
Chapter 2
Basic Applied Functional Analysis

To measure data and solutions spatially, we recall a number of useful definitions
and results on Lebesgue and standard Sobolev spaces. Then, we introduce more
specialized Sobolev spaces, which are better suited to measuring solutions to
electromagnetics problems, in particular, the divergence and the curl of fields. This
also allows one to measure their trace at interfaces between two media, or on the
boundary. Last, we construct ad hoc function spaces, adapted to the study of time-
and space-dependent electromagnetic fields.

For bibliographical references on the general results, we refer the reader to [3, 4,
62, 91–93, 114, 124, 125, 157, 166, 185, 199, 207]. For some of the more specialized
results, we provide references along the way.

2.1 Function Spaces for Scalar Fields

Unless otherwise specified, the function spaces will be defined on a subset of Rn

(possibly Rn itself). The definitions and properties that we list hereafter can depend
on the category of subsets of Rn on which they are given. We shall consider three
categories: (C1) open subsets, (C2) open subsets with Lipschitz boundary, and (C3)
bounded, open connected subsets with Lipschitz boundary, also called domains. The
last category will include an important subcategory, the curved polyhedra, that is,
domains with a piecewise smooth, curved boundary.

An element α = (α1, · · · , αn) of Nn is called a multi-index, with |α| =∑n
j=1 αj . The partial derivative of order α is further denoted by

∂αf = ∂ |α|f
∂x

α1
1 · · · ∂x

αn
n

.

Let dx = dx1dx2 · · · dxn denote the Lebesgue measure in Rn.
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74 2 Basic Applied Functional Analysis

Category (C1) Open subsets of Rn.
Consider a set Ω that belongs to the category (C1).
Let us begin with the Lebesgue spaces Lp(Ω), for 1 ≤ p ≤ ∞. One usually

considers complex-valued functions, but all definitions are easily extended to real-
valued function spaces. Details on Banach and Hilbert spaces, and also on the
duality and interpolation theories, can be found in Sect. 4.1.

Definition 2.1.1 The space Lp(Ω) is composed of all complex-valued, Lebesgue-
measurable functions f on Ω , and such that

⎧
⎨

⎩
for 1 ≤ p < ∞ ‖f ‖Lp(Ω) :=

{∫

Ω

|f |p dx

}1/p
< ∞

for p = ∞ ‖f ‖L∞(Ω) := esssupx∈Ω |f (x)| < ∞
.

Endowed with the norm ‖ · ‖Lp(Ω), Lp(Ω) is a Banach space and, for 1 ≤ p < ∞,
is separable.

Let p ∈ [1,∞], f1 = f2 in Lp(Ω) mean that f1, f2 ∈ Lp(Ω) and f1 = f2 almost
everywhere in Ω . One can then define the spaces of functions that are locally in Lp

in the following way. If1 f 1K belongs to Lp(Ω) for every compact subset K of Ω ,
then f is locally in Lp(Ω), and one writes

f ∈ L
p

loc(Ω).

One then has a stability result of the multiplication by elements of L∞(Ω).

Proposition 2.1.2 Let 1 ≤ p ≤ ∞. The multiplication is a continuous bilinear
mapping from L∞(Ω) × Lp(Ω) to Lp(Ω).

Given 1 ≤ p ≤ ∞, one defines its conjugate exponent p′ as 1/p + 1/p′ = 1. The
Hölder inequality yields the next result.

Proposition 2.1.3 Let 1 ≤ p ≤ ∞ and p′ be its conjugate exponent. Then, given
(f, g) ∈ Lp(Ω) × Lp′

(Ω), one has fg ∈ L1(Ω).

One can build dual spaces of the Lebesgue spaces.

Proposition 2.1.4 Let 1 ≤ p < ∞ and p′ be its conjugate exponent. Then, the
dual space of Lp(Ω) can be identified with Lp′

(Ω): (Lp(Ω))′ = Lp′
(Ω). On the

other hand, L1(Ω) ⊂ (L∞(Ω))′ but (L∞(Ω))′ �= L1(Ω).

Emphasis is then laid on the L2(Ω) space, which is, in addition, a separable Hilbert
space.

Proposition 2.1.5 The space L2(Ω) is a separable Hilbert space, endowed with
the scalar product

(f |g) :=
∫

Ω

f g dx.

1Given any subset S of Rn, 1S denotes the indicator function of S.
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Let us recall now some basic ideas about distributions, including the definition
of differentiation in the sense of distributions. We begin with the space D(Ω) of
infinitely differentiable functions,2 with compact support on Ω . Classically, this
function space is not reduced to {0}. In practice, one can use the convergence of
sequences to define the topology. Let (fk)k be a sequence of elements of D(Ω): it
converges in D(Ω) to f if, and only if:

(i) there exists a compact subset K of Ω such that supp(fk) ⊂ K , for large
enough k;

(ii) for all multi-indices α, (∂αfk)k converges uniformly in K to ∂αf .

Definition 2.1.6 A linear and continuous form T defined on D(Ω) is called a
distribution. The space of distributions is denoted by D′(Ω).

Let T ∈ D′(Ω) and f ∈ D(Ω): the action of T on f is written with the help of
duality brackets, that is,

〈T , f 〉.

According to the topology on D(Ω), T is continuous, provided that

∀(fk)k, f ∈ D(Ω) such that fk → f in D(Ω), 〈T , fk〉 → 〈T , f 〉.

A few examples will be provided in the sequel (2.1), (2.5), (2.6). As a dual space,
D′(Ω) can be equipped in a “natural” way with a topology, called the weak-star
topology.

Definition 2.1.7 Let (Tk)k be a sequence of elements of D′(Ω): it converges in
D′(Ω) to T if, and only if, for all f in D(Ω), 〈Tk, f 〉 → 〈T , f 〉.
One can easily prove the imbedding

L1
loc(Ω) ⊂ D′(Ω), (2.1)

by identifying elements f of L1
loc(Ω) with distributions, still denoted by f ,

according to

∀g ∈ D(Ω), 〈f, g〉 =
∫

Ω

f g dx. (2.2)

Since, for p ∈ [1,∞], one has Lp(Ω) ⊂ L
p

loc(Ω) ⊂ L1
loc(Ω), one can also

consider elements of Lp(Ω) or L
p

loc(Ω) as distributions. In particular, given f ∈
L2(Ω), one has 〈f, g〉 = (f |g) for all g ∈ D(Ω).

Let us recall a property that will be used throughout this book, namely. . .

2The space D(Ω) can also be denoted by C∞
c (Ω), where the index c stands for compact support.
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Proposition 2.1.8 Let f1 and f2 be two elements of L1
loc(Ω). The relation

〈f1, g〉 = 〈f2, g〉 for all g ∈ D(Ω) implies that f1 = f2 almost everywhere
in Ω .

Now, one can introduce the notion of differentiation in the sense of distributions.

Definition 2.1.9 Let T ∈ D′(Ω). Its j -th partial derivative (j = 1, · · · , n) is
defined by

∀f ∈ D(Ω), 〈 ∂T

∂xj

, f 〉 = −〈T ,
∂f

∂xj

〉.

One thus has. . .

Proposition 2.1.10 The mapping T 
→ ∂jT is linear and continuous from D′(Ω)

to D′(Ω).

Since L2(Ω) is a subspace of D′(Ω) (by identification, cf. (2.2)), it is therefore
possible to differentiate its elements in the sense of distributions. We define below
the first Sobolev space in a long series.

Definition 2.1.11 Let H 1(Ω) := {f ∈ L2(Ω) : ∂jf ∈ L2(Ω), j = 1, · · · , n},
where differentiation is understood in the sense of distributions (Definition 2.1.9).
An associated norm is

‖f ‖H 1(Ω) :=
{∫

Ω

(|f |2 + | gradf |2) dx

}1/2
.

It is a separable Hilbert space, endowed with the scalar product

(f, g)H 1(Ω) :=
∫

Ω

(f g + gradf · gradg) dx.

It is also possible to give an equivalent definition of H 1(Ω).

Proposition 2.1.12 Let f ∈ L2(Ω). Then, f belongs to H 1(Ω) if, and only if,
there exist C1, · · · , Cn ≥ 0, such that, for j = 1, · · · , n,

∀g ∈ D(Ω),

∣
∣
∣
∣(f | ∂g

∂xj

)

∣
∣
∣
∣ ≤ Cj‖g‖L2(Ω).

Now, let α be a multi-index. From Definition 2.1.9, one recursively deduces. . .

Definition 2.1.13 Let T ∈ D′(Ω); its partial derivative of order α is defined by

∀f ∈ D(Ω), 〈∂αT , f 〉 = (−1)|α|〈T , ∂αf 〉.

When α = (0, · · · , 0), there is no differentiation involved!
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This allows us to consider Sobolev spaces of integer order m, m ≥ 2.

Definition 2.1.14 Let m ∈ N: Hm(Ω) := {f ∈ L2(Ω) : ∂αf ∈ L2(Ω), ∀α ∈
Nn, |α| ≤ m}. The canonical norm is

‖f ‖Hm(Ω) :=
⎧
⎨

⎩

∫

Ω

∑

α∈Nn, |α|≤m

|∂αf |2 dx

⎫
⎬

⎭

1/2

. (2.3)

It is a separable Hilbert space, endowed with the scalar product

(f, g)Hm(Ω) :=
∫

Ω

∑

α∈Nn, |α|≤m

∂αf ∂αg dx.

Finally, | · |Hm(Ω) denotes the semi-norm

|f |Hm(Ω) :=
⎧
⎨

⎩

∫

Ω

∑

α∈Nn, |α|=m

|∂αf |2 dx

⎫
⎬

⎭

1/2

. (2.4)

Remark 2.1.15 If m = 1, the two definitions ofH 1(Ω) coincide, whereas if m = 0,
one has H 0(Ω) = L2(Ω).

