‖u0‖V +
∫ t

0
‖f (s)‖V ds,

∀t ∈ R+, ‖du

dt
(t)‖V ≤ ‖Au0‖V + ‖f (0)‖V +

∫ t

0
‖df

dt
(s)‖V ds.

The proof of this result is based on the semi-group theory.

Remark 4.3.3 One can choose to solve the first-order problem on the time interval
]0, T [, with T > 0 given. In this case, with the same assumptions about the operator
A, one easily finds that

{
C1([0, T ]; V ) × D(A) → C0([0, T ]; D(A)) × C0([0, T ]; V )

(f, u0) �→ (u, u′)

is continuous (with a constant that depends on T ).

It is also possible to define strong solutions in a slightly weaker sense (see
[62]). Basically, it is no longer required that the initial data belongs to D(A).
As a consequence, the assumption about u0 can be relaxed to u0 ∈ V in the
corresponding version of the Hille-Yosida Theorem.10 In this case, items (i) and
(ii) of Definition 4.3.1 are modified as follows:

(i)’ u ∈ C1(R+∗ ; V ) ∩ C0(R+; V );
(ii)’ ∀t > 0, u(t) ∈ D(A) and, moreover, u ∈ C0(R+∗ ,D(A)).

For that, one can consider self-adjoint operators (other possibilities are described,
for instance, in [92]).

Theorem 4.3.4 (Hille-Yosida [62]) Let A be an unbounded and self-adjoint
operator of V with domainD(A). Assume that there exists μ ∈ R such thatA+μIV

is maximal monotone. Then, given f ∈ C1(R+; V ) and u0 ∈ V , Problem (4.13)

10For practical applications, it allows one to consider initial data that do not verify the constraints
that the solution fulfills afterwards.
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admits one, and only one, strong solution in the sense of Definition 4.3.1 with items
(i)’-(ii)’-(iii). In addition, the solution can be bounded as follows:

∀t ∈ R+, ‖u(t)‖V ≤ ‖u0‖V +
∫ t

0
‖f (s)‖V ds,

∀t ∈ R+∗ , ‖du

dt
(t)‖V ≤ 1

t
‖u0‖V + ‖f (0)‖V +

∫ t

0
‖df

dt
(s)‖V ds.

Moreover, if f = 0, one has

∀k, l ∈ N, u ∈ Ck(R+∗ ; D(Al)).

The last result is called a regularizing effect. Also, it is possible that

lim
t→0+ ‖u′(t)‖V = +∞.

Remark 4.3.5 If one has f ∈ C0(R+; V ) ∩ L1(R+; D(A)), then Problem (4.13)
still has a strong solution. In addition, one has

∀t ∈ R+, ‖du

dt
(t)‖V ≤ ‖Au0‖V + ‖f (t)‖V +

∫ t

0
‖Af (s)‖V ds.

On the other hand, if one has only f ∈ C0(R+; V ), then it is no longer guaranteed
that this time-dependent problem has a strong solution (cf. Chapter XVII of [92]).

A third variant of a strong solution appears in a slightly different context, namely,
when the operator A is skew-adjoint. Generally speaking, this feature corresponds
to an energy conservation property of the evolution problem (4.13); one can thus
define solutions for negative, as well as positive, values of time t , i.e., solve the
“backward” problem (for t < 0), as well as the forward one. In this case, we take
the following variants of the items in Definition 4.3.1:

(i)” u ∈ C1(R; V );
(ii)” ∀t ∈ R, u(t) ∈ D(A) and, moreover, u ∈ C0(R,D(A));
(iii)” ∀t ∈ R, u′(t) + Au(t) = f (t) in V , and u(0) = u0.

There is no regularizing effect in this case, i.e., the initial data must belong to the
domain of A. On the other hand, the self-adjointness assumption of Theorem 4.3.4
is linked to energy dissipation, which accounts for the regularizing effect, andmakes
the backward problem ill-posed.

The corresponding result is now stated.

Theorem 4.3.6 (Stone [207]) Let A be an unbounded and skew-adjoint operator
of V with domain D(A). Then, given u0 ∈ D(A) and either (a) f ∈ C1(R; V ) or
(b) f ∈ C0(R; V ) ∩ L1(R; D(A)), Problem (4.13) admits one, and only one, strong
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solution in the sense of Definition 4.3.1, with items (i)”–(ii)”–(iii)”. In addition, the
solution can be bounded as follows, according to the assumptions (a) or (b):

∀t ∈ R, ‖u(t)‖V ≤ ‖u0‖V +
∫ t

0
‖f (s)‖V ds,

(a) ∀t ∈ R, ‖du

dt
(t)‖V ≤ ‖Au0‖V + ‖f (0)‖V +

∫ t

0
‖df

dt
(s)‖V ds,

(b) ∀t ∈ R, ‖du

dt
(t)‖V ≤ ‖Au0‖V + ‖f (t)‖V +

∫ t

0
‖Af (s)‖V ds.

The proof once more relies upon semi-group theory. Furthermore, one can prove the
following causality result.

Proposition 4.3.7 Assume the hypotheses of Theorem 4.3.6. Let f1, f2 satisfy either
(a) or (b), and u1, u2 be the corresponding solutions to (4.13). If f1(t) = f2(t) for
a.e. t ≥ 0, then u1 and u2 also coincide for a.e. t ≥ 0. As a consequence, if one is
interested in the forward problem only, it is not necessary to know the values of the
r.h.s. for t < 0.

It turns out that one can apply this theory (Theorem 4.3.2) to solve second-
order time-dependent problems and find strong solutions of such problems. These
problems write

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Find u such that
d2u

dt2
+ Au = f, t > 0 ;

u(0) = u0 ,
du

dt
(0) = u1.

(4.14)

Above, u(0) = u0 and u′(0) = u1 are the two initial conditions.
Here, one needs to consider two Hilbert spaces:

• H, a Hilbert space, with scalar product (·, ·)H and norm ‖ · ‖H;
• V , a Hilbert space, with scalar product (·, ·)V and norm ‖ · ‖V ;
• the imbedding iV→H is continuous;
• V is dense inH.

The operator A is defined via a sesquilinear continuous and Hermitian form a defined
on V × V , which fulfills the following property:

∃ν ∈ R+, ∃α ∈ R+∗ , ∀v ∈ V, a(v, v) + ν ‖v‖2H ≥ α ‖v‖2V . (4.15)

Remark 4.3.8 Note that one can define another scalar product on V , with associated
norm 2‖ · ‖V equivalent to ‖ · ‖V in V . It writes

∀v, w ∈ V, 2(v, w)V = a(v, w) + ν (v, w)H.
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Then, one can introduce the unbounded operator A ofH with domain D(A)

{
D(A) = {v ∈ V : ∃h ∈ H, ∀w ∈ V, a(v, w) = (h, w)H};
∀v ∈ D(A), ∀w ∈ V, (Av, w)H = a(v, w).

(4.16)

Definition 4.3.9 u is a strong solution to Problem (4.14), provided that

(i) u ∈ C2(R+;H) ∩ C1(R+;V);
(ii) ∀t ≥ 0, u(t) ∈ D(A) and, moreover, u ∈ C0(R+,D(A));
(iii) ∀t > 0, u′′(t) + Au(t) = f(t) inH, u(0) = u0 and u′(0) = u1.

From this point on, one can prove an equivalence result between the existence of
u as a strong solution to Problem (4.14) and the existence of a strong solution to
a companion—first-order time-dependent—problem.We give the main steps of the
process, since it will be of use later on for solving the time-dependent Maxwell
equations, written as wave equations with constraints (cf. Sect. 1.5.3). For the
moment, we adopt the following point of view. To determine ad hoc conditions
that ensure the existence and uniqueness of a strong solution to Problem (4.14),
let us use the Hille-Yosida Theorem 4.3.2. To that aim, introduce V = V × H.
Its elements are denoted by v = (v, h). It is a Hilbert space, with the scalar
product (v, ṽ)V = 2(v, ṽ)V + (h, h̃)H. Next, let A be an unbounded operator of
V , defined by

{
D(A) = D(A) × V;
∀v = (v, h) ∈ D(A), Av = (−h, Av).

The data are equal to u0 = (u0, u1) and f = (0, f).
Finally, we are in a position to consider Problem (4.13) with V , A, f and u0 as

above. One obtains the following simple result. . .

Proposition 4.3.10 Assume that u is a strong solution to Problem (4.14); then, u =
(u, u′) is a strong solution to Problem (4.13).
Conversely, assume that u = (u, h) is a strong solution to Problem (4.13); then, u
is a strong solution to Problem (4.14).

