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Abstract This work is concerned with linear inverse problems where a distributed
parameter is known a priori to only take on values from a given discrete set.
This property can be promoted in Tikhonov regularization with the aid of a
suitable convex but nondifferentiable regularization term. This allows applying
standard approaches to show well-posedness and convergence rates in Bregman
distance. Using the specific properties of the regularization term, it can be shown
that convergence (albeit without rates) actually holds pointwise. Furthermore, the
resulting Tikhonov functional can be minimized efficiently using a semi-smooth
Newton method. Numerical examples illustrate the properties of the regularization
term and the numerical solution.

1 Introduction

We consider Tikhonov regularization of inverse problems, where the unknown
parameter to be reconstructed is a distributed function that only takes on values
from a given discrete set (i.e., the values are known, but not in which points
they are attained). Such problems can occur, e.g., in nondestructive testing or
medical imaging; a similar task also arises as a sub-step in segmentation or
labelling problems in image processing. The question we wish to address here is the
following: If such strong a priori knowledge is available, how can it be incorporated
in an efficient manner? Specifically, if X and Y are function spaces, F W X ! Y
denotes the parameter-to-observation mapping, and yı 2 Y is the given noisy data,
we would wish to solve the constrained Tikhonov functional

min
u2U

1

2
k F.u/ � yıkY (1)
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for

U WD fu 2 X W u 2 fu1; : : : ; udg pointwiseg ; (2)

where u1; : : : ; ud 2 R are the known parameter values. However, this set is
nonconvex, and hence the functional in (1) is not weakly lower-semicontinuous and
can therefore not be treated by standard techniques. (In particular, it will in general
not admit a minimizer.) A common strategy to deal with such problems is by convex
relaxation, i.e., replacing U by its convex hull

co U D fu 2 X W u 2 Œu1; ud� pointwiseg :

This turns (1) into a classical bang-bang problem, whose solution is known to
generically take on only the values u1 or ud; see, e.g., [4, 24]. If d > 2,
intermediate parameter values are therefore lost in the reconstruction. (Here we
would like to remark that a practical regularization should not only converge as the
noise level tends to zero but also yield informative reconstructions for fixed—and
ideally, a large range of—noise levels.) As a remedy, we propose to add a convex
regularization term that promotes reconstructions in U (rather than merely in co U)
for the convex relaxation. Specifically, we choose the convex integral functional

G W X ! R; G.u/ WD
Z

g.u.x// dx;

for a convex integrand g W R ! R with a polyhedral epigraph whose vertices
correspond to the known parameter values u1; : : : ; ud. Just as in L1 regularization for
sparsity (and in linear optimization), it can be expected that minimizers are found at
the vertices, thus yielding the desired structure.

This approach was first introduced in [8] in the context of linear optimal control
problems for partial differential equations, where the so-called multi-bang (as a
generalization of bang-bang) penalty G was obtained as the convex envelope of
a (nonconvex) L0 penalization of the constraint u 2 U. The application to nonlinear
control problems and the limit as the L0 penalty parameter tends to infinity were
considered in [9], and our particular choice ofG is based on this work. The extension
of this approach to vector-valued control problems was carried out in [10].

Our goal here is therefore to investigate the use of the multi-bang penalty from [9]
as a regularization term in inverse problems, in particular addressing convergence
and convergence rates as the noise level and the regularization parameter tend to
zero. Due to the convexity of the penalty, these follow from standard results on
convex regularization if convergence is considered with respect to the Bregman
distance. The main contribution of this work is to show that due to the structure
of the pointwise penalty, this convergence can be shown to actually hold pointwise.
Since the focus of our work is the novel convex regularization term, we restrict
ourselves to linear problems for the sake of presentation. However, all results
carry over in a straightforward fashion to nonlinear problems. Finally, we describe
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following [8, 9] the computation of Tikhonov minimizers using a path-following
semismooth Newton method.

Let us briefly mention other related literature. Regularization with convex
nonsmooth functionals is now a widely studied problem, and we only refer to
the monographs [17, 21, 23] as well as the seminal works [6, 13, 15, 20]. To
the best of our knowledge, this is the first work treating regularization of general
inverse problems with discrete-valued distributed parameters. As mentioned above,
similar problems occur frequently in image segmentation or, more generally, image
labelling problems. The former are usually treated by (multi-phase) level set
methods [27] or by a combination of total variation minimization and thresholding
[7]. More general approaches to image labelling problems are based on graph-cut
algorithms [1, 16] or, more recently, vector-valued convex relaxation [14, 19]. Both
multi-phase level sets and vector-valued relaxations, however, have the disadvantage
that the dimension of the parameter space grows quickly with the number of
admissible values, which is not the case in our approach. On the other hand, our
approach assumes, similar to [16], a linear ordering of the desired values which is
not necessary in the vector-valued case; see also [10].

This work is organized as follows. In Sect. 2, we give the concrete form of the
pointwise multi-bang penalty g and summarize its relevant properties. Section 3
is concerned with well-posedness, convergence, and convergence rates of the
corresponding Tikhonov regularization. Our main result, the pointwise convergence
of the regularized solutions to the true parameter, is the subject of Sect. 4. We also
briefly discuss the structure of minimizers for given yı and fixed ˛ > 0 in Sect. 5.
Finally, we address the numerical solution of the Tikhonov minimization problem
using a semismooth Newton method in Sect. 6 and apply this approach to an inverse
source problem for a Poisson equation in Sect. 7.

