
What Can Ontologies Do for Robot Design?

Francisco Ramos1(B), Alberto Olivares-Alarcos2, Andrés Salomón Vázquez1,
and Raúl Fernández1

1 E.T.S. Ingenieros Industriales, UCLM, Ciudad Real, Spain
Francisco.Ramos@uclm.es

2 Facultat d’Informàtica de Barcelona, UPC, Barcelona, Spain

Abstract. In this paper we address the problem of automatic design
of the abstract structure of a robot. The design is driven by the desired
capabilities that the robot should be able to perform. To this aim, an
extension for the IEEE Standard Ontology for Robotics and Automa-
tion has been developed. We present an intelligent system which infers
abstract robot morphologies from this ontology by relating robot actions
to necessary structural parts. Then, these abstract structures can be
materialized into physical robots that are able to perform requested capa-
bilities. We show this implementation using a modular robotics platform
as a demonstrator.

Keywords: Ontologies · Robotics · Modular robots · Robot design

1 Introduction

Designing and controlling a robot to properly work on a given task is the fun-
damental problem of robotics.

The traditional way to address this problem consists on a two-step process.
First, the hardware (i.e. the mechanical structure along with actuating and sens-
ing systems) is designed according to the objective. Then, a specific controller is
programmed to achieve the task in the most efficient way. As a result of decades
of development, we can find different robot configurations (e.g. manipulators,
wheeled robots, humanoids, etc.) considered good enough to perform certain
tasks (e.g. manufacturing, exploration, etc.).

In the last two decades a different approach has been explored thoroughly:
automatic hardware/software design using intelligent systems. Evolutionary
Robotics (ER) is the best example of this approach, where evolutionary algo-
rithms are used to obtain complex mechanisms without having explicit models.
A complete review of this line of research in ERs can be found in [6,16].

Modular robotic platforms are often used in many ER systems as a tool to
find and implement the automatic designs [12]. In fact, modular robots are, by

This work is partly supported by the Centre for the Development of Industrial Tech-
nologies (CDTI) and the company Mundo Reader S.L. under the project BOTBLOQ:
Integral ecosystem for the design, manufacturing and programming of DIY robots.

c© Springer International Publishing AG 2018
A. Ollero et al. (eds.), ROBOT 2017: Third Iberian Robotics Conference, Advances in Intelligent
Systems and Computing 693, https://doi.org/10.1007/978-3-319-70833-1_38

466 F. Ramos et al.

Fig. 1. (a) 12DOF legged robot, (b) 3DOF manipulator

themselves, an important area of research in robotics since the late 80s [8,18].
Theoretically, these architectures might be able to implement any design. This
is the reason why they are used in many other areas such as manipulation [2] or
educational robotics [7].

In this work we explore the automatic design of the conceptual structure of
robots assisted with ontologies for robotics. Our main goal is to demonstrate
that the knowledge embedded in an ontology can be used to help a robot design
system with small computational effort. As a proof of concept, we present an
intelligent system able to select an appropriate base configuration depending on
the user-requested capabilities that the robot should be able to perform. This
configuration lists the physical elements that the robot must contain, but (to
date) it does not provides information or constraints on the physical structure.
This information must then be used by an intelligent system (or user) in order
to generate the hardware and software design for building the robot. For imple-
mentation we use ParMoR (Parametric Modular Robots), a low-cost, modular
robotics platform intended for use in education. Figure 1 shows two examples of
real robots generated from these base configurations.

2 Why Ontologies?

In any human process, from simple daily tasks to complex projects, the knowl-
edge, both declarative (know what) and procedural (know how), is crucial. Thus,
when designing machines which are able to face human tasks it is necessary to
represent the knowledge behind those tasks in a way they can understand (e.g.
ontologies).