Then, one can introduce fractional-order Sobolev spaces, that is, with order s ∈
R+ := [0,∞[. Let us consider the case Ω = Rn, for which one can use the
Fourier transform from L2(Rn) to L2(Rn). Classically, for f ∈ L2(Rn), the Fourier
transform of f is f̂ , given by

∀k ∈ Rn, f̂ (k) = (2π)−n

∫

x∈Rn
f (x) exp(−ık · x) dx .

In particular, one has ‖f̂ ‖L2(Rn) = (2π)−n/2‖f ‖L2(Rn).

Definition 2.1.16 Let s ∈ R+: Hs(Rn) := {f ∈ L2(Rn) : (1 + | · |2)s/2f̂ ∈
L2(Rn)}, with norm

‖f ‖Hs(Rn) :=
{
‖f̂ ‖2

L2(Rn)
+ ‖(1 + | · |2)s/2f̂ ‖2

L2(Rn)

}1/2
.

It is a Hilbert space, endowed with the scalar product

(f, g)Hs (Rn) := (f̂ , ĝ)L2(Rn) +
(
(1 + | · |2)s/2f̂ , (1 + | · |2)s/2ĝ

)

L2(Rn)
.

Obviously, when s ∈ N, Hs(Rn) coincides algebraically and topologically with the
space of Definition 2.1.14 (case Ω = Rn).
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When Ω is an open subset of Rn, let us define Hs(Ω) for s ∈ R+ \ N by
interpolation.

Definition 2.1.17 Let s ∈ R+ \ N, and write s = m + σ , with (m, σ) ∈ N×]0, 1[.
The Hilbert space Hs(Ω) is the interpolated space

Hs(Ω) := [Hm+1(Ω),Hm(Ω)]1−σ .

Its norm and scalar product are denoted by ‖ · ‖Hs(Ω) and (·, ·)Hs(Ω).

Remark 2.1.18 The above Definition is motivated by the fact that, when Ω = Rn,
the definitions via the Fourier transform and the interpolation theory coincide
algebraically and topologically.

One can then define the spaces of functions that are locally in Hs in the following
way. If f belongs to Hs(ω) for every open subset ω of every compact subset of Ω ,
then f is locally in Hs(Ω), and one writes

f ∈ Hs
loc(Ω).

One has the continuous imbeddings, for t > s > 0,

D(Ω) ⊂ Ht(Ω) ⊂ Hs(Ω) ⊂ L2(Ω). (2.5)

To extend the scale of Sobolev spaces to negative fractional order, let us build dual
spaces of the Sobolev spaces Hs(Ω), s ≥ 0. As a matter of fact, one instead
considers the dual spaces of

Hs
0 (Ω) := closure of D(Ω) in Hs(Ω), for s ≥ 0.

As a closed subspace ofHs(Ω),Hs
0 (Ω) is a separable Hilbert space. Themotivation

is twofold:

• By a density argument, one can replace elements of Hs
0 (Ω) with elements of

D(Ω).
• When the boundary of Ω is bounded and appropriately smooth, Hs

0 (Ω) can
be characterized as a subspace of Hs(Ω), the elements of which fulfill some
homogeneous boundary conditions (see Theorem 2.1.62 and Remark 2.1.64.)

NB. It holds that Hs
0 (Rn) = Hs(Rn), for all s ≥ 0.

Definition 2.1.19 For s ≥ 0, the dual space of Hs
0 (Ω) is called H−s(Ω).

The action of elements of H−s(Ω) on elements of Hs
0 (Ω) is denoted with the

help of duality brackets: 〈·, ·〉Hs
0 (Ω).

Its canonical norm is denoted by ‖ · ‖H−s (Ω):

‖f ‖H−s (Ω) := sup
v∈Hs

0 (Ω),v �=0

〈f, v〉Hs
0 (Ω)

‖v‖Hs(Ω)

.
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Endowed with ‖ · ‖H−s (Ω), H−s(Ω) is a Banach space. Furthermore, as the dual of
a (separable) Hilbert space, H−s(Ω) can be made into a (separable) Hilbert space,
with a scalar product (·, ·)H−s (Ω) such that ‖f ‖2

H−s (Ω)
= (f, f )H−s (Ω) for all f ∈

H−s(Ω).

Proposition 2.1.20 Let m ∈ N. The space H−m(Ω) is made up of distributions of
the form

∑

α∈Nn, |α|≤m

∂αfα, with fα ∈ L2(Ω).

Identifying L2(Ω) with its dual space, one has the continuous imbeddings, for t >

s > 0,

L2(Ω) ⊂ H−s(Ω) ⊂ H−t (Ω) ⊂ D′(Ω). (2.6)

In order to deal with functions that are defined on a proper subset of the actual
domain of interest, one has (unfortunately) to introduce a final class of Sobolev
space. . .

Definition 2.1.21 Let s ≥ 0. The space H̃ s(Ω) is composed of elements f of
Hs(Ω) such that the continuation of f by zero outside Ω belongs to Hs(Rn). The
dual space of H̃ s(Ω) is denoted by H̃−s(Ω).

Now, let us consider functions that are defined up to the boundary, i.e., on Ω . To
that aim, we need some additional assumptions, which are summarized below.

Category (C2) Open subsets of Rn, with a Lipschitz boundary.

Definition 2.1.22 Let Ω be an open subset of Rn, with boundary Γ . the boundary
Γ is said to be Lipschitz if, and only if:

• at each point x of Γ , there exists a Lipschitz-continuous mapping (defined on a
hypercube of Rn−1 with values in R), the graph of which locally represents Γ in
a neighborhood of x;

• at each point x of Γ , Ω is locally on one side only of Γ .

Similarly, the boundary is said to be Ck (respectively Ck,1) for k ∈ N∗, when all
local mappings are of regularity Ck (respectively Ck,1).3

3Classically, for k ∈ N, β ∈]0, 1], O ⊂ Rn, Ck,β(O) is the Hölder space defined by

Ck,β(O) := {f ∈ Ck(O) :
∑

α∈�n, |α|=k

sup
x �=y

|∂αf (x) − ∂αf (y)|
|x − y|β < ∞},

where Ck(O) := {f ∈ C0(O) : ∂αf ∈ C0(O), ∀α ∈ Nn, |α| ≤ k}.
Lipschitz-continuity coincides with C0,1 continuity.
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Remark 2.1.23 When Γ is Lipschitz, it is, in particular, a Lipschitz submanifold of
Rn. On the one hand, the interior Ωi and the exterior Ωe of a cube belong to the
category (C2). On the other hand, a set with a boundary including cusps, cuts or
slits does not. . .

It is then a priori possible to define the unit outward normal vector to the boundary
of an open set of category (C2), where, by outward, it is understood that the vector
points out of Ω .

Definition 2.1.24 In an open set Ω of category (C2), one denotes by n the unit
outward normal vector to its boundary Γ .

Proposition 2.1.25 In an open set Ω of category (C2), the unit outward normal
vector field n is defined almost everywhere on Γ , and furthermore, ni ∈ L∞(Γ ),
i = 1, · · · , n.

Remark 2.1.26 In an open subset of Rn with Ck,1 boundary (k ∈ N∗), it holds that
ni ∈ Ck−1,1(Γ ), i = 1, · · · , n.

In such open sets of Rn, it is possible to establish very convenient density results.
Let us first introduce a set of smooth functions.

Definition 2.1.27 The space C∞
c (Ω) is composed of the restrictions to Ω of C∞

functions with compact support in Rn.

Proposition 2.1.28 Let s ≥ 0. In an open set Ω of category (C2), C∞
c (Ω) is dense

in Hs(Ω).

It is because Ω is locally on only one side of its boundary that one can define
elements of C∞

c (Ω) as restrictions. This property allows one to establish the
previous Proposition. Another closely related result is. . .

Proposition 2.1.29 Let s ≥ 0. In an open set Ω of category (C2), D(Ω) is dense
in H̃ s(Ω).

These results are also related to restriction and continuation properties that we recall
below.

Proposition 2.1.30 Let s ≥ 0, and let Ω be an open set of category (C2).
Then, the restriction operator u 
→ u|Ω is continuous from Hs(Rn) to Hs(Ω).

Proposition 2.1.31 Let s ≥ 0, and let Ω be an open set of category (C2) with a
bounded boundary.

Then, there exists a continuous (linear) continuation operator E from Hs(Ω) to
Hs(Rn), independent of s, such that, for all u ∈ Hs(Ω), (Eu)|Ω = u.

Remark 2.1.32 If, in addition, Ω is bounded, one can choose a closed ball O
containing Ω such that for all u ∈ Hs(Ω), Eu is supported in O.

Category (C3): bounded, open and connected subsets of Rn with a Lipschitz
boundary. A set of category (C3) will be called a domain later on.

NB. Ωi belongs to the category (C3), but Ωe does not.
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Let us review some practical instances of open sets Ω of the category (C3), in R2

and R3.
In R2, open sets bounded by a polygonal boundary automatically fall into this

category: these are called polygons.
This is also the case for curvilinear polygons, defined as follows. An open subset

Ω of R2 of the category (C3) has a C2 curvilinear polygonal boundary Γ if, for
all points G of Γ , there exists rG > 0 and a diffeomorphism χG, such that χG

is a piecewise, C2-diffeomorphism that maps the neighborhood Ω ∩ B(G, rG)

of G to a neighborhood of the origin O , included in the plane sector PG :=
{(r cos θ, r sin θ) : r ≥ 0, θ ∈ [0; ωG]} of opening ωG ∈ ]0; 2π[, G being sent
to O .

In the same spirit, one can define spherical curvilinear polygons, as open subsets
of the sphere S2 that fulfill the same property (existence of a piecewise, C2-
diffeomorphism) at all boundary points.