As a conclusion, one can exhibit sufficient conditions to ensure the existence,
uniqueness and continuous dependence of the solution to the second-order time-
dependent problem. Indeed, according to the definition of the scalar product on V ,
maximal monotony of A + μIV stems from property (4.15), with the admissible
choice μ ≥ √

ν/2.

Theorem 4.3.11 Let a(·, ·) be a sesquilinear, continuous and Hermitian form
defined on V × V , which fulfills property (4.15). Let the operator A be defined as
in (4.16). Then, given f ∈ C1(R+;H), u0 ∈ D(A) and u1 ∈ V , Problem (4.14)
admits one, and only one, strong solution in the sense of Definition 4.3.9. In addition,
for any t ≥ 0, the norms ‖u(t)‖V , ‖u′(t)‖V and ‖u′′(t)‖H can be bounded by
(homogeneous) expressions involving only the norms of the data.
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So far, we have addressed the well-posedness of our first- and second-order time-
dependent problems, based on the concept of strong solutions.

There exists an alternative technique for second-order time-dependent problems
that relies on weak solutions. It is usually referred to as the Lions-Magenes theory
[157]. It relies mainly on mathematical tools such as distributions, and Lebesgue
and Sobolev spaces. The starting point is still Problem (4.14), which will be re-
interpreted below. Here, the Hilbert spaceH is usually considered as the pivot space,
so that V ⊂ H ⊂ V ′.

Consider T > 0 and assume that u is a strong solution to Problem (4.14) on the
time interval ]0, T [, in the sense of Definition 4.3.9. Then, since V is dense in H,
one gets the series of equivalent statements:

∀t ∈]0, T [, d2u

dt2
(t) + Au(t) = f(t) inH

⇐⇒ ∀t ∈]0, T [, ∀v ∈ V, (
d2u

dt2
(t), v)H + (Au(t), v)H = (f(t), v)H

⇐⇒ ∀t ∈]0, T [, ∀v ∈ V,
d2

dt2
(u(t), v)H + a(u(t), v) = (f(t), v)H.

One defines weak solutions, for which the last statement is not satisfied for all t in
]0, T [, but in the sense of distributions instead. In other words, the weak solution,
still denoted by u, satisfies the weaker statement11:

∀v ∈ V,
d2

dt2
(u(t), v)H + a(u(t), v) = (f(t), v)H in D′(]0, T [). (4.17)

Definition 4.3.12 u is a weak solution to Problem (4.14) on the time interval ]0, T [,
provided that

(i) u ∈ L2(0, T ;V) and u′ ∈ L2(0, T ;H);
(ii) ∀v ∈ V , ((u(t), v)H

)′′ + a(u(t), v) = (f(t), v)H in D′(]0, T [),
u(0) = u0 and u′(0) = u1.

We note that Problem (4.14) must be re-interpretedwhen weak solutions are sought.
Indeed, since u(t) belongs to V instead ofD(A)—in contrast to strong solutions (see
Definition 4.3.9 (ii))—Au(t) has no meaning. For this reason, one instead introduces
the bounded operator Aw of L(V,V ′), defined by

∀v, w ∈ V, 〈Awv, w〉V = a(v, w).

11It is equivalently written as

⎧
⎨
⎩

∀ϕ ∈ D(]0, T [), ∀v ∈ V,∫ T

0

{
(u(t), v)H ϕ′′(t) + a(u(t), v) ϕ(t)

}
dt =

∫ T

0
(f(t), v)H ϕ(t) dt.
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Thus, Awu(t) belongs to V ′, and moreover, Awu ∈ L2(0, T ;V ′). So, when weak
solutions to the second-order time-dependent Problem (4.14) are studied, the
operator that acts on the solution is Aw.

Theorem 4.3.13 (Lions-Magenes [157]) Assume that the sesquilinear, continu-
ous and Hermitian form a fulfills property (4.15), and let the operator Aw be defined
as above. Then, given T > 0, f ∈ L2(0, T ;H), u0 ∈ V and u1 ∈ H, on the time
interval ]0, T [, Problem (4.14), admits one, and only one, weak solution in the sense
of Definition 4.3.12. In addition,

{
L2(0, T ;H) × V × H → C0([0, T ];V) × C0([0, T ];H)

(f, u0, u1) �→ (u, u′)

is continuous (with a constant that depends on T ).

In other words, the well-posedness of second-order time-dependent problems also
holds for weak solutions (under assumptions that are different from those introduced
in the case of strong solutions).

Remark 4.3.14 Within the framework of the previous Theorem, a weak solution
is such that Awu ∈ C0([0, T ];V ′). Since f ∈ L2(0, T ;H), it follows that u′′ ∈
L2(0, T ;V ′). In particular, one can choose to rewrite

(
(u(t), v)H

)′′ as 〈u′′(t), v〉,
for all v ∈ V .
For Maxwell’s equations, it is important to note that the notion of weak solutions
can be extended to the slightly modified problem below. Introduce 2(·, ·)H, a second
scalar product onH, such that 2‖·‖H and ‖·‖H are equivalent norms. Therefore, one
can equipH with 2‖ · ‖H without changing its topology; let us denote this space as
H2 to emphasize this point of view. Note that in the formulation of property (4.15),
one can replace ‖·‖H with 2‖·‖H (resulting in a different ν). Then, statement (4.17)
is replaced by

∀v ∈ V,
d2

dt2
{2(u(t), v)H} + a(u(t), v) = (f(t), v)H in D′(]0, T [), (4.18)

which defines a modified second-order time-dependent problem. Interestingly, one
can prove that this modified problem is also well-posed.

Corollary 4.3.15 Let f ∈ L2(0, T ;H), u0 ∈ V and u1 ∈ H. The variational
formulation (4.18) admits one, and only one, weak solution on the time interval
]0, T [, satisfying (u, u′) ∈ C0([0, T ];V) × C0([0, T ];H). In addition,

{
L2(0, T ;H) × V × H → C0([0, T ];V) × C0([0, T ];H)

(f, u0, u1) �→ (u, u′)

is continuous (with a constant that depends on T ).
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Proof Using Riesz’s Theorem in H2, one can rewrite the r.h.s. of (4.18), which
becomes:

∀v ∈ V,
d2

dt2
{2(u(t), v)H} + a(u(t), v) = 2(f(2)(t), v)H in D′(]0, T [). (4.19)

Of course, the functions of time with values in H have the same regularity when
seen as taking their values in H2; and the norm of f(2) in L2(0, T ;H2) is bounded
above and below by the norm of f in L2(0, T ;H). Applying Theorem 4.3.13 to the
weak formulation (4.19), set in the spaces V andH2, gives us the result.

4.3.2 Problems with Constraints

We proceed by studying the existence of weak solutions for second-order time-
dependent problems with constraints. Let Q be a third Hilbert space, and let b(·, ·)
be a continuous sesquilinear form on V × Q, with associated operators B and B†

defined as in (4.8). We are now interested in solving

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Find (u, p) such that
d2u

dt2
+ Awu + B†p = f, t > 0,

Bu = g, t > 0,

u(0) = u0 ; du

dt
(0) = u1.

(4.20)

Next, we define weak solutions of such a problem on a time interval ]0, T [.
Definition 4.3.16 (u, p) is a weak solution to Problem (4.20) on the time interval
]0, T [, provided that
(i) u ∈ C1([0, T ];H) ∩ C0([0, T ];V);
(ii) p ∈ C0([0, T ];Q);
(iii) ∀v ∈ V , ((u(t), v)H

)′′ + a(u(t), v) + b(v, p(t)) = (f(t), v)H in D′(]0, T [),
u(0) = u0 and u′(0) = u1;

(iv) ∀t ∈ [0, T ], ∀q ∈ Q, b(u(t), q) = 〈g(t), q〉.
As we are mainly interested in solving Maxwell’s equations, we shall replace(
(u(t), v)H

)′′ with
(
2(u(t), v)H

)′′ in (iii). As a consequence, Problem (4.20)
becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find (u, p) such that

∀v ∈ V,
d2

dt2
{2(u(t), v)H} + a(u(t), v)

+ b(v, p(t)) = (f(t), v)H in D′(]0, T [),
∀t ∈ [0, T ], ∀q ∈ Q, b(u(t), q) = 〈g(t), q〉 ;
u(0) = u0 ,

du

dt
(0) = u1.

(4.21)
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To analyse this problem, we shall introduce some definitions, which also serve in
studying the associated discrete problems [17]. First, we introduce K, the kernel of
b(·, ·) (which is a closed subspace of V),

K = {v ∈ V : ∀q ∈ Q, b(v, q) = 0},

its polar set K0 ⊂ V ′, and its orthogonal K⊥ in V . We still assume that the
property (4.15) holds; thus, we take a priori the orthogonality in the sense of
the equivalent scalar product 2(·, ·)V = a(·, ·) + ν (·, ·)H or a(·, ·) + ν2 2(·, ·)H
(see Remark 4.3.8). Nevertheless, we shall need the following hypothesis to prove
the well-posedness of the constrained formulations.