Ontologies, in a computational sense, are formal and explicit specifications of
conceptualizations [9] and provide enough concepts and relations to articulate
models of specific situations in a given domain. However, they do not simply
represent but also generate knowledge: if an ontology is correctly designed, we
do not need to specify all facts explicitly, but we can also infer implicit knowledge
making it explicit. For instance, if we define the class HumanoidRobot as a robot

What Can Ontologies Do for Robot Design? 467

which includes two arms and two legs, when we instantiate that class we do not
need to specify that our instance has two arms and two legs. Consequently, for
defining real models, we can use an ontology that specifies the conceptualization
shared by the experts in the field.

A good example of how ontologies could help to a design process is explained
in [10], where the authors tried to bridge what they called ‘gaps of knowledge’ in
the process of designing electronic hardware. Usually, hardware design is divided
into different stages but it is not always clear how the relevant parts of each
stage are related to the rest of them. For instance, once we have defined user
requirements we need to design a system which has suitable capabilities to fit
those requirements. At this point, we need to bridge some ‘gaps of knowledge’
about which kind of capabilities are related to user requirements and which
physical parts of our system needs to have in order to perform those capabilities.
Those gaps are traditionally handled by human engineers which are likely to
produce errors and mismatches in the design process. [10] handle those gaps
using the knowledge defined in the ontology.

Another example of success can be found in the medical domain, where the
use of ontologies is widely extended. In fact, there even exists a collective of
ontology developers that are committed to collaboration and adherence to shared
principles: Open Biomedical Ontologies (OBO) Foundry [17]. The mission of the
OBO Foundry is to develop a family of interoperable ontologies that are both
logically well-formed and scientifically accurate. Some applications are: mea-
surement of semantic similaritiy between medical entities [4,14,15] and advisory
(expert) systems [5,11].

2.1 Ontologies for Robotics

The use of ontologies is not new in the domain of Robotics, as there are several
applications in which knowledge representation becomes essential. For example,
KnowRob [19] is a knowledge processing system that combines knowledge rep-
resentation and reasoning methods with techniques for inferring new knowledge
and for grounding it in a physical system. KnowRob is able to infer a list of
actions to carry out a task (what is called a recipe) and to determine if a certain
robot can perform the task according to its abilities (equipped devices). This fea-
ture was put to use in the RoboEarth project [20,21], where a recipe repository
was available for any robot connected to the internet, and KnowRob determined
the range of tasks that the robot could accomplish depending on its hardware/-
software. Implicitly, we can see here the relationship between a process (actions
a robot has to perform) and the tools (parts of the robot) that the robot will
use in order to achieve the goal. This relationship will also be adopted in our
methodology: we are interested in inferring which kind of structural parts of a
robot are required to perform a specific task or action in order to design a robot
which contains them.

An effort for standardization has been recently attempted with the release of
the IEEE Standard Ontologies for Robotics and Automation (ORA) [3] in 2015.

468 F. Ramos et al.

It self-defines as “a core ontology that allows for the representation of, reason-
ing about, and communication of knowledge in the R&A domain”. ORA is con-
structed upon the Suggested Upper Merged Ontology (SUMO) [13] and contains
the Core Ontology for Robotics and Automation (CORA) which includes the fun-
damental concepts in the R&A domain as well as their definitions, attributes,
constraints and relationships. These are required to construct more specific con-
cepts belonging to other ontologies. Actually, ORA also includes the following
sub-ontologies:

– CORAX defines concepts too general to be in the CORA ontology and nec-
essary for modeling but not covered by SUMO.

– RPARTS provides an extensible set of the most general and specific types of
robot parts.

– POS implements concepts regarding robot poses (both position and orienta-
tion concepts).

Nowadays, several working groups of the IEEE are developing extensions
of ORA for different domains, such as Industrial Robot Ontology or the
Autonomous Robotics (AuR) Ontology, what highlights a consensus in the need
and usefulness of a comprehensive, standardized ontology for robotics. However,
ORA in its actual state does not match the needs of this work. While it states
several concepts that are essential for our design purposes, such as RobotPart in
CORA or RobotMotion in CORAX, it also lacks of specific robot motions and
robotic parts that can be interrelated to obtain structural dependencies. There-
fore, an extension for the ORA ontologies is required for the automatic design
process.