All of the above belong to the class of curvilinear polygons. Loosely speaking,
the boundary of a curvilinear polygon is a manifold with corners.

In R3, one can consider a set Ω with a boundary Γ , made of a finite set of planes
faces, i.e., a polyhedral boundary. Note that, contrary to the sets of R2, there actually
exist bounded open sets with a polyhedral boundary, which do not fulfill the second
requirement, stating that at each point of Γ , Ω is locally on one side of Γ . An
example is pictured below: let Ω0 be an open set, interior to the “two sugarcubes”.
In any neighborhood of the pointC, which is located at the intersection of boundary
edges, Ω0 is not only on one side of its boundary.

One can also define curved polyhedra. Let us consider an open subset Ω of R3 of
the category (C3): Ω has a C2 curved polyhedral boundary Γ if, for all points G of
Γ , there exists rG > 0 and a diffeomorphism χG, such that χG is a piecewise, C2-
diffeomorphism that maps the neighborhoodΩ ∩ B(G, rG) of G to a neighborhood
of the origin O , included in the cone CG := {

x ∈ R3 : x/|x| ∈ SG

}
, with SG a

spherical curvilinear polygon of S2, G being sent to O .
Subsets of R3 of the category (C3) with a polyhedral boundary, or with a curved

polyhedral boundary, are called curved polyhedra.

Fig. 2.1 The “two
sugarcubes”

C
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Finally, let us mention briefly axisymmetric domains of R3, which are generated
by the rotation of a polygon around one of its edges (these will be of use in Chap. 9).
More precisely, the rotation occurs around a line, the so-called axis, that contains
this edge.

Remark 2.1.33 In general, an axisymmetric domain is not a curved polyhedron,
because the rotation of each of the two edges that intersect the axis generates a cone
with a circular base, unless there is a right angle at the corresponding vertex.

Loosely speaking again, we note that the boundary of a curved polyhedron or of an
axisymmetric domain is a manifold with corners and edges.

The sets of curvilinear polygons, curved polyhedra and axisymmetric domains
form three important subcategories of (C3), in the sense that it is possible to get
more precise, and often more explicit, results than for the “general” domains of
(C3).

In open sets that belong to the category (C3), one can nevertheless establish many
useful results.

Let us begin with a result that is sometimes called the Lions’ Lemma.

Theorem 2.1.34 In a domain Ω , it holds that, algebraically and topologically,

L2(Ω) = {f ∈ H−1(Ω) : ∂jf ∈ H−1(Ω), j = 1, · · · , n} ;
L2(Ω) = {f ∈ L2

loc(Ω) : ∂jf ∈ H−1(Ω), j = 1, · · · , n}.

Let us continue with the definition of equivalent norms on Hm
0 (Ω), which stems

from the famous Poincaré inequalities.

Theorem 2.1.35 Let m ≥ 1. Given a domain Ω , there exists a constant Cm, which
depends only on Ω , such that

∀f ∈ Hm
0 (Ω), ‖f ‖Hm(Ω) ≤ Cm |f |Hm(Ω).

NB. It is enough to assume that Ω belongs to the category (C2), and that it is
bounded in one direction (∃ e ∈ Rn such that −∞ < infx∈Ω x · e < supx∈Ω x · e <

+∞), to prove the claim in Theorem 2.1.35.
Accordingly,

Corollary 2.1.36 Let m ≥ 1. Given a domain Ω , ‖ · ‖Hm(Ω) and | · |Hm(Ω) are
equivalent norms on Hm

0 (Ω).

In Hm(Ω), one can further prove the so-called Poincaré-Wirtinger inequality.

Theorem 2.1.37 Let m ≥ 1. Given a domain Ω , there exists a constant C′
m, which

depends only on Ω , such that

∀f ∈ Hm(Ω), ‖f ‖Hm(Ω) ≤ C′
m

⎧
⎨

⎩
|f |2Hm(Ω) +

∑

α∈Nn, |α|<m

∣
∣
∣
∣

∫

Ω

∂αf dx

∣
∣
∣
∣

2
⎫
⎬

⎭

1/2

.
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In practice, one uses the Poincaré-Wirtinger inequality in the subspace

H 1
zmv(Ω) := {f ∈ H 1(Ω) : (f |1) = 0}.

From now on, the index zmv generically indicates that one considers the subspace
made of zero mean value fields, such as L2

zmv(Ω), H 1
zmv(Ω), etc.

In a domain Ω , one can prove (cf. [196]) that the Definition 2.1.17 of the
fractional-order spaces Hs(Ω) coincides algebraically and topologically with the
definition below, where the norm is explicit.

Definition 2.1.38 Let s ∈ R+ \ N, and write s = m + σ , with (m, σ) ∈ N×]0, 1[.
The space Hs(Ω) is composed of elements f of Hm(Ω), such that

|f |Hs(Ω) :=
⎧
⎨

⎩

∑

α∈Nn, |α|=m

∫

Ω

∫

Ω

|∂αf (x) − ∂αf (y)|2
|x − y|n+2σ

dx dy

⎫
⎬

⎭

1/2

< ∞. (2.7)

Let

‖f ‖Hs(Ω) :=
{
‖f ‖2Hm(Ω) + |f |2Hs(Ω)

}1/2
. (2.8)

Endowed with the norm ‖ · ‖Hs(Ω), Hs(Ω) is a Banach space.
It is a Hilbert space, endowed with the scalar product

(f, g)Hs (Ω) := (f, g)Hm(Ω)

+
∑

α∈Nn, |α|=m

∫

Ω

∫

Ω

(∂αf (x) − ∂αf (y))(∂αg(x) − ∂αg(y))

|x − y|n+2σ dx dy.

Remark 2.1.39 One can compare the semi-norms (|·|Hs(Ω))s∈]0,1[ to the semi-norm
| · |H 1(Ω), provided Ω is a domain. Following [60], one can prove that

∃C1, C2 > 0, ∀f ∈ H 1(Ω), C1|f |H 1(Ω) ≤ lim
s→1

(1 − s)|f |Hs(Ω) ≤ C2|f |H 1(Ω).

For the comparison to hold, one must include the (1− s) multiplicative factor in the
limit.

Remark 2.1.40 One can also introduce the series of Sobolev spaces based on
Lp(Ω), with 1 ≤ p ≤ ∞. This results in the well-known Ws,p(Ω), for s ≥ 0.
Then, 2 (respectively 1/2) is replaced by p (respectively 1/p) in (2.3), (2.4), (2.7)
and (2.8). When 1 < p < ∞, these function spaces are separable, reflexive
Banach spaces and, for p = 2, they are Hilbert spaces: in this case, one has
Ws,2(Ω) = Hs(Ω) algebraically and topologically. Afterwards, one defines the
dual spaces W−s,p′

(Ω) of W
s,p

0 (Ω) (the closure of D(Ω) in Ws,p(Ω)), with the
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conjugate exponent p′ s.t. 1/p + 1/p′ = 1. Also, one can identify W 1,∞(Ω) with
C0,1(Ω), the space of Lipschitz-continuous functions on Ω . However, since most
problems in this book are accurately resolved with the help of the (H s(Ω))s∈R
series of spaces, we shall concentrate on them.

One can establish imbedding results: continuous imbeddings, also called Sobolev
imbeddings, and compact imbeddings.

Proposition 2.1.41 In a domain Ω , it holds that, algebraically and topologically,
for s > n/2:

• Hs(Ω) ⊂ Ck(Ω), for k ∈ N such that k < s − n/2;
• Hs(Ω) ⊂ Ck,β(Ω), for k ∈ N such that k < s−n/2 < k+1, and β = s−n/2−k.

We recall that the scale of Sobolev spaces is defined “recursively” by differentiation.
Let us note that differentiation loses exactly one order, in the following manner.

Proposition 2.1.42 Let Ω be a domain. Then:

• ∂i : Hs(Ω) → Hs−1(Ω) is continuous, for s ∈ R \ {1/2}.
• ∂i : H 1/2(Ω) → H̃−1/2(Ω) is continuous.

As far as compact imbeddings (denoted by ⊂c) are concerned, one has the results
below.

Proposition 2.1.43 In a domain Ω , it holds that

Hs ′
(Ω) ⊂c H s ′′

(Ω), for s′, s′′ ∈ R, s′ > s′′.

Let us now categorize the series of Sobolev spaces Hs(Ω), Hs
0 (Ω) and H̃ s(Ω),

for s ≥ 0. In the process, some useful results are derived.

Proposition 2.1.44 In a domain Ω , it holds that

• Hs
0 (Ω) = Hs(Ω), for all 1/2 ≥ s ≥ 0;

• Hs
0 (Ω) is strictly included in Hs(Ω), for all s > 1/2;

• H̃ s(Ω) = [Hs+1/2
0 (Ω),H

s−1/2
0 (Ω)]1/2, for all s ≥ 0, such that s + 1/2 ∈ N.

By direct computations, one can bound integrals that appear in the definition of
fractional-order Sobolev spaces, cf. (2.7).

Definition 2.1.45 Let Ω be a domain, with boundary Γ .
The distance to the boundary ρΓ is defined by:

ρΓ (x) := inf
y∈Γ

|x − y|.

Lemma 2.1.46 In a domain Ω , one has ρΓ ∈ W 1,∞(Ω).
Let σ ∈ [0, 1[. There exist two constants Cσ ≥ cσ > 0 such that

∀x ∈ Ω, cσ ρΓ (x)−2σ ≤
∫

Rn\Ω
dy

|x − y|n+2σ ≤ Cσ ρΓ (x)−2σ .



2.1 Function Spaces for Scalar Fields 85

This result has two important consequences. The first one is an alternate definition
of H̃ s(Ω). The second one concerns the equivalence between piecewise–Hs and
Hs fields (see Definition 2.1.48 and Corollary 2.1.49 hereafter).