2 Multi-Bang Penalty

Let u1 < � � � < ud 2 R, d � 2, be the given admissible parameter values and � �
R

n, n 2 N, be a bounded domain. Following [9, § 3], we define the corresponding
multi-bang penalty

G W L2.�/ ! R; G.u/ D
Z

�

g.u.x// dx;

for g W R ! R defined by

g.v/ D
(

1
2

..ui C uiC1/v � uiuiC1/ if v 2 Œui; uiC1�; 1 � i < d;

1 else:

(Note that we have now included the convex constraint u 2 co U in the definition
of G.) This choice can be motivated as the convex hull of 1

2
k � k2

L2.�/
C ıU , where
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ıU denotes the indicator function of the set U defined in (2) in the sense of convex
analysis, i.e., ıU.u/ D 0 if u 2 U and 1 else; see [9, § 3]. Setting

gi.v/ WD 1

2
..ui C uiC1/v � uiuiC1/ ; 1 � i < d;

it is straightforward to verify that

g.v/ D max
1�i<d

gi.v/; v 2 Œu1; ud�;

and hence g is the pointwise supremum of affine functions and therefore convex and
continuous on the interior of its effective domain dom g D Œu1; ud�.

We can thus apply the sum rule and maximum rule of convex analysis (see, e.g.,
[22, Props. 4.5.1 and 4.5.2, respectively]), and obtain for the convex subdifferential
at v 2 dom g that

@g.v/ D @

�
max
1�i<d

gi C ıŒu1;ud �

�
.v/

D @

�
max
1�i<d

gi

�
.v/ C @ıŒu1;ud �.v/

D co

0
@ [

iWg.v/Dgi.v/

g0
i.v/

1
A C @ıŒu1;ud �.v/:

Using the definition of gi together with the classical characterization of the
subdifferential of an indicator function via its normal cone yields the explicit
characterization

@g.v/ D

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

��1; 1
2
.u1 C u2/

�
if v D u1;˚

1
2
.ui C uiC1/

�
if v 2 .ui; uiC1/; 1 � i < d;�

1
2
.ui�1 C ui/;

1
2
.ui C uiC1/

�
if v D ui; 1 < i < d;�

1
2
.ud�1 C ud/; 1�

if v D ud;

; else:

(3)

In Sects. 5 and 6, we will also make use of the subdifferential of the Fenchel
conjugate g� of g. Here we can use the fact that g is convex and hence q 2 @g.v/ if
and only if v 2 @g�.q/ (see, e.g., [22, Prop. 4.4.4]) to obtain

@g�.q/ 2

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

fu1g if q 2 ��1; 1
2
.u1 C u2/

�
;

Œui; uiC1� if q D 1
2
.ui C uiC1/; 1 � i < d;

fuig if q 2 �
1
2
.ui�1 C ui/;

1
2
.ui C uiC1/

�
; 1 < i < d;

fudg if q 2 �
1
2
.ud�1 C ud/; 1�

;

; else.

(4)
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Fig. 1 Structure of pointwise multibang penalty for the choice .u1; u2; u3/ D .0; 1; 2/. (a) g,
(b) @g, (c) @g�

(Note that subdifferentials are always closed.) We illustrate these characterizations
for a simple example in Fig. 1.

Finally, since g is proper, convex, and lower semi-continuous by construction,
the corresponding integral functional G W L2.�/ ! R is proper, convex and weakly
lower semicontinuous as well; see, e.g., [2, Proposition 2.53]. Furthermore, the sub-
differential can be computed pointwise as

@G.u/ D ˚
v 2 L2.�/ W v.x/ 2 @g.u.x// for almost every x 2 �

�
; (5)

see, e.g., [2, Prop. 2.53]. The same is true for the Fenchel conjugate G� W L2.�/ !
R and hence for @G� (which is thus an element of L1.�/ instead of L2.�/); see,
e.g., [12, Props. IV.1.2, IX.2.1].

3 Multi-Bang Regularization

We consider for a linear operator K W X ! Y between the Hilbert spaces X D L2.�/

and Y and exact data y� 2 Y the inverse problem of finding u 2 X such that

Ku D y�: (6)

We assume that K is weakly closed, i.e., un * u and Kun * y imply y D Ku. For
the sake of presentation, we also assume that (6) admits a solution u� 2 X. Let now
yı 2 Y be given noisy data with k yı � y�kY � ı for some noise level ı > 0. The
multi-bang regularization of (6) for ˛ > 0 then consists in solving

min
u2X

1

2
kKu � yık2

Y C ˛G.u/: (7)

SinceG is proper, convex and semi-continuous with bounded effective domain co U,
and K is weakly closed, the following results can be proved by standard semi-
continuity methods; see also [9, 10].
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Proposition 1 (Existence and Uniqueness) For every ˛ > 0, there exists a
minimizer uı

˛ to (7). If K is injective, this minimizer is unique.

Proposition 2 (Stability) Let f yngn2N � Y be a sequence converging strongly to
yı 2 Y and ˛ > 0 be fixed. Then the corresponding sequence of minimizers fungn2N
to (7) contains a subsequence converging weakly to a minimizer uı

˛.

