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Preface

The Proceedings volume contains a collection of 16 contributions, written by experts
in the field of Inverse Problems in preparation and in the context of the IMPA
conference “New Trends in Parameter Identification for Mathematical Models,” Rio
de Janeiro, Brazil, Oct 30-Nov 3, 2017, integrating the “Chemnitz Symposium on
Inverse Problems on Tour.” One aim of the conference was to foster the scientific
collaboration between mathematicians and engineers from the Brazilian, American,
European, and Asian communities. This conference has been part of the “Thematic
Program on Parameter Identification in Mathematical Models” organized at IMPA
in October and November 2017. The goal of this thematic program was to bring
together leading scientists in Numerical Analysis and Mechanical Engineering,
being all specialists in inverse problems, for a two-months period at IMPA in order
to present a perspective concerning the current trends and to support the disciplinary
and interdisciplinary collaboration between researchers of the diverse communities.

The contributions of this volume, which are original research papers with a high
degree of novelty, have their focus on the following topics:

* Regularization methods for the stable approximate solution of ill-posed operator
equations in Hilbert and Banach spaces, modeling linear and nonlinear inverse
problems with applications in natural sciences and engineering

* Error analysis, regularization parameter choice, and convergence rates for a num-
ber of regularization approaches (variational regularization, iterated Tikhonov
regularization, sparsity-promoting regularization, regularization by discretiza-
tion, and ADMM)

* Problems of tomography (EIT, SPECT, terahertz tomography, and spherical
surface wave tomography)

 [Iterative regularization methods for inverse problems
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* Novel methods for parameter identification in partial differential equations and
integral equations
* Linear statistical inverse problems and Bayesian inverse problems

Chemnitz, Germany Bernd Hofmann
Florianopolis, Brazil Antonio Leitao
Rio de Janeiro, Brazil Jorge P. Zubelli

November 2017
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Posterior Contraction in Bayesian m)
Inverse Problems Under Gaussian Priors @

Sergios Agapiou and Peter Mathé

Abstract We study Bayesian inference in statistical linear inverse problems with
Gaussian noise and priors in a separable Hilbert space setting. We focus our interest
on the posterior contraction rate in the small noise limit, under the frequentist
assumption that there exists a fixed data-generating value of the unknown. In
this Gaussian-conjugate setting, it is convenient to work with the concept of
squared posterior contraction (SPC), which is known to upper bound the posterior
contraction rate. We use abstract tools from regularization theory, which enable a
unified approach to bounding SPC. We review and re-derive several existing results,
and establish minimax contraction rates in cases which have not been considered
until now. Existing results suffer from a certain saturation phenomenon, when the
data-generating element is too smooth compared to the smoothness inherent in the
prior. We show how to overcome this saturation in an empirical Bayesian framework
by using a non-centered data-dependent prior.

1 Setup

We consider the following linear equation in real Hilbert space
y$ = Kx + 8,

where K:X — Y is a linear operator acting between the real separable Hilbert
spaces X and Y, n ~ A47(0, X) is an additive centered Gaussian noise, and § > 0
is a scaling constant modeling the size of the noise. Here, the covariance operator
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Y Y — Y is a self-adjoint and positive definite bounded linear operator. We
formally pre-whiten this equation and get

=377 = 572Ky + 8,

where now £ ~ .4(0,1) is Gaussian white noise. We assign T := X ~!/2K, and
assume that this is bounded by imposing the condition Z(K) C 2(X~'/?). We
hence arrive to the data model

2= Tx+ 8¢ (1)

This model is to be understood in a weak sense. For each functional b € Y we have
that the real valued random variable (2, b) is Gaussian .4 ((Tx, b), §2||b||?). In this
study we consider the Bayesian approach to the statistical inverse problem of finding
x from the observation z°. We assume Gaussian priors on x, distributed according
to 4(0, ‘f;Co), where Cy : X — X is a positive definite, self-adjoint and trace class
linear operator, and & > 0 is a scaling constant. Linearity suggests that the posterior
is also Gaussian and in this paper we are interested in the asymptotic performance
of the posterior in the small noise limit, § — 0. Actually, it is well known that the
posterior distribution is a tight Gaussian probability on X provided that the prior
distribution was Gaussian and the noise £ is a generalized Gaussian element, as this
is assumed in (1), we refer to [14].

1.1 Squared Posterior Contraction

Consider a frequentist setting, in which we observe data 7% generated from the model
(1) for a fixed underlying true element x* € X and corresponding to a noise level
8. It is then reasonable to expect that for small § and for appropriate values of «,
the posterior Gaussian distribution will concentrate around the true data-generating
element x*. As we discuss below, this concentration will be driven by the following
function.

Squared posterior contraction (SPC):

SPC := EVEY |x* —x|*. .8 > 0. )

Here, the outward expectation is taken with respect to the data generating
distribution, that is, the distribution generating Z¥ when x* is given, and the inward
expectation is taken with respect to the posterior distribution, given data z* and
having chosen a parameter «. The Gaussian posterior distribution has a posterior
mean, say xi = xi(zg;a), and a posterior covariance, say Cg(a), which is
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independent from the data z%, and thus deterministic. Then the inner expectation
obeys the usual bias-variance decomposition

EZ % — x| = |x* =2 | + o [C(@)].

Applying the expectation with respect to the data-generating distribution, we obtain
that

EVEL | —x? = B |« — 2|’ + v [CC@)].

. 2 .
The quantity B ||x* —x || represents the mean integrated squared error (MISE)
of the posterior mean viewed as an estimator of x*, and it has again a bias-

2
variance decomposition into squared bias bf* (o) := ||x* = E* xi H and estimation

* * 2
variance V%(a) := Ef ‘xﬁ —FE xﬁH . We have thus decomposed the squared

posterior contraction into respectively the squared estimation bias, the estimation
variance, and the spread in the posterior distribution

Decomposition of the SPC:

SPC(at, §) = b2 (a) + V(@) + tr [C¥()]. (3)

We emphasize here, that the decomposition remains valid in the more general
case of non-centered Gaussian priors.

First, how do the estimation variance V°(a) and the posterior spread tr [C’(a)]
relate? In previous studies, these quantities appear to be either of the same order, see
proof of [11, Thm 4.1], or the posterior spread dominates the estimation variance,
see proofs of [3, Thm 4.3] and [12, Thm 2.1].

The posterior contraction rate is concerned with the concentration rate of the
posterior distribution around the truth, in the small noise limit § — 0, and given
a prior distribution. This rate is measured by the size of the smallest shrinking
balls around the data generating true element, that contain most of the posterior
probability, see [8]. In the assumed linear Gaussian-conjugate setting, it is well
known that the square root of the convergence rate of SPC is a posterior contraction
rate (see for example [1, Section 7]). Given the prior scaling assumed here, SPC
decays to zero provided that the parameter « is chosen such that @ = «(§) — 0 in
an appropriate manner. It is desirable that the rate of decay is optimal in the minimax
sense for a data-generating element x* of a certain smoothness class' (see [4] for a

"When considering the SPC uniformly over some class of inputs x* then if follows from (3) that the
best (uniform) contraction rate cannot be better than the corresponding minimax rate for statistical
estimation.
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review on the minimax theory for non-parametric statistical inverse problems, and
the recent note [6]).

The study of this decay was the subject of the papers [1, 3, 11, 12] (see also
[10, 18, 20] for results in more general, non Gaussian-conjugate settings). The
obtained rates of convergence depend on the relationship between the regularity
of the data-generating element x* and the (maximal) regularity inherent in the
prior (see [5, § 2.4] for details on the regularity of draws from Gaussian measures
in Hilbert space). The general message is that if the prior regularity matches the
regularity of x*, then the convergence rate of SPC is the minimax-optimal rate
even without rescaling the prior, that is for the scaling considered here, « should
be chosen to be equal to §2. If there is a mismatch between the prior regularity and
the regularity of the truth, then the minimax rate can be achieved by appropriately
rescaling the prior. If the prior is smoother than the truth, then there exists an a
priori parameter choice rule « = «(§) such that ‘iz — oo as § — 0, which gives
the optimal rate. If however the prior is rougher than the truth, then the minimax
rate can be achieved by appropriate choices « = «(8) such that ‘fj — 0 as
8 — 0, in general only up to a maximal smoothness of x*. For true data-generating
elements with smoothness higher than that maximal one, the achieved rate is
suboptimal. As quoted in [11], rescaling can make the prior arbitrarily ‘rougher’
but not arbitrarily ‘smoother’. A closer look at the situation reveals, and we shall
highlight this in our subsequent analysis, that the estimation bias, which is part of
the SPC in (3), is responsible for this phenomenon. Bounds for the bias depend on
the inter-relation between the underlying solution smoothness and the capability of
the chosen (Tikhonov-type since we have Gaussian priors) reconstruction by means
of xi to take it into account. The capability of such a scheme to take smoothness
into account is called qualification of the scheme, whereas the limited decay rate of
the bias, as « — 0, due to the chosen reconstruction scheme, is called saturation
of the scheme. Details will be given below. In Sect. 4 we shall review results known
so far. But the present approach (using general link conditions, and also general
smoothness) entails to derive these results in a unified manner. Moreover, we can
establish results for settings which have not been known beforehand, some of them
carry features, not expected beforehand.

From a statistical point of view, it is desirable to use priors which achieve the
minimax-optimal rate for x* in a range of smoothness classes, without the a priori
knowledge of the exact smoothness of x*. Such priors are called rate adaptive.
The results referenced in the above paragraph show that Gaussian priors are not
rate adaptive over e.g. the Sobolev smoothness class, but also suggest ways of
overcoming this. In the literature there have been two strategies of building on
Gaussian priors to obtain more elaborate priors that are rate adaptive. The first
one, see e.g. in [19], is to attempt to learn the correct scaling from the data,
either by using a maximum likelihood empirical Bayes approach, or by a fully
hierarchical approach. The obtained results show that the minimax rate is achieved
but unsurprisingly only up to a maximal regularity of the truth (what is actually
surprising, is that this maximal regularity is smaller than the one for the oracle type
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choice of ). In statistical language, the corresponding priors are rate adaptive but
only in a range of smoothness classes; they are not fully rate adaptive. The second
strategy, see e.g. in [13], is to not rescale the prior but rather attempt to learn the
correct regularity from the data, again either using a maximum likelihood empirical
Bayes or a fully hierarchical approach. Indeed, the obtained results show that the
minimax rate is achieved by both of the approaches, hence the corresponding priors
are fully rate adaptive.

From a computational point of view, both of the above mentioned approaches
to rate adaptivity can be difficult to implement. On the one hand as it is shown
in [2], the implementation of the hierarchical approach in non-trivial problems is
problematic in high dimensions and for small noise (it is much more difficult in
the case of learning the regularity compared to the case of learning the scaling),
while on the other hand the above empirical Bayes approaches involve solving an
optimization problem which also becomes difficult for non-trivial problems.

Hence, another focus of this study is to discuss a simple way to overcome the
saturation effect, which in turn will open up the possibility of designing other
empirical Bayes approaches which are fully rate adaptive.

1.2 Paradigm

We consider the following alternative paradigm. Suppose we want to use a Gaussian
prior with covariance Cy, and prior mean mg to perform posterior inference for
the problem (1). The question we address is whether the prior center my has
a significant impact on the posterior contraction rate, and if so, how to choose
it ‘optimally’ in the presence of data. The subsequent analysis will show that
the convergence rate of SPC will improve by an appropriate adjustment of the
prior if the underlying solution x* has large smoothness. In terms of the previous
discussion, for a prior of fixed smoothness this enables us to make a priori choices
of @ = () such that the posterior contraction rate is minimax-optimal even
for higher smoothness of x*, by choosing an appropriate center mg of the prior
distribution. The proposed re-centering ny = my(z*; a) of the prior depends on the
data 7’ and the parameter «, it is not static. However, it can easily be managed by a
regularization step preprocessing the Bayes step. We anticipate these results in the
following Fig. 1. This figure highlights the results as described in Sect. 4.1.1, where
the parameters a, p > 0 are explained.
We capture the advantages in a few lines:

— the user may choose a (centered) Gaussian prior of arbitrary smoothness;

— after observing data z°, a prior center, say my = mo(z’; @) is determined by some
deterministic regularization;

— if this preprocessing regularization has enough qualification, then the posterior
distribution will contract order optimally regardless of the solution smoothness.
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Fig. 1 Exponents of convergence rates of SPC plotted against Sobolev-like smoothness of the
truth B, for different methods of choosing the prior mean ¢, in the moderately ill-posed problem
discussed in Sect. 4.1.1. We set D := 1 + 2a + 2p, the saturation point when no preconditioning
of the prior mean is used. Rates calculated fora = 0.5, p = 1

If not, then the contraction rate is at least as good as the rate corresponding to a
centered prior.

— this preprocessing step has no effect on the parameter choice; so any choice o =
(8; z*) which yields ‘optimal’ contraction without preprocessing will retain this
property, and will eventually extend this optimality property for higher solution
smoothness.

1.3 Outline

In order to explain the new paradigm we first study the impact of using a non-
centered prior to the posterior mean and covariance. Then we specify the prior
centering by means of using a linear regularization in Eq. (4), as such is known from
regularization theory. Next, we provide explicit representations of the quantities
involved in the subsequent analysis, the posterior mean, the posterior covariance,
and formulas for the bias and estimation variance, see Eqs. (5)—(8).

The main results are given in Sect. 3, after confining ourselves to the case of
commuting operators Cy and T*7, expressed in terms of a specific link condition.
We first derive bounds for the estimation bias in Proposition 2, and these bounds are
crucial for overcoming the saturation. Then we introduce the net posterior spread in



Bayesian Inverse Problems Under Gaussian Priors 7

Sect. 3.3, which is the unscaled version of the posterior spread, and we highlight its
properties. We then combine to obtain our main result on the convergence of SPC,
which is Theorem 1.

To emphasize the significance of our results we discuss in Sect.4 specific
examples some of which were previously studied in [3, 11, 12]. In order to facilitate
the reading of the study we postpone all proofs to the Appendix.

2 Setting the Pace

As mentioned above, we shall discuss a preprocessing of the prior by choosing it
non-central, that is, we will introduce a shift m, such that the prior will be Gaussian
with A (my, izCo). We are interested in understanding the impact of the shift m, on
the convergence rate of SPC. We start with deriving (well-known) formulas for the
posterior mean x5 in this context.

We first recall the representation of the posterior mean m and posterior covari-
ance C when a centered prior .4 (0, ‘ZZCO) is used. In this case we know, see for
example [14, 16], that almost surely with respect to the joint distribution of (x, z%)
the posterior is Gaussian, .4 (m, C), with mean m = C(l)/2 (ol + B*B)_1 B*7,

and covariance C = SZC(I)/ 2 (ol —|—B"‘B)_1 C(l)/ 2, where we define the compact

1
operator B := TC; . Re-centering the prior towards mg does not affect the posterior
covariance C. To obtain the shift in the posterior mean we rewrite (1) as

D —Tmy = T(x — mg) + 8§

Thus if x ~ A (mg, Cp) then x —my ~ A (0, Cp). We are in the usual context with
centered prior but new data z° — Tmy.

Remark I We fix once and for all the function s, (f) = «/(x + ¢), applied to the
self-adjoint operator B*B by using spectral calculus. This is the residual function
for Tikhonov regularization. This is done in order to distinguish the (Tikhonov)
regularization in the posterior mean due to the use of a Gaussian prior, from the
chosen regularization for the prior preconditioning.

We obtain the representation for the posterior mean (shifting back towards my) as

xi =my + C(l)/2 (Oé[ + B*B)_1 B*(z® — Tmy)

= ¢y (al + B*B) ™' B*Z + mo — Cy/* (I + B*B) ™' B*Tmy

= ¢ (ol +B*B) " B + ¢ (1= (et + B°B) ' B*B) ;g

=) (ol + B*B) ™' B*Z + C)*5a(B*B)Cy *mo.
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It is well-understood from previous Bayesian analyses that a static choice of
mgo will not have impact on the posterior contraction. However, within our new
paradigm we choose any regularization scheme g, and assign the prior center as

mo(2’; @) == m’ (l)/zga (B*B)B*Z°. 4)

o —

We introduce linear regularization schemes as follows, cf. [7, 9].

Definition 1 (Linear Regularization) Let » = ||B*B||. A family of piece-
wise continuous functions g,: (0,b] — R, o > 0, is called regularization
filter with residual function r, (f) = 1 — tg, (1), «,0 <t < b, if

L. supy.,<p |re (8)] < o, forall a > 0,
2. limg_s0 74 (f) = 0 foreach 0 < ¢ < b, and
3. supg,<p 8o ()| < y«/a, forall a > 0.

Remark 2 The last assertion in Definition 1 is actually stronger than the one
required in [9], but it is a convenient strengthening, and most known regularization
schemes obey this stronger bound.

Remark 3 We use the following convention: if no preconditioning is used, that is, if
g«(t) = 0, then we assign the constant function r,(#) = 1, in order to simplify the
comparison of the different settings. Specifically, without preprocessing we would
naturally (and statically) use mg := 0 as the prior mean.

Example 1 (Tikhonov Regularization) One of the commonly used regularization
schemes is Tikhonov regularization, in which case the filter g, is given as g,(f) =
1/(0 4+ 1), o, > 0. Notice that in the case my = 0, the posterior mean has the form
of the right hand side in Eq. (4) with g, being the Tikhonov filter.

Example 2 (k-fold Tikhonov Regularization) We may iterate Tikhonov regulariza-

tion, starting from the trivial element xp, = 0 as

+ (el +BB) ' B*( —Bx_,). j=1.....k

5 ._ .6
xj,oc T xj—l,oz

For k = 1 this gives Tikhonov regularization. The resulting linear regularization is

o

. . e l
given by the function gy = | (1 — (%,

)k) , t > 0, with corresponding residual

. k . oo . .
function ry 4 = (ai t) , t > 0. This regularization results in the prior center m} =

1
Gy’ , = Clg1a(B*B)B*2.
Example 3 (Spectral Cut-Off, Truncated SVD) This is a versatile scheme, which

requires to know the singular value decomposition of the underlying operator. If
this is available, then we let g, (t) = 1/, fort > « and g,(t) = 0 else.
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We summarize the previous considerations and fix the notation which will be
used subsequently. Given prior mean m$ from (4), we have that the posterior distri-
bution is Gaussian with the following posterior mean and posterior covariance.

Posterior mean:

© =Cy? (el + B*B)” B*Z + C}*5(B*B)C, i, )
Posterior covariance C := C%(a):

C'(a) = 8°Cy* (el + B*B) ' C)/°. (©)

Recall the decomposition of the SPC from (3). We have that the spread is given
as tr [C8 (oc)]. We next give expressions for the corresponding estimation bias and
estimation variance.

Lemma 1l Let xi be as in (5). Then the estimation bias and estimation variances,
with posterior mean as estimator, are

b (o) = H L5 (B*B)ra (B*B)C, x| .« >0, %
and

V(@) = 8’tr [(1 +ag.(B*B))” (ol + B*B)_ZB*BCO] a8 >0, (8)
respectively.

