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Foreword

Our interest in the study and computation of electromagnetic fields started during
the 1990s. For Franck Assous, it originated from the need to compute precisely the
motion of charged particles for plasma physics applications. For Patrick Ciarlet, it
began with the study of the relations between the electromagnetic fields and their
potentials from a mathematical point of view. From both the numerical and the
theoretical points of view, it soon appeared that one had to be especially careful
when dealing with singular configurations. A typical example occurs when one has
to solve a seemingly elementary problem, namely the computation of the fields
in vacuum, around a perfectly conducting body, or inside a perfectly conducting
cavity or waveguide. Together with Simon Labrunie, we started to investigate this
problem for a class of such bodies that are invariant by rotation. Since then, we have
collaborated regularly on this topic and many others.

Going back to the example, when the interface between the body and vacuum
is piecewise smooth and when the computational domain is locally non-convex
near this interface, intense electromagnetic fields may occur. Pointwise values are
unbounded, and mathematically, the smoothness of the fields deteriorates. It turns
out that this common situation induces challenging problems, which we address
here. Though the contents of this monograph chiefly deal with theoretical issues,
most results are derived in order to solve problems numerically, using discretized
variational formulations (we do not address the issue of discretization in this book).

The focus of this monograph is clearly an applied mathematical one; however,
we begin by discussing the physical framework of electromagnetism and related
models. One of the main points of the book is the introduction of mathematical tools
to characterize electromagnetic fields precisely and, among others, the traces of
those fields on submanifolds of R3. This issue is especially important on nonsmooth
submanifolds. Another important issue is the mathematical measure of those fields,
which can take several forms. Interestingly, this leads to very different categories
of discretized problems. A third main issue is the introduction and justification of
approximate models in a broad sense, such as, for instance static, quasi-static or
time-harmonic, and also of reduced models, namely 2D and 2 1

2 D models. The last
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vi Foreword

important issue deals with the introduction and study of models that govern the
motion of charged particles interacting with electromagnetic fields.

The text is entirely self-contained: we only assume from the reader a bachelor-
level background in analysis, and we give all the necessary basic definitions.
Nevertheless, this monograph includes some original approaches and novel appli-
cations not covered, to our knowledge, in previous books. It is chiefly intended for
researchers in applied mathematics who work on Maxwell’s equations and their
approximate or coupled models. Much of its material may also serve as a basis for
master’s- or doctorate-level courses on mathematical electromagnetism.

We are indebted to a number of people who contributed, to various extents,
to the topics we address in this monograph. Let all of them be thanked: Régine
Barthelmé, Anne-Sophie Bonnet-BenDhia, Annalisa Buffa, Lucas Chesnel, Pierre
Degond, Emmanuelle Garcia, Erell Jamelot, Pierre-Arnaud Raviart, Jacques Segré,
Eric Sonnendrücker, Jun Zou and Carlo Maria Zwölf.

Finally, we gratefully acknowledge the help of the following readers of prelim-
inary versions of the manuscript: Lucas Chesnel, Lipeng Dai, Benjamin Goursaud
and Claire Scheid.

Ariel, Israel Franck Assous
Palaiseau, France Patrick Ciarlet
Vandœuvre-lès-Nancy, France Simon Labrunie
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Chapter 1
Physical Framework and Models

The aim of this first chapter is to present the physics framework of electromag-
netism, in relation to the main sets of equations, that is, Maxwell’s equations and
some related approximations. In that sense, it is neither a purely physical nor a
purely mathematical point of view. The term model might be more appropriate:
sometimes, it will be necessary to refer to specific applications in order to clarify our
purpose, presented in a selective and biased way, as it leans on the authors’ personal
view. This being stated, this chapter remains a fairly general introduction, including
the foremost models in electromagnetics. Although the choice of such applications
is guided by our own experience, the presentation follows a natural structure.

Consequently, in the first section, we introduce the electromagnetic fields and the
set of equations that governs them, namely Maxwell’s equations. Among others, we
present their integral and differential forms. Next, we define a class of constitutive
relations, which provide additional relations between electromagnetic fields and are
needed to close Maxwell’s equations. Then, we briefly review the solvability of
Maxwell’s equations, that is, the existence of electromagnetic fields, in the presence
of source terms. We then investigate how they can be reformulated as potential
problems. Finally, we relate some notions on conducting media.

In Sect. 1.2, we address the special case of stationary equations, which have time-
periodic solutions, the so-called time-harmonic fields. The useful notion of plane
waves is also introduced, as a particular case of the time-harmonic solutions.

Maxwell’s equations are related to electrically charged particles. Hence, there
exists a strong correlation between Maxwell’s equations and models that describe
the motion of particles. This correlation is at the core of most models in which
Maxwell’s equations are coupled with other sets of equations: two of them—the
Vlasov–Maxwell model and an example of a magnetohydrodynamics model (or
MHD)—will be detailed in Sect. 1.3.

© Springer International Publishing AG, part of Springer Nature 2018
F. Assous et al., Mathematical Foundations of Computational
Electromagnetism, Applied Mathematical Sciences 198,
https://doi.org/10.1007/978-3-319-70842-3_1
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2 1 Physical Framework and Models

We introduce in the next section approximate models of Maxwell’s equations,
ranging from the static to the time-dependent ones, in which one or all time deriva-
tives are neglected. We also consider a general way of deriving such approximate
models.

In Sect. 1.5, we recall the classification of partial differential equations, and check
that Maxwell’s equations are hyperbolic partial differential equations.

At an interface between two media, the electromagnetic fields fulfill some
conditions. In a similar way, when one of the media is considered as being exterior
to the domain of interest,1 interface conditions are then formulated as boundary
conditions on the boundary of the domain. Also, to reduce the overall computation
cost, one usually truncates the domain by introducing an artificial boundary, on
which (absorbing) boundary conditions are prescribed. Another possibility is to
introduce a thin, dissipative layer, in which the fields are damped. This constitutes
the first topic of Sect. 1.6. The second topic is the radiation condition, which is
required for problems set in unbounded domains to discriminate between outgoing
and incoming waves.

The aim of the last section is to recall the basic notions of energy in the context
of Maxwell’s equations. In particular, notions such as electromagnetic energy flow,
Poynting vector and energy conservation are defined.

We conclude this introductory chapter by providing a set of bibliographical
references.

1.1 Electromagnetic Fields and Maxwell’s Equations

We present the electromagnetic fields in their time-dependent form, as the solutions
to Maxwell’s equations. The various components of the electric and of the magnetic
fields are related to source terms by either a set of integral equations or a set of
first-order partial differential equations. Then, we study the constitutive relations,
which provide additional relations for the electromagnetic fields. With this set of
equations—differential Maxwell equations and constitutive relations—we can state
that, starting from a given configuration, the electromagnetic fields (exist and)
evolve in a unique way. We also expose another formulation, called the potential
formulation, with a reduced number of unknowns, which can be interpreted as
primitives of the electromagnetic fields. Finally, we conclude with a brief study
of conducting/insulating media.

1Unless otherwise specified, in this chapter, a domain is an open region of space. Another meaning
is given for the mathematical studies, starting in Chap. 2.



1.1 Electromagnetic Fields and Maxwell’s Equations 3

1.1.1 Integral Maxwell Equations

The propagation of the electromagnetic fields in continuum media is described
using four space- and time-dependent functions. If we respectively denote by
x = (x1, x2, x3) and t the space and time variables, these four R3-valued, or vector-
valued, functions defined in time-space R × R3 are

1. the electric field E,
2. the magnetic induction B ,
3. the magnetic field2 H ,
4. the electric displacement D.

These vector functions are governed by the integralMaxwell equations below. These
four equations are respectively calledAmpère’s law, Faraday’s law, Gauss’s law and
the absence of magnetic monopoles. They read as (system of units SI)

d

dt

(∫
S

D · dS

)
−
∫
∂S

H · dl = −
∫
S

J · dS, (1.1)

d

dt

(∫
S ′

B · dS

)
+
∫
∂S ′

E · dl = 0, (1.2)

∫
∂V

D · dS =
∫
V

� dV, (1.3)

∫
∂V ′

B · dS = 0. (1.4)

Above, S, S′ are any surface of R3, and V , V ′ are any volume of R3. One can write
elements dS and dl as dS = n dS and dl = τ dl, where n and τ are, respectively,
the unit outward normal vector to S and the unit tangent vector to the curve ∂S.
When S is the closed surface bounding a volume, then n is pointing outward from
the enclosed volume. Similarly, the unit tangent vector to ∂S is pointing in the
direction given by the right-hand rule.

There are two source terms, respectively, � and J . � is an R-valued, or scalar-
valued, function called the electrostatic charge density. It is a non-vanishing
function in the presence of electric charges. J is an R3-valued function called
the current density. It is a non-vanishing function as soon as there exists a charge
displacement, or in other words, an electric current. Now, take the time-derivative
of Eq. (1.3) and consider S = ∂V in Eq. (1.1): by construction, S is a closed surface

2H is sometimes called the magnetizing field.



4 1 Physical Framework and Models

(∂S = ∅), so that these data satisfy the integral charge conservation equation

d

dt

(∫
V

� dV

)
+
∫
∂V

J · dS = 0 . (1.5)

Again, V is any volume of R3.

1.1.2 Equivalent Reformulation of Maxwell’s Equations

Starting from the integral form of Maxwell’s equations (1.1–1.4), one can reformu-
late them in a differential form,3 with the help of Stokes and Ostrogradsky formulas

∫
S

curl F · dS =
∫
∂S

F · dl and
∫
V

div F dV =
∫
∂V

F · dS.

One easily derives the differential Maxwell equations (system of units SI):

∂D

∂t
− curl H = −J , (1.6)

∂B

∂t
+ curl E = 0, (1.7)

div D = �, (1.8)

div B = 0. (1.9)

The differential charge conservation equation can be expressed as

∂�

∂t
+ div J = 0 . (1.10)

However, the above set of equations is not equivalent to the integral set of equations.
As a matter of fact, two notions are missing.

The first one is related to the behavior of the fields across an interface between
two different media. Let Σ be such an interface.

Starting from the volumic integral equations (1.3)–(1.4), we consider thin
volumes Vε crossing the interface. As ε goes to zero, their height goes to zero, and
so does the area of their top and bottom faces (parallel to the interface), with proper
scaling. The top and bottom faces are disks whose radius is proportional to ε, while
the height is proportional to ε2. As a consequence, the area of the lateral surface
is proportional to ε3 and its contribution is negligible as ε goes to zero. Passing to

3The standard differential operators curl, div, grad, and Δ are mathematically defined in
Sect. 1.5.1.
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the limit in Eqs. (1.3) and (1.4) then provides some information on the jump of the
normal (with respect to Σ) components of D and B:

[D · nΣ ]Σ = σΣ, [B · nΣ ]Σ = 0 . (1.11)

Above, [f ]Σ denotes the jump across the interface ftop−fbottom, and nΣ is the unit
normal vector to Σ going from bottom to top. The right-hand side σΣ corresponds
to the idealized surface charge density on Σ: formally, � = σΣδΣ .4

Starting from Eqs. (1.1)–(1.2), the reasoning is similar. For the tangential
components, one gets

[nΣ × E]Σ = 0, [nΣ × H ]Σ = jΣ, (1.12)

with jΣ the (idealized) surface current density on Σ (jΣ is tangential to Σ).
Finally, if divΣ denotes the surface divergence, or tangential divergence, opera-

tor, integral charge conservation equation (1.5) yields

∂σΣ

∂t
+ divΣjΣ + [J · nΣ ]Σ = 0 .

The second notion is topological. For instance, one can consider that the domain
of interest is the exterior of a thick (resistive5) wire, or the exterior of a finite set
of (perfectly conducting5) spheres. In the first case, the domain is not topologically
trivial, and in the second one, its boundary is not connected. In both instances, a
finite number of relations—derived from homology theory—have to be added to
the differential equations (1.6)–(1.9) and the interface relations (1.11)–(1.12) (see
Chap. 3 for details). We assume that, by doing so, we obtain a framework that is
equivalent to the integral Maxwell equations (1.1)–(1.4).

1.1.3 Constitutive Relations

Maxwell’s equations are insufficient to characterize the electromagnetic fields
completely. The system has to be closed by adding relations that describe the
properties of the medium in which the electromagnetic fields propagate. These are
the so-called constitutive relations, relating, for instance, D and B to E and H ,
namely

D = D(E,H ) and B = B(E,H ) .

(We could also choose a priori to use such a relation as D = D(E,B), etc.)

4By definition, δΣ is the surface Dirac mass on Σ , so one has
∫
�v = ∫

Σ
σΣv|Σ dS for ad hoc

functions v.
5See the end of the section.
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These constitutive relations can be very complex. For this reason, we will make
a number of assumptions on the medium (listed below), which lead to generic
expressions of the constitutive relations. This will yield three main categories of
medium, which are, from the more general to the more specific:

1. the chiral medium, a linear and bi-anisotropic medium ;
2. the perfect medium, a chiral, non-dispersive and anisotropic medium ;
3. the inhomogeneous medium, a perfect and isotropic medium, and its sub-

category, the homogeneous medium, which is, in addition, spatially homoge-
neous.

In what follows, E(t) (or B(t), etc.) denotes the value of the electric field on R3 at
time t : x �→ E(t, x). Let us now list the assumptions about the medium.

• The medium is linear. This means that its response is linear with respect to
electromagnetic inputs (also called excitations later on). In addition, it is expected
that when the inputs are small, the response of the medium is also small.

• The medium satisfies a causality principle. In other words, the value of
(D(t),B(t)) depends only on the values of (E(s),H (s)) for s ≤ t .

• The medium satisfies a time-invariance principle. Let τ > 0 be given. If the
response to t �→ (E(t),H (t)) is t �→ (D(t),B(t)), then the response to t �→
(E(t − τ ),H (t − τ )) is t �→ (D(t − τ ),B(t − τ )).

Note that the first assumption corresponds to a linear approximation of D =
D(E,H ): for electromagnetic fields, whose amplitude is not too large, a first-
order Taylor expansion is justified. Furthermore, the smallness requirement can
be viewed as a stability condition (with respect to the inputs). An immediate
consequence of the second assumption is that, if (E(s),H (s)) = 0 for all s ≤ t0,
then (D(t0),B(t0)) = 0. Taking all those assumptions into account leads to the
constitutive relations

{
D = εE + ξH + εd �E + ξd �H

B = ζE + μH + ζd �E + μd �H .
(1.13)

Let us comment on expression (1.13).
The constitutive parameters ε, ξ, ζ and μ are 3 × 3 tensor real-valued functions

or distributions of the space variable x. Indeed, according to the time-invariance
principle, these quantities must be independent of t . Among them, ε is called the
dielectric tensor, while μ is called the tensor of magnetic permeability.

The constitutive parameters εd , ξd , ζd and μd are 3 × 3 tensor real-valued
functions of the time and space variables (t, x). The notation � denotes the
convolution product, a priori with respect to the four variables (t, x):

(εd �E) (t, x) =
∫
s∈R

∫
y∈R3

εd (s, y)E(t − s, x − y) dy ds, etc.
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The causality principle implies εd(s) = ξd (s) = ζd(s) = μd (s) = 0, for all s < 0.
As a consequence, the convolution product reduces to

(εd �E) (t, x) =
∫ ∞

0

∫
y∈R3

εd (s, y)E(t − s, x − y) dy ds, etc.

Often, the response depends very locally (in space) on the behavior of the input. So,
one assumes locality in space in the convolution product, or, in other words, that
the integral in y is taken over a “small” volume around the origin. Here, we further
restrict this dependence, as we consider that one can (formally) write6 εd(s, y) =
εd(s)⊗ δ0, etc. We finally reach the expression of the convolution product �

(εd �E) (t, x) =
∫ ∞

0
εd (s)E(t − s, x) ds, etc. (1.14)

To summarize the above considerations, the constitutive parameters εd , ξd , ζd and
μd are 3 × 3 tensor real-valued functions of the time variable t which vanish
uniformly for strictly negative values of t , and as a consequence, the convolution
product � is performed with respect to positive times only (cf. (1.14)).

To carry on with the comments on (1.13), we note that the right-hand side can be
divided into two parts:

{
εE + ξH
ζE + μH

(1.15)

is called the optical response. It is instantaneous, since the values of the input are
considered only at the current time. The other part,

{
εd �E + ξd �H ,

ζd �E + μd �H ,
(1.16)

is called the dispersive response, hence a notation with an index d . It is dispersive
in time, and as such, it models the memory of the medium.

The relations (1.13) with the convolution products as in (1.14) are linear and
bi-anisotropic; they model a linear and bi-anisotropic medium, also called a chiral
medium. Several simplifying assumptions can be made:

• The medium is non-dispersive when the dispersive response (1.16) vanishes. In
other words, the response of the medium is purely optical (1.15).

• The medium is anisotropic provided that ξ = ζ = 0.
• An anisotropic medium is isotropic when, additionally, the 3 × 3 tensors ε and μ

are proportional to the identity matrix: ε = εI3 and μ = μI3.

6By definition, δx0 is the Dirac mass in x0, so one has
∫
�0v = q0v(x0) for ad hoc functions v.



8 1 Physical Framework and Models

For an anisotropic medium, the constitutive parameters ε and μ are scalar real-
valued functions of x: ε and μ are respectively called the electric permittivity and
the magnetic permeability of the medium.

In this monograph, apart from the “general” case of a chiral medium, we shall
assume most of the time that the medium is perfect, that is, non-dispersive and
anisotropic, or inhomogeneous, that is, perfect and isotropic. In a perfect medium,
the constitutive relations read as

D(t, x) = ε(x)E(t, x) and B(t, x) = μ(x)H (t, x), ∀(t, x) ∈ R×R3 . (1.17)

In this case, the differential Maxwell equations (1.6–1.9) can be written with the
unknowns E and H . They read as

ε
∂E

∂t
− curl H = −J , (1.18)

μ
∂H

∂t
+ curl E = 0, (1.19)

div (εE) = �, (1.20)

div (μH ) = 0. (1.21)

To write down Eqs. (1.6–1.9) with the unknowns E and B, one has to note that μ is
necessarily invertible on R3, since we assumed at the beginning that the constitutive
relations could also have been written as H = H (E,B). . . So, Eqs. (1.18–1.21) can
be equivalently recast as

ε
∂E

∂t
− curl(μ−1B) = −J , (1.22)

∂B

∂t
+ curl E = 0, (1.23)

div (εE) = �, (1.24)

div B = 0. (1.25)

In an inhomogeneous medium, one simply replaces the tensor fields ε and μ with
the scalar fields ε and μ in Eqs. (1.18–1.21) or in Eqs. (1.22–1.25).

Finally, if the perfect medium is also isotropic and spatially homogeneous, we
say (for short) that it is a homogeneous medium. In a homogeneous medium, the
constitutive relations can finally be expressed as

D(t, x) = εE(t, x) and B(t, x) = μH (t, x), ∀(t, x) ∈ R × R3 .

Above, ε and μ are constant numbers. Remark that vacuum is a particular case of
a homogeneous medium, which will be often considered in this monograph. The
electric permittivity and the magnetic permeability are, in that case, denoted as ε0
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(ε0 = (36π.109)−1F m−1) and μ0 (μ0 = 4π.10−7H m−1), and we have the relation
c2ε0μ0 = 1, where c = 3.108m s−1 is the speed of light. The differential Maxwell
equations become, in this case,

∂E

∂t
− c2 curl B = − 1

ε0
J , (1.26)

∂B

∂t
+ curl E = 0, (1.27)

div E = 1

ε0
�, (1.28)

div B = 0. (1.29)

1.1.4 Solvability of Maxwell’s Equations

What about the proof of the existence of electromagnetic fields on R3?
To begin with, there exist many “experimental proofs” of the existence of elec-

tromagnetic fields! These experiments actually led to the definition of the equations
that govern electromagnetic phenomena, and of the related electromagnetic fields,
by Maxwell and many others during the nineteenth and twentieth centuries. So,
it is safe to assume that these fields exist, the challenge being mathematical and
computational nowadays. . .

Where does the theory originate? Let us give a brief account of one of the more
elementary (mathematically speaking!) results on charged particles at rest (results
have also been obtained for circuits, involving currents).

The fundamental experimental results we report here were obtained by Charles
Augustin de Coulomb in 1785, when he studied repulsive or attractive forces
between charged bodies, small elder balls. In the air—a homogeneous medium
(ε = εa)—let us consider two charged particles, part1 and part , at rest. Their
respective positions are x1 and x, whereas their respective electric charges are q1
and q . In short, Coulomb’s results (now known as Coulomb’s law) state that the two
particles interact electrically7 with one another, in the following way. The force F

acting on particle part and originating from particle part1 is such that:

• it is repulsive if q1q > 0, and attractive if q1q < 0 ;
• its direction is parallel to the line joining the two particles ;
• its modulus is proportional to |x − x1|−2 ;
• its modulus is also proportional to q1 and q .

7Or: electrostatically.
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If one sets the proportionality coefficient to (the modern) 1/4πεa, one finds that

F (x) = q q1

4π εa

(x − x1)

|x − x1|3 .

Now, define the electric field as the force per unit charge. One infers that

E(x) = q1

4π εa

(x − x1)

|x − x1|3 .

Interestingly, it turns out, after some elementary computations, that one has

E = − gradx φ1, with φ1(x) = 1

4π εa

q1

|x − x1| .

In particular, one gets that curl E = 0, which bears a striking resemblance to
Faraday’s law (1.27) for a system at rest. Moreover, after another series of simple
computations, one finds that div E = �1/εa , where �1 is equal to �1(x) = q1δx1(x):
in other words, the charge density is created by the particle part1, so Gauss’s
law (1.28) is satisfied too. . .

Furthermore, Coulomb proved that the total force produced by N charged
particles on an (N + 1)-th particle (all particles being at rest) is equal to the sum of
the individual two-particle forces, so the same conclusions can actually be drawn for
any discrete system of charged particles at rest! The formula for the charge density
is then �N(x) =∑1≤i≤N qiδxi (x), while

E = − gradx φN, with φN(x) = 1

4π εa

∑
1≤i≤N

qi

|x − xi | . (1.30)

See Sects. 1.3 and 1.7 for continuations.
Now, we focus on the mathematical existence of electromagnetic fields. Evi-

dently, we note that one can devise by hand some solutions to Maxwell’s equations
for well-chosen right-hand sides (using, for instance, Fourier Transform or Green
functions, cf. Chapter 6 of [141]). However, one can also solve this set of equations
in more general and more systematic ways. We give two examples below.

The first one deals with the mathematical existence of the electromagnetic fields,
assuming a homogeneous medium in R3. More precisely, one adds initial conditions
to Eqs. (1.26–1.29), which read as

E(0) = E0, B(0) = B0. (1.31)

(Above, we assume that the problem begins at time t = 0.)
The couple (E0,B0) constitutes part of the data, the other part being t �→

(J (t), �(t)), for t ≥ 0. The set of equations (1.26–1.29) together with the initial
conditions (1.31) is called a Cauchy problem. Based on the semi-group theory,
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one can prove that there exists one, and only one, solution t �→ (E(t),B(t)),
for t ≥ 0, to this Cauchy problem. Moreover, it depends continuously on the data
(the so-called stability condition). In a more compact way, whenever an existence,
uniqueness and continuous dependence with respect to the data result is achieved,
one says that the related problem is well-posed: in our case, the Cauchy problem
set in all space R3 made of a homogeneous medium is well-posed. Obviously, once
the existence and uniqueness of (E,B) is achieved, the same conclusion follows for
(D,H ) = (ε0 E, μ−1

0 B) (see Chap. 5 for more details).
Here, one has to be very careful, since the uniqueness and continuous dependence

of the solution require a (mathematical) measure of the electromagnetic fields and
of the data. To achieve these results, one uses the quantityWvac (see below) as the
measure for the fields. In this case, it reads as

Wvac(t) =
∫
R3

1

2
{ε0|E(t, x)|2 + 1

μ0
|B(t, x)|2} dx. (1.32)

It turns out that Wvac defines the electromagnetic energy in this kind of medium.
For more details on energy-related matters, we refer the reader to the upcoming
Sect. 1.7.

The second result deals with the existence of the electromagnetic fields, assuming
now a general chiral medium in R3. By using the same mathematical tools (in a more
involved way, see [140]), one can also derive a well-posedness result. To measure
the fields, one resorts to an integral similar to (1.32), namely

W2(t) =
∫
R3
{|E(t, x)|2 + |H (t, x)|2} dx.

Note that this measure is used to define the stability condition, which has been
previously mentioned. Once the existence and uniqueness of (E,H ) is achieved, the
same conclusion follows for (D,B), according to the constitutive relations (1.13).

Remark 1.1.1 In a bounded domain, one can derive similar results, with a variety
of mathematical tools. We refer the reader again to Chap. 5.

1.1.5 Potential Formulation of Maxwell’s Equations

Let us introduce another formulation of Maxwell’s equations. For the sake of
simplicity, we assume that we are in vacuum (in all space, R3), with Maxwell’s equa-
tions written in differential form as Eqs. (1.26–1.29). According to the divergence-
free property of the magnetic induction B , there exists a vector potential A such
that

B = curl A .
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Plugging this into Faraday’s law (1.27), we obtain

curl(
∂A

∂t
+ E) = 0 .

Then, there exists a scalar potential φ such that

∂A

∂t
+ E = − gradφ . (1.33)

This allows us to introduce a formulation in the variables (A, φ) - the vector
potential and the scalar potential, respectively - since it holds there that

E = − gradφ − ∂A
∂t
, (1.34)

B = curl A . (1.35)

This formulation requires only the four unknowns A and φ, instead of the six
unknowns for the E and B-field formulation. Moreover, any couple (E,B) defined
by Eqs. (1.34–1.35) automatically satisfies Faraday’s law and the absence of free
magnetic monopoles. From this (restrictive) point of view, the potentials A and φ are
independent of one another. Now, if one takes into account Ampère’s and Gauss’s
laws, constraints appear in the choice of A and φ (see Eqs (1.37–1.38) below).
Also, the vector potential A governed by Eq. (1.35) is determined up to a gradient
of a scalar function: there lies an indetermination that has to be removed. On the
other hand, for the scalar potential, the indetermination is up to a constant: it can be
removed simply by imposing a vanishing limit at infinity. Several approaches can
be used to overcome this difficulty. In what follows, two commonly used methods
are exposed. If one recalls the identity

curl curl− grad div ≡ −Δ, (1.36)

then Eqs. (1.26) and (1.28), with the electromagnetic fields expressed as in (1.34–
1.35), yield

∂2A

∂t2
− c2ΔA + grad(c2div A + ∂φ

∂t
) = 1

ε0
J , (1.37)

− ∂
∂t
(div A)−Δφ = 1

ε0
� . (1.38)

These equations suggest that one considers either one of the following two condi-
tions, each one of them helpful in its own way for removing the indetermination.
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1.1.5.1 Lorentz Gauge

Let us take (A, φ) such that the gradient-term in Eq. (1.37) vanishes:

c2div A + ∂φ
∂t

= 0 .

Hence, Eqs. (1.37–1.38) are written within the Lorentz gauge framework as

∂2A

∂t2
− c2ΔA = 1

ε0
J ,

∂2φ

∂t2
− c2Δφ = c2

ε0
� .

This gauge is often used for theoretical matters, since it amounts to solving two
wave equations, a vector one for A and a scalar one for φ. Remark as well that these
equations are independent of the coordinate system. This property is useful for many
instances, such as, for example, those originating from the theory of relativity.

1.1.5.2 Coulomb Gauge

This consists in setting the first term in Eq. (1.38) to zero. We thus consider A such
that

div A = 0 .

Equations (1.37–1.38) are now written as

∂2A

∂t2
− c2ΔA = 1

ε0
J − grad(

∂φ

∂t
) ,

Δφ = − 1

ε0
� .

Choosing such a gauge yields a potential φ, which is related to � by a static equation
(however, φ and � can be time-dependent). This model is often used when A is
irrelevant, because electrostatic phenomena dominate. This is usually the case in
plasma models (see, for instance, Sect. 1.4.5).

Remark 1.1.2 The calculations formally performed here are justified for problems
posed in all space. Actually, difficulties appear for the same problems posed in a
bounded domain. The first ones are due to the topological nature of the domain. The
other ones revolve around the definition of compatible boundary conditions on the
potentials (A, φ), with respect to those of the electromagnetic fields (E,B). For an
extended discussion, we refer the reader to Chap. 3.
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1.1.6 Conducting and Insulating Media

For a medium that is also a conductor, we have to describe the property of the
medium in terms of conductivity. This leads to expression of the current density J

as a function of the electric field E

J = J (E) .

Assuming that the medium is linear, the current density J and the electric field E

are governed by Ohm’s law

J = σE + σd �E,

where σ is a 3×3 tensor real-valued function of the space variable x, which is called
the tensor of conductivity. The quantity σd is also a 3×3 tensor real-valued function,
but of the time variable t . The convolution product is similar to (1.14): it is realized
in time, enforcing the causality principle. Similarly to the constitutive relations, we
shall usually restrict our studies to a perfect medium. In this case, Ohm’s law is
expressed as

J (t, x) = σ E(t, x) . (1.39)

If, in addition, the medium is inhomogeneous, σ = σ I3 and σ is called the
conductivity. In the particular case of a homogeneous medium, the conductivity
is independent of x. Alternatively, one could introduce the resistivity σ−1 of the
medium, together with the notion of a resistive medium.

In most cases, the current density can be divided into two parts,

J = J ext + J σ ,

where J ext denotes an externally imposed current density, and J σ is the current
density related to the conductivity σ of the medium by the relation (1.39). As a
consequence, one has to modify Ampère’s law (1.6), which can be read as

ε
∂E

∂t
+ σE − curl H = −J ext . (1.40)

On the one hand, if the medium is an insulator (σ = 0) there is no electrically
generated current in this medium. An insulator is also called a dielectric. So, one
has, in the absence of an externally imposed current, J = 0.

On the other hand, we will often deal with a perfectly conducting medium, that
is, a perfect conductor, in which the conductivity is assumed to be “infinite”: all
electromagnetic fields (and in particular, E and B) are uniformly equal to zero in
such a medium. This ideal situation is often used to model metals. Let us discuss the
validity of this statement, which is related to the skin depth δ inside a conducting
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medium. This length is the characteristic scale on which the electromagnetic fields
vanish inside the conductor, provided its thickness is locally much larger than δ. The
fields decay exponentially relative to the depth (distance from the surface), and so
one can consider that they vanish uniformly at a depth larger than a few δ. Note that
this behavior is not contradictory to the accumulation of charges and/or currents at
the surface of the conductor, the so-called skin effect. The skin depth depends on the
frequency ν of the inputs and on the conductivity of the medium: δ is proportional to
(σ ν)−1/2 (see Sect. 1.2.3 for details). For radio signals in the 1–100 MHz frequency
range, δ varies from 7 to 70 10−6 m for copper. In the case of a perfect conductor,
we simply assume that the skin depth is equal to zero for all inputs. As we noted
above, one can have non-zero charge and/or current densities at the surface of a
perfect conductor: this is the infinite skin effect.

1.2 Stationary Equations

It can happen that one studies fields and sources for which the behavior in time
is explicitly known. For instance, time-periodic solutions to Maxwell’s equa-
tions, respectively called time-harmonic electromagnetic fields and time-harmonic
Maxwell equations. We first study the basic properties related to these fields and
equations. Next, we address the topic of electromagnetic plane waves, which are a
class of particular solutions, widely used in theoretical physics and in applications,
for instance, to assess numerical methods for the time-harmonic Maxwell equations,
or to build radiation conditions.

1.2.1 Time-Harmonic Maxwell Equations

We deal with time-periodic, or time-harmonic, solutions to Maxwell’s equations
in a perfect medium (here, R3), with a known time dependence exp(−ıωt), ω ∈
R. Basically, it is assumed that the time Fourier Transform of the complex-valued
fields, for instance,

Ê(ω′, x) = (2π)−1
∫
s∈R

Ec(s, x) exp(ıω′s) ds,

is of the form Ê(ω′, x) = δ(ω′ − ω)⊗ e(x), so that taking the reverse time Fourier
Transform yields

Ec(t, x) =
∫
η∈R

Ê(η, x) exp(−ıηt) dη = e(x) exp(−ıωt).
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The real-valued (physical) solutions are then written as

E(t, x) = (e(x) exp(−ıωt)) , (1.41)

H (t, x) = (h(x) exp(−ıωt)) , (1.42)

D(t, x) = (d(x) exp(−ıωt)) , (1.43)

B(t, x) = (b(x) exp(−ıωt)) . (1.44)

Equivalently, one has E(t, x) = 1
2 {e(x) exp(−ıωt) + e(x) exp(ıωt))}, etc. As a

consequence, one can restrict the study of time-harmonic fields to positive values
of ω, which is called the pulsation. It is related to the frequency ν by the formula
ω = 2πν.

Remark 1.2.1 Formally, for a pulsation ω equal to zero, one gets static fields, in
the sense that they are independent of time. In this way, static fields are a “special
instance” among stationary fields.

The data �(t, x) and J (t, x) are also time-harmonic:

�(t, x) = (r(x) exp(−ıωt)) , (1.45)

J (t, x) = (j(x) exp(−ıωt)) . (1.46)

Evidently, the time dependence is identical between the data and the solution. Here,
we just used straightforward computations!

On the other hand, what happens when one only knows that the data are time-
harmonic (without any information on the fields)? In other words, how do the
fields, seen as the solution to Maxwell’s equations, behave? The answer, which
is much more subtle than the above-mentioned computations, is known as the
limiting amplitude principle. It is important to note that this principle can be
rigorously/mathematically justified, cf. [104]. It turns out that, provided the data
is compactly supported in space, the solution adopts a time-harmonic behavior as t
goes to infinity, in bounded regions (of R3). So, common sense proves true in this
case. Provided that � and J behave as in Eqs. (1.45–1.46), then the electromagnetic
fields behave as in Eqs. (1.41–1.44) when t → +∞, with the same pulsation ω.

The time-harmonic Maxwell equations are

ıωd + curl h = j , (1.47)

−ıωb + curl e = 0, (1.48)

div d = r, (1.49)

div b = 0, (1.50)

where the charge conservation equation (1.10) becomes

− ıωr + div j = 0 . (1.51)
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Since the medium is perfect, we have

d(x) = ε(x)e(x) and b(x) = μ(x)h(x),

so that we can express the time-harmonic Maxwell equations in the electromagnetic
fields e and b, as

ıωεe + curl(μ−1b) = j , (1.52)

−ıωb + curl e = 0, (1.53)

div εe = r, (1.54)

div b = 0. (1.55)

Clearly, one of the fields can be removed in (1.52) and (1.53) to give us

− ω2εe + curl(μ−1 curl e) = ıωj , (1.56)

−ω2b + curl(ε−1 curl(μ−1b)) = curl(ε−1j). (1.57)

On the one hand, the set of equations (1.56–1.57) is often called a fixed frequency
problem. Given8 ω �= 0 and non-vanishing data (j , r), find the solution (e, b).
The conditions (1.54) and (1.55) on the divergence of the electromagnetic fields
are contained in Eqs. (1.56–1.57): simply take their respective divergence, and use
the charge conservation equation (1.51) for the electric field, bearing in mind that
ω �= 0.

On the other hand, one can assume that the current and charge densities vanish.
The equations read as

− ω2εe + curl(μ−1 curl e) = 0, (1.58)

−ω2b + curl(ε−1(curl(μ−1b)) = 0, (1.59)

div (εe) = 0, (1.60)

div b = 0. (1.61)

As noted earlier, the condition on the divergence of the electromagnetic fields would
be implicit in Eqs. (1.58–1.59) under the condition ω �= 0. However, one does not
make this assumption here. The set of equations (1.58–1.61) is usually called an
unknown frequency problem: find the triples (ω, e, b) with (e, b) �= (0, 0) governed
by (1.58–1.61). The same set of equations can be considered as an eigenvalue
problem, also called an eigenproblem. Here, the pulsation ω is not the eigenvalue.
More precisely, its square ω2 is related to the eigenvalue. For that, it is useful (but

8To deserve the label fixed frequency problem, one assumes a non-vanishing value of the pulsation.
Otherwise, one solves a static problem, cf. Sect. 1.4.1.



18 1 Physical Framework and Models

not mandatory, see Chap. 8) to assume that the medium is homogeneous, so that ε
and μ are constants, as, for instance, in vacuum.

Remark 1.2.2 The unknown frequency problem models free vibrations of the
electromagnetic fields. On the other hand, the fixed frequency problem models
sustained vibrations (via a periodic input) of the fields.

In a homogeneous medium, eliminating, as previously, the e-field or the b-field from
one of the above Eqs. (1.52–1.53) yields, with f e = ıωμj and f b = μ curl j as
the (possibly vanishing) right-hand sides,

curl curl e − λe = f e, curl curl b − λb = f b,

where

λ = (εμ)ω2 . (1.62)

Using the identity (1.36) leads to, with f ′
e = −f e + ε−1 grad r , f ′

b = −f b,

λe +Δe = f ′
e, λb +Δb = f ′

b.

From the point of view of the fixed frequency problem ((f ′
e,f

′
b) �= (0, 0)), this

means that each component of the vector fields e or b (here called ψ) is governed
by the scalar Helmholtz equation

Δψ + λψ = f . (1.63)

From the point of view of the eigenvalue problem, (λ,ψ) is simply a couple
eigenvalue–eigenvector of the Laplace operator: the pulsation ω is related to the
eigenvalue λ by the relation (1.62).

Remark 1.2.3 It is important to remark that the components are not independent of
one another. Indeed, the components are linked by the divergence-free conditions
div e = 0 and div b = 0. As we will see in Sect. 1.6, Eq. (1.63) plays an important
role in establishing the radiation condition, which is widely used in diffraction
problems.

1.2.2 Electromagnetic Plane Waves

Let us study a particular class of periodic solutions to Maxwell’s equations, the
plane waves solutions, in a homogeneous medium (again, R3).
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Introduce the time-space Fourier Transform of complex-valued fields, for
instance,

Ẽ(ω′, k′) = (2π)−4
∫

y∈R3

∫
s∈R

Ec(s, y) exp(−ı(k′ · y − ω′s)) ds dy .

The plane waves can be viewed as the reverse time-space Fourier transform of fields,
which possess the following form in the phase space (ω′, k′):

Ẽ(ω′, k′) = E0δ(ω
′ −ω)⊗ δ(k′ − k), B̃(ω′, k′) = B0δ(ω

′ −ω)⊗ δ(k′ − k) .

(E0 and B0 both belong to C3, and k is a vector of R3, called the wave vector).
From the above, we deduce that the complex-valued plane waves consist of

solutions of the form

Ec(t, x) = E0 exp(ı(k · x − ωt)), (1.64)

Bc(t, x) = B0 exp(ı(k · x − ωt)) . (1.65)

We keep the convention, according to which the physical electromagnetic fields are
obtained by taking the real part of (1.64–1.65): for instance,

1

2
{E0 exp(ı(k · x − ωt))+ E0 exp(−ı(k · x − ωt))}.

Again, the pulsation ω takes only positive values.

Remark 1.2.4 We will examine how the plane waves are involved in obtaining the
absorbing boundary conditions (cf. Sect. 1.6).

A plane wave propagates. To measure its velocity of propagation, one usually
considers the velocity at which a constant phase (a phase is the value of (Ec,Bc)
at a given time and position) travels. It is called the phase velocity and, according to
expressions (1.64–1.65), it is equal to

vp(ω, |k|) = ω

|k| . (1.66)

So, k �= 0. The quantity |k| is called the wave number, and λ = 2π/|k| is the
associated wavelength. If we let d ∈ S2 be the direction of k, i.e., k = |k|d , we can
further define the vector velocity of propagation, vp = vpd .

Let us consider that the medium is without sources (charge and current density),
so that the fields and pulsation solve the problem (1.52–1.55) with zero right-hand
sides, due to the explicit time-dependence of the plane waves. In addition, they have
a special form with respect to the space variable x, so one has curl E = ık×E and
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div E = ık · E. The equations become, since ε, μ are constant numbers,

εμωE0 + k × B0 = 0, (1.67)

−ωB0 + k × E0 = 0, (1.68)

k · E0 = 0, (1.69)

k · B0 = 0 . (1.70)

One can remove B0 from the first two equations to obtain

k × (k × E0) = −εμω2E0 .

This equation requires the vector k×(k×E0) to be parallel to E0, which is possible
if and only if k · E0 = 0, i.e., Eq. (1.69) precisely. This yields |k|2 = εμω2, and
then k× (k×E0) = −|k|2E0. Finally, this allows one to characterize a plane wave
as a solution to the following system of equations:

|k| = √
εμω, (1.71)

k · E0 = 0, (1.72)

B0 = 1

ω
k × E0 . (1.73)

Expression (1.71), relating k to ω, is called the dispersion relation (see, for instance,
[151]). Additionally, the relations (1.72–1.73) prove that E0 and B0 are transverse
to the propagation direction of the plane waves, and orthogonal to one another.

From (1.66) and (1.71), one infers that vp = c, with c = 1/
√
εμ. Denoting

k = |k|, one may compute the group velocity defined by

vg(k) = dω
dk
(k),

which usually measures the velocity at which energy is conveyed by a wave. In a
homogeneous medium (see (1.71)), k �→ ω(k) is linear. Hence, the group velocity
is the same for all electromagnetic plane waves, and equal to the phase velocity:
vg = vp. These waves are non-dispersive, and in this sense, a homogeneous medium
itself is non-dispersive.

To conclude this series of elementary computations, we have established that, for
any wave vector k ∈ R3 \ {0}, there exists an electromagnetic complex-valued plane
wave, which reads as

Ec(t, x) = E0 exp(ı(k · x − c|k|t)),
Bc(t, x) = B0 exp(ı(k · x − c|k|t)),

with E0 verifying (1.72) and related to B0 as in (1.73).
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More generally, the electromagnetic fields in R3 can be considered as a superpo-
sition of plane waves (plus constant fields), so that E0 and B0 depend on the wave
vector, and one ultimately has

Ec(t, x) =
∫

k∈R3
E0(k) exp(ı(k · x − c|k|t)) dk,

Bc(t, x) =
∫

k∈R3
B0(k) exp(ı(k · x − c|k|t)) dk .

The physical electromagnetic fields can be expressed in two forms. First, as

E(t, x) = 1

2

∫
k∈R3

{
E0(k) exp(ı(k · x − c|k|t))+ E0(k) exp(−ı(k · x − c|k|t))} dk,

B(t, x) = 1

2

∫
k∈R3

{
B0(k) exp(ı(k · x − c|k|t))+ B0(k) exp(−ı(k · x − c|k|t))} dk .

Second (and the expressions are equivalent), as

E(t, x) = 1

2

∫
k∈R3

{
E0(k) exp(−ıc|k|t)+ E0(−k) exp(ıc|k|t)} exp(ık · x) dk,

B(t, x) = 1

2

∫
k∈R3

{
B0(k) exp(−ıc|k|t)+ B0(−k) exp(ıc|k|t)} exp(ık · x) dk .

Remark 1.2.5 Everywhere in space, any couple (k, ω) such that c |k| = ω yields
a plane wave governed by Maxwell’s equations (with all possible choices of
propagation directions in S2). In particular, any strictly positive ω is admissible,
which yields all values λ > 0 (cf. (1.62)). If one thinks in terms of the eigenvalue
problem (1.58–1.61), the corresponding “eigenvector” is not measurable in the sense
of (1.32), so it is called a generalized eigenvector. Adding the constant vectors
(generalized eigenvectors related to λ = 0), the set of values λ is {λ ≥ 0}, which is
the continuous spectrum. In a bounded domain, however, the situation is completely
different: a quantisation phenomenon occurs, i.e., only certain definite values of ω
are possible. What is more, classical eigenvectors exist, and the set of eigenvalues
is discrete and countable. Most examples studied in this book will fall into the latter
category of a countable spectrum.

1.2.3 Electromagnetic Plane Waves Inside a Conductor

Let us focus on the time-harmonic Maxwell equations inside an inhomogeneous
conductor. In this case, it holds that j (x) = σ(x)e(x), in the absence of an
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externally imposed current. The time-harmonic Maxwell equations (1.52–1.55)
become

ıωεσe + curl(μ−1b) = 0,

−ıωb + curl e = 0,

div εσe = 0,

div b = 0,

with the complex-valued εσ = ε + ıσω−1. From now on, the medium is assumed
to be spatially homogeneous. Consider an electromagnetic plane wave as in (1.64–
1.65), that is, e(x) = E0 exp(ık · x) and b(x) = B0 exp(ık · x), with k ∈ C3 of the
form k = k d , where d is a real unit vector and k = k+ + ık− ∈ C. Note that one
can write

exp(ı(k · x − ωt)) = exp(−k−d · x) exp(ı(k+d · x − ωt)),

so d can be considered as the actual direction of propagation, if k+ > 0. This is the
convention we adopt below.

One reaches Eqs. (1.67–1.70), with ε replaced by εσ . Eliminating B0, one finds
the relation k× (k×E0) = −εσμω2E0. It follows that k2 = εσμω2, and one finds
that

k± = s√εμω
(
(1 + σ 2ω−2ε−2)1/2 ± 1

2

)1/2

,

with s = ±1. According to the convention we adopted, one necessarily has s = +1.
In particular, it holds that k− > 0, so one can write

exp(ı(k · x − ωt)) = exp(−k−d · x) exp(ı(k+d · x − ωt)),

with an attenuation factor exp(−k−d · x). The electromagnetic plane wave is
absorbed by the conductor as it propagates. In other words, the conductor is a
dissipative medium. To conclude, note that the notion of skin depth follows from
this discussion, if one considers an approximation of the attenuation factor when
η = σ(ωε)−1 � 1. More precisely, the skin depth δ is the distance parallel to d

such that the attenuation factor decreases by a factor exp(1), i.e., k−δ = 1. Since
η � 1,

δ = 1

k−
= 1√

εμω

(
(1 + η2)1/2 − 1

2

)−1/2

≈ 1√
πμ

(σν)−1/2,

which is the result stated in Sect. 1.1.6.
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As εσ depends on ω, electromagnetic waves inside a conductor are dispersive,
in the sense that they do not travel at the same velocity for different ω (see also
Sect. 1.2.4 next). To characterize their behavior, one can study their group velocity,
now equal to vg(k0+) = ω′(k0+), which measures the velocity at which energy is
transported, for values of k+ close to k0+.

1.2.4 Dispersive Media

Applying the (time) Fourier transform to a convolution product results in the
product of the (time) Fourier transforms, times 2π . One infers that the constitutive
relations (1.13) can be equivalently recast in the ω variable as9

{
D̂(ω) = (ε + 2π ε̂d(ω))Ê(ω)+ (ξ + 2π ξ̂d(ω))Ĥ (ω)
B̂(ω) = (ζ + 2π ζ̂d (ω))Ê(ω)+ (μ + 2π μ̂d (ω))Ĥ (ω).

(1.74)

It follows that a medium is non-dispersive as soon as the Fourier transforms of the
constitutive parameters are independent of ω. We outline the discussion below on
some properties of the constitutive parameters for “physically reasonable” media,
cf. [169, §1] for details. Assuming that the causality principle holds, it follows that

ε̂d(ω) = (2π)−1
∫
s∈R

εd(s) exp(ıωs) ds = (2π)−1
∫ ∞

0
εd (s) exp(ıωs) ds .

This expression has two simple, but important, consequences. First, because εd is a
real-valued tensor, it holds that ε̂d (−ω) = ε̂d(ω) for all ω ∈ R. Also, one notices
that ε̂d has a regular analytic continuation in the upper half-plane �(ω) > 0. In
addition, assume, for instance, that ω �→ ε̂d (ω) is square integrable over R. Then,
one can build dispersion relations, also called the Kramers-Kronig relations, that
respectively relate the real part (ε̂d(ω)) to all imaginary parts (�(ε̂d (θ)))θ>0 and
the imaginary part �(ε̂d (ω)) to all real parts ((ε̂d(θ)))θ>0:

(ε̂d (ω)) = 2

π
pv
∫ ∞

0

θ �(ε̂d(θ))
θ2 − ω2 dθ, �(ε̂d(ω)) = −2ω

π
pv
∫ ∞

0

(ε̂d(θ))
θ2 − ω2 dθ,

where pv denotes Cauchy’s principal value. On the other hand, if ω �→ ε̂d (ω) is
square integrable over R and if one of the two Kramers-Kronig relations holds,10

9The fields P̂ (ω) = 2π ε̂d (ω)Ê(ω) and M̂(ω) = 2π μ̂d (ω)Ĥ (ω) are respectively called electric
and magnetic polarizations.
10 Other conditions on ε̂d lead to the same conclusion. For instance, if ω �→ ε̂d (ω) is a real-
valued, even function of ω that can be expressed as a rational fraction, with decaying condition
ε̂d (ω) = O(ω−2) for large |ω|.
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one finds by applying the (time) inverse Fourier transform that εd (s) = 0 for s < 0.
Hence, the causality principle holds.

Among dispersive media, one model, which describes the optical (and thermal)
properties of some metals, has received renewed attention in recent years. This is
the Lorentz model, with ε̂L(ω) = (ε̂L + ε̂d,L(ω))I3, where ε̂L = ε0 is the optical
response and the dispersive response is given by

ε̂d,L(ω) = − ε0ω
2
p

ω2 − ω2
L + ıωγL

= ε0ω
2
p

(
− ω2 − ω2

L

(ω2 − ω2
L)

2 + ω2γ 2
L

+ ı ωγL

(ω2 − ω2
L)

2 + ω2γ 2
L

)
.

Above, ωp is the plasma frequency, γL ≥ 0 is a damping coefficient that accounts
for the dissipation, and ωL �= 0 is the resonance pulsation. The case ωL = 0 is
usually called the Drude model. One may also add a parameter that acts on the
optical response: ε̂L is modified to ε̂L = ε∞ε0 with ε∞ ≥ 1. Note that in the
absence of damping, there exist pulsation ranges in which ε̂L+ ε̂d (ω) < 0. One may
generalize the Lorentz model by defining ε̂d,G(ω) = (ε̂G+∑L=1,NG fLε̂d,L(ω))I3
with different values of the resonance pulsation ωL for 1 ≤ L ≤ NG, and where fL
are strength factors. By construction, the one-pulsation Lorentz model with γL > 0
is square integrable, and it fulfills the Kramers-Kronig relations. As a consequence,
the causality principle holds for this model. Thanks to the results of footnote 10, the
causality principle is also verified in the absence of damping.

Finally, the real and imaginary parts of ε̂d have been measured experimentally for
a number of metals. In general, ε̂d is approximately real, i.e., |(ε̂d(ω))| is usually
much larger than |�(ε̂d(ω))|. In given pulsation ranges, these experiments can be
matched by either the one-resonance Lorentz model, or the generalized model, with
appropriately chosen coefficients.

As seen previously, an inhomogeneous conductor is dispersive. Indeed, in
Ampère’s law (1.40), ∂tD is replaced by ε∂tE + σE. So, after the time Fourier
transform, one finds that −ıωD̂(ω) = −ıωεÊ(ω) + σ Ê(ω). In (1.74), ε̂d,cond is
equal to

ε̂d,cond(ω) = ıσ

2πω
.

As expected, ε̂cond = ε + 2πε̂d,cond is equal to εσ as defined in Sect. 1.2.3.

1.3 Coupling with Other Models

Maxwell’s equations are related to electrically charged particles. For instance,
Gauss’s law (1.3) can be viewed as a (proportionality) relation between the flux of
the electric displacement D through a surface and the amount of charges contained
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inside. In the same way, Coulomb’s law allows one to express the electromagnetic
interaction force between particles, from which one can deduce the static equations
for the electric field E. In a more general way, the motion of charged particles
generates electromagnetic fields. Conversely, for a population of charged particles
with a mass m and a charge q (for simplicity reasons, we consider particles that
belong to a single species), the main force field is the electromagnetic force field,
called the Lorentz force. This force describes the way in which the electromagnetic
fields E(t, x) and B(t, x) act on a particle with a velocity v(t):

F = q (E + v × B) . (1.75)

Hence, there exists a strong correlation between Maxwell’s equations and models
that describe the motion of (charged) particles. This correlation is at the core of
most coupled models, where Maxwell’s equations appear jointly with other sets of
equations, which usually govern the motion of charged particles.

To describe the motion of a set of N particles, one can consider the molecular
level, namely by looking simultaneously at the positions (xi )1≤i≤N and the
velocities (vi )1≤i≤N of these particles. Assuming that the particles follow Newton’s
law, the equations of motion are written as

dxi

dt
= vi , m

dvi

dt
= F + F int , 1 ≤ i ≤ N. (1.76)

Above, F is the external force acting on the particles and F int denotes the inter-
action force that occurs between the particles. These equations are complemented
with initial conditions, for instance, at time t = 0,

xi (0) = x0
i , vi (0) = v0

i , 1 ≤ i ≤ N. (1.77)

Note that the system (1.76–1.77) is uniquely solvable, in the sense that it allows
one to determine the motion of the N particles. This corresponds to a mechanical
description of the set of particles.

Another approach—the statistical description—relies on

πN(t,X,V ), where X = (x1, · · · , xN) ∈ R3N, V = (v1, · · · , vN) ∈ R3N .

πN is the N-particle distribution function: πN(t,X,V ) dXdV denotes the proba-
bility that the N particles are respectively located at positions (x1, · · · , xN), with
velocities (v1, · · · , vN), at time t . Then, if one considers the actual trajectory of the
particles in the 6N-dimensional space t �→ (X(t),V (t)), it holds that

d

dt
πN(t,X(t),V (t)) = 0, πN(·, ·, 0) = π0

N(·, ·). (1.78)
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Indeed, along the trajectory actually followed by the particles, no particle is created,
and no particle vanishes.

With the help of the chain rule, one can rewrite the previous equation as

(
∂

∂t
+ dX
dt

· ∂
∂X

+ dV
dt

· ∂
∂V

)
πN = 0, or(

∂

∂t
+

N∑
k=1

dxk

dt
· ∇xk +

N∑
k=1

dvk

dt
· ∇vk

)
πN = 0.

(1.79)

(This is the Liouville equation.)
One can prove that the mechanical and statistical descriptions are equivalent, via

the method of characteristics (see, for instance, [98]).
The charge and current densities induced by the motion of these particles can be

written as

�(t, x) =
N∑
i=1

q δxi (t )(x) and J (t, x) =
N∑
i=1

q δxi (t )(x)⊗ vi (t), (1.80)

where δxi (t ) is the Dirac mass in xi (t).
In the following, we will consider more tractable approaches, namely the kinetic

model and the fluid model. Note that the kinetic description can be viewed as an
intermediate stage between the molecular and the fluid descriptions: it contains
information on the distribution of the particle velocities, which is lost in a fluid
description. Indeed, the fluid model consists in looking at macroscopic averages of
the quantities associated with the particles. The next two subsections are devoted
to the models resulting from the coupling of Maxwell’s equations with either the
kinetic or the fluid approach.

1.3.1 Vlasov–Maxwell Model

In this kinetic approach, we consider a population of charged particles, subject
to a given external force field F (t, x, v) such that11 divvF = 0. Each particle
is characterized by its position x and its velocity v in the so-called phase space
(x, v) ∈ R3

x × R3
v . Instead of considering each particle individually, we introduce

the distribution function f (t, x, v), which can be defined as the average number of

11In particular, this is the case for the Lorentz force (1.75). As a matter of fact, divvF (t, x, v) =
q (divvE + divv(v × B)) = 0, since the electromagnetic fields are independent of v in the phase
space.
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particles in a volume dxdv of the phase space. So, we have

f (t, x, v) dxdv = number of particles at time t in a

volume dxdv centred at (x, v) in the phase space.

How can this approach be related to the mechanical description (1.76–1.77), or to
the statistical description (1.78–1.79)? Simply, if we denote by X− and V − the
variables (x2, · · · , xN) and (v2, · · · , vN), we remark that

(t, x, v) �→ N

∫
X−

∫
V −
πN(t, x,X−, v,V −) dX−dV −

is an admissible distribution function. Let it be called f .
Now, we recall that Eq. (1.76) writes

dxk

dt
= vk, m

dvk

dt
= F (t, xk, vk)+ F int (t, (x�)�), 1 ≤ k ≤ N.

Here, we assume that F int does not depend on (vk)k . More generally, it would be
enough that divvkF int = 0, for all k.

To determine the equations that govern f , we integrate Eq. (1.79) with respect to
X−,V −. This leads to

∂f

∂t
+ v · ∇xf +

∫ ∫
dv1

dt
· ∇v1πN dX−dV−

+
N∑
k=2

∫ ∫
vk · ∇xkπN dX−dV − +

N∑
k=2

∫ ∫
dvk

dt
· ∇vkπN dX−dV− = 0.

We note that the first two terms are directly expressed in terms of f , since the
differentiation is performed in t , or in x = x1, both of which are absent in
(X−,V −). Let us perform the integration by parts of the penultimate integrals with
respect to the variable xk (the same index as in the summation). If there is no particle
flux at infinity, when |xk| → +∞, we find that, since it holds that divxkvk = 0 (vk
is another variable), one has

∫ ∫
vk · ∇xkπN dX−dV − = −

∫ ∫
(divxkvk)πN dX−dV − = 0.

Similarly, integrating the last integrals with respect to the variable vk , we find that
they vanish too (divvkvk = 3 is independent of t). Next, we have to deal with the
middle term, which can be split as

∫ ∫
dv1

dt
· ∇v1πN dX−dV − = 1

m
F · ∇vf +

∫ ∫
1

m
F int · ∇v1πN dX−dV −.
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Then, summing up, we reach the relation

∂f

∂t
+ v · ∇xf + 1

m
F · ∇vf = −

∫ ∫
1

m
F int · ∇vπN dX−dV −.

The right-hand side is called the collision integral. To model collisions, one usually
rewrites this right-hand side as a collision kernelQ(f ), which is the rate of change
of f per unit time. There are different expressions of Q(f ) (linear, quadratic, etc.)
depending on the physics involved, which can be very intricate. This yields the
relation

∂f

∂t
+ v · ∇xf + 1

m
F · ∇vf = Q(f ).

Finally, substituting the expression of the Lorentz force (1.75) in this equation, we
obtain that the distribution function f (t, x, v) is governed by the following transport
equation, called the Boltzmann equation:

∂f

∂t
+ v · ∇xf + q

m
(E + v × B) · ∇vf = Q(f ). (1.81)

In the kinetic description, the expressions (1.80) of the charge and the current
densities are respectively given by

�(t, x) = q
∫
R3
v

f (t, x, v) dv, (1.82)

J (t, x) = q
∫
R3
v

f (t, x, v) v dv. (1.83)

When there are several species of particle (respectively, with masses (mα)α and
charges (qα)α), one introduces one distribution function per species (fα)α. Each
function is governed by Eq. (1.81). Then, the contributions of all species add up to
define � and J ,

�(t, x) =
∑
α

qα

∫
R3
v

fα(t, x, v) dv, (1.84)

J (t, x) =
∑
α

qα

∫
R3
v

fα(t, x, v) v dv. (1.85)

When several species coexist, the collision integrals include intra-species inter-
actions and inter-species interactions. The inter-species interactions here model
transferred quantities (such as the momentum or the energy) between different
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species. If the collision kernels (Qα(f ))α model elastic collisions between neigh-
boring particles, then conservation laws apply. One finds that

∫
R3
v

Qα(f ) dv = 0, ∀α and
∑
α

∫
R3
v

Qα(f )v dv = 0. (1.86)

To simplify12 the presentation, we neglect collisions, so the distribution function is
governed by the so-called Vlasov equation

∂f

∂t
+ v · ∇xf + q

m
(E + v × B) · ∇vf = 0, (1.87)

when only a single species of particles is concerned. To be able to couple the Vlasov
equation with Maxwell’s ones, one has to check that � and J , defined as above,
satisfy the differential charge conservation equation (1.10). First, one has divxv = 0
in the phase space, so that v ·∇xf = divx(f v). In the same way, one has F ·∇vf =
divv(fF ). So, the integration of q times Eq. (1.87) in v over R3

v yields

0 = q ∂
∂t

∫
R3
v

f dv + q
∫
R3
v

divx(f v) dv + q

m

∫
R3
v

divv(fF ) dv

= ∂�

∂t
+ div J + q

m

∫
R3
v

divv(fF ) dv.

Assuming that f |F | goes to zero sufficiently rapidly when |v| goes to infinity, we
obtain, by integration by parts, that the last term vanishes. Indeed,

∫
R3
v

divv(fF ) dv = lim
R→+∞

∫
Bv(0,R)

divv(fF ) dv = lim
R→+∞

∫
∂Bv(0,R)

f (F · nv) ds = 0.

So, we conclude that � and J given by Eqs. (1.82–1.83) satisfy the differential
charge conservation equation as expected.

The relations (1.22–1.25) and (1.82–1.87) clearly express the coupling of
Maxwell’s and Vlasov’s equations, since �(t, x) and J (t, x) are the right-hand
sides13 of Maxwell’s equations. Moreover, the electromagnetic fields E and B play
a crucial role in the force F acting on the particles, cf. Eq. (1.75). Hence, even
if Vlasov’s equation and Maxwell’s equations are linear, their coupling yields a
problem that is globally quadratic. Indeed, the term q

m
(E + v × B) · ∇vf is a

quadratic term in f , since E and B depend linearly13 on f through � and J . Thus,

12Note, however, that in the more general case of a kinetic description given by Eq. (1.81) for
several species, one can still prove that � and J defined by Eqs. (1.84–1.85) satisfy the differential
charge conservation equation (1.10). This is a straightforward consequence of Eq. (1.86).
13It can happen that, in Maxwell’s equations, parts of � and J are due to external charge and
current sources. In this case, E and B depend in an affine way on f .
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the Vlasov–Maxwell model is a non-linear, strongly coupled problem to solve. See
Chap. 10 for mathematical studies on this topic.

For the sake of completeness, we conclude this section with a review of several
variants of the Vlasov–Maxwell model, which are used in certain applications
according to the relative importance of electromagnetic phenomena. For instance,
when rapid electromagnetic phenomena occur, it is more consistent to assume
a priori that particles obey the relativistic laws of motion. In this framework, phase
space is described in terms of positions and momenta (x,p) ∈ R3

x × R3
p rather than

velocities. The distribution function is written as f (t, x,p); and velocity becomes
a function of momentum:

v(p) = p

m

√
1 +

( |p|
mc

)2
.

The distribution function is governed by a modified version of (1.87), namely

∂f

∂t
+ v(p) · ∇xf + q (E + v(p)× B) · ∇pf = 0.

The charge and current densities are now defined as

�(t, x) = q
∫
R3
p

f (t, x,p) dp, J (t, x) = q
∫
R3
p

f (t, x,p) v(p) dp.

These satisfy the differential charge conservation equation (1.10).

1.3.2 Magnetohydrodynamics

Magnetohydrodynamics (MHD) is the study of the flow of a conducting fluid
under the action of applied electromagnetic fields, e.g., a plasma. Usually, one
considers the plasma as a solution of electrons and ions (a compressible, conducting,
two-fluid). Roughly speaking, it consists in coupling the classical hydrodynamical
equations for the fluid with an approximation of Maxwell’s equations, in which the
displacement current ∂tD is neglected.

In a first step, we recall how one can build a fluid model from the Vlasov
equation (1.87). Then, we derive usable expressions for the magnetic induction.
Finally, the hydrodynamical equations are coupled to Maxwell’s, to finally yield the
magnetohydrodynamics model.

As recalled in the introduction to this section, hydrodynamical models are based
on a set of conservation equations derived from the Vlasov equation. A simple way
to derive these equations is to take the moments of the Vlasov equation. Indeed,
fluid descriptions consist in looking at macroscopic averages (with respect to the
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velocities) of the particle quantities over volumes that are large enough to cancel
the statistical fluctuations, but that are small compared to the scales of interest.
Hence, fluid unknowns are moments of the distribution function f , such as the
particle density n(t, x), the mass density ρ(t, x), the mean velocity u(t, x), the
mean energy W(t, x) or the 3 × 3 pressure tensor P(t, x). The first four can be
respectively defined as

n(t, x) =
∫
R3
v

f dv, ρ(t, x) = mn(t, x),

nu(t, x) =
∫
R3
v

f v dv,

nW(t, x) = m

2

∫
R3
v

f |v|2 dv.

For the sake of completeness, we have included the moment of order 2 that
corresponds to the mean energy. Note that the preceding equations, together with
Eqs. (1.82–1.83), immediately yield

�(t, x) = q n(t, x), J (t, x) = q n(t, x)u(t, x).

Before proceeding, we introduce a variable that allows us to describe the random
motion of the fluid:

w(t, x, v) = v − u(t, x)

(
so that

∫
R3
v

f (t, x, v)w dv = 0

)
.

Then, the pressure tensor P(t, x) is defined as

P(t, x) = m
∫
R3
v

fw ⊗ w dv.

(Above, w ⊗ w is a symmetric tensor of order 3.)
We split this tensor as

P = pI3 + Q.

The field p is the scalar pressure of the fluid. From the above, one easily infers the
relation 2nW = mn|u|2+3p, which corresponds to a splitting of the energy (kinetic
and internal). Usually, ρ, u and p are called the hydrodynamical variables.
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To obtain the evolution equations, we multiply Eq. (1.87) by a test function φ(v)
and integrate with respect to v to get

∂

∂t

∫
R3
v

f φ dv + div
∫
R3
v

f vφ dv + 1

m

∫
R3
v

divv(fF ) φ dv = 0 .

Using an integration-by-parts formula (for the last term), and assuming that f φ|F |
goes to zero sufficiently rapidly at infinity, we find

∂

∂t

∫
R3
v

f φ dv + div
∫
R3
v

f vφ dv − 1

m

∫
R3
v

f F · ∇vφ dv = 0 .

Now, choosing φ(v) respectively equal to 1, (vk)k=1,2,3 and |v|2, in other words,
by taking moments of order 0, 1 and 2, we obtain a sequence of hydrodynamical
evolution equations.

First, taking φ(v) = 1 leads to the integral equation

∂

∂t

∫
R3
v

f dv + div
∫
R3
v

f v dv = 0,

or, with the above definitions of the mass density and mean velocity,

∂ρ

∂t
+ div (ρ u) = 0 . (1.88)

To write simple expressions for the moments of order 1 and 2, let us consider the
special case of a laminar (or monokinetic) beam that is a gas in which all the
particles move at the same velocity u(t, x). In this case, the distribution function
becomes simply

f (t, x, v) = n(t, x)δu(t,x)(v).

As a consequence, for the moment of order 1, we find the equivalent scalar or vector
formulas

∂

∂t
(ρ uk)+ div (ρ uk u) = nFk, 1 ≤ k ≤ 3, or

∂

∂t
(ρ u)+ div (ρ u ⊗ u) = nF .

(1.89)

(The definition of the vector operator div is clear from the equivalence between the
scalar and vector formulas.)

For the moment of order 2, we note that in this special case of a laminar beam,
one has P = 0. The fluid is without pressure (in particular,p = 0). Equations (1.88–
1.89) are, respectively, the mass and momentum conservation equations for a fluid
without pressure.
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On the other hand, what happens when such a construction is used to establish
fluid equations in general? For instance, for a simple fluid with pressure, or for a
fluid including several species of particle. If there are two or more species (labeled
by the index α), then one builds one Eq. (1.88) and one Eq. (1.89) per species.
Equation (1.88) remains unchanged. For the moments of order 1, Eq. (1.89) retains
the same structure, with the following modifications (on the vector formula):

• The pressure tensor appears on the left-hand side. More precisely, the second
term is changed to div (ρ u ⊗ u + P) = div(ρ u ⊗ u)+ gradp + div Q.

• For a fluid including several species of particles, a term is added on the right-
hand side, to take into account the transferred mean momentum T rα between
different species.

To summarize, one obtains the system of equations

∂ρα

∂t
+ div (ρα uα) = 0, ∀α (1.90)

∂

∂t
(ρα uα)+ div (ρα uα ⊗ uα)+ gradpα + div Qα = nα F + T rα, ∀α. (1.91)

According to Eq. (1.86), it holds that
∑
α T rα = 0.

Furthermore, the evolution of the mean energy (moment of order 2) is governed
by an equation that involves Qα , the flux of kinetic energy Kα , which is a moment
of order 3, and finally, the heat Hα , generated by the collisions between particles of
different species (on the right-hand side). So, one needs to choose φ(v) of degree 3
to derive the equation governing the flux of kinetic energy Kα . But this would yield
a term of order 4, and so on. . . In other words, one gets a series of equations that is
exact, but not closed!

To avoid this problem, one has to add a “closure relation” to the system of
equations at some point. For instance, one chooses to keep the hydrodynamical
variables (ρα)α, (uα)α , (pα)α , whereas the other terms Qα, T rα , Kα and Hα are
approximated or, in other words, expressed as functions of the hydrodynamical
variables. To that aim, one usually assumes (see [151, 155]) that the distribution
function fα is close to a Maxwellian distribution.14 In this situation, one can
determine the higher-order terms approximately, and after some simplifications, one
finally derives a modified momentum conservation equation together with a “closure
relation”, that involves only (ρα)α , (uα)α, (pα)α.

Let us follow Lifschitz [155], to see how one can write a closed system in
the particular case of a plasma. More precisely, we consider a two-fluid, made of
electrons (qe = −e) and a single species of ions, so the hydrodynamical variables
are (ρα)α=e,i , (uα)α=e,i , (pα)α=e,i . The aim is to model slow, large-scale plasma

14Id est, consider fα(v) ≈ Aα exp(−Bα |v − uα |2), with Aα,Bα > 0.
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evolution. The assumptions originating from the physics involved can be listed as
follows:

• The plasma is electrically neutral: qene + qini = 0 ;
• The pressure is scalar: Qe = Qi = 0 ;
• The electron inertia can be neglected: ∂t (ρe ue)+ div (ρe ue ⊗ ue) = 0.

First, we remark that since qene+qini = 0, ρe is proportional to ρi . Equation (1.90)
writes (for α = i)

∂ρi

∂t
+ div (ρi ui ) = 0 .

Then, Eq. (1.91) writes (for α = i, e)
∂

∂t
(ρi ui )+ div (ρi ui ⊗ ui )+ gradpi = niqi(E + ui × B)+ T r i ,

gradpe = neqe(E + ue × B)+ T re.

Adding up these two equations (recall that T r i + T re = 0), we find

∂

∂t
(ρi ui )+ div (ρi ui ⊗ ui )+ grad(pi + pe) = niqi(ui − ue)× B.

Moreover, we know from the definition of the current density that one has J =
neqeue +niqiui = niqi(ui −ue), so the right-hand side can finally be expressed in
terms of J and B only:

∂

∂t
(ρi ui )+ div (ρi ui ⊗ ui )+ grad(pi + pe) = J × B. (1.92)

One could carry out the same analysis for the evolution of the mean energy. In the
same spirit as Eq. (1.86), the energy conservation law writes Hi + He = −T r i ·
ui − T re · ue, where the sum Hi +He corresponds to the Joule effect. It is omitted
here (see Eq. (1.98) below for the final result).

In particular, a relevant set of hydrodynamical variables is ρ = ρi , u = ui ,
and p = pi + pe. Based on this observation, it turns out that one can consider the
electrically neutral plasma as a one-fluid.

Let us return now to Maxwell’s equations. In the MHD model, the displacement
current ∂tD is always neglected with respect to the induced current J . This corre-
sponds to the magnetic quasi-static model (see the upcoming Sect. 1.4). Moreover,
we know that � = neqe + niqi = 0. The electric field E is thus divergence-free
(more precisely, div εE = 0). In terms of the Helmholtz decomposition (1.120) (see
Sect. 1.4 again), this means that E is transverse: E = ET . So, Maxwell’s equations
write

curlμ−1B = J , (1.93)
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∂B

∂t
+ curl ET = 0, (1.94)

div B = 0. (1.95)

We note that Eq. (1.93) allows us to express the right-hand side of Eq. (1.92) in
terms of B only, since one has

J × B = curl(μ−1B)× B.

Now, the equation governing the evolution of B, namely Faraday’s law (1.94)
requires knowledge of ET . It appears that (see, for instance, [155], Eq. (7.12)),
to take the motion of the fluid into account, Ohm’s law (1.39) can be generalized to

J = σS(ET + u × B) .

(σS is sometimes called the Spitzer conductivity.)
With this relation, we can remove the electric field from Faraday’s law:

curl ET = − curl(u × B)+ curl(σ−1
S J )

= − curl(u × B)+ curl(σ−1
S curl(μ−1B)).

The main conclusion is that, for the magnetohydrodynamics model (MHD) that
governs the evolution of the plasma, a relevant set of variables is ρ, u, p, and B. Let
us recall them here. For the sake of completeness, we have added Eq. (1.98), which
governs the evolution of the mean energy, with the parameter γ set to 5/3:

∂ρ

∂t
+ div (ρ u) = 0, (1.96)

∂

∂t
(ρ u)+ div (ρ u ⊗ u)+ gradp = curl(μ−1B)× B, (1.97)

ργ

γ − 1

(
∂

∂t
(p ρ−γ )+ u · grad(p ρ−γ )

)
= σ−1

S | curl(μ−1B)|2, (1.98)

∂B

∂t
− curl(u × B)+ curl(σ−1

S curl(μ−1B)) = 0, (1.99)

div B = 0. (1.100)

Briefly commenting on Eqs. (1.96–1.100), we note first that Eq. (1.100) is implied
by Eq. (1.99). Also, ET and J are respectively determined by Eqs. (1.94) and (1.93).
Thus, all fields can be inferred from these equations. For some applications, one
can consider that σ−1

S = 0, thus leading to the ideal set of MHD equations. In
other words, the plasma is perfectly conducting. Contrastingly, when the plasma is
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resistive, one cannot set σ−1
S to zero, and one has to solve the resistive set of MHD

equations.
Another variant of the above model is given by the incompressible, viscous,

resistive MHD equations, which come up when the conducting fluid is a liquid
(such as molten metal or an electrolyte, e.g., salt water) rather than an ionised
gas. Compared to gases, liquids are typically nearly incompressible, but much more
viscous and dense; this requires different scalings and approximations. Namely, the
system (1.96)–(1.100) is modified as follows:

1. The mass density ρ, or equivalently the particle density n, of the fluid is
assumed to be constant: this is the incompressibility condition. The conservation
equation (1.96) reduces to div u = 0; this equality serves as the “closure
relation”, replacing the adiabatic closure (1.98).

2. The momentum conservation equation (1.97) is modified by introducing a vis-
cosity term −νΔu. Under certain scaling assumptions, such a term appears [58,
§2.2] when the system of hydrodynamic equations is derived from the Boltzmann
equation (1.81), rather than the Vlasov equation (1.87).

3. We allow for some external, non-electromagnetic force f (such as gravity) acting
on the fluid, in addition to the Lorentz and pressure forces.

Thus, we arrive at the system:

ρ
∂u

∂t
− ν Δu + ρ (u · ∇)u + gradp = curl(μ−1B)× B + f , (1.101)

∂B

∂t
− curl(u × B)+ curl(σ−1

S curl(μ−1B)) = 0, (1.102)

div u = 0, div B = 0. (1.103)

The notation (a · ∇)b stands for
∑3
i=1 ai ∂xib; the replacement of div(u ⊗ u) with

(u · ∇)u is possible thanks to div u = 0. See Chap. 10 for mathematical studies on
how to solve the MHD equations.

1.4 Approximate Models

We have already introduced the time-dependent Maxwell equations formulated as
problems with field or potential unknowns. Let us now adopt a different point of
view. As a matter of fact, many problems in computational electromagnetics can be
efficiently solved at a much lower cost by using approximate models of Maxwell’s
equations. As a particular case, the static models are straightforward approximations
corresponding to problems with “very slow” time variations or “zero frequency”
phenomena (with a pulsation ω “equal to zero”), so that one can neglect all
time derivatives. We also present a fairly comprehensive study on how to derive
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approximate models, as in [96, 176]. These models are studied mathematically in
Chap. 6.

1.4.1 The Static Models

Let us consider problems (and solutions) that are time-independent, namely static
equations, in a perfect medium. In other words, we assume that ∂t · = 0 in
Maxwell’s equations (1.22–1.25). This assumption leads to (with non-vanishing
charge and current densities)

{
curl Estat = 0, curl(μ−1Bstat) = J ,

div (εEstat) = �, div Bstat = 0,
(1.104)

where the superscript stat indicates that we are dealing with static unknowns. In the
following two subsubsections, we will consider the electric and the magnetic cases
separately. Again, they are set in all space, R3.

Remark 1.4.1 Within the framework of the time-harmonic Maxwell equations (see
Sect. 1.2), we looked for solutions to Maxwell’s equations with an explicit time-
dependence. In this setting, the static equations can be viewed as time-harmonic
Maxwell equations with a pulsation ω “equal to zero”. This interpretation can be
useful, for instance, for performing an asymptotic analysis.

1.4.1.1 Electrostatics

Equation curl Estat = 0 yields Estat = − gradφstat , where φstat denotes the
electrostatic potential ; see the connection to (1.33) when ∂t · = 0. As div (εEstat) =
�, the potential φstat solves the elliptic15 problem

−div (ε gradφstat) = � .

Moreover, in a homogeneous medium (for instance, in vacuum ε = ε0I3), we obtain
the electrostatic problem with unknown φstat

−Δφstat = �

ε0
. (1.105)

This is the Poisson equation in variable φstat (see, for instance, Chapter 3 of
[103, Volume II]), which is an elliptic partial differential equation (PDE), and
by definition, a static problem, much cheaper to solve computationally than the

15See the upcoming Sect. 1.5 for a precise definition.
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complete set of Maxwell’s equations. Then, one sets Estat = − gradφstat to
recover the electrostatic field.

1.4.1.2 Magnetostatics

In a similar manner, a static formulation can be written for the magnetic induction
Bstat . By applying the curl operator to equation curl(μ−1Bstat) = J , we obtain

curl curl(μ−1Bstat) = curl J .

In a homogeneous medium (for instance, in vacuum μ = μ0I3), and using the
identity (1.36) again, we obtain the magnetostatic problem

−ΔBstat = μ0 curl J , div Bstat = 0 ,

whose solution, Bstat , is called the magnetostatic field. This is a vector Poisson
equation, i.e., an elliptic PDE (left Eq.), with a constraint (right Eq.). Again, this
formulation leads to problems that are easier to solve than the complete set of
Maxwell’s equations.

Note also that one has Bstat = curl Astat (see (1.35)). If, moreover, the Coulomb
gauge is chosen to remove the indetermination on the vector potential Astat , one
finds the alternate magnetostatic problem

−ΔAstat = μ0J , div Astat = 0 , (1.106)

with Astat as the unknown. Then, one sets Bstat = curl Astat to recover the
magnetostatic field.

1.4.2 A Scaling of Maxwell’s Equations

In order to define an approximate model, one has to neglect one or several terms
in Maxwell’s equations. The underlying idea is to identify parameters, whose value
can be small (and thus, possibly negligible). To derive a hierarchy of approximate
models, one can perform an asymptotic analysis of those equations with respect
to the parameters. This series of models is called a hierarchy, since considering
a supplementary term in the asymptotic expansion leads to a new approximate
model. An analogous principle is used, for instance, to build approximate (paraxial)
models when simulating data migration in geophysics modelling (cf. among others
[41, 85]). From a numerical point of view, the approximate models are useful, first
and foremost, if they coincide with a physical framework, and second, because in
general, they efficiently solve the problem at a lower computational cost.
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In the sequel, let us show how to build such approximate models formally (i.e.,
without mathematical justifications), recovering, in the process, static models, but
also other intermediate ones.

Let us consider Maxwell’s equations in vacuum (1.26–1.29). As a first step, we
introduce a scaling of these equations based on the following characteristic values:

l : characteristic length,

t : characteristic time,

v : characteristic velocity, with v = l/t,
E,B : scaling for E and B,

�, J : scaling for � and J .

In order to build dimensionless Maxwell equations, we set

x = lx′ ⇒ ∂

∂xi
= 1

l

∂

∂x ′i

t = tt ′ ⇒ ∂

∂t
= 1

t

∂

∂t ′

E = EE′, etc.

We thus obtain for Maxwell’s equations in vacuum

v

c

E

cB

∂E′

∂t ′
− curl′ B ′ = −J lμ0

B
J ′, (1.107)

v

c

cB

E

∂B ′

∂t ′
+ curl′ E′ = 0, (1.108)

div′E′ = � l

ε0E
�′, (1.109)

div′B ′ = 0. (1.110)

As far as the charge conservation equation (1.10) is concerned, we find

� v

J

∂�′

∂t ′
+ div′J ′ = 0.

Now, given l, t , �, we choose E,B, J such that

E = �l

ε0
, B = E

c
, J = c� = B

lμ0
.
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We define the parameter η with

η = v
c
.

Maxwell’s equations in the dimensionless variables E′, B ′ can be written as

η
∂E′

∂t ′
− curl′ B ′ = −J ′,

η
∂B ′

∂t ′
+ curl′ E′ = 0,

div′E′ = �′,
div′B ′ = 0 ,

while the charge conservation equation writes

η
∂�′

∂t ′
+ div′J ′ = 0.

Assuming now that the characteristic velocity v is small with respect to the speed of
light c, we have

η = v

c
� 1 . (1.111)

This assumption is usually called the low frequency approximation, since it assumes
“slow” time variations, which correspond after a time Fourier Transform to small
pulsations/frequencies.

Obviously, the static models are obtained by setting η = 0 in these equations.
Thus, they appear as a zero-order approximation of Maxwell’s equations. Next, we
derive more accurate approximate models.

1.4.3 Quasi-Static Models

More general approximate models can be obtained by discriminating the time
variations, respectively, of the electric field and the magnetic induction. Hence, after
the scaling step in Maxwell’s equations in vacuum, that is, in Eqs. (1.107–1.110), if
we suppose that

v
B

E
� 1 and

v

c

E

cB
≈ 1,
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we easily obtain that we may neglect the time derivative ∂tB in Faraday’s law,
whereas the coefficient of the time derivative ∂tE in Ampère’s law is comparable
to one. We then obtain the electric quasi-static model, which can be written in the
physical variables E, B as

curl E = 0, (1.112)

div E = 1

ε0
�, (1.113)

curl B = μ0 J + 1

c2

∂E

∂t
, (1.114)

div B = 0. (1.115)

It can be proven (see Sect. 6.4) that this model is a first-order approximation of
Maxwell’s equations. As mentioned, it is formally built by assuming that the time
variations of the magnetic induction are negligible.

In a similar way, let us suppose, contrastingly, that

v

c

E

cB
� 1 and v

B

E
≈ 1,

thus we may neglect the time derivative ∂tE in Ampère’s law, whereas the
coefficient of the time derivative ∂tB in Faraday’s law is comparable to one. We thus
obtain the magnetic quasi-static model, which can also be written in the physical
variables E, B as

curl B = μ0J , (1.116)

div B = 0, (1.117)

curl E = −∂B
∂t
, (1.118)

div E = 1

ε0
�. (1.119)

This set of equations constitutes another first-order approximation of Maxwell’s
equations, which is derived formally by assuming that the time variations of the
electric field, namely the displacement current, are negligible.

At first glance, there is no difference between the quasi-static electric equa-
tions (1.112–1.113) plus the quasi-static magnetic equations (1.116–1.117) and
the static ones (1.104). However, we observe that the right-hand sides are time-
dependent in the case of the quasi-static equations, whereas they are static in the
other case. Let us consider, for instance, the electric quasi-static model (i.e., ∂tB is
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negligible). The right-hand side � of the Poisson equation (1.113) is (explicitly)
time-dependent, since it is related to the electric field E that is a priori time-
dependent. Now, with the supplementary assumption that ∂tE is also negligible, �
becomes a static right-hand side and the twice quasi-static model is actually static.

From now on, it is important to note that the “quasi-static/static” difference is
not only a terminological subtlety. Indeed, from a numerical point of view, solving
a quasi-static problem with a time-dependent right-hand side, amounts to solving a
series of static problems after the time-discretization is performed [22].

1.4.4 Darwin Model

Let us introduce another approximate model, also known as the Darwin model [90].
It consists in introducing a Helmholtz decomposition of the electric field as

E = EL + ET , (1.120)

where EL, called the longitudinal part, is characterized by curl EL = 0, and
ET , the transverse part, is characterized by div ET = 0. Starting from Maxwell’s
equations in vacuum, one then assumes that ε0∂tE

T can be neglected in Ampère’s
law: one neglects only the transverse part of the displacement current, whereas, in
the quasi-static model, the total displacement current ε0∂tE is neglected. In this
sense, it is a more sophisticated model than the quasi-static one. Moreover, it can
be proven (see Sect. 6.4), by using the low frequency approximation (1.111) and
the resulting dimensionless form of Maxwell’s equations, that this model yields a
second-order approximation of the electric field and a first-order approximation of
the magnetic induction.

The Darwin model in vacuum is written in the physical variables E, B as

curl E = −∂B
∂t
, div E = �

ε0
,

curl curl B = μ0 curl J , div B = 0. (1.121)

Then, if one uses the Helmholtz decomposition (1.120) with div ET = 0 and
EL = − gradφ, we see that the three fields B , ET and φ solve three elliptic PDEs,
namely (1.121) and

−Δφ = �

ε0
,

curl ET = −∂B
∂t
, div ET = 0.
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Compared with the original time-dependent problem, these problems are easier to
solve. As a matter of fact, only the data are time-dependent, while the operators are
time-independent.

To conclude, we emphasize that the main difficulty, when using the Darwin
model in a bounded domain, is how to define suitable boundary conditions for
each part of the electric field: more precisely, how one should “split” the boundary
condition on E into two boundary conditions on EL and ET . We refer the reader to
[83, 96] for more details (see also Sect. 6.4).

1.4.5 Coupled Approximate Models

When considering the Vlasov-Maxwell model, in many cases, the interactions
between particles are mainly electrostatic; the self-consistent magnetic field is
negligible. Furthermore, particles have velocities that are much smaller than c:
they obey the non-relativistic dynamic. So, one reverts to the position-velocity
description of phase space (x, v) ∈ R3

x × R3
v; in addition, in the Lorentz force,

the term v × B is negligible before E, unless there is a strong external magnetic
field (as in tokamaks, for instance). One replaces the Maxwell’s equations with an
electric quasi-static model; and the magnetic part (1.114)–(1.115) is irrelevant. The
electric part (1.112)–(1.113) is rephrased as E = − gradφ and −Δφ = �/ε0. Thus,
we arrive at the Vlasov–Poisson system:

∂f

∂t
+ v · ∇xf − q

m
∇xφ · ∇vf = 0 ;

−Δxφ = �

ε0
,

with � given by (1.82). Also, there exist intermediate models such as Vlasov–
Darwin, which couples Eq. (1.87) with the model of Sect. 1.4.4 (see, for instance,
[7, 36]).

1.5 Elements of Mathematical Classifications

In this section, we first recall the definition of some standard operators, together
with a classification of the partial differential equations (PDE) and their physical
counterparts. In a second part, we reformulate and classify Maxwell’s equations. In
the last part, we present well-known computations that establish a correspondence
between the time-harmonic dependence with the notion of resonance. The material
presented here is very classical: the well-informed reader may skip this section.
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1.5.1 Standard Differential Operators

Let us begin by recalling the definitions of the four operators grad, div,Δ and curl,
which we use throughout this book.

Let En be a finite-dimensional Euclidean space of dimension n, endowed with
the scalar product ·, and let An be an affine space over En. Furthermore, let U be an
open subset of An. Respectively introduce a scalar field on U , f : U → R, and a
vector field on U , f : U → En.

Assume that f is differentiable at M ∈ U , and let Df (M) be its differential at
M . Then, the gradient of f atM is defined by

gradf (M) · v := Df (M) • v, ∀v ∈ En.

Provided that f is differentiable on U , the vector field M �→ gradf (M) is called
the gradient of f on U . The operator, grad, is called the gradient operator.

Assume that f is differentiable at M ∈ U , then the divergence of f at M is
defined by

div f (M) := tr(Df (M)),

where tr denotes the trace of a linear operator. Provided that f is differentiable on
U , the scalar fieldM �→ div f (M) is called the divergence of f onU . The operator,
div, is called the divergence operator.

Assume that f is twice differentiable atM ∈ U , then the Laplacian of f atM is
defined by

Δf (M) := div (gradf )(M).

Provided that f is twice differentiable on U , the scalar fieldM �→ Δf (M) is called
the Laplacian of f on U . The operator,Δ, is called the Laplace operator.

Consider that n = 3, and assume that f is differentiable at M ∈ U . Then, for
any given v0 ∈ E3, the mapping f × v0 : U → E3 is differentiable atM . The curl
of f atM is defined by

curl f (M) · v0 := div (f × v0)(M), ∀v0 ∈ E3.

Provided that f is differentiable on U , the vector field M �→ curl f (M) is called
the curl of f on U . The operator, curl, is called the curl operator.

In physics, one is mainly interested in three-dimensional Euclidean and affine
spaces E3 and A3. Moreover, to obtain expressions that involve partial derivatives,
let us introduce (e1, e2, e3) as an orthonormal basis of E3, (O, e1, e2, e3) as
an affine (or cartesian) coordinate system of A3, and finally, (x1, x2, x3) as the
associated coordinates, that is, M = O + ∑

i=1,2,3 xiei . We can write f =∑
i=1,2,3 fiei . Then, with respect to the affine coordinate system, the four operators
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defined above can be respectively expressed as

gradf =
i=3∑
i=1

∂f

∂xi
ei , div f =

i=3∑
i=1

∂fi

∂xi
, Δf =

i=3∑
i=1

∂2f

∂x2
i

,

curl f =
(
∂f3

∂x2
− ∂f2

∂x3

)
e1 +

(
∂f1

∂x3
− ∂f3

∂x1

)
e2 +

(
∂f2

∂x1
− ∂f1

∂x2

)
e3.

1.5.2 Partial Differential Equations

We begin with the simple case of a linear second-order two-dimensional partial
differential equation

A
∂2u

∂x2 + 2B
∂2u

∂x∂y
+ C ∂

2u

∂y2 +D∂u
∂x

+ E∂u
∂y

+ Fu = G, (1.122)

where the solution u, the coefficients A,B, . . . , F and the data G are functions of
(x, y). It is well known that, following the sign of the discriminant

B2 − AC,

one can build a classification of partial differential equations that write as in
Eq. (1.122) in a domainDom of R2. We have the classes:

1. if B2 − AC < 0 on the domain Dom, the PDE (1.122) is of the elliptic type. It
corresponds to equilibrium problems, such as, for instance, the static problems,
and it can be written in a canonical form, the prototype being the Poisson
equation (cf. Sect. 1.4.1).

2. if B2 −AC = 0 on the domainDom, the PDE (1.122) is of the parabolic type. It
can also be transformed into a canonical form, a typical example being the heat
transfer equation. From a physical point of view, this corresponds to diffusion
problems.

3. if B2 −AC > 0 on the domainDom, the PDE (1.122) is of the hyperbolic type.
After rewriting the equation under its canonical form, one can easily identify the
wave equation as the prototype of the hyperbolic equation. An important property
of the hyperbolicity is that it corresponds to propagation of solutions with a finite
velocity.

If we consider now the more general second-order linear partial differential equation
set in a domain of Rn, that is, in n variables, it can be written as

n∑
i=1

n∑
j=1

aij
∂2u

∂xi∂xj
+

n∑
i=1

bi
∂u

∂xi
+ cu = d, (1.123)
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where the solution u, the coefficients aij , bi, c, and the data d are functions of the
n variables (xi)1≤i≤n. In order to classify the PDEs (1.123) into different types,
we consider the so-called principal part, that is, the highest-order terms in (1.123),
which we express as

n∑
i=1

n∑
j=1

aij
∂2

∂xi∂xj
= ∂ · A∂ + l.o.t. (1.124)

Above, ∂ = ( ∂
∂x1
, . . . , ∂

∂xn
)T ∈ Rn, and A denotes the n×nmatrix of the coefficients

aij , and l.o.t. (or lower-order terms) stands for first or zero-order terms that vanish if
the aij s are constant. Now, using Schwarz’s theorem ∂2

ij = ∂2
ji , one can rewrite

the coefficients aij so as to obtain a symmetric matrix A, which we assume to
belong to Rn×n (i.e., it is a real-valued matrix). Classically, all eigenvalues of the
symmetric real-valued matrix A are real. We denote them by λ1, λ2, . . . , λn, counted
with their multiplicity. Furthermore, we introduce a corresponding orthonormal set
of eigenvectors u1, . . . ,un, such that A can be diagonalized as

UT AU = D =
⎛
⎜⎝
λ1 . . . 0
...

...

0 . . . λn

⎞
⎟⎠ ,

where U is an orthogonal matrix (UT = U−1) with the eigenvectors ui as its n
columns. Introducing now the directional derivative operator

∂

∂ξi
= ui · ∂, 1 ≤ i ≤ n,

we define the vector differential operator

∂ ′ = UT ∂, with ∂ ′ =
⎛
⎜⎝
∂ξ1
...

∂ξn

⎞
⎟⎠ .

Plugging this expression into the first term of the right-hand side of (1.124) and
using the orthogonal character of the matrix U gives us

∂ · A∂ = UT ∂ · DUT ∂ = ∂ ′ · D∂ ′ .

In this way, one gets that (1.124) can be rewritten equivalently

n∑
i=1

n∑
j=1

aij
∂2

∂xi∂xj
=

n∑
i=1

λi
∂2

∂ξ2
i

+ l.o.t.,
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where the l.o.t. here again represents the lower-order terms. This expression
provides an obvious way to extend the previous classification to the general case,
which appears to be strongly related to the sign of the eigenvalues λi . Hence, we
define, by analogy to the two-dimensional case, several classes of partial differential
equation:

1. if either λi > 0,∀i or λi < 0,∀i, the equation is said to be elliptic ;
2. if exactly one of the λi > 0 or λi < 0 and all other (λj )j �=i exhibit an opposite

sign, the equation is said to be hyperbolic ;
3. if one of the λi = 0, the equation can be parabolic. For that, all other (λj )j �=i

must exhibit a fixed sign ;
4. other instances are possible:

• if Card{λi = 0} ≥ 2, the equation is said to be semi-parabolic ;
• if λi �= 0,∀i, and Card{λi > 0} ≥ 2, Card{λi < 0} ≥ 2, the equation is said

to be semi-hyperbolic.

When we are dealing with a system of equations that can be reformulated as one
or several PDEs acting on vector unknowns, we refer to it as a vector PDEs. As
we shall see in the next subsection, the time-dependent Maxwell equations are an
example of hyperbolic vector PDEs.

To end this subsection, we remark that there exist other ways to define the elliptic,
parabolic and hyperbolic types of equation. In particular, when we deal with systems
of equations, one can relate the classification to the inversibility of the principal
symbol of the operator, namely the Fourier transform of the highest-order terms.
We refer the interested reader, for instance, to [92, 93].

1.5.3 Maxwell’s Equations Classified

Though it is often alluded to in this chapter, we have not so far explicitly classified
Maxwell’s equations. It turns out to be quite easy. Assume we are considering a
homogeneous medium (vacuum):
let us build ∂t (Eq. (1.26))+c2 curl(Eq. (1.27))−c2 grad(Eq. (1.28)) formally, to
find

∂2E

∂t2
− c2ΔE = − 1

ε0

(
∂J

∂t
+ c2 grad�

)
. (1.125)

Then, build ∂t (Eq. (1.27))− curl(Eq. (1.26))− c2 grad(Eq. (1.29)) to find

∂2B

∂t2
− c2ΔB = 1

ε0
curl J . (1.126)
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Both vector PDEs, respectively governing the behavior of E and B, are vector
wave equations and, as such, they are hyperbolic. In particular, the electromagnetic
fields propagate with finite speed (equal to c, see Sect. 1.2.2). They have to be
supplemented with some first-order initial conditions. Indeed, to obtain Eqs. (1.125–
1.126), one differentiates in time both Ampère’s and Faraday’s laws. If one
keeps only these equations, constant values (w.r.t. the time variable) of those
laws—considered as mathematical expressions—are neglected. Hence, one adds the
relations

⎧⎪⎪⎨
⎪⎪⎩

(
∂E

∂t
− c2 curl B

)
|t=0 = − 1

ε0
J |t=0(

∂B

∂t
+ curl E

)
|t=0 = 0

,

which equivalently write, with the help of the zero-order initial condition (1.31),

∂E

∂t
(0) = E1 := c2 curl B0 − 1

ε0
J (0),

∂B

∂t
(0) = B1 := − curl E0.

(1.127)

Also, one must keep Gauss’s law (1.28) and the absence of magnetic
monopoles (1.29), which appear here as constraints on the solutions to Eqs. (1.125–
1.126).

Remark 1.5.1 One can choose not to add contributions resulting from the diver-
gence part of the fields, to reach

∂2E

∂t2
+ c2 curl curl E = − 1

ε0

∂J

∂t
, (1.128)

∂2B

∂t2
+ c2 curl curl B = 1

ε0
curl J . (1.129)

Let us examine briefly—and formally—how the set of second-order equa-
tions (1.125–1.126), supplemented with the initial conditions (1.31) and (1.127)
and constraints (1.28–1.29), allow us to recover the original set of Maxwell’s
equations (1.26–1.29), supplemented with the initial condition (1.31). Gauss’s law
and the absence of magnetic monopoles are contained in both sets of equations,
and so is the zero-order initial condition. To recover Ampère’s and Faraday’s laws,
introduce the quantities

U := ∂E
∂t

− c2 curl B + 1

ε0
J , V := ∂B

∂t
+ curl E.
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According to the initial conditions (1.31) and (1.127), one has U(0) = V (0) = 0.
Then, after some elementary manipulations, one finds that

∂U

∂t
+ c2 curl V = 0,

∂V

∂t
− curl U = 0,

div U = 0, div V = 0.

(Above, one uses the charge conservation equation (1.10) to prove that U is
divergence-free.)

In other words, we showed that the couple (V , c−2U ) solves the set of
Eqs. (1.26–1.29) with zero right-hand sides, and with zero initial condition (1.31).
So, it is equal to zero, according to the results on the solvability of Maxwell’s
equations. We thus conclude that it holds that

∂E

∂t
− c2 curl B = − 1

ε0
J ,

∂B

∂t
+ curl E = 0,

as announced.
The calculations performed here formally can be mathematically justified to

prove the equivalence between the first-order and the second-order Maxwell
equations. We refer the reader to Chap. 7.

1.5.4 Resonance vs. Time-Harmonic Phenomena

We consider the time-dependent Maxwell equations in a homogeneous medium (for
instance, vacuum), set in a bounded domain Dom, written as two second-order
wave equations (see Eqs. (1.128)–(1.129)). Assuming that there is no charge, both
electromagnetic fields are divergence-free. The wave equations for each of the fields
being of the same nature, we will consider only one of them, for instance,

∂2E

∂t2
+ c2 curl curl E = − 1

ε0

∂J

∂t
,

div E = 0 ,

with the initial conditions

E(0) = E0,
∂E

∂t
(0) = E1 .
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Since the domain Dom is bounded, one has to add a boundary condition, such
as the perfect conductor boundary condition (1.135). The problem to solve can be
expressed as

d2U

dt2
(t)+ AU(t) = F (t) for t > 0, U (0) = U 0,

dU

dt
(0) = U 1, (1.130)

where:

• U (t) is the unknown, here the electric field ;
• A is the operator acting on the solution, here c2 curl curl ;
• F (t) is the right-hand side, here −ε−1

0 ∂tJ ;
• U 0,U 1 is the initial data.

The problem is set in the vector space of divergence-free solutions with vanishing
tangential components on the boundary, the so-called domain of the operator A.
It can be proven that the operator A is compact, self-adjoint and positive-definite,
and that there exists an orthonormal basis of eigenmodes (μk)k≥1 and a set of
corresponding non-negative eigenvalues (λk)k≥1 (counted with their multiplicity)
such that Aμk = λkμk for all k ≥ 1 (we refer the reader to Chap. 8 for
details). Moreover, the multiplicities of all eigenvalues are finite, and furthermore,
limk→+∞ λk = +∞. The set {λk, k ≥ 1} is the spectrum of the operator A.
Such modes correspond to the so-called free vibrations of the electric field. One
can expand the solution U and the initial data on the basis:

U (t) =
∞∑
k=1

uk(t)μk, U 0 =
∞∑
k=1

uk0 μk, U 1 =
∞∑
k=1

uk1 μk .

Solving the problem (1.130) mode by mode yields, thanks to the superposition
principle,

U(t) =
∞∑
k=1

uk(t)μk, with uk(t) = uk1

ωk
sin(ωkt)+ uk0 cos(ωkt)

+ 1

ωk

(∫ t
0

sin(ωk(t − s)) Fk(s) ds
)
, (1.131)

with ωk = √
λk for all k. As pointed out by the expression (1.131), the values ωk

play a particular role in the physical interpretation. Assume that the energy input to
the system can be expressed by a right-hand side F (t) such as

F (t) = fk cos(ωt)μk (1.132)
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with a prescribed positive ω. This corresponds to the so-called sustained vibrations
of the electric field, expressed here in the time-dependent case. Computing the
mode-by-mode solution with this right-hand side, one finds that uk(t) is equal to

1.
fk

2ωk
{ 1

ω − ωk +
1

ω + ωk }(cos(ωkt)− cos(ωt)) if ω �= ωk ;

2. respectively
fk

2ω
t sin(ωt) if ω = ωk ,.

In case 1, all terms in (1.131) appear with a bounded amplitude, the leading term
being proportional to fk(ω − ωk)−1ω−1

k when ω ≈ ωk . If case 2 occurs, there
exist one or several terms in (1.131), i.e., those that write (2ω)−1fkt sin(ωt) for k
such that ωk = ω, which have an unbounded amplitude, equal to (2ω)−1fkt . This is
called a resonance. It can occur only when the excitation frequencyω is equal to one
of the ωk’s. For this reason, the quantities (ωk)k are called resonance frequencies16

of the system.
This result can also be interpreted in terms of energy. Indeed, taking the dot

product of (1.130-left) by U ′ and integrating over the domainDom yields

(
d2U

dt2
(t)|dU

dt
(t))+ (AU(t)|dU

dt
(t)) = (F (t)|dU

dt
(t)) for t > 0 .

It can be written as

d

dt

{
1

2
‖dU
dt
(t)‖2 + 1

2
(AU(t)|U (t))

}
= (F (t)|dU

dt
(t)) for t > 0.

Above,

(U (t)|V (t)) =
∫
Dom

U (t, x) · V (t, x) dx, ‖U (t)‖ =
(∫
Dom

|U (t, x)|2dx
)1/2

.

The first term between brackets represents a kinetic energy, the second one
represents a potential energy and the right-hand side represents the power brought to
the system at a given time t . Integrating this equation over time leads to the energy
conservation equation

1

2
‖dU
dt
(t)‖2 + 1

2
(AU(t)|U(t)) =

∫ t
0
(F (s)|dU

dt
(s))ds + 1

2
(‖U 1‖2 + (AU0|U0)),

in which the energy brought to the system is
∫ t

0
(F (s)|U ′(s))ds. Assuming again

that F is of the form (1.132), the energy has a bounded amplitude as soon as ω �∈
{ωk, k ≥ 1}. Contrastingly, this amplitude is unbounded if ω = ωk . Physically, the

16More precisely, ω is a pulsation and the corresponding frequency is ω/(2π).
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resonance corresponds to the excitation of one eigenmode of the system, creating
an unbounded increase of its internal energy.

Let us now build a solution to the time-harmonic problem, cf. Sect. 1.2.1. We
introduce a right-hand side F with harmonic time-dependence exp(−ıωt) (ω > 0),
that is, F (t, x) = (f (x) exp(−ıωt)), with a complex-valued f . Let us consider
that the solution U to Eq. (1.130-left) adopts the same time-harmonic dependence
for t large enough, so that U (t, x) = (u(x) exp(−ıωt)), with a complex-valued u.
Plugging the expression of U into Eq. (1.130-left) and using, as above, expansions
of u and f yields, with obvious notations,


(∑
k

(ω2
k − ω2) uk μk exp(−ıωt)

)
= 

(∑
k

fk μk exp(−ıωt)
)
. (1.133)

Now, Eq. (1.133) is equivalent to (ω2
k − ω2) uk = fk for all k. Assume that ω is

equal to some ωk . In order for a solution to exist, one must have fk = 0 for all
the corresponding indices k (such that ω = ωk). It follows that no resonance can
occur in the time-harmonic case. From a mathematical point of view, one can use
the Fredholm alternative (cf. Chap. 4 for a more detailed discussion).

1.6 Boundary Conditions and Radiation Conditions

In order to close Maxwell’s equations when the domain is a strict subset of R3, one
must provide conditions, in addition to the differential Maxwell equations (1.6–1.9).
These conditions are usually imposed on the boundary of the domain, and they are
called the boundary conditions. Also, when the domain is unbounded in at least
one direction, it is interesting, from a computational point of view, to bound it. The
computational domain thus corresponds to a truncation of the original domain. This
can be achieved via the introduction of an artificial boundary, and an ad hoc absorb-
ing boundary condition is imposed on this boundary, so that the electromagnetic
waves can leave the computational domain without (significant) reflections. Another
possibility is to introduce—not a boundary plus a boundary condition—but a thin,
dissipative layer, in which the waves can propagate while being damped at the same
time. This technique is called the perfectly matched layers. In other respects, when
one focuses on the time-harmonic Maxwell equations (1.47–1.50), one must add a
condition at infinity, which permits us to discriminate incoming and outgoing waves:
this condition is called a radiation condition. Physically, it prevents energy inputs
from infinity. Mathematically, it allows one to prove uniqueness results.
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O

n
O’

Fig. 1.1 “Pipe” domain

1.6.1 Boundary Conditions

As we remarked at the beginning of this section, the differential Maxwell equations
are insufficient to characterize the fields in a strict subset of R3. On the other
hand, the integral Maxwell equations yield four interface conditions, respectively
described by Eqs. (1.11) and (1.12). How can these conditions be used? Let us call
O the domain of interest, and ∂O its boundary. Note that ∂O can alternatively be
seen as the interface between O and R3 \ O, so the electromagnetic fields fulfill
conditions (1.11–1.12) on ∂O. In addition, the behavior of the electromagnetic
fields is known in R3 \ O (otherwise, we would have to compute them!) or, more
realistically, in an exterior domain O′ included in R3 \O, such that O ∩O′ = ∂O.
As a consequence, one can gather some useful information as to the behavior of the
fields in O, on the boundary ∂O.

For instance, let us assume now that the domain O is bounded, or partially
bounded (i.e., along one direction, like the “pipe” in Fig. 1.1), and that it is encased
(at least locally) in a perfect conductor. Then, as we saw in Sect. 1.1, the fields vanish
outside O (cf. our discussion on skin depth and on the notion of perfect conductor).
From condition (1.11 right), we infer that

B · n = 0 on ∂O, (1.134)

with n the unit outward normal vector to ∂O, with the convention that outward goes
from O to O′. Likewise, from condition (1.12 left), we get

E × n = 0 on ∂O . (1.135)
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The conclusion is that the normal componentBn = B ·n|∂O (respectively tangential
components E� = n× (E×n)|∂O) of B (respectively E) uniformly vanish on ∂O:
we call these conditions17 the perfect conductor boundary conditions.

From the physical point of view, these conditions are macroscopic, since they
result from the idealization of quantities defined on surfaces. On the other hand,
from a mathematical point of view, these conditions are sufficient to ensure the
uniqueness of the solution, in the absence of topological considerations. As we shall
see in Chap. 5, condition (1.134) can be rigorously inferred from condition (1.135),
whereas the reciprocal assertion is not valid.

From the point of view of wave propagation, the perfect conductor boundary
condition can be viewed as a reflection condition. Indeed, since the electromagnetic
fields uniformly vanish inside the perfect conductor, one can say that the boundary
completely reflects any impinging plane wave. As a consequence, the reflection
coefficient, which is equal to the ratio of amplitudes between the reflected and
incident waves, has a unit value. Also, in terms of energy, no energy is transmitted
to the exterior domain O′. In other words, the energy flux through the boundary is
equal to zero, and the energy remains constant in the domain O (in the absence of
sources).

However, there also exist media that are more or less dissipative. This occurs, for
instance, when the exterior medium O′ is a conductor (but not a perfect one). The
fields do not vanish inside O′, so a wave originating from the domain O penetrates
into the exterior domain O′. More precisely, if we consider an impinging plane
wave, it should penetrate—at least partially—into O′, where it is damped. In the
special case when ∂O is a plane and if the velocity of propagation of the plane wave
is equal to c = 1/

√
εμn, one finds by direct computations that it holds that

E × n +
√
μ

ε
n × (H × n) = 0 .

17One may also use the interface conditions to describe electromagnetic fields globally in R3: this
is an integral representation. More precisely [167, §5.5], consider that R3 is split into two media
M+ and M−, one of them being bounded, and let Σ be the interface between the two media. If one
is interested in the electromagnetic fields that are governed by the homogeneous time-harmonic
equations in M+ and M−, then, assuming that the jump jΣ = −[H ×nΣ ]Σ (condition (1.12 right))
is known, one can use integral representation formulas for the values of E(x) and H (x), for all
x ∈ R3 \ Σ . The integrals are taken over Σ and depend only on jΣ . In the same spirit, one can
represent the (different) values of E±(xΣ) and H±(xΣ) for all xΣ ∈ Σ . Within this framework,
one may generalize these results in the presence of magnetic polarization by assuming that the
magnetic current on Σ , mΣ = [E × nΣ ]Σ , is also different from 0. In this case, one ends up with
integral representation formulas of E and H , with integrals over Σ that depend on jΣ and mΣ . In
the same manner, one may use the jump relation σΣ = [D · nΣ ]Σ (1.11 left) to solve a diffraction
problem expressed as a scalar Helmholtz equation, assuming σΣ is known, where the unknown is
the scalar electric potential.
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So, to allow a plane wave to penetrate into O′, one usually introduces a boundary
condition, called the impedance boundary condition, which is written as

E × n + Zn × (H × n) = 0 on ∂O . (1.136)

In its simplest form, the impedance Z is a positive number, which is characteristic
of the medium. The obvious example is Z = √

μ/ε, which allows the plane wave
with velocity c = 1/

√
εμn to leave the domain O without being reflected (when

∂O is a plane). More generally,Z is an operator (local in space), and the generalized
impedance boundary condition is understood as E×n|∂O+Z(n×(H×n)|∂O) = 0.
In terms of energy, this condition allows the electromagnetic energy to decrease in
the domain. Note that condition (1.136) is usually considered for time-harmonic
fields (see [26] for an example of time-dependent fields), and in this instance, Z can
be a function of the pulsation ω.

In most cases, these boundary conditions are not sufficient to model problems
originating from physical situations efficiently. Let us consider more specifically
the time-dependent Maxwell equations in a domain O. Obviously, if the domain
O is not bounded, it has to be “numerically adjusted” to perform numerical
computations. Note that this difficulty occurs for exterior problems (diffraction, etc.)
as well as for interior problems (waveguides, etc.) (see Figs. 1.2 (left) and 1.3 (left)).
Let the computational domain Ω be equal, for instance, to18 O ∩ B(O,R), with a
suitable radius R. Then, the boundary of the computational domain ∂Ω can be split
into two parts:

• a “physical” part, which is included in ∂O: Γ = ∂Ω ∩ ∂O.
• the remainder, ΓA, which is purely “artificial”.

For a diffraction problem on a bounded object, the radius R is chosen so that ΓA
does not intersect the “physical” boundary ∂O (see Fig. 1.2 (right)). In other words,
there holds ∂Γ ∩ ∂ΓA = ∅, with Γ = ∂O, ΓA = ∂B(O,R). So, for numerical
purposes, one handles a truncated exterior problem.

Contrastingly, for an interior problem, R is usually chosen in such a way that
ΓA intersects the “physical” boundary: ∂Γ ∩ ∂ΓA �= ∅ (see Fig. 1.3 (right)). In the
latter case and as a rule of thumb, one must be careful to avoid artificial boundaries
ΓA that intersect ∂O at positions where the electromagnetic fields can be locally
“intense”, such as the neighborhood of reentrant corners and/or edges of ∂O. For
numerical purposes, one handles a truncated interior problem.

On Γ , one imposes the boundary conditions that model the behavior of the
exterior medium, as previously. On the artificial boundary ΓA, a boundary condition
is also required. Let us go back to a plane wave with a velocity of propagation
c = c d: when d · n > 0, one says that the wave is outgoing, whereas it is
said to be incoming when d · n < 0. Physically, one has to model the following

18Instead of B(O,R), one can choose any reasonable volume in which the computations ought to
be performed: a cube, as in Fig. 1.3 (right, rightmost ΓA), etc.
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Γ

AΓ

Fig. 1.2 Adjustment of a sample diffraction problem

Γ
A

ΓA
Γ

Γ

Fig. 1.3 Adjustment of a sample interior problem

behavior: outgoing electromagnetic waves should leave the computational domain
Ω freely without being reflected at this boundary. Or, equivalently, outgoing waves
are absorbed at the artificial boundary, and the corresponding condition is called an
absorbing boundary condition.

Let (Eex,Bex) denote the (exact) solution to the problem set in O, and let
(E,B) be the (possibly approximate) solution to the problem set in Ω . Here, the
term “problem” refers to Maxwell’s equations in the domain, plus the boundary
conditions on the boundary of the aforementioned domain.

It is possible to construct an exact absorbing boundary condition, which is usually
called the transparent boundary condition. It can be written as Eex ×n|ΓA +T (n×
(Bex × n)|ΓA) = 0, where T is a pseudo-differential operator (note the similarities
with the generalized impedance boundary condition). The action of the operator
T can be expressed in two equivalent ways. Either T is considered as a transfer
operator that relates the trace of the tangential trace of the magnetic induction to its
electric counterpart, and its action is written as an (infinite) expansion in spherical
harmonics. Or, an integral representation of the fields can be used (in Ω and in
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R3 \ B(O,R)), which is determined by the values of the tangential traces of both
fields on ΓA.

Mathematically, if one imposes the transparent boundary condition on ΓA, it can
be proven that the restriction of the exact fields (Eex,Bex) toΩ is equal to (E,B).
Or, the other way around, one can build an extension of the fields (E,B) to O that
coincides with the exact solution (see, for instance, [128]).

However, the transparent condition is non-local both in space and time: for
practical implementations, it is impossible to use the operator T exactly as it is. . . So,
for numerical purposes, one can choose, for instance, truncated (finite) expansions,
when the action of T is expressed via a transfer operator (see below); or Boundary
Element Methods that allow one to approximate integral representations.

Alternatively, one can choose to devise approximate conditions: the absorbing
boundary conditions (referred to as ABC or ABCs from now on). Within the
same framework, it is often required to model incoming waves from infinity. The
incoming waves should be able to enter the domain Ω . The parameters describing
these incoming waves can be prescribed by given functions (denoted e� and b� in
the following), defined on the artificial boundary ΓA. A set of ABCs for Maxwell’s
equations can be written as

(E − cB × n)× n = e� × n on ΓA, e� data, (1.137)

or, in a similar way,

(cB + E × n)× n = c b� × n on ΓA, b� data. (1.138)

These conditions are obtained by locally approximating the boundary ΓA by its
tangent plane. Moreover, an outgoing plane wave, which propagates normally to the
boundary, is not reflected. In that case, we have to choose e� = 0 or b� = 0. On the
other hand, when e� �= 0 or b� �= 0, conditions (1.137–1.138) enable an incoming
plane wave that propagates normally to the boundary to enter the domain freely. The
conditions (1.137–1.138) are known as the Silver–Müller ABCs [165]. When e� = 0
or b� = 0, they are said to be homogeneous.

Note that since we are considering boundary conditions that are an approximation
of the exact transparent boundary condition, it follows that (E,B) is different from
the restriction of the exact fields (Eex,Bex) toΩ .

If one differentiates Eq. (1.138) with respect to time and uses the trace of
Faraday’s law on ΓA, one finds another expression of the Silver–Müller boundary
condition that involves the electric field alone

∂

∂t
[(E × n)× n] − c(curl E)× n = c ∂b

�

∂t
× n on ΓA . (1.139)

Or, as we already mentioned, one can choose to approximate the transparent
boundary condition directly. This can be achieved when the artificial boundary is
“smooth”, by performing either a Taylor expansion or a rational (Padé) expansion of
the operatorT , in terms of a small parameter: in the high-frequency limit, the (small)
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parameter is equal to the angle of incidence ̂(d,n) of the waves on ΓA. Keeping only
the zero-order term, one recovers Eq. (1.138) with b� = 0. Keeping the zero- and
first-order terms, one tailors a priori a new ABC.19 However, in the special case
when the artificial boundary is a sphere ΓA = ∂B(O,R), the “new” condition still
coincides with (1.138). Hence, the initial Silver–Müller ABCs, obtained by merging
ΓA with its tangent plane, are still satisfactory up to the first order in this special
geometry.

The precision of an ABC can be measured with the help of plane wave analysis:
any plane wave impinging on ΓA is partially reflected (and partially refracted). The
reflection coefficient (the ratio of amplitudes between the reflected and incident
waves) depends on the angle of incidence θ = ̂(d,n) ∈] − π/2, π/2[. When the
reflection coefficient behaves like

(
1 − cos θ

1 + cos θ

)α
= O(θ2α),

one says that the ABC is of order α. Using this scale and assuming that ΓA is a
plane, one finds that the Silver–Müller condition (1.139) is of order 1, whereas the
perfect conductor condition is, by construction, of order zero. One can also build
ABCs of higher order. The following condition has been proposed in [147]:

(
∂

∂t
+ c ∂

∂n

)
[(E×n)×n]+ c

2
gradΓ (E ·n)+ c

2

2
curlΓ (B ·n) = 0, (1.140)

or, alternatively,

(
∂

∂t
+ c ∂

∂n

)
[(B×n)×n]+ c

2
gradΓ (B ·n)− 1

2
curlΓ (E ·n) = 0, (1.141)

where gradΓ is the surface gradient, or tangential gradient, operator, and curlΓ
is the surface curl, or tangential curl, operator. Assuming that ΓA is a plane, it is
proven that the condition (1.140) or (1.141) is of order 2.

Note that the ABCs are not equivalent to one another. In other words, two
different conditions yield two different sets of electromagnetic fields.

As we remarked earlier, approximate conditions such as the Silver–Müller
ABCs have been developed as an alternate choice to the numerical approximation
of the transparent boundary conditions. In particular, condition (1.139), used in

19For instance (see [187]), if the artificial boundary ΓA is a cylinder of radius R and axis Oz, one
gets

{
∂

∂t
+ c

2R

}
[(E × n)× n] + c

R
Eθeθ − c(curl E)× n = 0 on ΓA,

with E = Erer + Eθeθ + Ezez in cylindrical coordinates.
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conjunction with the differential Maxwell equations (and another condition on
Γ ), leads to a well-posed problem [187]. In addition, the Silver–Müller boundary
condition is sufficiently accurate for most interior problems, and it is straightforward
to implement numerically [21]. Contrastingly, for exterior problems, the use of
higher-order approximations is recommended [108]. A possible drawback of the
higher-order ABCs is that they can lead to problems that are not well-posed. Finally,
we note that these instances of ABCs can be used in the time-harmonic regime.

The last technique we review is credited to Bérenger [39, 40]. To adjust the
domain, one adds not an artificial boundary, but one, or a set of, artificial layers,
made of artificial media. These artificial layers, and the media they are made of,
exhibit special features:

(i) Interfaces between the computational domain and an artificial layer or between
two artificial layers are plane.

(ii) Electromagnetic plane waves that propagate in the artificial media are attenu-
ated: these media are dissipative.

(iii) At the interface between the layers and the computational domain, plane waves
are not reflected (whatever the angle of incidence).

(iv) At the interface between two layers, plane waves are not reflected (whatever
the angle of incidence).

Basically, one first designs several types of layer. They are labeled Lx,Ly,Lz,
depending on the chosen—constant (cf. (i))—direction of the normal vector (nI =
ex, ey, ez) to the interface between the computational domain and each of the
surrounding layers (see Fig. 1.4 (left)). To fulfill (ii-iii), the conductivities in the
artificial media have to be adjusted carefully. Indeed, in addition to the conductivity
σ , one also needs to introduce a magnetic conductivity σ� such that in the artificial
medium, Faraday’s law reads as ∂tBart + curl Eart = σ�H art . Furthermore, one
has to split the magnetic induction into two parts, and then, one has to duplicate

(iv) p. c. b. c.

ex

ye

(i)−(iii)

Fig. 1.4 Basic geometrical steps for the construction of PMLs
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Faraday’s law on those two parts. By doing so,20 one introduces additional degrees
of freedom, so that the problem at hand is solvable.

Second, to reconnect two different layers, for instance,Lx andLy , one introduces
another artificial layer Lxy , so that (iv) is fulfilled at the interfaces ∂Lx ∩ ∂Lxy and
∂Ly ∩ ∂Lxy (see Fig. 1.4 (center)) through the use of similar techniques.

Note that there always exists a solution to the previous problems: in other words,
one can always choose the conductivities in the various artificial media so that (ii-iv)
hold.

Finally, this set of artificial layers is surrounded by a boundary on which one
imposes perfect conductor boundary conditions (see Fig. 1.4 (right)). The various
artificial layers are called perfectly matched layers (or PMLs, for short). Unsplit
versions of the PMLs (based on stretched coordinates in the artificial media, see
[75, 174]) have been developed. In other words, the magnetic induction is not
split anymore in the artificial media, which reduces the total number of unknowns
there. The same result can be achieved by the use of anisotropic artificial media (as
proposed in [181]), resulting in the so-called uniaxial PML (UPML).

From an algorithmic or computational point of view, outgoing plane waves
can leave the computational domain freely. Then, they are damped in the PMLs,
before being reflected by the perfect conductor boundary conditions. On their way
back, they are damped once more before entering the computational domain freely.
However, because of the dissipation in the artificial media, the energy of the plane
waves that enter the computational domain after traveling in the PMLs is negligible.
This process leads to numerical implementations that are extremely efficient in
practice. From a mathematical point of view, the use of either the set of original
PMLs of Bérenger or of unsplit versions leads to problems that are (conditionally)
well-posed mathematically (see [34, 35, 146]).

1.6.2 Radiation Conditions

So far, we have focused mostly on the time-dependent Maxwell equations. Here,
we deal with the time-harmonic case as in Sect. 1.2, in a homogeneous medium. Let
ω > 0 be the pulsation.

Let us assume for simplicity that the charge density � is equal to 0, so that the
current density is divergence-free. Under these conditions, each field is solving a
fixed frequency problem, which can be written in the manner of the Helmholtz-like
equations (1.56–1.57),

{
curl curl e − λe = ıωμ0j

curl curl b − λb = μ0 curl j
with λ = ω2/c2. (1.142)

20Manipulating Maxwell’s equations thusly is certainly admissible, since one is dealing with
artificial media, in which the electromagnetic fields are artifacts. . .
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As we already pointed out, this equation is strongly connected to the scalar
Helmholtz equation (1.63), for which it is well known that the uniqueness of the
solution requires a so-called radiation condition at infinity.

Now, as far as radiation conditions are concerned, they are generally associated
with diffraction problems (see Fig. 1.2). In others words, we are concerned with
waves coming from infinity that are impinging on an obstacle K: we are interested
in solving the problem in O = R3 \ K. As we saw before, there may be (partial)
absorption, as well as scattering by the obstacle, which leads to different kinds of
boundary condition on this obstacle.

In practice, the computational problem is usually set within a bounded domain,
for instance, B(O,R) \K . An ad hoc boundary condition is chosen on ∂B(O,R),
together with the companion numerical approximation of this boundary condition
(see the previous discussion on transparent boundary conditions and/or ABCs).

Then, supplementary conditions, which characterize the behavior of the solution
at infinity, are required. Denoting by (r, θ, φ) the spherical coordinates with
associated vector basis (er , eθ , eφ), we seek a condition that depends on r only, so
that it can be applied on the exterior boundary ∂B(O,R). At first glance, it seems
that imposing that the solution decrease like r−1 at infinity is sufficient. Indeed, this
condition is similar to the one that is required for the well-posedness of the scalar
Poisson equation Δw = f in an exterior domain: it can be easily understood as
a requirement for avoiding a situation in which the total energy

∫
O |w|2 dx would

be unbounded. However, unlike the case of the Poisson equation, this condition
is not sufficient to ensure uniqueness of the solution to the Helmholtz equation. To
illustrate this point, let us introduce radial solutions to the scalar Helmholtz equation
Δw+λw = 0 set in R3. In other words, since we are studying uniqueness, Eq. (1.63)
is solved in R3 with a zero right-hand side. Namely, we look for solutions of the form
w(x) = ζ(r). Under this assumption, Eq. (1.63) becomes, for r > 0,

1

r2

d

dr
(r2 dζ

dr
)+ k2ζ = 0,

with k = √
λ = ω/c. The general solution to the previous equation is

ζ(r) = C+ζ+(r)+ C−ζ−(r), with C± ∈ C, ζ±(r) = 1

r
exp(±ıkr). (1.143)

Two families of solutions coexist. One with the + sign in the exponent, correspond-
ing to an outgoing wave, the second with the − sign, associated with an incoming
wave.21 Hence, the uniqueness of the solution (up to a multiplicative constant) can
be recovered by imposing a radiation condition, that is, a condition that describes

21Indeed, the unit outward normal vector to ∂B(O,R) is n = er . Moreover, since x = rer on
∂B(O,R), for an outgoing plane wave that propagates normally to ∂B(O,R) (kout = ker ), one
finds kout ·x = kr . Respectively, for an incoming plane wave that propagates normally to ∂B(O,R)
(kin = −ker ), kin · x = −kr .
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the behavior of the solution at infinity, depending on whether one wants to select an
outgoing wave or an incoming wave. As a matter of fact, from Eq. (1.143), we find

⎧⎪⎨
⎪⎩
ζ ′+(r)+ ıkζ+(r) ≈

2ık

r
exp(ıkr), ζ ′+(r)− ıkζ+(r) = − 1

r2 exp(ıkr),

ζ ′−(r)+ ıkζ−(r) = − 1

r2
exp(−ıkr), ζ ′−(r)− ıkζ−(r) ≈ −2ık

r
exp(−ıkr)

.

This leads to the following radiation conditions, whose names correspond to those
given for the scalar Helmholtz equation:

1. The outgoing Sommerfeld condition (imposes C− = 0 in Eq. (1.143))

∂w

∂r
− ıkw = O( 1

r2 ) .

2. The incoming Sommerfeld condition (imposes C+ = 0 in Eq. (1.143))

∂w

∂r
+ ıkw = O( 1

r2
) .

Both instances are necessary and sufficient conditions to ensure uniqueness of the
solution to the scalar Helmholtz equation.

Remark 1.6.1 To express the general solution to the scalar Helmholtz equation, one
uses expansions expressed in spherical coordinates as

ζ(r, θ, φ) = exp(−ıkr)
r

∞∑
0

Fn(θ, φ)

rn
.

This expansion is due to [23, 205] (see also [167]).

Let us consider the scalar, time-dependent, wave equation (in time-space R×R3)

∂2w

∂t2
− c2Δw = 0 .

One finds, assuming that the solution is radial in space, i.e., w(t, x) = ϕ(t, r):

∂2ϕ

∂t2
− c

2

r2

∂

∂r

(
r2 ∂ϕ

∂r

)
= 0, for r > 0 .

This can be written equivalently as

(
∂

∂t
+ c ∂
∂r
)(
∂

∂t
− c ∂
∂r
)(rϕ) = 0, for r > 0 .
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Now, solutions to (∂t ± c∂r)(rϕ) = 0 write rϕ = f (r ∓ ct), so that rϕ = fout (r −
ct)+ finc(r + ct).

To see that fout (r − ct) (respectively finc(r + ct)) actually corresponds to an
outgoing wave (respectively an incoming wave), let us go back to the time-harmonic
regime.

Assuming, in addition, a time-harmonic dependence of these solutions like
ϕ(t, r) = (ζ(r) exp(−ıωt)), we have

(−ıω + c ∂
∂r
)(−ıω − c ∂

∂r
)(rζ ) = 0, for r > 0 .

