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Abstract. The use of maps allows mobile robots to navigate between
known points in an environment. Using maps allows to calculate routes
avoiding obstacles and not being stuck in dead ends. This paper shows
how to integrate 3D perceptions on a map to obtain obstacle-free paths
when obstacles are not at the level of 2D sensors, but elevated. Chairs
and tables usually pose a problem when one can only see the legs with a
2D laser, although they present a high hurdle with a much larger area.
This approach builds a static map starting from the construction plans of
a building. A long-term map is started from the static map, and updated
when adding and removing furniture, or when doors are opened or closed.
A short-term map represents dynamic obstacles such as people. Obsta-
cles are perceived by merging all available information, both 2D laser
and RGB-D cameras, into a compact 3D probabilistic representation.
This approach is appropriate for fast deployment and long-term oper-
ations in office or domestic environments, able to adapt to changes in
the environment. This work is designed for domestic environments, and
has been tested in the RoboCup@home competition, where robots must
navigate in an environment that changes during the tests.

Keywords: Long-term navigation · 3D mapping · Mobile robot ·
Robocup

1 Introduction

Mobile robots navigate along the environment to perform the commanded tasks.
This capability is critic for the success of many applications, and it has to be
accomplished robustly. One of the elements of navigation is the map. Maps
represent the structure of the environment, the obstacles and the free space.
Using this information, robots update their pose and generate paths. Usually,
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maps remain unchanged once generated. This is not convenient in domestic
environment when operating for days because furniture can change its position
and new objects can appear. Even for short-term operation, doors can be open
or closed.

For this reason, we present a mapping method for long time operation in
domestic environment. Simultaneous Localization and Mapping (SLAM) tech-
niques also updates the map while operation, but they are more focused in
building maps, instead of deploying a robot in a known environment and start
operating immediately. Besides of this, SLAM techniques require a robustness
hard to get. Walls, doors and corridors are known a priori. Usually, we can obtain
an architectonic map of large environments likes offices, universities, public build-
ings or hotels.

Our proposal is a mapping method starts from these kind of structural infor-
mation of walls, doors and corridors, building a static map which never changes.
This information is enough to maintain a good estimation about the robot pose,
when starting pose is known. Obstacles not present in the static part are incor-
porated to a short-term map. When this obstacle is persistent in time, it is
incorporated to a long-term map. In the same way, if a obstacle disappear, it is
removed from the long-term map. The robot uses the combined map of static
and long-term information to self-localize and build routes.

Mobile robots that travel on the ground often use 2D maps, since the z
component, or the roll or pitch are not taken into account to locate or generate
routes. For most navigation tasks, using a 2D laser is considered appropriate.
We have found that it is not enough, because a robot is a 3D volume that must
pass through an environment that may present obstacles that do not necessarily
have to be at the height of the laser. Using a 2D approach, we had problems
with shelves, tables, chairs and all kinds of obstacles that are partially detected
at the height of the laser. For this reason, one of the main contributions of our
work is to merge the information of a 2D laser with any other sensor, mainly
3D cameras, currently used in many robots to have a complete 3D information
which let us to safety navigate.

This method is applied in the RoboCup@home [1], RoCKIn@home [2] and
European Robotics League (ERL) competitions. These competitions propose
several tasks in a domestic environment which simulates a house. The tech-
nologies evaluated in the test includes navigation, manipulation, object/people
recognition, communication with humans and task planning. These testbeds let
us to compare our approach with the other participants’ solutions in the same
conditions.