Proposition 1 Let the prior center be obtained from any regularization (with
corresponding constant yx ). Then we have that

V(@) < (1+ 7o)’ [CP(a)]. ©)
Consequently we have that
B v =2 |* < SPC(e, ) < b2(@) + (1 + (1 + )?) r [CP(@)] .
Remark 4 The above analysis extends the previous bound from [15, Prop 2] to the
present context (note that without preprocessing we have that y,. = 0). We also note

that the decay of the squared posterior contraction cannot be faster than the minimax
error for statistical estimation.



10 S. Agapiou and P. Mathé

We thus have that in order to (asymptotically) bound the squared posterior contrac-
tion, we only need to establish bounds for the bias and the posterior spread.

3 Assumptions and Main Results

We are now ready to present our main results. Before we do so, in Sect.3.1
we introduce several concepts used in our formulation. First, we introduce link
conditions, relating the two operators appearing in the setting at hand. Then we
introduce source sets, which we use for expressing the regularity of the truth.
Finally, we introduce the qualification of a regularization which quantifies its
capability to take high smoothness into account. We then present our bounds for
the bias and the posterior spread in Sects. 3.2 and 3.3 respectively. In Sect. 3.4 we
present a priori bounds for the squared posterior contraction.

3.1 Link Conditions, Source Sets and Qualification

We call a function ¢: (0, 00) — R™ an index function if it is a continuous
non-decreasing function which can be extended to take the value zero at the
origin.

Remark 5 The property of interest of an index function is its asymptotic behavior
near the origin. In some cases the ‘native’ index function is not defined on (0, c0),
but only on some sub-interval, say (0,7). Consider for example the logarithmic
function ¢(¢) = log™#(1/t), 0 < t < ¢ = 1 with ¢(0) = 0. Then one can extend
the function ¢ at some interior point 0 < fy < 7 in an increasing way, for instance
as (1) = ¢(ty) + (t—1y), t > tp. By doing so we ensure that the extended function
shares the same asymptotic properties near zero, that is, as r \ 0. In all subsequent
(asymptotic) considerations it suffices to have such extensions, and this will not be
mentioned explicitly.

To simplify the outline of the study we confine ourselves to commuting opera-
tors Cp and T*T. Specifically we do this as follows.

Assumption 1 (Link Condition) There is an index function \ such that

Y2 (Co) = T*T. (10)
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Along with the function ¥ we introduce the function

Oy () == V1Y (n), t>0. (11)

We draw the following consequence.

Lemma 2 Let  be the index function for which Assumption 1 holds. Then the
operators Cy and T*T commute. Moreover we have that

0;(Co) = B*B.

Following the last lemma, we set

. 1/2
£(s) := ((03) (s)) . s>0. (12)

We stress that the function f is an index function, since the function @, was one.
Moreover, the function @5/ is strictly increasing, such that its inverse is a well
defined strictly increasing index function. Finally, as can be drawn from Lemma 2,
we have that under Assumption 1 it holds

c)> = fB*B). (13)

Remark 6 We remark the following about Assumption 1.

— The case that the operator T is the identity is not covered by this assumption.
This would require the function ¢ = 1, which does not constitute an index
function. However, for the subsequent analysis we shall only use Lemma 2. As
seen from (13) we obtain that Oy (1) = /1, t > 0, in this case.

— If the prior Cy has eigenvalues with multiplicities higher than one, then by
Assumption 1 the operator T*T also needs to have eigenvalues with higher
multiplicities, since taking functions of operators preserves or increases the
multiplicities of the eigenvalues. This is not realistic, hence one should choose a
prior covariance with eigenvalues of multiplicity one. This can be achieved by a
slight perturbation of the original choice.

In order to have a handy notation we agree to introduce the following partial
ordering between index functions.

Notation 1 Let f, g be index functions. We say that f < g if the quotient g/f
is non-decreasing. In other words f < g if g decays to zero faster than f.
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For bounding the bias below we shall assume that the smoothness of the
underlying true data-generating element x*, is given as a source set with respect
to Cp.

Definition 2 (Source Set) There is an index function ¢ such that

X €Ay i=1{x, x=¢(Cow, |w| <1}.

The element w € X is called source element.

By Lemma 2 the source set A, can be rewritten as
Ag = {x. x=o(fA(B*B)w, |wl <1},

with the function f from (12). Furthermore, under Assumption 1 the operators Cy
and B* B commute, and hence the bias representation from (7) simplifies to

by (o) = ||ra(B*B)so (B*B)x*|| . (14)
Overall, if x* € A, then
be@ = @ B BB EB)| = sup e @lse (ol 0)-

We shall bound this in terms of the parameter o > 0, which directs us to the notion
of a qualification of a regularization, see [9], again.

Definition 3 (Qualification) For an index function ¢, a regularization g, has
qualification ¢ with constant y, if

lre(Mlp(®) < yp(@), a>0, 0<t<|B*B|.

The following result is a well-known consequence, see [9, Prop 2.7] again,
albeit important for the subsequent analysis. We shall use the partial ordering from
Definition 1.

Lemma 3 Let g, be a regularization with index function ¢ as a qualification (with
constant y ). If Y is an index function for which y < ¢ then  is also a qualification
(with constant y ).



Bayesian Inverse Problems Under Gaussian Priors 13

Example 4 (Tikhonov Regularization) Tikhonov regularization has (maximal) qual-
ification ¢(t) = ¢, t > 0. Thus, if for an index function i we have that ¥ () < ¢
then v is a qualification. In particular, all concave index functions are qualifications
of Tikhonov regularization with constant y = 1.

Example 5 (Spectral Cut-Off) Spectral cut-off has arbitrary qualification, since
re(t) = 0, t > « and r,(t) = 1 elsewhere. Hence

ra(Me) =0 <g(a), t>a, and ry()e(t) <¢(), t <a.

Remark 7 We immediately see from (7) that the qualification of the regularization
in the bias, can be raised from ¢ (Tikhonov regularization) to 1 if the residual
function r, of the regularization used for preconditioning the prior mean has
qualification #*, as is the case for k-fold Tikhonov regularization, see Example 2.
If preconditioning is done by spectral cut-off, then the regularization in the bias has
arbitrary qualification.

3.2 Bounding the Bias

We are now ready to present our bounds for the bias.

Proposition 2 Suppose that x* € A,, and that mi uses a regularization g, with
constant yo bounding the corresponding residual function.

1. If ¢ < @3, then byx () < yop (f*()), & > 0.

2. If@i < @ and if there was no preconditioning, then there are constants cy, cy >
0 (depending on x*, ¢, f?, and on ||B*B||) such that cio < byx(a) < cra, 0 <
a<1.

3. If@i < @andift — ¢ (fz(t)) /t is a qualification for the regularization g, with
constant y, then byx (o) < y@ (fz(Ol)) ,a>0.

Remark 8 We mention that the above two cases ¢ < @fﬁ or @5/ < @ are nearly
disjoint, with ¢ = @fﬁ being the only common member. Therefore the function @5/
may be viewed as the ‘benchmark smoothness’. However, note that the items (1)
and (3) do not exhaust all possibilities since the function ¢ ( fz(t)) /t may not be a
qualification for g, (in fact it may not even be an index function).

Remark 9 We stress that the bounds in item (2) show the saturation phenomenon
in the bias if no preconditioning of the prior mean is used: for any sufficiently
high smoothness the bias decays with the fixed rate «. In other words, if no
preconditioning of the prior is used, the best achievable rate of decay for the bias
is linear. Item (3) shows that appropriate preconditioning improves things, since for
high smoothness the bias decays at the superlinear rate ¢( f2(a)).
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3.3 The Net Posterior Spread

Here we study the posterior spread, that is, the trace of the posterior covariance
from (6), which will be needed for determining the contraction rate. In order to
highlight the nature of the spread in the posterior within the assumed Bayesian
framework, we make the following definition, for a given equation z% = Tx + £,
with white noise £, as considered in (1).

Definition 4 (Net Posterior Spread) The function
Sra@) =w[c/* (@ +B*B) " ¢*]. >0,

is called the net posterior spread.

Notice that with this function we have that tr [C8 (oz)] = §2Sr.¢,(@0). Moreover,
using the cyclic commutativity of the trace, we get that

Sreo(@) = tr [(al +B*B)” co] . (15)

With this more convenient representation at hand, we establish some fundamental
properties of the net posterior spread, which are crucial for optimizing the conver-
gence rate of SPC in the following subsection.

Lemma 4

1. The function o — St.c,(«) is strictly decreasing and continuous for o > 0.
2. limy—o0 ST, (@) = 0, and
3. lima_)o ST,C() (Ol) = Q.

3.4 Main Result: Bounding the Squared Posterior Contraction

It has already been highlighted that the squared posterior contraction as given in (2)
is decomposed into the sum of the squared bias, estimation variance and posterior
spread, see (3). By Proposition 1 we find that

b)zc* (o) + SZST,CO (¢) < SPC(x) < bf* (o) + ((1 + y*)2 + 1) SZST,CO ().
In the asymptotic regime of 6 — 0, the size of SPC is thus determined by the

sum bf* (o) + 82S7.¢, (). In Sect. 3.2 we have established bounds for the bias. Here
we just constrain to the case where, given that x* € A,, the preconditioning is such
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that the size of the bias is bounded by (a multiple of) ¢(f?(c)), see Proposition 2.
Since b}zc* () is bounded by a non-decreasing function of o which decays to zero as
a N\ 0, while by Lemma 4 the function St ¢,(«) is strictly decreasing, continuous
and onto the positive half-line, the SPC is ‘minimized’ by the choice of « which
balances the bound for the squared bias and the spread. This choice clearly exists
and is unique and hence we immediately arrive to our main result which holds under
Assumption 1.

Theorem 1 Let ¢ be any index function, and assume that item (1) or item (3)
in Proposition 2 hold. Consider the equation

P (fA(@) = 851, (). (16)

Equation (16) is uniquely solvable, and let ax = o« (@, §) be the solution. For
x* € A, we have that SPC(ax, 8) = O(¢*(f*(a+))) as § — 0.

In Sect.4 we show how to apply Theorem 1 to obtain rates of contraction
in specific examples. In many cases, the obtained contraction rates of the SPC
correspond to known minimax rates in statistical inverse problems. This can be seen
in Propositions 4, 6, 8 and 10, below.

Remark 10 As emphasized in Remark 9, if no preconditioning is used, the best
rate at which the bias can decay is linear. This effect, which is called saturation (of
Tikhonov regularization), was discussed in a more general context in regularization
theory, and we mention the study [17].

So, if no preconditioning is present, then the left hand side in (16) at best
decays as a®. We conclude that the best rate of decay of the SPC which can be
established without preconditioning is a2, where a is obtained from balancing
o = 8287y ().

4 Examples and Discussion

We now study several examples, some which are standard in the literature, and
some which exhibit new features. Our aim is to demonstrate both the simplicity
of our method for deriving rates of posterior contraction as well as the benefits of
preconditioning the prior. We shall provide a priori rates of posterior contraction,
using Theorem 1.

Before we proceed we stress the following fact, which is not so accurately spelled
out in other studies. It is important to distinguish the degree of ill-posedness of the
operator T which governs Eq. (1), and which expresses the decay of its singular
numbers, from the degree of ill-posedness of the problem, which corresponds to the
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operator T and the solution smoothness, and thus regards the achievable contraction
rate.

Degree of ill-posedness of the operator and of the problem.

1. We call operator T moderately ill-posed if the singular numbers decay
polynomially.

2. The operator T is severely ill-posed if the singular numbers decay expo-
nentially.

3. The problem is moderately ill-posed if the contraction rate decays at some
power.

4. The problem is severely ill-posed if the contraction rate is less than any
power.

5. The problem is mildly ill-posed if the contraction rate is linear in the noise
level up to some logarithmic factor.

As we will see in Sect. 4.2, below, the problem can have a significantly different
degree of ill-posedness than the operator 7.
To be specific we make the following assumptions.

Running assumption for the examples.

1. The prior covariance Cy has spectrum that decays as {j~1 29} a > 0.
2. The operators Cp and T*T are simultaneously diagonalizable in an
orthonormal basis {e;} which is complete in X.

In the first two examples, we present posterior contraction rates under the
assumption that we have the a priori knowledge that the truth belongs to the Sobolev
ellipsoid

o0
Sﬁz{xeX:ijﬂxf»fl}, (17)
j=1
for some B > 0 and where x; := (x, ¢;). We emphasize that such ellipsoids are

examples of source sets as in Definition 2. Indeed, (17) is defining the corresponding
source element w, having (square summable) coefficients w; := jﬂxj, j=12,...

Sobolev smoothness:
Relative to Co, the index function defining the source set A, in Definition 2,

e B
is in this case @(f) = t+2,
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We will recover the moderately and severely ill-posed problems, as for example
studied in [11], and [3, 12], respectively.

In the other two examples, we present posterior contraction rates under analytic
smoothness of the truth, that is, we assume that we have the a priori knowledge that
the truth belongs to the ellipsoid

o0
P :{xEX:Zezﬂj)gl.zf 1}, (18)
=1

for some B > 0. Again, this corresponds to a source set.

Analytic-type smoothness:
Relative to Co, the index function defining the source set A, in Definition 2,

is in this case ¢(¢) = exp(—ft~ 1424 ).

To our knowledge these cases have not been studied before in a Bayesian context.
First, we once more study the moderately ill-posed operator problem, which we will
see that under analytic-type smoothness of the truth leads to what we call a mildly ill-
posed problem. Then, we study a problem with severely ill-posed operator, which
as we will see, under analytic-type smoothness of the truth leads to a moderately
ill-posed problem.

We shall use the following handy symbols for describing rates.

Notation 2 Given two positive functions k,h : RT — R™T, we use k < h to
denote that k = O(h) and h = O'(k) as s — 0. Furthermore, the notation
h(s) > k(s), means that k(s) = O(h(s)s") as s — 0 for some positive power
u > 0.

4.1 Sobolev Smoothness
4.1.1 Moderately Ill-Posed Operator

We consider the moderately ill-posed setup studied in [11], in which the operator
T*T has spectrum which decays as {2’} for some p > 0, and thus the singular
numbers of B*B decay as s;(B*B) < j~U+2a+2) 1n the present case Assumption 1,
which expresses the operator T*T as a function of the prior covariance operator Cy,

is satisfied for ¥2(f) = tlerPZa. Next, we find that the function @y, in (11), which
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14-2a+2p
expresses the operator B*B as a function of Co, is given as ©y () = ¢ 20+2)  hence

2a+2p
the benchmark smoothness is @5/ ® = t pEe . Finally, we have that the function

142a
f in (12), which expresses Cy as a function of B*B is given by f(s) = s2(+2+2)

Bounding the Bias

We now have all the ingredients required to bound the bias. The following result is
an immediate consequence of Proposition 2 and the considerations of the previous
paragraph.

Proposition 3 Suppose that x* € SP, for some p > 0. Then as ¢ — 0:

1. If B <1+ 2a+ 2p, and independently of whether preconditioning of the prior

B
is used or not, we have that by« () = O(o1+2a+);
2. if B > 14 2a+2p and no preconditioning of the prior is used, then b+ () < o

B—1—2a—2p
3. ifB>1+2a+2pand m uses a regularization g, with qualificationt '+t |

B
then by (a) = O (o 1+2at+2),

We stress here that our contribution is item (3). In particular, item (3) implies that
if we choose the prior mean m$ using the k-fold Tikhonov regularization filter (cf.

Example 2), which has maximal qualification ¥, then for 8 < (k + 1)(1 + 2a + 2p)

B
we have that by« (o) = O(a1t2e+2), that is, the saturation in the bias is delayed.

If we choose mi using the spectral cut-off regularization filter, which as we saw in

Example 5 has arbitrary qualification, then for any 8 > 0, we have that b, () =

B . . .. .
O (o 1+2a+2) that is, there is no saturation in the bias.

A Priori Bounds of the SPC

To see the impact of this result to the SPC rate, we apply Theorem 1. In order to
do so, we first need to calculate the net posterior spread which in this case is such

14+2p
that St (@) < 1202 , see [11, Thm 4.1]. Concatenating we get the following
result.

Proposition 4 Suppose that x* € SP, B > 0. Then as § — 0:

1. if B <14 2a+ 2p and independently ofwhetherprecondztzomng of the prior is
2(142a+2p)
used or not, fora = § 212 e have that SPC = o6 1+2ﬁ+2!’)

2. ifB > 14 2a+ 2p and no precondmonmg of the prior is used, then for any
choice a = «(6, B) we have that SPC > § 1+2f‘+2P
B—1—2a—2p

3. ifB>14+2a+2pand m uses a regularization g, with qualificationt '+2+» |
2(142a+2p) 4p
fora =346 2% we have that SPC = O(§1+25+w),
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As before, our contribution is item (3), which in particular implies that if we choose

the prior mean m’ using the k-fold Tikhonov regularization filter, then for 8 <

4p
(k + 1)(1 + 2a + 2p) we achieve the optimal (minimax) rate § '+26+, that is the

saturation in the SPC is also delayed. If we choose m} using the spectral cut-off

regularization filter, then for any 8 > 0 we achieve the optimal rate § 1+24§+2P, that
is, there is no saturation in the SPC! Note that the optimal scaling of the prior, as a
function of the noise level 4, is the same whether we use preconditioning or not. We
depict the findings in Fig. 1.

4.1.2 Severely Ill-Posed Operator

We now consider the severely ill-posed setup studied in [3, 12], in which the operator
T*T has spectrum which decays as {e‘z‘l/b} for some ¢, b > 0, and thus the singular
numbers of B*B decay as 5;(B*B) = j~(1120¢24/",

In this case Assumption 1, which expresses the operator 7*T as a function of
the prior covariance operator Cy, is satisfied for ¥2(f) = exp(—2qt~ 120 ). Next, we
find that the function ®y in (11), which expresses the operator B*B as a function of
Co, is given as Oy (1) = t2 exp(—qt~ 120 ), and hence the benchmark smoothness is
@5/ (1) = texp(—2qt~ H?ZH). Finally, we have that as s — 0, the function f in (12)

which expresses Cy as a function of B*B behaves as f(s) ~ (log(s~ 21q))_ h;bza, see
Lemma 5 in Sect. 4.3.

Bounding the Bias

In this example we have that ®F () decays exponentially, while ¢(7) polynomially,
hence for any Sobolev-like smoothness of the truth 8, it holds ¢ < @5/. In other
words, even without preconditioning there is no saturation in the bias and we are
always in case (1) in Proposition 2. However, our theory still works and we can
easily derive the rate for the bias and SPC. The next result follows immediately
from the considerations in the previous paragraph and Proposition 2.

Proposition 5 Suppose that x* € SP, B > 0. Then independently of whether pre-

conditioning of the prior is used or not, we have that by () = ﬁ((log(ot_l))_g ),
aso — 0.

