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Abstract. In this paper we address the allocation of perception tasks
among a set of multiple robots, for tasks such as inspection, surveillance,
or search in structured environments. We consider a set of target regions
of interest in a mapped environment that need to be sensed by any of
the robots, and the problem is to find paths for the robots that cover all
the target regions with minimal cost. We consider not only sensing range
when determining paths for the robots to perceive the targets, but also
a sensor cost function that can be adapted to each robot’s sensor. Thus
the planning has to search for paths with minimal motion and perception
cost, instead of the traditional approach where line-of-sight is the only
requirement in a motion cost minimization problem. Our contribution
is to use planning to determine possible perception positions for every
robot, which we cluster and then use as possible waypoints that can
be used to construct paths for all the robots. Given the combinatorial
characteristics of path determination in this setting, we contribute a con-
struction heuristic to find paths that guarantee full coverage of all the
feasible perception target regions, while minimizing the overall cost. We
assume robots are heterogeneous regarding their geometric properties,
such as size and maximum perception range. We consider simulated sce-
narios where we show the benefits of our approach, enabling multi-robot
path planning for perception of multiple regions of interest.
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1 Introduction

In this work we consider multiple heterogeneous robots that have to plan together
in order to perceive a set of target regions of interest. The robot’s physical char-
acteristics are considered when planning their paths in a structured environment
that has been mapped before. For a given environment, not all target positions
can be perceived by all robots. Using the intrinsic differences of each robot
in problems such as task allocation also allows for more efficient planning, by
reducing the combinatorial possibilities of the search space.

We consider a 2D gridmap of obstacles to represent the environment, and
mobile robots that are heterogeneous in regard to geometric properties, such as
c© Springer International Publishing AG 2018
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Fig. 1. Environment with obstacles represented in black, circular robots R and target
regions of interest T that need to be perceived; in the right image, a target region with
a given shape, size and position in a gridmap which results in discretization of T s.

size and sensing range. As shown in Fig. 1, we assume there is a set of heteroge-
neous robots (Rs) and target regions of interest (T s) that need to be perceived.
The target regions can represent areas that need to be covered by the robot’s
sensors for inspection or search. The regions of interest could also represent
location uncertainty around a point that needs to be perceived, and the target
regions can have any shape and size.

In traditional multi-robot path planning for perception tasks, an infinite per-
ception range is a common assumption, or even a finite maximum range. How-
ever, the cost of perception should also be included when determining paths for
robots executing perception tasks. Therefore, we introduce the following prob-
lem, where the goal is to find paths for each robot that minimize the total cost
of motion and perception, given by

cost =
∑

R

CR + λ
∑

T

CT (1)

where CR is the path size for robot R, CT is the cost of perception of target
region T , and λ is the trade-off parameter between perception cost and motion
cost. We assume all target regions have to be observed.

The cost of perception of a target region T perceived from a robot depends
on its path ρ, and we assume it is the average of perception cost for the grid
points inside the region of interest

CT (ρ) =
1

#T

∑

t∈T

min
p∈ρ

cp(||p − t||) (2)

The number of points of the gridmap inside the target region is represented
by #T . For multiple robots, CT uses the minimum of the perception cost not
only for ρ, but the paths of all robots.

The perception cost function, cp, models sensor accuracy and it is function of
perception distance dp. As an example, if the sensing error increases quadratically
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with distance, then the perception cost is a quadratic function.

cp(dp) = d2p (3)

Given the problem with robots Rs and targets T s, a planner is used to find
the paths for each robot such as all the target regions are perceived by at least
one robot, and the overall cost function is minimized. We assume the overall
motion cost to be a weighted sum of all paths’ sizes, thus minimizing the energy
spend to move the robots by using appropriate weights for each robot.

The approach we contribute has a first step to determine perception points
for each target grid point. For that we use PA* [7], a technique to determine
from a given initial position the optimal perception position to perceive a target,
assuming some perception cost function and the λ parameter. We then cluster
the perception points, and use the clusters as new initial positions from where
to run PA* again. Our algorithm is then able to obtain a set of clusters that can
be used as waypoints for path planning.

