
Chapter 1
Physical Framework and Models

The aim of this first chapter is to present the physics framework of electromag-
netism, in relation to the main sets of equations, that is, Maxwell’s equations and
some related approximations. In that sense, it is neither a purely physical nor a
purely mathematical point of view. The term model might be more appropriate:
sometimes, it will be necessary to refer to specific applications in order to clarify our
purpose, presented in a selective and biased way, as it leans on the authors’ personal
view. This being stated, this chapter remains a fairly general introduction, including
the foremost models in electromagnetics. Although the choice of such applications
is guided by our own experience, the presentation follows a natural structure.

Consequently, in the first section, we introduce the electromagnetic fields and the
set of equations that governs them, namely Maxwell’s equations. Among others, we
present their integral and differential forms. Next, we define a class of constitutive
relations, which provide additional relations between electromagnetic fields and are
needed to close Maxwell’s equations. Then, we briefly review the solvability of
Maxwell’s equations, that is, the existence of electromagnetic fields, in the presence
of source terms. We then investigate how they can be reformulated as potential
problems. Finally, we relate some notions on conducting media.

In Sect. 1.2, we address the special case of stationary equations, which have time-
periodic solutions, the so-called time-harmonic fields. The useful notion of plane
waves is also introduced, as a particular case of the time-harmonic solutions.

Maxwell’s equations are related to electrically charged particles. Hence, there
exists a strong correlation between Maxwell’s equations and models that describe
the motion of particles. This correlation is at the core of most models in which
Maxwell’s equations are coupled with other sets of equations: two of them—the
Vlasov–Maxwell model and an example of a magnetohydrodynamics model (or
MHD)—will be detailed in Sect. 1.3.
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2 1 Physical Framework and Models

We introduce in the next section approximate models of Maxwell’s equations,
ranging from the static to the time-dependent ones, in which one or all time deriva-
tives are neglected. We also consider a general way of deriving such approximate
models.

In Sect. 1.5, we recall the classification of partial differential equations, and check
that Maxwell’s equations are hyperbolic partial differential equations.

At an interface between two media, the electromagnetic fields fulfill some
conditions. In a similar way, when one of the media is considered as being exterior
to the domain of interest,1 interface conditions are then formulated as boundary
conditions on the boundary of the domain. Also, to reduce the overall computation
cost, one usually truncates the domain by introducing an artificial boundary, on
which (absorbing) boundary conditions are prescribed. Another possibility is to
introduce a thin, dissipative layer, in which the fields are damped. This constitutes
the first topic of Sect. 1.6. The second topic is the radiation condition, which is
required for problems set in unbounded domains to discriminate between outgoing
and incoming waves.

The aim of the last section is to recall the basic notions of energy in the context
of Maxwell’s equations. In particular, notions such as electromagnetic energy flow,
Poynting vector and energy conservation are defined.

We conclude this introductory chapter by providing a set of bibliographical
references.

1.1 Electromagnetic Fields and Maxwell’s Equations

We present the electromagnetic fields in their time-dependent form, as the solutions
to Maxwell’s equations. The various components of the electric and of the magnetic
fields are related to source terms by either a set of integral equations or a set of
first-order partial differential equations. Then, we study the constitutive relations,
which provide additional relations for the electromagnetic fields. With this set of
equations—differential Maxwell equations and constitutive relations—we can state
that, starting from a given configuration, the electromagnetic fields (exist and)
evolve in a unique way. We also expose another formulation, called the potential
formulation, with a reduced number of unknowns, which can be interpreted as
primitives of the electromagnetic fields. Finally, we conclude with a brief study
of conducting/insulating media.

1Unless otherwise specified, in this chapter, a domain is an open region of space. Another meaning
is given for the mathematical studies, starting in Chap. 2.
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1.1.1 Integral Maxwell Equations

The propagation of the electromagnetic fields in continuum media is described
using four space- and time-dependent functions. If we respectively denote by
x = (x1, x2, x3) and t the space and time variables, these four R3-valued, or vector-
valued, functions defined in time-space R × R3 are

1. the electric field E,
2. the magnetic induction B ,
3. the magnetic field2 H ,
4. the electric displacement D.

These vector functions are governed by the integralMaxwell equations below. These
four equations are respectively calledAmpère’s law, Faraday’s law,Gauss’s law and
the absence of magnetic monopoles. They read as (system of units SI)

d

dt

(∫
S

D · dS

)
−

∫
∂S

H · dl = −
∫

S

J · dS, (1.1)

d

dt

(∫
S ′

B · dS

)
+

∫
∂S ′

E · dl = 0, (1.2)

∫
∂V

D · dS =
∫

V

� dV, (1.3)

∫
∂V ′

B · dS = 0. (1.4)

Above, S, S′ are any surface of R3, and V , V ′ are any volume of R3. One can write
elements dS and dl as dS = n dS and dl = τ dl, where n and τ are, respectively,
the unit outward normal vector to S and the unit tangent vector to the curve ∂S.
When S is the closed surface bounding a volume, then n is pointing outward from
the enclosed volume. Similarly, the unit tangent vector to ∂S is pointing in the
direction given by the right-hand rule.

There are two source terms, respectively, � and J . � is an R-valued, or scalar-
valued, function called the electrostatic charge density. It is a non-vanishing
function in the presence of electric charges. J is an R3-valued function called
the current density. It is a non-vanishing function as soon as there exists a charge
displacement, or in other words, an electric current. Now, take the time-derivative
of Eq. (1.3) and consider S = ∂V in Eq. (1.1): by construction, S is a closed surface

2H is sometimes called the magnetizing field.
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(∂S = ∅), so that these data satisfy the integral charge conservation equation

d

dt

(∫
V

� dV

)
+

∫
∂V

J · dS = 0 . (1.5)

Again, V is any volume of R3.

1.1.2 Equivalent Reformulation of Maxwell’s Equations

Starting from the integral form of Maxwell’s equations (1.1–1.4), one can reformu-
late them in a differential form,3 with the help of Stokes and Ostrogradsky formulas

∫
S

curl F · dS =
∫

∂S

F · dl and
∫

V

divF dV =
∫

∂V

F · dS.

One easily derives the differential Maxwell equations (system of units SI):

∂D

∂t
− curl H = −J , (1.6)

∂B

∂t
+ curl E = 0, (1.7)

divD = �, (1.8)

divB = 0. (1.9)

The differential charge conservation equation can be expressed as

∂�

∂t
+ divJ = 0 . (1.10)

However, the above set of equations is not equivalent to the integral set of equations.
As a matter of fact, two notions are missing.

The first one is related to the behavior of the fields across an interface between
two different media. Let Σ be such an interface.

Starting from the volumic integral equations (1.3)–(1.4), we consider thin
volumes Vε crossing the interface. As ε goes to zero, their height goes to zero, and
so does the area of their top and bottom faces (parallel to the interface), with proper
scaling. The top and bottom faces are disks whose radius is proportional to ε, while
the height is proportional to ε2. As a consequence, the area of the lateral surface
is proportional to ε3 and its contribution is negligible as ε goes to zero. Passing to

3The standard differential operators curl, div, grad, and Δ are mathematically defined in
Sect. 1.5.1.
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the limit in Eqs. (1.3) and (1.4) then provides some information on the jump of the
normal (with respect to Σ) components of D and B:

[D · nΣ ]Σ = σΣ, [B · nΣ ]Σ = 0 . (1.11)

Above, [f ]Σ denotes the jump across the interface ftop−fbottom, and nΣ is the unit
normal vector to Σ going from bottom to top. The right-hand side σΣ corresponds
to the idealized surface charge density on Σ: formally, � = σΣδΣ .4

Starting from Eqs. (1.1)–(1.2), the reasoning is similar. For the tangential
components, one gets

[nΣ × E]Σ = 0, [nΣ × H ]Σ = jΣ, (1.12)

with jΣ the (idealized) surface current density on Σ (jΣ is tangential to Σ).
Finally, if divΣ denotes the surface divergence, or tangential divergence, opera-

tor, integral charge conservation equation (1.5) yields

∂σΣ

∂t
+ divΣjΣ + [J · nΣ ]Σ = 0 .

The second notion is topological. For instance, one can consider that the domain
of interest is the exterior of a thick (resistive5) wire, or the exterior of a finite set
of (perfectly conducting5) spheres. In the first case, the domain is not topologically
trivial, and in the second one, its boundary is not connected. In both instances, a
finite number of relations—derived from homology theory—have to be added to
the differential equations (1.6)–(1.9) and the interface relations (1.11)–(1.12) (see
Chap. 3 for details). We assume that, by doing so, we obtain a framework that is
equivalent to the integral Maxwell equations (1.1)–(1.4).

1.1.3 Constitutive Relations

Maxwell’s equations are insufficient to characterize the electromagnetic fields
completely. The system has to be closed by adding relations that describe the
properties of the medium in which the electromagnetic fields propagate. These are
the so-called constitutive relations, relating, for instance, D and B to E and H ,
namely

D = D(E,H ) and B = B(E,H ) .

(We could also choose a priori to use such a relation as D = D(E,B), etc.)

4By definition, δΣ is the surface Dirac mass on Σ , so one has
∫

�v = ∫
Σ

σΣv|Σ dS for ad hoc
functions v.
5See the end of the section.
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These constitutive relations can be very complex. For this reason, we will make
a number of assumptions on the medium (listed below), which lead to generic
expressions of the constitutive relations. This will yield three main categories of
medium, which are, from the more general to the more specific:

1. the chiral medium, a linear and bi-anisotropic medium ;
2. the perfect medium, a chiral, non-dispersive and anisotropic medium ;
3. the inhomogeneous medium, a perfect and isotropic medium, and its sub-

category, the homogeneous medium, which is, in addition, spatially homoge-
neous.

In what follows, E(t) (or B(t), etc.) denotes the value of the electric field on R3 at
time t : x �→ E(t, x). Let us now list the assumptions about the medium.

• The medium is linear. This means that its response is linear with respect to
electromagnetic inputs (also called excitations later on). In addition, it is expected
that when the inputs are small, the response of the medium is also small.

• The medium satisfies a causality principle. In other words, the value of
(D(t),B(t)) depends only on the values of (E(s),H (s)) for s ≤ t .

• The medium satisfies a time-invariance principle. Let τ > 0 be given. If the
response to t �→ (E(t),H (t)) is t �→ (D(t),B(t)), then the response to t �→
(E(t − τ ),H (t − τ )) is t �→ (D(t − τ ),B(t − τ )).

Note that the first assumption corresponds to a linear approximation of D =
D(E,H ): for electromagnetic fields, whose amplitude is not too large, a first-
order Taylor expansion is justified. Furthermore, the smallness requirement can
be viewed as a stability condition (with respect to the inputs). An immediate
consequence of the second assumption is that, if (E(s),H (s)) = 0 for all s ≤ t0,
then (D(t0),B(t0)) = 0. Taking all those assumptions into account leads to the
constitutive relations

{
D = εE + ξH + εd 
 E + ξd 
 H

B = ζE + μH + ζd 
 E + μd 
 H .
(1.13)

Let us comment on expression (1.13).
The constitutive parameters ε, ξ, ζ and μ are 3 × 3 tensor real-valued functions

or distributions of the space variable x. Indeed, according to the time-invariance
principle, these quantities must be independent of t . Among them, ε is called the
dielectric tensor, while μ is called the tensor of magnetic permeability.

The constitutive parameters εd , ξd , ζd and μd are 3 × 3 tensor real-valued
functions of the time and space variables (t, x). The notation 
 denotes the
convolution product, a priori with respect to the four variables (t, x):

(εd 
 E) (t, x) =
∫

s∈R

∫
y∈R3

εd (s, y)E(t − s, x − y) dy ds, etc.
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The causality principle implies εd(s) = ξd (s) = ζd(s) = μd (s) = 0, for all s < 0.
As a consequence, the convolution product reduces to

(εd 
 E) (t, x) =
∫ ∞

0

∫
y∈R3

εd (s, y)E(t − s, x − y) dy ds, etc.

Often, the response depends very locally (in space) on the behavior of the input. So,
one assumes locality in space in the convolution product, or, in other words, that
the integral in y is taken over a “small” volume around the origin. Here, we further
restrict this dependence, as we consider that one can (formally) write6 εd(s, y) =
εd(s) ⊗ δ0, etc. We finally reach the expression of the convolution product 


(εd 
 E) (t, x) =
∫ ∞

0
εd (s)E(t − s, x) ds, etc. (1.14)

To summarize the above considerations, the constitutive parameters εd , ξd , ζd and
μd are 3 × 3 tensor real-valued functions of the time variable t which vanish
uniformly for strictly negative values of t , and as a consequence, the convolution
product 
 is performed with respect to positive times only (cf. (1.14)).

To carry on with the comments on (1.13), we note that the right-hand side can be
divided into two parts:

{
εE + ξH
ζE + μH

(1.15)

is called the optical response. It is instantaneous, since the values of the input are
considered only at the current time. The other part,

{
εd 
 E + ξd 
 H ,

ζd 
 E + μd 
 H ,
(1.16)

is called the dispersive response, hence a notation with an index d . It is dispersive
in time, and as such, it models the memory of the medium.

The relations (1.13) with the convolution products as in (1.14) are linear and
bi-anisotropic; they model a linear and bi-anisotropic medium, also called a chiral
medium. Several simplifying assumptions can be made:

• The medium is non-dispersive when the dispersive response (1.16) vanishes. In
other words, the response of the medium is purely optical (1.15).

• The medium is anisotropic provided that ξ = ζ = 0.
• An anisotropic medium is isotropic when, additionally, the 3× 3 tensors ε and μ

are proportional to the identity matrix: ε = εI3 and μ = μI3.

6By definition, δx0 is the Dirac mass in x0, so one has
∫

�0v = q0v(x0) for ad hoc functions v.
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For an anisotropic medium, the constitutive parameters ε and μ are scalar real-
valued functions of x: ε and μ are respectively called the electric permittivity and
the magnetic permeability of the medium.

In this monograph, apart from the “general” case of a chiral medium, we shall
assume most of the time that the medium is perfect, that is, non-dispersive and
anisotropic, or inhomogeneous, that is, perfect and isotropic. In a perfect medium,
the constitutive relations read as

D(t, x) = ε(x) E(t, x) and B(t, x) = μ(x) H (t, x), ∀(t, x) ∈ R × R3 . (1.17)

In this case, the differential Maxwell equations (1.6–1.9) can be written with the
unknowns E and H . They read as

ε
∂E

∂t
− curl H = −J , (1.18)

μ
∂H

∂t
+ curl E = 0, (1.19)

div (εE) = �, (1.20)

div (μH ) = 0. (1.21)

To write down Eqs. (1.6–1.9) with the unknowns E and B, one has to note that μ is
necessarily invertible on R3, since we assumed at the beginning that the constitutive
relations could also have been written as H = H (E,B). . . So, Eqs. (1.18–1.21) can
be equivalently recast as

ε
∂E

∂t
− curl(μ−1B) = −J , (1.22)

∂B

∂t
+ curl E = 0, (1.23)

div (εE) = �, (1.24)

divB = 0. (1.25)

In an inhomogeneous medium, one simply replaces the tensor fields ε and μ with
the scalar fields ε and μ in Eqs. (1.18–1.21) or in Eqs. (1.22–1.25).

Finally, if the perfect medium is also isotropic and spatially homogeneous, we
say (for short) that it is a homogeneous medium. In a homogeneous medium, the
constitutive relations can finally be expressed as

D(t, x) = ε E(t, x) and B(t, x) = μ H (t, x), ∀(t, x) ∈ R × R3 .

Above, ε and μ are constant numbers. Remark that vacuum is a particular case of
a homogeneous medium, which will be often considered in this monograph. The
electric permittivity and the magnetic permeability are, in that case, denoted as ε0
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(ε0 = (36π.109)−1Fm−1) and μ0 (μ0 = 4π.10−7Hm−1), and we have the relation
c2ε0μ0 = 1, where c = 3.108m s−1 is the speed of light. The differential Maxwell
equations become, in this case,

∂E

∂t
− c2 curl B = − 1

ε0
J , (1.26)

∂B

∂t
+ curl E = 0, (1.27)

divE = 1

ε0
�, (1.28)

divB = 0. (1.29)

1.1.4 Solvability of Maxwell’s Equations

What about the proof of the existence of electromagnetic fields on R3?
To begin with, there exist many “experimental proofs” of the existence of elec-

tromagnetic fields! These experiments actually led to the definition of the equations
that govern electromagnetic phenomena, and of the related electromagnetic fields,
by Maxwell and many others during the nineteenth and twentieth centuries. So,
it is safe to assume that these fields exist, the challenge being mathematical and
computational nowadays. . .

Where does the theory originate? Let us give a brief account of one of the more
elementary (mathematically speaking!) results on charged particles at rest (results
have also been obtained for circuits, involving currents).

The fundamental experimental results we report here were obtained by Charles
Augustin de Coulomb in 1785, when he studied repulsive or attractive forces
between charged bodies, small elder balls. In the air—a homogeneous medium
(ε = εa)—let us consider two charged particles, part1 and part , at rest. Their
respective positions are x1 and x, whereas their respective electric charges are q1
and q . In short, Coulomb’s results (now known as Coulomb’s law) state that the two
particles interact electrically7 with one another, in the following way. The force F

acting on particle part and originating from particle part1 is such that:

• it is repulsive if q1q > 0, and attractive if q1q < 0 ;
• its direction is parallel to the line joining the two particles ;
• its modulus is proportional to |x − x1|−2 ;
• its modulus is also proportional to q1 and q .

7Or: electrostatically.
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If one sets the proportionality coefficient to (the modern) 1/4πεa, one finds that

F (x) = q q1

4π εa

(x − x1)

|x − x1|3 .

Now, define the electric field as the force per unit charge. One infers that

E(x) = q1

4π εa

(x − x1)

|x − x1|3 .