A Priori Bounds of the SPC

We now apply Theorem 1 in order to calculate the SPC rate. Again, we first need
to calculate the net posterior spread, which in this case is such that Sr ¢, (o) =<

; (log(a™ 1))~ i , see [3, Thm 4.2]. We prove the following result, which agrees with
[12, Thm 2.1] and [3, Thm 4.3].
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Table 1 Outline of SPC rates for Sobolev-type smoothness of the truth, (1) = #/0+29 ¢ > 0

s(T*T) < j~% si(T*T) < e=24"
Link v 0/ (142a) exp (_zqu/ ( +2a))
Benchmark CH (1 F2a+20)/(1420) texp (—2qr=/(1+20)
Saturation Y= @é B=142a+2p always ¢ < @)fy
Contraction SPC §48/(1+2a+2p) log=2#/%(1/8)

Proposition 6 Suppose that x* € SP, B > 0. Then independently of whether
preconditioning of the prior is used or not, for any o > 0, any parameter choice
rule o = a(8) such that §*>(log(§72)) e < a < 8%, gives the (minimax) rate
SPC = 0((log(§2))~ 7)), as § — 0.

We outline the previous results in Table 1.

4.2 Analytic-Type Smoothness
4.2.1 Moderately Ill-Posed Operator

We now consider the moderately ill-posed operator setup studied in Sect. 4.1.1 with
the difference that here we assume that we have the a priori knowledge that the truth
has a certain analytic smoothness. The functions ¥, &y and f which have to do with
the relationship between the forward operator and the prior covariance are as in
Sect.4.1.1, but the function ¢ which describes analytic smoothness of the truth as in
(18), is now (1) = exp(—pt~ ngZa). In particular, since ¢ is exponential while the
benchmark smoothness @5/ is of power type, we are always in the high smoothness
case O < ¢.

Bounding the Bias

The following is an immediate consequence of Proposition 2 and the considerations
in the previous paragraph.

Proposition 7 Suppose that x* € </P, for some B > 0. Then as a — 0:

1. if no preconditioning is used, b+ () < «;

2. if m’ uses a regularization g, with qualification exp(—pt™"), then we have that
b (@) = O(exp(—pa 1+2+2)).

Remark 11 If no preconditioning is used, the bias convergence rate is always

saturated. The qualification as formulated in item (2) is a sufficient condition,

while the actual form can be calculated easily. The given form highlights that
exponential type qualification is required to overcome the limitation of the power



Bayesian Inverse Problems Under Gaussian Priors 21

type prior covariance in order to treat analytic smoothness. We stress here that
such qualification is hard to achieve. For example, iterated Tikhonov can never
achieve such exponential qualification, while even Landweber iteration which has
qualification ¢”, for any v > 0, only achieves this qualification for values 8 which
are not too big. On the other hand, exp(—pB¢~") is a qualification for spectral cut-off
for any positive value of §.

A Priori Bounds of the SPC

We again apply Theorem 1 in order to calculate the SPC rate. The net posterior
14+2p
spread is as in Sect.4.1.1, St ¢, (o) < o 1+t We prove the following result,

using the convention from Definition 2.
Proposition 8 Suppose that x* € «/#, B > 0. Then as § — 0:

1. if no preconditioning of the prior is used, then for any choice o« = a(8, B) we
have that SPC > §°;

2. if mi uses a regularization g, with qualification exp(—Bt™"), for
o = (log(§71/#))=(0+2a+2) e have that SPC = O'(§*(log(§71))! T2).

Remark 12 We stress that according to item (1), without preconditioning we
have that §2/SPC decays at an algebraic rate, while the optimal achievable (also
minimax) rate is of power two up to some logarithmic factor. Since the optimal
achievable rate in this case is of power two up to logarithmic factors, it is reasonable
to call such problems mildly ill-posed, as they are almost well-posed.

4.2.2 Severely Ill-Posed Operator

We now consider the severely ill-posed operator setup studied in Sect. 4.1.2 with the
difference that here we assume that we have the a priori knowledge that the truth
has a certain analytic smoothness. For simplicity, we concentrate on the case b = 1,
which corresponds for example to the Cauchy problem for the Helmholtz equation,
see [3, Section 5] for details.

The functions v, @y and f which have to do with the relationship between the
forward operator and the prior covariance are as in Sect.4.1.2 for the value b = 1,
but the function ¢ which describes analytic smoothness of the truth as in (18), is now

o(t) = exp(—pt~ ng2a). In particular, since both ¢ and the benchmark smoothness
@5, are exponential, unlike Sect. 4.1.2 we now have a saturation phenomenon.
Bounding the Bias

The following is an immediate consequence of Proposition 2 and the considerations
in the previous paragraph.
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Proposition 9 Suppose that x* € </P, for some B > 0. Then as o — 0:

1. if B < 2q and independently of whether preconditioning of the prior is used or
not, we have that by« (o) = O(a2a);
2. if B > 2q and no preconditioning is used by (o) < a;
B—2
3. if B > 2qgand mi uses a regularization g, with qualification t qu, then we have

that by () = O(a’).

The benefits of preconditioning are once more clear and can be seen in item (3). If

for example we choose the prior mean m’ using the k-fold Tikhonov regularization
B

filter, then for B < (k 4+ 1)2g we have that b+ (o) = O(«20), that is the saturation

in the bias is delayed. If we use spectral cut-off, then there is no saturation at all.

A Priori Bounds of the SPC

We again apply Theorem 1 in order to calculate the SPC rate. The net posterior
spread is as in Sect.4.1.2, S7c () =< ;(log(a_l))_za. We prove the following
result.

Proposition 10 Suppose that x* € o/, B > 0. Then as § — 0:

1. If B <2qand mdependently of whether preconditioning of the prior is used or

26
not, for a = 8/5+q we have that SPC = O(§#+4);
2. if B > 2q and no preconditioning of the prior is used, then for any choice o =

26
a(8, B) we have that SPC > §#+a;
B—2. 2
3. if B > 2qgand m‘g uses a regularization g, with qualification t 2qq,for o = §hte

2
we have that SPC = O(§#+4).

The benefits of preconditioning can again be seen in item (3). If for example we

choose the prior mean m? using the k-fold Tikhonov regularization filter, then for

B < (k+ 1)2q we achieve the optimal (minimax) rate & ﬁzﬁq, that is the saturation in
the SPC is delayed. If we use spectral cut-off, then there is no saturation at all. Note
again that the optimal scaling of the prior, as a function of the noise level §, is the
same whether we use preconditioning or not.

We outline the results in Table 2.

4.3 Summary and Discussion

We succinctly summarize the above examples, in which we confined to power-type
decay of the spectrum of the prior Cy, that is, s5;(Co) = i~ i =1,2,..., for
some a > 0.
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Table 2 Outline of SPC rates for analytic-type smoothness of the truth, ¢(f) =
exp(—ﬂt_l-*llu), t>0

s;(T*T) < j=% s;(T*T) =< e~ 24"
Link W w/(1+20) exp (—2gt/1+20)
Benchmark @é ((1+2a+2p)/(14-20) fexp (_2qt7b/(l+2a))
Saturation 0= @é always @?p ) B=2
Contraction SPC 8% log! +21’(1/8) §2B/(B+9)

First, in Sect. 4.1 we specified the solution element to belong to some Sobolev-
type ball as in (17), characterized by 8 > 0. The distinction between moderately
and severely ill-posed problems then comes from the decay of the singular numbers
of the operator T governing Eq. (1).

Then, in Sect. 4.2 we considered analytic type smoothness of the truth as in (18),
again characterized by B > 0. As commented earlier on, to our knowledge we are
the first to study these examples. Our findings show that the overall problem degree
of ill-posedness can be significantly different than the degree of ill-posedness of the
operator.

Finally we stress that the rates exhibited in Tables 1 and 2, correspond to the
minimax rates as given in [4, Tbl. 1].

Appendix

Proof (of Lemma 1) We first express the element x in terms of z°.
W =l (al + B*B) " B + CV s (B*BYCy
= C}/* (e + B*B) ' B*Z + C}/*s.(B*B)g.(B*B)B*?’
=c\? [(al +B*B)” + 54(B*B)ga (B*B)] B,
We notice that

(f + B*B) ™' + s54(B*B)go(B*B) = (ol + B*B) ™ (I + g, (B*B)) .

The expectation of the posterior mean with respect to the distribution generating z°
when x* is given, is thus

B = ) (el + B7B) ™ (1 + agu(B*B) | B*BCT 2",
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For the next calculations we shall use that
I—(al + B*B)”" (I + ago(B*B)) B*B

= (af + B*B) "' « (I — g.(B*B)B*B)
= 54(B*B)r,(B*B).

Therefore we rewrite
B = O 1= (ol + B°B) ™ (1 + agu (B°B)) B*B] ;2

= C*5a(B*B)ra(B*B)C, ' *x*,

2
which proves the first assertion. The variance is ¥ Hxi —E~ X H , and this can be

written as in (8), by using similar reasoning as for the bias term.

Proof (of Proposition 1) We notice that || + agy(B*B)|| < 1 + y«, which gives
Vi(@) = [ (1 + aga(B*B))’ (o + B*B) ” B*BCy
<8 (1 +y)tr [(ozl +B*B)” B*BCO]
Since H (@ +B*B)~! B*BH < 1 we see that
Vi) < (1 + y5)2 82t [(al +8*B)”" co] =+ ) uw[C@)].

and the proof is complete.

Proof (of Lemma 2) Since Cj has finite trace, it is compact, and we use the eigenba-

sis (arranged by decreasing eigenvalues) u;, j = 1,2,... Under Assumption 1 this
is also the eigenbasis for T*T. If t;, j = 1,2, ... denote the eigenvalues then we see
that

00
T*T = Z rjuj ® Ltj.

j=1

Correspondingly, Co = Y72, (¥2) ™" (t)u; ® u;, which gives the first assertion.

Moreover, the latter representation yields that

o0

G’ => ((Iﬁz)_l (fj))l/z 4 ® j,

j=1
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such that
1/2 1/2
B*B = C, T* TC,
o0

1/2 1/2

7 () @) wew

()" @)

~.
Il
-

M

((Wz)_l (fj)) Tl ® uj

~.
I
-

M

y? (((Iﬁz)_1 (fj))) ((%”2)_1 (fj)) uj ® uj

.
—_

M

Oy ((!”2)_1 (fj)) 4 ® uj

.
—_

% (Co).

and the proof is complete.

Proof (of Proposition 2) For the first item (1), we notice that ¢ < @12# if and only if

@(f*(t)) < t. The linear function ¢ > ¢ is a qualification of Tikhonov regularization
with constant y = 1. Thus, by Lemma 3 we have

be(@) = ra(B*B)| |50 (B*B)e(f*(B*B) | < yoe(f*(@)).
which completes the proof for this case. For item (2), we have that
b (o) = s« (B*B)x™|| .
Forany 0 < o < 1,wehavea + 7 <1+ ¢, hence
be() = | + B*B)"'x*| = a | + B*B)'x*| .

We conclude that there exists a constant ¢; = ¢;(x*, |B*B||), such that for small o
it holds

by () > ca.

On the other hand, since ¢t < ¢(f?(f)), there exists a constant ¢, > 0 which depends
only on the index functions ¢, f and on ||B*B]||, such that

bes(@) = o (e + B*B)"'x*|| <o |(B*B)'o(f*(B*B))w| < cr0r.
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For item (3), we have that
bee (@) < |ro(B*B)so(B*B)o(f*(B*B)) |

< Isu(B*BYB*BI| |ru(B*B)p((B°B)) (B*B) " |

< o Y@
o

= yo(f* (@),

and the proof is complete.

Proof (of Lemma 4) The continuity is clear. For the monotonicity we use the
representation (15) to get

St.co(@) = Sr.co(e) = tr [(051 + B*B)_l Co] —1tr [(a/ + B*B)_1 Co]
=u|(+B8'B)" (@ —a) (¢ +B°B) " G|
= (@ —ayr| (ol +BB) " (o +B°B)” o).

The trace on the right hand side is positive. Indeed, if (s;, u;, u;) denotes the singular
value decomposition of B*B then this trace can be written as

1

! ( )
Cou;, u;),
a+sja + s 0% %

(@ +B5B) (@ +5B) = i

Jj=1

where the right hand side is positive since the operator Cy is positive definite. Thus,
if @ < o then St (@) — St.¢, (') is positive, which proves the first assertion.

The proof of the second assertion is simple, and hence omitted. To prove the last
assertion we use the partial ordering of self-adjoint operators in Hilbert space, that
is, we write A < B if (Ax,x) < (Bx,x), x € X, for two self-adjoint operators A
and B. Plainly, with a := ||T*T||, we have that T*T < al. Multiplying from the
left and right by C(l)/2 this yields B*B < aCy, and thus for any « > 0 that al +
B*B < al 4 aCy. The function t — —1/¢, ¢t > 0 is operator monotone, which gives
(af +aCy)~" < (af + B*B)™". Multiplying from the left and right by C(l)/ 2 again,
we arrive at

CY? (@l +aCo) ' €} < C)* (el + B*B) ' C)/°.

This in turn extends to the traces and gives that

[y @l +acy) ™ €] = [} (1 + B'B) %] = Src (@),
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Now, let us denote by #;, j € N, the singular numbers of Cy, then we can bound

t 1 o
S >t[ 1 C‘IC]> T #{',t»> }
1.6 (@) Z tr | (@] + aCy) O_Z(x—l-atj_Za N
tiza/a
If S7.c,(c) were uniformly bounded from above, then there would exist a finite
natural number, say N, such that ty > Z > ty+1, for o > 0 small enough. But this
would imply that zy4; = 0, which contradicts the assumption that Cy is positive
definite.

Lemma 5 Fort > 0let O (t) = texp(—th_lJi’Za ), for some q,b,a > 0. Then for
small s we have (%)~ (s) ~ (logs~ 21q)_ s

Proof Let
s=0%L(t) >0 (19)

and observe that ¢ is small if and only if s is small. Applying [3, Lem 4.5] forx = ¢!
we get the result.

Proof (of Proposition 6) In this example the explicit solution of Eq. (16) in
Theorem 1 is more difficult. However, as discussed in Sect. 3.4, it suffices to asymp-
totically balance the squared bias and the posterior spread using an appropriate
parameter choice @ = «(8). Indeed, under the stated choice of « the squared bias is
of order

(og@™)~7 <07 log)~ "

while the posterior spread term is of order

2
" (loglo™) ¥ = log(67) ¥

Proof (of Proposition 8) According to the considerations in Remark 10, it is

straightforward to check that without preconditioning the best SPC rate that can
4+8a+8p
be established is §3+4+er which proves item (1). In the preconditioned case, the

explicit solution of Eq. (16) in Theorem 1, which in this case has the form

_ 1 _ 142
exp(—2Ba~ 1H2utw) = 82a 1+2a42p |

is again difficult. However, as discussed in Sect. 3.4, it suffices to asymptotically
balance the squared bias and the posterior spread using an appropriate parameter
choice ¢ = «(§). Indeed, using [3, Lem 4.5] we have that the solution to the above
equation behaves asymptotically as the stated choice of o, and substitution gives the
claimed rate.
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Proof (of Proposition 10) We begin with items (1) and (3). The explicit solution of
Eq. (16) in Theorem 1, which in this case has the form

8 2
q

ar = (log(a™)™,
o

is difficult. As discussed in Sect.3.4, it suffices to asymptotically balance the
squared bias and the posterior spread using an appropriate parameter choice @ =
a(8). Indeed, under the stated choice of o both quantities are bounded from

2
above by §#+4. For item (2), according to the considerations in Remark 10, it is
straightforward to check that without preconditioning the best SPC rate that can be

4,
established is § ﬁqu.
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Convex Regularization of m)
Discrete-Valued Inverse Problems Check for

Christian Clason and Thi Bich Tram Do

Abstract This work is concerned with linear inverse problems where a distributed
parameter is known a priori to only take on values from a given discrete set.
This property can be promoted in Tikhonov regularization with the aid of a
suitable convex but nondifferentiable regularization term. This allows applying
standard approaches to show well-posedness and convergence rates in Bregman
distance. Using the specific properties of the regularization term, it can be shown
that convergence (albeit without rates) actually holds pointwise. Furthermore, the
resulting Tikhonov functional can be minimized efficiently using a semi-smooth
Newton method. Numerical examples illustrate the properties of the regularization
term and the numerical solution.

1 Introduction

We consider Tikhonov regularization of inverse problems, where the unknown
parameter to be reconstructed is a distributed function that only takes on values
from a given discrete set (i.e., the values are known, but not in which points
they are attained). Such problems can occur, e.g., in nondestructive testing or
medical imaging; a similar task also arises as a sub-step in segmentation or
labelling problems in image processing. The question we wish to address here is the
following: If such strong a priori knowledge is available, how can it be incorporated
in an efficient manner? Specifically, if X and Y are function spaces, F : X — Y
denotes the parameter-to-observation mapping, and y* € Y is the given noisy data,
we would wish to solve the constrained Tikhonov functional

1 5
min | F(u) = "lly M
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for
U:={ueX:ueiu,...,uy} pointwise}, )

where uy,...,uy; € R are the known parameter values. However, this set is
nonconvex, and hence the functional in (1) is not weakly lower-semicontinuous and
can therefore not be treated by standard techniques. (In particular, it will in general
not admit a minimizer.) A common strategy to deal with such problems is by convex
relaxation, i.e., replacing U by its convex hull

coU = {ueX:ue [u,uy] pointwise} .

This turns (1) into a classical bang-bang problem, whose solution is known to
generically take on only the values u; or uy; see, e.g., [4, 24]. If d > 2,
intermediate parameter values are therefore lost in the reconstruction. (Here we
would like to remark that a practical regularization should not only converge as the
noise level tends to zero but also yield informative reconstructions for fixed—and
ideally, a large range of—noise levels.) As a remedy, we propose to add a convex
regularization term that promotes reconstructions in U (rather than merely in co U)
for the convex relaxation. Specifically, we choose the convex integral functional

G X — R, G(u) := /g(u(x)) dx,

for a convex integrand g : R — R with a polyhedral epigraph whose vertices
correspond to the known parameter values u, . . ., ug. Just as in L' regularization for
sparsity (and in linear optimization), it can be expected that minimizers are found at
the vertices, thus yielding the desired structure.

This approach was first introduced in [8] in the context of linear optimal control
problems for partial differential equations, where the so-called multi-bang (as a
generalization of bang-bang) penalty G was obtained as the convex envelope of
a (nonconvex) L° penalization of the constraint u € U. The application to nonlinear
control problems and the limit as the L° penalty parameter tends to infinity were
considered in [9], and our particular choice of G is based on this work. The extension
of this approach to vector-valued control problems was carried out in [10].

Our goal here is therefore to investigate the use of the multi-bang penalty from [9]
as a regularization term in inverse problems, in particular addressing convergence
and convergence rates as the noise level and the regularization parameter tend to
zero. Due to the convexity of the penalty, these follow from standard results on
convex regularization if convergence is considered with respect to the Bregman
distance. The main contribution of this work is to show that due to the structure
of the pointwise penalty, this convergence can be shown to actually hold pointwise.
Since the focus of our work is the novel convex regularization term, we restrict
ourselves to linear problems for the sake of presentation. However, all results
carry over in a straightforward fashion to nonlinear problems. Finally, we describe
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following [8, 9] the computation of Tikhonov minimizers using a path-following
semismooth Newton method.