We now address convergence for ı ! 0. Recall that an element u� 2 X is called
a G-minimizing solution to (6) if it is a solution to (6) and G.u�/ � G.u/ for all
solutions u to (6). The following result is standard as well; see, e.g., [17, 21, 23].

Proposition 3 (Convergence) Let f yıngn2N � Y be a sequence of noisy data with
k yın � y�kY � ın ! 0, and choose ˛n WD ˛n.ın/ satisfying

lim
n!1

ı2
n

˛n
D 0 and lim

n!1 ˛n D 0:

Then the corresponding sequence of minimizers fuın
˛n

gn2N to (7) contains a subse-
quence converging weakly to a G-minimizing solution u�.

For convex nonsmooth regularization terms, convergence rates are usually
derived in terms of the Bregman distance [5], which is defined for u1; u2 2 X and
p1 2 @G.u1/ as

dp1

G .u2; u1/ D G.u2/ � G.u1/ � h p1; u2 � u1iX:

From the convexity of G, it follows that dp1

G .u2; u1/ � 0 for all u2 2 X. Furthermore,
we have from, e.g., [17, Lem. 3.8] the so-called three-point identity

dp1

G .u3; u1/ D dp2

G .u3; u2/ C dp1

G .u2; u1/ C . p2 � p1/.u3 � u2/ (8)

for any u1; u2; u3 2 X and p1 2 G.u1/ and p2 2 @G.u2/. Finally, we point out
that due to the pointwise characterization (5) of the subdifferential of the integral
functional G, we have that

dp
G.u2; u1/ D

Z
�

dp.x/
g .u2.x/; u1.x//dx (9)

for

dq
g.v2; v1/ D g.v2/ � g.v1/ � q.v2 � v1/:

Standard arguments can then be used to show convergence rates for a priori and
a posteriori parameter choice rules under the usual source conditions; see, e.g., [6,
17, 20, 21, 23]. Here we follow the latter and assume that there exists a w 2 Y such
that

p� WD K�w 2 @G.u�/: (10)
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Under the a priori choice rule

˛ D cı for some c > 0; (11)

we obtain the following convergence rate from, e.g., [17, Cor. 3.4].

Proposition 4 (Convergence Rate, A Priori) Assume that the source condi-
tion (10) holds and that ˛ D ˛.ı/ is chosen according to (11). Then there exists
a C > 0 such that

dp�

G .uı
˛; u�/ � Cı:

We obtain the same rate under the classical Morozov discrepancy principle

ı < kKuı
˛ � yıkY � �ı; (12)

for some � > 1 from, e.g., [17, Thm. 3.15].

Proposition 5 (Convergence Rate, A Posteriori) Assume that the source condi-
tion (10) holds and that ˛ D ˛.ı/ is chosen according to (12). Then there exists a
C > 0 such that

dp�

G .uı
˛; u�/ � Cı:

4 Pointwise Convergence

The pointwise definition (9) of the Bregman distance together with the explicit
pointwise characterization (3) of subgradients allows us to show that the con-
vergence in Proposition 3 is actually pointwise if u�.x/ 2 fu1; : : : ; udg almost
everywhere. The following lemma provides the central argument for pointwise
convergence.

Lemma 1 Let v� 2 fu1; : : : ; udg and q� 2 @g.v�/ satisfying

q� 2

8̂
ˆ̂̂<
ˆ̂̂̂
:

˚
1
2
.ui C uiC1/

�
if v� 2 .ui; uiC1/; 1 � i < d;�

1
2
.ui C ui�1/;

1
2
.ui C uiC1/

�
; if v� D ui; 1 < i < d��1; 1

2
.u1 C u2/

�
; if v� D u1�

1
2
.ud C ud�1/; 1�

; if v� D ud

(13)

Furthermore, let fvngn2N � Œu1; ud� be a sequence with

dq�

g .vn; v�/ ! 0:

Then, vn ! v�.
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Proof We argue by contraposition: Assume that vn does not converge to v� D ui

for some 1 � i � d. Then there exists an " > 0 such that for every n0 2 N, there
is an n � n0 with jvn � v�j > ", i.e., either vn > ui C " or vn < ui � ". We now
further discriminate these two cases. (Note that some cases cannot occur if i D 1 or
i D d.)

(i) vn > uiC1: Then, vn 2 .uk; ukC1� for some k � iC1. The three point identity (8)
yields that

dq�

g .vn; v�/ D d
qiC1
g .vn; uiC1/ C dq�

g .uiC1; v�/ C .qiC1 � q�/.vn � uiC1/

for qiC1 2 @g.uiC1/. We now estimate each term separately. The first term is
nonnegative by the properties of Bregman distances. For the last term, we can
use the assumption (13) and the pointwise characterization (3) to obtain

q� 2
	

1
2 .ui C ui�1/; 1

2 .ui C uiC1/



and qiC1 2
h

1
2 .uiC1 C ui/;