Definition 4.3.17 The spaces K and K⊥ satisfy a double orthogonality property
in V andH (respectivelyH2) if:

∀(v‖, v⊥) ∈ K ×K⊥, a(v‖, v⊥) = 0 and (v‖, v⊥)H = 0, respectively 2(v‖, v⊥)H = 0.

This notion is of fundamental importance in addressing the solution of the time-
dependent Maxwell equations. The proof of the following Lemma is left to the
reader.

Lemma 4.3.18 Let L be the closure of K inH, and L⊥ its orthogonal inH. If V is
dense inH, and the double orthogonality property holds for K andK⊥ in V andH,
then L⊥ is the closure of K⊥ in H.

Thus, any z ∈ H can be split as z = z‖ + z⊥, with (z‖, z⊥)H = 0; if z ∈ V ,
this decomposition coincides with that in K × K⊥. Of course, one can replace H
withH2, i.e., the scalar product (·, ·)H with 2(·, ·)H in the above Lemma.

Theorem 4.3.19 Assume that the sesquilinear, continuous and Hermitian form a

fulfills the property (4.15), and that the sesquilinear and continuous form b satisfies
the inf-sup condition (4.10) for some β > 0. Finally, assume that the spaces K
andK⊥ satisfy a double orthogonality property in V andH2, as in Definition 4.3.17.
Let L be the closure of K inH.

Then, let T > 0, f ∈ C0([0, T ];H), g ∈ C2([0, T ];Q′), u0 ∈ V and u1 ∈ H be
given, such that the projection u1⊥ of u1 onto L⊥ belongs to V , and

∀q ∈ Q, b(u0, q) = 〈g(0), q〉Q, and b(u1⊥, q) = 〈g′(0), q〉Q. (4.22)

On the time interval ]0, T [, Problem (4.21) admits a unique weak solution in the
sense of Definition 4.3.16 (with

(
2(u(t), v)H

)′′
in (iii)). In addition, the mapping

{
C0([0, T ];H) × C2([0, T ];Q′) × V × H → C0([0, T ];V × H × Q)

(f, g, u0, u1) �→ (u, u′, p)

is continuous (with a constant that depends on T ).
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Proof Without loss of generality, we may assume 2(·, ·)H = (·, ·)H, by reasoning
as in Corollary 4.3.15 if necessary. Then, we proceed by analysis and synthesis.
Suppose there exists a solution (u, p) in the sense of Definition 4.3.16; and split
u(t) = u‖(t) + u⊥(t) ∈ K ⊕ K⊥ for all t ∈ [0, T ]. As the projection onto
closed subspaces is continuous, it holds that (u‖, u⊥) ∈ C0([0, T ];K × K⊥) ×
C1([0, T ];L × L⊥). Similarly, let u0 = u0‖ + u0⊥ ∈ K ⊕ K⊥; u1 = u1‖ + u1⊥ ∈
L ⊕ L⊥; f = f‖ + f⊥ ∈ C0([0, T ];L × L⊥).

1. Item (iv) of Definition 4.3.16 is equivalent to: ∀t ∈ [0, T ], ∀q ∈ Q,
b(u⊥(t), q) = 〈g(t), q〉. By Lemma 4.2.18, we know this equation has a unique
solution for each t . Moreover, one has β‖u⊥(t)‖V ≤ ‖g(t)‖Q′ , and similar
inequalities link the first and second time derivatives of u⊥ and g: the norm of u
in C2([0, T ];K⊥) is controlled by that of g in C2([0, T ];Q′).

2. Then, let us take a test function v‖ ∈ K in item (iii). Using the definition of K
and the double orthogonality property, we obtain:

∀v‖ ∈ K,
d2

dt2
{(u‖(t), v‖)H} + a(u‖(t), v‖) = (f‖(t), v‖)H in D′(]0, T [).

But, by the same property, (u‖(t), v⊥)H = a(u‖(t), v⊥) = 0 for any v⊥ ∈ K⊥.
Therefore, we can add an arbitrary function v⊥ ∈ K⊥ to v‖ in the above equation.
So, we see that u‖ appears as a solution to the variational formulation:
Find u‖ : [0, T ] → V such that:

∀v ∈ V,
d2

dt2
{(u‖(t), v)H} + a(u‖(t), v) = (f‖(t), v)H in D′(]0, T [),

with the initial conditions u‖(0) = u0‖, u′‖(0) = u1‖. Thus, it coincides with
the unique weak solution to this formulation in the sense of Definition 4.3.12.
Following the same line of reasoning, one shows that this solution does belong
toK at any time; furthermore, its norm in C0([0, T ];V)×C1([0, T ];H) depends
continuously on the data (f‖, u0‖, u1‖), which are themselves controlled by
(f, u0, u1) in their respective spaces.

3. Now, consider v ∈ V and write v = v‖ +v⊥, with (v‖, v⊥) ∈ K×K⊥. Using the
characterisation of u‖ obtained in step 2, together with the double orthogonality
property and footnote11, p. 167, one finds that

(f(t), v)H − d2

dt2
{(u(t), v)H} − a(u(t), v) =

(f⊥(t), v⊥)H − d2

dt2
{(u(t)⊥, v⊥)H} − a(u⊥(t), v⊥) in D′(]0, T [).

Let us define h(t) ∈ V ′, for all t , by the condition:

∀v ∈ V, 〈h(t), v〉V = (f⊥(t), v⊥)H − (u′′⊥(t), v⊥)H − a(u⊥(t), v⊥).

(4.23)



172 4 Abstract Mathematical Framework

Thanks to the assumptions on the data and to the preceding results, we have
h ∈ C0([0, T ];K0), where K0 is the polar set of K. Using Lemma 4.2.18 once
more, we conclude that

∃!p ∈ C0([0, T ];Q), ∀t ∈ [0, T ], ∀v ∈ V, b(v, p(t)) = 〈h(t), v〉V . (4.24)

Moreover, the norm of p in C0([0, T ];Q) depends continuously on the data
(f, g, u0, u1).

4. Conversely, let u = u‖ + u⊥, where u⊥ and u‖ are defined as in steps 1
and 2, and let p be defined by (4.24) and (4.23). They fulfill all items of
Definition 4.3.16, including the initial conditions thanks to (4.22). What is more,
the norm of (u, u′, p) in C0([0, T ];V × H × Q) depends continuously on the
data (f, g, u0, u1).

Remark 4.3.20 As in the case without constraints (cf. Theorem 4.3.13), one can
have weaker time regularity assumptions on the right-hand sides, namely f ∈
L2(0, T ;H) and g ∈ H 2([0, T ];Q′). But one only finds that p ∈ L2(0, T ;Q).
Weaker space regularities can be also envisaged, under certain assumptions about
the various spaces and sesquilinear forms (see below).

Remark 4.3.21 Let us comment on the double orthogonality requirement.

• According to Remark 4.3.8, one can replace the scalar product (v, w)V with
2(v, w)V = a(v, w) + ν2 2(v, w)H, with ν2 > 0. Hence the denomination double
orthogonality with respect to 2(·, ·)V :
for all (v‖, v⊥) ∈ K×K⊥, one expects a(v‖, v⊥)+ ν2 2(v‖, v⊥)H = 0, whereas
we require both a(v‖, v⊥) = 0 and 2(v‖, v⊥)H = 0.