Let us briefly mention other related literature. Regularization with convex
nonsmooth functionals is now a widely studied problem, and we only refer to
the monographs [17, 21, 23] as well as the seminal works [6, 13, 15, 20]. To
the best of our knowledge, this is the first work treating regularization of general
inverse problems with discrete-valued distributed parameters. As mentioned above,
similar problems occur frequently in image segmentation or, more generally, image
labelling problems. The former are usually treated by (multi-phase) level set
methods [27] or by a combination of total variation minimization and thresholding
[7]. More general approaches to image labelling problems are based on graph-cut
algorithms [1, 16] or, more recently, vector-valued convex relaxation [14, 19]. Both
multi-phase level sets and vector-valued relaxations, however, have the disadvantage
that the dimension of the parameter space grows quickly with the number of
admissible values, which is not the case in our approach. On the other hand, our
approach assumes, similar to [16], a linear ordering of the desired values which is
not necessary in the vector-valued case; see also [10].

This work is organized as follows. In Sect. 2, we give the concrete form of the
pointwise multi-bang penalty g and summarize its relevant properties. Section 3
is concerned with well-posedness, convergence, and convergence rates of the
corresponding Tikhonov regularization. Our main result, the pointwise convergence
of the regularized solutions to the true parameter, is the subject of Sect.4. We also
briefly discuss the structure of minimizers for given y° and fixed @ > 0 in Sect. 5.
Finally, we address the numerical solution of the Tikhonov minimization problem
using a semismooth Newton method in Sect. 6 and apply this approach to an inverse
source problem for a Poisson equation in Sect. 7.

2 Multi-Bang Penalty

Letu; <--- <uy € R,d > 2, be the given admissible parameter values and Q C
R", n € N, be a bounded domain. Following [9, § 3], we define the corresponding
multi-bang penalty

G:2Q) >R Gu= / 2(u(x)) dx,
Q

for g : R — R defined by

g(v) = > (@ + uie)v —wiuirr) v € [wuip], 1<i<d,
else.

(Note that we have now included the convex constraint # € co U in the definition

of G.) This choice can be motivated as the convex hull of ;II . ||§2 @ T Sy, where
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8y denotes the indicator function of the set U defined in (2) in the sense of convex
analysis, i.e., §y(u) = 0if u € U and oo else; see [9, § 3]. Setting

1
gi(v) = 5 ((u;i + vip1)v — winig1) , 1<i<d,
it is straightforward to verify that
g(v) = max g;(v), v € [ur, udl,
1<i<d

and hence g is the pointwise supremum of affine functions and therefore convex and
continuous on the interior of its effective domain dom g = [uy, uy].

We can thus apply the sum rule and maximum rule of convex analysis (see, e.g.,
[22, Props. 4.5.1 and 4.5.2, respectively]), and obtain for the convex subdifferential
at v € dom g that

dg(v) =0 (magdgi + 5[u1,ud1) (v)

1<i

=9 (1H<1l?l<xdgi) (V) + 381y w1 (V)

=co| | & |+ 08u.,0).
i:g(v)=gi(v)
Using the definition of g; together with the classical characterization of the

subdifferential of an indicator function via its normal cone yields the explicit
characterization

(—oo, é(ul + uz)] if v = uy,
{;(u,- + u,-.H)} ifve w,uq4+1), 1<i<d,
dg(v) = [;(ui_l +u;), é(u,- +uiy1)] ifv =u;, 1<i<d, 3)
[;(ud_l + uy), oo) if v =uy,
@ else.

In Sects. 5 and 6, we will also make use of the subdifferential of the Fenchel
conjugate g* of g. Here we can use the fact that g is convex and hence ¢ € dg(v) if
and only if v € dg*(g) (see, e.g., [22, Prop. 4.4.4]) to obtain

{ur} ifg e (—oo, ;(ul + Mz)),
i uit1] if g = 5 (i + uit1), l=i<d,
9g™(q) € | {us} ifg € (;(ui—l + u;), ;(ui +uiy1)), l<i<d, “)
{ua} if g € (3 (a1 + uq), 0,
@ else.
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0.5 0.5 | I_ 0

0 1 2 Y 0 1 2 v 0.5 1.5 q
(a) (b) (c)

Fig. 1 Structure of pointwise multibang penalty for the choice (uy,uz,u3) = (0,1,2). (a) g,
(b) dg, (c) dg™

(Note that subdifferentials are always closed.) We illustrate these characterizations
for a simple example in Fig. 1.

Finally, since g is proper, convex, and lower semi-continuous by construction,
the corresponding integral functional G : L>(2) — R is proper, convex and weakly
lower semicontinuous as well; see, e.g., [2, Proposition 2.53]. Furthermore, the sub-
differential can be computed pointwise as

0G(u) = {v € L*(RQ) : v(x) € dg(u(x)) for almost every x € Q} , (5)

see, e.g., [2, Prop. 2.53]. The same is true for the Fenchel conjugate G* : L*(Q2) —
R and hence for dG* (which is thus an element of L () instead of L2(R2)); see,
e.g., [12, Props. IV.1.2, IX.2.1].

3 Multi-Bang Regularization

We consider for a linear operator K : X — ¥ between the Hilbert spaces X = L?(Q)
and Y and exact data y' € Y the inverse problem of finding u € X such that

Ku =y (6)

We assume that K is weakly closed, i.e., v, — u and Ky, — y imply y = Ku. For
the sake of presentation, we also assume that (6) admits a solution uf € X. Let now
y® € Y be given noisy data with || y* — y'||y < § for some noise level § > 0. The

multi-bang regularization of (6) for & > 0 then consists in solving

. 1 5112
glelgzllKu—y Iy + aG(u). (N

Since G is proper, convex and semi-continuous with bounded effective domain co U,
and K is weakly closed, the following results can be proved by standard semi-
continuity methods; see also [9, 10].
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Proposition 1 (Existence and Uniqueness) For every o > 0, there exists a
minimizer ui to (7). If K is injective, this minimizer is unique.

Proposition 2 (Stability) Ler {y,},eny C Y be a sequence converging strongly to
Y3 € Y and o > 0 be fixed. Then the corresponding sequence of minimizers {u, }nen
to (7) contains a subsequence converging weakly to a minimizer ui

We now address convergence for § — 0. Recall that an element u’ € X is called
a G-minimizing solution to (6) if it is a solution to (6) and G(u) < G(u) for all
solutions u to (6). The following result is standard as well; see, e.g., [17, 21, 23].

Proposition 3 (Convergence) Let {y"},en C Y be a sequence of noisy data with
I y* = yHly < 8, — 0, and choose o, := o,(8,) satisfying

.8 .
Iim " =0 and lim «, = 0.
n—00 @, n—>00

Then the corresponding sequence of minimizers {ui’; tnen to (7) contains a subse-
quence converging weakly to a G-minimizing solution u'.

For convex nonsmooth regularization terms, convergence rates are usually
derived in terms of the Bregman distance [5], which is defined for u;,u; € X and

p1 € 0G(u) as
dg (uz, u1) = G(uz) — G(wr) — (p1, u2 — uy)x.

From the convexity of G, it follows that dg‘ (uz,uy) > 0 for all u, € X. Furthermore,
we have from, e.g., [17, Lem. 3.8] the so-called three-point identity

dg (uz, ur) = dg; (uz, u2) + dg (2, u1) + (p2 — p1)(uz — u2) ®)

for any uj,up,u3 € X and p; € G(uy) and p; € 0G(uy). Finally, we point out
that due to the pointwise characterization (5) of the subdifferential of the integral
functional G, we have that

Gyt = [ o). ) ©)
for

di(v2,v1) = g(v2) — g(v1) — q(v2 — vy).

Standard arguments can then be used to show convergence rates for a priori and
a posteriori parameter choice rules under the usual source conditions; see, e.g., [6,
17, 20, 21, 23]. Here we follow the latter and assume that there exists a w € Y such
that

pli=K*w e aG(u"). (10
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Under the a priori choice rule
o =cé for some ¢ > 0, (11)

we obtain the following convergence rate from, e.g., [17, Cor. 3.4].

Proposition 4 (Convergence Rate, A Priori) Assume that the source condi-
tion (10) holds and that « = «(8) is chosen according to (11). Then there exists
a C > 0 such that

) @, u) < C5.
We obtain the same rate under the classical Morozov discrepancy principle
§ < |Kul —y°|ly < 16, (12)

for some t > 1 from, e.g., [17, Thm. 3.15].

Proposition 5 (Convergence Rate, A Posteriori) Assume that the source condi-
tion (10) holds and that « = «(8) is chosen according to (12). Then there exists a
C > 0 such that

& @, u') < C8.

4 Pointwise Convergence

The pointwise definition (9) of the Bregman distance together with the explicit
pointwise characterization (3) of subgradients allows us to show that the con-
vergence in Proposition 3 is actually pointwise if u'(x) € {uy,...,u;} almost
everywhere. The following lemma provides the central argument for pointwise
convergence.

Lemma 1 Letv' € {uy,...,uy} and ' € dg(v") satisfying

{ (u; + “L+1)} l'flﬂL € (ui,uH_l), 1<i<d,

4" € (5 (i + wimy), ) (i + uig)) l:fvT = u, l<i<d a3)
( oo, 2(”1 + I/lz)) lflﬂL = u
(5 (ta + ug—1).00) ifvl = uy

Furthermore, let {v,},en C [u1, ug] be a sequence with
dgt(vn, vh) - 0.

Then, v, — v'.
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Proof We argue by contraposition: Assume that v, does not converge to v/ = u;
for some 1 < i < d. Then there exists an ¢ > 0 such that for every ny € N, there
is an n > ng with |v, — v¥| > ¢, i.e., either v, > u; + £ or v, < u; — &. We now
further discriminate these two cases. (Note that some cases cannot occur if i = 1 or
i=d)

(i) v, > uj4+1: Then, v, € (ug, ur+1] for some k > i+ 1. The three point identity (8)
yields that

¥ i ¥
dai (va, vh) = dgt (U, i) + di (uit1, v + (gi+1 — ") (W — ui1)
for gi+1 € dg(uiy+1). We now estimate each term separately. The first term is

nonnegative by the properties of Bregman distances. For the last term, we can
use the assumption (13) and the pointwise characterization (3) to obtain

q e (é(“i +ui1), g (i + Mi+1)) and gt € [é(ui+1 + i), g (i1 + Mi+2)],
which implies that g; 1 —qJr > (. By assumption we have v, —u;+; > 0, which

together implies that the last term is strictly positive. For the second term, we
can use that vT, Uit1 € [ui, ui+1] to simplify the Bregman distance to

1
d?' (uis1.v%) = o ikt — ) (i + i — 29") > 0,

again by assumption (13). Since this term is independent of n, we obtain the
estimate

dgT(vn, vh) > d;{T(uiH, v =g > 0.
(1) u; < v, < u;41: In this case, we can again simplify
1
d;ﬂ(vm o) = 2(”i+l +u; —2¢") (v, —v7) > Cie,
since C| := ;(MH_] + u; — 2¢") > 0 by assumption (13) and v, — v’ > & by
hypothesis.

(iil) v, < u;: We argue similarly to either obtain

dgT(vn, vh) > dZ{T(ui_l, v =16,>0
or

dgt(vn, vT) > Che

for Co 1= =) (ui—y + u; — 2q") > 0.
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Thus if we set £ := min{ey, &,, C1¢, C¢}, for every ny € N we can find n > ng such
that dgT (vn, v") > & > 0. Hence, dgT (v, v¥) cannot converge to 0. O

Assumption (13) can be interpreted as a strict complementarity condition for ¢
and v'. Comparing (13) to (3), we point out that such a choice of ¢' is always
possible. If vf ¢ {ui,...,uq}, on the other hand, convergence in Bregman distance
is uninformative.

Lemma 2 Let v € (u;, uiy1) for some 1 <i < dand q" € dg(v"). Then we have
i
dg (v, v =0 forany v € [ujuir1].

Proof By the definition of the Bregman distance and the characterization (3) of
dg(v") (which is single-valued under the assumption on v'), we directly obtain

1 1
dgt(vs V) = 5 (i + wip 1)V — wistig] — 2[(ui + Ui )V’ — it
! t
- 2(”1’ +uip)(v—v") =0

for any v € [u;, ujt1]. O

Lemma 1 allows us to translate the weak convergence from Proposition 3 to
pointwise convergence, which is the main result of our work.

Theorem 1 Assume the conditions of Proposition 3 hold. If u (x) € {ui, ..., ug}

almost everywhere, the subsequence uiﬂ — u' pointwise almost everywhere.
n

.o . . 8 .
Proof From Proposition 3, we obtain a subsequence {u, },en of {1 },en converging
weakly to u'. Since G is convex and lower semicontinuous, we have that

G(u") < liminfG(u,) < lim G(u,). (14)

By the minimizing properties of {u,},en and the nonnegativity of the discrepancy
term, we further obtain that

1 82
ang(un) = 2 ”Kun - y8,, ”%’ + ang(“n) = 2n + ang('ﬂ)'

Dividing this inequality by ¢, and passing to the limit n — oo, the assumption on
o, from Proposition 3 yields that

lim G(u,) < Gu").
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which combined with (14) gives lim, 00 G(1,) = G(u'). Hence, u,, — u' implies
that d‘g (un, u") — 0 forany p™ € dG(u"). By the pointwise characterization (9) and

the nonnegativity of Bregman distances, this implies that dgT(x) (up(x), u" (x)) = 0
for almost every x € . Choosing now p' € dG(u') such that (13) holds for ¢" =
pf(x) and v* = u'(x) almost everywhere, the claim follows from Lemma 1. O

Since u,(x) € [ui,uy] by construction, the subsequence {u,},en is bounded in
L*>°(£2) and hence also converges strongly in [(2) for any 1 < p < o0
by Lebesgue’s dominated convergence theorem. We remark that since Lemma 1
applied to u,(x) and u'(x) does not hold uniformly in €2, we cannot expect that the
convergence rates from Propositions 4 and 5 hold pointwise or strongly as well.

5 Structure of Minimizers

We now briefly discuss the structure of reconstructions obtained by minimizing
the Tikhonov functional in (7) for given y5 € Y and fixed ¢ > 0, based on the
necessary optimality conditions for (7). Since the discrepancy term is convex and
differentiable, we can apply the sum rule for convex subdifferentials. Furthermore,
the standard calculus for Fenchel conjugates and subdifferentials (see, e.g., [22])
yields for G, := aG that G*(p) = aG* (e~ 'p) and hence that p € 3G, (u) if and
only if u € 9G;(p) = 8§*(;p). We thus obtain as in [8] that it := 1}, € L*(Q) is a
solution to (7) if and only if there exists a p € L*(Q2) satisfying

p=K*()’ — Ku)

. = . ; (15)
i € 067 () = {ui} 1_7(X)€Ql, 1<i=<d,
(i, uipy1] p(x) € Qi1 1=<i<d.
for
O1={q:q9 <% +u)},

:;(ui_1+ui)<q<;(u,-—}—uH_l)}, 1 <i<d,

©

|
—— -~ ——

LS

Qu =
Qiiti =19 q = § i +uir1)} 1<i<d.

q:q> %Wt +ua)},

Here we have made use of the pointwise characterization in (4) and reformulated
the case distinction in terms of p(x) instead of ; p(x).

First, we obtain directly from (15) the desired structure of the reconstruction u:
Apart from a singular set

S:={xeQ:p(x) =5+ ui) forsome 1 <i <dj,
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we always have u(x) € {uy, ..., uy}. For operators K where K*w cannot be constant
on a set of positive measure unless w = 0 locally (as is the case for many operators
involving solutions to partial differential equations; see [8, Prop. 2.3]) and y* ¢
ran K, the singular set S has zero measure and hence the “multi-bang” structure
u € {uy,...,us} almost everywhere can be guaranteed a priori for any o > 0.

Furthermore, we point out that the regularization parameter « only enters via the
case distinction. In particular, increasing « shifts the conditions on u(x) such that
the smaller values among the u#; become more preferred. In fact, if p is bounded, we
can expect that there exists an g > 0 such that u = u; for all @ > «. Conversely,
for « — 0, the second line of (15) reduces to

wy i) <0,
() € Sfugy  ifpR) > 0,
gl it H) = 0,

i.e., (15) coincides with the well-known optimality conditions for bang-bang control
problems; see, e.g., [25, Lem. 2.26]. Since in the context of inverse problems, we
only have ¢ = a(§) — 0if § — 0, the limit system (15) will contain consistent
data and hence p = 0. This allows recovery of u'(x) € {us,...,us_1} on a set of
positive measure, consistent with Theorem 3. However, if uT(x) € {uy,...,uy} does
not hold almost everywhere, we can only expect weak and not strong convergence,
cf. [10, Prop. 5.10 (ii)].

6 Numerical Solution

In this section we address the numerical solution of the Tikhonov minimization
problem (7) for given y* € Y and & > 0, following [9]. For the sake of presentation,
we omit the dependence on « and § from here on. We start from the necessary
(and, due to convexity, sufficient) optimality conditions (15). To apply a semismooth
Newton method, we replace the subdifferential inclusion u € G (p) by its single-
valued Moreau—Yosida regularization, i.e., we consider for y > 0 the regularized
optimality conditions

Py = K*(y5 _Kuy)

(16)
Uy = (ag;()y(py)-

The Moreau—Yosida regularization can also be expressed as

Hy, = (0G})y = (Gu,y)*
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for
o Vo2
ga,y(”) L ag(”) + 2 ||M||L2(Q)s

see, e.g., [3, Props. 13.21, 12.29]. This implies that for (u,, p, ) satisfying (16), u,
is a solution to the strictly convex problem

o1 y
so that existence of a solution can be shown by the same arguments as for (7).
Note that by regularizing the conjugate subdifferential, we have not smoothed the
nondifferentiability but merely made the functional (more) strongly convex. The
regularization of G instead of G* also ensures that the regularization is robust for
a — 0. From [9, Prop. 4.1], we obtain the following convergence result.

Proposition 6 The family {u, },~¢ satisfying (16) contains at least one subsequence
{1y, tnen converging to a global minimizer of (7) as n — oo. Furthermore, for any
such subsequence, the convergence is strong.

From [11, Appendix A.2] we further obtain the pointwise characterization

U; ifp(x)EQf»/, 1<i<d,
H =
PN =00 @ — St ) itp) € Oy 1<i<d

where
T ={q1q <9 ((1+20)u +uw)},
0/ ={q:5 (wimi + (1 +2p)u) < g < § (1 +20)u; +up)}  forl <i<d,
Q) ={a: § (war + (1 +2y)ua) < g},
Ki+1 ={q: S +2y)u +uigr) <g <5 (i + (1 + i)} forl <i<d.

Since H, is a superposition operator defined by a Lipschitz continuous and
piecewise differentiable scalar function, H, is Newton-differentiable from L"(22) —
L*(Q) for any r > 2; see, e.g., [ 18, Example 8.12] or [26, Theorem 3.49]. A Newton
derivative at p in direction % is given pointwise almost everywhere by

;h(x) ifpx) €0,y 1<i<d,

[DnHy (p)h](x) =
else.

Hence if the range of K* embeds into L'(2) for some r > 2 (which is
the case, e.g., for many convolution operators and solution operators for partial
differential equations) and the semismooth Newton step is uniformly invertible,
the corresponding Newton iteration converges locally superlinearly. We address
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this for the concrete example considered in the next section. In practice, the local
convergence can be addressed by embedding the Newton method into a continuation
strategy, i.e., starting for y large and then iteratively reducing y, using the previous
solution as a starting point.