This is equivalent in turn to ∂r(rζ ) = +ıkrζ or ∂r (rζ ) = −ıkrζ for r > 0, so that
according to Eq. (1.143), ζ coincides with the solution obtained there. Moreover,
we observe that (∂t + c∂r)(rϕ) = 0 in the time-dependent regime corresponds to
∂r (rζ ) = +ıkrζ in the time-harmonic regime. We conclude by identification that

fout (r − ct) = (C+ζ+(r) exp(−ıωt))

corresponds to an outgoing wave. In the same manner,

finc(r + ct) = (C−ζ−(r) exp(−ıωt))

corresponds to an incoming wave, as advertised above.
Denoting by u a radial solution to the time-harmonic Maxwell equations (1.142)

with a zero right-hand side, one finds that two families of solutions coexist, in the
form of an incoming part (denoted by u−) and an outgoing part (denoted by u+).
Again, one may select the outgoing or the incoming parts, via radiation conditions
for the solution:

1. The outgoing Silver–Müller radiation condition (imposes u− = 0)

curl u × n − ıku = O( 1

r2 ) . (1.144)

2. The incoming Silver–Müller radiation condition (imposes u+ = 0)

curl u × n + ıku = O( 1

r2 ) . (1.145)

Often in the literature (see [86, 167]), the Silver–Müller radiation conditions
appear in another form, derived from the first-order time-harmonic Maxwell equa-
tions (1.52–1.55), with a zero right-hand side. In this instance, both electric field e
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and magnetic induction b are involved in the outgoing or incoming expressions that
read, respectively, as:

1. First-order outgoing expression

e − cb × n = O( 1

r2 ), or cb + e × n = O( 1

r2 ), (1.146)

2. First-order incoming expression

e + cb × n = O( 1

r2 ), or cb − e × n = O( 1

r2 ) . (1.147)

How can these conditions be used mathematically? For instance, let us go back to
a diffraction problem, as pictured in Fig. 1.2. The total electric field e can be split
into two parts: the incident wave einc , the known impinging wave that propagates
in the medium, and would not be affected in the absence of a scatterer ; and the
scattered wave esca , our unknown. By definition, the scattered wave is supposed to
be outgoing, i.e., fulfill condition (1.144). Mathematically, this is expressed as

lim
R→+∞

∫
∂B(O,R)

| curl esca × n − ıkesca|2dS = 0.

According to [134], this outgoing Silver–Müller radiation condition on esca ,
together with the differential Maxwell equations (and a perfect conductor boundary
condition on Γ ) on the total field e = einc + esca , leads to a well-posed problem.

To emphasize the differences between the time-harmonic Maxwell equa-
tions (1.142) and the vector Helmholtz one, note that the solutions to (1.142)
satisfy a constraint on the divergence: they are divergence-free (see remark 1.2.3).
This is not the case of the plain radial solutions v(r) to the vector Helmholtz
equation. Nevertheless, these computations being essentially based on the
asymptotic behavior of ζ±(r), the Silver–Müller radiation conditions—considered
componentwise for the time-harmonic Maxwell equations—are expected to be
equivalent to the Sommerfeld radiation conditions. Indeed, it was proven that
each component of any solution to Maxwell’s equations satisfying the Silver–
Müller radiation conditions also satisfies the corresponding Sommerfeld radiation
conditions for the scalar Helmholtz equation, and vice versa (see [86] for a proof).

Let us conclude this section by briefly exposing the relation between the Silver–
Müller radiation condition (1.146) and the Silver–Müller ABCs (1.137–1.138)
in its homogeneous form, that is, with (e�, b�) = (0, 0). Note first that the
similarity appears in the time-harmonic case, when comparing (1.137–1.138) with
relations (1.146). Second, for the time-dependent case, recall that the ABCs were
obtained by assuming that an outgoing plane wave, which propagates normally to
the boundary, is not reflected. According to the previous discussion, the ABCs can
also be viewed as a way of selecting a direction of propagation, by removing the
incoming wave, the outgoing wave leaving the domain freely.
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1.7 Energy Matters

The aim of this section is to recall the basic notions related to the energy in the
context of Maxwell’s equations.

Let us consider first the case of a homogeneous medium (vacuum). Our starting
point is Faraday’s law (1.27) and the absence of magnetic monopoles (1.29). We
have seen that there exist two independent potentials, A and φ, that can be used
to take into account these two relations, and define the electromagnetic fields as in
Eqs. (1.34–1.35). For our purpose here, we say that (A(t, x))t,x and (φ(t, x))t,x are
the generalized coordinates of our system. Then, let us introduce the Lagrangian
density

L(t, x) = L(A(t, x), φ(t, x))

:=
(
ε0

2
|E|2 − 1

2μ0
|B|2 + A · J − φ �

)
(t, x), (1.148)

together with the Lagrangian on a frozen (w.r.t. time) volume V ⊂ R3

∫
V

L dV.

Then, the idea is to use the least action principle, which amounts to finding extrema
of the action (with t1 < t2 given)

S :=
∫ t2
t1

∫
V

L dV dt

over trajectories t �→ (A(t), φ(t)) with fixed initial and final states. In other
words, one chooses infinitesimal variations δA and δφ such that (δA, δφ)(t1) =
(δA, δφ)(t2) = 0 in the volume V . A necessary condition for an extremum of S to
exist is that δS = 0, with

δS :=
∫ t2
t1

∫
V

δL dV dt,

for all admissible variations (δA, δφ). In a first step, one adds a new constraint on
the variations, namely that (δA, δφ)(t) = 0 for all t ∈]t1, t2[, on the surface ∂V . One
finds that the electromagnetic fields necessarily satisfy Ampère’s and Gauss’s laws,
which appear within this framework as equations of motion of the electromagnetic
fields. In a second step, one removes all constraints on the variations, to focus on the
relation that defines δS, which now takes into account Ampère’s and Gauss’s laws,
and holds for all variations (this is not the least action principle anymore). One finds
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that another necessary condition appears, which can be written as

d

dt

(∫
V

{ε0

2
|E|2 + 1

2μ0
|B|2} dV

)
+
∫
∂V

1

μ0
(E × B) · dS

+
∫
V

E · J dV = 0. (1.149)

This is an integral electromagnetic energy conservation relation. Indeed, let

w0 = 1

2
{ε0|E|2 + 1

μ0
|B|2} (1.150)

be the density of electromagnetic energy, and let

S0 = 1

μ0
E × B,

be the vector flux of the electromagnetic energy, called the Poynting vector. The
conservation relation (1.149) writes

d

dt

(∫
V

w0 dV

)
+
∫
∂V

S0 · dS +
∫
V

E · J dV = 0.

From a physical point of view, the third term can be seen as the power dissipated by
the Joule effect, and the second as the flux of the electromagnetic energy entering
or leaving the domain V .

It can be written in differential form as

∂w0

∂t
+ div S0 + E · J = 0.

Note that one can define the total electromagnetic energy by

Wtot =
∫
R3
w0 dV .

As originally expressed by Feynman [110], no doubt better than by us, we cannot be
sure that these definitions are the “correct definitions”. However, if one has a look
at other possibilities in the definition of the Lagrangian density (1.148), one always
comes up with non-linear terms in the equations of motion of the electromagnetic
fields. Thus, it is “natural” to keep the simplest expressions, that is, (1.149–1.150).
Nevertheless, these definitions have to be considered as modelling assumptions,
which are used extensively in the mathematical analyses (see Chap. 5).
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Let us consider next the case of a perfect medium, in which the constitutive
relations read as in (1.17), with symmetric tensors ε and μ. By analogy, we first
introduce the density of electromagnetic energy:

w = 1

2
{D · E + B · H } .

Since ε and μ are both independent of t , one gets ∂tw = ∂tD · E + ∂tB · H .
We also introduce the Poynting vector S, defined as

S = E × H . (1.151)

Taking the divergence of S, we obtain

div S = H · curl E − E · curl H .

By using Faraday’s and Ampère’s laws, we can substitute in this expression curl E
by −∂tB and curl H by ∂tD + J to reach

∂w

∂t
+ div S + E · J = 0.

This equation is the differential electromagnetic energy conservation in the case of a
perfect medium, and it can also be expressed in integral form, in any frozen volume
V , as

d

dt

(∫
V

w dV

)
+
∫
∂V

S · dS +
∫
V

E · J dV = 0. (1.152)

In the more general case of a chiral medium, the previous notions (density,
conservation of energy) are much more complex to build.

Let us examine now the case of static electromagnetic fields (cf. Sect. 1.4,
Eqs. (1.104)), in vacuum.

Let us focus first on the total electrostatic energy: recall that Estat =
− gradφstat , with a potential φstat governed by the Poisson equation (1.105).
Then, one has, with the help of Ostrogradsky’s formula,

W
E,stat
tot = ε0

2

∫
R3

Estat · Estat dV = −ε0

2

∫
R3

gradφstat · Estat dV

= −ε0

2
lim

R→+∞

∫
B(O,R)

gradφstat · Estat dV

= ε0

2
lim

R→+∞

{∫
B(O,R)

φstatdiv Estat dV −
∫
∂B(O,R)

φstat (Estat · dS)

}
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= 1

2
lim

R→+∞

{∫
B(O,R)

φstat� dV − ε0

∫
∂B(O,R)

φstat (Estat · dS)

}

= 1

2

∫
R3
φstat� dV .

It remains to explain why the rightmost term vanishes when R goes to infinity.
For that, let us return to formula (1.30), which expresses the (static) electric field
created byN charged particles. This formula can be further generalized to a volume
distribution of charged particles, with density �. One reaches

Estat (x) = 1

4π εa

∫
�(x′) (x − x′)

|x − x′|3 dx
′ .

The above expression can be rewritten as a convolution product in space:

Estat = 1

4π εa
� �G, with G(y) = y

|y|3 .

IntroducingG(y) = |y|−1, which satisfies G = − gradG, one gets

Estat = − gradφstat , with φstat = 1

4π εa
� � G,

with φstat the corresponding electrostatic potential.
Provided that the support of � is a bounded subset of R3—physically, provided

that there are no charged particles at infinity—one finds that

|φstat(x)| ≤ C�|x| and |Estat (x)| ≤ C�

|x|2 ,

with C� a constant that depends on �. Therefore, one has

∣∣∣∣
∫
∂B(O,R)

φstat (Estat · dS)

∣∣∣∣ ≤ 4π C2
�

R
.

So, the conclusion follows. For a volumic distribution of charges—without charges
at infinity—the total electrostatic energy is equal to

W
E,stat
tot = 1

2

∫
R3
φstat� dV . (1.153)

Remark 1.7.1 Expression (1.153) involves the potential φstat and the charge density
�, which are related by the Poisson equation (1.105). Thus, it can also be viewed as
the potential energy of the system of charges.
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Interestingly, and for volume distribution of charged particles, Expression (1.153)
includes the self-energy of the distribution. In other words, if V0 denotes the support
of the charge density, the expression

W
E,stat
V0

= 1

2

∫
V0

φstat� dV

has a meaning. This can be proven mathematically, due to the properties of the
Green kernel G.

Contrastingly, the potential φstat is meaningless for discrete systems of charged
particles (see Eq. (1.30), right) at the positions (xi )1≤i≤N of the charges, and the
charge density � writes as a sum of Dirac masses located, respectively, at (xi )1≤i≤N .
So, one cannot define the self-energy for discrete sets of charged particles. This
is consistent with the fact that, in this situation, Estat is not square integrable in
volumes enclosing one or several charges.

So far, we have considered 3D- and 0D-supported charge distributions. In-
between these two configurations, there exist 1D- and 2D-supported charge dis-
tributions, such as idealized wires and surface charges on perfect conductors (cf. the
infinite skin effect for the latter). On the one hand, it turns out that one can define
the self-energy of surface charge distributions as

W
E,stat
Σ = 1

2

∫
Σ

φstatσΣ dS .

But on the other hand, one cannot define the self-energy for linear charge distribu-
tions.

The discussion of the total magnetostatic energy follows the same lines, since one
has Bstat = curl Astat , with Astat governed by the vector Poisson equation (1.106),
with a constraint on the divergence. As previously, using Stokes’ formula and
provided there are no currents at infinity, one then finds the identity

W
B,stat
tot = 1

2μ0

∫
R3

Bstat · Bstat dV = 1

2

∫
R3

Astat · J dV .

Provided the time-dependent electromagnetic fields behave similarly at infinity, i.e.,
|E(t, x)| ≤ C�(t) |x|−2 and |H (t, x)| ≤ CJ (t) |x|−2, one finds that

dWtot

dt
+
∫
R3

E · J dV = 0 .

To conclude this section, we write down the electromagnetic energy flow in the case
of a time-harmonic dependent field. The electromagnetic fields are expressed as
in (1.41–1.42), and we substitute these expressions in the Poynting vector (1.151),
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which characterizes the energy flow, to obtain the complex-valued Poynting vec-
tor Sc

Sc = 1

2
Ec × H c .

This complex-valued Poynting vector is generally used to measure the energy flow
for complex-valued electromagnetic fields (S = (Sc)).

Finally, we consider the electromagnetic fields, expressed as a superposition of
plane waves (in a homogeneous medium). Using Parseval’s formula, we remark that
the total electromagnetic energy also writes

Wtot = 1

2

∫
k∈R3

(
ε0|E0(k)|2 + 1

μ0
|B0(k)|2

)
dk.

1.8 Bibliographical Notes
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[127]. See also the book by Jones [148]. As far as the constitutive relations are
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in 1785. The “existence” results of electromagnetic fields in all space R3 can be
found in many places: we chose [140] for the general case of a chiral medium
and Chapter 6 in the monograph by Cessenat [72] for the particular case of a
homogeneous medium. In regard to conducting media, we used the numerical
results from [127, Chapter 1]. Regarding the issue of vanishing electromagnetic
fields inside perfect conductors, we mention [167, Chapter 5], where illuminating
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[94, 141, 142, 161, 195] for the definition of skin depth in different models ; see also
[191] for the notion of magnetic skin depth.

On the vast topic of the stationary Maxwell equations, we refer the reader
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Krall and Trivelpiece [151]. See also the book by Van Bladel [201]. The limiting
amplitude principle is rigorously proven in the monograph by Sanchez and Sanchez
[183].

As far as the approximate models are concerned, we refer the reader to the works
of Raviart and co-workers [96, 176], where the general methodology on how to
build those models is described. In geophysics, approximate models are considered,
for instance, in [41, 85]. The static models have been scrutinized extensively
by Durand in his three-volume series [103]: in particular, an impressive number
of computations carried out by hand (before the era of personal computers) are
available. The Darwin model is named after C. G. Darwin, who studied the motion
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of charged particles in the 1920s [90]. In bounded domains, References [83, 96]
provide some insight as to how one can define suitable boundary conditions for the
transverse and longitudinal parts of the electric field.

The derivation of the Boltzmann and Vlasov equations can be found, for instance,
in the monographs by Krall and Trivelpiece [151] or by Lifschitz [155] (physical
point of view), or in the classnotes by Desvillettes [98] (mathematical point of view).
Regarding plasma physics, we refer to [73].

To our knowledge, the first theoretical works on the Vlasov equation are those
of Arseneev [11, 12]. For the coupled Vlasov–Maxwell system of equations, local
existence and uniqueness results of classical solutions can be found in [95, 200] or
in [122, 206]. Global existence results of weak solutions appeared in [101, 129]. See
also a survey in [58].

For the study of the transparent boundary conditions, including their representa-
tions and their approximations, we recommend reading the monograph by Nédélec
[167].

The Sommerfeld ABC that we recalled for the Helmholtz equation is named
after A. Sommerfeld [193]. The Silver–Müller ABCs that we described are named
after C. Müller [165] and S. Silver [189]. In their time-dependent form, they have
been designed (cf. [21]) in the same spirit as the ones given in [45, pp. 370–371].
There exists a wide literature on the topic of ABCs: see, for instance, [105] for
the scalar wave equation and [38, 118, 147, 187] for Maxwell’s equations. In the
time-harmonic regime, there also exist many noticeable research works, such as
[10, 37, 187]. As far as Bérenger’s PMLs are concerned, we refer the reader to the
seminal papers [39, 40], and to variants, for instance [2, 51, 75, 115, 116, 174, 181].

For radiation conditions, we refer the reader to the monographs [86, 165, 167]
and to [134].

The notion of electromagnetic energy is studied in-depth in many monographs.
Many aspects have been scrutinized: physical, computational, mathematical, etc.
We refer, respectively, to the book by Laval [153], and the monographs by Jackson
[141], Durand [103, Volume I] and Cessenat [72, Chapter 1].



Chapter 2
Basic Applied Functional Analysis

To measure data and solutions spatially, we recall a number of useful definitions
and results on Lebesgue and standard Sobolev spaces. Then, we introduce more
specialized Sobolev spaces, which are better suited to measuring solutions to
electromagnetics problems, in particular, the divergence and the curl of fields. This
also allows one to measure their trace at interfaces between two media, or on the
boundary. Last, we construct ad hoc function spaces, adapted to the study of time-
and space-dependent electromagnetic fields.

For bibliographical references on the general results, we refer the reader to [3, 4,
62, 91–93, 114, 124, 125, 157, 166, 185, 199, 207]. For some of the more specialized
results, we provide references along the way.

2.1 Function Spaces for Scalar Fields

Unless otherwise specified, the function spaces will be defined on a subset of Rn

(possibly Rn itself). The definitions and properties that we list hereafter can depend
on the category of subsets of Rn on which they are given. We shall consider three
categories: (C1) open subsets, (C2) open subsets with Lipschitz boundary, and (C3)
bounded, open connected subsets with Lipschitz boundary, also called domains. The
last category will include an important subcategory, the curved polyhedra, that is,
domains with a piecewise smooth, curved boundary.

An element α = (α1, · · · , αn) of Nn is called a multi-index, with |α| =∑n
j=1 αj . The partial derivative of order α is further denoted by

∂αf = ∂ |α|f
∂x
α1
1 · · · ∂xαnn .

Let dx = dx1dx2 · · · dxn denote the Lebesgue measure in Rn.

© Springer International Publishing AG, part of Springer Nature 2018
F. Assous et al., Mathematical Foundations of Computational
Electromagnetism, Applied Mathematical Sciences 198,
https://doi.org/10.1007/978-3-319-70842-3_2

73

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-70842-3_2&domain=pdf
https://doi.org/10.1007/978-3-319-70842-3_2


74 2 Basic Applied Functional Analysis

Category (C1) Open subsets of Rn.
Consider a set Ω that belongs to the category (C1).
Let us begin with the Lebesgue spaces Lp(Ω), for 1 ≤ p ≤ ∞. One usually

considers complex-valued functions, but all definitions are easily extended to real-
valued function spaces. Details on Banach and Hilbert spaces, and also on the
duality and interpolation theories, can be found in Sect. 4.1.

Definition 2.1.1 The space Lp(Ω) is composed of all complex-valued, Lebesgue-
measurable functions f onΩ , and such that

⎧⎨
⎩ for 1 ≤ p <∞ ‖f ‖Lp(Ω) :=

{∫
Ω

|f |p dx
}1/p

<∞
for p = ∞ ‖f ‖L∞(Ω) := esssupx∈Ω |f (x)| <∞

.

Endowed with the norm ‖ · ‖Lp(Ω), Lp(Ω) is a Banach space and, for 1 ≤ p <∞,
is separable.

Let p ∈ [1,∞], f1 = f2 in Lp(Ω) mean that f1, f2 ∈ Lp(Ω) and f1 = f2 almost
everywhere inΩ . One can then define the spaces of functions that are locally in Lp

in the following way. If1 f 1K belongs to Lp(Ω) for every compact subset K ofΩ ,
then f is locally in Lp(Ω), and one writes

f ∈ Lploc(Ω).
One then has a stability result of the multiplication by elements of L∞(Ω).

Proposition 2.1.2 Let 1 ≤ p ≤ ∞. The multiplication is a continuous bilinear
mapping from L∞(Ω)× Lp(Ω) to Lp(Ω).
Given 1 ≤ p ≤ ∞, one defines its conjugate exponent p′ as 1/p + 1/p′ = 1. The
Hölder inequality yields the next result.

Proposition 2.1.3 Let 1 ≤ p ≤ ∞ and p′ be its conjugate exponent. Then, given
(f, g) ∈ Lp(Ω)× Lp′(Ω), one has fg ∈ L1(Ω).

One can build dual spaces of the Lebesgue spaces.

Proposition 2.1.4 Let 1 ≤ p < ∞ and p′ be its conjugate exponent. Then, the
dual space of Lp(Ω) can be identified with Lp

′
(Ω): (Lp(Ω))′ = Lp′(Ω). On the

other hand, L1(Ω) ⊂ (L∞(Ω))′ but (L∞(Ω))′ �= L1(Ω).

Emphasis is then laid on the L2(Ω) space, which is, in addition, a separable Hilbert
space.

Proposition 2.1.5 The space L2(Ω) is a separable Hilbert space, endowed with
the scalar product

(f |g) :=
∫
Ω

f g dx.

1Given any subset S of Rn, 1S denotes the indicator function of S.
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Let us recall now some basic ideas about distributions, including the definition
of differentiation in the sense of distributions. We begin with the space D(Ω) of
infinitely differentiable functions,2 with compact support on Ω . Classically, this
function space is not reduced to {0}. In practice, one can use the convergence of
sequences to define the topology. Let (fk)k be a sequence of elements of D(Ω): it
converges in D(Ω) to f if, and only if:

(i) there exists a compact subset K of Ω such that supp(fk)⊂K , for large
enough k;

(ii) for all multi-indices α, (∂αfk)k converges uniformly in K to ∂αf .

Definition 2.1.6 A linear and continuous form T defined on D(Ω) is called a
distribution. The space of distributions is denoted by D′(Ω).

Let T ∈ D′(Ω) and f ∈ D(Ω): the action of T on f is written with the help of
duality brackets, that is,

〈T , f 〉.

According to the topology on D(Ω), T is continuous, provided that

∀(fk)k, f ∈ D(Ω) such that fk → f in D(Ω), 〈T , fk〉 → 〈T , f 〉.

A few examples will be provided in the sequel (2.1), (2.5), (2.6). As a dual space,
D′(Ω) can be equipped in a “natural” way with a topology, called the weak-star
topology.

Definition 2.1.7 Let (Tk)k be a sequence of elements of D′(Ω): it converges in
D′(Ω) to T if, and only if, for all f in D(Ω), 〈Tk, f 〉 → 〈T , f 〉.
One can easily prove the imbedding

L1
loc(Ω) ⊂ D′(Ω), (2.1)

by identifying elements f of L1
loc(Ω) with distributions, still denoted by f ,

according to

∀g ∈ D(Ω), 〈f, g〉 =
∫
Ω

f g dx. (2.2)

Since, for p ∈ [1,∞], one has Lp(Ω) ⊂ L
p

loc(Ω) ⊂ L1
loc(Ω), one can also

consider elements of Lp(Ω) or Lploc(Ω) as distributions. In particular, given f ∈
L2(Ω), one has 〈f, g〉 = (f |g) for all g ∈ D(Ω).

Let us recall a property that will be used throughout this book, namely. . .

2The space D(Ω) can also be denoted by C∞
c (Ω), where the index c stands for compact support.
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Proposition 2.1.8 Let f1 and f2 be two elements of L1
loc(Ω). The relation

〈f1, g〉 = 〈f2, g〉 for all g ∈ D(Ω) implies that f1 = f2 almost everywhere
inΩ .

Now, one can introduce the notion of differentiation in the sense of distributions.

Definition 2.1.9 Let T ∈ D′(Ω). Its j -th partial derivative (j = 1, · · · , n) is
defined by

∀f ∈ D(Ω), 〈 ∂T
∂xj
, f 〉 = −〈T , ∂f

∂xj
〉.

One thus has. . .

Proposition 2.1.10 The mapping T �→ ∂jT is linear and continuous from D′(Ω)
to D′(Ω).

Since L2(Ω) is a subspace of D′(Ω) (by identification, cf. (2.2)), it is therefore
possible to differentiate its elements in the sense of distributions. We define below
the first Sobolev space in a long series.

Definition 2.1.11 Let H 1(Ω) := {f ∈ L2(Ω) : ∂jf ∈ L2(Ω), j = 1, · · · , n},
where differentiation is understood in the sense of distributions (Definition 2.1.9).
An associated norm is

‖f ‖H 1(Ω) :=
{∫
Ω

(|f |2 + | gradf |2) dx
}1/2

.

It is a separable Hilbert space, endowed with the scalar product

(f, g)H 1(Ω) :=
∫
Ω

(f g + gradf · gradg) dx.

It is also possible to give an equivalent definition of H 1(Ω).

Proposition 2.1.12 Let f ∈ L2(Ω). Then, f belongs to H 1(Ω) if, and only if,
there exist C1, · · · , Cn ≥ 0, such that, for j = 1, · · · , n,

∀g ∈ D(Ω),
∣∣∣∣(f | ∂g∂xj )

∣∣∣∣ ≤ Cj‖g‖L2(Ω).

Now, let α be a multi-index. From Definition 2.1.9, one recursively deduces. . .

Definition 2.1.13 Let T ∈ D′(Ω); its partial derivative of order α is defined by

∀f ∈ D(Ω), 〈∂αT , f 〉 = (−1)|α|〈T , ∂αf 〉.

When α = (0, · · · , 0), there is no differentiation involved!



2.1 Function Spaces for Scalar Fields 77

This allows us to consider Sobolev spaces of integer order m, m ≥ 2.

Definition 2.1.14 Let m ∈ N: Hm(Ω) := {f ∈ L2(Ω) : ∂αf ∈ L2(Ω), ∀α ∈
Nn, |α| ≤ m}. The canonical norm is

‖f ‖Hm(Ω) :=
⎧⎨
⎩
∫
Ω

∑
α∈Nn, |α|≤m

|∂αf |2 dx
⎫⎬
⎭

1/2

. (2.3)

It is a separable Hilbert space, endowed with the scalar product

(f, g)Hm(Ω) :=
∫
Ω

∑
α∈Nn, |α|≤m

∂αf ∂αg dx.

Finally, | · |Hm(Ω) denotes the semi-norm

|f |Hm(Ω) :=
⎧⎨
⎩
∫
Ω

∑
α∈Nn, |α|=m

|∂αf |2 dx
⎫⎬
⎭

1/2

. (2.4)

Remark 2.1.15 Ifm = 1, the two definitions ofH 1(Ω) coincide, whereas ifm = 0,
one has H 0(Ω) = L2(Ω).

Then, one can introduce fractional-order Sobolev spaces, that is, with order s ∈
R+ := [0,∞[. Let us consider the case Ω = Rn, for which one can use the
Fourier transform from L2(Rn) to L2(Rn). Classically, for f ∈ L2(Rn), the Fourier
transform of f is f̂ , given by

∀k ∈ Rn, f̂ (k) = (2π)−n
∫

x∈Rn
f (x) exp(−ık · x) dx .

In particular, one has ‖f̂ ‖L2(Rn) = (2π)−n/2‖f ‖L2(Rn).

Definition 2.1.16 Let s ∈ R+: Hs(Rn) := {f ∈ L2(Rn) : (1 + | · |2)s/2f̂ ∈
L2(Rn)}, with norm

‖f ‖Hs(Rn) :=
{
‖f̂ ‖2

L2(Rn) + ‖(1 + | · |2)s/2f̂ ‖2
L2(Rn)

}1/2
.

It is a Hilbert space, endowed with the scalar product

(f, g)Hs (Rn) := (f̂ , ĝ)L2(Rn) +
(
(1 + | · |2)s/2f̂ , (1 + | · |2)s/2ĝ

)
L2(Rn)

.

Obviously, when s ∈ N, Hs(Rn) coincides algebraically and topologically with the
space of Definition 2.1.14 (caseΩ = Rn).
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When Ω is an open subset of Rn, let us define Hs(Ω) for s ∈ R+ \ N by
interpolation.

Definition 2.1.17 Let s ∈ R+ \ N, and write s = m+ σ , with (m, σ) ∈ N×]0, 1[.
The Hilbert space Hs(Ω) is the interpolated space

Hs(Ω) := [Hm+1(Ω),Hm(Ω)]1−σ .

Its norm and scalar product are denoted by ‖ · ‖Hs(Ω) and (·, ·)Hs(Ω).
Remark 2.1.18 The above Definition is motivated by the fact that, when Ω = Rn,
the definitions via the Fourier transform and the interpolation theory coincide
algebraically and topologically.

One can then define the spaces of functions that are locally in Hs in the following
way. If f belongs to Hs(ω) for every open subset ω of every compact subset of Ω ,
then f is locally in Hs(Ω), and one writes

f ∈ Hsloc(Ω).

One has the continuous imbeddings, for t > s > 0,

D(Ω) ⊂ Ht(Ω) ⊂ Hs(Ω) ⊂ L2(Ω). (2.5)

To extend the scale of Sobolev spaces to negative fractional order, let us build dual
spaces of the Sobolev spaces Hs(Ω), s ≥ 0. As a matter of fact, one instead
considers the dual spaces of

Hs0 (Ω) := closure of D(Ω) in Hs(Ω), for s ≥ 0.

As a closed subspace ofHs(Ω),Hs0 (Ω) is a separable Hilbert space. The motivation
is twofold:

• By a density argument, one can replace elements of Hs0 (Ω) with elements of
D(Ω).

• When the boundary of Ω is bounded and appropriately smooth, Hs0 (Ω) can
be characterized as a subspace of Hs(Ω), the elements of which fulfill some
homogeneous boundary conditions (see Theorem 2.1.62 and Remark 2.1.64.)

NB. It holds that Hs0 (R
n) = Hs(Rn), for all s ≥ 0.

Definition 2.1.19 For s ≥ 0, the dual space of Hs0 (Ω) is called H−s(Ω).
The action of elements of H−s(Ω) on elements of Hs0 (Ω) is denoted with the

help of duality brackets: 〈·, ·〉Hs0 (Ω).
Its canonical norm is denoted by ‖ · ‖H−s (Ω):

‖f ‖H−s (Ω) := sup
v∈Hs0 (Ω),v �=0

〈f, v〉Hs0 (Ω)
‖v‖Hs(Ω) .
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Endowed with ‖ · ‖H−s (Ω), H−s(Ω) is a Banach space. Furthermore, as the dual of
a (separable) Hilbert space, H−s(Ω) can be made into a (separable) Hilbert space,
with a scalar product (·, ·)H−s (Ω) such that ‖f ‖2

H−s (Ω) = (f, f )H−s (Ω) for all f ∈
H−s(Ω).

Proposition 2.1.20 Let m ∈ N. The space H−m(Ω) is made up of distributions of
the form

∑
α∈Nn, |α|≤m

∂αfα, with fα ∈ L2(Ω).

Identifying L2(Ω) with its dual space, one has the continuous imbeddings, for t >
s > 0,

L2(Ω) ⊂ H−s(Ω) ⊂ H−t (Ω) ⊂ D′(Ω). (2.6)

In order to deal with functions that are defined on a proper subset of the actual
domain of interest, one has (unfortunately) to introduce a final class of Sobolev
space. . .

Definition 2.1.21 Let s ≥ 0. The space H̃ s(Ω) is composed of elements f of
Hs(Ω) such that the continuation of f by zero outside Ω belongs to Hs(Rn). The
dual space of H̃ s(Ω) is denoted by H̃−s(Ω).

Now, let us consider functions that are defined up to the boundary, i.e., on Ω . To
that aim, we need some additional assumptions, which are summarized below.

Category (C2) Open subsets of Rn, with a Lipschitz boundary.

Definition 2.1.22 Let Ω be an open subset of Rn, with boundary Γ . the boundary
Γ is said to be Lipschitz if, and only if:

• at each point x of Γ , there exists a Lipschitz-continuous mapping (defined on a
hypercube of Rn−1 with values in R), the graph of which locally represents Γ in
a neighborhood of x;

• at each point x of Γ , Ω is locally on one side only of Γ .

Similarly, the boundary is said to be Ck (respectively Ck,1) for k ∈ N∗, when all
local mappings are of regularity Ck (respectively Ck,1).3

3Classically, for k ∈ N, β ∈]0, 1], O ⊂ Rn, Ck,β(O) is the Hölder space defined by

Ck,β(O) := {f ∈ Ck(O) :
∑

α∈�n, |α|=k
sup
x �=y

|∂αf (x)− ∂αf (y)|
|x − y|β <∞},

where Ck(O) := {f ∈ C0(O) : ∂αf ∈ C0(O), ∀α ∈ Nn, |α| ≤ k}.
Lipschitz-continuity coincides with C0,1 continuity.
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Remark 2.1.23 When Γ is Lipschitz, it is, in particular, a Lipschitz submanifold of
Rn. On the one hand, the interior Ωi and the exterior Ωe of a cube belong to the
category (C2). On the other hand, a set with a boundary including cusps, cuts or
slits does not. . .

It is then a priori possible to define the unit outward normal vector to the boundary
of an open set of category (C2), where, by outward, it is understood that the vector
points out ofΩ .

Definition 2.1.24 In an open set Ω of category (C2), one denotes by n the unit
outward normal vector to its boundary Γ .

Proposition 2.1.25 In an open set Ω of category (C2), the unit outward normal
vector field n is defined almost everywhere on Γ , and furthermore, ni ∈ L∞(Γ ),
i = 1, · · · , n.
Remark 2.1.26 In an open subset of Rn with Ck,1 boundary (k ∈ N∗), it holds that
ni ∈ Ck−1,1(Γ ), i = 1, · · · , n.

In such open sets of Rn, it is possible to establish very convenient density results.
Let us first introduce a set of smooth functions.

Definition 2.1.27 The space C∞
c (Ω) is composed of the restrictions to Ω of C∞

functions with compact support in Rn.

Proposition 2.1.28 Let s ≥ 0. In an open setΩ of category (C2), C∞
c (Ω) is dense

in Hs(Ω).

It is because Ω is locally on only one side of its boundary that one can define
elements of C∞

c (Ω) as restrictions. This property allows one to establish the
previous Proposition. Another closely related result is. . .

Proposition 2.1.29 Let s ≥ 0. In an open set Ω of category (C2), D(Ω) is dense
in H̃ s(Ω).

These results are also related to restriction and continuation properties that we recall
below.

Proposition 2.1.30 Let s ≥ 0, and let Ω be an open set of category (C2).
Then, the restriction operator u �→ u|Ω is continuous from Hs(Rn) to Hs(Ω).

Proposition 2.1.31 Let s ≥ 0, and let Ω be an open set of category (C2) with a
bounded boundary.

Then, there exists a continuous (linear) continuation operator E from Hs(Ω) to
Hs(Rn), independent of s, such that, for all u ∈ Hs(Ω), (Eu)|Ω = u.
Remark 2.1.32 If, in addition, Ω is bounded, one can choose a closed ball O
containingΩ such that for all u ∈ Hs(Ω), Eu is supported in O.

Category (C3): bounded, open and connected subsets of Rn with a Lipschitz
boundary. A set of category (C3) will be called a domain later on.

NB. Ωi belongs to the category (C3), butΩe does not.
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Let us review some practical instances of open setsΩ of the category (C3), in R2

and R3.
In R2, open sets bounded by a polygonal boundary automatically fall into this

category: these are called polygons.
This is also the case for curvilinear polygons, defined as follows. An open subset

Ω of R2 of the category (C3) has a C2 curvilinear polygonal boundary Γ if, for
all points G of Γ , there exists rG > 0 and a diffeomorphism χG, such that χG
is a piecewise, C2-diffeomorphism that maps the neighborhood Ω ∩ B(G, rG)
of G to a neighborhood of the origin O , included in the plane sector PG :=
{(r cos θ, r sin θ) : r ≥ 0, θ ∈ [0;ωG]} of opening ωG ∈ ]0; 2π[, G being sent
to O .

In the same spirit, one can define spherical curvilinear polygons, as open subsets
of the sphere S2 that fulfill the same property (existence of a piecewise, C2-
diffeomorphism) at all boundary points.

All of the above belong to the class of curvilinear polygons. Loosely speaking,
the boundary of a curvilinear polygon is a manifold with corners.

In R3, one can consider a setΩ with a boundary Γ , made of a finite set of planes
faces, i.e., a polyhedral boundary. Note that, contrary to the sets of R2, there actually
exist bounded open sets with a polyhedral boundary, which do not fulfill the second
requirement, stating that at each point of Γ , Ω is locally on one side of Γ . An
example is pictured below: let Ω0 be an open set, interior to the “two sugarcubes”.
In any neighborhood of the pointC, which is located at the intersection of boundary
edges,Ω0 is not only on one side of its boundary.

One can also define curved polyhedra. Let us consider an open subsetΩ of R3 of
the category (C3):Ω has a C2 curved polyhedral boundary Γ if, for all pointsG of
Γ , there exists rG > 0 and a diffeomorphism χG, such that χG is a piecewise, C2-
diffeomorphism that maps the neighborhoodΩ ∩B(G, rG) ofG to a neighborhood
of the origin O , included in the cone CG := {

x ∈ R3 : x/|x| ∈ SG
}
, with SG a

spherical curvilinear polygon of S2, G being sent to O .
Subsets of R3 of the category (C3) with a polyhedral boundary, or with a curved

polyhedral boundary, are called curved polyhedra.

Fig. 2.1 The “two
sugarcubes”

C
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Finally, let us mention briefly axisymmetric domains of R3, which are generated
by the rotation of a polygon around one of its edges (these will be of use in Chap. 9).
More precisely, the rotation occurs around a line, the so-called axis, that contains
this edge.

Remark 2.1.33 In general, an axisymmetric domain is not a curved polyhedron,
because the rotation of each of the two edges that intersect the axis generates a cone
with a circular base, unless there is a right angle at the corresponding vertex.

Loosely speaking again, we note that the boundary of a curved polyhedron or of an
axisymmetric domain is a manifold with corners and edges.

The sets of curvilinear polygons, curved polyhedra and axisymmetric domains
form three important subcategories of (C3), in the sense that it is possible to get
more precise, and often more explicit, results than for the “general” domains of
(C3).

In open sets that belong to the category (C3), one can nevertheless establish many
useful results.

Let us begin with a result that is sometimes called the Lions’ Lemma.

Theorem 2.1.34 In a domainΩ , it holds that, algebraically and topologically,

L2(Ω) = {f ∈ H−1(Ω) : ∂jf ∈ H−1(Ω), j = 1, · · · , n} ;
L2(Ω) = {f ∈ L2

loc(Ω) : ∂jf ∈ H−1(Ω), j = 1, · · · , n}.

Let us continue with the definition of equivalent norms on Hm0 (Ω), which stems
from the famous Poincaré inequalities.

Theorem 2.1.35 Let m ≥ 1. Given a domainΩ , there exists a constant Cm, which
depends only onΩ , such that

∀f ∈ Hm0 (Ω), ‖f ‖Hm(Ω) ≤ Cm |f |Hm(Ω).

NB. It is enough to assume that Ω belongs to the category (C2), and that it is
bounded in one direction (∃ e ∈ Rn such that −∞ < infx∈Ω x · e < supx∈Ω x · e <
+∞), to prove the claim in Theorem 2.1.35.

Accordingly,

Corollary 2.1.36 Let m ≥ 1. Given a domain Ω , ‖ · ‖Hm(Ω) and | · |Hm(Ω) are
equivalent norms on Hm0 (Ω).

In Hm(Ω), one can further prove the so-called Poincaré-Wirtinger inequality.

Theorem 2.1.37 Let m ≥ 1. Given a domainΩ , there exists a constant C′
m, which

depends only onΩ , such that

∀f ∈ Hm(Ω), ‖f ‖Hm(Ω) ≤ C′
m

⎧⎨
⎩|f |2Hm(Ω) +

∑
α∈Nn, |α|<m

∣∣∣∣
∫
Ω

∂αf dx

∣∣∣∣
2
⎫⎬
⎭

1/2

.
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In practice, one uses the Poincaré-Wirtinger inequality in the subspace

H 1
zmv(Ω) := {f ∈ H 1(Ω) : (f |1) = 0}.

From now on, the index zmv generically indicates that one considers the subspace
made of zero mean value fields, such as L2

zmv(Ω), H
1
zmv(Ω), etc.

In a domain Ω , one can prove (cf. [196]) that the Definition 2.1.17 of the
fractional-order spaces Hs(Ω) coincides algebraically and topologically with the
definition below, where the norm is explicit.

Definition 2.1.38 Let s ∈ R+ \ N, and write s = m+ σ , with (m, σ) ∈ N×]0, 1[.
The space Hs(Ω) is composed of elements f of Hm(Ω), such that

|f |Hs(Ω) :=
⎧⎨
⎩

∑
α∈Nn, |α|=m

∫
Ω

∫
Ω

|∂αf (x)− ∂αf (y)|2
|x − y|n+2σ

dx dy

⎫⎬
⎭

1/2

<∞. (2.7)

Let

‖f ‖Hs(Ω) :=
{
‖f ‖2

Hm(Ω) + |f |2Hs(Ω)
}1/2

. (2.8)

Endowed with the norm ‖ · ‖Hs(Ω), Hs(Ω) is a Banach space.
It is a Hilbert space, endowed with the scalar product

(f, g)Hs (Ω) := (f, g)Hm(Ω)

+
∑

α∈Nn, |α|=m

∫
Ω

∫
Ω

(∂αf (x)− ∂αf (y))(∂αg(x)− ∂αg(y))
|x − y|n+2σ dx dy.

Remark 2.1.39 One can compare the semi-norms (|·|Hs(Ω))s∈]0,1[ to the semi-norm
| · |H 1(Ω), providedΩ is a domain. Following [60], one can prove that

∃C1, C2 > 0, ∀f ∈ H 1(Ω), C1|f |H 1(Ω) ≤ lim
s→1
(1 − s)|f |Hs(Ω) ≤ C2|f |H 1(Ω).

For the comparison to hold, one must include the (1− s) multiplicative factor in the
limit.

Remark 2.1.40 One can also introduce the series of Sobolev spaces based on
Lp(Ω), with 1 ≤ p ≤ ∞. This results in the well-known Ws,p(Ω), for s ≥ 0.
Then, 2 (respectively 1/2) is replaced by p (respectively 1/p) in (2.3), (2.4), (2.7)
and (2.8). When 1 < p < ∞, these function spaces are separable, reflexive
Banach spaces and, for p = 2, they are Hilbert spaces: in this case, one has
Ws,2(Ω) = Hs(Ω) algebraically and topologically. Afterwards, one defines the
dual spaces W−s,p′(Ω) of Ws,p0 (Ω) (the closure of D(Ω) in Ws,p(Ω)), with the



84 2 Basic Applied Functional Analysis

conjugate exponent p′ s.t. 1/p + 1/p′ = 1. Also, one can identify W 1,∞(Ω) with
C0,1(Ω), the space of Lipschitz-continuous functions on Ω . However, since most
problems in this book are accurately resolved with the help of the (H s(Ω))s∈R
series of spaces, we shall concentrate on them.

One can establish imbedding results: continuous imbeddings, also called Sobolev
imbeddings, and compact imbeddings.

Proposition 2.1.41 In a domain Ω , it holds that, algebraically and topologically,
for s > n/2:

• Hs(Ω) ⊂ Ck(Ω), for k ∈ N such that k < s − n/2;
• Hs(Ω) ⊂ Ck,β(Ω), for k ∈ N such that k < s−n/2 < k+1, and β = s−n/2−k.
We recall that the scale of Sobolev spaces is defined “recursively” by differentiation.
Let us note that differentiation loses exactly one order, in the following manner.

Proposition 2.1.42 Let Ω be a domain. Then:

• ∂i : Hs(Ω)→ Hs−1(Ω) is continuous, for s ∈ R \ {1/2}.
• ∂i : H 1/2(Ω)→ H̃−1/2(Ω) is continuous.

As far as compact imbeddings (denoted by ⊂c) are concerned, one has the results
below.

Proposition 2.1.43 In a domainΩ , it holds that

Hs
′
(Ω) ⊂c H s ′′(Ω), for s′, s′′ ∈ R, s′ > s′′.

Let us now categorize the series of Sobolev spaces Hs(Ω), Hs0 (Ω) and H̃ s(Ω),
for s ≥ 0. In the process, some useful results are derived.

Proposition 2.1.44 In a domainΩ , it holds that

• Hs0 (Ω) = Hs(Ω), for all 1/2 ≥ s ≥ 0;
• Hs0 (Ω) is strictly included in H

s(Ω), for all s > 1/2;

• H̃ s(Ω) = [Hs+1/2
0 (Ω),H

s−1/2
0 (Ω)]1/2, for all s ≥ 0, such that s + 1/2 ∈ N.

By direct computations, one can bound integrals that appear in the definition of
fractional-order Sobolev spaces, cf. (2.7).

Definition 2.1.45 LetΩ be a domain, with boundary Γ .
The distance to the boundary ρΓ is defined by:

ρΓ (x) := inf
y∈Γ |x − y|.

Lemma 2.1.46 In a domainΩ , one has ρΓ ∈ W 1,∞(Ω).
Let σ ∈ [0, 1[. There exist two constants Cσ ≥ cσ > 0 such that

∀x ∈ Ω, cσρΓ (x)
−2σ ≤

∫
Rn\Ω

dy

|x − y|n+2σ ≤ CσρΓ (x)−2σ .
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This result has two important consequences. The first one is an alternate definition
of H̃ s(Ω). The second one concerns the equivalence between piecewise–Hs and
Hs fields (see Definition 2.1.48 and Corollary 2.1.49 hereafter).

Proposition 2.1.47 Let s ≥ 0, and write s = m + σ , with σ ∈ [0, 1[. In a domain
Ω , one can define H̃ s(Ω) by

H̃ s(Ω) := {f ∈ Hs0 (Ω) : ∂αf
ρσΓ

∈ L2(Ω), ∀α ∈ Nn, |α| = m}.

Furthermore, one has:

• H̃ s(Ω) = Hs0 (Ω), for all s ≥ 0, such that s + 1/2 �∈ N;
• H̃ s(Ω) is strictly included in Hs0 (Ω), for all s ≥ 0, such that s + 1/2 ∈ N.

The last statement contains a justification of the need for the spaces H̃ s (apart
from a purely mathematical interest!). As a matter of fact, they are needed when
the exponent is equal to s = 1/2 in many situations, especially when one
considers functions, which are defined on a part of the boundary. For instance, the
characteristic function χΩ belongs to H 1/2(Ω) = H

1/2
0 (Ω), whereas it is readily

checked that χΩ /∈ H̃ 1/2(Ω), according to Corollary 2.1.49 below. Before that, let
us introduce the notion of the partition of a domain.

Definition 2.1.48 LetΩ be a domain. A partition ofΩ , P := (Ωp)1≤p≤P , is such
that:

• Ωp is a domain, for 1 ≤ p ≤ P ;
• Ωp ∩Ωq = ∅ for p �= q;
• Ω = ∪1≤p≤PΩp.

We also introduce the corresponding set F of interfaces (here, only the manifolds
of dimension n − 1 are kept), indexed by pairs of indices: an element Σpq of F is
characterized by 1 ≤ p �= q ≤ P such thatΣpq = ∂Ωp ∩ ∂Ωq , and NI denotes the
set of pairs of indices that correspond to an interface.

Finally, for s ∈ [0,+∞],PHs(Ω,P) is the set of piecewise–Hs functions (with
the notation H∞ = C∞), with respect to the partition P :

PHs(Ω,P) := {f ∈ L2(Ω) : f|Ωp ∈ Hs(Ωp), 1 ≤ p ≤ P }.

Corollary 2.1.49 Let Ω be a domain, and P := (Ωp)1≤p≤P a partition ofΩ:

• If s ∈ [0, 1/2[,Hs(Ω) = PHs(Ω,P);
• If s ≥ 1/2,Hs(Ω) is a strict subset of PHs(Ω,P).

Let us now focus on functions defined on the boundary Γ of a domainΩ .

Remark 2.1.50 Before we proceed, let us remark that all results below, which deal
with function spaces defined on the boundary or with trace mappings, are also valid
for exterior domains, that is, open sets Ω = Rn \Ω0,Ω0 being a domain of Rn.



86 2 Basic Applied Functional Analysis

Let dΓ denote the usual Lebesgue measure on the surface Γ . Introduce. . .

Definition 2.1.51 The space L2(Γ ) is composed of all complex-valued, Lebesgue-
measurable functions f on Γ such that

‖f ‖L2(Γ ) :=
{∫
Γ

|f |2 dΓ
}1/2

<∞.

Endowed with the norm ‖ · ‖L2(Γ ), L
2(Γ ) is a Banach space. In addition, it is a

Hilbert space, endowed with the scalar product

(f, g)L2(Γ ) :=
∫
Γ

f g dΓ.

One can then further define, for suitable s, some Sobolev spaces on Γ .

Definition 2.1.52 Let s ∈]0, 1[.
The space Hs(Γ ) is composed of elements f of L2(Γ ) such that

|f |Hs(Γ ) :=
{∫
Γ

∫
Γ

|f (x)− f (y)|2
|x − y|n−1+2s

dΓ (x) dΓ (y)

}1/2

<∞.

Let

‖f ‖Hs(Γ ) :=
{
‖f ‖2

L2(Γ )
+ |f |Hs(Γ )2

}1/2
.

Endowed with the norm ‖ · ‖Hs(Γ ), Hs(Γ ) is a Banach space.
The dual space of Hs(Γ ) is called H−s(Γ ). Its canonical norm is denoted by

‖ · ‖H−s (Γ ).

Let us now focus on Hs Sobolev spaces on (a part of) the boundary, for s ∈]0, 1[.
First, we note that they can indeed be defined on an open subset Γ ′ of the boundary,
using the above Definition, with Γ ′ instead of Γ .

Definition 2.1.53 Let Ω be a domain with boundary Γ , and let Γ ′ denote an open
subset of Γ with measΓ (Γ ′) > 0 such that its boundary is a Lipschitz submanifold
of Γ (of dimension n−2). We denote by H̃ 1/2(Γ ′) the space composed of elements
ofH 1/2(Γ ′) such that their continuation by zero belongs to H 1/2(Γ ). Its dual space
is denoted by H̃−1/2(Γ ′).

Let us consider the practical case of a curved polyhedronΩ , with s = 1/2.

Definition 2.1.54 Let Ω be a curved polyhedron, with a boundary Γ made of
smooth faces, labeled (Γj )1≤j≤NΓ . The restriction to a face Γj of the normal vector
n (respectively an element f of L2(Γ )) is denoted by nj (respectively fj ).

Let Ω be a polyhedral domain. When two faces possess a common edge, it is
denoted by eij = Γ i ∩ Γ j , and one can choose a unit vector τ ij parallel to eij .
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Furthermore, one can introduce τ i (j ) = τ ij × ni , so that (τ i (j ), τ ij ,ni ) is an
orthonormal basis of R3. The set of pairs (i, j) such that Γ i ∩ Γ j is an edge is
denoted by NE .

NB. When Γ i ∩ Γ j is not empty (for i �= j ), it is either an edge or a vertex.

Definition 2.1.55 Let Ω be a curved polyhedron, with the notations of Defini-
tion 2.1.54. Let H 1/2

− (Γ ) be the function space

H
1/2
− (Γ ) := {f ∈ L2(Γ ) : fj ∈ H 1/2(Γj ), 1 ≤ j ≤ NΓ }.

Let (i, j) ∈ NE . Given f ∈ H 1/2
− (Γ ), one writes fi

1/2= fj if, and only if,

∫
Γi

∫
Γj

|fi(x)− fj (y)|2
|x − y|3 dΓ (x) dΓ (y) <∞.

One can prove (cf. [65])

Proposition 2.1.56 Let Ω be a curved polyhedron, with the notations of Defini-
tion 2.1.54. Let Γ i and Γ j share only a common vertex. Then, for all f ∈ H 1/2

− (Γ ),
it holds that

∫
Γi

∫
Γj

|f (x)− f (y)|2
|x − y|3 dΓ (x) dΓ (y) <∞.

One infers from this Proposition an alternative definition of the space H 1/2(Γ ). . .

Corollary 2.1.57 Let Ω be a curved polyhedron, with the notations of Defini-
tions 2.1.54 and 2.1.55. One has

H 1/2(Γ ) := {f ∈ H 1/2
− (Γ ) : fi 1/2= fj , ∀(i, j) ∈ NE}.

Remark 2.1.58 To summarize, the values on two adjacent faces of elements of
H 1/2(Γ ) are not correlated, provided that the two faces share only a vertex. On
the other hand, it is clear that they are correlated, when they share an edge. The
correlation is explained below, in the particular case when the element vanishes
on one face. For more general results on compatibility conditions for elements of
Hs(Γ ), see [44, 123].

Proposition 2.1.59 Let Ω be a curved polyhedron, and let Γ1 be a face of its
boundary. The space H̃ 1/2(Γ1) is equal to

H̃ 1/2(Γ1) = {f ∈ H 1/2(Γ1) : f√
ρ∂Γ1

∈ L2(Γ1)},

where ρ∂Γ1 is the distance to the boundary ∂Γ1.
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Let us consider again any domainΩ with boundary Γ , and let Γ ′ be an open subset
of Γ , with measΓ (Γ ′) > 0, such that its boundary is a Lipschitz submanifold of Γ :
one can define the space H̃ 1/2(Γ ′) as in Definition 2.1.53. Moreover, one notices
that if f ∈ H−1/2(Γ ), its restriction to Γ ′, denoted by f|Γ ′ , naturally belongs to
H̃−1/2(Γ ′), according to

∀g ∈ H̃ 1/2(Γ ′), 〈f|Γ ′ , g〉H̃ 1/2(Γ ′) = 〈f, g̃〉H 1/2(Γ ), (2.9)

where g̃ is the continuation of g by zero to the whole boundary Γ .
On the other hand, one has the result below.4

Proposition 2.1.60 Let Ω be a domain with boundary Γ , let Γ ′ be an open subset
of Γ , with 0 < measΓ (Γ ′) < measΓ (Γ ), such that its boundary is a Lipschitz
submanifold of Γ , and let Γ ′′ = int (Γ \ Γ ′).

Let f ∈ H−1/2(Γ ). Then, one has f|Γ ′ ∈ H−1/2(Γ ′) if, and only if, f|Γ ′′ ∈
H−1/2(Γ ′′). In this case, one can write

∀g ∈ H 1/2(Γ ), 〈f, g〉H 1/2(Γ ) = 〈f|Γ ′ , g|Γ ′ 〉H 1/2(Γ ′) + 〈f|Γ ′′ , g|Γ ′′ 〉H 1/2(Γ ′′).

Moreover, for some C > 0, which depends only on Γ and Γ ′:

‖f|Γ ′ ‖H−1/2(Γ ′) ≤ C
(‖f ‖H−1/2(Γ ) + ‖f|Γ ′′ ‖H−1/2(Γ ′′)

)
.

The next result establishes the existence of traces of elements of Hs(Ω) on the
boundary Γ , for suitably chosen s (see [111] for the special case s = 1).

Definition 2.1.61 LetΩ be a domain. Let f be a smooth function defined onΩ . Its
trace f|Γ on the boundary Γ is denoted by γ0f , and γ0 is called the trace mapping.

Theorem 2.1.62 Let Ω be a domain, and let s ∈]1/2, 1]. The mapping γ0 has a
unique continuous extension, from Hs(Ω) to Hs−1/2(Γ ), which is surjective.

In addition, the following characterization holds:

Hs0 (Ω) = {f ∈ Hs(Ω) : f|Γ = 0}.

Remark 2.1.63 Since we assume only Lipschitz regularity of the boundary, one
cannot define the trace mapping of the normal derivative f �→ gradf · n|Γ from
H 2(Ω) to H 1/2(Γ ). Indeed, assume that Ω is a curved polyhedron, and consider
f ∈ H 2(Ω). One sees easily that, for 1 ≤ j ≤ NΓ , gradf · n|Γj belongs to

H 1/2(Γj ). But the values on two adjacent faces (sharing an edge) are uncorrelated.
According to Corollary 2.1.57, γ1f does not belong to H 1/2(Γ ). However, one can
still define a trace mapping of the normal derivative with values in H−1/2(Γ ) (see

4Given any subset S of Rn, int (S) denotes the interior of S.
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Corollary 2.2.20 in the next section). On the other hand, if the boundary is C1,1,
then this trace mapping actually goes from H 2(Ω) to H 1/2(Γ ).

Remark 2.1.64 In the same spirit, one can also characterize the spaces Hs0 (Ω) for
s > 1, providedΩ is a curvilinear polygon, a curved polyhedron or an axisymmetric
domain. It holds that (cf. [91])

Hs0 (Ω) = {f ∈ Hs(Ω) : ∂
kf

∂nk |Γ
= 0, ∀k ∈ N, k < s − 1/2}.

Above, the definition of the trace of the normal derivative of order k is

∂kf

∂nk
= k!

∑
α∈Nn,|α|=k

1

α!∂αf n
α,

where α! = α1! · · ·αn! and nα = nα1
1 · · · nαnn . For instance, for s ∈]3/2, 5/2[, one

has

Hs0 (Ω) = {f ∈ Hs(Ω) : f|Γ = 0, gradf · n|Γ = 0}.

Definition 2.1.65 Let Ω be a domain with boundary Γ . Let Γ ′ be an open subset
of Γ such that its boundary is a Lipschitz submanifold of Γ , with measΓ (Γ ′) > 0.
Introduce

C∞
Γ ′(Ω) := {f ∈ C∞(Ω) : f = 0 in a neighborhood of Γ ′}.

Then, one can define, for s ∈]1/2, 3/2[,

Hs0,Γ ′(Ω) := closure of C∞
Γ ′(Ω) in Hs(Ω) ;

furthermore, it holds that

Hs0,Γ ′(Ω) = {f ∈ Hs(Ω) : f|Γ ′ = 0}.

Also, one can prove another Poincaré inequality, set in H 1
0,Γ ′(Ω).

Proposition 2.1.66 LetΩ be a domain with boundary Γ . Let Γ ′ be an open subset
of Γ , with measΓ (Γ ′) > 0. Then, there exists a constant C1, which depends only
onΩ and Γ ′ such that

∀f ∈ H 1
0,Γ ′(Ω), ‖f ‖H 1(Ω) ≤ C1 |f |H 1(Ω).

Whenever applicable, we shall use the subscript per to label subspaces composed of
elements with periodic traces.
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Finally, let us conclude with a classical result, which uses traces on parts of the
boundary, and which can be seen as a complement to Corollary 2.1.49.

Definition 2.1.67 Let Ω be a domain partitioned into P := (Ωp)p=+,−. Let Σ =
∂Ω+ ∩ ∂Ω− be the interface separating Ω+ and Ω−. Denote by n+ (respectively
n−) the unit outward normal vector field to ∂Ω+ (respectively ∂Ω−). Denote by nΣ
a unit normal vector field to Σ , and define

δ+Σ :=
{+1 if n+ = nΣ on Σ
−1 if n+ = −nΣ on Σ

, δ−Σ :=
{+1 if n− = nΣ on Σ
−1 if n− = −nΣ on Σ

.

Given f ∈ PHs(Ω,P) for s > 1/2, the jump of f throughΣ is equal to

[f ]Σ := δ+Σγ0,+f + δ−Σγ0,−f.

The jump is understood as a difference, because δ+Σ = −δ−Σ .

Proposition 2.1.68 Let Ω be a domain partitioned into P := (Ωp)1≤p≤P , and let
F denote the set of interfaces. For s ∈]1/2, 1], it holds that

Hs(Ω) = {f ∈ PHs(Ω,P) : [f ]Σpq = 0, ∀(p, q) ∈ NI }.

NB. To handle the case s = 1/2, one needs some ad hoc theory, see, for instance,
Corollary 2.1.57.

2.2 Vector Fields: Standard Function Spaces

In this section, since electromagnetic fields are considered, unless otherwise
specified, we stand explicitly in Ω = R3, or in an open subsetΩ of R3.

In what follows, we use ξ defined onΩ , and such that

ξ ∈ L∞(Ω) and ξ−1 ∈ L∞(Ω), i.e., (2.10)

(ξ)i,j ∈ L∞(Ω) and (ξ−1)i,j ∈ L∞(Ω), 1 ≤ i, j ≤ 3.

2.2.1 Elementary Results

Let us introduce our first space of vector fields,

D(Ω) := {g : gj ∈ D(Ω), j = 1, 2, 3}.
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Looking at Eqs. (1.6–1.9), one sees that Sobolev spaces like H 1(Ω) are not
explicitly required, since the first-order differential operators that appear are not the
gradient, but rather the curl and divergence. More precisely, all partial derivatives of
the electromagnetic fields are used, but they appear in linear combinations, if one
recalls that

div v = ∂v1

∂x1
+ ∂v2

∂x2
+ ∂v3

∂x3
, curl v =

⎛
⎜⎜⎜⎜⎜⎝

∂v3

∂x2
− ∂v2

∂x3
∂v1

∂x3
− ∂v3

∂x1
∂v2

∂x1
− ∂v1

∂x2

⎞
⎟⎟⎟⎟⎟⎠
,

together with the formula div (v × w) = w · curl v − v · curl w.
For any smooth vector field v, the pointwise inequalities hold:

|div v(x)|2 ≤
⎛
⎝ ∑

1≤i≤3

∣∣∣∣∂vi∂xi (x)
∣∣∣∣
⎞
⎠

2

≤ 3|Gradv(x)|2, (2.11)

| curl v(x)|2 ≤ 2
∑

1≤i,j≤3, i �=j

∣∣∣∣ ∂vi∂xj (x)
∣∣∣∣
2

≤ 2|Gradv(x)|2, (2.12)

with (Grad v(x))i,j = ∂vi

∂xj
(x), 1 ≤ i, j ≤ 3, |Grad v(x)|2 =

∑
1≤i,j≤3

∣∣∣∣ ∂vi∂xj (x)
∣∣∣∣
2

.

This being remarked, let us note that the Sobolev space H 1(Ω) is useful, and
especially the space of its traces H 1/2(Γ ), since it is of fundamental importance
in the definition and characterization of traces of the electromagnetic fields.

Definition 2.2.1 Let 1 ≤ p ≤ ∞. The spaces Lp(Ω) := {v : vi ∈ Lp(Ω), i =
1, 2, 3} are Banach spaces. They are separable, with the exception of L∞(Ω).

In particular, L2(Ω) is a Hilbert space, endowed with the scalar product

(v|w) :=
∫
Ω

v · w dx.

Definition 2.2.2 Let s ∈ R+. The spaces below are separable Hilbert spaces:

• H s(Ω) := {v : vi ∈ Hs(Ω), i = 1, 2, 3}.
• H (curl,Ω) := {v ∈ L2(Ω) : curl v ∈ L2(Ω)}, where the curl is taken in the

sense of distributions. The canonical norm is

‖v‖H (curl,Ω) :=
{∫
Ω

(|v|2 + | curl v|2) dx
}1/2

. (2.13)
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• H (curl ξ,Ω) := {v ∈ L2(Ω) : curl ξv ∈ L2(Ω)}, where the curl of ξv is taken
in the sense of distributions. The canonical norm is

‖v‖H (curl ξ,Ω) :=
{∫
Ω

(|v|2 + | curl ξv|2) dx
}1/2

. (2.14)

• H (div,Ω) := {v ∈ L2(Ω) : div v ∈ L2(Ω)}, where the divergence is taken in
the sense of distributions. The canonical norm is

‖v‖H (div,Ω) :=
{∫
Ω

(|v|2 + |div v|2) dx
}1/2

. (2.15)

• H (div ξ,Ω) := {v ∈ L2(Ω) : div ξv ∈ L2(Ω)}, where the divergence of ξv is
taken in the sense of distributions. The canonical norm is

‖v‖H (div ξ,Ω) :=
{∫
Ω

(|v|2 + |div ξv|2) dx
}1/2

. (2.16)

• L2(Γ ) := {v : vi ∈ L2(Γ ), i = 1, 2, 3}.
• H s(Γ ) := {v : vi ∈ Hs(Γ ), i = 1, 2, 3}.
Let s ∈]0, 1/2[. The spaces below are separable Hilbert spaces:

H−s(div,Ω) := {v ∈ L2(Ω) : div v ∈ H−s(Ω)}.
The canonical norm is

‖v‖H−s (div,Ω) :=
{∫
Ω

|v|2 dx + ‖div v‖2
H−s (Ω)

}1/2

.

Using (2.11) and (2.12) together with Proposition 2.1.28, one immediately gets the
imbedding results below.

Proposition 2.2.3 The space H 1(Ω) is continuously imbedded in H (curl,Ω) and
in H (div,Ω).

NB. Let us point out that one has to be careful with “reverse” imbeddings, since
H (div,Ω) ∩ H (curl,Ω) is only imbedded in H 1

loc(Ω) in general (see [9]).
One then has the convenient properties below.

Proposition 2.2.4 Under the assumptions (2.10) on ξ, one has:

• v belongs to H (curl ξ,Ω) if, and only if, ξv belongs to H (curl,Ω);
• v belongs to H (div ξ,Ω) if, and only if, ξv belongs to H (div,Ω).

This Proposition allows us to simply derive useful results for elements of
H (curl ξ,Ω) (respectively H (div ξ,Ω)), via those obtained for elements of
H (curl,Ω) (respectively H (div,Ω)).
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Recall that (see Proposition 2.1.12), an element v of L2(Ω) belongs to H 1(Ω)

if, and only if, there exists Cgrad ≥ 0 such that,

∀g ∈ D(Ω), |(v|div g)| ≤ Cgrad‖g‖L2(Ω).

One can prove similar results.

Proposition 2.2.5 Let v ∈ L2(Ω).

• v ∈ H (curl,Ω) if, and only if, there exists Ccurl ≥ 0 such that

∀g ∈ D(Ω), |(v| curl g)| ≤ Ccurl‖g‖L2(Ω).

• v ∈ H (div,Ω) if, and only if, there exists Cdiv ≥ 0 such that

∀g ∈ D(Ω), |(v| gradg)| ≤ Cdiv‖g‖L2(Ω).

One can then introduce the closures of D(Ω), respectively, in H (curl,Ω) and
H (div,Ω).

Definition 2.2.6 Consider:

• H 0(curl,Ω) := closure of D(Ω) in H (curl,Ω) according to the norm (2.13);
• H 0(div,Ω) := closure of D(Ω) in H (div,Ω) according to the norm (2.15).

NB. It holds that H 0(curl,Rn) = H (curl,Rn) and H 0(div,Rn) = H (div,Rn).
In the spirit of Proposition 2.2.4, one can define H 0(curl ξ,Ω) and H 0(div ξ,Ω).

Definition 2.2.7 Under the assumptions (2.10) on ξ, introduce:

H 0(curl ξ,Ω) := {v ∈ L2(Ω) : ξv ∈ H 0(curl,Ω)} ;
H 0(div ξ,Ω) := {v ∈ L2(Ω) : ξv ∈ H 0(div,Ω)}.

Let us mention a continuation result.

Proposition 2.2.8 LetΩ be an open set of category (C2) with a bounded boundary.
Then, there exists a continuous (linear) continuation operator E from H (curl,Ω)
to H (curl,R3), respectively H (div,Ω) to H (div,R3), such that, for all v ∈
H (curl,Ω), respectively v ∈ H (div,Ω), one has (Ev)|Ω = v.

Remark 2.2.9 If, in addition, Ω is bounded, one can choose a closed ball O
containing Ω such that for all v ∈ H (curl,Ω), respectively v ∈ H (div,Ω), Ev
is supported in O.

Before carrying on with traces, let us consider some simple, but crucial, results about
the mappings grad and curl. The proof is given hereafter, since it is a good example
of the simplicity and of the range of the theory of distributions. . .
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Proposition 2.2.10 One has the following:

1. The mapping grad is continuous from H 1(Ω) to H (curl,Ω);
2. the mapping grad is continuous from H 1

0 (Ω) to H 0(curl,Ω).
3. The mapping curl is continuous from H (curl,Ω) to H (div,Ω);
4. the mapping curl is continuous from H 0(curl,Ω) to H 0(div,Ω).

Proof

1. Given v in H 1(Ω), let us check first that w = gradv belongs to H (curl,Ω). By
definition, one has w ∈ L2(Ω). If w were smooth, then curl w = curl(grad v) =
0 would follow. Unfortunately, this is not the case. Nevertheless, one can consider
curl w in the sense of distributions, to reach, for all g ∈ D(Ω)

〈curl w,g〉 = 〈w, curl g〉 = 〈grad v, curl g〉 = −〈v, div (curl g)〉 = 0.

(Above, the first equality is left to the reader.)
In other words, curl w = 0 in the sense of distributions. As a consequence, since
0 belongs to L2(Ω), considered as a subspace of D′(Ω) := (D′(Ω))3, one finds
that curl w is in L2(Ω). Thus, w is an element of H (curl,Ω).
Also, one has

‖w‖H (curl,Ω) = ‖w‖L2(Ω) = |v|H 1(Ω) ≤ ‖v‖H 1(Ω),

which establishes the continuity of the grad mapping from H 1(Ω) to
H (curl,Ω).

2. According to item 1, given v in H 1
0 (Ω) and w = gradv, one has w ∈

H (curl,Ω). Therefore, one has only to check that w actually belongs to
H 0(curl,Ω). By definition of H 1

0 (Ω), there exists a sequence (vk)k of elements
of D(Ω), which converges to v in ‖ · ‖H 1(Ω)-norm. According to item 1, (wk)k ,
with wk = grad vk , converges to w in ‖ · ‖H (curl,Ω)-norm. Moreover, all wk
belong to D(Ω), so w belongs to its closure in ‖ · ‖H (curl,Ω)-norm, which is
precisely equal to H 0(curl,Ω).

3. The proof is similar to that of item 1.
4. The proof is similar to that of item 2. �
We conclude this subsection with the introduction of a number of Hilbert function
spaces with curl-free or divergence-free elements.

Definition 2.2.11 Define

H (div 0,Ω) := {v ∈ H (div,Ω) : div v = 0} ;
H 0(div 0,Ω) := H (div 0,Ω) ∩ H 0(div,Ω) ;
H (curl 0,Ω) := {v ∈ H (curl,Ω) : curl v = 0} ;
H 0(curl 0,Ω) := H (curl 0,Ω) ∩ H 0(curl,Ω).
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Under the assumptions (2.10) on ξ, define

H (div ξ0,Ω) := {v ∈ H (div ξ,Ω) : div ξv = 0} ;
H 0(div ξ0,Ω) := H (div ξ0,Ω) ∩ H 0(div ξ,Ω) ;
H (curl ξ0,Ω) := {v ∈ H (curl ξ,Ω) : curl ξv = 0} ;
H 0(curl ξ0,Ω) := H (curl ξ0,Ω) ∩ H 0(curl ξ,Ω).

2.2.2 Traces of Vector Fields

In order to define properly the trace on Γ of elements of H (curl,Ω) or of
H (div,Ω), it is convenient to have integration-by-parts formulas at one’s disposal.
As a matter of fact, one can proceed by duality, with respect to the spaces H 1/2(Γ )

and H 1/2(Γ ), respectively, that is, those trace spaces that originate from H 1(Ω)

and H 1(Ω).
From now on, let Ω be a domain. As far as notations are concerned, one notices

that in a domain, which is bounded by definition, the index c (for compact support)
of the set C∞

c (Ω) of Definition 2.1.27 can be dropped.
Let us begin with density results (cf. [117, Chapter I] and Amrouche, 2011,

Private communication).

Proposition 2.2.12 One has the following:

• C∞(Ω) is dense in H (curl,Ω);
• C∞(Ω) is dense in H (div,Ω);
• for s ∈]0, 1/2[, C∞(Ω) is dense in H−s (div,Ω).

With the help of Proposition 2.2.4, one easily infers other results.

Corollary 2.2.13 Under the assumptions (2.10) about ξ, one concludes that:

• ξ−1 C∞(Ω) is dense in H (curl ξ,Ω);
• ξ−1 C∞(Ω) is dense in H (div ξ,Ω).

One can define the unit outward normal vector n = n1e1 + n2e2 + n3e3 to its
boundary, almost everywhere (cf. Proposition 2.1.25).

It is well-known that it holds that, for two functions f and g of C1(Ω),

∫
Ω

{f ∂g
∂xi

+ ∂f

∂xi
g} dx =

∫
Γ

f g ni dΓ, i = 1, 2, 3. (2.17)

What can be deduced from this formula?
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◦ First, if f belongs to C1(Ω),

all three (fi)i=1,2,3 belong to C1(Ω); as a consequence,

∫
Ω

{fi ∂g
∂xi

+ ∂fi

∂xi
g} dx =

∫
Γ

fi g ni dΓ, i = 1, 2, 3.

Summing over i yields

∫
Ω

{f · gradg + div f g} dx =
∫
Γ

f · n g dΓ. (2.18)

◦ Second, given two elements f and g of C1(Ω),

the following formulas are satisfied:

∫
Ω

f · curl g dx =
∫
Ω

{
f1(
∂g3

∂x2
− ∂g2

∂x3
)+f2(

∂g1

∂x3
− ∂g3

∂x1
)+f3(

∂g2

∂x1
− ∂g1

∂x2
)

}
dx

∫
Ω

curl f · g dx =
∫
Ω

{
(
∂f3

∂x2
− ∂f2

∂x3
)g1 + ( ∂f1

∂x3
− ∂f3

∂x1
)g2 + ( ∂f2

∂x1
− ∂f1

∂x2
)g3

}
dx.

Taking the difference yields,

∫
Ω

{f · curl g− curl f ·g} dx =
∫
Ω

{
(f1
∂g3

∂x2
+ ∂f1

∂x2
g3)− (f1

∂g2

∂x3
+ ∂f1

∂x3
g2)

+(f2
∂g1

∂x3
+ ∂f2

∂x3
g1)− (f2

∂g3

∂x1
+ ∂f2

∂x1
g3)

+(f3
∂g2

∂x1
+ ∂f3

∂x1
g2)− (f3

∂g1

∂x2
+ ∂f3

∂x2
g1)

}
dx

(2.17)=
∫
Γ

{f1(g3 n2 − g2 n3)+ f2(g1 n3 − g3 n1)

+f3(g2 n1 − g1 n2)} dΓ
= −

∫
Γ

f · (g × n) dΓ.

NB. The left-hand side is skew-symmetric with respect to (f ,g): one can therefore
replace the right-hand side with

∫
Γ

(f × n) · g dΓ.
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As a conclusion, it follows that

∫
Ω

{f · curl g − curl f · g} dx =
∫
Γ

(f × n) · g dΓ. (2.19)

One can infer a first generalized integration-by-parts formula from (2.19), using the
density results of Definition 2.2.6 and Proposition 2.2.12.

Theorem 2.2.14 Let (f ,g) ∈ H 0(curl,Ω)× H (curl,Ω):

(f | curl g)− (curl f |g) = 0. (2.20)

Similarly, second and third generalized integration-by-parts formulas can be
proven, again using density results (namely, the definition of H 1

0 (Ω), and
Proposition 2.2.12) and (2.18).

Theorem 2.2.15 Let (f , g) ∈ L2(Ω)×H 1
0 (Ω):

(f | gradg)+ 〈div f , g〉H 1
0 (Ω)

= 0. (2.21)

Let (f, g) ∈ H 1(Ω)×H 1
0 (Ω):

(gradf | gradg)+ 〈Δf, g〉H 1
0 (Ω)

= 0. (2.22)

Thanks to (2.18), one can prove some results concerning the normal trace of
elements of H (div,Ω) (cf. [117, Chapter I]).

Remark 2.2.16 As remarked previously, the results that deal with function spaces
defined on the boundary or with trace mappings are also valid for exterior domains
Ω = R3 \Ω0, with Ω0 being a domain.

Definition 2.2.17 Let f be a smooth vector function defined onΩ . Its normal trace
f · n|Γ on the boundary Γ is denoted by γnf , and γn is called the normal trace
mapping.

Theorem 2.2.18 The mapping γn has a unique continuous extension, from
H (div,Ω) to H−1/2(Γ ), which is surjective.

In addition, the following characterization holds:

H 0(div,Ω) := {v ∈ H (div,Ω) : v · n|Γ = 0}.

Note that, according to this framework, one can define as a by-product5 the trace
mapping of the normal derivative.

5Evidently, a direct construction is also possible!
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Definition 2.2.19 Let f be a smooth scalar function defined on Ω . Its trace of the
normal derivative (∂nf )|Γ := gradf · n|Γ on the boundary Γ is denoted by γ1f ,
and γ1 is called the trace mapping of the normal derivative of scalar fields.

Consider the space

E(Δ,L2(Ω)) := {φ ∈ H 1(Ω) : Δφ ∈ L2(Ω)},

endowed with the graph norm (see Definition 4.1.5). Given any element f of
E(Δ,L2(Ω)), its gradient gradf belongs to H (div,Ω), so its normal trace is well-
defined. Then, since it is easily proven that C∞(Ω) is dense in E(Δ,L2(Ω)), one
finds that γ1f actually coincides with γn(gradf ). One can finally prove. . .

Corollary 2.2.20 The mapping γ1 has a unique continuous extension, from
E(Δ,L2(Ω)) to H−1/2(Γ ), which is surjective.

It is important to note that the normal traces of elements of H (div,Ω) do not belong,
in general, to L2(Γ ), but to a larger space. This is a reversed situation, compared
to the trace of elements of H 1(Ω). This means that, unless otherwise specified, the
normal trace is not (locally) integrable on Γ .

Remark 2.2.21 Consider ξ that fulfills (2.10). With respect to the norm (2.16), the
closure of ξ−1D(Ω) in H (div ξ,Ω), H 0(div ξ,Ω), is equal to

{v ∈ H (div ξ,Ω) : ξv · n|Γ = 0}.

To conclude on the normal trace, we give the result of (Amrouche, 2011, Private
communication) regarding elements of H−s (div,Ω).

Theorem 2.2.22 Let s ∈]0, 1/2[. The mapping γn has a unique continuous
extension, from H−s (div,Ω) to H−1/2(Γ ), which is surjective.

Thanks to (2.19), one can now prove some results concerning the tangential trace
of elements of H (curl,Ω) (cf. [117, Chapter I]).

Definition 2.2.23 Let f be a smooth vector function defined on Ω . Its tangential
trace f ×n|Γ on the boundaryΓ is denoted by γ�f , and γ� is called the tangential
trace mapping.

Theorem 2.2.24 The mapping γ� has a unique continuous extension, from
H (curl,Ω) to H−1/2(Γ ).

In addition, the following characterization holds:

H 0(curl,Ω) := {v ∈ H (curl,Ω) : v × n|Γ = 0}.

Again, unless otherwise specified, tangential traces of elements of H (curl,Ω) are
not (locally) integrable on Γ .
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Remark 2.2.25 Consider ξ that fulfills (2.10). With respect to the norm (2.14), the
closure of ξ−1D(Ω) in H (curl ξ,Ω), H 0(curl ξ,Ω), is equal to

{v ∈ H (curl ξ,Ω) : ξv × n|Γ = 0}.

If one introduces Γ ′, an open subset of Γ , with measΓ (Γ ′) > 0, such that
its boundary is a Lipschitz submanifold of Γ , then one can characterize [109]
the restriction to Γ ′ of the normal (respectively tangential) trace of elements of
H (div,Ω) (respectively H (curl,Ω)), in the same way and with the same notations
as (2.9). Indeed, one finds that:

• given f ∈ H (div,Ω), f · n|Γ ′ belongs to H̃−1/2(Γ ′), according to

∀g ∈ H̃ 1/2(Γ ′), 〈f · n|Γ ′ , g〉H̃ 1/2(Γ ′) = 〈f · n, g̃〉H 1/2(Γ ) ; (2.23)

• given f ∈ H (curl,Ω), f × n|Γ ′ belongs to H̃
−1/2

(Γ ′), according to

∀g ∈ H̃
1/2
(Γ ′), 〈f × n|Γ ′ ,g〉

H̃
1/2
(Γ ′) = 〈f × n, g̃〉H 1/2(Γ ) . (2.24)

Remark 2.2.26 Results similar to (2.23) (respectively (2.24)) hold for fields of
H (div ξ,Ω) (respectively H (curl ξ,Ω)), under the assumptions (2.10) about ξ.

Definition 2.2.27 Let Ω be a domain with boundary Γ . Let Γ ′ be an open subset
of Γ such that its boundary is a Lipschitz submanifold of Γ , with measΓ (Γ ′) > 0.
Introduce

C∞
Γ ′(Ω) := {f ∈ C∞(Ω) : f = 0 in a neighborhood of Γ ′}.

Then, one can define

H 0,Γ ′(curl,Ω) := closure of C∞
Γ ′(Ω) in H (curl,Ω) ;

H 0,Γ ′(div,Ω) := closure of C∞
Γ ′(Ω) in H (div,Ω).

Furthermore, it holds that

H 0,Γ ′(curl,Ω) = {f ∈ H (curl,Ω) : f × n|Γ ′ = 0} ;
H 0,Γ ′(div,Ω) = {f ∈ H (div,Ω) : f · n|Γ ′ = 0}.

As a consequence of Proposition 2.1.60, we note that if f ∈ H 0,Γ ′(curl,Ω), then
f×n|Γ ′′ ∈ H−1/2(Γ ′′), whereΓ ′′ = int (Γ \Γ ′) (here,measΓ (Γ ′) < measΓ (Γ )).
Similarly, if f ∈ H 0,Γ ′(div,Ω), then f · n|Γ ′′ ∈ H−1/2(Γ ′′).

Once the existence of the trace mappings has been established, it is possible to
consider some other generalized integration-by-parts formulas (2.18) and (2.19).
Note that those formulas are closely intertwined with the characterization of
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subspaces composed of trace-free elements. We recall that, according to Proposi-
tion 2.1.44, for s ∈]0, 1/2[, one has Hs0 (Ω) = Hs(Ω).
Theorem 2.2.28 Let (f , g) ∈ H (div,Ω)×H 1(Ω):

(f | gradg)+ (div f |g) = 〈f · n, g〉H 1/2(Γ ). (2.25)

Given s ∈]0, 1/2[, let (f , g) ∈ H−s (div,Ω)×H 1(Ω):

(f | gradg)+ 〈div f , g〉Hs0 (Ω) = 〈f · n, g〉H 1/2(Γ ). (2.26)

Let (f ,g) ∈ H (curl,Ω)× H 1(Ω):

(f | curl g)− (curl f |g) = 〈f × n,g〉H 1/2(Γ ). (2.27)

Let us conclude this study of fields of H (div ξ,Ω) and H (curl ξ,Ω)—one has
possibly ξ = I3—with results dealing with jumps of the normal and tangential
traces. We begin with the jump of normal traces.

Definition 2.2.29 Let Ω be a domain partitioned into P := (Ωp)p=+,−. Let Σ =
∂Ω+ ∩ ∂Ω− be the interface separatingΩ+ andΩ−. We use the same notations as
in Definition 2.1.67. Given f ∈ L2(Ω) with f |Ωp ∈ H (div,Ωp) for p = +,−,
the normal jump of f throughΣ is equal to

[f · nΣ ]Σ := δ+Σ(γn,+f + γn,−f ).

Here, the normal jump is understood as a difference! Indeed, on the interface, it
holds that n− = −n+.

Proposition 2.2.30 Let Ω be a domain partitioned into P := (Ωp)p=+,−, and let
Σ = ∂Ω+ ∩ ∂Ω−. Under the assumptions (2.10) about ξ, it holds that

H (div ξ,Ω) = {f ∈ L2(Ω) : f |Ωp ∈ H (div ξ,Ωp), p = +,−,
[ξf · nΣ ]Σ = 0 in H̃−1/2(Σ)}.

We then consider the jump of tangential traces.

Definition 2.2.31 Let Ω be a domain partitioned into P := (Ωp)p=+,−. Let Σ =
∂Ω+ ∩ ∂Ω− be the interface separatingΩ+ andΩ−. We use the same notations as
in Definition 2.1.67. Given f ∈ L2(Ω) with f |Ωp ∈ H (curl,Ωp) for p = +,−,
the tangential jump of f throughΣ is equal to

[f × nΣ ]Σ := δ+Σ(γ�,+f + γ�,−f ).

Once more, the tangential jump is understood as a difference.
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Proposition 2.2.32 Let Ω be a domain partitioned into P := (Ωp)p=+,−, and let
Σ = ∂Ω+ ∩ ∂Ω−. Under the assumptions (2.10) about ξ, it holds that

H (curl ξ,Ω) = {f ∈ L2(Ω) : f |Ωp ∈ H (curl ξ,Ωp), p = +,−,

[ξf × nΣ ]Σ = 0 in H̃
−1/2

(Σ)}.

2.3 Practical Function Spaces in the (t, x) Variable

To solve some time-dependent problems, in particular, the time-dependent Maxwell
equations, one needs to introduce function spaces depending both on the time
variable t and on the space variable x. Indeed, in that case, the unknowns, i.e., the
electromagnetic fields, depend on the (t, x) variable. Obviously, one can consider
distributions in space and time, that is, on R × R3. However, one generally
distinguishes between the variables t and x, since they do not play the same role.
Classically, one deals with the values of a field at a given time t . Hence, for a
function f depending on both x and t , we are interested in x �→ f (t0, x), for a
given t0.

More precisely, let T− ∈ [−∞,+∞[ and T+ ∈] − ∞,+∞] with T− < T+
respectively denote the initial and final times, and let Ω denote the subset of R3 of
interest. With respect to distributions in space and time, the corresponding space
of distributions is simply D′(]T−, T+[×Ω). A classical result that allows one to go
back and forth from distributions in the (t, x) variable to continuous functions of
the variable t , with values in function spaces of the variable x, is that

the tensor product space D(]T−, T+[)⊗D(Ω) is dense in D(]T−, T+[×Ω).

Next, consider the function

f : ]T−, T+[×Ω → R
(t, x) �→ f (t, x) .

For any time t ∈]T−, T+[, one can introduce the function f (t)

f (t) : Ω → R
x �→ f (t, x),

so that the function f can be identified with the function

]T−, T+[ → {Ω → R}
t �→ f (t).

In what follows, we will define the function spaces in the (t, x) variable, which will
be useful for the weak formulations in the subsequent chapters. For that, it will be
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sufficient to define two types of function space and one class of vector distribution.
To fix ideas, consider that T− = 0 and T+ = T < +∞. Let m ∈ N, 1 ≤ p ≤ ∞,
and let X,Y and H respectively be two Banach spaces and a Hilbert space of the
space variable x. Finally, let L(X, Y ) be the space of continuous, linear mappings
from X to Y .6

Definition 2.3.1 Given an interval I of R, Cm(I ;X) is the set of functions of class
Cm in I , valued into X. Endowed with the norm

‖f ‖Cm(I ;X) :=
m∑
k=0

sup
t∈I

‖d
kf

dtk
(t)‖X,

this is a Banach space.

Definition 2.3.2 The space Lp(0, T ;X) is the set of Lebesgue-measurable func-
tions valued into X, and such that

⎧⎪⎨
⎪⎩

for 1 ≤ p <∞ ‖f ‖Lp(0,T ;X) :=
{∫ T

0
‖f (t)‖pX dt

}1/p

<∞
for p = ∞ ‖f ‖L∞(0,T ;X) := esssupt∈]0,T [‖f (t)‖X <∞.

Endowed with the norm ‖ · ‖Lp(0,T ;X), Lp(0, T ;X) is a Banach space.
In addition, if X = H and p = 2, the space L2(0, T ;H) is a Hilbert space

endowed with the scalar product

(f, g)L2(0,T ;H) :=
∫ T

0
(f (t), g(t))H dt.

Remark 2.3.3 According to the Fubini theorem, one can easily verify that

L2(0, T ;L2(Ω)) = L2(]0, T [×Ω).

Hence, if f belongs to L2(0, T ;L2(Ω)), one can define its partial derivative
with respect to the variable t in the sense of distributions, in D′(]0, T [×Ω), and
consider elements such that ∂tf ∈ L2(0, T ;L2(Ω)), which allows us to define
H 1(0, T ;L2(Ω)), and so on.

We recall a number of classical, elementary results below.

Proposition 2.3.4 Let X′ be the dual space of X.

• For all f ∈ L1(0, T ;X), there exists one, and only one, F ∈ X such that

∀g ∈ X′, 〈g, F 〉X =
∫ T

0
〈g, f (t)〉X dt ;F is denoted by

∫ T
0
f (t) dt ;

6See Sect. 4.1, Definition 4.1.1, for details on continuous linear mappings.
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• For all g ∈ L1(0, T ;X′), there exists one, and only one,G ∈ X′ such that

∀f ∈ X, 〈G,f 〉X =
∫ T

0
〈g(t), f 〉X dt ;G is denoted by

∫ T
0
g(t) dt .

Proposition 2.3.5 Let A ∈ L(X, Y ).

• The mapping f �→ Af is continuous from C0([0, T ];X) to C0([0, T ]; Y ) ;
• For all f ∈ L1(0, T ;X),

∫ T
0
A(f (t)) dt = A

(∫ T
0
f (t) dt

)
.

Proposition 2.3.6 A bound and differentiation of integrals:

• For all f ∈ L1(0, T ;X),
∥∥∥∥
∫ T

0
f (t) dt

∥∥∥∥
X

≤
∫ T

0
‖f (t)‖X dt ;

• For all f ∈ C0([0, T ];X),

∀t ∈]0, T [, lim
h→0

(
1

h

∫ t+h
t

f (s) ds

)
= f (t) and

lim
h→0+

(
1

h

∫ h
0
f (s) ds

)
= f (0) ;

• For all f ∈ C1([0, T ];X),
∫ T

0

df

ds
(s) ds = f (T )− f (0) .

More generally, it is necessary to introduce the distributions valued into function
spaces, that is, vector-valued distributions. According to [93], one can proceed as
follows.

Definition 2.3.7 The space of X-valued distributions in ]0, T [ is denoted by
D′(]0, T [;X). It is the set of linear and continuous mappings defined on D(]0, T [)
with a value in X, where continuity is considered with respect to uniform conver-
gence on the bounded sets of D(]0, T [).

Now, as in Definition 2.1.6, for f in D′(]0, T [;X) and for φ in D(]0, T [), the
action of f on φ is written with the help of duality brackets, with an index t to
emphasize the fact that we are considering the time variable:

〈f, φ〉t .

By definition, the result of these duality brackets belongs to X.

Remark 2.3.8 Note that the spacesL2(0, T ;X) andCm([0, T ];X) can be identified
with subspaces of D′(]0, T [;X).
Now, similarly to the case of standard distributions, i.e., the ones that depend on the
space variable x alone, one can introduce the notion of differentiation.
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Definition 2.3.9 Let f be an element of D′(]0, T [;X). Its time derivative is
defined by

∀φ ∈ D(]0, T [), 〈df
dt
, φ〉t = −〈f, dφ

dt
〉t .

Moreover, the time differentiation in the sense of distributions is internal, in other
words. . .

Proposition 2.3.10 Let f ∈ D′(]0, T [;X), then df
dt

belongs to D′(]0, T [;X).
Definition 2.3.11 Let A ∈ L(X, Y ) and f ∈ D′(]0, T [;X): Af , defined by

∀φ ∈ D(]0, T [), 〈Af, φ〉t := A (〈f, φ〉t ) ,

belongs to D′(]0, T [; Y ).
Thus, one has. . .

Proposition 2.3.12 Consider the setting of the previous Definition. Then, the
mapping f �→ Af is linear and continuous from D′(]0, T [;X) to D′(]0, T [; Y ).

From these last two definitions and related propositions, one can deduce the
(expected but) fundamental result concerning the distributions in the (t, x) variable,
which basically claims that one can invert the time and space differentiations

Theorem 2.3.13 For all (f,A) ∈ D′(]0, T [;X)× L(X, Y ), we have the following
identity:

d

dt
(Af ) = A

(
df

dt

)
.

From a practical point of view, this theorem allows us to perform the compu-
tations in a “natural” and expected way. This will be crucial for deriving the
variational formulations of the time-dependent problems. For instance, if u ∈
D′(]0, T [;H (curl,Ω)), one knows that curl u ∈ D′(]0, T [;L2(Ω)). According
to the above theorem,

d

dt
(curl u) = curl

(
du

dt

)
in D′(]0, T [;L2(Ω)) .

These considerations will be sufficient to give a meaning to the variational formula-
tions of the subsequent chapters. For more details, we refer the reader to [157, 177]
or [93] chap. XVIII.

In the remainder of the book, we will keep the notation u(t) : x �→ u(t, x)

to denote the value of u at a given time t . We will also use primes to denote
differentiation with respect to time of u (when it has a meaning), e.g., u′, u′′, etc..
When u belongs to Cm([0, T ];X), for a Banach space X, this notation is justified.
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If u belongs to L2(0, T ;X), u(t) is known for almost all t . In the most general case,
that is, if u belongs to D′(]0, T [;X), this is an improper notation. Nevertheless,
this “generalized” notation allows us to give a more unified presentation of the
results. Note also that it fits well into the physical perception, i.e., the knowledge
of the electromagnetic fields at a given time. Moreover, from a mathematical point
of view, this is an admissible notation, since one can invert the time derivative and
the differentiation in space (see Theorem 2.3.13).



Chapter 3
Complements of Applied Functional
Analysis

We complement the classic results of Chap. 2 in two directions. In the first part, we
review some recent results on the traces of vector fields, and especially the tangential
trace of electromagnetic-like fields. In the second part, we focus on the extraction
of potentials for curl-free and/or divergence-free fields and consequences. In this
chapter,Ω is an open subset of R3 with boundary Γ .

3.1 Vector Fields: Tangential Trace Revisited

Below, the tangential trace of elements of H (curl,Ω) is scrutinized, and refined
generalized integration by parts à la (2.27) is established, involving two vector
fields of H (curl,Ω). Indeed, in the case of the tangential trace, the mapping γ�
from H (curl,Ω) to H−1/2(Γ ) is not surjective. This seems obvious, since one has
(γ�f ) · n = 0 in some sense, for instance, as soon as a pointwise γ�f exists. But
there are also more profound arguments, which allow us to prove that, even when
one considers only the set of vector fields on Γ that are orthogonal to n, the mapping
is nevertheless not surjective [5, 65, 66, 72].

In order to prove this, together with a number of useful results, let us consider,
for simplicity, the case of a polyhedral domain, still called Ω , with the notations
of Definition 2.1.54. We follow here the path chosen by A. Buffa and the second
author in [65, 66], where the case of a curved polyhedron is also addressed. Again
for simplicity, we assume that its boundary Γ is topologically trivial (the notion
is defined in Sect. 3.2). See [64] for a topologically non-trivial boundary: in this
case, decompositions of function spaces have to be modified, with the addition of a
third—finite-dimensional—vector subspace. Along the way, representative proofs,
establishing the continuity of the mappings, are provided. On the other hand, the
results relating the surjectivity of the mappings are stated without proof. In the more
general case of a domain, the reader is referred to [68, 188].
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Looking at the integration-by-parts formula (2.27), it is clear that the normal
component of g does not play any role in the formula. Therefore, one can
concentrate on the tangential components only.

Definition 3.1.1 Let f be a smooth vector function defined on Ω . Its tangential
components trace n× (f × n)|Γ on the boundary Γ is denoted by π�f , and π� is
called the tangential components trace mapping.

In order to define the actual range of π�, starting from H 1(Ω), let us introduce
some spaces of vector fields, defined on Γ .

Definition 3.1.2 Let L2
t (Γ ) be the space of tangential, square integrable vector

fields:

L2
t (Γ ) := {v ∈ L2(Γ ) : v · n = 0}.

Let H
1/2
− (Γ ) be the space:

H
1/2
− (Γ ) := L2

t (Γ ) ∩H 1/2
− (Γ )3.

Let H
1/2
‖ (Γ ) be the space:

H
1/2
‖ (Γ ) := {v ∈ H

1/2
− (Γ ) : vi · τ ij 1/2= vj · τ ij , ∀(i, j) ∈ NE}.

The graph norm (‖ · ‖
H

1/2
− (Γ )

plus matching conditions · 1/2= · ∀(i, j) expressed as in

Definition 2.1.55) on H
1/2
‖ (Γ ) is denoted by ‖ · ‖

H
1/2
‖ (Γ )

.

NB. The elements of L2
t (Γ ) are considered as two-dimensional vector fields.

It is then straightforward to see that H
1/2
‖ (Γ ) is a Hilbert space. According to

Corollary 2.1.57, one finds that the range of π� from H 1(Ω), π�(H 1(Ω)), is a
subset of H

1/2
‖ (Γ ). In addition, one can prove that the mapping π� is surjective.

Theorem 3.1.3 The mapping π� has a unique continuous extension, from H 1(Ω)

to H
1/2
‖ (Γ ), which is surjective.

In the same way, one can define the Hilbert space H
1/2
⊥ (Γ ), with ad hoc compat-

ibility conditions (see below), and prove that the mapping γ� is surjective, from
H 1(Ω) to H

1/2
⊥ (Γ ).

Definition 3.1.4 Let H
1/2
⊥ (Γ ) be the space:

H
1/2
⊥ (Γ ) := {v ∈ H

1/2
− (Γ ) : vi · τ i (j ) 1/2= vj · τ j (i), ∀(i, j) ∈ NE}.
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The graph norm on H
1/2
⊥ (Γ ) is denoted by ‖ · ‖

H
1/2
⊥ (Γ )

.

Theorem 3.1.5 The mapping γ� has a unique continuous extension, from H 1(Ω)

to H
1/2
⊥ (Γ ), which is surjective.

The next step is to introduce the dual space of H
1/2
‖ (Γ ) (respectively of H

1/2
⊥ (Γ )),

with L2
t (Γ ) as the pivot space, called H

−1/2
‖ (Γ ) (respectively H

−1/2
⊥ (Γ )) hereafter,

and endowed with the dual norm ‖ · ‖
H

−1/2
‖ (Γ )

(respectively ‖ · ‖
H

−1/2
⊥ (Γ )

). As a

consequence of Theorem 3.1.3, one has. . .

Corollary 3.1.6 The mapping γ� is continuous from H (curl,Ω) to H
−1/2
‖ (Γ ).

Proof First, let λ be in H
1/2
‖ (Γ ): π� is linear and surjective from H 1(Ω) to

H
1/2
‖ (Γ ) (two Banach spaces), so it has a continuous right-inverse, according to

the Open Mapping Theorem 4.1.4. In other words, there exists g ∈ H 1(Ω) such
that

π�g = λ and ‖g‖H 1(Ω) ≤ Cπ‖λ‖H
1/2
‖ (Γ )

.

Above, the constant Cπ is independent of λ.
Second, given an element f of H (curl,Ω), one can apply the integration-by-

parts formula (2.27) to (f ,g):

〈γ�f , π�g〉H 1/2(Γ ) = (f | curl g)− (curl f |g).

As a consequence of the above, one finds that

sup
λ∈H

1/2
‖ (Γ )

∣∣∣〈γ�f ,λ〉H 1/2(Γ )

∣∣∣ ≤ √
2Cπ‖f ‖H (curl,Ω)‖λ‖H

1/2
‖ (Γ )

.

So, γ�f belongs to H
−1/2
‖ (Γ ), with ‖γ�f ‖

H
−1/2
‖ (Γ )

≤ √
2Cπ‖f ‖H (curl,Ω). �

The duality product of formula (2.27) can be replaced, to reach, for all (f ,g) ∈
H (curl,Ω)× H 1(Ω),

(f | curl g)− (curl f |g) = 〈γ�f , π�g〉
H

1/2
‖ (Γ )

. (3.1)

Also, one can reverse the roles of f and g, to find, for all (g,f ) ∈ H (curl,Ω) ×
H 1(Ω),

(curl g|f )− (g| curl f ) = 〈π�g, γ�f 〉
H

1/2
⊥ (Γ )

.
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It is possible to determine precisely the range in H
−1/2
‖ (Γ ) (respectively in

H
−1/2
⊥ (Γ )) of γ� (respectivelyπ�) from H (curl,Ω). This can be achieved through

a simple, yet slightly technical, procedure. It is interesting to consider it in detail,
since it includes a definition of first-order differential operators on the boundary,
such as the tangential gradient, divergence and curls. As a matter of fact, these
operators are quite useful for studying Maxwell’s equations and related topics, for
instance, when surface currents or charges occur.

Definition 3.1.7 The tangential gradient operator, gradΓ , defined by gradΓ v =
π�(grad v), is a linear continuous mapping from H 2(Ω) to H

1/2
‖ (Γ ).

The tangential vector curl operator, curlΓ , defined by curlΓ v = γ�(grad v), is a
linear continuous mapping from H 2(Ω) to H

1/2
⊥ (Γ ).

In order to rigorously define these operators on the boundary Γ , one introduces the
ad hoc trace space, which extends Definition 2.1.52 to the case s = 3/2.

Definition 3.1.8 Let H 3/2(Γ ) be the space

H 3/2(Γ ) := {v|Γ : v ∈ H 2(Ω)}.

Endowed with ‖f ‖H 3/2(Γ ) := inf v ∈ H 2(Ω), v|Γ = f ‖v‖H 2(Ω), it is a Hilbert
space.
The dual space of H 3/2(Γ ) is called H−3/2(Γ ).

In the same spirit as Definition 2.1.53, one can defineH 3/2 Sobolev spaces on a part
of the boundary.

Definition 3.1.9 Let Γ ′ denote an open subset of Γ , with measΓ (Γ ′) > 0, such
that its boundary is a piecewise smooth submanifold of Γ . The space H̃ 3/2(Γ ′) is
composed of elements of H 3/2(Γ ′) such that their continuation by zero belongs to
H 3/2(Γ ). Its dual space is denoted by H̃−3/2(Γ ′).

It is clear that gradΓ (respectively curlΓ ), can be considered as a purely sur-
face operator, from H 3/2(Γ ) to H

1/2
‖ (Γ ) (respectively H

1/2
⊥ (Γ )). Alternate (and

equivalent!) definitions of H 3/2(Γ ) are possible. To that aim, it is convenient to
introduce the space H 1(Γ ). Actually, since H 1-regularity is preserved by (bi)-
Lipschitz-continuous mappings, it is possible to define the spaceH 1(Γ ) and its dual
as follows, with a plain, face-by-face definition of the tangential gradient, which
coincides with Definition 3.1.7 for the smoother fields of H 3/2(Γ ).

Definition 3.1.10 Let H 1(Γ ) be the space

H 1(Γ ) := {f ∈ L2(Γ ) : gradΓ f ∈ L2
t (Γ )}. (3.2)

Endowed with the graph norm ‖ · ‖H 1(Γ ), it is a Hilbert space.
Its dual space is called H−1(Γ ).

NB. One can substitute curlΓ for gradΓ in the definition (3.2).
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Proposition 3.1.11 The following orthogonal decomposition holds:

L2
t (Γ ) = gradΓ (H

1(Γ ))
⊥⊕ curlΓ (H 1(Γ )).

A third variant of the tangential gradient and tangential vector curl operators, from
H 1/2(Γ ), will be introduced later on.

Then, one can establish a new characterization of H 3/2(Γ ). At first glance, one
expects that it is made of fields of H 1(Γ ), the surface gradient of which belongs
to H

1/2
‖ (Γ ). This is true! Nevertheless, one can derive an a priori weaker, but

nonetheless equivalent, characterization.

Theorem 3.1.12 It holds that

H 3/2(Γ ) = {f ∈ H 1(Γ ) : gradΓ f ∈ H
1/2
− (Γ )}.

An equivalent norm on H 3/2(Γ ) is

f �→
⎧⎨
⎩‖f ‖2

H 1(Γ )
+

∑
1≤j≤NΓ

‖fj‖2
H 3/2(Γj )

⎫⎬
⎭

1/2

.

Since the mapping − gradΓ , from H 3/2(Γ ) to H
1/2
‖ (Γ ), is continuous, one can

introduce its dual operator, from H
−1/2
‖ (Γ ) to H−3/2(Γ ).

Definition 3.1.13 The tangential divergence operator, divΓ , from H
−1/2
‖ (Γ ) to

H−3/2(Γ ), is defined by the duality brackets identity (3.3), for all (f , g) ∈
H

−1/2
‖ (Γ )×H 3/2(Γ ),

〈divΓ f , g〉H 3/2(Γ ) = −〈f , gradΓ g〉H 1/2
‖ (Γ )

. (3.3)

From these Definitions, it is possible to prove that, given a vector field v of
H (curl,Ω), the tangential divergence of γ�v belongs to H−1/2(Γ ). This is
achieved through the lines below, which are excerpts from [65]. This proof is
detailed, since it consists of a “dense” summary of the main techniques, which can
be used to establish many trace results in H−s(Γ )-type Sobolev spaces.

Definition 3.1.14 Let H
−1/2
‖ (divΓ , Γ ) be the space:

H
−1/2
‖ (divΓ , Γ ) := {f ∈ H

−1/2
‖ (Γ ) : divΓ f ∈ H−1/2(Γ )}.

Theorem 3.1.15 The mapping γ� is continuous from H (curl,Ω) to H
−1/2
‖ (divΓ ,

Γ ).
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Proof Let us consider an element v of H (curl,Ω). On the other hand, since the
duality brackets of formula (3.3) involve fields of H 3/2(Γ ), let us consider an
element g of H 2(Ω). Then, let us apply the integration-by-parts formula (3.1) to
the couple (v, gradg):

(curl v| gradg) = −〈γ�v, gradΓ g〉H 1/2
‖ (Γ )

= 〈divΓ (γ�v), γ0g〉H 3/2(Γ ).

Now, λ = γ0g belongs to H 1/2(Ω). Recall that γ0 is surjective from H 1(Ω) to
H 1/2(Γ ), so it has a continuous right-inverse. In other words, there exists g′ ∈
H 1(Ω), such that

γ0g
′ = λ and ‖g′‖H 1(Ω) ≤ C0‖λ‖H 1/2(Γ ).

Above, the constant, C0 is independent of λ.
Next, g′′ = g − g′ belongs to H 1

0 (Ω), so that gradg′′ is in H 0(curl,Ω) (cf.
Proposition 2.2.10). According to Theorem 2.2.14, curl v is orthogonal to gradg′′
in L2(Ω), hence it follows that

〈divΓ (γ�v), λ〉H 3/2(Γ ) = (curl v| gradg′), and∣∣〈divΓ (γ�v), λ〉H 3/2(Γ )

∣∣ ≤ C0‖v‖H (curl,Ω)‖λ‖H 1/2(Γ ).

Then, by a density argument, divΓ (γ�v) belongs toH−1/2(Γ ). Indeed, one remarks
that, since H 2(Ω) is dense in H 1(Ω), γ0(H

2(Ω)) = H 3/2(Γ ) is dense in
γ0(H

1(Ω)) = H 1/2(Γ ). Finally, we can write

‖divΓ (γ�v)‖H−1/2(Γ ) ≤ C0‖v‖H (curl,Ω).

This concludes the proof. �
An identity relating traces can then be established.

Corollary 3.1.16 Let v ∈ H (curl,Ω), then

divΓ (v × n|Γ ) = curl v · n|Γ in H−1/2(Γ ).

Proof One has (see the previous proof), for all (v, g) ∈ H (curl,Ω)×H 1(Ω),

〈divΓ (γ�v), γ0g〉H 1/2(Γ ) = (curl v| gradg).

Integrating by parts once more (cf. (2.25)), the right-hand side is equal to

(curl v| gradg) = 〈γn(curl v), γ0g〉H 1/2(Γ ).

�
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NB. As a particular case, one recovers that curl v · n|Γ = 0, for v in H 0(curl,Ω),
i.e., one result of Proposition 2.2.10.

One can then substitute, respectively, π� for γ�, curlΓ for − gradΓ , and curlΓ
for divΓ . This is achieved by. . .

Definition 3.1.17 The tangential curl operator, curlΓ , from H
−1/2
⊥ (Γ ) to

H−3/2(Γ ), is defined by the duality brackets identity (3.4), for all (f , g) ∈
H

−1/2
⊥ (Γ )×H 3/2(Γ ),

〈curlΓ f , g〉H 3/2(Γ ) = 〈f , curlΓ g〉H 1/2
⊥ (Γ )

. (3.4)

Let H
−1/2
⊥ (curlΓ , Γ ) be the space:

H
−1/2
⊥ (curlΓ , Γ ) := {f ∈ H

−1/2
⊥ (Γ ) : curlΓ f ∈ H−1/2(Γ )}.

And according to the result below, whose proof is a simple transposition. . .

Theorem 3.1.18 The mapping π� is continuous from H (curl,Ω) to H
−1/2
⊥ (curlΓ ,

Γ ).

The last step consists in establishing that H
−1/2
‖ (divΓ , Γ ) and H

−1/2
⊥ (curlΓ , Γ )

are dual spaces. Consequently, a new version of the curl-curl integration-by-parts
formula can be justified, which involves two fields of H (curl,Ω). To that aim,
one introduces a third variant of the tangential gradient operator, from H 1/2(Γ ) to
H

−1/2
⊥ (Γ ). As a starting point, consider

C∞
e (Ω) := {f ∈ C∞(Ω) : f = 0 in a neighborhood of ∪(i,j)∈NE eij },

where eij and NE are as in Definition 2.1.54.

Proposition 3.1.19 The space C∞
e (Ω) is dense in H

1(Ω).

This density result is proven in [160] or [89]. Then, together with the “plain”, face-
by-face definition of the tangential gradient, one checks that gradΓ λ can be defined,
for λ ∈ H 1/2(Γ ) = γ0(H

1(Ω)), and the following holds:

∀f ∈ H 1(Ω), gradΓ (f |Γ ) = π�(gradf ).

Recall that, according to Theorem 3.1.18, π�(gradf ) belongs to H
−1/2
⊥ (Γ ). So,

one concludes with the results below concerning the third tangential gradient
operator.

Proposition 3.1.20 The mapping gradΓ is continuous from H 1/2(Γ ) to
H

−1/2
⊥ (Γ ). Let f ∈ H 1(Ω): gradΓ (f |Γ ) = π�(gradf ) in H

−1/2
⊥ (Γ ).
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This third tangential gradient operator coincides with the other two, respectively,
from H 1(Γ ) and from H 3/2(Γ ). Again, one can similarly introduce the curl
operator curlΓ from H 1/2(Γ ) to H

−1/2
‖ (Γ ).

Proposition 3.1.21 The mapping curlΓ is continuous fromH 1/2(Γ ) to H
−1/2
‖ (Γ ).

Let f ∈ H 1(Ω): curlΓ (f |Γ ) = (gradf × n)|Γ in H
−1/2
‖ (Γ ).

NB. As a particular case of both Propositions, one recovers that π�(gradf ) =
0 and (gradf × n)|Γ = 0, for f in H 1(Ω) with f |Γ = 0, i.e., one result of
Proposition 2.2.10.

The dual operators of − gradΓ and curlΓ , operating from H 1/2(Γ ), are,
respectively,

{
divΓ : H

1/2
⊥ (Γ )→ H−1/2(Γ )

curlΓ : H
1/2
‖ (Γ )→ H−1/2(Γ )

.

To properly define the duality between H
−1/2
‖ (divΓ , Γ ) and H

−1/2
⊥ (curlΓ , Γ ), one

needs a final tool, namely decompositions of elements of those two function spaces.
Let the Laplace-Beltrami operator be defined as

∀f ∈ H 1(Γ ), ΔΓ f := divΓ (gradΓ f ) := − curlΓ (curlΓ f ),

together with the related function space below:

H(Γ ) := {f ∈ H 1
zmv(Γ ) : ΔΓ f ∈ H−1/2(Γ )}.

Theorem 3.1.22 The following decompositions hold:

H
−1/2
‖ (divΓ , Γ ) = curlΓ (H 1/2(Γ ))+ H

1/2
⊥ (Γ ).

H
−1/2
⊥ (curlΓ , Γ ) = gradΓ (H

1/2(Γ ))+ H
1/2
‖ (Γ ).

Moreover, the following direct decompositions hold:

H
−1/2
‖ (divΓ , Γ ) = curlΓ (H

1/2
zmv(Γ ))⊕ gradΓ (H(Γ )).

H
−1/2
⊥ (curlΓ , Γ ) = gradΓ (H

1/2
zmv(Γ ))⊕ curlΓ (H(Γ )).

As a side-product, one can prove the important surjectivity results below.

Corollary 3.1.23 The mapping γ� is surjective from H (curl,Ω) to H
−1/2
‖ (divΓ ,

Γ ).
The mapping π� is surjective from H (curl,Ω) to H

−1/2
⊥ (curlΓ , Γ ).
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Since curlΓ f1 and gradΓ f2 are “orthogonal”1 for f1, f2 ∈ H 1/2(Γ ), one can
introduce a duality product between H

−1/2
‖ (divΓ , Γ ) and H

−1/2
⊥ (curlΓ , Γ ), which

is the scalar product of L2
t (Γ ) when the elements are smooth enough.

Definition 3.1.24 Let (u1,u2) ∈ H
−1/2
‖ (divΓ , Γ ) × H

−1/2
⊥ (curlΓ , Γ ) be decom-

posed as

u1 = curlΓ f1 + v1, f1 ∈ H 1/2(Γ ), v1 ∈ H
1/2
⊥ (Γ ) ,

u2 = gradΓ f2 + v2, f2 ∈ H 1/2(Γ ), v2 ∈ H
1/2
‖ (Γ ).

Then, the duality product of u1 and u2 is equal to:

γ 〈u1,u2〉π = 〈curlΓ f1, v2〉H 1/2
‖ (Γ )

+ 〈gradΓ f2, v1〉H 1/2
⊥ (Γ )

+ (v1, v2)L2(Γ ).

Theorem 3.1.25 One has the following duality identity:

(
H

−1/2
‖ (divΓ , Γ )

)′ = H
−1/2
⊥ (curlΓ , Γ ).

In addition, one has a generalized integration-by-parts formula, for all (f ,g) ∈
H (curl,Ω)× H (curl,Ω):

(f | curl g)− (curl f |g) = γ 〈γ�f , π�g〉π . (3.5)

Most results carry out to fields defined on a part of the boundary only (and equal to
0 elsewhere). We refer the reader to [65, 66] for the details. Briefly, let us consider
an open, topologically trivial subset2 of Γ , called Γ ′, with 0 < measΓ (Γ

′) <
measΓ (Γ ), such that its boundary ∂Γ ′ is a piecewise smooth submanifold of Γ ,
and let Γ ′′ = int (Γ \ Γ ′). Let ν ′ be the unit outward normal vector to ∂Γ ′, and let
τ ′ be a unit tangent vector to ∂Γ ′. One first defines

H̃
1/2
‖ (Γ ′) := {v ∈ H

1/2
‖ (Γ ′) : ṽ ∈ H

1/2
‖ (Γ )}.

1This is a generalized orthogonality property, in the sense that, given f1, f2 ∈ H 1/2(Γ ), there
exist two sequences of elements of H 1(Γ ), respectively (f k1 )k and (f k2 )k , such that f ki → fi in
H 1/2(Γ ) for i = 1, 2, and one has

∀k, �, (curlΓ f k1 , gradΓ f
�
2 )L2(Γ ) = 0.

2We assume here that ∂Γ ′ ∩∂Γ ′′ �= ∅. Indeed, it is simple to check that the preceding study carries
over to the case when ∂Γ ′ ∩ ∂Γ ′′ = ∅.
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Above, ṽ is the continuation of v by 0 to Γ . Then, one introduces

H̃
−1/2
‖ (divΓ , Γ ′) := {f ∈ H̃

−1/2
‖ (Γ ′) : divΓ f ∈ H̃−1/2(Γ ′)},

where divΓ maps elements of H̃
−1/2
‖ (Γ ′) (the dual space of H̃

1/2
‖ (Γ ′)) to

H̃−3/2(Γ ′). Similarly, one can introduce

H̃
−1/2
⊥ (curlΓ , Γ

′) := {f ∈ H̃
−1/2
⊥ (Γ ′) : curlΓ f ∈ H̃−1/2(Γ ′)}.

Theorem 3.1.26 The mapping γ�′ : f �→ f × n|Γ ′ is linear, continuous and

surjective from H (curl,Ω) to H̃
−1/2
‖ (divΓ , Γ ′).

The mapping π�′ : f �→ n × (f × n)|Γ ′ is linear, continuous and surjective from

H (curl,Ω) to H̃
−1/2
⊥ (curlΓ , Γ ′).

Next, define

H 0,Γ ′′(curl,Ω) := {f ∈ H (curl,Ω) : f × n|Γ ′′ = 0},

which is a closed subspace of H (curl,Ω). To build the ad hoc space of tangential
traces on Γ ′ for elements of H 0,Γ ′′(curl,Ω), one needs to consider

H
−1/2
‖,0 (divΓ , Γ

′) := {f ∈ H
−1/2
‖ (divΓ , Γ

′) : tν′(f ) = 0},

where tν ′(f ) = f · ν′|∂Γ ′ is defined in a weak sense.
Introduce the function space:

Hν(Γ ′) := {f ∈ H 1
zmv(Γ

′) : ΔΓ f ∈ H−1/2(Γ ′), tν ′(gradΓ f ) = 0}.

Proposition 3.1.27 The following direct decomposition holds:

H
−1/2
‖,0 (divΓ , Γ

′) = curlΓ (H̃ 1/2(Γ ′))⊕ gradΓ (Hν(Γ ′)).

Similarly, for the space of tangential components traces on Γ ′ for elements of
H 0,Γ ′′ (curl,Ω), we consider

H
−1/2
⊥,0 (curlΓ , Γ ′) := {f ∈ H

−1/2
⊥ (curlΓ , Γ ′) : tτ ′(f ) = 0},

where tτ ′(f ) = f · τ ′|∂Γ ′ is defined in a weak sense. Note that one can

also derive a direct decomposition of H
−1/2
⊥,0 (curlΓ , Γ ′), in the same spirit as in

Proposition 3.1.27.

Theorem 3.1.28 The mapping γ 0
�′ : f �→ f × n|Γ ′ is linear, continuous and

surjective from H 0,Γ ′′(curl,Ω) to H
−1/2
‖,0 (divΓ , Γ ′).
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The mapping π0
�′ : f �→ n × (f × n)|Γ ′ is linear, continuous and surjective from

H 0,Γ ′′ (curl,Ω) to H
−1/2
⊥,0 (curlΓ , Γ ′).

One finally obtains extensions of the duality results and new integration-by-parts
formulas.

Theorem 3.1.29 One has the following duality identities:

(
H

−1/2
‖,0 (divΓ , Γ

′)
)′ = H̃

−1/2
⊥ (curlΓ , Γ

′),
(
H̃

−1/2
‖ (divΓ , Γ

′)
)′ = H

−1/2
⊥,0 (curlΓ , Γ

′).

In addition, one has generalized integration-by-parts formulas, for all (f ,g) ∈
H 0,Γ ′′ (curl,Ω)× H (curl,Ω):

(f | curl g)− (curl f |g) = γ ′0〈γ 0
�′f , π�′g〉π ′ ; or,

(f | curl g)− (curl f |g) = −γ ′ 〈γ�′g, π0
�′f 〉π ′0 .

3.2 Scalar and Vector Potentials: The Analyst’s
and Topologist’s Points of View

We discuss two different mathematical points of view, namely the analyst’s and
topologist’s, concerning the existence of potentials for curl-free fields. We then
reconcile these two points of view and define a general framework.
For the analyst [124], the main issue is the regularity of the boundary. Accordingly,
the analyst’s hypothesis onΩ is:
(Ana) “Ω is an open set of R3 with a Lipschitz boundary”.
For the topologist [126, 127], the main issue is (co)homology and, of particular
interest for our purpose, the existence of single-valued potentials to curl-free smooth
fields. In other words, given a vector field v defined on Ω such that curl v = 0 in
Ω , does there exist a continuous single-valued function p such that v = gradp?
The answer to this question can be found in (co)homology theory, which results in
the topologist’s dual hypothesis:
either (Top)I=0 “given any vector field v ∈ C1(Ω) such that curl v = 0 in Ω ,
there exists p ∈ C0(Ω) such that v = gradp onΩ”;
or (Top)I>0 “there exist I non-intersecting manifolds, Σ1, . . . ,ΣI , with
boundaries ∂Σi ⊂ Γ such that, if we let Ω̇ = Ω \ ⋃Ii=1Σi , given any vector
field v ∈ C1(Ω) such that curl v = 0 in Ω , there exists ṗ ∈ C0(Ω̇) such that
v = grad ṗ on Ω̇”.
Here, I is equal to the minimal number of required cuts (Σi)i . Mathematically, I is
equal to β1(Ω), the first Betti number. Note that according to the above, I = 0 is an
admissible value, in which case the existence of continuous single-valued potentials
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is guaranteed on Ω , whereas I > 0 corresponds to the case when cuts must be
introduced. This is the reason why we use the notations (Top)I=0 and (Top)I>0 to
discriminate the two cases. When I = 0, the setΩ is said to be topologically trivial.

Remark 3.2.1 Recall that, according to homotopy theory, a connected set is simply
connected if every closed curve can be contracted to a point via continuous
transformations. It is often assumed that each connected component of Ω must
be simply connected to guarantee the existence of the continuous single-valued
potential: in other words, one usually states in (Top)I=0 (respectively (Top)I>0) that
Ω (respectively Ω̇) is simply connected. However, this property is only a sufficient
condition and, from a topologist’s point of view [126], the correct assumption is of
a (co)homological nature, cf. (Top) as stated above.

As far as the regularity of the manifolds (Σi)i is concerned, let us first assume
a topologist’s point of view. Finding cuts to enforce (Top)I>0 is inexpensive in
terms of algorithmic complexity (see [127, Chapter 6] for details). Computationally
speaking, one can build cuts that are piecewise plane, starting from a tetrahedral
mesh that constitutes a coarse approximation of the set. So, the regularity issue
simply involves the ability to deliver piecewise plane cuts.

In general, cuts leave a connected set connected, so, to fix ideas, we assume that
Ω̇ has the same number of connected components as Ω . This ensures that scalar
fields with vanishing gradients in Ω̇ are equal to constant fields on each connected
component. On the other hand, from the analyst’s point of view, one is content with
a set Ω̇ with a pseudo-Lipschitz boundary, cf. [9].

Definition 3.2.2 Let O be an open subset of Rn. Its boundary ∂O is pseudo-
Lipschitz if, at each point x of ∂O, there exist an integer r(x) equal to 1 or 2 and
a strictly positive real number β0 such that for all real numbers β ∈]0, β0[, the
intersection of O with the ball centered at x of radius β possesses r(x) connected
components, each one with a Lipschitz boundary.

Fortunately, the two notions are compatible! As a matter of fact, an open subset of
R3 with a piecewise plane boundary is Lipschitz (except for very pathological cases,
see one illustration in Fig. 2.1). So, whenever needed, either assumption (Top)I=0
is fulfilled or assumption (Top)I>0 is fulfilled with, in the latter case, existence of
piecewise plane cuts (Σi)1≤i≤I such that the resulting Ω̇ = Ω \⋃Ii=1Σi is pseudo-
Lipschitz.3 We denote by n (no index) a unit normal vector field to (Σi)1≤i≤I ,
and jumps are defined as in Definition 2.1.67. Given v ∈ L2(Ω̇) (respectively
v ∈ L2(Ω̇)), we denote by ṽ (respectively ṽ) its continuation toL2(Ω) (respectively
L2(Ω)). On the other hand, given v ∈ L2(Ω) (respectively v ∈ L2(Ω)), its
restriction to Ω̇ is simply written as v (respectively v), and likewise for subspaces
of L2(Ω) (respectively L2(Ω)).

3One has meas(Ω̇) = meas(Ω).
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Generically, we denote constant fields by the symbol cst , and by P(Ω̇), the
subspace of H 1(Ω̇):

P(Ω̇) := {q ∈ H 1(Ω̇) : [q]Σi = csti , 1 ≤ i ≤ I }.

Above, for i �= j , csti and cstj can be different.
Finally, when the boundary Γ is not connected, we let (Γk)0≤k≤K be its (max-

imal) connected components, Γ0 being the boundary of the unbounded component
of the exterior open set R3 \ Ω . We let Γ0 = Γ if the boundary is connected. We
introduce the subspace H 1

∂Ω(Ω) of H 1(Ω):

H 1
∂Ω(Ω) := {q ∈ H 1(Ω) : q|Γ0 = 0, q|Γk = cstk, 1 ≤ k ≤ K}.

Above, for k �= k′, cstk and cstk′ can be different.
At some point, we also use a (spherical) domain O such thatΩ ⊂ O, and denote

by (Ωk)0≤k≤K the connected components of O \ Ω with boundary Γk for k > 0,
and Γ0 ∪ ∂O for k = 0. According to the Alexander duality theory [127], it holds
that β1(Ω) = β1(O\Ω), i.e., the (minimal) number of “inside cuts” is always equal
to the (minimal) number of “outside cuts”.

A few existence results are stated without proof. In this case, the proof can
be found in the accompanying bibliographical references. For completeness, note
that we provide footnotes to check the well-posedness of the auxiliary problems
we introduce. Let us mention that for the ease of exposition in Sects. 3.3–3.5,
results have been grouped by category, namely “scalar” or “vector” potentials, and
in the latter case, “with” or “without” vanishing normal trace. However, the logical
sequence of the main mathematical results can be summarized as follows:

Step 1: the Scalar Theorems 3.3.1–3.3.2 and the Vector Theorem 3.4.1 ;
Step 2: the Scalar Theorem 3.3.9 uses the Vector Theorem 3.4.1 ;
Step 3: the first Weber Inequality Theorem 3.4.3 and the related compact imbed-

ding result of Theorem 3.4.4 use Steps 1–2 and their by-products ;
Step 4: the second Weber Inequality Theorem 3.5.3 and the related compact

imbedding result of Theorem 3.5.4 use Step 3 and its by-products.

3.3 Extraction of Scalar Potentials and Consequences

We consider first the case of curl-free fields of L2(Ω). Let us begin with the
fundamental result proven4 in [117, Chapter I] and in [164, Chapter 3].

4This (very technical) result is proven in two steps:

1. One introduces a sequence of nested topologically trivial domains (Ωp)p such that Ωp ⊂ Ω

for all p, ∪pΩp = Ω . The curl-free field is regularized by convolution over R3, so that its
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Theorem 3.3.1 Let Ω be either a domain, or a bounded, open and connected set
with a pseudo-Lipschitz boundary. Assume that Ω is topologically trivial. Then,
given v ∈ L2(Ω), it holds that

curl v = 0 in Ω ⇐⇒ ∃p ∈ H 1(Ω), v = gradp.

The scalar potential p is unique up to a constant, and |p|H 1(Ω) = ‖v‖L2(Ω).

Next, we have the more general result below, proven in [9] for smooth cuts. We
provide the main steps of the proof, which is slightly different than the one proposed
in [9], according to the assumptions we made on the regularity of the cuts.

Theorem 3.3.2 Let Ω be a domain such that (Top)I>0 is fulfilled. Then, given v ∈
L2(Ω), it holds that

curl v = 0 inΩ ⇐⇒ ∃ṗ ∈ P(Ω̇), v = ˜grad ṗ.

The scalar potential ṗ is unique up to a constant, and |ṗ|H 1(Ω̇) = ‖v‖L2(Ω).

Proof We remark that, if there exists ṗ ∈ P(Ω̇) such that v = ˜grad ṗ, then
obviously curl v = 0 in Ω̇ . One can then prove that curl v = 0 in Ω by
using the tangential gradient gradΓ of Proposition 3.1.20, which leads easily to
[π�v]Σi = gradΓ ([ṗ]Σi ) = 0, for 1 ≤ i ≤ I , plus Proposition 2.2.32 to conclude.
Conversely, one first uses Theorem 3.3.1 in Ω̇ to find ṗ ∈ H 1(Ω̇) such that v =
grad ṗ in Ω̇ . Then, as v belongs to H (curl,Ω), it follows that [π�v]Σi = 0, for all
i. Using again the tangential gradient as defined in Proposition 3.1.20, we find that
gradΓ ([ṗ]Σi ) is zero, for all i. In other words, one has [ṗ]Σi = csti , for 1 ≤ i ≤ I ,
i.e., ṗ ∈ P(Ω̇).
Finally, we note that the uniqueness of ṗ (up to a constant) follows from the fact
that Ω̇ is connected. �
Let us mention an elementary direct decomposition of P(Ω̇).

Proposition 3.3.3 For 1 ≤ j ≤ I , let ṙj ∈ P(Ω̇) be such that [ṙj ]Σi = δij , for
1 ≤ i ≤ I . Then, (ṙj )1≤j≤I is a free family in P(Ω̇), and moreover,

P(Ω̇) = H 1(Ω)⊕ span1≤j≤I (ṙj ).

restriction belongs to C1(Ωp), with vanishing curl in Ωp . One may then apply the classical
Stokes’ Theorem in Ωp to this smooth field and write it as a gradient in that domain, with a
scalar potential that belongs to C2(Ωp).

2. One then goes to the limit (p → ∞) to derive the existence of a scalar potential in Ω that
belongs to H 1(Ω), with the help of the Lions’ Lemma (Theorem 2.1.34).
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Proof If
∑
j cj ṙj = 0 in P(Ω̇), then 0 = [∑j cj ṙj ]Σi = ci for all i. Hence,

(ṙj )1≤j≤I is a free family. Along the same lines, H 1(Ω) ∩ span1≤j≤I (ṙj ) = {0}.
Finally, given ṗ ∈ P(Ω̇), note that ṗ −∑j [ṗ]Σj ṙj belongs to H 1(Ω). �
Remark 3.3.4 Obviously, the functions (ṙj )j exist. Given j , ṙj can be built by
considering a neighborhood ΩΣ of Σj in Ω such that ΩΣ ∩ Ω̇ = Ω+ ∪ Ω−
with domainsΩ− andΩ+ chosen as in Definition 2.1.67, not intersecting with any
other cut. Taking ṙj |Ω+ = 1 and ṙj |Ω− = 0 and making a (continuous) continuation
toΩ \ΩΣ , one obtains the requested ṙj .