Proposition 2.1.47 Let s ≥ 0, and write s = m + σ , with σ ∈ [0, 1[. In a domain
Ω , one can define H̃ s(Ω) by

H̃ s(Ω) := {f ∈ Hs
0 (Ω) : ∂αf

ρσ
Γ

∈ L2(Ω), ∀α ∈ Nn, |α| = m}.

Furthermore, one has:

• H̃ s(Ω) = Hs
0 (Ω), for all s ≥ 0, such that s + 1/2 �∈ N;

• H̃ s(Ω) is strictly included in Hs
0 (Ω), for all s ≥ 0, such that s + 1/2 ∈ N.

The last statement contains a justification of the need for the spaces H̃ s (apart
from a purely mathematical interest!). As a matter of fact, they are needed when
the exponent is equal to s = 1/2 in many situations, especially when one
considers functions, which are defined on a part of the boundary. For instance, the
characteristic function χΩ belongs to H 1/2(Ω) = H

1/2
0 (Ω), whereas it is readily

checked that χΩ /∈ H̃ 1/2(Ω), according to Corollary 2.1.49 below. Before that, let
us introduce the notion of the partition of a domain.

Definition 2.1.48 Let Ω be a domain. A partition of Ω , P := (Ωp)1≤p≤P , is such
that:

• Ωp is a domain, for 1 ≤ p ≤ P ;
• Ωp ∩ Ωq = ∅ for p �= q;
• Ω = ∪1≤p≤P Ωp.

We also introduce the corresponding set F of interfaces (here, only the manifolds
of dimension n − 1 are kept), indexed by pairs of indices: an element Σpq of F is
characterized by 1 ≤ p �= q ≤ P such that Σpq = ∂Ωp ∩ ∂Ωq , andNI denotes the
set of pairs of indices that correspond to an interface.

Finally, for s ∈ [0,+∞],PHs(Ω,P) is the set of piecewise–Hs functions (with
the notation H∞ = C∞), with respect to the partition P :

PHs(Ω,P) := {f ∈ L2(Ω) : f|Ωp ∈ Hs(Ωp), 1 ≤ p ≤ P }.

Corollary 2.1.49 Let Ω be a domain, and P := (Ωp)1≤p≤P a partition of Ω:

• If s ∈ [0, 1/2[, Hs(Ω) = PHs(Ω,P);
• If s ≥ 1/2, Hs(Ω) is a strict subset of PHs(Ω,P).

Let us now focus on functions defined on the boundary Γ of a domain Ω .

Remark 2.1.50 Before we proceed, let us remark that all results below, which deal
with function spaces defined on the boundary or with trace mappings, are also valid
for exterior domains, that is, open sets Ω = Rn \ Ω0, Ω0 being a domain of Rn.
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Let dΓ denote the usual Lebesgue measure on the surface Γ . Introduce. . .

Definition 2.1.51 The space L2(Γ ) is composed of all complex-valued, Lebesgue-
measurable functions f on Γ such that

‖f ‖L2(Γ ) :=
{∫

Γ

|f |2 dΓ

}1/2
< ∞.

Endowed with the norm ‖ · ‖L2(Γ ), L2(Γ ) is a Banach space. In addition, it is a
Hilbert space, endowed with the scalar product

(f, g)L2(Γ ) :=
∫

Γ

f g dΓ.

One can then further define, for suitable s, some Sobolev spaces on Γ .

Definition 2.1.52 Let s ∈]0, 1[.
The space Hs(Γ ) is composed of elements f of L2(Γ ) such that

|f |Hs(Γ ) :=
{∫

Γ

∫

Γ

|f (x) − f (y)|2
|x − y|n−1+2s

dΓ (x) dΓ (y)

}1/2

< ∞.

Let

‖f ‖Hs(Γ ) :=
{
‖f ‖2

L2(Γ )
+ |f |Hs(Γ )2

}1/2
.

Endowed with the norm ‖ · ‖Hs(Γ ), Hs(Γ ) is a Banach space.
The dual space of Hs(Γ ) is called H−s(Γ ). Its canonical norm is denoted by

‖ · ‖H−s (Γ ).

Let us now focus on Hs Sobolev spaces on (a part of) the boundary, for s ∈]0, 1[.
First, we note that they can indeed be defined on an open subset Γ ′ of the boundary,
using the above Definition, with Γ ′ instead of Γ .

Definition 2.1.53 Let Ω be a domain with boundary Γ , and let Γ ′ denote an open
subset of Γ with measΓ (Γ ′) > 0 such that its boundary is a Lipschitz submanifold
of Γ (of dimension n−2). We denote by H̃ 1/2(Γ ′) the space composed of elements
of H 1/2(Γ ′) such that their continuation by zero belongs to H 1/2(Γ ). Its dual space
is denoted by H̃−1/2(Γ ′).

Let us consider the practical case of a curved polyhedron Ω , with s = 1/2.

Definition 2.1.54 Let Ω be a curved polyhedron, with a boundary Γ made of
smooth faces, labeled (Γj )1≤j≤NΓ . The restriction to a face Γj of the normal vector
n (respectively an element f of L2(Γ )) is denoted by nj (respectively fj ).

Let Ω be a polyhedral domain. When two faces possess a common edge, it is
denoted by eij = Γ i ∩ Γ j , and one can choose a unit vector τ ij parallel to eij .
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Furthermore, one can introduce τ i (j ) = τ ij × ni , so that (τ i (j ), τ ij ,ni ) is an
orthonormal basis of R3. The set of pairs (i, j) such that Γ i ∩ Γ j is an edge is
denoted by NE .

NB. When Γ i ∩ Γ j is not empty (for i �= j ), it is either an edge or a vertex.

Definition 2.1.55 Let Ω be a curved polyhedron, with the notations of Defini-
tion 2.1.54. Let H 1/2

− (Γ ) be the function space

H
1/2
− (Γ ) := {f ∈ L2(Γ ) : fj ∈ H 1/2(Γj ), 1 ≤ j ≤ NΓ }.

Let (i, j) ∈ NE . Given f ∈ H
1/2
− (Γ ), one writes fi

1/2= fj if, and only if,

∫

Γi

∫

Γj

|fi(x) − fj (y)|2
|x − y|3 dΓ (x) dΓ (y) < ∞.

One can prove (cf. [65])

Proposition 2.1.56 Let Ω be a curved polyhedron, with the notations of Defini-
tion 2.1.54. Let Γ i and Γ j share only a common vertex. Then, for all f ∈ H

1/2
− (Γ ),

it holds that

∫

Γi

∫

Γj

|f (x) − f (y)|2
|x − y|3 dΓ (x) dΓ (y) < ∞.

One infers from this Proposition an alternative definition of the space H 1/2(Γ ). . .

Corollary 2.1.57 Let Ω be a curved polyhedron, with the notations of Defini-
tions 2.1.54 and 2.1.55. One has

H 1/2(Γ ) := {f ∈ H
1/2
− (Γ ) : fi

1/2= fj , ∀(i, j) ∈ NE}.

Remark 2.1.58 To summarize, the values on two adjacent faces of elements of
H 1/2(Γ ) are not correlated, provided that the two faces share only a vertex. On
the other hand, it is clear that they are correlated, when they share an edge. The
correlation is explained below, in the particular case when the element vanishes
on one face. For more general results on compatibility conditions for elements of
Hs(Γ ), see [44, 123].

Proposition 2.1.59 Let Ω be a curved polyhedron, and let Γ1 be a face of its
boundary. The space H̃ 1/2(Γ1) is equal to

H̃ 1/2(Γ1) = {f ∈ H 1/2(Γ1) : f√
ρ∂Γ1

∈ L2(Γ1)},

where ρ∂Γ1 is the distance to the boundary ∂Γ1.
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Let us consider again any domain Ω with boundary Γ , and let Γ ′ be an open subset
of Γ , with measΓ (Γ ′) > 0, such that its boundary is a Lipschitz submanifold of Γ :
one can define the space H̃ 1/2(Γ ′) as in Definition 2.1.53. Moreover, one notices
that if f ∈ H−1/2(Γ ), its restriction to Γ ′, denoted by f|Γ ′ , naturally belongs to
H̃−1/2(Γ ′), according to

∀g ∈ H̃ 1/2(Γ ′), 〈f|Γ ′ , g〉H̃ 1/2(Γ ′) = 〈f, g̃〉H 1/2(Γ ), (2.9)

where g̃ is the continuation of g by zero to the whole boundary Γ .
On the other hand, one has the result below.4

Proposition 2.1.60 Let Ω be a domain with boundary Γ , let Γ ′ be an open subset
of Γ , with 0 < measΓ (Γ ′) < measΓ (Γ ), such that its boundary is a Lipschitz
submanifold of Γ , and let Γ ′′ = int (Γ \ Γ ′).

Let f ∈ H−1/2(Γ ). Then, one has f|Γ ′ ∈ H−1/2(Γ ′) if, and only if, f|Γ ′′ ∈
H−1/2(Γ ′′). In this case, one can write

∀g ∈ H 1/2(Γ ), 〈f, g〉H 1/2(Γ ) = 〈f|Γ ′ , g|Γ ′ 〉H 1/2(Γ ′) + 〈f|Γ ′′ , g|Γ ′′ 〉H 1/2(Γ ′′).

Moreover, for some C > 0, which depends only on Γ and Γ ′:

‖f|Γ ′ ‖H−1/2(Γ ′) ≤ C
(‖f ‖H−1/2(Γ ) + ‖f|Γ ′′ ‖H−1/2(Γ ′′)

)
.

The next result establishes the existence of traces of elements of Hs(Ω) on the
boundary Γ , for suitably chosen s (see [111] for the special case s = 1).