In the second step, the planner uses the set of waypoints to construct paths for
each robot. Given the combinatorial nature of our problem, we use a constructive
heuristic to iteratively add new waypoints to the robots’ paths, and construct a
solution that covers all the targets that need to be perceived, while minimizing
the overall cost. We contribute an algorithm that can be used to find paths to
perceive target regions of interest both for single and multi-robot teams.

In the next sections we describe our proposed method in more detail.

2 Perception Clusters from PA*

We start by considering first a single robot scenario. For each target grid point
t inside target regions of interest, we run PA* to find a path to perceive t from
initial robot position r, optimizing for both motion and perception costs using
λ as the trade-off parameter, as shown in Fig. 2. PA* returns the optimal path
with minimal cost, where the final position is the optimal perception point. PA*
search results in a perception point pr

t for each t.
We should note that this perception position is optimal only for the local

scenario of a robot starting at r to perceive t, but it is not necessarily optimal in
the multiple target regions scenario. However, we use these points as an initial
step for constructing paths for the robots to perceive those regions.

The robots’ paths can then be obtained as a combinatorial solution of the
determined perception points. Unlike the traveling salesman problem (TSP), not
all perception points need to be visited, and the robot does not need to return
to the initial position. In order to avoid a combinatorial explosion for the path
planning, we cluster perception points based on distance. The point closer to
each cluster’s center of gravity is the one used as waypoint in the path planning,
and the perception cost for each pr

t associated with the respective cluster.
The proposed approach does not find all needed perception points, as the

optimal paths from PA* depend on the initial position. So, the PA* search
to targets t needs to be re-run again from each cluster centroid, resulting in
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Fig. 2. When running PA* from the robot initial position to each point inside target
regions, the search returns an optimal perception point, shown as a red dot; in order
to reduce the number of possible combinations, the perception points are clustered in
groups that can be used as single waypoints in path planning, as shown in (b).

Fig. 3. When running PA* from cluster centroids, new perception points might result
in new clusters, as shown in (a); from that clustering strategy some clusters might only
be associated with certain targets, and additional perception feasibility to other target
points can be obtained using ray casting to test for line-of-sight, as shown in (b).

new perception points pq
t . New clusters might appear from each iteration when

running PA* from new initial positions, as shown in Fig. 3(a). If a new cluster’s
centroid is close to an existing one they can be merged, with the robot radius
being the merging threshold. Cost of perception of target point t in cluster Pi is

ci
t = min

pq
t ∈Pi,q∈{Q⋃ r}

cp(||pq
t − t||) (4)

where Q is the set of cluster centroids.
Clusters are generated by running PA* to target points t from different initial

positions, but ci
t is only determined if PA* searches to t result in perception

points that are clustered to Pi. Nevertheless, other target points might still be
observable from cluster Pi, even if PA* finds the cluster position non-optimal to
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perceive those points. In Fig. 3(b), for every cluster centroid, ray tracing is used
to determine line-of-sight and perception cost to other target points t whose
cost was not previously determined as ci

t. Ray tracing determines perception
feasibility from a cluster centroid to any other target point, and the respective
distance is used to associate a perception cost to the tuple centroid-target point.

3 Path Construction

Even though there might not be any connections between some pair of clusters
initially, we still consider them in the heuristic path construction, as shown in
Fig. 4, because PA* is optimal locally for each target point but is globally sub-
optimal in the general multi-target path planning setting.

The clusters centroids can be used as waypoints when determining the path
for a robot to perceive all the target points. Pairwise distances between all clus-
ter centroids and initial robot position can easily be determined with A*. The
waypoints are qj , with 0 ≤ j ≤ m where m is the number of clusters and
q0 = r is the initial position. The path ρ can be represented as a sequence {si},
with 0 ≤ i ≤ L (L is path length in terms of number of clusters covered) and
1 ≤ si ≤ m for i ≥ 1 and s0 = 0. The path cost is then given by:

cost(ρ) =
i≤L∑

i=1

dist(qsi−1 ,qsi
) + λ

∑

T

(
1

#T

∑

t∈T

min
1≤i≤L

csi
t

)
(5)

Any point can be visited more than once, but that would be redundant. More-
over, not all points need to be visited. Given the combinatorial characteristics of
this problem, solving it optimally for any m > 10 is already very time consum-
ing. Therefore, we use a construction heuristic to iteratively construct a path
from the initial position that covers all the target points with the robot’s sensor.
Examples of constructive heuristics used in the TSP are the nearest neighbor,
nearest insertion, cheapest insertion, and farthest insertion.