To handle scalar fields of H 1(Ω̇), we state a (useful) integration-by-parts formula.
See [9] for the proof. In the spirit of Proposition 2.1.60, observe that given v ∈
H 0(divΩ), its trace v · n|Σi belongs to H−1/2(Σi) for all i.

Proposition 3.3.5 Let Ω be a domain such that (Top)I>0 is fulfilled. Let q̇ ∈
H 1(Ω̇) and v ∈ H 0(divΩ):

(v, grad q̇)L2(Ω̇) + (div v, q̇)L2(Ω̇) =
∑

1≤i≤I
〈v · n, [q̇]Σi 〉Σi . (3.6)

Above, the duality brackets overΣi are understood in 〈·, ·〉H 1/2(Σi)
.

Interestingly, the addition of a homogeneous boundary condition allows one to
recover potentials that automatically belong to H 1(Ω), instead of P(Ω̇). Before
showing this important property, we begin with elementary results regarding
solutions to the Poisson equation with vanishing or piecewise constant trace.

Proposition 3.3.6 Let Ω be a domain. Then, given v ∈ L2(Ω), the variational
formulation

{
Find q ∈ H 1

0 (Ω) such that
∀q ′ ∈ H 1

0 (Ω), (grad q| gradq ′) = (v| gradq ′) . (3.7)

is well-posed. Furthermore, its solution q ∈ H 1(Ω) is characterized byΔq = div v

inΩ and q|Γ = 0.

Proof One checks that the variational formulation (3.7) is well-posed with the help
of the Lax-Milgram Theorem 4.2.8, and the Poincaré inequality of Theorem 2.1.35
in H 1

0 (Ω). Note that, with the help of the Cauchy-Schwarz inequality, choosing
q ′ = q yields the bound ‖ grad q‖L2(Ω) ≤ ‖v‖L2(Ω).

Now, assume that q solves (3.7) and take q ′ ∈ D(Ω). Using differentiation in the
sense of distributions yields

〈Δq, q ′〉 = −〈grad q, gradq ′〉 = −(grad q| gradq ′) = −(v| grad q ′)

= −〈v, grad q ′〉 = 〈div v, q ′〉.
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Hence,Δq = div v in D′(Ω) and, obviously, q ∈ H 1(Ω) with q|Γ = 0.
Conversely, q ∈ H 1

0 (Ω). Moreover, by definition, given q ′ ∈ H 1
0 (Ω), there exists

(q ′m)m ∈ D(Ω)N such that limm→∞ ‖q ′ − q ′m‖H 1(Ω) = 0. It follows that

(grad q| gradq ′) = lim
m→∞(grad q| gradq ′m) = lim

m→∞〈grad q, gradq ′m〉

= − lim
m→∞〈Δq, q ′m〉 = − lim

m→∞〈div v, q ′m〉

= lim
m→∞〈v, grad q ′m〉 = lim

m→∞(v| grad q ′m) = (v| grad q ′).

In other words, q solves the variational formulation (3.7). �
Proposition 3.3.7 Let Ω be a domain. For all 1 ≤ � ≤ K , there exists one, and
only one, q� ∈ H 1(Ω) such that Δq� = 0 in Ω and q�|Γm = δ�m for 0 ≤ m ≤ K .

Proof Since γ0 is surjective from H 1(Ω) to H 1/2(Γ ), it has a continuous right-
inverse, so one can consider a preimage Q� of the function equal to 1 on Γ�, and 0
on Γ \ Γ�, and set v� = gradQ� ∈ L2(Ω). According to Proposition 3.3.6, there
exists one, and only one, q0

� that solves the variational formulation (3.7) with data
v�. Then, q� = Q� − q0

� ∈ H 1(Ω) is such that Δq� = div v� −Δq0
� = 0 inΩ , with

q�|Γm = Q�|Γm = δ�m, for 0 ≤ m ≤ K .

This proves existence. Uniqueness is obtained as follows: let q(1)� , q(2)� be two fields

that fulfill the required conditions, and set δq� = q
(1)
� − q(2)� . By construction,

δq� ∈ H 1
0 (Ω) solves the variational formulation (3.7) with zero data, so it is itself

equal to zero and q(1)� = q(2)� . �
For later use, we introduce the finite-dimensional vector space and a related K ×K
matrix, the so-called capacitance matrix

QN(Ω) := span1≤�≤K(q�), C�m := (grad qm| grad q�), 1 ≤ �,m ≤ K.

On QN(Ω), all norms are equivalent and, according to the Poincaré inequality of
Proposition 2.1.66, one may use ‖ grad ·‖L2(Ω), since all elements ofQN(Ω) vanish
on Γ0.

Corollary 3.3.8 LetΩ be a domain. The family (q�)1≤�≤K is free, so the dimension
of the vector space QN(Ω) is equal to K . In addition, the matrix C is real-valued,
symmetric positive-definite. Finally, given α = (αm)1≤m≤K , the vector field defined
by vα =∑1≤m≤K αm grad qm is such that

〈vα · n, 1〉H 1/2(Γ�)
=

∑
1≤m≤K

C�mαm, for 1 ≤ � ≤ K.

Proof First, (q�)1≤�≤K is a free family: indeed,
∑

1≤�≤K c�q� = 0 in Ω implies
0 = (∑1≤�≤K c�q�)|Γm = cm for 1 ≤ m ≤ K .
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Next, the functions (q�)1≤�≤K are all real-valued. Indeed, given �, one has q� ∈
H 1(Ω), Δq� = 0 in Ω , q� = δ�m on Γm, ∀m, so q� = q� by uniqueness. So are
their gradients (grad q�)1≤�≤K , and likewise for the matrix C.
The matrix C is Hermitian, hence symmetric, by definition.
Let α = (α�)1≤�≤K , then

(Cα|α) =
∑
�,m

C�mαmα� = (grad(
∑
m

αmqm)| grad(
∑
�

α�q�))

= ‖ grad q‖2
L2(Ω)

≥ 0, where q =
∑
�

α�q�.

But q ∈ QN(Ω), so (Cα|α) = 0 if, and only if, q = 0, that is, α = 0. The matrix C
is positive-definite.
For 1 ≤ � ≤ K , the last result is obtained by integrating by parts (cf. (2.25)):

〈vα · n, 1〉H 1/2(Γ�)
= 〈vα · n, q�〉H 1/2(Γ )

=
∑

1≤m≤K
αm〈grad qm · n, q�〉H 1/2(Γ )

=
∑

1≤m≤K
αm(grad qm| gradq�) =

∑
1≤m≤K

C�mαm,

which concludes the proof. �
We are now in a position to prove our claim.

Theorem 3.3.9 Let Ω be a domain. Then, given v ∈ L2(Ω), it holds that

curl v = 0 inΩ,
v × n|Γ = 0

}
⇐⇒ ∃p ∈ H 1

∂Ω(Ω), v = gradp.

Moreover, the scalar potential p is unique, and |p|H 1(Ω) = ‖v‖L2(Ω).

Proof The result is obtained in three steps:

1. According to Proposition 3.3.6, there exists one, and only one, q ∈ H 1
0 (Ω) such

thatΔq = div v inΩ : the field v′ = v−gradq of L2(Ω) is such that curl v′ = 0
and div v′ = 0 in Ω , and v′ × n|Γ = 0 (the last property is a consequence of
Proposition 2.2.10).

2. Define the column vector β with entries β� = 〈v′ · n, 1〉H 1/2(Γ�)
, 1 ≤ � ≤ K .

Then, let v′′ = v′ − ∑
1≤m≤K αm grad qm, where α = (αm)m solves the

linear system Cα = β. The field v′′ of L2(Ω) is such that curl v′′ = 0 and
div v′′ = 0 in Ω , and v′′ × n|Γ = 0 (again, the last property is a consequence
of Proposition 2.2.10, applied either to qm − 1 in a neighborhood of Γm, or to
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qm elsewhere). Due to Corollary 3.3.8, one finds 〈v′′ · n, 1〉H 1/2(Γ�)
= 0 for

1 ≤ � ≤ K .
3. Thanks to Theorem 3.4.1 below, there exists w ∈ H 1(Ω) such that v′′ = curl w

in Ω . Hence, integrating by parts (2.20) one last time, one finds

‖v′′‖2
L2(Ω)

= (v′′| curl w) = 0.

So, v′′ = 0, that is, v = gradp with p := q +∑1≤m≤K αmqm ∈ H 1(Ω) and
p|Γk = αk , ∀k.
The proof of the converse assertion is obvious. �

Above, we exhibited vector fields that are curl- and divergence-free, with vanishing
tangential trace: grad q , for q ∈ QN(Ω).

Let us check now that span1≤k≤K(grad qk) is exactly the set of curl- and
divergence-free L2(Ω) vector fields, with vanishing tangential trace. Introduce

ZN(Ω) := H 0(curl 0,Ω) ∩ H (div 0,Ω).

Proposition 3.3.10 Let Ω be a domain. One has ZN(Ω) = grad[QN(Ω)].
As a consequence, an element v of ZN(Ω) is characterized by the fluxes (〈v ·
n, 1〉H 1/2(Γ�)

)1≤�≤K .

Proof One has grad q ⊂ ZN(Ω) for all q ∈ QN(Ω).
Let v ∈ ZN(Ω): according to Theorem 3.3.9, there exists p ∈ H 1

∂Ω(Ω) such that
v = gradp inΩ . If we let q = p−∑1≤m≤K(p|Γm)qm, it holds that q ∈ H 1

0 (Ω) and
Δq = 0 inΩ . From Proposition 3.3.6, we find that q = 0, hence v ∈ grad[QN(Ω)].
The last result is a straightforward consequence of Corollary 3.3.8. �
In the same spirit, one can look for L2(Ω) vector fields which are curl- and
divergence-free, with vanishing normal trace:

ZT (Ω) := H (curl 0,Ω) ∩ H 0(div 0,Ω).

Consider first the case of a topologically trivial domain.

Proposition 3.3.11 Let Ω be a topologically trivial domain: ZT (Ω) = {0}.
Proof Let v ∈ ZT (Ω). From Theorem 3.3.1, there exists p ∈ H 1(Ω) such that v =
gradp in Ω . In addition, v ∈ H 0(div,Ω) with div v = 0 in Ω , so the integration-
by-parts formula (2.25) yields ‖v‖2

L2(Ω)
= (v| gradp) = 0, which concludes the

proof. �
On the other hand, if the domain is topologically non-trivial, it turns out that the
relevant space of scalar potentials is, in this case, P(Ω̇). As a matter of fact, the
fields are curl-free, but not with a vanishing tangential trace, so the extraction of
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potentials stems from Theorem 3.3.2. More precisely, introduce

Pzmv(Ω̇) := {q̇ ∈ P(Ω̇) :
∫
Ω̇

q̇ dx = 0} ; one has P(Ω̇) = Pzmv(Ω̇)⊕ C.

Proposition 3.3.12 Let Ω be a domain such that (Top)I>0 is fulfilled. Given 1 ≤
j ≤ I , let ṗj be defined as the unique solution to

{
Find ṗj ∈ Pzmv(Ω̇) such that
∀q̇ ∈ Pzmv(Ω̇), (grad ṗj , grad q̇)L2(Ω̇) = [q̇]Σj . (3.8)

Then, vj = ˜grad ṗj ∈ L2(Ω) is such that

curl vj = 0, div vj = 0 inΩ, vj · n = 0 on Γ, and 〈vj · n, 1〉Σi = δij , ∀i.

Proof There exists one, and only one, solution to the variational formulation (3.8).5

Furthermore, we remark that it holds that (grad ṗj , grad cst)L2(Ω̇) = 0 = [cst]Σj
for constant fields in Ω̇ . Hence, ṗj solves the variational formulation for all q̇ ∈
P(Ω̇).

Let vj = ˜grad ṗj ∈ L2(Ω). Due to Theorem 3.3.2, one knows that curl vj = 0 in
Ω . Then, given g ∈ D(Ω),

〈div vj , g〉 = −(vj | gradg) = −(vj , gradg)L2(Ω̇)

(3.8)= 0.

It follows that div vj = 0 in Ω , and vj ∈ H (div,Ω). Next, given g ∈ H 1(Ω), one
finds by integration by parts (cf. (2.25))

〈vj · n, g〉H 1/2(Γ ) = (div vj |g)+ (vj | gradg)
(3.8)= 0.

By the surjectivity of the trace mapping, we obtain that vj ·n|Γ = 0 inH−1/2(Γ ). In
particular, vj ∈ H 0(div,Ω), and one can use the integration-by-parts formula (3.6)
with vj and ṙi for 1 ≤ i ≤ I , where (ṙi)i is defined as in Proposition 3.3.3. This
leads to

〈vj · n, 1〉Σi = (div vj , ṙi )L2(Ω̇) + (vj , grad ṙi )L2(Ω̇)

(3.8)= δij .

�

5According to the Lax-Milgram Theorem 4.2.8 and to the Poincaré-Wirtinger inequality of
Theorem 2.1.37 in Pzmv(Ω̇), the variational formulation (3.8) is well-posed.
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Let us introduce the space of scalar potentials

QT (Ω̇) := span1≤j≤I (ṗj ).

Proposition 3.3.13 Let Ω be a domain such that (Top)I>0 is fulfilled. Then, the
dimension of the vector space ZT (Ω) is equal to I . Furthermore, a basis for

ZT (Ω) is the set of functions ( ˜grad q̇j )1≤j≤I , where each q̇j ∈ QT (Ω̇) is such
that [q̇j ]Σi = δij , for 1 ≤ i ≤ I .
Proof For 1 ≤ j ≤ I , let vj = ˜grad ṗj ∈ H 0(div,Ω). According to
Proposition 3.3.12, it holds that spanj (vj ) ⊂ ZT (Ω). Moreover, (vj )j is a free
family: indeed,

∑
j cjvj = 0 in Ω implies 0 = 〈∑j cjvj · n, 1〉Σi = ci for

all i.
Let v ∈ ZT (Ω): thanks to Theorem 3.3.2, there exists ṗ ∈ P(Ω̇) such that

v = ˜grad ṗ in Ω . If we let q̇ = ṗ − ∑
j 〈v · n, 1〉Σi ṗj , it holds that q̇ ∈

P(Ω̇), with ˜grad q̇ ∈ H 0(div,Ω), and 〈grad q̇ · n, 1〉Σi = 0 for all i. In

particular, one can use the integration-by-parts formula (3.6) with ˜grad q̇ and q̇
to find

‖˜grad q̇‖2
L2(Ω)

= (grad q̇, grad q̇)L2(Ω̇) =
∑
i

〈grad q̇ · n, [q̇]Σi 〉Σi

=
∑
i

[q̇]Σi 〈grad q̇ · n, 1〉Σi = 0.

So, we conclude that v =∑j 〈v · n, 1〉Σivj belongs to spanj (vj ).

Finally, we prove that we can build an alternate basis for QT (Ω̇), namely
(q̇j )j such that [q̇j ]Σi = δij , for all i, j . For that, we introduce the
mapping

Jump :
{
QT (Ω̇)→ CI

q̇ �→ ([q̇]Σi )1≤i≤I
and prove it is a bijection, by checking that its kernel is reduced to {0}.
If we let q̇ ∈ ker(Jump), we compute that ‖˜grad q̇‖2

L2(Ω)
= 0 (cf. the

above integration by parts), so q̇ = 0 and the characterization by jumps is
shown. �
For later use, we introduce the so-called inductance matrix

Lij := (grad q̇j , grad q̇i)L2(Ω̇), 1 ≤ i, j ≤ I.

Corollary 3.3.14 The matrix L is real-valued, symmetric positive-definite.
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Proof The functions (ṗj )1≤j≤I are all real-valued: given j , ṗj ∈ Pzmv(Ω̇) solves
the variational formulation (3.8), so ṗj = ṗj by uniqueness. Then, given i, writing
q̇i as the linear combination q̇i = ∑

j cj ṗj with complex coefficients (cj )j and
using the characterization of q̇i via its jumps, one obtains

∀i ′,
∑
j

cj [ṗj ]Σi′ = δii′ .

This is an invertible linear system in the coefficients (cj )j , with real-valued matrix
([ṗj ]Σi′ )ji′ and real-valued right-hand side. Therefore, the coefficients are real, and
as consequence, q̇i is a real-valued function.

So are their gradients ( ˜grad q̇i)1≤i≤I , and likewise for the matrix L.
The matrix L is symmetric by definition.
Let α = (αi)1≤i≤I , then

(Lα|α) = ‖ grad q̇‖2
L2(Ω̇)

≥ 0, where q̇ =
∑
i

αi q̇i .

According to Proposition 3.3.13, (grad q̇i)1≤i≤I is a free family, so (Lα|α) = 0 if,
and only if, α = 0. The matrix L is positive-definite. �

Let us conclude this section with a study of the regularity of curl-free and
divergence-free vector fields with a vanishing trace.

Theorem 3.3.15 Let Ω be a domain, then ZN(Ω) ⊂ H 1/2(Ω).
Assume, moreover, that (Top)I>0 is fulfilled inΩ , then ZT (Ω) ⊂ H 1/2(Ω).

Proof Let v ∈ ZN(Ω): according to Proposition 3.3.10, there exists p ∈ QN(Ω)
such that v = gradp. By construction,Δp = 0 inΩ , and moreover,p|Γ ∈ H 1(Γ ).
Thanks to [143], one has p ∈ H 3/2(Ω), hence v = gradp ∈ H 1/2(Ω). This proves
the first part of the claim.
Let v ∈ ZT (Ω): we know from Proposition 3.3.13 that there exists ṗ ∈ QT (Ω̇)
such that v = ˜grad ṗ. However, ˜̇p �∈ H 1(Ω) (use Propositions 3.3.3 and 3.3.11),
except if v = 0.
One may address this difficulty by using a partition of unity. Let (χi)1≤i≤I be such
that for all i: χi ∈ C∞(Ω, [0, 1])with connected support, χi = 1 in a neighborhood
of Σi , and supp(χi′) ∩ Σi = ∅ for i ′ �= i. One may further define connected, open
subsets (Oi )1≤i≤I ofΩ with Lipschitz boundary such that supp(χi) ∩Ω ⊂ Oi and
Oi′ ∩Σi = ∅, for i �= i ′. Each subset is split into two parts, O−

i and O+
i , according

to the orientation of the normal vector to Σi , so that [z]Σi = z|∂O+
i
− z|∂O−

i
. By

defining χ0 = 1 −∑1≤i≤I χi , one gets a partition of unity (χι)0≤ι≤I onΩ .
Next, let ṗι = χιṗ for all ι: by construction, ˜̇p0 ∈ H 1(Ω), whereas ṗi ∈ P(Ω̇) for
1 ≤ i ≤ I . Introduce, for 1 ≤ i ≤ I , pi ∈ L2(Oi ) defined as pi = ṗi in O−

i and
pi = ṗi − [ṗi]Σi in O+

i . As [pi]Σi = 0, it holds that pi ∈ H 1(Oi ), and in addition,
Δpi ∈ L2(Oi ) and ∂npi |∂Oi ∈ L2(∂Oi ). So, we obtain that pi ∈ H 3/2(Oi ), cf.
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[87, 143], which implies ˜grad ṗi = gradpi ∈ H 1/2(Oi ). It follows that ˜grad ṗi
belongs to H 1/2(Ω), because ˜grad ṗi vanishes in a neighborhood of ∂Oi ∩Ω (and
˜grad ṗi = 0 in Ω \Oi). Likewise, ˜grad ṗ0 = grad ˜̇p0 belongs to H 1/2(Ω). Using

the definition of the partition of unity, one concludes that v = ˜grad ṗ ∈ H 1/2(Ω).
This proves the second part of the claim. �

3.4 Extraction of Vector Potentials

We consider now the case of divergence-free fields of L2(Ω), for which one can
prove the fundamental result below.

Theorem 3.4.1 Let Ω be a domain. Then, given v ∈ L2(Ω), it holds that

div v = 0 inΩ,
〈v · n, 1〉H 1/2(Γk)

= 0, ∀k
}

⇐⇒
{∃w ∈ H 1

zmv(Ω),

div w = 0,
v = curl w. (3.9)

Furthermore, there exists C > 0 such that for all v, one may choose a vector
potential w that fulfills

‖w‖H 1(Ω) ≤ C ‖v‖L2(Ω).

Remark 3.4.2 Assuming that v writes v = curl w with w ∈ H (curl,Ω), let us
briefly comment on the conditions 〈v ·n, 1〉H 1/2(Γk)

= 0, for 0 ≤ k ≤ K . For k > 0,
define qk ∈ H 1(Ω) such that qk is a basis function of QN(Ω). Then, one obtains
by integrating by parts twice:

〈v · n, 1〉H 1/2(Γk)
= 〈v · n, qk〉H 1/2(Γ ) = (v| grad qk) = (curl w| gradqk) = 0,

because grad qk ∈ H 0(curl,Ω). On the other hand, for k = 0, one has simply

〈v · n, 1〉H 1/2(Γ0)
= −

∑
1≤k≤K

〈v · n, 1〉H 1/2(Γk)
= 0.

Proof We use the notations of Sect. 3.2. The result is obtained in four steps:

1. Define6 (q�)0≤�≤K by:

– q0 ∈ H 1
zmv(Ω0) s.t. Δq0 = 0 in Ω0, ∂nq0 = v · n on Γ0, ∂nq0 = 0 on ∂O ;

6Given �, the problem is equivalent to the variational formulation

{
Find q� ∈ H 1

zmv(Ω�) such that
∀q ∈ H 1

zmv(Ω�), (grad q�| grad q) = 〈v · n, q〉H 1/2(Γ�)

.
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– q� ∈ H 1
zmv(Ω�) s.t. Δq� = 0 in Ω�, ∂nq� = v · n on Γ�, for � > 0.

By construction, the function v̄ ∈ L2(R3) defined by

v̄|Ω = v, v̄|Ω� = grad q� for 0 ≤ � ≤ K, v̄|R3\O = 0

belongs to H (div,R3) (see Proposition 2.2.30), and it is divergence-free.
2. Let v̂ be the Fourier transform of v̄. Writing the Eq. (3.9) in R3 for v̄ with w̄ as

the vector potential, and then performing the Fourier transform, one sees that the
Fourier transform ŵ of w̄ is governed by

v̂(k) = ık × ŵ(k), ık · ŵ(k) = 0, ∀k ∈ R3.

Solving this linear system in ŵp, p = 1, 2, 3, yields the solution

ŵ1 = ı k2v̂3 − k3v̂2

|k|2 , ŵ2 = ı k3v̂1 − k1v̂3

|k|2 , ŵ3 = ı k1v̂2 − k2v̂1

|k|2 .

In particular, applying the inverse Fourier transform to ŵ and denoting by w− its
restriction toΩ , it holds that v = curl w− and div w− = 0 inΩ .

3. Let us study the regularity of ŵ and w−. For that, introduce a cut-off functionχ ∈
D(R) equal to 1 in a neighborhood of 0, and split ŵ as

ŵ(k) = χ(|k|)ŵ(k)+ (1 − χ(|k|))ŵ(k).

Note that k �→ χ(|k|)ŵ(k) has a compact support, so its inverse Fourier
transform is analytic (cf. [185, p. 272]), and in particular, its restriction to Ω
belongs to L2(Ω). On the other hand, k �→ (1 − χ(|k|))ŵ(k) vanishes in a
neighborhood of 0. Thanks to its characterization elsewhere (as a function of
v̂), it belongs to L2(R3), and so does its inverse Fourier transform. Therefore,
w− ∈ L2(Ω).
By direct computations, one now finds |kmŵp| ≤ 3

2 maxp |v̂p|, for m,p =
1, 2, 3. Hence, kmŵp belongs to L2(R3) with ‖kmŵp‖L2(R3)

≤ 3
2‖v̂‖L2(R3)

, and

so ∂mw−
p is in L2(Ω), for m,p = 1, 2, 3. We conclude that w− ∈ H 1(Ω).

This variational formulation is well-posed, cf. the Lax-Milgram Theorem 4.2.8 and the Poincaré-
Wirtinger inequality of Theorem 2.1.37 in H 1

zmv(Ω�). Due to the continuity of the trace mapping
γ0 (Theorem 2.1.62), choosing q = q� yields ‖ grad q�‖L2(Ω�)

≤ C� ‖v · n‖H−1/2(Γ�)
with C� > 0

independent of v. Finally, using the continuity of the normal trace mapping (Theorem 2.2.18), one
gets the bound

‖ grad q�‖L2(Ω�)
≤ C′

� ‖v‖H (div,Ω),

with C′
� > 0 independent of v.
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4. Remark that one can add to w− any constant field cst ∈ R3, and still have v =
curl(w−+cst) and div (w−+cst) = 0 inΩ . Therefore, one can choose a vector
potential—now called w—so that all the conditions (3.9) hold.
Let us now bound the H 1(Ω) semi-norm of the vector potential. According to
the previous bounds on (kmŵp)m,p=1,2,3, we have that |w|H 1(Ω) ≤ C ‖v̂‖

L2(R3)

for some constant C > 0 independent of v̂. In addition, one has ‖v̂‖
L2(R3)

=
(2π)−3/2‖v̄‖

L2(R3)
and, by definition of v̄:

– ‖v̄‖L2(Ω) = ‖v‖L2(Ω) ;
– ‖v̄‖L2(Ω�)

= ‖ grad q�‖L2(Ω�)
≤ C′

� ‖v‖H (div,Ω), 0 ≤ � ≤ K ;
– ‖v̄‖

L2(R3\O) = 0.

Recalling that div v = 0 in Ω , we obtain that |w|H 1(Ω) ≤ C′ ‖v‖L2(Ω), for
some constant C′ > 0 independent of v. Since we chose the potential vector
w in H 1

zmv(Ω), one can use the Poincaré-Wirtinger inequality one last time to
conclude that it actually holds that

‖w‖H 1(Ω) ≤ C′′ ‖v‖L2(Ω),

for some constant C′′ > 0 independent of v, which concludes the proof. �
With the result of Theorem 3.4.1, we are now in a position to exhibit some useful

properties of the function space

XN(Ω) := H 0(curl,Ω) ∩ H (div,Ω).

The first one is an inequality that allows one to bound the L2(Ω)-norm of elements
of XN(Ω), similar to the Poincaré inequalities. The second one is the compact
imbedding of XN(Ω) in L2(Ω). Both results were first discovered by Weber [204].

Theorem 3.4.3 (First Weber Inequality) Let Ω be a domain. There exists
CW > 0 such that

∀y ∈ XN(Ω),

‖y‖L2(Ω) ≤ CW {‖ curl y‖L2(Ω) + ‖div y‖L2(Ω) +
∑

1≤k≤K
|〈y · n, 1〉H 1/2(Γk)

|}.

Proof Let us proceed by contradiction: if the claim is not true, then

∃(ym)m ∈ XN(Ω)
N such that ∀m, ‖ym‖L2(Ω) = 1,

‖ curl ym‖L2(Ω) + ‖div ym‖L2(Ω) +
∑

1≤k≤K |〈ym · n, 1〉H 1/2(Γk)
| ≤ 1

m+1 .
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The contradiction is reached in three steps:

1. Let q0
m ∈ H 1

0 (Ω) be the unique solution to

{
Find q0

m ∈ H 1
0 (Ω) such that

∀q ∈ H 1
0 (Ω), (grad q0

m| gradq) = (ym| grad q)
.

Because ym belongs to H (div,Ω), taking q = q0
m above, one gets, by integrating

by parts and using the Cauchy-Schwarz inequality,

‖ grad q0
m‖2

L2(Ω)
= (ym| gradq0

m)=−(div ym|q0
m) ≤ ‖div ym‖L2(Ω)‖q0

m‖L2(Ω).

Using the Poincaré inequality, one gets that

‖ grad q0
m‖L2(Ω) ≤ C ‖div ym‖L2(Ω),

with C > 0 independent of ym. Hence, limm→∞ ‖q0
m‖H 1(Ω) = 0.

2. Let qΓm ∈ QN(Ω) be the unique7 solution to

{
Find qΓm ∈ QN(Ω) such that
∀q ∈ QN(Ω), (grad qΓm | gradq) = (ym| gradq)

.

Since qΓm belongs to QN(Ω), it is determined by its (constant) values on Γ� for
1 ≤ � ≤ K: let us write qΓm = ∑

1≤�≤K(qΓm|Γ�)q�. Choosing q = qΓm and
integrating by parts, one finds

‖ grad qΓm‖2
L2(Ω)

= −(div ym|qΓm )+ 〈ym · n, qΓm 〉H 1/2(Γ )

= −(div ym|qΓm )+
∑

1≤�≤K
qΓm |Γ� 〈ym · n, q�〉H 1/2(Γ )

= −(div ym|qΓm )+
∑

1≤�≤K
qΓm |Γ� 〈ym · n, 1〉H 1/2(Γ�)

.

On the finite-dimensional vector space QN(Ω), all norms are equivalent, and
among them, q �→ ‖q‖L2(Ω), q �→ ‖ grad q‖L2(Ω) and q �→ |(q|Γ�)1≤�≤K |p,
1 ≤ p ≤ ∞. Using the Cauchy-Schwarz inequality, one gets that

‖ grad qΓm‖L2(Ω) ≤ C{‖div ym‖L2(Ω) +
∑

1≤k≤K
|〈ym · n, 1〉H 1/2(Γk)

|},

with C > 0 independent of ym. Hence, limm→∞ ‖qΓm ‖H 1(Ω) = 0.

7The well-posedness of the variational formulation in QN(Ω) follows from the Lax-Milgram
Theorem 4.2.8 and from the Poincaré inequality of Proposition 2.1.66.



132 3 Complements of Applied Functional Analysis

3. Setting now zm := ym − grad(q0
m + qΓm ) ∈ H 0(curl,Ω), one has, by

construction, curl zm = curl ym and div zm = 0 in Ω , and in addition,
〈zm · n, 1〉H 1/2(Γk)

= 0 for 1 ≤ k ≤ K . For the latter, given 1 ≤ k ≤ K ,
noting that (gradq0

m| grad qk) = 0 because Δqk = 0 in Ω and q0
m|Γ = 0, it

follows from the definition of qΓm and integration by parts that:

0 = (ym| gradqk)− (gradqΓm | gradqk) = (zm| grad qk)

= 〈zm · n, qk〉H 1/2(Γ ) = 〈zm · n, 1〉H 1/2(Γk)
.

According to Theorem 3.4.1, there exists wm ∈ H 1
zmv(Ω) such that zm =

curl wm in Ω , with ‖wm‖H 1(Ω) ≤ C ‖zm‖L2(Ω) for C > 0 independent of zm.
From the integration by parts

‖zm‖2
L2(Ω)

= (zm| curl wm) = (curl zm|wm) ≤ ‖ curl ym‖L2(Ω)‖wm‖L2(Ω),

it follows that ‖zm‖L2(Ω) ≤ C ‖ curl ym‖L2(Ω) and limm→∞ ‖zm‖L2(Ω) = 0.

One concludes that limm→∞ ‖zm + grad(q0
m + qΓm )‖L2(Ω) = 0, whereas by

definition, ym = zm + grad(q0
m + qΓm ), which contradicts the initial assumption

that ‖ym‖L2(Ω) = 1 for all m. �
A consequence of the first Weber inequality is that

(w,w′) �→ (curl w| curl w′)+ (div w|div w′)

+
∑

1≤k≤K
〈w · n, 1〉H 1/2(Γk)

〈w′ · n, 1〉H 1/2(Γk)

defines a scalar product on XN(Ω), denoted by (·, ·)XN(Ω), its associated norm
‖ · ‖XN (Ω) being equivalent to the H (curl,Ω) ∩ H (div,Ω)-norm.

Theorem 3.4.4 In a domainΩ , it holds that XN(Ω) ⊂c L2(Ω).

Remark 3.4.5 Albeit the proof below is direct, its structure is similar to that one of
the proof of the first Weber inequality.

Proof Consider (ym)m a bounded sequence of XN(Ω). Following the proof of
Theorem 3.4.3 and using the same notations, we build three sequences (q0

m)m,
(qΓm )m and (wm)m such that ym = curl wm + grad(q0

m + qΓm ) for all m, with scalar
potentials q0

m and qΓm defined as the solution to variational formulations respectively
set in H 1

0 (Ω) and QN(Ω), and wm as a vector potential that belongs to H 1
zmv(Ω).

Since one has
⎧⎪⎨
⎪⎩
‖ grad q0

m‖L2(Ω) ≤ C′ ‖div ym‖L2(Ω)

‖ grad qΓm‖L2(Ω) ≤ C′{‖div ym‖L2(Ω) +
∑

1≤k≤K |〈ym · n, 1〉H 1/2(Γk)
|}

‖wm‖H 1(Ω) ≤ C′‖ curl ym‖L2(Ω)

,
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with C′ > 0 independent of m, the boundedness of the sequence (ym)m implies
that the three sequences of potentials are bounded in H 1(Ω)-norm. Observe first
that the potentials (qΓm )m belong to the finite-dimensional vector space QN(Ω), so
one can extract a subsequence, still denoted by (qΓm )m, that converges in H 1(Ω)-
norm. Thanks to Proposition 2.1.43, one can extract subsequences (with the same
indices), still denoted by (qΓ0 )m and (wm)m, that converge in L2(Ω) for the scalar
potential, respectively in L2(Ω) for the vector potential. Let us prove now that both
subsequences (grad q0

m)m and (curl wm)m converge in L2(Ω).
Going back to the definition of the scalar potentials (q0

m)m and denoting ymn :=
ym − yn, q

0
mn := q0

m − q0
n , one has, in particular,

∀q ∈ H 1
0 (Ω), (grad q0

mn| gradq) = (ymn| gradq) = −(div ymn|q),

therefore, by taking q = q0
mn, it follows that

‖ grad q0
mn‖2

L2(Ω)
≤ ‖div ymn‖L2(Ω) ‖q0

mn‖L2(Ω)

≤ 2 sup
m
(‖div ym‖L2(Ω)) ‖q0

mn‖L2(Ω).

So, (grad q0
m)m is a Cauchy sequence in L2(Ω), and it converges in this space.

Note that curl wm ∈ H 0(curl,Ω) with curl curl wm = curl ym. Finally, denoting
wmn := wm − wn, we find, by integration by parts, that

‖ curl wmn‖2
L2(Ω)

= (curl ymn|wmn) ≤ 2 sup
m
(‖ curl ym‖L2(Ω)) ‖wmn‖L2(Ω).

Then, (curl wm)m is a Cauchy, hence converging, sequence in L2(Ω).
Recall that ym = curl wm + grad(q0

m + qΓm ), so we conclude that the subsequence
(ym)m converges in L2(Ω). �

3.5 Extraction of Vector Potentials—Vanishing Normal
Trace

We consider now the case of divergence-free fields of L2(Ω)with vanishing normal
trace. As we already saw in Sect. 3.3 for elements of ZT (Ω), if the domainΩ is not
topologically trivial, one has to take cuts into account explicitly.
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Theorem 3.5.1 Let Ω be a domain such that (Top)I=0 or (Top)I>0 is fulfilled.
Then, given v ∈ L2(Ω), it holds that

div v = 0 in Ω,
v · n|Γ = 0,
〈v · n, 1〉Σi = 0, ∀i

⎫⎬
⎭ ⇐⇒

⎧⎨
⎩
∃w ∈ H 0(curl,Ω),
div w = 0,
〈w · n, 1〉H 1/2(Γk)

= 0, ∀k
v = curl w. (3.10)

Moreover, w is unique, and there exists C > 0 independent of v such that

‖w‖H (curl,Ω) ≤ C ‖v‖L2(Ω).

Remark 3.5.2 Assuming that v writes v = curl w with w ∈ H 0(curl,Ω), one has
v ∈ H 0(div,Ω) according to Proposition 2.2.10. Now, using the functions (ṙi )1≤i≤I
as they are defined in Proposition 3.3.3, one obtains, by integrating by parts twice
((3.6), then (2.20)), for each i,

〈v · n, 1〉Σi =
∑
j

〈v · n, [ṙi]Σj 〉Σj

= (curl w, grad ṙi )L2(Ω̇) = (curl w| ˜grad ṙi ) = 0.

In the case when (Top)I=0 is fulfilled, ZT (Ω) = {0}, and there are no vanishing
flux conditions for the field v on the cuts.

Proof We note that the vector potential w, if it exists, is unique. Indeed, if w1 and w2
both fulfill all the conditions (3.10), then δw := w1 − w2 ∈ XN(Ω), curl δw = 0
and div δw = 0 in Ω , with 〈δw · n, 1〉H 1/2(Γk)

= 0, for all k. Hence, δw = 0, so
uniqueness follows.
Next, introducing the (closed) subspace of XN(Ω):

XΓN(Ω) := {f ∈ XN(Ω) : 〈f · n, 1〉H 1/2(Γk)
= 0, 1 ≤ k ≤ K},

one can solve the variational formulation8

{
Find w ∈ XΓN(Ω) such that
∀w′ ∈ XΓN(Ω), (curl w| curl w′)+ (div w|div w′) = (v| curl w′) .

By construction, one has 〈w · n, 1〉H 1/2(Γk)
= 0, for 1 ≤ k ≤ K . For k = 0, the

property is checked below.
Let us prove now that div w = 0 in Ω . Given g ∈ L2(Ω), there is one, and only
one, q ∈ H 1

0 (Ω) such that Δq = g in Ω . Define w− = grad q ∈ H 0(curl,Ω)

8Noting that (w,w′) �→ (curl w| curl w′)+(div w|div w′) is equal to the scalar product (·, ·)XN (Ω)
on XΓN (Ω), well-posedness simply stems from the Riesz Theorem 4.2.1.
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(cf. Proposition 2.2.10), with curl w− = 0 in Ω : one has div w− = g ∈ L2(Ω),
so w− ∈ XN(Ω). Then, proceeding as in the proof of Theorem 3.3.9, define the
column vector β with entries β� = 〈w− · n, 1〉H 1/2(Γ�)

, 1 ≤ � ≤ K , and set w′ =
w− −∑1≤m≤K αm grad qm, where α = (αm)m solves the linear system with the
capacitance matrix Cα = β. By construction, the field w′ belongs to XΓN(Ω), with
curl w′ = 0, div w′ = g inΩ . Using this test function in the variational formulation,
one gets that (div w|g) = 0. This is true for all g ∈ L2(Ω), so that div w = 0 in Ω .
In particular, it follows that 〈w · n, 1〉H 1/2(Γ0)

= (div w|1) = 0.
Let us prove next that curl w = v in Ω . Because v · n|Γ = 0, f := curl w −
v belongs to H 0(div,Ω) (cf. Proposition 2.2.10) and since div v = 0 in Ω by
assumption, one has div f = 0 inΩ .
Remark that D(Ω) is a subset of XΓN(Ω), so one can take w′ ∈ D(Ω) and use it as
a test function in the variational formulation:

〈curl f ,w′〉 = (f | curl w′) = (curl w| curl w′)− (v| curl w′) = 0.

Hence, curl f = 0, and so f ∈ ZT (Ω). By assumption, one has 〈v · n, 1〉Σi = 0
for all i and, according to Remark 3.5.2, likewise for curl w, so it holds for f too.
Due to Proposition 3.3.13, we have f = 0, i.e., curl w = v inΩ .
Finally, using the first Weber inequality, we have ‖w‖L2(Ω) ≤ CW ‖ curl w‖L2(Ω),
so we conclude that

‖w‖L2(Ω) + ‖ curl w‖L2(Ω) ≤ (1 + CW) ‖v‖L2(Ω).

�
Thanks to the result of Theorem 3.5.1 regarding the extraction of vector potentials
for fields with vanishing normal trace, we can now derive interesting properties of
the function space

XT (Ω) := H (curl,Ω) ∩ H 0(div,Ω).

The first property allows one to bound the L2(Ω)-norm of elements of XT (Ω),
similar to the Poincaré inequalities, and the second one is the compact imbedding
of XT (Ω) in L2(Ω). Both results were first discovered by Weber [204].

Theorem 3.5.3 (Second Weber Inequality) Let Ω be a domain such that
(Top)I=0 or (Top)I>0 is fulfilled. There exists C′

W > 0 such that

∀y ∈ XT (Ω),

‖y‖L2(Ω) ≤ C′
W {‖ curl y‖L2(Ω) + ‖div y‖L2(Ω) +

∑
1≤i≤I

|〈y · n, 1〉Σi |}.
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Proof Let us proceed by contradiction: if the claim is not true, then

∃(ym)m ∈ XT (Ω)
N such that ∀m, ‖ym‖L2(Ω) = 1,

‖ curl ym‖L2(Ω) + ‖div ym‖L2(Ω) +
∑

1≤i≤I |〈ym · n, 1〉Σi | ≤ 1
m+1 .

Similarly to the proof of the first Weber inequality, we shall reach the contradiction
in three steps:

1. Let q0
m ∈ H 1

zmv(Ω) be the unique solution9 to

{
Find q0

m ∈ H 1
zmv(Ω) such that

∀q ∈ H 1
zmv(Ω), (grad q0

m| grad q) = (ym| gradq)
.

Recall that ym ∈ H 0(div,Ω). Taking q = q0
m above, one gets, by integrating by

parts and using the Cauchy-Schwarz inequality,

‖ grad q0
m‖2

L2(Ω)
≤ ‖div ym‖L2(Ω)‖q0

m‖L2(Ω).

Using the Poincaré-Wirtinger inequality, one gets that

‖ grad q0
m‖L2(Ω) ≤ C ‖div ym‖L2(Ω),

with C > 0 independent of ym. Hence, limm→∞ ‖ grad q0
m‖L2(Ω) = 0.

2. Let q̇Σm ∈ QT (Ω̇) be the unique solution to

{
Find q̇Σm ∈ QT (Ω̇) such that
∀q̇ ∈ QT (Ω̇), (grad q̇Σm , grad q̇)L2(Ω̇) = (ym, grad q̇)L2(Ω̇)

.

Choosing q̇ = q̇Σm and using the integration-by-parts formula (3.6), one finds

‖ grad q̇Σm ‖2
L2(Ω̇)

= −(div ym, q̇
Σ
m )L2(Ω̇) +

∑
1≤i≤I

〈ym · n, [q̇Σm ]Σi 〉Σi

= −(div ym, q̇
Σ
m )L2(Ω̇) +

∑
1≤i≤I

[q̇Σm ]Σi 〈ym · n, 1〉Σi .

9 Due to the Lax-Milgram Theorem 4.2.8 and to the Poincaré-Wirtinger inequality of The-
orem 2.1.37 in H 1

zmv(Ω), the variational formulation is well-posed. In addition, one can
obviously add the case of constant test functions q = cst in the variational formulation:
(grad q0

m| grad cst) = 0 = (ym| grad cst). It follows that all test functions q ∈ H 1(Ω) can
be used, and hence one finds that Δq0

m = div ym inΩ and ∂nq0
m = ym · n = 0 on Γ .
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On the finite-dimensional vector space QT (Ω̇), all norms are equivalent, and
among them, q̇ �→ ‖q̇‖L2(Ω̇), q̇ �→ ‖ grad q̇‖L2(Ω̇) and q̇ �→ |([q̇]Σi )1≤i≤I |p,
1 ≤ p ≤ ∞ (see Proposition 3.3.13 for the last one). Using the Cauchy-Schwarz
inequality, one finds that

‖ grad q̇Σm ‖L2(Ω̇) ≤ C{‖div ym‖L2(Ω) +
∑

1≤i≤I
|〈ym · n, 1〉Σi |},

with C > 0 independent of ym. Hence, limm→∞ ‖ ˜grad q̇Σm ‖L2(Ω) = 0.

3. Setting now zm := ym−grad q0
m− ˜grad q̇Σm ∈ XT (Ω), one has, by construction,

curl zm = curl ym and div zm = 0 inΩ , zm · n = 0 on Γ , and in addition, 〈zm ·
n, 1〉Σi = 0 for 1 ≤ i ≤ I . Indeed, for the basis functions (q̇i)i of QT (Ω̇), one

has (grad q0
m| ˜grad q̇i) = 0, because div (˜grad q̇i) = 0 inΩ and ∂n(˜grad q̇i) = 0

on Γ . On the other hand, it follows from the definition of q̇Σm and integration by
parts (3.6) that, for 1 ≤ i ≤ I ,

0 = (ym, grad q̇i)L2(Ω̇) − (grad q̇Σm , grad q̇i)L2(Ω̇) = (zm, grad q̇i)L2(Ω̇)

=
∑

1≤j≤I
〈zm · n, [q̇i]Σj 〉Σj = 〈zm · n, 1〉Σi .

According to Theorem 3.5.1, there exists wm ∈ XN(Ω) such that zm = curl wm
in Ω , with ‖wm‖H (curl,Ω) ≤ C ‖zm‖L2(Ω) for C > 0 independent of zm. By
integration by parts and with the help of the Cauchy-Schwarz inequality, one
now finds that ‖zm‖2

L2(Ω)
≤ ‖ curl ym‖L2(Ω)‖wm‖L2(Ω). Thus, ‖zm‖L2(Ω) ≤

C ‖ curl ym‖L2(Ω) and limm→∞ ‖zm‖L2(Ω) = 0.

One concludes that limm→∞ ‖zm + gradq0
m + ˜grad q̇Σm ‖L2(Ω) = 0, which

contradicts the assumption that ‖ym‖L2(Ω) = 1 for all m. �
A by-product of the second Weber inequality is that

(w,w′) �→ (curl w| curl w′)+ (div w|div w′)+
∑

1≤i≤I
〈w · n, 1〉Σi 〈w′ · n, 1〉Σi

defines a scalar product on XT (Ω), denoted by (·, ·)XT (Ω), its associated norm ‖ ·
‖XT (Ω) being equivalent to the H (curl,Ω) ∩ H (div,Ω)-norm.

Theorem 3.5.4 Let Ω be a domain such that (Top)I=0 or (Top)I>0 is fulfilled. It
holds that XT (Ω) ⊂c L2(Ω).

Proof Let (ym)m be a bounded sequence of XT (Ω). As in the proof of Theo-
rem 3.5.3, and using the same notations, we build sequences (q0

m)m, (q̇Σm )m and

(wm)m such that ym = curl wm + grad q0
m + ˜grad q̇Σm for all m, with scalar

potentials q0
m and q̇Σm defined as the solution to variational formulations respectively
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set in H 1
zmv(Ω) and QT (Ω̇), and wm as a vector potential that belongs to XN(Ω).

Moreover, the boundedness of (ym)m implies that all three sequences are bounded
in those function spaces.
The potentials (q̇Σm )m belong to the finite-dimensional vector space QT (Ω̇), so
one can extract a subsequence, still denoted by (q̇Σm )m, that converges in H 1(Ω)-
norm. Next, thanks to Proposition 2.1.43, one can extract a subsequence, denoted by
(q0
m)m, that converges in L2(Ω). According to the compact imbedding of XN(Ω) in

L2(Ω) (Theorem 3.4.4), one can finally extract a subsequence, denoted by (wm)m,
that converges in L2(Ω).
Let us prove now that the subsequences (grad q0

m)m and (curl wm)m converge in
L2(Ω). Denoting ymn := ym − yn, q

0
mn := q0

m − q0
n , one has

∀q ∈ H 1
zmv(Ω), (grad q0

mn| grad q) = −(div ymn|q).

By taking q = q0
mn, it follows that

‖ grad q0
mn‖2

L2(Ω)
≤ 2 sup

m
(‖div ym‖L2(Ω)) ‖q0

mn‖L2(Ω).

So, (grad q0
m)m is a Cauchy sequence in L2(Ω), and it converges in this space.

Recall that curl curl wm = curl ym ∈ L2(Ω), so denoting wmn := wm − wn, we
find, by one last integration by parts, that

‖ curl wmn‖2
L2(Ω)

= (curl ymn|wmn) ≤ 2 sup
m
(‖ curl ym‖L2(Ω)) ‖wmn‖L2(Ω).

Then, (curl wm)m is a Cauchy, hence converging, sequence in L2(Ω).

As ym = curl wm + grad q0
m + ˜grad q̇Σm , we conclude that the subsequence (ym)m

converges in L2(Ω). �

3.6 Extraction of Vector Potentials—Complements

In the proofs of the results of Sects. 3.3–3.5, we remark that the fundamental results
(extraction of scalar potentials at Theorem 3.3.1, respectively of vector potentials
at Theorem 3.4.1) are obtained by continuation to R3, and direct estimates of
the norms. On the other hand, all the other proofs rely on solving (well-posed)
variational formulations, for which norm estimates are simply a consequence of
the Lax-Milgram Theorem 4.2.8.
To obtain the compact imbedding results, the proofs—à la Weber [204]—that we
proposed are obtained via the extraction of scalar and vector potentials. In Chap. 6,
we propose another, indirect proof, which relies on the continuous imbeddings of
XN(Ω) (Sect. 6.1.6) and XT (Ω) (Sect. 6.2.6) into fractional-order Sobolev spaces
H s (Ω), for some s > 0 that depends only on the geometry of the domain Ω .
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The additional knowledge on the regularity of elements of XN(Ω) and XT (Ω)

will be used there. The compact imbedding results are then consequences of
Proposition 2.1.43.
If one is looking for a vector potential that does not necessarily belong to H 1(Ω)

for divergence-free fields, one has the result below, which “symmetrizes” the roles
of XT (Ω) and XN(Ω).

Theorem 3.6.1 Let Ω be a domain such that (Top)I=0 or (Top)I>0 is fulfilled.
Then, given v ∈ L2(Ω), it holds that

div v = 0 in Ω,
〈v · n, 1〉H 1/2(Γk)

= 0, ∀k
}

⇐⇒
⎧⎨
⎩
∃w ∈ H 0(div,Ω),
div w = 0,
〈w · n, 1〉Σi = 0, ∀i

v = curl w. (3.11)

Moreover, w is unique, and there exists C > 0 independent of v such that

‖w‖H (curl,Ω) ≤ C ‖v‖L2(Ω).

Remark 3.6.2 In the case when (Top)I=0 is fulfilled, the result holds without the
vanishing flux conditions on the cuts for the vector potential! In this case, we recall
that ZT (Ω) is reduced to {0} (Proposition 3.3.11).

Proof The uniqueness of the vector potential w, if it exists, follows from the second
Weber inequality. Indeed, if w1 and w2 both fulfill all the conditions (3.11), then
δw := w1−w2 ∈ XT (Ω), curl δw = 0 and div δw = 0 inΩ , with 〈δw·n, 1〉Σi = 0,
for all i. Hence, δw = 0, so uniqueness follows.
Next, introducing the (closed) subspace of XT (Ω):

XΣT (Ω) := {f ∈ XT (Ω) : 〈f · n, 1〉Σi = 0, 1 ≤ i ≤ I },

one can solve the variational formulation10

{
Find w ∈ XΣT (Ω) such that
∀w′ ∈ XΣT (Ω), (curl w| curl w′)+ (div w|div w′) = (v| curl w′) .

By construction, one has 〈w · n, 1〉Σi = 0, for 1 ≤ i ≤ I .
Let us prove now that div w = 0 in Ω , which amounts to (div w|g) = 0 for all
g ∈ L2(Ω). First, as w ·n|Γ = 0, we have (div w|1) = 0. Next, given g ∈ L2

zmv(Ω),
there is one, and only one, q ∈ H 1

zmv(Ω) such that11 Δq = g inΩ with ∂nq|Γ = 0.
Define w− = grad q ∈ XT (Ω), with curl w− = 0 and div w− = g ∈ L2(Ω).

Then, set w′ = w− −∑1≤i≤I 〈w− · n, 1〉Σi ˜grad ṗi . By construction, the field w′

10The form (w,w′) �→ (curl w| curl w′)+ (div w|div w′) is equal to the scalar product (·, ·)XT (Ω)
on XΣT (Ω), so well-posedness stems from the Riesz Theorem 4.2.1.
11The problem is equivalent to the variational formulation
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belongs to XΣT (Ω), with curl w′ = 0, div w′ = g in Ω . Using it in the variational
formulation, one gets that (div w|g) = 0.
Let us prove next that curl w = v in Ω . By assumption, div v = 0 in Ω , so the
vector field f := curl w − v belongs to H (div,Ω) with div f = 0 inΩ .
Remark that D(Ω) is a subset of XT (Ω) but not of XΣT (Ω). However, as above,

one can take w− ∈ D(Ω) and build w′ = w− −∑1≤i≤I 〈w− · n, 1〉Σi ˜grad ṗi with
the same divergence and curl and use it as a test function:

〈curl f ,w−〉 = (f | curl w′) = (curl w| curl w′)− (v| curl w′) = 0.

Hence, curl f = 0 inΩ and, in particular, f ∈ H (curl,Ω).
To prove that f ∈ H 0(curl,Ω), that is f × n = 0 in H−1/2(Γ ) (see
Theorem 2.2.24), one has to check that 〈f × n,g〉H 1/2(Γ ) = 0 for all g ∈ H 1(Ω).
With the help of the integration-by-parts formula (2.27) and bearing in mind that
curl f = 0 inΩ , this amounts to checking that (f | curl g) = 0 for all g ∈ H 1(Ω).
For that, let q ∈ H 1

zmv(Ω) be the solution to the variational formulation

{
Find q ∈ H 1

zmv(Ω) such that
∀q ′ ∈ H 1

zmv(Ω), (grad q| gradq ′) = (g| grad q ′) .

By construction, the field w− := g − grad q ∈ L2(Ω), with curl w− = curl g
and div w− = 0 in Ω , and w− · n = 0 on Γ . Once again, the field w′ =
w− −∑1≤i≤I 〈w− · n, 1〉Σi ˜grad ṗi can be used as a test function in the variational
formulation to find

(f | curl g) = (f | curl w′) = (curl w| curl w′)− (v| curl w′) = 0.

Hence, f belongs to ZN(Ω). But we know from Remark 3.4.2 that 〈curl w ·
n, 1〉H 1/2(Γk)

= 0, for all k, so 〈f · n, 1〉H 1/2(Γk)
= 0 follows again for all k by

the assumption on v. Due to Proposition 3.3.10, we have f = 0, i.e., curl w = v in
Ω .
Lastly, we know that ‖w‖L2(Ω) ≤ C′

W ‖ curl w‖L2(Ω) by using the second Weber
inequality, so we conclude that

‖w‖L2(Ω) + ‖ curl w‖L2(Ω) ≤ (1 + C′
W) ‖v‖L2(Ω).

�

{
Find q ∈ H 1

zmv(Ω) such that
∀q ′ ∈ H 1

zmv(Ω), (grad q| grad q ′) = −(g|q ′) .

This variational formulation is well-posed, cf. the Lax-Milgram Theorem 4.2.8 and the Poincaré-
Wirtinger inequality of Theorem 2.1.37 in H 1

zmv(Ω�).



3.6 Extraction of Vector Potentials—Complements 141

On the other hand, one can prove a more precise result about the existence
of H 1(Ω) vector potentials. Namely, that one can choose them with vanishing
normal trace. For that, we introduce a new family of domains, defined by Birman
and Solomyak [48]. As particular cases, smooth domains, curved polyhedra and
axisymmetric domains all belong to this new family.

Definition 3.6.3 The domainΩ is said to be of the A-type if, for any x ∈ ∂Ω , there
exists a neighbourhoodV of x in R3, and C2 diffeomorphism that transformsΩ ∩V
into one of the following types, where (x1, x2, x3) denote the Cartesian coordinates
and (ρ, ) ∈ R+ × S2 the spherical coordinates in R3:

1. [x1 > 0], i.e., x is a regular point;
2. [x1 > 0, x2 > 0], i.e., x is a point on a salient (outward) edge;
3. R3 \ [x1 ≥ 0, x2 ≥ 0], i.e., x is a point on a reentrant (inward) edge;
4. [ρ > 0,  ∈ Ω̃], where Ω̃ ⊂ S2 is a topologically trivial domain. In particular,

if ∂Ω̃ is smooth, x is a conical vertex; if ∂Ω̃ is made of arcs of great circles, x is
a polyhedral vertex.

In a domain of the A-type, one can match the normal traces of H 1(Ω) vector fields
with the traces of the normal derivative of H 2(Ω) scalar fields [48].

Lemma 3.6.4 Let Ω be a domain of the A-type. For any w ∈ H 1(Ω), there exists
q ∈ H 2(Ω) such that

∂q

∂n
|Γ = w · n|Γ and ‖q‖H 2(Ω) ≤ C ‖w‖H 1(Ω),

where C > 0 is independent of w.

Theorem 3.6.5 Let Ω be a domain of the A-type. Then, given v ∈ L2(Ω), it holds
that

div v = 0 in Ω,
〈v · n, 1〉H 1/2(Γk)

= 0, ∀k
}

⇐⇒
{∃w ∈ H 1(Ω),

w · n|Γ = 0,
v = curl w. (3.12)

Furthermore, there exists C > 0 independent of v such that

‖w‖H 1(Ω) ≤ C ‖v‖L2(Ω).

Proof Assume v = curl w, with w ∈ H 1(Ω), and w · n|Γ = 0. Then, div v = 0,
and it is proven as before that 〈v · n, 1〉H 1/2(Γk)

= 0, for 0 ≤ k ≤ K .
Conversely, we know from Theorem 3.4.1 that there exists y ∈ H 1(Ω) such that

v = curl y. Then, according to Lemma 3.6.4, one can build q ∈ H 2(Ω) such that
∂nq = y · n on Γ . Therefore, w = y − gradq is a vector potential that belongs to
H 1(Ω), with w · n|Γ = 0. Moreover, the bound on the H 1(Ω)-norm of w stems
from the bounds on ‖y‖H 1(Ω) and ‖q‖H 2(Ω). �
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If we assume that Ω is topologically trivial, then, for divergence-free fields with
vanishing normal trace, one can propose vector potentials that belong to H 1

0(Ω).

Theorem 3.6.6 Let Ω be a topologically trivial domain. Then, given v ∈ L2(Ω),
it holds that

div v = 0 inΩ,
v · n|Γ = 0

}
⇐⇒ ∃w ∈ H 1

0(Ω), v = curl w.

Furthermore, there exists C > 0 independent of v such that

‖w‖H 1(Ω) ≤ C ‖v‖L2(Ω).

Proof Let v be an element of H 0(div,Ω) such that div v = 0 inΩ .
Define v̄ as its continuation by zero to O. Then, according to Proposition 2.2.30,
one has v̄ ∈ H (div,O), and moreover div v̄ = 0 in O. Now, according to
Theorem 3.4.1, there exists a vector potential ȳ ∈ H 1(O) such that v̄ = curl ȳ
in O and ‖ȳ‖H 1(O) ≤ C ‖v̄‖L2(ȳ) with C > 0 independent of v̄.

Next, we further define y′ as the restriction of ȳ to O \Ω : one has curl y ′ = 0. By
assumption, Ω , and as a consequence, O \ Ω , are topologically trivial. Therefore,
thanks to Theorem 3.3.1 applied to each connected subsetΩk, 0 ≤ k ≤ K , of O\Ω ,
there exists a scalar potential q ′ in H 1(O \ Ω) such that y ′ = grad q ′ in O \ Ω .
But y ′ is in H 1(O \Ω), so q ′ belongs to H 2(O \Ω). It is then possible to define a
continuation q̄ of q ′ to O, with q̄ ∈ H 2(O) (see Proposition 2.1.31).
In O, we set w̄ = ȳ − grad q̄, which is an element of H 1(O). Also, w̄|O\Ω = 0, so

its restriction w toΩ belongs to H 1
0(Ω). And, by construction, curl w = curl y = v

in Ω , which proves the claim if one recalls that continuation and restriction are
continuous mappings. �
Let us conclude with continuous splittings of fields of H 0(curl,Ω) or H (curl,Ω)
in an H 1(Ω) field with a vanishing boundary condition, plus the gradient of an
H 1(Ω) potential.

Theorem 3.6.7 Let Ω be a domain. Then, given y ∈ H 0(curl,Ω), there exists
(yreg, r) ∈ H 1(Ω)×H 1(Ω) such that

y = yreg + grad r, and yreg × n|Γ = 0, r|Γ = 0.

Assume further that Ω is of the A-type. Then, given y ∈ H (curl,Ω), there exists
(yreg, r) ∈ H 1(Ω)×H 1(Ω) such that

y = yreg + grad r, and yreg · n|Γ = 0.

In both cases, there exists C > 0 independent of y such that

‖yreg‖H 1(Ω) + ‖r‖H 1(Ω) ≤ C ‖y‖H (curl,Ω).
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Proof Let y be an element of H 0(curl,Ω). Below, C > 0 generically denotes
constants that are independent of y.
Define ȳ as its continuation by zero to O. According to Proposition 2.2.32, one has
ȳ ∈ H 0(curl,O), with ‖ȳ‖H (curl,O) = ‖y‖H (curl,Ω). In particular, v̄ = curl ȳ
belongs to H 0(div,Ω), with div v̄ = 0 in O. Due to Theorem 3.4.1 (∂O is
connected), there exists w̄ ∈ H 1(O) such that v̄ = curl w̄ in O, with ‖w̄‖H 1(O) ≤
C ‖y‖H (curl,Ω).
Then, the field z̄ = ȳ − w̄ belongs to H (curl,O), with curl z̄ = 0 in O. Due
to Theorem 3.3.1 (O is topologically trivial), there exists p̄ ∈ H 1(O) such that
z̄ = grad p̄ in O, with ‖p̄‖H 1(O) ≤ C ‖y‖H (curl,Ω).
By construction, one has ȳ = w̄ + grad p̄ in O. Recall that ȳ = 0 in O \Ω , so it
follows that grad p̄ = −w̄ in O \Ω , and as a consequence, p̄|O\Ω ∈ H 2(O \Ω).
One can define a continuation q̄ of p̄|O\Ω that belongs to H 2(O), and in addition,
‖q̄‖H 2(O) ≤ C {‖p̄‖H 1(O\Ω) + |p̄|H 2(O\Ω))} ≤ C ‖y‖H (curl,Ω).

Introducing r̄ = p̄ − q̄ ∈ H 1(O), one has r̄ = 0 in O \Ω , so r = r̄|Ω ∈ H 1
0 (Ω),

with ‖r‖H 1(Ω) ≤ C ‖y‖H (curl,Ω). On the other hand, w̄ + grad q̄ ∈ H 1(O), so
yreg = (w̄+ grad q̄)|Ω ∈ H 1(Ω), with ‖yreg‖H 1(Ω) ≤ C ‖y‖H (curl,Ω). Moreover,
one has, inΩ ,

yreg + grad r = (w̄ + grad p̄)|Ω = y,

so that yreg ∈ H 0(curl,Ω), which proves the first claim.
Let y be an element of H (curl,Ω). Below, C > 0 again denotes constants that are
independent of y. Some parts of the proof are identical, so they are only sketched.
Define ȳ as a continuation of y to O such that ‖ȳ‖H (curl,O) ≤ C ‖y‖H (curl,Ω)
and ȳ ∈ H 0(curl,O) (cf. Proposition 2.2.8 and Remark 2.2.9). Let v̄ = curl ȳ ∈
H 0(div,Ω), with div v̄ = 0 in O. As above, there exists w̄ ∈ H 1(O) such that
v̄ = curl w̄ in O, with ‖w̄‖H 1(O) ≤ C ‖y‖H (curl,Ω). The field ȳ − w̄ is curl-free in

O, so there exists p̄ ∈ H 1(O) such that ȳ − w̄ = grad p̄ in O, with ‖p̄‖H 1(O) ≤
C ‖y‖H (curl,Ω). Clearly, one has ȳ = w̄ + grad p̄ in O.
Let w = w̄|Ω . According to Lemma 3.6.4 (Ω is of the A-type), there exists q ∈
H 2(Ω) such that ∂nq|Γ = w · n|Γ , and ‖q‖H 2(Ω) ≤ C ‖y‖H (curl,Ω).
Introducing r = p̄|Ω + q ∈ H 1(Ω), one has ‖r‖H 1(Ω) ≤ C ‖y‖H (curl,Ω). On the
other hand, yreg = w+grad q ∈ H 1(Ω), with ‖yreg‖H 1(Ω) ≤ C ‖y‖H (curl,Ω) and
yreg · n|Γ = 0. Finally, one has, by construction,

y = yreg + grad r inΩ.

�
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3.7 Helmholtz Decompositions

In a domain Ω , we introduce a general principle of decomposition of vector
fields into a gradient part and a divergence-free part. This decomposition enjoys
a fundamental property of double orthogonality, i.e., orthogonality with respect to
both the L2(Ω) and H (curl,Ω) scalar products.

Proposition 3.7.1 (First Helmholtz Decomposition) Let Ω be a domain. The
following decomposition of the space L2(Ω) holds:

L2(Ω) = gradH 1
0 (Ω)

⊥⊕ H (div 0,Ω).

Proof Let v ∈ L2(Ω). Let qv ∈ H 1
0 (Ω) be such that Δqv = div v in Ω (cf.

Proposition 3.3.6). Then, set vL = grad qv ∈ L2(Ω) and vT = v − vL. Obviously,
vT ∈ L2(Ω) and div vT = div v −Δqv = 0 in Ω , i.e., vT ∈ H (div 0,Ω). As v is
arbitrary, we have proven that

L2(Ω) ⊂ gradH 1
0 (Ω)+ H (div 0,Ω) ;

the converse inclusion is obvious.
To check that the sum is orthogonal (hence direct), consider v = grad q with q ∈
H 1

0 (Ω), and w ∈ H (div 0,Ω). Using the integration-by-parts formula (2.25), one
finds (v|w) = 0. �
Let us define the function space KN(Ω)

KN(Ω) := H 0(curl,Ω) ∩ H (div 0,Ω).

As a side-product of Proposition 3.7.1, one easily obtains the orthogonal decompo-
sition for fields with a vanishing tangential trace.

Proposition 3.7.2 Let Ω be a domain. The following decomposition of the
space H 0(curl,Ω) holds:

H 0(curl,Ω) = gradH 1
0 (Ω)

⊥⊕ KN(Ω).

One can also determine analogous orthogonal decompositions that now involve
fields with a vanishing normal trace.

Proposition 3.7.3 (Second Helmholtz Decomposition) Let Ω be a domain. The
following decomposition of the space L2(Ω) holds:

L2(Ω) = gradH 1
zmv(Ω)

⊥⊕ H 0(div 0,Ω).
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Proof For v ∈ L2(Ω), let qv ∈ H 1
zmv(Ω) be governed by

{
Find qv ∈ H 1

zmv(Ω) such that
∀q ∈ H 1

zmv(Ω), (grad qv| gradq) = (v| grad q)
.

According to footnote 9 p. 136, qv is uniquely defined, and moreover, if one lets
vL = grad qv ∈ L2(Ω), the difference vT = v − vL belongs to H 0(div 0,Ω).
Hence, we find

L2(Ω) ⊂ gradH 1
zmv(Ω)+ H 0(div 0,Ω) ;

the converse inclusion is obvious. Furthermore, the sum is orthogonal (use the
integration-by-parts formula (2.25)), which ends the proof. �
Let us define now the function space KT (Ω)

KT (Ω) := H (curl,Ω) ∩ H 0(div 0,Ω).

As a side-product of Proposition 3.7.3, one obtains the second orthogonal decom-
position below.

Proposition 3.7.4 Let Ω be a domain. The following decomposition of the
space H (curl,Ω) holds:

H (curl,Ω) = gradH 1
zmw(Ω)

⊥⊕ KT (Ω).



Chapter 4
Abstract Mathematical Framework

We first introduce basic notions on Banach and Hilbert spaces. Afterwards, we recall
some well-known results, which help prove the well-posedness of the various sets
of equations we study throughout this book. Unless otherwise specified, the proofs
of these classic results can be found in [62, 92, 157, 207]. By well-posedness, it
is usually understood that the problem admits one, and only one, solution, which
depends continuously on the data. In the case of linear problems, the continuity
property amounts to proving that the norm of the solution is bounded by a constant,
times the norm of the data. The crucial point is that the norm, that measures the
solution, and the norm, that measures the data, have to be chosen carefully, in
order to derive the ad hoc constant. Particular attention is paid to problems whose
formulation includes constraints on the solution.

4.1 Basic Results

To begin with, let us recall some familiar notions regarding topological, separable,
Banach or Hilbert vector spaces (over C), and (anti)linear mappings. All notions are
easily extended to vector spaces over R, and linear mappings.

By definition, a topological space is separable if it contains a countable dense
subset; a Banach space is a complete vector space with a norm; a Hilbert space is a
vector space endowed with a scalar product, which is complete with respect to the
norm induced by the scalar product.1

1In a vector space, a scalar product (·, ·) exhibits the following properties:

• It is linear with respect to the first variable:
∀a1, a2 ∈ C, ∀v1, v2, w ∈ V, (a1v1 + a2v2, w) = a1(v1, w)+ a2(v2, w).

• It is antilinear with respect to the second variable:
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LetX be a Banach space (with norm ‖ ·‖X). Throughout this chapter, IX denotes
the identity mapping inX and, givenZ as a vector subspace ofX, iZ→X denotes the
canonical imbedding of Z in X. Let Y be a second Banach space (with norm ‖ · ‖Y ),
and letA be a linear mappingA : x �→ Ax defined onD(A), a vector subspace ofX,
with values in Y . Its kernel (respectively range) is denoted by ker(A) (respectively
R(A)).

We have the following incremental definitions and notations (cf. [62, 207]).

Definition 4.1.1

– The linear mapping A is called an unbounded operator.
– The subspace D(A) is called the domain of the unbounded operator A.
– The unbounded operator A is continuous if

∃C > 0, ∀x ∈ D(A), ‖Ax‖Y ≤ C ‖x‖X.

– A continuous unbounded operator A with domain D(A) equal to X is called a
bounded operator. The space of all bounded operators fromX to Y is denoted by
L(X, Y ), with operator norm

|||A|||L(X,Y ) = sup
x∈X\{0}

‖Ax‖Y
‖x‖X .

When X = Y , one uses the notation L(X), instead of L(X,X).
– A bounded operator A is a Fredholm operator if dim(ker(A)) < ∞, R(A) is

closed and codim(R(A)) <∞. In this case, its index is equal to dim(ker(A))−
codim(R(A)).

– A bounded bijective operator with a bounded inverse is called an isomorphism.
– An unbounded operator A is closed if its graph

G(A) = {(x,Ax) : x ∈ D(A)}

is closed in X × Y .
– A bounded operatorA is compact if the closure of the image byA of the unit ball
BX(0, 1) = {x ∈ X : ‖x‖X ≤ 1} is compact in Y .

Once the basic results are recalled, we will often write “operator” instead of
“unbounded operator”.

∀a1, a2 ∈ C, ∀v,w1, w2 ∈ V, (v, a1w1 + a2w2) = a1(v,w1)+ a2(v,w2).
• It is Hermitian:

∀v,w ∈ V, (v,w) = (w, v).
• It is positive-definite:

∀v ∈ V \ {0}, (v, v) > 0.

Then, ‖ · ‖ : V → R, defined by ‖v‖ = (v, v)1/2, is a norm on V . Furthermore, the Cauchy-
Schwarz inequality holds: ∀v,w ∈ V, |(v,w)| ≤ ‖v‖ ‖w‖.
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In practical situations, one usually proves closedness or compactness as follows.
An unbounded operator A : X → Y with domain D(A) is closed provided that,
for any sequence (xk)k of elements of D(A) such that xk → x in X and Axk → y

in Y , one has both x ∈ D(A) and y = Ax. On the other hand, a bounded operator
A ∈ L(X, Y ) is compact, provided that, for any bounded sequence (xk)k of elements
of X, one can extract a subsequence of (Axk)k that converges in Y .

Proposition 4.1.2 The vector subspace of compact operators is closed in L(X, Y )
with respect to the norm ||| · |||L(X,Y ).
Let Z be a third Banach space, and let A ∈ L(X, Y ) and B ∈ L(Y,Z). Then,
B ◦A ∈ L(X,Z). In addition, if A or B is compact, then B ◦A is also compact.

Theorem 4.1.3 (Closed Graph) Let A be a closed unbounded operator with
domain equal to X ; then, A is a bounded operator.

Theorem 4.1.4 (Banach-Schauder, or Open Mapping) Let A be a bounded,
bijective, operator from X to Y ; then, its inverse A−1 is a bounded operator from
Y to X.

Next, let us introduce a useful norm.

Definition 4.1.5 Given an unbounded operator A, the norm defined by

∀v ∈ D(A), ‖v‖D(A) =
(
‖v‖2

X + ‖Av‖2
Y

)1/2
,

is called the graph norm.

When the operator is bounded, ‖ · ‖D(A) is equivalent to ‖ · ‖X on X.
Let us then consider the spectrum of a bounded operator.2

Definition 4.1.6 Let A ∈ L(X).

– Its resolvent is ρ(A) = {λ ∈ C : (A− λIX) is bijective}.
– Its spectrum is σ(A) = C \ ρ(A).
– Its point spectrum is Eig(A) = {λ ∈ σ(A) : ker(A− λIX) �= {0}}.
An element λ of Eig(A) is called an eigenvalue of A. The vector space Eλ(A) =
ker(A − λ IX) is the corresponding eigenspace. Non-zero elements of Eλ(A) are

2More generally, one may define the resolvent and spectrum of an unbounded operator A from
D(A) ⊂ X to X. In this case, the resolvent is

ρ(A) = {λ ∈ C : (A− λIX)(D(A)) is dense in X ;
(A− λIX)−1 exists and is continuous from (A− λIX)(D(A)) to X} ;

the spectrum is σ(A) = C \ ρ(A), and it can further be decomposed into the disjoint union of the
point spectrum, the continuous spectrum and the residual spectrum (see [93, Chapter VIII, §1] for
details). As a rule, the notions of a continuous or residual spectrum will not be needed for the study
of operators in this book.
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called eigenvectors. The geometric multiplicity of λ is equal to dim(Eλ(A)), and its
ascent is the smallest integer α such that ker(A− λ IX)α+1 = ker(A− λ IX)α . The
vector space Rλ(A) = ker(A−λ IX)α is the corresponding generalized eigenspace.
Non-zero elements of Rλ(A) are called generalized eigenvectors. The algebraic
multiplicity of λ is equal to dim(Rλ(A)).

By definition, for a given eigenvalue, its geometric multiplicity is lower than, or
equal to, its algebraic multiplicity. Specifically, let us recall some results on the
spectrum of compact operators.3

Theorem 4.1.7 Let A ∈ L(X) be a compact operator. Then:

– The spectrum σ(A) is countable.
– 0 ∈ σ(A) (it is assumed here that dim(X) = ∞).
– σ(A) \ {0} = Eig(A) \ {0} (all non-zero elements of the spectrum are

eigenvalues).
– The multiplicities of all non-zero eigenvalues are finite.

Furthermore, one of the following (exclusive) assertions holds:

• σ(A) = {0},
• σ(A) \ {0} is finite,
• σ(A) \ {0} is a sequence whose limit is 0.

Let us turn our attention to Hilbert spaces. Let V be a Hilbert space, with scalar
product (·, ·)V and associated norm ‖ ·‖V . Recall that its dual space4 V ′ is the space
of continuous antilinear forms on V , endowed with the norm

‖f ‖V ′ = sup
v∈V \{0}

|〈f, v〉V |
‖v‖V .

Above, 〈f, v〉V denotes the action of f on v. Whenever it is clear from the context,
we denote it simply by 〈f, v〉.
Definition 4.1.8 A bounded operator A ∈ L(V ) is positive if

∀v ∈ V, (Av, v)V ≥ 0.

A bounded operator A ∈ L(V ) is positive-definite if

∀v ∈ V \ {0}, (Av, v)V > 0.

If a bounded operator is positive-definite, then its kernel reduces to {0}.

3Some of these results are consequences of the Fredholm alternative, which we choose to state
hereafter within the framework of Hilbert spaces.
4V ′ can also be called the antidual space. We choose the denomination dual space, which also
applies for vector spaces defined over R, and continuous linear forms. Given v ∈ V , fv : w �→
(v,w)V defines an element of V ′. According to the Riesz Theorem 4.2.1 below, v �→ fv is a
bijective isometry from V to V ′. In addition, V ′ can be made into a Hilbert space by defining its
scalar product via (fv, fw)V ′ = (v,w)V , for all v,w ∈ V .
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Definition 4.1.9 Let A be an unbounded operator of V with domain D(A). It is
said to be monotone if

∀v ∈ D(A), (Av, v)V ≥ 0.

It is said to be maximal monotone if:

(i) it is monotone;
(ii) iD(A)→V + A is surjective from D(A) to V .

Definition 4.1.10 An unbounded operator A : D(A)→ V is symmetric if

∀v,w ∈ D(A), (Av,w)V = (v,Aw)V .

LetW be a second Hilbert space.

Definition 4.1.11 Let A : D(A) → W be an unbounded operator with a dense
domain in V . Its adjoint is the unbounded operator A∗ : D(A∗)→ V , with

D(A∗)={w ∈ W : ∃v ∈ V, ∀v′ ∈ D(A), (w,Av′)W = (v, v′)V }, and A∗w = v.

Definition 4.1.12 Let A : D(A) → V be an unbounded operator with a dense
domain in V . It is self-adjoint if A = A∗. It is skew-adjoint if A = −A∗.

There are several possibilities for proving that an operator is self-adjoint.

Proposition 4.1.13 Let A ∈ L(V ). Then, A is self-adjoint if, and only if, it is
symmetric.

Proposition 4.1.14 Let A : D(A) → V be a maximal monotone unbounded
operator. Then, A is self-adjoint if, and only if, it is symmetric.

This last result is often used in conjunction with the next one.

Proposition 4.1.15 Let A : D(A) → V be an unbounded operator. Then, A is
maximal monotone if, and only if, A is closed with a dense domain, and A and A∗
are monotone.

We also have an alternative characterisation of compact operators in terms of
weakly convergent sequences.

Definition 4.1.16 (Weak Convergence) A sequence (vk)k≥0 of elements of V is
weakly convergent if

∃v ∈ V, ∀w ∈ V, lim
k→∞(vk,w)V = (v,w)V .

One writes vk ⇀ v in V .

Proposition 4.1.17 Let A ∈ L(V ,W). Then, given elements (vk)k≥0 and v of V ,
vk ⇀ v in V implies Avk ⇀ Av inW .
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Moreover, A is compact if, and only if,

∀(vk)k≥0, v ∈ V, vk ⇀ v in V (⇒ lim
k→∞Avk = Av inW.

Let us now state an important result in regard to compact operators.

Theorem 4.1.18 Let A ∈ L(V ) be a compact operator. Then,

– ker(IV − A) is a finite-dimensional vector space.
– R(IV − A) is closed; more precisely, R(IV − A) = (ker(IV − A∗))⊥.
– ker(IV − A) = {0} ⇐⇒ R(IV − A) = V .
– dim(ker(IV − A)) = dim(ker(IV − A∗)).

Evidently, given λ ∈ C \ {0}, one can replace IV with λIV in the above Theorem ;
in particular, λIV − A is a Fredholm operator. It follows that the multiplicities of
any non-zero eigenvalue λ of a compact operator are finite: 0 < dim(Eλ(A)) ≤
dim(Rλ(A)) <∞ (whereas 0 ≤ dim(E0(A)) ≤ ∞).
Also, it allows one to solve the following classical problem.
Let A ∈ L(V ), λ ∈ C and f ∈ V ,

{
Find u ∈ V such that
λu− Au = f. (4.1)

According to Theorem 4.1.18, one can simply prove the following result when the
operator is compact.

Corollary 4.1.19 (Fredholm Alternative) Let A ∈ L(V ) be a compact operator
and λ ∈ C \ {0}. Then:
– either, for all f ∈ V , Problem (4.1) has one, and only one, solution u;
– or, the homogeneous equation λu − Au = 0 has nλ > 0 linearly independent

solutions. In this case, given f ∈ V , Problem (4.1) has solutions if, and only if,
f satisfies nλ orthogonality conditions. Then, the space of solutions is affine, and
the dimension of the corresponding vector space is equal to nλ.

This proposition has many practical applications, in particular, for solving
Helmholtz-like problems (see the upcoming Sect. 4.5).

As one can check readily, in the case of a self-adjoint operator, all eigenvalues
are real numbers. In addition, let us mention an important result in regard to the
eigenvectors of compact and self-adjoint operators in a separable Hilbert space.

Theorem 4.1.20 (Spectral) Assume that V is separable. Let A ∈ L(V ) be a
compact and self-adjoint operator. Then, there exists a Hilbert basis5 of V made of
eigenvectors of A.

5 A Hilbert basis of V is a countable set (ek)k∈� of elements of V , such that, for all k, �, (ek, e�)V =
δk�, and span(e1, e2, · · · ) is dense in V . Then, for all v ∈ V , one has v = ∑

k∈�(v, ek)V ek and
‖v‖2

V =∑k∈�(v, ek)2V (Bessel-Parseval identity).
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With this result, one can write a compact and self-adjoint operator as a sum
of scaled projection operators onto its eigenspaces: this is the so-called spectral
decomposition of a compact, self-adjoint operator.

Let us mention some results on interpolation theory, in a Hilbert space V (see
[157, Chapter 1, §2]). In this setting, W is a second Hilbert space, and it is also a
dense, strict subspace (with continuous imbedding) of V . Classically, there exists
a self-adjoint, positive unbounded operator Λ of V with domain D(Λ) = W .
Moreover, ‖ · ‖W and the graph norm (‖ · ‖2

V + ‖Λ · ‖2
V )

1/2 are equivalent norms
onW . On the other hand, given a self-adjoint, positive unbounded operatorA of V ,
one can define the unbounded operators Aθ for θ ≥ 0, with the help of the spectral
representation of the unbounded operator A.6 This leads to the . . .

Definition 4.1.21 (Interpolated Space) Given θ ∈ [0, 1], the Hilbert space
[W,V ]θ = D(Λ1−θ ) is the interpolated space of order θ between W and V , with
norm

‖ · ‖[W,V ]θ =
(
‖ · ‖2

V + ‖Λ1−θ · ‖2
V

)1/2
.

We now list some properties of interpolated spaces.7

Proposition 4.1.22 Let ([W,V ]θ )θ∈[0,1] be the interpolated spaces.
• The definition of the interpolated space is independent of the choice of the

unbounded operatorΛ.

6 Let us explain briefly this construction when the imbedding W ⊂c V is compact; this condition
will hold in all the cases encountered in this book. Using Corollary 4.5.12 below, which is a
straightforward consequence of Theorem 4.1.20, one constructs a Hilbert basis (ek)k∈� of V whose
elements belong toW , and a nondecreasing sequence of strictly positive numbers (μk)k∈� tending
to +∞ such that:

∀w ∈ W, (ek,w)W = μ2
k (ek, w)V .

Clearly, ‖ek‖W = μk , thus the space W can be alternatively defined as

W = {w =
∑
k∈�
wk ek ∈ V :

∑
k∈�
μ2
k |wk |2 < +∞} = D(Λ), where: Λ =

∑
k∈�
μk Pk,

and Pk denotes the projection onto span{ek}. Then, for any α ∈ R+, one defines the unbounded
operator power Λα as

D(Λα) = {w =
∑
k∈�
wk ek ∈ V :

∑
k∈�
μ2α
k |wk |2 < +∞} and: Λα =

∑
k∈�
μαk Pk.

When the imbedding W ⊂ V is not compact, the above discrete sums are replaced with Stieltjes
integrals that take into account the whole spectrum (see [207, §XI]).
7In the compact imbedding framework, the next two propositions follow immediately from
Definition 4.1.21 and footnote6.



154 4 Abstract Mathematical Framework

• Given θ ∈ [0, 1], there exists Cθ > 0 such that

∀w ∈ W, ‖w‖[W,V ]θ ≤ Cθ ‖w‖1−θ
W ‖w‖θV .

• Given 0 ≤ θ1 ≤ θ2 ≤ 1, it holds that

W ⊂ [W,V ]θ1 ⊂ [W,V ]θ2 ⊂ V,

with continuous imbeddings.
• Assume that the imbedding ofW into V is compact ; then, given 0 < θ1 < θ2 <

1, all above imbeddings are compact.

One can also apply interpolation theory to bounded operators (below, V ), W) are
two other Hilbert spaces, with W) a dense, strict subspace of V ), with continuous
imbedding).

Proposition 4.1.23 (Interpolated operator) Given A ∈ L(V , V )) ∩ L(W,W)),
then for all θ ∈ [0, 1], A belongs to L([W,V ]θ , [W), V )]θ ).

Also, we will frequently make use of sesquilinear8 continuous forms on V ×W .
Let a : V ×W → C, (v,w) �→ a(v,w): a(·, ·) is continuous if the quantity

|||a||| = sup
v∈V \{0},w∈W\{0}

|a(v,w)|
‖v‖V ‖w‖W

is bounded. When a(·, ·) is sesquilinear and continuous on V × W , it defines a
unique bounded operator A from V toW ′:

∀(v,w) ∈ V ×W, 〈Av,w〉W = a(v,w).

Respectively, one can also define its conjugate transpose A† fromW to V ′:

∀(v,w) ∈ V ×W, 〈A†w, v〉V = a(v,w).

For a bilinear form a defined on Hilbert spaces V,W over R, one defines A from V
toW ′ as above, respectively the transpose At fromW to V ′ without conjugation.

Evidently, given a bounded operator A from V to W ′, one could define a
sesquilinear continuous form on V ×W .

8A sesquilinear form is linear with respect to the first variable, and antilinear with respect to the
second variable.
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4.2 Static Problems

Let H be a Hilbert space. Then, let f be an element of H ′, and define

{
Find u ∈ H such that
∀v ∈ H, (u, v)H = 〈f, v〉. (4.2)

Item (4.2) is called a Variational Formulation. It is the first instance in a long
sequence of such Formulations.

The first result is the Riesz Theorem.

Theorem 4.2.1 (Riesz) Problem (4.2) admits one, and only one, solution u in H .
Moreover, it holds that ‖u‖H = ‖f ‖H ′ .

An interesting consequence of the Riesz Theorem 4.2.1 is the notion of pivot space.
Indeed, the mapping f �→ u is a bijective isometry from H ′ to H . Then, one can
choose to identify H ′ with H .

Definition 4.2.2 (Pivot Space) LetH be a Hilbert space. WheneverH ′ is identified
with H—with the mapping f �→ u—H is called the pivot space.

Thus follows . . .

Proposition 4.2.3 Let H be a Hilbert space. Let V be a second Hilbert space such
that V is a dense, vector subspace of H , and such that the canonical imbedding
iV→H is continuous. Then, when H is chosen as the pivot space, one can identify
H with a vector subspace of V ′.

Indeed, given two Hilbert spaces H and V as in the above proposition, the
imbedding iH→V ′ is injective, continuous, and iH→V ′H is dense in V ′. As a
consequence, one can write

V ⊂ H (pivot)= H ′ ⊂ V ′,

with continuous and dense imbeddings.
Given two Hilbert spaces V , W , given a continuous sesquilinear form a on

V ×W , and given an element f of W ′, let us introduce another Variational
Formulation {

Find u ∈ V such that
∀w ∈ W, a(u,w) = 〈f,w〉. (4.3)

Definition 4.2.4 (Well-Posedness, Hadamard) Problem (4.3) is well-posed in
the Hadamard sense if, for all f ∈ W ′, it has one, and only one, solution u ∈ V with
continuous dependence, i.e.,

∃C > 0, ∀f ∈ W ′, there exists a unique u ∈ V satisfying (4.3)
and ‖u‖V ≤ C‖f ‖W ′ .
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We note that it is possible to reformulate Problem (4.3) as follows:

{
Find u ∈ V such that
Au = f in W ′. (4.4)

We see in Problem (4.3) that u is characterized by two items: first, the fact that it
belongs to a specified space V so that it is measured by ‖ · ‖V , and second, either by
its action on all elements ofW , or by an equation, set inW ′.

Clearly, the operator A−1 is well-defined (and continuous) fromW ′ to V if, and
only if, Problem (4.3) is well-posed in the Hadamard sense.

Proposition 4.2.5 Problem (4.3) is well-posed in the Hadamard sense if, and only
if, the operator A of Problem (4.4) is an isomorphism.

We will usually write well-posed instead of well-posed in the Hadamard sense.
Then, we proceed with the second result, which generalizes Riesz’s Theorem

in the case when V = W . It is called the Lax-Milgram Theorem, and provides a
condition sufficient to achieve well-posedness for Problem (4.3).

Definition 4.2.6 Let a(·, ·) be a continuous sesquilinear form on V × V . It is
coercive if

∃α > 0, ∀v ∈ V, |a(v, v)| ≥ α ‖v‖2
V .

Remark 4.2.7 One could also choose to define the coerciveness of continuous
sesquilinear forms by assuming

∃α > 0, ∃θ ∈ [0, 2π[, ∀v ∈ V, [exp(ıθ) a(v, v)] ≥ α ‖v‖2
V .

This definition is equivalent to Definition 4.2.6. We shall use the latter for
coerciveness throughout this monograph.
Moreover, with real-valued forms a(·, ·) (defined on a Hilbert space V over R), both
definitions boil down to

∃s ∈ {−1,+1}, ∃α > 0, ∀v ∈ V, s a(v, v) ≥ α ‖v‖2
V .

Theorem 4.2.8 (Lax-Milgram) When V = W , assume that the continuous and
sesquilinear form a is coercive. Then, Problem (4.3) is well-posed.

Instead of imposing coerciveness, one can assume a stability condition, also called
an inf-sup condition. This can be useful when the arguments v and w do not belong
to the same space.

Definition 4.2.9 Let a(·, ·) be a continuous sesquilinear form on V ×W .
It verifies a stability condition if

∃α′ > 0, ∀v ∈ V, sup
w∈W\{0}

|a(v,w)|
‖w‖W ≥ α′ ‖v‖V . (4.5)
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It verifies the solvability condition if

{w ∈ W : ∀v ∈ V, a(v,w) = 0} = {0}. (4.6)

Remark 4.2.10 Condition (4.5) can be equivalently stated as the inf-sup condition

∃α′ > 0, inf
v∈V \{0} sup

w∈W\{0}
|a(v,w)|

‖v‖V ‖w‖W ≥ α′.

When V = W , the coerciveness of a sesquilinear form implies both a stability
condition (with α′ = α), together with a solvability condition, on the same form.

Then, one has the result below.

Proposition 4.2.11 Assume that the continuous and sesquilinear form a verifies a
stability condition (4.5) with a suitable α′. Then, ker(A) = {0}, R(A) is closed
in W ′, and A is a bijective mapping from V to R(A). As a consequence, given
any f ∈ R(A), Problem (4.3) admits one, and only one, solution u in V , and
moreover, α′ ‖u‖V ≤ ‖f ‖W ′ . Furthermore, if the form a satisfies the solvability
condition (4.6), R(A) = W ′, and as a consequence, Problem (4.3) is well-posed.

Theorem 4.2.12 (Banach-Necas-Babuska) Problem (4.3) is well-posed if, and
only if, the continuous and sesquilinear form a verifies a stability condition (4.5)
and a solvability condition (4.6).

Let us now introduce an a priori intermediate condition (cf. [56]).

Definition 4.2.13 Let a(·, ·) be a continuous sesquilinear form on V × W . It is
T-coercive if

∃T ∈ L(V ,W), bijective, ∃α > 0, ∀v ∈ V, |a(v,Tv)| ≥ α ‖v‖2
V .

Proposition 4.2.14 Let a(·, ·) be a continuous and sesquilinear form: the form a is
T-coercive if, and only if, it satisfies a stability condition and a solvability condition.

Remark 4.2.15 So, to ensure that Problems (4.3) or (4.4) are well-posed:

• a necessary and sufficient condition is that the form a verifies a stability condition
and a solvability condition (see Theorem 4.2.12);

• a necessary and sufficient condition is that the form a is T-coercive (see
Proposition 4.2.14);

• when V = W , a sufficient condition is that the form a is coercive (see the Lax-
Milgram Theorem 4.2.8).

Within the framework of the inf-sup theory, the operator T is sometimes called an
inf-sup operator.
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Remark 4.2.16 If the form a is Hermitian (when V = W ), the stability of a(·, ·) is
sufficient to guarantee well-posedness. In the same spirit, for a Hermitian form a,
the Definition 4.2.13 of T-coercivity can be simplified to

∃T ∈ L(V ), ∃α > 0, ∀v ∈ V, |a(v,Tv)| ≥ α ‖v‖2
V .

In other words, it is not required for T to be bijective.

The next result is slightly more complicated, in the sense that it allows one to solve
a Variational Formulation, which includes some constraints. More precisely, let Q
be a third Hilbert space, and let:

• a(·, ·) be a continuous sesquilinear form on V × V ;
• b(·, ·) be a continuous sesquilinear form on V ×Q;
• f ∈ V ′;
• g ∈ Q′.

Let us consider the mixed problem, or constrained problem:

⎧⎨
⎩
Find (u, p) ∈ V ×Q such that
∀v ∈ V, a(u, v)+ b(v, p) = 〈f, v〉,
∀q ∈ Q, b(u, q) = 〈g, q〉.

(4.7)

In the above, the last line expresses the fact that u has to fulfill some constraints,
with respect to its action on elements ofQ. In terms of operators, recall that one can
introduce the bounded operators B and B†, respectively from V to Q′ and from Q
to V ′:

∀(v, q) ∈ V ×Q, 〈Bv, q〉 = b(v, q) = 〈B†q, v〉. (4.8)

Problem (4.7) can be reformulated equivalently:

⎧⎨
⎩
Find (u, p) ∈ V ×Q such that
Au+ B†p = f in V ′,
Bu = g inQ′.

(4.9)

Remark 4.2.17 When the forms are real-valued and when a(·, ·) is symmetric, (4.7)
is also referred to as a saddle-point problem. The expression mixed problem is
generally used in the framework of variational analysis, whereas the term saddle-
point formulation refers merely to the context of optimization under constraints.
In the following, we will use, without distinction, the one or the other term,
as they appear as two different sides of the same problem. Indeed, the mixed
formulation (4.7) corresponds to the optimality conditions of the problem, which
consists in minimizing the quadratic functional J (v) = 1

2a(v, v) − 〈f, v〉 on v
under the constraint (4.7-bottom). The bilinear form a being symmetric, the couple
(u, p) solution to the mixed problem can be viewed, in this case, as the saddle-point
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of the Lagrangian L(v, q) = J (v) + b(v, q) − 〈g, q〉. Recall that the saddle-point
is defined as the couple (u, p) such that

∀v ∈ V, ∀q ∈ Q, L(u, q) ≤ L(u, p) ≤ L(v, p).

Before stating the main result for the solution of (4.7–4.9), let us introduce the
inf-sup condition on the form b for the mixed problem, where the infimum is taken
over elements ofQ:

∃β > 0, inf
q∈Q\{0} sup

v∈V \{0}
|b(v, q)|

‖v‖V ‖q‖Q ≥ β. (4.10)

Now, let

K = {v ∈ V : ∀q ∈ Q, b(v, q) = 0} and K0 = {h ∈ V ′ : ∀v ∈ K, 〈h, v〉 = 0}.

The subspace K of V is the kernel of B (when no confusion is possible, one writes
that K is the kernel of b(·, ·)), and K0 is called its polar set. Provided b(·, ·) is
continuous, K is a closed subspace of V , so that one can write: V = K ⊕ K⊥. It
holds that

Lemma 4.2.18 Let b(·, ·) be a continuous sesquilinear form on V ×Q. The three
assertions are equivalent:

• there exists β > 0 such that b(·, ·) satisfies (4.10);
• the operator B† is a bijective mapping fromQ onto K0, and moreover,

∃β > 0, ∀q ∈ Q, ‖B†q‖V ′ ≥ β‖q‖Q;

• the operator B is a bijective mapping from K⊥ ontoQ′, and moreover,

∃β > 0, ∀v ∈ K⊥, ‖Bv‖Q′ ≥ β‖v‖V .

We finally reach . . .

Theorem 4.2.19 (Babuska-Brezzi [25, 63]) Let a, b, f, g be defined as above.
Assume that

(i) the sesquilinear form a is coercive on K ×K;
(ii) the sesquilinear form b satisfies an inf-sup condition.

Then, Problem (4.7) admits one, and only one, solution (u, p) in V ×Q. Moreover,
there exists a constantC independent of f such that (‖u‖V +‖p‖Q) ≤ C (‖f ‖V ′ +
‖g‖Q′).

There exist variations of this result, which rely on weaker assumptions than the
coerciveness of the form a on K × K and the inf-sup condition on b(·, ·): we refer
the reader to [49].
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Proof (of Theorem 4.2.19) Let us call α > 0 and β > 0, respectively, a coercivity
constant for a(·, ·) onK×K (cf. Definition 4.2.6) and an inf-sup constant for b(·, ·)
(cf. (4.10)).

1. Uniqueness is proven as follows. Assume that two solutions (u1, p1) and
(u2, p2) to Problem (4.7) exist, then (δu, δp) = (u1 − u2, p1 − p2) solves

⎧⎨
⎩
Find (δu, δp) ∈ V ×Q such that
∀v ∈ V, a(δu, v)+ b(v, δp) = 0,
∀q ∈ Q, b(δu, q) = 0.

The second equation states that δu belongs to K . Next, using v = δu in the first
equation leads to a(δu, δu) = 0, so that δu = 0, thanks to hypothesis (i). It
follows that one has, for all v ∈ V , b(v, δp) = 0 or, in other words, B†(δp) = 0.
Thanks to hypothesis (ii) and Lemma 4.2.18, one gets that δp = 0.

2. On the other hand, again using hypothesis (ii) and Lemma 4.2.18, we know that

∃!u⊥ ∈ K⊥, Bu⊥ = g and β‖u⊥‖V ≤ ‖g‖Q′ .

(Note that Bu⊥ = g can be rewritten: ∀q ∈ Q, b(u⊥, q) = 〈g, q〉.)
3. Then, according to hypothesis (i), one can solve

{
Find u‖ ∈ K such that
∀v‖ ∈ K, a(u‖, v‖) = 〈f, v‖〉 − a(u⊥, v‖) ,

with the help of the Lax-Milgram Theorem 4.2.8. Its solution u‖ exists and is
unique, and moreover,

α ‖u‖‖V ≤ {‖f ‖V ′ + |||a||| ‖u⊥‖V } ≤
{
‖f ‖V ′ + |||a||| β−1‖g‖Q′

}
.

4. Let us aggregate steps 2. and 3. Introduce the candidate solution

u = u‖ + u⊥, (4.11)

and consider v ∈ V , which we split as v = v‖ + v⊥, with (v‖, v⊥) ∈ K × K⊥.
According to the definition of u‖, one finds that

〈f, v〉 − a(u, v) = 〈f, v⊥〉 − a(u, v⊥).

Then, h ∈ V ′ defined as 〈h, v〉 = 〈f, v⊥〉−a(u, v⊥) actually belongs to the polar
set K0 of K . Thanks again to Lemma 4.2.18, we obtain that

∃!p ∈ Q, B†p = h and β‖p‖Q ≤ ‖h‖V ′ ≤ {‖f ‖V ′ + |||a||| ‖u‖V } . (4.12)

(Note that B†p = h can be rewritten: ∀v ∈ V, b(v, p) = 〈h, v〉.)
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5. Existence of a solution to Problem (4.7) is a consequence of the previous steps.
Consider u and p as in (4.11) and (4.12), respectively. Then, for all v ∈ V , and
for all q ∈ Q, one finds

a(u, v)+ b(v, p) = a(u, v)+ 〈h, v〉 = 〈f, v〉 ,
b(u, q) = b(u⊥, q) = 〈g, q〉 .

Moreover, one has the estimates

‖u‖V ≤ α−1‖f ‖V ′ + β−1
{

1 + |||a||| α−1
}
‖g‖Q′ ,

‖p‖Q ≤ β−1 {‖f ‖V ′ + |||a||| ‖u‖V } .

Remark 4.2.20 We carried out the proof over five steps. This process can be
reproduced in other situations, such as time-dependent, or time-harmonic, problems
with constraints.

We have so far defined a series of well-posed static problems, under ad hoc
assumptions. To bridge the gap with time-harmonic problems (see Sect. 1.2.1), let
us briefly consider forms associated with Fredholm operators of index 0.9

Definition 4.2.21 (Well-Posedness, Fredholm) Problem (4.3) is well-posed in the
Fredholm sense if the associated operator of Problem (4.4) is a Fredholm operator
of index 0.

In this setting, one may introduce a weak stability condition, respectively a weak
T-coercivity condition.

Definition 4.2.22 Let a(·, ·) be a continuous sesquilinear form on V ×W .
It verifies a weak stability condition if

∃C ∈ L(V ,W) compact, ∃α′ > 0, β ′ ≥ 0, ∀v ∈ V,
sup

w∈W\{0}
|a(v,w)|
‖w‖W ≥ α′ ‖v‖V − β ′‖Cv‖W .

Definition 4.2.23 Let a(·, ·) be a continuous sesquilinear form on V × W . It is
weakly T-coercive if

∃T ∈ L(V ,W) bijective, ∃C ∈ L(V ,W) compact, ∃α > 0, β ≥ 0, ∀v ∈ V,
|a(v,Tv)| ≥ α ‖v‖2

V − β ‖Cv‖2
W .

9When the sesquilinear form in Problem (4.3) is Hermitian (V = W ), if the associated operator is
Fredholm, then its index is always equal to 0.
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Regarding the weak stability and weak T-coercivity conditions, one may prove the
results below for Hermitian forms.

Proposition 4.2.24 When V = W , let a(·, ·) be a sesquilinear, continuous and
Hermitian form on V × V . For Problem (4.3) to be well-posed in the Fredholm
sense:

• a necessary and sufficient condition is that the form a verifies a weak stability
condition;

• a necessary and sufficient condition is that the form a is weakly T-coercive.

4.3 Time-Dependent Problems

Up to now, the abstract framework we have developed allows us to solve the so-
called static problems in practical applications. In other words, problems in which
the function spaces of solutions and of test functions, and the (anti)linear forms,
depend only on the space variable. We turn now to problems that include some
explicit dependence with respect to both the time and space variables (t, x). Within
the framework of the theory we recall hereafter, the solution u is not considered
directly as a function of (t, x). Instead, it is a function of t—and, as such, written as
u(t)—with values in a function space that depends solely on the space variable:

u : t �→ u(t), u(t) : x �→ u(t, x).

4.3.1 Problems Without Constraints

LetA be an unbounded operator of V with domainD(A), u0 ∈ V and f : R+ → V .
Then, the first-order time-dependent problem to be solved is formulated as

⎧⎪⎪⎨
⎪⎪⎩
Find u such that
du

dt
+ Au = f, t > 0,

u(0) = u0.

(4.13)

Above, u(0) = u0 is called an initial condition.
We now introduce the important notion of strong solutions with respect to the

time variable t . Here, we mostly follow the teaching material of Joly [144].

Definition 4.3.1 u is a strong solution to Problem (4.13), provided that

(i) u ∈ C1(R+;V );
(ii) ∀t ≥ 0, u(t) ∈ D(A) and, moreover, u ∈ C0(R+,D(A));

(iii) ∀t > 0, u′(t)+ Au(t) = f (t) in V , and u(0) = u0.
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According to the requested regularity in time, we note that a strong solution satisfies
Problem (4.13) in the classical sense. Also, provided that f belongs to C0(R+∗ ;V ),
conditions (i) and (iii) imply that u ∈ C0(R+∗ ;D(A)), when D(A) is endowed with
its graph norm. Then, one has the fundamental result below.

Theorem 4.3.2 (Hille-Yosida [62, 171, 207]) Let A be an unbounded operator of
V with domainD(A). Assume that there exists μ ∈ R such thatA+μIV is maximal
monotone. Then, given f ∈ C1(R+;V ) and u0 ∈ D(A), Problem (4.13) admits
one, and only one, strong solution in the sense of Definition 4.3.1. In addition, the
solution can be bounded as follows:

∀t ∈ R+, ‖u(t)‖V ≤ ‖u0‖V +
∫ t

0
‖f (s)‖V ds,

∀t ∈ R+, ‖du
dt
(t)‖V ≤ ‖Au0‖V + ‖f (0)‖V +

∫ t
0
‖df
dt
(s)‖V ds.

The proof of this result is based on the semi-group theory.

Remark 4.3.3 One can choose to solve the first-order problem on the time interval
]0, T [, with T > 0 given. In this case, with the same assumptions about the operator
A, one easily finds that

{
C1([0, T ];V )×D(A)→ C0([0, T ];D(A))× C0([0, T ];V )
(f, u0) �→ (u, u′)

is continuous (with a constant that depends on T ).

It is also possible to define strong solutions in a slightly weaker sense (see
[62]). Basically, it is no longer required that the initial data belongs to D(A).
As a consequence, the assumption about u0 can be relaxed to u0 ∈ V in the
corresponding version of the Hille-Yosida Theorem.10 In this case, items (i) and
(ii) of Definition 4.3.1 are modified as follows:

(i)’ u ∈ C1(R+∗ ;V ) ∩ C0(R+;V );
(ii)’ ∀t > 0, u(t) ∈ D(A) and, moreover, u ∈ C0(R+∗ ,D(A)).

For that, one can consider self-adjoint operators (other possibilities are described,
for instance, in [92]).

Theorem 4.3.4 (Hille-Yosida [62]) Let A be an unbounded and self-adjoint
operator of V with domainD(A). Assume that there exists μ ∈ R such thatA+μIV
is maximal monotone. Then, given f ∈ C1(R+;V ) and u0 ∈ V , Problem (4.13)

10For practical applications, it allows one to consider initial data that do not verify the constraints
that the solution fulfills afterwards.
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admits one, and only one, strong solution in the sense of Definition 4.3.1 with items
(i)’-(ii)’-(iii). In addition, the solution can be bounded as follows:

∀t ∈ R+, ‖u(t)‖V ≤ ‖u0‖V +
∫ t

0
‖f (s)‖V ds,

∀t ∈ R+∗ , ‖
du

dt
(t)‖V ≤ 1

t
‖u0‖V + ‖f (0)‖V +

∫ t
0
‖df
dt
(s)‖V ds.

Moreover, if f = 0, one has

∀k, l ∈ N, u ∈ Ck(R+∗ ;D(Al)).

The last result is called a regularizing effect. Also, it is possible that

lim
t→0+

‖u′(t)‖V = +∞.

Remark 4.3.5 If one has f ∈ C0(R+;V ) ∩ L1(R+;D(A)), then Problem (4.13)
still has a strong solution. In addition, one has

∀t ∈ R+, ‖du
dt
(t)‖V ≤ ‖Au0‖V + ‖f (t)‖V +

∫ t
0
‖Af (s)‖V ds.

On the other hand, if one has only f ∈ C0(R+;V ), then it is no longer guaranteed
that this time-dependent problem has a strong solution (cf. Chapter XVII of [92]).

A third variant of a strong solution appears in a slightly different context, namely,
when the operator A is skew-adjoint. Generally speaking, this feature corresponds
to an energy conservation property of the evolution problem (4.13); one can thus
define solutions for negative, as well as positive, values of time t , i.e., solve the
“backward” problem (for t < 0), as well as the forward one. In this case, we take
the following variants of the items in Definition 4.3.1:

(i)” u ∈ C1(R;V );
(ii)” ∀t ∈ R, u(t) ∈ D(A) and, moreover, u ∈ C0(R,D(A));

(iii)” ∀t ∈ R, u′(t)+ Au(t) = f (t) in V , and u(0) = u0.

There is no regularizing effect in this case, i.e., the initial data must belong to the
domain of A. On the other hand, the self-adjointness assumption of Theorem 4.3.4
is linked to energy dissipation, which accounts for the regularizing effect, and makes
the backward problem ill-posed.

The corresponding result is now stated.

Theorem 4.3.6 (Stone [207]) Let A be an unbounded and skew-adjoint operator
of V with domain D(A). Then, given u0 ∈ D(A) and either (a) f ∈ C1(R;V ) or
(b) f ∈ C0(R;V )∩L1(R;D(A)), Problem (4.13) admits one, and only one, strong
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solution in the sense of Definition 4.3.1, with items (i)”–(ii)”–(iii)”. In addition, the
solution can be bounded as follows, according to the assumptions (a) or (b):

∀t ∈ R, ‖u(t)‖V ≤ ‖u0‖V +
∫ t

0
‖f (s)‖V ds,

(a) ∀t ∈ R, ‖du
dt
(t)‖V ≤ ‖Au0‖V + ‖f (0)‖V +

∫ t
0
‖df
dt
(s)‖V ds,

(b) ∀t ∈ R, ‖du
dt
(t)‖V ≤ ‖Au0‖V + ‖f (t)‖V +

∫ t
0
‖Af (s)‖V ds.

The proof once more relies upon semi-group theory. Furthermore, one can prove the
following causality result.

Proposition 4.3.7 Assume the hypotheses of Theorem 4.3.6. Let f1, f2 satisfy either
(a) or (b), and u1, u2 be the corresponding solutions to (4.13). If f1(t) = f2(t) for
a.e. t ≥ 0, then u1 and u2 also coincide for a.e. t ≥ 0. As a consequence, if one is
interested in the forward problem only, it is not necessary to know the values of the
r.h.s. for t < 0.

It turns out that one can apply this theory (Theorem 4.3.2) to solve second-
order time-dependent problems and find strong solutions of such problems. These
problems write

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Find u such that
d2u

dt2
+ Au = f, t > 0 ;

u(0) = u0 ,
du

dt
(0) = u1.

(4.14)

Above, u(0) = u0 and u′(0) = u1 are the two initial conditions.
Here, one needs to consider two Hilbert spaces:

• H, a Hilbert space, with scalar product (·, ·)H and norm ‖ · ‖H;
• V , a Hilbert space, with scalar product (·, ·)V and norm ‖ · ‖V ;
• the imbedding iV→H is continuous;
• V is dense in H.

The operator A is defined via a sesquilinear continuous and Hermitian form a defined
on V × V , which fulfills the following property:

∃ν ∈ R+, ∃α ∈ R+∗ , ∀v ∈ V, a(v, v)+ ν ‖v‖2
H ≥ α ‖v‖2

V . (4.15)

Remark 4.3.8 Note that one can define another scalar product on V , with associated
norm 2‖ · ‖V equivalent to ‖ · ‖V in V . It writes

∀v, w ∈ V, 2(v, w)V = a(v, w)+ ν (v, w)H.
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Then, one can introduce the unbounded operator A of H with domainD(A)

{
D(A) = {v ∈ V : ∃h ∈ H, ∀w ∈ V, a(v, w) = (h, w)H};
∀v ∈ D(A), ∀w ∈ V, (Av, w)H = a(v, w). (4.16)

Definition 4.3.9 u is a strong solution to Problem (4.14), provided that

(i) u ∈ C2(R+;H) ∩ C1(R+;V);
(ii) ∀t ≥ 0, u(t) ∈ D(A) and, moreover, u ∈ C0(R+,D(A));

(iii) ∀t > 0, u′′(t)+ Au(t) = f(t) in H, u(0) = u0 and u′(0) = u1.

From this point on, one can prove an equivalence result between the existence of
u as a strong solution to Problem (4.14) and the existence of a strong solution to
a companion—first-order time-dependent—problem. We give the main steps of the
process, since it will be of use later on for solving the time-dependent Maxwell
equations, written as wave equations with constraints (cf. Sect. 1.5.3). For the
moment, we adopt the following point of view. To determine ad hoc conditions
that ensure the existence and uniqueness of a strong solution to Problem (4.14),
let us use the Hille-Yosida Theorem 4.3.2. To that aim, introduce V = V × H.
Its elements are denoted by v = (v, h). It is a Hilbert space, with the scalar
product (v, ṽ)V = 2(v, ṽ)V + (h, h̃)H. Next, let A be an unbounded operator of
V , defined by

{
D(A) = D(A)× V;
∀v = (v, h) ∈ D(A), Av = (−h, Av).

The data are equal to u0 = (u0, u1) and f = (0, f).
Finally, we are in a position to consider Problem (4.13) with V , A, f and u0 as

above. One obtains the following simple result. . .

Proposition 4.3.10 Assume that u is a strong solution to Problem (4.14); then, u =
(u, u′) is a strong solution to Problem (4.13).
Conversely, assume that u = (u, h) is a strong solution to Problem (4.13); then, u
is a strong solution to Problem (4.14).

As a conclusion, one can exhibit sufficient conditions to ensure the existence,
uniqueness and continuous dependence of the solution to the second-order time-
dependent problem. Indeed, according to the definition of the scalar product on V ,
maximal monotony of A + μIV stems from property (4.15), with the admissible
choice μ ≥ √

ν/2.

Theorem 4.3.11 Let a(·, ·) be a sesquilinear, continuous and Hermitian form
defined on V × V , which fulfills property (4.15). Let the operator A be defined as
in (4.16). Then, given f ∈ C1(R+;H), u0 ∈ D(A) and u1 ∈ V , Problem (4.14)
admits one, and only one, strong solution in the sense of Definition 4.3.9. In addition,
for any t ≥ 0, the norms ‖u(t)‖V , ‖u′(t)‖V and ‖u′′(t)‖H can be bounded by
(homogeneous) expressions involving only the norms of the data.
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So far, we have addressed the well-posedness of our first- and second-order time-
dependent problems, based on the concept of strong solutions.

There exists an alternative technique for second-order time-dependent problems
that relies on weak solutions. It is usually referred to as the Lions-Magenes theory
[157]. It relies mainly on mathematical tools such as distributions, and Lebesgue
and Sobolev spaces. The starting point is still Problem (4.14), which will be re-
interpreted below. Here, the Hilbert space H is usually considered as the pivot space,
so that V ⊂ H ⊂ V ′.

Consider T > 0 and assume that u is a strong solution to Problem (4.14) on the
time interval ]0, T [, in the sense of Definition 4.3.9. Then, since V is dense in H,
one gets the series of equivalent statements:

∀t ∈]0, T [, d
2u

dt2
(t)+ Au(t) = f(t) in H

⇐⇒ ∀t ∈]0, T [, ∀v ∈ V, (d
2u

dt2
(t), v)H + (Au(t), v)H = (f(t), v)H

⇐⇒ ∀t ∈]0, T [, ∀v ∈ V, d
2

dt2
(u(t), v)H + a(u(t), v) = (f(t), v)H.

One defines weak solutions, for which the last statement is not satisfied for all t in
]0, T [, but in the sense of distributions instead. In other words, the weak solution,
still denoted by u, satisfies the weaker statement11:

∀v ∈ V, d
2

dt2
(u(t), v)H + a(u(t), v) = (f(t), v)H in D′(]0, T [). (4.17)

Definition 4.3.12 u is a weak solution to Problem (4.14) on the time interval ]0, T [,
provided that

(i) u ∈ L2(0, T ;V) and u′ ∈ L2(0, T ;H);
(ii) ∀v ∈ V ,

(
(u(t), v)H

)′′ + a(u(t), v) = (f(t), v)H in D′(]0, T [),
u(0) = u0 and u′(0) = u1.

We note that Problem (4.14) must be re-interpreted when weak solutions are sought.
Indeed, since u(t) belongs to V instead ofD(A)—in contrast to strong solutions (see
Definition 4.3.9 (ii))—Au(t) has no meaning. For this reason, one instead introduces
the bounded operator Aw of L(V,V ′), defined by

∀v, w ∈ V, 〈Awv, w〉V = a(v, w).

11It is equivalently written as

⎧⎨
⎩
∀ϕ ∈ D(]0, T [), ∀v ∈ V,∫ T

0

{
(u(t), v)H ϕ′′(t)+ a(u(t), v) ϕ(t)

}
dt =

∫ T

0
(f(t), v)H ϕ(t) dt.
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Thus, Awu(t) belongs to V ′, and moreover, Awu ∈ L2(0, T ;V ′). So, when weak
solutions to the second-order time-dependent Problem (4.14) are studied, the
operator that acts on the solution is Aw.

Theorem 4.3.13 (Lions-Magenes [157]) Assume that the sesquilinear, continu-
ous and Hermitian form a fulfills property (4.15), and let the operator Aw be defined
as above. Then, given T > 0, f ∈ L2(0, T ;H), u0 ∈ V and u1 ∈ H, on the time
interval ]0, T [, Problem (4.14), admits one, and only one, weak solution in the sense
of Definition 4.3.12. In addition,

{
L2(0, T ;H)× V ×H → C0([0, T ];V)× C0([0, T ];H)
(f, u0, u1) �→ (u, u′)

is continuous (with a constant that depends on T ).

In other words, the well-posedness of second-order time-dependent problems also
holds for weak solutions (under assumptions that are different from those introduced
in the case of strong solutions).

Remark 4.3.14 Within the framework of the previous Theorem, a weak solution
is such that Awu ∈ C0([0, T ];V ′). Since f ∈ L2(0, T ;H), it follows that u′′ ∈
L2(0, T ;V ′). In particular, one can choose to rewrite

(
(u(t), v)H

)′′ as 〈u′′(t), v〉,
for all v ∈ V .

For Maxwell’s equations, it is important to note that the notion of weak solutions
can be extended to the slightly modified problem below. Introduce 2(·, ·)H, a second
scalar product on H, such that 2‖·‖H and ‖·‖H are equivalent norms. Therefore, one
can equip H with 2‖ · ‖H without changing its topology; let us denote this space as
H2 to emphasize this point of view. Note that in the formulation of property (4.15),
one can replace ‖·‖H with 2‖·‖H (resulting in a different ν). Then, statement (4.17)
is replaced by

∀v ∈ V, d
2

dt2
{2(u(t), v)H} + a(u(t), v) = (f(t), v)H in D′(]0, T [), (4.18)

which defines a modified second-order time-dependent problem. Interestingly, one
can prove that this modified problem is also well-posed.

Corollary 4.3.15 Let f ∈ L2(0, T ;H), u0 ∈ V and u1 ∈ H. The variational
formulation (4.18) admits one, and only one, weak solution on the time interval
]0, T [, satisfying (u, u′) ∈ C0([0, T ];V)× C0([0, T ];H). In addition,

{
L2(0, T ;H)× V ×H → C0([0, T ];V)× C0([0, T ];H)
(f, u0, u1) �→ (u, u′)

is continuous (with a constant that depends on T ).
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Proof Using Riesz’s Theorem in H2, one can rewrite the r.h.s. of (4.18), which
becomes:

∀v ∈ V, d
2

dt2
{2(u(t), v)H} + a(u(t), v) = 2(f(2)(t), v)H in D′(]0, T [). (4.19)

Of course, the functions of time with values in H have the same regularity when
seen as taking their values in H2; and the norm of f(2) in L2(0, T ;H2) is bounded
above and below by the norm of f in L2(0, T ;H). Applying Theorem 4.3.13 to the
weak formulation (4.19), set in the spaces V and H2, gives us the result.

4.3.2 Problems with Constraints

We proceed by studying the existence of weak solutions for second-order time-
dependent problems with constraints. Let Q be a third Hilbert space, and let b(·, ·)
be a continuous sesquilinear form on V × Q, with associated operators B and B†

defined as in (4.8). We are now interested in solving

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Find (u, p) such that
d2u

dt2
+ Awu+ B†p = f, t > 0,

Bu = g, t > 0,

u(0) = u0 ; du
dt
(0) = u1.

(4.20)

Next, we define weak solutions of such a problem on a time interval ]0, T [.
Definition 4.3.16 (u, p) is a weak solution to Problem (4.20) on the time interval
]0, T [, provided that

(i) u ∈ C1([0, T ];H) ∩ C0([0, T ];V);
(ii) p ∈ C0([0, T ];Q);

(iii) ∀v ∈ V ,
(
(u(t), v)H

)′′ + a(u(t), v)+ b(v, p(t)) = (f(t), v)H in D′(]0, T [),
u(0) = u0 and u′(0) = u1;

(iv) ∀t ∈ [0, T ], ∀q ∈ Q, b(u(t), q) = 〈g(t), q〉.
As we are mainly interested in solving Maxwell’s equations, we shall replace(
(u(t), v)H

)′′ with
(

2(u(t), v)H
)′′ in (iii). As a consequence, Problem (4.20)

becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find (u, p) such that

∀v ∈ V, d
2

dt2
{2(u(t), v)H} + a(u(t), v)

+ b(v, p(t)) = (f(t), v)H in D′(]0, T [),
∀t ∈ [0, T ], ∀q ∈ Q, b(u(t), q) = 〈g(t), q〉 ;
u(0) = u0 ,

du

dt
(0) = u1.

(4.21)
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To analyse this problem, we shall introduce some definitions, which also serve in
studying the associated discrete problems [17]. First, we introduce K, the kernel of
b(·, ·) (which is a closed subspace of V),

K = {v ∈ V : ∀q ∈ Q, b(v, q) = 0},

its polar set K0 ⊂ V ′, and its orthogonal K⊥ in V . We still assume that the
property (4.15) holds; thus, we take a priori the orthogonality in the sense of
the equivalent scalar product 2(·, ·)V = a(·, ·) + ν (·, ·)H or a(·, ·) + ν2 2(·, ·)H
(see Remark 4.3.8). Nevertheless, we shall need the following hypothesis to prove
the well-posedness of the constrained formulations.

Definition 4.3.17 The spaces K and K⊥ satisfy a double orthogonality property
in V and H (respectively H2) if:

∀(v‖, v⊥) ∈ K×K⊥, a(v‖, v⊥) = 0 and (v‖, v⊥)H = 0, respectively 2(v‖, v⊥)H = 0.

This notion is of fundamental importance in addressing the solution of the time-
dependent Maxwell equations. The proof of the following Lemma is left to the
reader.

Lemma 4.3.18 Let L be the closure of K inH, and L⊥ its orthogonal inH. If V is
dense inH, and the double orthogonality property holds for K andK⊥ in V andH,
then L⊥ is the closure of K⊥ in H.

Thus, any z ∈ H can be split as z = z‖ + z⊥, with (z‖, z⊥)H = 0; if z ∈ V ,
this decomposition coincides with that in K × K⊥. Of course, one can replace H
with H2, i.e., the scalar product (·, ·)H with 2(·, ·)H in the above Lemma.

Theorem 4.3.19 Assume that the sesquilinear, continuous and Hermitian form a
fulfills the property (4.15), and that the sesquilinear and continuous form b satisfies
the inf-sup condition (4.10) for some β > 0. Finally, assume that the spaces K
andK⊥ satisfy a double orthogonality property in V andH2, as in Definition 4.3.17.
Let L be the closure of K inH.

Then, let T > 0, f ∈ C0([0, T ];H), g ∈ C2([0, T ];Q′), u0 ∈ V and u1 ∈ H be
given, such that the projection u1⊥ of u1 onto L⊥ belongs to V , and

∀q ∈ Q, b(u0, q) = 〈g(0), q〉Q, and b(u1⊥, q) = 〈g′(0), q〉Q. (4.22)

On the time interval ]0, T [, Problem (4.21) admits a unique weak solution in the
sense of Definition 4.3.16 (with

(
2(u(t), v)H

)′′
in (iii)). In addition, the mapping

{
C0([0, T ];H)× C2([0, T ];Q′)× V ×H → C0([0, T ];V ×H×Q)
(f, g, u0, u1) �→ (u, u′, p)

is continuous (with a constant that depends on T ).
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Proof Without loss of generality, we may assume 2(·, ·)H = (·, ·)H, by reasoning
as in Corollary 4.3.15 if necessary. Then, we proceed by analysis and synthesis.
Suppose there exists a solution (u, p) in the sense of Definition 4.3.16; and split
u(t) = u‖(t) + u⊥(t) ∈ K ⊕ K⊥ for all t ∈ [0, T ]. As the projection onto
closed subspaces is continuous, it holds that (u‖, u⊥) ∈ C0([0, T ];K × K⊥) ×
C1([0, T ];L× L⊥). Similarly, let u0 = u0‖ + u0⊥ ∈ K ⊕ K⊥; u1 = u1‖ + u1⊥ ∈
L⊕ L⊥; f = f‖ + f⊥ ∈ C0([0, T ];L× L⊥).

1. Item (iv) of Definition 4.3.16 is equivalent to: ∀t ∈ [0, T ], ∀q ∈ Q,
b(u⊥(t), q) = 〈g(t), q〉. By Lemma 4.2.18, we know this equation has a unique
solution for each t . Moreover, one has β‖u⊥(t)‖V ≤ ‖g(t)‖Q′ , and similar
inequalities link the first and second time derivatives of u⊥ and g: the norm of u
in C2([0, T ];K⊥) is controlled by that of g in C2([0, T ];Q′).

2. Then, let us take a test function v‖ ∈ K in item (iii). Using the definition of K
and the double orthogonality property, we obtain:

∀v‖ ∈ K, d2

dt2
{(u‖(t), v‖)H} + a(u‖(t), v‖) = (f‖(t), v‖)H in D′(]0, T [).

But, by the same property, (u‖(t), v⊥)H = a(u‖(t), v⊥) = 0 for any v⊥ ∈ K⊥.
Therefore, we can add an arbitrary function v⊥ ∈ K⊥ to v‖ in the above equation.
So, we see that u‖ appears as a solution to the variational formulation:
Find u‖ : [0, T ] → V such that:

∀v ∈ V, d2

dt2
{(u‖(t), v)H} + a(u‖(t), v) = (f‖(t), v)H in D′(]0, T [),

with the initial conditions u‖(0) = u0‖, u′‖(0) = u1‖. Thus, it coincides with
the unique weak solution to this formulation in the sense of Definition 4.3.12.
Following the same line of reasoning, one shows that this solution does belong
to K at any time; furthermore, its norm in C0([0, T ];V)×C1([0, T ];H) depends
continuously on the data (f‖, u0‖, u1‖), which are themselves controlled by
(f, u0, u1) in their respective spaces.

3. Now, consider v ∈ V and write v = v‖+v⊥, with (v‖, v⊥) ∈ K×K⊥. Using the
characterisation of u‖ obtained in step 2, together with the double orthogonality
property and footnote11, p. 167, one finds that

(f(t), v)H − d2

dt2
{(u(t), v)H} − a(u(t), v) =

(f⊥(t), v⊥)H − d2

dt2
{(u(t)⊥, v⊥)H} − a(u⊥(t), v⊥) in D′(]0, T [).

Let us define h(t) ∈ V ′, for all t , by the condition:

∀v ∈ V, 〈h(t), v〉V = (f⊥(t), v⊥)H − (u′′⊥(t), v⊥)H − a(u⊥(t), v⊥).
(4.23)
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Thanks to the assumptions on the data and to the preceding results, we have
h ∈ C0([0, T ];K0), where K0 is the polar set of K. Using Lemma 4.2.18 once
more, we conclude that

∃!p ∈ C0([0, T ];Q), ∀t ∈ [0, T ], ∀v ∈ V, b(v, p(t)) = 〈h(t), v〉V . (4.24)

Moreover, the norm of p in C0([0, T ];Q) depends continuously on the data
(f, g, u0, u1).

4. Conversely, let u = u‖ + u⊥, where u⊥ and u‖ are defined as in steps 1
and 2, and let p be defined by (4.24) and (4.23). They fulfill all items of
Definition 4.3.16, including the initial conditions thanks to (4.22). What is more,
the norm of (u, u′, p) in C0([0, T ];V × H × Q) depends continuously on the
data (f, g, u0, u1).

Remark 4.3.20 As in the case without constraints (cf. Theorem 4.3.13), one can
have weaker time regularity assumptions on the right-hand sides, namely f ∈
L2(0, T ;H) and g ∈ H 2([0, T ];Q′). But one only finds that p ∈ L2(0, T ;Q).
Weaker space regularities can be also envisaged, under certain assumptions about
the various spaces and sesquilinear forms (see below).

Remark 4.3.21 Let us comment on the double orthogonality requirement.

• According to Remark 4.3.8, one can replace the scalar product (v, w)V with
2(v, w)V = a(v, w)+ ν2 2(v, w)H, with ν2 > 0. Hence the denomination double
orthogonality with respect to 2(·, ·)V :
for all (v‖, v⊥) ∈ K×K⊥, one expects a(v‖, v⊥)+ ν2 2(v‖, v⊥)H = 0, whereas
we require both a(v‖, v⊥) = 0 and 2(v‖, v⊥)H = 0.

• The part (v‖, v⊥) ∈ K×K⊥ (⇒ a(v‖, v⊥) = 0 is required, because one cannot
deal with a right-hand side of the form a(w(t), v)—in our case, with w = u⊥ and
v = v‖—when solving the second-order time-dependent problem in V .12

The result of Theorem 4.3.19 is not entirely satisfactory: as it appears from the proof,
the part of the solution that is orthogonal to the kernel is much more regular than
the one along the kernel. To address this dissymmetry, one can try to define suitable
extensions of the operator B, and thus consider less regular data g. For instance,
introduce the spaces:

Qw := {q ∈ Q : B†q ∈ H}, Qww := {q ∈ Q : B†q ∈ V}, (4.25)

endowed with their canonical norms. For any q ∈ Qw, the continuous antilinear
form on V given by v �→ b(v, q) can be extended to a continuous antilinear form

12Unless g(t) is appropriately regular. More precisely, see (4.27-top) below: g(t) should be regular
enough, so that the second term on the right-hand side can be included in the first term by suitably
modifying f(t).
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on H. Thus, we have defined a continuous sesquilinear form bw on H×Qw, which
coincides with b(·, ·) on V×Qw, as well as an extended operator Bw : H → Q′

w and
its conjugate transpose B†

w : Qw → H′ = H. Similarly, one defines the sesquilinear
form bww on V ′ × Qww and the operators Bww : V ′ → Q′

ww and B†
ww : Qww →

V ′′ = V .