Definition 2.1.61 LetΩ be a domain. Let f be a smooth function defined on Ω . Its
trace f|Γ on the boundary Γ is denoted by γ0f , and γ0 is called the trace mapping.

Theorem 2.1.62 Let Ω be a domain, and let s ∈]1/2, 1]. The mapping γ0 has a
unique continuous extension, from Hs(Ω) to Hs−1/2(Γ ), which is surjective.

In addition, the following characterization holds:

Hs
0 (Ω) = {f ∈ Hs(Ω) : f|Γ = 0}.

Remark 2.1.63 Since we assume only Lipschitz regularity of the boundary, one
cannot define the trace mapping of the normal derivative f 
→ gradf · n|Γ from
H 2(Ω) to H 1/2(Γ ). Indeed, assume that Ω is a curved polyhedron, and consider
f ∈ H 2(Ω). One sees easily that, for 1 ≤ j ≤ NΓ , gradf · n|Γj

belongs to

H 1/2(Γj ). But the values on two adjacent faces (sharing an edge) are uncorrelated.
According to Corollary 2.1.57, γ1f does not belong to H 1/2(Γ ). However, one can
still define a trace mapping of the normal derivative with values in H−1/2(Γ ) (see

4Given any subset S of Rn, int (S) denotes the interior of S.
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Corollary 2.2.20 in the next section). On the other hand, if the boundary is C1,1,
then this trace mapping actually goes from H 2(Ω) to H 1/2(Γ ).

Remark 2.1.64 In the same spirit, one can also characterize the spaces Hs
0 (Ω) for

s > 1, providedΩ is a curvilinear polygon, a curved polyhedron or an axisymmetric
domain. It holds that (cf. [91])

Hs
0 (Ω) = {f ∈ Hs(Ω) : ∂kf

∂nk |Γ
= 0, ∀k ∈ N, k < s − 1/2}.

Above, the definition of the trace of the normal derivative of order k is

∂kf

∂nk
= k!

∑

α∈Nn,|α|=k

1

α!∂αf nα,

where α! = α1! · · · αn! and nα = n
α1
1 · · · nαn

n . For instance, for s ∈]3/2, 5/2[, one
has

Hs
0 (Ω) = {f ∈ Hs(Ω) : f|Γ = 0, gradf · n|Γ = 0}.

Definition 2.1.65 Let Ω be a domain with boundary Γ . Let Γ ′ be an open subset
of Γ such that its boundary is a Lipschitz submanifold of Γ , with measΓ (Γ ′) > 0.
Introduce

C∞
Γ ′(Ω) := {f ∈ C∞(Ω) : f = 0 in a neighborhood of Γ ′}.

Then, one can define, for s ∈]1/2, 3/2[,

Hs
0,Γ ′(Ω) := closure of C∞

Γ ′(Ω) in Hs(Ω) ;

furthermore, it holds that

Hs
0,Γ ′(Ω) = {f ∈ Hs(Ω) : f|Γ ′ = 0}.

Also, one can prove another Poincaré inequality, set in H 1
0,Γ ′(Ω).

Proposition 2.1.66 Let Ω be a domain with boundary Γ . Let Γ ′ be an open subset
of Γ , with measΓ (Γ ′) > 0. Then, there exists a constant C1, which depends only
on Ω and Γ ′ such that

∀f ∈ H 1
0,Γ ′(Ω), ‖f ‖H 1(Ω) ≤ C1 |f |H 1(Ω).

Whenever applicable, we shall use the subscript per to label subspaces composed of
elements with periodic traces.
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Finally, let us conclude with a classical result, which uses traces on parts of the
boundary, and which can be seen as a complement to Corollary 2.1.49.

Definition 2.1.67 Let Ω be a domain partitioned into P := (Ωp)p=+,−. Let Σ =
∂Ω+ ∩ ∂Ω− be the interface separating Ω+ and Ω−. Denote by n+ (respectively
n−) the unit outward normal vector field to ∂Ω+ (respectively ∂Ω−). Denote by nΣ

a unit normal vector field to Σ , and define

δ+
Σ :=

{+1 if n+ = nΣ on Σ

−1 if n+ = −nΣ on Σ
, δ−

Σ :=
{+1 if n− = nΣ on Σ

−1 if n− = −nΣ on Σ
.

Given f ∈ PHs(Ω,P) for s > 1/2, the jump of f through Σ is equal to

[f ]Σ := δ+
Σγ0,+f + δ−

Σγ0,−f.

The jump is understood as a difference, because δ+
Σ = −δ−

Σ .

Proposition 2.1.68 Let Ω be a domain partitioned into P := (Ωp)1≤p≤P , and let
F denote the set of interfaces. For s ∈]1/2, 1], it holds that

Hs(Ω) = {f ∈ PHs(Ω,P) : [f ]Σpq = 0, ∀(p, q) ∈ NI }.

NB. To handle the case s = 1/2, one needs some ad hoc theory, see, for instance,
Corollary 2.1.57.

2.2 Vector Fields: Standard Function Spaces

In this section, since electromagnetic fields are considered, unless otherwise
specified, we stand explicitly in Ω = R3, or in an open subset Ω of R3.

In what follows, we use ξ defined on Ω , and such that

ξ ∈ L∞(Ω) and ξ−1 ∈ L∞(Ω), i.e., (2.10)

(ξ)i,j ∈ L∞(Ω) and (ξ−1)i,j ∈ L∞(Ω), 1 ≤ i, j ≤ 3.

2.2.1 Elementary Results

Let us introduce our first space of vector fields,

D(Ω) := {g : gj ∈ D(Ω), j = 1, 2, 3}.
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Looking at Eqs. (1.6–1.9), one sees that Sobolev spaces like H 1(Ω) are not
explicitly required, since the first-order differential operators that appear are not the
gradient, but rather the curl and divergence.More precisely, all partial derivatives of
the electromagnetic fields are used, but they appear in linear combinations, if one
recalls that

div v = ∂v1

∂x1
+ ∂v2

∂x2
+ ∂v3

∂x3
, curl v =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂v3

∂x2
− ∂v2

∂x3
∂v1

∂x3
− ∂v3

∂x1
∂v2

∂x1
− ∂v1

∂x2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

together with the formula div (v × w) = w · curl v − v · curlw.
For any smooth vector field v, the pointwise inequalities hold:

|div v(x)|2 ≤
⎛

⎝
∑

1≤i≤3

∣
∣
∣
∣
∂vi

∂xi

(x)

∣
∣
∣
∣

⎞

⎠

2

≤ 3|Gradv(x)|2, (2.11)

| curl v(x)|2 ≤ 2
∑

1≤i,j≤3, i �=j

∣
∣
∣
∣
∂vi

∂xj

(x)

∣
∣
∣
∣

2

≤ 2|Gradv(x)|2, (2.12)

with (Grad v(x))i,j = ∂vi

∂xj

(x), 1 ≤ i, j ≤ 3, |Grad v(x)|2 =
∑

1≤i,j≤3

∣
∣
∣
∣
∂vi

∂xj

(x)

∣
∣
∣
∣

2

.

This being remarked, let us note that the Sobolev space H 1(Ω) is useful, and
especially the space of its traces H 1/2(Γ ), since it is of fundamental importance
in the definition and characterization of traces of the electromagnetic fields.

Definition 2.2.1 Let 1 ≤ p ≤ ∞. The spaces Lp(Ω) := {v : vi ∈ Lp(Ω), i =
1, 2, 3} are Banach spaces. They are separable, with the exception of L∞(Ω).

In particular, L2(Ω) is a Hilbert space, endowed with the scalar product

(v|w) :=
∫

Ω

v · w dx.

Definition 2.2.2 Let s ∈ R+. The spaces below are separable Hilbert spaces:

• H s(Ω) := {v : vi ∈ Hs(Ω), i = 1, 2, 3}.
• H (curl,Ω) := {v ∈ L2(Ω) : curl v ∈ L2(Ω)}, where the curl is taken in the

sense of distributions. The canonical norm is

‖v‖H (curl,Ω) :=
{∫

Ω

(|v|2 + | curl v|2) dx

}1/2
. (2.13)
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• H (curl ξ,Ω) := {v ∈ L2(Ω) : curl ξv ∈ L2(Ω)}, where the curl of ξv is taken
in the sense of distributions. The canonical norm is

‖v‖H (curl ξ,Ω) :=
{∫

Ω

(|v|2 + | curl ξv|2) dx

}1/2
. (2.14)

• H (div,Ω) := {v ∈ L2(Ω) : div v ∈ L2(Ω)}, where the divergence is taken in
the sense of distributions. The canonical norm is

‖v‖H (div,Ω) :=
{∫

Ω

(|v|2 + |div v|2) dx

}1/2
. (2.15)

• H (div ξ,Ω) := {v ∈ L2(Ω) : div ξv ∈ L2(Ω)}, where the divergence of ξv is
taken in the sense of distributions. The canonical norm is

‖v‖H (div ξ,Ω) :=
{∫

Ω

(|v|2 + |div ξv|2) dx

}1/2
. (2.16)

• L2(Γ ) := {v : vi ∈ L2(Γ ), i = 1, 2, 3}.
• H s(Γ ) := {v : vi ∈ Hs(Γ ), i = 1, 2, 3}.
Let s ∈]0, 1/2[. The spaces below are separable Hilbert spaces:

H−s(div,Ω) := {v ∈ L2(Ω) : div v ∈ H−s(Ω)}.
The canonical norm is

‖v‖H−s (div,Ω) :=
{∫

Ω

|v|2 dx + ‖div v‖2
H−s (Ω)

}1/2
.

Using (2.11) and (2.12) together with Proposition 2.1.28, one immediately gets the
imbedding results below.

Proposition 2.2.3 The space H 1(Ω) is continuously imbedded in H (curl,Ω) and
in H (div,Ω).