Improvement heuristics could be used to improve the solution once a feasible
path is found. Examples are point removal, k-opt moves, and metaheuristics.

Fig. 4. Map with robot and target regions of interest, with red dots as cluster centroids
and lines connecting all of them showing all the path’s combinatorial possibilities.
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At each iteration, and for each point i that can still be inserted in the robot’s
path, the added motion cost is given by the cheapest insertion, which finds the
best position in the current path to insert the new point.

costm(i) = min
(

min
1≤j≤L

dist(qsj−1 ,qi) + dist(qi,qsj
) − dist(qsj−1 ,qsj

),

dist(qsL
,qi)

)
(6)

For each point to be inserted, there is also a possible gain associated with
the improvement in perception cost from sensing from a closer distance.

gainp(i) = λ
∑

T

1
#T

∑

t∈T

max
(

min
0≤j≤L

(
c
sj

t

) − ci
t, 0

)
(7)

We use for c0t the maximum perception cost, λcp(rp), where rp is the max-
imum perception range. The bigger c0t , the highest priority is given to points
that perceive previously unseen target points, which is a behavior similar to the
farthest heuristic. Points are considered valid if gain positive, or if it adds visi-
bility to any previously unseen target. Otherwise the planner might not add to
the path the only positions that can observe some far away target, even though
we want complete coverage. The overall base method is shown in Algorithm 1.

Algorithm 1. Base Path Construction from Cluster Centroids
Require: List of points to insert: {1..m}
1: while There is valid points to choose from do
2: for all points not yet inserted do
3: Find added motion cost, costm(i) as cheapest insertion of point i
4: Find gain in perception cost, gainp(i)
5: gain(i) = gainp(i) − costm(i)
6: if gain(i) is valid then
7: Add i to list of points to consider for insertion in this iteration
8: end if
9: end for

10: Choose point that maximizes gain
11: Insert point in path according with cheapest insertion
12: Update path perception cost to each target point
13: end while
14: Return Path

3.1 Avoiding Local Minima

As shown in Fig. 5, the base algorithm presented before can very easily get stuck
in local minima, as it is based on a greedy heuristic. In the figure’s example, in
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Fig. 5. In the left image, the robot can move to three cluster centroids from its initial
position, and cluster 1 has the highest gain, considering a quadratic perception cost
and λ = 0.5; in the middle figure we show a path that moves through cluster 1 and then
to cluster 3 in order to perceive both TA and TB , with motion cost 7 and perception
cost of 1 (2×0.5×12); in the last image, we show the optimal path that moves through
cluster 2 and then cluster 3, perceiving both targets with a lower overall cost, motion
cost equal to 3 and perception cost of 2.5 (0.5 × 22 + 0.5 × 12).

the first iteration cluster 1 has the highest gain and is added to the robot’s path,
but as we show that point is not even part of the optimal path.

To help avoid local minima, we contribute a n-level depth search for the
greedy constructive heuristic. Instead of looking only one step ahead, it looks at
the insertion of n points, and chooses the one with minimal cost. For that purpose
we use Algorithm 2, where we contribute a recursive function that implements
the n depth search and testing combinations of n points to insert. This function
is called once in each iteration, returning the best point to insert in the path at
each time, until there is no points to insert in the robot’s path.

Because we consider combinations of n points and we use the cheapest inser-
tion heuristic, a 2-level search that inserts first cluster i and then the cluster
centroid j has the same gain as the reverse, inserting first cluster j and then i.
As a tiebreaker rule, we insert first the point with the highest gain in the top
level of the recursive search (variable determined on line 7 of Algorithm2).