This paper is organized as follows: in the Sect. 2 we describe the relevant
work in the area, with special attention to the last method used in the competi-
tion. The description of our contribution is in Sect. 3, where we briefly describe
the ROS navigation system and present our mapping system. The experimental
validation is in Sect. 4, where the experiments in the simulator confirm the result
in the competition. Finally, we discuss the results and work in Sect. 5.
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2 Related Work

Mapping in the form of a grid has been a widely used approach. Most mobile
robots move on the ground, so they do not need more info to self-locate and
navigate than a 2D grid of obstacles. It is a compact and general way of rep-
resenting the environment. Maybe one of the first successful works using this
approach is [3], and a full description of capabilities is shown in [4]. It is a widely
used mapping method in conjunction with self localization algorithms such as
Monte Carlo [5,6] or Markov [7], when sensory information can be reduced to
2D readings of obstacles. Most of these approaches start from a premise that
is not fulfilled when the operation of the robot can last for days or months,
as the environment can change. These jobs usually do the mapping once, and
assume that the environment never changes. In fact, if the robot is in an crowded
environment, techniques such as using the ceiling image as a map are used [8].

In [9], robots operation last for 1000 Km [10]. This approach takes as its basis
an architectural map using a Bayesian network to decide what type of feature
is being detected. In our case, we simply model the features on different maps.
Our approach is simpler, but equally effective. By not having to detect different
types of obstacles, our method is more general and scalable.

Long-term navigation should keep in mind that environments may vary. In
our opinion, the only thing that does not change is the structure of the building,
meaning the walls The rest can change, and the robot has to adapt to calcu-
late better routes. In [11] a Dynamic Pose Graph SLAM is used to map low
dynamic environments. In this work, 2D maps are generated from a graph stor-
ing changes in the environment. The authors state that localization is improved
using this type of maps. In [12] a work is presented in which are maintained
spatial-temporal 3D maps. Each position stores the probability that a node is
busy depending on the time of day. In this work a robot plans which points
to visit depending on the entropy of surrounding areas, since this occupation
is repeated cyclically. Our work is focused on providing a map which allows us
to generate good routes to navigate. Adding these temporal characteristics is
future work and not included in the presented approach.

The appearance of 3D sensors has given rise new types of 3D maps [13].
Octomap [14] is a compact way to encode the environment about obstacles and
even colors. These maps are very useful for self-localization [15], although not so
much to navigation when the robot is on the ground and there are no obstacles
in height that prevent the robot from passing through.

3 Mapping System

Our mapping system is integrated in the navigation stack of ROS. The standard
ROS navigation system is designed for static environments. If a little change is
produced in the scenario, the localization component bear with this but when
significant portions of the environment change, it can not deal with this situation.
This system has also problems dealing with doors, that sometimes can be open
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Fig. 1. ROS navigation system with our contributions in red (left). Diagram of the
proposed dynamic map module (right).

and sometimes closed, objects smaller than the position of the laser sensors and
tables because the robot can only perceive the thin legs of it.

To deal with these problems, we have replaced the original map server by a
node that implements our approach, as is shown in the left side of the Fig. 1.

The module map server is a critical component of the navigation stack of
ROS. It provides of occupancy information both to the navigation module, which
actually makes plans and send commands to the actuators, and the Amcl mod-
ule, which localizes the robot using a Monte Carlo [16] algorithm called KLD-
Sampling [17].

For representing occupancy maps in 3D, we use a compact representation
called octomap [14], based on octrees (Fig. 2).

Internally, our map module uses this 3D representation of the environment.
As we use the existing navigation and localization modules in the ROS navi-
gation stack, and their inputs are 2D occupation maps, our module produces
two outputs: the final 3D occupancy map and a 2D occupancy map, built by
flattening the 3D map. This flattening process gets the value of each (x, y) cell
as the maximum occupancy value of cells (x, y, z)∀z ∈ [zmin, zmax].

We want our robot to navigate days, weeks, or months through an envi-
ronment without remapping. We believe that the only really static part of an
environment is its walls. Anything else can change its position over time. For this
reason our robot starts from metric measures or from the architectonics maps,

Fig. 2. 3D occupancy representation using octomaps.
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which we will call a static map. This map include the unchanged parts of the
scenario. All maps are 3D maps, as we’ll describe in the next point, and as a
final step we converts them in a 2D occupancy grid.