3 Automatic Design of Robots Ontology

The Automatic Design of Robots Ontology (ADROn) defines additional concepts
and relations that are to be used for the automatic conceptual design/selection
of robots. These concepts are defined in the following subsections.

3.1 Structural Robot Parts

The main physical elements defined in ADROn are StructuralRobotPart and
Module, which are subclasses of Device and Artifact in SUMO, respectively, as
depicted in Fig. 2.

On the one hand, an instance of StructuralRobotPart consists of a set of
Modules, is a robotPart of a Robot and plays an important role in a specific
action of a robot. For example, RobotLeg is a robotPart of the structure of a
robot that is essential to walk or to run (to ambulate). On the other hand, an
instance of Module will be any artifact (passive or active) which can be related
as a part of a StructuralRobotPart (e.g. IMU sensors, servomotors, links, etc.).

What Can Ontologies Do for Robot Design? 469

Fig. 2. Taxonomy of the main physical concepts in ADROn (white) and relation with
SUMO (black) and CORA (gray).

(subclass StructuralRobotPart Device)
(=>

(instance ?STRUCTURE StructuralRobotPart)
(exists (?ROBOT)

(and
(instance ?ROBOT Robot)
(robotPart ?STRUCTURE ?ROBOT))))

(subclass Module Artifact)
(=>

(instance ?MODULE Module)
(exists (?ROBOT ?STRUCTURE)

(and
(instance ?ROBOT Robot)
(instance ?STRUCTURE StructuralRobotPart)
(robotPart ?STRUCTURE ?ROBOT)
(part ?MODULE ?STRUCTURE))))

Examples of subclasses of StructuralRobotPart are EndEffector, RobotLimb
or RobotTrunk.

3.2 Robot Actions

ADROn also defines concepts regarding the actions that a robot can perform
under the class RobotAction, which is a subclass of Process of SUMO and a
superclass of RobotMotion of CORAX, and refers to a process in which the agent
is a Robot. Examples of RobotAction are RobotAmbulating or RobotLineTracking
(Fig. 3).

3.3 Robot Types

ADROn also defines a number of robot types such as HumanoidRobot which are
subclasses of Robot according to the taxonomy outlined in Fig. 4.

470 F. Ramos et al.

Fig. 3. RobotAction declaration and relation with SUMO and CORA axioms.

Fig. 4. Partial robot classification depending on the environment/locomotion.

Each of these robots consists of one or more StructuralRobotParts depending
on their definition. For example, the following code defines a HumanoidRobot
subclass consisting of two RobotArms and a RobotTrunk which are, in turn,
subclasses of StructuralRobotParts. In addition, as long as HumanoidRobot is a
subclass of BipedalRobot, it also includes two instances of RobotLeg.

What Can Ontologies Do for Robot Design? 471

(subclass GroundRobot Robot)
(subclass LeggedRobot GroundRobot)
(subclass BipedalRobot LeggedRobot)
(=>

(instance ?rob BipedalRobot)
(exists (?leg1 ?leg2 ?trunk)

(and
(instance ?leg1 RobotLeg)
(instance ?leg2 RobotLeg)
(instance ?trunk RobotTrunk)
(part ?leg1 ?rob)
(part ?leg2 ?rob)
(connectedTo ?leg1 ?trunk)
(connectedTo ?leg2 ?trunk)
(part ?trunk ?rob)
(not (equal (?leg1 ?leg2))))))

(subclass HumanoidRobot BipedalRobot)
(=>

(instance ?rob HumanoidRobot)
(exists (?arm1 ?arm2 ?trunk)

(and
(instance ?arm1 RobotArm)
(instance ?arm2 RobotArm)
(instance ?trunk RobotTrunk)
(part ?arm1 ?rob)
(part ?arm2 ?rob)
(connectedTo ?arm1 ?trunk)
(connectedTo ?arm2 ?trunk)
(part ?trunk ?rob)
(not (equal (?arm1 ?arm2))))))

3.4 Structural Requirements

Finally, the dependency of a specific RobotAction to a specific StructuralRobot-
Part is determined by an instance of a BinaryPredicate named StructuralRe-
quirement, which is defined as follows:

(instance StructuralRequirement BinaryPredicate)
(instance StructuralRequirement InheritableRelation)
(domain StructuralRequirement 1 RobotAction)
(domain StructuralRequirement 2 StructuralRobotPart)

Hence, a StructuralRequirement determines, for example, that if a Robot is
going to grasp an object, it needs a specific StructuralRobotPart to do it (e.g. a
robot gripper).