Theorem 4.3.22 Assume that the sesquilinear, continuous and Hermitian form a
fulfills the property (4.15), and that the sesquilinear and continuous form b satisfies
the inf-sup condition (4.10) for some β > 0. Assume, moreover, that the sesquilinear
and continuous forms bw and bww satisfy similar inf-sup conditions in the relevant
spaces; and that the double orthogonality property in V andH2 holds.
Then, let T > 0, f ∈ C0([0, T ];H), g ∈ GT := C0([0, T ];Q′)∩C1([0, T ];Q′

w)∩
C2([0, T ];Q′

ww), u0 ∈ V and u1 ∈ H be given such that

∀q ∈ Q, b(u0, q) = 〈g(0), q〉Q ; ∀q ∈ Qw, bw(u1, q) = 〈g′(0), q〉Qw . (4.26)

On the time interval ]0, T [, Problem (4.21) admits a unique weak solution in the
sense of Definition 4.3.16 (with

(
2(u(t), v)H

)′′
in (iii)). In addition, the mapping

{
C0([0, T ];H)× GT × V ×H → C0([0, T ];V ×H×Q)
(f, g, u0, u1) �→ (u, u′, p)

is continuous (with a constant that depends on T ).

The proof is entirely similar to that of Theorem 4.3.19.

Remark 4.3.23 Let us comment on these regularity assumptions.

• As in Remark 4.3.20, it is sufficient to assume f ∈ L2(0, T ;H) and g ∈
C0([0, T ];Q′) ∩ C1([0, T ];Q′

w) ∩ H 2([0, T ];Q′
ww) in order to have a well-

posed evolution equation for u‖ and an equation for p(t) at a.e. t ; in this case, it
holds that p ∈ L2(0, T ;Q).

• The inf-sup condition on the form bw allows one to prove the condition u⊥ ∈
C1([0, T ];H), which is expected of a weak solution. By the same token, it
expresses the compatibility between the initial condition u1 and the constraint
b(u, q) = 〈g, q〉. It also implies that L is the kernel of bw(·, ·).

• On the other hand, the form bww plays a marginal role. Its inf-sup condition
ensures u⊥ ∈ C2([0, T ];V ′) or H 2([0, T ];V ′), so that the r.h.s. of (4.23) is
well-defined for a.e. t . If this condition is unavailable, one can still conclude
favorably under the assumption g ∈ C0([0, T ];Q′) ∩ C2([0, T ];Q′

w) or g ∈
C0([0, T ];Q′) ∩H 2([0, T ];Q′

w).
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To conclude this subsection, we introduce a reinterpretation of the equations
satisfied by u⊥ and u‖, which also proves useful in analysing the numerical
discretizations of Problem (4.21) [81]. According to item 1. in the proof of
Theorem 4.3.19, the variable u⊥ is the solution, at any time, to the static mixed
formulation:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Find (u⊥, p⊥) such that
∀t ∈ [0, T ], ∀q ∈ Q, b(u⊥(t), q) = 〈g(t), q〉Q,
∀v ∈ V, a(u⊥(t), v)+ b(v, p⊥(t)) = 〈Aw B−1

|K⊥ g(t), v〉V in D′(]0, T [) ;
u⊥(0) = u0⊥ ,

du⊥
dt
(0) = u1⊥.

Indeed, the operator B restricted to K⊥ admits a continuous inverse B−1
|K⊥ : Q′ →

K⊥. By the uniqueness of the solution to the constrained formulation, it holds that
p⊥(t) = 0. As for u‖, it is the solution to the following time-dependent formulation,
where u⊥ enters as data and p‖ = p:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find (u‖, p‖) such that

∀v ∈ V, d
2

dt2
{2(u‖(t), v)H} + a(u(t), v)+ b(v, p‖(t)) =

(f(t), v)H − 〈Aw B−1
|K⊥ g(t), v〉V − d2

dt2
{2(u⊥(t), v)H} in D′(]0, T [),

∀q ∈ Q, b(u‖(t), q) = 0 in C0([0, T ]) respectively L2(0, T ) ;
u‖(0) = u0‖ ,

du‖
dt
(0) = u1‖.

(4.27)

4.4 Time-Dependent Problems: Improved Regularity Results

We now investigate the conditions under which the solution to the second-order
time-dependent problems (4.14), (4.17), (4.21) (and their variants) may exhibit a
higher regularity in space and time, such as that needed for the numerical analysis
[17]. In addition to the hypotheses of Sect. 4.3, we assume that the canonical
imbedding iV→H is compact.

To simplify the discussion, we shall assume in this section that the form a

appearing in these problems is (Hermitian and) coercive on the whole space V , i.e.,
the property (4.15) holds with ν = 0. As a consequence, we replace the original
norm of V with the equivalent norm 2‖v‖V := a(v, v)1/2, usually called the energy
norm, which we will denote by ‖v‖V for the sake of simplicity.
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4.4.1 Problems Without Constraints

First, we introduce the eigenvalue problem13:

{
Find (e, λ) ∈ (V \ {0})× R such that
∀v ∈ V, a(e, v) = λ (e, v)H. (4.28)

According to Corollary 4.5.12, there exist a non-decreasing sequence of strictly
positive eigenvalues (λi)i∈N and a sequence of eigenfunctions (ei )i∈N that are a
Hilbert basis of H and such that (λ−1/2

i ei )i∈N is a Hilbert basis for V . This leads to
the definition of a scale (Vs)s∈R of Hilbert spaces, the A-Sobolev spaces.

Definition 4.4.1 Let s ∈ R. The space Vs is:

• if s ≥ 0, the subspace of H characterised by the condition

∑
i∈N

ui ei = u ∈ Vs ⇐⇒ ‖u‖2
V s :=

∑
i∈N

λsi |ui |2 < +∞, (4.29)

which defines its canonical norm;
• if s < 0, the dual of V−s with respect to the pivot space H.

Then, we summarise some properties of this scale. The proofs are left to the reader.

Proposition 4.4.2 The following statements hold true:

1. V0 = H, V1 = V , V2 = D(A), V−1 = V ′, algebraically and topologically.
2. For all i ∈ N and s ∈ R, ei ∈ Vs . Furthermore, the sequence (esi )i∈N :=
(λ

−s/2
i ei )i∈N is a Hilbert basis for Vs .

3. For all t < s ∈ R, Vs is densely and compactly imbedded in V t .
4. Let s ∈ R and u ∈ Vs . The scalar ui equivalently defined as

ui =
〈
u, e−ti

〉
V−t = λ−t/2i

(
u, eti

)
V t

does not depend on t ≤ s. Of course, if u ∈ H, ui coincides with the coordinate
of u on the basis (ei)i∈N.

5. As a consequence of items 2 and 4, an element of an A-Sobolev space admits
a renormalised expansion u = ∑

i∈N ui ei , which converges in Vs under the
condition (4.29).

With these results, one can define a natural generalisation of the “strong” and
“weak” operators A and Aw. The “formal” unbounded operator

Ã : u =
∑
i∈N

ui ei �−→
∑
i∈N

λi ui ei

13Cf. the discussion in footnote 6, p. 153.
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makes sense as soon as u belongs to some A-Sobolev space. By construction, it maps
Vs to Vs−2 for all s, and it is an isometry between these spaces. As particular cases,
A and Aw appear as the restrictions of Ã to D(A) and V , respectively.

We are now ready to analyse a generalised version of Problem (4.14), namely:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Find u such that
d2u

dt2
+ Ãu = f, t > 0 ;

u(0) = u0 ,
du

dt
(0) = u1.

(4.30)

The above problem is meaningful as soon as u has the regularity C1([0, T ];Vσ ),
and f ∈ L1

loc(]0, T [ ;Vs), for some σ, s ∈ R: the equality on the first line takes
place in D′(]0, T [ ;Vmin(σ−2,s)). As particular cases, this covers the frameworks of
Definitions 4.3.9 and 4.3.12. Considering the renormalised expansions at each time

u(t) =
∑
i∈N

ui(t) ei , um =
∑
i∈N

um,i ei (m = 0, 1), f(t) =
∑
i∈N

fi(t) ei ,

Problem (4.30) is equivalent to the sequence of Cauchy problems in D′(]0, T [) (for
i ∈ N):

⎧⎨
⎩
Find ui such that
d2ui

dt2
+ λi ui = fi, t ∈]0, T [ ; ui(0) = u0,i ,

dui

dt
(0) = u1,i .

The theory of ordinary differential equations gives us the unique solution:

ui(t) = u0,i cos(
√
λi t)+ u1,i√

λi
sin(
√
λi t)+

∫ t
0

sin(
√
λi(t − s)) fi(s)√

λi
ds,

which exists, e.g., under the condition fi ∈ L1(0, T ). If fi ∈ W 1,1(0, T ), one can
perform an integration by parts and arrive at:

ui(t) = u0,i cos(
√
λi t)+ u1,i√

λi
sin(
√
λi t)+ f (t)− f (0) cos(

√
λi t)

λi

−
∫ t

0
cos(

√
λi(t − s)) f

′
i (s)

λi
ds.

Using these representations and Proposition 4.4.2, it is not difficult to prove the
following theorem, which furnishes solutions both less regular and more regular in
space than the strong and weak solutions considered so far.



4.4 Time-Dependent Problems: Improved Regularity Results 177

Theorem 4.4.3 Assume that the canonical imbedding iV→H is compact, and that
the sesquilinear, continuous and Hermitian form a fulfills property (4.15) with ν =
0, and let the operator Ã be defined as above. Then:

1. Given T > 0, s ∈ R, p ≥ 1 f ∈ Lp(0, T ;Vs), u0 ∈ Vs+1 and u1 ∈ Vs; on the
time interval ]0, T [, Problem (4.30) admits a unique solution in C1([0, T ];Vs)∩
C0([0, T ];Vs+1). In addition,

{
L1(0, T ;Vs)× Vs+1 × Vs → C0([0, T ];Vs+1)× C0([0, T ];Vs)
(f, u0, u1) �→ (u, u′)

is continuous (with a constant that depends on T ), and u ∈ W 2,p(0, T ;Vs−1),
with continuous dependence.

2. Given T > 0, s ∈ R, f ∈ ZsT := L1(0, T ;Vs) ∩ C0([0, T ];Vs−1), respectively,
W 1,1(0, T ;Vs−1), u0 ∈ Vs+1 and u1 ∈ Vs; on the time interval ]0, T [,
Problem (4.30) admits a unique solution in C2([0, T ];Vs−1)∩C1([0, T ];Vs)∩
C0([0, T ];Vs+1). In addition,

{
ZsT × Vs+1 × Vs → C0([0, T ];Vs+1)× C0([0, T ];Vs)× C0([0, T ];Vs−1)

(f, u0, u1) �→ (u, u′, u′′)

is continuous (with a constant that depends on T ).

Now, we investigate the time regularity of the solutions to (4.30).

Theorem 4.4.4 Assume the hypotheses of Theorem 4.4.3, and let m ∈ N be
given. Suppose that um and um+1 (defined, according to the parity of m, by the
formulas (4.32) and (4.33) below) belong, respectively, to Vs+1 and Vs .

1. If f ∈ Wm,p(0, T ;Vs), the solution to Problem (4.30) belongs to
Wm+2,p(0, T ;Vs−1) ∩ Cm+1([0, T ];Vs) ∩ Cm([0, T ];Vs+1), with continuous
dependence on the data (f, um, um+1).

2. If either f ∈ Wm,1(0, T ;Vs) ∩ Cm([0, T ];Vs−1) or f ∈ Wm+1,1(0, T ;Vs−1),
the solution to Problem (4.30) belongs toCm+2([0, T ];Vs−1)∩Cm+1([0, T ];Vs)
∩ Cm([0, T ];Vs+1), with continuous dependence on the data (f, um, um+1).

Proof We prove the first claim; the second is similar. The case m = 0 is that of
Theorem 4.4.3. Thus, we suppose m ≥ 1, and we have f ∈ Cm−1([0, T ];Vs).
Using the identity u′′ = f− Ãu iteratively, one arrives at the following expressions
and regularities of the successive time derivatives of u:

u(2k) =
k−1∑
�=0

(−1)� Ã�f(2k−2�−2) + (−1)k Ãku ∈ C0([0, T ];Vs−2k+1) ,

u(2k+1) =
k−1∑
�=0

(−1)� Ã�f(2k−2�−1) + (−1)k Ãku′ ∈ C0([0, T ];Vs−2k) ,



178 4 Abstract Mathematical Framework

as long as 2k − 2, respectively 2k − 1 ≤ m − 1. Thus, in any case, u(m) ∈
C1([0, T ];Vs−m) ∩ C0([0, T ];Vs−m+1).

On the other hand, consider the generalised second-order problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Find v such that
d2v

dt2
+ Ãv = f(m), t > 0 ;

v(0) = um ,
dv

dt
(0) = um+1,

(4.31)

where the initial conditions are defined by the formula

u2k =
k−1∑
�=0

(−1)� Ã�f(2k−2�−2)(0)+ (−1)k Ãku0 ; (4.32)

u2k+1 =
k−1∑
�=0

(−1)� Ã�f(2k−2�−1)(0)+ (−1)k Ãku1 . (4.33)

According to the previous calculations, um ∈ Vs−m+1 and um+1 ∈ Vs−m. As it also
holds that f (m) ∈ Lp(0, T ;Vs−m), Problem (4.31) admits a unique solution in the
space C1([0, T ];Vs−m) ∩ C0([0, T ];Vs−m+1), which is obviously equal to u(m).

Assume now that (um, um+1) ∈ Vs+1 × Vs . Again invoking Theorem 4.4.3,
we see that Problem (4.31) also admits a unique solution in the smaller space
C1([0, T ];Vs) ∩ C0([0, T ];Vs+1), which necessarily coincides again with u(m).
Therefore, u ∈ Cm+1([0, T ];Vs)∩Cm([0, T ];Vs+1), as announced. The regularity
u ∈ Wm+2,p(0, T ;Vs−1) again follows from u′′ = f − Ãu, and the continuous
dependence from Theorem 4.4.3.

4.4.2 Problems with Constraints

Now, we proceed to the framework of constrained problems. We thus consider
a sesquilinear form b on V × Q, satisfying the inf-sup condition (4.10), its
kernel K and L is the closure of K within H. Furthermore, we assume the double
orthogonality property of Definition 4.3.17. We begin by deducing two fundamental
consequences of this property.

Lemma 4.4.5 Assume that the sesquilinear, continuous and Hermitian form a

fulfills property (4.15) with ν = 0, and that the double orthogonality property holds
between V and H. Then, for any v ∈ Vs with s ≥ 0, its H-orthogonal projections
v‖ ∈ L and v⊥ ∈ L⊥ belong to Vs , with ‖v‖‖2

V s + ‖v⊥‖2
V s = ‖v‖2

V s .
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Proof Let e be a solution to (4.28). Taking a test function v‖ ∈ K and using the
double orthogonality, one obtains a(e‖, v‖) = λ (e‖, v‖)H. Again invoking the
double orthogonality, one arrives at:

a(e‖, v) = λ (e‖, v)H, ∀v ∈ V, and similarly, a(e⊥, v) = λ (e⊥, v)H.

In other words, the projections onto K and K⊥ of any eigenfunction are either an
eigenfunction, or zero. Thus, the Hilbert basis (ei )i∈N can be chosen such that all its
elements belong either to K or to K⊥. Let I‖ (respectively I⊥) be the set of indices i
such that ei ∈ K (respectively ei ∈ K⊥). Then, we have:

∀v =
∑
i∈N

vi ei ∈ H, v‖ =
∑
i∈I‖
vi ei and v⊥ =

∑
i∈I⊥

vi ei .

The conclusion follows using the property (4.29).

Lemma 4.4.6 Assume the hypotheses of Lemma 4.4.5, and introduce the respective
subspacesF s ⊂ Q′ andQs ⊂ Q (for s ≥ 0), equipped with their canonical norms:

F s = B(Vs+2) = B(Vs+2 ∩K⊥),

Qs = {q ∈ Q : B†q ∈ Vs−1}.

Then, for any y ∈ Vs and μ ∈ F s , the solution to the problem

Find (u, r) ∈ V ×Q such that

∀v ∈ V, a(u, v)+ b(v, r) = (y, v)H, (4.34)

∀q ∈ Q, b(u, q) = 〈μ, q〉Q, (4.35)

belongs to Vs+2 ×Qs+1, and ‖u‖V s+2 + ‖r‖Qs+1 � ‖y‖V s + ‖μ‖F s .
Remark 4.4.7 It holds that: Q0 = Q, Q1 = Qw, Q2 = Qww , as in Eq. (4.25).
The scale (F s)s can be extended to s ≥ −1, and even to s ≥ −2, provided the
sesquilinear form bw satisfies an inf-sup condition on H ×Qw: F s = Bw(Vs+2) =
Bw(Vs+2 ∩ L⊥); in particular, F−1 = B(V) = Q′ and F−2 = Bw(H) = Q′

w.

Proof Decompose u = u‖ + u⊥ ∈ K ⊕ K⊥ and y = y‖ + y⊥ ∈ L ⊕ L⊥. By
definition of F s , there exists ũ ∈ Vs+2 ∩ K⊥ such that Bũ = μ. On the other hand,
Eq. (4.35) is equivalent to Bu⊥ = μ. By Lemma 4.2.18, this equation has a unique
solution in K⊥; hence, u⊥ = ũ, and ‖u⊥‖V s+2 � ‖μ‖F s by definition of the latter
norm.

Reasoning as in Lemma 4.4.5, we see that (4.34) implies that

a(u‖, v) = (y‖, v)H, ∀v ∈ V, i.e., Awu‖ = y‖ ∈ Vs .
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Therefore, u‖ ∈ Vs+2 and ‖u‖‖V s+2 � ‖y‖‖V s � ‖y‖V s . Finally, Eq. (4.34) is
rewritten as: B†r = y−Au ∈ Vs , i.e., r ∈ Qs+1 and ‖r‖Qs+1 � ‖y‖V s +‖u‖V s+2 �
‖y‖V s + ‖μ‖F s .

With these tools, one can determine the regularity of the solution to the mixed
problem (4.21). We concentrate on solutions more regular in space and time than
those provided by Theorem 4.3.22 or Remark 4.3.23, which are needed for the
numerical analysis [17].

Theorem 4.4.8 Assume that the canonical imbedding iV→H is compact, that the
sesquilinear, continuous and Hermitian form a fulfills property (4.15) with ν = 0,
that the sesquilinear and continuous form b satisfies the inf-sup condition (4.10) for
some β > 0, that the sesquilinear and continuous form bw satisfies a similar inf-sup
condition in H ×Qw, and that the double orthogonality property holds between V
andH.

Let T > 0, s ≥ 1, p ≥ 1 andm ∈ N be given. Suppose that the data (f, g, u0, u1)

of Problem (4.21) satisfy the following regularity and compatibility properties:

1. f ∈ Wm,p(0, T ;Vs);
2. g ∈ Cm([0, T ];F s−1) ∩ Cm+1([0, T ];F s−2) ∩Wm+2,p(0, T ;F s−3);
3. u0 ∈ Vs+1 and u1 ∈ Vs , and the conditions (4.26) hold;
4. the quantities um‖ and um+1,‖, defined by the formulas (4.32) and (4.33) in

function of the projections u0‖, u1‖,
(
f
(�)
‖ (0)

)
�=0, ..., m−2

onto L, belong,

respectively, to Vs+1 and Vs .

Then, the solution (u, p) to Problem (4.21) satisfies

(u, u′) ∈ Cm([0, T ];Vs+1 × Vs) , (u′′, p) ∈ Wm,p(0, T ;Vs−1 ×Qs ),

and depends continuously on the data (f, g, u0, u1, um‖, um+1,‖) in their respective
spaces.

Proof We take the characterisations of (u‖, u⊥, p) from the proof of Theo-
rem 4.3.19. The parallel component u‖ is the solution to the unconstrained evolution
problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Find u‖ such that
d2u‖
dt2

+ Awu‖ = f‖, t > 0 ;
u‖(0) = u0‖ ,

du‖
dt
(0) = u1‖ ;

and one applies Theorem 4.4.4. The perpendicular component u⊥ is defined, at each
time, by the conditions

∀q ∈ Q, b(u⊥(t), q) = 〈g(t), q〉Q or ∀q ∈ Qw, bw(u⊥(t), q) = 〈g(t), q〉Qw .
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Applying Lemma 4.2.18, one finds u⊥ ∈ Cm([0, T ];Vs+1) ∩ Cm+1([0, T ];Vs) ∩
Wm+2,p(0, T ;Vs−1), the continuous dependence following from the definition of
the spaces Fσ and their norms. Finally, the multiplier p satisfies

B†p = f− u′′ − Awu ∈ Wm,p(0, T ;Vs−1),

the norm of the r.h.s. being bounded by that of the data in their respective spaces.
Hence, p ∈ Wm,p(0, T ;Qs) by definition of the latter space, with continuous
dependence on the data.

Remark 4.4.9 Let us comment on the assumptions of this theorem.

• The form bw and its inf-sup condition are not needed if s ≥ 2.
• If f ∈ Wm,1(0, T ;Vs) ∩ Cm([0, T ];Vs−1) or f ∈ Wm+1,1(0, T ;Vs−1), and

moreover, g ∈ Cm+2([0, T ];F s−3), then (u′′, p) ∈ Cm([0, T ];Vs−1 ×Qs).
• The regularity assumption on g has been chosen by an “aesthetic” criterion, viz.,

that u⊥ and u‖ should have the same space-time regularity. For the purpose of
convergence analysis, this is not always necessary: the regularity of u can be
limited by that of u⊥. In that case, it suffices to remark that u⊥ ∈ E([0, T ];Vσ )—
for any space E measuring time regularity on [0, T ]—iff g ∈ E([0, T ];Fσ−2).

4.5 Time-Harmonic Problems

To conclude this brief overview, we consider classes of problems that stand in-
between static and time-dependent formulations. From a practical point of view, it
is assumed that the time-dependence is explicitly known—in exp(−ıωt)—which
allows us to remove the time variable from the formulation. We shall consider
two cases, depending on whether the pulsation ω of the signal is data, i.e., the
fixed frequency problem, or it is an unknown, to be determined, i.e., the unknown
frequency problem. From an abstract point of view, they respectively correspond
to Helmholtz-like problems, and to eigenproblems. We again provide elements of
proofs in this section.

4.5.1 Helmholtz-Like Problem

Let H and V be two Hilbert spaces, such that V is a vector subspace of H with
continuous imbedding iV→H . In what follows, we chooseH as the pivot space. Let
a(·, ·) be a sesquilinear continuous form on V × V , A the corresponding operator
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defined at (4.4) with V = W , and λ ∈ C \ {0}. Given f ∈ V ′, the Helmholtz-like
problem to be solved is

{
Find u ∈ V such that
∀v ∈ V, a(u, v)+ λ(u, v)H = 〈f, v〉. (4.36)

Such problems are usually solved with the help of the Fredholm alternative.

Theorem 4.5.1 (Helmholtz-Like Problem) Assume that the sesquilinear form a
is such that A is an isomorphism from V to V ′, and that the canonical imbedding
iV→H is compact. Then:

– either, for all f ∈ V ′, Problem (4.36) has one, and only one, solution u, which
depends continuously on f ;

– or, Problem (4.36) has solutions if, and only if, f satisfies a finite number
nλ of orthogonality conditions. Then, the space of solutions is affine, and the
dimension of the corresponding linear vector space (i.e., the kernel) is equal to
nλ. Moreover, the part of the solution that is orthogonal to the kernel depends
continuously on the data.

Proof Since the operator A−1 is well-defined, one can replace the right-hand side
with a(A−1f, v) in (4.36). Also, one can replace the second term as follows. We
mention the imbedding iV→H explicitly here, to write

∀v ∈ V, (u, v)H = (iV→Hu, v)H = 〈iV→Hu, v〉 = a(A−1 ◦ iV→Hu, v).

So, Problem (4.36) equivalently rewrites

{
Find u ∈ V such that
(IV + λA−1 ◦ iV→H )u = A−1f in V.

To conclude, we note that iV→H is a compact operator, whereas A−1 is a bounded
operator. According to Proposition 4.1.2, A−1 ◦ iV→H is a compact operator of
L(V ), so that Theorem 4.1.18 and Corollary 4.1.19 (Fredholm alternative) yield the
desired result as far as the alternative is concerned.

There remains to study the continuous dependence of the solution with respect
to the data. Let T = IV + λA−1 ◦ iV→H , Kλ = ker(T ) and Rλ = R(T ).

First, assume that Kλ = {0}. According to Theorem 4.1.18, T is a bijective
mapping of L(V ). Then, the Open Mapping Theorem 4.1.4 states that T −1 belongs
to L(V ), so one concludes that

‖u‖V ≤ |||T −1||| |||A−1||| ‖f ‖V ′ .

Or, assume that Kλ is a finite-dimensional space of V that is not reduced to {0}.
Let nλ = dimKλ. According to Theorem 4.1.18, Rλ is a closed subspace of V ,
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and codimRλ = nλ. Moreover, the restriction of T to K⊥
λ , denoted by T|K⊥

λ
, is a

bijective mapping fromK⊥
λ to Rλ. Thus, Problem (4.36) has a solution if, and only

if, f satisfies nλ orthogonality conditions. In this case, the solution u can be written
as u = u⊥ + u0, where u⊥ belongs to K⊥

λ and is unique, and u0 is any element of
the kernelKλ. When these conditions are met, one has

‖u⊥‖V ≤ |||(T|K⊥
λ
)−1||| |||A−1||| ‖f ‖V ′ .

Remark 4.5.2 For practical situations that ensure that A−1 is well-defined, we refer
to Remark 4.2.15.

Corollary 4.5.3 (Helmholtz-Like Problem) Provided there exists μ ∈ C such
that the sesquilinear form a(·, ·)+ μ(·, ·)H is coercive on V × V , and provided the
canonical imbedding iV→H is compact, the conclusions of Theorem 4.5.1 apply.

Proof In Problem (4.36), one simply replaces a(u, v) + λ(u, v)H with {a(u, v) +
μ(u, v)H } + {λ− μ}(u, v)H .

Remark 4.5.4 It is possible to use compact operators of L(H) instead. For illustra-
tive purposes, we adopt this point of view in the next subsection.

Remark 4.5.5 Static problems can be seen as Helmholtz-like problems with λ = 0.
Also, in the particular case when a(·, ·) is coercive and λ ≥ 0, the sesquilinear form
a(u, v)+λ(u, v)H is directly coercive on V×V , so the Lax-Milgram Theorem 4.2.8
applies: Problem (4.36) is well-posed in the Hadamard sense. On the other hand,
when λ < 0, the form v �→ a(v, v)+ λ‖v‖2

H can be indefinite (no specific sign). In
this case, Problem (4.36) is well-posed in the Fredholm sense.

This result can be recast quite simply into the so-called coercive + compact
framework. Let c(·, ·) be a second continuous sesquilinear form on H × V . Given
f ∈ V ′, the second Helmholtz-like problem to be solved is

{
Find u ∈ V such that
∀v ∈ V, a(u, v)+ c(u, v) = 〈f, v〉. (4.37)

Remark 4.5.6 Problems (4.36) and (4.37) belong to the class of perturbed problems,
here with a compact perturbation.

The previous Theorem can thus be generalized.

Theorem 4.5.7 (Helmholtz-Like Problem) Assume that the sesquilinear form a
is such that A is an isomorphism from V to V ′ and that the canonical imbedding
iV→H is compact. Then:

– either, for all f ∈ V ′, Problem (4.37) has one, and only one, solution u, which
depends continuously on f ;
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– or, Problem (4.37) has solutions if, and only if, f satisfies a finite number nc of
orthogonality conditions. Then, the space of solutions is affine, and the dimension
of the corresponding linear vector space (the kernel) is equal to nc. Moreover,
the part of the solution that is orthogonal to the kernel depends continuously on
the data.

Proof (Sketched) Remark that, for all u, v ∈ V , c(u, v) = c(iV→Hu, v).
Given h ∈ H , Problem

{
Find w ∈ V such that
∀v ∈ V, a(w, v) = c(h, v)

admits one, and only one solution, and the mapping Tc : h �→ w belongs to
L(H, V ). Thus, the Helmholtz-like problem (4.37) can be rewritten equivalently as

{
Find u ∈ V such that
(IV + Tc ◦ iV→H)u = A−1f in V.

One concludes as in the proof of Theorem 4.5.1.

We now turn to Helmholtz-like problems with constraints. Let us introduce a third
Hilbert space, denoted by Q, g ∈ Q′ and b(·, ·), a continuous sesquilinear form on
V ×Q. The Helmholtz-like problem with constraints is formulated as follows:

⎧⎨
⎩
Find (u, p) ∈ V ×Q such that
∀v ∈ V, a(u, v)+ c(u, v)+ b(v, p) = 〈f, v〉
∀q ∈ Q, b(u, q) = 〈g, q〉.

(4.38)

We introduce once more the kernel of b(·, ·),
K = {v ∈ V : ∀q ∈ Q, b(v, q) = 0}.

Let us assume that the form b satisfies the inf-sup condition (4.10) for some β > 0.
According to Lemma 4.2.18, there exists14 one, and only one, ug ∈ K⊥ such that
Bug = g. Let us introduce f ′ ∈ V ′ defined by

∀v ∈ V, 〈f ′, v〉 = 〈f, v〉 − a(ug, v)− c(ug, v).
It is then possible to consider another Helmholtz-like problem, set in K . It writes

{
Find u0 ∈ K such that
∀v‖ ∈ K, a(u0, v‖)+ c(u0, v‖) = 〈f ′, v‖〉. (4.39)

14Since g can be any element of Q′, one has to assume that B is surjective. If g = 0, then this
inf-sup condition could be dropped to formulate the Helmholtz-like problem set in K . However, it
is useful in Proposition 4.5.8.
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One relates those two Helmholtz-like problems with constraints in the follow-
ing way.

Proposition 4.5.8 Assume that the form b satisfies the inf-sup condition (4.10) for
some β > 0. Let ug ∈ K⊥ be characterized as Bug = g.
1. If there exists (u, p) a solution to (4.38), then u− ug solves (4.39).
2. If there exists u0 a solution to (4.39), then there exists p ∈ Q such that (u0 +
ug, p) solves (4.38).

Proof

1. Straightforward.
2. Let u′ = u0 + ug . By definition, one has

∀q ∈ Q, b(u′, q) = 〈g, q〉.

Let v ∈ V be split as v = v‖ + v⊥, with (v‖, v⊥) ∈ K ×K⊥.

a(u′, v)+ c(u′, v) = 〈f, v‖〉 + a(u′, v⊥)+ c(u′, v⊥)
= 〈f, v〉 + {a(u′, v⊥)+ c(u′, v⊥)− 〈f, v⊥〉}.

The antilinear form v �→ a(u′, v⊥)+ c(u′, v⊥)−〈f, v⊥〉 belongs to the polar set
of K . From Lemma 4.2.18, there exists p ∈ Q such that

∀v ∈ V, a(u′, v)+ c(u′, v)− 〈f, v〉 = −b(v, p).

It follows that the couple (u′, p) solves (4.38).

From there, one can state the result in regard to Helmholtz-like problems with
constraints.

Theorem 4.5.9 (Helmholtz-Like Problem with Constraints) Assume that the
sesquilinear form a is coercive on K , that the canonical imbedding iK→H is
compact, and finally, that the form b satisfies the inf-sup condition (4.10) for some
β > 0. Then, the Helmholtz-like problems (4.38) and (4.39) fit into the coercive +
compact framework.

Proof According to the previous proposition, we know that Problem (4.38) admits
a solution u if, and only if, Problem (4.39) admits a solution u0. Moreover, the two
are related by u = u0 + ug, with ug ∈ K⊥ being unique and such that ‖ug‖V ≤
β−1‖g‖Q′ (Lemma 4.2.18). This characterizes the part of the solution (if it exists. . . )
to Problem (4.38) that belongs to K⊥. So, for simplicity, we assume that g = 0 so
that u0 = u (and f ′ = f ), and we choose to focus on Problem (4.39) from now on.



186 4 Abstract Mathematical Framework

Since a(·, ·) is coercive on K , and since b(·, ·) satisfies an inf-sup condition, the
Babuska-Brezzi Theorem 4.2.19 states that, given f ∈ V ′, Problem

⎧⎨
⎩
Find (w, r) ∈ V ×Q such that
∀v ∈ V, a(w, v) + b(v, r) = 〈f , v〉
∀q ∈ Q, b(w, q) = 0

is well-posed, and the mapping T : f �→ w belongs to L(V ′,K). In (4.39), one can
thus replace the right-hand side with a(Tf, v‖), whereas the second term is likewise
replaced with a(Tc ◦ iK→Hu0, v‖). Thanks to the coerciveness of the form a on K ,
Problem (4.38) rewrites

{
Find u0 ∈ K such that
(IK + Tc ◦ iK→H)u0 = Tf in K.

Noting that Tc ◦ iK→H is a compact operator of L(K), we conclude by using the
Fredholm alternative.

4.5.2 Eigenproblem

Let H and V be two Hilbert spaces, such that V is a separable, dense, vector
subspace of H with continuous imbedding iV→H . We chooseH as the pivot space.
Let a(·, ·) be a sesquilinear continuous form on V × V with the associated operator
A ∈ L(V , V ′). The eigenproblem to be solved is

{
Find (u, λ) ∈ (V \ {0})× C such that
∀v ∈ V, a(u, v) = λ(u, v)H . (4.40)

With a slight abuse of notations, we say that u is an eigenvector, λ is an eigenvalue,
and (u, λ) is an eigenpair. As a matter of fact, assume that the operator A is an
isomorphism, and let T ∈ L(H, V ) be defined by

g �→ Tg = w, w solution to

{
Find w ∈ V such that
∀v ∈ V, a(w, v) = (g, iV→Hv)H .

Above,w is well-defined, becauseA is an isomorphism. Indeed, one can replace the
right-hand side (g, iV→Hv)H with 〈iH→V ′g, v〉V , so that w = A−1 ◦ iH→V ′g. In
terms of operators, one has T = A−1 ◦ iH→V ′ . Next, let

TH = iV→H ◦ T ∈ L(H).
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Given a solution (u, λ) of (4.40), one finds that THu = λ−1 u, i.e., u belongs to the
eigenspace Eλ−1(TH ).15 Thus, in H , the eigenproblem (4.40) boils down to:

{
Find (u, ν) ∈ (H \ {0})× C such that
νu = THu ,

where ν = λ−1 �= 0: (u, ν) is an eigenpair of TH , which justifies a posteriori
the definition of (u, λ) as an eigenpair of (4.40). One has R(TH ) ⊂ V , so all
eigenvectors belong to V .

Finally, if the canonical imbedding iV→H is compact, then, by construction, TH
is a compact operator (see Proposition 4.1.2) and one may apply Theorem 4.1.7.

Theorem 4.5.10 (Eigenvalues) Assume that the operator A is an isomorphism
and that the canonical imbedding iV→H is compact. Then, 0 is not an eigenvalue of
Problem (4.40). Moreover, the eigenvalues are all of finite multiplicities and the set
of their moduli can be reordered as a nondecreasing sequence whose limit is +∞.

One can be more precise, with the help of Theorem 4.1.20. This requires a compact
and self-adjoint operator16 TH , for which it is sufficient to have a Hermitian form
a (apply Proposition 4.1.13). In this case, the geometric and algebraic multiplicities
of all eigenvalues coincide.

Theorem 4.5.11 (Eigenproblem) Assume that the sesquilinear form a is Her-
mitian, that the operator A is an isomorphism and that the canonical imbedding
iV→H is compact. Thus, 0 is not an eigenvalue. Moreover, there exists a Hilbert
basis (ek)k of H made of eigenvectors of Problem (4.40) with corresponding real
eigenvalues (λk)k . Finally, the eigenvalues are all of finite multiplicities and (|λk|)k
can be reordered as an increasing sequence whose limit is +∞.

Corollary 4.5.12 (Eigenproblem) In addition to the hypotheses of Theo-
rem 4.5.11, assume that the sesquilinear form a is coercive. In this case, all
eigenvalues (λk)k are strictly positive, and (λ

−1/2
k ek)k is a Hilbert basis for V .

We turn to an eigenproblem with constraints. Let us introduce the third Hilbert
space,Q, b(·, ·), a continuous sesquilinear form on V ×Q, and the kernel of b(·, ·),

K = {v ∈ V : ∀q ∈ Q, b(v, q) = 0}.

The eigenproblem set in K writes

{
Find (u, λ) ∈ (K \ {0})× C such that
∀v ∈ K, a(u, v) = λ(u, v)H . (4.41)

15Because the operator A is an isomorphism, one has λ �= 0, as it holds that Au = λ u in V ′, with
u �= 0.
16One can check that T ∗

H = iV→H ◦ (A−1)† ◦ iH→V ′ .
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Define L as the closure of K in H . The notion of double orthogonality refers to
Definition 4.3.17.

Theorem 4.5.13 (Eigenproblem with Constraints) Assume that the sesquilinear
form a is coercive and Hermitian on K , that the canonical imbedding iK→H is
compact, and a double orthogonality property of K and K⊥ with respect to a(·, ·)
and (·, ·)H . Thus, 0 is not an eigenvalue. Moreover, there exists a Hilbert basis (fk)k
of L made of eigenvectors of Problem (4.41) with corresponding eigenvalues (νk)k ,
such that (ν−1/2

k fk)k is a Hilbert basis for K . Furthermore, the eigenvalues can be
reordered as an increasing sequence of real, strictly positive, numbers whose limit
is +∞. Finally, solving (4.41) is equivalent to solving

{
Find (u, λ) ∈ (K \ {0})× C such that
∀v ∈ V, a(u, v) = λ(u, v)H . (4.42)

Proof Endow L with the norm of H , respectively K with the norm of V . L and
K are two Hilbert spaces, and K is, by definition, a dense vector subspace of L
with continuous imbedding. Thus, all the assumptions of Theorem 4.5.11 and its
Corollary 4.5.12 are fulfilled, so the results on the eigenvalues and Hilbert bases of
L, respectivelyK follow.
Finally, if (u, λ) solves (4.42), it obviously solves (4.41). Reciprocally, if (u, λ)
solves (4.41), then given a test function v ∈ V split as v = v‖ + v⊥ with v‖ ∈ K ,
v⊥ ∈ K⊥, it holds that

a(u, v) = a(u, v‖) (4.41)= λ(u, v‖)H = λ(u, v)H ,

thanks to the double orthogonality property. Hence, (u, λ) solves (4.42).

On the other hand, an eigenproblem with constraints can be formulated in mixed
form

⎧⎨
⎩
Find (u, p, λ) ∈ (V \ {0})×Q× C such that
∀v ∈ V, a(u, v)+ b(v, p) = λ(u, v)H
∀q ∈ Q, b(u, q) = 0.

(4.43)

Note that we do not impose that p �= 0, since the eigenvector of interest is u (cf.
[50] for an illuminating discussion on this topic). It is interesting to compare the two
eigenproblems (4.41) and (4.43).

Proposition 4.5.14 One has the following results:

1. Let (u, p, λ) be an eigentriple of (4.43): (u, λ) is an eigenpair of (4.41).
2. Assume that the form b satisfies the inf-sup condition (4.10) for some β > 0.

Let (u, λ) be an eigenpair of (4.41): there exists p ∈ Q such that (u, p, λ) is an
eigentriple of (4.43).
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3. Assume further a double orthogonality property ofK andK⊥ with respect to the
form a and (·, ·)H . Any eigentriple (u, p, λ) of (4.43) is such that p = 0.

Proof Let us proceed sequentially.

1. Let (u, p, λ) be an eigentriple of (4.43). According to the second equation u
belongs toK . Then, taking v ∈ K in the first equation, one recovers the statement
of (4.41). So, (u, λ) is an eigenpair of (4.41).

2. Conversely, let (u, λ) be an eigenpair of (4.41). From the definition of K , we
conclude that, for all q ∈ Q, b(u, q) = 0. Next, splitting v ∈ V as v = v‖ + v⊥
with (v‖, v⊥) ∈ K ×K⊥, one obtains

a(u, v)− λ(u, v)H = a(u, v⊥)− λ(u, v⊥)H ,

since (u, λ) solves (4.41). It follows (as usual) that the antilinear form v �→
a(u, v⊥)−λ(u, v⊥)H belongs to the polar set ofK . According to Lemma 4.2.18
(b(·, ·) satisfies an inf-sup condition), there exists p ∈ Q such that

∀v ∈ V, a(u, v)− λ(u, v)H = −b(v, p).

In other words, (u, p, λ) is an eigentriple of (4.43).
3. Finally, let us assume a double orthogonality property, and consider an eigen-

triple (u, p, λ) of (4.43). Recall that (u, λ) is an eigenpair of (4.41) (see step 1.).
According to Lemma 4.2.18, it is enough to prove that B†p = 0. To that aim,
consider any v = v‖ + v⊥ with (v‖, v⊥) ∈ K ×K⊥, and compute

〈B†p, v〉 = b(v, p) = λ(u, v)H − a(u, v)
= {λ(u, v‖)H − a(u, v‖)} + {λ(u, v⊥)H − a(u, v⊥)} = 0.

Above, the first part vanishes because (u, λ) solves (4.41), whereas the second
part vanishes thanks to the double orthogonality property. The conclusion
follows.

4.6 Summing Up

We note that, according to the mathematical framework we have developed, the
problems we solve are usually composed of two parts:

• A function space in which we look for the solution, endowed with a given norm
to measure it;

• A set of equations or, in the Variational Formulations, the result of the action of
the solution on test functions.
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When the first statement is not explicitly stated, one has to be careful! As an
example, we refer the interested reader to Grisvard’s works, for instance, [125],
in which singular solutions of the Poisson problem are exhibited: these solutions
are governed by the homogeneous Poisson problem, so, at first glance, one would
expect the solution to be zero, but this is not the case!

As far as Maxwell’s equations and related models are concerned, Chap. 1 deals
mainly with (sets of) equations, that is, the second statement. On the other hand,
no information is provided as to the relevant spaces of solutions, the first statement.
Therefore, in order to solve those problems, one has to build those spaces, using,
for instance, the expression of the electromagnetic energy, or the expression of
Coulomb’s law. These topics will be addressed at length in Chaps. 5, 6, 7 and 8.
To that aim, we introduced (quite) well-known classes of function spaces in the
previous chapter, Lebesgue or Sobolev spaces, for the most part. We also provided
some results about the norms that can be used to measure elements of those spaces.



Chapter 5
Analyses of Exact Problems: First-Order
Models

In this chapter, we devote our attention to establishing mathematical properties
concerning the electromagnetic fields that are governed by the time-dependent
Maxwell equations. For that, we investigate a number of physical properties of the
electromagnetic fields exhibited in Chap. 1, using the mathematical tools introduced
in Chaps. 2, 3 and 4. We focus mainly on four items:

• uniqueness;
• existence;
• continuous dependence with respect to the data;
• regularity in terms of Sobolev spaces.

The first three items amount to well-posedness. For all items, the crucial question
to be addressed is how to measure the electromagnetic fields. Unless otherwise
specified, we consider complex-valued function spaces. On the other hand, if a
problem is well-posed with real-valued data and coefficients, we remark that its
solution is always real-valued by uniqueness.

5.1 Energy Matters: Uniqueness of the Fields

To begin with, we build some electromagnetic energy conservation relations, which
allow one to prove the uniqueness of the electromagnetic fields. We consider
Maxwell’s equations on some time interval I , and some volume of R3 (to be
specified).

© Springer International Publishing AG, part of Springer Nature 2018
F. Assous et al., Mathematical Foundations of Computational
Electromagnetism, Applied Mathematical Sciences 198,
https://doi.org/10.1007/978-3-319-70842-3_5

191

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-70842-3_5&domain=pdf
https://doi.org/10.1007/978-3-319-70842-3_5


192 5 Analyses of Exact Problems: First-Order Models

5.1.1 Preliminaries

First, we go back to Sect. 1.7 (with real-valued fields), adopting a mathematical
point of view. . .

5.1.1.1 In Vacuum

Let us consider that R3 is made of a homogeneous medium (vacuum). In this case,
the conservation relation is Eq. (1.149). Given any volume V , the first term is

d

dt

(∫
V

{ε0

2
|E(t)|2 + μ0

2
|H (t)|2} dx

)
.

For t �→ ∫
V
{ ε0

2 |E(t)|2 + μ0
2 |H (t)|2} dx to have a meaning, one has to assume that

ε0
2 |E(t)|2 + μ0

2 |H (t)|2 belongs to L1(V ) for (almost) all t ∈ I : or, equivalently,
that E(t) and H (t) belong to L2(V ) for (almost) all t ∈ I . Then, we can write the
integrals as the squares of L2(V ) norms: ε0

2 ‖E(t)‖2
L2(V )

+ μ0
2 ‖H (t)‖2

L2(V )
. Then,

differentiating in time, one finds

d

dt

(∫
V

{ε0

2
|E(t)|2 + μ0

2
|H (t)|2} dx

)
=
∫
V

{ε0E(t) ·E′(t)+μ0H (t) ·H ′(t)} dx.

As a consequence, one assumes that E′(t), H ′(t) belong to L2(V ): we can write the
integrals as L2(V ) scalar products. In order to validate integration/differentiation in
time, one uses Proposition 2.3.4: namely, one needs ε0E ·E′ +μ0H ·H ′ to belong
to L1(I ;L1(V )), so it is enough that E, E′, H , H ′ all belong to L2(I ;L2(V )).
Next, for the third term of Eq. (1.149)

∫
V

E(t) · J (t) dx ,

it is enough that J (t) belongs to L2(V ) for (almost) all t ∈ I , and again, one can
replace the integral as an L2(V ) scalar product. Now, going back to Ampère’s and
Faraday’s laws, one has

curl H (t) = ε0E
′(t)+ J (t), curl E(t) = −μ0H

′(t),

and therefore curl E(t), curl H (t) also belong to L2(V ). We conclude that, to build
the energy relation in the volume V and the time interval I , it is enough to require
a priori

E ∈ L2(I ;H (curl, V )), E′ ∈ L2(I ;L2(V )) ;
H ∈ L2(I ;H (curl, V )), H ′ ∈ L2(I ;L2(V )) ;
J ∈ L2(I ;L2(V )).

(5.1)
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Remark 5.1.1 As noted above, the regularity on the curl of the electromagnetic
fields is equivalent to the regularity on their first-order time derivative, because they
fulfill Ampère’s and Faraday’s laws.

Notice that (5.1) holds for any volumeV of R3, and in particular, it holds in all space
R3. Let us focus finally on the second term of Eq. (1.149) (a boundary term), written
here as

∫
∂V

S0(t) · n dS, with S0(t) := E(t)× H (t).

Due to Proposition 2.1.3, we remark that S0(t) belongs to L1(V ). Likewise,
div S0(t) = curl E(t) ·H (t)−E(t) ·curl H (t) also belongs to L1(V ). We conclude
that S0 ∈ L1(I ;W 1(div, V )), where

W 1(div, V ) := {w ∈ L1(V ) : div w ∈ L1(V )}.

According to Proposition 2.1.4, we know that L∞(V ) = (L1(V ))′. If we assume
that ∂V is Lipschitz, then one can define the normal trace S0(t) · n on ∂V by
duality, with the help of the space W 1,∞(V ). For that, one uses the integration-by-
parts formula (2.18). If one recalls that W 1,∞(V ) = C0,1(V ) (see Remark 2.1.40),
then the space of traces of elements of W 1,∞(V ) is exactly C0,1(∂V ). In the
same spirit as Definition 2.2.17 and Theorem 2.2.18, we conclude that S0(t) · n|∂V
belongs to (C0,1(∂V ))′. Hence, the second term has a meaning: we write 〈S0(t) ·
n|∂V , 1〉C0,1(∂V ).

5.1.1.2 In a Perfect Medium

Let us consider now that R3 is made of a perfect medium. Provided that ε and μ
are fields of symmetric tensors (independent of t), one again obtains a conservation
equation, namely Eq. (1.152). Let us highlight below the similarities and differences
with respect to the case of vacuum.

Given a volume V , we can write the first term of Eq. (1.152) as

1

2
(εE(t),E(t))L2(V ) +

1

2
(μH (t),H (t))L2(V ),

provided that E(t) and H (t) belong to L2(V ) (as above) and that ε,μ ∈ L∞(V )
(cf. Proposition 2.1.2). To allow differentiation in time, it is enough, as above,
that E, E′, H , H ′ all belong to L2(I ;L2(V )). Concerning the third term of
Eq. (1.152), we can write it as an L2(V ) scalar product, provided that J (t) belongs
to L2(V ). We conclude that (5.1) remains a sufficient requirement, assuming that
ε,μ are symmetric tensor fields of L∞(V ). Dealing finally with the second term
of Eq. (1.152), we can write it again as 〈S(t) · n|∂V , 1〉C0,1(∂V ) with S(t) :=
E(t)× H (t), if the boundary ∂V is Lipschitz.
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5.1.1.3 In a Volume Encased in a Perfect Conductor, or Around a
Perfectly Conducting Body

Denoting by V the volume encased in a perfect conductor, or around a perfectly
conducting body, one obtains the same a priori regularity requirements as above,
cf. (5.1), with the addition of the boundary conditions (1.134) and (1.135): E ×
n|∂V = 0, μH · n|∂V = 0. Equation (1.135) leads to E ∈ L2(I ;H 0(curl, V )),
according to Theorem 2.2.24.

Remark 5.1.2 On the other hand, how does Eq. (1.134) fit? Recall that, since the
normal trace is involved, one should have some result on the divergence of μH .
To address this issue, one can actually use the boundary condition on the electric
field. Due to Propositions 2.2.10 and 2.3.5, we know that curl E actually belongs to
L2(I ;H 0(div, V )). Using Faraday’s law, one has μH ′ ∈ L2(I ;H 0(div, V )). Due to
Theorem 2.2.18, we infer that μH ′(t) · n|∂V = 0 (and div μH ′(t) = 0) for (almost)
all times t . Next, one uses Propositions 2.3.4 and 2.3.6 to recover information on
μH . Assuming that, at a given time t0, one has μH (t0) ∈ H (div, V ), we conclude
that μH belongs to C0(I ;H (div, V )). If, in addition, one has μH (t1) · n|∂V = 0 at
a given time t1, one finally recovers the boundary condition (1.134).

5.1.1.4 Conclusion

Recall that it holds that H 0(curl,R3) = H (curl,R3). According to the above, if
we study a perfect medium in V = R3 itself, or in a volume V encased in a perfect
conductor, or around a perfectly conducting body, we conclude that it is enough to
require the a priori regularity results (see also Remark 5.1.1)

E ∈ L2(I ;H 0(curl, V )), E′ ∈ L2(I ;L2(V )) ;
H ∈ L2(I ;H (curl, V )), H ′ ∈ L2(I ;L2(V )) ;
J ∈ L2(I ;L2(V )).

(5.2)

In the rest of this chapter, we shall generally denote (· | ·) (respectively ‖·‖), without
any subscript, the scalar product (respectively the norm) in L2(Ω) or L2(Ω), where
Ω is an open subset of R3.

5.1.2 Energy Conservation and Uniqueness

Let us consider that Ω = R3 is made of a perfect medium (cf. Eqs. (1.18–1.21)),
plus initial conditions at time t = 0 (cf. (1.31)), i.e., I =]0,+∞[:

ε
∂E

∂t
− curl H = −J , t > 0 (5.3)

μ
∂H

∂t
+ curl E = 0, t > 0 (5.4)
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div (εE) = �, t > 0 (5.5)

div (μH ) = 0, t > 0 (5.6)

E(0) = E0, H (0) = H 0. (5.7)

We also consider that Ω is an unbounded open subset of R3 of category (C2) equal
toΩ = R3 \O, whereO can be a perfectly conducting obstacle, as for the exterior
problem, or the perfectly conducting device of interest, as for the interior problem
(cf. Sect. 1.6.1). Or, we letΩ ⊂ R3 be a domain made of a perfect medium, encased
in a perfect conductor. We call this setting the cavity problem. In this case, we add
boundary conditions on Γ = ∂Ω to (5.3)–(5.7):

μH · n = 0, t > 0 (5.8)

E × n = 0. t > 0 (5.9)

Using the regularity results (5.2) in space and time of the electromagnetic fields1

(and of the data J ), let us recover the energy conservation relation, starting from
Ampère’s and Faraday’s laws. Above, ξ ∈ {ε,μ} satisfies the following assumption:

{
ξ is a real-valued, symmetric, measurable tensor field on Ω,
∃ξ−, ξ+ > 0, ∀X ∈ C3, ξ− |X|2 ≤ ξX · X ≤ ξ+ |X|2 a.e. in Ω.

(5.10)

Remark 5.1.3 Obviously, one infers similar estimates involving the inverses of
ε−, ε+ (respectively of μ−, μ+) for the tensor ε−1 (respectively μ−1). These
assumptions will be frequently used throughout Chaps. 5, 6, 7 and 8. They include
the case of an inhomogeneous medium (ε = εI3, μ = μI3).

Due to the regularity of the fields (5.2), we can respectively take the L2(Ω) scalar
product of Ampère’s law at time t by E(t), and of Faraday’s law at time t by H (t),
and add them together to obtain, for t > 0,

(εE′(t)|E(t))+ (μH ′(t)|H (t))
+(curl E(t)|H (t))− (E(t)| curl H (t)) = −(J (t)|E(t)).

Then, using the integration-by-parts formula (2.20), we have that the third and fourth
terms cancel each other out. Thus, we obtain the energy conservation relation below.

dW

dt
(t) = −(J (t)|E(t)), t > 0 , (5.11)

whereW(t) := 1

2
{(εE(t)|E(t))+ (μH (t)|H (t))}.

1See Remark 5.1.2 on how to take into account the boundary condition on the magnetic field.
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(Above, we used the fact that ε and μ are both fields of symmetric tensors.)

Remark 5.1.4 Due to assumption (5.10), one has

1

2
{ε−‖E(t)||2 + μ−‖H (t)‖2} ≤ W(t) ≤ 1

2
{ε+‖E(t)‖2 + μ+‖H (t)‖2}.

Thus, W : t �→ W(t) defines an electromagnetic energy functional whose square
root is equivalent to the L2(Ω)× L2(Ω) norm of electromagnetic fields.

With the help of (5.11), we can directly prove the uniqueness of the solution to
Maxwell’s equations. For that, consider that we have two solutions (E(1),H (1))

and (E(2),H (2)). Then, their difference (δE, δH ) = (E(1)−E(2),H (1)−H (2)) is
governed by (5.3–5.7) with zero data. Proceeding as before, one finds

d

dt

[
1

2
{(εδE(t)|δE(t))+ (μδH (t)|δH (t))

]
= 0, t > 0.

Using the initial condition, one finds

1

2
{(εδE(t)|δE(t))+ (μδH (t)|δH (t))} = 0, t ≥ 0.

According to assumption (5.10), one concludes (cf. the previous Remark) that

δE(t) = δH (t) = 0 in L2(Ω), t ≥ 0. (5.12)

Hence, uniqueness follows.
It is also possible to derive similar results in the case when Ω—mathematically

defined as previously—is made of a dispersive medium, governed by the Lorentz
model (without damping) for both the electric permittivity and the magnetic
permeability. We sometimes use the vocable “Lorentz material” (without damping)
for short. For that, one introduces the additional fields P and M , respectively known
as the electric and magnetic polarizations (cf. Sect. 1.2.4). Recall first that the
electric permittivity reads as

ε̂L(ω) = (ε0 + ε̂d,L(ω))I3, with ε̂d,L(ω) = − ε0ω
2
p,e

ω2 − ω2
L,e

, ω2
p,e, ω

2
L,e > 0.

By analogy, we write the magnetic permeability as:

μ̂L(ω) = (μ0 + μ̂d,L(ω))I3, with μ̂d,L(ω) = − μ0ω
2
p,m

ω2 − ω2
L,m

, ω2
p,m, ω

2
L,m > 0.
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Then, according to the constitutive relations (1.74), one has

D̂(ω) = ε0Ê(ω)+ P̂ (ω), B̂(ω) = μ0Ĥ (ω)+ M̂(ω),

where the polarizations are respectively defined by P̂ (ω) = 2π ε̂d,L(ω)Ê(ω) and
M̂(ω) = 2π μ̂d,L(ω)Ĥ (ω). With the definition of the permittivity and permeability,
we deduce that the last relations may be written as

{
(ω2
L,e − ω2)P̂ (ω) = 2πε0ω

2
p,eÊ(ω),

(ω2
L,m − ω2)M̂(ω) = 2πμ0ω

2
p,mĤ (ω).

(5.13)

Applying the reverse time Fourier transform yields

αeP + βe ∂
2P

∂t2
= E, αmM + βm ∂

2M

∂t2
= H , (5.14)

with αe = ω2
L,e/(2πε0ω

2
p,e), βe = 1/(2πε0ω

2
p,e), αm = ω2

L,m/(2πμ0ω
2
p,m), βm =

1/(2πμ0ω
2
p,m). On the other hand, starting from Eqs. (1.6–1.9), one finds

ε0
∂E

∂t
+ ∂P
∂t

− curl H = −J , t > 0 (5.15)

μ0
∂H

∂t
+ ∂M
∂t

+ curl E = 0, t > 0 (5.16)

div (ε0E + P ) = �, t > 0 (5.17)

div (μ0H + M) = 0, t > 0. (5.18)

Keeping the a priori regularity results (5.2), one adds

P ,P ′,M,M ′ ∈ L2(I ;L2(Ω)).

We can respectively take the L2(Ω) scalar product of Ampère’s law (5.15) at time
t by E(t), and of Faraday’s law (5.16) at time t by H (t), and add them together to
obtain, for t > 0,

(ε0E
′(t)|E(t))+(μ0H

′(t)|H (t))+(P ′(t)|E(t))+(M ′(t)|H (t)) = −(J (t)|E(t)).

As before, we used the integration-by-parts formula (2.20) to cancel out the curl
terms. On the other hand, it follows, in particular from (5.14), that P ′′,M ′′ ∈
L2(I ;L2(Ω)), so one can proceed similarly with the relations (5.14) at time t to
find

{
(αeP (t)|P ′(t))+ (βeP ′′(t)|P ′(t)) = (E(t)|P ′(t)),
(αmM(t)|M ′(t))+ (βmM ′′(t)|M ′(t)) = (H (t)|M ′(t)).
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Substituting in the previous relation, one obtains the energy conservation relation
for dispersive media governed by the Lorentz model,

dWd

dt
(t) = −(J (t)|E(t)), t > 0 , (5.19)

whereWd(t) := W(t)+ 1

2

{
(αeP (t)|P (t))+ (βeP ′(t)|P ′(t))

+(αmM(t)|M(t))+ (βmM ′(t)|M ′(t))
}
.

Note that the result can be extended to the case when there is an electric Lorentz
material only in Ωe := int ({x ∈ R3 : ωp,e(x) �= 0}), and a magnetic Lorentz
material only in Ωm := int ({x ∈ R3 : ωp,m(x) �= 0}). As a matter of fact, one
may proceed as before, defining, in (5.13–5.14), the electric polarization only on
Ωe, respectively the magnetic polarization only on Ωm. In this case, the previous
computations lead to the energy conservation relation (5.19) with

Wd(t) := W(t)+ 1

2

{
(αeP (t),P (t))L2(Ωe)

+ (βeP ′(t),P ′(t))L2(Ωe)

+(αmM(t),M(t))L2(Ωm)
+ (βmM ′(t),M ′(t))L2(Ωm)

}
.

5.1.2.1 Truncated Exterior Problem

Let us consider the case of an exterior problem, such as a diffraction problem
around a perfectly conducting object. In this case, to perform computations, one
adjusts the domain (Sect. 1.6.1): this results in a truncated exterior problem, set in
a computational domain Ω that has a boundary Γ equal to ΓP ∪ ΓA, with ∂ΓP ∩
∂ΓA = ∅. Here, ΓP is the “physical” part on which the perfect conductor boundary
condition is imposed, and ΓA is purely “artificial”. For instance, let us choose ΓA to
be a sphere, on which an absorbing boundary condition (referred to as an ABC from
now on) is imposed, such as the Silver–Müller ABC (1.137) or (1.138). One usually
assumes that the medium is homogeneous2 in a neighborhood of ΓA, so it writes:

E(t)× n +
√
μ

ε
H�(t) = g�(t) on ΓA , (5.20)

2Since one can choose where to put the artificial boundary ΓA, it is a reasonable assumption. Also,
because ΓA is smooth, one has

H
1/2
‖ (ΓA) = H

1/2
⊥ (ΓA) = H

1/2
t (ΓA), where H

1/2
t (ΓA) := L2

t (ΓA) ∩H 1/2(ΓA),

and similarly for the dual spaces, H
−1/2
‖ (ΓA) = H

−1/2
⊥ (ΓA) = H

−1/2
t (ΓA).
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where we recall that H�(t) denote the tangential components of H (t) on the
boundary and g� is the data on ΓA. On the other hand, for the truncated exterior
problem, one finds the relation below, using the integration-by-parts formula (3.5):

dW

dt
(t)− γA〈E(t)× n,H�(t)〉πA = −(J (t)|E(t)), t > 0 . (5.21)

Above, the duality bracket reduces to ΓA, because E × n = 0 on ΓP . Hence, the
index A. Note that there is no need to use the theory summarized in Theorem 3.1.29,
because in the present case, ∂ΓP ∩ ∂ΓA = ∅.

It is possible to address uniqueness as before. Indeed, one now obtains that

δE(t)× n +
√
μ

ε
δH�(t) = 0 on ΓA,

together with the relation

d

dt

[
1

2
{(εδE(t)|δE(t))+ (μδH (t)|δH (t))}

]

−γA〈δE(t)× n, δH�(t)〉πA = 0, t > 0. (5.22)

According to Theorem 3.1.22, one can write on ΓA (and given t > 0)

δE(t)× n = curlΓ φ− + gradΓ ψ
+, φ− ∈ H 1/2

zmv(ΓA), ψ
+ ∈ H(ΓA) ;

δH�(t) = gradΓ ψ
− + curlΓ φ+, ψ− ∈ H 1/2

zmv(ΓA), φ
+ ∈ H(ΓA) ;

the scalar potentials φ−, ψ+, ψ−, φ+ being unique. Using the homogeneous Silver–
Müller ABC yields

curlΓ

(
φ− +

√
μ

ε
φ+
)
+ gradΓ

(
ψ+ +

√
μ

ε
ψ−
)
= 0 on ΓA.

In particular, one has φ := φ− + √
μ/εφ+ ∈ H 1/2(ΓA) ⊂ L2(ΓA), and φ is

harmonic, i.e., ΔΓ φ = 0 on ΓA. The artificial boundary being a sphere, we have
that φ is globally smooth on ΓA, and in particular, φ ∈ H 1(ΓA) (see, for instance,
[59, 198], or Chapter 5 of [167]). As a consequence, it vanishes:

0 =
∫
ΓA

φ ΔΓ φ dΓ = −
∫
ΓA

| gradΓ φ|2 dΓ. (5.23)

Likewise, ψ+ + √
μ/εψ− also vanishes. It follows that φ− and ψ− actually

belong to H 1(ΓA), so that both δE(t) × n|ΓA and δH�(t)|ΓA are fields of L2
t (ΓA),

and furthermore, one can replace the duality product with an integral in the
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relation (5.22):

−γA〈δE(t)×n, δH�(t)〉πA =
√
μ

ε

∫
ΓA

|δH�(t)|2 dΓ =
√
ε

μ

∫
ΓA

|δE(t)×n|2 dΓ.

Hence, this quantity is always greater than or equal to 0. Using the initial condition
together with assumption (5.10), one concludes that uniqueness holds for the
truncated exterior problem too: (5.12) is fulfilled.

Remark 5.1.5 In the case of a smooth (artificial) boundary ΓA, we have also proven
that it holds that

H
−1/2
‖ (divΓ , ΓA) ∩ H

−1/2
⊥ (curlΓ , ΓA) ⊂ L2

t (ΓA).

This result has already been obtained in [32].

5.1.2.2 Truncated Interior Problem

At first glance, it appears that one can tackle the case of a truncated interior problem
similarly. The first difference with the previous study is that it can happen that Γ =
ΓP ∪ ΓA, ΓP ∩ ΓA = ∅, ∂ΓP ∩ ∂ΓA �= ∅.3 In this situation, one needs to use the
integration-by-parts formula of Theorem 3.1.29, to find

dW

dt
(t)− γ 0

A
〈E(t)× n,H�(t)〉πA = −(J (t)|E(t)), t > 0 . (5.24)

In other words, the duality product has been modified, to take into account the fact
that ∂ΓA �= ∅. We consider from now on that ∂ΓA is piecewise curvilinear. Let ν be
the unit outward normal vector to ∂ΓA, and τ the unit tangent vector to ∂ΓA so that
(τ , ν) is direct. As before, to prove uniqueness, we build a relation like (5.22). The
obvious difficulty in the present situation is to obtain some decompositions of the
traces, with boundary conditions on ∂ΓA. We propose below a constructive proof
(for the magnetic field), thus complementing the process we described in Sect. 3.1.

First, thanks to Proposition 3.1.27, we can write on ΓA (for a given t > 0)

δE(t)× n = curlΓ φ− + gradΓ ψ
+, φ− ∈ H̃ 1/2(ΓA), ψ

+ ∈ Hν(ΓA).

Note that we have, in a weak sense, tν(δE(t)× n|ΓA) = 0 on ∂ΓA, where we recall
that tν(f ) := f · ν|∂ΓA , and similarly for gradΓ ψ

+ (see the definition of Hν(ΓA)).
Hence, we have at hand some boundary conditions for the trace of the electric field.

3If ∂ΓP ∩ ∂ΓA = ∅, one still needs to address the possible lack of regularity of the artificial
boundary (see Remark 5.1.6). This corresponds to configurations 2 and 3 of ΓA in the study below.
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Second, starting from the “usual” result for δH�(t) on Γ , and then taking its
restriction to ΓA, we derive another decomposition: however, it lacks boundary
conditions on ∂ΓA. To address this problem, recall that the ABC writes δH�(t) =
−√
ε/μ δE(t) × n on ΓA, so that one actually has δH�(t)|ΓA ∈ H̃

−1/2
‖ (ΓA) and

the boundary condition tν(δH�(t)|ΓA) = 0 on ∂ΓA.
Now, let us build the decomposition with this additional information at hand.

We know that the trace of the magnetic field is such that curlΓ (δH�(t)|ΓA) ∈
H̃−1/2(ΓA) (see Theorem 3.1.26). Hence, there exists one, and only one, φ+ ∈
H 1

0 (ΓA) such that4 −ΔΓ φ+ = curlΓ (δH�(t)|ΓA) in ΓA. The scalar field φ+
belongs to

H0(ΓA) := {f ∈ H 1
0 (ΓA) : ΔΓ f ∈ H̃−1/2(ΓA)}.

Because φ+ has a vanishing trace on ∂ΓA, its gradient has a vanishing tangential
trace (cf. Proposition 2.2.10), which writes gradΓ φ

+ · τ |∂ΓA = 0, or equivalently,
curlΓ φ+ · ν|∂ΓA = 0, that is, tν(curlΓ φ+) = 0 on ∂ΓA. Taking into account the
ABC, the difference w = δH�(t)|ΓA − curlΓ φ+ is such that:

w ∈ H̃
−1/2
‖ (ΓA), curlΓ w = 0 in ΓA, and tν(w) = 0 on ∂ΓA.

Finally, using an existence result of [66], namely Proposition 6.2 (with ‖ replacing
⊥), the first two properties satisfied by w yield that there existsψ− ∈ H 1/2(ΓA) such
that w = gradΓ ψ

− in ΓA. For this result to hold, we assume—for simplicity—that
ΓA is topologically trivial, cf. Sect. 3.2. We conclude that we can write on ΓA a
decomposition for the trace of the magnetic field with boundary conditions, which
writes (for a given t > 0)

δH�(t) = curlΓ φ++gradΓ ψ
−, φ+ ∈ H0(ΓA), ψ

− ∈ H 1/2(ΓA), tν(gradΓ ψ
−) = 0.

4One applies the Lax-Milgram Theorem 4.2.8 to the equivalent variational form:
{
Find φ+ ∈ H 1

0 (ΓA)such that
∀v ∈ H 1

0 (ΓA), (curlΓ φ+, curlΓ v)L2
t (ΓA)

= 〈curlΓ (δH�(t)|ΓA ), v〉H 1
0 (ΓA)

.

If ΓA is not a connected set, one chooses—instead of H 1
0 (ΓA)—the space

{f ∈ H 1(ΓA) : f|∂Γ 0
A
= 0, f|∂Γ k

A
= cstk, 1 ≤ k ≤ KA},

where (Γ kA)k=0,KA are the (maximal) connected components of ΓA.
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The homogeneous Silver–Müller ABC writes

curlΓ

(
φ− +

√
μ

ε
φ+
)
+ gradΓ

(
ψ+ +

√
μ

ε
ψ−
)
= 0 on ΓA,

with boundary conditions on both φ− +√
μ/εφ+ and ψ+ +√

μ/εψ−.
Focusing, for instance, on φ := φ− +√

μ/εφ+, we have obtained so far that:

φ ∈ H̃ 1/2(ΓA), ΔΓ φ = 0 in ΓA.

In other words, we are looking for solutions to the Laplace-Beltrami problem with
homogeneous Dirichlet boundary condition and right-hand side, with at least H 1/2-
regularity. Note that if φ belongs to H 1(ΓA), then one finds automatically that φ =
0, using the same integration by parts as in (5.23). So, we are interested in finding
singular solutions to the Laplace-Beltrami problem, that is, solutions that are in
H 1/2(ΓA) \H 1(ΓA).

To address this issue, we split the study5 into three kinds of artificial boundary:

1. ΓA is part of a single face;
2. ΓA is part of the reunion of two adjacent faces;
3. ΓA contains a neighborhood of one of the vertices of Γ .

Remark 5.1.6 Note that configurations 2 and 3 also cover the case of a piecewise
smooth, but not globally smooth, artificial boundary, even in the case when ∂ΓA =
∅: proving that the solution is not singular allows one to conclude that it vanishes,
thanks to (5.23).

For simplicity, we assume thatΩ is a polyhedral domain.

1. ΓA is part of a single face: based on the theory of singularities of the Laplace
operator in a polygon [125, Remark 2.4.6. p. 59], one finds, by inspection, that
φ = 0. Indeed, though there are singular solutions to the Poisson equation with

homogeneous data set in a polygon ΓA, none of them are inH 1/2(ΓA)\H 1(ΓA).
2. ΓA is part of Γij , the reunion of two adjacent faces Γi and Γj . For short, we use

the notations ΓA := Γi∪Γj ∪eij , as in Definition 2.1.54, and define, for k = i, j ,

D(ΔΓ ,L
2(Γk)) := {f ∈ L2(Γk) : ΔΓ f ∈ L2(Γk)}.

By construction, one has φ
k
:= (φ)|Γk ∈ D(ΔΓ ,L2(Γk)), for k = i, j . As a

consequence of Theorem 1.5.2 of [125], the traces of φ
i

and φ
j

on the line eij

5For ψ = ψ+ +√
μ/εψ−, we have: ψ ∈ H 1/2(ΓA), ΔΓ ψ = 0 in ΓA, tν(gradΓ ψ) = 0. In this

case, we are looking for singular solutions (with at least H 1/2-regularity) to the Laplace-Beltrami
problem with homogeneous Neumann boundary condition and right-hand side. Completely similar
analyses can be carried out for ψ : they yield the same results as for φ.
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have a meaning in H̃−1/2(eij ) (Definition 2.1.53). Similarly for the traces of the
normal derivatives, which have a meaning in H̃−3/2(eij ) (Definition 3.1.9).

In addition, we know that φ belongs globally to H 1/2(ΓA) and that ΔΓ φ

belongs toL2(Γij ) (becauseφ is harmonic onΓij ), so the traces match: (φ
i
)|eij =

(φ
j
)|eij .

As far as the traces of the normal derivatives are concerned, one can easily
check that

∂φ
i

∂τi
=
∂φ
j

∂τj
on eij .

As a consequence, if one goes back to the plane parameterized by (τ ij , τ i ) in Γi ,
respectively (τ ij , τ j ) in Γj , we find that (� refers to the parametric plane):

φ� ∈ H̃ 1/2(Γ �A), Δφ
� = 0 in Γ �A.

Using the same result as in 1, we conclude that φ� = 0. Hence, φ = 0 and there
are no singular solutions in this case either.

3. ΓA contains a neighborhood of one of the vertices of Γ , called v. For short, we
use the notations ΓA := Γ1 ∪ · · · ∪ΓK ∪ e12 ∪ · · · ∪ eK1 ∪ {v}, where (Γk)1≤k≤K
are the faces with v as one of their vertices. Proceeding as before, we remark that
φ
k
:= (φ)|Γk , 1 ≤ k ≤ K , are such that

⎧⎨
⎩
φ
k
∈ D(ΔΓ ,L2(Γk)), ΔΓ φk

= 0 in Γk,

φ
k
= φ

k+1
and

∂φ
k

∂τk
=
∂φ
k+1

∂τk+1
on ek,k+1,

1 ≤ k ≤ K. (5.25)

(With the convention that K + 1 = 1). On the artificial boundary, near v, we use
polar coordinates in Γk: (r, θ), θ ∈]θk, θk+1[, with θ1 = 0 and θK+1 = θmax can
be any positive number. Due to 1 and 2, we know that, outside any neighborhood
of the vertex v, φ is of H 1-regularity. So, from now on, we focus on its local
behavior (for “small” r , i.e., for r ∈]0, r0[ with r0 > 0). Expressing (5.25) in
polar coordinates, we find, by direct computations (see also §2.3 in [125]), that
the solution to this problem locally belongs to

spanλ∈Λ(rλϕλ(θ)),

where (ϕλ)λ are eigenfunctions of the operator ϕ �→ −ϕ′′ on [0, θmax] with
periodic boundary conditions, and the numbers λ are such that φλ : (r, θ) �→
rλϕλ(θ) locally solves (5.25). In other words, one has

Λ = 2π

θmax
Z, and ∀λ ∈ Λ, ϕλ = exp(ıλθ).

Note that ϕλ always belongs to C∞
per ([0, θmax]).
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If λ = 0, then φ0 = 1, i.e., the eigenfunction φ0 is constant. Since we are
interested in curlΓ φ, this is of no importance.6

InΛ \ {0}, the question is: can we find a value λ such that φλ(r, θ) = rλϕλ(θ)
belongs to H 1/2, but not to H 1, locally ? Due to the smoothness of the angular
part ϕλ, using Theorem 1.2.18 of [125], we know that:

φλ ∈ H 1/2 ⇐⇒ λ > −1

2
; φλ �∈ H 1 ⇐⇒ λ < 0.

Because of the structure of Λ, we look form ∈ Z \ {0} such that

−1

2
<

2π m

θmax
< 0, i.e., − θmax

4π
< m < 0.

Hence,

• either θmax ≤ 4π : there is no solution m ∈ Z \ {0} ;
• or θmax > 4π (the vertex is said to be pathological): there is at least

one solution, m = −1. Nonetheless, the space span−1/2<λ<0(r
λϕλ(θ)) of

locally singular solutions remains finite-dimensional. Classically, these local
solutions can be continued to ΓA with the help of a smooth cut-off function,
so one gets singular solutions to the Laplace-Beltrami problem.

In other words, if θmax ≤ 4π then there are no singular solutions to the Laplace-
Beltrami problems, whereas if θmax > 4π , then there exist singular solutions. In
this latter case, one checks directly that the singular solutions are at least of Ht

regularity for some t := t (θmax) > 1/2.

Remark 5.1.7 In the case of a cubic vertex (configuration 3), one has θmax =
3×π/2, which is still short of the limit value 4π . So, if one chooses a “reasonable”
artificial boundary, there will be no singular solutions to the Laplace-Beltrami
problems. On the other hand, as noted in [67], θmax can be made as large as possible,
hence one must choose the artificial boundary with some care to avoid creating
pathological vertices.

The general conclusion is that, when all interior vertices of the artificial boundary
ΓA are such that the sum of the angles of incident faces is lower than or equal to
4π (i.e., there are no pathological vertices), there are no singular solutions to the
Laplace-Beltrami problems. One concludes7 that φ = ψ = 0, and hence φ− and

ψ− both belong to H 1(ΓA). We then proceed as we did for the truncated exterior

6More precisely, we recall that, if φ belongs to H 1(ΓA) with φ|∂ΓA = 0, we apply the integration
by parts (5.23) to find that curlΓ φ = 0. If one replaces φ with φ′ = φ + c with c �= 0, then
the technique still applies (even though φ′ |∂ΓA �= 0), because ΔΓ φ′ = 0. So, the local constant
behavior can be neglected.
7See footnote 5, p. 202.
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problem, replacing the duality product in (5.24) with an integral:

−γ 0
A
〈δE(t)×n, δH�(t)〉πA =

√
μ

ε

∫
ΓA

|δH�(t)|2 dΓ =
√
ε

μ

∫
ΓA

|δE(t)×n|2 dΓ.

Therefore, uniqueness holds, in the sense that (5.12) is fulfilled.

Remark 5.1.8 In the case of an artificial boundaryΓA with no pathological vertices,
we have also proven that it holds that

H
−1/2
‖,0 (divΓ , ΓA) ∩ H̃

−1/2
⊥ (curlΓ , ΓA) ⊂ L2

t (ΓA).

When ∂ΓA = ∅, the imbedding writes like the one from Remark 5.1.5.

On the other hand, it can happen that at least one interior vertex of ΓA is
pathological. In this case, there is at least one singular solution to the Laplace-
Beltrami problem and, as a consequence, φ �∈ H 1(ΓA) and/or ψ �∈ H 1(ΓA) in
general.

Remark 5.1.9 In the case of an artificial boundary ΓA with at least one pathological
vertex, we have proven that:

H
−1/2
‖,0 (divΓ , ΓA) ∩ H̃

−1/2
⊥ (curlΓ , ΓA) �⊂ L2

t (ΓA).

In this situation, when ∂ΓA = ∅, the imbedding of Remark 5.1.5 is false.

Because of this insufficient regularity, we cannot conclude, as we normally would,
on the establishment of uniqueness, replacing the duality product with an integral.
However, we have proven (cf. configurations 1 and 2) that both φ �= 0 and ψ �= 0

are of H 1-regularity outside any neighborhood of the pathological vertex/vertices.
In terms of the traces of the electromagnetic fields on ΓA, this means that δE(t) ×
n and δH�(t) are of L2

t regularity outside any neighborhood of the pathological
vertex/vertices. Due to this property, one can recover uniqueness.

To simplify the notations, let us assume there is a single pathological vertex v,
and denote by ρv the distance to v. Then, let χ ∈ D(R) be a cut-off function,
which is equal to 1 in a neighborhood of 0. Given w ∈ H (curl,Ω), one can
prove (similarly to §2 of [89] or Lemma 4.6 of [15]) that the sequence (χ(kρv)w)k
goes to 0 in H (curl,Ω). If we apply this result to w = δE(t), we conclude that
the sequence (δEk)k , with δEk := (1 − χ(kρv))δE(t), converges to δE(t) in
H (curl,Ω); furthermore, one has δEk × n|ΓP = 0 for k large enough. Similarly,
the sequence (δH k)k , with δH k := (1 − χ(kρv))δH (t), converges to δH (t) in
H (curl,Ω). By the continuity of the tangential trace mapping (cf. Theorem 3.1.28)
and of the tangential components mapping (cf. Theorem 3.1.26), we obtain that

γ 0
A
〈δE(t)× n, δH�(t)〉πA = lim

k→∞ γ 0
A
〈δEk × n, (δH k)�〉πA.
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Because of the truncation function, we know that the traces of both δEk × n and
(δH k)� belong to L2

t (ΓA). What is more, it holds that

δEk × n +
√
μ

ε
(δH k)� = 0 on ΓA,

so we conclude that, for instance,

γ 0
A
〈δE(t)× n, δH�(t)〉πA = −

√
μ

ε
lim
k→∞

∫
ΓA

|(δH k)�|2 dΓ.

Hence, passing to the limit yields uniqueness ((5.12) is fulfilled), because

− γ 0
A
〈δE(t)× n, δH�(t)〉πA ≥ 0. (5.26)

5.1.2.3 Conclusion

Let us recapitulate the results we have proven concerning the uniqueness of the
electromagnetic fields.

Theorem 5.1.10 Consider a perfect medium, characterized by the tensor fields ε
and μ. If ε and μ fulfill assumption (5.10), one has uniqueness of the electromagnetic
fields, for the configurations below:

• in R3;
• in a domain encased in a perfect conductor (cavity problem);
• for the exact and truncated exterior problems around a perfectly conducting

obstacle;
• for the exact and truncated interior problems around a perfectly conducting

device.

In the truncated settings, the artificial boundary ΓA is either a smooth manifold, or
a manifold with corners and edges.

This result is also valid for a Lorentz material without damping in the same
configurations,8 as well as in the more general setting where there is an electric
Lorentz material for which the (electric) plasma pulsation ωp,e is nonzero, and a
magnetic Lorentz material for which the (analogously defined) magnetic pulsation
ωp,m is nonzero, cf. [71].

8One can easily check that the energy conservation relation (5.19) can be modified, as in
Sects. 5.1.2.1 and 5.1.2.2, if a Silver–Müller ABC is imposed on part of the boundary. Again,
this ensures energy control and uniqueness.
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5.1.3 Comments

For the truncated exterior problem, the issue of the uniqueness of the electromag-
netic fields has also been addressed in [173], using a different approach than the
one we proposed in Sect. 5.1.2. For the case of a topologically non-trivial artificial
boundary (extraction of a scalar potential ψ−), we refer the reader to [64].

When the artificial boundary is not globally smooth, we refer to [67] for
complementary results on the regularity of the scalar potentials of the traces of the
electromagnetic fields.

The regularity of potentials is also alluded to in [31]. However, the results of
Remark 5.1.9 are different from the regularity results obtained in that paper. The
difference comes from the fact that one can exhibit singular solutions to the Laplace-
Beltrami problems when the artificial boundary contains at least one pathological
vertex, a fact that has been overlooked in [31].

5.2 Well-Posedness

Our aim here is to solve Maxwell’s equations rigorously. In particular, to obtain
well-posedness under some ad hoc assumptions about the data. For that, we shall
use the Stone Theorem 4.3.6 or the Hille-Yosida Theorem 4.3.2, which we apply
to the first-order in time Maxwell equations. We recall that the abstract form of a
first-order time-dependent problem is to find u : t �→ u(t) with values in a function
space V for t ≥ 0, governed by

⎧⎪⎪⎨
⎪⎪⎩
Find u such that
du

dt
+ Au = f, t > 0,

u(0) = u0.

Maxwell’s equations are set either in R3, in the exterior of a perfectly conducting
body, or in a domain encased in a perfect conductor. Finally, we address the case of
a truncated exterior problem.

5.2.1 In a Homogeneous Medium

We begin with the simple case of a homogeneous medium in Ω = R3 ; or in an
unbounded open subsetΩ = R3 \O of R3 of category (C2), whereO is a bounded,
perfectly conducting body ; or finally, in a domain Ω ⊂ R3 encased in a perfect
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conductor.9 To fix ideas, we solve the Maxwell’s system of equations (5.3–5.7)
with unit permittivity and permeability, i.e., (ε,μ) = (I3, I3), with the minimal
regularity of the electromagnetic fields, as in (5.2). For the exterior of a body
and for a domain, the system is supplemented with the boundary conditions (5.8)
and (5.9). We remark that Eqs. (5.5–5.6) can be seen as static constraints on the
electromagnetic fields (see, for instance, Remark 5.1.2). On the other hand, (5.7)
is their initial values, and Eqs. (5.3–5.4) describe their evolution in time, which we
can reformulate equivalently as a first-order time-dependent problem. The quantities
are, respectively, for Maxwell’s equations set in a homogeneous medium (we add a
superscript h)

uh =
(

E

H

)
, Ah =

(
0 − curl

curl 0

)
, f h =

(−J

0

)
, uh0 =

(
E0

H 0

)
.

Next, we define the operator mathematically (and in particular, its domain), and we
study some fundamental properties. Finally, with the help of Stone Theorem 4.3.6,
we derive a well-posedness result.

The operator Ah is an unbounded operator of V h = L2(Ω) × L2(Ω), and,
following (5.2), we define its domain by

D(Ah) := H 0(curl,Ω)× H (curl,Ω).

Remark 5.2.1 The asymmetry in the definition of the domain of the operator Ah

stems from (5.2). It plays a critical role in the cases of the exterior of a body and
of a domain, with perfect conductor boundary conditions on part of, or all of, the
boundary.

We write elements v ∈ V h as v = (V E,V H)T , etc. Then, V h is endowed with the
norm ‖v‖V h = (‖V E‖2 + ‖V H‖2)1/2, with associated scalar product (v,w)V h =
(V E | WE)+ (V H | WH).

Proposition 5.2.2 The operator Ah is closed and skew-adjoint.

Proof To prove that Ah is closed, consider a sequence (vk)k in D(Ah) such
that (vk,Ahvk)k converges to (v,w) in V h × V h. In particular, if we let vk =
(V Ek ,V

H
k )
T , then (V Ek )k is actually a Cauchy sequence in H 0(curl,Ω), so it

converges in this space (to a limit, say V Elim). Similarly, (VHk )k converges in
H (curl,Ω) to V Hlim. As (vk)k converges to v in V h, we have v = (V Elim,V Hlim)T .
Next, as (Avk)k converges to w in V h, we have w = (− curl V Hlim, curl V Elim)

T , so
we conclude that w = Av, hence (v,w) ∈ D(A).
To prove thatAh is skew-adjoint, we first remark thatD(Ah) is dense in V h, because
D(Ω)× D(Ω) is a subset of D(Ah).

9As shown in Sects. 5.1.1 and 5.1.2, these three settings exhibit similar properties. This is once
more the case here.
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Then, let us build its adjoint (Ah)∗. According to Definition 4.1.11,w ∈ V h belongs
to the domainD((Ah)∗) if the form

{
v �→ (w,Ahv)V h

D(Ah)→ R
,

is continuous, with respect to the norm ‖·‖V h . In this case, one has ((Ah)∗w, v)V h =
(w,Ahv)V h for all v ∈ D(Ah).
If one chooses v ∈ D(Ω)× D(Ω), one has

(w,Ahv)V h = −(WE | curl VH )+ (WH | curl V E)

= −〈curl WE,V H 〉 + 〈curl WH ,V E〉.

For the form to be continuous w.r.t. ‖·‖V h , WE and WH must belong to H (curl,Ω).
Furthermore, by identification,

∀v ∈ D(Ah), (w,Ahv)V h = −(curl WE | V H)+ (curl WH | V E).

If Ω = R3, recall that H 0(curl,R3) = H (curl,R3). On the other hand, if Ω is the
exterior of a body or a domain, to determine that WE belongs to H 0(curl,Ω), one
remarks that, by considering all elements of D(Ah), it holds that

∀V H ∈ H (curl,Ω), (WE | curl V H ) = (curl WE | V H).

It follows that WE×n|Γ = 0 with the help of the integration-by-parts formula (3.5)
and the surjectivity result of Theorem 3.1.5. So, D((Ah)∗) ⊂ D(Ah) in both
settings.
One can then prove that D((Ah)∗) includes D(Ah). To that aim, let w ∈ D(Ah).
Given v ∈ D(Ah), we successively find, by integration by parts,

(w,Ahv)V h = (WH | curl V E)− (WE | curl VH )

= (curl WH | V E)− (curl WE | VH )

= −(Ahw, v)V h. (5.27)

If Ω is the exterior of a body or a domain, we used the boundary conditions V E ×
n|Γ = 0 and WE × n|Γ = 0.
As Ahw belongs to V h, we have that the form v �→ (w,Ahv)V h is continuous w.r.t.
‖ · ‖V h , so w ∈ D((Ah)∗). We have thus proven that D((Ah)∗) = D(Ah) and,
according to (5.27) and the definition of (Ah)∗w, we conclude that Ah is skew-
adjoint, since (Ah)∗w = −Ahw for all w ∈ D(Ah).
We determine below that the electromagnetic fields are uniquely defined.
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Theorem 5.2.3 Consider a homogeneous medium inΩ = R3 ; or in an unbounded
open subset Ω = R3 \ O of R3 of category (C2), where O is a bounded, perfectly
conducting body ; or in a domainΩ ⊂ R3 encased in a perfect conductor.

1. Assume that

⎧⎨
⎩

E0 ∈ H 0(curl,Ω), H 0 ∈ H (curl,Ω)
either: J ∈ C1(R+;L2(Ω)),

or: J ∈ C0(R+;L2(Ω)) ∩ L1(R+;H 0(curl,Ω))
; (5.28)

thus, there exists one, and only one, couple of electromagnetic fields (E,H ):

{
(E,E′) ∈ C0(R+;H 0(curl,Ω))× C0(R+;L2(Ω))

(H ,H ′) ∈ C0(R+;H (curl,Ω))× C0(R+;L2(Ω))
, (5.29)

which solves Eqs. (5.3–5.4) and (5.7), supplemented with the boundary condi-
tion (5.9) if Ω is the exterior of a body or a domain.

2. Assume, in addition, that

⎧⎨
⎩

div E0 = �(0), div H 0 = 0, H 0 · n|Γ = 0

�(0) ∈ H−1(Ω),
∂�

∂t
+ div J = 0, t > 0

;

thus, there exists one, and only one, couple of electromagnetic fields (E,H ):

{
(E,E′) ∈ C0(R+;H 0(curl,Ω))× C0(R+;L2(Ω))

(H ,H ′) ∈ C0(R+;H (curl,Ω) ∩ H 0(div,Ω))× C0(R+;H 0(div,Ω))
,

which solves the Maxwell’s system of equations (5.3–5.7), supplemented with
boundary conditions (5.8) and (5.9) if Ω is the exterior of a body or a domain.

In both instances, the electromagnetic fields depend continuously on the data.

Proof

1. Due to Proposition 5.2.2, this is a straightforward application of Stone Theo-
rem 4.3.6.

2. One simply uses the process described in Remark 5.1.2 to reach the conclusion.

5.2.2 In a Perfect Medium

We now consider Ω = R3 ; or an unbounded open subset Ω = R3 \ O of R3

of category (C2), where O is a bounded, perfectly conducting body ; or a domain
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Ω ⊂ R3 encased in a perfect conductor ; and that Ω is made of a perfect medium.
Below, in the definitions, proofs and statements of results, we focus mainly on
the differences with the previous subsection. We solve Maxwell’s equations with
permittivity ε and permeability μ such that (5.10) holds, with the minimal regularity
of the electromagnetic fields, as in (5.2). To fit within the framework, as recalled at
the beginning of Sect. 5.2, we reformulate Eqs. (5.3–5.4): we introduce the scaled
unknowns Ẽ = ε1/2E and H̃ = μ1/2H , with initial data Ẽ0 = ε1/2E0 and
H̃ 0 = μ1/2H 0. Then, Eqs. (5.3–5.4) write

∂Ẽ

∂t
− ε−1/2 curl μ−1/2H̃ = −ε−1/2J , t > 0

∂H̃

∂t
+ μ−1/2 curl ε−1/2Ẽ = 0, t > 0.

Within the framework of first-order problems, we have, for the case of a perfect
medium (we add a superscript p),

up =
(

Ẽ

H̃

)
, Ap =

(
0 −ε−1/2 curl μ−1/2

μ−1/2 curl ε−1/2 0

)
,

f p =
(−ε−1/2J

0

)
, u

p

0 =
(

Ẽ0

H̃ 0

)
.

The operatorAp is an unbounded operator of V p = L2(Ω)×L2(Ω), and we define
its domain by

D(Ap) := H 0(curl ε−1/2,Ω)× H (curl μ−1/2,Ω).

As V p = V h, the definitions of its scalar product and its norm are clear (for the
notations, use those of Sect. 5.2.1 and replace h with p).

Proposition 5.2.4 The operator Ap is closed and skew-adjoint.

Proof First, one proves easily that Ap is closed.
Second, we find that D(Ap) is dense in V p, because ε1/2D(Ω) × μ1/2D(Ω) is a
subset of D(Ap). Then, one can build the adjoint of Ap: w ∈ V p belongs to the
domain D((Ap)∗) if the form v �→ (w,Apv)V p defined on D(Ap) is continuous,
with respect to ‖·‖V p , and one has ((Ap)∗w, v)V p = (w,Apv)V p for all v ∈ D(Ap)
in this case.
If one chooses v ∈ ε1/2D(Ω)× μ1/2D(Ω), one obtains

(w,Apv)V p = −(WE | ε−1/2 curl μ−1/2VH )+ (WH | μ−1/2 curl ε−1/2V E)

= −〈curl ε−1/2WE,μ−1/2V H 〉 + 〈curl μ−1/2WH , ε−1/2V E〉.
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For the form to be continuous w.r.t. ‖ · ‖V p , (WE,WH) must belong to
H (curl ε−1/2,Ω)× H (curl μ−1/2,Ω). Furthermore, by identification,

∀v ∈ D(Ap),
(w,Apv)V p = −(μ−1/2 curl ε−1/2WE | V H)+ (ε−1/2 curl μ−1/2WH | V E).

IfΩ = R3, recall that H 0(curl ε−1/2,R3) = H (curl ε−1/2,R3). IfΩ is the exterior
of a body or a domain, we obtain that ε−1/2WE × n|Γ = 0 by integrating by parts,
so WE belongs to H 0(curl ε−1/2,Ω). D((Ap)∗) ⊂ D(Ap) in both settings.
As in the proof of Proposition 5.2.2, using integration by parts twice more, one finds
thatD((Ap)∗) includesD(Ap), and the fact that Ap is skew-adjoint follows.

With the help of the Stone Theorem, we infer that the fields (Ẽ, H̃ ) exist and are
uniquely defined. Hence, the results carry over to the actual electromagnetic fields
(E,H ).

Theorem 5.2.5 Consider a perfect medium in Ω = R3; or in an unbounded open
subset Ω = R3 \ O of R3 of category (C2), where O is a bounded, perfectly
conducting body; or in a domain Ω ⊂ R3 encased in a perfect conductor, with
tensor fields ε and μ that fulfill assumption (5.10).

1. Assume that the conditions (5.28) are met for the data (E0,H 0,J ). Then, there
exists one, and only one, couple of electromagnetic fields (E,H ) governed by
Eqs. (5.3–5.4) and (5.7), supplemented with the boundary condition (5.9) if Ω is
the exterior of a body or a domain, with regularity (5.29).

2. Assume, in addition, that

⎧⎨
⎩

div εE0 = �(0), div μH 0 = 0, μH 0 · n|Γ = 0

�(0) ∈ H−1(Ω),
∂�

∂t
+ div J = 0, t > 0

;

thus, there exists one, and only one, couple of electromagnetic fields (E,H ):

{
(E,E′) ∈ C0(R+;H 0(curl,Ω))× C0(R+;L2(Ω))

(H ,H ′) ∈ C0(R+;H (curl,Ω) ∩ H 0(div μ,Ω))× C0(R+;H 0(div μ,Ω))
,

which solves the Maxwell’s system of equations (5.3–5.7), supplemented with
boundary conditions (5.8) and (5.9) if Ω is the exterior of a body or a domain.

In both instances, the electromagnetic fields depend continuously on the data.
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5.2.3 In a Dispersive Medium

Let us briefly consider a dispersive medium in Ω = R3 ; or in an unbounded open
subset Ω = R3 \ O of R3 of category (C2), where O is a bounded, perfectly
conducting body ; or in a domain Ω ⊂ R3 encased in a perfect conductor. The
dispersive medium is governed by the Lorentz model (see Eqs. (5.14–5.18)), plus
initial conditions

(
E,H ,P ,

∂P

∂t
,M,

∂M

∂t

)
(0) = (E0,H 0,P 0,p0,M0,m0). (5.30)

For ease of exposition, we set all parameters to 1: ε0 = μ0 = αe = βe = αm =
βm = 1. In this case, one introduces the auxiliary variables p = P ′, respectively
m = M ′ to produce a first-order time-dependent problem. One defines

ud =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

E

H

P

p

M

m

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, Ad =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 − curl 0 1 0 0
curl 0 0 0 0 1

0 0 0 −1 0 0
−1 0 1 0 0 0
0 0 0 0 0 −1
0 −1 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, f d =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−J

0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

The initial data (cf. (5.30)) is called ud0 . The operator Ad is an unbounded operator
of V h = (L2(Ω))6, whose domain is chosen as D(Ad) := H 0(curl,Ω) ×
H (curl,Ω)× (L2(Ω))4. Similarly to Sect. 5.2.1, one proves the result below.

Proposition 5.2.6 The operator Ad is closed and skew-adjoint.

The conclusions can then be stated.

Theorem 5.2.7 Consider a dispersive medium governed by the Lorentz model in
Ω = R3 ; or in an unbounded open subset Ω = R3 \ O of R3 of category (C2),
whereO is a bounded, perfectly conducting body ; or in a domainΩ ⊂ R3 encased
in a perfect conductor.

1. Assume that

⎧⎪⎪⎨
⎪⎪⎩

E0 ∈ H 0(curl,Ω), H 0 ∈ H (curl,Ω),
P 0,p0,M0,m0 ∈ L2(Ω),

either: J ∈ C1(R+;L2(Ω)),

or: J ∈ C0(R+;L2(Ω)) ∩ L1(R+;H 0(curl,Ω))

;

thus, there exists one, and only one, quadruple of electromagnetic fields
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(E,H ,P ,M):

⎧⎨
⎩
(E,E′) ∈ C0(R+;H 0(curl,Ω))× C0(R+;L2(Ω))

(H ,H ′) ∈ C0(R+;H (curl,Ω))× C0(R+;L2(Ω))

P ,P ′,M,M ′ ∈ C0(R+;L2(Ω))

,

which solves Eqs. (5.14–5.16) and (5.30), supplemented with the boundary
condition (5.9) if Ω is the exterior of a body or a domain.

2. Assume, in addition, that

⎧⎨
⎩

div (E0 + P 0) = �(0), div (H 0 + M0) = 0, (H 0 + M0) · n|Γ = 0

�(0) ∈ H−1(Ω),
∂�

∂t
+ div J = 0, t > 0

;

thus, the quadruple (E,H ,P ,M) also solves Eqs. (5.17–5.18) and the boundary
condition (H + M) · n|Γ = 0 if Ω is the exterior of a body or a domain.

The electromagnetic fields depend continuously on the data.

5.2.4 Truncated Exterior Problem

We consider an exterior problem, around a perfectly conducting object. As we did
before, we define a truncated exterior problem, set in a computational domain whose
boundary is equal to Γ = ΓP ∪ΓA, with ∂ΓP ∩∂ΓA = ∅. On the physical part of the
boundary,ΓP , one imposes a perfect conductor boundary condition, whereas on the
smooth artificial boundary, one imposes an ABC. The aim is to solve Maxwell’s
equations in a perfect medium with the same assumptions as in Sect. 5.2.2. In
addition, we also assume that the medium is homogeneous in a neighborhood of
the artificial boundary ΓA, so the condition there writes as in (5.20). Below, we
begin with the case of a homogeneous ABC (g� = 0), and then we proceed to the
general case (g� �= 0).

5.2.4.1 Homogeneous Absorbing Boundary Condition

We scale the unknowns, as in Sect. 5.2.2: Ẽ = ε1/2E and H̃ = μ1/2H . The
homogeneous ABC then writes

Ẽ(t)× n + H̃�(t) = 0 on ΓA.
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To fit within the framework of first-order problems, we introduce (with a super-
script e)

ue =
(

Ẽ

H̃

)
, Ae =

(
0 −ε−1/2 curl μ−1/2

μ−1/2 curl ε−1/2 0

)
,

f e =
(−ε−1/2J

0

)
, ue0 =

(
Ẽ0

H̃ 0

)
.

The operatorAe is an unbounded operator of V e = L2(Ω)×L2(Ω), and we define
its domain by

D(Ae) := {(V E,V H) ∈ H 0,ΓP (curl ε−1/2,Ω)× H (curl μ−1/2,Ω) :
(V E × n + (V H )�)|ΓA = 0}.

As V e = V h, we use the definitions and notations of Sect. 5.2.1 (replace h with e)
for its scalar product and norm.

Proposition 5.2.8 The operator Ae is maximal monotone.

Remark 5.2.9 As we will see below, the operator Ae is not skew-adjoint.

Proof We apply Proposition 4.1.15 to obtain the result: we need to prove that the
operator Ae is closed, with a dense domain in V e, and that both Ae and its adjoint
are monotone.
As before, one can easily check that Ae is closed, with a dense domain in V e.
Second, one proves that Ae is monotone. For that, given v ∈ D(Ae), one computes
(Aev, v)V e with the help of the integration-by-parts formula (3.5):

(Aev, v)V e = −(ε−1/2 curl μ−1/2V H | V E)+ (μ−1/2 curl ε−1/2V E | V H)

= −(curl μ−1/2V H | ε−1/2V E)+ (curl ε−1/2V E | μ−1/2VH )

= −γA〈ε−1/2V E × n,μ−1/2(VH )�〉πA
= −(εμ)−1/2

γA〈V E × n, (V H )�〉πA.

Now, we recall that V E × n + (V H)� = 0 on ΓA. Also, because the artificial
boundary is smooth, we know that both (V E × n)|ΓA and ((V H)�)|ΓA belong to
L2
t (ΓA) (this is summarized in Remark 5.1.5). We then conclude that (Aev, v)V e ≥

0, which yields the monotonicity of the operatorAe.
Lastly, one has to prove that the adjoint (Ae)∗ of Ae is monotone. To proceed, let us
build (Ae)∗ and, in particular, its domain: w ∈ V e belongs to the domainD((Ae)∗)
if the form v �→ (w,Aev)V e defined on D(Ae) is continuous, with respect to the
norm ‖·‖V e . Choosing first v ∈ ε1/2D(Ω)×μ1/2D(Ω), one obtains, as in the proof
of Proposition 5.2.4, that w belongs to H (curl ε−1/2,Ω)× H (curl μ−1/2,Ω), and
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moreover, by identification, that

∀v ∈ D(Ae),
(w,Aev)V e = −(μ−1/2 curl ε−1/2WE | V H)+ (ε−1/2 curl μ−1/2WH | V E).

Expanding the expression of (w,Aev)V e as above, and choosing v ∈
H 0(curl ε−1/2,Ω)× H 0,ΓA(curl μ−1/2,Ω), one finds, after integration by parts, a
term on the physical part ΓP of the boundary

0 = γP 〈ε−1/2WE × n,μ−1/2(VH )�〉πP ,

and it follows that (ε−1/2WE × n)|ΓP = 0, thanks to the surjectivity result of
Corollary 3.1.23.
Last, we choose any v ∈ D(Ae) and again perform an integration by parts: this time,
terms on the artificial part ΓA of the boundary appear, namely

0 = γA〈ε−1/2WE × n,μ−1/2(V H )�〉πA + γA〈ε−1/2V E × n,μ−1/2(WH)�〉πA
= (εμ)−1/2

(
γA〈WE × n, (V H )�〉πA + γA〈V E × n, (WH)�〉πA

)
.

Now, let λ ∈ C∞(ΓA) ∩ L2
t (ΓA). As the artificial boundary ΓA is smooth, we have

that λ ∈ H
−1/2
‖ (divΓ , ΓA) ∩ H

−1/2
⊥ (curlΓ , ΓA). According to Corollary 3.1.23,

there exists (V E,V H) ∈ D(Ae) such that λ = (V E × n)|ΓA = −((V H)�)|ΓA .
The above equality leads to

0 = −γA〈WE × n,λ〉πA + γA〈λ, (WH)�〉πA.

Notice that ΓA is a closed set, so C∞
c (ΓA) = C∞(ΓA), and one finds that

∀λ ∈ D(ΓA) ∩ L2
t (ΓA), 〈−WE × n + (WH)�,λ〉D(ΓA)∩L2

t (ΓA)
= 0.

This yields

−WE × n + (WH )� = 0 on ΓA,

in the sense of (tangential) distributions on ΓA. In other words, we have

D((Ae)∗) ⊂ {(WE,WH ) ∈ H 0,ΓP (curl ε−1/2,Ω)× H (curl μ−1/2,Ω) :
(−WE × n + (WH )�)|ΓA = 0}.

Reciprocally, letw ∈ H 0,ΓP (curl ε−1/2,Ω)×H (curl μ−1/2,Ω) such that (−WE×
n + (WH)�)|ΓA = 0. Given v ∈ D(Ae), let us evaluate (w,Aev)V e . Recall
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that, according to Remark 5.1.5, (V E × n)|ΓA , ((VH )�)|ΓA , (WE × n)|ΓA and
((WH)�)|ΓA all belong to L2

t (ΓA). One finds, after integrating by parts,

(w,Aev)V e = −(WE | ε−1/2 curl μ−1/2V H )+ (WH | μ−1/2 curl ε−1/2V E)

= −(μ−1/2 curl ε−1/2WE | V H )+ (ε−1/2 curl μ−1/2WH | V E)

−γA〈ε−1/2WE × n,μ−1/2(VH )�〉πA + γA 〈μ−1/2WH × n, ε−1/2(V E)�〉πA
= −(μ−1/2 curl ε−1/2WE | V H )+ (ε−1/2 curl μ−1/2WH | V E)

+ (εμ)−1/2
∫
ΓA

(
−WE × n · (VH )� + WH × n · (V E)�

)
dΓ.

However, one easily checks that the boundary integral vanishes, because (−WE ×
n ·(V H)�+WH ×n ·(V E)�) = 0 almost everywhere on ΓA. Hence, one concludes
that w ∈ D((Ae)∗), so

(Ae)∗ =
(

0 ε−1/2 curl μ−1/2

−μ−1/2 curl ε−1/2 0

)
,

with domain

D((Ae)∗) = {(WE,WH ) ∈ H 0,ΓP (curl ε−1/2,Ω)× H (curl μ−1/2,Ω) :
(−WE × n + (WH )�)|ΓA = 0}.

Finally, let us check that (Ae)∗ is monotone. Given w ∈ D((Ae)∗), one finds, as
usual, after integration by parts (cf. Remark 5.1.5),

((Ae)∗w,w)V e = (ε−1/2 curl μ−1/2WH | WE)− (μ−1/2 curl ε−1/2WE | WH)

= γA〈ε−1/2WE × n,μ−1/2(WH )�〉πA ≥ 0.

This ends the proof.

With the help of the Hille-Yosida Theorem 4.3.2, it is then possible to conclude that
the fields (Ẽ, H̃ ) exist and are uniquely defined in the case of the homogeneous
ABC. This carries over to the actual electromagnetic fields (E,H ). The precise
statement of the results will be included in Theorem 5.2.12 hereafter.

5.2.4.2 General Absorbing Boundary Condition

Here, the ABC writes (5.20), with g� �= 0. Obviously, the data g� needs to fulfill
the a priori regularity assumption

g�(t) ∈ H
−1/2
‖ (divΓ , ΓA)+ H

−1/2
⊥ (curlΓ , ΓA), t > 0.
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Lemma 5.2.10 It holds, algebraically and topologically, that

H
−1/2
‖ (divΓ , ΓA)+H

−1/2
⊥ (curlΓ , ΓA)= curlΓ (H

1/2
zmv(ΓA))+ gradΓ (H

1/2
zmv(ΓA)),

curlΓ (H
1/2
zmv(ΓA)) ⊂ H

−1/2
‖ (divΓ , ΓA), gradΓ (H

1/2
zmv(ΓA)) ⊂ H

−1/2
⊥ (curlΓ , ΓA).

Proof Given v ∈ H
−1/2
‖ (divΓ , ΓA) + H

−1/2
⊥ (curlΓ , ΓA), one can write on ΓA (cf.

Theorem 3.1.22)

v = curlΓ (φ− + φ+)+ gradΓ (ψ
− + ψ+),

with φ−, ψ− ∈ H 1/2
zmv(ΓA), and φ+, ψ+ ∈ H(ΓA). As H(ΓA) ⊂ H

1/2
zmv(ΓA), it

follows that v ∈ curlΓ (H
1/2
zmv(ΓA))+ gradΓ (H

1/2
zmv(ΓA)).

Obviously, one has curlΓ (H
1/2
zmv(ΓA)) ⊂ H

−1/2
‖ (divΓ , ΓA) and gradΓ (H

1/2
zmv(ΓA))

⊂ H
−1/2
⊥ (curlΓ , ΓA), so the converse imbeddings follow.

Due to the result of Lemma 5.2.10, one makes the assumption (for some ad hoc
m ≥ 0), that

{
g�(t) = curlΓ φ(t)+ gradΓ (ψ(t)), on ΓA, t > 0

with φ,ψ ∈ Cm(R+,H 1/2
zmv(ΓA))

.

Remark 5.2.11 Notice first that the above lemma holds even when the boundary is
only piecewise smooth.
Second, notice that, provided ΓA is a smooth (closed) boundary, one can character-
ize the (non-direct) sum curlΓ (H

1/2
zmv(ΓA)) + gradΓ (H

1/2
zmv(ΓA)). Indeed, given a

domain ω ⊂ R2, one has (see Proposition 3.1.11)

L2(ω) = curlΓ (H 1(ω))
⊥⊕ gradΓ (H

1
0 (ω)).

One also has the continuous, albeit non-direct, decomposition (see [78])

H−1(ω) = curlΓ (L2(ω))+ gradΓ (L
2(ω)).

By interpolation (cf. Proposition 2.1.44), one derives the result

H−1/2(ω) = curlΓ (H 1/2(ω))+ gradΓ (H̃
1/2(ω)).

Constants can be removed from the potentials. On a smooth, closed manifold, such
as the artificial boundary ΓA, one thus infers the non-direct decomposition of the
space of tangential fields H

−1/2
t (ΓA):

H
−1/2
t (ΓA) = curlΓ (H

1/2
zmv(ΓA))+ gradΓ (H

1/2
zmv(ΓA)).
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Then, according to the surjectivity results of the trace mappings (Corollary 3.1.23),
we know that there exists (E�,H �) ∈ H 0,ΓP (curl,Ω)× H (curl,Ω) such that

E�(t)× n +
√
μ

ε
H ��(t) = g�(t) on ΓA, t > 0, (5.31)

with continuous dependence of (E�,H �) with respect to (φ,ψ). In this way, one
can introduce the auxiliary unknowns (E−,H−) = (E − E�,H − H �), together
with the auxiliary data J− = ε∂tE� − curl H � and K− = μ∂tH � + curl E�. The
auxiliary unknowns are then governed by

ε
∂E−

∂t
− curl H− = −J − J−, t > 0 (5.32)

μ
∂H−

∂t
+ curl E− = −K−, t > 0, (5.33)

(E−,H−)(0) = (E0 − E�(0),H 0 − H �(0)), (5.34)

and, by construction, the scaled auxiliary unknowns (ε1/2E−,μ1/2H−)(t) belong
to D(Ae) for t > 0. Using the results of the previous study (homogeneous
ABC), one can use the Hille-Yosida Theorem. The assumptions and conclusions
are summarized below.

Theorem 5.2.12 Consider a perfect medium in a domain Ω ⊂ R3, with tensor
fields ε and μ that fulfill assumption (5.10). Its boundary is split as Γ = ΓP ∪ ΓA,
with ∂ΓP ∩ ∂ΓA = ∅. In a neighborhood of ΓA, the medium is homogeneous.

1. Assume that
⎧⎪⎨
⎪⎩

E0 ∈ H 0,ΓP (curl,Ω), H 0 ∈ H (curl,Ω)
J ∈ C1(R+;L2(Ω)),

g� ∈ C2(R+, curlΓ (H
1/2
zmv(ΓA)))+ C2(R+, gradΓ (H

1/2
zmv(ΓA)))

;

thus, there exists one, and only one, couple of electromagnetic fields (E,H ):

{
(E,E′) ∈ C0(R+;H 0,ΓP (curl,Ω))× C0(R+;L2(Ω))

(H ,H ′) ∈ C0(R+;H (curl,Ω))× C0(R+;L2(Ω))
,

governed by Eqs. (5.3–5.4) and (5.7), supplemented with the boundary condi-
tions (5.9) on ΓP and (5.20) on ΓA.

2. Assume, in addition, that

⎧⎨
⎩

div εE0 = �(0), div μH 0 = 0, μH 0 · n|ΓP = 0

�(0) ∈ H−1(Ω),
∂�

∂t
+ div J = 0, t > 0

;
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thus, there exists one, and only one, couple of electromagnetic fields (E,H ):

⎧⎨
⎩
(E,E′) ∈ C0(R+;H 0,ΓP (curl,Ω))× C0(R+;L2(Ω))

(H ,H ′) ∈ C0(R+;H (curl,Ω) ∩ H 0,ΓP (div μ,Ω))
×C0(R+;H 0,ΓP (div μ,Ω))

,

which solves the Maxwell’s system of equations (5.3–5.7), supplemented with the
boundary conditions (5.9) on ΓP and (5.20) on ΓA.

In both instances, the electromagnetic fields depend continuously on the data.

Proof

1. Let us choose liftings of the trace on ΓA (E�,H �) as in (5.31), and then introduce
the fields (E−,H−) of D(Ae), governed by (5.32–5.34). Then, (Ẽ

−
, H̃

−
) =

(ε1/2E−,μ1/2H−) is itself governed by a first-order time-dependent system, in
the function space V e, with operator Ae and data

f e =
(−ε−1/2(J + J−)

−μ−1/2K−
)
, ue0 =

(
ε1/2(E0 − E�(0))
μ1/2(H 0 − H �(0))

)
.

According to Proposition 5.2.8,Ae is maximal monotone. All assumptions about
the Hille-Yosida Theorem are fulfilled, so there exists (Ẽ

−
, H̃

−
) governed by

the first-order system, which depends continuously on the data f e, ue0. Hence,
there exist electromagnetic fields (E,H ) = (E� +E−,H � +H−) governed by
Eqs. (5.3–5.4) and (5.7), supplemented with the boundary conditions (5.9) on ΓP
and (5.20) on ΓA, that depend continuously on the data g�, J and (E0,H 0). To
establish uniqueness, let us assume that two solutions exist, and thus the scaled
difference is a solution to the first-order system with zero data. Hence, it vanishes,
which yields uniqueness.

2. One again uses the process described in Remark 5.1.2 to conclude.

5.2.5 Truncated Interior Problem

The truncated interior problem will be addressed in the upcoming Sect. 7.2.2.

5.2.6 Notes on Truncation

Let us denote by (Eex,H ex) the solution to the non-truncated (exterior, interior)
problem, and by (ER,HR) the solution to the truncated (exterior, interior) problem.
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The index R here stands for the radius of the truncating sphere, and Ω = ΩR
with obvious notations. Little is known in general, in the time-dependent case,10

on the convergence when R goes to infinity of (ER,HR) towards the exact
electromagnetic fields (Eex,H ex)|ΩR .

On the one hand, with data compactly supported in ΩR (in particular, g� = 0),
the exact and truncated (with a homogeneous ABC) solutions will coincide until
they become non-zero at the artificial boundary. As a matter of fact, (Eex,H ex)|ΩR
and (ER,HR) solve the same first-order system with a homogeneous artificial
boundary condition, as long as they vanish on ΓA. After that, they differ. This is
due to the finite propagation speed. So, the larger R is, the longer the solutions
coincide.

On the other hand, we refer to [99] for convergence results concerning the
solution to the 2D scalar wave equation, in fixed regions (R is given). Among other
things, it is proven there that one can achieve convergence on finite time intervals
by increasing the order of the ABC. If α denotes the order, then, for T > 0 and
R′ < R, the error bound writes maxt∈[0,T ] ‖u(t)−uR(t)‖L2(ΩR′ ) ≤ C(T ) exp(−α).

In another direction, if the data are compactly supported in time (and space), one
expects the energy to decay in any bounded region as time goes to infinity. But,
according to, for instance, [8, 31, 172] and References therein, one can establish
the exponential decay of the electromagnetic energy of (ER,HR). This proves that
(Eex(t),H ex(t))|ΩR and (ER(t),HR(t)) converge to the same limit—0—when t
goes to infinity.

5.2.7 Comments

When the Silver-Müller ABCs are used, we refer to the nice study by Remaki and
Poupaud in [173, 179] to achieve well-posedness in the “classical” cases (domains
with smooth boundaries). For higher-order conditions, very few theoretical results
seem to be available ; we refer to [99, 131] for the (scalar) equations. On the other
hand, to bound the domain, one can also consider using perfectly matched layers
(PMLs). Interestingly, proving the well-posedness of the resulting models is again
a challenging issue: for results on this topic, we refer to the intertwined works of
Abarbanel and Gottlieb [1, 2], and of Bécache, Joly et al. cf. [34, 35].

More details on the analysis of dispersive media can be found in [202]. More
generally, for models that take into account media with memory, that is, constitutive
relations including a convolution product in time, we refer, for instance, to the
works of Stratis et al., such as [139, 180]. Finally, models including boundary
conditions with memory or models including non-linear boundary conditions can
also be solved mathematically (see [8, 106, 192] and references therein).

10The situation is different for time-harmonic problems (see Chap. 8).



Chapter 6
Analyses of Approximate Models

In this chapter, we specifically study the approximate models that we derived from
Maxwell’s equations. We refer to Chap. 1 for the models, and we rely on the
mathematical tools introduced in Chaps. 2, 3 and 4. Unless otherwise specified,
we consider complex-valued function spaces. Constants that are independent of
the data, but that may depend on the domain or on the parameters defining the
model, are generically denoted byC, C0, C1, etc. We provide incremental proofs for
the well-posedness of the static, quasi-static and Darwin models, in the sense that
solving the quasi-static models relies on the solution of static problems, whereas
solving the Darwin models relies on the solution of static and quasi-static problems.

We let Ω ⊂ R3 be a domain1 made of a perfect medium; the medium
is characterized by the tensor fields ε, μ that fulfill assumptions (5.10). Unless
otherwise specified, we assume that the medium is encased in a perfect conductor.

On the other hand, the domain is such that either (Top)I=0 or (Top)I>0 holds (cf.
Sect. 3.2):

• if (Top)I=0 holds: Ω̇ = Ω ;
• if (Top)I>0 holds: existence of piecewise plane cuts (Σi)1≤i≤I , such that the

resulting Ω̇ = Ω \⋃Ii=1Σi is pseudo-Lipschitz (and connected).

When applicable, we denote by n a unit normal vector field to (Σi)1≤i≤I . The
notation ∀i means 1 ≤ i ≤ I , so it is empty when (Top)I=0 holds.

When the boundary Γ is not connected, we let (Γk)0≤k≤K be its connected
components, where Γ0 is the boundary of the unbounded component of the exterior
open set R3 \Ω , whereas we let Γ0 = Γ if the boundary is connected. The notation
∀k means 0 ≤ k ≤ K .

Finally, we denote by ‖ · ‖ and (· | ·) the canonical norm and scalar product of
L2(Ω) or L2(Ω).

1We recall that this word designates a bounded, open, connected subset with a Lipschitz boundary.
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6.1 Electrostatic Problem

For the static models, our starting point is Eqs. (1.104), whose solutions are the static
fields Estat and Bstat . In this subsection, we consider slightly more general systems
of equations, allowing the curl of Estat to be non-zero. We omit the stat , as it is clear
that we are interested in solving the static equations.

6.1.1 Definitions and Results for the Electrostatic Problem

The electrostatic-like problem that we consider is governed by

⎧⎪⎪⎨
⎪⎪⎩

Find E ∈ L2(Ω) such that
curl E = f inΩ
div εE = g inΩ
E × n = 0 on Γ,

(6.1)

with (f, g) ∈ L2(Ω)×H−1(Ω). These a priori regularity requirements2 stem from
our initial modelling assumption, namely that E ∈ H (curl,Ω). The electrostatic
field is subject to vanishing tangential trace on the boundary, so it is natural to
include this property in the model. To start with, let us characterize curl-free and
divergence(ε)-free fields, with vanishing tangential trace. Let

ZN(Ω; ε) := H 0(curl 0,Ω) ∩ H (div ε0,Ω),

QN(Ω; ε) := {qε ∈ H 1
∂Ω(Ω) : div ε grad qε = 0 inΩ}.

Proposition 6.1.1 The dimension of the vector space ZN(Ω; ε) is equal to K .
Furthermore, a basis of ZN(Ω; ε) is the set of functions (grad qε�)1≤�≤K , where
each qε� ∈ QN(Ω; ε) is such that qε� = δk� on Γk, ∀k; (qε� )1≤�≤K are real-valued
functions. Finally, an element z of ZN(Ω; ε) can be characterized by its fluxes
(〈εz · n, 1〉H 1/2(Γk)

)1≤k≤K .

Proof Obviously, the family (grad qε� )� is included in ZN(Ω; ε). Then, given z ∈
ZN(Ω; ε), we find that it can be written as a linear combination of (grad qε� )�, in
the same spirit as Theorem 3.3.9 (extraction of scalar potentials). In particular, the
dimension of ZN(Ω; ε) is equal to K . Given �, we find that qε� is a real-valued
function, since it solves a well-posed problem with real-valued coefficients and data
(cf. Proposition 3.3.7).

2Given w ∈ L2(Ω), one has div εw ∈ H−1(Ω) and ‖div εw‖H−1(Ω) ≤ ‖εw‖.
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To prove that elements of ZN(Ω; ε) can also be characterized by their fluxes on
the connected components on the boundary, we introduce the mapping

F lux :
{

ZN(Ω; ε)→ CK

z �→ (〈εz · n, 1〉H 1/2(Γk)
)1≤k≤K

and prove that it is a bijection. Since the vector spaces ZN(Ω; ε) and CK are finite-
dimensional with equal dimension, we simply have to check that the kernel of F lux
is reduced to {0}. So, let z ∈ ker(F lux). From the above, we know that there exists
q ∈ QN(Ω; ε) such that z = grad q . Then, recalling that q|Γ0 = 0 and q|Γk = cstk
for 1 ≤ k ≤ K , we compute, by integration by parts,

‖ε1/2z‖2 = (εz|z) = (εz| gradq) =
∑
k

〈εz · n, q〉H 1/2(Γk)

=
∑

1≤k≤K
q |Γk 〈εz · n, 1〉H 1/2(Γk)

= 0.

Hence, we have that z = 0, and the characterization by fluxes is shown.

All norms are equivalent on finite-dimensional vector spaces. As a consequence, we
may use any norm like

z �→ ∣∣(〈εz · n, 1〉H 1/2(Γk)
)1≤k≤K

∣∣
p
, or z = grad q �→ ∣∣(q|Γk )1≤k≤K∣∣p ,

with 1 ≤ p ≤ ∞, to measure elements of ZN(Ω; ε). Evidently, any other norm
would be appropriate. From now on, we call | · |ZεN the chosen norm.

Remark 6.1.2 Given z ∈ ZN(Ω; ε), its fluxes are always balanced, i.e., one
automatically has 〈εz · n, 1〉H 1/2(Γ0)

= −∑1≤k≤K〈εz · n, 1〉H 1/2(Γk)
.

The second mathematical tool is a generalization of the result of Theorem 3.5.1,
which ensures one can actually choose the divergence(ε) of the vector potential to
be any element of H−1(Ω), as proven below.

As we saw in Remark 3.5.2, if f := curl w with w ∈ H 0(curl,Ω), one
automatically has 〈f · n, 1〉Σi = 0, ∀i. Hence, we look for curls in

HΣ
0 (div 0,Ω) := {f ∈ H 0(div 0,Ω) : 〈f · n, 1〉Σi = 0, ∀i}.

Proposition 6.1.3 Let Ω be a domain such that (Top)I=0 or (Top)I>0 is fulfilled.
Then, given g ∈ H−1(Ω) and f ∈ HΣ

0 (div 0,Ω), there exists w ∈ H 0(curl,Ω)
such that

curl w = f , div εw = g,
‖w‖H (curl,Ω) ≤ C (‖f ‖ + ‖g‖H−1(Ω)), (6.2)

with C > 0.
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Proof Given f , let us first use Theorem 3.5.1. Namely, there exists y ∈
H 0(curl,Ω) such that f = curl y and div y = 0 inΩ , with ‖y‖H (curl,Ω) ≤ C0‖f ‖
for some C0 > 0.

Then, let us change the divergence(ε) of the potential, without changing the curl.
For that, we solve the well-posed variational formulation3

{
Find z ∈ H 1

0 (Ω) such that
∀z′ ∈ H 1

0 (Ω), (ε grad z| grad z′) = (εy| grad z′)+ 〈g, z′〉H 1
0 (Ω)

.

This problem has one, and only one, solution, and moreover, one has ‖z‖H 1(Ω) ≤
C1‖div εy−g‖H−1(Ω), for someC1 > 0. Let us set w = y−grad z. By construction,
the potential w ∈ H 0(curl,Ω) is such that f = curl w in L2(Ω) and div εw = g
in H−1(Ω), with continuous dependence, as in (6.2).

We are now in a position to solve the electrostatic problem, and thus obtain an
initial way to measure/characterize the electrostatic field. To that aim, we introduce
the orthogonal projection operatorPZεN

from H (curl,Ω) to ZN(Ω; ε), with respect
to the scalar product (·|·)ε,b curl : (v,w) �→ (εv|w)+ (b curl v| curl w), where b is
a tensor field that fulfills an assumption like (5.10).

Theorem 6.1.4 Let Ω be a domain such that (Top)I=0 or (Top)I>0 is fulfilled.
Then, the mapping

StatE :
{

H 0(curl,Ω)→ HΣ
0 (div 0,Ω)×H−1(Ω)

w �→ (curl w, div εw)

is surjective, and its kernel is equal to ZN(Ω; ε).
As a consequence, one has a Weber inequality

∃CE > 0, ∀w ∈ H 0(curl,Ω),

‖w‖H (curl,Ω) ≤ CE(‖ curl w‖ + ‖div εw‖H−1(Ω) + |PZεN
w|ZεN ). (6.3)

Proof The mapping StatE is surjective, thanks to Proposition 6.1.3, and, obviously,
its kernel is equal to ZN(Ω; ε).

Now, observe that we can decompose H 0(curl,Ω) orthogonally as

H 0(curl,Ω) = ZN(Ω; ε) ⊥ε,b⊕ HΓ
0 (curl,Ω),

3The corresponding variational formulation is well-posed, according to the Lax-Milgram The-
orem 4.2.8 and the Poincaré inequality of Theorem 2.1.35 in H 1

0 (Ω). Indeed, thanks to the
assumptions about ε, the semi-norm ‖ε1/2 grad ·‖ is a norm on H 1

0 (Ω) equivalent to the canonical
norm.
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using the scalar product (·|·)ε,b curl: HΓ
0 (curl,Ω) is defined as

HΓ
0 (curl,Ω) := {w ∈ H 0(curl,Ω) : PZεN

w = 0}.

Hence, going one step further in the proof of Proposition 6.1.3, given g ∈ H−1(Ω)

and f ∈ HΣ
0 (div 0,Ω), it is possible to choose a modified potential y that belongs

to HΓ
0 (curl,Ω) such that curl y = f and div εy = g, namely y = w − PZεN

w.

It follows that StatE is an isomorphism from HΓ
0 (curl,Ω) to HΣ

0 (div 0,Ω) ×
H−1(Ω), according to the open mapping Theorem 4.1.4:

∃C0 > 0, ∀y ∈ HΓ
0 (curl,Ω),

‖y‖H (curl,Ω) ≤ C0 (‖ curl y‖ + ‖div εy‖H−1(Ω)).

Finally, using the orthogonal decomposition of H 0(curl,Ω), one concludes that the
Weber inequality (6.3) holds.

An important by-product of the Weber inequality (6.3) is that the L2(Ω)-norm of
the electrostatic field is controlled by its curl (measured in L2(Ω)), its divergence(ε)
(measured in H−1(Ω)), and (possibly) a finite number of scalars.

It is possible to measure/characterize the electrostatic field differently. For
that, let s ∈ [0, 1], and suppose that div εE belongs to H−s(Ω). According to
Definition 2.1.19,H−s(Ω) can be endowed with a scalar product (·, ·)H−s (Ω). Next,
we introduce the function space

XN,−s (Ω; ε) := {f ∈ H 0(curl,Ω) : div εf ∈ H−s(Ω)}, (6.4)

a priori endowed with the graph norm f �→
{
‖f ‖2

H (curl,Ω) + ‖div εf ‖2
H−s (Ω)

}1/2
.

One can easily check that it is a Hilbert space, endowed with the associated scalar
product. We also define

XN(Ω; ε) := {f ∈ H 0(curl,Ω) : div εf ∈ L2(Ω)}. (6.5)

Obviously, XN(Ω; ε) = XN,0(Ω; ε).
Remark 6.1.5 One has XN,−1(Ω; ε) = H 0(curl,Ω) algebraically and topologi-
cally. To derive the latter, we recall that the divergence(ε) mapping is continuous
from L2(Ω) (or H 0(curl,Ω)) to H−1(Ω).