1
2 .uiC1 C uiC2/

i
;

which implies that qiC1 �q� > 0. By assumption we have vn �uiC1 > 0, which
together implies that the last term is strictly positive. For the second term, we
can use that v�; uiC1 2 Œui; uiC1� to simplify the Bregman distance to

dq�

g .uiC1; v�/ D 1

2
.uiC1 � ui/.uiC1 C ui � 2q�/ > 0;

again by assumption (13). Since this term is independent of n, we obtain the
estimate

dq�

g .vn; v�/ > dq�

g .uiC1; v�/ DW "1 > 0:

(ii) ui < vn � uiC1: In this case, we can again simplify

dq�

g .vn; v�/ D 1

2
.uiC1 C ui � 2q�/.vn � v�/ > C1";

since C1 WD 1
2
.uiC1 C ui � 2q�/ > 0 by assumption (13) and vn � v� > " by

hypothesis.
(iii) vn < ui: We argue similarly to either obtain

dq�

g .vn; v�/ > dq�

g .ui�1; v�/ DW "2 > 0

or

dq�

g .vn; v�/ > C2"

for C2 WD � 1
2
.ui�1 C ui � 2q�/ > 0.
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Thus if we set Q" WD minf"1; "2; C1"; C2"g, for every n0 2 N we can find n � n0 such
that dq�

g .vn; v�/ > Q" > 0. Hence, dq�

g .vn; v�/ cannot converge to 0. ut
Assumption (13) can be interpreted as a strict complementarity condition for q�

and v�. Comparing (13) to (3), we point out that such a choice of q� is always
possible. If v� … fu1; : : : ; udg, on the other hand, convergence in Bregman distance
is uninformative.

Lemma 2 Let v� 2 .ui; uiC1/ for some 1 � i < d and q� 2 @g.v�/. Then we have

dq�

G .v; v�/ D 0 for any v 2 Œui; uiC1�:

Proof By the definition of the Bregman distance and the characterization (3) of
@g.v�/ (which is single-valued under the assumption on v�), we directly obtain

dq�

g .v; v�/ D 1

2
Œ.ui C uiC1/v � uiuiC1� � 1

2
Œ.ui C uiC1/v

� � uiuiC1�

� 1

2
.ui C uiC1/.v � v�/ D 0

for any v 2 Œui; uiC1�. ut
Lemma 1 allows us to translate the weak convergence from Proposition 3 to

pointwise convergence, which is the main result of our work.

Theorem 1 Assume the conditions of Proposition 3 hold. If u�.x/ 2 fu1; : : : ; udg
almost everywhere, the subsequence uın

˛n
! u� pointwise almost everywhere.

Proof From Proposition 3, we obtain a subsequence fungn2N of fuın
˛n

gn2N converging
weakly to u�. Since G is convex and lower semicontinuous, we have that

G.u�/ � lim inf
n!1 G.un/ � lim

n!1G.un/: (14)

By the minimizing properties of fungn2N and the nonnegativity of the discrepancy
term, we further obtain that

˛nG.un/ � 1

2
kKun � yınk2

Y C ˛nG.un/ � ı2
n

2
C ˛nG.u�/:

Dividing this inequality by ˛n and passing to the limit n ! 1, the assumption on
˛n from Proposition 3 yields that

lim
n!1G.un/ � G.u�/;
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which combined with (14) gives limn!1 G.un/ D G.u�/. Hence, un * u� implies

that dp�

G .un; u�/ ! 0 for any p� 2 @G.u�/. By the pointwise characterization (9) and

the nonnegativity of Bregman distances, this implies that dp�.x/
g .un.x/; u�.x// ! 0

for almost every x 2 �. Choosing now p� 2 @G.u�/ such that (13) holds for q� D
p�.x/ and v� D u�.x/ almost everywhere, the claim follows from Lemma 1. ut
Since un.x/ 2 Œu1; ud� by construction, the subsequence fungn2N is bounded in
L1.�/ and hence also converges strongly in Lp.�/ for any 1 � p < 1
by Lebesgue’s dominated convergence theorem. We remark that since Lemma 1
applied to un.x/ and u�.x/ does not hold uniformly in �, we cannot expect that the
convergence rates from Propositions 4 and 5 hold pointwise or strongly as well.

5 Structure of Minimizers

We now briefly discuss the structure of reconstructions obtained by minimizing
the Tikhonov functional in (7) for given yı 2 Y and fixed ˛ > 0, based on the
necessary optimality conditions for (7). Since the discrepancy term is convex and
differentiable, we can apply the sum rule for convex subdifferentials. Furthermore,
the standard calculus for Fenchel conjugates and subdifferentials (see, e.g., [22])
yields for G˛ WD ˛G that G�̨. p/ D ˛G�.˛�1p/ and hence that p 2 @G˛.u/ if and
only if u 2 @G�̨. p/ D @G�. 1

˛
p/. We thus obtain as in [8] that Nu WD uı

˛ 2 L2.�/ is a
solution to (7) if and only if there exists a Np 2 L2.�/ satisfying

8̂
<̂
ˆ̂:

Np D K�. yı � K Nu/

Nu 2 @G�̨.Np/ WD
(

fuig Np.x/ 2 Qi; 1 � i � d;

Œui; uiC1� Np.x/ 2 Qi;iC1 1 � i < d:

(15)

for

Q1 D ˚
q W q < ˛

2
.u1 C u2/

�
;

Qi D ˚
q W ˛

2
.ui�1 C ui/ < q < ˛

2
.ui C uiC1/

�
; 1 < i < d;

Qd D ˚
q W q > ˛

2
.ud�1 C ud/

�
;

Qi;iCi D ˚
q W q D ˛

2
.ui C uiC1/

�
; 1 � i < d:

Here we have made use of the pointwise characterization in (4) and reformulated
the case distinction in terms of Np.x/ instead of 1

˛
Np.x/.