• The part (v‖, v⊥) ∈ K×K⊥ �⇒ a(v‖, v⊥) = 0 is required, because one cannot
deal with a right-hand side of the form a(w(t), v)—in our case, with w = u⊥ and
v = v‖—when solving the second-order time-dependent problem in V .12

The result of Theorem 4.3.19 is not entirely satisfactory: as it appears from the proof,
the part of the solution that is orthogonal to the kernel is much more regular than
the one along the kernel. To address this dissymmetry, one can try to define suitable
extensions of the operator B, and thus consider less regular data g. For instance,
introduce the spaces:

Qw := {q ∈ Q : B†q ∈ H}, Qww := {q ∈ Q : B†q ∈ V}, (4.25)

endowed with their canonical norms. For any q ∈ Qw, the continuous antilinear
form on V given by v �→ b(v, q) can be extended to a continuous antilinear form

12Unless g(t) is appropriately regular. More precisely, see (4.27-top) below: g(t) should be regular
enough, so that the second term on the right-hand side can be included in the first term by suitably
modifying f(t).
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onH. Thus, we have defined a continuous sesquilinear form bw onH×Qw, which
coincides with b(·, ·) on V×Qw, as well as an extended operator Bw : H → Q′

w and
its conjugate transpose B†w : Qw → H′ = H. Similarly, one defines the sesquilinear
form bww on V ′ × Qww and the operators Bww : V ′ → Q′

ww and B†ww : Qww →
V ′′ = V .
Theorem 4.3.22 Assume that the sesquilinear, continuous and Hermitian form a

fulfills the property (4.15), and that the sesquilinear and continuous form b satisfies
the inf-sup condition (4.10) for some β > 0. Assume, moreover, that the sesquilinear
and continuous forms bw and bww satisfy similar inf-sup conditions in the relevant
spaces; and that the double orthogonality property in V andH2 holds.
Then, let T > 0, f ∈ C0([0, T ];H), g ∈ GT := C0([0, T ];Q′) ∩ C1([0, T ];Q′

w) ∩
C2([0, T ];Q′

ww), u0 ∈ V and u1 ∈ H be given such that

∀q ∈ Q, b(u0, q) = 〈g(0), q〉Q ; ∀q ∈ Qw, bw(u1, q) = 〈g′(0), q〉Qw
. (4.26)

On the time interval ]0, T [, Problem (4.21) admits a unique weak solution in the
sense of Definition 4.3.16 (with

(
2(u(t), v)H

)′′
in (iii)). In addition, the mapping

{
C0([0, T ];H) × GT × V × H → C0([0, T ];V × H × Q)

(f, g, u0, u1) �→ (u, u′, p)

is continuous (with a constant that depends on T ).

The proof is entirely similar to that of Theorem 4.3.19.

Remark 4.3.23 Let us comment on these regularity assumptions.

• As in Remark 4.3.20, it is sufficient to assume f ∈ L2(0, T ;H) and g ∈
C0([0, T ];Q′) ∩ C1([0, T ];Q′

w) ∩ H 2([0, T ];Q′
ww) in order to have a well-

posed evolution equation for u‖ and an equation for p(t) at a.e. t ; in this case, it
holds that p ∈ L2(0, T ;Q).

• The inf-sup condition on the form bw allows one to prove the condition u⊥ ∈
C1([0, T ];H), which is expected of a weak solution. By the same token, it
expresses the compatibility between the initial condition u1 and the constraint
b(u, q) = 〈g, q〉. It also implies that L is the kernel of bw(·, ·).

• On the other hand, the form bww plays a marginal role. Its inf-sup condition
ensures u⊥ ∈ C2([0, T ];V ′) or H 2([0, T ];V ′), so that the r.h.s. of (4.23) is
well-defined for a.e. t . If this condition is unavailable, one can still conclude
favorably under the assumption g ∈ C0([0, T ];Q′) ∩ C2([0, T ];Q′

w) or g ∈
C0([0, T ];Q′) ∩ H 2([0, T ];Q′

w).
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To conclude this subsection, we introduce a reinterpretation of the equations
satisfied by u⊥ and u‖, which also proves useful in analysing the numerical
discretizations of Problem (4.21) [81]. According to item 1. in the proof of
Theorem 4.3.19, the variable u⊥ is the solution, at any time, to the static mixed
formulation:

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Find (u⊥, p⊥) such that
∀t ∈ [0, T ], ∀q ∈ Q, b(u⊥(t), q) = 〈g(t), q〉Q,

∀v ∈ V, a(u⊥(t), v) + b(v, p⊥(t)) = 〈Aw B−1
|K⊥ g(t), v〉V in D′(]0, T [) ;

u⊥(0) = u0⊥ ,
du⊥
dt

(0) = u1⊥.

Indeed, the operator B restricted to K⊥ admits a continuous inverse B−1
|K⊥ : Q′ →

K⊥. By the uniqueness of the solution to the constrained formulation, it holds that
p⊥(t) = 0. As for u‖, it is the solution to the following time-dependent formulation,
where u⊥ enters as data and p‖ = p:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find (u‖, p‖) such that

∀v ∈ V,
d2

dt2
{2(u‖(t), v)H} + a(u(t), v) + b(v, p‖(t)) =

(f(t), v)H − 〈Aw B−1
|K⊥ g(t), v〉V − d2

dt2
{2(u⊥(t), v)H} in D′(]0, T [),

∀q ∈ Q, b(u‖(t), q) = 0 in C0([0, T ]) respectively L2(0, T ) ;
u‖(0) = u0‖ ,

du‖
dt

(0) = u1‖.

(4.27)

4.4 Time-Dependent Problems: Improved Regularity Results

We now investigate the conditions under which the solution to the second-order
time-dependent problems (4.14), (4.17), (4.21) (and their variants) may exhibit a
higher regularity in space and time, such as that needed for the numerical analysis
[17]. In addition to the hypotheses of Sect. 4.3, we assume that the canonical
imbedding iV→H is compact.

To simplify the discussion, we shall assume in this section that the form a

appearing in these problems is (Hermitian and) coercive on the whole space V , i.e.,
the property (4.15) holds with ν = 0. As a consequence, we replace the original
norm of V with the equivalent norm 2‖v‖V := a(v, v)1/2, usually called the energy
norm, which we will denote by ‖v‖V for the sake of simplicity.
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4.4.1 Problems Without Constraints

First, we introduce the eigenvalue problem13:

{
Find (e, λ) ∈ (V \ {0}) × R such that
∀v ∈ V, a(e, v) = λ (e, v)H.

(4.28)

According to Corollary 4.5.12, there exist a non-decreasing sequence of strictly
positive eigenvalues (λi)i∈N and a sequence of eigenfunctions (ei )i∈N that are a
Hilbert basis ofH and such that (λ−1/2

i ei )i∈N is a Hilbert basis for V . This leads to
the definition of a scale (Vs)s∈R of Hilbert spaces, the A-Sobolev spaces.

Definition 4.4.1 Let s ∈ R. The space Vs is:

• if s ≥ 0, the subspace ofH characterised by the condition

∑
i∈N

ui ei = u ∈ Vs ⇐⇒ ‖u‖2V s :=
∑
i∈N

λs
i |ui |2 < +∞, (4.29)

which defines its canonical norm;
• if s < 0, the dual of V−s with respect to the pivot spaceH.

Then, we summarise some properties of this scale. The proofs are left to the reader.

Proposition 4.4.2 The following statements hold true:

1. V0 = H, V1 = V , V2 = D(A), V−1 = V ′, algebraically and topologically.
2. For all i ∈ N and s ∈ R, ei ∈ Vs . Furthermore, the sequence (es

i )i∈N :=
(λ

−s/2
i ei )i∈N is a Hilbert basis for Vs .

3. For all t < s ∈ R, Vs is densely and compactly imbedded in V t .
4. Let s ∈ R and u ∈ Vs . The scalar ui equivalently defined as

ui = 〈
u, e−t

i

〉
V−t = λ

−t/2
i

(
u, et

i

)
V t

does not depend on t ≤ s. Of course, if u ∈ H, ui coincides with the coordinate
of u on the basis (ei)i∈N.

5. As a consequence of items 2 and 4, an element of an A-Sobolev space admits
a renormalised expansion u = ∑

i∈N ui ei , which converges in Vs under the
condition (4.29).

With these results, one can define a natural generalisation of the “strong” and
“weak” operators A and Aw. The “formal” unbounded operator

Ã : u =
∑
i∈N

ui ei �−→
∑
i∈N

λi ui ei

13Cf. the discussion in footnote 6, p. 153.
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makes sense as soon as u belongs to some A-Sobolev space. By construction, it maps
Vs to Vs−2 for all s, and it is an isometry between these spaces. As particular cases,
A and Aw appear as the restrictions of Ã to D(A) and V , respectively.

We are now ready to analyse a generalised version of Problem (4.14), namely:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Find u such that
d2u

dt2
+ Ãu = f, t > 0 ;

u(0) = u0 ,
du

dt
(0) = u1.

(4.30)

The above problem is meaningful as soon as u has the regularity C1([0, T ];Vσ ),
and f ∈ L1

loc(]0, T [ ;Vs), for some σ, s ∈ R: the equality on the first line takes
place in D′(]0, T [ ;Vmin(σ−2,s)). As particular cases, this covers the frameworks of
Definitions 4.3.9 and 4.3.12. Considering the renormalised expansions at each time

u(t) =
∑
i∈N

ui(t) ei , um =
∑
i∈N

um,i ei (m = 0, 1), f(t) =
∑
i∈N

fi(t) ei ,

Problem (4.30) is equivalent to the sequence of Cauchy problems in D′(]0, T [) (for
i ∈ N):

⎧
⎨
⎩
Find ui such that
d2ui

dt2
+ λi ui = fi, t ∈]0, T [ ; ui(0) = u0,i ,

dui

dt
(0) = u1,i .