Then, one proceeds as before, using Proposition 6.1.3 as a starting point, and then
introducing the orthogonal projection P−s

ZεN
from XN,−s (Ω; ε) to ZN(Ω; ε), with

respect to the following scalar product:

(v,w)XN,−s (Ω;ε) := (εv|w)+ (b curl v| curl w)+ (div εv, div εw)H−s (Ω), (6.6)
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where b is as above. In practice, we shall use the associated norm

‖v‖XN,−s (Ω;ε) := (v, v)1/2XN,−s (Ω;ε)

on XN,−s (Ω; ε).
One can show the results below, adapting the proof of Theorem 6.1.4, and using

the fact that H−s(Ω) ⊂ H−1(Ω) (cf. (2.6)), so for all g ∈ H−s(Ω), one has
‖g‖H−1(Ω) ≤ Cs ‖g‖H−s (Ω) with Cs independent of g.

Theorem 6.1.6 Let Ω be a domain such that (Top)I=0 or (Top)I>0 is fulfilled. Let
s ∈ [0, 1]. Then, the mapping

Stat−sE :
{

XN,−s (Ω; ε)→ HΣ
0 (div 0,Ω)×H−s(Ω)

w �→ (curl w, div εw)

is surjective, and its kernel is equal to ZN(Ω; ε).
As a consequence, one has a Weber inequality

∃C−s
E > 0, ∀w ∈ XN,−s (Ω; ε),

‖w‖XN,−s (Ω;ε) ≤ C−s
E (‖ curl w‖ + ‖div εw‖H−s (Ω) + |P−s

ZεN
w|ZεN ).

Finally, we remark that the projection operator onto ZN(Ω; ε) is independent of s
in the sense below.

Proposition 6.1.7 Let t ∈ [0, 1]. Given w ∈ XN,−t (Ω; ε), one has, for all s ∈
[t, 1], P−s

ZεN
w = PZεN

w.

Indeed, the definition of the scalar product of XN,−s (Ω; ε) implies that P−s
ZεN

w is

characterised as: (εP−s
ZεN

w | z) = (εw | z), ∀z ∈ ZN(Ω; ε).
To summarize, we have solved the electrostatic-like problem (6.1) (see Theo-

rems 6.1.4 or 6.1.6). In the process, we have seen that, to achieve uniqueness, the
value PZεN

E must be known. So, we complement (6.1) with PZεN
E = e, for some

data e ∈ ZN(Ω; ε): the “full” electrostatic-like problem writes

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Find E ∈ L2(Ω) such that
curl E = f inΩ
div εE = g in H−1(Ω)

PZεN
E = e

E × n = 0 on Γ,

(6.7)

with data (f, g, e) ∈ HΣ
0 (div 0,Ω)×H−1(Ω)× ZN(Ω; ε).

To solve this problem variationally, we propose several approaches below, which
depend on whether or not one considers some equations as constraints.
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6.1.2 Solving the Electrostatic Problem: Mixed Formulation

To build the first formulation, we remark that for E ∈ L2(Ω), the equations
div εE = g in H−1(Ω) and PZεN

E = e can be reformulated equivalently as

{
∀(q, z) ∈ H 1

0 (Ω)× ZN(Ω; ε),
(εE| grad q + z) = −〈g, q〉H 1

0 (Ω)
+ (εe|z). (6.8)

Indeed, it is clear that the equations div εE = g in H−1(Ω) and PZεN
E = e

imply (6.8). Whereas initially taking q = 0 in (6.8) yields PZεN
E = e, and then

taking z = 0 yields div εE = g in H−1(Ω).
As before, b is a tensor field that fulfills an assumption like (5.10). Then, to take
into account the remaining conditions in (6.7), we note that they imply

{
E ∈ H 0(curl,Ω),
∀v ∈ H 0(curl,Ω), (b curl E| curl v) = (bf| curl v).

(6.9)

On the other hand, given E ∈ H 0(curl,Ω), one has curl E ∈ HΣ
0 (div 0,Ω) (cf.

Remark 3.5.2). So, thanks to Proposition 6.1.3, there exists v ∈ H 0(curl,Ω) such
that curl v = curl E − f. Using v as a test function in (6.9), we determine that
‖b1/2(curl E − f)‖ = 0.
So, we conclude that the electrostatic field E is a solution to (6.7) if, and only if, it
is governed by (6.8)–(6.9).
To solve this variational formulation (6.8)–(6.9), we now choose the mixed or
constrained framework (4.7) with a Lagrange multiplier. To that aim, we set:

• VE = H 0(curl,Ω) ;QE = H 1
0 (Ω)× ZN(Ω; ε) ;

• aE(v,w) = (b curl v| curl w) ; bE(v, (q, z)) = (εv| gradq + z) ;
• 〈fE, v〉 = (bf| curl v) ; 〈gE, (q, z)〉 = −〈g, q〉H 1

0 (Ω)
+ (εe|z).

In VE , we choose the norm ‖ · ‖VE associated with the scalar product (·|·)ε,b curl.
In QE , we choose the norm ‖(q, z)‖QE = (‖ε1/2 grad q‖2 + ‖ε1/2z‖2)1/2. Note
that, integrating by parts, it holds that

∀q ∈ H 1
0 (Ω), ∀z ∈ ZN(Ω; ε), (ε grad q|z) = 0. (6.10)

Consequently, ‖(q, z)‖QE = ‖ε1/2(grad q + z)‖, for all (q, z) ∈ QE .
The resulting mixed variational formulation writes

⎧⎨
⎩
Find (Ẽ, (p, y)) ∈ VE ×QE such that
∀v ∈ VE, aE(Ẽ, v)+ bE(v, (p, y)) = 〈fE, v〉,
∀(q, z) ∈ QE, bE(Ẽ, (q, z)) = 〈gE, (q, z)〉.

(6.11)
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Proposition 6.1.8 The mixed variational formulation (6.11) is well-posed. In
addition, the field Ẽ is the solution to the electrostatic-like problem (6.7).

Proof To begin with, to prove that the mixed variational formulation (6.11) is well-
posed, we have to check that the assumptions of the Babuska-Brezzi Theorem 4.2.19
are fulfilled.

INF-SUP CONDITION: given (q, z) ∈ QE \ {0}, we let v = grad q + z ∈
H 0(curl,Ω), with norm ‖v‖VE = ‖ε1/2(grad q + z)‖ = ‖(q, z)‖QE . On the other
hand, one has

bE(v, (q, z)) = (ε(grad q + z)| grad q + z) = ‖(q, z)‖2
QE
.

Hence, it follows that

inf
(q,z)∈QE\{0}

sup
v∈VE\{0}

|bE(v, (q, z))|
‖v‖VE ‖(q, z)‖QE

≥ 1.

COERCIVITY ON THE KERNEL: the kernel is defined by

KE = {v ∈ VE : bE(v, (q, z)) = 0, ∀(q, z) ∈ QE}.

One can easily check that KE = {v ∈ H 0(curl,Ω) ∩ H (div ε0,Ω) : PZεN
v = 0}.

According to the Weber inequality (6.3), the sesquilinear form aE is coercive on
KE ×KE , which shows that (6.11) is well-posed.

Next, for (6.11) to be equivalent to (6.8)–(6.9), and hence for Ẽ to be equal to E,
we have to check that the Lagrange multiplier (p, y) vanishes in (6.11). Thanks to
the orthogonality property (6.10), we obtain, with the test function v = gradp+y ∈
H 0(curl,Ω) in (6.11),

‖ε1/2 gradp‖2 + ‖ε1/2y‖2 = 0, so (p, y) = (0, 0).

This proves the last part of the proposition.

6.1.3 Solving the Electrostatic Problem: Augmented
Formulation

To build this second formulation, we assume4 that the data g belongs to H−t (Ω)
for some t ∈ [0, 1], and let s ∈ [t, 1]. If E is the solution to (6.7), then it belongs
to XN,−s (Ω; ε). Furthermore, in the same spirit as (6.9) and with the help of
Proposition 6.1.7, we remark that if we add up all contributions (one on the curl,

4This assumption is not restrictive, as it covers the case g ∈ H−1(Ω).



6.1 Electrostatic Problem 231

one on the divergence(ε), one on the projection), it implies that E is governed by
the “augmented” variational formulation

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Find E ∈ XN,−s (Ω; ε) such that
∀v ∈ XN,−s (Ω; ε),
(b curl E| curl v)+ (div εE, div εv)H−s (Ω) + (εPZεN

E|PZεN
v)

= (bf| curl v)+ (g, div εv)H−s (Ω) + (εe|PZεN
v).

(6.12)

Here, it is important to note that all equations in (6.7) are directly taken into account
via test functions that belong to XN,−s (Ω; ε).

Reciprocally, if E is governed by (6.12), first, one finds, with test functions v in
ZN(Ω; ε), that PZεN

E = e: the last terms on the left- and right-hand sides of (6.12)
cancel each other out. Second, one notices that, because the solution belongs a priori
to XN,−s (Ω; ε), one has g − div εE ∈ H−s(Ω) ⊂ H−1(Ω). Hence, there exists
one, and only one, scalar field q in H 1

0 (Ω) such that div ε gradq = g− div εE (cf.
the proof of Proposition 6.1.3). Now, grad q belongs to XN,−s (Ω; ε), so it can be
used as a test function to yield ‖g − div εE‖H−s (Ω) = 0: the second terms on the
left- and right-hand sides of (6.12) cancel other other out. Third, one concludes that
‖b1/2(curl E − f)‖ = 0, as in the mixed variational formulation paragraph.

To solve this augmented variational formulation (6.12), we choose the classical
framework (4.3) in the same Hilbert space. So, we introduce:

• ṼE = XN,−s (Ω; ε) ;
• ãE(v,w) = (b curl v| curl w)+ (div εv, div εw)H−s (Ω) + (εPZεN

v|PZεN
w) ;

• 〈f̃ E, v〉 = (bf| curl v)+ (g, div εv)H−s (Ω) + (εe|PZεN
v).

In ṼE , we choose the norm ‖ · ‖ṼE = ‖ · ‖XN,−s (Ω;ε).
The resulting augmented variational formulation writes

{
Find Ẽ ∈ ṼE such that
∀v ∈ ṼE, ãE(Ẽ, v) = 〈f̃ E, v〉.

(6.13)

Proposition 6.1.9 The augmented variational formulation (6.13) is well-posed,
and the field Ẽ is the solution to the electrostatic-like problem (6.7).

Proof According to the Weber inequality shown in Theorem 6.1.6 (with the
projection operatorPZεN

, see Proposition 6.1.7), the sesquilinear form ãE is coercive
on XN,−s (Ω; ε). Hence, the augmented variational formulation (6.13) is well-
posed, thanks to the Lax-Milgram Theorem 4.2.8. The fact that Ẽ = E follows
from the equivalence between (6.7) and (6.13).
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6.1.4 Solving the Electrostatic Problem: Two-Step Formulation

What happens when one solves the actual electrostatic problem? One has f = 0, so
that E is always curl-free. According to Theorem 3.3.9, it follows that

∃!φ ∈ H 1
0 (Ω)⊕QN(Ω; ε) such that E = gradφ.

As we saw before, this electrostatic potential can be characterized by

⎧⎪⎨
⎪⎩
Find φ ∈ H 1

0 (Ω)⊕QN(Ω; ε) such that
∀(q, qε) ∈ H 1

0 (Ω)×QN(Ω; ε),
(ε gradφ| grad(q + qε)) = −〈g, q〉H 1

0 (Ω)
+ (εe| gradqε).

(6.14)

This suggests a third method for solving the electrostatic-like problem (6.7), which
can be viewed as a two-step method. In particular, this method is built without resort
to either a mixed formulation or an augmented formulation.
Let us focus on the non-curl-free part of the field E, which we characterize below.

Due to Theorem 3.3.9, the space H 0(curl 0,Ω) of Definition 2.2.11 is equal to
grad[H 1

0 (Ω)] ⊕ grad[QN(Ω; ε)]. Moreover, the sum is orthogonal with respect to
the scalar product (·|·)ε,b curl. Next, define

KN(Ω; ε) := H 0(curl,Ω) ∩H (div ε0,Ω). (6.15)

In the spirit of Sect. 3.7, one has the Helmholtz decomposition:

H 0(curl,Ω) = grad[H 1
0 (Ω)]

⊥ε,b⊕ KN(Ω; ε). (6.16)

Proposition 6.1.10 Let b be a tensor field that fulfills an assumption like (5.10). In
H 0(curl,Ω) endowed with the scalar product (·|·)ε,b curl, the following orthogonal
decomposition holds:

H 0(curl,Ω) = H 0(curl 0,Ω)
⊥ε,b⊕ {f ∈ KN(Ω; ε) : PZεN

f = 0}. (6.17)

In addition, ‖b1/2 curl ·‖ is a norm on the orthogonal vector subspace of
H 0(curl 0,Ω), which is equivalent to the full norm.

Proof As it is obvious that

KN(Ω; ε) = grad[QN(Ω; ε)] ⊥ε,b⊕ {f ∈ KN(Ω; ε) : PZεN
f = 0},

the orthogonal decomposition (6.17) follows from the fact that H 0(curl 0,Ω) is
equal to grad[H 1

0 (Ω)] ⊕ grad[QN(Ω; ε)].
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Therefore, we can split the solution E to (6.7) as

E = gradφ + E⊥, φ ∈ H 1
0 (Ω)⊕QN(Ω; ε), E⊥ ∈ (H 0(curl 0,Ω))⊥.

From the above, φ is characterized as the unique solution to (6.14).
As far as E⊥ is concerned, it is characterized by its curl: curl E⊥ = f. Indeed,
thanks to Theorem 6.1.4, the curl operator is surjective from (H 0(curl 0,Ω))⊥ to
HΣ

0 (div 0,Ω). Expressed in variational form, it writes:

{
Find E⊥ ∈ (H 0(curl 0,Ω))⊥ such that
∀v ∈ (H 0(curl 0,Ω))⊥, (b curl E⊥| curl v) = (bf| curl v).

(6.18)

(See Proposition 6.1.10 for the equivalence of norms in (H 0(curl 0,Ω))⊥.)

Remark 6.1.11 It is important to be aware that one cannot build a single varia-
tional formulation that aggregates (6.14) and (6.18). On the other hand, for the
time-harmonic Helmholtz-like problem, and for the second-order time-dependent
problem in E, this can be achieved. For the former, we refer to Sect. 8.3. For the
latter, this is the so-called correction method [29, 30, 81]. Indeed, for these two
problems, there is a zero-order term in the model, which yields an (ε·|·) contribution
in the variational formulation.

6.1.5 Electric Energy Matters

In the same spirit as Proposition 6.1.10, let us state an ε-orthogonal decomposition
of L2(Ω).

Proposition 6.1.12 In L2(Ω) endowed with the scalar product (ε · |·), one has the
orthogonal decomposition

L2(Ω) = grad[H 1
0 (Ω)]

⊥ε⊕ grad[QN(Ω; ε)] ⊥ε⊕
{f ∈ L2(Ω) : div εf = 0, (εf | grad qεk ) = 0, 1 ≤ k ≤ K}.

Furthermore, according to Theorem 3.6.1, given any element f of the latter set,
there exists one, and only one, divergence-free element w of XT (Ω) with zero
flux across the cuts, such that εf = curl w in Ω . In particular, one can apply this
decomposition to the electric-like field. One finds that there exists a unique triple
(q, qε,w) ∈ H 1

0 (Ω)×QN(Ω; ε)× XT (Ω) such that

E = grad q + grad qε + ε−1 curl w

and, by orthogonality, the electric energy is equal to a sum of positive terms

(εE|E) = ‖ε1/2 grad q‖2 + ‖ε1/2 grad qε‖2 + ‖ε−1/2 curl w‖2.
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6.1.6 Regular-Gradient Splitting of Electric Fields

To conclude this study on electric-like fields, let us focus on another kind of
splitting, which allows us to derive some a priori regularity results for those fields
of XN,−s (Ω; ε), where s ∈ [0, 1]. Here, we follow [79]. To begin with, it will
be required at some point that we consider a piecewise regular tensor field ε
in the sense below. We recall that partitions and jumps have been introduced in
Definitions 2.1.48 and 2.1.67.

Definition 6.1.13 Let ξ be a tensor field that fulfills assumption (5.10). Then, ξ
fulfills the coefficient assumption if there exists a partition P of Ω such that ξ ∈
PW1,∞(Ω,P).

Remark 6.1.14 If ξ fulfills the coefficient assumption on a partition, then ξ−1 fulfills
the coefficient assumption on the same partition.

Given a partition P := {Ωj }j=1,··· ,J , define the interfaces Fjj ′ := ∂Ωj ∩ ∂Ωj ′ and
Fint := {Fjj ′ , 1 ≤ j �= j ′ ≤ J } ; Fj = ∂Ωj ∩ Γ and Fbdry := {Fj , 1 ≤ j ≤ J } ;
F := Fint ∪Fbdry . By convention, if the Hausdorff dimension of Fjj ′ (respectively
Fj ) is lower than 2, then Fjj ′ = ∅ (respectively Fj = ∅). Define further:

PH 1/2(F ′) := {g ∈ L2(F ′) : g|F ∈ H 1/2(F ), ∀F ∈ F ′}, F ′ = Fint ,F .

To proceed, one uses the fundamental splitting result for elements of XN(Ω),
credited to Birman and Solomyak (see [47]). Let

X
reg
N (Ω) := XN(Ω) ∩ H 1(Ω).

Theorem 6.1.15 Let Ω be a domain. There exists a continuous splitting operator
acting from XN(Ω) to X

reg

N (Ω)×H 1
0 (Ω): given v ∈ XN(Ω),

∃(vreg, q) ∈ X
reg
N (Ω)×H 1

0 (Ω), v = vreg + grad q in Ω,

and one has

‖vreg‖H 1(Ω) + ‖q‖H 1(Ω) + ‖Δq‖ ≤ C ‖v‖XN(Ω), (6.19)

with a constant C > 0 that depends only onΩ .

The splitting result for electric-like fields then follows.

Theorem 6.1.16 Let Ω be a domain such that (Top)I=0 or (Top)I>0 is fulfilled,
and assume that ε is a tensor field that fulfills assumption (5.10). Given s ∈ [0, 1],
there exists a continuous splitting operator acting from XN,−s (Ω, ε) to X

reg
N (Ω)×
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ZN(Ω)×H 1
0 (Ω). More precisely, given v ∈ XN,−s (Ω, ε),

∃(vreg, z, p0) ∈ X
reg
N (Ω)× ZN(Ω)×H 1

0 (Ω),

v = vreg + z + gradp0 in Ω. (6.20)

If, in addition, ε fulfills the coefficient assumption on a partition P , then the scalar
field p0 is governed by the variational formulation below, for some f ∈ H−s(Ω)
and gF ∈ PH 1/2(Fint ):⎧⎪⎨

⎪⎩
Find p0 ∈ H 1

0 (Ω) such that
∀ψ ∈ H 1

0 (Ω), (ε gradp0 | gradψ) = −(εz | gradψ)
+〈f,ψ〉Hs0 (Ω) + (gF , ψ)L2(Fint ) ;

(6.21)

and one has⎧⎪⎨
⎪⎩
‖vreg‖H 1(Ω) + ‖vreg‖XN (Ω) + ‖z‖H 1/2(Ω) ≤ C ‖v‖H (curl,Ω),

‖εz‖PH 1/2(Ω,P) + ‖f ‖H−s (Ω)
+‖gF‖PH 1/2(Fint ) ≤ Cε ‖v‖XN,−s (Ω,ε),

(6.22)

with a constant C > 0 that depends only onΩ , respectively a constant Cε > 0 that
depends onΩ and ε.

Remark 6.1.17 In the splitting (6.20) of v ∈ XN,−s (Ω, ε), all three terms
vreg, z, gradp0 have vanishing tangential components on the boundary Γ . Regard-
ing regularity in (6.20), one has vreg ∈ H 1(Ω), z = gradpz ∈ H 1/2(Ω) with
pz ∈ H 1(Ω) (cf. Theorem 3.3.15) and gradp0 ∈ L2(Ω). This result can be
improved when ε fulfills the coefficient assumption (see Corollary 6.1.19 below).

Proof Let y = curl v ∈ H 0(div,Ω). By construction, div y = 0 in Ω , and
one knows that 〈y · n, 1〉Σi = 0 for all i (cf. Remark 3.5.2). According to
Theorem 3.5.1 on vector potentials, there exists w ∈ XN(Ω) with div w = 0 in
Ω , 〈w · n, 1〉H 1/2(Γk)

= 0 for all k, such that y = curl w in Ω and ‖w‖XN(Ω) ≤
C ‖y‖. Next, we know that there exists a Birman-Solomyak splitting of w (see
Theorem 6.1.15):

∃vreg ∈ X
reg
N (Ω), ∃q ∈ H 1

0 (Ω), w = vreg + grad q inΩ,

with continuous dependence (6.19). By construction, curl(v− vreg) = 0 inΩ , with
(v − vreg) ∈ H 0(curl,Ω). According to Theorem 3.3.9 on scalar potentials, there
exists p ∈ H 1

∂Ω(Ω) such that v = vreg + gradp in Ω . Using the definition of the
space of scalar potentials QN(Ω), one may further split p as p = p0 + pz in Ω ,
with p0 ∈ H 1

0 (Ω), and pz ∈ QN(Ω). Finally, introducing z = gradpz ∈ ZN(Ω),
we have proved that it holds that

v = vreg + z + gradp0 inΩ,

with vreg ∈ X
reg
N (Ω), z ∈ ZN(Ω), p0 ∈ H 1

0 (Ω), which is precisely (6.20).
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Let us proceed with the definition of p0 as the solution to (6.21) when ε fulfills
the coefficient assumption. Let ψ ∈ H 1

0 (Ω); then,

(ε gradp0 | gradψ) = −(εz | gradψ)+ (εv | gradψ) − (εvreg | gradψ).

Below, we study the last two terms separately.
Consider first v ∈ XN,−s (Ω, ε). One has, in particular, div εv ∈ H−s(Ω) and

ψ ∈ Hs0 (Ω), so one gets

(εv | gradψ) = −〈div εv, ψ〉Hs0 (Ω).

Next, consider vreg ∈ X
reg
N (Ω). If ε is only piecewise smooth5 onΩ , εvreg · n has

jumps across faces of Fint . On the other hand, one has εjvreg,j ∈ H 1(Ωj ) for all
j . Therefore, one can integrate by parts over each subdomain to find

−(εvreg | gradψ) = −
∑
j

(εjvreg,j , gradψj)L2(Ωj )

=
∑
j

(div εjvreg,j , ψj )L2(Ωj )
−
∑
F∈Fint

([εvreg · n], ψ)L2(F )

= ( ˜div εvreg|ψ)−
∑
F∈Fint

([εvreg · n], ψ)L2(F ).

Here, ˜ denotes the continuation by zero from
∏
j L

2(Ωj ) to L2(Ω). If we
introduce

f = −div εv + ˜div εvreg ∈ H−s(Ω), gF = −[εvreg · n] ∈ PH 1/2(Fint ),

we obtain that p0 is governed by (6.21).
Next, we derive the (uniform) estimates (6.22) to prove that the splitting operator

is continuous. By construction,

{
‖vreg‖H 1(Ω) ≤ C1 ‖w‖XN (Ω) ≤ C2 ‖y‖ ≤ C2 ‖v‖H (curl,Ω) ;
‖vreg‖XN (Ω) ≤ ‖w‖XN (Ω) + ‖ grad q‖XN (Ω) ≤ C3 ‖w‖XN(Ω) ≤ C3 ‖v‖H (curl,Ω).

For instance, z ∈ ZN(Ω) can be measured by the �1-norm of the fluxes:

|〈z · n, 1〉H 1/2(Γk)
| = |〈z · n, qk〉H 1/2(Γ )| = |(z | grad qk)|
= |(z + gradp0 | grad qk)| = |(v − vreg | grad qk)|
≤ (‖v‖ + ‖vreg‖) ‖ grad qk‖ ≤ C ‖v‖H (curl,Ω).

5If ε is globally smooth on Ω , the partition is trivial, so P = {Ω} and Fint = ∅: −(εvreg |
gradψ) = (div εvreg |ψ) by integration by parts over Ω .
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Above, we first used the definition of (qk)1≤k≤K given in Sect. 3.3, and then the fact
that gradp0 and grad qk are orthogonal with respect to (·|·) (integrate by parts).

For a given j , one has ‖εz‖H 1/2(Ωj )
≤ C1 ‖v‖H (curl,Ω).

Next, regarding f and gF ,

‖f ‖H−s (Ω) ≤ ‖div εv‖H−s (Ω) + ‖ ˜div εvreg‖H−s (Ω)
≤ ‖div εv‖H−s (Ω) + ‖ ˜div εvreg‖
≤ C2

(
‖div εv‖H−s (Ω) +

∑
j

‖div εvreg‖L2(Ωj )

)

≤ C3 ‖v‖XN,−s (Ω,ε).

And for a given F = ∂Ωj ∩ ∂Ωj ′ ∈ Fint , we find, thanks to the continuity of the
trace mapping,

‖gF‖H 1/2(F ) = ‖[εvreg · n]‖H 1/2(F ) ≤ ‖[εvreg]‖H 1/2(F )

≤ C4

∑
β=j,j ′

‖εvreg‖H 1(Ωβ)
≤ C5 ‖v‖XN,−s (Ω,ε).

In the last three bounds, respectively, on εz, f , gF , the constantsC1, C3, C5 depend
on ‖ε‖

PW1,∞(Ω,P).

To carry on, one needs regularity results regarding gradp0, where p0 is governed by
the variational formulation (6.21). For that, we use an abstract shift theorem, proven
in [52], that deals with second-order elliptic PDEs complemented with Dirichlet
boundary conditions. This result provides a lower bound on the a priori regularity
of gradp0 when ε fulfills the coefficient assumption.6

Theorem 6.1.18 Let Ω be a domain, and assume that ξ fulfills the coefficient
assumption. There exists τDir ∈]0, 1/2[ depending only on the geometry and the
coefficient ξ such that, for all t ∈ [0, τDir [ and for all � ∈ Ht−1(Ω), the solution to

{
Find u ∈ H 1

0 (Ω) such that
(ξ gradu | gradψ) = 〈�,ψ〉H 1

0 (Ω)
, ∀ψ ∈ H 1

0 (Ω),

belongs to Ht+1(Ω), and moreover, ‖u‖Ht+1(Ω) ≤ Ct,ξ ‖�‖Ht−1(Ω) with a constant
Ct,ξ > 0 that depends only onΩ , ξ and t .

Combining the two theorems yields the result regarding the regular/gradient split-
ting of elements of XN,−s (Ω, ε).

6 In some configurations, it can happen that the limit exponent τDir is larger than 1/2. Here, we
are only interested in the existence of such an exponent.
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Corollary 6.1.19 Let Ω be a domain such that (Top)I=0 or (Top)I>0 is fulfilled,
and assume that ε fulfills the coefficient assumption on a partition P . Given s ∈
]1 − τDir , 1], it holds that

XN,−s (Ω, ε) ⊂ X
reg

N (Ω)+ grad[H 2−s(Ω) ∩H 1
∂Ω(Ω)].

Proof Let v ∈ XN,−s (Ω, ε); we apply the splitting (6.20), namely

∃(vreg, z, p0) ∈ X
reg
N (Ω)× ZN(Ω)×H 1

0 (Ω), v = vreg + z + gradp0 inΩ,

where p0 is governed by (6.21), with the uniform bounds (6.22). Hence,
‖vreg‖H 1(Ω) ≤ C ‖v‖XN,−s (Ω,ε). Furthermore, thanks to Theorem 3.3.15, one

can write z = gradpz, with pz ∈ H 3/2(Ω)∩H 1
∂Ω(Ω) ⊂ H 2−s(Ω)∩H 1

∂Ω(Ω), so
it holds that ‖pz‖H 2−s (Ω) ≤ C ‖v‖XN,−s (Ω,ε). Then, p0 is characterized by (6.21),
with a right-hand side

� : ψ �→ −(εz | gradψ) + 〈f,ψ〉Hs0 (Ω) + (gF , ψ)L2(Fint )

that belongs to (H s0 (Ω))
′ = H−s(Ω). Indeed, if ψ ∈ Hs0 (Ω), then:

• gradψ ∈ H s−1(Ω) = (H 1−s(Ω))′ (recall that 1 − s ∈ [0, 1/2[), and
moreover, εz ∈ PH 1/2(Ω,P) ⊂ H 1−s (Ω), so one may write the first term
as −〈εz, gradψ〉H s−1(Ω) = 〈div εz, ψ〉Hs0 (Ω) ;

• for all F ∈ Fint , ψ|F ∈ L2(F ) with ‖ψ‖L2(F ) ≤ C ‖ψ‖Hs(Ω) according to the
trace Theorem 2.1.62.

Hence, according to the shift Theorem 6.1.18 with t = 1 − s, it follows that p0 ∈
H 2−s(Ω), with continuous dependence. So, we get

‖p0‖H 2−s (Ω) ≤ C1 ‖�‖H−s (Ω)

≤ C2

(
‖εz‖PH 1/2(Ω,P) + ‖f ‖ + ‖gF‖L2(Fint )

)
≤ C3 ‖v‖XN,−s (Ω,ε).

This proves the claim.

6.2 Magnetostatic Problem

For the static models, recall that our starting point is Eqs. (1.104), whose solutions
are the static fields Bstat and Estat . In this subsection, we again consider a more
general systems of equations, allowing the divergence of Bstat to be non-zero. We
omit the stat here. The framework is similar to the one in Sect. 6.1. For this reason,
some proofs are only sketched.
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6.2.1 Definitions and Results for the Magnetostatic Problem

The magnetostatic-like problem that we consider is governed by

⎧⎪⎪⎨
⎪⎪⎩

Find H ∈ L2(Ω) such that :
curl H = f in Ω,
div μH = g inΩ,
μH · n = 0 on Γ,

(6.23)

with (f, g) ∈ L2(Ω)×L2(Ω). The a priori regularity requirement on f stems from
our initial modelling assumption, namely that H ∈ H (curl,Ω). The magnetostatic
field is subject to vanishing normal trace on the boundary, so it is natural to include
this property in the model. On the other hand, the fact that g belongs to L2(Ω)

guarantees that γn(μH ) has a meaning (see Sect. 6.3 for a discussion).
Next, let us characterize curl-free and divergence(μ)-free fields, with vanishing
normal trace. Let

ZT (Ω; μ) := H (curl 0,Ω) ∩ H 0(div μ0,Ω),

QT (Ω̇; μ) := {q̇μ ∈ Pzmv(Ω̇) : div μ ˜grad q̇μ = 0 inΩ, μ ˜grad q̇μ · n = 0 onΓ }.

(See Sect. 3.3 for the definition of Pzmv(Ω̇).)

Proposition 6.2.1 The dimension of the vector space ZT (Ω; μ) is equal to I .
Furthermore, an element z of ZT (Ω; μ) can be characterized by its fluxes (〈μz ·
n, 1〉Σi )1≤i≤I . Finally, a basis of ZT (Ω; μ) is the set of functions ( ˜grad q̇μj )1≤j≤I ,
where each q̇μj ∈ QT (Ω̇; μ) is such that [q̇μj ]Σi = δij , ∀i; (q̇μj )1≤j≤I are real-
valued functions.

Remark 6.2.2 The semi-norm ‖μ1/2 grad ·‖L2(Ω̇) is a norm onQT (Ω̇; μ), which is

equivalent to the H 1(Ω̇)-norm according to the Poincaré-Wirtinger inequality (see
Theorem 2.1.37).

Proof Given q̇ ∈ QT (Ω̇; μ), ˜grad q̇ belongs to ZT (Ω; μ). Conversely, given z ∈
ZT (Ω; μ), we find that there exists one, and only one, ṗ ∈ Pzmv(Ω̇) such that

z = ˜grad ṗ according to Theorem 3.3.2 (extraction of scalar potentials): clearly, it
belongs toQT (Ω̇; μ). Thus, we have ZT (Ω; μ) = g̃rad[QT (Ω̇; μ)].

Next, let us check that the dimension of ZT (Ω; μ) is equal to I by building a
basis of QT (Ω̇; μ). In the same spirit as Propositions 3.3.12 and 3.3.13, we define
functions (ṗμ

j ′)j ′ as the solutions to the variational formulations (1 ≤ j ′ ≤ I ):

{
Find ṗμ

j ′ ∈ Pzmv(Ω̇) such that
∀q̇ ∈ Pzmv(Ω̇), (μ grad ṗμ

j ′ , grad q̇)L2(Ω̇) = [q̇]Σj ′ .
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One can check that ṗμ
j ′ belongs toQT (Ω̇; μ), and in addition, 〈μ∂nṗμj ′ , 1〉Σi = δij ′ ,

∀i. According to this last property, the family (ṗμ
j ′)j ′ is free in QT (Ω̇; μ). Let q̇ ∈

QT (Ω̇; μ) and define q̇ ′ := q̇ −∑j ′ 〈μ∂nq̇, 1〉Σj ′ ṗμj ′ , so that 〈μ∂nq̇ ′, 1〉Σi = 0, ∀i.
Integrating by parts in Ω̇ (3.6), we find7

‖μ1/2
˜grad q̇ ′‖2 = (μ grad q̇ ′, grad q̇ ′)L2(Ω̇)

=
∑
i

〈μ∂q̇
′

∂n
, [q̇ ′]Σi 〉Σi =

∑
i

〈μ∂q̇
′

∂n
, 1〉Σi [q̇ ′]Σi = 0.

It follows that q̇ ′ = 0 in Ω̇ , so (ṗμ
j ′)j ′ is a basis of QT (Ω̇; μ). We infer that the

dimension of ZT (Ω; μ) is equal to I . In addition, we note that an element z of
ZT (Ω; μ) can be characterized by its fluxes (〈μz · n, 1〉Σi )1≤i≤I .

Finally, we prove that we can build an alternate basis for QT (Ω̇; μ), namely
(q̇
μ
j )j such that [q̇μj ]Σi = δij , ∀i. For that, we introduce the mapping

Jump :
{
QT (Ω̇; μ)→ CI

q̇ �→ ([q̇]Σi )1≤i≤I
and prove that it is a bijection, by checking that its kernel is reduced to {0}.
If we let q̇ ∈ ker(Jump), we compute simply that ‖μ1/2

˜grad q̇‖2 = 0 (cf.
the above integration by parts), so q̇ = 0, and the characterization by jumps is
shown. To prove that (q̇μj )j are real-valued functions, one checks successively (cf.

Corollary 3.3.14) that the (ṗμ
j ′)j ′ are real-valued, and then that the (q̇μj )j are written

as linear combinations of those fields with real coefficients.

All norms are equivalent on finite-dimensional vector spaces. As a consequence, we
may use any norm like

z �→ ∣∣(〈μz · n, 1〉Σi )1≤i≤I
∣∣
p
, or z = ˜grad q̇ �→ ∣∣([q̇]Σi )1≤i≤I ∣∣p ,

with 1 ≤ p ≤ ∞, to measure elements of ZT (Ω; μ). Evidently, any other norm
would also be appropriate. From now on, we call | · |ZμT the chosen norm.

Remark 6.2.3 Given q ∈ H 1(Ω) and q̇μ ∈ QT (Ω̇; μ), we find, by integrating by
parts, using (2.25) or (3.6),

(μ grad q| ˜grad q̇μ) = 0.

7Thanks to the definition of the jumps (Definition 2.1.67), the brackets always come with a plus
sign.
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According to Remark 3.4.2, if f := curl w with w ∈ H (curl,Ω), one automati-
cally has 〈f · n, 1〉H 1/2(Γk)

= 0, ∀k. So, we look for right-hand sides f in

HΓ (div 0,Ω) := {f ∈ H (div 0,Ω) : 〈f · n, 1〉H 1/2(Γk)
= 0, ∀k}.

On the other hand, if g := div w with w ∈ H 0(div,Ω), one finds, by integration by
parts, (g|1) = 0. So, we look for right-hand sides g in L2

zmv(Ω).

Corollary 6.2.4 Let Ω be a domain such that (Top)I=0 or (Top)I>0 is fulfilled.
Then, given g ∈ L2

zmv(Ω) and f ∈ HΓ (div 0,Ω), there exists w ∈ H (curl,Ω)
such that

curl w = f , div μw = g, μw · n|Γ = 0,

‖w‖H (curl,Ω) ≤ C (‖f ‖ + ‖g‖), (6.24)

with C > 0.

Proof Given f , thanks to Theorem 3.6.1, there exists y ∈ H (curl,Ω) such that
f = curl y inΩ , with ‖y‖H (curl,Ω) ≤ C0‖f ‖ for some C0 > 0.

Then, let us change the divergence(μ)of the potential together with its (μ)normal
trace, without changing the curl. For that, we solve

{
Find z ∈ H 1

zmv(Ω) such that
∀z′ ∈ H 1

zmv(Ω), (μ grad z| grad z′) = (μy| grad z′)+ (g|z′).

Thanks to the assumptions about μ and with the help of the Poincaré-Wirtinger
inequality of Theorem 2.1.37 in H 1

zmv(Ω), this problem has one, and only one,
solution, and moreover, one has ‖z‖H 1(Ω) ≤ C1‖μy‖ + ‖g‖, for some C1 > 0, cf.
the Lax-Milgram Theorem 4.2.8. Let us set w = y − grad z. By construction, the
potential w ∈ H (curl,Ω) is such that f = curl w in L2(Ω), div μw = g in L2(Ω)

and μw · n|Γ = 0 (for the last two properties, we use the fact that (g|1) = 0), with
continuous dependence, as in (6.24).

We are now in a position to solve the magnetostatic problem, which yields a way to
measure/characterize the magnetostatic field. Let us introduce the function space

XT (Ω; μ) := H (curl,Ω) ∩ H 0(div μ,Ω), (6.25)

a priori endowed with the graph norm f �→
{
‖f ‖2 + ‖ curl f ‖2 + ‖div μf ‖2

}1/2
.

One can easily check that it is a Hilbert space, endowed with the associated scalar
product. Next, we define the orthogonal projection operator P 0

Z
μ
T

from XT (Ω; μ) to

ZT (Ω; μ), with respect to the scalar product (·, ·)XT (Ω;μ):

(v,w) �→ (μv|w)+ (c curl v| curl w)+ (div μv|div μw), (6.26)
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where c is a tensor field that fulfills an assumption like (5.10). The associated norm
is denoted by ‖ · ‖XT (Ω;μ); it is clearly equivalent to the graph norm.

Theorem 6.2.5 Let Ω be a domain such that (Top)I=0 or (Top)I>0 is fulfilled.
Then, the mapping

Stat0H :
{

XT (Ω; μ)→ HΓ (div 0,Ω)× L2
zmv(Ω)

w �→ (curl w, div μw)

is surjective, and its kernel is equal to ZT (Ω; μ).
As a consequence, one has a Weber inequality

∃C0
H > 0, ∀w ∈ XT (Ω; μ),

‖w‖XT (Ω;μ) ≤ C0
H(‖ curl w‖ + ‖div μw‖ + |P 0

Z
μ
T

w|ZμT ). (6.27)

Proof The mapping Stat0H is surjective, according to Corollary 6.2.4, and moreover,
ker(Stat0H ) = ZT (Ω; μ).

One then builds an orthogonal decomposition of XT (Ω; μ):

XT (Ω; μ) = ZT (Ω; μ) ⊥⊕ (ZT (Ω; μ))⊥,

with respect to the scalar product (·, ·)XT (Ω;μ), and the proof is concluded as for
Theorem 6.1.4, by choosing a vector potential in (ZT (Ω; μ))⊥.

Introducing the orthogonal projection operator PZ
μ
T

from H (curl,Ω) to
ZT (Ω; μ) with respect to the scalar product (·|·)μ,c curl : (v,w) �→ (μv|w) +
(c curl v| curl w), with c as above, we find the result below.

Proposition 6.2.6 Given w ∈ XT (Ω; μ), one has P 0
Z
μ
T

w = PZ
μ
T
w.

So far, we have solved the magnetostatic-like problem (6.23), cf. Theorem 6.2.5,
and we have seen that, to achieve uniqueness, the value PZ

μ
T
H must be known. So,

we complement (6.23) with PZ
μ
T
H = h, for some data h ∈ ZT (Ω; μ). Hence, the

“full” magnetostatic-like problem writes

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Find H ∈ L2(Ω) such that
curl H = f in Ω
div μH = g inΩ
PZ

μ
T
H = h

μH · n = 0 on Γ,

(6.28)

with data (f, g, h) ∈ HΓ (div 0,Ω)× L2
zmv(Ω)× ZT (Ω; μ).

To solve this problem variationally, we again propose several approaches.
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6.2.2 Solving the Magnetostatic Problem: Mixed Formulation

Note that given q ∈ H 1(Ω), one has q − (q|1)/vol(Ω) ∈ H 1
zmv(Ω) with identical

gradient. One can easily check that for H ∈ L2(Ω), the equations div μH = g in
L2(Ω), μH · n|Γ = 0 and PZ

μ
T
H = h can be reformulated equivalently as

{∀(q, z) ∈ H 1
zmv(Ω)× ZT (Ω; μ),

(μH | gradq + z) = −(g|q)+ (μh|z). (6.29)

On the other hand, with c chosen as above, we find that the remaining conditions
in (6.28) imply

{
H ∈ H (curl,Ω),
∀v ∈ H (curl,Ω), (c curl H | curl v) = (cf| curl v).

(6.30)

Indeed, for any H ∈ H (curl,Ω), there exists v ∈ H (curl,Ω) such that curl v =
curl H − f (Remark 3.4.2 and Corollary 6.2.4). Using v as a test function in (6.30),
we obtain that ‖c1/2(curl H − f)‖ = 0. Consequently, the magnetostatic field H is
a solution to (6.28) if, and only if, it is governed by (6.29)–(6.30).
To solve this variational formulation (6.29)–(6.30), we choose here the mixed
framework (4.7), with a Lagrange multiplier. We set:

• VH = H (curl,Ω) ;QH = H 1
zmv(Ω)× ZT (Ω; μ) ;

• aH (v,w) = (c curl v| curl w) ; bH (v, (q, z)) = (μv| gradq + z) ;
• 〈fH , v〉 = (cf| curl v) ; 〈gH , (q, z)〉 = −(g|q)+ (μh|z).
In VH , we choose the norm ‖ · ‖VH , which is associated with the scalar prod-
uct (·|·)μ,c curl. In QH , we choose the norm ‖(q, z)‖QH = (‖μ1/2 grad q‖2 +
‖μ1/2z‖2)1/2. By Remark 6.2.3, it holds that

∀q ∈ H 1(Ω), ∀z ∈ ZT (Ω; μ), (μ gradq|z) = 0. (6.31)

Consequently, ‖(q, z)‖QH = ‖μ1/2(gradq + z)‖, for all (q, z) ∈ QH .
The resulting mixed variational formulation writes

⎧⎨
⎩
Find (H̃ , (p, y)) ∈ VH ×QH such that
∀v ∈ VH , aH (H̃ , v)+ bH (v, (p, y)) = 〈fH , v〉,
∀(q, z) ∈ QH, bH (H̃ , (q, z)) = 〈gH , (q, z)〉.

(6.32)

Proposition 6.2.7 The mixed variational formulation (6.32) is well-posed. In
addition, the field H̃ is the solution to the magnetostatic-like problem (6.28).

Proof First, to prove that the formulation (6.32) is well-posed, we have to check
that the assumptions of the Babuska-Brezzi Theorem 4.2.19 are fulfilled.
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INF-SUP CONDITION: given (q, z) ∈ QH \ {0}, we let v = grad q + z ∈
H (curl,Ω), with norm ‖v‖VH = ‖(q, z)‖QH . Also, one has bH (v, (q, z)) =
‖(q, z)‖2

QH
. Hence, it follows that

inf
(q,z)∈QH \{0}

sup
v∈VH \{0}

|bH(v, (q, z))|
‖v‖VH ‖(q, z)‖QH

≥ 1.

COERCIVITY ON THE KERNEL: the kernel is defined by

KH = {v ∈ VH : bH (v, (q, z)) = 0, ∀(q, z) ∈ QH }.

One finds that KH = {v ∈ H (curl,Ω) ∩ H 0(div μ0,Ω) : PZ
μ
T
v = 0}. According

to the Weber inequality (6.27) and Proposition 6.2.6, the sesquilinear form aH is
coercive on KH ×KH , hence (6.32) is well-posed.

Finally, for (6.32) to be equivalent to (6.29)–(6.30), so that H̃ = H , we have
to check that (p, y) vanishes in (6.32). Due to the property (6.31), we obtain with
the test function v = gradp + y ∈ H (curl,Ω) in (6.32) that ‖(p, y)‖2

QH
= 0, so

(p, y) = (0, 0): the last part of the proposition follows.

6.2.3 Solving the Magnetostatic Problem: Augmented
Formulation

If H is the solution to (6.28), then it belongs to XT (Ω; μ). Furthermore, with
the help of Proposition 6.2.6, if we add up all contributions, it implies that H is
governed by the “augmented” variational formulation

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Find H ∈ XT (Ω; μ) such that
∀v ∈ XT (Ω; μ),
(c curl H | curl v)+ (div μH |div μv)+ (μPZ

μ
T
H |PZ

μ
T
v)

= (cf| curl v)+ (g|div μv)+ (μh|PZ
μ
T
v).

(6.33)

Reciprocally, if H is governed by (6.33), first, one finds, with test functions v in
ZT (Ω; μ), that PZ

μ
T
H = h. Second, one notices that, because the solution belongs

a priori to XT (Ω; μ), one has g− div μH ∈ L2
zmv(Ω). Hence, by solving

{
Find q ∈ H 1

zmv(Ω) such that
∀q ′ ∈ H 1

zmv(Ω), (μ grad q| gradq ′) = (div μH − g|q ′),

we obtain that there exists one, and only one, scalar field q in H 1
zmv(Ω) such

that div μ grad q = div μH − g, with μ∂nq|Γ = 0. Therefore, grad q belongs to
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XT (Ω; μ), and it can be used as a test function to yield ‖g − div μH‖ = 0. Third,
one concludes that ‖c1/2(curl H − f)‖ = 0, as in the previous subsection.

To solve this augmented variational formulation (6.33), we choose the classical
framework (4.3) in the same Hilbert space. So, we introduce:

• ṼH = XT (Ω; μ) ;
• ãH (v,w) = (c curl v| curl w)+ (div μv|div μw)+ (μPZ

μ
T
v|PZ

μ
T
w) ;

• 〈f̃ H , v〉 = (cf| curl v)+ (g|div μv)+ (μh|PZ
μ
T
v).

In ṼH , we choose the norm ‖ · ‖ṼH = ‖ · ‖XT (Ω;μ).
The resulting augmented variational formulation writes

{
Find H̃ ∈ ṼH such that
∀v ∈ ṼH , ãH (H̃ , v) = 〈f̃ H , v〉.

(6.34)

We state below the equivalence result, whose proof is omitted.

Proposition 6.2.8 The augmented variational formulation (6.34) is well-posed,
and the field H̃ is the solution to the magnetostatic-like problem (6.28).

6.2.4 Solving the Magnetostatic Problem: Two-Step
Formulation

What happens when one solves the actual magnetostatic problem? One has g = 0, so
that μH is always divergence-free. According to Theorem 3.5.1 applied to μ(H−h),
there exists one, and only one, field A ∈ H 0(curl,Ω) ∩ HΓ (div 0,Ω) such that
μH = curl A + μh. The vector field A is called the magnetostatic potential, which
can be characterized by

⎧⎨
⎩
Find A ∈ H 0(curl,Ω) ∩ HΓ (div 0,Ω) such that
∀A′ ∈ H 0(curl,Ω) ∩ HΓ (div 0,Ω),
(μ−1 curl A| curl A′) = (f|A′)− (h| curl A′).

(6.35)

Proposition 6.2.9 The problem (6.35) is well-posed. In addition, its solution A is
such that μ−1 curl A+ h is the magnetostatic field.

Proof We know that ‖ curl ·‖ is a norm on H 0(curl,Ω) ∩ HΓ (div 0,Ω), which
is equivalent to the full norm, due to the first Weber inequality of Theorem 3.4.3,
or using (6.3) with ε = I3. Using the Lax-Milgram Theorem 4.2.8, we conclude
easily that (6.35) is well-posed, so it has one, and only one, solution A. Let h =
μ−1 curl A + h ∈ L2(Ω): one has

div μh = 0, μh · n|Γ = 0 and PZ
μ
T
h = h.
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The last property is a consequence of Remark 3.5.2 and Proposition 6.2.1.
To study the curl of h, consider z ∈ D(Ω):

• ∃!z ∈ H 1
0 (Ω) such that Δz = div z; then, w := z − grad z ∈ H 0(curl,Ω),

with div w = 0. So, A′ := w − PZNw belongs to H 0(curl,Ω)∩HΓ (div 0,Ω),
according to Proposition 6.1.1 with ε = I3.

• By construction, curl A′ = curl z, and moreover,

(f|A′) = (f|z)− (f| grad z)− (f|PZNw) = (f|z),

since f ∈ HΓ (div 0,Ω) can be written as a curl, so (f|PZNw) vanishes by
integration by parts.

• Putting A′ as a test function in (6.35) yields

〈curl(μ−1 curl A + h)− f, z〉 = 0.

Hence, one concludes that curl h = f, so h is a solution to the actual magnetostatic
problem, whose solution is unique.

This suggests a third option for solving the magnetostatic-like problem (6.28),
which is again a two-step method. Define

KT (Ω; μ) := H (curl,Ω) ∩ H 0(div μ0,Ω). (6.36)

One has the Helmholtz decomposition as in Sect. 3.7:

H (curl,Ω) = grad[H 1
zmv(Ω)]

⊥μ,c⊕ KT (Ω; μ). (6.37)

If we next introduce

HΣ(curl 0,Ω) := {f ∈ H (curl 0,Ω) : PZ
μ
T
f = 0},

this function space is exactly made up of gradients of scalar fields that belong to
H 1
zmv(Ω).

Proposition 6.2.10 Let Ω be a domain such that (Top)I=0 or (Top)I>0 is fulfilled.
Then,

HΣ(curl 0,Ω) = {grad q : q ∈ H 1
zmv(Ω)}.

Proof Given v ∈ HΣ(curl 0,Ω), there exists q̇ ∈ P(Ω̇) such that v =
˜grad q̇, according to Theorem 3.3.2. Setting χ̇ := ∑

j [q̇]Σj q̇μj ∈ QT (Ω̇; μ),
Proposition 6.2.1 yields that q := q̇ − χ̇ belongs to H 1(Ω). From PZ

μ
T
v = 0,
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we deduce that

0 = (v | μ ˜grad χ̇ ) = (grad q | μ ˜grad χ̇)︸ ︷︷ ︸
=0 by (6.31)

+(˜grad χ̇ | μ ˜grad χ̇ ).

Hence, χ̇ = 0 and q̇ ∈ H 1(Ω), so that v ∈ {gradq : q ∈ H 1
zmv(Ω)}. The converse

inclusion is straightforward, again by (6.31).

Corollary 6.2.11 LetΩ be a domain such that (Top)I=0 or (Top)I>0 is fulfilled. Let
c be a tensor field that fulfills an assumption like (5.10). In H (curl,Ω) endowed
with the scalar product (·|·)μ,c curl, one has the orthogonal decomposition

H (curl,Ω) = HΣ(curl 0,Ω)
⊥μ,c⊕ KT (Ω; μ).

Thanks to the Helmholtz decomposition (6.37), we can split the solution H to (6.28)
as

H = gradψ + h, ψ ∈ H 1
zmv(Ω), h ∈ KT (Ω; μ).

As we saw before, h is characterized by its curl and its projection onto ZT (Ω; μ),
namely f and h; it is equal to μ−1 curl A + h, with A the unique solution to (6.35).

On the other hand, ψ ∈ H 1
zmv(Ω) is characterized by div μ gradψ = g,

μ∂nψ|Γ = 0. Equivalently (recall that (g|1) = 0), it solves

{
Find ψ ∈ H 1

zmv(Ω) such that
∀ψ ′ ∈ H 1

zmv(Ω), (μ gradψ| gradψ ′) = −(g|ψ ′). (6.38)

According to the Poincaré-Wirtinger inequality of Theorem 2.1.37, the prob-
lem (6.38) is well-posed.

6.2.5 Magnetic Energy Matters

One can state a μ-orthogonal decomposition of L2(Ω), similar to Corollary 6.2.11.

Proposition 6.2.12 Let Ω be a domain such that (Top)I=0 or (Top)I>0 is fulfilled.
In L2(Ω) endowed with the scalar product (μ · |·), one has the orthogonal
decomposition

L2(Ω) = grad[H 1
zmv(Ω)]

⊥μ⊕ g̃rad[QT (Ω̇; μ)]
⊥μ⊕

{f ∈ L2(Ω) : div μf = 0, μf · n|Γ = 0, (μf | ˜grad q̇μi ) = 0, ∀i}.
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Due to Theorem 3.5.1, any element f of the latter set can be written as f =
μ−1 curl w inΩ , with w a divergence-free element of XN(Ω), with zero flux across
the connected components of the boundary. Moreover, w is unique. Applying this
decomposition to the magnetic-like field yields:

H = gradq + ˜grad q̇μ + μ−1 curl A

with a unique triple (q, q̇μ,A) ∈ H 1
zmv(Ω) ×QT (Ω̇; μ) × XN(Ω). Furthermore,

by orthogonality, the magnetic energy writes, as a sum of positive terms,

(μH |H ) = ‖μ1/2 grad q‖2 + ‖μ1/2
˜grad q̇μ‖2 + ‖μ−1/2 curl A‖2.

Remark 6.2.13 For the physical magnetic field, one has q = 0 above.

6.2.6 Regular-Gradient Splitting of Magnetic Fields

Let us conclude the study of magnetic-like fields by establishing regular-gradient
splittings of those fields that belong to XT (Ω; μ). We follow [79].

Theorem 6.2.14 Let Ω be a domain such that (Top)I=0 or (Top)I>0 is fulfilled,
and assume that μ is a tensor field that fulfills assumption (5.10). Then, there exists
a continuous splitting operator acting from XT (Ω,μ) to H 1

zmv(Ω) × ZT (Ω) ×
H 1
zmv(Ω). More precisely, given v ∈ XT (Ω,μ),

∃(wreg, z, q0) ∈ H 1
zmv(Ω)× ZT (Ω)×H 1

zmv(Ω),

v = wreg + z + gradq0 in Ω.
(6.39)

If, in addition, μ fulfills the coefficient assumption on a partition P , the scalar field
q0 is governed by the variational formulation below, for some f ∈ L2(Ω) and
gF ∈ PH 1/2(F):
⎧⎨
⎩
Find q0 ∈ H 1

zmv(Ω) such that
∀ψ ∈ H 1

zmv(Ω), (μ grad q0 | gradψ)
= −(μz | gradψ) + (f |ψ)+ (gF , ψ)L2(F) ;

(6.40)

one has
{
‖wreg‖H 1(Ω) + ‖z‖H 1/2(Ω) ≤ C ‖v‖H (curl;Ω) ,
‖μz‖PH 1/2(Ω,P) + ‖f ‖ + ‖gF‖PH 1/2(F) ≤ Cμ‖v‖XT (Ω,μ) ,

(6.41)

with a constant C > 0 that depends only onΩ , respectively a constant Cμ > 0 that
depends onΩ and μ.
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Remark 6.2.15 In the splitting (6.39) of v ∈ XT (Ω,μ), wreg does not fulfill
any boundary condition in general. One can obtain a splitting that preserves
the homogeneous boundary condition on the normal trace, under some moderate
restrictions on the domain Ω (see Theorem 6.2.18 below). Regarding regularity,

one has wreg ∈ H 1(Ω), respectively z = ˜grad ṗz ∈ H 1/2(Ω) with ṗz ∈
Pzmv(Ω̇), respectively grad q0 ∈ L2(Ω). As in the case of the electric fields, the
regularity result can be improved when μ fulfills the coefficient assumption (see
Corollary 6.2.17 below).

Proof Let y = curl v ∈ H (div;Ω). One has div y = 0 inΩ , and 〈y ·n, 1〉H 1/2(Γk)
=

0 for all k (see Remark 3.4.2). Thanks to Theorem 3.4.1 on vector potentials, there
exists wreg ∈ H 1

zmv(Ω) with div wreg = 0 inΩ such that y = curl wreg inΩ and

‖wreg‖H 1(Ω) ≤ C ‖y‖ ≤ C ‖v‖H (curl;Ω).

By construction, curl(v − wreg) = 0 in Ω , with (v − wreg) ∈ H (curl;Ω).
According to Theorem 3.3.2 on scalar potentials, there exists q̇ ∈ Pzmv(Ω̇) such

that v = wreg + ˜grad q̇ inΩ . And |q̇|H 1(Ω̇) ≤ ‖v‖ + ‖wreg‖ ≤ C ‖v‖H (curl;Ω).
Since elements of QT (Ω̇) can be characterized by their jumps on the cuts, we next

introduce ṗ ∈ QT (Ω̇) such that [ṗ]Σi = [q̇]Σi for all i, and then z = ˜grad ṗ ∈
ZT (Ω). The norm ‖ṗ‖QT (Ω̇) is bounded by the �1-norm of the jumps, which is
itself bounded by |q̇|H 1(Ω̇), so one gets ‖z‖H 1/2(Ω) ≤ C ‖v‖H (curl;Ω).

If one lets q0 = ˜q̇ − ṗ, one has q0 ∈ H 1
zmv(Ω), and in addition, it holds that

v = wreg + z + gradq0 in Ω,

with wreg ∈ H 1
zmv(Ω), z ∈ ZT (Ω), q0 ∈ H 1

zmv(Ω), i.e., (6.39).
As to the definition of q0 as the solution to (6.40) when μ fulfills the coefficient

assumption, let ψ ∈ H 1
zmv(Ω):

(μ grad q0 | gradψ) = −(μz | gradψ) + (μv | gradψ)− (μwreg | gradψ).

As μv ∈ H 0(div;Ω), one finds, by integration by parts, (μv | gradψ) =
−(div μv|ψ).

For the third term, one proceeds as in the proof of Theorem 6.1.16, the only
difference being that there are additional boundary terms:

−(μwreg | gradψ) = ( ˜div μwreg |ψ)
−
∑
F∈Fint

([μwreg · n], ψ)L2(F )−(μwreg · n, ψ)L2(Γ ).

Next, define

f = −div μv + ˜div μwreg ∈ L2(Ω), gF = −[μwreg · n] ∈ PH 1/2(F),
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where, for all F ∈ Fbdry and z ∈ L2(F ), the “jump” [z] is simply equal to z. It
follows that q0 is characterized by (6.40).

Finally, the first bound in (6.41) has already been derived, and the second one is
obtained exactly as in the proof of Theorem 6.1.16, hence continuity of the splitting
operator is obtained.

To continue, one needs regularity results regarding grad q0, where q0 is now
governed by (6.40). We use a second abstract shift theorem [52] for PDEs with
Neumann boundary conditions (see footnote 6, p. 237, for comments on the
optimality of the limit exponent, here denoted by τNeu).

Theorem 6.2.16 Let Ω be a domain, and assume that ξ fulfills the coefficient
assumption. There exists τNeu ∈]0, 1/2[ depending only on the geometry and the
coefficient ξ such that, for all t ∈ [0, τNeu[, and for all � ∈ (H 1−t

zmv(Ω))
′, the solution

to
{
Find u ∈ H 1

zmv(Ω) such that
(ξ gradu | gradψ) = 〈�,ψ〉H 1

zmv (Ω)
, ∀ψ ∈ H 1

zmv(Ω),

belongs to Ht+1(Ω), and moreover, ‖u‖Ht+1(Ω) ≤ Ct,ξ‖�‖(H 1−t
zmv (Ω))

′ with a
constant Ct,ξ > 0 that depends only onΩ , ξ and t .

Combining the two Theorems 6.2.14 and 6.2.16 yields the result for the regu-
lar/gradient splitting of elements of XT (Ω, ξ). The proof is omitted, as it is very
close to the one of Corollary 6.1.19.

Corollary 6.2.17 Let Ω be a domain such that (Top)I=0 or (Top)I>0 is fulfilled,
and assume that μ fulfills the coefficient assumption. For all t ∈ [0, τNeu[, it holds
that

XT (Ω,μ) ⊂ H 1(Ω)+ g̃rad[P 3/2
zmv(Ω̇)] + grad[Ht+1

zmv(Ω)],

where

P
3/2
zmv(Ω̇) :=

{
q̇ ∈ Pzmv(Ω̇) : ˜grad q̇ ∈ H 1/2(Ω)

}
.

For the sake of completeness, we mention that it is also possible to derive a splitting
of XT (Ω,μ) that preserves the homogeneous boundary condition on the normal
trace, under some moderate restrictions on the domainΩ , cf. Definition 3.6.3. Let

X
reg
T (Ω) := XT (Ω) ∩ H 1(Ω).

Theorem 6.2.18 Let Ω be a domain of A-type such that (Top)I=0 or (Top)I>0 is
fulfilled, and assume that μ is a tensor field that fulfills assumption (5.10). Then,
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there exists a continuous splitting operator acting from XT (Ω,μ) to X
reg
T (Ω) ×

ZT (Ω)×H 1
zmv(Ω).

Proof Let us begin as in Theorem 6.2.14 to derive wreg ∈ H 1
zmv(Ω) such that

curl wreg = curl v inΩ and ‖wreg‖H 1(Ω) ≤ C ‖v‖H (curl;Ω). A priori, wreg ·n|Γ �=
0. But, in a domain of A-type, one has (cf. Lemma 3.6.4),

∃qreg ∈ H 2(Ω),
∂qreg

∂n
|Γ = wreg · n|Γ ; ‖qreg‖H 2(Ω) ≤ C ‖wreg‖H 1(Ω).

It follows that vreg = wreg − grad qreg ∈ X
reg
T (Ω), curl vreg = curl v in Ω

and ‖vreg‖H 1(Ω) ≤ C ‖v‖H (curl;Ω). Because curl(v − vreg) = 0 in Ω with (v −
vreg) ∈ H (curl;Ω), there exists ṗ ∈ Pzmv(Ω̇) such that v = vreg + ˜grad ṗ in

Ω and |ṗ|H 1(Ω̇) ≤ C ‖v‖H (curl;Ω) (cf. Theorem 3.3.2). One then writes ˜grad ṗ as

˜grad ṗ = z + gradp0, with z ∈ ZT (Ω) and p0 ∈ H 1
zmv(Ω). Hence, there exists

(vreg, z, p0) ∈ X
reg
T (Ω)× ZT (Ω)× H 1

zmv(Ω) such that v = vreg + z + gradp0
inΩ .

One then follows the proof of Theorem 6.2.14 to conclude that the splitting
operator v �→ (vreg, z, p0) is continuous from XT (Ω,μ) to X

reg
T (Ω)× ZT (Ω) ×

H 1
zmv(Ω).

Remark 6.2.19 When μ is equal to the identity, the result of Theorem 6.2.18 may
be viewed as a second Birman-Solomyak splitting, which preserves the magnetic
boundary condition, as gradp0 · n|Γ = 0.

6.3 Further Comments Around Static Problems

In this section, we shall work with real variables and spaces; recall that the data and
the solutions of static problems are real by their physical nature.

6.3.1 Electrostatic Problem

A part of the electrostatic-like field E belongs to ZN(Ω; ε), i.e., its projection
e = PZεN

E. As we have seen earlier, elements of ZN(Ω; ε) are written as gradients,

with potentials in QN(Ω; ε): e = grad qE , for qE ∈ QN(Ω; ε). According
to Proposition 6.1.1, qE can be characterized by its values on the connected
components of the boundary: (V�)� := ((qE)|Γ�)1≤�≤K . Physically, those values are
the electric potentials of the perfectly conducting bodies, whose difference with the
reference value (qE)|Γ0 = 0 (with Γ0 the ground), correspond to applied voltages.
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On the other hand, one can set the total surface charges of those bodies, namely
(Qk)k := (〈εE · n, 1〉Γk )k . Mathematically, however, this is possible only if those
quantities have a meaning, which is guaranteed, provided that div εE ∈ L2(Ω),
namely provided that the data g belongs to L2(Ω). See also the next paragraph for
an extension to g ∈ H−s(Ω) for some s ∈ [0, 1/2[. Note that this is always true
when g = 0, in the absence of (volume) charges. If g is in L2(Ω), we remark that

∑
k

Qk = 〈εE · n, 1〉H 1/2(Γ ) = (g|1),

so thatQ0 is determined by g and (Qk)1≤k≤K .
Furthermore, one finds that e is such that, for all z = grad q ∈ ZN(Ω; ε),

(εe|z) = (εE|z) = (εE| grad q)

= −(g|q)+
∑
k

〈εE · n, q〉H 1/2(Γk)
=

∑
1≤k≤K

{
Qk − (g|qεk )

}
q|Γk ,

where we used the identity q = ∑
1≤k≤K q|Γkqεk . The right-hand side depends

explicitly on g and (Qk)1≤k≤K .
Now, to characterize e = grad qE , one performs the computations below:

(εe|z) = (ε grad qE| grad q) =
∑
�,k

(qE)|Γ� q|Γk (ε gradqε� | grad qεk ).

So, if we define the matrix C ∈ RK×K and Q,F ∈ RK by

Ck� = (ε grad qε� | grad qεk ), Q� = (qE)|Γ�, Fk = Qk − (g|qεk ), 1 ≤ k, � ≤ K ,

we determine that

CQ = F. (6.42)

One can easily check that C is symmetric positive-definite (cf. Corollary 3.3.8),
hence it is invertible: classically, C is called the capacitance matrix, and (6.42)
relates the surface charges to the voltages, and vice versa.

6.3.2 Magnetostatic Problem

For the magnetostatic-like problem, a part of its solution H belongs to ZT (Ω; μ):
h := PZ

μ
T
H , which can written as h = ˜grad q̇H , for q̇H ∈ QT (Ω̇; μ). Due to

Proposition 6.2.1, we know that h can be characterized either by the jumps on the
cuts ([q̇H ]Σi )1≤i≤I , or by the fluxes (〈μh · n, 1〉Σi )1≤i≤I . To relate the two, one
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may proceed by prescribing the fluxes (F lj )j := (〈μH · n, 1〉Σj )j . Indeed, for all

z = ˜grad q̇ ∈ ZT (Ω; μ), and using q̇ = ∑1≤i≤I [q̇]Σi q̇μi , one finds, thanks to the
integration-by-parts formula (3.6),

(μh | z) = (μH | z) = (μH | ˜grad q̇) = (μH , grad q̇)L2(Ω̇)

= −(div μH , q̇)L2(Ω̇) +
∑
i

〈μH · n, [q̇]Σi 〉Σi

= −(g | ˜̇q)+∑
i

〈μH · n, [q̇]Σi 〉Σi =
∑

1≤i≤I

{
F li − (g | ˜̇qμi )

}
[q̇]Σi .

Moreover, using the formula h =∑1≤j≤I [q̇H ]Σj ˜grad q̇μj , one finds

(μh | z) =
∑
j,i

[q̇H ]Σj [q̇]Σi (μ grad q̇μj , grad q̇μi )L2(Ω̇).

If we define the inductance matrix L ∈ RI×I and Q,F ∈ RI by

Lij = (μ grad q̇μj , grad q̇μi )L2(Ω̇), Qj = [q̇H ]Σj , Fi = F li − (g | ˜̇qμi ), 1 ≤ i, j ≤ I ,

we have the relation LQ = F. Finally, one can check that the matrix L is symmetric
positive-definite (cf. Corollary 3.3.14), so it is invertible.
For the electrostatic-like problem, the scalar data g can be any element ofH−1(Ω),
whereas we assumed g ∈ L2(Ω) for the magnetostatic-like problem. For this latter
problem, it turns out that one can consider data g ∈ H−s(Ω), for s ∈]0, 1/2[
(with the compatibility condition 〈g, 1〉Hs0 (Ω) = 0). We refer to Theorem 2.2.22
and integration-by-parts formula (2.26). Applied to the magnetostatic-like problem,
we conclude that the normal trace of μH is well-defined8 in H−1/2(Γ ) for all
g ∈ H−s(Ω), and hence it can be chosen equal to 0.

8If one considers any continuous linear form g on H 1
zmv(Ω)—by contrast, in the electrostatic-like

case, one can choose any g ∈ (H 1
0 (Ω))

′—, then there is no guarantee that the variational form

∀q ∈ H 1
zmv(Ω), (μH | grad q) = g(q),

allows us to recover the vanishing boundary condition. For instance, taking g(q) = 〈λ, q〉H 1/2(Γ )

for some data λ ∈ H−1/2(Γ ) (with compatibility condition 〈λ, 1〉H 1/2(Γ ) = 0) yields μH ·n|Γ = λ.
In this respect, the situation differs from the electrostatic-like case.
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6.3.3 Other Sets of Boundary Conditions

It is possible to solve static-like problems with mixed boundary conditions from an
abstract point of view. We refer to [109] for detailed studies of the vector space of
curl- and divergence-free fields with (vanishing) mixed boundary conditions.

On the other hand, one can specify other sets of boundary conditions, such as
electric ports or internal conductor models, which are popular static (and time-
harmonic) models to describe realistic configurations. A thorough mathematical
study can be found in [6].

6.3.4 Application to Time-Dependent Problems

As we saw in Chap. 5, no topological conditions are needed when solving the time-
dependent Maxwell equations: topologically non-trivial domains, or domains with
a non-connected boundary, are treated exactly like the “simpler” domains where
ZN(Ω; ε) = ZT (Ω; μ) = {0}. We shall see in Chap. 7 that the same holds when
using the various equivalent second-order formulations of Maxwell’s equations.
Here, we characterize the projection of the electromagnetic fields (E,H )(t) on the
spaces of curl- and divergence-free fields ZN(Ω; ε)×ZT (Ω; μ) in the general case
in which these spaces are not trivial.
Faraday’s law can be rewritten in variational form as

∀t, ∀v ∈ L2(Ω), (μ
∂H

∂t
(t) | v)+ (curl E(t) | v) = 0.

Choosing vμ ∈ ZT (Ω; μ), we notice that it holds that (curl E(t) | vμ) = 0 by
integration by parts (see Remark 3.5.2), because of the perfect conductor boundary
condition. Hence, it follows that (μH ′(t) | vμ) = 0 for all times. This yields:

∀t, ∀vμ ∈ ZT (Ω; μ), (μH (t) | vμ) = (μH 0 | vμ).

In other words, PZ
μ
T
H (t) = h0 for all t , where h0 := PZ

μ
T
H 0. So, the data h0 that

prescribes the value of the projection of H 0 on ZT (Ω; μ) actually characterizes the
projection of the magnetic field at all times:

∀t, PZ
μ
T
H (t) = h0. (6.43)

On the other hand, Ampère’s law can be rewritten as

∀t, ∀v ∈ L2(Ω), (ε
∂E

∂t
(t) | v)− (curl H (t) | v) = −(J (t) | v).
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Choosing vε ∈ ZN(Ω; ε) yields (see Remark 3.4.2):

∀t, ∀vε ∈ ZN(Ω; ε), (εPZεN
E(t) | vε) = (εe0 | vε)−

∫ t
0
(J (s) | vε) ds,

(6.44)

where e0 := PZεN
E0. Therefore, together with J , the data e0 that prescribes the

value of the projection of E0 on ZN(Ω; ε) allows one to characterize the projection
of the electric field at all times.

6.4 Other Approximate Models

6.4.1 Quasi-Static Models

In Sect. 1.4.3, we introduced two such models: the so-called electric quasi-static and
magnetic quasi-static models.

6.4.1.1 Electric Quasi-Static Model

For this model, according to (1.112)–(1.115), the electromagnetic fields are gov-
erned by

⎧⎪⎪⎨
⎪⎪⎩

curl E = 0 inΩ, t > 0,
div εE = � inΩ, t > 0,
E × n = 0 on Γ, t > 0,
E(0) = E0 in Ω,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

curl H = ε
∂E

∂t
+ J inΩ, t > 0,

div μH = 0 inΩ, t > 0,
μH · n = 0 on Γ, t > 0,
H (0) = H 0 inΩ.

(6.45)

Looking at the structure of the equations, we see that the electric field is the solution
to the electrostatic-like problem (6.1), with time-dependent data (f, g) = (0, �(t))
for t > 0. If one recalls the definition of the “full” electrostatic-like problem (6.7),
one has to add a condition on the projection on ZN(Ω; ε) to guarantee well-
posedness for t > 0:

PZεN
E = e, t > 0. (6.46)

Lastly, to have a solution at t = 0 that matches the initial condition, one assumes
that E0 solves problem (6.7) with data (f, g, e) = (0, �(0), e(0)).

Once existence of the electric field E is obtained, we see that the (time-
dependent) magnetic field H is governed by the magnetostatic-like equations (6.23),
with time-dependent data (f, g) = (εE′(t) + J (t), 0) for t > 0. In particular, one
must have εE′(t)+J (t) ∈ HΓ (div 0,Ω) for t > 0. First, one has div (εE′+J ) = 0
if, and only if, the charge conservation equation holds, so we assume that this is the
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case. Second, for the field εE′(t)+J (t) to belong to HΓ (div 0,Ω) at all times, we
simply impose, in the spirit of (6.44), the condition

∀t, ∀vε ∈ ZN(Ω; ε), (εe(t) | vε) = (εe(0) | vε)−
∫ t

0
(J (s) | vε) ds. (6.47)

To guarantee well-posedness for t > 0, one has to add a condition on the projection
on ZT (Ω; μ) (cf. the “full” magnetostatic-like problem (6.28)):

PZ
μ
T
H = h, t > 0. (6.48)

Lastly, to have a solution at t = 0 that matches the initial condition, one assumes
that H 0 solves problem (6.28) with data (f, g, h) = (εE′(0)+ J (0), 0, h(0)).

Theorem 6.4.1 Consider a perfect medium in a domain Ω of R3 encased in a
perfect conductor.

Assume that⎧⎪⎨
⎪⎩
� ∈ C1(R+;H−1(Ω)),

e ∈ C1(R+;ZN(Ω; ε)),
E0 ∈ H 0(curl,Ω) : curl E0 = 0, div εE0 = �(0), PZεN

E0 = e(0);
thus, there exists one, and only one, electric field E:

E ∈ C1(R+;H 0(curl,Ω)) ,

which solves Eqs. (6.45) and (6.46), with continuous dependence on the data.
Assume, furthermore, that

⎧⎪⎪⎨
⎪⎪⎩

J ∈ C0(R+;L2(Ω)),
∂�

∂t
+ div J = 0, t ≥ 0;

e fulfills Eq. (6.47), h ∈ C0(R+;ZT (Ω; μ));
H 0 ∈ H 0(div μ,Ω) : curl H 0= εE′(0)+ J (0), div μH 0 = 0, PZ

μ
T
H 0= h(0);

thus, there exists one, and only one, magnetic field H :

H ∈ C0(R+;H (curl,Ω) ∩ H 0(div μ,Ω)) ,

which solves Eqs. (6.45) and (6.48), with continuous dependence on the data.

Proof One successively applies Theorems 6.1.4 and 6.2.5.

Remark 6.4.2 The variational formulation one uses to solve the problem in H ,
namely (6.32) or (6.33), can be simplified if one chooses the tensor field c equal
to ε−1. Indeed, one has f = εE′(t)+ J (t), so that, for all v ∈ H (curl,Ω):

(cf | curl v) = (E′(t) | curl v)+ (ε−1J (t) | curl v) = (ε−1J (t) | curl v),
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as the first term vanishes by integration by parts. Hence, one can view the addition of
εE′(t) to J (t) as a correction of the latter, so that the sum belongs to HΓ (div 0,Ω)
as needed. In other words, for the electric quasi-static model, the solution of the
problems in E and H are decoupled.

6.4.1.2 Magnetic Quasi-Static Model

For this second model, according to (1.116)–(1.119), the electromagnetic fields are
governed by

⎧⎪⎪⎨
⎪⎪⎩

curl H = J inΩ, t > 0,
div μH = 0 inΩ, t > 0,
μH · n = 0 on Γ, t > 0,
H (0) = H 0 inΩ,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

curl E = −μ
∂H

∂t
inΩ, t > 0,

div εE = � in Ω, t > 0,
E × n = 0 on Γ, t > 0,
E(0) = E0 inΩ.

(6.49)

To guarantee well-posedness for H governed by (6.49), one imposes that J (t) ∈
HΓ (div 0,Ω) for t > 0, together with a condition like (6.48). Then, one assumes
that H 0 solves (6.28) with data (f, g, h) = (J (0), 0, h(0)).

On the other hand, to guarantee well-posedness for E governed by (6.49),
one must have μH ′(t) ∈ HΣ

0 (div 0,Ω) for t > 0. Owing to the definition
of HΣ

0 (div 0,Ω) and Proposition 6.2.1, it corresponds to h′ = 0:

∀t, h(t) = h(0). (6.50)

Also, one uses a condition similar to (6.46) to have uniqueness. Finally, one assumes
that E0 solves (6.7) with data (f, g, e) = (−μH ′(0), �(0), e(0)).

Theorem 6.4.3 Consider a perfect medium in a domain Ω of R3 encased in a
perfect conductor.

Assume that
⎧⎪⎨
⎪⎩

J ∈ C1(R+;HΓ (div 0,Ω)),
h ∈ C1(R+;ZT (Ω; μ)),
H 0 ∈ H 0(div μ,Ω) : curl H 0 = J (0), div μH 0 = 0, PZ

μ
T
H 0 = h(0);

thus, there exists one, and only one, magnetic field H :

H ∈ C1(R+;H (curl,Ω) ∩ H 0(div μ,Ω)) ,

which solves Eqs. (6.49) and (6.48), with continuous dependence on the data.
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Assume, furthermore, that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

� ∈ C0(R+;H−1(Ω)) ;
h fulfills Eq. (6.50), e ∈ C0(R+;ZN(Ω; ε)) ;
E0 ∈ H 0(curl,Ω) :

curl E0 = −μH ′(0), div εE0 = �(0), PZεN
E0 = e(0);

(6.51)

thus, there exists one, and only one, electric field E:

E ∈ C0(R+;H 0(curl,Ω)) ,

which solves Eqs. (6.49) and (6.46), with continuous dependence on the data.

Remark 6.4.4 By construction, one has μ−1 curl E ∈ C0(R+;H (curl,Ω)).

Proof One successively applies Theorems 6.2.5 and 6.1.4.

6.4.2 Darwin Model

Below, let us explicitly build the Darwin model (cf. Sect. 1.4.4), using the solutions
to the electric and magnetic quasi-static models, with suitable data.

1. Define (EL,H ) as the solution to the electric quasi-static model (6.45) with data
J and �, under the assumptions of Theorem 6.4.1. Remark 6.4.2 still applies.

2. Define ET as the electric part of the magnetic quasi-static model (6.49), where
the magnetic data is equal to H from step 1., with � = 0 and e = 0. In particular,
the initial data, called ET0 , is defined by curl ET0 = −μH ′(0), div εET0 = 0,
PZεN

ET0 = 0. As observed in the subsection devoted to quasi-static models, it is
required that h fulfills Eq. (6.50).

3. Define the total electromagnetic fields as (E,H ) := (EL + ET ,H ).

According to the above, the total electromagnetic fields, split as in step 3., are
governed by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε
∂EL

∂t
− curl H = −J inΩ, t > 0,

curl EL = 0, μ
∂H

∂t
+ curl ET = 0 in Ω, t > 0,

div εEL = �, div εET = 0 in Ω, t > 0,
div μH = 0 inΩ, t > 0,
PZεN

EL = e, PZεN
ET = 0, PZ

μ
T
H = h, t > 0,

EL × n = 0, ET × n = 0, μH · n = 0 on Γ, t > 0,
EL(0) = EL0 , ET (0) = ET0 , H (0) = H 0 inΩ.

(6.52)
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The above is complemented by the charge conservation equation, and by Eqs. (6.47)
and (6.50) to ensure well-posedness with respect to the projections on ZN(Ω; ε)×
ZT (Ω; μ). Hence, the total electromagnetic fields are governed by Maxwell’s
equations, where the divergence(ε)-free part ε∂tET of the electric displacement
has been neglected in Ampère’s law. Indeed, let E = EL + ET . Then, the
electromagnetic fields (E,H ) satisfy the equations:

⎧⎨
⎩

curl ε−1(curl H − J ) = 0, div μH = 0 inΩ, t > 0,

curl E = −μ
∂H

∂t
, div εE = � in Ω, t > 0,

(6.53)

which is a generalization of the Darwin model (cf. Sect. 1.4.4) in a domain made
of a perfect medium. In addition, they fulfill the boundary, projection and initial
conditions below.
⎧⎪⎨
⎪⎩

E × n = 0, μH · n = 0, ε−1(curl H − J )× n = 0 on Γ, t > 0,
PZεN

E = e, PZ
μ
T
H = h, t > 0,

E(0) = E0, H (0) = H 0 in Ω.

(6.54)

Theorem 6.4.5 Consider a perfect medium in a domain Ω of R3 encased in a
perfect conductor.

Assume that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� ∈ C2(R+;H−1(Ω)), J ∈ C1(R+;L2(Ω)),
∂�

∂t
+ div J = 0, t ≥ 0 ;

e ∈ C2(R+;ZN(Ω; ε)), h fulfill Eqs. (6.47) and (6.50) ;
(E0,H 0) ∈ H 0(curl,Ω)× H 0(div μ,Ω) :
curl E0 ∈ HΣ

0 (div 0,Ω), div εE0 = �(0), PZεN
E0 = e(0),

div μH 0 = 0, PZ
μ
T
H 0 = h(0),

F 0 := ε−1(curl H 0 − J (0)) ∈ H 0(curl,Ω),
curl F 0 = 0, PZεN

F 0 = e′(0);

thus, there exists one, and only one, couple of electromagnetic fields (E,H ):

E ∈ C0(R+;H 0(curl,Ω)),
H ∈ C1(R+;H (curl,Ω) ∩ H 0(div μ,Ω)),

(6.55)

which solves the Darwin model (6.53)–(6.54), with continuous dependence on the
data.

Remark 6.4.6 Note that one has to choose data with increased time-regularity (com-
pared to the quasi-static models). These technical conditions reflect the somewhat
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artificial character of the model. It follows that, by construction, the total electric
field is such that μ−1 curl E ∈ C0(R+;H (curl,Ω)).

Proof Existence and continuous dependence with respect to the data follow from
the application of Theorem 6.4.1 (electric and magnetic parts) and Theorem 6.4.3
(electric part).

As a matter of fact, one first solves the electric quasi-static model (in the electric
part) with data �, e and EL0 , where the latter is defined by EL0 ∈ H 0(curl,Ω),
curl EL0 = 0, div εEL0 = �(0), and PZεN

EL0 = e(0). Its solution is called EL. Then,
one solves the same problem with data �′, e′ and F 0, whose solution is equal to
(EL)′ by uniqueness. The solution EL thus belongs to C2(R+;H 0(curl,Ω)).

Next, one solves the magnetic part of the electric quasi-static model, with data
J , e, h and H 0, whose solution is called H . And then the same problem with data
J ′, e′, h′ = 0 and G0 := −μ−1 curl E0 ∈ H 0(div μ,Ω), so that div μG0 = 0,
PZ

μ
T
G0 = 0 (to obtain PZ

μ
T
G0 = 0, one uses Proposition 6.2.1, noting that

curl E0 ∈ HΣ
0 (div 0,Ω)). Once more by uniqueness, the solution H actually

belongs to H ∈ C1(R+;H (curl,Ω) ∩ H 0(div μ,Ω)).
Finally, one solves the magnetic quasi-static model only in the electric part with

the magnetic field H defined as above, and zero charge density, zero projection
on ZN(Ω; ε) and initial condition E0 − EL(0). Its solution ET belongs to
C0(R+;H 0(curl,Ω)).

By construction, the triple (EL,ET ,H ) satisfies (6.52), so (EL + ET ,H ) is a
solution to (6.53)–(6.54) in the sense of (6.55), with continuous dependence with
respect to the data.

Regarding uniqueness, for t ∈ R+, one finds, by integration by parts,

(μ
∂H

∂t
(t) | H (t)) = −(curl ET (t) | H (t)) = −(ET (t) | curl H (t)).

Now, ET (t) ∈ L2(Ω) with div εET (t) = 0 and PZεN
ET (t) = 0. According to

Theorem 3.4.1, there exists w(t) ∈ H 1
zmv(Ω) such that εET (t) = curl w(t).

Introducing F (t) := ε−1(curl H (t) − J (t)) ∈ H 0(curl,Ω) with curl F (t) = 0
(cf. (6.52)), one has (curl w(t) | F (t)) = 0 by integration by parts, so one finds:

(μ
∂H

∂t
(t) | H (t)) = −(ε−1 curl w(t) | curl H (t))

= −(curl w(t) | ε−1 curl H (t)) = −(curl w(t) | ε−1J (t))

= −(ε−1 curl w(t) | J (t)) = −(ET (t) | J (t)).

Hence, if J = 0 and H 0 = 0, one has H (t) = 0 for all t . In particular, curl E = 0.
If, in addition, � = 0 and e = 0, then using Theorem 6.1.4, one infers that E(t) = 0
for all t . So, the only solution to the Darwin model with zero data is (E,H ) =
(0, 0), which proves uniqueness.
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6.4.3 Notes on Asymptotic Analysis

A fundamental issue regarding the approximate models is, how well do they match
with the exact Maxwell equations? This issue has been addressed in [96], and
we sketch the main results below. For the sake of simplicity, we assume that the
medium is homogeneous (vacuum), with ε0 = μ0 = 1; and that the domain Ω is
topologically trivial with a connected boundary, so that ZN(Ω) = ZT (Ω) = {0}.
However, none of these assumptions is essential. One performs a scaling of the
original equations as in Sect. 1.4.2, with respect to a “small parameter” η =
v/c, where v is the characteristic velocity. Then, one studies (formal) asymptotic
expansions of the electromagnetic fields and data, of the form

E =
∑
k≥0

ηkEk, H =
∑
k≥0

ηkH k, (6.56)

� =
∑
k≥0

ηk�k, J =
∑
k≥0

ηkJ k. (6.57)

Using this ansatz leads to a sequence of relations among (Ek)k≥0, (H k)k≥0, the
data (�k)k≥0, (J k)k≥0 and the initial conditions (E0,H 0). Given an integer K , it
is possible to estimate the difference between the exact electromagnetic fields and
the finite sums (

∑
0≤k≤K ηkEk,

∑
0≤k≤K ηkH k), under some suitable conditions

on the initial conditions (E0,H 0), the data J and � and their time derivatives at
t = 0. With the help of an energy-like conservation equation that uses the parameter
η, one finds that, for t ≥ 0,

‖E(t)−∑0≤k≤K ηkEk(t)‖ ≤ CK(t)ηK+1,

‖H (t)−∑0≤k≤K ηkH k(t)‖ ≤ DK(t)ηK+1.
(6.58)

Above, CK(t) and DK(t) are suitable functions of the norms of some high-order
terms and of the initial data, namely

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

‖(EK+1(t),HK+1(t))‖L2(Ω)×L2(Ω),(
‖(∂tEK+1(s), ∂tH

K+1(s))‖L2(Ω)×L2(Ω)

)
s≤t ,

‖(EK+1(0),HK+1(0))‖L2(Ω)×L2(Ω),(
‖J (s)−∑0≤k≤K+1 η

kJ k(s)‖L2(Ω)

)
s≤t .

Let us give here the sketch of the proof. Details can be found in [96] under a
simplifying assumption (see Remark 6.4.8); generalizing to the present situation
is no difficulty. Using the above-mentioned scaling, we get that the Maxwell’s
equations can be written in dimensionless variables, as in Sect. 1.4.2. Replacing, in
Maxwell’s equations, E(t), H (t), �(t), J (t) with their expansions (6.56)–(6.57),
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we obtain that Ek(t) and H k(t) must satisfy (formally) the following relations, for
k ≥ 1:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂Ek−1

∂t
− curl H k = −J k inΩ, t > 0,

∂H k−1

∂t
+ curl Ek = 0 inΩ, t > 0,

div Ek = �k in Ω, t > 0,
div H k = 0 in Ω, t > 0 ;

(6.59)

whereas for the particular case k = 0, we get:

⎧⎪⎪⎨
⎪⎪⎩

curl H 0 = J 0 inΩ, t > 0,
curl E0 = 0 inΩ, t > 0,
div E0 = �0 in Ω, t > 0,
div H 0 = 0 in Ω, t > 0 .

(6.60)

Similarly, boundary conditions for the expansions Ek(t) and H k(t) are easily
deduced from those on E(t) and H (t); for instance, from the perfect conductor
boundary condition E × n = 0, H · n = 0, we get Ek × n = 0, H k · n = 0, for all
k ≥ 0.

Thus, it can be proved that Eqs. (6.59)–(6.60) have a unique solution. For k = 0,
Eq. (6.60) appears as the combination of an electrostatic and a magnetostatic prob-
lem at each time t ; one deduces the existence of a unique solution (E0(t),H 0(t))

for all t , according to Sects. 6.1 and 6.2. Similarly, given (Ek−1,H k−1), Eq. (6.59)
shows that Ek(t) and H k(t) are the solutions to an electrostatic-like and a
magnetostatic-like problem for all t , these problems being decoupled. By induction,
one infers the existence of a unique solution (Ek,H k) for all k ≥ 0.

The second step is now to investigate the convergence of the asymptotic
expansions of the electromagnetic fields. We introduce the difference between the
exact electromagnetic fields and the finite sums,

e := E −
∑

0≤k≤K+1

ηkEk, h := H −
∑

0≤k≤K+1

ηkH k ;

and we assume that the series in (6.57, right) converges fast enough, so that:

J −
∑

0≤k≤K+1

ηkJ k = ηK+2 ψK+1, with ψK+1 of order ≥ 0 in η.
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Using the Maxwell’s equations written in dimensionless variables as in Sect. 1.4.2,
we find

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
η
∂e

∂t
− curl h = −ηK+2

(
∂EK+1

∂t
+ ψK+1(t)

)

η
∂h

∂t
+ curl e = −ηK+2 ∂H

K+1

∂t

with the ad hoc boundary conditions. Using a standard a priori estimate for
the solution of this system together with a variant of Gronwall’s lemma [61,

Lemma II.4.9], and denoting w(t) := (‖e(t)‖2 + ‖h(t)‖2
)1/2

, one finds that, for
t ≥ 0,

w(t) ≤ w(0)+ ηK+1
∫ t

0
{‖∂E

K+1

∂t
(s)+ ψK+1(s)‖2 + ‖∂H

K+1

∂t
(s)‖2}1/2ds .

The last part of the proof consists in evaluatingw(0). Assuming E0(0) = E(0) and
H 0(0) = H (0), together with

∂�t J
0(0) = 0 in Ω, 1 ≤ � ≤ K ;

∂�t �
j (0) = 0 inΩ, ∂�t J

j (0) ∈ H 0(curl 0,Ω), 1 ≤ j ≤ K, 0 ≤ � ≤ K − j,

one shows, iteratively, that ∂�t H
0(0) = 0 for 1 ≤ � ≤ K and ∂�t E

j (0) =
∂�t H

j (0) = 0 for 1 ≤ j ≤ K, 0 ≤ � ≤ K − j . It follows that

e(0) = −ηK+1 EK+1(0), h(0) = −ηK+1 HK+1(0) ;
w(0) = ηK+1(‖EK+1(0)‖2 + ‖HK+1(0)‖2)1/2 ;
w(t) ≤ ηK+1 C̃K+1(t), for a certain function C̃K+1(t).

Finally, noting that

E(t) −
∑

0≤k≤K
ηkEk(t) = e(t)+ ηK+1 EK+1(t),

one bounds

‖E(t) −
∑

0≤k≤K
ηkEk(t)‖ ≤ w(t) + ηK+1 ‖EK+1(t)‖ = ηK+1 CK(t),

for a certain function CK(t), which is (6.58, top); the bottom part of the estimate is
proved likewise.
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Considering first the static models and denoting their solution by ES and H S , one
finds, by identification, that ES = E0 and H S = H 0, so that one may write

‖E(t)− ES(t)‖ ≤ C0(t)η , ‖H (t)− H S(t)‖ ≤ D0(t)η .

One can also perform a scaling like that above on the electric quasi-static model.
Denoting its solution by (EQS,HQS), one finds, by direct computations, EQS =
E0 + h.o.t. and HQS = H 0 + ηH 1 + h.o.t., so that

‖E(t)− EQS(t)‖ ≤ C0(t)η , ‖H (t)− HQS(t)‖ ≤ D1(t)η
2 .

Lastly, one can perform a scaling on the Darwin model. This time, with obvious
notations, one finds ED = E0+ηE1+η2E2+h.o.t. and HD = H 0+ηH 1+h.o.t.,
so that

‖E(t)− ED(t)‖ ≤ C2(t)η
3 , ‖H (t)− HD(t)‖ ≤ D1(t)η

2 .

Remark 6.4.7 As explained in Sects. 1.4.3 and 6.4.1, the electric quasi-static model
can be derived by neglecting the time derivative of the magnetic field ∂tH in the
Maxwell’s equations. Under these conditions, one can, as above, relate the Darwin
model solutions (ED,HD) to the solutions (EQS,HQS), or alternatively, prove
that the unique solution (EQS,HQS) has the following properties:

• EQS = − gradφ is characterized as the solution to an electrostatic-like problem,
• HQS is the divergence-free solution to a vector Laplace-like problem,

so that EQS is only longitudinal and is equal to the longitudinal part of ED , and
HQS = HD . Hence, the electric quasi-static and Darwin models of Sects. 1.4.3
and 1.4.4 differ only in the approximation of the transverse part of the electric field,
which is neglected in the former model. This also proves that HQS (like HD) is
a second-order approximation in η, whereas EQS (unlike ED) is only a first-order
one.

Remark 6.4.8 If it holds that:

� = �0 independent of η ; J = J 0 + ηJ1,

which is a particular case of (6.57), then the solutions to the electric quasi-static and
Darwin models are exactly

EQS = E0, HQS = H 0 +ηH 1 ; ED = E0 +ηE1 +η2E2, HD = H 0 +ηH 1.

This is the case investigated in [96].

To summarize, one concludes that one gains one order in H , going from the
static models to the electric quasi-static model, respectively one order in H and two
orders in E, going from the static models to the Darwin model.
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6.4.4 Other Boundary Conditions—Exterior Problem

When one prescribes another boundary condition, such as the Silver–Müller
absorbing boundary condition on the boundary, or on a part of the boundary, it is
still possible to build approximate models (static, quasi-static or Darwin). However,
for the Darwin model, choosing the relevant boundary condition for the two parts
of the electric field EL and ET becomes rather involved. We refer to [83, 175, 176]
for detailed studies on this topic.

Finally, we mention that the exterior Darwin model (with perfect conductor
boundary condition) is solved in [107].



Chapter 7
Analyses of Exact Problems:
Second-Order Models

This chapter is devoted to an alternative, second-order formulation of the Maxwell’s
equations. We rigorously justify the process we outlined in Sect. 1.5.3. This new
formulation is especially relevant for computational applications, as it admits several
variational formulations, which can be simulated by versatile finite element methods
[21, 81, 82]. Our attention will be focused on three issues: equivalence of the
second-order equations with the original, first-order equations studied in Chap. 5,
the well-posedness of the new formulation and the regularity of its solution, as
we did in that chapter. We also study how to take into account the conditions on
the divergence of the fields, incorporating them explicitly at some point in the
variational formulations. To these ends, we shall again rely on the mathematical
tools introduced in Chaps. 2, 3 and 4, as well as on the specific properties of the
spaces of electromagnetic fields introduced in Chap. 6.

7.1 First-Order to Second-Order Equations

We shall start from the first-order Maxwell equations set in a domain Ω , made of
a perfect medium, and fix the final time T > 0. In particular, we choose to solve
problems set in a domain: so, the equations include boundary conditions, which
must be handled with some care. By extension, the case of Maxwell’s equations set
in R3 is covered by the study below, precisely in the subsection devoted to a domain
encased in a perfect conductor. We consider the equations

ε
∂E

∂t
− curl H = −J , onΩ, t ∈]0, T [ (7.1)

μ
∂H

∂t
+ curl E = 0, onΩ, t ∈]0, T [. (7.2)
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We keep the equations on the divergence of the fields

div (εE) = �, onΩ, t ∈]0, T [ (7.3)

div (μH ) = 0, onΩ, t ∈]0, T [, (7.4)

and the initial condition

E(0) = E0, H (0) = H 0 onΩ. (7.5)

Finally, assume that the conditions (5.10) on ε and μ are met.

7.1.1 Semi-Classical Approach

Differentiating first in the sense of distributions in space and time, one easily finds
decoupled equations in E and H

ε
∂2E

∂t2
+ curl μ−1 curl E = −∂J

∂t
in D′(]0, T [×Ω), (7.6)

μ
∂2H

∂t2
+ curl ε−1 curl H = curl ε−1J in D′(]0, T [×Ω). (7.7)

These are vector wave equations.
Second, assuming that we can consider the trace of Ampère’s and Faraday’s laws

at time t = 0, we obtain:

E′(0) = E1, with E1 := ε−1 (curl H 0 − J (0)) , (7.8)

H ′(0) = H 1, with H 1 := −μ−1 curl E0. (7.9)

Third, when the medium is encased in a perfect conductor, we keep the boundary
condition (5.9) on E. Furthermore, considering the trace of Ampère’s law on the
boundary and assuming that one can differentiate in time there, one finds

ε−1(curl H − J )(t)× n = 0 on Γ, t ∈]0, T [. (7.10)
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More precisely,1 in conjunction with Eq. (7.7), one assumes that, for t ∈]0, T [,
ε−1(curl H − J )(t) ∈ H (curl,Ω), and that it holds that

∀v ∈ H (curl,Ω), t ∈]0, T [, (curl ε−1(curl H − J )(t)|v) =
(ε−1(curl H − J )(t)| curl v). (7.11)

Indeed, integrating by parts in (7.11) yields

∀v ∈ H (curl,Ω), t ∈]0, T [, γ 〈ε−1(curl H (t)− J (t))× n, v�〉π = 0,

which is precisely (7.10).

On the other hand, one can similarly handle the truncated interior problem, with
an absorbing boundary condition (ABC) on the artificial boundary ΓA. Recall that
in this case, Γ = ΓP ∪ΓA, with ΓP ∩ΓA = ∅ and ∂ΓP ∩ ∂ΓA �= ∅, and we assume
that the medium is homogeneous in a neighborhood of ΓA. The ABC writes

E(t)× n +
√
μ

ε
H�(t) = g�(t) on ΓA, t ∈]0, T [. (7.12)

Equations on Ω remain unchanged, including the initial conditions (7.5). Then, the
boundary conditions (5.9) and (7.10) hold on ΓP . On the other hand, on the artificial
boundary, one builds, in the same spirit as (7.10), the conditions

∂E

∂t
(t)× n − 1√

εμ
(curl E)�(t) = ∂g

�

∂t
(t) on ΓA, t ∈]0, T [ (7.13)

∂H

∂t
(t)× n− 1√

εμ
(curl H − J )�(t) = ∂k�

∂t
(t) on ΓA, t ∈]0, T [, (7.14)

with data g� and k� = √
ε/μg� × n.

7.1.2 Variational Approach

In the spirit of (5.1), we require

E ∈ L2(0, T ;H (curl,Ω)), E′ ∈ L2(0, T ;L2(Ω)) ;
H ∈ L2(0, T ;H (curl,Ω)), H ′ ∈ L2(0, T ;L2(Ω)) ;
J ∈ L2(0, T ;L2(Ω)).

Note that we add the initial conditions (7.8–7.9) as before.

1The other way around (see Sect. 7.3) the conditions on ε−1(curl H − J ) allow one to
recover the perfect conductor boundary condition on E by integrating in time, with the help of
Proposition 2.3.4.
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Consider first that the medium is encased in a perfect conductor. Then, we include
the boundary condition in the requirement for the electric field, namely (cf. (5.2))

E ∈ L2(0, T ;H 0(curl,Ω)).

Let us build the second-order variational formulation for the magnetic field. To begin
with, one can reformulate Ampère’s law (7.1) as

∀ϕ ∈ D(]0, T [), ∀v ∈ L2(Ω),∫ T
0

{
(E(t)|v) ϕ′(t)+ (ε−1 curl H (t)|v) ϕ(t)

}
dt =

∫ T
0
(ε−1J (t)|v) ϕ(t) dt.

In particular,

∀ϕ ∈ D(]0, T [), ∀w ∈ H (curl,Ω),∫ T
0

{
(E(t)| curl w) ϕ′(t)+ (ε−1 curl H (t)| curl w) ϕ(t)

}
dt

=
∫ T

0
(ε−1J (t)| curl w) ϕ(t) dt.

On the other hand, according to Faraday’s law (7.2), knowing that E(t) belongs to
H 0(curl,Ω) for all t , we find, by integration by parts in space and time,

∫ T
0
(E(t)| curl w) ϕ′(t) dt =

∫ T
0
(curl E(t)|w) ϕ′(t) dt

= −
∫ T

0
(μH ′(t)|w) ϕ′(t) dt =

∫ T
0
(μH (t)|w) ϕ′′(t) dt. (7.15)

Hence, we conclude that

∀ϕ ∈ D(]0, T [), ∀w ∈ H (curl,Ω),∫ T
0

{
(μH (t)|w) ϕ′′(t)+ (ε−1 curl H (t)| curl w) ϕ(t)

}
dt

=
∫ T

0
(ε−1J (t)| curl w) ϕ(t) dt.

(7.16)

Equivalently,

∀w ∈ H (curl,Ω),
d2

dt2
{(μH (t)|w)} + (ε−1 curl H (t)| curl w)

= (ε−1J (t)| curl w) in D′(]0, T [).
(7.17)
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To build the second-order variational formulation for the electric field, we proceed
similarly. Let us start with Faraday’s law (7.2)

∀ϕ ∈ D(]0, T [), ∀v ∈ L2(Ω),∫ T
0

{
−(H (t)|v) ϕ′(t)+ (μ−1 curl E(t)|v) ϕ(t)

}
dt = 0.

Next, take v = curl w, with w ∈ H 0(curl,Ω), and integrate by parts in space the
first term (the boundary condition is needed on w, as none is imposed on H (t)).
Using Ampère’s law (7.1) and finally integrating in time, we find:

−
∫ T

0
(H (t)| curl w) ϕ′(t) dt = −

∫ T
0
(curl H (t)|w) ϕ′(t) dt

=
∫ T

0
(εE(t)|w) ϕ′′(t) dt −

∫ T
0
(J (t)|w) ϕ′(t) dt. (7.18)

For the electric field, we conclude that

∀ϕ ∈ D(]0, T [), ∀w ∈ H 0(curl,Ω),∫ T
0

{
(εE(t)|w) ϕ′′(t)+ (μ−1 curl E(t)| curl w) ϕ(t)

}
dt

=
∫ T

0
(J (t)|w) ϕ′(t) dt.

(7.19)

Or,

∀w ∈ H 0(curl,Ω),
d2

dt2
{(εE(t)|w)} + (μ−1 curl E(t)| curl w)

= − d
dt

{(J (t)|w)} in D′(]0, T [).
(7.20)

For the truncated interior problem, one proceeds very similarly, bearing in mind that
E(t) × n|ΓP = 0 and

(
E(t)× n + (μ/ε)1/2H�(t)

)
|ΓA = g�(t). For this problem,

one requires

E ∈ L2(0, T ;H 0,ΓP (curl,Ω)).

Also, when building the second-order variational formulation in H , (7.15) com-
prises boundary terms on ΓA: for all w ∈ H (curl,Ω),

∫ T
0
(E(t)| curl w) ϕ′(t) dt=

∫ T
0

{
(curl E(t)|w)+ γ 0

A
〈E(t)× n,w�〉πA

}
ϕ′(t) dt

=
∫ T

0
(μH (t)|w) ϕ′′(t) dt +

∫ T
0

{
γ 0
A
〈g�(t)−

√
μ

ε
H�(t),w�〉πA

}
ϕ′(t) dt.
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For the second-order problem on the magnetic field, we readily arrive at

∀ϕ ∈ D(]0, T [), ∀w ∈ H (curl,Ω),∫ T
0

{
(μH (t)|w) ϕ′′(t)−

√
μ

ε γ
0
A
〈H�(t),w�〉πA ϕ′(t)

+(ε−1 curl H (t)| curl w) ϕ(t)
}
dt

=
∫ T

0

{
(ε−1J (t)| curl w) ϕ(t)+

√
μ

ε γ
0
A
〈k�(t)× n,w�〉πAϕ′(t)

}
dt,

(7.21)

assuming that we can split the duality brackets on ΓA.2Equivalently,

∀w ∈ H (curl,Ω),
d2

dt2
{(μH (t)|w)} +

√
μ

ε

d

dt

{
γ 0
A
〈H�(t),w�〉πA

}
+(ε−1 curl H (t)| curl w)

= (ε−1J (t)| curl w)−
√
μ

ε

d

dt

{
γ 0
A
〈k�(t)× n,w�〉πA

}
in D′(]0, T [).

(7.22)

When building the second-order variational formulation in the electric field, (7.18)
also comprises boundary terms on ΓA: for all w ∈ H 0,ΓP (curl,Ω),

−
∫ T

0
(H (t)| curl w) ϕ′(t) dt =

∫ T
0

{
−(curl H (t)|w)+ γ 0

A
〈w × n,H�(t)〉πA

}
ϕ′(t) dt

=
∫ T

0
(εE(t)|w) ϕ′′(t) dt −

∫ T

0
(J (t)|w) ϕ′(t) dt

+
√
ε

μ

∫ T
0

{
γ 0
A
〈w × n,g�(t)〉πA − γ 0

A
〈w × n,E(t)× n〉πA

}
ϕ′(t) dt.

2From the definition k� = √
ε/μ g�×n, and because g� is tangential, it holds that

√
μ/ε k�×n =

−g�. Hence, the boundary term in the r.h.s. of (7.21) also writes

−
∫ T

0
γ 0
A
〈g�,w�〉πAϕ′(t) dt.
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We then obtain

∀ϕ ∈ D(]0, T [), ∀w ∈ H 0,ΓP (curl,Ω),∫ T
0

{
(εE(t)|w) ϕ′′(t)−

√
ε

μγ
0
A
〈w × n,E(t)× n〉πAϕ′(t)

+(μ−1 curl E(t)| curl w) ϕ(t)
}
dt

=
∫ T

0

{
(J (t)|w)−

√
ε

μγ
0
A
〈w × n,g�(t)〉πA

}
ϕ′(t) dt.

(7.23)

Or,

∀w ∈ H 0,ΓP (curl,Ω),
d2

dt2
{(εE(t)|w)} +

√
ε

μ

d

dt
{γ 0
A
〈w × n,E(t)× n〉πA}

+(μ−1 curl E(t)| curl w)

= − d
dt

{(J (t)|w)} +
√
ε

μ

d

dt

{
γ 0
A
〈w × n,g�(t)〉πA

}
in D′(]0, T [).

(7.24)

Remark 7.1.1 For both problems, we recover, as side products, Eqs. (7.6)–
(7.7) in the sense of distributions in space and time. Also, note that, if J ′ ∈
L1
loc(0, T ;L2(Ω)), one can replace

∫ T
0 (J (t)|w) ϕ′(t) dt in (7.19) and (7.23),

respectively −{(J (t)|w)}′ in (7.20) and (7.24), with − ∫ T0 (J ′(t)|w) ϕ(t) dt ,
respectively with −(J ′(t)|w).
Remark 7.1.2 From now on, one requires that all traces, ∂tg�(t), ∂tk�(t), ∂tE(t)×
n|ΓA and ∂tH (t) × n|ΓA belong to L2

t (ΓA) at all times, so that one can measure
the electromagnetic fields on ΓA by integrating their norm squared (see Sect. 7.2).
According to Remark 5.1.8, this assumption is not restrictive, as it amounts to
choosing an artificial boundary without pathological vertices. Anyway, pathological
vertices could still be accepted, because one retains the positive property on the
boundary term on ΓA, cf. (5.26).

7.2 Well-Posedness of the Second-Order Maxwell Equations

Our aim now is to solve rigorously the second-order time-dependent Maxwell
equations, and to obtain well-posedness under some ad hoc assumptions on the
data that can be different from the ones required for the first-order equations (see
Sect. 5.2). For that, we shall use the Lions-Magenes Theorem 4.3.13 or, more
precisely, its variant, Corollary 4.3.15. We let H be a first Hilbert space, with scalar
products (·, ·)H or 2(·, ·)H, whose associated norms are equivalent. We also let V
be a second Hilbert space, with scalar product (·, ·)V ; V is continuously imbedded
in H, and moreover, V is dense in H. The abstract form of a second-order time-
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dependent problem is to find a weak solution u : t �→ u(t) with values in V for
t ∈ [0, T ], governed by

⎧⎪⎪⎨
⎪⎪⎩

Find u such that

∀v ∈ V, d
2

dt2
{2(u(t), v)H} + a(u(t), v) = (f(t), v)H in D′(]0, T [),

u(0) = u0 and u′(0) = u1.

Above, the form a defined on V × V is Hermitian. We recall that the variational
formulation is equivalently written as

∀ϕ ∈ D(]0, T [), ∀v ∈ V,∫ T
0

{
2(u(t), v)H ϕ′′(t)+ a(u(t), v) ϕ(t)

}
dt =

∫ T
0
(f(t), v)H ϕ(t) dt.

To prove well-posedness, the crucial tool is the so-called energy inequality, which
allows one to obtain uniform estimates (with respect to the data). In this way, one
can construct (approximate) solutions in finite-dimensional vector subspaces of V ,
and then pass to the limit to prove the existence of the solution.

We recall below how the energy inequality is obtained, because alternate
estimates will be needed later on. First, let us add ν ‖v‖2

H to both sides of the
above variational formulation, with ν ≥ 0 chosen so that property (4.15) is fulfilled:
namely, ν is such that

v �→ (a(v, v)+ ν ‖v‖2
H)

1/2

defines a norm on V , which is equivalent to ‖ · ‖V . Then, to derive this energy
inequality, one (formally) sets the test function v to u′(t):

2(u
′′(t), u′(t))H + a(u(t), u′(t)) + ν(u(t), u′(t))H = (f(t), u′(t))H + ν(u(t), u′(t))H.

Integrating in time (t ∈]0,Θ[) and noting that the left-hand side is a real number,
one finds (with δ0, δ1 > 0):

[
2‖u′(Θ)‖2

H + a(u(Θ), u(Θ)) + ν‖u(Θ)‖2
H
]
−
[

2‖u1‖2
H + a(u0, u0)+ ν‖u0‖2

H
]

= 2
∫ Θ

0
 {(f(t), u′(t))H + ν(u(t), u′(t))H

}
dt

≤
∫ Θ

0

{
δ0‖f(t)‖2

H + 1

δ0
‖u′(t)‖2

H + νδ1‖u(t)‖2
H + ν

δ1
‖u′(t)‖2

H

}
dt.



7.2 Well-Posedness of the Second-Order Maxwell Equations 275

So, we have

2‖u′(Θ)‖2
H+ α ‖u(Θ)‖2

V ≤ Cic +
∫ Θ

0

{
δ0‖f(t)‖2

H+δ2‖u(t)‖2
V+ δ3‖u′(t)‖2

H
}
dt,

where Cic := 2‖u1‖2
H + a(u0, u0) + ν‖u0‖2

H depends on the initial conditions,
δ0 > 0, δ2 := ν δ1 ‖iV→H‖L(V ,H) > 0, δ3 := (δ0)−1 + ν(δ1)−1 > 0, and finally,
α > 0 denotes the comparison parameter of the norms in V , cf. property (4.15). To
obtain the energy inequality, one uses Gronwall’s lemma.

Lemma 7.2.1 (Gronwall) Let d ∈ L1(0, T ;R+), e ∈ L1(0,Θ) for all Θ < T , C
and β1 ≥ 0, β2 ≥ 0 be such that

for a.e.Θ ∈]0, T [, e(Θ) ≤ C + β1

∫ Θ
0
e(t) dt + β2

∫ Θ
0
d(t) dt.

Then, e ∈ L∞(0, T ) and ‖e‖L∞(0,T ) ≤ exp(β1T )

{
C + β2

∫ T
0
d(t) dt

}
.

In our case, we simply define e := ‖u′‖2
H + ‖u‖2

V , d := ‖f‖2
H and C := Cic to

conclude that there exists a constant CT > 0 such that the generic energy inequality
below holds:

‖u‖2
W 1,∞(0,T ;H) + ‖u‖2

L∞(0,T ;V)

≤ CT
{
‖u1‖2

H + ‖u0‖2
V +

∫ T
0

‖f‖2
H dt

}
. (7.25)

7.2.1 In a Domain Encased in a Perfect Conductor

This is the cavity problem. The case of Maxwell’s equations set in R3 is addressed
here in particular, since the variational formulations and function spaces are
identical.

Let us start with the problem in the field E. According to (7.19) or (7.20), we set
HE = L2(Ω), endowed with the two scalar products

(v,w)HE = (v|w) and 2(v,w)HE = (εv|w).

The latter one is actually a scalar product, according to the assumptions on the
permittivity tensor ε, namely thanks to (5.10), which also ensures the equivalence of
the associated norms. The data is fE = −J ′. Then, to take into account the perfect
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conductor boundary condition on E, we set VE = H 0(curl,Ω), and the form

aE(v,w) = (μ−1 curl v| curl w).

Let us carry on with the problem in the field H . In this instance (see (7.16) or (7.17)),
we set HH = L2(Ω), endowed with

(v,w)HH = (v|w) and 2(v,w)HH = (μv|w).

We remark that, in the variational formulation, the right-hand side is not expressed as
the generic (f(t), v)HH . This difficulty is addressed below. In the “magnetic” case,
2(·, ·)HH is a scalar product thanks to the assumptions (5.10) on the permeability
tensor μ. Finally, we set VH = H (curl,Ω), and

aH (v,w) = (ε−1 curl v| curl w).

Lemma 7.2.2 The field H fulfills an energy inequality (7.25), with data f = −J ′.

Proof As in the introductory part of Sect. 7.2, we first find that, for Θ ∈]0, T [,

2‖H ′(Θ)‖2
HH + aH (H (Θ),H (Θ))+ ‖H (Θ)‖2 = Cic

+2
∫ Θ

0
{(ε−1J (t)| curl H ′(t))} dt + 2

∫ Θ
0

{(H (t)|H ′(t))} dt, (7.26)

where Cic := 2‖H 1‖2
HH + aH (H 0,H 0)+‖H 0‖2. To tackle the non-standard term

involving the data J , we integrate by parts in time:

2
∫ Θ

0
{(ε−1J (t)| curl H ′(t))} dt = −2

∫ Θ
0

{(ε−1J ′(t)| curl H (t))} dt

+2{(ε−1J (Θ)| curl H (Θ))} − 2{(ε−1J (0)| curlH 0)}.

The first and last terms can be handled as before: −2{(ε−1J (0)| curl H 0)} is
added to Cic, whereas

−2
∫ Θ

0
{(ε−1J ′(t)| curl H (t))} dt

≤
∫ Θ

0
‖ε−1/2J ′(t)‖2 dt +

∫ Θ
0
(ε−1 curl H (t)| curl H (t)) dt

≤
∫ Θ

0
‖ε−1/2J ′(t)‖2 dt +

∫ Θ
0

1

ε−
‖H (t)‖2

VH dt.
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Then, we bound the second term by

2{(ε−1J (Θ)| curl H (Θ))} ≤ δ ‖ε−1/2J (Θ)‖2 + 1

δ
aH (H (Θ),H (Θ)),

for δ > 0. Taking, for instance, δ = 2, we notice that the term 1
2aH (H (Θ),H (Θ))

will be absorbed by the left-hand side of (7.26).
Finally, using the triangle inequality, Proposition 2.3.6 and the Cauchy-Schwarz

inequality in time, we obtain:

‖ε−1/2J (Θ)‖ =
∥∥∥∥
∫ Θ

0
ε−1/2J ′(t) dt + ε−1/2J (0)

∥∥∥∥
≤
∫ Θ

0
‖ε−1/2J ′(t)‖ dt + ‖ε−1/2J (0)‖

≤ Θ1/2
(∫ Θ

0
‖ε−1/2J ′(t)‖2dt

)1/2

+ ‖ε−1/2J (0)‖.

Hence, 2 ‖ε−1/2J ′(Θ)‖2 ≤ 4Θ
∫ Θ

0
‖ε−1/2J ′(t)‖2dt + 4‖ε−1/2J (0)‖2.

Putting everything back in (7.26), we find that

2‖H ′(Θ)‖2
HH + min(1,

1

2ε+
)‖H (Θ)‖2

VH

≤ 2‖H ′(Θ)‖2
HH + 1

2
aH (H (Θ),H (Θ))+ ‖H (Θ)‖2

≤ C′
ic + (1 + 4T )

∫ Θ
0

‖ε−1/2J ′(t)‖2dt

+
∫ Θ

0

(
‖H ′(t)‖2 + (1 + 1

ε−
)‖H (t)‖2

VH

)
dt.

where C′
ic = Cic − 2{(ε−1J (0)| curlH 0)} + 4‖ε−1/2J (0)‖2.

We can conclude by using Gronwall’s Lemma.

Remark 7.2.3 In the above proof, we integrate in time to compensate for the lack of
regularity in space of J (and H ). This will also be the case in Theorem 7.3.4, which
addresses the existence of electromagnetic fields, assuming only the knowledge of
a solution to the second-order problem on the magnetic field.

Theorem 7.2.4 Consider a perfect medium in a domain Ω ⊂ R3 encased in a
perfect conductor, and T > 0. Let the tensor fields ε and μ satisfy (5.10).
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1. Assume that

{
E0 ∈ H 0(curl,Ω), H 0 ∈ H (curl,Ω)
J ∈ H 1(0, T ;L2(Ω)) ; (7.27)

then, there exists one, and only one, couple of fields (E,H ):

{
(E,E′) ∈ C0([0, T ];H 0(curl,Ω))× C0([0, T ];L2(Ω))

(H ,H ′) ∈ C0([0, T ];H (curl,Ω))× C0([0, T ];L2(Ω)),

which solves Eqs. (7.6–7.7), (7.5) and (7.8–7.9), supplemented with the boundary
condition (5.9).

2. Assume, in addition to 1, that

⎧⎨
⎩

div εE0 = �(0), div μH 0 = 0, μH 0 · n|Γ = 0

�(0) ∈ H−1(Ω),
∂�

∂t
+ div J = 0, t ≥ 0 ; (7.28)

then, there exists one, and only one, couple of fields (E,H ):

⎧⎨
⎩
(E,E′) ∈ C0([0, T ];H 0(curl,Ω))× C0([0, T ];L2(Ω))

(H ,H ′) ∈ C0([0, T ];H (curl,Ω) ∩ H 0(div μ,Ω))
×C0([0, T ];H 0(divμ,Ω)),

(7.29)

which solves the second-order system of equations (7.6–7.7) and the divergence
conditions (7.3–7.4), (7.5) and (7.8–7.9), supplemented with boundary condi-
tions (5.8) and (5.9).

3. Assume, in addition to 1, that

⎧⎨
⎩

μ−1 curl E0 ∈ H (curl,Ω)
ε−1(curl H 0 − J (0)) ∈ H 0(curl,Ω)
J ∈ H 2(0, T ;L2(Ω)) ;

(7.30)

then, the couple of fields (E,H ) of 1 fulfills the boundary condition (7.10).

In all instances, the couple of fields (E,H ) depends continuously on the data.

Proof

1. For the problem in the field E, we remark, on the one hand, that the variational
formulation fits into the abstract framework of the introductory part of Sect. 7.2.
On the other hand, E1 belongs to L2(Ω), the form aE(·, ·) is obviously
Hermitian, and moreover, it fulfills property (4.15) in H 0(curl,Ω), so the
result is a straightforward application of Lions-Magenes Theorem 4.3.13 and
its Corollary 4.3.15. One obtains that the second-order equation (7.6) is fulfilled
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in L2(0, T ; (H 0(curl,Ω))′), as a side-product (see Remark 4.3.14), whereas the
boundary condition (5.9) is included in the definition of H 0(curl,Ω).
For the problem in the field H , we have that H 1 ∈ L2(Ω), and moreover, the
form aH is Hermitian, and fulfills property (4.15) in H (curl,Ω). However, the
conditions on the right-hand side of the variational formulation are not met. In
this case, one has to build an energy inequality directly, cf. Lemma 7.2.2. This
last result allows one to derive a variant of the Lions-Magenes Theorem, and
we also achieve well-posedness in this case, with continuous dependence on the
data. Finally, the second-order equation (7.7) obviously holds in D′(]0, T [×Ω).

2. For the problem in H , our aim is to prove that

∀t ∈ [0, T ], div μH (t) = 0, μH (t) · n|Γ = 0. (7.31)

From step 1, we already have that H ∈ C0([0, T ];L2(Ω)), so H (t) belongs to
L2(Ω) for all t ∈ [0, T ], and we just need to prove that (cf. (2.25))

∀t ∈ [0, T ], ∀φ ∈ H 1(Ω), (μH (t)| gradφ) = 0.

So, given φ ∈ H 1(Ω), we define hφ := (μH | gradφ) ∈ C0([0, T ]). Now,
according to Proposition 2.2.10, we have gradφ ∈ H (curl,Ω), so it can be
used in the variational formulation, which yields:

∀ϕ ∈ D(]0, T [), 0 =
∫ T

0
hφ(t)ϕ

′′(t) dt = 〈h′′φ, ϕ〉t .

In other words, h′′φ = 0 in D′(]0, T [), so there exist complex numbers a, b such
that, for t ∈ [0, T ], hφ(t) = at + b.

On the other hand, the initial condition on H 0 (7.28) gives hφ(0) = 0. In
addition, one also has h′φ(0) = 0, because (7.9) and Proposition 2.2.10 imply
div μH 1 = 0 and μH 1 ·n|Γ = 0. We conclude that hφ = 0, which proves (7.31).
Obviously, the same result holds for H ′, so we have obtained

H ,H ′ ∈ C0([0, T ];H 0(div μ,Ω)).

For the problem in E, given φ ∈ D(Ω), this time, we have gradφ ∈
H 0(curl,Ω) (cf. Proposition 2.2.10), and in this case,

∀ϕ ∈ D(]0, T [),
∫ T

0
(εE(t)| gradφ)ϕ′′(t) dt =

∫ T
0
(J (t)| gradφ)ϕ′(t) dt.
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The right-hand side is then processed:

∫ T
0
(J (t)| gradφ)ϕ′(t) dt = −

∫ T
0

〈div J (t), φ〉ϕ′(t) dt

(7.28)=
∫ T

0
〈�′(t), φ〉ϕ′(t) dt

= −
∫ T

0
〈�(t), φ〉ϕ′′(t) dt.

Next, we introduce eφ := (εE| gradφ), rφ := −〈�, φ〉, both of which belong
to C0([0, T ]). Indeed, the latter is characterized by 〈�′, φ〉, which belongs to
C0([0, T ]) and by 〈�(0), φ〉. Summing up:

∀ϕ ∈ D(]0, T [), 〈e′′φ, ϕ〉t = 〈r ′′φ , ϕ〉t ,

so one can write, for t ∈ [0, T ], eφ(t) = rφ(t) + at + b, with a, b being
two complex numbers. Then, we recall, from (7.28), that eφ(0) = rφ(0), and
moreover,

e′φ(0) = (εE1| gradφ) = −〈div εE1, φ〉 (7.8)= 〈div J (0), φ〉 (7.28)= r ′φ(0).

Hence, eφ = rφ , which we can express equivalently as

∀t ∈ [0, T ], ∀φ ∈ D(Ω), 〈div εE(t), φ〉 = 〈�(t), φ〉, that is,

∀t ∈ [0, T ], div εE(t) = �(t) in H−1(Ω).

3. Due to 1. and (7.27), we know that ε−1(curl H − J ) ∈ C0([0, T ];L2(Ω)). On
the one hand, for t ≥ 0, the mapping v �→ (ε−1(curl H (t) − J (t))| curl v)
belongs to (H (curl,Ω))′, and we can write

∀v ∈ H (curl,Ω), t ≥ 0, (ε−1(curl H (t)−J (t))| curl v) = 〈X(t), v〉H (curl,Ω)

with X ∈ C0([0, T ]; (H (curl,Ω))′). On the other hand, notice that (7.17) can
now be rewritten μH ′′ + X = 0 in C0(]0, T [; (H (curl,Ω))′), hence we infer
that μH ′′ ∈ C0(]0, T [; (H (curl,Ω))′).

So, we remark that, if H ′′ ∈ C0(]0, T [;L2(Ω)), then X belongs to the same
function space. In this case,

∀v ∈ H (curl,Ω), t ∈]0, T [, (ε−1(curl H (t)− J (t))| curl v) = (X(t)|v).



7.2 Well-Posedness of the Second-Order Maxwell Equations 281

Taking v ∈ D(Ω), we obtain that curl ε−1(curl H (t)− J (t)) = X(t) ∈ L2(Ω)

for t ∈]0, T [. We conclude, by identification, that

∀v ∈ H (curl,Ω), t ∈]0, T [, −(curl(ε−1(curl H − J )(t))|v)+
(ε−1(curl H − J )(t)| curl v) = 0,

i.e., (7.11), which yields (7.10).
Now, let us prove that H ′′ ∈ C0(]0, T [;L2(Ω)) under the assumptions (7.30).

For that, we introduce the auxiliary problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Find h such that

∀v ∈ H (curl,Ω),
d2

dt2
{(μh(t)|v)} + aH(h(t), v)

= (ε−1J ′(t)| curl v) in D′(]0, T [),
h(0) = H 1 and h′(0) = H 2 := −μ−1 curl(ε−1(curl H 0 − J (0))).

Proceeding exactly as in step 1, we find that there exists one, and only one, field
h that solves the above, with regularity

(h, h′) ∈ C0([0, T ];H (curl,Ω))× C0([0, T ];L2(Ω)).

Then, we check that t �→ H̃ (t) = ∫ t
0 h(s) ds + H 0 solves the original

second-order “magnetic” problem. The initial conditions on H̃ are, respectively,
H̃ (0) = H 0 and H̃

′
(0) = h(0) = H 1 (see Proposition 2.3.6 for the latter). Also,

replacing H with H̃ in (7.16), one finds easily, by integration by parts in time,
that this new formulation is true for all ϕ = ψ ′ with ψ ∈ D(]0, T [) (and for all
w ∈ H (curl,Ω)). Hence, given w ∈ H (curl,Ω), we find that it holds that, in
D′(]0, T [),

d2

dt2

{
(μH̃ (t)|w)}+ (ε−1 curl H̃ (t)| curl w)− (ε−1J (t)| curl w) = aw,

where aw is a constant number. Going to the limit at t = 0+, we obtain

aw = (μh′(0)|w)+ (ε−1 curl H̃ (0)| curl w)− (ε−1J (0)| curl w)

= −(curl(ε−1(curl H 0 − J (0)))|w)+ (ε−1(curl H 0 − J (0))| curl w)

= 0 by integration by parts, thanks to (7.30).

So, we conclude that H̃ solves (7.17). By the uniqueness of the solution, we
actually have that H and H̃ coincide, and in particular, H ′′ = h′ belongs to the
ad hoc function space.
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Remark 7.2.5 In the previous proof (step 2), one cannot use, as before, the process
described in Remark 5.1.2 for the first-order equations to recover the divergence
conditions (5.5)–(5.6).

Remark 7.2.6 The second-order in time problems are related only through their
initial conditions. So, in principle, it is possible to solve them “independently”:
one can choose to state the well-posedness results for the second-order system of
equations in E only, and likewise for H . However, the assumptions about the data
are stronger for recovering the boundary condition (7.10) on the field H , which
induces some asymmetry between the two second-order problems.

Remark 7.2.7 To tackle the unusual right-hand side in the “magnetic” case, one
could also consider applying the improved regularity results of Sect. 4.4, to
reach similar conclusions regarding the existence and uniqueness of H . Indeed,
it is clear that w → (ε−1J | curl w) belongs to L2(0, T ;H (curl,Ω)′) if J ∈
L2(0, T ;L2(Ω)). Those results hold under some compactness property: namely,
that the space of magnetic fields is compactly imbedded in HH = L2(Ω). However,
H (curl,Ω) is not a compact subset of L2(Ω), so one must instead consider an
appropriate subspace that still contains all the magnetic fields. On the other hand
(cf. step 2), div μH and μH · n|Γ both vanish. An appropriate choice is then
H (curl,Ω) ∩ H 0(div μ,Ω), which is compactly imbedded in L2(Ω) when Ω is
a domain, according to Theorem 7.5.3 below.