Interestingly, it turns out, after some elementary computations, that one has

E = − gradx φ1, with φ1(x) = 1

4π εa

q1

|x − x1| .

In particular, one gets that curl E = 0, which bears a striking resemblance to
Faraday’s law (1.27) for a system at rest. Moreover, after another series of simple
computations, one finds that divE = �1/εa , where �1 is equal to �1(x) = q1δx1(x):
in other words, the charge density is created by the particle part1, so Gauss’s
law (1.28) is satisfied too. . .

Furthermore, Coulomb proved that the total force produced by N charged
particles on an (N + 1)-th particle (all particles being at rest) is equal to the sum of
the individual two-particle forces, so the same conclusions can actually be drawn for
any discrete system of charged particles at rest! The formula for the charge density
is then �N(x) = ∑

1≤i≤N qiδxi
(x), while

E = − gradx φN, with φN(x) = 1

4π εa

∑
1≤i≤N

qi

|x − xi | . (1.30)

See Sects. 1.3 and 1.7 for continuations.
Now, we focus on the mathematical existence of electromagnetic fields. Evi-

dently, we note that one can devise by hand some solutions to Maxwell’s equations
for well-chosen right-hand sides (using, for instance, Fourier Transform or Green
functions, cf. Chapter 6 of [141]). However, one can also solve this set of equations
in more general and more systematic ways. We give two examples below.

The first one deals with the mathematical existence of the electromagnetic fields,
assuming a homogeneousmedium in R3. More precisely, one adds initial conditions
to Eqs. (1.26–1.29), which read as

E(0) = E0, B(0) = B0. (1.31)

(Above, we assume that the problem begins at time t = 0.)
The couple (E0,B0) constitutes part of the data, the other part being t �→

(J (t), �(t)), for t ≥ 0. The set of equations (1.26–1.29) together with the initial
conditions (1.31) is called a Cauchy problem. Based on the semi-group theory,
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one can prove that there exists one, and only one, solution t �→ (E(t),B(t)),
for t ≥ 0, to this Cauchy problem. Moreover, it depends continuously on the data
(the so-called stability condition). In a more compact way, whenever an existence,
uniqueness and continuous dependence with respect to the data result is achieved,
one says that the related problem is well-posed: in our case, the Cauchy problem
set in all space R3 made of a homogeneous medium is well-posed. Obviously, once
the existence and uniqueness of (E,B) is achieved, the same conclusion follows for
(D,H ) = (ε0 E, μ−1

0 B) (see Chap. 5 for more details).
Here, one has to be very careful, since the uniqueness and continuous dependence

of the solution require a (mathematical) measure of the electromagnetic fields and
of the data. To achieve these results, one uses the quantity Wvac (see below) as the
measure for the fields. In this case, it reads as

Wvac(t) =
∫
R3

1

2
{ε0|E(t, x)|2 + 1

μ0
|B(t, x)|2} dx. (1.32)

It turns out that Wvac defines the electromagnetic energy in this kind of medium.
For more details on energy-related matters, we refer the reader to the upcoming
Sect. 1.7.

The second result deals with the existence of the electromagnetic fields, assuming
now a general chiral medium in R3. By using the same mathematical tools (in a more
involved way, see [140]), one can also derive a well-posedness result. To measure
the fields, one resorts to an integral similar to (1.32), namely

W2(t) =
∫
R3

{|E(t, x)|2 + |H (t, x)|2} dx.

Note that this measure is used to define the stability condition, which has been
previouslymentioned. Once the existence and uniqueness of (E,H ) is achieved, the
same conclusion follows for (D,B), according to the constitutive relations (1.13).

Remark 1.1.1 In a bounded domain, one can derive similar results, with a variety
of mathematical tools. We refer the reader again to Chap. 5.

1.1.5 Potential Formulation of Maxwell’s Equations

Let us introduce another formulation of Maxwell’s equations. For the sake of
simplicity, we assume that we are in vacuum (in all space,R3), withMaxwell’s equa-
tions written in differential form as Eqs. (1.26–1.29). According to the divergence-
free property of the magnetic induction B , there exists a vector potential A such
that

B = curl A .
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Plugging this into Faraday’s law (1.27), we obtain

curl(
∂A

∂t
+ E) = 0 .

Then, there exists a scalar potential φ such that

∂A

∂t
+ E = − grad φ . (1.33)

This allows us to introduce a formulation in the variables (A, φ) - the vector
potential and the scalar potential, respectively - since it holds there that

E = − grad φ − ∂A

∂t
, (1.34)

B = curl A . (1.35)

This formulation requires only the four unknowns A and φ, instead of the six
unknowns for the E and B-field formulation. Moreover, any couple (E,B) defined
by Eqs. (1.34–1.35) automatically satisfies Faraday’s law and the absence of free
magnetic monopoles. From this (restrictive) point of view, the potentialsA and φ are
independent of one another. Now, if one takes into account Ampère’s and Gauss’s
laws, constraints appear in the choice of A and φ (see Eqs (1.37–1.38) below).
Also, the vector potential A governed by Eq. (1.35) is determined up to a gradient
of a scalar function: there lies an indetermination that has to be removed. On the
other hand, for the scalar potential, the indetermination is up to a constant: it can be
removed simply by imposing a vanishing limit at infinity. Several approaches can
be used to overcome this difficulty. In what follows, two commonly used methods
are exposed. If one recalls the identity

curl curl − grad div ≡ −Δ, (1.36)

then Eqs. (1.26) and (1.28), with the electromagnetic fields expressed as in (1.34–
1.35), yield

∂2A

∂t2
− c2ΔA + grad(c2divA + ∂φ

∂t
) = 1

ε0
J , (1.37)

− ∂

∂t
(divA) − Δφ = 1

ε0
� . (1.38)

These equations suggest that one considers either one of the following two condi-
tions, each one of them helpful in its own way for removing the indetermination.
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1.1.5.1 Lorentz Gauge

Let us take (A, φ) such that the gradient-term in Eq. (1.37) vanishes:

c2divA + ∂φ

∂t
= 0 .

Hence, Eqs. (1.37–1.38) are written within the Lorentz gauge framework as

∂2A

∂t2
− c2ΔA = 1

ε0
J ,

∂2φ

∂t2
− c2Δφ = c2

ε0
� .

This gauge is often used for theoretical matters, since it amounts to solving two
wave equations, a vector one for A and a scalar one for φ. Remark as well that these
equations are independent of the coordinate system. This property is useful for many
instances, such as, for example, those originating from the theory of relativity.

1.1.5.2 Coulomb Gauge

This consists in setting the first term in Eq. (1.38) to zero. We thus consider A such
that

divA = 0 .

Equations (1.37–1.38) are now written as

∂2A

∂t2
− c2ΔA = 1

ε0
J − grad(

∂φ

∂t
) ,

Δφ = − 1

ε0
� .

Choosing such a gauge yields a potential φ, which is related to � by a static equation
(however, φ and � can be time-dependent). This model is often used when A is
irrelevant, because electrostatic phenomena dominate. This is usually the case in
plasma models (see, for instance, Sect. 1.4.5).

Remark 1.1.2 The calculations formally performed here are justified for problems
posed in all space. Actually, difficulties appear for the same problems posed in a
bounded domain. The first ones are due to the topological nature of the domain. The
other ones revolve around the definition of compatible boundary conditions on the
potentials (A, φ), with respect to those of the electromagnetic fields (E,B). For an
extended discussion, we refer the reader to Chap. 3.
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1.1.6 Conducting and Insulating Media

For a medium that is also a conductor, we have to describe the property of the
medium in terms of conductivity. This leads to expression of the current density J

as a function of the electric field E

J = J (E) .

Assuming that the medium is linear, the current density J and the electric field E

are governed by Ohm’s law

J = σE + σd 
 E,

where σ is a 3×3 tensor real-valued function of the space variable x, which is called
the tensor of conductivity. The quantity σd is also a 3×3 tensor real-valued function,
but of the time variable t . The convolution product is similar to (1.14): it is realized
in time, enforcing the causality principle. Similarly to the constitutive relations, we
shall usually restrict our studies to a perfect medium. In this case, Ohm’s law is
expressed as

J (t, x) = σ E(t, x) . (1.39)

If, in addition, the medium is inhomogeneous, σ = σ I3 and σ is called the
conductivity. In the particular case of a homogeneous medium, the conductivity
is independent of x. Alternatively, one could introduce the resistivity σ−1 of the
medium, together with the notion of a resistive medium.

In most cases, the current density can be divided into two parts,

J = J ext + J σ ,

where J ext denotes an externally imposed current density, and J σ is the current
density related to the conductivity σ of the medium by the relation (1.39). As a
consequence, one has to modify Ampère’s law (1.6), which can be read as

ε
∂E

∂t
+ σE − curl H = −J ext . (1.40)

On the one hand, if the medium is an insulator (σ = 0) there is no electrically
generated current in this medium. An insulator is also called a dielectric. So, one
has, in the absence of an externally imposed current, J = 0.

On the other hand, we will often deal with a perfectly conducting medium, that
is, a perfect conductor, in which the conductivity is assumed to be “infinite”: all
electromagnetic fields (and in particular, E and B) are uniformly equal to zero in
such a medium. This ideal situation is often used to model metals. Let us discuss the
validity of this statement, which is related to the skin depth δ inside a conducting
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medium. This length is the characteristic scale on which the electromagnetic fields
vanish inside the conductor, provided its thickness is locally much larger than δ. The
fields decay exponentially relative to the depth (distance from the surface), and so
one can consider that they vanish uniformly at a depth larger than a few δ. Note that
this behavior is not contradictory to the accumulation of charges and/or currents at
the surface of the conductor, the so-called skin effect. The skin depth depends on the
frequency ν of the inputs and on the conductivity of the medium: δ is proportional to
(σ ν)−1/2 (see Sect. 1.2.3 for details). For radio signals in the 1–100MHz frequency
range, δ varies from 7 to 70 10−6 m for copper. In the case of a perfect conductor,
we simply assume that the skin depth is equal to zero for all inputs. As we noted
above, one can have non-zero charge and/or current densities at the surface of a
perfect conductor: this is the infinite skin effect.

1.2 Stationary Equations

It can happen that one studies fields and sources for which the behavior in time
is explicitly known. For instance, time-periodic solutions to Maxwell’s equa-
tions, respectively called time-harmonic electromagnetic fields and time-harmonic
Maxwell equations. We first study the basic properties related to these fields and
equations. Next, we address the topic of electromagnetic plane waves, which are a
class of particular solutions, widely used in theoretical physics and in applications,
for instance, to assess numerical methods for the time-harmonicMaxwell equations,
or to build radiation conditions.

1.2.1 Time-Harmonic Maxwell Equations

We deal with time-periodic, or time-harmonic, solutions to Maxwell’s equations
in a perfect medium (here, R3), with a known time dependence exp(−ıωt), ω ∈
R. Basically, it is assumed that the time Fourier Transform of the complex-valued
fields, for instance,

Ê(ω′, x) = (2π)−1
∫

s∈R
Ec(s, x) exp(ıω′s) ds,

is of the form Ê(ω′, x) = δ(ω′ − ω) ⊗ e(x), so that taking the reverse time Fourier
Transform yields

Ec(t, x) =
∫

η∈R
Ê(η, x) exp(−ıηt) dη = e(x) exp(−ıωt).
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The real-valued (physical) solutions are then written as

E(t, x) = (e(x) exp(−ıωt)) , (1.41)

H (t, x) = (h(x) exp(−ıωt)) , (1.42)

D(t, x) = (d(x) exp(−ıωt)) , (1.43)

B(t, x) = (b(x) exp(−ıωt)) . (1.44)

Equivalently, one has E(t, x) = 1
2 {e(x) exp(−ıωt) + e(x) exp(ıωt))}, etc. As a

consequence, one can restrict the study of time-harmonic fields to positive values
of ω, which is called the pulsation. It is related to the frequency ν by the formula
ω = 2πν.

Remark 1.2.1 Formally, for a pulsation ω equal to zero, one gets static fields, in
the sense that they are independent of time. In this way, static fields are a “special
instance” among stationary fields.

The data �(t, x) and J (t, x) are also time-harmonic:

�(t, x) = (r(x) exp(−ıωt)) , (1.45)

J (t, x) = (j(x) exp(−ıωt)) . (1.46)

Evidently, the time dependence is identical between the data and the solution. Here,
we just used straightforward computations!

On the other hand, what happens when one only knows that the data are time-
harmonic (without any information on the fields)? In other words, how do the
fields, seen as the solution to Maxwell’s equations, behave? The answer, which
is much more subtle than the above-mentioned computations, is known as the
limiting amplitude principle. It is important to note that this principle can be
rigorously/mathematically justified, cf. [104]. It turns out that, provided the data
is compactly supported in space, the solution adopts a time-harmonic behavior as t

goes to infinity, in bounded regions (of R3). So, common sense proves true in this
case. Provided that � and J behave as in Eqs. (1.45–1.46), then the electromagnetic
fields behave as in Eqs. (1.41–1.44) when t → +∞, with the same pulsation ω.

The time-harmonic Maxwell equations are

ıωd + curl h = j , (1.47)

−ıωb + curl e = 0, (1.48)

div d = r, (1.49)

div b = 0, (1.50)

where the charge conservation equation (1.10) becomes

− ıωr + div j = 0 . (1.51)
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Since the medium is perfect, we have

d(x) = ε(x)e(x) and b(x) = μ(x)h(x),

so that we can express the time-harmonicMaxwell equations in the electromagnetic
fields e and b, as

ıωεe + curl(μ−1b) = j , (1.52)

−ıωb + curl e = 0, (1.53)

div εe = r, (1.54)

div b = 0. (1.55)

Clearly, one of the fields can be removed in (1.52) and (1.53) to give us

− ω2εe + curl(μ−1 curl e) = ıωj , (1.56)

−ω2b + curl(ε−1 curl(μ−1b)) = curl(ε−1j). (1.57)

On the one hand, the set of equations (1.56–1.57) is often called a fixed frequency
problem. Given8 ω �= 0 and non-vanishing data (j , r), find the solution (e, b).
The conditions (1.54) and (1.55) on the divergence of the electromagnetic fields
are contained in Eqs. (1.56–1.57): simply take their respective divergence, and use
the charge conservation equation (1.51) for the electric field, bearing in mind that
ω �= 0.

On the other hand, one can assume that the current and charge densities vanish.
The equations read as

− ω2εe + curl(μ−1 curl e) = 0, (1.58)

−ω2b + curl(ε−1(curl(μ−1b)) = 0, (1.59)

div (εe) = 0, (1.60)

div b = 0. (1.61)

As noted earlier, the condition on the divergence of the electromagnetic fields would
be implicit in Eqs. (1.58–1.59) under the condition ω �= 0. However, one does not
make this assumption here. The set of equations (1.58–1.61) is usually called an
unknown frequency problem: find the triples (ω, e, b) with (e, b) �= (0, 0) governed
by (1.58–1.61). The same set of equations can be considered as an eigenvalue
problem, also called an eigenproblem. Here, the pulsation ω is not the eigenvalue.
More precisely, its square ω2 is related to the eigenvalue. For that, it is useful (but

8To deserve the label fixed frequency problem, one assumes a non-vanishing value of the pulsation.
Otherwise, one solves a static problem, cf. Sect. 1.4.1.
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not mandatory, see Chap. 8) to assume that the medium is homogeneous, so that ε

and μ are constants, as, for instance, in vacuum.

Remark 1.2.2 The unknown frequency problem models free vibrations of the
electromagnetic fields. On the other hand, the fixed frequency problem models
sustained vibrations (via a periodic input) of the fields.

In a homogeneousmedium, eliminating, as previously, the e-field or the b-field from
one of the above Eqs. (1.52–1.53) yields, with f e = ıωμj and f b = μ curl j as
the (possibly vanishing) right-hand sides,

curl curl e − λe = f e, curl curl b − λb = f b,

where

λ = (εμ)ω2 . (1.62)

Using the identity (1.36) leads to, with f ′
e = −f e + ε−1 grad r , f ′

b = −f b,

λe + Δe = f ′
e, λb + Δb = f ′

b.

From the point of view of the fixed frequency problem ((f ′
e,f

′
b) �= (0, 0)), this

means that each component of the vector fields e or b (here called ψ) is governed
by the scalar Helmholtz equation

Δψ + λψ = f . (1.63)

From the point of view of the eigenvalue problem, (λ,ψ) is simply a couple
eigenvalue–eigenvector of the Laplace operator: the pulsation ω is related to the
eigenvalue λ by the relation (1.62).

Remark 1.2.3 It is important to remark that the components are not independent of
one another. Indeed, the components are linked by the divergence-free conditions
div e = 0 and div b = 0. As we will see in Sect. 1.6, Eq. (1.63) plays an important
role in establishing the radiation condition, which is widely used in diffraction
problems.

1.2.2 Electromagnetic Plane Waves

Let us study a particular class of periodic solutions to Maxwell’s equations, the
plane waves solutions, in a homogeneous medium (again, R3).
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Introduce the time-space Fourier Transform of complex-valued fields, for
instance,

Ẽ(ω′, k′) = (2π)−4
∫

y∈R3

∫
s∈R

Ec(s, y) exp(−ı(k′ · y − ω′s)) ds dy .

The plane waves can be viewed as the reverse time-space Fourier transform of fields,
which possess the following form in the phase space (ω′, k′):

Ẽ(ω′, k′) = E0δ(ω
′ − ω) ⊗ δ(k′ − k), B̃(ω′, k′) = B0δ(ω

′ − ω) ⊗ δ(k′ − k) .

(E0 and B0 both belong to C3, and k is a vector of R3, called the wave vector).
From the above, we deduce that the complex-valued plane waves consist of

solutions of the form

Ec(t, x) = E0 exp(ı(k · x − ωt)), (1.64)

Bc(t, x) = B0 exp(ı(k · x − ωt)) . (1.65)

We keep the convention, according to which the physical electromagnetic fields are
obtained by taking the real part of (1.64–1.65): for instance,

1

2
{E0 exp(ı(k · x − ωt)) + E0 exp(−ı(k · x − ωt))}.