The theory of ordinary differential equations gives us the unique solution:

ui(t) = u0,i cos(
√

λi t) + u1,i√
λi

sin(
√

λi t) +
∫ t

0
sin(

√
λi(t − s))

fi(s)√
λi

ds,

which exists, e.g., under the condition fi ∈ L1(0, T ). If fi ∈ W 1,1(0, T ), one can
perform an integration by parts and arrive at:

ui(t) = u0,i cos(
√

λi t) + u1,i√
λi

sin(
√

λi t) + f (t) − f (0) cos(
√

λi t)

λi

−
∫ t

0
cos(

√
λi(t − s))

f ′
i (s)

λi

ds.

Using these representations and Proposition 4.4.2, it is not difficult to prove the
following theorem, which furnishes solutions both less regular and more regular in
space than the strong and weak solutions considered so far.
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Theorem 4.4.3 Assume that the canonical imbedding iV→H is compact, and that
the sesquilinear, continuous and Hermitian form a fulfills property (4.15) with ν =
0, and let the operator Ã be defined as above. Then:

1. Given T > 0, s ∈ R, p ≥ 1 f ∈ Lp(0, T ;Vs), u0 ∈ Vs+1 and u1 ∈ Vs; on the
time interval ]0, T [, Problem (4.30) admits a unique solution in C1([0, T ];Vs)∩
C0([0, T ];Vs+1). In addition,

{
L1(0, T ;Vs) × Vs+1 × Vs → C0([0, T ];Vs+1) × C0([0, T ];Vs)

(f, u0, u1) �→ (u, u′)

is continuous (with a constant that depends on T ), and u ∈ W 2,p(0, T ;Vs−1),
with continuous dependence.

2. Given T > 0, s ∈ R, f ∈ Zs
T := L1(0, T ;Vs) ∩ C0([0, T ];Vs−1), respectively,

W 1,1(0, T ;Vs−1), u0 ∈ Vs+1 and u1 ∈ Vs; on the time interval ]0, T [,
Problem (4.30) admits a unique solution in C2([0, T ];Vs−1) ∩ C1([0, T ];Vs) ∩
C0([0, T ];Vs+1). In addition,

{Zs
T × Vs+1 × Vs → C0([0, T ];Vs+1) × C0([0, T ];Vs) × C0([0, T ];Vs−1)

(f, u0, u1) �→ (u, u′, u′′)

is continuous (with a constant that depends on T ).

Now, we investigate the time regularity of the solutions to (4.30).

Theorem 4.4.4 Assume the hypotheses of Theorem 4.4.3, and let m ∈ N be
given. Suppose that um and um+1 (defined, according to the parity of m, by the
formulas (4.32) and (4.33) below) belong, respectively, to Vs+1 and Vs .

1. If f ∈ Wm,p(0, T ;Vs), the solution to Problem (4.30) belongs to
Wm+2,p(0, T ;Vs−1) ∩ Cm+1([0, T ];Vs) ∩ Cm([0, T ];Vs+1), with continuous
dependence on the data (f, um, um+1).

2. If either f ∈ Wm,1(0, T ;Vs) ∩ Cm([0, T ];Vs−1) or f ∈ Wm+1,1(0, T ;Vs−1),
the solution to Problem (4.30) belongs toCm+2([0, T ];Vs−1)∩Cm+1([0, T ];Vs)

∩ Cm([0, T ];Vs+1), with continuous dependence on the data (f, um, um+1).

Proof We prove the first claim; the second is similar. The case m = 0 is that of
Theorem 4.4.3. Thus, we suppose m ≥ 1, and we have f ∈ Cm−1([0, T ];Vs).
Using the identity u′′ = f − Ãu iteratively, one arrives at the following expressions
and regularities of the successive time derivatives of u:

u(2k) =
k−1∑
�=0

(−1)� Ã�f(2k−2�−2) + (−1)k Ãku ∈ C0([0, T ];Vs−2k+1) ,

u(2k+1) =
k−1∑
�=0

(−1)� Ã�f(2k−2�−1) + (−1)k Ãku′ ∈ C0([0, T ];Vs−2k) ,
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as long as 2k − 2, respectively 2k − 1 ≤ m − 1. Thus, in any case, u(m) ∈
C1([0, T ];Vs−m) ∩ C0([0, T ];Vs−m+1).

On the other hand, consider the generalised second-order problem:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Find v such that
d2v

dt2
+ Ãv = f(m), t > 0 ;

v(0) = um ,
dv

dt
(0) = um+1,

(4.31)

where the initial conditions are defined by the formula

u2k =
k−1∑
�=0

(−1)� Ã�f(2k−2�−2)(0) + (−1)k Ãku0 ; (4.32)

u2k+1 =
k−1∑
�=0

(−1)� Ã�f(2k−2�−1)(0) + (−1)k Ãku1 . (4.33)

According to the previous calculations, um ∈ Vs−m+1 and um+1 ∈ Vs−m. As it also
holds that f (m) ∈ Lp(0, T ;Vs−m), Problem (4.31) admits a unique solution in the
space C1([0, T ];Vs−m) ∩ C0([0, T ];Vs−m+1), which is obviously equal to u(m).

Assume now that (um, um+1) ∈ Vs+1 × Vs . Again invoking Theorem 4.4.3,
we see that Problem (4.31) also admits a unique solution in the smaller space
C1([0, T ];Vs) ∩ C0([0, T ];Vs+1), which necessarily coincides again with u(m).
Therefore, u ∈ Cm+1([0, T ];Vs)∩Cm([0, T ];Vs+1), as announced. The regularity
u ∈ Wm+2,p(0, T ;Vs−1) again follows from u′′ = f − Ãu, and the continuous
dependence from Theorem 4.4.3.

4.4.2 Problems with Constraints

Now, we proceed to the framework of constrained problems. We thus consider
a sesquilinear form b on V × Q, satisfying the inf-sup condition (4.10), its
kernel K and L is the closure of K within H. Furthermore, we assume the double
orthogonality property of Definition 4.3.17.We begin by deducing two fundamental
consequences of this property.

Lemma 4.4.5 Assume that the sesquilinear, continuous and Hermitian form a

fulfills property (4.15) with ν = 0, and that the double orthogonality property holds
between V and H. Then, for any v ∈ Vs with s ≥ 0, its H-orthogonal projections
v‖ ∈ L and v⊥ ∈ L⊥ belong to Vs , with ‖v‖‖2V s + ‖v⊥‖2V s = ‖v‖2V s .
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Proof Let e be a solution to (4.28). Taking a test function v‖ ∈ K and using the
double orthogonality, one obtains a(e‖, v‖) = λ (e‖, v‖)H. Again invoking the
double orthogonality, one arrives at:

a(e‖, v) = λ (e‖, v)H, ∀v ∈ V, and similarly, a(e⊥, v) = λ (e⊥, v)H.

In other words, the projections onto K and K⊥ of any eigenfunction are either an
eigenfunction, or zero. Thus, the Hilbert basis (ei )i∈N can be chosen such that all its
elements belong either to K or to K⊥. Let I‖ (respectively I⊥) be the set of indices i

such that ei ∈ K (respectively ei ∈ K⊥). Then, we have:

∀v =
∑
i∈N

vi ei ∈ H, v‖ =
∑
i∈I‖

vi ei and v⊥ =
∑
i∈I⊥

vi ei .

The conclusion follows using the property (4.29).

Lemma 4.4.6 Assume the hypotheses of Lemma 4.4.5, and introduce the respective
subspacesF s ⊂ Q′ andQs ⊂ Q (for s ≥ 0), equipped with their canonical norms:

F s = B(Vs+2) = B(Vs+2 ∩ K⊥),

Qs = {q ∈ Q : B†q ∈ Vs−1}.

Then, for any y ∈ Vs and μ ∈ F s , the solution to the problem

Find (u, r) ∈ V × Q such that

∀v ∈ V, a(u, v) + b(v, r) = (y, v)H, (4.34)

∀q ∈ Q, b(u, q) = 〈μ, q〉Q, (4.35)

belongs to Vs+2 × Qs+1, and ‖u‖V s+2 + ‖r‖Qs+1 � ‖y‖V s + ‖μ‖F s .

Remark 4.4.7 It holds that: Q0 = Q, Q1 = Qw, Q2 = Qww , as in Eq. (4.25).
The scale (F s)s can be extended to s ≥ −1, and even to s ≥ −2, provided the
sesquilinear form bw satisfies an inf-sup condition onH × Qw: F s = Bw(Vs+2) =
Bw(Vs+2 ∩ L⊥); in particular, F−1 = B(V) = Q′ and F−2 = Bw(H) = Q′

w.