7.2.2 Truncated Interior Problem

Below, we focus on the differences with the case of a domain encased in a perfect
conductor: unless otherwise specified, notations are the same as in this case.

Let us start with the problem in H , cf. (7.21) or (7.22) and Remark 7.1.2. We
choose the same pivot space HH = L2(Ω) and scalar products (·, ·)HH , 2(·, ·)HH .
Whereas, we set VT IPH := {v ∈ H (curl,Ω) : v × n|ΓA ∈ L2

t (ΓA)}, and define

aT IPH (v,w) = aH (v,w)+
√
μ

ε

∫
ΓA

v� · w� dΓ.

Here, T IP stands for truncated interior problem.

Lemma 7.2.8 The field H fulfills the energy inequality, for some CT > 0,

‖H‖2
W 1,∞(0,T ;L2(Ω))

+ ‖H‖2
L∞(0,T ;H (curl,Ω)) +

∫ T
0

∫
ΓA

|H ′�(t)|2 dΓ dt

≤ CT
{
C′
ic +

∫ T
0

‖J ′(t)‖2 dt +
∫ T

0

∫
ΓA

|(k�)′(t)× n|2 dΓ dt
}
. (7.32)
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Proof For Θ ∈]0, T [,

2‖H ′(Θ)‖2
HH + aH (H (Θ),H (Θ))+ ‖H (Θ)‖2

+2

√
μ

ε

∫ Θ
0

∫
ΓA

|H ′�(t)|2 dΓ dt = Cic + 2
∫ Θ

0
{(ε−1J (t)| curl H ′(t))} dt

+2
∫ Θ

0
{(H (t)|H ′(t))} dt − 2

√
μ

ε

∫ Θ
0

∫
ΓA

{(k�)′(t)× n · H ′�(t)} dΓ dt.

One then bounds the new term on the right-hand side, for instance, by

√
μ

ε

∫ Θ
0

∫
ΓA

(
|(k�)′(t)× n|2 + |H ′�(t)|2

)
dΓ dt ,

whose rightmost part can be absorbed into the left-hand side:

2‖H ′(Θ)‖2
HH + aH(H (Θ),H (Θ))+ ‖H (Θ)‖2

+
√
μ

ε

∫ Θ
0

∫
ΓA

|H ′�(t)|2 dΓ dt ≤ Cic + 2
∫ Θ

0
{(ε−1J (t)| curl H ′(t))} dt

+2
∫ Θ

0
{(H (t)|H ′(t))} dt +

√
μ

ε

∫ Θ
0

∫
ΓA

|(k�)′(t)× n|2 dΓ dt.

In particular, one has

2‖H ′(Θ)‖2
HH + aH (H (Θ),H (Θ))+ ‖H (Θ)‖2 ≤ Cic

+2
∫ Θ

0
{(ε−1J (t)| curl H ′(t))} dt

+2
∫ Θ

0
{(H (t)|H ′(t))} dt +

√
μ

ε

∫ Θ
0

∫
ΓA

|(k�)′(t)× n|2 dΓ dt.

Proceeding as in the proof of Lemma 7.2.2 (integrating by parts in time the term
with J ), one finds that ‖H‖2

W 1,∞(0,T ;L2(Ω))
+ ‖H‖2

L∞(0,T ;H (curl,Ω)) is bounded as

claimed in (7.32), for an ad hoc CT > 0.
On the other hand, one also has

√
μ

ε

∫ Θ
0

∫
ΓA

|H ′�(t)|2 dΓ dt ≤ Cic + 2
∫ Θ

0
{(ε−1J (t)| curl H ′(t))} dt

+2
∫ Θ

0
{(H (t)|H ′(t))} dt +

√
μ

ε

∫ Θ
0

∫
ΓA

|(k�)′(t)× n|2 dΓ dt.
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Again, integrating by parts in time the term with J , and using the proven bound
on ‖H‖2

W 1,∞(0,T ;L2(Ω))
+‖H‖2

L∞(0,T ;H (curl,Ω)), one concludes that (7.32) globally

holds for some CT > 0.

For the problem in E, cf. (7.23) or (7.24) and Remark 7.1.2, we choose the same
pivot space HE = L2(Ω) and scalar products (·, ·)HE , 2(·, ·)HE . On the other hand,
we set VT IPE := {v ∈ H 0,ΓP (curl,Ω) : v × n|ΓA ∈ L2

t (ΓA)}, and define

aT IPE (v,w) = aE(v,w)+
√
ε

μ

∫
ΓA

v × n · w × n dΓ.

As previously, we find an energy inequality, whose proof is omitted.

Lemma 7.2.9 The field E fulfills the energy inequality, for some CT > 0,

‖E‖2
W 1,∞(0,T ;L2(Ω))

+ ‖E‖2
L∞(0,T ;H (curl,Ω)) +

∫ T
0

∫
ΓA

|E′(t)× n|2 dΓ dt

≤ CT
{
C′′
ic +

∫ T
0

‖J ′(t)‖2 dt +
∫ T

0

∫
ΓA

|(g�)′(t)|2 dΓ dt
}
.

Above, C′′
ic := C′′

ic(‖ curl E0‖, ‖E1‖).
We now proceed with the main existence result for the truncated interior problem.

Theorem 7.2.10 Consider the truncated interior problem for a perfect medium, set
in a computational domain Ω ⊂ R3. Near the artificial boundary, the medium is
homogeneous. Set T > 0, and let the tensor fields ε and μ satisfy (5.10).

1. Assume that

⎧⎨
⎩

E0 ∈ H 0,ΓP (curl,Ω), H 0 ∈ H (curl,Ω)
J ∈ H 1(0, T ;L2(Ω))

g� ∈ H 1(0, T ;L2
t (ΓA)) ;

(7.33)

then, there exists one, and only one, couple of fields (E,H ):

{
(E,E′) ∈ C0([0, T ];H 0,ΓP (curl,Ω))× C0([0, T ];L2(Ω))

(H ,H ′) ∈ C0([0, T ];H (curl,Ω))× C0([0, T ];L2(Ω)),

which solves Eqs. (7.6)–(7.7), (7.5) and (7.8)–(7.9), supplemented with the
boundary condition (5.9) on ΓP . Moreover, the traces (H�)|ΓA , (H ′�)|ΓA ,
(E × n)|ΓA and (E′ × n)|ΓA all belong to L2(0, T ;L2

t (ΓA)).
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2. Assume, in addition to 1, that

⎧⎨
⎩

div εE0 = �(0), div μH 0 = 0, μH 0 · n|ΓP = 0

�(0) ∈ H−1(Ω),
∂�

∂t
+ div J = 0, t ≥ 0 ; (7.34)

then, there exists one, and only one, couple of fields (E,H ):

⎧⎨
⎩
(E,E′) ∈ C0([0, T ];H 0,ΓP (curl,Ω))× C0([0, T ];L2(Ω))

(H ,H ′) ∈ C0([0, T ];H (curl,Ω) ∩ H 0,ΓP (div μ,Ω))
×C0([0, T ];H 0,ΓP (div μ,Ω)),

which solves the second-order system of equations (7.6)–(7.7) and the divergence
conditions (7.3)–(7.4), (7.5) and (7.8)–(7.9), supplemented with boundary con-
ditions (5.8) and (5.9) on ΓP .

3. Assume, in addition to 1, that

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

μ−1 curl E0 ∈ H (curl,Ω)
ε−1(curl H 0 − J (0)) ∈ H 0,ΓP (curl,Ω)
((curl E0)�)|ΓA, ((curl H 0 − J (0))× n)|ΓA ∈ L2

t (ΓA)

J ∈ H 2(0, T ;L2(Ω))

g� ∈ H 2(0, T ;L2
t (ΓA))

− 1√
εμ
(curl E0)� + 1

ε
(curl H 0 − J (0))× n = (g�)′(0) on ΓA ,

(7.35)

then, the couple of fields (E,H ) of 1 fulfills the boundary conditions (7.10) on
ΓP , and (7.13) or (7.14) on ΓA.

In all instances, the couple of fields (E,H ) depends continuously on the data.

Remark 7.2.11 By definition, the regularity of k� matches that of g�, i.e., k� ∈
H 1(0, T ;L2

t (ΓA)) at step 1, respectively k� ∈ H 2(0, T ;L2
t (ΓA)) at step 3.

Proof

1. The proof is very similar to that of item 1 of Theorem 7.2.4. Then, the regularity
results on the tangential traces of the fields follow from the energy inequalities
of Lemmas 7.2.8 and 7.2.9. Finally, Eqs. (7.6–7.7) hold in D′(]0, T [×Ω).

2. For the problem in H , thanks to (2.25), our aim is to prove that

∀t ∈ [0, T ], ∀φ ∈ H 1
0,ΓA(Ω), (μH (t)| gradφ) = 0.

As a matter of fact, given φ ∈ H 1
0,ΓA
(Ω), there exists (φk)k ∈ (C∞

ΓA
(Ω))N

such that limk→∞ ‖φ − φk‖H 1(Ω) = 0 (cf. Definition 2.1.65). It follows that
(gradφk)k is a Cauchy sequence in VT IPH , hence it converges in VT IPH . By
the uniqueness of the limit (in D′(Ω)), one has gradφ ∈ VT IPH . So, one can
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follow the proof of item 2 of Theorem 7.2.4. For the problem in E, the proof is
unchanged.

3. Due to 1 and (7.33), we know that ε−1(curl H−J ) ∈ C0([0, T ];L2(Ω)). On the
one hand, for t ≥ 0, the mapping v �→ (ε−1(curl H (t) − J (t))| curl v) belongs
to (H 0,ΓA(curl,Ω))′ and we can write

∀v ∈ H 0,ΓA(curl,Ω), t ≥ 0,

(ε−1(curl H (t)− J (t))| curl v) = 〈X(t), v〉H 0,ΓA (curl,Ω),

with X ∈ C0([0, T ]; (H 0,ΓA(curl,Ω))′).
On the other hand, according to Definition 2.2.27, the closure of C∞

ΓA
(Ω) in

H (curl,Ω) is equal to H 0,ΓA(curl,Ω). As C∞
ΓA
(Ω) ⊂ VT IPH , (7.22) implies, in

particular, that μH ′′ + X = 0 in L2(0, T ; (H 0,ΓA(curl,Ω))′).
If H ′′ ∈ C0(]0, T [;L2(Ω)), then X belongs to the same function space. In

which case, it follows that

∀v ∈ H 0,ΓA(curl,Ω), t ∈]0, T [, (ε−1(curl H (t)−J (t))| curl v) = (X(t)|v).

Taking v ∈ D(Ω), we obtain that curl ε−1(curl H −J )(t) = X(t) ∈ L2(Ω) for
t ∈]0, T [. By identification, one obtains

∀v ∈ H 0,ΓA(curl,Ω), t ∈]0, T [, −(curl(ε−1(curl H − J )(t))|v)+
(ε−1(curl H − J )(t)| curl v) = 0,

Thanks to (2.27) and (2.24), we conclude that the boundary condition (7.10) is
fulfilled on ΓP . Let us next recover the boundary condition on ΓA.

Still assuming H ′′ ∈ C0(]0, T [;L2(Ω)), we have proven that, for t ∈]0, T [,
curl ε−1(curl H − J )(t) = −μH ′′(t) ∈ L2(Ω). Going back to (7.22), we now
use test functions v in C∞

ΓP
(Ω) ⊂ VT IPH : integrating by parts (ε−1(curl H −

J )(t)| curl v), we find

∫
ΓA

[√
μ

ε
(H ′�(t)+ (k�)′(t)× n)+ 1

ε
(curl H − J )(t)× n

]
· v� dΓ = 0.

Now, one uses the density of C∞
ΓP
(Ω) in H 0,ΓP (curl,Ω) (this is Defini-

tion 2.2.27), and hence of the tangential components traces on ΓA of C∞
ΓP
(Ω) in

H
−1/2
⊥,0 (curlΓ , ΓA) (see Theorem 3.1.28). Then, together with the duality identity

of Theorem 3.1.29, it yields that (7.14) holds in H
−1/2
‖ (divΓA, ΓA).
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It remains to prove that H ′′ ∈ C0(]0, T [;L2(Ω)) under the assump-
tions (7.35). For that, we introduce the auxiliary problem

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Find h such that

∀v ∈ VT IPH ,
d2

dt2
{(μh(t)|v)} + aT IPH (h(t), v)

= (ε−1J ′(t)| curl v)−
√
μ

ε

∫
ΓA

(k�)′(t)× n · v� dΓ in D′(]0, T [),
h(0) = H 1 and h′(0) = H 2 := −μ−1 curl(ε−1(curl H 0 − J (0))).

Proceeding exactly as in step 1, we find that there exists one, and only one, field
h that solves the above, with regularity

(h, h′) ∈ C0([0, T ];H (curl,Ω))× C0([0, T ];L2(Ω)),

plus regularity of the tangential traces.
Then, we check that t �→ H̃ (t) = ∫ t0 h(s) ds+H 0 solves the original second-

order “magnetic” problem. The initial conditions on H̃ are, respectively, H̃ (0) =
H 0 and H̃

′
(0) = h(0) = H 1. Also, if one considers for H̃ the formulation (7.21)

(replacing H with H̃ ), one easily finds, by integration by parts in time, that this
new formulation is true for all ϕ = ψ ′ with ψ ∈ D(]0, T [) (and for all w ∈
VT IPH ). Hence, given w ∈ VT IPH , we find that it holds that, in D′(]0, T [),

d2

dt2

{
(μH̃ (t)|w)}+ (ε−1 curl H̃ (t)| curl w)

−(ε−1J (t)| curl w)+
√
μ

ε

∫
ΓA

(H̃
′
�(t)+ (k�)′(t)× n) · w� dΓ = aw,

where aw is a constant number. According to the assumptions, we have
(h�)|ΓA(0) ∈ L2

t (ΓA), so we can pass to the limit at t = 0+ and reach

aw = (μh′(0)|w)+ (ε−1 curl H̃ (0)| curl w)− (ε−1J (0)| curl w)

+
√
μ

ε

∫
ΓA

(h�(0)+ (k�)′(0)× n) · w� dΓ

= −(curl(ε−1(curl H 0 − J (0)))|w)+ (ε−1(curl H 0 − J (0))| curl w)

+
√
μ

ε

∫
ΓA

((H 1)� + (k�)′(0)× n) · w� dΓ

= 0 by integration by parts, thanks to (7.35).



288 7 Analyses of Exact Problems: Second-Order Models

So, we conclude that H̃ solves (7.22). By the uniqueness of the solution, we
actually have that H and H̃ coincide, and in particular, H ′′ = h′ belongs to the
ad hoc function space.

For the problem in E, we have to introduce another auxiliary problem in e,
which turns out to be equal to E′. We omit the details, as the proof is simpler (the
boundary condition on ΓP is already known).

7.3 Second-Order to First-Order Equations

The question we address here is: are the fields we have characterized in Sect. 7.2
equal to the solution to the first-order equations? This question is alluded to
in Sect. 1.5.3, and a formal justification is derived there. Below, we shall consider
two different approaches to addressing this issue. The first one uses the knowledge
of the two fields E and H , which solve the second-order Maxwell equations
(cf. Sect. 7.2), whereas the other one uses the knowledge of only one of those fields.
To avoid repetitions, we shall apply the two-field approach to the truncated interior
problem, and the one-field approach in a domain encased in a perfect conductor.

7.3.1 Two-Field Approach

Let us study the truncated interior problem. We mainly use the regularity results
proven in Theorem 7.2.10, and in particular, those needed on the first- and second-
order derivatives of H and E (cf. item 3). In this way, the two-field approach can be
viewed as a by-product of this Theorem.

Theorem 7.3.1 Consider the truncated interior problem for a perfect medium, set
in a computational domain Ω ⊂ R3. Near the artificial boundary, the medium is
homogeneous. Set T > 0, and let the tensor fields ε and μ satisfy (5.10). Under the
assumptions (7.33), (7.34), (7.35) and

E0 × n +
√
μ

ε
(H 0)� = g�(0) on ΓA, (7.36)

the solution (E,H ) to the second-order Maxwell equations is equal to the solution
to the first-order Maxwell equations.

Proof Starting from the results of Theorem 7.2.10, there remains to check that the
solution (E,H ) to the second-order Maxwell equations fulfills Eqs. (7.1)–(7.2),
together with the boundary condition (7.12) onΓA, to prove that it is indeed the same
as the solution to the first-order equations. As a matter of fact, the uniqueness of
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the solution to the first-order Maxwell equations for the truncated interior problem
(Sect. 5.1.2) allows one to reach the conclusion.

Let us first investigate Eqs. (7.1)–(7.2). To that aim, let us introduce the two
auxiliary unknowns

U := E′ − ε−1 curl H + ε−1J and V := −H ′ − μ−1 curl E.

We already know that U ,V ∈ C0([0, T ];L2(Ω)). Also, due to the first-order initial
conditions (7.8)–(7.9), we have U(0) = V (0) = 0. Next, we recall that we solved
auxiliary problems (see item 3 of Theorem 7.2.10), whose solutions are the first-
order time derivatives of the fields E and H . In particular, we have the following
extra-regularities:

{
(E′,E′′) ∈ C0([0, T ];H 0,ΓP (curl,Ω))× C0([0, T ];L2(Ω))

(H ′,H ′′) ∈ C0([0, T ];H (curl,Ω))× C0([0, T ];L2(Ω)).

Hence, we derive U ′,V ′ ∈ C0([0, T ];L2(Ω)).
Using the second-order equations, we can relate (U ′,V ′) to (curl U , curl V ), by

differentiating, in the sense of distributions in space and time,

U ′ − ε−1 curl V = E′′ + ε−1J ′ + ε−1 curl μ−1 curl E

= ε−1(εE′′ + J ′ + curl μ−1 curl E)
(7.24)= 0 ;

V ′ + μ−1 curl U = −H ′′ − μ−1 curl ε−1 curl H + μ−1 curl ε−1J

= −μ−1(μH ′′ + curl ε−1(curl H − J ))
(7.22)= 0.

In other words, we have

εU ′ − curl V = 0 and μV ′ + curl U = 0.

Due to the regularity of (U ′,V ′), we recover U ,V ∈ C0([0, T ];H (curl,Ω)).
Let us finally investigate the boundary conditions fulfilled by the (tangential)
components of U(t) and V (t), for t ∈ [0, T ]. On ΓP , we know, on the one hand, that
E′(t) ∈ H 0,ΓP (curl,Ω), while on the other hand, condition (7.10) holds: we thus
have U(t) ∈ H 0,ΓP (curl,Ω). Then, on ΓA, we use the boundary conditions (7.13)
and (7.14):

U(t)× n +
√
μ

ε
V �(t) =

(
E′(t)× n − 1√

εμ
(curl E)�(t)

)

−
√
μ

ε

(
H ′�(t)+

1√
εμ
(curl H (t)− J (t))× n

)

(7.13)–(7.14)= (g�)′(t)+
√
μ

ε
(k�)′(t)× n = 0.
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Hence, U (t)× n + (μ/ε)1/2V �(t) = 0 on ΓA.
In other words, U ,V solve Ampère’s and Faraday’s laws (with 0 right-

hand sides), plus 0 initial condition, and 0 boundary conditions, respectively,
on ΓP and ΓA, with regularity U ,V ∈ C0([0, T ];H (curl,Ω)) and U ′,V ′ ∈
C0([0, T ];L2(Ω)). The uniqueness of the solution to the first-order Maxwell
equations for the truncated interior problem (Sect. 5.1.2) allows one to conclude
that U = V = 0: (E,H ) are governed by (7.1)–(7.2).

There remains to prove that the boundary condition (7.12) holds (in L2
t (ΓA), due

to item 1 of Theorem 7.2.10). According to (7.36), this is true at t = 0. Then, if we
use the additional regularity results on the fields (tangential traces are well-defined),
the fact that V � = 0 on ΓA, and the boundary condition (7.13), we easily find, for
t > 0,

E′(t)× n +
√
μ

ε
H ′�(t) = E′(t)× n − 1√

εμ
(curl E)�(t) = (g�)′(t).

According to Proposition 2.3.4, the boundary condition (5.20) is fulfilled for t ∈
[0, T ], which ends the proof.

Remark 7.3.2 We could have performed the same study for the truncated exterior
problem, or in a domain encased in a perfect conductor.

7.3.2 One-Field Approach

Let us start from the second-order Maxwell equations, set in an inhomogeneous
medium, with perfect conductor boundary conditions. Due to the well-posedness
results of Sect. 7.2.1, these equations have one, and only one, solution (E,H ).
Below, we investigate a less standard approach than in the previous subsection: our
aim is to recover the total solution to the first-order Maxwell equations, with the
help of only one field among E and H . More precisely, in the first instance, we only
assume knowledge of the field E, as a solution to the second-order equations. As
already mentioned in Remark 7.2.6, similarly processing the second-order equations
in H is slightly more difficult, due to the asymmetry between boundary conditions
(for H , it involves the tangential trace of curl H ). In both cases, we build ad hoc
vector potentials to recover the missing electromagnetic field. In this respect, this
approach uses tools identical to those of Sects. 6.1 and 6.2 for static problems, which
we refer to.

Theorem 7.3.3 Consider a perfect medium in a domain Ω ⊂ R3 encased in a
perfect conductor, and an existence time T > 0. Let the tensor fields ε and μ
satisfy (5.10). For simplicity, we consider that (Top)I=0 is fulfilled, and that its
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boundary Γ is connected.3 Under the assumptions (7.27) and (7.28), there exists
one, and only one, field H such that, together with the solution E to the second-
order Maxwell equations, (E,H ) is the same as the solution to the first-order
Maxwell equations.

Proof As a starting point, we know that the conclusions of items 1 and 2 of
Theorem 7.2.4 hold for the field E.

As a consequence, the field D := εE is such that

(D,D′) ∈ C0([0, T ];L2(Ω))× C0([0, T ];L2(Ω)).

On the other hand, if we let

B(t) := μH 0 −
∫ t

0
curl E(s) ds, t ∈ [0, T ],

then we have B ′ ∈ C0([0, T ];H 0(div,Ω))with div B ′ = 0; due to the assumptions
about H 0, B ∈ C0([0, T ];H 0(div,Ω)) with div B = 0 follows.

Next, we remark that the field D′ + J belongs to C0([0, T ];L2(Ω)), and
moreover, the charge conservation equation implies that div (D′ + J )(t) = 0 for
t ≥ 0. So, according to Theorem 6.2.5, for t ≥ 0, there exists a unique potential
H (t) ∈ H 0(div μ,Ω) with div μH (t) = 0 and such that (D′ + J )(t) = curl H (t).
By construction, curl H ∈ C0([0, T ];L2(Ω)).

For t = 0, the initial condition (7.8) yields

(D′ + J )(0) = εE1 + J (0) = curl H 0,

so H (0) = H 0.

To end the proof, we need to establish some relation between B and H : indeed,
if μ−1B = H in ad hoc function spaces, then we conclude that (E,H ) is a solution
to the first-order Maxwell equations with sufficient regularity, which is unique (cf.
Sect. 5.1.2), so it is equal to the solution to the first-order equations.

For that, let us study w := μ−1B − H . We already know that w(0) = 0, w(t) ∈
H 0(div μ,Ω) with div μw(t) = 0 for t ≥ 0. If one also has curl w(t) = 0 for t ≥ 0,
then w = 0 is a consequence of Theorem 6.2.5. Since we have curl w(0) = 0, it is
enough to study the time derivative ∂t (curl w):

∂t (curl w) = curl(μ−1∂tB)− ∂t (curl H )

= − curl(μ−1 curl E)− ∂t (∂tD + J )

= − curl(μ−1 curl E)− ε∂ttE − J ′ (7.20)= 0.

3 If this is not the case, we refer to Sect. 6.3.
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Hence, H = μ−1B in C0([0, T ];H (curl,Ω)) with H ′ ∈ C0([0, T ];L2(Ω)),
which ends the proof.

Theorem 7.3.4 Consider a perfect medium in a domain Ω ⊂ R3 encased in a
perfect conductor, and an existence time T > 0. Let the tensor fields ε and μ
satisfy (5.10). For simplicity, we consider that (Top)I=0 is fulfilled, and that its
boundary Γ is connected.4 Under the assumptions (7.27) and (7.28), there exists
one, and only one, field E such that, together with the solution H to the second-
order Maxwell equations, (E,H ) is the same as the solution to the first-order
Maxwell equations.

Proof The conclusions of items 1 and 2 of Theorem 7.2.4 hold for the field H , so
the field B := μH is such that

(B,B ′) ∈ C0([0, T ];H 0(div,Ω))× C0([0, T ];H 0(div,Ω)), with div B = 0.

So, for t ≥ 0, B ′(t) is divergence-free with vanishing normal trace, and �(t) ∈
H−1(Ω) (cf. (7.28)). According to Theorem 6.1.4, there exists a (unique) potential
E(t) ∈ H 0(curl,Ω) such that

curl E(t) = −B ′(t) and div εE(t) = �(t).
One has curl E(t) ∈ C0([0, T ];L2(Ω)), and E(t) ∈ H 0(curl,Ω) for t ≥ 0.
In addition, notice that E(0) = E0 according to the initial condition (7.9), to
assumption (7.28), and to the uniqueness of the potential.

Next, consider

D(t) := εE0 +
∫ t

0
(curl H − J )(s) ds, t ∈ [0, T ].

It holds that D′ ∈ C0([0, T ];L2(Ω)); D ∈ C0([0, T ];L2(Ω)).
To end the proof, we now compare E to ε−1D. To begin with, we compute the

curl of ε−1D, together with its tangential trace. For that, we use Eq. (7.17) for any
w ∈ H (curl,Ω), which we integrate in time over ]0, t[. Thanks to the regularity of
H ′(t), we can write:

(μ(H ′(t)− H ′(0))|w)+ (ε−1
∫ t

0
(curl H (s)− J (s)) ds| curl w) = 0.

Using the initial condition (7.9) and the definition of D(t), we reach

0 = (μH ′(t)+ curl E0|w)+ (ε−1D(t)− E0| curl w)

= (μH ′(t)|w)+ (ε−1D(t)| curl w),

after integration by parts to remove the terms in E0.

4See footnote 3, p. 291.
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Taking test functions w ∈ D(Ω), we obtain that curl ε−1D(t) = −μH ′(t),
in L2(Ω). As a consequence, ε−1D(t) belongs to H (curl,Ω), and taking any
w ∈ H (curl,Ω) yields that the tangential trace of ε−1D(t) vanishes on Γ , hence
ε−1D(t) ∈ H 0(curl,Ω).

So far, for t ≥ 0, we have that E(t), ε−1D(t) ∈ H 0(curl,Ω), with curl E(t) =
curl ε−1D(t). To prove that E(t) and ε−1D(t) are actually equal, we only need
to compare their divergence(ε), cf. Theorem 6.1.4. On the one hand, we know that
div εE(t) = �(t), while on the other hand, we find

div D(t) = div εE0 −
∫ t

0
div J (s) ds

(7.28)= �(t).

As before we conclude that (E,H ) solve the first-order Maxwell equations and are
regular enough. Thus, they are equal to the unique solution of those equations (cf.
Sect. 5.1.2).

Remark 7.3.5 In the proof of Theorem 7.3.4, we integrate in time to compensate
for the lack of regularity in space of J and H .

7.4 Other Variational Formulations

In this section, we collect and discuss various alternative variational formulations of
the second-order Maxwell equations. Under suitable assumptions, the electromag-
netic fields solution to the second-order “plain” variational formulations of Sect. 7.1
(themselves equivalent to the first-order semi-group formulations of Sect. 5.2)
appear also to be solutions to these new formulations. As a consequence, there
only remains to show that the latter are well-posed. In Sects. 7.4.1 and 7.4.2, we
only present the case of a domain encased in a perfect conductor. However, the
same approach can be applied to the truncated exterior and interior problems: the
variational formulations are modified in a similar fashion, and well-posedness is
proved in the same way.

7.4.1 Augmented Formulations

Consider the electromagnetic fields (E,H ) given by Theorem 7.2.4, under
its assumptions (7.27) and (7.28). As noted there, the magnetic field H is
divergence(μ)-free, so it belongs to C0([0, T ];XT (Ω; μ)), where XT (Ω; μ) is
defined as in (6.25). Introducing the “augmented” sesquilinear form

ãH (v,w) = (ε−1 curl v| curl w)+ (div μv | div μw),
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one sees that H satisfies the evolution equation:

∀w ∈ XT (Ω; μ),
d2

dt2
{(μH (t)|w)} + ãH (H (t),w)

= (ε−1J (t)| curl w) in D′(]0, T [),
(7.37)

with the initial conditions (7.5, right) and (7.9). Repeating the proof of Lemma 7.2.2,
one easily obtains an energy inequality in the variational space ṼH = XT (Ω; μ)
(and the pivot space HH = L2(Ω), with its two scalar products (·|·) and 2(·, ·)HH ,
as in Sect. 7.2).

Similarly, assume that the charge density � ∈ C0([0, T ];H−s(Ω)), for s ∈
[0, 1]. Owing to the divergence condition (7.3), the electric field E belongs
to C0([0, T ];XN,−s (Ω; ε)), where XN,−s (Ω; ε) is defined as in (6.4). Introducing
the “augmented” sesquilinear form

ãE(v,w) = (μ−1 curl v| curl w)+ (div εv, div εw)H−s (Ω),

it follows that E satisfies the evolution equation:

∀w ∈ XN,−s (Ω; ε),
d2

dt2
{(εE(t)|w)} + ãE(E(t),w)

= − d
dt

{(J (t)|w)} + (�(t), div εw)H−s (Ω) in D′(]0, T [),
(7.38)

with the initial conditions (7.5, left) and (7.8).
Assuming the extra regularity

� ∈ L2(0, T ;H 1
0 (Ω)) ∩ C0([0, T ];L2(Ω)), (7.39)

and setting s = 0, one can integrate by parts the last term in (7.38) using (2.21).
Thus, the formulation fits into the framework of Corollary 4.3.15, with:

• the space HE = L2(Ω), its two scalar products (·|·) and 2(·, ·)HE , as in Sect. 7.2;
• the space ṼE = XN,0(Ω; ε) = XN(Ω; ε), as in (6.5), endowed with the

sesquilinear form ãE(·, ·) with s = 0;
• the right-hand side fE = −J ′ − ε grad� ∈ L2(0, T ;L2(Ω)).

A possible generalisation of (7.39) when s �= 0 is �$ ∈ L2(0, T ;H 1
0 (Ω)) ∩

C0([0, T ];L2(Ω)), where $ denotes the “canonical” isomorphism5 between

5 Given g ∈ H−s (Ω), let g$ ∈ Hs0 (Ω) be defined by the condition

〈g$, g′〉H−s (Ω) = (g, g′)H−s (Ω), ∀g′ ∈ H−s (Ω).
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H−s(Ω) and Hs0 (Ω); in that case, fE = −J ′ − ε grad�$. Alternatively, one can
use the energy inequality method, under a slightly different regularity assumption.
We revert to an arbitrary s ∈ [0, 1], and we set ṼE := XN,−s (Ω; ε), endowed (for
the moment) with its graph norm. For the sake of simplicity, we shall often denote
the scalar product and norm of H−s(Ω) as (·, ·)−s and ‖ · ‖−s .
Lemma 7.4.1 If the charge density has the regularity

� ∈ H 1(0, T ;H−s(Ω)), (7.40)

the field E fulfills an energy inequality:

‖E‖2
W 1,∞(0,T ;L2(Ω))

+ ‖E‖2
L∞(0,T ;ṼE)

≤ CT
{
C′
ic +

∫ T
0

‖J ′(t)‖2 dt +
∫ T

0
‖�′(t)‖2

H−s (Ω) dt

}
,

where C′
ic depends on the initial conditions and ‖�(0)‖H−s (Ω), and CT depends

on T and the coefficients ε, μ.

Proof As in the introductory part of Sect. 7.2, we first find that, for Θ ∈]0, T [,

2‖E′(Θ)‖2
HE

+ ãE(E(Θ),E(Θ)) + ‖E(Θ)‖2 = Cic − 2
∫ Θ

0
{(J ′(t)|E′(t))} dt

+ 2
∫ Θ

0
{(�(t), div εE′(t))−s} dt + 2

∫ Θ
0

{(E(t)|E′(t))} dt, (7.41)

where Cic := 2‖E1‖2
HE + ãE(E0,E0) + ‖E0‖2. The second and fourth terms in

the r.h.s. are handled as usual. To tackle the non-standard term involving the data �,
we integrate by parts in time, as in Lemma 7.2.2:

2
∫ Θ

0
{(�(t), div εE′(t))−s} dt = −2

∫ Θ
0

{(�′(t), div εE(t))−s} dt
+ 2{(�(Θ), div εE(Θ))−s} − 2{(�(0), div εE0)−s}.

The last term is added to Cic, whereas the integral term is bounded as:

−2
∫ Θ

0
{(�′(t), div εE(t))−s } dt ≤

∫ Θ
0

‖�′(t)‖2−s dt +
∫ Θ

0
‖div εE(t)‖2−s dt.

The isomorphism $ reduces to the identity if s = 0.
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As for the “boundary” term at t = Θ , it is bounded by:

2{(�(Θ), div εE(Θ))−s} ≤ 2 ‖�(Θ)‖2−s + 1
2 ãE(E(Θ),E(Θ)).

The term 1
2 ãE(E(Θ),E(Θ)) will be absorbed by the left-hand side of (7.41). On

the other hand,

‖�(Θ)‖−s =
∥∥∥∥
∫ Θ

0
�′(t) dt + �(0)

∥∥∥∥−s
≤
∫ Θ

0
‖�′(t)‖−s dt + ‖�(0)‖−s

≤ Θ1/2
(∫ Θ

0
‖�′(t)‖2−s dt

)1/2

+ ‖�(0)‖−s .

Hence, 2 ‖�′(Θ)‖2−s ≤ 4Θ
∫ Θ

0
‖�′(t)‖2−s dt + 4‖�(0)‖2−s .

Putting everything back in (7.41), we find that

2‖E′(Θ)‖2
HE + min(

1

2
,

1

2μ+
) ‖E(Θ)‖2

ṼE

≤ 2‖E′(Θ)‖2
HE + 1

2
ãE(E(Θ),E(Θ))+ ‖E(Θ)‖2

≤ C′
ic +

∫ Θ
0

‖J ′(t)‖2dt + (1 + 4T )
∫ Θ

0
‖�′(t)‖2−s dt

+
∫ Θ

0

(
2‖E′(t)‖2 + ‖E(t)‖2 + ‖div εE(t)‖2−s

)
dt

≤ C′
ic +

∫ Θ
0

‖J ′(t)‖2dt + (1 + 4T )
∫ Θ

0
‖�′(t)‖2−s dt

+ C1

∫ Θ
0

(
2‖E′(t)‖2 + ‖E(t)‖2

ṼE

)
dt,

where C′
ic gathers the constants depending on the initial data. We conclude by using

Gronwall’s Lemma 7.2.1.

With the above arguments, one can prove the counterpart of Theorem 7.2.4. For
brevity, we handle both cases s = 0 (cf. (7.39)) and s �= 0 (cf. (7.40)) at once.

Theorem 7.4.2 Consider a perfect medium in a domain Ω ⊂ R3 encased in a
perfect conductor, and an existence time T > 0. Let the tensor fields ε and μ
satisfy (5.10).
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1. Assume that

{
E0 ∈ XN,−s (Ω; ε), H 0 ∈ XT (Ω; μ),
J ∈ H 1(0, T ;L2(Ω)),

(7.42)

plus either (7.39) or (7.40); then, there exists one, and only one, couple of fields
(E,H ):

{
(E,E′) ∈ C0([0, T ];XN,−s (Ω; ε))× C0([0, T ];L2(Ω)),

(H ,H ′) ∈ C0([0, T ];XT (Ω; μ))× C0([0, T ];L2(Ω)),
(7.43)

which solves the variational formulations (7.37) and (7.38).
2. Assume, in addition to 1, that (7.28) holds, with �(0) ∈ H−s(Ω). Then, there

exists one, and only one, couple of fields (E,H ):

⎧⎨
⎩
(E,E′) ∈ C0([0, T ];XN,−s (Ω; ε))× C0([0, T ];L2(Ω)),

(H ,H ′) ∈ C0([0, T ];XT (Ω; μ))
×C0([0, T ];H 0(div μ,Ω)),

(7.44)

which solves the second-order system of equations (7.6)–(7.7) and the divergence
conditions (7.3)–(7.4), (7.5) and (7.8)–(7.9), supplemented with boundary con-
ditions (5.8) and (5.9).

3. Assume, in addition to 1 and 2, that (7.30) holds. Then, the couple of fields
(E,H ) fulfills the boundary condition (7.10).

In all instances, the couple of fields (E,H ) depends continuously on the data.

Another approach for proving well-posedness follows from Sect. 7.6 below.

7.4.2 Mixed Formulations

In practice, it may happen that the charge conservation equation, and/or the
constraints on the initial data are not exactly fulfilled. This may be caused by inexact
knowledge of the model and data (uncertainties, etc.), or on their approximation for
numerical purposes [81]. As a consequence, there is no solution to the whole system
of Maxwell’s equations, as the divergence equations and the evolution equations
cannot be simultaneously satisfied. A possible remedy is to explicitly enforce the
divergence equations through Lagrange multipliers, as at the end of Sect. 4.3.

7.4.2.1 Mixed Unaugmented Formulation

Under assumptions (7.27) and (7.28) of Theorem 7.2.4, the solution (E,H ) to the
plain formulations fulfills the divergence equations (7.3)–(7.4). Setting PE = 0 and
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PH = 0, we see that the couples (E, PE) and (H , PH ) appear to be solutions to the
mixed time-dependent systems:

∀w ∈ H 0(curl,Ω),
d2

dt2
{(εE(t)|w)} + (μ−1 curl E(t)| curl w)− (gradPE(t) | εw)

= − d
dt

{(J (t)|w)} in D′(]0, T [) ,
∀q ∈ H 1

0 (Ω), −(εE(t) | grad q) = 〈�(t), q〉H 1
0 (Ω)

in D′(]0, T [).

(7.45)

And

∀w ∈ H (curl,Ω),
d2

dt2
{(μH (t)|w)} + (ε−1 curl H (t)| curl w)− (gradPH(t) | μw)

= (ε−1J (t)| curl w) in D′(]0, T [) ,
∀q ∈ H 1

zmv(Ω), −(μH (t) | gradq) = 0 in D′(]0, T [).

(7.46)

As we shall see, the electric field formulation (7.45) fits into the framework
of Theorems 4.3.19 or 4.3.22 on constrained time-dependent formulations. The
magnetic field formulation (7.46) does not, again because of the right-hand side.
However, at the core of the proof of these theorems lies the well-posedness of an
unconstrained formulation set in a kernel. The latter follows thanks to the energy
inequality of Lemma 7.2.2.

In this paragraph, we use the same spaces HE = HH = L2(Ω), VE =
H 0(curl,Ω) and VH = H (curl,Ω), the same scalar products (·, ·)HE =
(·, ·)HH = (· | ·), 2(·, ·)HE , and 2(·, ·)HH , and sesquilinear forms aE, aH as in the
plain formulation of Sect. 7.2. Then, we set QE := H 1

0 (Ω) and define the following
sesquilinear form on VE ×QE:

bE(v, q) := −(εv | grad q).

Obviously, bE(·, ·) immediately extends to (v, q) ∈ L2(Ω) × H 1
0 (Ω): in the

language of Sect. 4.3, we have QE,w = QE and bE,w(v, q) := −(εv | grad q)
again. In other words, the operator

B
†
E : H 1

0 (Ω) −→ H 0(curl,Ω)′, q �−→ −ε grad q

has its range included in L2(Ω), and thus coincides with B
†
E,w . In an isotropic

medium, where ε is scalar-valued, the range is even included in H 0(curl,Ω) if
ε ∈ W 1,∞(Ω): it holds that

curl(ε grad q) = grad ε × grad q + ε curl grad q︸ ︷︷ ︸
0

∈ L2(Ω),
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while ε grad q× n = 0 on Γ by Proposition 2.2.10. In this case, QE,ww = QE and
bE,ww(v, q) = −〈v, ε grad q〉H 0(curl,Ω) for v ∈ H 0(curl,Ω)′. In an anisotropic
medium, or in the presence of material discontinuities, QE,ww may be strictly
included in QE,w = QE and difficult to characterise. This is no big issue (see
Remark 4.3.23).

Similarly, we set QH := H 1
zmv(Ω) and define the sesquilinear form

bH (v, q) := −(μv | gradq)

on VH×QH , which is immediately extended to bH,w on HH×QH,w, with QH,w =
QH , as in the electric case. In an isotropic and smoothly varying medium, the second
extension satisfies QH,ww = QH and bH,ww(v, q) = −〈v, μ grad q〉H (curl,Ω) for
v ∈ H (curl,Ω)′.

In Propositions 6.1.8 and 6.2.7, it is proved (in a slightly generalised framework)
that the forms bE, bE,w, bH , bH,w satisfy an inf-sup condition in their respective
spaces. We proceed with the double orthogonality property. Using the integration-
by-parts formula (2.21), one sees that the kernels of the forms bE and bE,w are,
respectively,

KE = KN(Ω; ε) as in (6.15) and LE = H (div ε0,Ω).

On the other hand, using (2.25), one shows that the kernels of the forms bH and bH,w
are, respectively,

KH = KT (Ω; μ) as in (6.36) and LH = H 0(div μ0,Ω).

Proceeding as in Sect. 3.7, one arrives at the following Helmholtz decompositions.
They are comparable to Propositions 6.1.10 and 6.1.12 (electric field), respectively
to Proposition 6.2.12 and (6.37) (magnetic field), but stated differently below.

Proposition 7.4.3 Let Ω be a domain, and let the tensor fields ε and μ sat-
isfy (5.10). The following decompositions of the spaces L2(Ω) and H 0(curl,Ω)
hold:

L2(Ω) = grad[H 1
0 (Ω)]

⊥⊕ H (div ε0,Ω) ;

H 0(curl,Ω) = grad[H 1
0 (Ω)]

⊥⊕ KN(Ω; ε). (7.47)

In both equalities, orthogonality holds in the sense of the scalar product 2(·, ·)HE =
(ε· | ·). In (7.47), the subspaces are also orthogonal with respect to the sesquilinear
form aE(·, ·) = (μ−1 curl · | curl ·).
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Proposition 7.4.4 Let Ω be a domain, and let the tensor fields ε and μ sat-
isfy (5.10). The following decompositions of the spaces L2(Ω) and H (curl,Ω)
hold:

L2(Ω) = grad[H 1
zmv(Ω)]

⊥⊕ H 0(div μ0,Ω) ;

H (curl,Ω) = grad[H 1
zmv(Ω)]

⊥⊕ KT (Ω; μ). (7.48)

In both equalities, orthogonality holds in the sense of the scalar product 2(·, ·)HH =
(μ· | ·). In (7.48), the subspaces are also orthogonal with respect to the sesquilinear
form aH (·, ·) = (ε−1 curl · | curl ·).

Using Theorem 4.3.22 and Remark 4.3.23 for the electric field, and the suitable
adaptation for the magnetic field, one arrives at the following results.

Theorem 7.4.5 Consider a perfect medium in a domain Ω ⊂ R3 encased in a
perfect conductor, and an existence time T > 0. Let the tensor fields ε and μ
satisfy (5.10).

1. Assume (7.27) and

⎧⎨
⎩
� ∈ H 2(0, T ;H−1(Ω)) ;
div εE0 = �(0), �′(0)+ div J (0) = 0 ;
div μH 0 = 0, μH 0 · n|Γ = 0.

(7.49)

There exists one, and only one, quadruple of fields and multipliers
((E, PE), (H , PH )), with the regularity (7.29) and

PE ∈ L2(0, T ;H 1
0 (Ω)), PH ∈ L2(0, T ;H 1

zmv(Ω)),

which solves the variational formulations (7.45) and (7.46).
2. Assume, in addition to 1, that the charge conservation equation

∂�

∂t
+ div J = 0 holds for t ≥ 0.

Then, PE = PH = 0, and there exists one, and only one, couple of fields
(E,H ) with the regularity (7.29), which solves the second-order system of
equations (7.6)–(7.7) and the divergence conditions (7.3)–(7.4), (7.5) and (7.8)–
(7.9), supplemented with boundary conditions (5.8) and (5.9).

3. Assume, in addition to 1 and 2, that (7.30) holds. Then, the fields (E,H ) fulfill
the boundary condition (7.10).

In all instances, the quadruple ((E, PE), (H , PH )) depends continuously on the
data.
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Remark 7.4.6 Since H 1 = μ−1 curl E0, the compatibility conditions div μH 1 =
0, μH 1 · n|Γ = 0 are automatically satisfied by Proposition 2.2.10. Whereas, since
E1 := ε−1(curl H 0 − J (0)), the compatibility condition div εE1 = �′(0) follows
from (7.49).

In case 2, the charge conservation equation and the condition J ∈
H 1(0, T ;L2(Ω)), as in (7.27), imply � ∈ H 2(0, T ;H−1(Ω)) and �′(0) +
div J (0) = 0.

7.4.2.2 Mixed Augmented Formulation

It is possible to combine the previous two ideas. Using the notation of Sect. 7.4.1,
and setting PE = 0 and PH = 0 again, we see that the couples (E, PE) and
(H , PH ) appear to be solutions to the mixed time-dependent systems:

∀w ∈ XN,−s (Ω; ε),
d2

dt2
{(εE(t)|w)} + ãE(E(t),w)+ 〈PE(t) | div εw〉H−s (Ω)

= − d
dt

{(J (t)|w)} + (�(t), div εw)H−s (Ω) in D′(]0, T [).
∀q ∈ Hs0 (Ω), 〈div εE(t), q〉Hs0 (Ω) = 〈�(t), q〉Hs0 (Ω) in D′(]0, T [) ,

(7.50)

provided � ∈ C0([0, T ];H−s(Ω)), and

∀w ∈ XT (Ω; μ),
d2

dt2
{(μH (t)|w)} + ãH (H (t),w)+ (PH (t) | div μw)

= (ε−1J (t)| curl w) in D′(]0, T [).
∀q ∈ L2

zmv(Ω), (div μH (t) | q) = 0 in D′(]0, T [).

(7.51)

In other words, the divergence constraints are now enforced as follows. We set
Q̃H = L2

zmv(Ω) and define the sesquilinear form

b̃H (v, q) := (div μv | q) for (v, q) ∈ ṼH × Q̃H .

The operator B̃†
H : L2

zmv(Ω)→ XT (Ω; μ)′ again satisfies B̃†
Hq = −μ grad q in the

sense of distributions. Using the integration-by-parts formula (2.25), we see that

Q̃H,w =
{
q ∈ Q̃H : B̃†

Hq ∈ HH
}
= H 1

zmv(Ω) and b̃H,w = bH ,

the same form that appears in the mixed unaugmented formulation. Similarly, for
the electric field, we define Q̃E = Hs0 (Ω) and

b̃E(v, q) := 〈div εv, q〉Hs0 (Ω) for (v, q) ∈ ṼE × Q̃E.
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Using the integration-by-parts formula (2.26), we see that

Q̃E,w =
{
q ∈ Q̃E : B̃†

Eq ∈ HE
}
= H 1

0 (Ω) and b̃E,w = bE ;

again, this is the same form as in the mixed unaugmented formulation.
To derive the well-posedness of the mixed problems (7.50) and (7.51), one has to

prove that the new sesquilinear forms b̃E, b̃H satisfy an inf-sup condition, and their
kernels a double orthogonality property.

Proposition 7.4.7 For each of the two subscripts X = E, H , there exists βX > 0
such that

inf
q∈Q̃X

sup
v∈ṼX

b̃X(v, q)

‖v‖ṼX ‖q‖Q̃X
≥ βX. (7.52)

Proof We examine the case of the electric field (X = E); the magnetic case (X =
H ) is similar. Let q ∈ Hs0 (Ω), and associate it with the element q% ∈ H−s(Ω) such
that

〈q%, q ′〉Hs0 (Ω) = (q, q ′)Hs0 (Ω), ∀q ′ ∈ Hs0 (Ω).

The isomorphism % is the inverse of $ introduced in footnote 5, p. 294. Obviously,
‖q%‖−s = ‖q‖s . Then, we introduce the unique solution ξ ∈ H 1

0 (Ω) to the elliptic
problem:

(ε grad ξ | gradψ) = −(q,ψ)Hs0 (Ω), ∀ψ ∈ H 1
0 (Ω),

which is well-posed thanks to (5.10), the Poincaré inequality (Corollary 2.1.36)
and the Lax–Milgram Theorem 4.2.8. In other words, div (ε grad ξ) = q%, and
|ξ |H 1(Ω) ≤ C0 ‖q‖Hs0 (Ω).

Next, let v = grad ξ . We have v ∈ H 0(curl,Ω) by Proposition 2.2.10.
Moreover, div εv = q%; so, v ∈ XN,−s (Ω; ε) and

‖v‖2
ṼE = ‖ grad ξ‖2

L2(Ω)
+ ‖q%‖2

H−s (Ω) ≤ (C2
0 + 1) ‖q‖2

Hs0 (Ω)
, and:

〈div εv, q〉Hs0 (Ω) = 〈q%, q〉Hs0 (Ω) = ‖q‖2
Hs0 (Ω)

≥ βE‖v‖ṼE‖q‖Hs0 (Ω),

with βE = (C2
0 + 1)−1/2. This is (7.52).

The kernels of the forms b̃E, b̃H are, once again, KE = KN(Ω; ε), KH =
KT (Ω; μ). Applying Propositions 7.4.3 and 7.4.4 to the elements of the spaces
XN,−s (Ω; ε) and XT (Ω; μ), one easily establishes the following doubly orthogonal
decompositions.
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Proposition 7.4.8 Let Ω be a domain, and let the tensor fields ε and μ sat-
isfy (5.10). Introduce the spaces of potentials

ΦN,−s (Ω; ε) :=
{
ϕ ∈ H 1

0 (Ω) : gradϕ ∈ XN,−s (Ω; ε)
}

=
{
ϕ ∈ H 1

0 (Ω) : div (ε gradϕ) ∈ H−s(Ω)
}
;

ΦT (Ω; μ) :=
{
ϕ ∈ H 1

zmv(Ω) : gradϕ ∈ XT (Ω; μ)
}

=
{
ϕ ∈ H 1

zmv(Ω) : div (μ gradϕ) ∈ L2
zmv(Ω) and μ gradϕ · n|Γ = 0

}
.

The following decompositions of the spaces XN,−s (Ω; ε) and XT (Ω; μ) hold:

XN,−s (Ω; ε) = gradΦN,−s (Ω; ε) ⊥⊕ KN(Ω; ε),

with orthogonality in the sense of the scalar product 2(·, ·)HE = (ε· | ·), and of the
sesquilinear form ãE(·, ·) = (μ−1 curl · | curl ·)+ (div ε·, div ε·)H−s (Ω);

XT (Ω; μ) = gradΦT (Ω; μ) ⊥⊕ KT (Ω; μ),

with orthogonality in the sense of the scalar product 2(·, ·)HH = (μ· | ·) and of the
sesquilinear form ãH (·, ·) = (ε−1 curl · | curl ·)+ (div μ· | div μ·).

Combining the ideas used in the augmented and mixed unaugmented formula-
tions, one proves the analogue of Theorems 7.4.2 and 7.4.5. Again for brevity, we
handle both cases s = 0 (cf. (7.39)) and s �= 0 (cf. (7.40)) at once.

Theorem 7.4.9 Consider a perfect medium in a domain Ω ⊂ R3 encased in a
perfect conductor, and an existence time T > 0. Let the tensor fields ε and μ
satisfy (5.10).

1. Assume (7.42) with

{
div εE0 = �(0), �′(0)+ div J (0) = 0 ;
div μH 0 = 0, μH 0 · n|Γ = 0 ;

plus either one of the following regularity assumptions:

� ∈ L2(0, T ;H 1
0 (Ω)) ∩ C0([0, T ];L2(Ω)) ∩H 2(0, T ;H−1(Ω)) (7.53)

or � ∈ H 1(0, T ;H−s(Ω)) ∩H 2(0, T ;H−1(Ω)). (7.54)
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Then, there exists one, and only one, quadruple of fields and multipliers
((E, PE), (H , PH )), with the regularity (7.43) and

PE ∈ L2(0, T ;Hs0 (Ω)), PH ∈ L2(0, T ;L2
zmv(Ω)),

which solves the variational formulations (7.50) and (7.51).
2. Assume, in addition to 1, that the charge conservation equation

∂�

∂t
+ div J = 0 holds for t ≥ 0.

Then, PE = PH = 0, and there exists one, and only one, couple of fields
(E,H ) with the regularity (7.44), which solves the second-order system of
equations (7.6)–(7.7) and the divergence conditions (7.3)–(7.4), (7.5) and (7.8)–
(7.9), supplemented with boundary conditions (5.8) and (5.9).

3. Assume, in addition to 1 and 2, that (7.30) holds. Then, the fields (E,H ) fulfill
the boundary condition (7.10).

In all instances, the quadruple ((E, PE), (H , PH )) depends continuously on the
data.

Remark 7.4.10 The conditions (7.53) and (7.54) are obtained by combining, respec-
tively, (7.39) and (7.40) with the condition � ∈ C0([0, T ]; Q̃′

E) ∩ H 2(0, T ; Q̃′
E,w)

needed for the well-posedness of the abstract mixed problem (Remark 4.3.23). The
last part of these conditions is automatically true in case 2 (see Remark 7.4.6).

7.5 Compact Imbeddings

In this section, we establish the compact imbeddings of the spaces XN,−s (Ω; ε),
respectively XT (Ω; μ) in L2(Ω), under the condition that ε, respectively μ, is a
tensor field that fulfills assumption (5.10). These results will be of use in Sect. 7.6,
to study the “improved” regularity of the solution to Maxwell’s equations when
the data (�,J ) are more regular in space and time; and also in Chap. 8, when
we investigate time-harmonic eigenvalue and Helmholtz-like problems. When the
tensors ε and μ are constant and proportional to I3, such results have already
been obtained, namely the compact imbedding of XN(Ω), respectively of XT (Ω)

in L2(Ω) (see Theorems 3.4.4 and 3.5.4).
Let us start with the generalization of Theorem 3.4.4.

Theorem 7.5.1 Let Ω be a domain, and let ε be a tensor field that fulfills
assumption (5.10). Given s ∈ [0, 1[, one has XN,−s (Ω; ε) ⊂c L2(Ω).

Remark 7.5.2 One can prove that XN,−1(Ω; ε) = H 0(curl,Ω) is not compactly
imbedded in L2(Ω) as follows. One chooses a bounded sequence of elements of
H 1

0 (Ω) with no converging subsequence, which is possible since its unit ball is



7.5 Compact Imbeddings 305

not compact (H 1
0 (Ω) is an infinite-dimensional vector space). Then, taking their

gradients yields a bounded sequence of curl-free elements of H 0(curl,Ω), and one
can easily check by contradiction that this sequence has no converging subsequence
in L2(Ω).

Proof Consider (ym)m a bounded sequence of XN,−s (Ω; ε). Similarly to the proof
of Theorem 3.4.3, we split, for all m, the field ym into three parts.

1. Let q0
m ∈ H 1

0 (Ω) be the unique solution to

{
Find q0

m ∈ H 1
0 (Ω) such that

∀q ∈ H 1
0 (Ω), (ε grad q0

m| gradq) = (εym| grad q).

Because (div εym)m is bounded in H−s(Ω), it is also bounded in H−1(Ω)

(cf. (2.6)). So, using q = q0
m in the above formulation yields

‖ε1/2 grad q0
m‖2 = −〈div εym, q

0
m〉H 1

0 (Ω)
≤ ‖div εym‖H−1(Ω) ‖q0

m‖H 1(Ω) ,

and with the help of the Poincaré inequality in H 1
0 (Ω), we find that (q0

m)m is
bounded in H 1

0 (Ω). Hence, because H 1(Ω) ⊂c H s(Ω) (notice that s < 1 and
apply Proposition 2.1.43), there exists a subsequence, still denoted by (q0

m)m,
that converges in Hs(Ω). In addition, one has q0

m ∈ Hs0 (Ω) for all m. Denoting
ymn := ym − yn, q

0
mn := q0

m − q0
n , it follows that

‖ε1/2 grad q0
mn‖2 = −〈div εymn, q

0
mn〉Hs0 (Ω) ≤ ‖div εymn‖H−s (Ω) ‖q0

mn‖Hs(Ω)
≤ 2 sup

m
(‖div εym‖H−s (Ω)) ‖q0

mn‖Hs(Ω).

So, (gradq0
m)m is a Cauchy sequence in L2(Ω), and it converges in this space.

2. Let zεm := PZεN
ym ∈ ZN(Ω; ε): (zεm)m is bounded in the finite-dimensional

vector space ZN(Ω; ε), so there exists a subsequence, still denoted by (zεm)m,
that converges in ZN(Ω; ε), and hence in L2(Ω).

3. Let xm := ym−grad q0
m− zεm. By construction, the sequence (xm)m is bounded

in L2(Ω). In addition, for all m, div εxm = 0, curl xm = curl ym in Ω , and
〈εxm · n, 1〉H 1/2(Γk)

= 0 for all k. Using Theorem 3.4.1 for every m, there exists
a sequence (wm)m of elements of H 1

zmv(Ω) such that εxm = curl wm in Ω ,
which is bounded in H 1(Ω). Hence, there exists a subsequence, still denoted
by (wm)m, that converges in L2(Ω). Defining the subsequence (xm)m with the
same indices and denoting xmn := xm−xn and wmn := wm−wn, one finds, by
integration by parts,

‖ε1/2xmn‖2 = (xmn| curl wmn) = (curl xmn|wmn)
= (curl ymn|wmn) ≤ 2 sup

m
(‖ curl ym‖) ‖wmn‖.
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So, (xm)m is a Cauchy sequence in L2(Ω), and it converges in this space.
By construction, one has ym := xm − grad q0

m − zεm, so the subsequence
(ym)m converges in L2(Ω).

Let us continue with the generalization of Theorem 3.5.4.

Theorem 7.5.3 LetΩ be a domain such that (Top)I=0 or (Top)I>0 is fulfilled, and
let μ be a tensor field that fulfills assumption (5.10). It holds that XT (Ω; μ) ⊂c
L2(Ω).

Proof Let (ym)m be a bounded sequence of XT (Ω; μ). Similarly to the proof of
Theorem 3.5.3, we split, for all m, the field ym into three parts.

1. Let q0
m ∈ H 1

zmv(Ω) be the unique solution to

{
Find q0

m ∈ H 1
zmv(Ω) such that

∀q ∈ H 1
zmv(Ω), (μ grad q0

m| gradq) = (μym| gradq).

Taking q = q0
m above, one finds, by integration by parts and through successive

use of the Cauchy-Schwarz and the Poincaré–Wirtinger inequalities, that

‖μ1/2 gradq0
m‖ ≤ C ‖div μym‖,

with C > 0 independent of ym. So, (q0
m)m is bounded in H 1

zmv(Ω), and there
exists a subsequence, still denoted by (q0

m)m, that converges in L2(Ω). Denoting
ymn := ym − yn, q

0
mn := q0

m − q0
n , it follows, once more by integration by parts,

that

‖μ1/2 grad q0
mn‖2 ≤ 2 sup

m
(‖div μym‖) ‖q0

mn‖,

and as a consequence, (grad q0
m)m converges in L2(Ω).

2. Let z
μ
m := PZ

μ
T
ym ∈ ZT (Ω; μ): (zμm)m is bounded in ZT (Ω; μ), which is finite-

dimensional, so there exists a subsequence, still denoted by (zμm)m, that converges
in ZT (Ω; μ), and hence in L2(Ω).

3. Let xm := ym − grad q0
m − z

μ
m: the sequence (xm)m is bounded in L2(Ω). By

construction, div μxm = 0 and curl xm = curl ym in Ω , while μxm · n|Γ = 0
and 〈μxm · n, 1〉Σi = 0 for all i. With the help of Theorem 3.5.1, for every m,
there exists a bounded sequence (wm)m of elements of XN(Ω) such that μxm =
curl wm in Ω . Using Theorem 3.4.4, one infers that there exists a subsequence,
still denoted by (wm)m, that converges in L2(Ω). Defining the subsequence
(xm)m with the same indices and denoting xmn := xm−xn and wmn := wm−wn,
one finds, by integration by parts,

‖μ1/2xmn‖2 ≤ 2 sup
m
(‖ curl ym‖) ‖wmn‖.
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So, (xm)m is a Cauchy sequence in L2(Ω), and it converges in this space.
It holds that ym := xm − grad q0

m − z
μ
m for all m, so the subsequence (ym)m

converges in L2(Ω).

Remark 7.5.4 We can further generalize this last result. Actually, given s ∈]0, 1/2[,
one can prove that the function space

XT ,−s (Ω; μ) := {f ∈ H (curl,Ω) : μf ∈ H−s(div,Ω), μf · n|Γ = 0}

is compactly imbedded in L2(Ω) by using the same proof as above. Indeed,
according to Theorem 2.2.22, given y such that μy ∈ H−s(div,Ω), on the one
hand, μy · n|Γ has a meaning in H−1/2(Γ ), so the function space XT ,−s (Ω; μ) is
well-defined. On the other hand, the integration-by-parts formula (2.26) allows one
to check that the scalar fields q0

m ∈ H 1
zmv(Ω) of item 1 yield a bounded sequence

(in H 1
zmv(Ω)) via the inequality

‖μ1/2 grad q0
m‖2 = −〈div μym, q

0
m〉Hs0 (Ω) ≤ ‖div μym‖H−s (Ω) ‖q0

m‖Hs(Ω) .

Furthermore, extraction of a converging subsequence in Hs(Ω) follows from
Proposition 2.1.43. The rest of the proof is unchanged.

7.6 Improved Regularity for Augmented and Mixed
Augmented Formulations

We show how the augmented and/or mixed formulations of Sect. 7.4 can be used
to derive improved space-time regularity results for the electromagnetic fields. In
this section, we shall make two crucial assumptions so as to apply the improved
regularity theory of Sect. 4.4. First, the domainΩ is encased in a perfect conductor:
because of the first-order terms in (7.22) and (7.24), the truncated interior problem
does not have the form of a wave equation, and our theory is not directly applicable
to it. Second, the topology of Ω is such that the augmented form ãX is coercive on
the whole space ṼX forX = E orH . Summarising the results of Sects. 6.1 and 6.2,
a sufficient (and necessary, under the general (Top)I≥0 assumption) condition for
this is:

• in the electric case (X = E), the assumption (Top)I≥0 holds and the boundary
Γ = ∂Ω is connected;

• in the magnetic case (X = H ), the domain is topologically trivial, i.e., (Top)I=0
holds.

At the end of this section, we will show that our results still hold in a more general
case, when the topological hypothesis is removed.
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Table 7.1 Notations for mixed formulations in electromagnetism

Spaces Q̃ Q̃w Q̃ww F̃0 F̃−2 D(A)

Electric L2(Ω) H 1
0 (Ω) ΦN,−s (Ω; ε) H 1

0 (Ω) H−1(Ω) See below

Magnetic L2
zmv(Ω) H 1

zmv(Ω) ΦT (Ω;μ) H 1
zmv(Ω) H 1(Ω)′zmv See below

Furthermore, we know from Theorems 7.5.1 and 7.5.3 that the spaces VE =
XN,−s (Ω; ε) and VH = XT (Ω; μ) are compactly embedded into L2(Ω). Thus,
all the general assumptions of Sect. 4.4 are satisfied: one can apply the space-time

regularity results of that section in the scales
(
ṼsX
)
s∈R

of A-Sobolev spaces built

upon ṼX, forX = E, H . The regularity of the data has to be defined in these scales,

as well as the scales
(
Q̃sX
)
s∈R

and
(
F̃ sX
)
s∈R

related to the sesquilinear forms b̃X.

In Table 7.1, we recall and collect the characterisations of the most useful spaces.
As a first example, we first derive an alternative proof of the well-posedness

of the magnetic field equations, as announced in Remark 7.2.7. The right-hand
side of (7.37) and (7.51, top), namely (ε−1J (t)| curl w), can be rewritten as
〈f (t),w〉XT (Ω;μ); for any space E measuring time regularity, it holds that f ∈
E(0, T ;XT (Ω; μ)′) if J ∈ E(0, T ;L2(Ω)). As XT (Ω; μ)′ = Ṽ−1

H , applying the
second item of Theorem 4.4.3 (with s = 0 there) gives us

Let J ∈ W 1,1(0, T ;L2(Ω)), H 0 ∈ XT (Ω;μ) and H 1 ∈ L2(Ω). The problem (7.37),
with the initial conditions H 0 and H 1, admits a unique solution such that (H ,H ′) ∈
C0([0, T ];XT (Ω;μ)) × C0([0, T ];H 0(div μ,Ω)).

Another possible regularity assumption for J is ε−1J ∈ Lp(0, T ;H 0(curl,Ω))
with p ≥ 1; in this case, f = curl(ε−1J ) in the usual sense, and it belongs
to Lp(0, T ;L2(Ω)). As the r.h.s. of (7.51, bottom) is zero, the application of
Theorem 4.4.8 similarly yields:

Let J satisfy any one of the following regularity assumptions:

J ∈ W 1,1(0, T ;L2(Ω)), or

ε−1J ∈ Lp(0, T ;H 0(curl,Ω)) ;

and let H 0 ∈ KT (Ω;μ) and H 1 ∈ H 0(div μ,Ω). The problem (7.51), with the initial con-
ditions H 0 and H 1, admits a unique solution such that (H ,H ′) ∈ C0([0, T ];KT (Ω;μ))×
C0([0, T ];H 0(div μ0,Ω)).

In order to analyse numerical schemes that discretise the augmented and mixed
augmented formulations, it is desirable to investigate the existence of solutions more
regular in both time and space [81, 82]. Let AX be the strong operator associated with
the augmented sesquilinear form ãX(·, ·). Then, one has:

D(AX) =
{
u ∈ ṼX : ∃g ∈ HX, ãX(u, v) = 2(g, v)HX , ∀v ∈ ṼX

}
.
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Of course, the weighted scalar product 2(·, ·)HX can be replaced with the standard
L2 product in this characterisation. But the above choice will allow us to take the
greatest advantage of the double orthogonality properties of Propositions 7.4.3, 7.4.4
and 7.4.8. The norm ‖u‖D(AX) := ‖g‖HX is equivalent to the graph norm ofD(AX)
(Proposition 4.4.2).

To proceed with the characterisation of the spaces D(AX), let us use the
isomorphism $ of footnote 5, p. 294. If u ∈ D(AE), respectively D(AH ), one
formally has:

AEu = εg = curl μ−1 curl u − ε grad(div εu)$, (7.55)

respectively AHu = μg = curl ε−1 curl u − μ grad div μu.

Proposition 7.6.1 The space D(AE) is algebraically and topologically equal to:

X̃N,−s (Ω; ε) =
{
u ∈ XN,−s (Ω; ε) : μ−1 curl u ∈ H (curl,Ω)

and (div εu)$ ∈ H 1
0 (Ω)

}
,

i.e., if s = 0:

X̃N(Ω; ε) =
{
u ∈ XN(Ω; ε) : μ−1 curl u ∈ H (curl,Ω) and div εu ∈ H 1

0 (Ω)
}
,

equipped with its canonical norm. Similarly, the space D(AH ) is algebraically and
topologically equal to

X̃T (Ω; μ) =
{
u ∈ XT (Ω; μ) : ε−1 curl u ∈ H 0(curl,Ω) and div μu ∈ H 1(Ω)

}
.

Proof We present the proof in the electric case; the magnetic case is exactly similar.
Let u ∈ X̃N,−s (Ω; ε); the field g defined by (7.55) belongs to L2(Ω). Using the
integration-by-parts formulas (2.20) and (2.21), one finds:

ãE(u, v) = (μ−1 curl u | curl v)+ 〈(div εu)$, div εv〉H−s (Ω)

= (εg | v), ∀v ∈ XN,−s (Ω; ε).

i.e., u ∈ D(AE) and

‖u‖D(AE) := ‖ε1/2g‖ ≤ C ‖u‖X̃N,−s (Ω;ε)

for some constant C depending onΩ, ε , μ, s.
Conversely, let u ∈ D(AE) and g := ε−1AEu ∈ L2(Ω). Using Proposi-

tions 7.4.3 and 7.4.8, we decompose them into longitudinal and transversal parts,
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which are orthogonal in L2(Ω) and (if applicable) in XN,−s (Ω; ε):

u = uL + uT , uL ∈ grad[ΦN,−s (Ω; ε)], uT ∈ KN(Ω; ε) ;
g = gradφg + gT , φg ∈ H 1

0 (Ω), gT ∈ H (div ε0,Ω).

By Lemma 4.4.5, we know that uL and uT both belong to D(AE), and

∀v ∈ XN,−s (Ω; ε),
ãE(uT , v) = (μ−1 curl uT | curl v) = (εgT | v) ; (7.56)

ãE(uL, v) = 〈(div εuL)$, div εv〉H−s (Ω) = (ε gradφg | v). (7.57)

For any v ∈ H 0(curl,Ω), it holds that vT ∈ XN,−s (Ω; ε). Thus, (7.56) yields,
thanks to double orthogonality,

(μ−1 curl uT | curl v) = (μ−1 curl uT | curl vT ) = (εgT | vT ) = (εgT | v).

Invoking Proposition 2.2.5, this implies that μ−1 curl u = μ−1 curl uT ∈
H (curl,Ω). To handle (7.57), take any f ∈ H−s(Ω), and introduce the unique
solution ξ ∈ H 1

0 (Ω) to the elliptic problem:

(ε grad ξ | gradψ) = −〈f,ψ〉Hs0 (Ω) , ∀ψ ∈ H 1
0 (Ω),

(i.e., div ε grad ξ = f ), and set v = grad ξ ∈ XN,−s (Ω; ε). Then,

〈(div εuL)$, div ε grad ξ〉H−s (Ω) = (ε gradφg | grad ξ) = − 〈f, φg

〉
Hs0 (Ω)

,

i.e., 〈(div εuL)$, f 〉H−s (Ω) = −〈φg, f 〉H−s (Ω). As f is arbitrary, we deduce
(div εuL)$ = −φg in the sense of Hs0 (Ω), hence, (div εuL)$ ∈ H 1

0 (Ω), and finally,
u ∈ X̃N,−s (Ω; ε). All in all, D(AE) = X̃N,−s (Ω; ε), and the equivalence of norms
follows from the open mapping Theorem 4.1.4.

As a final application of the theory developed in Sect. 4.4, we now give some
conditions on the data that ensure that the solution is smoother in time, namely E

or H belongs toW 2,p(0, T ;D(AX)) ∩W 4,p(0, T ;HX). This space-time regularity
may be used to derive optimal error bounds for some finite element methods.6 To
obtain it, it is sufficient to take m = 2, s = 1 in Theorems 4.4.4 and 4.4.8. In the
case of electric field equations, we find. . .

6See [17, 81, 82]. These conditions are actually more stringent than those originating in the
approximation of the right-hand side.
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Proposition 7.6.2 In order to have E ∈ W 2,p(0, T ; X̃N,−s (Ω; ε)) ∩ W 4,p(0, T ;
L2(Ω)) and PE ∈ W 2,p(0, T ;H 1

0 (Ω)) if applicable, it is sufficient to assume:

• in the non-mixed framework: either

J ∈ W 4,1(0, T ;L2(Ω)), �$ ∈ W 3,1(0, T ;H 1
0 (Ω)),

or

J ∈ W 3,p(0, T ;XN,−s (Ω; ε)), ε grad�$ ∈ W 2,p(0, T ;XN,−s (Ω; ε)), 7

together with the higher-order initial data (E2,E3) ∈ X̃N,−s (Ω; ε) ×
XN,−s (Ω; ε), where

εE2 = −J ′(0)− curl μ−1 curl E0 + ε grad(div εE0 − �(0))$,
εE3 = −J ′′(0)− curl μ−1 curl E1 + ε grad(div εE1 − �′(0))$.

• in the mixed framework: the same conditions on J and � as above, plus
� ∈ W 4,p(0, T ;H−1(Ω)), together with (E2T ,E3T ) ∈ X̃N,−s (Ω; ε) ×
XN,−s (Ω; ε), i.e.,

E2T = −ε−1(curl μ−1 curl E0 + J ′
T (0)) ∈ H 0(curl,Ω),

with μ−1 curl E2T ∈ H (curl,Ω),

E3T = −ε−1(curl μ−1 curl E1 + J ′′
T (0)) ∈ H 0(curl,Ω).

The same theorems applied to the magnetic field equations give us. . .

Proposition 7.6.3 In order to have H ∈ W 2,p(0, T ; X̃T (Ω; μ)) ∩ W 4,p(0, T ;
L2(Ω)) and PH ∈ W 2,p(0, T ;H 1

zmv(Ω)) if applicable, it is sufficient to assume:

• in the non-mixed framework: ε−1J ∈ W 3,p(0, T ;H 0(curl,Ω)), together with
the higher-order initial data (H 2,H 3) ∈ X̃T (Ω; μ)× XT (Ω; μ), where:

μH 2 = curl ε−1J (0)− curl ε−1 curl H 0 + μ grad div μH 0,

μH 3 = curl ε−1J ′(0)− curl ε−1 curl H 1 + μ grad div μH 1.

• in the mixed framework: ε−1J ∈ W 3,p(0, T ;H 0(curl,Ω)) again, together with
(H 2,H 3) ∈ K̃T (Ω; μ)× KT (Ω; μ).

7If ε is scalar-valued and belongs to W 1,∞(Ω), a sufficient condition to ensure this is �$ ∈
W 2,p(0, T ;ΦN,−s (Ω; ε)). In both cases, the condition on � implies �$ ∈ W 2,p(0, T ;H 1

0 (Ω)),
which is needed for the mixed problem.
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Recall that the r.h.s. of (7.51, bottom) is zero, while that of (7.51, top)
automatically belongs, at any time, to KT (Ω; μ) under the above assumption.
By the same token, the Lagrange multiplier PH is zero.

As announced at the beginning of the section, one can actually rid oneself of
the topological conditions on Ω . The spaces ZN(Ω; ε),ZT (Ω; μ) obviously have
a doubly orthogonal complement in the spaces XN,−s (Ω; ε), XT (Ω; μ), for the
weighted L2 scalar product and the form ã.

1. The general theory of Sect. 4.4 can still be applied to the component of the
fields that is orthogonal to the Z-spaces. Actually, it belongs to a space where
the form ã is coercive and double orthogonality holds.

2. The component of the fields on the Z-spaces has been characterised in Sect. 6.3.4.
Furthermore, these spaces are obviously included in the improved regularity
spaces defined in Proposition 7.6.1:

ZN(Ω; ε) ⊂ X̃N,−s (Ω; ε) ; ZT (Ω; μ) ⊂ X̃T (Ω; μ),

as well as in any space of type D(AsE), D(A
s
H ). Thus, they have the same space

regularity as the latter.
3. The component of the magnetic field along ZT (Ω; μ) is constant (Eq. (6.43)); it

does not affect the time regularity of the solution.
4. The component of the electric field along ZN(Ω; ε) is given by (6.44). Thus, its

time regularity is that of J seen as a function with values in L2: again, this does
not decrease the regularity of the whole electric field.



Chapter 8
Analyses of Time-Harmonic Problems

In this chapter, we specifically study the time-harmonic Maxwell equations. They
derive from the time-dependent equations by assuming that the time dependence
of the data and fields is proportional to exp(−ıωt), for a pulsation ω ≥ 0 (the
frequency is equal to ω/(2π)). When the pulsation ω is not known, the time-
harmonic problem models free vibrations of the electromagnetic fields. One has
to solve an eigenproblem, for which both the fields and the pulsation are unknowns.
On the other hand, when ω is part of the data, the time-harmonic problem models
sustained vibrations. Generally speaking, we refer to this problem as a Helmholtz-
like problem, for which the only unknown is the fields.

We refer to Chap. 1 for the models, and we rely on the mathematical tools
introduced in Chaps. 2, 3, 4, and 6. Unless otherwise specified, we consider
complex-valued function spaces.

From the theory (cf. Sect. 4.5), we see that one must have some compactness
at hand to be able to study both problems. Several compact imbeddings theorems,
namely those of XN,−s (Ω; ε) and XT (Ω; μ) in L2(Ω), have already been derived
in Sect. 7.5. As these spaces are defined by perfectly conducting boundary condi-
tions, this will allow us to solve the eigenproblems and the Helmholtz-like problems
in a (closed) cavity, i.e., a medium encased in a perfect conductor. In parallel, we
also address the case of a truncated exterior problem, namely the diffraction problem
around a perfectly conducting object, where truncation is performed with the help
of an artificial boundary where an absorbing boundary condition (ABC) is imposed.
For that, we need some additional compact imbedding results that are proven in the
next section. We use the same notations as in Chap. 6; in particular ‖ · ‖ and (· | ·)
denote the canonical norm and scalar product of L2(Ω) or L2(Ω).
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8.1 Compact Imbeddings: Complements

Following the discussion in Sect. 7.5, let us address the case of the function space
with elements that have a normal trace that belongs to L2(Γ ), where ξ is a tensor
field that fulfills (5.10):

Y T (Ω; ξ) := {f ∈ H (curl,Ω) ∩ H (div ξ,Ω) : ξf · n|Γ ∈ L2(Γ )},

endowed with the graph norm

‖f ‖Y T (Ω;ξ) :=
{
‖f ‖2

H (curl,Ω) + ‖div ξf ‖2 + ‖ξf · n‖2
L2(Γ )

}1/2
.

Below, we focus on the compact imbedding of Y T (Ω; ξ) in L2(Ω). Note also that
the equivalence of norms in Y T (Ω; ξ), namely the control of the L2(Ω)-norm,
could be obtained as usual.

Theorem 8.1.1 LetΩ be a domain such that (Top)I=0 or (Top)I>0 is fulfilled, and
let ξ be a tensor field that fulfills assumption (5.10). It holds that Y T (Ω; ξ) ⊂c
L2(Ω).

Proof Let (ym)m be a bounded sequence of Y T (Ω; ξ). For all m, we split ym
continuously into a part that belongs to XT (Ω; ξ), and a part with a normal trace that
matches ξym ·n|Γ . Then, we prove that one can extract a subsequence that converges
in L2(Ω) from the sequence with normal traces that match those of (ym)m and, on
the other hand, we use Theorem 7.5.3 to extract a converging subsequence from the
sequence of elements of XT (Ω; ξ).
1. Note that if (div ξym|1) = (ξym · n, 1)L2(Γ ) is not equal to zero, one has

to modify the divergence(ξ) of the part that belongs to XT (Ω; ξ), because
(div ξz|1) = 0 for all z ∈ XT (Ω; ξ). So, let us define the average value
cm := (ξym · n, 1)L2(Γ )/area(Γ ) and c′m := (ξym · n, 1)L2(Γ )/vol(Ω).

Let um ∈ H 1
zmv(Ω) be the unique solution to div ξ gradum = c′m in Ω and

ξ gradum · n|Γ = cm, or equivalently,

{
Find um ∈ H 1

zmv(Ω) such that
∀q ∈ H 1

zmv(Ω), (ξ gradum| gradq) = −c′m(1|q)+ cm(1, q)L2(Γ ) .

We remark that one has um = cm u, where u ∈ H 1
zmv(Ω) is the unique solution to

div ξ gradu = area(Γ )/vol(Ω) in Ω and ξ gradu · n|Γ = 1. But according to
the Cauchy-Schwarz inequality, it holds that |cm| ≤ ‖ξym ·n‖L2(Γ )/area(Γ )

1/2,
so (um)m is bounded in the one-dimensional vector space span(u). Hence, one
can extract a subsequence still denoted (um)m that converges in this space, so
that (gradum)m converges in L2(Ω).
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2. Then, define gm := ξym ·n|Γ −cm ∈ L2(Γ ) and let vm ∈ H 1
zmv(Ω) be the unique

solution to div ξ grad vm = 0 in Ω and ξ grad vm · n|Γ = gm, or equivalently,

{
Find vm ∈ H 1

zmv(Ω) such that
∀q ∈ H 1

zmv(Ω), (ξ grad vm| grad q) = (gm, q)L2(Γ ) .

By construction, (gm)m is bounded in L2(Γ ), so on the one hand, (vm)m is
bounded in H 1(Ω), and consequently, (vm|Γ )m is bounded in H 1/2(Γ ), and,
on the other hand, thanks to Proposition 2.1.43, one can extract a subsequence
still denoted (gm)m that converges in H−1/2(Γ ). Denoting gmn := gm − gn,
vmn := vm − vn, it follows that

‖ξ1/2 grad vmn‖2 = 〈gmn, vmn〉H 1/2(Γ ) ≤ ‖gmn‖H−1/2(Γ ) ‖vmn‖H 1/2(Γ )

≤ 2 sup
m
(‖vm‖H 1/2(Γ )) ‖gmn‖H−1/2(Γ ).

So, (gradvm)m is a Cauchy sequence in L2(Ω), and it converges in this space.
3. Let y′

m := ym − grad(um + vm): by construction, one has curl y′
m = curl ym

and div ξy ′
m = div ξym− c′m inΩ and ξy ′

m ·n|Γ = 0. And, it follows that (y ′
m)m

is a bounded sequence in XT (Ω; ξ) (with respect to the graph norm). According
to Theorem 7.5.3, we can extract a subsequence that converges in L2(Ω), which
ends the proof.

Remark 8.1.2 In the same spirit as Remark 7.5.4, we can generalize this last result.
Given s, t ∈ [0, 1/2[, one can prove that the function space

Y T ,−s,−t (Ω; ξ) := {f ∈ H (curl,Ω) : ξf ∈ H−s (div,Ω), ξf · n|Γ ∈ H−t (Γ )}

is compactly imbedded in L2(Ω) by using the same proof as above, replacing the
L2 scalar products onΩ , respectively on Γ , with 〈·, ·〉Hs0 (Ω), respectively 〈·, ·〉Ht0 (Γ )
where appropriate.

Finally, we investigate the function space whose elements have a tangential trace
that belongs to L2

t on a part of the boundary, and vanishes elsewhere. More precisely,
we consider that the boundary Γ is equal to ΓP ∪ ΓA, with ΓP ∩ ΓA = ∅ and ΓP a
Lipschitz submanifold of Γ , and define

XN,A(Ω; ξ) := {f ∈ H 0,ΓP (curl,Ω) : div ξf ∈ L2(Ω), f × n|ΓA ∈ L2
t (ΓA)},

endowed with the graph norm

‖f ‖XN,A(Ω;ξ) :=
{
‖f ‖2

H (curl,Ω) + ‖div ξf ‖2 + ‖f × n‖2
L2
t (ΓA)

}1/2
.
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Again, we focus on the compact imbedding of XN,A(Ω; ξ) in L2(Ω), noting that
the equivalence of norms in XN,A(Ω; ξ) could be obtained as usual.

Theorem 8.1.3 Let Ω be a domain, and let ξ be a tensor field that fulfills
assumption (5.10). One has XN,A(Ω; ξ) ⊂c L2(Ω).

Proof Consider (ym)m a bounded sequence of XN,A(Ω; ξ). Similarly to the proof
of Theorem 7.5.1, we split, for all m, the field ym into three parts. Furthermore, the
first two parts—namely grad q0

m ; z
ξ
m := P

Z
ξ
N

ym ∈ ZN(Ω; ξ)—are built as in the

above-mentioned proof, and one can extract subsequences (grad q0
m)m, (zξm)m that

converge in L2(Ω).
Then, let xm := ym − gradq0

m − z
ξ
m ∈ H 0,ΓP (curl,Ω). The sequence (xm)m

is bounded in L2(Ω). In addition, div ξxm = 0 and curl xm = curl ym in Ω ,
〈ξxm ·n, 1〉H 1/2(Γk)

= 0 for all k and xm×n|ΓA = ym×n|ΓA . Using Theorem 3.4.1
for every m, there exists a sequence (wm)m of elements of H 1

zmv(Ω) such that
ξxm = curl wm in Ω , which is bounded in H 1(Ω). Hence, given η ∈]0, 1/2[,
there exists a subsequence, still denoted by (wm)m, that converges in H 1−η(Ω).
This implies, on the one hand, that (wm)m converges in L2(Ω), and on the other
hand, that (wm|Γ )m converges in L2(Γ ). Defining the subsequence (xm)m with the
same indices and denoting xmn := xm − xn and wmn := wm − wn, one finds, by
integration by parts (obtained by the density of smooth fields in H 0,ΓP (curl,Ω), cf.
Definition 2.2.27),

‖ξ1/2xmn‖2 = (xmn| curl wmn)

= (curl xmn|wmn)+ (xmn × n, (wmn)�)L2
t (ΓA)

= (curl ymn|wmn)+ (ymn × n, (wmn)�)L2
t (ΓA)

≤ 2 sup
m
(‖ym‖XN,A(Ω;ξ)) (‖wmn‖ + ‖wmn‖L2(Γ )).

So, (xm)m is a Cauchy sequence in L2(Ω), and it converges in this space.
By construction, one has ym := xm − grad q0

m − z
ξ
m, so the subsequence (ym)m

converges in L2(Ω).

Remark 8.1.4 We can generalize this last result. Given s ∈ [0, 1[, one can prove
that the function space

XN,−s,A(Ω; ξ) : ={f ∈H 0,ΓP (curl,Ω) : div ξf ∈H−s(Ω), f × n|ΓA ∈ L2
t (ΓA)}

is compactly imbedded in L2(Ω) by using the same proof as above, replacing the
L2(Ω) scalar product with 〈·, ·〉Hs0 (Ω) where appropriate.
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8.2 Free Vibrations in a Domain Encased in a Cavity

In a domain Ω encased in a perfect conductor, i.e., a cavity problem, the free
vibrations are governed by the first-order equations (1.52)–(1.55) with zero right-
hand sides, plus boundary conditions (5.8) and (5.9). This is the first-order system,
whose unknowns are the couple of electromagnetic fields (E,H ) ∈ L2(Ω)2,
(E,H ) �= (0, 0) and the number ω ∈ R, ω ≥ 0. As we saw in Sect. 1.2.1, this
implies the second-order equations (1.58)–(1.61):

− λεE + curl(μ−1 curl E) = 0, (8.1)

−λμH + curl(ε−1 curl H ) = 0, (8.2)

div εE = 0, (8.3)

div μH = 0, (8.4)

plus boundary conditions (5.8), (5.9) and (7.10): E × n|Γ = 0, μH · n|Γ = 0
and ε−1 curl H × n|Γ = 0. The unknowns are the couple of electromagnetic fields
(E,H ) ∈ H (curl,Ω)2, (E,H ) �= (0, 0) and the number λ = ω2, λ ≥ 0. As usual,
we assume that ε and μ are tensor fields that fulfill assumption (5.10). In the second-
order equations (8.1)–(8.4), the fields E and H are decoupled. So, one can solve an
eigenproblem in E and an eigenproblem in H , and finally check that any solution
of these two eigenproblems leads to a solution of the first-order system.

8.2.1 Electric Eigenproblem

Let us begin with the eigenproblem in the electric field. In this case, the unknowns
E and λ are governed by

⎧⎪⎪⎨
⎪⎪⎩

Find (E, λ) ∈ (H (curl,Ω) \ {0})× C such that
curl(μ−1 curl E) = λεE inΩ,
div εE = 0 in Ω,
E × n = 0 on Γ.

(8.5)

All eigenfields belong to the closed vector subspace KN(Ω; ε) of XN(Ω; ε).
Proposition 8.2.1 The variational formulation

{
Find (E, λ) ∈ (KN(Ω; ε) \ {0})× C such that
∀v ∈ KN(Ω; ε), (μ−1 curl E| curl v) = λ(εE|v) (8.6)

is equivalent to (8.5).
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Proof On the one hand, it is clear by integration by parts that if (E, λ) is governed
by (8.5), then it solves the variational formulation (8.6). On the other hand, consider
(E, λ) that solves (8.6). Since E belongs to KN(Ω; ε), one has E ∈ H (curl,Ω)
with div εE = 0 in Ω and E × n|Γ = 0. To recover the last equation, consider
z ∈ D(Ω). Applying a standard procedure, we can subtract the gradient of the scalar
field z ∈ H 1

0 (Ω) characterized by div ε grad z = div εz, so that v := z − grad z
belongs to KN(Ω; ε). Using it as a test function in (8.6) yields

〈curl(μ−1 curl E), z〉 = (μ−1 curl E| curl z) = (μ−1 curl E| curl v)

= λ(εE|v) = λ(εE|z − grad z) = λ(εE|z).

The last equality follows by integration by parts, if one recalls that z belongs to
H 1

0 (Ω), whereas div εE = 0 in Ω .

Observe that if one chooses v = E in (8.6), one finds λ ∈ R, λ ≥ 0.
To solve (8.6), one uses Theorem 4.5.13, which considers the solution of an

eigenproblem with constraints, set in V = XN(Ω; ε) and H = L2(Ω), where
the latter is endowed with ‖ε1/2 · ‖. To that aim, we prove below that the closure
of K = KN(Ω; ε) in L2(Ω) is the (closed) vector subspace H (div ε0,Ω) (see
Definition 2.2.11).

Proposition 8.2.2 Let Ω be a domain such that (Top)I=0 or (Top)I>0 is fulfilled,
and let ε be a tensor field that fulfills assumption (5.10). Then, KN(Ω; ε) is dense
in H (div ε0,Ω).

Remark 8.2.3 The spaces KN(Ω; ε) = KE and H (div ε0,Ω) = LE have already
been encountered in Sect. 7.4.2, where we showed that KN(Ω; ε) satisfies a double
orthogonality property within H 0(curl,Ω) (Proposition 7.4.3). The density result
is a consequence of this property (Lemma 4.3.18). Here, we provide an elementary
proof.

Proof Classically, it is enough to check that any element of the dual space
(H (div ε0,Ω))′ that vanishes on KN(Ω; ε) is equal to 0. Thanks to the Riesz
theorem 4.2.1, any such element can be represented by v ∈ H (div ε0,Ω), and
its action by w �→ (εv|w). Now, choose w ∈ ZN(Ω; ε), which is a subset
of H (div ε0,Ω). This yields 〈εv · n, 1〉H 1/2(Γk)

= 0 for all k. According to
Theorem 3.6.1, there exist z ∈ HΣ

0 (div 0,Ω) such that εv = curl z in Ω . Thus,
one finds, by integration by parts,

∀w ∈ KN(Ω; ε), 0 = (εv|w) = (curl z|w) = (z| curl w).

But, we know from Theorem 6.1.4 that the mapping w �→ curl w is surjective
from H 0(curl,Ω) onto HΣ

0 (div 0,Ω). The surjectivity also holds from KN(Ω; ε)
onto the same function space. As a matter of fact, given w ∈ H 0(curl,Ω), one
corrects the test function by subtracting the gradient of the scalar field z ∈ H 1

0 (Ω)

defined by div ε grad z = div εw, so that w − grad z belongs to KN(Ω; ε) with



8.2 Free Vibrations in a Domain Encased in a Cavity 319

curl(w − grad z) = curl w in Ω . Hence, there exists w′ ∈ KN(Ω; ε) such that
z = curl w′ inΩ , and one has ‖z‖2 = 0, and also v = 0.

To apply Theorem 4.5.13, we can choose L = H (div ε0,Ω). Also, we remark that
the double orthogonality property involving KN(Ω; ε) in XN(Ω; ε) follows easily
from the Helmholtz decomposition (6.16) or (7.47). Finally, we note that (8.6) is
equivalently replaced by

{
Find (E, λ) ∈ (KN(Ω; ε) \ {0})× C such that
∀v ∈ KN(Ω; ε), (E, v)XN (Ω;ε) = (λ+ 1)(εE|v), (8.7)

where (·, ·)XN(Ω;ε) is defined in (6.6), with b = μ−1. Then, we can apply
Theorem 4.5.13 to derive the results below, which characterize electric eigenmodes.

Theorem 8.2.4 Let Ω be a domain such that (Top)I=0 or (Top)I>0 is fulfilled,
and let ε,μ be tensor fields that fulfill assumption (5.10). Then, there exists a
Hilbert basis (em)m of H (divε0,Ω) made of eigenvectors of Problem (8.7) with
corresponding strictly positive eigenvalues (λEm+1)m, such that ((λEm+1)−1/2em)m
is a Hilbert basis ofKN(Ω; ε). Finally, the eigenvalues are all of finite multiplicities
and they can be reordered as an increasing sequence of real numbers whose limit is
+∞.

8.2.2 Magnetic Eigenproblem

Let us continue with the eigenproblem in the magnetic field. The process is very
similar to the electric case, so some parts are only sketched. The unknowns H and
λ are governed by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Find (H , λ) ∈ (H (curl,Ω) \ {0})× C such that
curl(ε−1 curl H ) = λμH in Ω,
divμH = 0 inΩ,
μH · n = 0 on Γ,
ε−1 curl H × n = 0 on Γ.

(8.8)

All eigenfields now belong to the closed vector subspace KT (Ω; μ) of XT (Ω; μ).
Proposition 8.2.5 The variational formulation

{
Find (H , λ) ∈ (KT (Ω; μ) \ {0})× C such that
∀v ∈ KT (Ω; μ), (ε−1 curl H | curl v) = λ(μH |v) (8.9)

is equivalent to (8.8).
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Proof It is clear by integration by parts that if (H , λ) is governed by (8.8), then
it solves the variational formulation (8.9). On the other hand, given (H , λ) that
solves (8.9), one has H ∈ H (curl,Ω) with div μH = 0 in Ω and μH · n|Γ = 0.
To recover the first and last equations of (8.8), consider z ∈ H (curl,Ω). Applying
another standard procedure, we can subtract the gradient of the scalar field z ∈
H 1
zmv(Ω) that solves the (well-posed) variational formulation: for all z′ ∈ H 1

zmv(Ω),
(μ grad z| grad z′) = (μz| grad z′). By construction, v := z − grad z now belongs
to KT (Ω; μ) with curl v = curl z. Using it as a test function in (8.9) successively
yields curl(ε−1 curl H ) = λμH inΩ (with z ∈ D(Ω)), and then ε−1 curl H ×
n|Γ = 0.

If one chooses v = H in (8.9), one has λ ∈ R and λ ≥ 0. As explained in the
electric case, one must consider (8.9) as an eigenproblem with constraints, set in
V = XT (Ω; μ) and H = L2(Ω), where H is endowed with ‖μ1/2 · ‖. We first
characterize the closure of K = KT (Ω; μ) in L2(Ω).

Proposition 8.2.6 Let Ω be a domain such that (Top)I=0 or (Top)I>0 is fulfilled,
and let μ be a tensor field that fulfills assumption (5.10). Then, KT (Ω; μ) is dense
in H 0(div μ0,Ω).

Remark 8.2.7 The spaces KT (Ω; μ) = KH and H 0(div μ0,Ω) = LH have
already been encountered in Sect. 7.4.2, where we showed that KT (Ω; μ) satisfies
a double orthogonality property within H (curl,Ω) (Proposition 7.4.4). The density
result is a consequence of this property (Lemma 4.3.18). Here, we provide an
elementary proof.

Proof Let us check that any element of the dual space (H 0(div μ0,Ω))′ that
vanishes on KT (Ω; μ) is equal to 0. Any such element can be represented by
v ∈ H 0(div μ0,Ω), and its action by w �→ (μv|w). Now, choose w ∈ ZT (Ω; μ),
which is a subset of H 0(div μ0,Ω), to find 〈μv · n, 1〉Σi = 0 for all i. Due to
Theorem 3.5.1, there exists z ∈ H 0(curl,Ω)∩HΓ (div 0,Ω) such that μv = curl z
inΩ . Hence, one finds, by integration by parts,

∀w ∈ KT (Ω; μ), 0 = (μv|w) = (curl z|w) = (z| curl w).

We know from Theorem 6.2.5 that the mapping w �→ curl w is surjective from
XT (Ω; μ) onto HΓ (div 0,Ω). The surjectivity also holds from KT (Ω; μ) onto
the same function space if one corrects the fields by subtracting an appropriate
gradient exactly as above (solving a variational formulation). Hence, there exists
w′ ∈ KT (Ω; μ) such that z = curl w′ in Ω , and it follows that ‖z‖2 = 0, and
v = 0.
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We can choose L = H 0(div μ0,Ω) to apply Theorem 4.5.13, replacing this
time (8.9) with

{
Find (H , λ) ∈ (KT (Ω; μ) \ {0})× C such that
∀v ∈ KT (Ω; μ), (H , v)XT (Ω;μ) = (λ+ 1)(μH |v), (8.10)

where (·, ·)XT (Ω;μ) is defined in (6.26) with c = ε−1. The double orthogonality
property involving KT (Ω; μ) in XT (Ω; μ) stems from the Helmholtz decomposi-
tion (6.37) or (7.48). Below, we characterize magnetic eigenmodes.

Theorem 8.2.8 Let Ω be a domain such that (Top)I=0 or (Top)I>0 is fulfilled,
and let ε,μ be tensor fields that fulfill assumption (5.10). Then, there exists a
Hilbert basis (hm)m of H 0(div μ0,Ω) made of eigenvectors of Problem (8.10) with
corresponding strictly positive eigenvalues (λHm+1)m, such that ((λHm+1)−1/2hm)m
is a Hilbert basis ofKT (Ω; μ). Finally, the eigenvalues are all of finite multiplicities
and they can be reordered as an increasing sequence of real numbers whose limit
is +∞.

8.2.3 Solving the First-Order Eigenproblem

Let (em, λEm)m, respectively (hm, λHm )m be the ordered sequence of electric eigen-
pairs, respectively magnetic eigenpairs. We study the way in which they are related,
thus characterizing electromagnetic eigenmodes.

Consider first an electric eigenpair (em, λEm). Two cases may occur: λEm = 0
or λEm > 0. If λEm = 0, then the couple of electromagnetic fields (em, 0) is an
eigenmode of the first-order system, with ω = 0. Indeed, in this case, one has
‖μ−1/2 curl em‖2 = 0 in Ω . On the other hand, if λEm > 0, let us define h′

m =
−ı(λEm)−1/2μ−1 curl em. Then, the couple of electromagnetic fields (em,h′

m) is an
eigenmode of the first-order system, with ω = (λEm)1/2.

Consider then a magnetic eigenpair (hm, λHm ). The reasoning is very similar, and
again, two cases may occur: λHm = 0 or λHm > 0. If λHm = 0, then the couple of
electromagnetic fields (0,hm) is an eigenmode of the first-order system, withω = 0,
because in this case, one has ‖ε−1/2 curl hm‖2 = 0 in Ω . On the other hand, if
λHm > 0, define e′m = +ı(λHm )−1/2ε−1 curl hm. Then, the couple of electromagnetic
fields (e′m,hm) is an eigenmode of the first-order system, with ω = (λHm )1/2.

To conclude, it follows, by going one last time from either of the above solutions
of the first-order system to the second-order eigenproblems, that the set of strictly
positive eigenvalues is equal with same multiplicity, namely:

{λEm : λEm > 0} = {λHm : λHm > 0}.

However, it is possible that, whenω = 0, the dimension of the vector space of purely
electric eigenmodes—equal to dim(ZN(Ω; ε))—is different from the dimension of
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the vector space of purely magnetic eigenmodes—equal to dim(ZT (Ω; μ)). It is
even possible that there are no eigenmodes of one kind, while eigenmodes of the
other kind exist.

8.3 Sustained Vibrations

Generally speaking, the sustained vibrations with pulsation ω > 0 of electromag-
netic fields are governed by the first-order equations (1.52)–(1.55):

ıωεe + curl h = j , (8.11)

−ıωμh + curl e = 0, (8.12)

div εe = r, (8.13)

div μh = 0. (8.14)

As usual, we assume that ε and μ are tensor fields that fulfill assumption (5.10). The
data is (j , r), and it fulfills the charge conservation equation −ıωr+div j = 0. The
unknowns are the measurable and square integrable electromagnetic fields. Below,
we consider several settings.

8.3.1 In a Domain Encased in a Perfect Conductor

In a domain Ω encased in a perfect conductor (cavity problem), the sustained
vibrations are governed by Eqs. (8.11)–(8.14), plus boundary conditions (5.8)
and (5.9): e × n|Γ = 0, μh · n|Γ = 0. This is the first-order system. More
precisely, the data (j , r) belongs to L2(Ω) × H−1(Ω), and it fulfills the charge
conservation equation in H−1(Ω). The unknown is the couple of electromagnetic
fields (e,h) ∈ L2(Ω)2. If ω2 is an eigenvalue (cf. Sect. 8.2), the solution to the
first-order system—if it exists—is not unique. So, in what follows, we assume that
ω2 is not an eigenvalue, namely that ω2 does not belong to the (discrete) set of non-
zero eigenvalues, which we denote by {λm : λm > 0}, with values arranged by
increasing order.

As we saw in Sect. 1.2.1, this implies the second-order equations (1.58)–(1.61):

− ω2εe + curl(μ−1 curl e) = ıωj , (8.15)

−ω2μh + curl(ε−1(curl h − j )) = 0, (8.16)

div εe = r, (8.17)

div μh = 0, (8.18)
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plus boundary conditions (5.8), (5.9) and (7.10): e × n|Γ = 0, μh · n|Γ = 0 and
ε−1(curl h − j ) × n|Γ = 0. The unknown is the couple of electromagnetic fields
(e,h) ∈ H (curl,Ω)2. In the second-order equations (8.15)–(8.18), the fields e and
h are decoupled. So, one can solve a Helmholtz-like problem in e and a Helmholtz-
like problem in h, and finally check that any solution of these two problems leads
to a solution of the first-order system. For this last part, we apply the same process
as in Sect. 8.2.

8.3.1.1 Magnetic Helmholtz-Like Problem

Let us begin with the problem in the magnetic field h, which is governed by:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Find h ∈ H (curl,Ω) such that
−ω2μh + curl(ε−1(curl h − j)) = 0 in Ω,
div μh = 0 inΩ,
μh · n = 0 on Γ,
ε−1(curl h − j)× n = 0 on Γ.

(8.19)

The magnetic field h belongs to the function space KT (Ω; μ) and one can again
build an equivalent variational formulation, as in Sect. 8.2.2:

{
Find h ∈ KT (Ω; μ) such that
∀v ∈ KT (Ω; μ), −ω2(μh|v)+ (ε−1 curl h| curl v) = (ε−1j | curl v).

(8.20)

To solve the Helmholtz-like problem (8.20), we propose two approaches below.
Both of them rely on knowledge of a Hilbert basis of KT (Ω; μ), cf. Theorem 8.2.8.
The first one proposes an explicit solution, while the second one allows us to solve
the problem variationally. Let (hm)m≥0 denote the Hilbert basis1 of KT (Ω; μ)
defined by hm := (λm + 1)−1/2hm. Note that it is also an orthogonal basis for
H 0(div μ0,Ω), endowed with (v,w) �→ (μv|w).

The variational formulation (8.20) is then equivalent to

{
Find h ∈ KT (Ω; μ) such that
∀m ≥ 0, −ω2(μh|hm)+ (ε−1 curl h| curl hm) = (ε−1j | curl hm).

(8.21)

Considering now h :=∑m≥0 αmhm with

∀m ≥ 0, αm := 1 + λm
λm − ω2 (ε

−1j | curlhm),

1Here, we include—if they exist—magnetic eigenmodes with 0 eigenvalue, for which curl hm = 0.
There is, at most, a finite number of them. We keep the notation (λm)m≥0 for the eigenvalues.
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one finds, by inspection, that h solves (8.21) ; if λm = 0, notice that one
automatically has αm = 0. Moreover, h is the unique solution to (8.21). To prove
well-posedness, one relies on the following observation: discarding the modes for
which λm = 0, we remark that ((1 + 1/λm)1/2 curl hm)m is an orthonormal family
in L2(Ω) endowed with (ε−1 · |·), hence

∑
m

∣∣∣(ε−1j |(1 + 1/λm)1/2 curlhm)
∣∣∣2 ≤ ‖ε−1/2j‖2.

Then, one finds

|αm| = (λ2
m + λm)1/2
|λm − ω2|

∣∣∣(ε−1j |(1 + 1/λm)1/2 curl hm)
∣∣∣

≤ sup
�≥0

(
(λ2
� + λ�)1/2
|λ� − ω2|

) ∣∣∣(ε−1j |(1 + 1/λm)1/2 curlhm)
∣∣∣ ,

so that ‖h‖KT (Ω;μ) ≤ sup
�≥0

(
(λ2
� + λ�)1/2
|λ� − ω2|

)
‖ε−1/2j‖.

Since ω2 �∈ {λm : λm ≥ 0} and limm→∞ λm = +∞, one concludes that
sup�≥0

(
(λ2
� + λ�)1/2/|λ� − ω2|) <∞.

On the other hand, one can start from the variational formulation (8.20) and
use the T-coercivity result of Proposition 4.2.14. To that aim, let us introduce a
suitable operator TH of L(KT (Ω; μ)). Since the Hilbert basis (hm)m≥0 is ordered
by increasing values of λm, there exists an index M ≥ −1 such that λm < ω2 if,
and only if, m ≤ M . Then, TH is defined by

THhm =
{−hm if λm < ω2,

+hm if λm > ω2.

By construction, T 2
H = IKT (Ω;μ), hence it is bijective. To prove the well-posedness

of the variational formulation (8.20), let us check that the sesquilinear form aH :
(v,w) �→ −ω2(μv|w) + (ε−1 curl v| curl w) is T-coercive on KT (Ω; μ). Given
v ∈ KT (Ω; μ), it can be decomposed as v =∑m≥0 vmhm and, by orthogonality,

aH (v, THv) =
∑
m≥0

|vm|2
(
−ω2(μhm|THhm)+ (ε−1 curlhm| curl(THhm))

)

=
∑
M≥m

|vm|2
(
ω2 − λm
1 + λm

)
+
∑
m>M

|vm|2
(−ω2 + λm

1 + λm
)

≥ inf
�≥0

( |λ� − ω2|
1 + λ�

) ∑
m≥0

|vm|2 = inf
�≥0

( |λ� − ω2|
1 + λ�

)
‖v‖2

KT (Ω;μ).
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Since ω2 �∈ {λm : λm ≥ 0} and limm→∞ λm = +∞, one concludes that
inf�≥0

(|λ� − ω2|/(1 + λ�)
)
> 0, and so the sesquilinear form aH is T-coercive.

Hence, the variational formulation (8.20) is well-posed.
Both results are summarized below.

Theorem 8.3.1 Let Ω be a domain encased in a perfect conductor, such that
(Top)I=0 or (Top)I>0 is fulfilled, and let ε,μ be tensor fields that fulfill assump-
tion (5.10). Provided that ω2 does not belong to the discrete set of eigenvalues of the
corresponding eigenproblem, the magnetic Helmholtz-like problem is well-posed.

8.3.1.2 Electric Helmholtz-Like Problem

Let us continue with the Helmholtz-like problem in the electric field e. The unknown
e is governed by:

⎧⎪⎪⎨
⎪⎪⎩

Find e ∈ H (curl,Ω) such that
−ω2εe + curl(μ−1 curl e) = ıωj inΩ,
div εe = r inΩ,
e × n = 0 on Γ.

(8.22)

Because one always has ω �= 0, note that the second equation div εe = r in Ω
is redundant, as it can be derived from the first one with the help of the charge
conservation equation. The electric field belongs to the function space H 0(curl,Ω).
One can build an equivalent variational formulation in this space, namely

{
Find e ∈ H 0(curl,Ω) such that
∀v ∈ H 0(curl,Ω), −ω2(εe|v)+ (μ−1 curl e| curl v) = ıω(j |v). (8.23)

Indeed, it is clear by integration by parts that if e is governed by (8.22), then it solves
the variational formulation (8.23). On the other hand, consider e that solves (8.23).
One obviously has e ∈ H (curl,Ω) and e × n|Γ = 0. Also, taking v ∈ D(Ω) as a
test function in (8.23), one finds that −ω2εe + curl(μ−1 curl e) = ıωj in D′(Ω),
so one recovers the first equation of (8.22). Last, using v = gradv with v ∈ H 1

0 (Ω)

as a test function, it now follows that

ω2〈div εe, v〉H 1
0 (Ω)

= −ω2(εe| grad v)
(8.23)= ıω(j | gradv)

= −ıω〈div j , v〉H 1
0 (Ω)

= ω2〈r, v〉H 1
0 (Ω)

,

where we used the charge conservation equation for the last equality. Hence, we
derive the second equation of (8.22) in H−1(Ω) because ω �= 0.

In the sequel, we endow the space of electric fields H 0(curl,Ω) with the scalar
product (v,w)ε,μ−1 curl = (εv|w) + (μ−1 curl v| curl w). To solve the electric
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Helmholtz-like problem (8.23), we also propose two approaches, which now rely
on knowledge of an ad hoc Hilbert basis of H 0(curl,Ω). To that aim, we recall that
one has the Helmholtz decomposition (6.16):

H 0(curl,Ω) = grad[H 1
0 (Ω)]

⊥
ε,μ−1

⊕ KN(Ω; ε).

According to the study of the electric eigenproblem, we already have at hand
a Hilbert basis of KN(Ω; ε), here considered as a (closed) vector subspace of
H 0(curl,Ω). Indeed, the scalar products are identical.

On the other hand, the scalar product restricted to grad[H 1
0 (Ω)] writes (v,w) �→

(εv|w). Now, we remark that (v,w) �→ (ε grad v| gradw) is a scalar product of
H 1

0 (Ω). Based on this observation, we can build a Hilbert basis of H 1
0 (Ω) that

yields a Hilbert basis for grad[H 1
0 (Ω)], as follows. Choose η ∈ L∞(Ω) such that

η ≥ η− almost everywhere with η− > 0, and solve

{
Find (v, λ) ∈ (H 1

0 (Ω) \ {0})× C such that
∀w ∈ H 1

0 (Ω), (ε gradv| gradw) = λ (ηv|w). (8.24)

This scalar eigenproblem with Dirichlet boundary condition can be solved with the
help of Theorem 4.5.11 for V = H 1

0 (Ω) and H = L2(Ω), respectively endowed
with the scalar products (·, ·)V = (ε grad ·| grad ·) and (·, ·)H = (η · |·).
Theorem 8.3.2 Let Ω be a domain. Let ε be a tensor field that fulfills assump-
tion (5.10) and let η ∈ L∞(Ω) be such that η ≥ η− > 0 almost everywhere.
Then, there exists a Hilbert basis (vm)m≥0 of L2(Ω) made of eigenvectors of
Problem (8.24) with corresponding strictly positive eigenvalues (λDm)m≥0, such that
((λDm)

−1/2vm)m≥0 is a Hilbert basis for H 1
0 (Ω). Finally, the eigenvalues are all of

finite multiplicities, and they can be reordered as an increasing sequence of real
numbers whose limit is +∞.

We denote by (em)m≥0 the Hilbert basis of H (div ε0,Ω) made of eigenvectors of
Problem (8.7), with associated eigenvalues (λm)m≥0 (see Theorem 8.2.4). Now, let
(em)m≥0 denote the Hilbert basis of KN(Ω; ε) defined by em := (λm + 1)−1/2em.
Then, let (em)m<0 denote the Hilbert basis of grad[H 1

0 (Ω)] defined by em :=
(λD−(1+m))

−1/2 gradv−(1+m).
Observe that (em)m∈Z is a Hilbert basis for H 0(curl,Ω) with,

∀m ∈ Z, ∀v ∈ H 0(curl,Ω),
(εem|v)+ (μ−1 curl em| curl v) = (λm + 1)1/2(εem|v),

where, by construction, λm = 0 for all m < 0. We can now carry on as before. In
the electric case, the variational formulation (8.23) is equivalent to

{
Find e ∈ H 0(curl,Ω) such that
∀m ∈ Z, −ω2(εe|em)+ (μ−1 curl e| curl em) = ıω(j |em). (8.25)
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Let e :=∑m∈Z βmem with

∀m ∈ Z, βm := ıω 1 + λm
λm − ω2 (j |em).

By inspection, e solves (8.25) and, what is more, it is obviously its only solution.
Also,2

|βm| = ω λm + 1

|λm − ω2| |(j |em)|

≤ ω sup
�∈Z

(
(λ� + 1)1/2

|λ� − ω2|
)
(λm + 1)1/2 |(j |em)| ,

so ‖e‖H 0(curl,Ω) ≤ ω sup
�∈Z

(
(λ� + 1)1/2

|λ� − ω2|
)
‖ε−1/2j‖.

Again, ω2 �∈ {λm : m ∈ Z}, λm = 0 for all m < 0 and limm→∞ λm = +∞, hence
sup�∈Z

(
(λ� + 1)1/2/|λ� − ω2|) <∞.

On the other hand, one can use the T-coercivity theory once more. It is
completely similar to the magnetic case. The operator TE of L(H 0(curl,Ω)),
defined by

TEem =
{−em if λm < ω2,

+em if λm > ω2,

is such that T 2
E = IH 0(curl,Ω), hence it is bijective. Now, let M ≥ −1 be

the index such that λm < ω2 if, and only if, m ≤ M . To prove the well-
posedness of the variational formulation (8.23), let us check now that the form aE :
(v,w) �→ −ω2(εv|w) + (μ−1 curl v| curl w) is T-coercive on H 0(curl,Ω). Let
v ∈ H 0(curl,Ω) be decomposed as v =∑m∈Z vmem ; by orthogonality,

aE(v, TEv) =
∑
m∈Z

|vm|2
(
−ω2(εem|TEem)+ (μ−1 curl em| curl(TEem))

)

≥ inf
�∈Z

( |λ� − ω2|
1 + λ�

) ∑
m∈Z

|vm|2 = inf
�∈Z

( |λ� − ω2|
1 + λ�

)
‖v‖2

H (curl,Ω).

2Choosing em := em for m < 0 yields a Hilbert basis of L2(Ω) endowed with the scalar product
(ε · |·), namely (em)m∈�. Given v ∈ L2(Ω), it holds that (εv|v) = ∑

m∈� |(εv|em)|2. It follows
that

∑
m∈�
(λm + 1)|(j |em)|2 =

∑
m∈�

|(j |em)|2 = (j |ε−1j) = ‖ε−1/2j‖2.
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Since ω2 �∈ {λm : m ∈ Z}, λm = 0 for all m < 0 and limm→∞ λm = +∞, one
has inf�∈Z

(|λ� − ω2|/(1 + λ�)
)
> 0, and so the sesquilinear form aE is T-coercive.

Hence, the variational formulation (8.23) is well-posed.
The results are summarized below.

Theorem 8.3.3 Let Ω be a domain encased in a perfect conductor, such that
(Top)I=0 or (Top)I>0 is fulfilled, and let ε,μ be tensor fields that fulfill assump-
tion (5.10). Provided that ω2 does not belong to the discrete set of eigenvalues of
the corresponding eigenproblem, the electric Helmholtz-like problem is well-posed.

Remark 8.3.4 By analogy, it would be possible to solve the magnetic Helmholtz-
like problem in H (curl,Ω). For that, we recall that, if we endow H (curl,Ω) with
the scalar product (v,w) �→ (μv|w) + (ε−1 curl v| curl w), one has the Helmholtz
decomposition (6.37):

H (curl,Ω) = grad[H 1
zmv(Ω)]

⊥
μ,ε−1

⊕ KT (Ω; μ).

One then builds a Hilbert basis for the function space grad[H 1
zmv(Ω)] by solving

a scalar eigenproblem in H 1
zmv(Ω), with Neumann boundary condition, namely

(hm)m<0, associated with λm = 0 for all m < 0. The process can be completed
either through an explicit construction, or through the T-coercivity theory applied
to the variational formulation in H (curl,Ω).

8.3.1.3 Solving the First-Order Problem

Obtaining a solution is very straightforward (recall that ω �= 0). For instance:

• given h that solves (8.19), the couple (ıω−1ε−1 curl h,h) solves the first-order
problem (8.11)–(8.14);

• given e that solves (8.22), the couple (e,−ıω−1μ−1 curl e) solves the first-order
problem (8.11)–(8.14).

8.3.2 Inside a Conductor

The medium in Ω is now assumed to be a conductor with a conductivity tensor
σ. For short, we say that Ω is a conductor domain. It is still encased in a perfect
conductor, leading to another cavity problem. The behavior of the fields is governed,
as previously, by (8.11)–(8.14), with ε replaced with ε + ıσω−1, plus boundary
conditions (5.8) and (5.9). We handle the electric case, and the magnetic case can
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be treated similarly. The electric field is governed by the variational formulation:

⎧⎨
⎩
Find e ∈ H 0(curl,Ω) such that
∀v ∈ H 0(curl,Ω), −ω2(εe|v)− ıω(σe|v)

+(μ−1 curl e| curl v) = ıω(j ext |v),
(8.26)

with j ext the externally imposed current density. We assume that ε, μ and σ are
tensor fields that fulfill assumption (5.10). In this setting, it is possible to verify that
the sesquilinear form

aσ : (v,w) �→ −ω2(εv|w)− ıω(σv|w)+ (μ−1 curl v| curl w)

is coercive on H 0(curl,Ω) in the sense of Definition 4.2.6. Given v ∈
H 0(curl,Ω), let c = curl v.

|aσ (v, v)|2 = (−ω2‖ε1/2v‖2 + ‖μ−1/2c‖2)2 + ω2‖σ1/2v‖4

= ω4‖ε1/2v‖4 + ‖μ−1/2c‖4 − 2ω2‖ε1/2v‖2 ‖μ−1/2c‖2 + ω2‖σ1/2v‖4

≥ (ω4 − ω2η)‖ε1/2v‖4 + (1 − ω2η−1)‖μ−1/2c‖4 + ω2‖σ1/2v‖4.

The above is true for all η > 0, thanks to Young’s inequality.
According to (5.10), there exists βσ > 0 such that, for all v ∈ L2(Ω), it holds

that ‖σ1/2v‖4 ≥ βσ ‖ε1/2v‖4. It follows that

|aσ (v, v)|2 ≥ ω2(ω2 + βσ − η)‖ε1/2v‖4 + (1 − ω2η−1)‖μ−1/2c‖4.

Then, one can choose η ∈]ω2, ω2 + βσ [ so that γσ = min(ω2(ω2 + βσ − η), (1 −
ω2η−1)) > 0, and one concludes that

|aσ (v, v)|2 ≥ γσ
2
(‖ε1/2v‖2 + ‖μ−1/2c‖2)2.

In other words, the form aσ is coercive and the well-posedness of the variational
formulation (8.26) is achieved. The result is summarized below.

Theorem 8.3.5 LetΩ be a conductor domain encased in a perfect conductor, such
that (Top)I=0 or (Top)I>0 is fulfilled, and let ε,μ,σ be tensor fields that fulfill
assumption (5.10). The electric Helmholtz-like problem in the conductor domain
is well-posed.

To conclude, we recall two simple results. Let the tensor fields ε,μ be fixed.
One can easily check that the (best) coercivity constant for aσ (·, ·) goes to 0

when σ goes to 0 in L∞(Ω), that is, when the upper bound σ+ goes to 0, cf. (5.10).
Indeed, given q ∈ H 1

0 (Ω) \ {0}, one has a0(grad q, gradq) < 0, whereas one can
choose em so that λm > ω2, and a0(em, em) > 0. By continuity, there exists v �= 0
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on the line segment [grad q, em] such that a0(v, v) = 0. Hence,

|aσ (v, v)| = ω ‖σ1/2v‖2 ≤ σ+
ε−

‖ε1/2v‖2.

So, the (best) coercivity constant goes to 0 when the medium becomes less and less
conducting.

More to the point, set σ = η σ1, where η is a real, strictly positive number that
goes to 0, and σ1 a tensor field that fulfills assumption (5.10). Let us assume that
there exists m0 such that ω2 = λm0 , hence (μ−1 curl em0 | curl v) = ω2(εem0 | v)

for all v ∈ H 0(curl,Ω), and choose the data j ext such that (j ext |em0) �= 0. Let eη
denote the solution to (8.26) for a given η. Then, one has

lim
η→0+

‖σ1eη‖ = +∞.

Indeed, using v = em0 in (8.26) yields (σ1eη|em0) = −η−1(j ext |em0). By the
Cauchy-Schwarz inequality, it holds that

‖σ1eη‖ ≥ 1

‖em0‖
|(σ1eη|em0)| = η−1 |(j ext |em0)|

‖em0‖
→ +∞.

Remark 8.3.6 The same conclusions can be drawn inside a Lorentz material with
damping, i.e., with γL > 0 in the definition of the electric permittivity εL, cf.
Sect. 1.2.4.

8.3.3 Diffraction Problem

Following Sect. 1.6.1, we consider here a diffraction problem around a bounded
object (or scattering from a bounded obstacle) O with connected boundary, which
we assume to be perfectly conducting. One adjusts the exterior domain R3 \ O

by truncation, which results in a bounded (computational) domain, called Ω .
Its boundary Γ is split into two parts, Γ = ΓP ∪ ΓA, with ΓP ∩ ΓA = ∅,
∂ΓP ∩ ∂ΓA = ∅:

• a “physical” part ΓP = ∂O with a perfect conductor boundary condition;
• an “artificial” part, called ΓA, on which an ABC is imposed, namely an

impedance boundary condition, which writes

E × n + Z(H�) = 0 on ΓA , (8.27)

for some operator Z ∈ L(H−1/2
⊥ (curlΓ , ΓA),H

−1/2
‖ (divΓ , ΓA)). A priori, Z �= 0,

otherwise (8.27) reduces to the perfect conductor boundary condition on ΓA.
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For such problems, the time dependence is known: in exp(−ıωt), with a given
pulsation ω > 0. Staying momentarily in the time domain, we recall that, according
to (5.21), the electromagnetic energyW is governed by

dW

dt
(t)+ γA〈Z(H�),H�(t)〉πA = −(J (t)|E(t)), t > 0 .

So, to ensure uniqueness, one must have γA〈Zv, v〉πA ≥ 0 for all admissible fields v.
Let us go back to the frequency/pulsation domain and study the truncated

problem in greater detail.
We choose a “simple”, yet accurate (see the upcoming Sect. 8.5.3), model for the

impedance. Namely, the action of Z amounts to multiplying by a scalar, i.e., a real
number Z0, which is independent of ω. The condition on the uniqueness, plus the
fact that Z �= 0, imposes that Z0 > 0.

Obviously, there is some flexibility in the choice of the artificial boundary ΓA:
below, we choose a sphere ∂B(0, R), with R > 0 such that O ⊂ B(0, R), and define
Ω := (R3 \O)∩B(0, R). More generally, it would be enough that ΓA be polyhedral
with no pathological vertices. Indeed, we remark that

e × n|ΓA, (h�)|ΓA ∈ H
−1/2
⊥ (curlΓ , ΓA) ∩ H

−1/2
‖ (divΓ , ΓA).

As proven earlier (see Remark 5.1.8), this function space is a subset of L2
t (ΓA).

Hence, the natural function space of electric fields is

H+
0,ΓP

(curl,Ω) := {f ∈ H 0,ΓP (curl,Ω) : f × n|ΓA ∈ L2
t (ΓA)}.

It is endowed with the scalar product

(v,w) �→ (εv|w)+ (μ−1 curl v| curl w)+ (βv × n,w × n)L2
t (ΓA)

,

where β ∈ L∞(ΓA), β ≥ β0 > 0 a.e. on ΓA, and ε, μ are tensor fields that
fulfill (5.10).

Remark 8.3.7 The function spaces H+
0,ΓP

(curl,Ω) and VT IPE , cf. Sect. 7.2.2, are
identical.

In the sequel, we focus on the problem that involves the electric field, bearing in
mind that one can recover the total electromagnetic field as before (and also that one
could solve the problem in the magnetic field in a similar fashion). Given (j , r) ∈
L2(Ω)×H−1(Ω) that fulfills the charge conservation equation −ıωr + div j = 0,
the electric field e ∈ H+

0,ΓP
(curl,Ω) is governed by

−ω2εe + curl(μ−1 curl e) = ıωj and div εe = r inΩ ,
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plus a boundary condition on the artificial boundary ΓA. On ΓA, using the trace
of Ampère’s law, one has: e × n = −Z0h� = +ıZ0/ω(μ−1 curl e)�. It can be
equivalently written as

νe × n = (μ−1 curl e)�, with ν := −ı ω
Z0
.

Observe that ν ∈ ıR, with �ν < 0.
On the other hand, let us study the corresponding space of scalar potentials. In

the present case, one has grad[H 1+
0,ΓP
(Ω)] ⊂ H+

0,ΓP
(curl,Ω), where

H 1+
0,ΓP
(Ω) := {f ∈ H 1

0,ΓP (Ω) : f|ΓA ∈ H 1(ΓA)}.

According to the Poincaré inequality of Proposition 2.1.66, it can be endowed with
the norm ‖ · ‖

H 1+
0,ΓP

(Ω)
:= (‖ε1/2 grad ·‖2 + ‖β1/2 gradΓ ·‖2

L2
t (ΓA)

)1/2.

Proposition 8.3.8 It holds that

H 1
0 (Ω) = closure of D(Ω) in H 1+

0,ΓP
(Ω).

Proof Let v ∈ H 1
0 (Ω); there exists a sequence (vk)k ∈ (D(Ω))N that converges

to v with respect to the H 1(Ω)-norm. However, for all k, l, ‖vk − vl‖H 1+
0,ΓP

(Ω)
=

‖ε1/2 grad(vk − vl)‖, hence (vk)k is a Cauchy sequence in H 1+
0,ΓP

(Ω). By the

uniqueness of the limit, v belongs to the closure of D(Ω) in H 1+
0,ΓP

(Ω).

Conversely, let v ∈ H 1+
0,ΓP
(Ω) be the limit of a sequence of elements of D(Ω)

with respect to ‖ · ‖
H 1+

0,ΓP
(Ω)

. By construction, it also converges in H 1(Ω)-norm (to

the same limit), so v ∈ H 1
0 (Ω), which yields the result.

Next, for v ∈ H+
0,ΓP

(curl,Ω), one has, by integration by parts,

(curl(μ−1 curl e)|v) = (μ−1 curl e| curl v)+ ν(e × n, v × n)L2
t (ΓA)

.

As a consequence, for the diffraction problem, the equivalent variational formula-
tion in the electric field is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Find e ∈ H+
0,ΓP

(curl,Ω) such that
∀v ∈ H+

0,ΓP
(curl,Ω),

−ω2(εe|v)+ (μ−1 curl e| curl v)
+ν(e × n, v × n)L2

t (ΓA)
= ıω(j |v).

(8.28)
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Compared to the variational formulation for the electric Helmholtz-like prob-
lem (8.23), there is one addition: one uses v ∈ C∞

ΓP
(Ω) to find

∀v ∈ C∞
ΓP
(Ω), πA〈νe × n − (μ−1 curl e)�, v × n〉γA = 0.

Thanks to the density of C∞
ΓP
(Ω) in H 0,ΓP (curl,Ω) (this is Definition 2.2.27),

and hence of the tangential traces on ΓA of C∞
ΓP
(Ω) in H

−1/2
‖ (divΓ , ΓA) (see

Corollary 3.1.23), together with the duality identity of Theorem 3.1.25, we conclude
that the boundary condition νe × n = (μ−1 curl e)� holds in H

−1/2
⊥ (curlΓ , ΓA).

Introduce KN,A(Ω; ε) := XN,A(Ω; ε) ∩ H (div ε0,Ω). One has the orthogonal
decomposition:

H+
0,ΓP

(curl,Ω) = grad[H 1
0 (Ω)]

⊥+
ε,μ−1

⊕ KN,A(Ω; ε). (8.29)

Indeed, given v ∈ H+
0,ΓP
(curl,Ω), let us solve

{
Find φ ∈ H 1

0 (Ω) such that
∀q ∈ H 1

0 (Ω), (ε gradφ| gradq) = (εv| grad q).

One has w = v − gradφ ∈ KN,A(Ω; ε) by construction and, in addition,
(gradφ,w)H+

0,ΓP
(curl,Ω) = (ε gradφ|w) = 0, so (8.29) follows.

For illustrative purposes, let us assume that ν ∈ R, with ν > 0, a purely
“mathematical” setting. The process closely follows the solution of the electric
Helmholtz-like problem. Below, we set β(x) = ν for almost all x ∈ ΓA. As before,
we now construct a Hilbert basis for H+

0,ΓP
(curl,Ω) in two steps: a Hilbert basis of

KN,A(Ω; ε), and a Hilbert basis of grad[H 1
0 (Ω)]. Let us outline the process.

The eigenproblem in KN,A(Ω; ε) is

{
Find (E, λ) ∈ (KN,A(Ω; ε) \ {0})× C such that
∀v ∈ KN,A(Ω; ε), (μ−1 curl E| curl v)+ ν(E × n, v × n)L2

t (ΓA)
= λ(εE|v).