4 Multi-Robot

The extension of the previous n-depth heuristic from the single robot approach to
the multiple robot setting is now straightforward. We build clusters of perception
points from PA* for all the robots. Then the construction heuristic considers
multiple lists of cluster centroids and at each search level can choose to add any
of those points to the respective robot’s path. Insertion on paths at different
depth levels of the recursive search might be for different robots.

The complexity of the n-level heuristic search in the multi robot scenario is
M !/(M −n)! in each iteration, where M is the total number of cluster centroids
over all robots. In each iteration one cluster is added to a robot’s path.
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Algorithm 2. Recursive function used in n-depth heuristic for path construction
Require: List of points to insert: {1..m}
1: function search(dists, ct’s, path, n)
2: if n==0 then return < −1, 0 >
3: end if
4: for all points not yet inserted do
5: Find added motion cost, costm(i) as cheapest insertion of point i
6: Find gain in perception cost, gainp(i)
7: gain(i) = gainp(i) − costm(i)
8: if gain(i) is valid then
9: Create new temporary path, pathi, updated with insertion of point i

10: Find the gain from next (n-1)-depth search:
11: < j, nextgain(i) >= search(dists, ct’s, pathi, n − 1)
12: overall gain(i) = gain(i) + next gain(i)
13: end if
14: end for
15: if no valid point then
16: return < −1, 0 >
17: end if
18: Choose point that maximizes overall gain
19: return < i, overall gain(i) >
20: end function

However, new inefficiencies of the heuristic arise in the multi-robot scenario,
as shown in Fig. 6. In that example, either cluster centroids 1 or 2 can be added
to the respective robot’s paths. From point 2, all target points can be observed,
but from point 1 only part of TA can be observed. Using constructive heuristic
with a 1-level search, adding point 1 to R1 path has a higher gain, even though
in the next iteration R2 will still have to move to point 2 in order to perceive
the yet unseen parts of TA, resulting in sub-optimal path construction. In some
cases this inefficiency can be solved with higher n, as here a 2-level search would
already avoid this problem. Nevertheless, for big problems with multiple targets
and robots, n has to be small in order to reduce the search complexity, and
might not be enough to solve this inefficiency.

4.1 Unfeasibility Subsets

There are target points that can be perceived by all robots, and others that
can only be observed by a subset of robots. Therefore, the idea is, at each
iteration of the path construction phase, to consider first cluster centroids that
are the only ones that can observe some target points. We start by centroids that
are associated with targets that are perceived by one robot only, then by two,
and so on, until the only remaining are the ones that can be observed by any
robot. Using this approach solves the problem in Fig. 6 without increasing n. The
separation of cluster centroids by subsets of unfeasibility can be accomplished by
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Fig. 6. Inefficiency arising from different robots being able to perceive targets from
different locations; here R2 is able to move to cluster 2 and perceive all points in TA,
but R1 can only move to the first cluster where it only perceives a part of the target.

adding a component proportional to the number of robots that cannot perceive
a target, and the maximum gain, Kλcp(rp), where K is the number of regions.

Our complete contribution using unfeasibility sets is shown in Algorithm3.

Algorithm 3. Recursive n-level constructive heuristic with unfeasibility subsets
Require: List of points to insert: {1..m}
1: function search(dists, ct’s, paths, n)
2: if n==0 then return < −1,−1, 0 >
3: end if
4: for all < r, i > all robot and cluster points not yet inserted do
5: Find costm(r, i), as cheapest insertion of point i in path of robot r
6: Find gain in perception cost, gainp(r, i)
7: for all t do
8: if t is not yet observed by any robot path then
9: unfeas gain(r, i, t) = #(Robots that cannot perceive t)×(Kλcp(rp))