Proof Decompose u = u‖ + u⊥ ∈ K ⊕ K⊥ and y = y‖ + y⊥ ∈ L ⊕ L⊥. By
definition of F s , there exists ũ ∈ Vs+2 ∩ K⊥ such that Bũ = μ. On the other hand,
Eq. (4.35) is equivalent to Bu⊥ = μ. By Lemma 4.2.18, this equation has a unique
solution in K⊥; hence, u⊥ = ũ, and ‖u⊥‖V s+2 � ‖μ‖F s by definition of the latter
norm.

Reasoning as in Lemma 4.4.5, we see that (4.34) implies that

a(u‖, v) = (y‖, v)H, ∀v ∈ V, i.e., Awu‖ = y‖ ∈ Vs .



180 4 Abstract Mathematical Framework

Therefore, u‖ ∈ Vs+2 and ‖u‖‖V s+2 � ‖y‖‖V s � ‖y‖V s . Finally, Eq. (4.34) is
rewritten as: B†r = y−Au ∈ Vs , i.e., r ∈ Qs+1 and ‖r‖Qs+1 � ‖y‖V s +‖u‖V s+2 �
‖y‖V s + ‖μ‖F s .

With these tools, one can determine the regularity of the solution to the mixed
problem (4.21). We concentrate on solutions more regular in space and time than
those provided by Theorem 4.3.22 or Remark 4.3.23, which are needed for the
numerical analysis [17].

Theorem 4.4.8 Assume that the canonical imbedding iV→H is compact, that the
sesquilinear, continuous and Hermitian form a fulfills property (4.15) with ν = 0,
that the sesquilinear and continuous form b satisfies the inf-sup condition (4.10) for
some β > 0, that the sesquilinear and continuous form bw satisfies a similar inf-sup
condition in H × Qw, and that the double orthogonality property holds between V
andH.

Let T > 0, s ≥ 1, p ≥ 1 andm ∈ N be given. Suppose that the data (f, g, u0, u1)

of Problem (4.21) satisfy the following regularity and compatibility properties:

1. f ∈ Wm,p(0, T ;Vs);
2. g ∈ Cm([0, T ];F s−1) ∩ Cm+1([0, T ];F s−2) ∩ Wm+2,p(0, T ;F s−3);
3. u0 ∈ Vs+1 and u1 ∈ Vs , and the conditions (4.26) hold;
4. the quantities um‖ and um+1,‖, defined by the formulas (4.32) and (4.33) in

function of the projections u0‖, u1‖,
(
f

(�)
‖ (0)

)
�=0, ..., m−2

onto L, belong,

respectively, to Vs+1 and Vs .

Then, the solution (u, p) to Problem (4.21) satisfies

(u, u′) ∈ Cm([0, T ];Vs+1 × Vs) , (u′′, p) ∈ Wm,p(0, T ;Vs−1 × Qs ),

and depends continuously on the data (f, g, u0, u1, um‖, um+1,‖) in their respective
spaces.

Proof We take the characterisations of (u‖, u⊥, p) from the proof of Theo-
rem 4.3.19. The parallel component u‖ is the solution to the unconstrained evolution
problem:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Find u‖ such that
d2u‖
dt2

+ Awu‖ = f‖, t > 0 ;
u‖(0) = u0‖ ,

du‖
dt

(0) = u1‖ ;

and one applies Theorem 4.4.4. The perpendicular component u⊥ is defined, at each
time, by the conditions

∀q ∈ Q, b(u⊥(t), q) = 〈g(t), q〉Q or ∀q ∈ Qw, bw(u⊥(t), q) = 〈g(t), q〉Qw .
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Applying Lemma 4.2.18, one finds u⊥ ∈ Cm([0, T ];Vs+1) ∩ Cm+1([0, T ];Vs) ∩
Wm+2,p(0, T ;Vs−1), the continuous dependence following from the definition of
the spaces Fσ and their norms. Finally, the multiplier p satisfies

B†p = f − u′′ − Awu ∈ Wm,p(0, T ;Vs−1),

the norm of the r.h.s. being bounded by that of the data in their respective spaces.
Hence, p ∈ Wm,p(0, T ;Qs) by definition of the latter space, with continuous
dependence on the data.

Remark 4.4.9 Let us comment on the assumptions of this theorem.

• The form bw and its inf-sup condition are not needed if s ≥ 2.
• If f ∈ Wm,1(0, T ;Vs) ∩ Cm([0, T ];Vs−1) or f ∈ Wm+1,1(0, T ;Vs−1), and

moreover, g ∈ Cm+2([0, T ];F s−3), then (u′′, p) ∈ Cm([0, T ];Vs−1 × Qs).
• The regularity assumption on g has been chosen by an “aesthetic” criterion, viz.,

that u⊥ and u‖ should have the same space-time regularity. For the purpose of
convergence analysis, this is not always necessary: the regularity of u can be
limited by that of u⊥. In that case, it suffices to remark that u⊥ ∈ E([0, T ];Vσ )—
for any space E measuring time regularity on [0, T ]—iff g ∈ E([0, T ];Fσ−2).

4.5 Time-Harmonic Problems

To conclude this brief overview, we consider classes of problems that stand in-
between static and time-dependent formulations. From a practical point of view, it
is assumed that the time-dependence is explicitly known—in exp(−ıωt)—which
allows us to remove the time variable from the formulation. We shall consider
two cases, depending on whether the pulsation ω of the signal is data, i.e., the
fixed frequency problem, or it is an unknown, to be determined, i.e., the unknown
frequency problem. From an abstract point of view, they respectively correspond
to Helmholtz-like problems, and to eigenproblems. We again provide elements of
proofs in this section.

4.5.1 Helmholtz-Like Problem

Let H and V be two Hilbert spaces, such that V is a vector subspace of H with
continuous imbedding iV→H . In what follows, we choose H as the pivot space. Let
a(·, ·) be a sesquilinear continuous form on V × V , A the corresponding operator
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defined at (4.4) with V = W , and λ ∈ C \ {0}. Given f ∈ V ′, the Helmholtz-like
problem to be solved is

{
Find u ∈ V such that
∀v ∈ V, a(u, v) + λ(u, v)H = 〈f, v〉. (4.36)

Such problems are usually solved with the help of the Fredholm alternative.

Theorem 4.5.1 (Helmholtz-Like Problem) Assume that the sesquilinear form a

is such that A is an isomorphism from V to V ′, and that the canonical imbedding
iV→H is compact. Then:

– either, for all f ∈ V ′, Problem (4.36) has one, and only one, solution u, which
depends continuously on f ;

– or, Problem (4.36) has solutions if, and only if, f satisfies a finite number
nλ of orthogonality conditions. Then, the space of solutions is affine, and the
dimension of the corresponding linear vector space (i.e., the kernel) is equal to
nλ. Moreover, the part of the solution that is orthogonal to the kernel depends
continuously on the data.

Proof Since the operator A−1 is well-defined, one can replace the right-hand side
with a(A−1f, v) in (4.36). Also, one can replace the second term as follows. We
mention the imbedding iV→H explicitly here, to write

∀v ∈ V, (u, v)H = (iV →Hu, v)H = 〈iV →Hu, v〉 = a(A−1 ◦ iV→H u, v).

So, Problem (4.36) equivalently rewrites

{
Find u ∈ V such that
(IV + λA−1 ◦ iV →H )u = A−1f in V.

To conclude, we note that iV→H is a compact operator, whereas A−1 is a bounded
operator. According to Proposition 4.1.2, A−1 ◦ iV →H is a compact operator of
L(V ), so that Theorem 4.1.18 and Corollary 4.1.19 (Fredholm alternative) yield the
desired result as far as the alternative is concerned.

There remains to study the continuous dependence of the solution with respect
to the data. Let T = IV + λA−1 ◦ iV →H , Kλ = ker(T ) and Rλ = R(T ).

First, assume that Kλ = {0}. According to Theorem 4.1.18, T is a bijective
mapping of L(V ). Then, the Open Mapping Theorem 4.1.4 states that T −1 belongs
to L(V ), so one concludes that

‖u‖V ≤ |||T −1||| |||A−1||| ‖f ‖V ′ .

Or, assume that Kλ is a finite-dimensional space of V that is not reduced to {0}.
Let nλ = dimKλ. According to Theorem 4.1.18, Rλ is a closed subspace of V ,
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and codimRλ = nλ. Moreover, the restriction of T to K⊥
λ , denoted by T|K⊥

λ
, is a

bijective mapping from K⊥
λ to Rλ. Thus, Problem (4.36) has a solution if, and only

if, f satisfies nλ orthogonality conditions. In this case, the solution u can be written
as u = u⊥ + u0, where u⊥ belongs to K⊥

λ and is unique, and u0 is any element of
the kernel Kλ. When these conditions are met, one has

‖u⊥‖V ≤ |||(T|K⊥
λ
)−1||| |||A−1||| ‖f ‖V ′ .