Again, the pulsation ω takes only positive values.

Remark 1.2.4 We will examine how the plane waves are involved in obtaining the
absorbing boundary conditions (cf. Sect. 1.6).

A plane wave propagates. To measure its velocity of propagation, one usually
considers the velocity at which a constant phase (a phase is the value of (Ec,Bc)

at a given time and position) travels. It is called the phase velocity and, according to
expressions (1.64–1.65), it is equal to

vp(ω, |k|) = ω

|k| . (1.66)

So, k �= 0. The quantity |k| is called the wave number, and λ = 2π/|k| is the
associated wavelength. If we let d ∈ S2 be the direction of k, i.e., k = |k|d , we can
further define the vector velocity of propagation, vp = vpd .

Let us consider that the medium is without sources (charge and current density),
so that the fields and pulsation solve the problem (1.52–1.55) with zero right-hand
sides, due to the explicit time-dependence of the plane waves. In addition, they have
a special form with respect to the space variable x, so one has curl E = ık ×E and
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divE = ık · E. The equations become, since ε, μ are constant numbers,

εμωE0 + k × B0 = 0, (1.67)

−ωB0 + k × E0 = 0, (1.68)

k · E0 = 0, (1.69)

k · B0 = 0 . (1.70)

One can remove B0 from the first two equations to obtain

k × (k × E0) = −εμω2E0 .

This equation requires the vector k×(k×E0) to be parallel to E0, which is possible
if and only if k · E0 = 0, i.e., Eq. (1.69) precisely. This yields |k|2 = εμω2, and
then k × (k ×E0) = −|k|2E0. Finally, this allows one to characterize a plane wave
as a solution to the following system of equations:

|k| = √
εμ ω, (1.71)

k · E0 = 0, (1.72)

B0 = 1

ω
k × E0 . (1.73)

Expression (1.71), relating k to ω, is called the dispersion relation (see, for instance,
[151]). Additionally, the relations (1.72–1.73) prove that E0 and B0 are transverse
to the propagation direction of the plane waves, and orthogonal to one another.

From (1.66) and (1.71), one infers that vp = c, with c = 1/
√

εμ. Denoting
k = |k|, one may compute the group velocity defined by

vg(k) = dω

dk
(k),

which usually measures the velocity at which energy is conveyed by a wave. In a
homogeneous medium (see (1.71)), k �→ ω(k) is linear. Hence, the group velocity
is the same for all electromagnetic plane waves, and equal to the phase velocity:
vg = vp. These waves are non-dispersive, and in this sense, a homogeneousmedium
itself is non-dispersive.

To conclude this series of elementary computations, we have established that, for
any wave vector k ∈ R3 \ {0}, there exists an electromagnetic complex-valued plane
wave, which reads as

Ec(t, x) = E0 exp(ı(k · x − c|k|t)),
Bc(t, x) = B0 exp(ı(k · x − c|k|t)),

with E0 verifying (1.72) and related to B0 as in (1.73).
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More generally, the electromagnetic fields in R3 can be considered as a superpo-
sition of plane waves (plus constant fields), so that E0 and B0 depend on the wave
vector, and one ultimately has

Ec(t, x) =
∫

k∈R3
E0(k) exp(ı(k · x − c|k|t)) dk,

Bc(t, x) =
∫

k∈R3
B0(k) exp(ı(k · x − c|k|t)) dk .

The physical electromagnetic fields can be expressed in two forms. First, as

E(t, x) = 1

2

∫
k∈R3

{
E0(k) exp(ı(k · x − c|k|t)) + E0(k) exp(−ı(k · x − c|k|t))} dk,

B(t, x) = 1

2

∫
k∈R3

{
B0(k) exp(ı(k · x − c|k|t)) + B0(k) exp(−ı(k · x − c|k|t))} dk .

Second (and the expressions are equivalent), as

E(t, x) = 1

2

∫
k∈R3

{
E0(k) exp(−ıc|k|t) + E0(−k) exp(ıc|k|t)} exp(ık · x) dk,

B(t, x) = 1

2

∫
k∈R3

{
B0(k) exp(−ıc|k|t) + B0(−k) exp(ıc|k|t)} exp(ık · x) dk .

Remark 1.2.5 Everywhere in space, any couple (k, ω) such that c |k| = ω yields
a plane wave governed by Maxwell’s equations (with all possible choices of
propagation directions in S2). In particular, any strictly positive ω is admissible,
which yields all values λ > 0 (cf. (1.62)). If one thinks in terms of the eigenvalue
problem (1.58–1.61), the corresponding “eigenvector” is not measurable in the sense
of (1.32), so it is called a generalized eigenvector. Adding the constant vectors
(generalized eigenvectors related to λ = 0), the set of values λ is {λ ≥ 0}, which is
the continuous spectrum. In a bounded domain, however, the situation is completely
different: a quantisation phenomenon occurs, i.e., only certain definite values of ω

are possible. What is more, classical eigenvectors exist, and the set of eigenvalues
is discrete and countable. Most examples studied in this book will fall into the latter
category of a countable spectrum.

1.2.3 Electromagnetic Plane Waves Inside a Conductor

Let us focus on the time-harmonic Maxwell equations inside an inhomogeneous
conductor. In this case, it holds that j (x) = σ(x)e(x), in the absence of an
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externally imposed current. The time-harmonic Maxwell equations (1.52–1.55)
become

ıωεσe + curl(μ−1b) = 0,

−ıωb + curl e = 0,

div εσe = 0,

div b = 0,

with the complex-valued εσ = ε + ıσω−1. From now on, the medium is assumed
to be spatially homogeneous. Consider an electromagnetic plane wave as in (1.64–
1.65), that is, e(x) = E0 exp(ık · x) and b(x) = B0 exp(ık · x), with k ∈ C3 of the
form k = k d , where d is a real unit vector and k = k+ + ık− ∈ C. Note that one
can write

exp(ı(k · x − ωt)) = exp(−k−d · x) exp(ı(k+d · x − ωt)),

so d can be considered as the actual direction of propagation, if k+ > 0. This is the
convention we adopt below.

One reaches Eqs. (1.67–1.70), with ε replaced by εσ . Eliminating B0, one finds
the relation k × (k ×E0) = −εσ μω2E0. It follows that k2 = εσμω2, and one finds
that

k± = s
√

εμω

(
(1 + σ 2ω−2ε−2)1/2 ± 1

2

)1/2

,

with s = ±1. According to the convention we adopted, one necessarily has s = +1.
In particular, it holds that k− > 0, so one can write

exp(ı(k · x − ωt)) = exp(−k−d · x) exp(ı(k+d · x − ωt)),

with an attenuation factor exp(−k−d · x). The electromagnetic plane wave is
absorbed by the conductor as it propagates. In other words, the conductor is a
dissipative medium. To conclude, note that the notion of skin depth follows from
this discussion, if one considers an approximation of the attenuation factor when
η = σ(ωε)−1 � 1. More precisely, the skin depth δ is the distance parallel to d

such that the attenuation factor decreases by a factor exp(1), i.e., k−δ = 1. Since
η � 1,

δ = 1

k−
= 1√

εμω

(
(1 + η2)1/2 − 1

2

)−1/2

≈ 1√
πμ

(σν)−1/2,

which is the result stated in Sect. 1.1.6.
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As εσ depends on ω, electromagnetic waves inside a conductor are dispersive,
in the sense that they do not travel at the same velocity for different ω (see also
Sect. 1.2.4 next). To characterize their behavior, one can study their group velocity,
now equal to vg(k0+) = ω′(k0+), which measures the velocity at which energy is
transported, for values of k+ close to k0+.

1.2.4 Dispersive Media

Applying the (time) Fourier transform to a convolution product results in the
product of the (time) Fourier transforms, times 2π . One infers that the constitutive
relations (1.13) can be equivalently recast in the ω variable as9

{
D̂(ω) = (ε + 2π ε̂d(ω))Ê(ω) + (ξ + 2π ξ̂d(ω))Ĥ (ω)

B̂(ω) = (ζ + 2π ζ̂d (ω))Ê(ω) + (μ + 2π μ̂d (ω))Ĥ (ω).
(1.74)

It follows that a medium is non-dispersive as soon as the Fourier transforms of the
constitutive parameters are independent of ω. We outline the discussion below on
some properties of the constitutive parameters for “physically reasonable” media,
cf. [169, §1] for details. Assuming that the causality principle holds, it follows that

ε̂d(ω) = (2π)−1
∫

s∈R
εd(s) exp(ıωs) ds = (2π)−1

∫ ∞

0
εd (s) exp(ıωs) ds .

This expression has two simple, but important, consequences. First, because εd is a
real-valued tensor, it holds that ε̂d (−ω) = ε̂d(ω) for all ω ∈ R. Also, one notices
that ε̂d has a regular analytic continuation in the upper half-plane �(ω) > 0. In
addition, assume, for instance, that ω �→ ε̂d (ω) is square integrable over R. Then,
one can build dispersion relations, also called the Kramers-Kronig relations, that
respectively relate the real part (ε̂d(ω)) to all imaginary parts (�(ε̂d (θ)))θ>0 and
the imaginary part �(ε̂d (ω)) to all real parts ((ε̂d(θ)))θ>0:

(
ε̂d (ω)

) = 2

π
pv

∫ ∞

0

θ �(
ε̂d(θ)

)
θ2 − ω2 dθ, �(

ε̂d(ω)
) = −2ω

π
pv

∫ ∞

0

(
ε̂d(θ)

)
θ2 − ω2 dθ,

where pv denotes Cauchy’s principal value. On the other hand, if ω �→ ε̂d (ω) is
square integrable over R and if one of the two Kramers-Kronig relations holds,10

9The fields P̂ (ω) = 2π ε̂d (ω)Ê(ω) and M̂(ω) = 2π μ̂d (ω)Ĥ (ω) are respectively called electric
and magnetic polarizations.
10 Other conditions on ε̂d lead to the same conclusion. For instance, if ω �→ ε̂d (ω) is a real-
valued, even function of ω that can be expressed as a rational fraction, with decaying condition
ε̂d (ω) = O(ω−2) for large |ω|.
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one finds by applying the (time) inverse Fourier transform that εd (s) = 0 for s < 0.
Hence, the causality principle holds.

Among dispersive media, one model, which describes the optical (and thermal)
properties of some metals, has received renewed attention in recent years. This is
the Lorentz model, with ε̂L(ω) = (ε̂L + ε̂d,L(ω))I3, where ε̂L = ε0 is the optical
response and the dispersive response is given by

ε̂d,L(ω) = − ε0ω
2
p

ω2 − ω2
L + ıωγL

= ε0ω
2
p

(
− ω2 − ω2

L

(ω2 − ω2
L)2 + ω2γ 2

L

+ ı
ωγL

(ω2 − ω2
L)2 + ω2γ 2

L

)
.

Above, ωp is the plasma frequency, γL ≥ 0 is a damping coefficient that accounts
for the dissipation, and ωL �= 0 is the resonance pulsation. The case ωL = 0 is
usually called the Drude model. One may also add a parameter that acts on the
optical response: ε̂L is modified to ε̂L = ε∞ε0 with ε∞ ≥ 1. Note that in the
absence of damping, there exist pulsation ranges in which ε̂L+ ε̂d (ω) < 0. One may
generalize the Lorentz model by defining ε̂d,G(ω) = (ε̂G +∑

L=1,NG
fLε̂d,L(ω))I3

with different values of the resonance pulsation ωL for 1 ≤ L ≤ NG, and where fL

are strength factors. By construction, the one-pulsation Lorentz model with γL > 0
is square integrable, and it fulfills the Kramers-Kronig relations. As a consequence,
the causality principle holds for this model. Thanks to the results of footnote 10, the
causality principle is also verified in the absence of damping.

Finally, the real and imaginary parts of ε̂d have beenmeasured experimentally for
a number of metals. In general, ε̂d is approximately real, i.e., |(ε̂d(ω))| is usually
much larger than |�(ε̂d(ω))|. In given pulsation ranges, these experiments can be
matched by either the one-resonance Lorentz model, or the generalized model, with
appropriately chosen coefficients.

As seen previously, an inhomogeneous conductor is dispersive. Indeed, in
Ampère’s law (1.40), ∂tD is replaced by ε∂tE + σE. So, after the time Fourier
transform, one finds that −ıωD̂(ω) = −ıωεÊ(ω) + σ Ê(ω). In (1.74), ε̂d,cond is
equal to

ε̂d,cond(ω) = ıσ

2πω
.

As expected, ε̂cond = ε + 2πε̂d,cond is equal to εσ as defined in Sect. 1.2.3.

1.3 Coupling with Other Models

Maxwell’s equations are related to electrically charged particles. For instance,
Gauss’s law (1.3) can be viewed as a (proportionality) relation between the flux of
the electric displacement D through a surface and the amount of charges contained
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inside. In the same way, Coulomb’s law allows one to express the electromagnetic
interaction force between particles, from which one can deduce the static equations
for the electric field E. In a more general way, the motion of charged particles
generates electromagnetic fields. Conversely, for a population of charged particles
with a mass m and a charge q (for simplicity reasons, we consider particles that
belong to a single species), the main force field is the electromagnetic force field,
called the Lorentz force. This force describes the way in which the electromagnetic
fields E(t, x) and B(t, x) act on a particle with a velocity v(t):

F = q (E + v × B) . (1.75)

Hence, there exists a strong correlation between Maxwell’s equations and models
that describe the motion of (charged) particles. This correlation is at the core of
most coupled models, where Maxwell’s equations appear jointly with other sets of
equations, which usually govern the motion of charged particles.

To describe the motion of a set of N particles, one can consider the molecular
level, namely by looking simultaneously at the positions (xi )1≤i≤N and the
velocities (vi )1≤i≤N of these particles. Assuming that the particles follow Newton’s
law, the equations of motion are written as

dxi

dt
= vi , m

dvi

dt
= F + F int , 1 ≤ i ≤ N. (1.76)

Above, F is the external force acting on the particles and F int denotes the inter-
action force that occurs between the particles. These equations are complemented
with initial conditions, for instance, at time t = 0,

xi (0) = x0
i , vi (0) = v0i , 1 ≤ i ≤ N. (1.77)

Note that the system (1.76–1.77) is uniquely solvable, in the sense that it allows
one to determine the motion of the N particles. This corresponds to a mechanical
description of the set of particles.

Another approach—the statistical description—relies on

πN(t,X,V ), where X = (x1, · · · , xN) ∈ R3N, V = (v1, · · · , vN) ∈ R3N .

πN is the N-particle distribution function: πN(t,X,V ) dXdV denotes the proba-
bility that the N particles are respectively located at positions (x1, · · · , xN), with
velocities (v1, · · · , vN), at time t . Then, if one considers the actual trajectory of the
particles in the 6N-dimensional space t �→ (X(t),V (t)), it holds that

d

dt
πN(t,X(t),V (t)) = 0, πN(·, ·, 0) = π0

N(·, ·). (1.78)
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Indeed, along the trajectory actually followed by the particles, no particle is created,
and no particle vanishes.

With the help of the chain rule, one can rewrite the previous equation as

(
∂

∂t
+ dX

dt
· ∂

∂X
+ dV

dt
· ∂

∂V

)
πN = 0, or(

∂

∂t
+

N∑
k=1

dxk

dt
· ∇xk

+
N∑

k=1

dvk

dt
· ∇vk

)
πN = 0.

(1.79)

(This is the Liouville equation.)
One can prove that the mechanical and statistical descriptions are equivalent, via

the method of characteristics (see, for instance, [98]).
The charge and current densities induced by the motion of these particles can be

written as

�(t, x) =
N∑

i=1

q δxi (t )(x) and J (t, x) =
N∑

i=1

q δxi (t )(x) ⊗ vi (t), (1.80)

where δxi (t ) is the Dirac mass in xi (t).
In the following, we will consider more tractable approaches, namely the kinetic

model and the fluid model. Note that the kinetic description can be viewed as an
intermediate stage between the molecular and the fluid descriptions: it contains
information on the distribution of the particle velocities, which is lost in a fluid
description. Indeed, the fluid model consists in looking at macroscopic averages of
the quantities associated with the particles. The next two subsections are devoted
to the models resulting from the coupling of Maxwell’s equations with either the
kinetic or the fluid approach.

1.3.1 Vlasov–Maxwell Model

In this kinetic approach, we consider a population of charged particles, subject
to a given external force field F (t, x, v) such that11 divvF = 0. Each particle
is characterized by its position x and its velocity v in the so-called phase space
(x, v) ∈ R3

x × R3
v . Instead of considering each particle individually, we introduce

the distribution function f (t, x, v), which can be defined as the average number of

11In particular, this is the case for the Lorentz force (1.75). As a matter of fact, divvF (t, x, v) =
q (divvE + divv(v × B)) = 0, since the electromagnetic fields are independent of v in the phase
space.



1.3 Coupling with Other Models 27

particles in a volume dxdv of the phase space. So, we have

f (t, x, v) dxdv = number of particles at time t in a

volume dxdv centred at (x, v) in the phase space.

How can this approach be related to the mechanical description (1.76–1.77), or to
the statistical description (1.78–1.79)? Simply, if we denote by X− and V − the
variables (x2, · · · , xN) and (v2, · · · , vN), we remark that

(t, x, v) �→ N

∫
X−

∫
V −

πN(t, x,X−, v,V −) dX−dV −

is an admissible distribution function. Let it be called f .
Now, we recall that Eq. (1.76) writes

dxk

dt
= vk, m

dvk

dt
= F (t, xk, vk) + F int (t, (x�)�), 1 ≤ k ≤ N.

Here, we assume that F int does not depend on (vk)k . More generally, it would be
enough that divvkF int = 0, for all k.