(subclass RobotGrasping RobotAction)
(subclass RobotGrasping Grabbing)
(=>

(instance ?GRASP RobotGrasping)
(exists (?GRIPPER)

(and
(instance ?GRIPPER RoboticGripper)
(StructuralRequirement ?GRASP ?GRIPPER))))

472 F. Ramos et al.

4 Robot Instance Generation

According to ADROn, a robot consists of one or more StructuralRobotParts
and each of them has one or a set of Modules. Figure 5 shows: an instance of a
HumanoidRobot (subclass of Robot); an instance of one of its RobotLegs (subclass
of StructuralRobotPart); and some instances of the Modules (active and passive)
that constitute the RobotLeg in the ParMoR architecture.

ADROn includes the definition of every module of ParMoR (e.g. IRProxim-
itySensor, Servomotor, etc.) along with every action that a robot can perform
and the relationships between RobotActions and StructuralRobotParts.

The conceptual generation of a robot is a three-step process. First, the robot
instance generator receives a set of RobotActions that the robot is required to
perform. Then the inference engine uses semantic queries to determine the Struc-
turalRequirements implied by the set of actions. Subsequently, the instance gen-
erator matches these requirements with the hardware available in the base con-
figurations defined in ADROn. If several matches are found, the generator asks
the user some questions inferred from the ontology to disambiguate the solution.
Finally, the system creates the conceptual (instance) design of a robot able to
perform those actions and passes it to the structure generator. This process is
schematized in Procedure 1.

Procedure 1. Robot Instance Generation
Require: sRA ← set of RobotActions

for each RobotAction in sRA do
determine StructuralRequirement

end for each
solutions ← match all StructuralRequirements
while solutions.length > 1 do

generate disambiguation question
update StructuralRequirements
solutions ← match all StructuralRequirements

end while
return instance of solution

Fig. 5. Instances of the main axioms in ADROn related to the main concept in CORA
(Robot).

What Can Ontologies Do for Robot Design? 473

As an example, we present now a very straightforward example of generation
of a robot with the ability of RobotWalking.

1. First, the generator user demands a robot with a walking capability.
2. A querying process in ADROn determines RobotLeg as a StructuralRequire-

ment.
3. A search through the base configurations obtains all the matches:

HumanoidRobot, QuadrupedRobot and HexapodRobot.
4. The generator asks the user ‘ “Does the walking robot need to grasp?”’.
5. The answer is positive, so the generator determines RobotGripper as a new

StructuralRequirement.
6. It searches again through previous matches and determines that the appro-

priate robot is a HumanoidRobot.
7. The generator provides a base configuration of a HumanoidRobot. The con-

ceptual design is over and the parameterization process begins.

5 Proof of Concept

In the following we present an example of the complete process, summarized in
Fig. 6, for the automatic design of a robot using our approach.

Although in this example we present only the design of a manipulator robot,
our system allows users the design of other robots like rovers, snakes, hexapods
and humanoids. These robots are finally built using ParMoR, which is a modular
robot architecture based on 3D printable modules, that can be active (i.e. contain
electronics as shown in Fig. 7a) or passive (i.e. links). As seen in Fig. 7b, modules
can be interconnected using dovetail pins.

1. The user, using the GUI of Fig. 8, describes the function to be performed by
the robot.

Functionality

Baseconfiguration
Robot final

design

Require
ments

YES

NO

USER

ADRON
Ontology based

intelligent system
ROS

controller
generation

Designer

Data input:
- Robot workspace
- Payload

Data output:
- Parameterized passive
 and active modules

Joints defined as medium
torque modules

Links length
 calculation

Joint modules
selection

Design
changed?