Remark 4.5.2 For practical situations that ensure that A−1 is well-defined, we refer
to Remark 4.2.15.

Corollary 4.5.3 (Helmholtz-Like Problem) Provided there exists μ ∈ C such
that the sesquilinear form a(·, ·) + μ(·, ·)H is coercive on V × V , and provided the
canonical imbedding iV →H is compact, the conclusions of Theorem 4.5.1 apply.

Proof In Problem (4.36), one simply replaces a(u, v) + λ(u, v)H with {a(u, v) +
μ(u, v)H } + {λ − μ}(u, v)H .

Remark 4.5.4 It is possible to use compact operators of L(H) instead. For illustra-
tive purposes, we adopt this point of view in the next subsection.

Remark 4.5.5 Static problems can be seen as Helmholtz-like problems with λ = 0.
Also, in the particular case when a(·, ·) is coercive and λ ≥ 0, the sesquilinear form
a(u, v)+λ(u, v)H is directly coercive on V ×V , so the Lax-MilgramTheorem 4.2.8
applies: Problem (4.36) is well-posed in the Hadamard sense. On the other hand,
when λ < 0, the form v �→ a(v, v) + λ‖v‖2H can be indefinite (no specific sign). In
this case, Problem (4.36) is well-posed in the Fredholm sense.

This result can be recast quite simply into the so-called coercive + compact
framework. Let c(·, ·) be a second continuous sesquilinear form on H × V . Given
f ∈ V ′, the second Helmholtz-like problem to be solved is

{
Find u ∈ V such that
∀v ∈ V, a(u, v) + c(u, v) = 〈f, v〉. (4.37)

Remark 4.5.6 Problems (4.36) and (4.37) belong to the class of perturbed problems,
here with a compact perturbation.

The previous Theorem can thus be generalized.

Theorem 4.5.7 (Helmholtz-Like Problem) Assume that the sesquilinear form a

is such that A is an isomorphism from V to V ′ and that the canonical imbedding
iV→H is compact. Then:

– either, for all f ∈ V ′, Problem (4.37) has one, and only one, solution u, which
depends continuously on f ;
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– or, Problem (4.37) has solutions if, and only if, f satisfies a finite number nc of
orthogonality conditions. Then, the space of solutions is affine, and the dimension
of the corresponding linear vector space (the kernel) is equal to nc. Moreover,
the part of the solution that is orthogonal to the kernel depends continuously on
the data.

Proof (Sketched) Remark that, for all u, v ∈ V , c(u, v) = c(iV→Hu, v).
Given h ∈ H , Problem

{
Find w ∈ V such that
∀v ∈ V, a(w, v) = c(h, v)

admits one, and only one solution, and the mapping Tc : h �→ w belongs to
L(H, V ). Thus, the Helmholtz-like problem (4.37) can be rewritten equivalently as

{
Find u ∈ V such that
(IV + Tc ◦ iV →H)u = A−1f in V.

One concludes as in the proof of Theorem 4.5.1.

We now turn to Helmholtz-like problems with constraints. Let us introduce a third
Hilbert space, denoted by Q, g ∈ Q′ and b(·, ·), a continuous sesquilinear form on
V × Q. The Helmholtz-like problem with constraints is formulated as follows:

⎧⎨
⎩
Find (u, p) ∈ V × Q such that
∀v ∈ V, a(u, v) + c(u, v) + b(v, p) = 〈f, v〉
∀q ∈ Q, b(u, q) = 〈g, q〉.

(4.38)

We introduce once more the kernel of b(·, ·),
K = {v ∈ V : ∀q ∈ Q, b(v, q) = 0}.

Let us assume that the form b satisfies the inf-sup condition (4.10) for some β > 0.
According to Lemma 4.2.18, there exists14 one, and only one, ug ∈ K⊥ such that
Bug = g. Let us introduce f ′ ∈ V ′ defined by

∀v ∈ V, 〈f ′, v〉 = 〈f, v〉 − a(ug, v) − c(ug, v).

It is then possible to consider another Helmholtz-like problem, set in K . It writes

{
Find u0 ∈ K such that
∀v‖ ∈ K, a(u0, v‖) + c(u0, v‖) = 〈f ′, v‖〉. (4.39)

14Since g can be any element of Q′, one has to assume that B is surjective. If g = 0, then this
inf-sup condition could be dropped to formulate the Helmholtz-like problem set in K . However, it
is useful in Proposition 4.5.8.
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One relates those two Helmholtz-like problems with constraints in the follow-
ing way.

Proposition 4.5.8 Assume that the form b satisfies the inf-sup condition (4.10) for
some β > 0. Let ug ∈ K⊥ be characterized as Bug = g.

1. If there exists (u, p) a solution to (4.38), then u − ug solves (4.39).
2. If there exists u0 a solution to (4.39), then there exists p ∈ Q such that (u0 +

ug, p) solves (4.38).

Proof

1. Straightforward.
2. Let u′ = u0 + ug . By definition, one has

∀q ∈ Q, b(u′, q) = 〈g, q〉.

Let v ∈ V be split as v = v‖ + v⊥, with (v‖, v⊥) ∈ K × K⊥.

a(u′, v) + c(u′, v) = 〈f, v‖〉 + a(u′, v⊥) + c(u′, v⊥)

= 〈f, v〉 + {a(u′, v⊥) + c(u′, v⊥) − 〈f, v⊥〉}.

The antilinear form v �→ a(u′, v⊥)+ c(u′, v⊥)−〈f, v⊥〉 belongs to the polar set
of K . From Lemma 4.2.18, there exists p ∈ Q such that

∀v ∈ V, a(u′, v) + c(u′, v) − 〈f, v〉 = −b(v, p).

It follows that the couple (u′, p) solves (4.38).

From there, one can state the result in regard to Helmholtz-like problems with
constraints.

Theorem 4.5.9 (Helmholtz-Like Problem with Constraints) Assume that the
sesquilinear form a is coercive on K , that the canonical imbedding iK→H is
compact, and finally, that the form b satisfies the inf-sup condition (4.10) for some
β > 0. Then, the Helmholtz-like problems (4.38) and (4.39) fit into the coercive +
compact framework.

Proof According to the previous proposition, we know that Problem (4.38) admits
a solution u if, and only if, Problem (4.39) admits a solution u0. Moreover, the two
are related by u = u0 + ug, with ug ∈ K⊥ being unique and such that ‖ug‖V ≤
β−1‖g‖Q′ (Lemma 4.2.18). This characterizes the part of the solution (if it exists. . . )
to Problem (4.38) that belongs to K⊥. So, for simplicity, we assume that g = 0 so
that u0 = u (and f ′ = f ), and we choose to focus on Problem (4.39) from now on.
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Since a(·, ·) is coercive on K , and since b(·, ·) satisfies an inf-sup condition, the
Babuska-Brezzi Theorem 4.2.19 states that, given f ∈ V ′, Problem

⎧⎨
⎩
Find (w, r) ∈ V × Q such that
∀v ∈ V, a(w, v) + b(v, r) = 〈f , v〉
∀q ∈ Q, b(w, q) = 0

is well-posed, and the mapping T : f �→ w belongs toL(V ′,K). In (4.39), one can
thus replace the right-hand side with a(Tf, v‖), whereas the second term is likewise
replaced with a(Tc ◦ iK→Hu0, v‖). Thanks to the coerciveness of the form a on K ,
Problem (4.38) rewrites

{
Find u0 ∈ K such that
(IK + Tc ◦ iK→H)u0 = Tf in K.

Noting that Tc ◦ iK→H is a compact operator of L(K), we conclude by using the
Fredholm alternative.

4.5.2 Eigenproblem

Let H and V be two Hilbert spaces, such that V is a separable, dense, vector
subspace of H with continuous imbedding iV→H . We choose H as the pivot space.
Let a(·, ·) be a sesquilinear continuous form on V × V with the associated operator
A ∈ L(V , V ′). The eigenproblem to be solved is

{
Find (u, λ) ∈ (V \ {0}) × C such that
∀v ∈ V, a(u, v) = λ(u, v)H .

(4.40)

With a slight abuse of notations, we say that u is an eigenvector, λ is an eigenvalue,
and (u, λ) is an eigenpair. As a matter of fact, assume that the operator A is an
isomorphism, and let T ∈ L(H, V ) be defined by

g �→ Tg = w, w solution to

{
Find w ∈ V such that
∀v ∈ V, a(w, v) = (g, iV →H v)H .