First, we obtain directly from (15) the desired structure of the reconstruction Nu:
Apart from a singular set

S WD ˚
x 2 � W Np.x/ D ˛

2
.ui C uiC1/ for some 1 � i < d

�
;
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we always have Nu.x/ 2 fu1; : : : ; udg. For operators K where K�w cannot be constant
on a set of positive measure unless w D 0 locally (as is the case for many operators
involving solutions to partial differential equations; see [8, Prop. 2.3]) and yı …
ran K, the singular set S has zero measure and hence the “multi-bang” structure
Nu 2 fu1; : : : ; udg almost everywhere can be guaranteed a priori for any ˛ > 0.

Furthermore, we point out that the regularization parameter ˛ only enters via the
case distinction. In particular, increasing ˛ shifts the conditions on Nu.x/ such that
the smaller values among the ui become more preferred. In fact, if Np is bounded, we
can expect that there exists an ˛0 > 0 such that Nu � u1 for all ˛ > ˛0. Conversely,
for ˛ ! 0, the second line of (15) reduces to

Nu.x/ 2

8̂
<̂
ˆ̂:

fu1g if Np.x/ < 0;

fudg if Np.x/ > 0;

Œu1; ud� if Np.x/ D 0;

i.e., (15) coincides with the well-known optimality conditions for bang-bang control
problems; see, e.g., [25, Lem. 2.26]. Since in the context of inverse problems, we
only have ˛ D ˛.ı/ ! 0 if ı ! 0, the limit system (15) will contain consistent
data and hence Np � 0. This allows recovery of u�.x/ 2 fu2; : : : ; ud�1g on a set of
positive measure, consistent with Theorem 3. However, if u�.x/ 2 fu1; : : : ; udg does
not hold almost everywhere, we can only expect weak and not strong convergence,
cf. [10, Prop. 5.10 (ii)].

6 Numerical Solution

In this section we address the numerical solution of the Tikhonov minimization
problem (7) for given yı 2 Y and ˛ > 0, following [9]. For the sake of presentation,
we omit the dependence on ˛ and ı from here on. We start from the necessary
(and, due to convexity, sufficient) optimality conditions (15). To apply a semismooth
Newton method, we replace the subdifferential inclusion Nu 2 @G�̨.Np/ by its single-
valued Moreau–Yosida regularization, i.e., we consider for � > 0 the regularized
optimality conditions

(
p� D K�. yı � Ku� /

u� D .@G�̨/� . p�/:
(16)

The Moreau–Yosida regularization can also be expressed as

H� WD .@G�̨/� D @.G˛;� /�
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for

G˛;� .u/ WD ˛G.u/ C �

2
kuk2

L2.�/
;

see, e.g., [3, Props. 13.21, 12.29]. This implies that for .u� ; p� / satisfying (16), u�

is a solution to the strictly convex problem

min
u2L2.�/

1

2
kKu � yık2

Y C ˛G.u/ C �

2
kuk2

L2.�/
;

so that existence of a solution can be shown by the same arguments as for (7).
Note that by regularizing the conjugate subdifferential, we have not smoothed the
nondifferentiability but merely made the functional (more) strongly convex. The
regularization of G�̨ instead of G� also ensures that the regularization is robust for
˛ ! 0. From [9, Prop. 4.1], we obtain the following convergence result.

Proposition 6 The family fu�g�>0 satisfying (16) contains at least one subsequence
fu�ngn2N converging to a global minimizer of (7) as n ! 1. Furthermore, for any
such subsequence, the convergence is strong.

From [11, Appendix A.2] we further obtain the pointwise characterization

ŒH� . p/�.x/ D
(

ui if p.x/ 2 Q�
i ; 1 � i � d;

1
�
. p.x/ � ˛

2
.ui C uiC1// if p.x/ 2 Q�

i;iC1; 1 � i < d;

where

Q�
1 D ˚

q W q < ˛
2

..1 C 2�/u1 C u2/
�

;

Q�
i D ˚

q W ˛
2

.ui�1 C .1 C 2�/ui/ < q < ˛
2

..1 C 2�/ui C uiC1/
�

for 1 < i < d;

Q�
d D ˚

q W ˛
2

.ud�1 C .1 C 2�/ud/ < q
�

;

Q�

i;iC1
D ˚

q W ˛
2

..1 C 2�/ui C uiC1/ � q � ˛
2

.ui C .1 C 2�/uiC1/
�

for 1 � i < d:

Since H� is a superposition operator defined by a Lipschitz continuous and
piecewise differentiable scalar function, H� is Newton-differentiable from Lr.�/ !
L2.�/ for any r > 2; see, e.g., [18, Example 8.12] or [26, Theorem 3.49]. A Newton
derivative at p in direction h is given pointwise almost everywhere by

ŒDNH� . p/h�.x/ D
(

1
�

h.x/ if p.x/ 2 Q�
i;iC1; 1 � i < d;

0 else.