Links
optimization

Force and torque
analysis

Fig. 6. Process for the automatic generation of robots.

474 F. Ramos et al.

Union

Passive
moduleActive Module

Motor
a) b)

ATtiny85 board
3D Printed
parts

Fig. 7. (a) Example of an active module (b) Modular robot architecture

Fig. 8. GUI for the automatic design of robots using ADRON.

Fig. 9. Left manipulator needs two high-torque and one middle-torque actuators, while
right manipulator (smaller) needs one high-torque and two medium-torque actuators.

2. An intelligent system uses ADROn to infer a robot base configuration as
explained in Sect. 4.

3. The base configuration together with the user requirements (e.g. robot speed,
payload, work space) are passed to the automatic designer (see Fig. 6) which
selects the concrete active modules and the passive modules according to

What Can Ontologies Do for Robot Design? 475

kinematic and dynamic considerations. Figure 9 shows two different instances
of the same base configuration due to a different workspace requirement from
the user.

4. The STL files for active and passive modules are obtained so they can be 3D
printed.

5. Finally, the formal description of the robots is represented in ROS using
URDF models [1] and a parameterized controller is provided to simplify the
control stage.

6 Conclusions

Well-designed knowledge representation has given good results in helping the
processes of designing electronic hardware or diagnosing diseases. In this com-
munication we have explored the use of ontologies as a supporting tool for robot
design.

An extension of the ORA standard (ADROn) has been presented. It provides
additional definitions for: structural parts of the robots, actions achievable by a
robot, detailed robot types and relations between actions and structural parts.
These definitions allow the definition of a procedure for determining the most
adequate robot type to perform a given set of actions. The robot instance created
can be passed to a physical structure generator in order to create a complete
design of a robot. We have presented the implementation of a robot using the
ParMoR architecture as a proof of concept.

Presented ontology is in constant evolution, increasing the number of robot
types, structural parts and robot actions defined in it, and providing new fea-
tures. The authors are currently working in an instance generator that create
robot instances without replicating a base configuration, but adequately con-
necting the structural requirements obtained from the requested set of actions.
This requires adding physical constraints in the ontology for connection of the
different structural parts (e.g. legs must be attached to a trunk).

References

1. Robot Operating System. http://www.ros.org/. Accessed 1 Sep 2016
2. Schunk modular robotic system. http://mobile.schunk-microsite.com/en/produkte/

products/dextrous-lightweight-arm-lwa-4d.html. Accessed 1 Sep 2016
3. Ieee standard ontologies for robotics and automation (2015). http://ieeexplore.

ieee.org/document/7084073/
4. Batet, M., Sánchez, D., Valls, A.: An ontology-based measure to compute semantic

similarity in biomedicine. J. Biomed. Inform. 44(1), 118–125 (2011)
5. Chen, R.C., Huang, Y.H., Bau, C.T., Chen, S.M.: A recommendation system based

on domain ontology and swrl for anti-diabetic drugs selection. Expert Syst. Appl.
39(4), 3995–4006 (2012)

6. Doncieux, S., Mouret, J.B., Bredeche, N., Padois, V.: Evolutionary Robotics:
Exploring New Horizons, pp. 3–25. Springer, Heidelberg (2011)

http://www.ros.org/
http://mobile.schunk-microsite.com/en/produkte/products/dextrous-lightweight-arm-lwa-4d.html
http://mobile.schunk-microsite.com/en/produkte/products/dextrous-lightweight-arm-lwa-4d.html
http://ieeexplore.ieee.org/document/7084073/
http://ieeexplore.ieee.org/document/7084073/

476 F. Ramos et al.

7. Golovinsky, A., Yim, M., Zhang, Y., Eldershaw, C., Duff, D.: Polybot and polyki-
netic system: a modular robotic platform for education. In: Proceedings 2004 IEEE
International Conference on Robotics and Automation (2004)