To determine the equations that govern f , we integrate Eq. (1.79) with respect to
X−,V −. This leads to

∂f

∂t
+ v · ∇xf +

∫ ∫
dv1

dt
· ∇v1πN dX−dV −

+
N∑

k=2

∫ ∫
vk · ∇xkπN dX−dV − +

N∑
k=2

∫ ∫
dvk

dt
· ∇vkπN dX−dV − = 0.

We note that the first two terms are directly expressed in terms of f , since the
differentiation is performed in t , or in x = x1, both of which are absent in
(X−,V −). Let us perform the integration by parts of the penultimate integrals with
respect to the variable xk (the same index as in the summation). If there is no particle
flux at infinity, when |xk| → +∞, we find that, since it holds that divxk

vk = 0 (vk

is another variable), one has

∫ ∫
vk · ∇xkπN dX−dV − = −

∫ ∫
(divxkvk)πN dX−dV − = 0.

Similarly, integrating the last integrals with respect to the variable vk , we find that
they vanish too (divvk

vk = 3 is independent of t). Next, we have to deal with the
middle term, which can be split as

∫ ∫
dv1

dt
· ∇v1πN dX−dV − = 1

m
F · ∇vf +

∫ ∫
1

m
F int · ∇v1πN dX−dV −.
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Then, summing up, we reach the relation

∂f

∂t
+ v · ∇xf + 1

m
F · ∇vf = −

∫ ∫
1

m
F int · ∇vπN dX−dV −.

The right-hand side is called the collision integral. To model collisions, one usually
rewrites this right-hand side as a collision kernel Q(f ), which is the rate of change
of f per unit time. There are different expressions of Q(f ) (linear, quadratic, etc.)
depending on the physics involved, which can be very intricate. This yields the
relation

∂f

∂t
+ v · ∇xf + 1

m
F · ∇vf = Q(f ).

Finally, substituting the expression of the Lorentz force (1.75) in this equation, we
obtain that the distribution function f (t, x, v) is governed by the following transport
equation, called the Boltzmann equation:

∂f

∂t
+ v · ∇xf + q

m
(E + v × B) · ∇vf = Q(f ). (1.81)

In the kinetic description, the expressions (1.80) of the charge and the current
densities are respectively given by

�(t, x) = q

∫
R3

v

f (t, x, v) dv, (1.82)

J (t, x) = q

∫
R3

v

f (t, x, v) v dv. (1.83)

When there are several species of particle (respectively, with masses (mα)α and
charges (qα)α), one introduces one distribution function per species (fα)α. Each
function is governed by Eq. (1.81). Then, the contributions of all species add up to
define � and J ,

�(t, x) =
∑
α

qα

∫
R3

v

fα(t, x, v) dv, (1.84)

J (t, x) =
∑
α

qα

∫
R3

v

fα(t, x, v) v dv. (1.85)

When several species coexist, the collision integrals include intra-species inter-
actions and inter-species interactions. The inter-species interactions here model
transferred quantities (such as the momentum or the energy) between different
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species. If the collision kernels (Qα(f ))α model elastic collisions between neigh-
boring particles, then conservation laws apply. One finds that

∫
R3

v

Qα(f ) dv = 0, ∀α and
∑
α

∫
R3

v

Qα(f )v dv = 0. (1.86)

To simplify12 the presentation, we neglect collisions, so the distribution function is
governed by the so-called Vlasov equation

∂f

∂t
+ v · ∇xf + q

m
(E + v × B) · ∇vf = 0, (1.87)

when only a single species of particles is concerned. To be able to couple the Vlasov
equation with Maxwell’s ones, one has to check that � and J , defined as above,
satisfy the differential charge conservation equation (1.10). First, one has divxv = 0
in the phase space, so that v ·∇xf = divx(f v). In the same way, one has F ·∇vf =
divv(f F ). So, the integration of q times Eq. (1.87) in v over R3

v yields

0 = q
∂

∂t

∫
R3

v

f dv + q

∫
R3

v

divx(f v) dv + q

m

∫
R3

v

divv(f F ) dv

= ∂�

∂t
+ divJ + q

m

∫
R3

v

divv(f F ) dv.

Assuming that f |F | goes to zero sufficiently rapidly when |v| goes to infinity, we
obtain, by integration by parts, that the last term vanishes. Indeed,

∫
R3

v

divv(f F ) dv = lim
R→+∞

∫
Bv(0,R)

divv(f F ) dv = lim
R→+∞

∫
∂Bv(0,R)

f (F · nv) ds = 0.

So, we conclude that � and J given by Eqs. (1.82–1.83) satisfy the differential
charge conservation equation as expected.

The relations (1.22–1.25) and (1.82–1.87) clearly express the coupling of
Maxwell’s and Vlasov’s equations, since �(t, x) and J (t, x) are the right-hand
sides13 of Maxwell’s equations. Moreover, the electromagnetic fields E and B play
a crucial role in the force F acting on the particles, cf. Eq. (1.75). Hence, even
if Vlasov’s equation and Maxwell’s equations are linear, their coupling yields a
problem that is globally quadratic. Indeed, the term q

m
(E + v × B) · ∇vf is a

quadratic term in f , since E and B depend linearly13 on f through � and J . Thus,

12Note, however, that in the more general case of a kinetic description given by Eq. (1.81) for
several species, one can still prove that � and J defined by Eqs. (1.84–1.85) satisfy the differential
charge conservation equation (1.10). This is a straightforward consequence of Eq. (1.86).
13It can happen that, in Maxwell’s equations, parts of � and J are due to external charge and
current sources. In this case, E and B depend in an affine way on f .
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the Vlasov–Maxwell model is a non-linear, strongly coupled problem to solve. See
Chap. 10 for mathematical studies on this topic.

For the sake of completeness, we conclude this section with a review of several
variants of the Vlasov–Maxwell model, which are used in certain applications
according to the relative importance of electromagnetic phenomena. For instance,
when rapid electromagnetic phenomena occur, it is more consistent to assume
a priori that particles obey the relativistic laws of motion. In this framework, phase
space is described in terms of positions and momenta (x,p) ∈ R3

x × R3
p rather than

velocities. The distribution function is written as f (t, x,p); and velocity becomes
a function of momentum:

v(p) = p

m

√
1 +

( |p|
m c

)2
.

The distribution function is governed by a modified version of (1.87), namely

∂f

∂t
+ v(p) · ∇xf + q (E + v(p) × B) · ∇pf = 0.

The charge and current densities are now defined as

�(t, x) = q

∫
R3

p

f (t, x,p) dp, J (t, x) = q

∫
R3

p

f (t, x,p) v(p) dp.

These satisfy the differential charge conservation equation (1.10).

1.3.2 Magnetohydrodynamics

Magnetohydrodynamics (MHD) is the study of the flow of a conducting fluid
under the action of applied electromagnetic fields, e.g., a plasma. Usually, one
considers the plasma as a solution of electrons and ions (a compressible, conducting,
two-fluid). Roughly speaking, it consists in coupling the classical hydrodynamical
equations for the fluid with an approximation of Maxwell’s equations, in which the
displacement current ∂tD is neglected.

In a first step, we recall how one can build a fluid model from the Vlasov
equation (1.87). Then, we derive usable expressions for the magnetic induction.
Finally, the hydrodynamical equations are coupled to Maxwell’s, to finally yield the
magnetohydrodynamicsmodel.

As recalled in the introduction to this section, hydrodynamical models are based
on a set of conservation equations derived from the Vlasov equation. A simple way
to derive these equations is to take the moments of the Vlasov equation. Indeed,
fluid descriptions consist in looking at macroscopic averages (with respect to the
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velocities) of the particle quantities over volumes that are large enough to cancel
the statistical fluctuations, but that are small compared to the scales of interest.
Hence, fluid unknowns are moments of the distribution function f , such as the
particle density n(t, x), the mass density ρ(t, x), the mean velocity u(t, x), the
mean energy W(t, x) or the 3 × 3 pressure tensor P(t, x). The first four can be
respectively defined as

n(t, x) =
∫
R3

v

f dv, ρ(t, x) = m n(t, x),

nu(t, x) =
∫
R3

v

f v dv,

nW(t, x) = m

2

∫
R3

v

f |v|2 dv.

For the sake of completeness, we have included the moment of order 2 that
corresponds to the mean energy. Note that the preceding equations, together with
Eqs. (1.82–1.83), immediately yield

�(t, x) = q n(t, x), J (t, x) = q n(t, x)u(t, x).

Before proceeding, we introduce a variable that allows us to describe the random
motion of the fluid:

w(t, x, v) = v − u(t, x)

(
so that

∫
R3

v

f (t, x, v)w dv = 0

)
.

Then, the pressure tensor P(t, x) is defined as

P(t, x) = m

∫
R3

v

f w ⊗ w dv.

(Above, w ⊗ w is a symmetric tensor of order 3.)
We split this tensor as

P = pI3 + Q.

The field p is the scalar pressure of the fluid. From the above, one easily infers the
relation 2nW = mn|u|2+3p, which corresponds to a splitting of the energy (kinetic
and internal). Usually, ρ, u and p are called the hydrodynamical variables.
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To obtain the evolution equations, we multiply Eq. (1.87) by a test function φ(v)

and integrate with respect to v to get

∂

∂t

∫
R3

v

f φ dv + div
∫
R3

v

f vφ dv + 1

m

∫
R3

v

divv(fF ) φ dv = 0 .

Using an integration-by-parts formula (for the last term), and assuming that f φ|F |
goes to zero sufficiently rapidly at infinity, we find

∂

∂t

∫
R3

v

f φ dv + div
∫
R3

v

f vφ dv − 1

m

∫
R3

v

f F · ∇vφ dv = 0 .

Now, choosing φ(v) respectively equal to 1, (vk)k=1,2,3 and |v|2, in other words,
by taking moments of order 0, 1 and 2, we obtain a sequence of hydrodynamical
evolution equations.

First, taking φ(v) = 1 leads to the integral equation

∂

∂t

∫
R3

v

f dv + div
∫
R3

v

f v dv = 0,

or, with the above definitions of the mass density and mean velocity,

∂ρ

∂t
+ div (ρ u) = 0 . (1.88)

To write simple expressions for the moments of order 1 and 2, let us consider the
special case of a laminar (or monokinetic) beam that is a gas in which all the
particles move at the same velocity u(t, x). In this case, the distribution function
becomes simply

f (t, x, v) = n(t, x)δu(t,x)(v).

As a consequence, for the moment of order 1, we find the equivalent scalar or vector
formulas

∂

∂t
(ρ uk) + div (ρ uk u) = nFk, 1 ≤ k ≤ 3, or

∂

∂t
(ρ u) + div (ρ u ⊗ u) = nF .

(1.89)

(The definition of the vector operator div is clear from the equivalence between the
scalar and vector formulas.)

For the moment of order 2, we note that in this special case of a laminar beam,
one has P = 0. The fluid is without pressure (in particular,p = 0). Equations (1.88–
1.89) are, respectively, the mass and momentum conservation equations for a fluid
without pressure.
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On the other hand, what happens when such a construction is used to establish
fluid equations in general? For instance, for a simple fluid with pressure, or for a
fluid including several species of particle. If there are two or more species (labeled
by the index α), then one builds one Eq. (1.88) and one Eq. (1.89) per species.
Equation (1.88) remains unchanged. For the moments of order 1, Eq. (1.89) retains
the same structure, with the following modifications (on the vector formula):

• The pressure tensor appears on the left-hand side. More precisely, the second
term is changed to div (ρ u ⊗ u + P) = div(ρ u ⊗ u) + grad p + div Q.

• For a fluid including several species of particles, a term is added on the right-
hand side, to take into account the transferred mean momentum T rα between
different species.

To summarize, one obtains the system of equations

∂ρα

∂t
+ div (ρα uα) = 0, ∀α (1.90)

∂

∂t
(ρα uα) + div (ρα uα ⊗ uα) + grad pα + div Qα = nα F + T rα, ∀α. (1.91)

According to Eq. (1.86), it holds that
∑

α T rα = 0.
Furthermore, the evolution of the mean energy (moment of order 2) is governed

by an equation that involves Qα , the flux of kinetic energy Kα , which is a moment
of order 3, and finally, the heat Hα , generated by the collisions between particles of
different species (on the right-hand side). So, one needs to choose φ(v) of degree 3
to derive the equation governing the flux of kinetic energy Kα . But this would yield
a term of order 4, and so on. . . In other words, one gets a series of equations that is
exact, but not closed!

To avoid this problem, one has to add a “closure relation” to the system of
equations at some point. For instance, one chooses to keep the hydrodynamical
variables (ρα)α, (uα)α , (pα)α , whereas the other terms Qα, T rα , Kα and Hα are
approximated or, in other words, expressed as functions of the hydrodynamical
variables. To that aim, one usually assumes (see [151, 155]) that the distribution
function fα is close to a Maxwellian distribution.14 In this situation, one can
determine the higher-order terms approximately, and after some simplifications, one
finally derives a modifiedmomentum conservation equation together with a “closure
relation”, that involves only (ρα)α , (uα)α, (pα)α.

Let us follow Lifschitz [155], to see how one can write a closed system in
the particular case of a plasma. More precisely, we consider a two-fluid, made of
electrons (qe = −e) and a single species of ions, so the hydrodynamical variables
are (ρα)α=e,i , (uα)α=e,i , (pα)α=e,i . The aim is to model slow, large-scale plasma

14Id est, consider fα(v) ≈ Aα exp(−Bα |v − uα |2), with Aα,Bα > 0.
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evolution. The assumptions originating from the physics involved can be listed as
follows:

• The plasma is electrically neutral: qene + qini = 0 ;
• The pressure is scalar: Qe = Qi = 0 ;
• The electron inertia can be neglected: ∂t (ρe ue) + div (ρe ue ⊗ ue) = 0.

First, we remark that since qene +qini = 0, ρe is proportional to ρi . Equation (1.90)
writes (for α = i)

∂ρi

∂t
+ div (ρi ui ) = 0 .

Then, Eq. (1.91) writes (for α = i, e)

∂

∂t
(ρi ui ) + div (ρi ui ⊗ ui ) + grad pi = niqi(E + ui × B) + T r i ,

grad pe = neqe(E + ue × B) + T re.

Adding up these two equations (recall that T r i + T re = 0), we find

∂

∂t
(ρi ui ) + div (ρi ui ⊗ ui ) + grad(pi + pe) = niqi(ui − ue) × B.

Moreover, we know from the definition of the current density that one has J =
neqeue +niqiui = niqi(ui − ue), so the right-hand side can finally be expressed in
terms of J and B only:

∂

∂t
(ρi ui ) + div (ρi ui ⊗ ui ) + grad(pi + pe) = J × B. (1.92)

One could carry out the same analysis for the evolution of the mean energy. In the
same spirit as Eq. (1.86), the energy conservation law writes Hi + He = −T r i ·
ui − T re · ue, where the sum Hi + He corresponds to the Joule effect. It is omitted
here (see Eq. (1.98) below for the final result).

In particular, a relevant set of hydrodynamical variables is ρ = ρi , u = ui ,
and p = pi + pe. Based on this observation, it turns out that one can consider the
electrically neutral plasma as a one-fluid.

Let us return now to Maxwell’s equations. In the MHD model, the displacement
current ∂tD is always neglected with respect to the induced current J . This corre-
sponds to the magnetic quasi-static model (see the upcoming Sect. 1.4). Moreover,
we know that � = neqe + niqi = 0. The electric field E is thus divergence-free
(more precisely, div εE = 0). In terms of the Helmholtz decomposition (1.120) (see
Sect. 1.4 again), this means that E is transverse: E = ET . So, Maxwell’s equations
write

curl μ−1B = J , (1.93)
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∂B

∂t
+ curl ET = 0, (1.94)

divB = 0. (1.95)

We note that Eq. (1.93) allows us to express the right-hand side of Eq. (1.92) in
terms of B only, since one has

J × B = curl(μ−1B) × B.

Now, the equation governing the evolution of B, namely Faraday’s law (1.94)
requires knowledge of ET . It appears that (see, for instance, [155], Eq. (7.12)),
to take the motion of the fluid into account, Ohm’s law (1.39) can be generalized to

J = σS(ET + u × B) .

(σS is sometimes called the Spitzer conductivity.)
With this relation, we can remove the electric field from Faraday’s law:

curl ET = − curl(u × B) + curl(σ−1
S J )

= − curl(u × B) + curl(σ−1
S curl(μ−1B)).

The main conclusion is that, for the magnetohydrodynamics model (MHD) that
governs the evolution of the plasma, a relevant set of variables is ρ, u, p, and B. Let
us recall them here. For the sake of completeness, we have added Eq. (1.98), which
governs the evolution of the mean energy, with the parameter γ set to 5/3:

∂ρ

∂t
+ div (ρ u) = 0, (1.96)

∂

∂t
(ρ u) + div (ρ u ⊗ u) + gradp = curl(μ−1B) × B, (1.97)

ργ

γ − 1

(
∂

∂t
(p ρ−γ ) + u · grad(p ρ−γ )

)
= σ−1

S | curl(μ−1B)|2, (1.98)

∂B

∂t
− curl(u × B) + curl(σ−1

S curl(μ−1B)) = 0, (1.99)

divB = 0. (1.100)

Briefly commenting on Eqs. (1.96–1.100), we note first that Eq. (1.100) is implied
by Eq. (1.99). Also,ET and J are respectively determined by Eqs. (1.94) and (1.93).
Thus, all fields can be inferred from these equations. For some applications, one
can consider that σ−1

S = 0, thus leading to the ideal set of MHD equations. In
other words, the plasma is perfectly conducting. Contrastingly, when the plasma is
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resistive, one cannot set σ−1
S to zero, and one has to solve the resistive set of MHD

equations.
Another variant of the above model is given by the incompressible, viscous,

resistive MHD equations, which come up when the conducting fluid is a liquid
(such as molten metal or an electrolyte, e.g., salt water) rather than an ionised
gas. Compared to gases, liquids are typically nearly incompressible, but much more
viscous and dense; this requires different scalings and approximations. Namely, the
system (1.96)–(1.100) is modified as follows:

1. The mass density ρ, or equivalently the particle density n, of the fluid is
assumed to be constant: this is the incompressibility condition. The conservation
equation (1.96) reduces to divu = 0; this equality serves as the “closure
relation”, replacing the adiabatic closure (1.98).