Hence if the range of K� embeds into Lr.�/ for some r > 2 (which is
the case, e.g., for many convolution operators and solution operators for partial
differential equations) and the semismooth Newton step is uniformly invertible,
the corresponding Newton iteration converges locally superlinearly. We address
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this for the concrete example considered in the next section. In practice, the local
convergence can be addressed by embedding the Newton method into a continuation
strategy, i.e., starting for � large and then iteratively reducing � , using the previous
solution as a starting point.

7 Numerical Examples

We illustrate the proposed approach for an inverse source problem for the Poisson
equation, i.e., we choose K D A�1 W L2.�/ ! L2.�/ for � D Œ0; 1�2 and
A D �� together with homogeneous boundary conditions. We note that since �

is a Lipschitz domain, we have that ran A�� D ran A�1 D H2.�/ \ H1
0.�/, and

hence this operator satisfies the conditions discussed in Sect. 5 that guarantee that
uı

˛.x/ 2 fu1; : : : ; udg almost everywhere if yı … ran K; see [8, Prop. 2.3]. For the
computational results below, we use a finite element discretization on a uniform
triangular grid with 256 � 256 vertices.

The specific form of K can be used to reformulate the optimality condition (and
hence the Newton system) into a more convenient form. Introducing y� D A�1u�

and eliminating u� using the second relation of (16), we obtain as in [8] the
equivalent system

(
A�p� C y� � yı D 0;

Ay� � H� . p�/ D 0:
(17)

Setting V WD H1
0.�/, we can consider this as an equation from V � V to V� � V�,

which due to the embedding V ,! Lp.�/ for p > 2 provides the necessary norm gap
for Newton differentiability of H� . By the chain rule for Newton derivatives from,
e.g., [18, Lem. 8.4], the corresponding Newton step therefore consists of solving for
.ıy; ıp/ 2 V � V given .yk; pk/ 2 V � V in

�
Id A�
A �DNH� . pk/

� �
ıy
ıp

�
D �

�
A�pk C y � yı

Ayk � H� . pk/

�
(18)

and setting

ykC1 D yk C ıy; pkC1 D pk C ıp:

Note that the reformulated Newton matrix is symmetric, which in general is not
the case for nonsmooth equations. Following [8, Prop. 4.3], the Newton step (18)
is uniformly boundedly invertible, from which local superlinear convergence to a
solution of (17) follows.

In practice, we include the continuation strategy described above as well as a
simple backtracking line search based on the residual norm in (17) to improve
robustness. Since the forward operator is linear and H� is piecewise linear, the
semi-smooth Newton method has the following finite termination property: If
H� . pkC1/ D H� . pk/, then .ykC1; pkC1/ satisfy (17); cf. [18, Rem. 7.1.1]. We
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then recover ukC1 D H� . pkC1/. In the implementation, we also terminate if more
than 100 Newton iterations are performed, in which case the continuation is also
terminated and the last successful iterate is returned. Otherwise we terminate if
� < 10�12. In all results reported below, the continuation is terminated successfully.
The implementation of this approach used to obtain the following results can be
downloaded from https://github.com/clason/discreteregularization.

The first example illustrates the convergence behavior of the Tikhonov regular-
ization. Here, the true parameter is chosen as

u�.x/ D u1 C u2 �fxW.x1�0:45/2C.x2�0:55/2<0:1g.x/

C .u3 � u2/ �fxW.x1�0:4/2C.x2�0:6/2<0:02g.x/ (19)

for .u1; u2; u3/ D .0; 0:1; 0:15/; see Fig. 2a. (This might correspond to, e.g., material
properties of background, healthy tissue, and tumor, respectively.) The noisy data is
constructed pointwise via

yı D y� C . Qık y�k1/	;

Fig. 2 True parameter u� for u3 D 0:15 and reconstructions uı
˛ for different values of ı. (a) u�.

(b) uı
˛ for ı � 1:89 � 10�1 . (c) uı

˛ for ı � 2:37 � 10�2 . (d) uı
˛ for ı � 3:69 � 10�4

https://github.com/clason/discreteregularization
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Table 1 Convergence behavior as ı ! 0 for u3 D 0:15: noise level ı, regularization parameter
˛, L2-error e2, L1-error e1