8. Gonzalez-Gomez, J., Zhang, H., Boemo, E., Zhang, J.: Locomotion capabilities of
a modular robot with eight pitch-yaw-connecting modules. In: 9th International
Conference on Climbing and Walking Robots (2006)

9. Guarino, N., Oberle, D., Staab, S.: What Is an Ontology? pp. 1–17. Springer,
Heidelberg (2009)

10. Hu, H., Liu, D., Du, X.: Semi-automatic hardware design using ontologies. In:
Control, Automation, Robotics and Vision Conference, 2004, ICARCV 2004 8th,
vol. 2, pp. 792–797. IEEE (2004)

11. Jonquet, C., Musen, M.A., Shah, N.H.: Building a biomedical ontology recom-
mender web service. J. Biomed. Semant. 1(1), S1 (2010)

12. Li, H., Wei, H., Xiao, J., Wang, T.: Co-evolution framework of swarm self-assembly
robots. Neurocomputing 148, 112–121 (2014)

13. Niles, I., Pease, A.: Towards a standard upper ontology. In: Proceedings of the
international conference on Formal Ontology in Information Systems, pp. 2–9.
ACM (2001)

14. Pedersen, T., Pakhomov, S.V., Patwardhan, S., Chute, C.G.: Measures of semantic
similarity and relatedness in the biomedical domain. J. Biomed. Inform. 40(3),
288–299 (2007)

15. Pesquita, C., Faria, D., Falcao, A.O., Lord, P., Couto, F.M.: Semantic similarity
in biomedical ontologies. PLoS Comput. Biol. 5(7), e1000443 (2009)

16. Silva, F., Duarte, M., Correia, L., Oliveira, S.M., Christensen, A.L.: Open issues
in evolutionary robotics. Evol. Comput. 24, 205–236 (2016)

17. Smith, B., Ashburner, M., Rosse, C., Bard, J., Bug, W., Ceusters, W., Goldberg,
L.J., Eilbeck, K., Ireland, A., Mungall, C.J., et al.: The obo foundry: coordinated
evolution of ontologies to support biomedical data integration. Nat. Biotechnol.
25(11), 1251–1255 (2007)

18. Sprowitz, A., Moeckel, R., Vespignani, M., Bonardi, S., Ijspeert, A.: Roombots: a
hardware perspective on 3d self-reconfiguration and locomotion with a homoge-
neous modular robot. Robot. Auton. Syst. 62, 1016–1033 (2014)

19. Tenorth, M., Beetz, M.: KnowRob - a knowledge processing infrastructure for
cognition-enabled robots. Int. J. Robot. Res. 32(5), 566–590 (2013)

20. Tenorth, M., Perzylo, A., Lafrenz, R., Beetz, M.: Representation and exchange of
knowledge about actions, objects, and environments in the roboearth framework.
IEEE Trans. Autom. Sci. Eng. 10(3), 643–651 (2013). doi:10.1109/TASE.2013.
2244883

21. Waibel, M., Beetz, M., Civera, J., D’Andrea, R., Elfring, J., Galvez-Lopez, D.,
Haussermann, K., Janssen, R., Montiel, J., Perzylo, A., Schiessle, B., Tenorth, M.,
Zweigle, O., van de Molengraft, R.: Roboearth. IEEE Robot. Autom. Mag. 18(2),
69–82 (2011). doi:10.1109/MRA.2011.941632

http://dx.doi.org/10.1109/TASE.2013.2244883
http://dx.doi.org/10.1109/TASE.2013.2244883
http://dx.doi.org/10.1109/MRA.2011.941632

	What Can Ontologies Do for Robot Design?
	1 Introduction
	2 Why Ontologies?
	2.1 Ontologies for Robotics

	3 Automatic Design of Robots Ontology
	3.1 Structural Robot Parts
	3.2 Robot Actions
	3.3 Robot Types
	3.4 Structural Requirements

	4 Robot Instance Generation
	5 Proof of Concept
	6 Conclusions
	References