2. The momentum conservation equation (1.97) is modified by introducing a vis-
cosity term −νΔu. Under certain scaling assumptions, such a term appears [58,
§2.2] when the system of hydrodynamic equations is derived from the Boltzmann
equation (1.81), rather than the Vlasov equation (1.87).

3. We allow for some external, non-electromagnetic force f (such as gravity) acting
on the fluid, in addition to the Lorentz and pressure forces.

Thus, we arrive at the system:

ρ
∂u

∂t
− ν Δu + ρ (u · ∇)u + grad p = curl(μ−1B) × B + f , (1.101)

∂B

∂t
− curl(u × B) + curl(σ−1

S curl(μ−1B)) = 0, (1.102)

divu = 0, divB = 0. (1.103)

The notation (a · ∇)b stands for
∑3

i=1 ai ∂xib; the replacement of div(u ⊗ u) with
(u · ∇)u is possible thanks to divu = 0. See Chap. 10 for mathematical studies on
how to solve the MHD equations.

1.4 Approximate Models

We have already introduced the time-dependent Maxwell equations formulated as
problems with field or potential unknowns. Let us now adopt a different point of
view. As a matter of fact, many problems in computational electromagnetics can be
efficiently solved at a much lower cost by using approximate models of Maxwell’s
equations. As a particular case, the static models are straightforward approximations
corresponding to problems with “very slow” time variations or “zero frequency”
phenomena (with a pulsation ω “equal to zero”), so that one can neglect all
time derivatives. We also present a fairly comprehensive study on how to derive
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approximate models, as in [96, 176]. These models are studied mathematically in
Chap. 6.

1.4.1 The Static Models

Let us consider problems (and solutions) that are time-independent, namely static
equations, in a perfect medium. In other words, we assume that ∂t · = 0 in
Maxwell’s equations (1.22–1.25). This assumption leads to (with non-vanishing
charge and current densities)

{
curl Estat = 0, curl(μ−1Bstat) = J ,

div (εEstat) = �, divBstat = 0,
(1.104)

where the superscript stat indicates that we are dealing with static unknowns. In the
following two subsubsections, we will consider the electric and the magnetic cases
separately. Again, they are set in all space, R3.

Remark 1.4.1 Within the framework of the time-harmonic Maxwell equations (see
Sect. 1.2), we looked for solutions to Maxwell’s equations with an explicit time-
dependence. In this setting, the static equations can be viewed as time-harmonic
Maxwell equations with a pulsation ω “equal to zero”. This interpretation can be
useful, for instance, for performing an asymptotic analysis.

1.4.1.1 Electrostatics

Equation curl Estat = 0 yields Estat = − grad φstat , where φstat denotes the
electrostatic potential ; see the connection to (1.33) when ∂t · = 0. As div (εEstat) =
�, the potential φstat solves the elliptic15 problem

−div (ε grad φstat) = � .

Moreover, in a homogeneousmedium (for instance, in vacuum ε = ε0I3), we obtain
the electrostatic problem with unknown φstat

− Δφstat = �

ε0
. (1.105)

This is the Poisson equation in variable φstat (see, for instance, Chapter 3 of
[103, Volume II]), which is an elliptic partial differential equation (PDE), and
by definition, a static problem, much cheaper to solve computationally than the

15See the upcoming Sect. 1.5 for a precise definition.
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complete set of Maxwell’s equations. Then, one sets Estat = − grad φstat to
recover the electrostatic field.

1.4.1.2 Magnetostatics

In a similar manner, a static formulation can be written for the magnetic induction
Bstat . By applying the curl operator to equation curl(μ−1Bstat) = J , we obtain

curl curl(μ−1Bstat) = curl J .

In a homogeneous medium (for instance, in vacuum μ = μ0I3), and using the
identity (1.36) again, we obtain the magnetostatic problem

−ΔBstat = μ0 curl J , divBstat = 0 ,

whose solution, Bstat , is called the magnetostatic field. This is a vector Poisson
equation, i.e., an elliptic PDE (left Eq.), with a constraint (right Eq.). Again, this
formulation leads to problems that are easier to solve than the complete set of
Maxwell’s equations.

Note also that one hasBstat = curl Astat (see (1.35)). If, moreover, the Coulomb
gauge is chosen to remove the indetermination on the vector potential Astat , one
finds the alternate magnetostatic problem

− ΔAstat = μ0J , divAstat = 0 , (1.106)

with Astat as the unknown. Then, one sets Bstat = curl Astat to recover the
magnetostatic field.

1.4.2 A Scaling of Maxwell’s Equations

In order to define an approximate model, one has to neglect one or several terms
in Maxwell’s equations. The underlying idea is to identify parameters, whose value
can be small (and thus, possibly negligible). To derive a hierarchy of approximate
models, one can perform an asymptotic analysis of those equations with respect
to the parameters. This series of models is called a hierarchy, since considering
a supplementary term in the asymptotic expansion leads to a new approximate
model. An analogous principle is used, for instance, to build approximate (paraxial)
models when simulating data migration in geophysics modelling (cf. among others
[41, 85]). From a numerical point of view, the approximate models are useful, first
and foremost, if they coincide with a physical framework, and second, because in
general, they efficiently solve the problem at a lower computational cost.
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In the sequel, let us show how to build such approximate models formally (i.e.,
without mathematical justifications), recovering, in the process, static models, but
also other intermediate ones.

Let us consider Maxwell’s equations in vacuum (1.26–1.29). As a first step, we
introduce a scaling of these equations based on the following characteristic values:

l : characteristic length,

t : characteristic time,

v : characteristic velocity, with v = l/t,

E,B : scaling for E and B,

�, J : scaling for � and J .

In order to build dimensionless Maxwell equations, we set

x = lx′ ⇒ ∂

∂xi

= 1

l

∂

∂x ′
i

t = tt ′ ⇒ ∂

∂t
= 1

t

∂

∂t ′

E = EE′, etc.

We thus obtain for Maxwell’s equations in vacuum

v

c

E

cB

∂E′

∂t ′
− curl′ B ′ = −J

lμ0

B
J ′, (1.107)

v

c

cB

E

∂B ′

∂t ′
+ curl′ E′ = 0, (1.108)

div′E′ = �
l

ε0E
�′, (1.109)

div′B ′ = 0. (1.110)

As far as the charge conservation equation (1.10) is concerned, we find

� v

J

∂�′

∂t ′
+ div′J ′ = 0.

Now, given l, t , �, we choose E,B, J such that

E = �l

ε0
, B = E

c
, J = c� = B

lμ0
.
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We define the parameter η with

η = v

c
.

Maxwell’s equations in the dimensionless variables E′, B ′ can be written as

η
∂E′

∂t ′
− curl′ B ′ = −J ′,

η
∂B ′

∂t ′
+ curl′ E′ = 0,

div′E′ = �′,

div′B ′ = 0 ,

while the charge conservation equation writes

η
∂�′

∂t ′
+ div′J ′ = 0.

Assuming now that the characteristic velocity v is small with respect to the speed of
light c, we have

η = v

c
� 1 . (1.111)

This assumption is usually called the low frequency approximation, since it assumes
“slow” time variations, which correspond after a time Fourier Transform to small
pulsations/frequencies.

Obviously, the static models are obtained by setting η = 0 in these equations.
Thus, they appear as a zero-order approximation of Maxwell’s equations. Next, we
derive more accurate approximate models.

1.4.3 Quasi-Static Models

More general approximate models can be obtained by discriminating the time
variations, respectively, of the electric field and the magnetic induction. Hence, after
the scaling step in Maxwell’s equations in vacuum, that is, in Eqs. (1.107–1.110), if
we suppose that

v
B

E
� 1 and

v

c

E

cB
≈ 1,
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we easily obtain that we may neglect the time derivative ∂tB in Faraday’s law,
whereas the coefficient of the time derivative ∂tE in Ampère’s law is comparable
to one. We then obtain the electric quasi-static model, which can be written in the
physical variables E, B as

curl E = 0, (1.112)

divE = 1

ε0
�, (1.113)

curl B = μ0 J + 1

c2

∂E

∂t
, (1.114)

divB = 0. (1.115)

It can be proven (see Sect. 6.4) that this model is a first-order approximation of
Maxwell’s equations. As mentioned, it is formally built by assuming that the time
variations of the magnetic induction are negligible.

In a similar way, let us suppose, contrastingly, that

v

c

E

cB
� 1 and v

B

E
≈ 1,

thus we may neglect the time derivative ∂tE in Ampère’s law, whereas the
coefficient of the time derivative ∂tB in Faraday’s law is comparable to one.We thus
obtain the magnetic quasi-static model, which can also be written in the physical
variables E, B as

curl B = μ0J , (1.116)

divB = 0, (1.117)

curl E = −∂B

∂t
, (1.118)

divE = 1

ε0
�. (1.119)

This set of equations constitutes another first-order approximation of Maxwell’s
equations, which is derived formally by assuming that the time variations of the
electric field, namely the displacement current, are negligible.

At first glance, there is no difference between the quasi-static electric equa-
tions (1.112–1.113) plus the quasi-static magnetic equations (1.116–1.117) and
the static ones (1.104). However, we observe that the right-hand sides are time-
dependent in the case of the quasi-static equations, whereas they are static in the
other case. Let us consider, for instance, the electric quasi-static model (i.e., ∂tB is
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negligible). The right-hand side � of the Poisson equation (1.113) is (explicitly)
time-dependent, since it is related to the electric field E that is a priori time-
dependent. Now, with the supplementary assumption that ∂tE is also negligible, �
becomes a static right-hand side and the twice quasi-static model is actually static.

From now on, it is important to note that the “quasi-static/static” difference is
not only a terminological subtlety. Indeed, from a numerical point of view, solving
a quasi-static problem with a time-dependent right-hand side, amounts to solving a
series of static problems after the time-discretization is performed [22].

1.4.4 Darwin Model

Let us introduce another approximate model, also known as the Darwin model [90].
It consists in introducing a Helmholtz decomposition of the electric field as

E = EL + ET , (1.120)

where EL, called the longitudinal part, is characterized by curl EL = 0, and
ET , the transverse part, is characterized by divET = 0. Starting from Maxwell’s
equations in vacuum, one then assumes that ε0∂tE

T can be neglected in Ampère’s
law: one neglects only the transverse part of the displacement current, whereas, in
the quasi-static model, the total displacement current ε0∂tE is neglected. In this
sense, it is a more sophisticated model than the quasi-static one. Moreover, it can
be proven (see Sect. 6.4), by using the low frequency approximation (1.111) and
the resulting dimensionless form of Maxwell’s equations, that this model yields a
second-order approximation of the electric field and a first-order approximation of
the magnetic induction.

The Darwin model in vacuum is written in the physical variables E, B as

curl E = −∂B

∂t
, divE = �

ε0
,

curl curl B = μ0 curl J , divB = 0. (1.121)

Then, if one uses the Helmholtz decomposition (1.120) with divET = 0 and
EL = − grad φ, we see that the three fields B , ET and φ solve three elliptic PDEs,
namely (1.121) and

−Δφ = �

ε0
,

curl ET = −∂B

∂t
, divET = 0.
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Compared with the original time-dependent problem, these problems are easier to
solve. As a matter of fact, only the data are time-dependent, while the operators are
time-independent.

To conclude, we emphasize that the main difficulty, when using the Darwin
model in a bounded domain, is how to define suitable boundary conditions for
each part of the electric field: more precisely, how one should “split” the boundary
condition on E into two boundary conditions on EL and ET . We refer the reader to
[83, 96] for more details (see also Sect. 6.4).

1.4.5 Coupled Approximate Models

When considering the Vlasov-Maxwell model, in many cases, the interactions
between particles are mainly electrostatic; the self-consistent magnetic field is
negligible. Furthermore, particles have velocities that are much smaller than c:
they obey the non-relativistic dynamic. So, one reverts to the position-velocity
description of phase space (x, v) ∈ R3

x × R3
v; in addition, in the Lorentz force,

the term v × B is negligible before E, unless there is a strong external magnetic
field (as in tokamaks, for instance). One replaces the Maxwell’s equations with an
electric quasi-static model; and the magnetic part (1.114)–(1.115) is irrelevant. The
electric part (1.112)–(1.113) is rephrased asE = − gradφ and−Δφ = �/ε0. Thus,
we arrive at the Vlasov–Poisson system:

∂f

∂t
+ v · ∇xf − q

m
∇xφ · ∇vf = 0 ;

−Δxφ = �

ε0
,

with � given by (1.82). Also, there exist intermediate models such as Vlasov–
Darwin, which couples Eq. (1.87) with the model of Sect. 1.4.4 (see, for instance,
[7, 36]).

1.5 Elements of Mathematical Classifications

In this section, we first recall the definition of some standard operators, together
with a classification of the partial differential equations (PDE) and their physical
counterparts. In a second part, we reformulate and classify Maxwell’s equations. In
the last part, we present well-known computations that establish a correspondence
between the time-harmonic dependence with the notion of resonance. The material
presented here is very classical: the well-informed reader may skip this section.
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1.5.1 Standard Differential Operators

Let us begin by recalling the definitions of the four operators grad, div, Δ and curl,
which we use throughout this book.

Let En be a finite-dimensional Euclidean space of dimension n, endowed with
the scalar product ·, and let An be an affine space over En. Furthermore, let U be an
open subset of An. Respectively introduce a scalar field on U , f : U → R, and a
vector field on U , f : U → En.

Assume that f is differentiable at M ∈ U , and let Df (M) be its differential at
M . Then, the gradient of f at M is defined by

grad f (M) · v := Df (M) • v, ∀v ∈ En.

Provided that f is differentiable on U , the vector field M �→ grad f (M) is called
the gradient of f on U . The operator, grad, is called the gradient operator.

Assume that f is differentiable at M ∈ U , then the divergence of f at M is
defined by

divf (M) := tr(Df (M)),

where tr denotes the trace of a linear operator. Provided that f is differentiable on
U , the scalar field M �→ divf (M) is called the divergence of f onU . The operator,
div, is called the divergence operator.

Assume that f is twice differentiable at M ∈ U , then the Laplacian of f at M is
defined by

Δf (M) := div (grad f )(M).

Provided that f is twice differentiable on U , the scalar field M �→ Δf (M) is called
the Laplacian of f on U . The operator,Δ, is called the Laplace operator.

Consider that n = 3, and assume that f is differentiable at M ∈ U . Then, for
any given v0 ∈ E3, the mapping f × v0 : U → E3 is differentiable at M . The curl
of f at M is defined by

curl f (M) · v0 := div (f × v0)(M), ∀v0 ∈ E3.

Provided that f is differentiable on U , the vector field M �→ curl f (M) is called
the curl of f on U . The operator, curl, is called the curl operator.

In physics, one is mainly interested in three-dimensional Euclidean and affine
spaces E3 and A3. Moreover, to obtain expressions that involve partial derivatives,
let us introduce (e1, e2, e3) as an orthonormal basis of E3, (O, e1, e2, e3) as
an affine (or cartesian) coordinate system of A3, and finally, (x1, x2, x3) as the
associated coordinates, that is, M = O + ∑

i=1,2,3 xiei . We can write f =∑
i=1,2,3 fiei . Then, with respect to the affine coordinate system, the four operators
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defined above can be respectively expressed as

grad f =
i=3∑
i=1

∂f

∂xi

ei , divf =
i=3∑
i=1

∂fi

∂xi

, Δf =
i=3∑
i=1

∂2f

∂x2
i

,

curl f =
(

∂f3

∂x2
− ∂f2

∂x3

)
e1 +

(
∂f1

∂x3
− ∂f3

∂x1

)
e2 +

(
∂f2

∂x1
− ∂f1

∂x2

)
e3.

1.5.2 Partial Differential Equations

We begin with the simple case of a linear second-order two-dimensional partial
differential equation

A
∂2u

∂x2 + 2B
∂2u

∂x∂y
+ C

∂2u

∂y2 + D
∂u

∂x
+ E

∂u

∂y
+ Fu = G, (1.122)

where the solution u, the coefficients A,B, . . . , F and the data G are functions of
(x, y). It is well known that, following the sign of the discriminant

B2 − AC,

one can build a classification of partial differential equations that write as in
Eq. (1.122) in a domain Dom of R2. We have the classes:

1. if B2 − AC < 0 on the domain Dom, the PDE (1.122) is of the elliptic type. It
corresponds to equilibrium problems, such as, for instance, the static problems,
and it can be written in a canonical form, the prototype being the Poisson
equation (cf. Sect. 1.4.1).

2. if B2 −AC = 0 on the domain Dom, the PDE (1.122) is of the parabolic type. It
can also be transformed into a canonical form, a typical example being the heat
transfer equation. From a physical point of view, this corresponds to diffusion
problems.

3. if B2 − AC > 0 on the domain Dom, the PDE (1.122) is of the hyperbolic type.
After rewriting the equation under its canonical form, one can easily identify the
wave equation as the prototype of the hyperbolic equation. An important property
of the hyperbolicity is that it corresponds to propagation of solutions with a finite
velocity.