ı ˛ e2 e1 ı ˛ e2 e1

1.52e+0 1.00e�2 1.60e+1 1.50e�1 7.44e�4 6.10e�7 6.86e�1 1.00e�1

7.59e�1 1.25e�3 8.64e+0 1.00e�1 3.69e�4 3.05e�7 4.74e�1 1.00e�1

3.78e�1 6.25e�4 6.18e+0 1.00e�1 1.85e�4 1.53e�7 2.91e�1 7.82e�2

1.89e�1 3.13e�4 4.26e+0 1.00e�1 9.28e�5 7.63e�8 2.27e�1 7.67e�2

9.48e�2 7.81e�5 4.32e+0 1.00e�1 4.64e�5 3.81e�8 1.29e�1 5.73e�2

4.73e�2 3.91e�5 3.67e+0 1.00e�1 2.32e�5 1.91e�8 9.19e�2 4.91e�2

2.37e�2 1.95e�5 2.97e+0 1.00e�1 1.16e�5 9.54e�9 9.32e�2 4.03e�2

1.19e�2 9.77e�6 2.33e+0 1.00e�1 5.79e�6 4.77e�9 4.61e�2 2.30e�2

5.90e�3 4.88e�6 1.76e+0 1.00e�1 2.89e�6 2.38e�9 1.13e�1 5.00e�2

2.95e�3 2.44e�6 1.33e+0 1.00e�1 1.44e�6 5.96e�10 1.70e�2 4.39e�3

1.49e�3 1.22e�6 9.47e�1 1.00e�1

where 	 is a vector of identically and independently normally distributed random
variables with mean 0 and variance 1, and Qı 2 f20; : : : ; 2�20g. For each value of Qı,
the corresponding regularization parameter ˛ is chosen according to the discrepancy
principle (12) with � D 1:1. Details on the convergence history are reported in
Table 1, which shows the effective noise level ı WD k yı � y�k2, the parameter
˛ selected as satisfying the Morozov discrepancy principle, the L2-error e2 WD
kuı

˛ � u�k2 and the L1-error e1 WD kuı
˛ � u�k1. First, we note that the a posteriori

choice approximately follows the a priori choice ˛ 	 ı. Similarly, for larger values
of ı, the L2-error behaves as e2 	 ı, which is no longer true for ı ! 0 (and
cannot be expected due to the nonsmooth regularization). The L1-error e1 is
initially dominated by the jump in admissible parameter values: As long as there
is a single point x 2 � with uı

˛.x/ D ui ¤ uj D u�.x/, we necessarily have
e1 � min1�i<d uiC1 � ui. (Recall that we do not have a convergence rate and thus
an error bound for pointwise convergence.) Later, e1 becomes smaller than this
threshold value, which indicates that apart from points in the regularized singular
set (i.e., where p� .x/ 2 Q�

i;iC1, which in these cases happens for 20 out of 256�256

vertices), the reconstruction is exact. Here we point out that since � is independent
of ˛, the Moreau–Yosida regularization for fixed � becomes more and more active
as ˛ ! 0. Nevertheless, in all cases � 
 ˛, and hence the multi-bang regularization
dominates.

The pointwise convergence can also be seen clearly from Fig. 2, which shows
the true parameter u� together with three representative reconstructions for different
noise levels. It can be seen that for large noise, the corresponding large regular-
ization suppresses the smaller inclusion; see Fig. 2b. This is consistent with the
discussion at the end of Sect. 5. For smaller noise, the inclusion is recovered well
(Fig. 2c), and for ı � 3:69 � 10�4, the reconstruction is visually indistinguishable
from the true parameter (Fig. 2d).
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Fig. 3 True parameter u� for u3 D 0:11 and reconstructions uı
˛ for different values of ı. (a) u�.

(b) uı
˛ for ı � 1:68 � 10�1 . (c) uı

˛ for ı � 2:17 � 10�2 . (d) uı
˛ for ı � 3:29 � 10�4

The behavior is essentially the same if we set .u1; u2; u3/ D .0; 0:1; 0:11/ in (19)
(i.e., a contrast of 10% instead of 50% for the inner inclusion), demonstrating the
robustness of the multi-bang regularization; see Fig. 3 and Table 2.

To illustrate the behavior if the true parameter does not satisfy the assumption
u� 2 fu1; : : : ; udg almost everywhere, we repeat the above for

u�.x/ D u1 C u2 �fxW.x1�0:45/2C.x2�0:55/2<0:1g.x/

C .u3 � u2/.1 � x1/ �fxW.x1�0:4/2C.x2�0:6/2<0:02g.x/

with .u1; u2; u3/ D .0; 0:1; 0:12/; see Fig. 4a. While for large noise level and
regularization parameter value, the multi-bang regularization behaves as before (see
Fig. 4b), the reconstruction for smaller noise and regularization (Fig. 4c) shows
the typical checkerboard pattern expected from weak but not strong convergence;
cf. [8, Rem. 4.2]. Nevertheless, as ı ! 0, we still observe convergence to the true
parameter; see Fig. 4d and Table 3.

Finally, we address the qualitative dependence of the reconstruction on the
regularization parameter ˛. Figure 5 shows reconstructions for the true parameter
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Table 2 Convergence behavior as ı ! 0 for u3 D 0:11: noise level ı, regularization parameter
˛, L2-error e2, L1-error e1

ı ˛ e2 e1 ı ˛ e2 e1

1.34e+0 2.50e�3 1.16e+0 1.10e�1 6.56e�4 6.10e�7 4.55e�1 1.00e�1

6.73e�1 1.25e�3 9.13e+0 1.00e�1 3.29e�4 3.05e�7 2.94e�1 1.00e�1

3.36e�1 6.25e�4 6.89e+0 1.00e�1 1.64e�4 1.53e�7 2.20e�1 6.15e�2

1.68e�1 3.13e�4 4.91e+0 1.00e�1 8.27e�5 7.63e�8 1.87e�1 8.55e�2

8.41e�2 1.56e�4 3.27e+0 1.00e�1 4.11e�5 3.81e�8 6.75e�2 3.35e�2

4.20e�2 3.91e�5 1.90e+0 1.00e�1 2.07e�5 1.91e�8 4.34e�2 1.44e�2

2.17e�2 1.95e�5 1.57e+0 1.00e�1 1.03e�5 9.54e�9 3.72e�2 1.46e�2

1.05e�3 9.77e�6 1.19e+0 1.00e�1 5.12e�6 4.77e�9 3.29e�2 1.31e�2

5.25e�3 4.88e�6 9.81e�1 1.00e�1 2.56e�6 2.38e�9 3.85e�2 1.00e�2

2.64e�3 2.44e�6 8.14e�1 1.00e�1 1.29e�6 2.98e�10 1.65e�1 1.79e�2

1.32e�4 1.22e�6 6.70e�1 1.00e�1

Fig. 4 True parameter u� and reconstructions uı
˛ for different values of ı. (a) u�. (b) uı