7 Numerical Examples

We illustrate the proposed approach for an inverse source problem for the Poisson
equation, i.e., we choose K = A~ : [*(Q) — L*(Q) for = [0,1]> and
A = —A together with homogeneous boundary conditions. We note that since 2
is a Lipschitz domain, we have that ranA™* = ranA™! = H*(Q) N H} (), and
hence this operator satisfies the conditions discussed in Sect.5 that guarantee that
ul(x) € {uy, ..., us} almost everywhere if y? ¢ ranK; see [8, Prop. 2.3]. For the
computational results below, we use a finite element discretization on a uniform
triangular grid with 256 x 256 vertices.

The specific form of K can be used to reformulate the optimality condition (and
hence the Newton system) into a more convenient form. Introducing y, = A‘luy
and eliminating u, using the second relation of (16), we obtain as in [8] the
equivalent system

A*py +y, =) =0,
Ay, —H,(p,) =0.

7)

Setting V := HOl (£2), we can consider this as an equation from V x V to V* x V*,
which due to the embedding V — [P(2) for p > 2 provides the necessary norm gap
for Newton differentiability of H,. By the chain rule for Newton derivatives from,
e.g., [18, Lem. 8.4], the corresponding Newton step therefore consists of solving for
(8y.8p) € V x V given (¥, p¥) € V x Vin

(Id A* ) (Sy) _ (A*pk +y— y8) (18)
A —DyH, (p")) \8p A —H,(p")

VL= K gy, P = gk 4 5.

and setting

Note that the reformulated Newton matrix is symmetric, which in general is not
the case for nonsmooth equations. Following [8, Prop. 4.3], the Newton step (18)
is uniformly boundedly invertible, from which local superlinear convergence to a
solution of (17) follows.

In practice, we include the continuation strategy described above as well as a
simple backtracking line search based on the residual norm in (17) to improve
robustness. Since the forward operator is linear and H, is piecewise linear, the
semi-smooth Newton method has the following finite termination property: If
H,(p**Y = H,(p"), then (!, pF*t1y satisfy (17); cf. [18, Rem. 7.1.1]. We
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then recover u* ! = H,( p**t1). In the implementation, we also terminate if more

than 100 Newton iterations are performed, in which case the continuation is also
terminated and the last successful iterate is returned. Otherwise we terminate if
¥ < 10712, In all results reported below, the continuation is terminated successfully.
The implementation of this approach used to obtain the following results can be
downloaded from https://github.com/clason/discreteregularization.

The first example illustrates the convergence behavior of the Tikhonov regular-
ization. Here, the true parameter is chosen as

MT(X) =u;+u X{x:(xl—0.45)2+(x2—0.55)2<0.1}(x)
+ (U3 = U2) X {x:(0—0.4)2+ (x2—0.6)2<0.02} (X) (19)

for (uy, uz, u3) = (0,0.1,0.15); see Fig. 2a. (This might correspond to, e.g., material
properties of background, healthy tissue, and tumor, respectively.) The noisy data is
constructed pointwise via

¥ ="+ Gy [0k,

1 oy 0.5 1 oy 018
08 | 08
08 08
ks ot . [5]
0.6 06
= 05 = 05
04 04
0.3 03
0.2 02
0.1 0.1
o ] o o
] 02 04 06 08 1 0 0z 04 06 08 1
x ®

1

(a) (b)
1 o 015 1 = 098
09 09
08 08
o7 i o7 | -
06 06
= 05 = 05
04 04
03 03
02 0.2
01 0.1
0 ] 1] 0
] 0.2 04 06 08 1 o 02 04 06 [+F:] 1
x X

(c) (d)

Fig. 2 True parameter u' for u3 = 0.15 and reconstructions u’ for different values of §. (a) u'.
(b) uft for § ~ 1.89 x 10~ (¢) uft for § ~ 2.37 x 1072. (d) u‘i for § ~ 3.69 x 10—*
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Table 1 Convergence behavior as § — 0 for u3 = 0.15: noise level §, regularization parameter

o, L2-error e,, L -error s
1 o e €oo ) o e €oo
1.52e+40  1.00e—2  1.60e+1 1.50e—1  7.44e—4  6.10e—7 6.86e—1  1.00e—1
7.59e—1 1.25¢—3 8.64e+0  1.00e—1  3.69e—4  3.05e—7 4.74e—1  1.00e—1
3.78e—1 6.25e—4  6.18e+0  1.00e—1 1.85e—4  1.53e—7 29le—1 7.82e—2
1.89e—1 3.13e—4 4.26e+0  1.00e—1  9.28¢—5 7.63e—8 227e—1 7.67e—2
9.48¢—2 7.8le—5 4.32¢+0 1.00e—1  4.64e—5 3.81e—8 1.29¢e—1  5.73e—2
4.73e—2 39le—=5 3.67e+0 1.00e—1  2.32e—5 1.91e—8 9.19e—2 491le—2
237e—2 1.95¢e—5 2.97e+0  1.00e—1 1.16e—5  9.54e—9 9.32e—2  4.03e—2
1.19e—=2  9.77e—6  2.33e+0  1.00e—1  5.79¢e—6 4.77e—9 4.6le—2 2.30e—2
590e—3 4.88¢e—6 1.76e+0  1.00e—1  2.89e—6  2.38e—9 1.13e—1  5.00e—2
2.95¢e—3 2.44e—6 1.33e+0  1.00e—1 1.44e—6 5.96e—10 1.70e—2 4.39¢—3
1.49¢e—3 1.22e—6 9.47e—1 1.00e—1

where £ is a vector of identically and independently normally distributed random
variables with mean 0 and variance 1, and § € {2°,...,272°}. For each value of §,
the corresponding regularization parameter « is chosen according to the discrepancy
principle (12) with ¢ = 1.1. Details on the convergence history are reported in
Table 1, which shows the effective noise level § := ||y — yT|, the parameter
o selected as satisfying the Morozov discrepancy principle, the L?-error e; :=
|l — uT||, and the L>®-error exo := ||u} — u'|| 0. First, we note that the a posteriori
choice approximately follows the a priori choice o ~ §. Similarly, for larger values
of 8, the L%-error behaves as ¢, ~ §, which is no longer true for § — 0 (and
cannot be expected due to the nonsmooth regularization). The L*-error ey is
initially dominated by the jump in admissible parameter values: As long as there
is a single point x € Q with ui(x) =u #F u = u'(x), we necessarily have
€00 > Minj<j<q Uit+1 — ;. (Recall that we do not have a convergence rate and thus
an error bound for pointwise convergence.) Later, es, becomes smaller than this
threshold value, which indicates that apart from points in the regularized singular
set (i.e., where p, (x) € Q] , which in these cases happens for 20 out of 256 x 256
vertices), the reconstruction is exact. Here we point out that since y is independent
of «, the Moreau—Yosida regularization for fixed y becomes more and more active
asa — 0. Nevertheless, in all cases y < «, and hence the multi-bang regularization
dominates.

The pointwise convergence can also be seen clearly from Fig. 2, which shows
the true parameter u' together with three representative reconstructions for different
noise levels. It can be seen that for large noise, the corresponding large regular-
ization suppresses the smaller inclusion; see Fig.2b. This is consistent with the
discussion at the end of Sect. 5. For smaller noise, the inclusion is recovered well
(Fig. 2c), and for § ~ 3.69 x 107, the reconstruction is visually indistinguishable
from the true parameter (Fig. 2d).
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Fig. 3 True parameter ut for u3 = 0.11 and reconstructions ui for different values of §. (a) u'.
(b) u® for § a2 1.68 x 1071, (¢) ud for § =~ 2.17 x 1072. (d) u’ for § ~ 3.29 x 10~*

The behavior is essentially the same if we set (uy, us, u3) = (0,0.1,0.11) in (19)
(i.e., a contrast of 10% instead of 50% for the inner inclusion), demonstrating the
robustness of the multi-bang regularization; see Fig. 3 and Table 2.

To illustrate the behavior if the true parameter does not satisfy the assumption
uf e {uy,...,uys} almost everywhere, we repeat the above for

Ut () = U1 + U2 X —0.45)2-+ (12—0.552<0.13 (X)

+ (u3 —u2)(1 —x1) X{x:(xl—0.4)2+(x2—0.6)2<0.02}(-x)

with (uq,u2,u3) = (0,0.1,0.12); see Fig.4a. While for large noise level and
regularization parameter value, the multi-bang regularization behaves as before (see
Fig.4b), the reconstruction for smaller noise and regularization (Fig.4c) shows
the typical checkerboard pattern expected from weak but not strong convergence;
cf. [8, Rem. 4.2]. Nevertheless, as § — 0, we still observe convergence to the true
parameter; see Fig. 4d and Table 3.

Finally, we address the qualitative dependence of the reconstruction on the
regularization parameter «. Figure 5 shows reconstructions for the true parameter
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Table 2 Convergence behavior as § — 0 for u3 = 0.11: noise level §, regularization parameter
o, L2-error e,, L -error s
1 o e €oo ) o e €oo
1.34e+0  2.50e—3 1.16e+0  1.10e—1  6.56e—4  6.10e—7 4.55e—1  1.00e—1
6.73e—1 1.25¢—3 9.13e+0  1.00e—1  3.29e—4  3.05e—7 2.94e—1  1.00e—1
336e—1 6.25¢—4 6.89¢e+0  1.00e—1 1.64e—4  1.53e—7 2.20e—1 6.15e—2
1.68e—1 3.13e—4 491le+0  1.00e—1  8.27e—5 7.63e—8 1.87e—1  8.55¢—2
8.4le—2 1.56e—4 3.27e+0 1.00e—1  4.1le—5 3.81e—8 6.75e—2  3.35¢—2
4.20e—2 39le—=5 1.90e+0 1.00e—1  2.07e—5 1.91e—8 4.34e—2  1.44e—2
2.17e—2 1.95¢e—5 1.57e+0  1.00e—1 1.03e—5  9.54e—9 3.72e—2  1.46e—2
1.05e—3 9.77e—6  1.19e+0  1.00e—1  5.12e—6 4.77e—9 329e—2 1.31e—2
525¢e—3 4.88¢e—6 9.8le—1 1.00e—1  2.56e—6 2.38e—9 3.85e—2  1.00e—2
2.64e—3 2.44e—6 8.14e—1 1.00e—1 1.29¢e—6 2.98¢—10 1.65e—1 1.79¢e—2
1.32e—4 1.22e—6  6.70e—1  1.00e—1
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Fig. 4 True parameter u' and reconstructions u‘g for different values of §. (a) uf. (b) uft for § ~
2.11 x 1072, (¢) ud for § & 3.29 x 10™*. (d) ul for § ~ 1.29 x 10~°
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Table 3 Convergence behavior as § — 0 for u': noise level §, regularization parameter o, L?-error

ey, L% -error e

5 o
1.36e+0  2.50e—3
6.77e—1  1.25¢—3
3.39e—1 6.25¢e—4
1.69e—1 3.12e—4
8.48e—2  1.56e—4
4.22e—2 39le—5
2.11e—2  1.95e—5
1.05e—2  9.77e—6
5.29e—3 4.88e—6
2.66e—3  2.44e—6
1.32e—3 1.22e—6

(@)
1 —!015
08
08 |
L o1
08
o 05 o
04
03
02
01
0 [
0 02 04 06 0.8 1
%

e
1.17e+1
9.08e+0
6.84e+0
4.81e+0
3.12e+0
2.03e+0
1.67e+0
1.45e+0
1.29e+0
1.18e+0
9.82e—1

1

1

©

€co

1.15e—1
1.00e—1
1.00e—1
1.00e—1
1.00e—1
1.00e—1
1.00e—1
1.00e—1
1.00e—1
1.00e—1
1.00e—1

) o e oo

6.60e—4  6.10e—7 8.46e—1  1.00e—1
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ut from (19) again with (uj,uy,u3) = (0,0.1,0.15) for an effective noise level
8 &~ 0.759 and different values of «. First, Fig. 5b presents the reconstruction for
the value @ = 1.25 x 1073, where as before the volume corresponding to u; is
reduced and the inner inclusion corresponding to u3 is suppressed completely. If the
parameter is chosen smaller as @ = 10~4, however, the reconstruction of the outer
volume is essentially correct, while the inner inclusion—although reduced—is also
localized well; see Fig. Sc. Visually, this value yields a better reconstruction than
the one obtained by the discrepancy principle. The trade-off is a loss of spatial
regularity, manifested in more irregular level lines, which becomes even more
pronounced for smaller « = 107>; see Fig. 5d. This behavior is surprising insofar
that the pointwise definition of the multi-bang penalty itself imposes no spatial
regularity on the reconstruction at all; as is evident from (15), any regularity of
the solution u is solely due to that of the level sets of p (which in this case has the
regularity of a solution to a Poisson equation).

8 Conclusion

Reconstructions in inverse problems that take on values from a given discrete
admissible set can be promoted via a convex penalty that leads to a convergent
regularization method. While convergence rates can be shown with respect to
the usual Bregman distance, if the true parameter to be reconstructed takes on
values only from the admissible set, the convergence (albeit without rates) is
actually pointwise. A semismooth Newton method allows the efficient and robust
computation of Tikhonov minimizers.

This work can be extended in several directions. First, Fig.5 demonstrates
that regularization parameters chosen according to the discrepancy principle are
not optimal with respect to the visual reconstruction quality. This motivates
the development of new, heuristic, parameter choice rules that are adapted to
the discrete-valued, pointwise, nature of the multi-bang penalty. It would also be
interesting to investigate whether an active set condition in the spirit of [28, 29]
based on (13) can be used to obtain strong or pointwise convergence rates. A
natural further step is the extension to nonlinear parameter identification problems,
making use of the results of [9]. Finally, Fig. 5¢, d suggest combining the multi-bang
penalty with a total variation penalty to also promote regularity of the level lines
of the reconstruction. The resulting problem is challenging both analytically and
numerically, but would open up the possibility of application to electrical impedance
tomography, which can be formulated as parameter identification problem for the
diffusion coefficient in an elliptic equation.
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Algebraic Reconstruction of Source and m)
Attenuation in SPECT Using First e
Scattering Measurements

Evelyn Cueva, Axel Osses, Juan Carlos Quintana, Cristian Tejos,
Matias Courdurier, and Pablo Irarrazaval

Abstract Here we present an Algebraic Reconstruction Technique (ART) for solv-
ing the identification problem in Single Photon Emission Computed Tomography
(SPECT). Traditional reconstruction for SPECT is done by finding the radiation
source, nevertheless the attenuation of the surrounding tissue affects the data. In
this context, ballistic and first scattering information are used to recover source
and attenuation simultaneously. Both measurements are related with the Attenuated
Radon Transform and a Klein-Nishina angular type dependency is considered for
the scattering. The proposed ART algorithm allow us to obtain good reconstructions
of both objects in a few number of iterations.
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1 Introduction

In this work we propose a new reconstruction technique for medical single-photon
emission computed tomography (SPECT) imaging. We seek to simultaneously
obtain the internal radioactive sources and the attenuation map using not only
ballistic measurements but also first-order scattering measurements under very
specific scattering regime. The problem is modeled using the radiative transfer
equation by means of an explicit non-linear operator that gives the ballistic and
scattering measurements as a function of the radioactive source f and attenuation
distribution a. In scattering measurements we face one more difficulty, the source
has an angular dependency, which in general can not be solved.

The identification problem has motivated several numerical studies. In many
of them [6, 9, 10], the focus is to first obtain a good approximation of the
attenuation map instead of treating (a,f) as a pair, called attenuation algorithms.
Other numerical aspects and reconstructions are presented in [1-3, 5, 7, 8, 11].

This work is based on the results presented in [4]. We made a numerical approach
related to the simultaneously source and attenuation reconstruction using an ART
algorithm.

In the second section we present the model considered to explain the ballistic
and first scattering measurements. In the third section, we describe the Albedo
operator related with this inverse problem. This operator explicits the structure of
measurements in terms of attenuated Radon transform (AtRT). In the fourth section,
we present a discretization of these measurements, in order to represent the ArRT as
a linear system, and the ART method for this case is presented. In the last section,
numerical results are shown.

2 Model Description

Before describing the model, we introduce some integral operators that appear
throughout our study.

2.1 Integral Operators

Let S' = {# € R?:|A| = 1} be the set of directions in R?, and for § = (6,, 6,) € S!,
let 6+ = (—6,, 6)) be its 7/2 counterclockwise rotation.

Definition 1 (Weighted Radon Transform) Let f:R> — R be a function and
w:R? x S' — R be a weight function, the weighted Radon transform of f, with
the weight w, is defined as

L,f(s,0) = / w(sOL + 10, 0)f (s0+ + 10)dt, seR, 6eS
R
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Definition 2 (Beam Transform) The beam transform of the function a: R> — R
at the point x € R?, in the direction 6 € S' is defined as

o0
(Ba)(x,0) = / a(x+10)dt, xeR?* HeS'.
0

The weighted Radon transform with the exponential of the Beam transform as a
weight is called the attenuated Radon transform.

Definition 3 (Attenuated Radon Transform) Leta,f: R? — R, then the AtRT of
f, with attenuation a, is defined as

R f(s.0) = / F(sO0L + 10)eBIIHOD g s e R, 9 eS
R
When a = 0, this is called the Radon transform of f and it is denoted as Rf (s, 0).

2.2 Ballistic and First Scattering Measurements

In order to describe the inverse problem related to the simultaneous reconstruction of
source and attenuation, we make use of the radiative transfer equation (RTE) which
is extensively used in medical imaging techniques related with photon transport.
Let o(x, 0, 0’) be a scattering kernel that describes which photons at the spatial
point x € R?, coming from direction § € S' are scattered in the direction 8’ € S'. So
the RTE for an attenuation a, source f and scattering o is, for all x € RZand 0 € S':

0 - Vau(x, 0) + a(x)u(x, 0) + / u(x,0o(x,0,0)do’
sl

= f(x) +/ u(x, 0o (x,0',0)dd’, VxeR? 6eS'. (1)
Sl

The first integral term corresponds to the effect of photons that are scattered away
from the path defined by (x, 0). The second integral term is the opposite, and
represents the gamma rays traveling in the spatial point x € R?> coming from any
direction that by a scattering process take the path defined by (x, ). By introducing
the total attenuation:

ar(x,0) = a(x) +/ o(x,0,0)do’,
sl

Eq. (1) can be rewritten as

0 - Vou(x, 0) + ar(x)u(x, 0) = f(x) + / u(x,0)o(x,0',0)de’, Vx e R%,0 € §'.
Sl
2
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Defining u;(x, 0) as the intensity of photons that have been scattered i time, we
can decompose the total intensity u as

o0
u(x,0) = Z ui(x, 0),
i=0
hence Eq. (2) becomes the system

6 - Viuo(x, 0) + ar(x, Dup(x, 0) = f(x), VxeR? Hes'

0 - Viui(x, 0) + ar(x, O)u;(x, 0) = / o(x, 0,0 )ui—1(x,0)do’, Vi>1,
Sl

lim uj(x—10,0) =0, Vi>0, VxeR> 6 eSS (3)
t—>+00
We first assume isotropy of the scattering kernel o(x,6,6’) = o(x,0 - 6'), i.e.

the scattering process only depends on the angle at which photons are scattered.
Moreover, we assume we can separate variables for the scattering kernel

o(x,0-0") =k(x)p(0-0).

where ¢ is well known by Klein—Nishina formula. Compton scattering is not equally
probable at all energies or scattering angles. The probability of scattering is given
by the Klein Nishina equation:

do =Zr§ 1 2 (1 + cos? ¢
as2 1+ a(l+cosfe) 2

a?(1 — cos O¢)?
(1 (1 + cos? 6)(1 + af1 — cos ec})) @)

where do/dS2 is the differential cross-section, Z is the atomic number of the
scattering material, ry is the classical electron radius, and ¢ = E, /mocz. E,
is the photon energy and « is the fine structure constant (~ 1/137.04). Here
Oc = cos™ (0 - 6), so ¢ will be completely determined by 0.