10: end if
11: end for
12: gain(r, i) = gainp(r, i) − costm(r, i) + maxt(unfeas gain(r, i, t))
13: if gain(r, i) is valid then
14: Create new temporary paths, pathsi updated with insertion of point i
15: Find the gain from next (n-1)-depth search:
16: < s, j, next gain(r, i) >= search(dists, ct’s, pathsi, n − 1)
17: overall gain(r, i) = gain(r, i) + next gain(r, i)
18: end if
19: end for
20: if no valid point then
21: return < −1,−1, 0 >
22: end if
23: Choose point that maximizes overall gain
24: return < r, i, overall gain(r, i) >
25: end function
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4.2 Results

We show in Fig. 7 the resulting paths for the planning problem of 2 heterogeneous
robots perceiving 3 regions of interest, for a large λ that makes robots move close
to the target regions. We consider two test scenarios with a changing position
for one of the target regions, and we show how it impacts the resulting plan. The
smaller robot 1 can get into the region where the changing target is, and observe
it from a close distance. However, the bigger robot 2 can only perceive this
region from a distance. Therefore, when the target moves closer to the opening
from where it is perceived, the perception cost for the bigger robot reduces and
the planner moves this robot such has it perceives two target regions, while the
first robot moves to perceive the target that can only be observed by the first
robot. Nevertheless, when the changing target moves away from the opening,
the quadratic perception cost for robot 2 increases significantly, and as a result
there is a point from where it is worth for the robot 1 to move forth and back
to observe all the target regions from a closer distance.

For scenarios with cluster lists up to 10 centroids per robot, we also run a
brute-force algorithm to test all possible combinations and compare with our
heuristic. In the simulated environment we used, shown in Fig. 7, but with vary-
ing targets’ sizes and positions, the heuristic always returned the same paths
as the brute-force algorithm, but with lower computation time, in the order of
seconds, proving its efficiency. For bigger cluster lists, we could only use the
heuristic approach for the path planning. For the problems in Fig. 7, in a map
with 200 by 200 pixels, and a total of 5 clusters for the two robots, the cluster
determination took around 30 s, and the path construction 5 ms.

5 Related Work

Perception got recently a more active role in planning. An example is object
detection, where the next moves of the robot should be planned to maximize
the likelihood of correct object detection and classification [9]. Another class of
problems for visibility is the inspection problem. In order to determine a path
that can sense multiple targets, a neural network approach was used to solve the
NP-hard Watchman Routing Problem [1], which has been extended to 3D [3].

PA* was proposed to optimally solve the planning for perception of a single
target position in 2D gridmaps, given motion and perception costs [7]. It was also
shown how to improve search efficiency with robot-dependent information [5].

Planning sequences of perception points to cover regularly all interest points
in the environment is also relevant for multi-robot patrolling [8], where a proba-
bilistic strategy was used for a team of agents to learn and adapt their moves to
the state of the system at the time, using Bayesian decision rules and distributed
intelligence. When patrolling a given site, each agent evaluates the context and
adopts a reward-based learning technique that influences future moves.

Other relevant work focuses on the sensing horizon, and how to opportunisti-
cally plan navigation and view planning strategy in order to anticipate obstacles
with look-ahead sensing [4]. Candidate positions are considered based on the
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Fig. 7. Planning scenario with two heterogeneous robots and 3 regions of interest; In
the first column we show the space where robots can move, and in the middle column
the associated visible space of each robot; in the last column, the resulting paths for
the robots when one of the regions of interest changes its position.

possibility of anticipating obstacles, and used as waypoints. In the same topic, it
has also been shown that perception planning and path planning can be solved
together [2], selecting the most relevant perception tasks depending on the cur-
rent goal of the robot, thus successfully solving navigation and exploration tasks
together. The sets of unfeasibility have also been used before in heterogeneous
multi-robot planning, but for actuation-based tasks [6].

6 Conclusion

In this work we contribute a constructive heuristic for path planning, to use
with heterogeneous multi-robot settings in the problem of perception of multiple
regions of interest. The solution can be used in inspection, surveillance or search
in robotics. We introduce mechanisms to avoid local minima of the proposed
heuristic, such as considering sets of unfeasibility, and n-depth search. We were
able to successfully generate paths for multiple robots in simulated environments,
in a novel problem that considers both motion and perception cost.
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