˛ for ı �
2:11 � 10�2. (c) uı

˛ for ı � 3:29 � 10�4. (d) uı
˛ for ı � 1:29 � 10�6
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Table 3 Convergence behavior as ı ! 0 for u�: noise level ı, regularization parameter ˛, L2-error
e2, L1-error e1

ı ˛ e2 e1 ı ˛ e2 e1

1.36e+0 2.50e�3 1.17e+1 1.15e�1 6.60e�4 6.10e�7 8.46e�1 1.00e�1

6.77e�1 1.25e�3 9.08e+0 1.00e�1 3.29e�4 1.53e�7 7.23e�1 1.00e�1

3.39e�1 6.25e�4 6.84e+0 1.00e�1 1.66e�4 7.63e�8 6.20e�1 5.63e�2

1.69e�1 3.12e�4 4.81e+0 1.00e�1 8.25e�5 3.81e�8 6.04e�1 5.60e�2

8.48e�2 1.56e�4 3.12e+0 1.00e�1 4.12e�5 1.91e�8 5.69e�1 1.83e�2

4.22e�2 3.91e�5 2.03e+0 1.00e�1 2.06e�5 9.54e�9 5.82e�1 5.60e�2

2.11e�2 1.95e�5 1.67e+0 1.00e�1 1.03e�5 4.77e�9 4.95e�1 5.66e�2

1.05e�2 9.77e�6 1.45e+0 1.00e�1 5.15e�6 2.38e�9 3.39e�1 1.47e�2

5.29e�3 4.88e�6 1.29e+0 1.00e�1 2.58e�6 5.96e�10 2.70e�1 2.61e�2

2.66e�3 2.44e�6 1.18e+0 1.00e�1 1.29e�6 3.73e�11 1.65e�1 1.48e�2

1.32e�3 1.22e�6 9.82e�1 1.00e�1

Fig. 5 True parameter u� and reconstructions uı
˛ for u3 D 0:15, ı � 7:59 � 10�1, and different

˛. (a) u�. (b) uı
˛ for ˛ D 1:25 � 10�3. (c) uı

˛ for ˛ D 10�4. (d) uı
˛ for ˛ D 10�5
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u� from (19) again with .u1; u2; u3/ D .0; 0:1; 0:15/ for an effective noise level
ı � 0:759 and different values of ˛. First, Fig. 5b presents the reconstruction for
the value ˛ D 1:25 � 10�3, where as before the volume corresponding to u2 is
reduced and the inner inclusion corresponding to u3 is suppressed completely. If the
parameter is chosen smaller as ˛ D 10�4, however, the reconstruction of the outer
volume is essentially correct, while the inner inclusion—although reduced—is also
localized well; see Fig. 5c. Visually, this value yields a better reconstruction than
the one obtained by the discrepancy principle. The trade-off is a loss of spatial
regularity, manifested in more irregular level lines, which becomes even more
pronounced for smaller ˛ D 10�5; see Fig. 5d. This behavior is surprising insofar
that the pointwise definition of the multi-bang penalty itself imposes no spatial
regularity on the reconstruction at all; as is evident from (15), any regularity of
the solution Nu is solely due to that of the level sets of Np (which in this case has the
regularity of a solution to a Poisson equation).

8 Conclusion

Reconstructions in inverse problems that take on values from a given discrete
admissible set can be promoted via a convex penalty that leads to a convergent
regularization method. While convergence rates can be shown with respect to
the usual Bregman distance, if the true parameter to be reconstructed takes on
values only from the admissible set, the convergence (albeit without rates) is
actually pointwise. A semismooth Newton method allows the efficient and robust
computation of Tikhonov minimizers.

This work can be extended in several directions. First, Fig. 5 demonstrates
that regularization parameters chosen according to the discrepancy principle are
not optimal with respect to the visual reconstruction quality. This motivates
the development of new, heuristic, parameter choice rules that are adapted to
the discrete-valued, pointwise, nature of the multi-bang penalty. It would also be
interesting to investigate whether an active set condition in the spirit of [28, 29]
based on (13) can be used to obtain strong or pointwise convergence rates. A
natural further step is the extension to nonlinear parameter identification problems,
making use of the results of [9]. Finally, Fig. 5c, d suggest combining the multi-bang
penalty with a total variation penalty to also promote regularity of the level lines
of the reconstruction. The resulting problem is challenging both analytically and
numerically, but would open up the possibility of application to electrical impedance
tomography, which can be formulated as parameter identification problem for the
diffusion coefficient in an elliptic equation.
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