NB. Let us point out that one has to be careful with “reverse” imbeddings, since
H (div,Ω) ∩ H (curl,Ω) is only imbedded in H 1

loc(Ω) in general (see [9]).
One then has the convenient properties below.

Proposition 2.2.4 Under the assumptions (2.10) on ξ, one has:

• v belongs to H (curl ξ,Ω) if, and only if, ξv belongs to H (curl,Ω);
• v belongs to H (div ξ,Ω) if, and only if, ξv belongs to H (div,Ω).

This Proposition allows us to simply derive useful results for elements of
H (curl ξ,Ω) (respectively H (div ξ,Ω)), via those obtained for elements of
H (curl,Ω) (respectively H (div,Ω)).
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Recall that (see Proposition 2.1.12), an element v of L2(Ω) belongs to H 1(Ω)

if, and only if, there exists Cgrad ≥ 0 such that,

∀g ∈ D(Ω), |(v|divg)| ≤ Cgrad‖g‖L2(Ω).

One can prove similar results.

Proposition 2.2.5 Let v ∈ L2(Ω).

• v ∈ H (curl,Ω) if, and only if, there exists Ccurl ≥ 0 such that

∀g ∈ D(Ω), |(v| curlg)| ≤ Ccurl‖g‖L2(Ω).

• v ∈ H (div,Ω) if, and only if, there exists Cdiv ≥ 0 such that

∀g ∈ D(Ω), |(v| gradg)| ≤ Cdiv‖g‖L2(Ω).

One can then introduce the closures of D(Ω), respectively, in H (curl,Ω) and
H (div,Ω).

Definition 2.2.6 Consider:

• H 0(curl,Ω) := closure of D(Ω) in H (curl,Ω) according to the norm (2.13);
• H 0(div,Ω) := closure of D(Ω) in H (div,Ω) according to the norm (2.15).

NB. It holds that H 0(curl,Rn) = H (curl,Rn) and H 0(div,Rn) = H (div,Rn).
In the spirit of Proposition 2.2.4, one can defineH 0(curl ξ,Ω) andH 0(div ξ,Ω).

Definition 2.2.7 Under the assumptions (2.10) on ξ, introduce:

H 0(curl ξ,Ω) := {v ∈ L2(Ω) : ξv ∈ H 0(curl,Ω)} ;
H 0(div ξ,Ω) := {v ∈ L2(Ω) : ξv ∈ H 0(div,Ω)}.

Let us mention a continuation result.

Proposition 2.2.8 Let Ω be an open set of category (C2) with a bounded boundary.
Then, there exists a continuous (linear) continuation operator E from H (curl,Ω)

to H (curl,R3), respectively H (div,Ω) to H (div,R3), such that, for all v ∈
H (curl,Ω), respectively v ∈ H (div,Ω), one has (Ev)|Ω = v.

Remark 2.2.9 If, in addition, Ω is bounded, one can choose a closed ball O
containing Ω such that for all v ∈ H (curl,Ω), respectively v ∈ H (div,Ω), Ev
is supported in O.

Before carrying on with traces, let us consider some simple, but crucial, results about
the mappings grad and curl. The proof is given hereafter, since it is a good example
of the simplicity and of the range of the theory of distributions. . .
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Proposition 2.2.10 One has the following:

1. The mapping grad is continuous from H 1(Ω) to H (curl,Ω);
2. the mapping grad is continuous from H 1

0 (Ω) to H 0(curl,Ω).
3. The mapping curl is continuous from H (curl,Ω) to H (div,Ω);
4. the mapping curl is continuous from H 0(curl,Ω) to H 0(div,Ω).

Proof

1. Given v in H 1(Ω), let us check first that w = gradv belongs to H (curl,Ω). By
definition, one hasw ∈ L2(Ω). Ifw were smooth, then curlw = curl(grad v) =
0 would follow. Unfortunately, this is not the case. Nevertheless, one can consider
curlw in the sense of distributions, to reach, for all g ∈ D(Ω)

〈curlw,g〉 = 〈w, curlg〉 = 〈grad v, curl g〉 = −〈v, div (curlg)〉 = 0.

(Above, the first equality is left to the reader.)
In other words, curlw = 0 in the sense of distributions. As a consequence, since
0 belongs to L2(Ω), considered as a subspace of D′(Ω) := (D′(Ω))3, one finds
that curlw is in L2(Ω). Thus, w is an element of H (curl,Ω).
Also, one has

‖w‖H (curl,Ω) = ‖w‖L2(Ω) = |v|H 1(Ω) ≤ ‖v‖H 1(Ω),

which establishes the continuity of the grad mapping from H 1(Ω) to
H (curl,Ω).

2. According to item 1, given v in H 1
0 (Ω) and w = gradv, one has w ∈

H (curl,Ω). Therefore, one has only to check that w actually belongs to
H 0(curl,Ω). By definition of H 1

0 (Ω), there exists a sequence (vk)k of elements
of D(Ω), which converges to v in ‖ · ‖H 1(Ω)-norm. According to item 1, (wk)k ,
with wk = grad vk , converges to w in ‖ · ‖H (curl,Ω)-norm. Moreover, all wk

belong to D(Ω), so w belongs to its closure in ‖ · ‖H (curl,Ω)-norm, which is
precisely equal to H 0(curl,Ω).

3. The proof is similar to that of item 1.
4. The proof is similar to that of item 2. �
We conclude this subsection with the introduction of a number of Hilbert function
spaces with curl-free or divergence-free elements.

Definition 2.2.11 Define

H (div 0,Ω) := {v ∈ H (div,Ω) : div v = 0} ;
H 0(div 0,Ω) := H (div 0,Ω) ∩ H 0(div,Ω) ;
H (curl 0,Ω) := {v ∈ H (curl,Ω) : curl v = 0} ;
H 0(curl 0,Ω) := H (curl 0,Ω) ∩ H 0(curl,Ω).
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Under the assumptions (2.10) on ξ, define

H (div ξ0,Ω) := {v ∈ H (div ξ,Ω) : div ξv = 0} ;
H 0(div ξ0,Ω) := H (div ξ0,Ω) ∩ H 0(div ξ,Ω) ;
H (curl ξ0,Ω) := {v ∈ H (curl ξ,Ω) : curl ξv = 0} ;
H 0(curl ξ0,Ω) := H (curl ξ0,Ω) ∩ H 0(curl ξ,Ω).

2.2.2 Traces of Vector Fields

In order to define properly the trace on Γ of elements of H (curl,Ω) or of
H (div,Ω), it is convenient to have integration-by-parts formulas at one’s disposal.
As a matter of fact, one can proceed by duality, with respect to the spaces H 1/2(Γ )

and H 1/2(Γ ), respectively, that is, those trace spaces that originate from H 1(Ω)

and H 1(Ω).
From now on, let Ω be a domain. As far as notations are concerned, one notices

that in a domain, which is bounded by definition, the index c (for compact support)
of the set C∞

c (Ω) of Definition 2.1.27 can be dropped.
Let us begin with density results (cf. [117, Chapter I] and Amrouche, 2011,

Private communication).

Proposition 2.2.12 One has the following:

• C∞(Ω) is dense in H (curl,Ω);
• C∞(Ω) is dense in H (div,Ω);
• for s ∈]0, 1/2[, C∞(Ω) is dense in H−s (div,Ω).

With the help of Proposition 2.2.4, one easily infers other results.

Corollary 2.2.13 Under the assumptions (2.10) about ξ, one concludes that:

• ξ−1 C∞(Ω) is dense in H (curl ξ,Ω);
• ξ−1 C∞(Ω) is dense in H (div ξ,Ω).

One can define the unit outward normal vector n = n1e1 + n2e2 + n3e3 to its
boundary, almost everywhere (cf. Proposition 2.1.25).

It is well-known that it holds that, for two functions f and g of C1(Ω),

∫

Ω

{f ∂g

∂xi

+ ∂f

∂xi

g} dx =
∫

Γ

f g ni dΓ, i = 1, 2, 3. (2.17)

What can be deduced from this formula?
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◦ First, if f belongs to C1(Ω),

all three (fi)i=1,2,3 belong to C1(Ω); as a consequence,

∫

Ω

{fi
∂g

∂xi

+ ∂fi

∂xi

g} dx =
∫

Γ

fi g ni dΓ, i = 1, 2, 3.

Summing over i yields

∫

Ω

{f · gradg + divf g} dx =
∫

Γ

f · n g dΓ. (2.18)

◦ Second, given two elements f and g of C1(Ω),

the following formulas are satisfied:

∫

Ω

f · curlg dx =
∫

Ω

{

f1(
∂g3

∂x2
− ∂g2

∂x3
) +f2(

∂g1

∂x3
− ∂g3

∂x1
) +f3(

∂g2

∂x1
− ∂g1

∂x2
)

}

dx

∫

Ω

curlf · g dx =
∫

Ω

{

(
∂f3

∂x2
− ∂f2

∂x3
)g1 + (

∂f1

∂x3
− ∂f3

∂x1
)g2 + (

∂f2

∂x1
− ∂f1

∂x2
)g3

}

dx.

Taking the difference yields,

∫

Ω

{f · curlg − curlf ·g} dx =
∫

Ω

{

(f1
∂g3

∂x2
+ ∂f1

∂x2
g3) − (f1

∂g2

∂x3
+ ∂f1

∂x3
g2)

+(f2
∂g1

∂x3
+ ∂f2

∂x3
g1) − (f2

∂g3

∂x1
+ ∂f2

∂x1
g3)

+(f3
∂g2

∂x1
+ ∂f3

∂x1
g2) − (f3

∂g1

∂x2
+ ∂f3

∂x2
g1)

}

dx

(2.17)=
∫

Γ

{f1(g3 n2 − g2 n3) + f2(g1 n3 − g3 n1)

+f3(g2 n1 − g1 n2)} dΓ

= −
∫

Γ

f · (g × n) dΓ.