Secondly, we assume that the function k(x) is proportional to the attenuation map,
i.e. k(x) = Ca(x). Then the system becomes

0 - Vyup(x, 0) + alx, 0)up(x, 0) = f(x),
0 - Veui(x, 0) + a(x, O)u;(x,0) = Ca(x)/ 00 -0ui—1(x,0)d0’, Vi>1,
Sl

lim w;(x—16,0) =0, Vi>0. 5)
t—>—+00
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Proposition 1 If a and f are uniformly line-integrable then the system (5) has a
unique solution:

0
ug(x, 0) = / flx+ t@)efgoo artctstdsgr yx e R?, 6 € S (6)
—00
0

ui(x,0) = C /

—00

a(x+10) / 00 - 0')tj—1 (x-+10, 6')df’ e ~o00 2F0ds gy i),
Sl
(7

Proof The proof'is a generalization of [4, Proposition 1].

As measurements we assume that we are able to record ug(x, 6), the ballistic
photons, and u, (x, 8), the first-order scattering photons, as they exit the patient, i.e.
we assume the knowledge of ug and u; at all points outside the support of a and f.

In summary, the inverse problem is the reconstruction of the source and
attenuation maps f and a from the measurements of the ballistic and first-
order scattering photons.

3 Inverse Problem

In this section we present the Albedo operator and the principal results related with
its inversion. For this, we assume that ¢ = 148¢ : [—1, 1] — R (quite far from true
Klein—Nishina formula at 140 KeV). Proofs are omitted since they are not difficult
to obtain as generalizations of propositions and theorems presented in [4].

3.1 Albedo Operator
Defining
Mylaf165.0) = [ 906 -0, a6,

then (6) and (7) with i = 1 becomes:

0
uo(x, 0) = / Fx + 10)e™ S atrstds gy VxeR? 0 es!
—0Q

0
w(x,0)=C / a(x + t0)M,[a,f](x + 16, 0)e~ [P atksOdsge vy e R?, 9 € S

—00
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Therefore, the ballistic and first-order scattering photons exiting the domain corre-
spond to <%, 7, respectively, are

(x,0) = lim ui(x + 10, 0), (x.0) eR*xS', i=0,1.

The inverse problem can be rephrased as the construction of f and a from knowledge
of the Albedo operator

a.f] = (o, ) = {(H(x,0), % (x.0)), (x.0) e R x S'}, (®)

more explicitly

o0 00
o(x,0) = / Fx + 19)e™ i dtsOds gy VxeR% 0 e s
@ (x,0) = C / a(x + t0)M,[a.f](x + 10, 0)e™ I atsOdsge  yyeR? 6§,

Myla,f1(x,0) = / 0(6-0) / Flx+ 16"y I attsds gy
st —00

We can rewrite these measurements in terms of a new variable s € R and 6 € S' as
follows

do(s,0) 1= Ay(s0+,6)
oo - N
= / f(SQJ' + [e)e_./t a(so +T€)drdt,

= Ru[f1(s, 0), )
(s, 0) = o (s6+,0)
=C / a(s0* + 10)M,[a,f(s6" + 16,0)e™ I~ GO+ gy,

= CR,[aM,][a,f]](s, 0). (10)

Inverse Problem: Given <%, and 7| forall s € R, 6 € S', we want to recover
a(x) and f(x), Vx € R%. Now we are interested in inverting the operator .<7.
The principal difficulties involved are:

 We cannot calculate R ! since a is unknown.
* This is a non-linear problem in a.

In the next subsection, we present the principal results about the inversion of <7
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3.2 Linearized Inverse Problem

To study the invertibility of the Albedo operator .« near a known source and
attenuation pair (a, f) supported in K = B(0,1), it is necessary to calculate
the differential Do [, f](8a, f) of the Albedo operator. Multiply by appropriated
cut off functions, the idea is to recover (8a, §f) from Rzl_l(.@g%[é,f]@a,&f)) =

(L + Q)[a.f](8a, 8f), i.e. compute the inverse ((L + Q)[El,f])_l, where

L. i6a.86) = <5f A5 [&4)
4

0la.f1(8a. 8f)

0
- (erlw[a,a.m][wl + (@ 0uMySa) + Ry Ry(Sa- M, + & Myl 6f D) |

a

Theorems 2 and 3 guarantee that L is invertible and Q is a relatively small,
respectively. This will allows us to prove the invertibility of the linear operator
(L + Q) which is presented in Theorem 4.

Now, we assume & € H*(K), f € C*(K), f = 0, f(0) > 1, ||a@]ly= < 1 and
Ifllc= < 1. In addition, we suppose ||§¢]| c ®xs") sufficiently small (depending on

h:
Theorem 1 L[a,f], O[a.f] : L2(K) x L*(K) — L*(K) x L2(K).
Proof The proof is a generalization of [4, Proposition 4].

Theorem 2 L[, f] is invertible with

() M,
L [ vf] (h) - (g—Ra_llw[af](h/M‘ﬂ))

and ||L~"[a,f]]] < C uniformly.
Proof The proof is a generalization of [4, Proposition 5].
Theorem 3 ||Q[a.f1]| < Cllal|.
Proof The proof'is a generalization of [4, Proposition 7].

Theorem 4 [f a is small enough and smooth, ]:‘ is positive enough and smooth, if §¢
is small enough and smooth, then (L + Q)[a,f] is invertible and the inverse can be
written explicitly as a Neumann series.

Proof The proof is a generalization of [4, Theorem 4].
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4 Reconstruction Algorithm

In this section, we solve the inverse problem (8) where 2% and %7 are given by (9)
and (10), respectively.

4.1 Linear System and General Algorithm

Knowing .2% and .27, our problem is to solve for each s € R and for each § € S':

Ra[f](ss 9) = %(S, 9) = bO(Sv 9) (11
CRa[Cle[Cl,f]](S, 9) = m(ss 9) = bl(sv 9) (12)

Recalling that AtRT is a line integral we are able to represent it as a matrix which in
turn will determine a linear system for f and a as follows:

Aof = bo,
Aja = by,

where Ag is determine by a discretization of R,[f] and A; by R,[aM][a,f]]. We
explain these matrices in the next subsection. First, we present the iterative
algorithm for recovering f and a simultaneously in Algorithm 2. This algorithm
makes use of Algorithm 1 that helps us to solve any linear system Ax = b.

Algorithm 1 ART for solving Ax = b

1: Given A € #,x,(R) and b € R™. Initialize x° and number of iterations Niter .
2 k<1
3: for i = 1 : Niter do

4 fork=0:m++ 1do
5: Choose r randomly (without repetition) in {1, 2, ..., m}.
6: Take a, as the r-nt row of A.
7 Take b, as the r-nt component of b.
8 Calculate
b r rs xk
K= 4 (a2 )a,,
lla|
9: end for

10: end for
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Algorithm 2 Simultaneous reconstruction of f and a

: Given by, b;. Initialized a° and fix the number of iterations Niter.
k<0
: for k = 0 : Niter do
Calculate Af with d*.
Solve ALf* = by to get f* using Algorithm 1.
Calculate A% with f* and d.
Solve A’l‘a"+1 = b to get a*T! using Algorithm 1.
end for

A o e

4.2 Discretization and Matrices Construction

Source f and attenuation a are studied as medical images with N x N pixels. Then,
we consider I = N? pixels and denote f(x;,y;) =: f; and a(x;,y;) = a; with i =
1,2,...,1

Let M be the number of angles ¢; in which the detector rotates, so §; =
(cosg;,sing;) for j = 1,2,...,J. Additionally, we consider sy € (—1,1) for
k= 1,2,...,K, as the distances to the origin associated to a line, i.e. we define
Ly as the line L(6},5,) = {x € R:x = stjJ- + 16, t € R} and we denote by
wi = length(Ly N p;).

Finally, we write bjok = by(6;, 1) the measurement o7 (6;, sx) over the line Lj. In
Fig. 1 all these variables are explained.

4.2.1 Matrix Ay Construction

Using the notation describe before, we can write the discretization of (11) by
Ra[f](ejssk):bj(')kv j=1...,J, k=1,...,K,

Fig. 1 Line Ly = L(6;, s¢)

parametrized by direction 6;
and distance s; from the

origin. For a pixel p;, wi
represents the length of
ij ﬂp, L(a?"sk?) Hj
~
W | pi
0; Ji
Wiik
% F
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where,

1
Ra[f)(6.50) ~ Y wiifie e, (13)

i=1

with
00
Dja ~ / a(pi + tej)dl‘.
0

This last integral is calculated using rotations and sums by columns taking advan-
tage that a is represented by a matrix.
Then, Eq. (13) can be written as the linear system

Aof =bo, Ay € Myxxn, [ ER!, by e R'K

with A?jk = wire 2%, Written in this way A is a three dimensional array which is

reordered to have J - K rows and / columns. On the other hand, matrices f and a,
were reshaped as vectors, from left to right and from top to bottom.

4.2.2 Matrix A; Construction
Now we write (12) in a discrete form, as follows:
CRJ[aMyla.fN(0;.5) = by, j=1.....J. k=1,... K.

First, let us remember that M, is given by

o0 " /7 ,
Myla.f](x, 0) = / (0 -0') / Fle 10y BT et gy
St 0

then for each p; and 6;, we denote by M;; := M|a, f](p;, 9;). This last expression is
approximated by

J
My =) uygy A0
=1

where,

wy =h Zf(l’i + lhej’)e—(Da(p,-,ej’)_Da(p,-+1h9j’,9j’))
le®
pi+19j/

S a(p,-+1:0j/)d1:

%/ f(pl+ t9j/)e_ pi dt
0
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with ¢ = {l € N:lhfy € sopf} and h represents the discretization step between
two pixels. The point p; 4 Ih6 is approximated with the nearest pixel p;. And, ¢;y
is given by Klein—Nishina’s formula.

Combining these approximation for (12) we get

1
CRa [aM[‘Lf]](Qja Sk) ~C Z WijkaiMije_D’ja,

i=1
and a linear system for a is determined by:
Aya = by, A € l//(].le), a e Rl, b, € R].K.

Here, A}jk = CwyMe i is reorder to get a bidimensional J - K x I matrix, and a
is reorder as f.

S Numerical Experiments

In this section we present results obtained with Algorithm 2 implemented in
Matlab.

We are working in the unit square [—1,1]? discretized into an equispaced
cartesian grid of size N x N with N = 128. The quantities (a,f) are supported
inside the unit disc D = {x> +y? < 1}.

In all the experiments, we consider three iterations, i.e. Niter = 3 in Algorithm 2.
These number is enough to reach a good reconstruction of our objects f and a.

We add to our measurements a noise of two natures:

1. First, we added simulated instrumental noise, characterized by an amplitude A so
that each pixel value p is replaced by a draw A - Pois (%),
2. After that we added background noise is added, characterized by a bias value

B # added background photons
N #photons measured '

We decided a quantum value g of energy representing one photon, for each
additional photon, we add g to a pixel chosen at random with uniform probability
among all data pixels.

The experiments with ‘low noise’ and ‘high noise’ are carried out with the respective
values (A, B) = (0.2,0.5) and (A, B) = (0.4, 5) (Fig.2).

The measurements (.27, 27]) are displayed in Fig. 3, and the errors after conver-
gence in all three cases (noiseless, low noise, high noise) are displayed in Fig. 4.
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0

0 01 02 03 04 05 06

0 0.05 0.1 0.15 0 0.05 0.1 0.15 0 0.05 041 0.15 02

Fig. 3 Forward data < (a, f) (top row) and <7 (a, ) (bottom row), with (a, f) given in Fig. 2. Left
to right: noiseless, low noise, high noise
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3\

[“ \
1
\
0 02 04 06 08
0 02 04 06 08 1
Fig. 4 Reconstructed a (top row) and f (bottom row) after convergence. Left to right: noiseless,
low noise, high noise

According to Fig.4, we can appreciated that reconstructions are satisfactory.
Calculation time is reasonable with N = 128 (~ 10min), the execution time for
smaller N, is reduced considerable.

Noise in data makes the algorithm to give negative values to both a and f,
although both quantities are physically non-negative. This problem is avoided by
including positivity constrains in matrices Ay and A; without affecting its speed. A
Gaussian low-pass filter is included after each iteration to avoid the propagation of
high frequencies, which appeared in reconstructions of the source and attenuation.
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On £!-Regularization Under Continuity )
of the Forward Operator in Weaker e
Topologies

Daniel Gerth and Bernd Hofmann

Abstract Our focus is on the stable approximate solution of linear operator
equations based on noisy data by using {£!-regularization as a sparsity-enforcing
version of Tikhonov regularization. We summarize recent results on situations
where the sparsity of the solution slightly fails. In particular, we show how the
recently established theory for weak*-to-weak continuous linear forward operators
can be extended to the case of weak*-to-weak* continuity. This might be of
interest when the image space is non-reflexive. We discuss existence, stability and
convergence of regularized solutions. For injective operators, we will formulate
convergence rates by exploiting variational source conditions. The typical rate
function obtained under an ill-posed operator is strictly concave and the degree of
failure of the solution sparsity has an impact on its behavior. Linear convergence
rates just occur in the two borderline cases of proper sparsity, where the solutions
belong to £°, and of well-posedness. For an exemplary operator, we demonstrate
that the technical properties used in our theory can be verified in practice. In the last
section, we briefly mention the difficult case of oversmoothing regularization where
x" does not belong to £1.

1 Introduction

We are going to deal with the stable solution of linear operator equations
Ax=y (1)

with a bounded linear operator A : £! — Y, mapping from the non-reflexive infinite
dimensional space £' of absolutely summable infinite real or complex sequences to
an infinite dimensional Banach space Y. Instead of the exact right-hand side y from
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the range Z(A) of A we assume to have only noisy data y* € Y available which
satisfy the deterministic noise model

Iy —=»lly <8 )

with prescribed noise level § > 0. Our focus for solving Eq. (1) is on the method of
{'-regularization, where for regularization parameters & > 0 the minimizers xi of

the extremal problem
1 g . : 1
) |Ax — |y + o [|x]|gt — min, subjectto x € £, 3)

are used as approximate solutions. This method is a sparsity-enforcing version of
Tikhonov regularization, possessing applications in different branches of imaging,
natural sciences, engineering and mathematical finance. It was comprehensively
analyzed with all its facets and varieties in the last 15 years (cf., e.g., the
corresponding chapters in the books [31-33] and the papers [1, 4, 8, 12, 20—
22, 25, 28, 29]). We restrict our considerations to injective operators A such that,
for right-hand sides, the element x = (xI,x;, ...) € {! denotes the uniquely
determined solution to (1). For assertions concerning the case of non-injective
operators A in the context of £'-regularization, we refer to [9]. In the non-injective
case, even the £'-norm minimizing solutions need not be uniquely determined. As
a consequence, very technical conditions must be introduced in order to formulate
convergence assertions and rates. In our framework, the Propositions 7 and 11 below
would have to be adapted, which however is out of the scope of this paper.

With the paper [5] as starting point and preferably based on variational source
conditions first introduced in [24], convergence rates for £'-regularization of
operator equations (1) and modifications like elastic-net

1 1 . .
) |Ax — y8||’;, +« (2 ||)c||%2 +7n ||x||41) — min, subjectto x € £!, “)

have been verified under the condition that the sparsity assumption slightly fails
(cf. [6, 13, 14]). This means that the solution xI e 2! is not sparse, abbreviated
as xT ¢ £°. Most recently in [11], the first author and Jens Flemming have shown
that complicated conditions on A, usually supposed for proving convergence rates
in £'-regularization (cf. [5, Assumption 2.2 (c)] and condition (9) below), can be
simplified to the requirement of weak*-to-weak continuity of the injective operator
A. This seems to be convincing if Y is a reflexive Banach space. The present
paper, however, makes assertions also in the case that A is only weak*-to-weak™
continuous, which is of interest for non-reflexive Banach spaces Y. Moreover, we
complement results from [11], for example with respect to the well-posed situation.

The paper is organized as follows. In Sect.2 we recall basic properties of £!-
regularization. We proceed in Sect. 3 by discussing the ill-posedness of Eq. (1). We
mention that in particular variational source conditions allow us to deal with the
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ill-posedness and yield convergence rates. For our convergence analysis a particular
property of the operator is necessary. In Sect.4 we show that weak*-to-weak
continuity and injectivity imply this property. Interestingly, the same property holds
under weak*-to-weak* continuity and injectivity as shown in Sect. 5. There we also
derive the convergence rates which hold for both continuity assumptions. Finally, we
demonstrate that even the case of a well-posed operator is reflected in our property
in Sect. 6. There we also hint at the case of oversmoothing regularization, which
occurs when one employs £'-regularization although the true solution x* does not
belong to £!.

2 Preliminaries and Basic Propositions

In this paper, we consider the variant (3) of £'-regularization with some exponent
p > 1 and with a regularization parameter ¢ > 0. Let y € Z#(A). Then, due to the
injectivity of A, there exists a uniquely determined solution x™ € £! to (1). With the
following Proposition 1 we recall the assertions of Proposition 2.8 in [5] with respect
to existence, stability, convergence and sparsity of the £!-regularized solutions xf[.
The proof ibidem emphasizes the fact that most of these properties follow directly
from the general theory of Tikhonov regularization in Banach spaces (cf., e.g., [24,
Section 3] and [33, Section 4.1]). Since for p > 1 the Tikhonov functional to be
minimized in (3) is strictly convex, the regularized solutions xi , whenever they exist,

are uniquely determined for all @ > 0.