To apply Theorem 4.5.11, we choose V = KN,A(Ω; ε) and H = H (div ε0,Ω).
On the one hand, KN,A(Ω; ε) is compactly imbedded in H (div ε0,Ω) according
to Theorem 8.1.3 and the fact that ‖ε1/2 · ‖ is a norm in H (div ε0,Ω). On the
other hand, KN,A(Ω; ε) is a dense subset of H (div ε0,Ω): as a matter of fact,
KN,A(Ω; ε) contains KN(Ω; ε), and one can apply Proposition 8.2.2. Hence,
adding to both sides of the eigenproblem variational formulation the quantity
(εE|v), one gets a result in the spirit of Theorem 8.2.4, which provides a Hilbert
basis of KN,A(Ω; ε). To obtain a Hilbert basis for grad[H 1

0 (Ω)], we proceed as
before, cf. the solution of (8.24). Accreting the two bases together yields a Hilbert
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basis of H+
0,ΓP
(curl,Ω). One then concludes either by a direct solution of (8.28)

(taking the elements of the basis as test functions), or by the T-coercivity theory.

Theorem 8.3.9 LetΩ be a domain such that (Top)I=0 or (Top)I>0 is fulfilled, with
boundary Γ = ΓP ∪ ΓA where ΓP ∩ ΓA = ∅, and ΓP is connected. Let ε,μ be
tensor fields that fulfill assumption (5.10). Provided that ω2 does not belong to the
discrete set of eigenvalues of the eigenproblem set in KN,A(Ω; ε), the variational
formulation (8.28) with ν > 0 is well-posed.

Let us then go back the “physical” case where ν = −ıω/Z0 and Z0 > 0. Let e be
governed by (8.28); then, thanks to the splitting of (8.29), one can write

e = gradφe + we, φe ∈ H 1
0 (Ω), we ∈ KN,A(Ω; ε).

In addition, for q ∈ H 1
0 (Ω), using v = grad q as a test function in (8.28) yields

ıω(j | gradq) = −ω2(εe| gradq) = −ω2(ε gradφe| gradq),

as (εwe| grad q) = 0 by integration by parts. Hence, the scalar field φe is
characterized as the only solution to

{
Find φe ∈ H 1

0 (Ω) such that
∀q ∈ H 1

0 (Ω), (ε gradφe| gradq) = −ıω−1(j | gradq).

Observe that, with the help of the charge conservation equation, one can
replace the right-hand side above with −〈r, q〉H 1

0 (Ω)
. In order to determine

e ∈ H+
0,ΓP

(curl,Ω), there remains to find we = e − gradφe ∈ KN,A(Ω; ε).
Using v ∈ KN,A(Ω; ε) as a test function in (8.28) yields:

ıω(j |v) = −ω2(εwe|v)+ (μ−1 curl we| curl v)− ıω
Z0
(we × n, v × n)L2

t (ΓA)
,

as (ε gradφe|v) = 0, once more by integration by parts. So we obtain that we is
governed by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Find we ∈ KN,A(Ω; ε) such that
∀v ∈ KN,A(Ω; ε),
−ω2(εwe|v)+ (μ−1 curl we| curl v)

− ıω
Z0
(we × n, v × n)L2

t (ΓA)
= ıω(j |v).

(8.30)

By orthogonality, one easily goes back to the variational formulation (8.28). On the
other hand, to solve the variational formulation (8.30), one again uses the fact that
the imbedding of KN,A(Ω; ε) in L2(Ω) is compact. In this instance, this result
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will be used in conjunction with the Fredholm alternative (see Theorem 4.1.18 or
Corollary 4.1.19).

Define the sesquilinear form

a+ : (v,w) �→ (εv|w)+ (μ−1 curl v| curl w)− ıω
Z0
(v × n,w × n)L2

t (ΓA)
,

which is coercive on KN,A(Ω; ε). Indeed, one has

a+(v, v) = ‖ε1/2v‖2 + ‖μ−1/2 curl v‖2 − ıω
Z0

‖v × n‖2
L2
t (ΓA)

.

It follows that

|a+(v, v)| ≥ 1√
2

(
|(a+(v, v))| + |�(a+(v, v))|

)

= 1√
2

(
‖ε1/2v‖2 + ‖μ−1/2 curl v‖2 + ω

Z0
‖v × n‖2

L2
t (ΓA)

)
.

Due to the assumptions about ε,μ (see (5.10)), and becauseω,Z0 > 0, coerciveness
follows. Now, note that (8.30) can be reformulated as

{
Find we ∈ KN,A(Ω; ε) such that
∀v ∈ KN,A(Ω; ε), a+(we, v)− (ω2 + 1)(εwe|v) = ıω(j |v).

Let us introduce the operator K ∈ L(L2(Ω)), defined by: given g ∈ L2(Ω), let
Kg = iKN,A(Ω;ε)→L2(Ω)wg, where wg is the solution to

{
Find wg ∈ KN,A(Ω; ε) such that
∀v ∈ KN,A(Ω; ε), a+(wg, v) = (εg|v).

By construction, K is a compact operator of L(L2(Ω)). Furthermore, (8.30) is
equivalent to

Find we ∈ L2(Ω) such that{IL2(Ω) − (ω2 + 1)K}we = ıωK(ε−1j ). (8.31)

This problem with unknown we in L2(Ω) falls within the Fredholm alternative.
Therefore, to achieve the existence of a solution to (8.31) plus well-posedness, it is
equivalent that w0 = 0 is the only solution to

Find w0 ∈ L2(Ω) such that {IL2(Ω) − (ω2 + 1)K}w0 = 0.
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Or, going back to the variational formulation, that the only solution to (8.30)j=0
is 0. Denoting it by w0, one has w0 ∈ H+

0,ΓP
(curl,Ω), and div εw0 = 0 in Ω .

In addition, taking v = w0 as a test function in (8.30)j=0 and keeping only the
imaginary part yields ‖w0 × n‖2

L2
t (ΓA)

= 0, i.e., w0 × n|ΓA = 0. In particular,

w0 ∈ H 0(curl,Ω). Next, for v ∈ D(Ω), let q ∈ H 1
0 (Ω) be such that div ε gradq =

div εv in Ω . As usual, v − grad q belongs to KN,A(Ω; ε), and so it can be used as
a test function in (8.30)j=0. It follows that,

∀v ∈ D(Ω), 〈−ω2εw0 + curl(μ−1 curl w0), v〉 = 0,

that is, −ω2εw0 + curl(μ−1 curl w0) = 0 in Ω . Similarly, for v ∈ C∞
ΓP
(Ω), we

define q ∈ H 1
0 (Ω) as above, so that v− grad q ∈ KN,A(Ω; ε) can be used as a test

function in (8.30)j=0. After integrating by parts, one now finds

∀v ∈ C∞
ΓP
(Ω), πA〈(μ−1 curl w0)�, v × n〉γA = 0.

As previously, we obtain (μ−1 curl w0)� = 0 on ΓA (more precisely, in
H

−1/2
⊥ (curlΓ , ΓA)).
Hence, w0 fulfills two homogeneous boundary conditions on ΓA, namely, w0 ×

n = μ−1 curl w0 ×n = 0. To conclude that w0 vanishes onΩ , we apply the unique
continuation principle (cf. [86, 164]).

To that aim, set e0 = w0 and h0 = −ı/ωμ−1 curl w0 in Ω . By construction,
both fields e0,h0 belong to H 0,ΓA(curl,Ω), so one can define their continuations
by zero to Ω+ := B(0, R + 1) \ B(0, R) (recallΩ ⊂ B(0, R)), still denoted by e0
and h0. Below, we state a result of [170, 203].

Theorem 8.3.10 (Unique Continuation Principle) Let Ω0 be a connected
domain, and let ε,μ be tensor fields that fulfill assumption (5.10), with regularity
ε,μ ∈ W1,∞(Ω0). Let e0,h0 ∈ H (curl,Ω0) be such that, for some ω0 > 0,

ıω0εe0 + curl h0 = 0, −ıω0μh0 + curl e0 = 0 inΩ0.

If e0 vanishes in a (non)-trivial ball B0 of Ω0 and if there exists x0 ∈ B0 such that
μ(x0) = ξε(x0) for some ξ > 0, then (e0,h0) = (0, 0) in Ω0.

In the case when ε,μ are globally smooth on Ω , one can define a suitable
continuation of those tensors to Ω+. By suitable, we mean that it is understood
that the continuations fulfill (5.10) in Ω+, and furthermore, that there exists a point
of Ω+ such that ε and μ are proportional at this point, with a strictly positive
multiplicative factor. In this case, all the assumptions of Theorem 8.3.10 are fulfilled
for e0,h0 on Ω0 = int (Ω ∪Ω+) with ω0 = ω. One concludes that w0 = e0
vanishes in Ω , so that the truncated diffraction problem is well-posed.
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More generally, if ε,μ are only piecewise smooth onΩ , one can apply the same
process iteratively. To fix ideas, consider a partition of Ω , P =(Ωp)1≤p≤P , such
that all components of ε,μ are smooth onΩp, for 1 ≤ p ≤ P .

Let (Ωp,1)p be the elements of the partition P such thatmeasΓ (∂Ωp∩ΓA) > 0.
For each domainΩp,1, one can apply the same path as before to find that (e0,h0) =
(0, 0) in Ωp,1, with the help of different continuations if necessary. Let Ω1 = Ω

and Ω{1} = int (∪pΩp,1): due to the global regularity of the fields, one concludes
that e0,h0 vanish in Ω{1}. It follows that e0,h0 both belong to H 0,Γ 2

A
(curl,Ω2),

whereΩ2 = Ω1 \Ω{1} and Γ 2
A = (∂Ω{1} ∩ ∂Ω2) \ ΓP .

Let (Ωp,2)p be the remaining elements of P such that measΓ (∂Ωp ∩ Γ 2
A) > 0.

As above, if one lets Ω{2} = int (∪pΩp,2), one obtains that e0,h0 vanish in Ω{2},
and also that they belong to H 0,Γ 3

A
(curl,Ω3), where Ω3 = Ω2 \ Ω{2} and Γ 3

A =
(∂Ω{2} ∩ ∂Ω3) \ ΓP .

Because Ω is connected, one can carry on and span all the domains of the
partition iteratively, so that e0,h0 globally vanish on Ω , and so does w0. Hence,
the truncated diffraction problem is again well-posed.

Theorem 8.3.11 Let Ω be a domain such that (Top)I=0 or (Top)I>0 is fulfilled,
with boundary Γ = ΓP ∪ ΓA, where ΓP ∩ ΓA = ∅, and ΓP is connected. Let ε,μ
be tensor fields that fulfill assumption (5.10) and the coefficient assumption. Then,
the truncated diffraction problem (8.28) with impedance Z0 > 0 and ν = −ıω/Z0
is well-posed.

8.4 Interface Problem Between a Dielectric and a Lorentz
Material

Inside a Lorentz material, and in the absence of damping, it has been noted that
the electric permittivity can be negative in given pulsation ranges (cf. Sect. 1.2.4).
We consider here3 that ω �= 0 is chosen so that this condition is verified. Then, let
Ω be a domain partitioned into the non-trivial partition P := (Ωp)p=+,−, with a
dielectric in Ω+ and a Lorentz material in Ω−, and assume that ε is a tensor field
such that δ ε fulfills (5.10), with δ = +1 in Ω+ and δ = −1 in Ω−. In this setting,
the main difference with the “classical” setting is that (ε · |·) is not a scalar product
in L2(Ω). This is the main difficulty to overcome, in order to solve the interface
problem between a dielectric and a Lorentz material. Because ω �= 0 and as noted at
the end of Sect. 8.2, one may still check that it is equivalent to solve the coupled first-
order system in (e,h), or either one of the second-order systems in e, respectively in
h. In what follows, we focus on solving the electric Helmholtz-like problem (8.22).

3The problem to be solved is not static, which is the reason why it has not already been addressed
in Sects. 6.1–6.2.
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To be able to carry out the study, one makes the assumption (Hε): the scalar
problem with data g ∈ H−1(Ω)

{
Find q ∈ H 1

0 (Ω) such that
∀q ′ ∈ H 1

0 (Ω), (ε grad q| gradq ′) = g(q ′) (8.32)

is well-posed. According to Proposition 4.2.14 and Remark 4.2.16, we infer that
there exist T ∈ L(H 1

0 (Ω)) and α > 0 such that

∀q ∈ H 1
0 (Ω), |(ε grad q| grad(Tq))| ≥ α ‖q‖2

H 1(Ω)
. (8.33)

On the other hand, the magnetic permeability μ is a tensor field that fulfills (5.10).
In this setting, under assumption (Hε), let us first build an equivalent variational

formulation to the interface electric Helmholtz-like problem (8.22), with data
(j , r) ∈ L2(Ω) × H−1(Ω) that fulfills the charge conservation equation, and
solution e ∈ H (curl,Ω).

Define φr as the (unique) solution to (8.32) with right-hand side g(q ′) =
−〈r, q ′〉H 1

0 (Ω)
, and let j 0 = j − ıωε gradφr . By construction, div j0 = 0. By

inspection, e solves (8.22) with data (j , r) if, and only if, e0 = e − gradφr
solves (8.22) with data (j0, 0). Hence, characterizing e amounts to characterizing
e0. In the sequel, we focus on the latter field e0 ∈ KN(Ω; ε) ; we refer to (8.22) with
solution e0 as (8.22)0. Note in passing the non-orthogonal, albeit direct, Helmholtz
decomposition, under assumption (Hε):

H 0(curl,Ω)

∈

e

=

=

gradH 1
0 (Ω)

∈

gradφr

⊕

+

KN(Ω; ε)

∈

e0

(8.34)

One can build a variational formulation in KN(Ω; ε) endowed with the
H (curl,Ω)-norm, which is equivalent to the interface electric Helmholtz-like
problem (8.22)0. Namely,

{
Find e0 ∈ KN(Ω; ε) such that
∀v ∈ KN(Ω; ε), −ω2(εe0|v)+ (μ−1 curl e0| curl v) = ıω(j 0|v).

(8.35)

Proposition 8.4.1 Under assumption (Hε), e0 solves the interface electric
Helmholtz-like problem (8.22)0 if, and only if, e0 solves the variational
formulation (8.35).

Proof Straightforward using the Helmholtz decomposition (8.34).

Second, one can show that (8.35) fits into the coercive+compact framework. This is
carried out in several steps.

To begin with, one characterizes the spacesQN(Ω; ε) and ZN(Ω; ε).
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Proposition 8.4.2 Under assumption (Hε), for every 1 ≤ � ≤ K , there exists a
unique qε� ∈ H 1

∂Ω(Ω) such that div ε grad qε� = 0 inΩ , and qε� = δk� on Γk , ∀k.
Proof Since the trace operator γ0 is surjective from H 1(Ω) to H 1/2(Γ ) (Theo-
rem 2.1.62), there exists q� ∈ H 1(Ω) whose trace is equal to the function δk�
on Γ . Next, define q� as the (unique) solution to (8.32) with right-hand side
g(q ′) = −(ε gradq�| gradq ′). Then, qε� = q� + q� is such that div ε grad qε = 0
inΩ , and qε� = δk� on Γk , ∀k. This proves existence.

One checks uniqueness simply by noting that the difference of two solutions
solves (8.32) with zero right-hand side, so it is equal to zero.

Corollary 8.4.3 Under assumption (Hε), one has

dimQN(Ω; ε) = dim ZN(Ω; ε) = K.

Proof To begin with, (qε� )1≤�≤K is a free family, and one has span1≤�≤K(qε� ) ⊂
QN(Ω; ε). Then, given q ∈ QN(Ω; ε), one remarks that q − ∑�=1,K(q |Γ�)qε�
solves (8.32) with g = 0, hence q = ∑

�=1,K(q |Γ�)qε� , so the converse inclusion
holds. Il follows, in particular, that dim(QN(Ω; ε)) = K .

By definition, (grad qε� )1≤�≤K is a free family of ZN(Ω; ε). On the other hand,
given z ∈ ZN(Ω; ε), we know from Theorem 3.3.9 that there exists p ∈ H 1

∂Ω(Ω)

such that z = gradp in Ω . In addition, div ε gradp = div εz = 0 in Ω , so p
actually belongs to QN(Ω; ε). Hence, dim(ZN(Ω; ε)) = K .

Next, one derives a direct decomposition of KN(Ω; ε). Define

K̂N(Ω; ε) := {v ∈ KN(Ω; ε) : (εv| gradqε� ) = 0, 1 ≤ � ≤ K}.

Proposition 8.4.4 Under assumption (Hε), there exists (P εk)1≤k≤K ∈
(KN(Ω; ε))K such that, for 1 ≤ k, � ≤ K , (ε grad qε� |P εk) = δk�. It follows
that

KN(Ω; ε) = K̂N(Ω; ε)⊕ span1≤k≤K(P εk).

Proof Straightforward after checking that the forms m� ∈ (KN(Ω; ε))′ defined by
m�(v) = (εv| gradqε� ) for 1 ≤ � ≤ K are a free family.

One can then prove that the imbedding of KN(Ω; ε) into L2(Ω) is compact.

Theorem 8.4.5 Let Ω be a domain such that (Top)I=0 or (Top)I>0 is fulfilled and
that can be partitioned into the non-trivial partition P := (Ωp)p=+,−, and define δ
by δ = +1 inΩ+, δ = −1 inΩ−. Let ε be a tensor field such that δ ε fulfills (5.10).
Assume that (Hε) holds and that the operatorT of (8.33) also belongs toL(L2(Ω)).
Then, given any s ∈ [0, 1[, one has XN,−s (Ω; ε) ⊂c L2(Ω).

Proof Consider (ym)m a bounded sequence of XN,−s (Ω; ε). One can proceed as
usual, extracting a subsequence that converges in L2(Ω) in three steps.
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1. Let q0
m ∈ H 1

0 (Ω) solve (8.32) with right-hand side g(q ′) = (εym| grad q ′). One
has, according to (8.33),

α ‖q0
m‖2
H 1(Ω)

≤ |(εym| grad(Tq0
m))| ≤ ‖div εym‖H−1(Ω)‖Tq0

m‖H 1(Ω)

≤ |||T|||L(H 1
0 (Ω))

‖div εym‖H−1(Ω)‖q0
m‖H 1(Ω),

so ‖q0
m‖H 1(Ω) ≤ α−1|||T|||L(H 1

0 (Ω))
‖div εym‖H−1(Ω): (q

0
m)m is a bounded

sequence in H 1(Ω). Since s < 1, there exists a subsequence still denoted
by (q0

m)m that converges in Hs(Ω). Moreover, q0
m ∈ Hs0 (Ω). By assumption,

T ∈ L(L2(Ω))∩L(H 1
0 (Ω)): we know from Proposition 4.1.23 (interpolation of

operators4) that T ∈ L(H s0 (Ω)). Denoting ymn := ym − yn, etc., it follows that

α ‖q0
mn‖2

H 1(Ω)
≤ |(εymn| grad(Tq0

mn))|
≤ 2 |||T|||L(Hs0 (Ω)) sup

m
(‖div εym‖H−s (Ω))‖q0

mn‖Hs(Ω).

In other words, (q0
m)m is a Cauchy sequence in H 1(Ω), so it converges in this

space. As a consequence, (gradq0
m)m converges in L2(Ω).

2. Let xm := ym−grad q0
m ∈ KN(Ω; ε). According to Proposition 8.4.4, one may

split xm continuously as

xm = x̂m +
∑

1≤k≤K
αkmP εk, x̂m ∈ K̂N(Ω; ε), (αkm)1≤k≤K ∈ CK.

Since (xm)m is bounded in KN(Ω; ε), one may extract a converging subse-
quence of ((αkm)1≤k≤K)m in CK , still denoted by ((αkm)1≤k≤K)m.

3. To prove the claim, one has to extract a subsequence from (x̂m)m that converges
in L2(Ω). By construction, the field εx̂m belongs to H (div 0,Ω). According
to the definition of K̂N(Ω; ε) (and of (qε� )1≤�≤K), one has, in addition, 〈εx̂m ·
n, 1〉H 1/2(Γk)

= 0 for all k. Then, using Theorem 3.6.1 for everym, one obtains a
bounded sequence (wm)m of elements of

KΣT (Ω) := {w ∈ KT (Ω) : 〈w · n, 1〉Σi = 0, 1 ≤ i ≤ I }

such that εx̂m = curl wm in Ω . Because of the sign-change of ε, one must
recover some positivity to end the proof.5 To this end, proceed as follows.

4For the property T ∈ L(Hs0 (Ω)) to hold, one must exclude the case s = 1/2 (see Proposi-
tions 2.1.44 and 2.1.47 for the interpolation of the Sobolev spaces). However, if s = 1/2, one
simply chooses any s′ ∈]1/2, 1[, and then step 1. is carried out with a subsequence (q0

m)m that
converges in Hs

′
0 (Ω).

5As a matter of fact, (ε · |·) is not a scalar product on L2(Ω), but (ε · |ε·) is, and the associated
norm is obviously equivalent to ‖ · ‖.
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For given w ∈ KΣ
T (Ω):

i. Let r ∈ H 1
0 (Ω) solve (8.32) with right-hand side g(q ′) = (ε curl w| gradq ′).

ii. Introducing

P =
∑

1≤k≤K
(ε curl w| gradqεk )P

ε
k and v = ε(curl w − grad r − P ),

one has v ∈ H (div 0,Ω), with 〈v · n, 1〉H 1/2(Γk)
= 0 for all k. As a matter of

fact, div εP = 0 and div ε(grad r − curl w) = 0 by definition. Furthermore,

〈v · n, 1〉H 1/2(Γk)
= 〈v · n, qεk 〉H 1/2(Γk)

= (v | grad qεk )

= (ε curl w | grad qεk )− (ε grad r | grad qεk )− (εP | grad qεk ).

Indeed, as r ∈ H 1
0 (Ω), the second term is equal to:

(ε grad r | grad qεk ) = 〈r , div ε grad qεk︸ ︷︷ ︸
0

〉H−1(Ω) = 0,

while, by Proposition 8.4.4,

(εP | grad qεk ) =
∑

1≤�≤K
(ε curl w | gradqε� ) (εP

ε
� | grad qεk )︸ ︷︷ ︸
δk�

= (ε curl w | grad qεk ),

which cancels out the first term.
iii. According once more to Theorem 3.6.1, there exists a unique vector potential

T̂w ∈ KΣT (Ω) such that v = curl(T̂w) in Ω , and ‖T̂w‖H (curl,Ω) ≤
C ‖w‖H (curl,Ω) with C > 0 independent of w.

By construction, w �→ T̂w defines an operator T̂ ∈ L(KΣ
T (Ω)).

Recall that KΣT (Ω) is compactly imbedded into L2(Ω) (see Theo-
rem 3.5.4); then, going back to (wm)m, which is a bounded sequence of
KΣ
T (Ω), there exists a subsequence still denoted by (wm)m such that (T̂wm)m

converges in L2(Ω). Now, denoting x̂mn := x̂m − x̂n, etc., it follows that

‖εx̂mn‖2 = (εx̂mn| curl wmn) = (x̂mn|ε curl wmn)

= (x̂mn|vmn + ε grad rmn + εPmn)

= (x̂mn|vmn)+ (εx̂mn| grad rmn)+ (εx̂mn|Pmn).

Above, the sequences (vm)m, (rm)m, (Pm)m have been defined according
to steps i and ii; they are bounded in L2(Ω), H 1

0 (Ω), span
{
P εk
}

1≤k≤K ,
respectively. The second term vanishes by integration by parts. Because



342 8 Analyses of Time-Harmonic Problems

(Pm)m belongs to a finite-dimensional vector space, it converges up to the
extraction of a subsequence; as (x̂m)m is bounded in L2(Ω), it follows that
limm,n→∞(εx̂mn | Pmn) = 0. Finally, regarding the first term, one finds, by
integration by parts,

(x̂mn|vmn) = (x̂mn| curl(T̂wmn)) = (curl x̂mn|T̂wmn)

≤ 2 sup
m
(‖ curl x̂m‖) ‖T̂wmn‖.

Hence, limm,n→∞(x̂mn|vmn) = 0: (εx̂m)m converges in L2(Ω), and so does
(x̂m)m. This ends the proof.

One finally concludes that the interface electric Helmholtz-like problem (8.22)0
is well-posed in the Fredholm sense with the help of Theorem 4.5.7 (coer-
cive+compact framework) and Theorem 4.5.10 (eigenvalues). Indeed, one may
rewrite the sesquilinear form a of the problem (8.35) with identical arguments
w ∈ KN(Ω; ε) as

a(w,w) = ‖μ−1/2 curl w‖2 + ‖w‖2 − ‖w‖2 − ω2(εw|w).

The last two terms are compact perturbations in KN(Ω; ε) (see Theorem 8.4.5),
while it holds that

‖μ−1/2 curl w‖2 + ‖w‖2 ≥ min(1, μ−1
max)‖w‖2

H (curl,Ω).

The conclusion follows.

Theorem 8.4.6 Let Ω be a domain such that (Top)I=0 or (Top)I>0 is fulfilled and
that can be partitioned into the non-trivial partition P := (Ωp)p=+,−, and define δ
by δ = +1 inΩ+, δ = −1 inΩ−. Let ε be a tensor field such that δ ε fulfills (5.10).
Assume that (Hε) holds and that the operatorT of (8.33) also belongs toL(L2(Ω)).
Then, provided that ω2 does not belong to a discrete set of R, the interface electric
Helmholtz-like problem is well-posed.

One may further characterize the set of excluded values of ω2, which corresponds,
according to Theorem 4.5.10, to the set of eigenvalues λ of the electric eigenprob-
lem6 (8.6).

6The study of (8.6) in this setting is physically irrelevant. It is useful only for characterizing those
excluded values of ω2. As a matter of fact, in the model under scrutiny, the tensor field ε is a
function of ω for the Lorentz material in Ω−. So, given ω, one first derives ε|Ω− = ε̂d,L(ω),
and then one checks whether or not λ = ω2 is an eigenvalue, that is, a solution to (8.6), with
permittivity ε.
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A priori, one has λ ∈ C. Taking v = E in (8.6) yields ‖μ−1/2 curl E‖2 =
λ (εE|E). If λ = 0, then curl E = 0 in Ω , i.e., E ∈ ZN(Ω; ε). Conversely, it is
clear that E ∈ ZN(Ω; ε)\ {0} is an eigenmode associated with λ = 0. If λ �= 0, and
in addition (εE|E) = 0, one has E ∈ ZN(Ω; ε), but we know that E ∈ ZN(Ω; ε)
is an eigenmode associated with λ = 0. Hence, for λ �= 0, one automatically
has (εE|E) �= 0, and it follows that λ = (εE|E)−1‖μ−1/2 curl E‖2 ∈ R. So,
all eigenvalues belong to R. What is more, one can easily build two sequences
(v+m)m and (v−m)m, with v+m compactly supported in Ω+, respectively v−m compactly
supported inΩ−, and furthermore,

lim
m→∞

‖μ−1/2 curl v+m‖2

(εv+m|v+m)
= +∞, lim

m→∞
‖μ−1/2 curl v−m‖2

(εv−m|v−m)
= −∞.

To that aim, one uses elements of D(Ω+), respectively D(Ω−), with shrinking
support, such that (ε±v±m|v±m) = ±1 for all m, while limm→∞ ‖μ−1/2 curl v±m‖ =
+∞. One concludes that the set of excluded values of ω2 is made of two sequences
of real numbers, the first one composed of positive numbers whose limit is +∞ and
the second one composed of negative numbers whose limit is −∞.

8.5 Comments

8.5.1 Compact Imbeddings

The manner in which results are proven for fields with divergence(ε) or
divergence(μ) in L2(Ω) consists of a variation of the proofs given for fields
with divergence in L2(Ω) (see Sect. 3.2). This can be re-interpreted in an abstract
framework. We refer to [76] for an illuminating discussion.

Let us mention one last compact imbedding result, for a function space whose
elements fulfill mixed boundary conditions, in L2(Ω). More precisely, consider that
the boundary Γ is equal to Γ1 ∪ Γ2, with Γ1 ∩ Γ2 = ∅, such that ∂Γ1 and ∂Γ2 are
Lipschitz submanifolds of Γ , and define

Ymix(Ω) := {f ∈ H (curl,Ω)∩H (div,Ω) : f ×n|Γ1 ∈ L2
t (Γ1), f ·n|Γ2 ∈ L2(Γ2)}.

According to [109], one has Ymix(Ω) ⊂c L2(Ω). It is also mentioned there that
one has a similar result replacing H (curl,Ω) ∩ H (div,Ω) with H (curl,Ω) ∩
H (div ξ,Ω) for a tensor field ξ = ξ I3 that fulfills assumption (5.10) with piecewise
smooth coefficient ξ defined on a partition ofΩ .
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8.5.2 Limiting Amplitude Principle

This principle was proposed by Eidus [104] to address the question of the time
evolution of the solution to time-dependent equations, in the presence of time-
harmonic data: does the solution adopt a time-harmonic behavior (for large times)?
In a number of situations, this principle can be rigorously/mathematically proven. It
turns out that, provided the data is compactly supported in space, the solution adopts
a time-harmonic behavior as t goes to infinity, in bounded regions (of R3). We refer
to [133, 145, 183] and references therein for the mathematical justifications obtained
for models of wave propagation. There are exceptions, in particular, for the interface
problems with sign-changing coefficients considered in Sect. 8.4. We refer to [70].

8.5.3 Diffraction Problem

Solving diffraction problems (cf. Sect. 1.6), such as scattering from a bounded
obstacle, is, in itself, a large subfield of electromagnetic theory. Many monographs
have been devoted totally or partially to this topic: we refer the reader to [72, 86, 164,
167]. On the other hand, it is not the purpose of the present monograph to address
this topic in great detail. We propose a very rough sketch below on the scattering
from a bounded obstacle, which follows [164].

Let the perfectly conducting obstacle be denoted by O. It is assumed that O

is a domain with connected boundary. The problem to be solved is set in the
(connected) exterior domain R3 \ O, with pulsation ω > 0. The medium is globally
inhomogeneous, and homogeneous far away from the obstacle, that is, (ε, μ)(x) =
(ε0, μ0) for |x| > R0, for some R0 > 0 such that O ⊂ B(0, R0).

The impinging wave is determined by its electric field, denoted by einc. It is
governed by

−ω2ε0einc + curl(μ0
−1 curl einc) = f in R3,

with f describing a current source (in free space). For instance, one has f = 0 in
the case of an impinging plane wave (cf. Sect. 1.2.2). Then, the total electric field e,
equal in R3 \ O to the sum of the incident field einc and of the scattered field esca , is
governed by

−ω2εe + curl(μ−1 curl e) = f in R3 \ O,
e × n|∂O = 0,

plus an outgoing Silver–Müller radiation condition (1.144) on esca , written as

lim|x|→∞ |x|
(

curl esca × x

|x| − ı
√
ε0μ0ωesca

)
= 0,

where the limit is uniform with respect to the directions x/|x| ∈ S2.
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One has the existence result below, cf. Chapter 10 of [164].7

Theorem 8.5.1 Let O be a polyhedral domain with connected boundary. Let ε be
piecewise smooth, respectively μ be piecewise constant, in R3 \ O. Assume that O is
a perfectly conducting obstacle. Then, for every incident field einc that is analytic in
any bounded region of R3, the diffraction problem has one, and only one, solution e

in H loc(curl,R3 \ O).
Finally, one can prove that the solutions to the truncated exterior problem with
scalar, strictly positive impedance Z0 (see Theorem 8.3.11) approximate the exact
solution well. Consider that f = 0, and let e denote the solution to the exact
diffraction problem. Denote by eR the solution to the truncated diffraction problem
set inΩR = (R3 \ O) ∩ B(0, R) for R ≥ R0.

One has the convergence result hereafter, cf. Chapter 13 of [164]. Let Ω̃ be a
fixed domain contained in ΩR0 . Then,

‖e − eR‖H (curl,Ω̃) ≤ C̃ R−2,

where C̃ > 0 is independent of R. Above, the value of C̃ may depend on Ω̃ .

8.5.4 Interface Problem with Sign-Changing Coefficients

The crucial assumption (Hε) for solving the interface problem relies on the well-
posedness of the scalar interface problem (8.32), with a sign-changing coefficient.
This issue has been studied extensively in [53, 56, 74, 168], with discussions
regarding the (optimal) conditions on the contrast between the values of ε at the
interface. In particular, it may happen that the interface problem is only well-posed
in the Fredholm sense (see [53]).

In the electromagnetics framework, the situation in which the scalar prob-
lem (8.32) is only well-posed in the Fredholm sense is handled in [54, 55]. More
generally, at the interface between a dielectric and a Lorentz material, it may
happen that both the electric permittivity and the magnetic permeability have a
sign change. One may still achieve well-posedness in the Fredholm sense, or more
precisely, establish that the operator associated with the sesquilinear form defining
the problem is Fredholm of index 0 (again, see [54, 55]).

7When a field g belongs to H (curl,Ω ′ \ O) for every open subset Ω ′ of every compact subset of
R3 such that O ⊂ Ω ′, one writes g ∈ H loc(curl,R3 \ O).
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8.5.5 Resonances

The study of so-called resonances in plasmas constitutes a difficult and active field
of research. Plasmas are generally highly inhomogeneous media; in the presence of
a strong external magnetic field, they appear highly anisotropic as well [151]. Thus,
the signs of the eigenvalues of ε, μ vary from place to place, creating resonances
at which they vanish. This is basically a sign-changing coefficients situation, but
typically “worse” than the one studied in Sect. 8.4. In the presence of a small
amount of absorption, i.e., a small imaginary part in the eigenvalues, the problem is
well-posed [27], thanks to the argument used in Sect. 8.3.2. However, the limiting
problem obtained when the absorption vanishes is much less well-behaved, at least
for certain types of resonances: it is not even well-posed in L2(Ω), though one can
construct by hand a very singular solution in simple settings [69, 97]; there is no
known framework to apply the Fredholm alternative, etc.



Chapter 9
Dimensionally Reduced Models:
Derivation and Analyses

In this chapter, we consider some special situations in which the three-dimensional
(3D) Maxwell equations can be reformulated as two-dimensional (2D) models.
More precisely, the computational domain boils down to a subset of R2, with respect
to a suitable system of coordinates (cylindrical, spherical, cartesian). Nevertheless,
the electric and magnetic fields, and other vector quantities, still belong to R3.
Under suitable symmetry assumptions, one gets a single set of 2D equations
or, equivalently, a single 2D variational formulation. In the general case, the
electromagnetic field would be the solution to an infinite set of 2D equations, or
variational formulations, obtained by Fourier analysis.

These simpler models are interesting in several ways. Firstly, they provide
another class of approximate models to the original 3D Maxwell equations. Sec-
ondly, they are typically easier to solve and to implement than the original equations.
And thirdly, they can provide useful frameworks for the accurate computation of
the electromagnetic field, for instance when it is strong at some points [13–16, 18–
20, 80–82, 112, 113, etc.].

9.1 Two-and-a-Half Dimensional (21
2D) Models

In this first section, we consider the 2 1
2 D reduced settings. By this phrase, we

mean that the domain satisfies some special symmetry assumptions, but nothing
is assumed a priori of the data. We will introduce two kinds of commonly used
2 1

2 D settings: the axisymmetric one, in which the domain is invariant by rotation;
and the prismatic one, in which the domain can be described as a cartesian product
Ω = ω×]0, L[ of a bounded subset of R2 by a bounded interval, or equivalently, as
a truncated infinite cylinder. Section 9.2 will be devoted to the so-called 2D models,
in which the domain and the data possess some special symmetries.
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This approach can be very useful for modelling some real-life electromagnetic
devices, as soon as their geometry:

• is at least close to a (truncated) infinite cylinder, or
• presents an axial symmetry, at least close to the axis.

Furthermore, geometries that are locally axisymmetric or prismatic can sometimes
be replaced, as a first approximation, by exactly axisymmetric or prismatic ones, if
the boundary effects can be neglected. Thus, from a modelling point of view, such
a 2 1

2 D setting can be viewed as an intermediate between a full three-dimensional
problem and a two-dimensional one.

In this chapter, as in the previous ones, the object of our study will be the first-
order Maxwell system in a domainΩ ,

ε
∂E

∂t
− curl H = −J , (9.1)

μ
∂H

∂t
+ curl E = 0, (9.2)

div (εE) = �, (9.3)

div (μH ) = 0, (9.4)

completed with suitable initial and boundary conditions, and various derived
systems, such as

• the electrostatic and magnetostatic systems obtained by setting ∂t · = 0 in
(9.1)–(9.4);

• the equivalent systems of second order in time, as previously described at length
(see Chap. 7). If we assume, as usual, that ε and μ do not depend on time, they
write

ε
∂2E

∂t2
+ curl(μ−1 curl E) = −∂J

∂t
, (9.5)

div (εE) = �, (9.6)

μ
∂2H

∂t2
+ curl(ε−1 curl H ) = curl(ε−1J ), (9.7)

div (μH ) = 0 . (9.8)

In this chapter, we shall write the material coefficients ε, μ as scalars. Nevertheless,
many results remain valid for tensor-valued coefficients under certain conditions and
with the necessary adaptations, which will be indicated when needed. For the sake
of simplicity, we shall often consider the case of vacuum ε = ε0, μ = μ0, and work
with the vector B = μH .

As far as the boundary conditions are concerned, we assume that the boundary
Γ of Ω is made up of two parts: ΓP and ΓA, with ΓP �= ∅ the perfectly
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conducting boundary, and ΓA (possibly empty) an artificial boundary introduced in
order to close the domain, where one imposes a Silver–Müller boundary condition,
cf. (5.20):

E × n = 0 and μH · n = 0, respectively B · n = 0 on ΓP , (9.9)

E × n +
√
μ

ε
H� = g�, respectively (9.10)

E × n + cB� = g� on ΓA, (9.11)

where g� �= 0 and g� = 0 correspond, respectively, to the incoming and outgoing
waves, cf. (1.137), (5.20). As usual, when ΓA �= ∅ (respectively ΓA = ∅), we deal
with an interior or exterior problem (respectively a cavity problem).

9.1.1 Axisymmetric Domains

Geometry and Cylindrical Coordinates
We consider here an axisymmetric domainΩ of R3, generated by the rotation of

a two-dimensional domain ω around the (Oz) axis. (To avoid some inconsistencies,
we assume that ω lies entirely on one side of the (Oz) axis.) The boundary of the
domain ω is denoted by ∂ω = γa ∪ γb, where γa = ∂ω ∩ (Oz) may be empty, and
γb �= ∅ generates the boundary Γ of Ω (see Fig. 9.1). The plane curve γb may be
either closed, in which case γa = ∅, or open, in which case it is made of one or

r

z

ω
γ

b
γ

τ

ν = n

a

z

r

Fig. 9.1 Example of an axisymmetric domain Ω and its meridian section ω
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several connected component(s) whose extremities stand on (Oz) and γa of one or
several segment(s) of (Oz) lying between these extremities.

The natural coordinates for this type of domain are the cylindrical coordinates
(r, θ, z), with the basis vectors (er , eθ , ez). In these coordinates, a meridian half-
plane is defined by the equation θ = const., and (r, z) ∈ R2+ := R+×R correspond to
cartesian coordinates in a half-plane. Denoting by S1 the unit circle, the cylindrical-
to-cartesian mapping is defined as

Φ : R+ × S1 × R −→ R3

(r, θ, z) �−→ (x, y, z) = (r cos θ, r sin θ, z) ;

it is invertible, except at r = 0, which corresponds to the axis, and where the
coordinate θ is undefined. Hence, we can write

Ω = Φ(ωa × S1) = Φ
(
{(r, θ, z) : (r, z) ∈ ωa, θ ∈ S1}

)
,

with ωa := ω ∪ γa . The volume and surface elements are

{
dx = r dr dθ dz inΩ or R3,

dω = dr dz in ωa or R2+ * a meridian half-plane.

Any scalar field v̆ defined on O ⊂ R3 can be represented equivalently as v̆(x, y, z)
or v(r, θ, z) = v̆ ◦Φ(r, θ, z) defined onΦ−1(O) ⊂ R+ ×S1 ×R. Similarly, for any
vector field v̆,

v̆(x, y, z) = v̆x(x, y, z) ex + v̆y(x, y, z) ey + v̆z(x, y, z) ez
:= v(r, θ, z) = vr (r, θ, z) er + vθ (r, θ, z) eθ + vz(r, θ, z) ez ;

where: vr = vx cos θ + vy sin θ, vθ = −vx sin θ + vy cos θ,

er = ex cos θ + ey sin θ, eθ = −ex sin θ + ey cos θ.

In the following, we shall generally merge v̆ and v (and v̆ and v as well): that is, we
consider the fields as defined on some domain of the physical space R3, but express
them as functions of the cylindrical coordinates, and give their components on the
basis (er , eθ , ez). With this convention, we can introduce the following important
definition.

Definition 9.1.1 For any vector field v = vr er+vθ eθ+vz ez, let vm = vr er+vz ez.
Then, vm and vθ are respectively called meridian and azimuthal components of v.

Finally, we denote by n = (nr , 0, nz) the unit outward normal to Ω . Because
of the symmetry, there is no θ -component, and the other two components are
independent of θ . In a meridian half-plane, ν = (nr , nz) is the unit outward normal
to ∂ω, and τ = (nz,−nr ) the unit tangential vector such that (τ , ν) is direct.
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Differential Operators and Boundary Conditions
In cylindrical coordinates, the formulas of the gradient, divergence and curl

operators are given by, for a scalar field v and a vector field v = vr er+vθ eθ+vz ez,

grad v = ∂v

∂r
er + 1

r

∂v

∂θ
eθ + ∂v

∂z
ez,

div v = 1

r

∂

∂r
(r vr )+ 1

r

∂vθ

∂θ
+ ∂vz
∂z
,

curl v =
(

1

r

∂vz

∂θ
− ∂vθ
∂z

)
er +

(
∂vr

∂z
− ∂vz
∂r

)
eθ

+ 1

r

(
∂

∂r
(r vθ )− ∂vr

∂θ

)
ez.

The scalar Laplacian of v is:

Δv = div gradv = 1

r

∂

∂r
(r
∂v

∂r
)+ 1

r2

∂2v

∂θ2
+ ∂

2v

∂z2
.

The vector Laplacian can be computed with the formula Δv = grad div v −
curl curl v. Actually, we shall not need its expression in the general case.

We shall always assume that the distribution of boundary conditions on Γ also
has an axial symmetry. In other words, γb is made up of two parts, γP (perfectly
conducting) and γA (artificial), which are such that

ΓP = Φ(γP × S1), ΓA = Φ(γA × S1).

The boundary conditions (9.9)–(9.11) read as

Em · τ = 0, Eθ = 0, μHm · ν = 0, resp. Bm · ν = 0 on ΓP , (9.12)

−Em · τ +√μ/ε Hθ = g�θ , Eθ +
√
μ/ε Hm · τ = g�m · τ , (9.13)

resp. − Em · τ + c Bθ = g�θ , Eθ + cBm · τ = g�m · τ on ΓA. (9.14)

9.1.2 Prismatic Domains

Geometry
In this setting, we consider a 3D prismatic domain Ω = ω×]0, L[, where ω

is a domain in the (x, y) plane. Geometrically, the boundary ∂Ω of the prismatic
domain is made of two parts: the lateral surface Γlat := ∂ω×]0, L[ and the bases
Γ0 := ω × {0} and ΓL := ω × {L}. Similarly to the axisymmetric setting, the
component nz of the normal vector n vanishes on Γlat; furthermore, nx and ny do
not depend on z. The outward unit normal to ∂ω in the (x, y) plane is denoted ν,
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and τ is the tangential vector such that (τ , ν) is direct. We have ν = (nx, ny) and
τ = (ny,−nx). On the other hand, n = ±ez on the bases.

In analogy with the axisymmetric setting, we take the following. . .

Definition 9.1.2 For any vector field v = vx ex + vy ey + vz ez, let v⊥ =
vx ex + vy ey . Then, v⊥ and vz are respectively called transversal and longitudinal
components of v.

We now consider the boundary conditions. On the lateral surface, we assume
that the distribution of perfectly conducting and Silver–Müller boundary conditions
is invariant by translation. As for the bases, we assume that the distribution of
boundary conditions is identical on both, i.e., the perfectly conducting parts of Γ0
and ΓL are translations of each other, and similarly for the Silver–Müller parts. In
other words, there exist partitions of the transversal domain ω and its boundary
γ = ∂ω:

ω = ωP ∩ ωA, γ = γP ∪ γA,

up to negligible sets, such that the 3D boundaries ΓP and ΓA are described as

ΓP = Γ 0
P ∪ Γ LP ∪ Γ lat

P , ΓA = Γ 0
A ∪ Γ LA ∪ Γ lat

A , where:

Γ 0
P := ωP × {0}, Γ LP := ωP × {L}, Γ lat

P := γP×]0, L[ ;
Γ 0
A := ωA × {0}, Γ LA := ωA × {L}, Γ lat

A := γA×]0, L[ .

The conditions (9.9)–(9.11) read as

E⊥ · τ = 0, Ez = 0, μH⊥ · ν = 0, resp. B⊥ · ν = 0 on Γ lat
P , (9.15)

Ex = 0, Ey = 0, μHz = 0, resp. Bz = 0, on Γ 0
P ∪ Γ LP ; (9.16)

E⊥ · τ +√μ/ε Hz = g�z, −Ez +
√
μ/ε H⊥ · τ = g�⊥ · τ , (9.17)

resp. E⊥ · τ + c Bz = g�z, −Ez + cB⊥ · τ = g�⊥ · τ on Γ lat
A , (9.18)

−E⊥ × ez +
√
μ/ε H⊥ = g�⊥, resp. − E⊥ × ez + cB⊥ = g�⊥ on Γ 0

A, (9.19)

E⊥ × ez +
√
μ/ε H⊥ = g�⊥, resp. E⊥ × ez + cB⊥ = g�⊥ on Γ LA . (9.20)

Prismatic domains may also come up in a slightly different setting, which we
will call prismatic-periodic. In this case, the physical domain of interest is an
infinite cylinder ω × R, where ω is a domain in the (x, y) plane, as above. If
all the phenomena are periodic in the z coordinate, with a space period L, they
can be modelled and simulated using the domain Ω = ω×]0, L[, with periodic
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boundary conditions (in a suitable sense) imposed on the bases.1 On the other hand,
the boundary conditions on the physical boundary ∂ω×R are treated as above, e.g.,
the perfect conductor condition is expressed as (9.15).

9.2 Two-Dimensional (2D) Models

We now consider the 2D reduced models encountered when the domain, as well as
the data, verifies some symmetry assumptions. As in Sect. 9.1, we will introduce
two commonly used 2D models. The fully axisymmetric model corresponds to an
axisymmetric domain (as in Sect. 9.1.1) with axisymmetric data (precise definition
below). It can describe, for instance, a beam of charged particles close to its axis:
the axis of rotation is the beam axis. The plane model corresponds to an infinite
cylinder ω × R with data invariant by translation.2

On the deepest level, symmetry by translation or rotation is best understood from
a group-theoretical point of view. However, having applications in mind, we shall
be mainly interested in its “practical” consequences, namely all derivatives in the
invariant direction (θ in the fully axisymmetric model and z in the plane model)
vanish.

Much of the next three subsections is taken from [43, §§1.2.a & 1.2.b], with
little or no change. The treatment has been generalised to the case of any group of
symmetry (thus including translations and rotations of given axis), as well as time-
dependent problems. The reader interested in a practical approach alone may skip
to Sect. 9.2.3.

1The reader may have noticed that an infinite cylinder is not a bounded domain, and thus does not
belong in the framework usually adopted in this book. In particular, the various Sobolev compact
imbedding theorems do not hold. Furthermore, the periodicity assumption is inconsistent with the
finite energy condition. This undermines a priori the well-posedness results of Chaps. 5–8. More
pragmatically, the prismatic-periodic setting may be viewed as an idealisation of the propagation
of fields with wavelength L in a cylinder of length much greater than L, provided the boundary
effects can be neglected. Under these circumstances, it is reasonable to assume that the energy is
finite on a period Ω; this validates a posteriori the analyses of Chaps. 5–8, which can be easily
transposed to the case of periodic boundary conditions in z. If we remove the periodicity condition,
and replace it, e.g., with the requirement that the energy be globally finite, there is a “continuous
spectrum” phenomenon that cannot be handled through the methods in this book.
2This is, once more, inconsistent with the finite energy condition (see footnote 1). But we shall
see that the invariance allows one to work in the “usual” function spaces defined on the transversal
section ω, provided a local finiteness condition is satisfied.
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9.2.1 Geometric and Group-Theoretical Definitions

We call Rη the rotation of axis (Oz) and angle η ∈ S1, while Tη is the translation
of vector η ez, for η ∈ R:

∀(x, y, z) ∈ R3, Rη(x, y, z) := (x cosη − y sin η, x sin η + y cos η, z) ;
Tη(x, y, z) := (x, y, η+ z).

The two kinds of operators share a basic feature. Much as Tη is a shift of the
applicate (the coordinate z), a rotation viewed in cylindrical coordinates appears
as a shift of the azimuth. If we define the mapping

Sη : R+ × S1 × R −→ R+ × S1 × R
(r, θ, z) �−→ (r, η + θ, z),

where + here denotes the group law of S1 (addition modulo 2π), and recall the
cylindrical-to-cartesian mapping Φ from Sect. 9.1.1, we have3

Rη = Φ ◦ Sη ◦Φ−1.

More deeply, both families of operators form (one-parameter) groups of linear
isomorphisms:

∀ζ, η ∈ S1 respectively R, Rη ◦Rζ = Rη+ζ , respectively Tη ◦ Tζ = Tη+ζ .

In a more general setting, we suppose we are given an underlying Abelian group
G, and a morphism of groups: η �→ Gη from G to GL(R3), the group of linear
isomorphisms of R3. Moreover, we assume there is a system of coordinates adapted
to the orbits of the symmetry group (Gη)η, i.e., a bijective and bi-continuous

mapping defined in (say) a dense open subset O ⊂ R3:

Ψ : O −→ S×G
x �−→ (x, ζ ),

(9.21)

where S is a suitable manifold, and such that the following identity holds:

∀η, Gη = Ψ−1 ◦ Sη ◦ Ψ, where: Sη(x, ζ ) := (x, ζ + η). (9.22)

3The coordinate θ and the mapping Φ−1 are undefined on the axis (Oz). On the other hand, the
restriction of Rη and Sη to the axis is the identity. This allows for a smooth interpretation of the
formula on all R3.



9.2 Two-Dimensional (2D) Models 355

We shall denote by Φ the cartesian-to-adapted coordinate change for functions:

Φ(v̆) = v̆ ◦ Ψ −1, Φ−1(v) = v ◦ Ψ, (9.23)

for any function v̆, respectively v, defined on a subset of R3, respectively S×G.
In order to obtain a dimension reduction, we shall suppose that the underlying

group G is continuous, and typically one-dimensional. The same holds for the
symmetry group (Gη)η and its orbits; thus, dimS < 3 (typically dimS = 2).
However, the following arguments hold for a discrete group, in which case S is
a three-dimensional set: half-space, octant, period, etc.

9.2.1.1 Symmetry Properties of Scalar and Vector Fields

Symmetry groups have natural actions on scalar and vector fields defined on R3:
the right-action of Gη on v̆ is v̆ ◦ Gη. This definition extends naturally to functions
defined on a domainΩ ⊂ R3, provided the domain itself is invariant under the action
of the group (Gη)η (we shall say (Gη)η-invariant), i.e., ∀x ∈ Ω, ∀η ∈ G, Gη(x) ∈
Ω . Equivalently, such a domain can be characterised in the adapted coordinates
of (9.21) as

Ψ (Ω ∩O) = ω ×G, for some ω ⊂ S.

As natural examples, the axisymmetric domain of Sect. 9.1.1 is (Rη)η-invariant,
and the infinite cylinder of Sect. 9.1.2 is (Tη)η-invariant.

Definition 9.2.1 Let Ω ⊂ R3 be a (Gη)η-invariant domain. The right-action of the
mapping Gη on a distribution T̆ ∈ D′(Ω) is

∀ϕ ∈ D(Ω),
〈
T̆ ◦ Gη, ϕ̆

〉
=
〈
T̆ , ϕ̆ ◦ G−1

η

〉
.

The distribution T̆ is said to be (Gη)η-invariant if, and only if,

∀η ∈ G, T̆ ◦ Gη = T̆ .

The space of such distributions will be denoted D̆′(Ω).

Under the assumption (9.22), we see that this means that (Gη)η-invariant functions
are independent of ζ when expressed in adapted coordinates.

Proposition 9.2.2 Let Ω ⊂ R3 be a (Gη)η-invariant domain. The function
f̆ (x, y, z) ∈ L1

loc(Ω) is (Gη)η-invariant if, and only if, f := Φ−1(f̆ ) is independent
of ζ . Thus, ∂ζ f = 0; this extends to distributions by duality.
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As particular cases:

• f̆ (x, y, z) is invariant by translation if, and only if, it is independent of z, i.e.,
∂zf = 0.

• f̆ (x, y, z) is invariant by rotation if, and only if, its cylindrical version f = f̆ ◦Φ
is independent of θ . Thus, ∂θf = 0.

Moreover, these properties also hold for the expression of f̆ in any adapted coor-
dinate system. In the translational (respectively rotational) case, adapted systems
are made up of the applicate z and some coordinate system in the transversal (x, y)
plane, respectively, the azimuth θ and some coordinate system in a meridian half-
plane.

Let us now examine the case of vector fields, indispensable for handling
Maxwell’s equations. The above notion of invariance is sufficient for the transla-
tional case: obviously, a vector field is invariant by translation if, and only if, its
cartesian coordinates are as well. However, in the rotational case, we shall need the
following:

Definition 9.2.3 Let Ω ⊂ R3 be a (Gη)η-invariant domain and T̆ ∈ D′(Ω) a
vector-valued distribution. The left-action of Gη on T̆ is defined as

∀ϕ ∈ D(Ω),
〈
Gη ◦ T̆ , ϕ̆

〉
=
〈
T̆ ,G−1

η ◦ ϕ̆
〉
.

Then, T̆ is said to be contravariant under the action of the group (Gη)η, or (Gη)η-
contravariant if, and only if,

∀η ∈ G, T̆ ◦ Gη = Gη ◦ T̆ .

The space of such distributions will be denoted D̆′(Ω).

Then, we have the following fundamental result [43, p. 33]:

Proposition 9.2.4 Let f̆ ∈ L1
loc(Ω)

3, with Ω invariant by rotation. Then, f̆ is
contravariant by rotation if, and only if, its cylindrical components f̆r = f̆x cos θ +
f̆y sin θ , f̆θ = −f̆x sin θ + f̆y cos θ and f̆z are invariant by rotation. This property
readily extends to distributions.

Actually, this statement is a particular case of Proposition 9.2.9 below. It can be
generalised to any symmetry group (Gη)η, using adapted coordinates.

9.2.1.2 Symmetries of Differential Operators

Now, we turn to the symmetry properties of differential and boundary operators.
LetΩ be a (Gη)η-invariant domain. In the rest of this section, we take the following
notations:
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• Ă is an M × M system of interior differential operators, i.e., an operator that
transforms a function fromΩ to RM into another function fromΩ to RM .

• B̆ is an m × M system of interior or boundary differential operators, i.e., an
operator that transforms a function fromΩ to RM into a function fromΩ (or ∂Ω)
to Rm.

Definition 9.2.5 The operator B̆, respectively the couple (Ă, B̆) is said to be (Gη)η-
symmetric if, and only if, for all η ∈ G, there exist a linear isomorphism Iη from
RM to itself, and a linear isomorphism Jη from Rm to itself, such that any smooth
function v̆ fromΩ to RM satisfies

Ă
(
Iη
(
v̆ ◦ Gη

)) = Iη
(
(Ă v̆) ◦ Gη

)
;

B̆
(
Iη
(
v̆ ◦ Gη

)) = Jη
(
(B̆ v̆) ◦ Gη

)
.

(9.24)

If (Gη)η is the group of rotations (Rη)η, we will call the operator B̆, respectively the
couple (Ă, B̆) axisymmetric.

In the case M = 1 of a scalar unknown, Iη is nothing but the multiplication by a
constant, so the first condition in (9.24) reduces to Ă(v̆◦Gη) = (Ă v̆)◦Gη. Similarly,
if B̆ is a scalar operator (m = 1), the second condition in (9.24) reduces to B̆(v̆ ◦
Gη) = (B̆ v̆)◦Gη. This leads naturally to the following definitions for general values
ofM and m.

Definition 9.2.6 The operator B̆, respectively the couple (Ă, B̆) is said to be (Gη)η-
invariant if, and only if, for all η and any smooth function v̆ fromΩ to RM , it holds
that

Ă(v̆ ◦ Gη) = (Ă v̆) ◦ Gη ; B̆(v̆ ◦ Gη) = (B̆ v̆) ◦ Gη.

Equivalently, one can examine the expression of the differential operators in adapted
coordinates, where Φ is defined in (9.23).

Ã = Φ ◦ Ă ◦Φ−1, B̃ = Φ ◦ B̆ ◦Φ−1 (9.25)

The (Gη)η-invariance of (Ă, B̆) is equivalent to the independence of the coefficients
of (Ã, B̃) from the coordinate ζ :

{
Ă, B̆

}
(x; ∂x) =

{
Ã, B̃

}
(x; ∂x, ∂ζ ).

For instance, the operators (Ă, B̆) are invariant by translation if, and only if, their
coefficients (in cartesian coordinates) do not depend on z; they are invariant by
rotation if, and only if, they have coefficients independent of θ when expressed in
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cylindrical coordinates:

{
Ă, B̆

}
(x, y, z; ∂x, ∂y, ∂z) =

{
Ã, B̃

}
(r, z; ∂r, ∂θ , ∂z).

A basic example is the Laplace operator

Δ = ∂2
x + ∂2

y + ∂2
z = ∂2

r + r−1 ∂r + r−2 ∂2
θ + ∂2

z .

Dirichlet and Neumann boundary conditions or, more generally, conditions that
only depend on the normal derivative ∂n are invariant by translation (respectively
by rotation), provided the domainΩ is as well.

Let us now examine the usual differential operators, gradient, divergence and
curl. In the translational case, one immediately checks that they are invariant by
translation:

grad
(
v̆ ◦ Tη

) = (grad v̆) ◦ Tη,
div
(
v̆ ◦ Tη

) = (div v̆) ◦ Tη, curl
(
v̆ ◦ Tη

) = (curl v̆) ◦ Tη.

If the domain is invariant by translation, so is the normal vector n̆; thus, the boundary
operators

v̆ �→ {v̆ · n̆, v̆ × n̆, curl v̆ × n̆} , (9.26)

and so on, are invariant by translation.
The picture is more interesting in the rotational case. Consider a smooth enough

scalar field v̆, and an arbitrary constant vector ĕ0 ∈ R3. Recall (cf. Sect. 1.5.1) that
the gradient of v̆ is defined from its differential (or tangent linear mapping) by:

grad v̆(x) · ĕ0 = Dv̆(x) • ĕ0,

where • denotes the duality product between primal and dual three-dimensional
vectors. As the rotation Rη is linear, the chain rule gives us

[D(v̆ ◦Rη)(x)] • ĕ0 = [Dv̆(Rηx) ◦Rη] • ĕ0 = Dv̆(Rηx) •Rηĕ0

= grad v̆(Rηx) ·Rηĕ0 = R−η(grad v̆(Rηx)) · ĕ0.

We have thus proved the identity:

grad
(
v̆ ◦Rη

) = R−η
[
(grad v̆) ◦Rη

]
,
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so the gradient is axisymmetric (i.e., (Rη)η-symmetric) with Iη = Id and Jη =
R−η. Similarly, let v̆ be a smooth enough vector field. Using the following
definitions of the divergence by duality, and of the curl as in Sect. 1.5.1:

〈div v̆, ϕ̆〉 = 〈v̆, grad ϕ̆〉, ∀ϕ̆ ∈ D(Ω̆),

(curl v̆) · ĕ0 = div (v̆ × ĕ0), ∀ĕ0 ∈ R3 constant,

as well as the usual properties

(Rηă) · (Rηb̆) = ă · b̆, (Rηă)× (Rηb̆) = Rη(ă × b̆), ∀ă, b̆ ∈ R3, (9.27)

we arrive at

div
[
R−η

(
v̆ ◦Rη

)] = (div v̆) ◦Rη,
curl

[
R−η

(
v̆ ◦Rη

)] = R−η
[
(curl v̆) ◦Rη

]
.

Thus, these operators are axisymmetric with Iη = R−η and (for the divergence)
Jη = Id. With these results, one sees again that the scalar Laplacian Δ = div grad
is invariant by rotation. On the other hand, the double curl curl curl and the
vector Laplacian Δ = grad div − curl curl are axisymmetric with Iη = R−η.
With the identities (9.27), we check that the vector boundary operators (9.26) are
axisymmetric.

9.2.2 Symmetric Problems with Symmetric Data

Let us consider a boundary-value problem of the form

Ă ŭ = f̆ inΩ, B̆ ŭ = ğ on ∂Ω; (9.28)

or an initial-boundary-value problem, which we may cast in the general form

{
∂t ŭ+ Ă ŭ = f̆ in (0, T )×Ω, B̆ ŭ = ğ on (0, T )× ∂Ω,
ŭ(0, x) = ŭ0(x) in Ω.

(9.29)

The framework of (9.28) contains all types of elliptic, saddle-point or Helmholtz-
like problems envisaged in Sects. 4.2 and 4.5, while (9.29) covers various evolution
problems (of parabolic or hyperbolic type, see Sect. 1.5.2) of Sect. 4.3. The time-
dependent problems with constraints (such as (4.20)) envisaged in this book do
not need a special discussion: as seen in the proof of Theorem 4.3.19, they can
be decomposed into one unconstrained evolution problem and two static problems
with time-dependent data.
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In order to study the influence of symmetry on evolution problems, we take
the following self-evident conventions. For any time-dependent scalar or vector-
valued function v̆, one defines the right-action v̆ ◦ Gη : (t, x) �→ v̆(t,Gη(x)).
Similarly, for a time-dependent vector field v̆, the left-action Gη ◦v. This is extended
to distributions by duality (as in Definitions 9.2.1 and 9.2.3), and allows one to
apply the notions of invariance and contravariance to time-dependent scalar- and
vector-valued distributions. As usual, we shall use the notation v̆(t) to designate the
function x �→ v̆(t, x) defined on Ω , for any function v̆ defined on (0, T ) × Ω .
Thus, the statement “v̆ is invariant (respectively contravariant) under the action of
the group (Gη)η” means “∀t, v̆(t) is invariant (respectively contravariant) under the
action of the group (Gη)η”.

The fundamental result on invariant problems is the following.

Proposition 9.2.7 Assume that the domainΩ and the operators (Ă, B̆) are (Gη)η-
invariant. Then:

1. If a solution ŭ to (9.28), respectively (9.29), is (Gη)η-invariant, so are the data
(f̆ , ğ), respectively (f̆ , ğ, ŭ0).

2. Conversely, if (f̆ , ğ), respectively (f̆ , ğ, ŭ0), are (Gη)η-invariant and (9.28),
respectively (9.29), has, at most, one solution ŭ in the suitable function space,
then this solution is invariant.

Proof As a consequence of Definition 9.2.6, one sees that, if ŭ is a solution to (9.28)
with data (f̆ , ğ), then for any η, ŭ ◦ Gη is a solution corresponding to the data
(f̆ ◦ Gη, ğ ◦ Gη). A similar result holds for (9.29), since ∂t (v̆ ◦ Gη) = (∂t v̆) ◦ Gη for
any v̆ defined on (0, T )×Ω . The direct statement then follows from Definition 9.2.1.

Similarly, assume that (f̆ , ğ) (and ŭ0 if applicable) are invariant. Let ŭ be the
corresponding solution, if it exists. Then, for any η, ŭ and ŭ ◦ Gη are solutions
corresponding to the same data. By the uniqueness property, they must be equal;
hence, ŭ is invariant.

When everything in the problem (9.28) or (9.29), i.e., the domain, the operators
and the data, is (Gη)η-invariant, we easily see that this problem is closely linked to
the two-dimensional problem

Au = f in ω, B u = g on ∂ω (9.30)

or

{
∂tu+ Au = f in (0, T )× ω, B u = g on (0, T )× ∂ω,

u(0, x) = u0(x) in ω,
(9.31)
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where

{f, g, u0}(x) =
{
f̆ , ğ, ŭ0

}
(x),

{A,B} (x; ∂x) =
{
Ã, B̃

}
(x; ∂x, 0),

Ã and B̃ being defined in (9.25). Thus, we have actually reduced the number of
variables from 3 to 2, if G is one-dimensional.

In order to handle vector equations such as Maxwell’s equations, we shall
need a slightly more general framework for symmetric problems, related to Defi-
nition 9.2.5.

Definition 9.2.8 Let the operator B̆, respectively the couple (Ă, B̆) satisfy (9.24).
We define the spaces of (Gη)η-symmetric functions as follows.

1. A function v̆ fromΩ to RM or (0, T )×Ω to RM is (Gη)η-symmetric if, and only
if,

∀η ∈ G, Iη
(
v̆ ◦ Gη

) = v̆. (9.32)

2. A function ğ from ∂Ω to Rm or (0, T ) × ∂Ω to Rm is (Gη)η-symmetric if, and
only if,

∀η ∈ G, Jη
(
ğ ◦ Gη

) = ğ. (9.33)

When v̆ is (Gη)η-symmetric in the sense (9.32) and (Ă, B̆) are (Gη)η-symmetric
in the sense (9.24), then Ă v̆ is (Gη)η-symmetric in the sense (9.32) and B̆ v̆ is
(Gη)η-symmetric in the sense (9.33). Notice that invariance and contravariance are
special cases of symmetry, corresponding to Iη = Id and Iη = G−1

η = G−η,
respectively. Thus, in the rotational case (Gη = Rη), we shall generally use the word
axisymmetric to designate both invariant scalar fields and contravariant vector fields.
Also, the symmetry operator Iη = R−η associated with contravariance by rotation
transforms the basis vectors (er , eθ , ez) into constant fields, hence the statement of
Proposition 9.2.4.

The symmetry property is strongly related to the invariance property, under a
natural assumption about the transformations Iη and Jη. Let us define the operators
P, Q in the adapted coordinates (9.21) as

P v(x, ζ ) := Iζ (v(x, ζ )), Qg(x, ζ ) := Jζ (g(x, ζ )),

and P̆ , Q̆ their expression in cartesian coordinates:

P̆ = Φ−1 ◦ P ◦Φ, Q̆ = Φ−1 ◦Q ◦Φ.

Then we have the following fundamental result.
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Proposition 9.2.9 Assume that the mappings η �→ Iη and η �→ Jη are morphisms
of groups. Let v̆ be (Gη)η-symmetric in the sense of (9.32), and ğ be (Gη)η-
symmetric in the sense of (9.33). Then, P̆ v̆ and Q̆ ğ are (Gη)η-invariant.

This follows from the formula, valid for any v:

∀(x, ζ, η) ∈ S×G×G,
(
(Iζ v) ◦ Sη

)
(x, ζ ) = Iζ+η(v ◦ Sη)(x, ζ ),

and similarly for g. Recall that Sη is the expression of Gη in adapted coordinates,
cf. (9.22). With the help of these operators, it is possible to transform a symmetric
problem into an invariant problem.

Proposition 9.2.10 Let the operators (Ă, B̆) be (Gη)η-symmetric, i.e., they sat-
isfy (9.24). Assume, moreover, that (Iη)η and (Jη)η are groups. Then, the couple

(
Ă�, B̆�

)
:=
(
P̆ ◦ Ă ◦ P̆−1, Q̆ ◦ B̆ ◦ P̆−1

)
(9.34)

is (Gη)η-invariant.

Proof See [43, p. 16] for the rotational case (Gη = Rη, ζ = θ ); the adaptation to
the general case is straightforward.

This allows for a natural generalisation of (9.25). Defining yet another pair of
operators (Ã, B̃) as

Ã = Φ ◦ Ă� ◦Φ−1, B̃ = Φ ◦ B̆� ◦Φ−1, (9.35)

or, equivalently,

Ã = P ◦ Â ◦ P−1, with Â = Φ ◦ Ă ◦Φ−1,

B̃ = Q ◦ B̂ ◦ P−1, with B̂ = Φ ◦ B̆ ◦Φ−1,

one sees that the coefficients of the operators (Ã, B̃) do not depend on the
coordinate ζ . Setting, as previously,

{A,B} (x; ∂x) =
{
Ã, B̃

}
(x; ∂x, 0), (9.36)

we have the following statement.

Proposition 9.2.11 Assume that the couple of operators (Ă, B̆) is (Gη)η-symmetric
and acts from a space V̆ to a space F̆ × Ğ. Define V̆0, F̆0 and Ğ0 as the subspaces
of V̆ , F̆ and Ğ made of (Gη)η-symmetric functions in the sense of (9.32), (9.32)
and (9.33), respectively. Then, there exists spaces V, F, G of functions defined
on ω such that the following mappings are isomorphisms:

P ◦Φ : V̆0 �→ V, P ◦Φ : F̆0 �→ F, Q ◦Φ : Ğ0 �→ G.
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Moreover, the operators (A,B) defined by (9.35) and (9.36) are such that the
following diagram commutes:

V̆0
Ă×B̆−→ F̆0 × Ğ0

P◦Φ ↓ ↓ (P◦Φ)×(Q◦Φ)

V
A×B−→ F ×G

Thanks to the the above discussion, we can generalise Proposition 9.2.7 and give
it a precise formulation. As in Definition 4.2.4, we say that a static problem such
as (9.28) is well-posed in the spaces (V̆ , F̆ , Ğ) if, for any (f̆ , ğ) ∈ F̆ × Ğ, there
exists a unique solution ŭ ∈ V̆ , which depends continuously on (f̆ , ğ). For the
evolution problem (9.29), the notion of well-posedness normally involves spaces
expressing time regularity with values in a function space, e.g., for any data

f̆ ∈ E1(F̆ ), ğ ∈ E2(Ğ), ŭ0 ∈ V̆ ,

there exists a unique solution ŭ ∈ E3(V̆ ), with continuous dependence. The
spaces Ei measure time regularity; this framework contains the statements of the
Hille–Yosida, Stone, and Lions–Magenes theorems, as well as those pertaining to
constrained problems, cf. Sect. 4.3.

Proposition 9.2.12 Assume the hypotheses of Proposition 9.2.11, and let the spaces
V, F, G be normed in such a way that the isomorphisms of that Proposition are
isometries: ‖v‖V := ‖(P ◦Φ)v‖V̆ , and so on.

If the problem (9.28) is well-posed in the spaces (V̆ , F̆ , Ğ), its solution is (Gη)η-
symmetric if, and only if, the data are as well; thus, the problem (9.30) is well-
posed in the spaces (V , F,G). A similar result holds for (9.29) and its reduced
version (9.31).

Comment: The Curie Principle

Propositions 9.2.7 and 9.2.12 are mathematical statements of the so-called Curie
principle, well-known among physicists. Its general formulation goes:

Effects have the same symmetry as causes.

From the above discussion, we see that it actually follows from two more
fundamental principles. The first one is determinism: the same causes produce the
same effects. Generally speaking, the “effect” is the solution to the equation(s) of
interest (typically partial differential equations, sometimes more intricate), while
the various data (right-hand side, initial and/or boundary values, coefficients. . . )
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represent the “cause”.4 Determinism means that the governing equation, such
as (9.28) or (9.29), admits a unique solution in the “physically reasonable” function
space. The second one is the homogeneity and isotropy of space. The laws of
physics appear identical, wherever one may be and in whatever direction one may
look. Their mathematical expression must be unchanged by the isometries of affine
space: translations, reflections, rotations. Thus, it may only involve differential
operators (grad, div, curl, Δ, etc.) “compatible” with these isometries, in the sense
of Definitions 9.2.5 or 9.2.6.

On the other hand, the argument breaks down if uniqueness does not hold. In
that case, one may have two different solutions ŭ1 and ŭ2 such that ŭ2 = ŭ1 ◦ Gη
or Iη(ŭ1 ◦ Gη). This phenomenon is known in the physical community under the
(slightly misleading) name of “spontaneous symmetry breaking”.

9.2.3 Differential Operators (Continued)

Thanks to the vanishing of θ - or z-derivatives, one can easily check. . .

Proposition 9.2.13 For any axisymmetric scalar field v:

• grad v is meridian.

For any axisymmetric vector field v:

• If v is meridian (vθ ≡ 0), curl v is azimuthal.
• If v is azimuthal (vm ≡ 0), curl v is meridian and div v ≡ 0.

The above statements remain valid when replacing the words “axisymmetric” with
“invariant by translation”, “meridian” with “transversal”, and “azimuthal” with
“longitudinal”.

Above, the differential operators are considered in the sense of distributions. As
a consequence, one can introduce the two-dimensional first-order operators for
axisymmetric vector fields, in the (r, z) coordinates.

div v = div vm := 1

r

∂

∂r
(r vr )+ ∂vz

∂z
; (9.37)

curl v = curl vθ + (curl vm) eθ , with

4Sometimes, an in-depth analysis may allow for some dependence of this data on the solution,
expressing a feed-back of the effects on the causes, and leading to a coupled model. An example
in electromagnetics: the charged particles that generate the electric and magnetic fields may
experience the effects of these fields on their motion. The source terms of Maxwell’s equations
(charge and current) are then given in function of the solutions to equations governing the
motion of particles, where the fields appear as force terms. These equations can be kinetic (e.g.,
Vlasov, Sect. 1.3.1) or hydrodynamic (Euler, Navier–Stokes. . . ; see Sect. 1.3.2 for some simplified
models).
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curl vθ := −∂vθ
∂z

er + 1

r

∂

∂r
(r vθ ) ez ; (9.38)

curl vm := ∂vr

∂z
− ∂vz
∂r
. (9.39)

On the other hand, the corresponding gradient operator for axisymmetric scalar
fields coincides with the usual gradient in the (r, z) plane:

gradv = grad v := ∂v
∂r

er + ∂v
∂z

ez.

In the plane case, there also exists a scalar curl operator, denoted by curl, and a
vector curl one, denoted by curl. The divergence and gradient are defined as usual.
These cartesian first-order operators are written as

curl v = ∂xvy − ∂yvx, curl v = ∂yv ex − ∂xv ey, (9.40)

div v = ∂xvx + ∂yvy, grad v = ∂xv ex + ∂yv ey . (9.41)

Using the longitudinal-transversal decomposition v = v⊥ + vz ez, we obtain the
following identities:

curl v = curl vz + (curl v⊥) ez, div v = div v⊥. (9.42)

Of equal interest in the sequel will be identities of the type

curl(ξ−1 curl v) = curl(ξ−1 curl v⊥)+ curl(ξ−1 curl vz) ez, (9.43)

under the assumption that ξ does not depend on z. The above formula becomes

curl(ξ−1 curl v) = curl(ξ−1 curl vm)+ curl(ξ−1 curl vθ ) eθ , (9.44)

in the fully axisymmetric case, if ξ does not depend on θ .

9.2.4 The Maxwell’s Equations

In this subsection, we assume that we are solving Maxwell’s equations (static or
time-dependent) in one of the frameworks described at the beginning of Sect. 9.2,
namely, the domain and the data are either invariant by translation or axisymmetric.
(The data of Maxwell’s equation comprise the charge and current (�,J ), the initial
conditions (E0,H 0), the incoming wave g� if present, and the material coefficients
(ε, μ).) As a consequence of the Curie principle, the electromagnetic field is then
also invariant by rotation or translation. An interesting feature of these models is
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that Proposition 9.2.13 allows one to decouple the set of equations in two unrelated
subsystems, involving different components of the fields, and set in the meridian or
transversal section ω.5

These systems turn out to be very similar in both frameworks. Actually, they are
even formally identical (with the exception of one sign in (9.50) and (9.59) for the
Silver–Müller boundary condition, and one extra equation (9.67) for the longitudinal
magnetic field in the plane model) with the following conventions:

• E, H, etc., refer to the meridian components Em, Hm in the fully axisymmetric
case, and to the transversal components E⊥, H⊥ in the plane case.

• E, H , etc., designate the azimuthal componentsEθ, Hθ in the fully axisymmet-
ric case, and the longitudinal componentsEz, Hz in the plane case.

• In the fully axisymmetric framework, the notations curl, curl, div are under-
stood as the cylindrical 2D operators curl, curl, div defined in (9.37)–(9.39).

Remark 9.2.14 However, one should be aware of certain specific features of the
fully axisymmetric model, which are not without importance when it comes
to practical applications or computational issues [19]. First, the axisymmetric
differential operators have singularities on the axis. Second, the variables belong
to weighted Sobolev spaces; what is more, the radial and axial components of a
given vector field (which are both meridian) generally belong to different spaces.
We shall develop these points in Sect. 9.3.2.

The Two Systems
Starting from (9.1)–(9.4), and using the results of Sect. 9.2.3, we arrive at the

following decoupled systems. The first system of unknowns (E,H) with data (J, �)
is called transverse electric (TE) and is expressed as

ε
∂E
∂t

− curlH = −J, (9.45)

μ
∂H

∂t
+ curl E = 0, (9.46)

div (εE) = �. (9.47)

The charge conservation equation reads as

∂�

∂t
+ div J = 0. (9.48)

5When (ε, μ) are tensors, one must assume in addition that they have a block structure

⎛
⎝• • 0
• • 0
0 0 •

⎞
⎠

that decouples the meridian/transversal components from the azimuthal/longitudinal one. The
reader can easily write the (slight) adaptations induced on the equations in this subsection. Recall
(Chap. 5) that (ε, μ) are always assumed to be scalar near the artificial boundary ΓA, so the Silver–
Müller boundary condition is not affected.
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The above equations hold in (0, T )× ω. The boundary and initial conditions are

E · τ = 0 on (0, T )× γP , (9.49)

δ E · τ +√μ/ε H = g� on (0, T )× γA, (9.50)

E(0) = E0 in ω, (9.51)

H(0) = H0 in ω. (9.52)

The sign δ in (9.50) is equal to −1 in the fully axisymmetric model, and +1 in the
plane one, cf. (9.13)–(9.14) and (9.17)–(9.18), respectively. We see that there is no
boundary condition forH on γP : it is not affected by the 3D boundary condition H ·
n = 0, in contradistinction to E (see (9.57) below). Notice, however, the following
property for a plane cavity problem:

∂

∂t

∫
ω

μH dω =
∫
ω

1 curl E dω =
∫
ω

E·curl 1 dω−
∫
γ

(E·τ ) 1 dγ = 0. (9.53)

This follows from (9.46), (9.49) and the integration-by-parts formula (9.84) (see
p. 373 below).

The second system in (E,H) has the data J and is called transverse magnetic
(TM). The equations in (0, T )× ω are

ε
∂E

∂t
− curl H = −J, (9.54)

μ
∂H
∂t

+ curlE = 0, (9.55)

div (μH) = 0. (9.56)

There is no compatibility condition for this problem. The boundary and initial
conditions read as

E = 0 on (0, T )× γP , (9.57)

H · ν = 0 on (0, T )× γP , (9.58)

−δ E +√μ/ε H · τ = g� · τ on (0, T )× γA, (9.59)

E(0) = E0 in ω, (9.60)

H(0) = H0 in ω, (9.61)

where the δ in (9.59) is the same as in (9.50).
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Static Case
Let us first consider the static case. Thus, we assume that the sources (J , �), the

coefficients (ε, μ) and the solution (E,H ) are independent of time, and that we are
dealing with a cavity problem.

For the transverse electric mode (E,H), Eqs. (9.45)–(9.52) become the following
static problem:

curlH = J in ω, (9.62)

div J = 0 in ω, (9.63)

curl E = 0 in ω, (9.64)

div (εE) = � in ω, (9.65)

E · τ = 0 on γ. (9.66)

As previously noted, there is no boundary condition forH , in contradistinction to E
(see (9.72) below). On the other hand, Eq. (9.62) only defines H up to an additive
constant. In the fully axisymmetric model, there is no ambiguity when γa has non-
zero length, sinceH automatically vanishes there (in a weak sense).6 When γa = ∅,
i.e., when Ω is included in a torus, and in the plane model, the ambiguity can be
removed by imposing, e.g., the condition:

(μH | 1)L2
1
= 0 respectively (μH | 1)L2 = 0, (9.67)

as the magnetic field is the solution to a kind of Neumann problem. In the “toric”
axisymmetric model, this equation is linked to topological issues (see the discussion
at the end of Sect. 9.3.2.). In the plane model, it is consistent with (9.53), which
holds in the time-dependent case.

As for the transverse magnetic mode of unknowns (H, E), the static equations
write

curl H = J in ω, (9.68)

div (μH) = 0 in ω, (9.69)

H · ν = 0 on γ, (9.70)

curlE = 0 in ω, (9.71)

E = 0 on γ. (9.72)

The last two equations (9.71)–(9.72) immediately imply E = 0 in ω.

6Under the “usual” regularity conditions (see Propositions 9.3.15 and 9.3.20 below). Incidentally,
the same holds for E.
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Time-Dependent Case
As usual, it is worthwhile to formulate the Maxwell’s equations as systems of

second order in time, cf. (9.5)–(9.8). We assume that the material coefficients ε, μ
are independent of time. Proceeding as in Chap. 7, one easily derives the results
summarised in the next Theorem.7

Theorem 9.2.15 In the TE system of first-order Maxwell equations (9.45)–(9.52),
the evolution equations (9.45)–(9.46) can be replaced with

ε
∂2E
∂t2

+ curl(μ−1 curl E) = −∂J
∂t

in (0, T )× ω, (9.73)

μ
∂2H

∂t2
+ curl(ε−1 curlH) = curl(ε−1J) in (0, T )× ω, (9.74)

supplemented with the extra initial and boundary conditions

∂E
∂t
(0) = E1 := ε−1(curlH0 − J(0)) in ω, (9.75)

∂H

∂t
(0) = H1 := −μ−1 curl E0 in ω, (9.76)

ε−1(curlH − J) · τ = 0 on (0, T )× γP . (9.77)

In the TM system of first-order Maxwell equations (9.54)–(9.61), the evolution
equations (9.54)–(9.55) can be replaced with

ε
∂2E

∂t2
+ curl(μ−1 curlE) = −∂J

∂t
in (0, T )× ω, (9.78)

μ
∂2H
∂t2

+ curl(ε−1 curl H) = curl(ε−1J ) in (0, T )× ω, (9.79)

supplemented with the extra initial and boundary conditions

∂E

∂t
(0) = E1 := ε−1(curl H0 − J (0)) in ω, (9.80)

∂H
∂t
(0) = H1 := −μ−1 curlE0 in ω, (9.81)

ε−1(curl H − J ) = 0 on (0, T )× γP . (9.82)

7Alternatively, these results may be viewed as straightforward consequences of their three-
dimensional counterparts of Chap. 7, using the identities (9.43) and (9.44).
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Remark 9.2.16 Equation (9.78) is actually a scalar wave equation. Actually, it
follows from (9.84) below that the operators curl and curl are dual. The same holds
for curl and curl, as can be seen by applying (2.27) to an axisymmetric couple
(f̆ , ğ), where f̆ = fm is meridian and ğ = gθ eθ is azimuthal.

In the case of uniform scalar material coefficients, e.g., in vacuum (ε, μ) =
(ε0, μ0), we obtain the simplified versions of (9.73) and (9.78):

∂2E
∂t2

+ c2 curl curl E = − 1

ε0

∂J
∂t
,

∂2E

∂t2
+ c2 curl curlE = − 1

ε0

∂J

∂t
.

As far as the second equation is concerned, notice that curl curl = −Δ in the plane
case; in the fully axisymmetric case, one gets a “modified” Laplacian:

curl curl = −Δ′ := −
(
∂2
r + r−1 ∂r + ∂2

z

)
+ r−2.

Similar equations for the magnetic induction are, denoting (B, B) = μ0 (H,H),

∂2B
∂t2

+ c2 curl curl B = 1

ε0
curl J,

∂2B

∂t2
+ c2 curl curlB = 1

ε0
curl J.

The boundary or initial conditions undergo similar simplifications; e.g., the initial
conditions of order one are

∂E
∂t
(0) = c2 curlB0 − 1

ε0
J(0),

∂B

∂t
(0) = − curl E0,

∂E

∂t
(0) = c2 curl B0 − 1

ε0
J (0),

∂B
∂t
(0) = − curlE0.

9.3 Some Results of Functional Analysis

9.3.1 Prismatic Setting (Plane Model)

We consider invariant-by-translation scalar or vector fields on the infinite cylinder
ω × R; or, equivalently, fields defined on Ω = ω×]0, L[ that do not depend on z.
The spaces made of such fields will be denoted by a breve sign over their symbol:
H̆ s(Ω), H̆ (curl,Ω), X̆N(Ω). . . The goal of this presentation is to characterise
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these spaces by their traces in a longitudinal plane, which are function spaces
defined on ω.

In this subsection, we shall also put a breve over the letters designating the
invariant fields themselves, in order to distinguish f̆ , F̆ (defined on Ω or ω × R)
from their traces in a transversal plane f, F (defined on ω). Characterising the
regularity of such fields on the usual Sobolev scale is not difficult. . .

Proposition 9.3.1 The trace operator f̆ �→ f and the lifting operator f �→ f̆

are bijective isometries between H̆ s(Ω) and Hs(ω), and similarly between H̆ s(Ω)

and H s (ω).

Proof The result is an immediate consequence of Fubini’s theorem for s = 0.
Extension to positive integral values of s then follows from the usual definition of
these spaces, given that all derivatives in z vanish. Finally, the case of non-integral
s is handled by interpolation.

Boundary conditions are handled in a standard way. One easily checks that trace
operators on the lateral surface Γlat := γ×]0, L[ and on a transversal plane
commute, for s > 1/2:

f̆ ∈ H̆ s(Ω) �→ f ∈ Hs(ω)
↓ ↓

f̆|Γlat ∈ H̆ s−1/2(Γlat) �→ f|γ ∈ Hs−1/2(γ ).

However, when dealing with trace-free spaces, one should remember that functions
in H̆ s0 (Ω) vanish both on Γlat and on the bases Γ0 and ΓL; combined with invariance
by translation, the latter condition does not leave many interesting functions to study.
So, we take the following. . .

Definition 9.3.2 Let s ≥ 0. The space Hs)(Ω) is defined equivalently as:

• The set of restrictions toΩ of functions in Hs0 (ω × R).
• The closure of the set {ϕ ∈ C∞(Ω) : suppϕ ∩ Γlat = ∅} within Hs(Ω).
• The space of functions in Hs(Ω) whose normal derivatives of order 0 ≤ j <
s − 1

2 vanish on Γlat.

The case of H)(curl,Ω) and H )(div,Ω) is similar; for instance, the third
definition reads as

H)(curl,Ω) = {F ∈ H (curl,Ω) : F × n = 0 on Γlat},
H)(div,Ω) = {F ∈ H (div,Ω) : F · n = 0 on Γlat}.

Then, we have:

Proposition 9.3.3 The trace operator maps H̆ s)(Ω) onto Hs0 (ω), and conversely
for the lifting operator.
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Let us now examine the usual spaces of electromagnetics. Due to invariance
by translation, both perfect conductor and incoming/outgoing wave conditions can
be imposed on the lateral surface only. Thus, the “natural” spaces of electric and
magnetic fields in the three-dimensional domainΩ are

X̆N(Ω; ε) = H̆ )(curl,Ω) ∩ H̆ (div ε,Ω),

X̆T (Ω;μ) = H̆ (curl,Ω) ∩ H̆ )(divμ,Ω),

if the perfect conductor condition holds everywhere (ΓA = ∅); while, in the
presence of an artificial boundary ΓA, we have

X̆N,A(Ω; ε) = {ŭ ∈ H̆ (curl, Ω) ∩ H̆ (div ε,Ω) : ŭ × n|Γlat ∈ L̆2(Γlat), ŭ × n|Γ lat
P

= 0}
X̆T ,A(Ω;μ) = {ŭ ∈ H̆ (curl, Ω) ∩ H̆ (divμ,Ω) : ŭ × n|Γlat ∈ L̆2(Γlat), ŭ · n|Γ lat

P
= 0}

As usual, we shall write X̆N(Ω), X̆T (Ω), X̆N,A(Ω), X̆T ,A(Ω) in the case of
constant scalar coefficients; and we shall omit the subscripts N, T when making
statements valid for both boundary conditions.

To study the traces of these spaces, we first introduce some two-dimensional
equivalents of the H (div) and H (curl) spaces.

Definition 9.3.4 Recall the plane divergence and scalar curl operators from (9.40)
and (9.41). Defining L2(ω) := L2(ω)2, we denote

H(div, ω) =
{

u ∈ L2(ω) : div u ∈ L2(ω)
}
,

H(div ξ, ω) =
{

u ∈ L2(ω) : div (ξ u) ∈ L2(ω)
}
,

H0(div ξ, ω) = {u ∈ H(div ξ, ω) : u · ν = 0 on γ } ;
H(curl, ω) =

{
u ∈ L2(ω) : curl u ∈ L2(ω)

}
,

H0(curl, ω) = {u ∈ H(curl, ω) : u · τ = 0 on γ } .

On the other hand, the spaces that would likely be denoted H(curl, ω) and
H(grad, ω) are, in fact, identical to H 1(ω). Thanks to the identities (9.42), one
easily proves:

Proposition 9.3.5 Let F̆ be an invariant-by-translation vector field on Ω , and
F = F⊥ + Fz ez its trace. Let ξ̆ be a measurable, invariant-by-translation function
satisfying8 0 < ξ∗ ≤ ξ̆ (x, y, z) ≤ ξ∗ a.e. on Ω for some constants ξ∗, ξ∗. Then,

8If ξ̆ is a tensor and has the block structure described in footnote 5, p. 366, these inequalities are
to be taken in the sense of symmetric matrices, as in (5.10).
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the following characterisations hold:

F̆ ∈ H̆ (curl,Ω) ⇐⇒ F⊥ ∈ H(curl, ω) and Fz ∈ H 1(ω) ;
F̆ ∈ H̆)(curl,Ω) ⇐⇒ F⊥ ∈ H0(curl, ω) and Fz ∈ H 1

0 (ω) ;
F̆ ∈ H̆ (div ξ̆ ,Ω) ⇐⇒ F⊥ ∈ H(div ξ, ω) and Fz ∈ L2(ω) ;

F̆ ∈ H̆)(div ξ̆ ,Ω) ⇐⇒ F⊥ ∈ H0(div ξ, ω) and Fz ∈ L2(ω).

From the above results, one can characterise the trace spaces of the “natural” 3D
spaces for the augmented formulations.

Proposition 9.3.6 Under the assumptions of Proposition 9.3.5, it holds that

F̆ ∈ X̆N(Ω; ε) ⇐⇒ F⊥ ∈ XN(ω; ε) and Fz ∈ H 1
0 (ω) ;

F̆ ∈ X̆T (Ω;μ) ⇐⇒ F⊥ ∈ XT (ω;μ) and Fz ∈ H 1(ω) ;
F̆ ∈ X̆N,A(Ω; ε) ⇐⇒ F⊥ ∈ XN,A(ω; ε) and Fz ∈ H 1(ω), Fz = 0 on γP ;
F̆ ∈ X̆T ,A(Ω;μ) ⇐⇒ F⊥ ∈ XT ,A(ω;μ) and Fz ∈ H 1(ω),

where the “natural” spaces of two-dimensional fields in the longitudinal section are
defined as

XN(ω; ε) = H0(curl, ω) ∩ H(div ε, ω),

XT (ω;μ) = H(curl, ω) ∩ H0(divμ,ω),

XN,A(ω; ε) = {u ∈ H(curl, ω) ∩ H(div ε, ω) : u · τ |γ ∈ L2(γ ), u · τ |γP = 0},
XT ,A(ω;μ) = {u ∈ H(curl, ω) ∩ H(divμ,ω) : u · τ |γ ∈ L2(γ ), u · ν|γP = 0}.

The coefficient ε, μ or the subscript N, T may be omitted in the notation, with the
same conventions as for the spaces of three-dimensional fields.

Before ending this presentation, we notice that all these spaces enjoy prop-
erties very similar to their three-dimensional counterparts. One can establish
two-dimensional versions of the integration-by-parts formulas (2.25) and (2.27).
Below, g is an arbitrary function in H 1(ω), and the duality pairings on the right-
hand sides are understood between H−1/2(γ ) and H 1/2(γ ).

∀f ∈ H(div, ω),
∫
ω

{f · gradg + div f g} dω = 〈f · ν, g〉. (9.83)

∀f ∈ H(curl, ω),
∫
ω

{f · curlg − curl f g} dω = 〈f · τ , g〉. (9.84)

The identity (9.83) is a special case of (2.25) when (f̆ , ğ) are independent of z and
f̆ is transversal (i.e., f̆z = 0 or f̆ = f := f⊥). To obtain (9.84), one applies (2.27)
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to a couple (f̆ , ğ) independent of z, where, in addition, f̆ = f is transversal and
ğ = g ez is longitudinal.

The potential extraction theory of Sects. 3.3 through 3.6 and the compact
imbedding Theorems 3.4.4, 3.5.4, 7.5.1, 7.5.3 take on a simpler form, thanks to
the following results. (We refer the reader to [163, 182] for extensive discussions
and proofs.) For an open set ω ⊂ R2, the topological conditions of Sect. 3.2 rewrite
as follows:

(Top)I=0: Any vector field u ∈ C1(ω) such that curl u = 0 is a gradient, i.e.,
there exists ϕ ∈ C0(ω) such that u = gradϕ. Such a set ω will also be called
topologically trivial.

(Top)I>0: There exist I curves (σi)1≤i≤I such that ω̇ := ω \⋃Ii=1 σi is topologi-
cally trivial.

Then, we have the following remarkable result.

Theorem 9.3.7 A bounded, open, connected subset ω ⊂ R2 is topologically trivial
if, and only if, it is simply connected (i.e., every closed curve can be contracted to a
point).

More generally, ω satisfies the hypothesis (Top)I>0 if, and only if, it is I -
connected, i.e., there exist I closed curves that cannot be contracted to a point,
nor continuously deformed into one another, while staying in ω.

An all-important class of simply connected or topologically trivial subsets is given
by the following definition and theorem.

Definition 9.3.8 A Jordan curve is the image of an injective and continuous
mapping S1 → R2, which is homeomorphic to S1; in particular, it is connected.

Theorem 9.3.9 (Jordan, Schoenflies) A Jordan curve separates the plane R2 into
two connected components, the inside (bounded) and the outside (unbounded).
Furthermore, the inside is homeomorphic to a disc, hence topologically trivial. The
inside of a Jordan curve will be called a Jordan domain.

Remarkably again, a converse statement holds for a large class of subsets, which
comprises all domains (open, bounded, connected subsets with a Lipschitz bound-
ary; in particular, locally on one side of their boundary).

Theorem 9.3.10 Any domain that is simply connected, is actually a Jordan domain.

In a Jordan domain, the topological conditions are empty, and a simple Weber
inequality holds.

Theorem 9.3.11 The imbedding of X(ω; ξ) into L2(ω) is compact. As a conse-
quence, when ω is a Jordan domain, the semi-norm ‖u‖X = aξ (u,u)1/2, where

aξ (u, v) :=
∫
ω

{w1 curl u curl v + w2 div (ξu) div (ξv)} dω, (9.85)
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and the measurable weight functions w1, w2 satisfy 0 < wi∗ ≤ wi(x, y) ≤
w∗
i < ∞ for a.e. (x, y) ∈ ω, defines a norm on X(ω; ξ), which is equivalent to

the H(curl, ω) ∩ H(div ξ, ω)-graph norm.

A generalisation to more complicated domains is possible along the following
lines.

Theorem 9.3.12 Let ω be a domain and I > 0 an integer. The following statements
are equivalent:

1. ω is homeomorphic to a large open disc, with I small closed discs removed.
2. The boundary γ = ∂ω is made of I +1 connected components (γj )0≤j≤I , which

are Jordan curves. By convention, γ0 separates ω from an unbounded exterior
domain.

3. ω satisfies (Top)I>0.

If ω satisfies these conditions, it will be called an I -annulus.

Theorem 9.3.13 In a general domain ω, the following expression defines a norm
in X(ω; ξ), equivalent to the graph norm:

‖u‖2
X = aξ (u,u)+ ‖PZξ u‖2

0 ,

where PZξ designates the orthogonal (in both L2(ω) and H(curl, ω) ∩ H(div ξ, ω)-
graph norms) projection onto the subspace

Z(ω; ξ) := {w ∈ X(ω; ξ) : curl w = 0 and div (ξw) = 0}.

Equivalently, if ω is an I -annulus, and using the notation from Theorem 9.3.12,

‖u‖2
X = aξ (u,u) +

∑
1≤i≤I

∣∣〈ξu · ν, 1〉H 1/2(γi)

∣∣2

defines a norm in XN(ω; ξ);

‖u‖2
X = aξ (u,u) +

∑
1≤i≤I

∣∣〈ξu · ν, 1〉H 1/2(σi)

∣∣2

defines a norm in XT (ω; ξ).
Remark 9.3.14 Let us remark that H (curl,Ω) ∩ H (div ξ,Ω) ⊃ XA(Ω; ξ) ⊃
X(Ω; ξ), and similarly, H(curl, ω) ∩ H(div ξ, ω) ⊃ XA(ω; ξ) ⊃ X(ω; ξ) and that
any u ∈ XA(ω) such that u · τ |γA ∈ H 1/2(γA) can be decomposed into

u = v + e, with v ∈ X(ω), e ∈ H1(ω) and e · τ | γP , respectively e · ν | γP = 0.
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9.3.2 Axisymmetric Setting (Fully Axisymmetric Model)

Now, we consider invariant (respectively contravariant)-by-rotation scalar (respec-
tively vector) fields on the axisymmetric domainΩ . The spaces made of such fields
will be denoted by a breve sign over their symbol: L̆2(Ω), H̆ (curl,Ω), X̆N(Ω). . .

In this subsection, we shall also put a breve over the letters designating the
axisymmetric fields themselves, in order to distinguish f̆ , F̆ (defined on Ω) from
their traces in a meridian half-plane f, F (defined on ω).

We shall give (without proofs) the characterisation of the most useful axisym-
metric spaces by their traces in a meridian half-plane. These are function spaces
defined on ω, which turn out to be weighted Sobolev spaces: the notations are the
same as in [43], where the interested reader can find the proofs and the most general
versions of the subsequent statements. The main “building blocks” for constructing
these spaces are the following:

L2
τ (ω) = {f measurable on ω :

∫
ω

|f |2 rτ dr dz <∞}, for τ ∈ R,

H sτ (ω) = {f ∈ L2
τ (ω) : ∂lr∂mz f ∈ L2

τ (ω),∀ l, m, 0 ≤ l +m ≤ s}.

The scale
(
Hsτ (ω)

)
s≥0 is extended to non-integral values of s by interpolation,

as in Definitions 2.1.17 and 4.1.21. The canonical norm of these spaces will
be denoted, respectively, ‖ · ‖0,τ , and ‖ · ‖s,τ . A prominent role will be played
by L2

1(ω), which appears as the space of traces of scalar fields in L2(Ω), and
cylindrical coordinates of vector fields in L2(Ω). Upon this space, we build another,
dimensionally homogeneous Sobolev scale

(
V s1(ω)

)
s≥0, defined as

V s1(ω) :=
{
w ∈ Hs1(ω) : r�+m−s ∂�r ∂mz w ∈ L2

1(ω), ∀�,m s.t. 0 ≤ �+m ≤ /s0
}
,

where /s0 denotes the integral part of s. One can check that the general definition
reduces to

V s1(ω) =
{
w ∈ Hs1(ω) : ∂jr w

∣∣∣
γa

= 0, for all j ∈ N s.t. j < s − 1

}
, (9.86)

when s is not an integer, while for the first values of s ∈ N, we have:

V 0
1(ω) = L2

1(ω), V 1
1(ω) = H 1

1(ω) ∩ L2−1(ω), V 2
1(ω) = H 2

1(ω) ∩H 1−1(ω).
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The canonical norm of V s1(ω) is denoted by ||| · |||s,1; it is equivalent to | · |s,1, except
for s ∈ N \ {0}. It is worth noting [42, Prop. 1.e.1] that, for m ∈ N and σ ∈ (0, 1),
Vm+σ1 (ω) is the interpolate of order σ between V m1 (ω) and Vm+1

1 (ω).

In order to handle the Dirichlet condition, we introduce the subspaces Hs1,)(ω)
and V s1,◦(ω) of functions that vanish on the physical boundary γb. The difference in
the notation is to remind us of the following fact.

Proposition 9.3.15 Let w ∈ V 1
1(ω). Then, w|γa = 0 in the sense of L2(γa).

Proof See [162, Prop. 4.1] or [15, Proposition 3.18].

For s > 1, the functions of V s1(ω) even vanish in a strong sense on the axis
(see (9.86)).

We now characterise the traces of axisymmetric scalar and vector Sobolev spaces
of exponent smaller than two, which are the only ones we shall need in this book.

Proposition 9.3.16 Let f̆ be an invariant-by-rotation scalar field defined on Ω ,
and f its trace in a meridian half-plane. Then, we have the following equivalences:

f̆ ∈ L̆2(Ω)⇐⇒ f ∈ L2
1(ω), f̆ ∈ H̆ s(Ω)⇐⇒ f ∈ Hs1(ω), for 0 ≤ s < 2,

f̆ ∈ H̆ 2(Ω) ⇐⇒ f ∈ H 2
1(ω) and ∂rf ∈ L2−1(ω).

Let F̆ be a contravariant-by-rotation vector field defined onΩ , and F its trace in a
meridian half-plane. Then, we have the following equivalences:

F̆ ∈ L̆2(Ω) ⇐⇒ F ∈ L2
1(ω)

3 := L2
1(ω),

F̆ ∈ H̆ s(Ω) ⇐⇒ (Fr , Fθ , Fz) ∈ Hs1(ω)×Hs1(ω)×Hs1(ω), for 0 ≤ s < 1.

F̆ ∈ H̆ s(Ω) ⇐⇒ (Fr , Fθ , Fz) ∈ V s1(ω)× V s1(ω)×Hs1(ω), for 1 ≤ s < 2.

Equivalently, the characterisation (9.86) of V s1(ω) shows that the meridian compo-
nents of fields in H s(Ω) span the space

Hs (ω) := {Fm : F ∈ H s(Ω)} = V s1(ω)×Hs1(ω),

while the azimuthal components span V s1(ω). If f̆ or F̆ vanishes on Γ , then f ,
respectively the coordinates of F belong to the space Hs1,)(ω) or V s1,◦(ω).

Let us now examine the spaces related to the divergence and curl operators.
Similarly to Definition 9.3.4, we introduce some axisymmetric equivalents of the
H (div) and H (curl) spaces.
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Definition 9.3.17 Recall the axisymmetric divergence and scalar curl operators
from (9.37) and (9.39). Using the notation L2

1(ω)
2 := L2

1(ω)
2, we call:

H(div, ω) =
{

u ∈ L2
1(ω) : div u ∈ L2

1(ω)
}
,

H(div ξ, ω) =
{

u ∈ L2
1(ω) : div(ξ u) ∈ L2

1(ω)
}
,

H)(div ξ, ω) = {u ∈ H(div ξ, ω) : u · ν = 0 on γb
} ;

H(curl, ω) =
{

u ∈ L2
1(ω) : curl u ∈ L2

1(ω)
}
,

H)(curl, ω) = {u ∈ H(curl, ω) : u · τ = 0 on γb
}
.

On the other hand, the space that would likely be denoted H(grad, ω) is H 1
1(ω),

while H(curl, ω) is, in fact, V 1
1(ω). To prove this, we need an imbedding result,

which will be useful now and then.

Lemma 9.3.18 The space H 1−1(ω) is continuously imbedded in L
2−3(ω).

Proof This is a Hardy inequality (see [15, Lemma 4.9]).

Proposition 9.3.19 It holds that:

curl v ∈ L2
1(ω) ⇐⇒ (rv) ∈ H 1−1(ω) ⇐⇒ v ∈ V 1

1(ω).

Proof The first equivalence stems from the definition (9.38) of curl. The second can
be obtained through simple calculations, using the previous Lemma, together with
the obvious fact that a function is L2

τ (ω) if, and only if, its product by r belongs
to L2

τ−2(ω).

Thanks to the formulas (9.37)–(9.39), one easily proves:

Proposition 9.3.20 Let F̆ be a contravariant-by-rotation vector field on Ω , and
F = Fm + Fθ eθ its trace. Let ξ̆ be a measurable, invariant-by-rotation function
satisfying9 0 < ξ∗ ≤ ξ̆ (r, θ, z) ≤ ξ∗ a.e. onΩ for some constants ξ∗, ξ∗. Then, the
following characterisations hold true:

F̆ ∈ H̆ (curl,Ω) ⇐⇒ Fm ∈ H(curl, ω) and Fθ ∈ V 1
1(ω) ;

F̆ ∈ H̆ 0(curl,Ω) ⇐⇒ Fm ∈ H)(curl, ω) and Fθ ∈ V 1
1,◦(ω) ;

F̆ ∈ H̆ (div ξ̆ ,Ω) ⇐⇒ Fm ∈ H(div ξ, ω) and Fθ ∈ L2
1(ω) ;

F̆ ∈ H̆ 0(div ξ̆ ,Ω) ⇐⇒ Fm ∈ H)(div ξ, ω) and Fθ ∈ L2
1(ω).

9See footnote 8, p. 372.
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From the above results, one can characterise the trace spaces of the “natural” 3D
spaces for the augmented formulations.

Proposition 9.3.21 Under the assumptions of Proposition 9.3.20, it holds that

F̆ ∈ X̆N(Ω; ε) ⇐⇒ Fm ∈ XN(ω; ε) and Fθ ∈ V 1
1,◦(ω) ;

F̆ ∈ X̆T (Ω;μ) ⇐⇒ Fm ∈ XT (ω;μ) and Fθ ∈ V 1
1(ω) ;

F̆ ∈ X̆N,A(Ω; ε) ⇐⇒ Fm ∈ XN,A(ω; ε) and Fθ ∈ V 1
1(ω), Fθ = 0 on γP ;

F̆ ∈ X̆T ,A(Ω;μ) ⇐⇒ Fm ∈ XT ,A(ω;μ) and Fθ ∈ V 1
1(ω),

where the “natural” spaces of two-dimensional fields in the meridian section are
defined as

XN(ω; ε) = H)(curl, ω) ∩ H(div ε, ω),

XT (ω;μ) = H(curl, ω) ∩ H)(divμ,ω),

XN,A(ω; ε) = {u ∈ H(curl, ω) ∩ H(div ε, ω) : u · τ |γb ∈ L2
1(γb), u · τ |γP = 0},

XT ,A(ω;μ) = {u ∈ H(curl, ω) ∩ H(divμ,ω) : u · τ |γb ∈ L2
1(γb), u · ν|γP = 0}.

In the above notations, we may omit the subscripts N, T or coefficients ε, μ in the
same circumstances as in the plane case.

The properties of these spaces parallel those of their three-dimensional and
plane counterparts. Topological conditions are more intricate than in the plane case:
simple connectivity and connected boundary are no longer equivalent, for instance.
A simple assumption that trivialises the topology of the axisymmetric domain is the
following.

Definition 9.3.22 Let ω be a domain in the plane (r, z). It is said to have a simple
axisymmetric topology, or to be a SAT domain, if, and only if, the following three
conditions are satisfied:

1. ω is included in the half plane [r > 0];
2. ∂ω is a Jordan curve;
3. both γa := {x ∈ ∂ω : r(x) = 0} and γb := {x ∈ ∂ω : r(x) > 0} are connected

and have a non-zero length.

All this implies that the axisymmetric domain Ω generated by the rotation of ω
around γa is simply connected, and that its boundary Γ is connected.

Theorem 9.3.23 The imbedding of X(ω; ξ) into L2
1(ω) is compact. As a conse-

quence, when ω is a SAT domain, the semi-norm ‖u‖X = aξ (u,u)1/2, where

aξ (u, v) :=
∫
ω

{w1 curl u curl v +w2 div(ξu) div(ξv)} r dω, (9.87)
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Fig. 9.2 Topological conditions for an axisymmetric domainΩ and its meridian section ω

and the measurable weight functionsw1, w2 satisfy 0 < wi∗ ≤ wi(r, z) ≤ w∗
i <∞

for a.e. (r, z) ∈ ω, defines a norm onX(ω; ξ), which is equivalent to the H(curl, ω)∩
H(div ξ, ω)-graph norm.

More generally, assume that ω is an I -annulus (as defined in Theorem 9.3.12)
included in the half plane [r > 0] (see Fig. 9.2). Then, each of the inner boundaries
(γi)1≤i≤I generates a connected component of Γ ; but the total number K + 1 of
these components can be greater than I + 1, as γ0b := γ0 ∩ γb can be disconnected.
On the other hand, each cut (σi)1≤i≤I associated with γi generates an axisymmetric
manifoldΣi that serves as a cut forΩ , which is “seen” by the meridian components
of vector fields. But there is another possible non-triviality in the topology of Ω ,
as seen in the right-hand part of Fig. 9.2. If γa = ∅, i.e., γ0 = γ0b, a parallel
circle drawn in Ω (i.e., the set of points of cylindrical coordinates (r0, θ, z0), with
(r0, z0) ∈ ω and θ ∈ S1) cannot be contracted to a point. Similarly, the vector field
u = r−1 eθ ∈ C1(Ω) has zero curl, but it is not the gradient of a (single-valued)
function in Ω . In this case, a meridian section serves as a cut; this non-triviality
is only “felt” by the azimuthal components of vector fields (cf. Eq. (9.67)). The
issue disappears if γa has a non-zero length (see Fig. 9.2, left); in the limiting case
when γa �= ∅ had zero length, Ω would not be a domain, in the sense that it is not
everywhere on one side only of its boundary.

Finally, the following adaptation of Theorem 9.3.13 holds.

Theorem 9.3.24 In a general domain ω, the following expression defines a norm
in X(ω; ξ), equivalent to the graph norm:

‖u‖2
X = aξ (u,u)+ ‖PZξ u‖2

0,1 ,
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where PZξ designates the orthogonal (in both L2
1(ω) and H(curl, ω) ∩ H(div ξ, ω)-

graph norms) projection onto the subspace

Z(ω; ξ) := {w ∈ X(ω; ξ) : curl w = 0 and div(ξw) = 0}.

Equivalently, if ω is an I -annulus, as in Fig. 9.2, let
(
γb,k

)
1≤k≤K designate both

the (γi)1≤i≤I and the connected components of γ0b, except the one that separates ω
from an unbounded subset of the half-plane [r > 0]. Then,

‖u‖2
X = aξ (u,u) +

∑
1≤k≤K

∣∣∣〈ξu · ν, 1〉
H

1/2
1 (γb,k)

∣∣∣2

defines a norm in XN(ω; ξ);

‖u‖2
X = aξ (u,u) +

∑
1≤i≤I

∣∣∣〈ξu · ν, 1〉
H

1/2
1 (σi)

∣∣∣2

defines a norm in XT (ω; ξ).

9.4 Existence and Uniqueness Results (2D Problems)

In this section, we present existence and uniqueness results for the 2D models, static
and time-dependent. The proofs will be omitted, as they either are similar to the
three-dimensional (3D) framework, or rely on it. Namely:

• For the fully axisymmetric model, one uses the results from Chaps. 5–6. Invoking
the Curie principle (Propositions 9.2.7 and 9.2.12), the solution to the 3D static
and time-dependent equations are axisymmetric if the data are as well. Using
Sects. 9.1.1 and 9.2.3, one can rephrase each 3D result as two statements on the
meridian and azimuthal components.

• On the other hand, the plane model does not satisfy a finite energy condition
in 3D10: it is necessary to reason directly in two dimensions. This is not difficult:
the properties of the spaces H(curl, ω), H(div, ω), etc., are totally similar to
those of their counterparts in a 3D domain. For instance, the integration-by-parts
formulas (9.83)–(9.84) allow one to derive similar variational formulations.

Nevertheless, we present the two models at once, as we did in Sect. 9.2.4. To this
end, we take the conventions of that subsection, plus the following ones.

10See footnote 1, p. 353.
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Table 9.1 Notations of Sect. 9.4

Spaces Plane Fully axi. Spaces Plane Fully axi.

XN(ω) H 1
0 (ω) V 1

1,◦(ω) L(ω) L2(ω) L2
1(ω)

XT (ω) H 1
zmv(ω) V 1

1(ω) L(ω) L2(ω) L2
1(ω)

XN(ω) See (9.96) See (9.97) F 0(ω) H 1
0 (ω) H 1

1,)(ω)
XT,A(ω) H 1

zmv(ω) V 1
1(ω) F−1(ω) L2(ω) L2

1(ω)

QN(ω) L2(ω) L2
1(ω) F−2(ω) H−1(ω) H 1

1,)(ω)′

QT (ω) L2
zmv(ω) L2

1,zmv(ω) C(ω) H(curl, ω) H(curl, ω)

L(γA) L2(γA) L2
1(γA) C0(ω) H0(curl, ω) H)(curl, ω)

• The spaces X(ω; ξ), XA(ω; ξ) are those of Proposition 9.3.6 in the plane model,
and Proposition 9.3.21 in the fully axisymmetric model. The other spaces are
itemised in Table 9.1.

• The scalar product (· | ·), without any subscript, is that of L2(ω) or L2(ω) in the
plane model, and that of L2

1(ω) or L2
1(ω) in the fully axisymmetric model.

• The subscript zmv designates subspaces of functions f such that (f | 1) = 0; i.e.,
in the fully axisymmetric model, the “zero mean value” is taken with respect to
the weight function r .

To simplify the discussion and avoid some technicalities, we assume that the charge
density � belongs to L2(ω), respectively L2

1(ω). The regularity parameter s of
Chaps. 6 and 7 is thus taken as s = 0; and we omit it from the notation XN(ω; ε).

9.4.1 Static Problems

Theorem 9.4.1 Let ω be a Jordan or SAT domain (Definitions 9.3.8 and 9.3.22),
and let J ∈ L(ω), with div J = 0, and � ∈ F−1(ω). The static TE model (9.62)–
(9.67) admits a unique solution (E,H) ∈ XN(ω; ε) × XT (ω), which depends
continuously on the data (�, J) in the aforementioned spaces.

When γ or γb is not connected (cf. Theorems 9.3.13 and 9.3.24), the problem is
still well-posed if supplemented with the data of:

• either the projection e = PZεN
E of E onto the space ZN(ω; ε);

• or the fluxes (〈εE · ν, 1〉)1≤k≤K of εE on the connected components (γk)1≤k≤K
or (γb,k)1≤k≤K , excepting the component which separates ω from an unbounded
exterior domain.

The duality brackets are to be taken between H−1/2(γk) and H 1/2(γk), respectively
H

−1/2
1 (γb,k) andH

1/2
1 (γb,k); this is equivalent to the knowledge of the total surface

charge on these components.
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Theorem 9.4.2 Let ω be a Jordan or SAT domain, and let J ∈ L(ω). The static TM
model (9.68)–(9.72) admits a unique solution (H, E) ∈ XT (ω;μ)×XN(ω), which
depends continuously on J .

In the more general case, when ω is an I -annulus (cf. Theorems 9.3.13
and 9.3.24), the problem is still well-posed if supplemented with the data of:

• either the projection h = PZμT
H of H onto the space ZT (ω;μ);

• or the fluxes (〈μH · ν, 1〉)1≤i≤I of μH through the cuts (σi)1≤i≤I .

The duality brackets involve H 1/2 and H−1/2-style spaces, as in the previous
theorem.

9.4.2 Time-Dependent Problems (Standard Regularity)

We focus on augmented formulations (as in Sect. 7.4) for the transversal com-
ponents; recall that the longitudinal components are solutions to scalar wave
equations. However, similar results can be obtained through the semi-group theory,
or using unaugmented variational formulations. To begin with, we examine the
cavity problem.
We first consider the TE system (9.45)–(9.52). In all cases, we assume that the initial
conditions satisfy

(E0,E1,H0,H1) ∈ XN(ω; ε)× L(ω)×XT (ω)× L(ω).

Theorem 9.4.3 Assume that the right-hand sides (�, J) have the regularity

J ∈ H 1(0, T ;L(ω)) ; (9.88)

either: � ∈ L2(0, T ;F 0(ω)), or: � ∈ H 1(0, T ;F−1(ω)). (9.89)

1. There is a unique solution to the augmented variational formulation of (9.73)
and (9.75):

⎧⎪⎪⎨
⎪⎪⎩

Find E ∈ XN(ω; ε) such that
∀F ∈ XN(ω; ε),
d2

dt2
(εE | F)+ αμε (E,F) = − d

dt
(J | F)+ (� | div εF),

(9.90)

where αμε (·, ·) is a particular case of the form aξ of (9.85), (9.87):

αμε (u, v) := (μ−1 curl u | curl v)+ (div εu | div εv).

This solution has the regularity E ∈ C0([0, T ];XN(ω; ε)) ∩ C1([0, T ];L(ω)),
and depends continuously on the data (J, �) in the above spaces.
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2. Similarly, there is a unique solution to the variational formulation of (9.74)
and (9.76)–(9.77):

⎧⎪⎪⎨
⎪⎪⎩

Find H ∈ XT (ω) such that
∀C ∈ XT (ω),
d2

dt2
(μH | C)+ (ε−1 curlH | curlC) = (ε−1J | curlC).

(9.91)

It satisfies H ∈ C0([0, T ];XT (ω)) ∩ C1([0, T ];L(ω))), with continuous
dependence on J.

3. If the charge conservation equation (9.48) holds—which implies � ∈
H 2(0, T ;F−2(ω))—and the initial data satisfies div εE0 = �(0), then (E,H) is
the solution to the TE Maxwell equations (9.45)–(9.52) between the times t = 0
and t = T .

Next, we transpose the results of Theorem 7.4.9.

Theorem 9.4.4 Assume that the right-hand sides satisfy (9.88) and either one of
the two conditions:

� ∈ L2(0, T ;F 0(ω)) ∩ C0([0, T ];F−1(ω)) ∩H 2(0, T ;F−2(ω)),

or: � ∈ H 1(0, T ;F−1(ω)) ∩H 2(0, T ;F−2(ω)) ;
}

(9.92)

while the initial data and values satisfy

div εE0 = �(0), �′(0)+ div J(0) = 0. (9.93)

1. There is a unique solution to the mixed augmented variational formulation
of (9.73) and (9.75):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Find (E, PE) ∈ XN(ω; ε)×QN(ω) such that
∀F ∈ XN(ω; ε),
d2

dt2
(εE | F)+ αμε (E,F)+ (PE | div εF) = − d

dt
(J | F)+ (� | div εF),

∀q ∈ QN(ω), (div εE | q) = (� | q) ;

and it has the regularity:

E ∈ C0([0, T ];XN(ω; ε)) ∩ C1([0, T ];L(ω)), PE ∈ L2(0, T ;QN(ω)).

2. Assuming, moreover, that (9.48) holds and H is the solution to (9.91), then
(E,H) is the solution to the TE Maxwell equations between t = 0 and t = T .
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We now turn to the TM system (9.54)–(9.61). In all cases, we assume that the initial
conditions satisfy

(H0,H1, E0, E1) ∈ XT (ω;μ)× L(ω)×XN(ω)× L(ω).

Theorem 9.4.5 Assume that the right-hand side J satisfies

J ∈ H 1(0, T ;L(ω)). (9.94)

1. There is a unique solution to the augmented variational formulation of (9.79)
and (9.81)–(9.82):

⎧⎨
⎩
Find H ∈ XT (ω;μ) such that
∀C ∈ XT (ω;μ), d2

dt2
(μH | C)+ αεμ(H,C) = (ε−1J | curl C) ;

notice that the indices ε, μ are reversed with respect to (9.90). It has the
regularity:

H ∈ C0([0, T ];XT (ω;μ)) ∩ C1([0, T ];L(ω)),

and depends continuously on the data J ∈ H 1(0, T ;L(ω)).
2. Similarly, there is a unique solution to the variational formulation of (9.78)

and (9.80):

⎧⎪⎪⎨
⎪⎪⎩

Find E ∈ XN(ω) such that
∀F ∈ XN(ω),
d2

dt2
(εE | F)+ (μ−1 curlE | curlF) = − d

dt
(J | F),

(9.95)

which satisfies: E ∈ C0([0, T ];XN(ω)) ∩ C1([0, T ];L(ω)), with continuous
dependence on J .

3. If the initial data satisfies H0 ∈ KT (ω;μ) := H0(divμ 0, ω) ∩ H(curl, ω), then
(E,H) is the solution to the TM Maxwell equations (9.54)–(9.61) between the
time t = 0 and t = T , and it holds that

H ∈ C0([0, T ];KT (ω;μ))× C1([0, T ];H0(divμ 0, ω)).
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Theorem 9.4.6 Assume H0 ∈ KT (ω;μ), and J ∈ H 1(0, T ;L(ω)).
1. There is a unique solution to the mixed augmented variational formulation

of (9.79) and (9.81)–(9.82):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Find (H, PH ) ∈ XT (ω;μ)×QT (ω) such that
∀C ∈ XT (ω;μ),
d2

dt2
(μH | C)+ αεμ(H,C)+ (PH | divμC) = (ε−1J | curl C),

∀q ∈ QT (ω), (divμH | q) = 0 ;

and it has the regularity

H ∈ C0([0, T ];KT (ω;μ)) ∩ C1([0, T ];L(ω)), PH ∈ L2(0, T ;QT (ω)).

2. If E is the solution to (9.95), then (E,H) is the solution to the TM Maxwell
equations (9.54)–(9.61) between the time t = 0 and t = T .
Now, we proceed to the interior or exterior problem, for which the Silver–Müller

boundary conditions (9.50), (9.59) hold on γA �= ∅. As seen in Sects. 9.3.1 and 9.3.2,
the relevant spaces for the longitudinal or azimuthal electric fields are

XN,A(ω) :=
{
w ∈ H 1(ω) : w = 0 on γP

}
(plane model) ; (9.96)

XN,A(ω) :=
{
w ∈ H 1

1(ω) : w = 0 on γP
}

(fully axi. model) ; (9.97)

while for the magnetic fields, it is XT,A(ω) = XT (ω) in both models. The notation
(· | ·)A denotes the scalar product of L2(γA), respectively L2

1(γA). We recall that
δ = −1 in the fully axisymmetric model, and δ = +1 in the plane model.

We first consider the TE system. In all cases, we assume that the initial conditions
satisfy

(E0,E1,H0,H1) ∈ XN,A(ω; ε)× L(ω)×XT,A(ω)× L(ω).

Theorem 9.4.7 Assume (9.88) and (9.89), while the incoming wave g� (if applica-
ble) satisfies

g� ∈ H 1(0, T ;L(γA)). (9.98)
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1. There is a unique solution to the augmented variational formulation of (9.73)
and (9.75):

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Find E ∈ XN,A(ω; ε) such that
∀F ∈ XN,A(ω; ε),
d2

dt2
(εE | F)+ αμε (E,F)+

√
ε

μ

d

dt

(
F · τ | E · τ

)
A

= − d
dt
(J | F)+ (� | div εF)+ δ

√
ε

μ

d

dt

(
F · τ | g�

)
A
.

It has the regularity

E ∈ C0([0, T ];XN,A(ω; ε)) ∩ C1([0, T ];L(ω)),

and depends continuously on the data (J, �, g�) in the relevant spaces.
2. Similarly, there is a unique solution to the variational formulation11 of (9.74)

and (9.76)–(9.77):

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Find H ∈ XT,A(ω) such that
∀C ∈ XT,A(ω),
d2

dt2
(μH | C)+ (ε−1 curlH | curlC)+

√
μ

ε

d

dt
(H | C)A

= (ε−1J | curlC)− d

dt

(
g� | C)

A
.

(9.99)

It satisfies H ∈ C0([0, T ];XT,A(ω)) ∩ C1([0, T ];L(ω))), with continuous
dependence on (J, g�).

3. If the data have the regularity

J ∈ H 2(0, T ;L(ω)), g� ∈ H 2(0, T ;L(γA)), (9.100)

the charge conservation equation (9.48) holds—which implies � ∈ H 3(0, T ;
F−2(ω))—and the initial data and values satisfy

⎧⎨
⎩
(E1,H1) ∈ XN,A(ω; ε)×XT,A(ω) ,
δ E0 · τ +√

ε/μH0 = g�(0) on γA ,
δ E1 · τ +√

ε/μH1 = (g�)′(0) on γA ;
(9.101)

then, (E,H) is the solution to the TE Maxwell equations (9.45)–(9.52) between
the times t = 0 and t = T .

11From the definition k� = √
ε/μg� × n (cf. Sect. 7.1) we recall that

√
μ/ε k� × n = −g�, as g�

is tangential.
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Theorem 9.4.8 Assume that (J, �, g�) satisfy (9.88), (9.92) and (9.98), while the
initial data and values satisfy (9.93).

1. There is a unique solution to the mixed augmented variational formulation
of (9.73) and (9.75):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find (E, PE) ∈ XN,A(ω; ε)×QN(ω) such that
∀F ∈ XN,A(ω; ε),
d2

dt2
(εE | F)+ αμε (E,F)+

√
ε

μ

d

dt

(
F · τ | E · τ

)
A
+ (PE | div εF)

= − d
dt
(J | F)+ (� | div εF)+ δ

√
ε

μ

d

dt

(
F · τ | g�

)
A
,

∀q ∈ QN(ω), (div εE | q) = (� | q) ;

and it has the regularity

E ∈ C0([0, T ];XN,A(ω; ε)) ∩ C1([0, T ];L(ω)), PE ∈ L2(0, T ;QN(ω)).

2. Assuming, moreover, that (9.48), (9.100) and (9.101) hold, and that H is the
solution to (9.99), then (E,H) is the solution to the TE Maxwell equations
between t = 0 and t = T .
We now turn to the TM system. In all cases, we assume that the initial conditions

satisfy

(H0,H1, E0, E1) ∈ XT ,A(ω;μ)× L(ω)×XN,A(ω)× L(ω).

Theorem 9.4.9 Assume that the current density J satisfies (9.94), while the
incoming wave g� (if applicable) satisfies

g� · τ ∈ H 1(0, T ;L(γA)). (9.102)

1. There is a unique solution to the augmented variational formulation12 of (9.79)
and (9.81)–(9.82):

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Find H ∈ XT ,A(ω;μ) such that
∀C ∈ XT ,A(ω;μ),
d2

dt2
(μH | C)+ αεμ(H,C)+

√
μ

ε

d

dt
(H · τ | C · τ )A

= (ε−1J | curl C)− d

dt

(
g� · τ | C · τ)

A
.

12See footnote 11.
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It has the regularity:

H ∈ C0([0, T ];XT ,A(ω;μ)) ∩ C1([0, T ];L(ω)),

and depends continuously on the data (J, g� · τ ) in the relevant spaces.
2. Similarly, there is a unique solution to the variational formulation of (9.78)

and (9.80):

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Find E ∈ XN,A(ω) such that
∀F ∈ XN,A(ω),
d2

dt2
(εE | F)+ (μ−1 curlE | curlF)+

√
ε

μ

d

dt

(
F | E)

A

= − d
dt
(J | F)− δ

√
ε

μ

d

dt

(
F | g� · τ )

A
,

(9.103)

which satisfies: E ∈ C0([0, T ];XN,A(ω)) ∩ C1([0, T ];L(ω)), with continuous
dependence on (J, g� · τ ).

3. If the data have the regularity

J ∈ H 2(0, T ;L(ω)), g� · τ ∈ H 2(0, T ;L(γA)) ; (9.104)

and the initial data and values satisfy

⎧⎪⎪⎨
⎪⎪⎩

H0 ∈ KT ,A(ω;μ) := H(divμ 0, ω) ∩ XT ,A(ω;μ) ,
(H1, E1) ∈ KT ,A(ω;μ)×XN,A(ω) ,
−δ E0 +√

ε/μH0 · τ = g�(0) · τ on γA ,
−δ E1 +√

ε/μH1 · τ = (g�)′(0) · τ on γA ,

(9.105)

then (E,H) is the solution to the TM Maxwell equations (9.54)–(9.61) between
the time t = 0 and t = T , and it holds that

H ∈ C0([0, T ];KT ,A(ω;μ))× C1([0, T ];H0,γP (divμ 0, ω)).

Theorem 9.4.10 Assume H0 ∈ KT (ω;μ), and (J, g�) satisfy (9.94) and (9.102).

1. There is a unique solution to the mixed augmented variational formulation
of (9.79) and (9.81)–(9.82):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find (H, PH ) ∈ XT ,A(ω;μ)×QT (ω) such that
∀C ∈ XT ,A(ω;μ),
d2

dt2
(μH | C)+ αεμ(H,C)+

√
μ

ε

d

dt
(H · τ | C · τ )A + (PH | divμC)

= (ε−1J | curl C)− d

dt

(
g� · τ | C · τ)

A
,

∀q ∈ QT (ω), (divμH | q) = 0 ;
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and it has the regularity

H ∈ C0([0, T ];XT ,A(ω;μ)) ∩ C1([0, T ];L(ω)), PH ∈ L2(0, T ;QT (ω)).