If we consider now the more general second-order linear partial differential equation
set in a domain of Rn, that is, in n variables, it can be written as

n∑
i=1

n∑
j=1

aij
∂2u

∂xi∂xj

+
n∑

i=1

bi
∂u

∂xi

+ cu = d, (1.123)
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where the solution u, the coefficients aij , bi, c, and the data d are functions of the
n variables (xi)1≤i≤n. In order to classify the PDEs (1.123) into different types,
we consider the so-called principal part, that is, the highest-order terms in (1.123),
which we express as

n∑
i=1

n∑
j=1

aij

∂2

∂xi∂xj
= ∂ · A∂ + l.o.t. (1.124)

Above, ∂ = ( ∂
∂x1

, . . . , ∂
∂xn

)T ∈ Rn, and A denotes the n×nmatrix of the coefficients
aij , and l.o.t. (or lower-order terms) stands for first or zero-order terms that vanish if
the aij s are constant. Now, using Schwarz’s theorem ∂2ij = ∂2ji , one can rewrite
the coefficients aij so as to obtain a symmetric matrix A, which we assume to
belong to Rn×n (i.e., it is a real-valued matrix). Classically, all eigenvalues of the
symmetric real-valuedmatrix A are real. We denote them by λ1, λ2, . . . , λn, counted
with their multiplicity. Furthermore, we introduce a corresponding orthonormal set
of eigenvectors u1, . . . ,un, such that A can be diagonalized as

UT AU = D =
⎛
⎜⎝

λ1 . . . 0
...

...

0 . . . λn

⎞
⎟⎠ ,

where U is an orthogonal matrix (UT = U−1) with the eigenvectors ui as its n

columns. Introducing now the directional derivative operator

∂

∂ξi

= ui · ∂, 1 ≤ i ≤ n,

we define the vector differential operator

∂ ′ = UT ∂, with ∂ ′ =
⎛
⎜⎝

∂ξ1
...

∂ξn

⎞
⎟⎠ .

Plugging this expression into the first term of the right-hand side of (1.124) and
using the orthogonal character of the matrix U gives us

∂ · A∂ = UT ∂ · DUT ∂ = ∂ ′ · D∂ ′ .

In this way, one gets that (1.124) can be rewritten equivalently

n∑
i=1

n∑
j=1

aij
∂2

∂xi∂xj

=
n∑

i=1

λi
∂2

∂ξ2i

+ l.o.t.,
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where the l.o.t. here again represents the lower-order terms. This expression
provides an obvious way to extend the previous classification to the general case,
which appears to be strongly related to the sign of the eigenvalues λi . Hence, we
define, by analogy to the two-dimensional case, several classes of partial differential
equation:

1. if either λi > 0,∀i or λi < 0,∀i, the equation is said to be elliptic ;
2. if exactly one of the λi > 0 or λi < 0 and all other (λj )j �=i exhibit an opposite

sign, the equation is said to be hyperbolic ;
3. if one of the λi = 0, the equation can be parabolic. For that, all other (λj )j �=i

must exhibit a fixed sign ;
4. other instances are possible:

• if Card{λi = 0} ≥ 2, the equation is said to be semi-parabolic ;
• if λi �= 0,∀i, and Card{λi > 0} ≥ 2, Card{λi < 0} ≥ 2, the equation is said

to be semi-hyperbolic.

When we are dealing with a system of equations that can be reformulated as one
or several PDEs acting on vector unknowns, we refer to it as a vector PDEs. As
we shall see in the next subsection, the time-dependent Maxwell equations are an
example of hyperbolic vector PDEs.

To end this subsection, we remark that there exist other ways to define the elliptic,
parabolic and hyperbolic types of equation. In particular, when we deal with systems
of equations, one can relate the classification to the inversibility of the principal
symbol of the operator, namely the Fourier transform of the highest-order terms.
We refer the interested reader, for instance, to [92, 93].

1.5.3 Maxwell’s Equations Classified

Though it is often alluded to in this chapter, we have not so far explicitly classified
Maxwell’s equations. It turns out to be quite easy. Assume we are considering a
homogeneous medium (vacuum):
let us build ∂t (Eq. (1.26))+c2 curl(Eq. (1.27))−c2 grad(Eq. (1.28)) formally, to
find

∂2E

∂t2
− c2 ΔE = − 1

ε0

(
∂J

∂t
+ c2 grad�

)
. (1.125)

Then, build ∂t (Eq. (1.27)) − curl(Eq. (1.26)) − c2 grad(Eq. (1.29)) to find

∂2B

∂t2
− c2 ΔB = 1

ε0
curl J . (1.126)
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Both vector PDEs, respectively governing the behavior of E and B, are vector
wave equations and, as such, they are hyperbolic. In particular, the electromagnetic
fields propagate with finite speed (equal to c, see Sect. 1.2.2). They have to be
supplementedwith some first-order initial conditions. Indeed, to obtain Eqs. (1.125–
1.126), one differentiates in time both Ampère’s and Faraday’s laws. If one
keeps only these equations, constant values (w.r.t. the time variable) of those
laws—considered as mathematical expressions—are neglected. Hence, one adds the
relations

⎧⎪⎪⎨
⎪⎪⎩

(
∂E

∂t
− c2 curl B

)
|t=0 = − 1

ε0
J |t=0(

∂B

∂t
+ curl E

)
|t=0 = 0

,

which equivalently write, with the help of the zero-order initial condition (1.31),

∂E

∂t
(0) = E1 := c2 curl B0 − 1

ε0
J (0),

∂B

∂t
(0) = B1 := − curl E0.

(1.127)

Also, one must keep Gauss’s law (1.28) and the absence of magnetic
monopoles (1.29), which appear here as constraints on the solutions to Eqs. (1.125–
1.126).

Remark 1.5.1 One can choose not to add contributions resulting from the diver-
gence part of the fields, to reach

∂2E

∂t2
+ c2 curl curl E = − 1

ε0

∂J

∂t
, (1.128)

∂2B

∂t2
+ c2 curl curl B = 1

ε0
curl J . (1.129)

Let us examine briefly—and formally—how the set of second-order equa-
tions (1.125–1.126), supplemented with the initial conditions (1.31) and (1.127)
and constraints (1.28–1.29), allow us to recover the original set of Maxwell’s
equations (1.26–1.29), supplemented with the initial condition (1.31). Gauss’s law
and the absence of magnetic monopoles are contained in both sets of equations,
and so is the zero-order initial condition. To recover Ampère’s and Faraday’s laws,
introduce the quantities

U := ∂E

∂t
− c2 curl B + 1

ε0
J , V := ∂B

∂t
+ curl E.
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According to the initial conditions (1.31) and (1.127), one has U(0) = V (0) = 0.
Then, after some elementary manipulations, one finds that

∂U

∂t
+ c2 curl V = 0,

∂V

∂t
− curl U = 0,

divU = 0, divV = 0.

(Above, one uses the charge conservation equation (1.10) to prove that U is
divergence-free.)

In other words, we showed that the couple (V , c−2U ) solves the set of
Eqs. (1.26–1.29) with zero right-hand sides, and with zero initial condition (1.31).
So, it is equal to zero, according to the results on the solvability of Maxwell’s
equations. We thus conclude that it holds that

∂E

∂t
− c2 curl B = − 1

ε0
J ,

∂B

∂t
+ curl E = 0,

as announced.
The calculations performed here formally can be mathematically justified to

prove the equivalence between the first-order and the second-order Maxwell
equations. We refer the reader to Chap. 7.

1.5.4 Resonance vs. Time-Harmonic Phenomena

We consider the time-dependentMaxwell equations in a homogeneousmedium (for
instance, vacuum), set in a bounded domain Dom, written as two second-order
wave equations (see Eqs. (1.128)–(1.129)). Assuming that there is no charge, both
electromagnetic fields are divergence-free. The wave equations for each of the fields
being of the same nature, we will consider only one of them, for instance,

∂2E

∂t2
+ c2 curl curl E = − 1

ε0

∂J

∂t
,

divE = 0 ,

with the initial conditions

E(0) = E0,
∂E

∂t
(0) = E1 .
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Since the domain Dom is bounded, one has to add a boundary condition, such
as the perfect conductor boundary condition (1.135). The problem to solve can be
expressed as

d2U

dt2
(t) + A U(t) = F (t) for t > 0, U (0) = U 0,

dU

dt
(0) = U 1, (1.130)

where:

• U (t) is the unknown, here the electric field ;
• A is the operator acting on the solution, here c2 curl curl ;
• F (t) is the right-hand side, here −ε−1

0 ∂tJ ;
• U 0,U 1 is the initial data.

The problem is set in the vector space of divergence-free solutions with vanishing
tangential components on the boundary, the so-called domain of the operator A.
It can be proven that the operator A is compact, self-adjoint and positive-definite,
and that there exists an orthonormal basis of eigenmodes (μk)k≥1 and a set of
corresponding non-negative eigenvalues (λk)k≥1 (counted with their multiplicity)
such that Aμk = λkμk for all k ≥ 1 (we refer the reader to Chap. 8 for
details). Moreover, the multiplicities of all eigenvalues are finite, and furthermore,
limk→+∞ λk = +∞. The set {λk, k ≥ 1} is the spectrum of the operator A.
Such modes correspond to the so-called free vibrations of the electric field. One
can expand the solution U and the initial data on the basis:

U (t) =
∞∑

k=1

uk(t) μk, U 0 =
∞∑

k=1

uk
0 μk, U 1 =

∞∑
k=1

uk
1 μk .

Solving the problem (1.130) mode by mode yields, thanks to the superposition
principle,

U(t) =
∞∑

k=1

uk(t)μk, with uk(t) = uk
1

ωk

sin(ωkt) + uk
0 cos(ωkt)

+ 1

ωk

(∫ t

0
sin(ωk(t − s)) Fk(s) ds

)
, (1.131)

with ωk = √
λk for all k. As pointed out by the expression (1.131), the values ωk

play a particular role in the physical interpretation. Assume that the energy input to
the system can be expressed by a right-hand side F (t) such as

F (t) = fk cos(ωt)μk (1.132)
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with a prescribed positive ω. This corresponds to the so-called sustained vibrations
of the electric field, expressed here in the time-dependent case. Computing the
mode-by-mode solution with this right-hand side, one finds that uk(t) is equal to

1.
fk

2ωk

{ 1

ω − ωk

+ 1

ω + ωk

}(cos(ωkt) − cos(ωt)) if ω �= ωk ;

2. respectively
fk

2ω
t sin(ωt) if ω = ωk ,.

In case 1, all terms in (1.131) appear with a bounded amplitude, the leading term
being proportional to fk(ω − ωk)

−1ω−1
k when ω ≈ ωk . If case 2 occurs, there

exist one or several terms in (1.131), i.e., those that write (2ω)−1fkt sin(ωt) for k

such that ωk = ω, which have an unbounded amplitude, equal to (2ω)−1fkt . This is
called a resonance. It can occur only when the excitation frequencyω is equal to one
of the ωk’s. For this reason, the quantities (ωk)k are called resonance frequencies16

of the system.
This result can also be interpreted in terms of energy. Indeed, taking the dot

product of (1.130-left) by U ′ and integrating over the domain Dom yields

(
d2U

dt2
(t)|dU

dt
(t)) + (A U(t)|dU

dt
(t)) = (F (t)|dU

dt
(t)) for t > 0 .

It can be written as

d

dt

{
1

2
‖dU

dt
(t)‖2 + 1

2
(A U(t)|U (t))

}
= (F (t)|dU

dt
(t)) for t > 0.

Above,

(U (t)|V (t)) =
∫

Dom

U (t, x) · V (t, x) dx, ‖U (t)‖ =
(∫

Dom

|U (t, x)|2dx

)1/2

.

The first term between brackets represents a kinetic energy, the second one
represents a potential energy and the right-hand side represents the power brought to
the system at a given time t . Integrating this equation over time leads to the energy
conservation equation

1

2
‖dU

dt
(t)‖2 + 1

2
(A U(t)|U(t)) =

∫ t

0
(F (s)|dU

dt
(s))ds + 1

2
(‖U 1‖2 + (AU0|U0)),

in which the energy brought to the system is
∫ t

0
(F (s)|U ′(s))ds. Assuming again

that F is of the form (1.132), the energy has a bounded amplitude as soon as ω �∈
{ωk, k ≥ 1}. Contrastingly, this amplitude is unbounded if ω = ωk . Physically, the

16More precisely, ω is a pulsation and the corresponding frequency is ω/(2π).
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resonance corresponds to the excitation of one eigenmode of the system, creating
an unbounded increase of its internal energy.

Let us now build a solution to the time-harmonic problem, cf. Sect. 1.2.1. We
introduce a right-hand side F with harmonic time-dependence exp(−ıωt) (ω > 0),
that is, F (t, x) = (f (x) exp(−ıωt)), with a complex-valued f . Let us consider
that the solution U to Eq. (1.130-left) adopts the same time-harmonic dependence
for t large enough, so thatU (t, x) = (u(x) exp(−ıωt)), with a complex-valuedu.
Plugging the expression of U into Eq. (1.130-left) and using, as above, expansions
of u and f yields, with obvious notations,


(∑

k

(ω2
k − ω2) uk μk exp(−ıωt)

)
= 

(∑
k

fk μk exp(−ıωt)

)
. (1.133)

Now, Eq. (1.133) is equivalent to (ω2
k − ω2) uk = fk for all k. Assume that ω is

equal to some ωk . In order for a solution to exist, one must have fk = 0 for all
the corresponding indices k (such that ω = ωk). It follows that no resonance can
occur in the time-harmonic case. From a mathematical point of view, one can use
the Fredholm alternative (cf. Chap. 4 for a more detailed discussion).

1.6 Boundary Conditions and Radiation Conditions

In order to close Maxwell’s equations when the domain is a strict subset of R3, one
must provide conditions, in addition to the differentialMaxwell equations (1.6–1.9).
These conditions are usually imposed on the boundary of the domain, and they are
called the boundary conditions. Also, when the domain is unbounded in at least
one direction, it is interesting, from a computational point of view, to bound it. The
computational domain thus corresponds to a truncation of the original domain. This
can be achieved via the introduction of an artificial boundary, and an ad hoc absorb-
ing boundary condition is imposed on this boundary, so that the electromagnetic
waves can leave the computational domain without (significant) reflections. Another
possibility is to introduce—not a boundary plus a boundary condition—but a thin,
dissipative layer, in which the waves can propagate while being damped at the same
time. This technique is called the perfectly matched layers. In other respects, when
one focuses on the time-harmonic Maxwell equations (1.47–1.50), one must add a
condition at infinity, which permits us to discriminate incoming and outgoingwaves:
this condition is called a radiation condition. Physically, it prevents energy inputs
from infinity. Mathematically, it allows one to prove uniqueness results.
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O

n
O’

Fig. 1.1 “Pipe” domain

1.6.1 Boundary Conditions

As we remarked at the beginning of this section, the differential Maxwell equations
are insufficient to characterize the fields in a strict subset of R3. On the other
hand, the integral Maxwell equations yield four interface conditions, respectively
described by Eqs. (1.11) and (1.12). How can these conditions be used? Let us call
O the domain of interest, and ∂O its boundary. Note that ∂O can alternatively be
seen as the interface between O and R3 \ O, so the electromagnetic fields fulfill
conditions (1.11–1.12) on ∂O. In addition, the behavior of the electromagnetic
fields is known in R3 \ O (otherwise, we would have to compute them!) or, more
realistically, in an exterior domain O′ included in R3 \ O, such that O ∩ O′ = ∂O.
As a consequence, one can gather some useful information as to the behavior of the
fields in O, on the boundary ∂O.

For instance, let us assume now that the domain O is bounded, or partially
bounded (i.e., along one direction, like the “pipe” in Fig. 1.1), and that it is encased
(at least locally) in a perfect conductor. Then, as we saw in Sect. 1.1, the fields vanish
outsideO (cf. our discussion on skin depth and on the notion of perfect conductor).
From condition (1.11 right), we infer that

B · n = 0 on ∂O, (1.134)

with n the unit outward normal vector to ∂O, with the convention that outward goes
fromO to O′. Likewise, from condition (1.12 left), we get

E × n = 0 on ∂O . (1.135)
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The conclusion is that the normal componentBn = B ·n|∂O (respectively tangential
componentsE� = n× (E×n)|∂O) of B (respectivelyE) uniformly vanish on ∂O:
we call these conditions17 the perfect conductor boundary conditions.

From the physical point of view, these conditions are macroscopic, since they
result from the idealization of quantities defined on surfaces. On the other hand,
from a mathematical point of view, these conditions are sufficient to ensure the
uniqueness of the solution, in the absence of topological considerations. As we shall
see in Chap. 5, condition (1.134) can be rigorously inferred from condition (1.135),
whereas the reciprocal assertion is not valid.

From the point of view of wave propagation, the perfect conductor boundary
condition can be viewed as a reflection condition. Indeed, since the electromagnetic
fields uniformly vanish inside the perfect conductor, one can say that the boundary
completely reflects any impinging plane wave. As a consequence, the reflection
coefficient, which is equal to the ratio of amplitudes between the reflected and
incident waves, has a unit value. Also, in terms of energy, no energy is transmitted
to the exterior domain O′. In other words, the energy flux through the boundary is
equal to zero, and the energy remains constant in the domain O (in the absence of
sources).

However, there also exist media that are more or less dissipative. This occurs, for
instance, when the exterior medium O′ is a conductor (but not a perfect one). The
fields do not vanish inside O′, so a wave originating from the domain O penetrates
into the exterior domain O′. More precisely, if we consider an impinging plane
wave, it should penetrate—at least partially—into O′, where it is damped. In the
special case when ∂O is a plane and if the velocity of propagation of the plane wave
is equal to c = 1/

√
εμ n, one finds by direct computations that it holds that

E × n +
√

μ

ε
n × (H × n) = 0 .