NB. The left-hand side is skew-symmetric with respect to (f ,g): one can therefore
replace the right-hand side with

∫

Γ

(f × n) · g dΓ.
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As a conclusion, it follows that

∫

Ω

{f · curlg − curlf · g} dx =
∫

Γ

(f × n) · g dΓ. (2.19)

One can infer a first generalized integration-by-parts formula from (2.19), using the
density results of Definition 2.2.6 and Proposition 2.2.12.

Theorem 2.2.14 Let (f ,g) ∈ H 0(curl,Ω) × H (curl,Ω):

(f | curlg) − (curlf |g) = 0. (2.20)

Similarly, second and third generalized integration-by-parts formulas can be
proven, again using density results (namely, the definition of H 1

0 (Ω), and
Proposition 2.2.12) and (2.18).

Theorem 2.2.15 Let (f , g) ∈ L2(Ω) × H 1
0 (Ω):

(f | gradg) + 〈div f , g〉H 1
0 (Ω) = 0. (2.21)

Let (f, g) ∈ H 1(Ω) × H 1
0 (Ω):

(gradf | gradg) + 〈Δf, g〉H 1
0 (Ω) = 0. (2.22)

Thanks to (2.18), one can prove some results concerning the normal trace of
elements of H (div,Ω) (cf. [117, Chapter I]).

Remark 2.2.16 As remarked previously, the results that deal with function spaces
defined on the boundary or with trace mappings are also valid for exterior domains
Ω = R3 \ Ω0, with Ω0 being a domain.

Definition 2.2.17 Let f be a smooth vector function defined on Ω . Its normal trace
f · n|Γ on the boundary Γ is denoted by γnf , and γn is called the normal trace
mapping.

Theorem 2.2.18 The mapping γn has a unique continuous extension, from
H (div,Ω) to H−1/2(Γ ), which is surjective.

In addition, the following characterization holds:

H 0(div,Ω) := {v ∈ H (div,Ω) : v · n|Γ = 0}.

Note that, according to this framework, one can define as a by-product5 the trace
mapping of the normal derivative.

5Evidently, a direct construction is also possible!
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Definition 2.2.19 Let f be a smooth scalar function defined on Ω . Its trace of the
normal derivative (∂nf )|Γ := gradf · n|Γ on the boundary Γ is denoted by γ1f ,
and γ1 is called the trace mapping of the normal derivative of scalar fields.

Consider the space

E(Δ,L2(Ω)) := {φ ∈ H 1(Ω) : Δφ ∈ L2(Ω)},

endowed with the graph norm (see Definition 4.1.5). Given any element f of
E(Δ,L2(Ω)), its gradient gradf belongs to H (div,Ω), so its normal trace is well-
defined. Then, since it is easily proven that C∞(Ω) is dense in E(Δ,L2(Ω)), one
finds that γ1f actually coincides with γn(gradf ). One can finally prove. . .

Corollary 2.2.20 The mapping γ1 has a unique continuous extension, from
E(Δ,L2(Ω)) to H−1/2(Γ ), which is surjective.

It is important to note that the normal traces of elements ofH (div,Ω) do not belong,
in general, to L2(Γ ), but to a larger space. This is a reversed situation, compared
to the trace of elements of H 1(Ω). This means that, unless otherwise specified, the
normal trace is not (locally) integrable on Γ .

Remark 2.2.21 Consider ξ that fulfills (2.10). With respect to the norm (2.16), the
closure of ξ−1D(Ω) in H (div ξ,Ω), H 0(div ξ,Ω), is equal to

{v ∈ H (div ξ,Ω) : ξv · n|Γ = 0}.

To conclude on the normal trace, we give the result of (Amrouche, 2011, Private
communication) regarding elements of H−s (div,Ω).

Theorem 2.2.22 Let s ∈]0, 1/2[. The mapping γn has a unique continuous
extension, from H−s (div,Ω) to H−1/2(Γ ), which is surjective.

Thanks to (2.19), one can now prove some results concerning the tangential trace
of elements of H (curl,Ω) (cf. [117, Chapter I]).

Definition 2.2.23 Let f be a smooth vector function defined on Ω . Its tangential
trace f ×n|Γ on the boundaryΓ is denoted by γ�f , and γ� is called the tangential
trace mapping.

Theorem 2.2.24 The mapping γ� has a unique continuous extension, from
H (curl,Ω) to H−1/2(Γ ).

In addition, the following characterization holds:

H 0(curl,Ω) := {v ∈ H (curl,Ω) : v × n|Γ = 0}.

Again, unless otherwise specified, tangential traces of elements of H (curl,Ω) are
not (locally) integrable on Γ .
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Remark 2.2.25 Consider ξ that fulfills (2.10). With respect to the norm (2.14), the
closure of ξ−1D(Ω) in H (curl ξ,Ω), H 0(curl ξ,Ω), is equal to

{v ∈ H (curl ξ,Ω) : ξv × n|Γ = 0}.

If one introduces Γ ′, an open subset of Γ , with measΓ (Γ ′) > 0, such that
its boundary is a Lipschitz submanifold of Γ , then one can characterize [109]
the restriction to Γ ′ of the normal (respectively tangential) trace of elements of
H (div,Ω) (respectivelyH (curl,Ω)), in the same way and with the same notations
as (2.9). Indeed, one finds that:

• given f ∈ H (div,Ω), f · n|Γ ′ belongs to H̃−1/2(Γ ′), according to

∀g ∈ H̃ 1/2(Γ ′), 〈f · n|Γ ′ , g〉H̃ 1/2(Γ ′) = 〈f · n, g̃〉H 1/2(Γ ) ; (2.23)

• given f ∈ H (curl,Ω), f × n|Γ ′ belongs to H̃
−1/2

(Γ ′), according to

∀g ∈ H̃
1/2

(Γ ′), 〈f × n|Γ ′ ,g〉
H̃

1/2
(Γ ′) = 〈f × n, g̃〉H 1/2(Γ ) . (2.24)

Remark 2.2.26 Results similar to (2.23) (respectively (2.24)) hold for fields of
H (div ξ,Ω) (respectively H (curl ξ,Ω)), under the assumptions (2.10) about ξ.

Definition 2.2.27 Let Ω be a domain with boundary Γ . Let Γ ′ be an open subset
of Γ such that its boundary is a Lipschitz submanifold of Γ , with measΓ (Γ ′) > 0.
Introduce

C∞
Γ ′(Ω) := {f ∈ C∞(Ω) : f = 0 in a neighborhood of Γ ′}.

Then, one can define

H 0,Γ ′(curl,Ω) := closure of C∞
Γ ′(Ω) in H (curl,Ω) ;

H 0,Γ ′(div,Ω) := closure of C∞
Γ ′(Ω) in H (div,Ω).

Furthermore, it holds that

H 0,Γ ′(curl,Ω) = {f ∈ H (curl,Ω) : f × n|Γ ′ = 0} ;
H 0,Γ ′(div,Ω) = {f ∈ H (div,Ω) : f · n|Γ ′ = 0}.

As a consequence of Proposition 2.1.60, we note that if f ∈ H 0,Γ ′(curl,Ω), then
f ×n|Γ ′′ ∈ H−1/2(Γ ′′), whereΓ ′′ = int (Γ \Γ ′) (here,measΓ (Γ ′) < measΓ (Γ )).
Similarly, if f ∈ H 0,Γ ′(div,Ω), then f · n|Γ ′′ ∈ H−1/2(Γ ′′).

Once the existence of the trace mappings has been established, it is possible to
consider some other generalized integration-by-parts formulas (2.18) and (2.19).
Note that those formulas are closely intertwined with the characterization of
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subspaces composed of trace-free elements. We recall that, according to Proposi-
tion 2.1.44, for s ∈]0, 1/2[, one has Hs

0 (Ω) = Hs(Ω).

Theorem 2.2.28 Let (f , g) ∈ H (div,Ω) × H 1(Ω):

(f | gradg) + (divf |g) = 〈f · n, g〉H 1/2(Γ ). (2.25)

Given s ∈]0, 1/2[, let (f , g) ∈ H−s (div,Ω) × H 1(Ω):

(f | gradg) + 〈divf , g〉Hs
0 (Ω) = 〈f · n, g〉H 1/2(Γ ). (2.26)

Let (f ,g) ∈ H (curl,Ω) × H 1(Ω):

(f | curlg) − (curlf |g) = 〈f × n,g〉H 1/2(Γ ). (2.27)

Let us conclude this study of fields of H (div ξ,Ω) and H (curl ξ,Ω)—one has
possibly ξ = I3—with results dealing with jumps of the normal and tangential
traces. We begin with the jump of normal traces.

Definition 2.2.29 Let Ω be a domain partitioned into P := (Ωp)p=+,−. Let Σ =
∂Ω+ ∩ ∂Ω− be the interface separating Ω+ and Ω−. We use the same notations as
in Definition 2.1.67. Given f ∈ L2(Ω) with f |Ωp

∈ H (div,Ωp) for p = +,−,
the normal jump of f through Σ is equal to

[f · nΣ ]Σ := δ+
Σ(γn,+f + γn,−f ).

Here, the normal jump is understood as a difference! Indeed, on the interface, it
holds that n− = −n+.

Proposition 2.2.30 Let Ω be a domain partitioned into P := (Ωp)p=+,−, and let
Σ = ∂Ω+ ∩ ∂Ω−. Under the assumptions (2.10) about ξ, it holds that

H (div ξ,Ω) = {f ∈ L2(Ω) : f |Ωp
∈ H (div ξ,Ωp), p = +,−,

[ξf · nΣ ]Σ = 0 in H̃−1/2(Σ)}.

We then consider the jump of tangential traces.