Proposition 1 Let A : {! — Y be weak*-to-weak continuous, i.e., x, —* xo in
L' implies that Ax, — Axo in Y. Then for all « > 0 and all y* € Y there exist
uniquely determined minimizers xf[ € U of the Tikhonov functional from (3). These
regularized solutions are sparse, i.e., xf[ € (° and they are stable with respect
to the data, i.e., small perturbations in y° in the norm topology of Y lead only
to small changes in xf[ with respect to the weak*-topology in £'. If §, — 0 and
if the regularization parameters o, = o(8,,y") are chosen such that o, — 0
and 082 — 0 asn — oo, then xi’; converges in the weak*-topology of {! to the

uniquely determined solution x' of the operator equation (1). Moreover we have
lim ||x‘2;; e = |IxT||¢1, which, as a consequence of the weak* Kadec-Klee property
n—>oQ

int! (see, e. g., [3, Lemma 2.2]), implies norm convergence
lim [|x¥ —x'||p = 0.
n—oo n

The weak*-to-weak continuity of A in combination with the stabilizing property
of the penalty functional ||x|, in €' together with an appropriate choice of the
regularization parameter o > 0 represent basic assumptions of Proposition 1. In
contrast to regularization in reflexive Banach space, where the level sets of the
norm functional are weakly compact, we have in ¢! weak* compactness of the
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corresponding level sets according to the sequential Banach-Alaoglu theorem (cf.,
e.g., [30, Theorems 3.15 and 3.17]), which we present in form of the following
lemma.

Lemma 1 The closed unit ball of a Banach space X is compact in the weak™-
topology if there is a separable Banach space Z (predual space) with dual Z* = X.
Then any bounded sequence {x,},en in X has a weak™-convergent subsequence
{Xn Yken such that x,, —* xo € X as k — oo.

The occurring kind of compactness of the level sets with X = £! and predual space
Z = ¢ ensures the existence of minimizers xi of the functional (3).

Throughout this paper, we use the terms ‘continuous’, ‘compact’ or ‘lower semi-
continuous’ for an operator, a set or a functional always in the sense of ‘sequentially
continuous’, ‘sequentially compact’ or ‘sequentially lower semicontinuous’. As the
Lemmas 6.3 and 6.5 from [10] show, there is no reason for a distinction in case of
using weak topologies. From Lemma 2.7 and Proposition 2.4 in [5] one can take
assertions concerning sufficient conditions for the weak™*-to-weak continuity of A,
which we summarize in the Proposition 2 below. As also indicated in Proposition 1,
for the choice of «, the so-called regularization property

g

5
d
a(8,y’) >0 an w(5.5) —

0 as §— 0, (®)]

where « tends to zero, but sufficiently slow, plays an important role. In our studies,
we consider on the one hand a priori parameter choices aapr; = a(§) defined as

8
a(d) = o)’ 0<8<8, (©)

with concave index functions ¢. In this context, we call ¢ : [0,00) — [0, 00) an
index function if ¢ with ¢(0) = 0 is continuous and strictly increasing. Obviously,
an a priori parameter choice o4 pg; from (6) with an arbitrary concave index function
(pgpsatisﬁ%s (5) as limg—, 1o @(8) = 0 is valid for each index function and we have

o) = o) 8! — 0 as 8§ — 0, because 67~ is an index function for all exponents
8

p > 1in (3) and the factor ) is bounded whenever ¢ is concave.

On the other hand, we consider the sequential discrepancy principle, compre-
hensively analyzed in [2] (see also [23]), as a specific a posteriori parameter choice
aspp = a(8,y%) for the regularization parameter. For prescribed 7 > 1, 0 < ¢ < 1,
and a sufficiently large value oy > 0, we let

Ayi=1e;>0: o =qlay, j=1,2,...}

Given § > 0 and y5 € Y, we choose o = aspp € A, according to the sequential
discrepancy principle such that

o

IAx] — || < 78 < [|AxS,,, —¥°II. (7)
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By Theorem 1 in [2] it has been shown that there is § > 0 such that agpp is well-
defined for 0 < § < § and satisfies (5) whenever data compatibility in the sense of
[2, Assumption 3] takes place.

Consequently, both regularization parameter choices @ = a4prr and ¢ = ospp
are applicable for the £!-regularization in order to get existence, stability and
convergence of regularized solutions in the sense of Proposition 1. Now we are
going to discuss conditions under which weak*-to-weak continuity of A : £! — ¥
can be obtained. The occurring cross connections are relevant in order to ensure
existence, stability and convergence of regularized solutions, but they have also an
essential impact on convergence rates which will be discussed in Sect. 4.

Proposition2 Let A : ! — Y with adjoint operator A* : Y* — £ satisfy the
condition

t%(A*) g Co, (8)

where c is the Banach space of real-valued sequences converging to zero equipped
with the supremum norm. Then A is weak™-to-weak continuous. In particular, (8) is
fulfilled whenever there exist, for all k € N, source elements f® € Y* such that the
system of source conditions

et = A7 ©)

holds true, where {e"® ¢y is the sequence of k-th standard unit vectors which forms
a Schauder basis in cy. Under the condition (9) we even have the equality

249" = ¢ (10)

The paper [1] shows that the condition (9), originally introduced by Grasmair in
[19], can be verified for a wide class of applied linear inverse problems. But as also
the counterexamples in [12] indicate, it may fail if the underlying basis smoothness
is insufficient. However, weak*-to-weak continuity of A can be reformulated in
several ways as the following proposition, proven in [9, Lemma 2.1], shows. This
proposition brings more order into the system of conditions.

Proposition 3 The three assertions

(i) {Ae® e converges in Y weakly to zero, i.e. Ae® — 0 as k — oo,
(ii) Z(A*) C co,
(iii) A is weak™-to-weak continuous,

are equivalent.

As outlined in [5], the operator equation (1) with operator A : ' — Yis
often motivated by a background operator equation Ax = y with an injective and
bounded linear operator A mapping from the infinite dimensional Banach space X
with uniformly bounded Schauder basis {u®};cn, ie. [[uP]z < K < oo, to the
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Banach space Y. Here, following the setting in [19] we take into account a synthesis

- 00
operator L : £' — X defined as Lx := Y_ xu™® for x = (x1,x,,...) € £!, which
k=1
is a well-defined, injective and bounded linear operator, and so is the composite

operator A = A o L : £' — Y. In particular A is always weak*-to-weak continuous
if A has a bounded extension to £, 1 < p < oo, as this yields (i) in Proposition 3.
Even more specific, A is weak*-to-weak continuous if X is a Hilbert space. Since
this case appears rather often in practice, the continuity property comes “for free”
in this situation.

3 Ill-Posedness and Conditional Stability

In this section, we discuss ill-posedness phenomena of the operator equation (1)
based on Nashed’s definition from [27], which we formulate in the following as
Definition 1 for the simplified case of an injective bounded linear operator. More-
over, we draw a connecting line to the phenomenon of conditional well-posedness
characterized by conditional stability estimates, which yield for appropriate choices
of the regularization parameter convergence rates in Tikhonov-type regularization.

Definition 1 The operator equation Ax = y with an injective bounded linear
operator A : X — Y mapping between infinite dimensional Banach spaces X and
Y is called well-posed if the range Z(A) of A is a closed subset of Y, otherwise
the equation is called ill-posed. In the ill-posed case, we call the equation ill-posed
of type I if Z(A) contains an infinite dimensional closed subspace and otherwise
ill-posed of type I1.

The following proposition taken from [13, Propositions 4.2 and 4.4] and the
associated Fig. 1 give some more insight into the different situations distinguished
in Definition 1.

Proposition 4 Consider the operator equation Ax = y from Definition 1. If this

Y
equation is well-posed, i.e., Z(A) = Z(A) and there is some constant ¢ > 0

ill-posed of type II

well-posed

operator strictly
singular

not
rator
ope —  oulat

Sﬂ'\c\\y

operator compact

ill-posed of type I

Fig. 1 Properties of A for well-posedness and ill-posedness types of equations from Definition 1
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such that ||Ax|| > c||x|| for all x € X or the equation is ill-posed of type I, then the
operator A is non-compact. Consequently, compactness of A implies ill-posedness of
type II. More precisely, for an ill-posed equation Ax =y with injective A and infinite
dimensional Banach spaces X and Y, ill-posedness of type Il occurs if and only if
A is strictly singular. This means that the restriction of A to an infinite dimensional
subspace of X is never an isomorphism (linear homeomorphism). If X and Y are both
Hilbert spaces and the equation is ill-posed, then ill-posedness of type II occurs if
and only if A is compact.

Now we apply the case distinction of Definition 1, verified in detail in Proposi-
tion 4, to our situation of Eq. (1) with X := ¢! and A : ¢! — Y. We start with a
general observation in Proposition 5, which motivates the use of £!-regularization
for the stable approximate solution of (1), because the equation is mostly ill-posed.
Below we enlighten the cross connections a bit more by the discussion of some
example situations.

Proposition 5 If Y is a reflexive Banach space, then the operator equation (1) is
always ill-posed of type I1.

Proof As aconsequence of the theorem from [18] we have that every bounded linear
operator A : £! — Y is strictly singular if Y is a reflexive Banach space. Hence well-
posedness and ill-posedness of type I cannot occur in such case. O

Example 1 Consider that for reflexive ¥ we have a composition A = A o L with
forward operator A : X — Y and synthesis operator L : {' — X as mentioned in
Sect. 2. Then (1) is ill-posed of type IT even if A is continuously invertible and hence
the equation A¥ = y well-posed. This may occur, for example, for Fredholm or
Volterra integral equations of the second kind. Similarly, if A as mapping between
Hilbert spaces is non-compact with non-closed range and hence A% = y is ill-posed
of type I (which occurs, e.g., for multiplication operators mapping in L*(0, 1)), (1) is
still ill-posed of type II. In the frequent case that X is a separable Hilbert space and
{u(k)}keN an orthonormal basis, then A is compact whenever A : X — Yis compact
(occurring for example for Fredholm or Volterra integral equations of the first kind).

Example2 If A := &, with 1 < g < oo and Y := {? is the embedding operator,
then solving Eq. (1) based on noisy data y> € ¢4 fulfilling (2) is a denoising problem
(see also [13, Sect. 5] and [14, Example 6.1]). For 1 < g < oo the embedding
operator A = & is strictly singular with non-closed range but non-compact. Due
to Proposition 5 the equation is ill-posed of type II. Moreover, we have Ae® — 0
in £4, which due to Proposition 3 implies that A is weak*-to-weak continuous and
H(A*) C cp. The latter is obvious, because the adjoint A* is the embedding operator
from €4 to £ with 1/q + 1/¢* = 1 and Z(A*) = £4". In particular, the source
condition (9) applies with f® = ¢® € £4" C ¢, forall k € N.

Example 3 For g = 1 in the previous example we have the continuously invertible
identity operator A = Id : £' — {' with closed range %#(A) = {'. Then Eq. (1) is
well-posed, but we have Ae® A 0in £' for k — oo, which due to Proposition 3
indicates that the range Z(A*) of the adjoint of A does not belong to ¢y and in
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particular A is not weak*-to-weak continuous. This is evident, because the adjoint
of A = Id is the identity A* = Id : £>° — {*° and Z(A*) = {£°°. We will come
back to this example later.

For obtaining error estimates in £'-regularization on which convergence rates
are based, we need some kind of conditional well-posedness in order to overcome
the ill-posedness of Eq. (1). Well-posed varieties of Eq. (1) yield stability estimates
lx — xf|p < K||JAx — AxT||y for all x € £', which under (2) and for the choice
o = agpp imply the best possible rate

[ —xT|p = 0@) as §—0, (11)

which is typical for well-posed situations. We will come back to this in Sect. 6. We
say that a conditional stability estimate holds true if there is a subset .2 C £! such
that

x—x'||p < K(A)|Ax— Ax"||y forall xe .. (12)
{

Because .# is not known a priori, such kind of stability requires the additional use
of regularization for bringing the approximate solutions to .# such that a rate (11)
can be verified. This idea was first published in [7] by Cheng and Yamamoto. In the
context of £!-regularization for our Eq. (1), we have estimates of the form (12) if the
solution x™ € £° is sparse, i.e. only a finite number of non-zero components occur in
the infinite sequence x'. Then . can be considered as a subset of ¢° with specific
properties, and the sparsity of £!-regularized solutions verified in Proposition 1
ensures that the corresponding approximate solutions belong to .#. This implies
the rate (11) for xT € £°, although Eq. (1) is not well-posed.

A similar but different kind of conditional well-posedness estimates are varia-
tional source conditions, which attain in our setting the form

Blle—2'llo < Il — Ix'llo + @(lAx —Ax'[ly) forall xet',  (13)

satisfied for a constant 0 < § < 1 and some concave index function ¢. From [23,
Theorems 1 and 2] we find directly the convergence rates results of the subsequent
proposition.

Proposition 6 [f the variational source condition (13) holds true for a constant
0 < B < 1 and some concave index function ¢, then we have for {'-regularized
solutions xi the convergence rate

X5 = x| = O(p(8)) as §—0 (14)

whenever the regularization parameter « is chosen either a priori as o« = ospgy
according to (6) or a posteriori as « = aspp according to (7).
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Consequently, for the manifestation of convergence rates results in the next section

it remains to find constants 8, concave index functions ¢ and sufficient conditions
for the verification of corresponding variational inequalities (13).

4 Convergence Rates Results for £!-Regularization

The first step to derive a variational source condition (13) at the solution point
x = (xI,x; ...) € £! was taken by Lemma 5.1 in [5], where the inequality

o n
e = xtlg < xller = I fler +2 ( PN -xz|) (15)
k=n+1 k=1

was proven for all x = (x1,x,...) € £' and all n € N. Then under the source
condition (9), valid for all £ € N, one directly finds

Y obe—xll =Y e x = x| = D IR, A= x| (16)
k=1 k=1 k=1

and hence from (15) that a function of type

o
@(r) = 2 inf ( Z el + l) (17)
i Vi
with 8 = 1 and
Yo=Y 1Pl (18)
k=1

provides us with a variational inequality (13). Along the lines of the proof of [5,
Theorem 5.2] one can show the assertion of the following lemma.

Lemma 2 If {y,}sen is a non-decreasing sequence, then ¢ from (17) is a well-
defined and concave index function for all x* € .

Both the decay rate of x,t — 0 as k — oo and the behaviour of y, as n — oo

in (17) have impact on the resulting rate function ¢. A power-type decay of x,t leads
to Holder convergence rates (see [5, Example 5.3] and [13, Example 3.4]), whereas
exponential decay of x}: leads to near-to-§ rates slowed down by a logarithmic factor
(see and [3, Example 3.5] and [13, Example 3.5]). In the case that xTelis sparse
with x,t = 0 for all k£ > ny, then the best possible rate (11) is seen. This becomes

clear from formula (17), because then ¢ fulfills the inequality ¢(7) < 2y, t.
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From Proposition 6 we have that for all concave index functions ¢ from (17) a
convergence rate (14) for the £'-regularization takes place in the case of appropriate
choices of the regularization parameter @ whenever a constant 0 < 8 < 1 exists
such that (13) is valid with ¢ from (17). When the condition (9) is valid, this is the
case with B = 1 and y, from (18). Under the same condition the rate was slightly
improved in [13] (see also [14]) by showing that y,, from (18) can be replaced with

n

S af®
k=1

Yn = Sup 19)

Y*

However, the condition (9) may fail as was noticed first in [12] for a bidiagonal
operator. Therefore, assumption (9) was replaced by a weaker (but not particularly
eye-pleasing) one in [12]. Ibid the authors assume, in principle, that for each n € N
there are elements f"% such that forall 1 <i<n

[A*F0); = [eV);

and

Zn:[A*f("'k)]i

k=1

<c¢ forall i>n and c< 1.

This means that each basis vector ¢¥) can be approximated exactly up to arbitrary
position but with a non-zero tail consisting of sufficiently small elements. Later, in
[14], a more clearly formulated property was assumed which implies the one from
[12]. We give a slightly reformulated version of this property in the following. In
this context, we notice that P, denotes the projection operator applied to elements
x = (x1,X2, ..., X0, Xpn+1, - . .) such that P,x = (x1,x2,...,x,,0,0,...).

Property 1 For arbitrary u € [0, 1), we have a real sequence {y,}nen such that for
eachn € N and each £ = £(n) € £°°, with

e[-1,1], ifk<n,
& [ ] ] , (20)
=0, ifk>n

there exists some 1 = n(u,n, §) € Y* satisfying
(a) P,A™n =§,
(b) [ = Pw)A™ )| = o forall k> n,
© lnlly* < yn
It is important to note that it was a substantial breakthrough in the recent paper

[11] to show that Property 1 follows directly from injectivity and weak*-to-weak
continuity of the operator A. Namely, the following proposition was proven there.
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Note that we changed the definition of the & in (20) slightly. By checking the proofs
in the original paper one sees the amendments we made are not relevant.

Proposition 7 Let A : {' — Y be bounded, linear and weak*-to-weak continuous.
Then the following assertions are equivalent.
(i) Ais injective,

ZOO

(ii) e® € Z(A*)  forall k€N,
{00

(iit) Z(A*) = co,
(iv) Property 1 holds.

In other words, for such operators there exist appropriate sequences {y,},en
occurring in (17) such that a variational source condition (13) holds for an index
function ¢ from (17) and constant 8 = 114__’; (see Proposition 1 below). Item (b)

in Property 1 is a generalization of (9). Namely, the canonical basis vectors e®)
do not necessarily belong to the range of A* but to its closure. For the proof of
Proposition 7 we refer to [11]. Most of the steps are identical or at least similar to
the proof of Proposition 11 which we will give later.

5 Extensions to Non-reflexive Image Spaces

If the injective bounded linear operator A : £' — Y fails to be weak*-to-weak
continuous, then the results of the preceding section do not apply. In case that Y
is a non-reflexive Banach space, it makes sense to consider the weaker property
of weak*-to-weak™ continuity of A. An already mentioned example is the identity
mapping A = Id for Y = {'. In £!, weak convergence and norm convergence
coincide (Schur property), but there is no coincidence with weak™® convergence.
Thus, the identity mapping cannot be weak*-to-weak continuous, but it is weak*-
to-weak™ continuous as the following Proposition 8 shows. It is a modified extension
of Proposition 3. Following [10, Lemma 6.5] we formulate this extension and repeat
below the relevant proof details.

Proposition 8 Let Z be a separable Banach space which acts as a predual space
for the Banach space Y = Z*. Then the following four assertions are equivalent.

(i) {Ae®Y e converges in Y weakly* to zero,

(ii) Z(A*|7) :={vel>®:v=A"z forsome z€ZCY*}Ccy,
(iii) A is weak™-to-weak™ continuous,
(iv) There is a bounded linear operator S : Z — ¢y such that A = S*.

Proof Let (i) be satisfied. Then for each A*z from Z(A*|z) we have
A%z = (A%*2, e®) joorpt = (2, AP ) yixy = (Ae®) 2) pruz — 0 as k — oo.

This yields A*z € ¢y and hence (ii) is valid.
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ZCY* Y=2z* Y*=27*
o el — (CO)* > = (el)* — (CO)**

Fig. 2 Schematic display of the operators and underlying spaces needed in this section. Top and
bottom row: the (separable) Banach spaces under consideration. Middle row: the operators we
work with

Now let (ii) be true. If we take a weakly* convergent sequence x, —™* xp in
£V as n — oo, then (Ax,,2)z¢xz = {2, AX,)ysxy = (A*Z,X,)pooxp for all zin Z.
Because moreover A*z belongs to ¢y and £ is the dual of ¢, we may write this as
(A%Z, Xn) gooxgt = (X, A¥2) g1, - Thus,

Jim (A, 2) 75 xz = ngfgo(xn,A*Z)zIXCo = (x0,A*2) g1, = (AX0,2)z+xz forall z € Z,

which proves condition (iii). From (iii) and the fact that ¢® —* 0 in £' as k — oo
we immediately obtain (i). Finally, the equivalence between (iii) and (iv) can be
found, e.g., in [26, Theorem 3.1.11]. O

As a consequence of item (iv) in Proposition 8, each weak™*-to-weak™ continuous
linear operator is automatically bounded. Figure 2 illustrates the connection between
the different spaces and operators we juggle around in this section.