17One may also use the interface conditions to describe electromagnetic fields globally in R3: this
is an integral representation. More precisely [167, §5.5], consider that R3 is split into two media
M+ and M−, one of them being bounded, and let Σ be the interface between the two media. If one
is interested in the electromagnetic fields that are governed by the homogeneous time-harmonic
equations in M+ and M−, then, assuming that the jump jΣ = −[H ×nΣ ]Σ (condition (1.12 right))
is known, one can use integral representation formulas for the values of E(x) and H (x), for all
x ∈ R3 \ Σ . The integrals are taken over Σ and depend only on jΣ . In the same spirit, one can
represent the (different) values of E±(xΣ) and H±(xΣ) for all xΣ ∈ Σ . Within this framework,
one may generalize these results in the presence of magnetic polarization by assuming that the
magnetic current on Σ , mΣ = [E × nΣ ]Σ , is also different from 0. In this case, one ends up with
integral representation formulas of E and H , with integrals over Σ that depend on jΣ and mΣ . In
the same manner, one may use the jump relation σΣ = [D · nΣ ]Σ (1.11 left) to solve a diffraction
problem expressed as a scalar Helmholtz equation, assuming σΣ is known, where the unknown is
the scalar electric potential.
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So, to allow a plane wave to penetrate into O′, one usually introduces a boundary
condition, called the impedance boundary condition, which is written as

E × n + Zn × (H × n) = 0 on ∂O . (1.136)

In its simplest form, the impedance Z is a positive number, which is characteristic
of the medium. The obvious example is Z = √

μ/ε, which allows the plane wave
with velocity c = 1/

√
εμn to leave the domain O without being reflected (when

∂O is a plane). More generally,Z is an operator (local in space), and the generalized
impedance boundary condition is understood asE×n|∂O+Z(n×(H ×n)|∂O) = 0.
In terms of energy, this condition allows the electromagnetic energy to decrease in
the domain. Note that condition (1.136) is usually considered for time-harmonic
fields (see [26] for an example of time-dependent fields), and in this instance, Z can
be a function of the pulsation ω.

In most cases, these boundary conditions are not sufficient to model problems
originating from physical situations efficiently. Let us consider more specifically
the time-dependent Maxwell equations in a domain O. Obviously, if the domain
O is not bounded, it has to be “numerically adjusted” to perform numerical
computations. Note that this difficulty occurs for exterior problems (diffraction, etc.)
as well as for interior problems (waveguides, etc.) (see Figs. 1.2 (left) and 1.3 (left)).
Let the computational domain Ω be equal, for instance, to18 O ∩ B(O,R), with a
suitable radius R. Then, the boundary of the computational domain ∂Ω can be split
into two parts:

• a “physical” part, which is included in ∂O: Γ = ∂Ω ∩ ∂O.
• the remainder, ΓA, which is purely “artificial”.

For a diffraction problem on a bounded object, the radius R is chosen so that ΓA

does not intersect the “physical” boundary ∂O (see Fig. 1.2 (right)). In other words,
there holds ∂Γ ∩ ∂ΓA = ∅, with Γ = ∂O, ΓA = ∂B(O,R). So, for numerical
purposes, one handles a truncated exterior problem.

Contrastingly, for an interior problem, R is usually chosen in such a way that
ΓA intersects the “physical” boundary: ∂Γ ∩ ∂ΓA �= ∅ (see Fig. 1.3 (right)). In the
latter case and as a rule of thumb, one must be careful to avoid artificial boundaries
ΓA that intersect ∂O at positions where the electromagnetic fields can be locally
“intense”, such as the neighborhood of reentrant corners and/or edges of ∂O. For
numerical purposes, one handles a truncated interior problem.

On Γ , one imposes the boundary conditions that model the behavior of the
exterior medium, as previously. On the artificial boundary ΓA, a boundary condition
is also required. Let us go back to a plane wave with a velocity of propagation
c = c d: when d · n > 0, one says that the wave is outgoing, whereas it is
said to be incoming when d · n < 0. Physically, one has to model the following

18Instead of B(O,R), one can choose any reasonable volume in which the computations ought to
be performed: a cube, as in Fig. 1.3 (right, rightmost ΓA), etc.
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Γ

AΓ

Fig. 1.2 Adjustment of a sample diffraction problem

Γ
A

ΓA
Γ

Γ

Fig. 1.3 Adjustment of a sample interior problem

behavior: outgoing electromagnetic waves should leave the computational domain
Ω freely without being reflected at this boundary. Or, equivalently, outgoing waves
are absorbed at the artificial boundary, and the corresponding condition is called an
absorbing boundary condition.

Let (Eex,Bex) denote the (exact) solution to the problem set in O, and let
(E,B) be the (possibly approximate) solution to the problem set in Ω . Here, the
term “problem” refers to Maxwell’s equations in the domain, plus the boundary
conditions on the boundary of the aforementioned domain.

It is possible to construct an exact absorbing boundary condition, which is usually
called the transparent boundary condition. It can be written as Eex ×n|ΓA +T (n×
(Bex × n)|ΓA) = 0, where T is a pseudo-differential operator (note the similarities
with the generalized impedance boundary condition). The action of the operator
T can be expressed in two equivalent ways. Either T is considered as a transfer
operator that relates the trace of the tangential trace of the magnetic induction to its
electric counterpart, and its action is written as an (infinite) expansion in spherical
harmonics. Or, an integral representation of the fields can be used (in Ω and in
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R3 \ B(O,R)), which is determined by the values of the tangential traces of both
fields on ΓA.

Mathematically, if one imposes the transparent boundary condition on ΓA, it can
be proven that the restriction of the exact fields (Eex,Bex) to Ω is equal to (E,B).
Or, the other way around, one can build an extension of the fields (E,B) to O that
coincides with the exact solution (see, for instance, [128]).

However, the transparent condition is non-local both in space and time: for
practical implementations, it is impossible to use the operator T exactly as it is. . . So,
for numerical purposes, one can choose, for instance, truncated (finite) expansions,
when the action of T is expressed via a transfer operator (see below); or Boundary
Element Methods that allow one to approximate integral representations.

Alternatively, one can choose to devise approximate conditions: the absorbing
boundary conditions (referred to as ABC or ABCs from now on). Within the
same framework, it is often required to model incoming waves from infinity. The
incoming waves should be able to enter the domain Ω . The parameters describing
these incoming waves can be prescribed by given functions (denoted e
 and b
 in
the following), defined on the artificial boundary ΓA. A set of ABCs for Maxwell’s
equations can be written as

(E − cB × n) × n = e
 × n on ΓA, e
 data, (1.137)

or, in a similar way,

(cB + E × n) × n = c b
 × n on ΓA, b
 data. (1.138)

These conditions are obtained by locally approximating the boundary ΓA by its
tangent plane. Moreover, an outgoing plane wave, which propagates normally to the
boundary, is not reflected. In that case, we have to choose e
 = 0 or b
 = 0. On the
other hand, when e
 �= 0 or b
 �= 0, conditions (1.137–1.138) enable an incoming
plane wave that propagates normally to the boundary to enter the domain freely. The
conditions (1.137–1.138) are known as the Silver–Müller ABCs [165]. When e
 = 0
or b
 = 0, they are said to be homogeneous.

Note that since we are considering boundary conditions that are an approximation
of the exact transparent boundary condition, it follows that (E,B) is different from
the restriction of the exact fields (Eex,Bex) to Ω .

If one differentiates Eq. (1.138) with respect to time and uses the trace of
Faraday’s law on ΓA, one finds another expression of the Silver–Müller boundary
condition that involves the electric field alone

∂

∂t
[(E × n) × n] − c(curl E) × n = c

∂b


∂t
× n on ΓA . (1.139)

Or, as we already mentioned, one can choose to approximate the transparent
boundary condition directly. This can be achieved when the artificial boundary is
“smooth”, by performing either a Taylor expansion or a rational (Padé) expansion of
the operatorT , in terms of a small parameter: in the high-frequency limit, the (small)
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parameter is equal to the angle of incidencê(d,n) of the waves on ΓA. Keeping only
the zero-order term, one recovers Eq. (1.138) with b
 = 0. Keeping the zero- and
first-order terms, one tailors a priori a new ABC.19 However, in the special case
when the artificial boundary is a sphere ΓA = ∂B(O,R), the “new” condition still
coincides with (1.138). Hence, the initial Silver–Müller ABCs, obtained by merging
ΓA with its tangent plane, are still satisfactory up to the first order in this special
geometry.

The precision of an ABC can be measured with the help of plane wave analysis:
any plane wave impinging on ΓA is partially reflected (and partially refracted). The
reflection coefficient (the ratio of amplitudes between the reflected and incident
waves) depends on the angle of incidence θ = ̂(d,n) ∈] − π/2, π/2[. When the
reflection coefficient behaves like

(
1 − cos θ

1 + cos θ

)α

= O(θ2α),

one says that the ABC is of order α. Using this scale and assuming that ΓA is a
plane, one finds that the Silver–Müller condition (1.139) is of order 1, whereas the
perfect conductor condition is, by construction, of order zero. One can also build
ABCs of higher order. The following condition has been proposed in [147]:

(
∂

∂t
+ c

∂

∂n

)
[(E×n)×n]+ c

2
gradΓ (E ·n)+ c2

2
curlΓ (B ·n) = 0, (1.140)

or, alternatively,

(
∂

∂t
+ c

∂

∂n

)
[(B ×n)×n]+ c

2
gradΓ (B ·n)− 1

2
curlΓ (E ·n) = 0, (1.141)

where gradΓ is the surface gradient, or tangential gradient, operator, and curlΓ
is the surface curl, or tangential curl, operator. Assuming that ΓA is a plane, it is
proven that the condition (1.140) or (1.141) is of order 2.

Note that the ABCs are not equivalent to one another. In other words, two
different conditions yield two different sets of electromagnetic fields.

As we remarked earlier, approximate conditions such as the Silver–Müller
ABCs have been developed as an alternate choice to the numerical approximation
of the transparent boundary conditions. In particular, condition (1.139), used in

19For instance (see [187]), if the artificial boundary ΓA is a cylinder of radius R and axis Oz, one
gets

{
∂

∂t
+ c

2R

}
[(E × n) × n] + c

R
Eθeθ − c(curl E) × n = 0 on ΓA,

with E = Erer + Eθeθ + Ezez in cylindrical coordinates.
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conjunction with the differential Maxwell equations (and another condition on
Γ ), leads to a well-posed problem [187]. In addition, the Silver–Müller boundary
condition is sufficiently accurate for most interior problems, and it is straightforward
to implement numerically [21]. Contrastingly, for exterior problems, the use of
higher-order approximations is recommended [108]. A possible drawback of the
higher-order ABCs is that they can lead to problems that are not well-posed. Finally,
we note that these instances of ABCs can be used in the time-harmonic regime.

The last technique we review is credited to Bérenger [39, 40]. To adjust the
domain, one adds not an artificial boundary, but one, or a set of, artificial layers,
made of artificial media. These artificial layers, and the media they are made of,
exhibit special features:

(i) Interfaces between the computational domain and an artificial layer or between
two artificial layers are plane.

(ii) Electromagnetic plane waves that propagate in the artificial media are attenu-
ated: these media are dissipative.

(iii) At the interface between the layers and the computational domain, plane waves
are not reflected (whatever the angle of incidence).

(iv) At the interface between two layers, plane waves are not reflected (whatever
the angle of incidence).

Basically, one first designs several types of layer. They are labeled Lx,Ly,Lz,
depending on the chosen—constant (cf. (i))—direction of the normal vector (nI =
ex, ey, ez) to the interface between the computational domain and each of the
surrounding layers (see Fig. 1.4 (left)). To fulfill (ii-iii), the conductivities in the
artificial media have to be adjusted carefully. Indeed, in addition to the conductivity
σ , one also needs to introduce a magnetic conductivity σ
 such that in the artificial
medium, Faraday’s law reads as ∂tB

art + curl Eart = σ
H art . Furthermore, one
has to split the magnetic induction into two parts, and then, one has to duplicate

(iv) p. c. b. c.

ex

ye

(i)−(iii)

Fig. 1.4 Basic geometrical steps for the construction of PMLs
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Faraday’s law on those two parts. By doing so,20 one introduces additional degrees
of freedom, so that the problem at hand is solvable.

Second, to reconnect two different layers, for instance,Lx andLy , one introduces
another artificial layer Lxy , so that (iv) is fulfilled at the interfaces ∂Lx ∩ ∂Lxy and
∂Ly ∩ ∂Lxy (see Fig. 1.4 (center)) through the use of similar techniques.

Note that there always exists a solution to the previous problems: in other words,
one can always choose the conductivities in the various artificial media so that (ii-iv)
hold.

Finally, this set of artificial layers is surrounded by a boundary on which one
imposes perfect conductor boundary conditions (see Fig. 1.4 (right)). The various
artificial layers are called perfectly matched layers (or PMLs, for short). Unsplit
versions of the PMLs (based on stretched coordinates in the artificial media, see
[75, 174]) have been developed. In other words, the magnetic induction is not
split anymore in the artificial media, which reduces the total number of unknowns
there. The same result can be achieved by the use of anisotropic artificial media (as
proposed in [181]), resulting in the so-called uniaxial PML (UPML).

From an algorithmic or computational point of view, outgoing plane waves
can leave the computational domain freely. Then, they are damped in the PMLs,
before being reflected by the perfect conductor boundary conditions. On their way
back, they are damped once more before entering the computational domain freely.
However, because of the dissipation in the artificial media, the energy of the plane
waves that enter the computational domain after traveling in the PMLs is negligible.
This process leads to numerical implementations that are extremely efficient in
practice. From a mathematical point of view, the use of either the set of original
PMLs of Bérenger or of unsplit versions leads to problems that are (conditionally)
well-posed mathematically (see [34, 35, 146]).

1.6.2 Radiation Conditions

So far, we have focused mostly on the time-dependent Maxwell equations. Here,
we deal with the time-harmonic case as in Sect. 1.2, in a homogeneousmedium. Let
ω > 0 be the pulsation.

Let us assume for simplicity that the charge density � is equal to 0, so that the
current density is divergence-free. Under these conditions, each field is solving a
fixed frequency problem, which can be written in the manner of the Helmholtz-like
equations (1.56–1.57),

{
curl curl e − λe = ıωμ0j

curl curl b − λb = μ0 curl j
with λ = ω2/c2. (1.142)

20Manipulating Maxwell’s equations thusly is certainly admissible, since one is dealing with
artificial media, in which the electromagnetic fields are artifacts. . .
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As we already pointed out, this equation is strongly connected to the scalar
Helmholtz equation (1.63), for which it is well known that the uniqueness of the
solution requires a so-called radiation condition at infinity.

Now, as far as radiation conditions are concerned, they are generally associated
with diffraction problems (see Fig. 1.2). In others words, we are concerned with
waves coming from infinity that are impinging on an obstacle K: we are interested
in solving the problem in O = R3 \ K. As we saw before, there may be (partial)
absorption, as well as scattering by the obstacle, which leads to different kinds of
boundary condition on this obstacle.

In practice, the computational problem is usually set within a bounded domain,
for instance, B(O,R) \ K . An ad hoc boundary condition is chosen on ∂B(O,R),
together with the companion numerical approximation of this boundary condition
(see the previous discussion on transparent boundary conditions and/or ABCs).

Then, supplementary conditions, which characterize the behavior of the solution
at infinity, are required. Denoting by (r, θ, φ) the spherical coordinates with
associated vector basis (er , eθ , eφ), we seek a condition that depends on r only, so
that it can be applied on the exterior boundary ∂B(O,R). At first glance, it seems
that imposing that the solution decrease like r−1 at infinity is sufficient. Indeed, this
condition is similar to the one that is required for the well-posedness of the scalar
Poisson equation Δw = f in an exterior domain: it can be easily understood as
a requirement for avoiding a situation in which the total energy

∫
O |w|2 dx would

be unbounded. However, unlike the case of the Poisson equation, this condition
is not sufficient to ensure uniqueness of the solution to the Helmholtz equation. To
illustrate this point, let us introduce radial solutions to the scalar Helmholtz equation
Δw+λw = 0 set in R3. In other words, since we are studying uniqueness, Eq. (1.63)
is solved in R3 with a zero right-hand side. Namely, we look for solutions of the form
w(x) = ζ(r). Under this assumption, Eq. (1.63) becomes, for r > 0,

1

r2

d

dr
(r2

dζ

dr
) + k2ζ = 0,

with k = √
λ = ω/c. The general solution to the previous equation is

ζ(r) = C+ζ+(r) + C−ζ−(r), with C± ∈ C, ζ±(r) = 1

r
exp(±ıkr). (1.143)

Two families of solutions coexist. One with the + sign in the exponent, correspond-
ing to an outgoing wave, the second with the − sign, associated with an incoming
wave.21 Hence, the uniqueness of the solution (up to a multiplicative constant) can
be recovered by imposing a radiation condition, that is, a condition that describes

21Indeed, the unit outward normal vector to ∂B(O,R) is n = er . Moreover, since x = rer on
∂B(O,R), for an outgoing plane wave that propagates normally to ∂B(O,R) (kout = ker ), one
finds kout ·x = kr . Respectively, for an incoming plane wave that propagates normally to ∂B(O,R)

(kin = −ker ), kin · x = −kr .
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the behavior of the solution at infinity, depending on whether one wants to select an
outgoing wave or an incoming wave. As a matter of fact, from Eq. (1.143), we find

⎧⎪⎨
⎪⎩

ζ ′+(r) + ıkζ+(r) ≈ 2ık

r
exp(ıkr), ζ ′+(r) − ıkζ+(r) = − 1

r2
exp(ıkr),

ζ ′−(r) + ıkζ−(r) = − 1

r2
exp(−ıkr), ζ ′−(r) − ıkζ−(r) ≈ −2ık

r
exp(−ıkr)

.

This leads to the following radiation conditions, whose names correspond to those
given for the scalar Helmholtz equation:

1. The outgoing Sommerfeld condition (imposes C− = 0 in Eq. (1.143))

∂w

∂r
− ıkw = O(

1

r2
) .

2. The incoming Sommerfeld condition (imposes C+ = 0 in Eq. (1.143))

∂w

∂r
+ ıkw = O(

1

r2
) .

Both instances are necessary and sufficient conditions to ensure uniqueness of the
solution to the scalar Helmholtz equation.

Remark 1.6.1 To express the general solution to the scalar Helmholtz equation, one
uses expansions expressed in spherical coordinates as

ζ(r, θ, φ) = exp(−ıkr)

r

∞∑
0

Fn(θ, φ)

rn
.

This expansion is due to [23, 205] (see also [167]).