Above,w is well-defined, because A is an isomorphism. Indeed, one can replace the
right-hand side (g, iV →Hv)H with 〈iH→V ′g, v〉V , so that w = A−1 ◦ iH→V ′g. In
terms of operators, one has T = A−1 ◦ iH→V ′ . Next, let

TH = iV→H ◦ T ∈ L(H).
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Given a solution (u, λ) of (4.40), one finds that THu = λ−1 u, i.e., u belongs to the
eigenspace Eλ−1(TH ).15 Thus, in H , the eigenproblem (4.40) boils down to:

{
Find (u, ν) ∈ (H \ {0}) × C such that
νu = THu

,

where ν = λ−1 �= 0: (u, ν) is an eigenpair of TH , which justifies a posteriori
the definition of (u, λ) as an eigenpair of (4.40). One has R(TH ) ⊂ V , so all
eigenvectors belong to V .

Finally, if the canonical imbedding iV→H is compact, then, by construction, TH

is a compact operator (see Proposition 4.1.2) and one may apply Theorem 4.1.7.

Theorem 4.5.10 (Eigenvalues) Assume that the operator A is an isomorphism
and that the canonical imbedding iV→H is compact. Then, 0 is not an eigenvalue of
Problem (4.40). Moreover, the eigenvalues are all of finite multiplicities and the set
of their moduli can be reordered as a nondecreasing sequence whose limit is +∞.

One can be more precise, with the help of Theorem 4.1.20. This requires a compact
and self-adjoint operator16 TH , for which it is sufficient to have a Hermitian form
a (apply Proposition 4.1.13). In this case, the geometric and algebraic multiplicities
of all eigenvalues coincide.

Theorem 4.5.11 (Eigenproblem) Assume that the sesquilinear form a is Her-
mitian, that the operator A is an isomorphism and that the canonical imbedding
iV→H is compact. Thus, 0 is not an eigenvalue. Moreover, there exists a Hilbert
basis (ek)k of H made of eigenvectors of Problem (4.40) with corresponding real
eigenvalues (λk)k . Finally, the eigenvalues are all of finite multiplicities and (|λk|)k
can be reordered as an increasing sequence whose limit is +∞.

Corollary 4.5.12 (Eigenproblem) In addition to the hypotheses of Theo-
rem 4.5.11, assume that the sesquilinear form a is coercive. In this case, all
eigenvalues (λk)k are strictly positive, and (λ

−1/2
k ek)k is a Hilbert basis for V .

We turn to an eigenproblem with constraints. Let us introduce the third Hilbert
space, Q, b(·, ·), a continuous sesquilinear form on V × Q, and the kernel of b(·, ·),

K = {v ∈ V : ∀q ∈ Q, b(v, q) = 0}.

The eigenproblem set in K writes

{
Find (u, λ) ∈ (K \ {0}) × C such that
∀v ∈ K, a(u, v) = λ(u, v)H .

(4.41)

15Because the operator A is an isomorphism, one has λ �= 0, as it holds that Au = λ u in V ′, with
u �= 0.
16One can check that T ∗

H = iV →H ◦ (A−1)† ◦ iH→V ′ .
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Define L as the closure of K in H . The notion of double orthogonality refers to
Definition 4.3.17.

Theorem 4.5.13 (Eigenproblem with Constraints) Assume that the sesquilinear
form a is coercive and Hermitian on K , that the canonical imbedding iK→H is
compact, and a double orthogonality property of K and K⊥ with respect to a(·, ·)
and (·, ·)H . Thus, 0 is not an eigenvalue. Moreover, there exists a Hilbert basis (fk)k
of L made of eigenvectors of Problem (4.41) with corresponding eigenvalues (νk)k ,
such that (ν−1/2

k fk)k is a Hilbert basis for K . Furthermore, the eigenvalues can be
reordered as an increasing sequence of real, strictly positive, numbers whose limit
is +∞. Finally, solving (4.41) is equivalent to solving

{
Find (u, λ) ∈ (K \ {0}) × C such that
∀v ∈ V, a(u, v) = λ(u, v)H .

(4.42)

Proof Endow L with the norm of H , respectively K with the norm of V . L and
K are two Hilbert spaces, and K is, by definition, a dense vector subspace of L

with continuous imbedding. Thus, all the assumptions of Theorem 4.5.11 and its
Corollary 4.5.12 are fulfilled, so the results on the eigenvalues and Hilbert bases of
L, respectively K follow.
Finally, if (u, λ) solves (4.42), it obviously solves (4.41). Reciprocally, if (u, λ)

solves (4.41), then given a test function v ∈ V split as v = v‖ + v⊥ with v‖ ∈ K ,
v⊥ ∈ K⊥, it holds that

a(u, v) = a(u, v‖)
(4.41)= λ(u, v‖)H = λ(u, v)H ,

thanks to the double orthogonality property. Hence, (u, λ) solves (4.42).

On the other hand, an eigenproblem with constraints can be formulated in mixed
form

⎧
⎨
⎩
Find (u, p, λ) ∈ (V \ {0}) × Q × C such that
∀v ∈ V, a(u, v) + b(v, p) = λ(u, v)H

∀q ∈ Q, b(u, q) = 0.
(4.43)

Note that we do not impose that p �= 0, since the eigenvector of interest is u (cf.
[50] for an illuminating discussion on this topic). It is interesting to compare the two
eigenproblems (4.41) and (4.43).

Proposition 4.5.14 One has the following results:

1. Let (u, p, λ) be an eigentriple of (4.43): (u, λ) is an eigenpair of (4.41).
2. Assume that the form b satisfies the inf-sup condition (4.10) for some β > 0.

Let (u, λ) be an eigenpair of (4.41): there exists p ∈ Q such that (u, p, λ) is an
eigentriple of (4.43).
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3. Assume further a double orthogonality property of K and K⊥ with respect to the
form a and (·, ·)H . Any eigentriple (u, p, λ) of (4.43) is such that p = 0.

Proof Let us proceed sequentially.

1. Let (u, p, λ) be an eigentriple of (4.43). According to the second equation u

belongs to K . Then, taking v ∈ K in the first equation, one recovers the statement
of (4.41). So, (u, λ) is an eigenpair of (4.41).

2. Conversely, let (u, λ) be an eigenpair of (4.41). From the definition of K , we
conclude that, for all q ∈ Q, b(u, q) = 0. Next, splitting v ∈ V as v = v‖ + v⊥
with (v‖, v⊥) ∈ K × K⊥, one obtains

a(u, v) − λ(u, v)H = a(u, v⊥) − λ(u, v⊥)H ,

since (u, λ) solves (4.41). It follows (as usual) that the antilinear form v �→
a(u, v⊥)−λ(u, v⊥)H belongs to the polar set of K . According to Lemma 4.2.18
(b(·, ·) satisfies an inf-sup condition), there exists p ∈ Q such that

∀v ∈ V, a(u, v) − λ(u, v)H = −b(v, p).

In other words, (u, p, λ) is an eigentriple of (4.43).
3. Finally, let us assume a double orthogonality property, and consider an eigen-

triple (u, p, λ) of (4.43). Recall that (u, λ) is an eigenpair of (4.41) (see step 1.).
According to Lemma 4.2.18, it is enough to prove that B†p = 0. To that aim,
consider any v = v‖ + v⊥ with (v‖, v⊥) ∈ K × K⊥, and compute

〈B†p, v〉 = b(v, p) = λ(u, v)H − a(u, v)

= {λ(u, v‖)H − a(u, v‖)} + {λ(u, v⊥)H − a(u, v⊥)} = 0.

Above, the first part vanishes because (u, λ) solves (4.41), whereas the second
part vanishes thanks to the double orthogonality property. The conclusion
follows.

4.6 Summing Up

We note that, according to the mathematical framework we have developed, the
problems we solve are usually composed of two parts:

• A function space in which we look for the solution, endowed with a given norm
to measure it;

• A set of equations or, in the Variational Formulations, the result of the action of
the solution on test functions.
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When the first statement is not explicitly stated, one has to be careful! As an
example, we refer the interested reader to Grisvard’s works, for instance, [125],
in which singular solutions of the Poisson problem are exhibited: these solutions
are governed by the homogeneous Poisson problem, so, at first glance, one would
expect the solution to be zero, but this is not the case!

As far as Maxwell’s equations and related models are concerned, Chap. 1 deals
mainly with (sets of) equations, that is, the second statement. On the other hand,
no information is provided as to the relevant spaces of solutions, the first statement.
Therefore, in order to solve those problems, one has to build those spaces, using,
for instance, the expression of the electromagnetic energy, or the expression of
Coulomb’s law. These topics will be addressed at length in Chaps. 5, 6, 7 and 8.
To that aim, we introduced (quite) well-known classes of function spaces in the
previous chapter, Lebesgue or Sobolev spaces, for the most part. We also provided
some results about the norms that can be used to measure elements of those spaces.
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