When the robot perceives an obstacle that is not on the static map, it incor-
porates it into a short-term map whose 3D cells value varies rapidly over time.
If it is a person, it will quickly disappears and the short-term map will reflect it.
On the other hand, it is a new persistent obstacle, the robot will perceive it for a
long time and because of this the obstacle will become part of a long-term map.
Similarly, if an obstacle was on the map and it disappears, it will be removed
from the long-term map.

The long-term map is periodically saved to disk as an .ot file. When the
map server starts, it loads both the static map and the long-term map. As we
previously introduced, the map server publishes the combination of these maps
and convert it in a 2D occupancy grid map for the navigation and localization
modules.

Internally, map server is composed by the following elements also illustrated
on the right side of Fig. 1.:

– Map loader: This node loads the static and the long-term maps from disk.
– Sensors2octomap: This node combines the information of the sensors and

create an octomap with it.
– Obs detector: The main function of this node is to detect objects using the

octomap from the sensors. This information produces a 3D octomap, which
is the main information of the short-term map.

– Map controller: Node with the function of compose the final octomap, pub-
lish it in /octomap topic and update the long-term map with the values of
the short-term map.

– Octomap2map: This node takes the information of the /octomap topic and
creates a 2D occupancy grid with it.

Maps are 3D grids of values representing obstacles or free space. The
dimension of each 3D cell in the grid is preconfigured and an usual value is
100mm × 100mm. It probabilistically represents obstacles using values in the
range [0, 1].

We use several maps at the same time for different:

– static map (mapS): The 2D map is built from metric measures or from the
architectonics maps.

– short-term map (mapst): This octomap is initialized totally empty. When
running, cell values are updated with the obstacle information from sensors.

– long-term map (maplt): The long-term map includes the objects that per-
sist in time which could affect when generating routes. This octomap is
updated with the information from the short-term map.

– resulting map (mapf): This is the resulting octomap published by the map
server.
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– projected map (mapp): Conversion of the mapf into a 2D map. To do this
conversion we take all 3D cells and we associate each one with a cell in 2D
map. The value of the 2D map cell will be the max value between all 3D
nodes associated with it.

map2D = Flat(map3D) (1)

map2Di,j = max(mapi,j,k∀k ∈ [−∞,+∞]) (2)

Maps are created and updated following these operations:

mapf = mapS ⊕ maplt (3)

where ⊕ is defined as,

m1 ⊕ m2 : max(m1i,j ,m2i,j),
∀m1i,j ∈ m1,∀m2i,j ∈ m2

(4)

and
maplt = maplt ⊗ mapst (5)

where ⊗ is defined as:

m1 ⊗ m2 : m1 =

{
m1i,j if m2i,j < 1,
m1i,j + 1 if m2i,j = 1

∀m1i,j ∈ m1,∀m2i,j ∈ m2

(6)

where 1 value represent the probability that a cell is occupied.
After these operations we have set up a map (mapf ) ready for being con-

verted in 2D map for being used by localization and navigation modules.

The 2D map, mapp, is built following this operation:

m1i,j = max(m2i,j,∀k),
∀m1i,j ∈ m1,∀m2i,j,k ∈ m2

(7)

4 Experiments

In order to validate the work presented in this paper, we have carried out exper-
iments both in the simulator as the previous step for implementing in the real
robot and testing it in incoming real competitions.

The goal of these experiments is to validate the proposed algorithm in a
controlled environment. The fundamental aspect of our approach is that the
map update is performed correctly and we can avoid small objects:
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– Detection of dynamic objects should not affect the long-term map.
– The perception of static objects must be incorporated in a reasonably short

time to the long-term map, anchoring itself with successive detections.
– The disappearance of static objects that were already on the long-term map

should be eliminated quickly.
– Closed doors are assimilated to static obstacles that are incorporated into the

long-term map, being eliminated quickly when the doors are opened.
– Avoid objects that could presents difficulties to perceive with the laser sensor,

like a chairs or tables.
– Avoid smaller objects under the position of the laser sensor.