Definition 2.2.31 Let Ω be a domain partitioned into P := (Ωp)p=+,−. Let Σ =
∂Ω+ ∩ ∂Ω− be the interface separating Ω+ and Ω−. We use the same notations as
in Definition 2.1.67. Given f ∈ L2(Ω) with f |Ωp

∈ H (curl,Ωp) for p = +,−,
the tangential jump of f through Σ is equal to

[f × nΣ ]Σ := δ+
Σ(γ�,+f + γ�,−f ).

Once more, the tangential jump is understood as a difference.
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Proposition 2.2.32 Let Ω be a domain partitioned into P := (Ωp)p=+,−, and let
Σ = ∂Ω+ ∩ ∂Ω−. Under the assumptions (2.10) about ξ, it holds that

H (curl ξ,Ω) = {f ∈ L2(Ω) : f |Ωp
∈ H (curl ξ,Ωp), p = +,−,

[ξf × nΣ ]Σ = 0 in H̃
−1/2

(Σ)}.

2.3 Practical Function Spaces in the (t, x) Variable

To solve some time-dependent problems, in particular, the time-dependentMaxwell
equations, one needs to introduce function spaces depending both on the time
variable t and on the space variable x. Indeed, in that case, the unknowns, i.e., the
electromagnetic fields, depend on the (t, x) variable. Obviously, one can consider
distributions in space and time, that is, on R × R3. However, one generally
distinguishes between the variables t and x, since they do not play the same role.
Classically, one deals with the values of a field at a given time t . Hence, for a
function f depending on both x and t , we are interested in x 
→ f (t0, x), for a
given t0.

More precisely, let T− ∈ [−∞,+∞[ and T+ ∈] − ∞,+∞] with T − < T+
respectively denote the initial and final times, and let Ω denote the subset of R3 of
interest. With respect to distributions in space and time, the corresponding space
of distributions is simply D′(]T−, T+[×Ω). A classical result that allows one to go
back and forth from distributions in the (t, x) variable to continuous functions of
the variable t , with values in function spaces of the variable x, is that

the tensor product space D(]T−, T+[) ⊗ D(Ω) is dense in D(]T−, T+[×Ω).

Next, consider the function

f : ]T−, T+[×Ω → R
(t, x) 
→ f (t, x) .

For any time t ∈]T−, T+[, one can introduce the function f (t)

f (t) : Ω → R
x 
→ f (t, x),

so that the function f can be identified with the function

]T−, T+[ → {Ω → R}
t 
→ f (t).

In what follows, we will define the function spaces in the (t, x) variable, which will
be useful for the weak formulations in the subsequent chapters. For that, it will be
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sufficient to define two types of function space and one class of vector distribution.
To fix ideas, consider that T− = 0 and T+ = T < +∞. Let m ∈ N, 1 ≤ p ≤ ∞,
and let X,Y and H respectively be two Banach spaces and a Hilbert space of the
space variable x. Finally, let L(X, Y ) be the space of continuous, linear mappings
from X to Y .6

Definition 2.3.1 Given an interval I of R, Cm(I ; X) is the set of functions of class
Cm in I , valued into X. Endowed with the norm

‖f ‖Cm(I ;X) :=
m∑

k=0

sup
t∈I

‖dkf

dtk
(t)‖X,

this is a Banach space.

Definition 2.3.2 The space Lp(0, T ; X) is the set of Lebesgue-measurable func-
tions valued into X, and such that

⎧
⎪⎨

⎪⎩

for 1 ≤ p < ∞ ‖f ‖Lp(0,T ;X) :=
{∫ T

0
‖f (t)‖p

X dt

}1/p

< ∞
for p = ∞ ‖f ‖L∞(0,T ;X) := esssupt∈]0,T [‖f (t)‖X < ∞.

Endowed with the norm ‖ · ‖Lp(0,T ;X), Lp(0, T ; X) is a Banach space.
In addition, if X = H and p = 2, the space L2(0, T ; H) is a Hilbert space

endowed with the scalar product

(f, g)L2(0,T ;H) :=
∫ T

0
(f (t), g(t))H dt.

Remark 2.3.3 According to the Fubini theorem, one can easily verify that

L2(0, T ; L2(Ω)) = L2(]0, T [×Ω).

Hence, if f belongs to L2(0, T ; L2(Ω)), one can define its partial derivative
with respect to the variable t in the sense of distributions, in D′(]0, T [×Ω), and
consider elements such that ∂tf ∈ L2(0, T ; L2(Ω)), which allows us to define
H 1(0, T ; L2(Ω)), and so on.

We recall a number of classical, elementary results below.

Proposition 2.3.4 Let X′ be the dual space of X.

• For all f ∈ L1(0, T ; X), there exists one, and only one, F ∈ X such that

∀g ∈ X′, 〈g, F 〉X =
∫ T

0
〈g, f (t)〉X dt ; F is denoted by

∫ T

0
f (t) dt ;

6See Sect. 4.1, Definition 4.1.1, for details on continuous linear mappings.
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• For all g ∈ L1(0, T ; X′), there exists one, and only one, G ∈ X′ such that

∀f ∈ X, 〈G,f 〉X =
∫ T

0
〈g(t), f 〉X dt ; G is denoted by

∫ T

0
g(t) dt .

Proposition 2.3.5 Let A ∈ L(X, Y ).

• The mapping f 
→ Af is continuous from C0([0, T ]; X) to C0([0, T ]; Y ) ;

• For all f ∈ L1(0, T ; X),
∫ T

0
A(f (t)) dt = A

(∫ T

0
f (t) dt

)

.

Proposition 2.3.6 A bound and differentiation of integrals:

• For all f ∈ L1(0, T ; X),

∥
∥
∥
∥

∫ T

0
f (t) dt

∥
∥
∥
∥

X

≤
∫ T

0
‖f (t)‖X dt ;

• For all f ∈ C0([0, T ]; X),

∀t ∈]0, T [, lim
h→0

(
1

h

∫ t+h

t

f (s) ds

)

= f (t) and

lim
h→0+

(
1

h

∫ h

0
f (s) ds

)

= f (0) ;

• For all f ∈ C1([0, T ]; X),
∫ T

0

df

ds
(s) ds = f (T ) − f (0) .

More generally, it is necessary to introduce the distributions valued into function
spaces, that is, vector-valued distributions. According to [93], one can proceed as
follows.

Definition 2.3.7 The space of X-valued distributions in ]0, T [ is denoted by
D′(]0, T [; X). It is the set of linear and continuous mappings defined on D(]0, T [)
with a value in X, where continuity is considered with respect to uniform conver-
gence on the bounded sets of D(]0, T [).

Now, as in Definition 2.1.6, for f in D′(]0, T [; X) and for φ in D(]0, T [), the
action of f on φ is written with the help of duality brackets, with an index t to
emphasize the fact that we are considering the time variable:

〈f, φ〉t .

By definition, the result of these duality brackets belongs to X.

Remark 2.3.8 Note that the spacesL2(0, T ; X) andCm([0, T ]; X) can be identified
with subspaces of D′(]0, T [; X).

Now, similarly to the case of standard distributions, i.e., the ones that depend on the
space variable x alone, one can introduce the notion of differentiation.
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Definition 2.3.9 Let f be an element of D′(]0, T [; X). Its time derivative is
defined by

∀φ ∈ D(]0, T [), 〈df
dt

, φ〉t = −〈f,
dφ

dt
〉t .

Moreover, the time differentiation in the sense of distributions is internal, in other
words. . .

Proposition 2.3.10 Let f ∈ D′(]0, T [; X), then
df

dt
belongs to D′(]0, T [; X).

Definition 2.3.11 Let A ∈ L(X, Y ) and f ∈ D′(]0, T [; X): Af , defined by

∀φ ∈ D(]0, T [), 〈Af, φ〉t := A (〈f, φ〉t ) ,

belongs to D′(]0, T [; Y ).

Thus, one has. . .

Proposition 2.3.12 Consider the setting of the previous Definition. Then, the
mapping f 
→ Af is linear and continuous from D′(]0, T [; X) to D′(]0, T [; Y ).

From these last two definitions and related propositions, one can deduce the
(expected but) fundamental result concerning the distributions in the (t, x) variable,
which basically claims that one can invert the time and space differentiations

Theorem 2.3.13 For all (f,A) ∈ D′(]0, T [; X) × L(X, Y ), we have the following
identity:

d

dt
(Af ) = A

(
df

dt

)

.

From a practical point of view, this theorem allows us to perform the compu-
tations in a “natural” and expected way. This will be crucial for deriving the
variational formulations of the time-dependent problems. For instance, if u ∈
D′(]0, T [; H (curl,Ω)), one knows that curlu ∈ D′(]0, T [; L2(Ω)). According
to the above theorem,

d

dt
(curlu) = curl

(
du

dt

)

in D′(]0, T [; L2(Ω)) .

These considerations will be sufficient to give a meaning to the variational formula-
tions of the subsequent chapters. For more details, we refer the reader to [157, 177]
or [93] chap. XVIII.

In the remainder of the book, we will keep the notation u(t) : x 
→ u(t, x)

to denote the value of u at a given time t . We will also use primes to denote
differentiation with respect to time of u (when it has a meaning), e.g., u′, u′′, etc..
When u belongs to Cm([0, T ]; X), for a Banach space X, this notation is justified.



2.3 Practical Function Spaces in the (t, x) Variable 105

If u belongs to L2(0, T ; X), u(t) is known for almost all t . In the most general case,
that is, if u belongs to D′(]0, T [; X), this is an improper notation. Nevertheless,
this “generalized” notation allows us to give a more unified presentation of the
results. Note also that it fits well into the physical perception, i.e., the knowledge
of the electromagnetic fields at a given time. Moreover, from a mathematical point
of view, this is an admissible notation, since one can invert the time derivative and
the differentiation in space (see Theorem 2.3.13).
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