2. Assuming, moreover, that (9.104) and (9.105) hold, and that E is the solution
to (9.103), then (E,H) is the solution to the TMMaxwell equations (9.54)–(9.61)
between the time t = 0 and t = T .

9.4.3 Time-Dependent Problems (Improved Regularity)

In this section, we adapt the results of Sect. 7.6 to the 2D case. For ease of
exposition, we do not separate between the TE and TM systems, but between the
vector (transversal or meridian) and scalar (longitudinal or azimuthal) components
of E and H . We recall that these results only apply to the cavity problem.

For the vector components, the electric and magnetic Maxwell operators
AE, AH are defined as follows, cf. Proposition 7.6.1. Their domain is D(AE) =
X̃N(ω; ε), D(AH ) = X̃T (ω;μ), where

X̃N(ω; ε) :=
{

u ∈ XN(ω; ε) : μ−1 curl u ∈ XT (ω) and div εu ∈ F 0(ω)
}
,

X̃T (ω;μ) :=
{

u ∈ XT (ω;μ) : ε−1 curlu ∈ XN(ω) and divμu ∈ F 0
m(ω)

}
,

and we have set F 0
m(ω) = H 1

zmv(ω) in the plane model, F 0
m(ω) = H 1

1,zmv(ω) in the
fully axisymmetric model; these spaces are equipped with their graph norm. The
values of the operators are, respectively,

AEu = curlμ−1 curl u − ε grad div εu,

AHu = curl ε−1 curl u − μ grad divμu.

Let us set Q̃N(ω) = H 1
0 (ω) and Q̃T (ω) = H 1

zmv(ω) in the plane model, and
Q̃N(ω) = H 1

1,)(ω) and Q̃T (ω) = H 1
1,zmv(ω) in the fully axisymmetric model.

Then, the counterparts of Propositions 7.6.2 and 7.6.3 are as follows.

Proposition 9.4.11 In order to haveE ∈ W 2,p(0, T ; X̃N(ω; ε))∩W 4,p(0, T ;L(ω))
and PE ∈ W 2,p(0, T ; Q̃N(ω)) if applicable, it is sufficient to assume:
• in the non-mixed framework: either

J ∈ W 4,1(0, T ;L(ω)), � ∈ W 3,1(0, T ;F 0(ω)),
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or

J ∈ W 3,p(0, T ;XN(ω; ε)), ε grad� ∈ W 2,p(0, T ;XN(ω; ε)), 13

together with the higher-order initial data (E2,E3) ∈ X̃N(ω; ε) × XN(ω; ε),
where

εE2 = −J′(0)− curlμ−1 curl E0 + ε grad(div εE0 − �(0)),
εE3 = −J′′(0)− curlμ−1 curl E1 + ε grad(div εE1 − �′(0)).

• in the mixed framework: the same conditions on J and � as above, plus � ∈
W 4,p(0, T ;F−2(ω)), together with (E2T ,E3T ) ∈ X̃N(ω; ε)× XN(ω; ε), i.e.,

E2T = −ε−1(curlμ−1 curl E0 + J′T (0)) ∈ C0(ω),

with μ−1 curl E2T ∈ C(ω),

E3T = −ε−1(curlμ−1 curl E1 + J′′T (0)) ∈ C0(ω).

Proposition 9.4.12 In order to have H∈W 2,p(0, T ; X̃T (ω;μ))∩W 4,p(0, T ;L(ω))
and PH ∈ W 2,p(0, T ; Q̃T (ω)) if applicable, it is sufficient to assume:
• in the non-mixed framework: ε−1J ∈ W 3,p(0, T ;XN(ω)), together with the

higher-order initial data (H2,H3) ∈ X̃T (ω;μ)× XT (ω;μ), where:

μH2 = curl ε−1J (0)− curl ε−1 curl H0 + μ grad divμH0,

μH3 = curl ε−1J ′(0)− curl ε−1 curl H1 + μ grad divμH1.

• in the mixed framework: ε−1J ∈ W 3,p(0, T ;XN(ω)) again, together with
(H2,H3) ∈ K̃T (ω;μ)× KT (ω;μ).

As in 3D, we have denoted K̃T (ω;μ) := X̃T (ω;μ) ∩ KT (ω;μ). Recall that
H(t) ∈ KT (ω;μ) at any time in this framework, and that the Lagrange multiplier
PH is zero.

13If ε ∈ W 1,∞(ω), a sufficient condition to ensure this is � ∈ W 2,p(0, T ;ΦN(ω; ε)), where the
space ΦN(ω; ε) is defined in a manner analogous to (7.53), viz.:

ΦN(ω; ε) =
{
ϕ ∈ H 1

0 (ω) : div (ε grad ϕ) ∈ L2(ω)
}

(plane),

ΦN(ω; ε) =
{
ϕ ∈ H 1

1,)(ω) : div(ε gradϕ) ∈ L2
1(ω)

}
(fully axisymmetric).

In both cases, the condition on � implies � ∈ W 2,p(0, T ;F 0(ω)), which is needed for the mixed
problem.
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As for as the scalar components, the operators AE, AH are defined by their
domain (equipped with its graph norm)

D(AE) = X̃N (ω) :=
{
u ∈ XN(ω) : μ−1 curl u ∈ C(ω)

}
,

D(AH) = X̃T (ω) :=
{
u ∈ XT (ω) : ε−1 curlu ∈ C0(ω)

}
,

and their values

AEu = curlμ−1 curlu, AHu = curl ε−1 curl u.

They reduce to (modified) Laplacians when ε or μ are constant. The improved
regularity results take on a simpler form, as the scalar components are not involved
in the divergence conditions. The improved regularity results write. . .

Proposition 9.4.13 In order to have E ∈ W 2,p(0, T ; X̃N (ω))∩W 4,p(0, T ;L(ω)),
it is sufficient to assume:

either J ∈ W 4,1(0, T ;L(ω)), or J ∈ W 3,p(0, T ;XN(ω));

together with the higher-order initial data (E2, E3) ∈ X̃N (ω)×XN(ω), where

εE2 = −J ′(0)− curlμ−1 curlE0, εE3 = −J ′′(0)− curlμ−1 curlE1.

Proposition 9.4.14 In order to haveH ∈ W 2,p(0, T ; X̃T (ω))∩W 4,p(0, T ;L(ω)),
it is sufficient to assume: ε−1J ∈ W 3,p(0, T ;C0(ω)), together with the higher-order
initial data (H2,H3) ∈ X̃T (ω)×XT (ω), where:

μH2 = curl ε−1(J(0)− curlH0), μH3 = curl ε−1(J′(0)− curlH1).



Chapter 10
Analyses of Coupled Models

In this chapter, we analyse the coupled models introduced in Sect. 1.3, namely the
Vlasov–Poisson, Vlasov–Maxwell and magnetohydrodynamics (MHD) systems.
They are basic models of charged particle, plasma and conducting fluid physics.
We present the useful mathematical tools, and a variety of existence and uniqueness
results for several types of solution.

10.1 The Vlasov–Maxwell and Vlasov–Poisson Systems

In this section, we return to the kinetic models introduced in Sect. 1.3.1. We
review the various types of solution and the known well-posedness results, first,
(Sect. 10.1.2) for a linearised problem, and next, (Sects. 10.1.3–10.1.4) for the
original, non-linear models.

10.1.1 The Models

We consider a system consisting of charged particles interacting through the self-
consistent electromagnetic fields that they generate. They may follow either the
non-relativistic or the relativistic laws of motion. To simplify the discussion, we
shall assume that there is only one species of particles, and we set the constants
m, q, ε0, c to one. If the particles are actually negatively charged, the model
remains coherent by changing the sign of the electromagnetic unknowns E, B, V .
Many-species models do not pose greater difficulties, nor do models with a so-called
neutralising background, whose density and flux (ρb, jb) are given, provided they
satisfy a continuity equation ∂tρb + div jb = 0. To cover both relativistic and
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non-relativistic models, we write the Vlasov equation as

∂f

∂t
+ v(ξ ) · ∇xf + (E + v(ξ )× B) · ∇ξf = 0 ; (10.1)

v(ξ) = ξ√
1 + |ξ |2 (relativistic case), respectively

v(ξ) = ξ (non-relativistic case).

The variable ξ plays the role of a momentum (p) or velocity (v). The electro-
magnetic fields E, B are governed by Maxwell’s equations in vacuum, or by
approximate models. The charge and current densities are

�(t, x) =
∫
R3
ξ

f (t, x, ξ ) dξ , (10.2)

J (t, x) =
∫
R3
ξ

f (t, x, ξ ) v(ξ ) dξ . (10.3)

These satisfy the differential charge conservation equation ∂t� + div J = 0.
The Vlasov equation (10.1) is a transport equation, i.e., a first-order hyperbolic

equation. It must be supplied with initial conditions

f (0, x, ξ ) = f0(x, ξ ), (10.4)

and, unless the problem is set in all space, boundary conditions. If x belongs to some
open set Ω ⊂ R3

x , the Vlasov equation is set on TΩ := Ω × R3
ξ . Denoting (as in

the previous chapters) by n(x) the outgoing unit normal vector at x ∈ Γ := ∂Ω ,
the phase-space boundary Γ × R3

ξ is divided into its incoming, outgoing, grazing,
and non-smooth parts:

Σ− := {(x, ξ ) ∈ Γ × R3 : n(x) · ξ < 0}, Σ+ := {(x, ξ ) : n(x) · ξ > 0},
Σ◦ := {(x, ξ ) : n(x) · ξ = 0}, ΣNS := {(x, ξ ) : n(x) does not exist}.

If Γ is Lipschitz, both the non-smooth and the grazing boundaries are negligible
w.r.t. the standard boundary measure. The boundary conditions for f are imposed
on the incoming boundary only. The commonest ones are:

• the inflow (or incoming flux) condition, corresponding to a non-homogeneous
Dirichlet condition:

f (t, x, ξ ) = fin(t, x, ξ ) on Σ− ; (10.5)
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• the specular reflection condition, which can be thought of as an equivalent of the
homogeneous Neumann condition:

f (t, x, ξ ) = f (t, x, ξ ′) onΣ−, where ξ ′ = ξ − 2 (n(x) · ξ )n(x) ;
(10.6)

notice that ξ ′ is outgoing when ξ is incoming. It can be generalized as a diffuse
reflection condition, where the incoming fluxes appear as weighted averages of
the outgoing ones:

f (t, x, ξ ) =
∫
Σ+(x)

k(x, ξ , ζ ) f (t, x, ζ ) dζ , on Σ−,

where Σ+(x) := {ξ ∈ R3 : n(x) · ξ > 0} ;

• the emission-absorption condition, which resembles the Fourier condition:

f (t, x, ξ ) = a(t, x, ξ ) f (t, x, ξ ′)+ fin(t, x, ξ ) on Σ−, (10.7)

with 0 ≤ a ≤ 1 in principle—a diffuse version is also possible.

The Vlasov–Maxwell system, hereafter abbreviated VM, is formed by the Vlasov
equation (10.1), the initial condition (10.4), and (when relevant) a boundary condi-
tion such as (10.5) or (10.7); the coupling relations (10.2)–(10.3); and Maxwell’s
equations in vacuum, with their initial and (when relevant) boundary conditions.
For the sake of simplicity, we assume that these are the perfectly conducting ones
if Ω �= R3

x . Absorbing boundary conditions can be dealt with through the tools
introduced in Chap. 7.

Similarly, the (non-relativistic) Vlasov–Poisson (VP) system writes

∂f

∂t
+ ξ · ∇xf − ∇xV · ∇ξf = 0 ;

−ΔxV = �,

supplemented by an initial condition for f , and boundary conditions for f and V if
Ω �= Rnx .

Dimensionally reduced models (as in Chap. 9) are also used, for the ease of both
analysis and simulation. In the physical space dimensions (x ∈ R3

x), the domain Ω
and the distribution function are invariant under the action of some continuous
symmetry group. In the kinetic dimensions (ξ ∈ R3

ξ ), the distribution is factored:
for instance, in a prismatic domain or an infinite cylinder, one may have

f (t, x, ξ ) = f(t, x⊥, ξ⊥)M(ξz), (10.8)
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for some given function M. The charge density is then independent of z. In the
Vlasov–Poisson framework, the Curie principle stipulates that the electric potential
V and field E are invariant by translation, and E is transversal (Ez = 0). Thus, one
arrives at the reduced model

∂f

∂t
+ ξ⊥ · ∇x⊥f−∇x⊥V · ∇ξ⊥f = 0 ;

−Δx⊥V = � =
∫
R2
ξ

f(t, x⊥, ξ⊥) dξ⊥.

The current density is also invariant by translation; it is transversal, i.e., J (t, x) =
J⊥(t, x⊥), if the first moment of M vanishes:

∫
R M(ξ) ξ dξ = 0. It is thus possible

to couple a transverse electric Maxwell system (9.45)–(9.52) with a non-relativistic
Vlasov equation:

∂f

∂t
+ ξ⊥ · ∇x⊥f+ (E⊥ + Bz ξ⊥⊥) · ∇ξ⊥f = 0 , (10.9)

with ξ⊥⊥ = ξy ex − ξx ey . In a relativistic framework, the decoupling is hindered
by the function v(ξ ), which mixes the components. However, if the particles
are monokinetic in z (ξz ≡ 0, or M = δ, the Dirac function in (10.8)),
one arrives [121] at a relativistic version of (10.9). Again invoking the Curie
principle, we see that the functions f deduced by (10.8) from the solution f to
the reduced models are solutions to the original models, provided the initial and
boundary data of the latter are themselves of the form (10.8) with a suitable M.
The same principle can be applied to other symmetry groups of various dimen-
sions.

Remark 10.1.1 In both the physical and mathematical communities, one usually
talks about an n-dimensional model (nD) when x ∈ Rnx and ξ ∈ Rnξ . Models in
which the kinetic space has one more dimension than the position space—so as to
allow a more complex interplay between the particle dynamics and the magnetic
field—have also been studied in the literature [119, 120]. They are often called 1 1

2 D
or 2 1

2 D.

10.1.2 Linear Vlasov Equation

Framework
In this subsection, we review some of the mathematical tools needed to solve

the initial-boundary value problem for a linear transport equation. Later on, these
concepts will be applied fruitfully to the VP and VM systems, where the non-
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linearity only stems from the coupling with other equations. No proofs will be given;
we refer the reader to [33].1

Let Ω ⊂ Rnx be a piecewise smooth domain, and introduce the phase-space-time
slabQT := (0, T )×Ω×Rdξ = (0, T )×TΩ . Assume we are given two vector fields

b : Rdξ → Rn and a : QT → Rd . As before, we call Σ− and Σ+ the incoming and

outgoing parts of phase-space boundary Γ × Rdξ :

Σ± :=
{
(x, ξ ) ∈ Γ × Rdξ : ±b(ξ) · n(x) > 0

}
,

and B±
T := (0, T )×Σ±. The trace on B−

T , respectively B+
T of a function u defined

onQT is denoted u−, respectively u+. Furthermore, we call Πt the slice at time t:

Πt = {(t, x, ξ ) : (x, ξ ) ∈ Ω × Rdξ },

and write, as usual, u(t) for the function (x, ξ ) �→ u(t, x, ξ ). We shall consider the
following problem:

Yu := ∂tu+ b(ξ ) · ∇xu+ a(t, x, ξ ) · ∇ξu = 0 inQT ; (10.10)

u(0) = u0 in TΩ ; (10.11)

u− = Ku+ + uin on B−
T . (10.12)

Following a classical point of view [194], we may regard the differential operator Y
as a vector field on QT . Notice that, as its time component is 1, this field vanishes
nowhere. The meaning of the initial and boundary conditions (10.11), (10.12) will
be specified later. The operator K maps some function space on B+

T to another
on B−

T ; it may describe various boundary conditions: inflow (K = 0), specular or
diffuse reflection (‖K‖ = 1 in a suitable space), emission-absorption (‖K‖ < 1),
etc.

In the whole subsection, we shall assume that the field a is ξ -divergence-free,
i.e.,

d∑
j=1

∂

∂ξj
aj (t, x, ξ ) = 0 in the sense of D′(QT ). (10.13)

This condition is obviously satisfied in the Vlasov–Poisson case (a = E inde-
pendent of ξ ), and one checks that it also holds for the Vlasov–Maxwell system.

1That work is written for the case b(ξ) = ξ in (10.10) below, corresponding to a non-relativistic
model with n = d; and it assumes a stronger time regularity than (A1) for the force field a. None
of these assumptions is essential.
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It naturally leads to recast the so-called advective form of the transport equa-
tion (10.10) into the conservative form:

∂tu+ divx,ξ (uA) = 0 in QT , (10.14)

where A is the (n+d)-dimensional vector field (b, a) on TΩ . Thus, the operator Y is
formally skew-adjoint. Furthermore, an integral conservation property holds, which
justifies the “conservative” terminology. Introducing the measure on (0, T ) × Γ ×
Rdξ :

dν := |b · n| dΓ (x)dξ dt, where: dΓ = surface measure on Γ, (10.15)

the integration-by-parts formula (2.18) applied to (10.14) formally gives us

∫
TΩ

u(0) dxdξ +
∫
B−
T

u− dν =
∫
TΩ

u(T ) dxdξ +
∫
B+
T

u+ dν . (10.16)

From the above formula, it appears coherent to separate the boundary ∂QT into its
entry and exit parts: D−

T := B−
T ∪ Π0, D

+
T := B+

T ∪ ΠT . (The grazing and non-
smooth parts are ignored; anyway, they do not play any role in the formulations.)
The boundary measure being defined as

dν = dxdξ on Π0 and ΠT , dν given by (10.15) on B±
T , (10.17)

and the traces as

u− := (u(0), u−), u+ := (u(T ), u+),

Eq. (10.16) takes the compact form
∫
D−
T
u− dν = ∫

D+
T
u+ dν.

We now present the various types of solution that have been defined for the
system (10.10)–(10.12). In a first approach, we assume that inflow boundary
conditions are applied when relevant (Ω �= Rnx), i.e., the operatorK = 0 in (10.12).
In this case, the initial and boundary conditions (10.11), (10.12) can be summarised
as the entry condition

u− = g on D−
T , where: g := (u0, uin). (10.18)

The modifications induced by other boundary conditions will be sketched at the end
of the subsection.

Weak and Renormalised Solutions
Classical solutions (i.e., C1 in (t, x, ξ )) are not necessarily the most appropriate

framework for solving the system (10.10)–(10.12). But suppose, for the moment,
that there exists a C1 solution u. Multiplying the conservative form (10.14) by
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a test function ϕ chosen within a space of C1 functions with compact sup-
port

Φ− :=
{
ϕ ∈ C1

c (QT ) : suppϕ ∩D+
T = ∅

}
, (10.19)

and using the integration-by-parts formula (2.18), we arrive at:

∫
QT

u (Yϕ) dμ+
∫
TΩ

u0 ϕ(0) dxdξ +
∫
B−
T

uin ϕ dν = 0. (10.20)

We have written dμ = dxdξ dt for short. This motivates the definition of weak
solutions.

Definition 10.1.2 Let (p, q) be two conjugate exponents: 1
p
+ 1
q
= 1, and let:

g ∈ Lploc(D−
T ), i.e. : u0 ∈ Lploc(TΩ), uin ∈ Lploc(B−

T , dν);
b ∈ Lqloc(Rdξ )n; a ∈ Lqloc(QT )d .

A weak Lploc solution to (10.10), (10.18) is a function u ∈ L
p
loc(QT ) such

that (10.20) holds for all ϕ ∈ Φ−.

Remark 10.1.3 A few comments on this definition:

• The assumption b ∈ Lqloc(Rdξ )n implies that b · n ∈ Lqloc(Σ−).
• To check the entry condition (10.18), one has to develop an “anisotropic”

trace theory: there is a trace theorem that states that functions w ∈
L
p
loc(QT ) such that Yw ∈ L

p
loc(QT ) have well-defined traces w± ∈

L
p
loc(D

±
T , dν).

2

• When g ∈ Lp(D−
T , dν) and u ∈ Lp(QT ), we shall speak of a weak Lp

solution.

An interesting generalisation3 is the following [102]. Formally, if u is a solution
to (10.10), then so is any function β(u). However, β(u) can be locally, even globally,
integrable when u is not. For instance, if the function β satisfies the conditions

β ∈ C0(R) ∩ L∞(R), β ≡ 0 in a neighbourhood of 0, (10.21)

2The trace theory from [33] can be reconciled with the one presented here. Following [129,
Lemma 2.1], the space of test functions used in [33] and C1

c (QT ) admit a common subspace
that is dense in W 1,p(QT ) for 1 ≤ p < ∞. This shows the equality of traces in the sense
ofW−1/q,q(∂QT ), where 1

p
+ 1
q
= 1.

3Especially for applications to non-linear problems, where it allows one to relax the assumptions
on the data: compare Theorems 10.1.17 and 10.1.18 below.
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then it suffices to have

w ∈ L0(O, dμ) := {w μ-measurable on O : ∀λ > 0, μ ([|w| > λ]) < +∞}

in order to ensure β(w) ∈ L1(O) ∩ L∞(O). This leads to the definition of a new
type of solution.

Definition 10.1.4 Let

g ∈ L0(D−
T , dν), i.e. : u0 ∈ L0(T Ω), uin ∈ L0(B−

T , dν);
b ∈ L1

loc(R
d
ξ )
n; a ∈ L1

loc(QT )
d.

A renormalised solution to (10.10), (10.18) is a function u ∈ L0(QT ) such that β(u)
is a weak L1 solution, with entry data β(g), for all functions β(·) satisfying (10.21).

Characteristic (Mild) Solutions
A fundamental object in the study of Eq. (10.10) is the so-called characteristic

system of ordinary differential equations

X′(s) = b(Ξ (s)), Ξ ′(s) = a(s,X(s),Ξ (s)). (10.22)

The particular solution (assuming it is unique and exists locally, i.e., on an open
existence interval I 1 t) corresponding to the initial condition

X(t) = x, Ξ (t) = ξ ,

will be denoted (X(s; t, x, ξ ),Ξ (s; t, x, ξ )). The integral curves of (10.22) are
referred to as the characteristics, so as to distinguish them from the integral curves
of the vector field Y , i.e., the set of triples (s,X(s),Ξ (s)), where (X(s),Ξ (s))
solves (10.22).
Using elementary calculus, one proves two easy but fundamental results.

Proposition 10.1.5 Any (smooth enough) solution u to (10.10) is constant along
the integral curves of Y , i.e., for any (t, x, ξ ) ∈ QT , the function ψ(s) :=
u(s,X(s; t, x, ξ ),Ξ (s; t, x, ξ )) satisfiesψ ′(s) = 0 for all s in the existence interval
of the characteristic.

Therefore, in order to find the value of u(t, x, ξ ), one just has to follow the
characteristics back until one meets the initial (s = 0) or boundary ((X,Ξ ) ∈ Σ−)
condition.

Lemma 10.1.6 Under the condition (10.13), the Jacobian of the characteristic
mapping, i.e., the (n+ d)-dimensional determinant

J (s; t, x, ξ ) = det
∂(X(s; t, x, ξ ),Ξ (s; t, x, ξ ))

∂(x, ξ )
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is equal to 1 for all (s, t) and (x, ξ ), as long as the characteristics exist.

To keep things simple, we shall make two general assumptions.

(A1) The vector field b is locally Lipschitz-continuous4: b ∈ C0,1
loc (R

d
ξ )
n. The field

a belongs to L1
loc(0, T ;C0,1

loc (T Ω)
d), and satisfies (10.13).

(A2) No characteristic reaches infinity in finite time, i.e., any integral curve remains
in a bounded region ofQT .

Assumption (A1) implies the local existence and uniqueness of characteristics, by
an easy extension of the classical Cauchy–Lipschitz theorem [132, Theorem 5.3,
Chapter I]; they belong toW 1,1

loc (I ; TΩ) ⊂ C0(I ; TΩ) on their existence interval I .
The assumption also ensures that Yw is meaningful for any w ∈ Lploc(QT ), 1 ≤
p <∞.
A sufficient condition for (A2) is

|b(ξ)| ≤ Cb (1 + |ξ |), |a(t, x, ξ )| ≤ Ca (1 + |x| + |ξ |) (10.23)

for some Ca, Cb: apply Gronwall’s lemma 7.2.1 to e(s) = 1 + |X(s)|2 + |Ξ(s)|2.
As a consequence of (A2), integral curves can be extended (toward the past and the
future) as long as they remain inQT , i.e., characteristics can be extended as long as
they remain in TΩ .

Under (A1) and (A2), one can associate each characteristic (or integral curve)
with its entry and exit times

s−(t, x, ξ ) := inf{s ∈ (0, T ) : (s,X(s; t, x, ξ ),Ξ (s; t, x, ξ )) ∈ QT },
s+(t, x, ξ ) := sup{s ∈ (0, T ) : (s,X(s; t, x, ξ ),Ξ (s; t, x, ξ )) ∈ QT }.

By compactness, the integral curves can be extended continuously and unambigu-
ously to s = s− and s+. This leads to the (new) definition of the entry and exit points
and sets

(X±,Ξ±)(t, x, ξ ) := (X,Ξ )(s±(t, x, ξ ); t, x, ξ ),
D±
T := {(s±,X±,Ξ±)(t, x, ξ ) : (t, x, ξ ) ∈ QT }.

As Y vanishes nowhere, the extremities of the integral curves necessarily lie
on ∂QT , and each point of ∂QT is the entry (respectively exit) point of, at most, one
integral curve. However, neither D+

T ∩ D−
T nor ∂QT \ (D+

T ∪ D−
T ) are necessarily

empty; but one proves that they are negligible for the measure dν defined in (10.17).
Up to negligible sets, one has D+

T = B+
T ∪ ΠT and D−

T = B−
T ∪ Π0, as before.

4As usual, this means b ∈ C0,1(K)n for any compact set K ⊂ Rdξ (see Definition 2.1.22 and its

footnote for the space C0,1 of Lipschitz-continuous functions and its topology).
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Therefore, we deduce from Proposition 10.1.5 that a classical solution u to (10.10)
verifies

u(t, x, ξ ) = g(s−(t, x, ξ ),X−(t, x, ξ ),Ξ−(t, x, ξ )), i.e., (10.24)

u(t, x, ξ ) = u0(X−(t, x, ξ ),Ξ−(t, x, ξ )) if s−(t, x, ξ ) = 0,

u(t, x, ξ ) = uin(s−(t, x, ξ ),X−(t, x, ξ ),Ξ−(t, x, ξ ))

if s− > 0, and thus (X−,Ξ−) ∈ Σ−.

Following the usual pattern, one takes these formulas as the definition of a new type
of solution, which is “weaker” than classical solutions, but nevertheless “stronger”
than the weak solutions of Definition 10.1.2.

Definition 10.1.7 Let (b, a) be two fields satisfying (A1) and (A2), and let g ∈
Lp(D−

T , dν). The characteristic or mild Lp solution to (10.10), (10.18) is the
function u defined onQT by (10.24).

By definition, a mild solution is unique. Using Lemma 10.1.6, one checks that it
satisfies the weak formulation (10.20): it is a weak solution. The same lemma allows
one to prove that u ∈ Lp(QT ). Actually, for any w within the space

Ep(QT ) :=
{
w ∈ Lp(QT ) : Yw ∈ Lp(QT ) and w± ∈ Lp(D±

T , dν)
}
,

it holds that
∫
D+
T

∣∣w+∣∣p dν =
∫
D−
T

∣∣w−∣∣p dν + p

∫
QT

sgnw |w|p−1 Yw dμ. (10.25)

Interestingly [33], under the assumptions (A1), (A2), and g ∈ Lp(D−
T , dν), any

weak Lp solution to (10.10), (10.18) is also a mild solution. Thus, weak solutions
enjoy an existence and uniqueness property in this case, and one can define a
solution operator

T : Lp(D−
T , dν)→ Ep(QT ), g �→ u.

Existence under weaker assumptions can be obtained through a limiting process or
a fixed point theorem; uniqueness depends on the method used. For example, renor-
malised solutions have an existence and uniqueness theorem under the following
assumptions.

(R1) The vector field b belongs to W 1,1
loc (R

d
ξ )
n, and ξ �→ b(ξ )/(1 + |ξ |) belongs to

L1(Rdξ )
n + L∞(Rdξ )n.
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The field a belongs to L1(0, T ;W 1,1
loc (T Ω)

d), and satisfies (10.13). The field

(t, x, ξ ) �→ a(t, x, ξ )

1 + |x| + |ξ | belongs to L1
(

0, T ;L1(T Ω)d + L∞(TΩ)d
)
,

where the Banach space

L1(O)+ L∞(O) :=
{w measurable on O : ∃u ∈ L1(O), v ∈ L∞(O) s.t. w = u+ v},

‖w‖L1(O)+L∞(O) := inf{‖u‖L1(O) + ‖v‖L∞(O) : u+ v = w}.

In turn, this allows one to define so-called weak characteristics [102].

Other Boundary Conditions
Before leaving this subsection, we return to the case when the operator K is

different from zero in the boundary condition (10.11). The entry condition (10.18)
is thus replaced with the entry-exit condition

u− = Ku+ + g, where: K(u(T ), u+) := (0,Ku+). (10.26)

We suppose that K is a bounded operator from Lp(B+
T , dν) to Lp(B−

T , dν) for
some p, and that it is local in time, i.e., K(k(t) w) = k(t)Kw for all w ∈
Lp(B+

T , dν) and k(·) smooth enough. The operator K enjoys the same properties;
and ‖K‖ = ‖K‖ as an operator from Lp(D+

T , dν) to Lp(D−
T , dν).

In a first step, let us assume ‖K‖ < 1: this is an emission-absorption-type
condition. We look for the solution to the problem (10.10), (10.26) by identifying it
with the solution to an inflow problem

Yu = 0 inQT , u− = g∗ on D−
T ,

i.e., as u = T g∗. This is possible if, and only if, g∗ = Ku+ + g, or equivalently,

(I − L)g∗ = g, where: Lg∗ := K
(
T g∗

)+
. (10.27)

By (10.25), the linear mapping g �→ (T g)+ is of norm 1 as an operator from
Lp(D−

T , dν) to Lp(D+
T , dν). Therefore, ‖L‖ = ‖K‖ < 1, and Eq. (10.27) admits

a unique solution [62, Exercise 6.14 in the English edition]. In other words, the
problem (10.10)–(10.12) admits a unique solution u ∈ Ep(QT ) if g ∈ Lp(D−

T , dν),
i.e., u0 ∈ Lp(TΩ) and uin ∈ Lp(B−

T , dν).
The case ‖K‖ = 1, corresponding to a specular or diffuse reflection, is more

difficult. One has to assume, in addition, that uin = 0 (which is physically relevant),
and that Kw ≥ 0 wheneverw ≥ 0. By an approximation procedure, one shows the
existence and uniqueness of a solution u ∈ Lp(QT ) for any u0 ∈ Lp(TΩ).
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As far as regularity is concerned, one introduces the following definitions, which
generalise the inflow case.

Definition 10.1.8 Under the assumptions of Definition 10.1.2, a weak Lploc solution
to (10.10), (10.26) is a couple (u, u+) ∈ Lploc(QT ) × Lploc(B+

T , dν) such that the
following holds for all ϕ ∈ Φ := C1

c ([0, T )× TΩ):
∫
QT

u (Yϕ) dμ+
∫
TΩ

u0 ϕ(0) dxdξ−
∫
B+
T

u+ ϕ+ dν+
∫
B−
T

(Ku++uin) ϕ− dν = 0.

(10.28)

Remark 10.1.9 Of course, u+ coincides with the trace of u onB+
T . But the existence

of the latter is not guaranteed until one checks Yu = 0 by taking ϕ ∈ D(QT )
in (10.28), cf. Remark 10.1.3. The solution is still called a weak Lp solution if
g = (u0, uin) ∈ Lp(D−

T , dν) and u ∈ Lp(QT ).
Definition 10.1.10 The characteristic or mild Lp solution to (10.10), (10.26) is
a weak solution such that u coincides with the mild solution, in the sense of
Definition 10.1.7, of an inflow problem with a suitable entry data g∗, cf. (10.27).

10.1.3 Weak and Renormalised Solutions for Vlasov–Poisson
and Vlasov–Maxwell

This subsection, as well as the next one, is chiefly taken from [58] and references
therein. Again, we shall omit proofs. Mutatis mutandis, we keep the notations of
Sects. 10.1.1 and 10.1.2. Again, we set

v(ξ ) := ξ√
1 + |ξ |2 (relativistic), v(ξ ) := ξ (non-relativistic),

and b(ξ ) is equal to v(ξ ) if x and ξ have the same dimensionality. In the case of a
“half-dimensional” model, as in Remark 10.1.1, b(ξ ) is a suitable projection of v(ξ ),
e.g., b(ξ ) := v(ξ )⊥ for a 2 1

2 D model. All in all, the general Vlasov–Maxwell system
writes

∂f

∂t
+ b(ξ ) · ∇xf + (E + v(ξ )× B) · ∇ξf = 0 inQT , (10.29)

f− = Kf+ + fin on B−
T , (10.30)

f (0) = f0 in TΩ, (10.31)

∂E

∂t
− curl B = −j [f ], ∂B

∂t
+ curl E = 0 in (0, T )×Ω, (10.32)

div E = ρ[f ], div B = 0 in (0, T )×Ω, (10.33)
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E × n = 0, B · n = 0 on (0, T )× Γ, (10.34)

E(0) = E0, B(0) = B0 inΩ, (10.35)
(
ρ[f ]
j [f ]

)
=
∫
Rdξ

f (t, x, ξ )

(
1

v(ξ)

)
dξ in (0, T )×Ω. (10.36)

The notations above are the usual ones for three-dimensional vectors. Lesser-
dimensional systems are obtained as explained in Sect. 10.1.1. They are handled
in the same manner, taking care of:

• the dimensionalities of the electromagnetic variables: E necessarily belongs to
the same space Rd as ξ , while the dimensionality dB of the magnetic field may
be different, cf. (10.9);

• the suitable reinterpretation of the curl operators in (10.32), cf. Chap. 9, and of
the cross-product in (10.29), cf. (10.9) again.

The self-consistent particle density and flux (ρ[f ], j [f ]) automatically satisfy
the continuity equation ∂tρ[f ] + div j [f ] = 0 (integrate (10.29) in ξ ). Thus,
Eqs. (10.32) and (10.33) are compatible, and we know from Chaps. 5 and 7 that
the Gauss equation is satisfied at any time if, and only if, it holds for the initial
data. The same pattern prevails for the constraints div B = 0 and B · n = 0 on
the magnetic field. So, we shall say that the initial conditions of the VM system are
compatible if, and only if,

div E0 = ρ[f0] and div B0 = 0 in Ω, B0 · n = 0 on Γ. (10.37)

Definition 10.1.11 Let the spaces of test functions be

Φ = C1
c ([0, T )× TΩ), Ψ E = C1

c ([0, T )×Ω)d, Ψ B = C1
c ([0, T )×Ω)dB .

Assume we are given compatible initial conditions (f0,E0,B0) ∈ Lploc(T Ω) ×
L
q
loc(Ω) × L

q
loc(Ω), with 1

p
+ 1
q
= 1, and an incoming data fin ∈ Lploc(B−

T , dν).

A weak solution to (10.29)–(10.36) is a quadruple (f, f+,E,B) ∈ Lploc(QT ) ×
L
p

loc(B
+
T )×L

q

loc((0, T )×Ω)×L
q

loc((0, T )×Ω) such that, for all (ϕ,ψE,ψB) ∈
Φ × Ψ E × Ψ B ,

∫
QT

f

[
∂ϕ

∂t
+ b(ξ ) · ∇xϕ + (E + v(ξ)× B) · ∇ξϕ

]
dμ

+
∫
TΩ

f0 ϕ(0) dxdξ −
∫
B+
T

f+ ϕ dν +
∫
B−
T

(Kf+ + fin) ϕ dν = 0, (10.38)

∫ T
0

∫
Ω

[
E · ∂ψE

∂t
+ B · curl ψE − j [f ] · ψE

]
dx dt

+
∫
Ω

E0 · ψE(0) dx = 0, (10.39)
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∫ T
0

∫
Ω

[
B · ∂ψB

∂t
− E · curl ψB

]
dx dt +

∫
Ω

B0 · ψB(0) dx = 0. (10.40)

We shall also consider the n-dimensional (non-relativistic) Vlasov–Poisson
system:

∂f

∂t
+ ξ · ∇xf + E · ∇ξf = 0 inQT , (10.41)

curl E = 0, div E = ρ[f ] in (0, T )×Ω, (10.42)

ρ[f ] =
∫
Rnξ

f (t, x, ξ ) dξ in (0, T )×Ω, (10.43)

plus initial and boundary conditions (see (10.30), (10.31), (10.34, left)).

Definition 10.1.12 Let Ψ := C1
c ([0, T ) × Ω), the other notations being as

in Definition 10.1.11. A weak solution to (10.41)–(10.43), with the initial and
boundary conditions (see (10.30), (10.31), (10.34, left)), is a triple (f, f+,E) ∈
L
p
loc(QT ) × Lploc(B+

T ) × L
q
loc((0, T ) × Ω) such that, for all (ϕ,ψE,ψ) ∈ Φ ×

Ψ E × Ψ ,

∫
QT

f

[
∂ϕ

∂t
+ ξ · ∇xϕ + E · ∇ξϕ

]
dμ

+
∫
TΩ

f0 ϕ(0) dxdξ −
∫
B+
T

f+ ϕ dν +
∫
B−
T

(Kf+ + fin) ϕ dν = 0, (10.44)

∫ T
0

∫
Ω

[
E · (curl ψE + gradψ)+ ρ[f ]ψ] dx dt = 0. (10.45)

Remark 10.1.13 In both models, the term on B+
T is not needed for an inflow

boundary condition (K = 0); in this case, the variable f+ is redundant, and it
suffices to take ϕ ∈ Φ− (see (10.19)). All boundary terms disappear whenΩ = Rnx .

As for renormalised solutions, their definition is similar to the linear case. For
the sake of simplicity, we only consider inflow boundary conditions if Ω �= Rnx .

Definition 10.1.14 Let g = (f0, fin) ∈ L0(D−
T , dν) and (E0,B0) ∈ L1

loc(Ω) ×
L1
loc(Ω). A renormalised solution to the Vlasov–Poisson, respectively Vlasov–

Maxwell system is a couple (f,E) ∈ L0(QT ) × L1
loc((0, T ) × Ω), respectively

a triple (f,E,B) ∈ L0(QT ) × L1
loc((0, T ) × Ω) × L1

loc((0, T ) × Ω) such that
(β(u),E), respectively (β(u),E,B) is a weak solution, with entry data β(g), for
all functions β(·) satisfying (10.21).
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The proof of existence of weak solutions consists in first obtaining smooth
solutions to an appropriate mollified problem, by applying a fixed point theorem
(typically, the Picard–Banach [62, Theorem V.7], [77, Theorem 3.7-1] or Schauder
[61, Theorems II.2.9 and II.2.10], [77, Theorem 9.12-1] theorems) to the linear
equation, and then pass to the limit in uniform a priori estimates. Generally
speaking, there is no uniqueness result for this type of solution, though partial results
exist that we shall review later.

To begin with, we examine the case in which Ω = Rnx . The first estimates are
the maximum-minimum principle, and the preservation of all Lp norms: for all
t ∈ (0, T ), it holds that

inf
Rn+dx,ξ

f (t) = inf
Rn+dx,ξ

f0, sup
Rn+dx,ξ

f (t) = sup
Rn+dx,ξ

f0, ‖f (t)‖
Lp(Rn+dx,ξ )

= ‖f0‖Lp(Rn+dx,ξ )
,

thanks, respectively, to the preservation of f along the characteristics

X′(s) = b(Ξ (s)), Ξ ′(s) = E(s,X(s)) + v(Ξ (s))× B(s,X(s)) (10.46)

respectively X′(s) = Ξ(s), Ξ ′(s) = E(s,X(s)) (10.47)

and to the volume-preserving property of the characteristic flow (Lemma 10.1.6), cf.
Eqs. (10.24) and (10.25). An all-important conservation property is that of energy.
The kinetic energy of one particle being

κ(ξ ) =
√

1 + |ξ |2 − 1 (relativistic), κ(ξ) = 1
2 |ξ |2 (non-relativistic), (10.48)

the total energy, defined as

E(t) :=
∫
Rn+dx,ξ

κ(ξ) f (t, x, ξ ) dxdξ +
∫
Rnx

|E(t, x)|2 + |B(t, x)|2
2

dx

in the VM case, and

E(t) :=
∫
R2n
x,ξ

|ξ |2
2
f (t, x, ξ ) dxdξ +

∫
Rnx

|E(t, x)|2
2

dx

in the VP case, is conserved by smooth solutions (E ′(t) = 0).
As an immediate consequence, some of the moments μm(t, x) := ∫

Rdξ
|ξ |m

f (t, x, ξ ) dξ remain integrable in x as time goes on, namelym = 1 for a relativistic
model and m = 2 for a non-relativistic one. In the VP case, the electrostatic field in
the VP model can be defined by the convolution in x:

E = Gn ∗ ρ[f ], where: Gn(x) = x

 n |x|n , (10.49)
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and  n is the (n − 1)-dimensional area of the unit sphere of Rn:  1 = 2,  2 =
2π,  3 = 4π , etc. Together with Hölder inequalities (Proposition 2.1.3), the
boundedness of moments allows one to bound the density and electrostatic field
in suitable Lp norms.

Proposition 10.1.15 The following a priori estimates hold for the VP system:

‖ρ[f (t)]‖L1+2/n ≤ Cn ‖f0‖2/(n+2)
L∞ E(0)n/(n+2)

and if n ≥ 3,

‖E(t)‖Lp ≤ Cn ‖f0‖2/(n+2)
L∞ E(0)n/(n+2), with

1

p
= n

n+ 2
− 1

n
.

The last estimate follows from a Hardy–Sobolev–Littlewood inequality.

Lemma 10.1.16 Let 1 < b < +∞ and 1 < p < b′, with 1
b
+ 1
b′ = 1. The

convolution by |x|n/b defines a bounded operator from Lp(Rnx) to L
q(Rnx), with

1
q
= 1
p
+ 1
b
− 1.

Using the line of proof sketched above, it is possible to prove the existence of
weak solutions to the VP system under nearly minimal conditions.

Theorem 10.1.17 Assume n ≥ 3, and let f0 ∈ L1 ∩ L∞(R2n
x,ξ ), f0 ≥ 0, such that

|ξ |2 f0 ∈ L1(R2n
x,ξ ), Gn ∗ ρ[f0] ∈ L2(Rnx).

There exists a function f : [0, T ] �→ L∞(R2n
x,ξ ), continuous in time for the weak-∗

topology, such that (f,E) = (f,Gn ∗ ρ[f ]) is a solution to (10.44)–(10.45), and
satisfies, for any t ≥ 0,

‖f (t)‖
Lp(R2n

x,ξ )
≤ ‖f0‖Lp(R2n

x,ξ )
, 1 ≤ p ≤ +∞, E(t) ≤ E(0).

In dimension 3, it is enough [136] to have f0 ∈ L1 ∩ Lp∗(R6
x,ξ ), for p∗ ≥

(12 + 3
√

5)/11); furthermore, mass is exactly preserved:
∫
R6
x,ξ
f (t) dxdξ =∫

R6
x,ξ
f0 dxdξ .

For renormalised solutions, we have the result by DiPerna and Lions [100].

Theorem 10.1.18 Let f0 ∈ L1 ∩ L9/7(R6
x,ξ ), f0 ≥ 0, such that

|ξ |2 f0 ∈ L1(R6
x,ξ ), f0 ln+ f0 ∈ L1(R6

x,ξ ),

ρ[f0]
(
|x|−1 ∗ ρ[f0]

)
∈ L1(R3

x), G3 ∗ ρ[f0] ∈ L2(R3
x),
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where ln+ s = max(ln s, 0). There exists a renormalised solution f ∈ C0(0,+∞;
L1(R6

x,ξ )) to the Vlasov–Poisson system, such that f ln+ f ∈C0(0,+∞;L1(R6
x,ξ )),

and E(t) ≤ E(0) for all t > 0.

The strong continuity in time is ensured by the extra conditions on f0, which
propagate in time and ensure weak compactness in L1 according to the Dunford–
Pettis criterion [62].

As mentioned above, uniqueness is only known to hold under restrictive condi-
tions on the solution itself. Let us mention the following results by Zhidkov [208]
and Loeper [159].

Theorem 10.1.19 Let f0 ∈ L1 ∩ L∞(R2n
x,ξ ), with compact support in (x, ξ ). There

exists, at most, one weak solution f to the VP system with a support uniformly
bounded on any finite time interval, i.e.,

∀T > 0, ∃KT compact in R2n
x,ξ : ∀t ∈ [0, T ] and (x, ξ ) /∈ KT , f (t, x, ξ ) = 0.

Furthermore, this solution is exactly energy-preserving: E(t) = E(0) for all t > 0.

Theorem 10.1.20 Let f0 ∈ L1(R2n
x,ξ ) or L

0(R2n
x,ξ ). There exists, at most, one weak

or renormalised solution f to the VP system such that the density is bounded on any
bounded time interval, i.e., ‖ρ[f ]‖L∞(0,T ;L∞(Rnx)) < +∞ for any finite T > 0.

As for the VM system, the situation is less favourable, as the Maxwell’s equations
do not have good properties in Lp spaces for p �= 2. The only available estimate
is the L2 bound given by the energy. Furthermore, hyperbolic equations do not
have the regularising properties of elliptic ones. This inconvenience can be partly
compensated for by using so-called averaging lemmas (see, e.g., [101]), which
furnish some compactness and allow one to pass to the limit in the nonlinear term
f (E + v × B) · ∇ξϕ in (10.38).
All in all, using. . .

Proposition 10.1.21 The following a priori estimates hold for the relativistic VM
system:

‖ρ[f (t)]‖L4/3 + ‖j [f (t)]‖L4/3 ≤ C ‖f0‖1/4
L∞

(
E(0)+

∫
Rn+dx,ξ

f0 dx dξ

)
.

. . . we obtain the existence of weak solutions.

Theorem 10.1.22 Let f0 ∈ L1 ∩ L∞(Rnx × Rdξ ), with f0 ≥ 0 and κ(ξ) f0 ∈
L1(Rnx ×Rdξ ), cf. (10.48). Let (E0,B0) ∈ L2(Rnx)×L2(Rnx) verify the compatibility
conditions (10.37).

There exists a triple (f,E,B) : [0, T ] �→ L∞(Rnx × Rdξ ) × L2(Rnx) × L2(Rnx),
continuous in time for the weak-∗ topology, which is a solution to (10.38)–(10.40)
in the relativistic case, and satisfies, for any t ≥ 0,

f (t) ≥ 0, ‖f (t)‖
Lp(Rn+dx,ξ )

= ‖f0‖Lp(Rn+dx,ξ )
, 1 ≤ p ≤ +∞, E(t) ≤ E(0).



410 10 Analyses of Coupled Models

The proof of exact conservation of Lp norms and charge is credited to Rein [178].
In a non-relativistic framework, one gets a similar result from DiPerna and

Lions [101].

Theorem 10.1.23 Let f0 ∈ L1 ∩Lp∗(Rnx ×Rnξ ), with p
∗ large enough, f0 ≥ 0 and

|ξ |2 f0 ∈ L1(Rnx × Rdξ ). Let (E0,B0) ∈ L2(Rdx) × L2(Rdx) verify the compatibility
conditions (10.37).

There exists a triple (f,E,B) : [0, T ] �→ L1∩Lp∗(Rnx×Rdξ )×L2(Rnx)×L2(Rnx),
continuous in time for the weak topology, which is a solution to (10.38)–(10.40) in
the non-relativistic case, and satisfies, for any t ≥ 0,

f (t) ≥ 0, ‖f (t)‖
Lp(Rn+dx,ξ )

≤ ‖f0‖Lp(Rn+dx,ξ )
, 1 ≤ p ≤ p∗, E(t) ≤ E(0).

The minimal value of p∗ is 2 when n = d = 3.
Taking boundary conditions into account when Ω �= Rnx is slightly more

technical, but basically leads to similar conclusions under reasonable assumptions.
For instance, we have the following result credited to Bostan [57] for the VP system
with inflow boundary conditions.

Theorem 10.1.24 Assume that the domain Ω is smooth, and that the boundary
condition on B−

T reads as f− = fin. Let g = (f0, fin) ∈ L1 ∩ L∞(D−
T ; dν),

with g ≥ 0 and κ(ξ) g ∈ L1(D−
T ; dν). There exists a weak solution (f, f+,E,B)

to (10.38)–(10.40), which satisfies, for any T ≥ 0,

0 ≤ f ≤ ‖g‖L∞ , 0 ≤ f+ ≤ ‖g‖L∞ ; sup
t∈[0,T ]

E(t)+
∫
B+
T

κ(ξ) f+ dν ≤ C ,

where the constant C depends onΩ , T , f0 and fin.
Furthermore, if there exist two non-increasing functions F0, Fin : R+ → R+

such that

f0(x, ξ ) ≤ F0(|ξ |), fin(x, ξ ) ≤ Fin(|ξ |),
∫
Rnξ

(F0(|ξ | + Fin(|ξ |)) dξ ≤ +∞,

then:

• E ∈ L∞(0, T ;L∞(Ω)) and ρ[f ] ∈ L∞(0, T ;L∞(Ω)) for all T > 0;
• the mappings t �→ ∫

TΩ f (t) dxdξ and t �→ E(t) are absolutely continuous, and
it holds that

d

dt

∫
TΩ

f (t) dxdξ +
∫
Σ+
f+(t) (ξ · n(x)) dΓ (x)dξ

=
∫
Σ−
fin(t) |ξ · n(x)| dΓ (x)dξ ;
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E ′(t) +
∫
Σ+
κ(ξ) f+(t) (ξ · n(x)) dΓ (x)dξ

=
∫
Σ−
κ(ξ) fin(t) |ξ · n(x)| dΓ (x)dξ .

For the VM system with inflow and emission-absorption conditions, the following
result holds according to [129].

Theorem 10.1.25 Assume that the boundary Γ ∈ C1,μ for μ > 0, and that the
boundary condition on B−

T takes the form5 (10.7), with 0 ≤ a ≤ 1 − ε < 1. Let
g = (f0, fin) ∈ L1 ∩ Lp∗(D−

T ; dν) for some p∗ ∈ [2,+∞], with g ≥ 0 and
κ(ξ) g ∈ L1(D−

T ; dν). Let (E0,B0) ∈ L2(Ω) × L2(Ω) verify the compatibility
conditions (10.37).

There exists a weak solution (f, f+,E,B) to (10.38)–(10.40), which satisfies,
for any T ≥ 0 and 1 ≤ p ≤ p∗,

ε1/p ‖f+‖Lp(B+
T ;dν) + ‖f ‖Lp(QT ) ≤ 2eT

[
‖f0‖Lp(TΩ) + ε−1 ‖fin‖Lp(B−

T ;dν)
]
,

∫ T
0

E(t) dt ≤ eT
[
E(0)+

∫
B−
T

κ(ξ) fin dν

]
.

For the specular reflection condition, it is possible to take the limit ε → 0, as fin ≡
0. Thus, we arrive at the result. . .

Theorem 10.1.26 Assume that the boundary Γ ∈ C1,μ for μ > 0, and that the
boundary condition on B−

T reads as (10.6). Let f0 ∈ L1 ∩ L∞(TΩ), with f0 ≥ 0
and κ(ξ) f0 ∈ L1(T Ω). Let (E0,B0) ∈ L2(Ω) × L2(Ω) verify the compatibility
conditions (10.37).

There exists a weak solution (f, f+,E,B) to (10.38)–(10.40), which satisfies,
for any T ≥ 0 and 1 ≤ p ≤ +∞,

‖f ‖Lp(QT ) ≤ 2eT ‖f0‖Lp(TΩ),
∫ T

0
E(t) dt ≤ eT E(0),

‖f+‖L∞(B+
T ;dν) ≤ 2eT ‖f0‖L∞(TΩ).

5According to [129], the proof also works for a general condition (10.30), under the condition
‖K‖ < 1.
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10.1.4 Strong Solutions for Vlasov–Poisson
and Vlasov–Maxwell

We group under this name the classical (i.e., C1) and mild solutions, the latter being
defined as follows.

Definition 10.1.27 A mild solution to the Vlasov–Poisson or Vlasov–Maxwell
systems is a weak solution (in the sense of Definitions 10.1.12, respectively 10.1.11)
such that f ∈ Lp(QT ), the fields b (defined at the beginning of Sect. 10.1.3) and
a := E, respectively E + v(ξ ) × B satisfy the conditions (A1) and (A2), and f
coincides with the mild Lp solution (in the sense of Definitions 10.1.7 or 10.1.10)
to the linear Vlasov equation with advection fields b and a.

These solutions are “strong enough” to define characteristics, at least locally, which
leads not only to an improved regularity, but also (as said above) to the exact
preservation of various Lp norms and energy. Furthermore, they are generally
unique.

The existence of such solutions can be obtained by the same principle as in
the previous subsection. In the Vlasov–Poisson case, the crux is to have Lipschitz
bounds on the electric field, which ensure that (A1) and (A2) hold, cf. (10.23).
This is decomposed into two steps: the first consists in reducing the problem
to estimating the decay of f with respect to ξ , and the second in obtaining
this decay practically from a priori estimates. The second step can be achieved,
either by characteristic estimates (as in [135]) or by dispersion estimates (à la
Strichartz, see, e.g., [158]). The latter correspond to averaging lemmas by a Fourier
transform in (x, ξ ), and provide some regularity for the solution of hyperbolic
equations.

Theorem 10.1.28 Assume that the initial condition f0 satisfies either one of the
following assumptions [135, 200]:

1. f0 ∈ W 1,∞ ∩ L1(Rnx × Rnξ ), and there exist K > 0 and α > 2n such that

f0(x, ξ ) ≤ K (1 + |x|)−α (1 + |ξ |)−α ; (10.50)

2. f0 ∈ C1 ∩ L1(Rnx × Rnξ ), and there exist K > 0 and α > n such that

f0(x, ξ )+ |∇xf0(x, ξ )| + |∇ξf0(x, ξ )| ≤ K (1 + |ξ |)−α . (10.51)

There exists a unique strong solution to the Vlasov–Poisson system (10.41)–(10.43)
in Ω = Rnx , which is global (i.e., it exists for all t > 0) if n = 2 and local (defined
on an interval (0, T ) for T small enough) if n = 3.
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In higher dimensions, there are counter-examples to local existence [135]. On the
other hand, there are global existence results in 3D under additional assumptions:
bounded support [184] or small data [28].

Theorem 10.1.29 Let f0 ∈ C1
c (R

3
x × R3

ξ ) be compactly supported in ξ :

∃Q0 : f0(x, ξ ) = 0 for |ξ | ≥ Q0. (10.52)

The strong solution given by the previous theorem is global, and remains compactly
supported at all finite time.

Theorem 10.1.30 Let f0 ∈ C1 ∩ L1(R3
x × R3

ξ ) such that

f0(x, ξ )+ |∇xf0(x, ξ )| + |∇ξf0(x, ξ )| ≤ ε (1 + |x|)−4 (1 + |ξ |)−4 .

For small enough ε, there exists a unique, global strong solution to the Vlasov–
Poisson system (10.41)–(10.43) in Ω = R3

x .

WhenΩ �= Rnx , existence is only known under very restrictive assumptions, among
others:

• eitherΩ is a half-space, or it is bounded, smooth and convex;
• f0 and fin are compactly supported in x and ξ , and satisfy some compatibility

conditions.

These solutions are global [130, 137, 138].

Remark 10.1.31 The conditions (10.50) or (10.51) are satisfied by the all-important
(local) Maxwellian distribution

f0(x, ξ ) = ρ(x)

(2π Θ(x))n/2
exp−|ξ − u(x)|2

2Θ(x)
,

provided the density, bulk velocity and temperature functions ρ, u, Θ are well-
behaved. On the other hand, assuming a compactly supported distribution is not
very realistic. Collisions, which are inevitable in a real plasma, can give arbitrarily
high velocity to particles, and make the distribution function tend towards a
Maxwellian [58].

As an amuse-gueule, we will sketch the local existence and uniqueness proof
of mild solutions with compact support in velocity to the Vlasov–Poisson system
in Rn. Firstly, one estimates the divergence of characteristics for a linear Vlasov
equation. Consider two final conditions (t, x1, ξ1) and (t, x2, ξ2); we use the
shorthand

(Xi (s),Ξ i (s)) :=
(
Ξ(s; t, xi , ξ i ),Ξ (s; t, xi , ξ i )

)
, i = 1, 2.
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Integrating the characteristic system (10.47) backward yields

|X1(τ)− X1(τ)| + |Ξ1(τ)− Ξ2(τ)|

≤ |x1 − x2| + |ξ 1 − ξ2| +
∫ t
τ

{|Ξ1(s)− Ξ2(s)| + |E(s,X1(s))− E(s,X2(s))|} ds

≤ |x1 − x2| + |ξ 1 − ξ2| +
∫ t
τ

{|Ξ1(s)− Ξ2(s)| + ‖∇E(s)‖L∞ |X1(s)−X2(s)|} ds.

Hence, by Gronwall’s lemma,

|X1(τ )− X1(τ )| + |Ξ 1(τ )− Ξ 2(τ )|

≤ (|x1 − x2| + |ξ1 − ξ2|
)

exp
∫ t
τ

(1 + ‖∇E(s)‖L∞) ds.

As f (t, xi , ξ i ) = f0(Xi (0),Ξ i (0)), cf. (10.24), one deduces that

‖∇f (t)‖
L∞(R2n

x,ξ )
≤ ‖∇f0‖L∞(R2n

x,ξ )
exp

∫ t
0
(1 + ‖∇E(s)‖L∞(Rnx)) ds. (10.53)

A similar calculation allows one to estimate the divergence of the characteristics
(X1,Ξ 1), (X2,Ξ 2) associated with two different force fields E1, E2, but with the
same final condition:

∣∣∣X1(0)− X2(0)
∣∣∣+ ∣∣∣Ξ1(0)− Ξ 2(0)

∣∣∣
≤
[

exp t

(
1 +

∥∥∥∇E2
∥∥∥
L∞((0,t )×Rnx)

)] ∫ t
0
‖E1 − E2‖L∞(Rnx) ds .

Let f 1, f 2 be the respective solutions with forces E1, E2 and the same initial
condition f0. From the previous bound, we deduce that

‖f 1(t)− f 2(t)‖
L∞(R2n

x,ξ )
≤ ‖∇f0‖L∞(R2n

x,ξ )
×

×
[

exp t

(
1 +

∥∥∥∇E2
∥∥∥
L∞((0,t )×Rnx)

)] ∫ t
0
‖E1 − E2‖L∞(Rnx) ds . (10.54)

Secondly, one derives support estimates. Following the characteristics backward
shows that f (t) is compactly supported in ξ if (10.52) holds:

|ξ | ≥ Q(t) := Q0 +
∫ t

0
‖E(s)‖L∞(Rnx ) ds (⇒ f (t, x, ξ ) = 0. (10.55)
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However, if f (t) is Lipschitz and compactly supported in ξ , the associated density
is bounded and Lipschitz:

{ ‖ρ[f (t)]‖L∞(Rnx) ≤ πn Q(t)
n ‖f (t)‖

L∞(R2n
x,ξ )
,

‖∇ρ[f (t)]‖L∞(Rnx) ≤ πn Q(t)n ‖∇xf (t)‖L∞(R2n
x,ξ )
,

(10.56)

where πn is the n-dimensional volume of the unit ball (π1 = 2, π2 = π, π3 = 4
3π ,

etc.).
Thirdly, one proves some new properties of the convolution by the kernel

introduced in (10.49).

Lemma 10.1.32 Let g ∈ L1∩W 1,∞(Rnx). Then,F = Gn∗g belongs to W 1,∞(Rnx),
and satisfies

‖F‖L∞ ≤ c1 ‖g‖L∞ + ‖g‖L1 ; (10.57)

‖∇F ‖L∞ ≤ c2
[
1 + ‖g‖L1 + ‖g‖L∞ (1 + ln(1 + ‖∇g‖L∞))

]
. (10.58)

The constants c1, c2 only depend on the dimension.

Proof The first bound follows from:

F (x) =
∫
Rn

y

|y|n g(x − y) dy =
∫
|y|≤1

+
∫
|y|>1

|F (x)| ≤ ‖g‖L∞
∫
|y|≤1

dy

|y|n−1 +
∫
|y|>1

|g(x − y)| dy.

The second estimate is established by a technical calculation [58, 135]. �
Finally, one concludes by using a fixed point argument. Fix an arbitrary time

interval (0, T ), and consider the following subset of L∞(0, T ;W 1,∞(Rn)):

BR,S,T =
{
w ∈ L∞(0, T ;W1,∞(Rn)) : ‖w‖L∞(0,T ;L∞(Rn)) ≤ R

and ‖∇w‖L∞(0,T ;L∞(Rn)) ≤ S
}
.

It is a closed subset of L∞(0, T ;L∞(Rn)) in the canonical norm ‖ · ‖L∞(L∞) of the
latter space; this is an easy consequence of the Banach–Alaoglu theorem [62]. Thus,
it is a complete metric space for ‖ · ‖L∞(L∞).

The mappingF is defined as follows. Given E ∈ L∞(0, T ;W 1,∞(Rn)), let f be
the solution to the forced Vlasov equation with initial data f0 and advection fields
a = E and b = ξ . Then, for any t ∈ (0, T ), set (FE)(t) = E(t) := Gn ∗ ρ[f (t)].
By the above arguments, F maps L∞(0, T ;W 1,∞(Rn)) to itself, provided f0 ∈
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L1 ∩W 1,∞(R2n
x,ξ ) has a compact support in ξ . Quantitatively, Eqs. (10.55), (10.56)

and (10.57) yield

‖E(t)‖L∞ ≤ C1 + C2

(∫ t
0
‖E(s)‖L∞ ds

)n

for some constants C1, C2 depending on f0. In other words,

‖E‖L∞(L∞) ≤ R (⇒ ‖E‖L∞(L∞) ≤ C1 + C2 R
n T n.

Thus, ‖E‖L∞(L∞) ≤ R for R > C1 and T small enough. Then, using (10.53)
and (10.58), one arrives at

‖∇E(t)‖L∞ ≤ G1(R)+G2(R)

∫ t
0
‖∇E(s)‖L∞ ds .

So, F maps BR,S,T to itself for R > C1, S > G1(R) and T small enough. Now,
taking E1 and E2 in BR,S,T , one invokes (10.54) and (10.57) again and finds, for
E1 = FE1, E2 = FE2,

‖E1(t)−E2(t)‖L∞ ≤ G3(R, S, T )

∫ t
0
‖E1 − E2‖L∞ ds ,

where the function G3 is nondecreasing w.r.t. the three arguments. Restricting T
again if necessary, one sees that F defines a contraction mapping on BR,S,T . By
the Picard–Banach fixed point theorem, it admits a unique fixed point E ∈ BR,S,T ,
which defines a unique mild solution f to the Vlasov–Poisson system with the initial
condition f0 on the time interval (0, T ).

For the relativistic Vlasov–Maxwell system, the first step (estimating the decay
of f ) has been obtained by Glassey and Strauss [122].

Theorem 10.1.33 Let f0 ∈ C1(Rn+dx,ξ ), f0 ≥ 0 have a bounded support in ξ , as

in (10.52), and let (E0,B0) ∈ C2(Rnx)
d satisfy the compatibility conditions (10.37).

Assume there is an a priori bound on momenta, i.e., there exists a function Q :
R+ → R+ such that any strong solution to the relativistic VM system (10.38)–
(10.40) in Rnx satisfies f (t, x, ξ ) = 0 for |ξ | ≥ Q(t). Then, there exists a unique
and global classical solution.

The support condition can be replaced [150] with a boundedness condition on
(E,B). Both are essentially equivalent, cf. (10.55). The basic idea is that the
formation of singularities is prevented by the characteristic speed of Maxwell’s
equations (equal to 1 in rescaled units) remaining apart from that of the Vlasov
equation (at most, equal to Q(1 + Q2)−1/2). So, to extend this result to a non-
relativistic model, one has to assume a priori that Q(t) remains strictly less than 1,
which is less natural: the acceleration of particles by the electromagnetic fields tends
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to create, given enough time, particles of arbitrarily large momentum, i.e., arbitrarily
large velocity in non-relativistic dynamics.

On the other hand, the decay estimate has so far been proven [119–121] in the
1 1

2 D, 2D and 2 1
2 D frameworks (see Remark 10.1.1); the 3D case remains open. The

various existence and uniqueness results for the dimensions less than three have
similar forms.

Theorem 10.1.34 Let f0 ∈ C1(Rn+dx,ξ ) be non-negative and have a bounded support

in ξ , and (E0,B0) ∈ [
C2 ∩W 2,∞(Rnx)

]d
be compatible. There exist a unique

and global classical solution (f,E,B) to the relativistic VM system in Rnx , and
a bounding functionQ : R+ → R+ such that f (t, x, ξ ) = 0 for |ξ | ≥ Q(t).

For the non-relativistic case, one only has a local existence and uniqueness
theorem, credited to Wollman [206].

Theorem 10.1.35 Let f0 ∈ Hs(R6
x,ξ ), s ≥ 5, be non-negative and have a

bounded support in x and ξ , and (E0,B0) ∈ H s (R3
x) be compatible. There exist

T > 0, depending on the initial data, and a unique classical solution (f,E,B)
to the non-relativistic VM system in R3

x , which satisfies f ∈ C(0, T ;Hs(R6
x,ξ )) ∩

C1(0, T ;Hs−1(R6
x,ξ )).

10.2 Magnetohydrodynamics

In this section, we will review the existence and uniqueness results on the incom-
pressible, viscous, resistive MHD equations, introduced at the end of Sect. 1.3.2. As
we shall see, these equations admit a (time-dependent) variational formulation; so,
the notions of weak and strong solutions are similar to those introduced in Sect. 4.3.

10.2.1 The Model

We start from the model (1.101)–(1.103). To simplify the discussion, we assume
that:

1. The problem is set in a bounded domain Ω (in the sense of Chap. 2). The
latter is regular in the following sense: any point of the boundary admits a
neighbourhoodU such that, eitherΩ∩U is convex, or ∂Ω∩U is smooth enough
(at least C1,1).

2. The fluid is encased in a perfectly conducting container. Thus, the boundary
condition for the magnetic field B is the perfectly conducting one. For the
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velocity field u, we take the no-slip or Dirichlet condition, as usual, in the
presence of viscosity.6

3. The viscosity ν, magnetic permeabilityμ, and Spitzer conductivity σS of the fluid
are all constant. (Recall that the density ρ was already assumed to be constant.)

This model fits within the framework of cavity problems.
Throughout the whole section, we denoteQT := (0, T )×Ω ,ΣT := (0, T )× ∂Ω .
Using the appropriate system of units for the unknowns (u,B, p), and the time and
space variables (t, x), we rewrite the system (1.101)–(1.103) with its initial and
boundary conditions as

∂u

∂t
− ηu Δu+ (u · ∇)u − (curl B)× B + gradp = f inQT , (10.59)

∂B

∂t
+ ηB curl curl B − curl(u × B) = 0 in QT , (10.60)

div u = 0 inQT , u = 0 on ΣT , (10.61)

div B = 0 inQT , B · n = 0 and curl B × n = 0 on ΣT , (10.62)

u(0) = u0 inΩ, (10.63)

B(0) = B0 inΩ, (10.64)

Recall that (a ·∇)b stands for
∑3
i=1 ai ∂xib. The condition curl B×n = 0 is similar

to (7.10), as the term u×B plays the role of a current and vanishes on the boundary
thanks to the second part of (10.61). The constant coefficients ηu, ηB are called the
inverse hydrodynamic and magnetic Reynolds numbers.

A two-dimensional version would be as follows, using the notations of Chap. 9:

∂u
∂t

− ηu Δu + (u · ∇)u − (curl B)B⊥ + gradp = f in QT , (10.65)

∂B
∂t

+ ηB curl curl B − curl(u · B⊥) = 0 inQT , (10.66)

with obvious adaptations for (10.61)–(10.64). It is derived from the 3D model by
assuming that the domain is invariant by translation and setting ∂z = 0, uz = 0 and
Bz = constant.

Setting B = 0, Eqs. (10.59), (10.61), (10.63) constitute an incompressible
Navier–Stokes system. Therefore, one cannot expect more from our system than
what is known for Navier–Stokes, viz., global existence and uniqueness of weak and
strong solutions in 2D, global existence of weak solutions and local existence and
uniqueness of strong ones in 3D, under suitable assumptions about the right-hand
side f and the initial data (u0,B0). As a matter of fact [186], similar results hold

6We refer to the textbooks [61, 117, 197] for the various statements about fluid mechanics in
general, and the Stokes and Navier–Stokes equations in particular.
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for (10.59)–(10.64) and its 2D version, because the evolution equations (10.59)–
(10.60) or (10.65)–(10.66), roughly speaking, share the same structure. Reinterpret-
ing the pressure variable p as the Lagrange multiplier associated with the constraint
div u = 0, the symmetry between them becomes more apparent if we add to the
left-hand side of (10.60) the (vanishing) terms −ηB grad div B + gradpB , with
pB = 0. In the language of Sect. 7.4.2, we use a mixed augmented formulation:
both Eqs. (10.60) and (10.59) appear as vector heat equations with non-linear first-
order terms and linear constraints.

Furthermore, the non-linear terms also have a similar structure. Using the
identities

curl(a × b) = (div b) a − (div a) b + (b · ∇)a − (a · ∇)b,
grad(a · b) = a × curl b + b × curl a + (a · ∇)b + (b · ∇)a,

and using div u = div B = 0, we rewrite the evolution equations (10.59)–(10.60)
as [186]:

∂u

∂t
− ηu Δu + (u · ∇)u − (B · ∇)B + gradpu = f inQT , (10.67)

∂B

∂t
− ηB ΔB + (u · ∇)B − (B · ∇)u + gradpB = 0 inQT , (10.68)

with: pu := p + 1
2 |B|2.

We keep the constraint equations (10.61)–(10.62) and initial conditions (10.63)–
(10.64).

10.2.2 Variational Formulation and Energy Equality

At each time t , the variables (u(t), pu(t)) belong to H 1
0(Ω) × L2

zmv(Ω) as usual,
and B(t) ∈ XT (Ω) = H (curl,Ω) ∩ H 0(div,Ω), as argued in Sect. 5.2.1. The
vanishing multiplier pB(t) is also seen as an element of L2

zmv(Ω); this will be
justified below. Due to the regularity assumption about Ω , the space XT (Ω) is
algebraically and topologically equal to H 1

T (Ω) := H 1(Ω) ∩ H 0(div,Ω), i.e.,
the canonical X norm is equivalent to the H 1 norm. This follows from [46, 48]
in the general case. Simpler proofs are given in [117] (see Proposition I.3.1 for a
2D domain, Theorem I.3.8 for a C1,1 3D domain, and Theorem I.3.9 for a convex
polyhedron), and [15, §5] and [16, Theorem 3.12] for an axisymmatric domain.
For the sake of conciseness, we introduce synthetic notations for the variables and
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function spaces:

Φ =
(

u

B

)
, P =

(
pu

pB

)
, F =

(
f

0

)
;

H = L2(Ω)× L2(Ω), V = H 1
0(Ω)× H 1

T (Ω),

Q = L2
zmv(Ω)× L2

zmv(Ω).

Assuming F ∈ L2(0, T ;V ′), i.e., f ∈ L2(0, T ;H−1(Ω)), one takes the dot
product of (10.67) by v ∈ H 1

0(Ω) and the dot product of (10.68) by C ∈ H 1
T (Ω),

and adds the resulting equations. Similarly, one multiplies the divergence constraints
by qu ∈ L2

zmv(Ω) and qB ∈ L2
zmv(Ω), and adds the resulting equations. Thus, one

arrives at the mixed formulation:
Find Φ ∈ L2(0, T ;V) and P ∈ H−1(0, T ;Q) such that, for all (Ψ ,Q) ∈ V ×Q,

d

dt
(Φ(t) | Ψ )+ a(Φ(t),Ψ )+ c(Φ(t);Φ(t),Ψ )+ b(Ψ , P (t)) = 〈F (t),Ψ 〉, (10.69)

b(Φ(t),Q) = 0, (10.70)

Φ(0) = Φ0, (10.71)

where we have set

Ψ =
(

v

C

)
, Q =

(
qu

qB

)
;

a(Φ,Ψ ) := ηu au(u, v)+ ηB aB(B,C) := ηu (grad u | grad v)

+ ηB {(curl B | curl C)+ (div B | div C)} ,
b(Ψ ,Q) := (div v | qu)+ (div C | qB),

c(Φ1;Φ2,Φ3) := d(u1;u2,u3)− d(B1;B2,u3)

+ d(u1;B2,B3)− d(B1;u2,B3), with: (10.72)

d(a1; a2, a3) :=
∫
Ω

(a1 · ∇)a2 · a3 dΩ (10.73)

Let us comment on the various terms appearing in this formulation. The bilinear
form a is used to define the energy norm ‖Ψ ‖2

V := a(Ψ ,Ψ ) = ηu ‖ grad v‖2
L2(Ω)

+
ηB‖C‖2

X, which is equivalent to the canonical norm of V . The dual norm of V ′ is,
of course, defined with respect to the latter.

The bilinear form b satisfies an inf-sup condition in V×Q, as established, respec-
tively, in [117, Theorem I.5.1] for the Stokes part (u, pu) and [84, Theorem 7.5] for



10.2 Magnetohydrodynamics 421

the Maxwell part (B, pB). Its kernel is

K := K0(Ω)× KT (Ω)

:=
(
H 1

0(Ω) ∩ H (div 0,Ω)
)
× (H (curl,Ω) ∩ H 0(div 0,Ω)) .

Unlike KT (Ω), the kernel K0(Ω) does not satisfy a double orthogonality property
(Definition 4.3.17) in H 1

0(Ω) and L2(Ω). Actually, this is not too much of a
drawback, because the part of the variable u that is orthogonal to K0(Ω) (in any
sense. . . ) vanishes.

The trilinear form c(Φ1;Φ2,Φ3) is well-defined for all (Φ1,Φ2,Φ3) ∈ V3 and
continuous thanks to Sobolev imbeddings. The product operator is continuous [61,
Prop. II.1.17] from Lp(Ω)× Lq(Ω) to Lr(Ω), with 1

r
= 1
p
+ 1
q

, as can be readily

checked. Moreover, in both two and three dimensions [62], H 1(Ω) ⊂ Lq(Ω) for
q ≤ 6; by duality, Lp(Ω) ⊂ H 1(Ω)′ for p ≥ 6

5 . In particular, for q = 4 one has the
estimate

‖w‖L4 ≤ C ‖w‖1−d/4
L2 ‖w‖d/4

H 1 ,

with d the space dimension. This implies that

|c(Φ1;Φ2,Φ3)| ≤ C ‖Φ1‖L4 ‖Φ2‖H 1 ‖Φ3‖L4

≤ C ‖Φ1‖1−d/4
H ‖Φ1‖d/4V ‖Φ2‖V ‖Φ3‖1−d/4

H ‖Φ3‖d/4V . (10.74)

Furthermore, it is skew-symmetric in the second and third variables, i.e.,

∀(Φ1,Φ2) ∈ K × V, c(Φ1;Φ2,Φ2) = 0. (10.75)

Actually, a simple integration by parts in (10.73) proves that, for a1 ∈ H (div,Ω)
and (a2, a3) ∈ C1(Ω)2,

d(a1; a2, a3)+ d(a1; a3, a2)+
∫
Ω

(div a1) a2 · a3 dΩ =
∫
∂Ω

(a1 · n) a2 · a3 dΓ.

By a density argument, one infers d(a1; a2, a3) + d(a1; a3, a2) = 0 for any
(a2, a3) ∈ H 1(Ω) and a1 ∈ H 0(div 0,Ω); then, (10.75) follows from the
definition (10.72).

All in all, the formulation (10.69)–(10.71) has exactly the same structure
as the weak formulation of the incompressible Navier–Stokes equations [61,
197]. Equation (10.69) must hold in H−1(0, T ); the meaning of the initial con-
dition (10.71) will be specified later. Setting Ψ = Φ(t), using (10.75) and
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integrating in time, we have an energy conservation equality for smooth enough
solutions:

1

2
‖Φ(t)‖2

H +
∫ t

0
‖Φ(s)‖2

V ds =
1

2
‖Φ0‖2

H +
∫ t

0
〈F (s),Φ(s)〉 ds, (10.76)

from which we deduce an energy bound

‖Φ(t)‖2
H +

∫ t
0
‖Φ(s)‖2

V ds ≤ ‖Φ0‖2
H +

∫ t
0
‖F (s)‖2

V ′ ds. (10.77)

10.2.3 The Linear Stationary Equations

Keeping only the linear terms in (10.69)–(10.70) and setting the time derivatives to
zero, we consider the following mixed problem:
Find (Φ, P ) ∈ V ×Q such that, for all (Ψ ,Q) ∈ V ×Q,

a(Φ,Ψ )+ b(Ψ , P ) = 〈F ,Ψ 〉V (10.78)

b(Φ,Q) = 0. (10.79)

In this subsection, F =
(

F u

FB

)
∈ V ′ does not necessarily have the same structure

as in (10.69). The above problem is thus equivalent to the conjunction of a Stokes
problem and a magnetostatic problem:

ηu au(u, v)+ (pu | div v) = 〈F u, v〉H 1
0(Ω)

(div u | qu) = 0,

ηB aB(B,C)+ (pB | div C) = 〈FB,C〉XT (Ω)
(div B | qB) = 0.

The source problem (10.78)–(10.79) is well-posed for all F ∈ V ′ by the Babuška–
Brezzi Theorem 4.2.19. As argued there, it can be rewritten as

AΦ = ΠKF ,

where A : K → K′ is the operator defined by the form a on the kernel of b(·, ·):

〈AΦ,Ψ 〉K = a(Φ,Ψ ),

and ΠK : V ′ → K′ is a restriction operator: 〈ΠKF ,Ψ 〉K = 〈F ,Ψ 〉V .
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We also consider the eigenproblem with constraints

a(ei ,Ψ )+ b(Ψ , χi) = λi (ei | Ψ )

b(ei ,Q) = 0,

or equivalently,

Aei = λi ei .

From [117, Theorem I.2.8], we deduce that the space

L := H 0(div 0,Ω)× H 0(div 0,Ω)

is the closure of K within H. As the imbedding V ⊂ H—or equivalently, K ⊂ L—
is compact, Theorem 4.5.13 shows the existence of a sequence (λi)i∈N of strictly
positive eigenvalues tending to +∞, and of a Hilbert basis (ei )i∈N of L such that
(λ

1/2
i ei )i is a Hilbert basis for K. As in Sect. 4.4, we define the A-Sobolev scale

(Ks )s∈R; these spaces naturally appear as Cartesian products Ks = Ksu × KsB .
Furthermore,K−1 appears as the dual space of K with L as the pivot space, different
from the usual dual space K′. The component K−1

u relevant for the instationary
model is K−1

u = {f ∈ H−1(Ω) : div f = 0}. On the other hand, K′ is not a space
of distributions.
We then have the following regularity results.

Proposition 10.2.1 Assume that the boundary Γ is smooth enough, or that Ω is a
convex polygon (d = 2), polyhedron or axisymmetric domain (d = 3). There exist
two exponents su� , s

B
� > 1 such that the solution Φ = (u,B) to (10.78)–(10.79)

satisfies:

∀s ∈ [1, su� ), F u ∈ H s−2(Ω) (⇒ u ∈ H s (Ω),

∀s ∈ [1, sB� ), FB ∈ H s−2(Ω) (⇒ B ∈ H s(Ω).

Hence, Ks
u = K0(Ω) ∩ H s(Ω) and KsB = KT (Ω) ∩ H s (Ω) for 1 ≤ s < su� and

1 ≤ s < sB� , respectively.
Proof For the magnetic variable B , see [88] for the general case and [81] for
the case of axisymmetric domains; though those works chiefly deal with electric
field equations, the adaptation to the magnetic boundary condition is not too
difficult. For the fluid variable u, see [61, Proposition III.3.18], [125, §6.2] or [43,
Theorem IX.1.6] for the respective cases of a C1,1 domain, a (convex) polygon and
a (convex) axisymmetric domain. The case of a convex polyhedron can be dealt with
by combining the ideas of [88] with those of the above works, the crux being the
ellipticity of both the Stokes and magnetostatic equations. �
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10.2.4 Weak and Strong Solutions to the Evolution Problem

We return to the evolution problem (10.69)–(10.71). The famous theorem proved by
Leray [154] for the incompressible Navier–Stokes equations has its counterpart for
our system.

Theorem 10.2.2 Let T > 0, Φ0 ∈ L and F ∈ L2(0, T ;V ′) (i.e., f ∈
L2(0, T ;H−1(Ω)). There exists a solution (Φ, P ) to (10.69)–(10.71), which has
the regularity

Φ ∈ L∞(0, T ;L) ∩ L2(0, T ;K), Φ ′ ∈ L4/d(0, T ;K′) ∩ L2(0, T ;K−d/2),

P ∈ W−1,∞(0, T ;Q),

where d is the space dimension. Furthermore:

• if d = 2, this solution is unique, with Φ ∈ C0([0, T ];L) satisfying the energy
conservation equality (10.76);

• if d = 3, Φ belongs to C0([0, T ];K−1/4); seen as a function [0, T ] → H,
it is continuous for the weak topology; and it satisfies the energy dissipation
inequality:

1

2
‖Φ(t)‖2

H +
∫ t

0
‖Φ(s)‖2

V ds ≤
1

2
‖Φ0‖2

H +
∫ t

0
〈F (s),Φ(s)〉 ds. (10.80)

The existence of more regular solutions can also be proven under assumptions
similar to the Navier–Stokes case.

Theorem 10.2.3 Let T > 0, Φ0 ∈ K and F ∈ L2(0, T ;H) (i.e., f ∈
L2(0, T ;L2(Ω)). Then, if d = 2, there exists a unique solution (Φ, P ) to (10.69)–
(10.71), which satisfies the energy equality (10.76), and has the regularity

Φ ∈ C0([0, T ];K) ∩ L2(0, T ;K2), Φ ′ ∈ L2(0, T ;L),
P ∈ L2(0, T ;H 1(Ω)×H 1(Ω)).

If d = 3, all the above conclusions remain valid, provided T is less than a limiting
value T� > 0, depending on Ω, ηu, ηB, Φ0 and F . Furthermore, there exists a
constant C := C(Ω, ηu, ηB) such that if F ∈ L∞(0, T ;H) and

‖Φ0‖V ≤ C, ‖F‖L∞(0,T ;H) ≤ C,

then, T� = +∞.
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We will only sketch the proof of Theorem 10.2.2. Following an argument used
many times in Chap. 4, it is equivalent to consider a problem set in the kernel: Find
Φ ∈ L2(0, T ;K) such that, for all Ψ ∈ K,

d

dt
(Φ(t) | Ψ )+ a(Φ(t),Ψ )+ c(Φ(t);Φ(t),Ψ ) = 〈F (t),Ψ 〉, (10.81)

Φ(0) = Φ0. (10.82)

Remark that, for any Φ ∈ L2(0, T ;K) satisfying (10.81) and any Ψ ∈ K, the
derivative of t �→ (Φ(t) | Ψ ) is identified with a function in L1(0, T ). This allows
one to give a meaning to (Φ(0) | Ψ ), and then to identify Φ(0) as an element of L,
as K is dense in L. In the same spirit, the evolution equation (10.81) can be written
in operator form:

Φ ′(t)+ AΦ(t)+ C(Φ(t);Φ(t)) = ΠK F (t) in L1(0, T ;K′).

Of course, the bilinear operator C : K × K → K′ is defined as ∀Ψ ∈
K, 〈C(Φ1;Φ2),Ψ 〉K := c(Φ1;Φ2,Ψ ). Using the continuity and skew-symmetry
properties (10.74) and (10.75), one finds the continuity bound:

‖C(Φ;Φ)‖K′ ≤ C ‖Φ‖1−d/2
H ‖Φ‖d/2V . (10.83)

This problem is solved by a Galerkin approximation method. We introduce the
finite-dimensional space spanned by the eigenfunctions of the operator A:

KN := span {e1, . . . , eN } .

Notice that the orthogonal projection operator in V-norm PN : K → KN is also
orthogonal in H-norm; so, it admits an extension to L. Then, we consider the
evolution problem set in KN :
Find ΦN ∈ C1([0, T ];KN) such that, for all ΨN ∈ KN ,

d

dt
(ΦN(t) | ΨN)+ a(ΦN(t),ΨN)+ c(ΦN(t);ΦN(t),ΨN ) = 〈FN(t),ΨN 〉, (10.84)

ΦN(0) = ΦN0 , (10.85)

where FN is a suitable regularisation in time of F (with FN → F in L2(0, T ;V ′)),
and ΦN0 = PNΦ0. Being equivalent to a Cauchy problem for an ordinary
differential equation in a finite-dimensional space, the above problem admits a
unique solution for small enough T . Then, the energy bound (10.77) gives us

‖ΦN(t)‖2
H +

∫ t
0
‖ΦN(s)‖2

V ds ≤ ‖ΦN0 ‖2
H +

∫ t
0
‖FN(s)‖2

V ′ ds,
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which has two consequences. First, ΦN(t) remains bounded in KN (all norms are
equivalent in a finite-dimensional space), as long as the right-hand side is finite. By
the usual theorems on ordinary differential equations, one deduces that the solution
exists on any interval (0, T ) such that F ∈ L2(0, T ;V ′). Second, one has the
uniform bound:

‖ΦN‖L∞(0,T ;H) + ‖ΦN‖L2(0,T ;V) ≤M,

where M will denote a generic constant depending only on the domain Ω , the
existence time T , the parameters (ηu, ηB) and the data Φ0 and f . Using the
imbeddingH 1(Ω) ⊂ L6(Ω), one deduces other bounds on the non-linear term:

‖C(ΦN ;ΦN)‖L2(0,T ;L1(Ω)) ≤ ‖ΦN‖L∞(0,T ;L2(Ω)) ‖∇ΦN‖L2(0,T ;L2(Ω)) ≤ M,
‖C(ΦN ;ΦN)‖L1(0,T ;L3/2(Ω)) ≤ ‖ΦN‖L2(0,T ;L6(Ω)) ‖∇ΦN‖L2(0,T ;L2(Ω)) ≤M,

and by interpolation,

‖C(ΦN ;ΦN)‖L4/3(0,T ;L6/5(Ω)) ≤ M. (10.86)

On the other hand, using (10.83), one can derive another bound:

‖C(ΦN ;ΦN)‖L4/d (0,T ;K′) ≤ M ;

and rewriting the evolution equation (10.84) in operator form as

Φ ′
N(t)+ AΦN(t)+ P

†
NC(ΦN(t);ΦN(t)) = P

†
NΠKFN(t),

one can bound the time derivative as

‖Φ ′
N‖L4/d (0,T ;K′) ≤ M,

where d is the space dimension. Alternatively, this bound is a direct consequence
of (10.86) if d = 3. Passing to the limit as N goes to infinity, one has some weak
and weak-∗ convergence results (up to subsequences):

ΦN ⇀ Φ in L2(0, T ;K), ΦN
∗
⇀ Φ in L∞(0, T ;L),

Φ ′
N ⇀ Φ ′ in L4/d(0, T ;K′), C(ΦN ;ΦN) ⇀ G in L4/3(0, T ;L6/5(Ω)).

The fact that the first two limits are identical, and the third is equal to their time
derivative, is obvious by imbedding the spaces into D′(0, T ;K′). On the other hand,
we need some compactness result in order to prove G = C(Φ;Φ). The following
one is of very general use.



10.2 Magnetohydrodynamics 427

Theorem 10.2.4 (Aubin [24], Simon [190]) LetB0 ⊂ B1 ⊂ B2 be Banach spaces
such that the imbedding B0 ↪→ B1 is compact, and the imbedding B1 ↪→ B2 is
continuous. For any p, r ∈ [1,+∞], let Ep,r be the space

Ep,r =
{
w ∈ Lp(0, T ;B0) : w′ ∈ Lr(0, T ;B2)

}
.

1. If p < +∞, then Ep,r ⊂ Lp(0, T ;B1), with compact imbedding;
2. If p = +∞ and r > 1, then Ep,r ⊂ C([0, T ];B1), with compact imbedding.

Applying the theorem to B0 = K, B1 = L, B2 = K′, we see that

ΦN → Φ in L2(0, T ;L) (strongly).

But C is continuous as a bilinear operator from L2(0, T ;L) × L2(0, T ;K) to
L1(0, T ;L1(Ω)). By a classical argument [61, Prop. II.1.12], one deduces that
C(ΦN ;ΦN) ⇀ C(Φ;Φ) in L1(0, T ;L1(Ω)), i.e., G = C(Φ;Φ).

To check that Φ is a solution to (10.81)–(10.82), take any Ψ ∈ K and set Ψ N =
PNΨ . As ΨN → Ψ strongly in K while ΦN ⇀ Φ, Φ ′

N ⇀ Φ ′, C(ΦN ;ΦN) ⇀
C(Φ;Φ) in the suitable spaces, it is possible [62, Prop. 3.5], [77, Theorem 5.12-4]
to pass to the limit in (10.84), giving (10.81); checking the initial condition is not
difficult.

Uniqueness of solutions and energy conservation appear strongly linked.
Roughly speaking, to derive (10.76), one has to assume that Φ and Φ ′ belong
to dual spaces. In two dimensions, this is the case, as Φ ′ ∈ L2(0, T ;K′) and
Φ ∈ L2(0, T ;K). Similarly, consider two solutions Φ1, Φ2 to (10.69)–(10.71),
and let Φ := Φ1 −Φ2. If one writes two copies of the system (10.69)–(10.71) with
the respective unknowns Φ1 and Φ2, subtracts them, and takes the test function
Ψ = Φ(t), one finds, after some manipulations,

1

2
‖Φ(t)‖2

H +
∫ t

0
‖Φ(s)‖2

V ds +
∫ t

0
c(Φ(s);Φ2(s),Φ(s)) ds = 1

2
‖Φ(0)‖2

H.

Then, ones uses the bound (10.74) and the Young inequality to derive

‖Φ(t)‖2
H ≤ ‖Φ(0)‖2

H + C
∫ t

0
‖Φ2(s)‖2

V ‖Φ(s)‖2
H ds.

But Φ(0) = Φ1(0)− Φ2(0) = 0; a generalized version of Gronwall’s Lemma [61,
Lemma II.4.8] allows one to conclude that ‖Φ(t)‖2

H = 0 for all t .
All these arguments break down in three dimensions, as it only holds that

Φ ′ ∈ L4/3(0, T ;K′). Nevertheless, the well-known property of weak convergence
(if ΦN ⇀ Φ in some space, then ‖Φ‖ ≤ lim inf ‖ΦN‖, see [62, Prop. 3.5] or [77,
Theorem 5.12-2]) implies the energy inequality (10.80). On the other hand, if there
is a solution Φ ∈ L4(0, T ;K), then Φ and Φ ′ do belong to dual spaces, so energy
conservation holds as expected and the solution is unique within this class. There is
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even a stronger result [61, Theorem IV.2.7]: if there exist a solution in L4(0, T ;K)
and another solution that satisfies the energy equality (10.76) for t < T , they
coincide on (0, T ).

The existence and regularity of the Lagrange multiplier P is proved as usual (see,
e.g., Theorem 4.3.19); the other statements of Theorem 10.2.2 are proved using
techniques similar to the above. The proof of Theorem 10.2.3 rests on estimates
obtained by taking the test function Ψ = AΦ(t) in (10.81); uniqueness in 3D follows
from the above discussion.



Appendix A
Index of Function Spaces

All spaces are understood as spaces of complex functions. Duals are spaces of
continuous anti-linear functionals, with the only exception being D′(Ω). However,
all definitions are easily adapted to real-valued function spaces.

A.1 Basic Spaces

These are spaces of scalar functions, except in Sect. A.1.4. In all cases, Ω ⊂ Rn is
an open set,Ω its closure and Γ its boundary. Some alternative definitions are valid
under extra assumptions aboutΩ .
Below, α = (α1, · · · , αn) ∈ Nn is a multi-index, with |α| =∑n

j=1 αj .

A.1.1 Differentiable Functions and Distributions

C(Ω), C(Ω) = {f continuous onΩ, respectivelyΩ
}
,

Cm(Ω) = {f ∈ C(Ω) : ∀α ∈ Nn, |α| ≤ m, ∂αf ∈ C(Ω)} , m ∈ N ;
C∞(Ω) =

⋂
m∈N

C(Ω).

Cm(Ω) =
{
f ∈ C(Ω) : ∃f̃ ∈ Cm(Rn), f = f̃|Ω

}
, m ∈ N ∪ {∞}.

D(Ω) = {f ∈ C∞(Ω) : f has compact support in Ω
}
,

D′(Ω) = linear dual of D(Ω) (distributions).
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A.1.2 Lebesgue and Sobolev Spaces

Lp(Ω) =
{
f measurable on Ω :

∫
Ω

|f |p dx <∞
}
, 1 ≤ p <∞;

L∞(Ω) = {f measurable and bounded onΩ} .
Ws,p(Ω) = {f ∈ Lp(Ω) : ∀α ∈ Nn, |α| ≤ m, ∂αf ∈ Lp(Ω)} ,

1 ≤ p ≤ ∞, s ∈ N ;
Hs(Ω) = Ws,2(Ω).

There are several equivalent definitions of Ws,p(Ω) and Hs(Ω) when 0 ≤ s /∈ N
(see Chap. 2). The subscript zmv labels the subspaces of zero mean value functions,
in the spaces where this notion is meaningful:

L
p
zmv(Ω) =

{
f ∈ Lp(Ω) :

∫
Ω

f = 0

}
,

whereΩ is of finite measure if p �= 1 or arbitrary if p = 1. The subscript per labels
the subspaces of periodic traces, again in the spaces where this notion is meaningful.

On the other hand, the following notation is standard:

Hs0 (Ω) = closure of D(Ω) in Hs(Ω), s ≥ 0

=
{
f ∈ Hs(Ω) : ∂

kf

∂nk |Γ
= 0, ∀k ∈ N, k < s − 1/2

}
.

The second definition, involving traces and normal derivatives on the boundary, is
valid under extra assumptions onΩ .

H−s(Ω) = dual of Hs0 (Ω) ;
H̃ s(Ω) = {f ∈ Hs(Ω) : the continuation of f by zero outsideΩ

belongs to Hs(Rn)}, s ≥ 0,

= Hs0 (Ω) unless s − 1
2 ∈ N ;

H̃−s(Ω) = dual of H̃ s(Ω).

All these spaces have “local” versions, e.g.,

L
p

loc(Ω) =
{
f measurable on Ω : f 1|K ∈ Lp(Ω)} , ∀K compact ⊂ Ω.
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A.1.3 Functional Spaces on the Boundary (Trace Spaces)
and Related Spaces

Here, Γ is assumed to be a Lipschitz submanifold of Rn. We denote γ0 : f �→ f|Γ
the trace mapping on the boundary.

H 1/2(Γ ) = γ0(H
1(Ω)),

H−1/2(Γ ) = dual of H 1/2(Γ ).

Let Γ ′, Γ ′′ be disjoint open subsets of Γ , with Γ = Γ
′ ∪ Γ ′′

, measΓ (Γ ′) > 0
and measΓ (Γ ′′) > 0, and such that their common boundary Γ

′ ∩ Γ ′′
is a Lipschitz

submanifold of Γ . The trace mappings on Γ ′, Γ ′′ are denoted γ ′0, γ ′′0 .

C∞
Γ ′(Ω) = {f ∈ C∞(Ω) : f = 0 in a neighborhood of Γ ′} ;

Hs0,Γ ′(Ω) = closure of C∞
Γ ′(Ω) in Hs(Ω)

= {f ∈ Hs(Ω) : γ ′0f := f|Γ ′ = 0}, for 1
2 < s <

3
2 ;

H 1/2(Γ ′′) = γ ′′0 (H
1(Ω)),

H−1/2(Γ ′′) = dual ofH 1/2(Γ ′′),

H̃ 1/2(Γ ′′) = {g ∈ H 1/2(Γ ′′) : the continuation of g by zero on Γ ′

belongs to H 1/2(Γ )}
= γ ′′0 (H

1
0,Γ ′(Ω)),

H̃−1/2(Γ ′′) = dual of H̃ 1/2(Γ ′′).

A.1.4 Spaces of Vector Fields

Generally speaking, bold italic letters denote spaces of three-dimensional vector
fields (L2(Ω) = L2(Ω)3, etc.) and bold upright letters denote spaces of two-
dimensional vector fields (H1(Ω) = H 1(Ω)2, etc.).

A.2 Electromagnetic Spaces

In this section,Ω ⊂ R3 is a three-dimensional domain (= open, bounded, connected
set with a Lipschitz boundary); some definitions are also valid for more general
open sets. The boundary is still denoted Γ , and n is the unit outgoing normal.
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Furthermore, ξ is a tensor field on Ω such that

ξ, ξ−1 ∈ L∞(Ω), or, equivalently,
(ξ)i,j ∈ L∞(Ω) and (ξ−1)i,j ∈ L∞(Ω), 1 ≤ i, j ≤ 3.

(A.1)

Alternatively, ξ is a scalar field onΩ , bounded above and below by strictly positive
constants.

If Ω is not topologically trivial, one introduces the cuts (Σi)1≤i≤I and Ω̇ :=
Ω \ ⋃Σi . If the boundary is not connected, its connected components are
denoted (Γk)0≤k≤K , where Γ0 is the “exterior” boundary that separates Ω from
an unbounded region of R3.

A.2.1 Basic Spaces of Electromagnetic Fields

H (curl,Ω) = {v ∈ L2(Ω) : curl v ∈ L2(Ω)},
H (curl ξ,Ω) = {v ∈ L2(Ω) : curl ξv ∈ L2(Ω)}

= {v ∈ L2(Ω) : ξv ∈ H (curl,Ω)} under (A.1) ;
H (div,Ω) = {v ∈ L2(Ω) : div v ∈ L2(Ω)},

H (div ξ,Ω) = {v ∈ L2(Ω) : div ξv ∈ L2(Ω)}
= {v ∈ L2(Ω) : ξv ∈ H (div,Ω)}, under (A.1) ;

H−s (div,Ω) = {v ∈ L2(Ω) : div v ∈ H−s(Ω)}, s ∈ [0, 1].

Spaces with Vanishing Traces
As usual, they are denoted by a subscript 0.

H 0(curl,Ω) = closure of D(Ω) in H (curl,Ω)

= {v ∈ H (curl,Ω) : v × n|Γ = 0} ;
H 0(div,Ω) = closure of D(Ω) in H (div,Ω)

= {v ∈ H (div,Ω) : v · n|Γ = 0} ;
H 0(curl ξ,Ω) = {v ∈ L2(Ω) : ξv ∈ H 0(curl,Ω)}, under (A.1) ;
H 0(div ξ,Ω) = {v ∈ L2(Ω) : ξv ∈ H 0(div,Ω)}, under (A.1).

One can also consider spaces with traces vanishing on only part of the boundary,
e.g.,

H 0,Γ ′(curl,Ω) = closure of C∞
Γ ′(Ω) in H (curl,Ω)

= {v ∈ H (curl,Ω) : v × n|Γ ′ = 0}, etc.

H+
0,Γ ′(curl,Ω) := {f ∈ H 0,Γ ′(curl,Ω) : f × n|Γ ′′ ∈ L2

t (Γ
′′)}.
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Curl-Free and Divergence-Free Spaces
They are denoted by a 0 after the operator.

H (div 0,Ω) = {v ∈ H (div,Ω) : div v = 0} ;
H 0(div 0,Ω) = H (div 0,Ω) ∩ H 0(div,Ω) ;
H (curl 0,Ω) = {v ∈ H (curl,Ω) : curl v = 0} ;

H 0(curl 0,Ω) = H (curl 0,Ω) ∩ H 0(curl,Ω)

H (div ξ0,Ω) = {v ∈ H (div ξ,Ω) : div ξv = 0} ;
H 0(div ξ0,Ω) = H (div ξ0,Ω) ∩ H 0(div ξ,Ω) ;
H (curl ξ0,Ω) = {v ∈ H (curl ξ,Ω) : curl ξv = 0} ;

H 0(curl ξ0,Ω) = H (curl ξ0,Ω) ∩ H 0(curl ξ,Ω).

Other Subspaces
They are used in scalar and vector potential theory.

HΣ
0 (div 0,Ω) := {f ∈ H 0(div 0,Ω) : 〈f · n, 1〉Σi = 0, ∀i} ;

HΓ (div 0,Ω) := {f ∈ H (div 0,Ω) : 〈f · n, 1〉H 1/2(Γk)
= 0, ∀k} ;

HΓ
0 (curl,Ω) := {w ∈ H 0(curl,Ω) : PZεN

w = 0} ;
HΣ(curl 0,Ω) := {f ∈ H (curl 0,Ω) : PZ

μ
T
f = 0}.

Above,PZεN
and PZ

μ
T

designate weighted L2-orthogonal projections onto the spaces
ZN(Ω; ε), ZT (Ω; μ) (see paragraph “Kernels” in Sect. A.2.3).

A.2.2 Tangential Trace Spaces

In addition to the notations of this section, we use those of Sect. A.1.3. The
tangential trace and tangential components mappings are denoted γ� : f �→
f × n|Γ and π� : f �→ n × (f × n)|Γ . Other operators are defined in Sect. 3.1.

Traces on the Whole Boundary

L2
t (Γ ) = {v ∈ L2(Γ ) : v · n = 0}.

H
1/2
⊥ (Γ ) = γ�(H 1(Ω)), H

1/2
‖ (Γ ) = π�(H 1(Ω)) ;
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If Γ is smooth, H
1/2
‖ (Γ ) = H

1/2
⊥ (Γ ) = H

1/2
t (Γ ), where H

1/2
t (Γ ) := L2

t (Γ ) ∩
H 1/2(Γ ).

H
−1/2
⊥ (Γ ), H

−1/2
‖ (Γ ) = their duals, with L2

t (Γ ) as the pivot space ;
H

−1/2
‖ (divΓ , Γ ) = {f ∈ H

−1/2
‖ (Γ ) : divΓ f ∈ H−1/2(Γ )}

= γ�(H (curl,Ω)) ;
H

−1/2
⊥ (curlΓ , Γ ) = {f ∈ H

−1/2
⊥ (Γ ) : curlΓ f ∈ H−1/2(Γ )}

= π�(H (curl,Ω)).

The latter two spaces are dual with respect to the pivot space L2
t (Γ ). This duality is

generally denoted γ 〈·, ·〉π or π 〈·, ·〉γ .

Traces on Part of the Boundary
Let Γ ′ denote a part of the boundary, and Γ ′′ = int (Γ \Γ ′). Tangential trace and

tangential components mappings on Γ ′ are denoted by γ�′ , π�′ when they originate
from H (curl,Ω), respectively γ 0

�′ , π0
�′ when they originate from H 0,Γ ′′(curl,Ω).

For a vector field v on Γ ′, we call ṽ the field defined on Γ by ṽ = v on Γ ′ and
ṽ = 0 on Γ ′′.

H̃
1/2
‖ (Γ ′) = {v ∈ H

1/2
‖ (Γ ′) : ṽ ∈ H

1/2
‖ (Γ )}

= π�′(H 1
0,Γ ′′(Ω)) ;

H̃
1/2
⊥ (Γ ′) = {v ∈ H

1/2
⊥ (Γ ′) : ṽ ∈ H

1/2
⊥ (Γ )}

= γ�′(H 1
0,Γ ′′(Ω)) ;

H̃
−1/2
‖ (Γ ′), H̃

−1/2
⊥ (Γ ′) = their duals ;

H̃
−1/2
‖ (divΓ , Γ ′) = {f ∈ H̃

−1/2
‖ (Γ ′) : divΓ f ∈ H̃−1/2(Γ ′)}

= γ�′(H (curl,Ω)) ;
H̃

−1/2
⊥ (curlΓ , Γ

′) = {f ∈ H̃
−1/2
⊥ (Γ ′) : curlΓ f ∈ H̃−1/2(Γ ′)}

= π�′(H (curl,Ω)) ;
H

−1/2
‖,0 (divΓ , Γ ′) = γ 0

�′(H 0,Γ ′′(curl,Ω))

= {f ∈ H
−1/2
‖ (divΓ , Γ ′) : f̃ ∈ H

−1/2
‖ (divΓ , Γ )}

= {f ∈ H
−1/2
‖ (divΓ , Γ ′) : tν′(f ) = 0} ;
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H
−1/2
⊥,0 (curlΓ , Γ

′) = π0
�′(H 0,Γ ′′(curl,Ω))

= {f ∈ H
−1/2
⊥ (curlΓ , Γ ′) : f̃ ∈ H

−1/2
⊥ (curlΓ , Γ )}

= {f ∈ H
−1/2
⊥ (curlΓ , Γ ′) : tτ ′(f ) = 0}.

The spaces H̃
−1/2
‖ (divΓ , Γ ′) and H

−1/2
⊥,0 (curlΓ , Γ ′) are dual; their duality is

denoted γ ′ 〈·, ·〉π ′0 or conversely. Similarly, the spaces H
−1/2
‖,0 (divΓ , Γ ′) and

H̃
−1/2
⊥ (curlΓ , Γ ′) are dual; their duality is denoted γ ′0〈·, ·〉π ′ or conversely.

A.2.3 “Natural Spaces” and Their Subspaces

The notation follows certain principles. The letter X is generally used for the spaces
of electric or magnetic fields; the subscripts N and T (“normal” and “tangential”)
designate the behaviour on a perfectly conducting boundary. They are sometimes
omitted, in order to:

• either “factor” many statements valid in both cases;
• or simplify notations when one concentrates on a particular problem, and the

boundary condition is fixed.

The subscript A (“absorbing” condition on an “artificial” boundary) is used for
the Silver–Müller boundary condition. The “physical” (perfectly conducting) and
“artificial” (absorbing) parts of the boundary are respectively denoted ΓP and ΓA.

The notation is complemented with indications of the material coefficients or
dielectric/magnetic tensors ε, μ (if omitted, they are scalar and constant) and/or the
measure of the divergence (if omitted, divergence is measured in L2). We may write
ξ to cover both ε and μ. In addition to (A.1), these tensor fields are assumed to be
symmetric, real-valued and to satisfy a uniform bound:

∃ξ−, ξ+ > 0, ∀X ∈ C3, ξ− |X|2 ≤ ξX · X ≤ ξ+ |X|2 a.e. in Ω. (A.2)

These coefficients may be written ε, μ in normal Greek font if they are scalar.

XN(Ω) = H 0(curl,Ω) ∩ H (div,Ω),

XT (Ω) = H (curl,Ω) ∩ H 0(div,Ω),

XN(Ω; ε) = H 0(curl,Ω) ∩ H (div ε,Ω),

XT (Ω; μ) := H (curl,Ω) ∩ H 0(div μ,Ω),

XN,−s (Ω; ε) := {f ∈ H 0(curl,Ω) : div εf ∈ H−s(Ω)},
XN,A(Ω; ξ) := {f ∈ H 0,ΓP (curl,Ω) : div ξf ∈ L2(Ω), f × n|ΓA ∈ L2

t (ΓA)}.
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The letter Y is used to denote certain spaces with an improved regularity of the
normal trace, e.g.,

Y T (Ω; ξ) := {f ∈ H (curl,Ω) ∩ H (div ξ,Ω) : ξf · n|Γ ∈ L2(Γ )}.

Kernels
The letters K respectively Z designate the spaces with vanishing divergence,

respectively divergence and curl.

KN(Ω; ε) := H 0(curl,Ω) ∩H (div ε0,Ω),

KT (Ω; μ) := H (curl,Ω) ∩ H 0(div μ0,Ω),

KN,A(Ω; ξ) := XN,A(Ω; ξ) ∩ H (div ξ0,Ω).

ZN(Ω) := H 0(curl 0,Ω) ∩ H (div 0,Ω) = gradQN(Ω),

ZT (Ω) := H (curl 0,Ω) ∩ H 0(div 0,Ω) = g̃rad QT (Ω̇),

ZN(Ω; ε) := H 0(curl 0,Ω) ∩ H (div ε0,Ω) = gradQN(Ω; ε),
ZT (Ω; μ) := H (curl 0,Ω) ∩ H 0(div μ0,Ω) = g̃rad QT (Ω̇; μ).

The Q spaces are defined in Sect. A.2.4: g̃rad denotes the gradient in Ω̇ , extended
to a vector field on Ω .

Other Subspaces

XΓN(Ω) := {f ∈ XN(Ω) : 〈f · n, 1〉H 1/2(Γk)
= 0, 1 ≤ k ≤ K},

XΣT (Ω) := {f ∈ XT (Ω) : 〈f · n, 1〉Σi = 0, 1 ≤ i ≤ I }.

A.2.4 Potentials and Related Spaces

Basic Bricks (Same Notations as Above)

P(Ω̇) := {q ∈ H 1(Ω̇) : [q]Σi = csti , 1 ≤ i ≤ I },
Pzmv(Ω̇) := P(Ω̇) ∩ L2

zmv(Ω̇).

QN(Ω) := {q ∈ H 1(Ω) : Δq = 0 inΩ, q = 0 onΓ0, q = cstk onΓk, 1 ≤ k ≤ K},
QT (Ω̇) := {q̇ ∈ Pzmv(Ω̇) : div (˜grad q̇) = 0 inΩ, ˜grad q̇μ · n = 0 onΓ }.

QN(Ω; ε) := {qε ∈ H 1(Ω) : div (ε grad qε) = 0 inΩ,

qε = 0 onΓ0, q
ε = cstk onΓk, 1 ≤ k ≤ K},

QT (Ω̇;μ) := {q̇μ ∈ Pzmv(Ω̇) : div (μ ˜grad q̇μ) = 0 inΩ, μ ˜grad q̇μ · n = 0 onΓ }.
H 1+

0,ΓP
(Ω) := {f ∈ H 1

0,ΓP
(Ω) : f|ΓA ∈ H 1(ΓA)}.
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Natural Spaces of Potentials
The complements of the spaces K within X are spaces of gradients, along the

lines of: X = K ⊕ gradΦ, with double orthogonality for the norms of X and L2.

ΦN(Ω) := {ϕ ∈ H 1
0 (Ω) : Δϕ ∈ L2(Ω)},

ΦT (Ω) := {ϕ ∈ H 1
zmv(Ω) : Δϕ ∈ L2(Ω), ∂nϕ|Γ = 0},

ΦN(Ω; ε) := {ϕ ∈ H 1
0 (Ω) : div (ε gradϕ) ∈ L2(Ω)},

ΦN,−s (Ω; ε) := {ϕ ∈ H 1
0 (Ω) : div (ε gradϕ) ∈ H−s(Ω)},

ΦT (Ω; μ) := {ϕ ∈ H 1
zmv(Ω) : div (μ gradϕ) ∈ L2(Ω), μ gradϕ · n|Γ = 0}.

The domain and boundary condition indications can be omitted, just as in the
X spaces.

A.2.5 Spaces of Improved Regularity

The “intrinsic” regularity scales for electromagnetic fields are the A-Sobolev scales
XsN (Ω; ε), XsT (Ω; μ). In practice, one only uses X0(Ω; ξ) = L2(Ω), X1(Ω; ξ) =
X(Ω; ξ), X2(Ω; ξ) = X̃(Ω; ξ) defined in the electric and magnetic cases as:

X̃N(Ω) =
{
u ∈ XN(Ω) : curl u ∈ H (curl,Ω) and div u ∈ H 1

0 (Ω)
}
,

X̃T (Ω) =
{
u ∈ XT (Ω) : curl u ∈ H 0(curl,Ω) and div u ∈ H 1(Ω)

}
,

X̃N(Ω; ε) =
{
u ∈ XN(Ω; ε) : μ−1 curl u ∈ H (curl,Ω) and div εu ∈ H 1

0 (Ω)
}
,

X̃T (Ω; μ) =
{
u ∈ XT (Ω; μ) : ε−1 curl u ∈ H 0(curl,Ω) and div μu ∈ H 1(Ω)

}
.

The superscript reg designates spaces of H 1 regularity:

X
reg
N (Ω) = H 1(Ω) ∩ H 0(curl,Ω), X

reg
T (Ω) = H 1(Ω) ∩ H 0(div,Ω).

A.3 Dimension Reduction and Weighted Spaces

In this section, we use the notation of Chap. 9:

• Either, Ω is an axisymmetric domain, and the cylindrical coordinates (r, θ, z)
are used. Then, ω and γb are the traces ofΩ and Γ in a meridian half-plane; and
∂ω = γa ∪ γb, with γa part of the (Oz) axis.
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• Or,Ω is a prismatic domain or an infinite cylinder of axis (Oz). In the first case,
its boundary is made of the lateral surface Γlat and the bases. Then, ω and γ are
the traces ofΩ and Γlat, respectively Γ , in a transversal plane.

A.3.1 Axisymmetric and Translationally Symmetric Spaces

The breve sign ˘ labels spaces of invariant-by-rotation scalar fields and
contravariant-by-rotation vector fields (both called axisymmetric for short). The
same notation is used for invariance by translation (w.r.t. z); the context generally
specifies the meaning. Examples:

H̆ 1
0 (Ω), H̆ (curl,Ω), H̆

s
(Ω), X̆T (Ω; ξ), H̆ 1/2(Γ ), . . .

Such spaces are isomorphic to the spaces of their traces in a meridian half-plane (or
a transversal plane).

A.3.2 Basic Weighted Spaces in the Meridian Section

This subsection and the next deal with axisymmetric domains. For any real
number τ , one defines:

L2
τ (ω) = {f measurable on ω :

∫
ω

|f |2 rτ dr dz <∞},

H sτ (ω) = {f ∈ L2
τ (ω) : ∂lr∂mz f ∈ L2

τ (ω),∀ l,m, 0 ≤ l +m ≤ s}, s ∈ N.

The scale
(
Hsτ (ω)

)
s≥0 is extended to non-integral values of s by interpolation. A

prominent role is played by L2
1(ω); upon this space, we build another scale

V s1(ω) :=
{
w ∈ Hs1(ω) : r�+m−s ∂�r ∂mz w ∈ L2

1(ω), ∀�,m s.t. 0 ≤ �+m ≤ /s0
}
,

where /s0 denotes the integral part of s. This general definition reduces to

V s1(ω) =
{
w ∈ Hs1(ω) : ∂jr w

∣∣∣
γa

= 0, for all j ∈ N s.t. j < s − 1

}
,

when s is not an integer, while, for the first values of s ∈ N,

V 0
1(ω) = L2

1(ω), V 1
1(ω) = H 1

1(ω) ∩ L2−1(ω), V 2
1(ω) = H 2

1(ω) ∩H 1−1(ω).
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Spaces with vanishing traces on the physical boundary γb are denoted

Hs1,)(ω) = {f ∈ Hs1(ω) : f|γb = 0}, V s1,◦(ω) = {f ∈ V s1(ω) : f|γb = 0}

(for 1
2 < s <

3
2 , generalisation is obvious). N.B.: for s ≥ 1, the elements of V s1,◦(ω)

automatically vanish on γa , too.
The scales Hs1(ω) and V s1(ω) are extended to negative values of s by duality

w.r.t. the pivot space L2
1(ω).

Spaces of vector fields are denoted with boldface letters, as in Sect. A.1.4. Also,
notice the space

Hs(ω) = V s1(ω)×Hs1(ω).

Finally, weighted spaces can be constructed on (part of) the boundary γb; the
most important one is

H
1/2
1 (γb) = trace of H 1

1(ω) on γb = trace of V 1
1(ω) on γb.

A.3.3 Meridian Electromagnetic Spaces

These are spaces of two-dimensional vector fields. The cylindrical curl and div
operators are defined in Sect. 9.2.3.

H(div, ω) =
{

u ∈ L2
1(ω) : div u ∈ L2

1(ω)
}
,

H(div ξ, ω) =
{

u ∈ L2
1(ω) : div(ξ u) ∈ L2

1(ω)
}
,

H)(div ξ, ω) = {u ∈ H(div ξ, ω) : u · ν = 0 on γb
} ;

H(curl, ω) =
{

u ∈ L2
1(ω) : curl u ∈ L2

1(ω)
}
,

H)(curl, ω) = {u ∈ H(curl, ω) : u · τ = 0 on γb
}
.

These definitions can be extended to tensorial coefficients ξ, provided they have a

block structure that separates the meridian and azimuthal components, i.e.,
⎛
⎝• • 0
• • 0
0 0 •

⎞
⎠.

The “natural” spaces of two-dimensional fields are:

XN(ω; ε) = H)(curl, ω) ∩ H(div ε, ω),

XT (ω;μ) = H(curl, ω) ∩ H)(divμ,ω),

XN,A(ω; ε) = {u ∈ H(curl, ω) ∩ H(div ε, ω) : u · τ |γb ∈ L2
1(γb), u · τ |γP = 0},

XT ,A(ω;μ) = {u ∈ H(curl, ω) ∩ H(divμ,ω) : u · τ |γb ∈ L2
1(γb), u · ν|γP = 0}.
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Above, γP is the two-dimensional section of ΓP , the perfectly conducting part of the
boundary. “Regularised” spaces are Xreg(ω) = X(ω) ∩H1(ω). The letters K and Z
(“kernels” and “zeros”) designate spaces of fields with vanishing div, respectively
div and curl.

A.3.4 Transversal Spaces

The counterparts of the previous two sections in the prismatic setting are much
simpler. The Lebesgue and Sobolev spaces defined in the transversal section are
the usual ones. The electromagnetic spaces are (with the transversal div and curl
of Sect. 9.2.3):

H(div, ω) =
{

u ∈ L2(ω) : div u ∈ L2(ω)
}
,

H(div ξ, ω) =
{

u ∈ L2(ω) : div (ξ u) ∈ L2(ω)
}
,

H0(div ξ, ω) = {u ∈ H(div ξ, ω) : u · ν = 0 on γ } ;
H(curl, ω) =

{
u ∈ L2(ω) : curl u ∈ L2(ω)

}
,

H0(curl, ω) = {u ∈ H(curl, ω) : u · τ = 0 on γ } ;
XN(ω; ε) = H0(curl, ω) ∩ H(div ε, ω),

XT (ω;μ) = H(curl, ω) ∩ H0(divμ,ω),

XN,A(ω; ε) = {u ∈ H(curl, ω) ∩ H(div ε, ω) : u · τ |γ ∈ L2(γ ), u · τ |γP = 0},
XT ,A(ω;μ) = {u ∈ H(curl, ω) ∩ H(divμ,ω) : u · τ |γ ∈ L2(γ ), u · ν|γP = 0}.

Kernels are defined as in Sects. A.2.3 and A.3.3.

A.4 Spaces Measuring Time Regularity

Generally speaking, time-dependent fields are considered as functions of time with
values in a functional space on Ω (or ω, Γ , γ , etc.); and f (t) denotes the function
x �→ f (t, x). Thus, if I is a (time) interval andX a Banach space onΩ , one defines,
as usual, the spaces C(I ;X), Cm(I ;X). If I = ]0, T [ is open, one defines

D′(]0, T [ ;X) = {linear mappings on D(]0, T [) with values in X}.

Lp(0, T ;X) =
{
f :
∫ T

0
‖f (t)‖pX dx <∞

}
, 1 ≤ p <∞ ,
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L∞(0, T ;X) = {f bounded on ]0, T [ with values in X} ;
Hs(0, T ;X) =

{
f ∈ L2(0, T ;X) : ∂�t f ∈ L2(0, T ;X), 0 ≤ � ≤ s

}
, s ∈ N,

Ws,p(0, T ;X) =
{
f ∈ Lp(0, T ;X) : ∂�t f ∈ Lp(0, T ;X), 0 ≤ � ≤ s

}
, s ∈ N ;

and so on. . .
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partition of, 85
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periodic setting, 352
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duality bracket, 75, 78

eigenmode, 50
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electromagnetic, 321
magnetic, 321
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electric displacement, 3
electric eigenmode, 319
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electromagnetic eigenmode, 321
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electromagnetic field, 2
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electrostatic energy, 68
electrostatic field, 37
electrostatic model, 37, 251

two-dimensional, 368
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energy

electric, 233
electromagnetic, 66, 67, 194, 195, 198
electrostatic, 68
magnetic, 247
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energy conservation, 51, 194
energy inequality, 274
equation

Boltzmann, 28
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Maxwell, 3, 4, 16
Maxwell (2nd order), 267
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Poisson, 37
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369
exterior problem, 55, 195
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Faraday’s law, 3, 4
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Lorentz, 25
form
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stability condition for, 156
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Fourier transform, 77
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gauge condition
Coulomb, 13
Lorentz, 13
physical, 12

Gauss’s law, 3, 4
gradient (operator), 44

Cartesian (2D), 365
cylindrical, 351, 365
tangential, 58, 110

graph norm, 149
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Gronwall’s Lemma, 275
group velocity, 20, 23

Hardy-Sobolev-Littlewood inequality, 408
Helmholtz decomposition, 42, 144, 232, 246,
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Helmholtz equation, 18
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Hille-Yosida theorem, 163
hydrodynamical variable, 31
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compactness, 84, 132, 137, 304, 306, 307,
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impedance, 55
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inequality

Cauchy-Schwarz, 148
energy, 274
Hardy-Sobolev-Littlewood, 408

Poincaré, 82, 89
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Weber, 130, 135, 226, 242

inf-sup condition, 159
initial condition, 10, 48, 162, 165

compatible, 405
insulator, 14
interface, 90, 100
interior problem, 55, 195

truncated, 55, 200, 282
interpolation theory

interpolated bounded operator, 154
interpolated Hilbert space, 153

invariance by translation or rotation
differential operator, 357
scalar or vector field, 355

isomorphism, 148

jump, 90, 100

kinetic model, 26
Kramers-Kronig relation, 23

Lagrangian, 65, 159
Laplace (operator), 44

cylindrical, 351
Laplace-Beltrami (operator), 114

singular solution, 202
Laplacian, 44
law

absence of magnetic monopoles, 3, 4
Ampère, 3, 4
Coulomb, 9
Faraday, 3, 4
Gauss, 3, 4
Ohm, 14, 35

Lax-Milgram theorem, 156
least action principle, 65
limiting amplitude principle, 16, 344
Lions-Magenes theorem, 168
Liouville equation, 26
Lipschitz boundary, 79
Lorentz force, 25
Lorentz gauge, 13
Lorentz model, 24
low frequency approximation, 40

magnetic eigenmode, 321
magnetic energy, 247
magnetic field, 3
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magnetic permeability, 8
magnetic quasi-static model, 41, 257
magnetohydrodynamics (MHD) model, 35,

417
magnetostatic energy, 69
magnetostatic field, 38
magnetostatic model, 38, 252

two-dimensional, 368
Maxwell’s equation

classification, 47
differential, 4
integral, 3
static, 37
time-dependent (2nd order), 267

two-dimensional, 369
time-harmonic, 16
transverse electric mode, 366
transverse magnetic mode, 367

Maxwellian distribution, 413
mechanical description, 25
medium

anisotropic, 7
bi-anisotropic, 7
chiral, 6, 7
conductor, 14
dielectric, 14
dissipative, 22
homogeneous, 6, 8
inhomogeneous, 6, 8
insulator, 14
isotropic, 7
linear, 6, 7
non-dispersive, 7, 23
perfect, 6, 8
perfect conductor, 14
resistive, 14

meridian half-plane, 350
model

approximate, 38
Darwin, 42, 258
dimensionally reduced, 347, 396
electric quasi-static, 41, 255
electrostatic, 37, 251

two-dimensional, 368
fluid, 26
fully axisymmetric, 353
kinetic, 26
Lorentz, 24
magnetic quasi-static, 41, 257
magnetohydrodynamics (MHD), 35, 417
magnetostatic, 38, 252

two-dimensional, 368
plane, 353

sign-changing coefficient, 337
two-dimensional, 353
Vlasov-Maxwell, 26, 395
Vlasov-Poisson, 43, 395

modelling assumption, 66, 347, 353

Ohm’s law, 14, 35
open mapping theorem, 149
operator (differential)

axisymmetric, 357
curl, 44

Cartesian (2D), 365
cylindrical, 351, 364

divergence, 44
Cartesian (2D), 365
cylindrical, 351, 364

gradient, 44
Cartesian (2D), 365
cylindrical, 351, 365

Laplace, 44
cylindrical, 351

Laplace-Beltrami, 114
tangential curl, 113
tangential divergence, 111
tangential gradient, 110

operator (unbounded), 148
adjoint of, 151
bounded, 148
bounded compact, 148
bounded Fredholm, 148
bounded positive, 150
bounded positive-definite, 150
closed, 148
continuous, 148
domain of, 148
maximal monotone, 151
monotone, 151
self-adjoint, 151
skew-adjoint, 151
symmetric, 151

Ostrogradsky formula, 4

Partial Differential Equation (PDE), 43
classification, 45, 47
elliptic, 47
hyperbolic, 47
parabolic, 47
vector, 47

partition, 85
pathological vertex, 204
perfect conductor, 14
perfectly matched layer (PML), 52, 60
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phase space, 26
phase velocity, 19
plane model, 353
plane wave, 18, 22

incoming, 55
outgoing, 55

plasma, 30
Poincaré inequality, 82, 89
Poincaré-Wirtinger inequality, 82
Poisson equation, 37
polarization, 23
polygon, 81

curvilinear, 81
spherical curvilinear, 81

Poynting vector, 66, 67
complex, 70

principle
causality, 6
Curie, 363
least action, 65
limiting amplitude, 16, 344
superposition, 50
time-invariance, 6
unique continuation, 336

problem
cavity, 195, 275, 317, 322, 328
eigenvalue, 17, 186, 317, 319
exterior, 55, 195, 198
fixed frequency, 17, 181
interior, 55, 195, 200, 282
unknown frequency, 17, 181
well-posed, 11, 155, 161

pseudo-Lipschitz boundary, 118
pulsation, 16

radiation condition, 52, 61
Silver-Müller, 63

reduced model, 347
regular-gradient splitting, 142, 234, 248
relation

constitutive, 5
dispersion, 20
Kramers-Kronig, 23

resistivity, 14
resolvent, 149
resonance, 49

in plasma, 346
Riesz theorem, 155

saddle-point, 159
scalar field, 44

axisymmetric, 361

scalar potential, 12
extraction, 120, 123, 232

scaling, 39, 261
self-energy, 69
semi-group theory, 163
sign-changing coefficient model, 337
Silver-Müller boundary condition, 57, 349
Silver-Müller radiation condition, 63, 344
skin depth, 14, 22
skin effect, 15

infinite, 15
solution

mild, 400
renormalised, 400
strong, 162, 412
weak, 167

Sommerfeld condition, 62
spectral theorem, 152
spectrum, 149

continuous spectrum, 149
point spectrum, 149
residual spectrum, 149

speed of light, 9
Spitzer conductivity, 35
stability condition, 11, 156
statistical description, 25
Stokes formula, 4
Stone theorem, 164
strong solution, 162, 412
subset of Rn

categories (C1), (C2), (C3), 73
domain, 80
simply connected, 118, 374
topologically trivial, 118, 374

superposition principle, 50
sustained vibration, 18, 322
symmetry assumption, 347, 353
symmetry by translation or rotation

differential or boundary operator, 357
scalar or vector field, 361

theorem
Babuska-Brezzi, 159
Banach-Necas-Babuska, 157
Banach-Schauder, 149
closed graph, 149
Hille-Yosida, 163
imbedding, 78, 79, 84, 132, 137, 304, 306,

307, 314, 316, 343, 427
Lax-Milgram, 156
Lions-Magenes, 168
open mapping, 149
Riesz, 155
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spectral, 152
Stone, 164
trace, 88, 97, 98, 108, 109, 111, 113, 116,

399
time-invariance principle, 6
trace mapping

. . . γ0, 88

. . . γ1, 98
normal . . . γn, 97
tangential . . . γ�, 98
tangential components . . .π�, 108

trace theorem, 88, 97, 98, 108, 109, 111, 113,
116, 399

two-dimensional model, 353

unique continuation principle, 336
unknown frequency problem, 17, 181

variational formulation, 155
constrained (mixed), 158
time-dependent, 168

vector field, 44

axisymmetric, 361
azimuthal component, 350
longitudinal component, 352
meridian component, 350
transversal component, 352

vector potential, 11
extraction, 128, 134, 139, 141, 142

Vlasov equation, 29, 30, 394
Vlasov-Maxwell model, 26, 395
Vlasov-Poisson model, 43, 395

wave equation
scalar, 13, 62, 369
vector, 13, 48, 268

wave number, 19
wavelength, 19
weak convergence, 151
weak solution, 167
Weber inequality, 130, 135, 226, 242
well-posed problem, 11

Fredholm sense, 161
Hadamard sense, 155
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