1. Static objects. In the first experiment, the robot perceives a static object
(Fig. 3).

Fig. 3. Experiment with a static object in front of the robot.

At first, the object will be added to the short-term map and 17s later, when
the value of the cells in short-term map reach 1, the long-term map will reflect
this change.

Figure 4 represents the evolution of the short-term map and long-term map
when the robot perceive a new object. If the object is removed from the scene,
the short-term map will reflects this change clearing the cells of the object and
when the short-term map its clean, the cells of the object in long-term map will
starts to decrease their value.

2. Impact of the mapping mechanism in the robot’s motion. If a door
is closed just when the robot go to cross it or if a person block the way of the
robot, local planner of the navigation will avoid the danger. This local planner
only uses the information of the laser sensor, because of this we had to create
a new laserscan to reflect the information of the combination between laser
and RGB-D sensors.

Figure 5 shows the statistics parameters of the time to add and delete objects
from long-term map and how much time is needed to influence in the global
planner.
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Fig. 4. Changes in cell’s value in presence of static objects. Up, the short-term map
and down the long-term map

Fig. 5. Statistics parameters of the time to change the long-term map and the global
planner.

In this experiment we compare the previous 2D navigation method with our
approach, where RGB-D sensors are used.

We commanded the robot to go to a position beyond a table. Figure 6 shows
how the robot went under the table. If the robot would taller than Kobuki, the
robot would had collide with the table.

In Fig. 7 we show how the robot avoid the table using our 3D mapping system.
The global planner takes the information from the 2D map, which is generated
with the information of all the sensors, and reflects the object in the navigation
global map. Because of this, the navigation module does not plan a new route
crossing the table, like shown in Fig. 6. Now the navigation module can plan a
route avoiding the obstacle.

3. Avoiding little objects. In a domestic environment or in the
Robocup@Home you can find some objects under the laser position in the
robot in your way. Our approach can avoid colliding with it while navigating.

In Fig. 8 we show how the ball is added to the octomap and how the robot
can avoid the ball.
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Fig. 6. Planning a new route crossing a table with 2D approach.

Fig. 7. Planning a new route crossing a table with 3D aproach.

Fig. 8. Avoiding a little object.
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4. Doors opened and closed. In this experiment, we ask the robot to go near
to the blue table in the dinning room. It knows mapf (mapS ⊕ maplt), so
it can compute the path: go straight to the wall, turn left and go straight
again to the table. In this experiment, we have blocked this way, simulating
a closed door (Fig. 9).

Fig. 9. Path blocked simulating a closed door.

The robot starts its way, but when it approximates to the closed door, maplt
starts to reflect this change. Path is recomputed, and the robot found an alter-
native way to reach its goal. The robot does not forget the closed door when
the robot is looking away, because of this the robot will not use this door to
calculate a new route.

Fig. 10. Path followed.
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5 Conclusions

This paper has presented our mapping system for long-term navigation, based
on dynamic maps. Maps have permanent structure built from the constructions
plans. All the perceived obstacles are dynamically incorporated or removed from
the map, using different levels of persistency. The described approach provides
a fast method for deploying a robot in a domestic environment, and for long
operation in which the obstacles can modify their position.

Among the strengths of our method, we highlight, besides the fast mapping,
the management of dynamic objects, the convenience to manage the opening of
doors and their ability to adapt to changes in the surrounding furniture.

The main contribution of this work is the use of a 3D representation for both
perceptions and the maps. This let us to perceive obstacles of any shapes, even
small ones, which are not correctly perceived using only 2D laser perceptions.

The proposed method has been implemented inside the ROS navigation stack
without any modification of the other modules. Because of this, the implemen-
tation of this contribution can be easily tested by the robotics community. The
experiments shows the validity of this approach, and its use in competitions
probes its robustness.

This work can be extended by gradually migrating the localization and nav-
igation modules to use 3D information, although navigation benefits will only
be effective in robots with 6 DoF.
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