Let us consider the scalar, time-dependent, wave equation (in time-space R×R3)

∂2w

∂t2
− c2Δw = 0 .

One finds, assuming that the solution is radial in space, i.e., w(t, x) = ϕ(t, r):

∂2ϕ

∂t2
− c2

r2

∂

∂r

(
r2

∂ϕ

∂r

)
= 0, for r > 0 .

This can be written equivalently as

(
∂

∂t
+ c

∂

∂r
)(

∂

∂t
− c

∂

∂r
)(rϕ) = 0, for r > 0 .
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Now, solutions to (∂t ± c∂r)(rϕ) = 0 write rϕ = f (r ∓ ct), so that rϕ = fout (r −
ct) + finc(r + ct).

To see that fout (r − ct) (respectively finc(r + ct)) actually corresponds to an
outgoingwave (respectively an incoming wave), let us go back to the time-harmonic
regime.

Assuming, in addition, a time-harmonic dependence of these solutions like
ϕ(t, r) = (ζ(r) exp(−ıωt)), we have

(−ıω + c
∂

∂r
)(−ıω − c

∂

∂r
)(rζ ) = 0, for r > 0 .

This is equivalent in turn to ∂r(rζ ) = +ıkrζ or ∂r (rζ ) = −ıkrζ for r > 0, so that
according to Eq. (1.143), ζ coincides with the solution obtained there. Moreover,
we observe that (∂t + c∂r)(rϕ) = 0 in the time-dependent regime corresponds to
∂r (rζ ) = +ıkrζ in the time-harmonic regime. We conclude by identification that

fout (r − ct) = (C+ζ+(r) exp(−ıωt))

corresponds to an outgoing wave. In the same manner,

finc(r + ct) = (C−ζ−(r) exp(−ıωt))

corresponds to an incoming wave, as advertised above.
Denoting by u a radial solution to the time-harmonicMaxwell equations (1.142)

with a zero right-hand side, one finds that two families of solutions coexist, in the
form of an incoming part (denoted by u−) and an outgoing part (denoted by u+).
Again, one may select the outgoing or the incoming parts, via radiation conditions
for the solution:

1. The outgoing Silver–Müller radiation condition (imposes u− = 0)

curl u × n − ıku = O(
1

r2
) . (1.144)

2. The incoming Silver–Müller radiation condition (imposes u+ = 0)

curl u × n + ıku = O(
1

r2
) . (1.145)

Often in the literature (see [86, 167]), the Silver–Müller radiation conditions
appear in another form, derived from the first-order time-harmonic Maxwell equa-
tions (1.52–1.55), with a zero right-hand side. In this instance, both electric field e
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and magnetic induction b are involved in the outgoing or incoming expressions that
read, respectively, as:

1. First-order outgoing expression

e − cb × n = O(
1

r2
), or cb + e × n = O(

1

r2
), (1.146)

2. First-order incoming expression

e + cb × n = O(
1

r2
), or cb − e × n = O(

1

r2
) . (1.147)

How can these conditions be used mathematically? For instance, let us go back to
a diffraction problem, as pictured in Fig. 1.2. The total electric field e can be split
into two parts: the incident wave einc , the known impinging wave that propagates
in the medium, and would not be affected in the absence of a scatterer ; and the
scattered wave esca , our unknown. By definition, the scattered wave is supposed to
be outgoing, i.e., fulfill condition (1.144). Mathematically, this is expressed as

lim
R→+∞

∫
∂B(O,R)

| curl esca × n − ıkesca|2dS = 0.

According to [134], this outgoing Silver–Müller radiation condition on esca ,
together with the differential Maxwell equations (and a perfect conductor boundary
condition on Γ ) on the total field e = einc + esca , leads to a well-posed problem.

To emphasize the differences between the time-harmonic Maxwell equa-
tions (1.142) and the vector Helmholtz one, note that the solutions to (1.142)
satisfy a constraint on the divergence: they are divergence-free (see remark 1.2.3).
This is not the case of the plain radial solutions v(r) to the vector Helmholtz
equation. Nevertheless, these computations being essentially based on the
asymptotic behavior of ζ±(r), the Silver–Müller radiation conditions—considered
componentwise for the time-harmonic Maxwell equations—are expected to be
equivalent to the Sommerfeld radiation conditions. Indeed, it was proven that
each component of any solution to Maxwell’s equations satisfying the Silver–
Müller radiation conditions also satisfies the corresponding Sommerfeld radiation
conditions for the scalar Helmholtz equation, and vice versa (see [86] for a proof).

Let us conclude this section by briefly exposing the relation between the Silver–
Müller radiation condition (1.146) and the Silver–Müller ABCs (1.137–1.138)
in its homogeneous form, that is, with (e
, b
) = (0, 0). Note first that the
similarity appears in the time-harmonic case, when comparing (1.137–1.138) with
relations (1.146). Second, for the time-dependent case, recall that the ABCs were
obtained by assuming that an outgoing plane wave, which propagates normally to
the boundary, is not reflected. According to the previous discussion, the ABCs can
also be viewed as a way of selecting a direction of propagation, by removing the
incoming wave, the outgoing wave leaving the domain freely.
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1.7 Energy Matters

The aim of this section is to recall the basic notions related to the energy in the
context of Maxwell’s equations.

Let us consider first the case of a homogeneous medium (vacuum). Our starting
point is Faraday’s law (1.27) and the absence of magnetic monopoles (1.29). We
have seen that there exist two independent potentials, A and φ, that can be used
to take into account these two relations, and define the electromagnetic fields as in
Eqs. (1.34–1.35). For our purpose here, we say that (A(t, x))t,x and (φ(t, x))t,x are
the generalized coordinates of our system. Then, let us introduce the Lagrangian
density

L(t, x) = L(A(t, x), φ(t, x))

:=
(

ε0

2
|E|2 − 1

2μ0
|B|2 + A · J − φ �

)
(t, x), (1.148)

together with the Lagrangian on a frozen (w.r.t. time) volume V ⊂ R3

∫
V

L dV.

Then, the idea is to use the least action principle, which amounts to finding extrema
of the action (with t1 < t2 given)

S :=
∫ t2

t1

∫
V

L dV dt

over trajectories t �→ (A(t), φ(t)) with fixed initial and final states. In other
words, one chooses infinitesimal variations δA and δφ such that (δA, δφ)(t1) =
(δA, δφ)(t2) = 0 in the volume V . A necessary condition for an extremum of S to
exist is that δS = 0, with

δS :=
∫ t2

t1

∫
V

δL dV dt,

for all admissible variations (δA, δφ). In a first step, one adds a new constraint on
the variations, namely that (δA, δφ)(t) = 0 for all t ∈]t1, t2[, on the surface ∂V . One
finds that the electromagnetic fields necessarily satisfy Ampère’s and Gauss’s laws,
which appear within this framework as equations of motion of the electromagnetic
fields. In a second step, one removes all constraints on the variations, to focus on the
relation that defines δS, which now takes into account Ampère’s and Gauss’s laws,
and holds for all variations (this is not the least action principle anymore). One finds
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that another necessary condition appears, which can be written as

d

dt

(∫
V

{ε0
2

|E|2 + 1

2μ0
|B|2} dV

)
+

∫
∂V

1

μ0
(E × B) · dS

+
∫

V

E · J dV = 0. (1.149)

This is an integral electromagnetic energy conservation relation. Indeed, let

w0 = 1

2
{ε0|E|2 + 1

μ0
|B|2} (1.150)

be the density of electromagnetic energy, and let

S0 = 1

μ0
E × B,

be the vector flux of the electromagnetic energy, called the Poynting vector. The
conservation relation (1.149) writes

d

dt

(∫
V

w0 dV

)
+

∫
∂V

S0 · dS +
∫

V

E · J dV = 0.

From a physical point of view, the third term can be seen as the power dissipated by
the Joule effect, and the second as the flux of the electromagnetic energy entering
or leaving the domain V .

It can be written in differential form as

∂w0

∂t
+ divS0 + E · J = 0.

Note that one can define the total electromagnetic energy by

Wtot =
∫
R3

w0 dV .

As originally expressed by Feynman [110], no doubt better than by us, we cannot be
sure that these definitions are the “correct definitions”. However, if one has a look
at other possibilities in the definition of the Lagrangian density (1.148), one always
comes up with non-linear terms in the equations of motion of the electromagnetic
fields. Thus, it is “natural” to keep the simplest expressions, that is, (1.149–1.150).
Nevertheless, these definitions have to be considered as modelling assumptions,
which are used extensively in the mathematical analyses (see Chap. 5).
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Let us consider next the case of a perfect medium, in which the constitutive
relations read as in (1.17), with symmetric tensors ε and μ. By analogy, we first
introduce the density of electromagnetic energy:

w = 1

2
{D · E + B · H } .

Since ε and μ are both independent of t , one gets ∂tw = ∂tD · E + ∂tB · H .
We also introduce the Poynting vector S, defined as

S = E × H . (1.151)

Taking the divergence of S, we obtain

divS = H · curl E − E · curl H .

By using Faraday’s and Ampère’s laws, we can substitute in this expression curl E
by −∂tB and curl H by ∂tD + J to reach

∂w

∂t
+ divS + E · J = 0.

This equation is the differential electromagnetic energy conservation in the case of a
perfect medium, and it can also be expressed in integral form, in any frozen volume
V , as

d

dt

(∫
V

w dV

)
+

∫
∂V

S · dS +
∫

V

E · J dV = 0. (1.152)

In the more general case of a chiral medium, the previous notions (density,
conservation of energy) are much more complex to build.

Let us examine now the case of static electromagnetic fields (cf. Sect. 1.4,
Eqs. (1.104)), in vacuum.

Let us focus first on the total electrostatic energy: recall that Estat =
− gradφstat , with a potential φstat governed by the Poisson equation (1.105).
Then, one has, with the help of Ostrogradsky’s formula,

W
E,stat
tot = ε0

2

∫
R3

Estat · Estat dV = −ε0

2

∫
R3

grad φstat · Estat dV

= −ε0

2
lim

R→+∞

∫
B(O,R)

grad φstat · Estat dV

= ε0

2
lim

R→+∞

{∫
B(O,R)

φstatdivEstat dV −
∫

∂B(O,R)

φstat (Estat · dS)

}
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= 1

2
lim

R→+∞

{∫
B(O,R)

φstat� dV − ε0

∫
∂B(O,R)

φstat (Estat · dS)

}

= 1

2

∫
R3

φstat� dV .

It remains to explain why the rightmost term vanishes when R goes to infinity.
For that, let us return to formula (1.30), which expresses the (static) electric field
created by N charged particles. This formula can be further generalized to a volume
distribution of charged particles, with density �. One reaches

Estat (x) = 1

4π εa

∫
�(x′) (x − x′)

|x − x′|3 dx′ .

The above expression can be rewritten as a convolution product in space:

Estat = 1

4π εa

� 
 G, with G(y) = y

|y|3 .

Introducing G(y) = |y|−1, which satisfies G = − gradG, one gets

Estat = − gradφstat , with φstat = 1

4π εa

� 
 G,

with φstat the corresponding electrostatic potential.
Provided that the support of � is a bounded subset of R3—physically, provided

that there are no charged particles at infinity—one finds that

|φstat(x)| ≤ C�

|x| and |Estat (x)| ≤ C�

|x|2 ,

with C� a constant that depends on �. Therefore, one has

∣∣∣∣
∫

∂B(O,R)

φstat (Estat · dS)

∣∣∣∣ ≤ 4π C2
�

R
.

So, the conclusion follows. For a volumic distribution of charges—without charges
at infinity—the total electrostatic energy is equal to

W
E,stat
tot = 1

2

∫
R3

φstat� dV . (1.153)

Remark 1.7.1 Expression (1.153) involves the potential φstat and the charge density
�, which are related by the Poisson equation (1.105). Thus, it can also be viewed as
the potential energy of the system of charges.
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Interestingly, and for volume distribution of charged particles, Expression (1.153)
includes the self-energy of the distribution. In other words, if V0 denotes the support
of the charge density, the expression

W
E,stat
V0

= 1

2

∫
V0

φstat� dV

has a meaning. This can be proven mathematically, due to the properties of the
Green kernel G.

Contrastingly, the potential φstat is meaningless for discrete systems of charged
particles (see Eq. (1.30), right) at the positions (xi )1≤i≤N of the charges, and the
charge density � writes as a sum of Dirac masses located, respectively, at (xi )1≤i≤N .
So, one cannot define the self-energy for discrete sets of charged particles. This
is consistent with the fact that, in this situation, Estat is not square integrable in
volumes enclosing one or several charges.

So far, we have considered 3D- and 0D-supported charge distributions. In-
between these two configurations, there exist 1D- and 2D-supported charge dis-
tributions, such as idealized wires and surface charges on perfect conductors (cf. the
infinite skin effect for the latter). On the one hand, it turns out that one can define
the self-energy of surface charge distributions as

W
E,stat
Σ = 1

2

∫
Σ

φstatσΣ dS .

But on the other hand, one cannot define the self-energy for linear charge distribu-
tions.

The discussion of the total magnetostatic energy follows the same lines, since one
hasBstat = curl Astat , with Astat governed by the vector Poisson equation (1.106),
with a constraint on the divergence. As previously, using Stokes’ formula and
provided there are no currents at infinity, one then finds the identity

W
B,stat
tot = 1

2μ0

∫
R3

Bstat · Bstat dV = 1

2

∫
R3

Astat · J dV .

Provided the time-dependent electromagnetic fields behave similarly at infinity, i.e.,
|E(t, x)| ≤ C�(t) |x|−2 and |H (t, x)| ≤ CJ (t) |x|−2, one finds that

dWtot

dt
+

∫
R3

E · J dV = 0 .

To conclude this section, we write down the electromagnetic energy flow in the case
of a time-harmonic dependent field. The electromagnetic fields are expressed as
in (1.41–1.42), and we substitute these expressions in the Poynting vector (1.151),
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which characterizes the energy flow, to obtain the complex-valued Poynting vec-
tor Sc

Sc = 1

2
Ec × H c .

This complex-valued Poynting vector is generally used to measure the energy flow
for complex-valued electromagnetic fields (S = (Sc)).

Finally, we consider the electromagnetic fields, expressed as a superposition of
plane waves (in a homogeneousmedium). Using Parseval’s formula, we remark that
the total electromagnetic energy also writes

Wtot = 1

2

∫
k∈R3

(
ε0|E0(k)|2 + 1

μ0
|B0(k)|2

)
dk.
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[127]. See also the book by Jones [148]. As far as the constitutive relations are
concerned, References [141, 149, 152, 156] have been helpful. The experimental
results acquired a historical status a long time ago, cf. Coulomb’s experiments
in 1785. The “existence” results of electromagnetic fields in all space R3 can be
found in many places: we chose [140] for the general case of a chiral medium
and Chapter 6 in the monograph by Cessenat [72] for the particular case of a
homogeneous medium. In regard to conducting media, we used the numerical
results from [127, Chapter 1]. Regarding the issue of vanishing electromagnetic
fields inside perfect conductors, we mention [167, Chapter 5], where illuminating
comments and (partial) mathematical justification can be found. Let us mention
[94, 141, 142, 161, 195] for the definition of skin depth in different models ; see also
[191] for the notion of magnetic skin depth.

On the vast topic of the stationary Maxwell equations, we refer the reader
(for instance) to the introductory book by Laval [153], and to the monograph by
Krall and Trivelpiece [151]. See also the book by Van Bladel [201]. The limiting
amplitude principle is rigorously proven in the monograph by Sanchez and Sanchez
[183].

As far as the approximate models are concerned, we refer the reader to the works
of Raviart and co-workers [96, 176], where the general methodology on how to
build those models is described. In geophysics, approximate models are considered,
for instance, in [41, 85]. The static models have been scrutinized extensively
by Durand in his three-volume series [103]: in particular, an impressive number
of computations carried out by hand (before the era of personal computers) are
available. The Darwin model is named after C. G. Darwin, who studied the motion
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of charged particles in the 1920s [90]. In bounded domains, References [83, 96]
provide some insight as to how one can define suitable boundary conditions for the
transverse and longitudinal parts of the electric field.

The derivation of the Boltzmann and Vlasov equations can be found, for instance,
in the monographs by Krall and Trivelpiece [151] or by Lifschitz [155] (physical
point of view), or in the classnotes by Desvillettes [98] (mathematical point of view).
Regarding plasma physics, we refer to [73].

To our knowledge, the first theoretical works on the Vlasov equation are those
of Arseneev [11, 12]. For the coupled Vlasov–Maxwell system of equations, local
existence and uniqueness results of classical solutions can be found in [95, 200] or
in [122, 206]. Global existence results of weak solutions appeared in [101, 129]. See
also a survey in [58].

For the study of the transparent boundary conditions, including their representa-
tions and their approximations, we recommend reading the monograph by Nédélec
[167].

The Sommerfeld ABC that we recalled for the Helmholtz equation is named
after A. Sommerfeld [193]. The Silver–Müller ABCs that we described are named
after C. Müller [165] and S. Silver [189]. In their time-dependent form, they have
been designed (cf. [21]) in the same spirit as the ones given in [45, pp. 370–371].
There exists a wide literature on the topic of ABCs: see, for instance, [105] for
the scalar wave equation and [38, 118, 147, 187] for Maxwell’s equations. In the
time-harmonic regime, there also exist many noticeable research works, such as
[10, 37, 187]. As far as Bérenger’s PMLs are concerned, we refer the reader to the
seminal papers [39, 40], and to variants, for instance [2, 51, 75, 115, 116, 174, 181].

For radiation conditions, we refer the reader to the monographs [86, 165, 167]
and to [134].

The notion of electromagnetic energy is studied in-depth in many monographs.
Many aspects have been scrutinized: physical, computational, mathematical, etc.
We refer, respectively, to the book by Laval [153], and the monographs by Jackson
[141], Durand [103, Volume I] and Cessenat [72, Chapter 1].
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