For the identity mapping A = Id : £! — Y with Y = {' and predual Z = c,
property (i) of Proposition 8 is trivially satisfied which yields the weak*-to-weak™
continuity of this operator. Note that the case Y = £', A = Id is only of theoretical
interest. Precisely, it is a tool for exploring the frontiers of the theoretic framework
we have chosen for investigating £'-regularization. For practical applications it is
irrelevant because one easily verifies that with the choice p = 1 in (3), where we
have ¥ = £!, the £'-regularized solutions coincide with the data y* if & < 1 and we
have the best possible rate (11).

Main parts of the above mentioned Proposition 1 on existence, stability and
convergence of £!-regularized solutions x remain true if A : £! — Y is only weak*-
to-weak™* continuous. The sparsity property x’ € £°, however, will fail in general
(consider the example of the identity as mentioned above). Existence, stability and
convergence assertions remain valid, because their proofs basically rely on the fact
that the mapping x — [JAx — y%||y is a weakly* lower semicontinuous functional.
This is the case in both variants, with or without *, since the norm functional is
weakly and also weakly* lower semicontinuous. For the existence of regularized
solutions (minimizers of the Tikhonov functional (3)) again the Banach-Alaoglu
theorem (Lemma 1) is required and yields weakly* compact level sets of the £!-
norm functional.

Our goal is to proof an analogue to Proposition 7 for weak*-to-weak™® continuous
operators. We start with a first observation.
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Proposition 9 Let A : £' — Y be injective and weak*-to-weak* continuous and let
Y = Z* for some Banach space Z. Then

[OO
H(A*|z) = co.

Proof Fromitem (iv) of Proposition 8 we take the operatorS 1 Z — ¢y withA = S*.
As A is injective, i.e., A4 (A) = {0}, it follows Z(S) = A (§*)L = A (A)1L = co.
There, the subscript denotes the pre-annihilator for a set V, in our situation with
(co)* = €' and V C £' defined as

Vii={x€co:(l.x) iy, =0 VEeV}
Let n € Z and recall Y* = Z** (cf. Fig. 2). Then for each x € £!

(A* nvx)looXZI = (ﬂan)Y*xY = (ﬂan}ZxY = (S n7x>c0X€1
= (S nvx)looXZIv

£o° [
ie,A*|; = S. Thus Z(A*|;) = Z(S)" = co. At this point we emphasize that
in both Banach spaces £*° and ¢, the same supremum norm applies. O

ZOO
We will show in Proposition 11 that conversely Z(A*|z) = co implies injectivity
for weak*-to-weak™ continuous operators. Before doing so we need the following
Proposition which coincides in principle with [11, Proposition 9].

Proposition 10 Let A be injective and weak*-to-weak™ continuous. Moreover, let
e > 0 andn € N. Then for each & € cg there exists § € Z(A*) such that

=& for k<n and & —&| <e for k>n.
Proof We proof the proposition by induction with respect to n. For £ € ¢ set
fr=E+ebhb..)  and £ i=(5—e b

By Proposition 9 we have that ¢p = %(A*|Z)Z C L@(A*)[ . Hence we find
elements £ € Z(A*) and £~ € Z(A*) with

|EY —EF o <& and  [|ET —£ |0 <.

Consequently, .§1+ > & > El and |.§k — $k| < & as well as |.§k —&| < e for
k > 1. Thus we find a convex combmatloné of $+ and 5 such that 51 = &;. This
E obviously also satisfies |.§k &| < e for k > 1, which proves the proposition for
n=1.
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Now let the proposition be true for n = m. We prove it forn = m+ 1. Let £ € ¢
and set

g+ = (glv .- "gmagm+l + ¢, §m+292§-m+3a .- -),
S_ = (51, .- -,Sm,§m+1 — & §m+2,§m+3, .- )

By the induction hypothesis we find ET € Z(A*) and £~ € Z(A*) with
g/jr =§k=§k_ fork <m
and
& —&f|<e and |E —&|<e fork>m.

Consequently, §m+1 > Epr1 > §m+1 and |§k — & < e as well as |§k —&| <e
for k > m + 1. Thus we find a convex combination E of §+ and g such that
§m+1 = &,+1. This E obviously also satisfies gk =& fork <m+1 and |§k —&|<e
for k > m + 1, which proves the proposition forn = m + 1. O

Now we come to the main result of this section. The proof is similar and in part
identical to the one of Proposition 12 in [11].

Proposition 11 Let A : ¢! — Y be bounded, linear and weak*-to-weak*
continuous. Then the following assertions are equivalent.

(i) Ais m]ectlve
(”) ‘@(A*|Z) - C(),

(iii) e® € ,@(A*|Z) forall k€N,
(iv) Property 1 holds.

Proof We show (i) = (iv) = (iii) = (ii)) = ().

(i)=(v): Fix u € (0,1), n € N and take some & as described in Property 1.
By Proposition 10 with ¢ := p there exists some 1 such that A*n (= £ in the
proposition) satisfies items (a) and (b) in Property 1. In particular we have {n; }iei....
such that P,A*n; = e® and |[(I — P,)A*mi];| < ¥ foralli > n. Since § € cq it is

g = Xn:Cke(k) = Xn:CkA*i]k = A* (2": C/J]k) s

k=1 k=1 k=1

for coefficients —1 < ¢ < 1,i.e., & = A*nwith ||n]| < >_ ||n«!| as an upper bound

for y,,. By construction this 7 also fulfills |[(I—P,)A*n];| < Y |[[I—P)A*n]i| < p.

i=1
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(iv)=(iii): Fix k, fix n > k, take a sequence (i4;;)men in (0, 1) with wu,, — 0 and
choose £ := e in Property 1. Then for a corresponding sequence (1,,)men from
Property 1 we obtain

”e(k) — AN leee < ”e(k) — Py N lleoo 4 [T = P)A™ 1 | goo -

The first summand is zero by the choice of £ and the second summand is bounded
by fm. Thus, [[e® — A*n,, |0 — 0if m — oo.

(ii1)=(i1): (e(k))keN is a Schauder basis in cy. Thus, ¢y C %(A*|Z) . Proposi-
tion 8 yields %(A*|Z) C ¢o. Hence %(A*|Z) = ¢p.

(i))=>(i): One easily shows that %’(A*) C AN (A)*. Thus, co C A (A)L. If we
have some x € £! with Ax = 0, then for each u € ¢y C A (A)J- we obtain

(-xJ/t)[GCO = (u,x)(ooxgl = 07

which is equivalent to x = 0. O

Since, in the context of both Propositions 7 and 11, the injectivity of A yields
Property 1, the consequences with respect to variational source conditions and
convergence rate results are identical for a weak™*-to-weak and a weak*-to-weak™
continuous operator A. We formulate the following theorem and the subsequent
corollary and prove the theorem for a weak*-to-weak® continuous operator
A : ' — Y. In particular, the corollary requires the existence of a separable predual
space Z of Y in order to apply Lemma 1 and to ensure the stabilizing property of
the Tikhonov penalty. However, the proof of the theorem repeats point by point the
ideas of the proof from [11, Corollary 11] focused on weak*-to-weak continuous
operators A.

Theorem 1 Let the bounded linear operator A : £ — Y be injective and weak*-to-
weak™® continuous, where we additionally assume that the Banach space Y possesses
a separable predual Banach space Z with Z* = Y. Moreover, let 1 € [0, 1) and
{Vu}nen be such that Property 1 is fulfilled. Then a variational source condition (13)
with the constant § = 114__’; € [0, 1) and the concave index function ¢ given by (17)
is fulfilled.

Proof Fixn € Nand x € £' and let £ := sgn P, (x — x") € £> be the sequence of
signs of P,(x — x"). Then by Property 1 there is some 7 such that

n
3 =l = (Ex— oot = (PaA™n.x — Yoo
k=1

= (P,A*n — A*1, x — xT) poorepr + (A0, x — xT) goosepr
= —((I = P)A™ . (I = Py)(x —x")) oot + (A*1.x — xT) goorqn
< plld = Py)(x— x|l + yaullAx — AxT|y. Q1)
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The triangle inequality yields
1Puc =Dl < (1T = Po)xller + 11T = Puxller) + yallAx = AxTlly. (22)
Now
Bllx = x e = llxller + "l
= Bl Pax =Nl + BIU = Po) (x = xD) [l = | Paxllr = 1 = Po)xll o
+ [ Paxller + 1 = Po)xT [
together with
BIU =P (x =xD) ot < BIU = Pa)xller + BIUT = Po)x" |l
and
1Puxt e = | Pax =" =)ot < | Pl = xD) o + || Pax]le
shows
Bl = x" [l = Ilxller + [l
<2t = P)xT g + (1 + B) || Pulx — D)1
— (1= B) (I = Po)xller + (2 = Po)x" [l 1)

Combining this estimate with the previous estimate (22) and taking into account that

B= };’; and pu = }:f; we obtain for all x € ¢!

Bl =Ml = Ixllon + Il < 201(7 = Pl + -

<2/ = P)x" || + 2yu [l Ax — AxTly.

2
Yl Ax — AxT||y
"

Taking the infimum over all n € N completes the proof. O

The variational source condition immediately yields convergence rates according to
Proposition 6.

Corollary 1 Under the conditions of Theorem 1 the {'-regularized solutions xi as

minimizers of (3) fulfil

|28 —xT|p = O(@(8)) as §—0,



On {'-Regularization Under Continuity of the Forward Operator in Weaker Topologies 83

with the concave index function ¢ from (17), whenever the regularization parameter
o is chosen either a priori as o = oapgy according to (6) or a posteriori as & = dspp
according to (7).

In order to familiarize the reader with the concepts in this work we will look at a
particular operator to exemplify our theory. In particular we verify Property 1.

Example4 LetX =Y = {' and
[Ax]k = Xi + Xk+1, k e N.
In other words, A maps x = (xy,x2,x3,...) to Ax = (x; + x2, X2 + X3, X3 + X4, ...).

Clearly A is linear. Observe that ||Ax||s < 2||x||; and hence A is bounded. One
easily verifies the adjoint A* : £{>° — {*°,

A*y = (Y1, y2 + V1,3 + ¥2, 93 + Y4, .. ).

1
Both A and A* are injective. Since 92(A)‘z = AN (A*)1, where

N (AL = x el (3, x)pooxgt = 0 Yy € A (A¥)} = £!

1
we have %’(A)‘z = (!, It is however easy to see that Z(A) # {'. For example there
is no x € £! such that Ax = e®. Namely, solving Ax = ¢® for x leads to the system
of equations x; = —xp, x, = 1 —x3, X4 = —X3, X5 = —x3, etc. Due to the alternating
character again there is no x € £' that satisfies this system. We have shown that

1
%(A)é # Z(A), i.e., the corresponding operator equation (1) is ill-posed.
Next we prove that A is weak™*-to-weak™ continuous but not weak™*-to-weak con-
tinuous. To this end we use the properties (i) in Propositions 3 and 8, respectively.
First let £ € ¢g. Then, with

1 i=kk—-1
[Ae®]; = ' Vi>2
0 else

itis
(£, AeW) o = &1 + & — 0,
since £ € ¢p. For £ € £°°, however,
(€, AeM) oorpr = &1 + &

does in general not converge to zero (let, e.g., £ = 1). Summarizing the properties
of the forward operator for the present example, we note that A is linear, injective,
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weak*-to-weak™ continuous, but not weak*-to-weak continuous. Moreover its range
is not closed such that the corresponding operator equation (1) is ill-posed.

For this particular operator let us investigate Property 1. We will see in the
following that this actually holds with 4 = 0 and y, = n, ie., e® € Z(A*)

for all k € N. We will also show that e® ¢ %(A*L.O)Z according to item (iii) of
Proposition 11. Even then we still have y,, = n for arbitrary 0 < u < 1.

Fix an arbitrary n € Nand let £ = (§1,&,...,§,,0,...) € £ with § € [-1,1].
We are looking for an € £°° satisfying Property 1. Observe that, by definition
of A* and for given &, any 7 satisfying P,A*n = & has the structure n; = £,
n = & —n, n3 = & — 1y and so on until 1, = &, — n,—1. In other words it is

M = > =y (—1)""'§; and
[11alleee < 1,

which yields item (c) of Property 1 with y, = n. Now fix arbitrary 0 < p < 1. We
have [A*n],+1 = Nu+1 + 1, and require |9,+1 + 1,| < . Thus we may take any
Nn+1 with

—Np— L= M1 = =N+ UL

Analogously we find that in general
(=D, —ipt < pgi < (=Dinp +in, i=1,2,....

Therefore, the choice of the tail of 7 is ambiguous. A viable pick is 7,+; = (—=1)'n,.
Then

n= (nls N2y ey My —Nns nns_r’ns-") (23)

with ;, 1 <i < n, as above and

A*n=(§1.6.....£.0,0,0,...).

In particular, this means that e® € Z(A*) (choose & = 1 and & = 0 for i # j).
Note that n € £ but n ¢ ¢o in (23). However, we also see that for any £ and
arbitrary 0 < p < 1 there are (infinitely many) choices for the tail of 5 such that
n € co and item (b) of Property 1 holds. Independent of u, all choices satisfy item
(c) of Property 1 with y,, = n. To set this into relation, we would obtain the same y,
for a diagonal operator A : {2 — ¢2 with singular values decaying as o; ~ !, see

Vi
[17].

Please note that in practice it is not necessary to verify Property 1 in the way we
did here. In particular the sequential discrepancy principle (7) does not require
the knowledge of any of the parameters from Property 1 in order to guarantee the
convergence rates implied by that property.
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For the sake of completeness we mention that there exist bounded linear
operators which are not even weak*-to-weak™® continuous.

Example 5 If Y = £! and

o0
Sx. ifk=1,
[Ax]g := 4§ =1

Xk else,

forall kin Nandall xin £!, then Ae® = eV 4+¢® if k > 1. Thus, Ae® —* () £ 0,
The same operator A considered as mapping into ¥ = {2 is an example of a not
weak*-to-weak continuous bounded linear operator in the classical Hilbert space
setting for £!-regularization. Note that, because of the first component, A does not
have a bounded extension to any £”-space with 1 < p < oco.

6 The Well-Posed Case and Further Discussions

Proposition 12 If the operator equation (1) is well-posed, i.e. Z(A) = %(A)Y,

then under the conditions of Theorem 1 the £'-regularized solutions xf[ as minimizers

of (3) fulfil
|8 —xT|lp =0@) as §—0

whenever the regularization parameter o is chosen either a priori as o = 0app; ~
8" Lora posteriori as o = agpp according to (7).

Proof The well-posedness condition Z(A) = %’(A)Y implies Z(A*) = L%’(A*)ZOO
(cf. [26, Theorem 3.1.21]) and hence V := Z(A*) is a closed subspace of £°°,
which can be considered as a Banach space with the same supremum norm as £*°.
Then, for the injective operator A : £' — Y, Banach’s theorem concerning the
continuity of the inverse operator ensures that the linear operator (A*)~! : V — Y*
is bounded. Moreover, the elements E € Z(A*) in Proposition 10 associated to
& from Property 1 satisfy the inequality ||§||goo < 1+ ¢, and with E = A*n we
have ||n]ly« < [[(A*) " lvsy* (1 + &) < K < oo. Hence, the sequence {¥,}nen
in Property 1 is uniformly bounded by the finite positive constant K. Taking into

account the proof of Theorem 1 we have with § = 11 +“ and for all x € £!

Bllx=x" o < Ixll = 6 ller + 21107 = Pl + 2K Ax — AxT|ly,
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i.e. the variational inequality (13) with

[e.0]

— 9 i —
(p(t)—Zy}g{]( Z |xk|+Kt) =Kt

k=n+1

This, however, yields by Proposition 6 the rate (11) and completes the proof of the
proposition. O

Property 1 enables us to show convergence rates for {£!-regularization for ill-
posed and well-posed problems with sparse and non-sparse solutions. It has been
shown in [17] that the rate function ¢ in (14) does in general not saturate. Even
more, the rate is always obtainable either with an a priori or an a posteriori choice
of the regularization parameter. This stands in sharp contrast to classical Tikhonov
regularization, i.e., (3) with p = 2 and ||x||§2 as penalty, which is known to
admit convergence rates up to a maximum of §%/3 for a suitable a priori choice
of the regularization parameter and only a rate of /2 under the discrepancy
principle. Since the smoothness of the solution is typically unknown, this makes
{£!-regularization more attractive from the viewpoint of regularization theory than
its £2 counterpart. One simply uses the discrepancy principle and no longer has to
care about the smoothness of the solution. However, one may run into trouble when
the solution does not belong to £! but only to £2\£! such that [|xT||;1 = oco. In such
a case we call the regularization method (3) oversmoothing.

There are promising results showing that even in the situation of oversmoothing,
{!-regularization may lead to convergence rates in a weaker norm. Again, an a
priori choice or the discrepancy principle for the choice of o would lead to the
optimal rates. Preliminary results have been shown in the preprint [15]. There, a
strategy is shown to derive convergence rates in the £?-norm for {£'-regularization
for every x" € 2. The proof of a theorem analogously to Proposition 6 unfortu-
nately was incomplete. It revolves around approximating x* with P,x" and letting
n = n(d) — oo as § — 0 with a specific choice of n = n(8). The open problem was
to show that the support of the approximate solutions is not larger than this n(5).
It appears that such a statement is possible by using item (c) in Property 1 and the
necessary optimality condition for a minimizer of (3), where the latter provides us
with the norm ||7||y« in Property 1 corresponding to a § = A*n € 9||x3||,1. Since
we are not able to use a variational source condition when ||x||;1 = oo we need
to use a different approach to show convergence rates. To this end we seem to have
a chance to adapt the strategy of [17] based on elementary steps. Consequently, we
hope to complete the detailed proof in an upcoming paper [16].
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On Self-regularization of Ill-Posed )
Problems in Banach Spaces by Projection @
Methods

Uno Hamarik and Urve Kangro

Abstract We consider ill-posed linear operator equations with operators acting
between Banach spaces. For the stable solution of ill-posed problems regulariza-
tion is necessary, and for using computers discretization is necessary. In some
cases discretization may also be used as regularization method with discretization
parameter as regularization parameter, additional regularization is not needed.
Regularization by discretization is called self-regularization. We consider self-
regularization by projection methods, giving necessary and sufficient conditions
for self-regularization by a priori choice of the dimension of subspaces as the
regularization parameter. Convergence conditions are also given for the choice of the
dimension by the discrepancy principle, without the requirement that the projection
operators are uniformly bounded.

1 Introduction

Consider an ill-posed linear operator equation
Au=f, feAA) (1)

where A € L(E, F) is a linear injective mapping between nontrivial Banach spaces
E and F. In practice only noisy data f® will be given. We assume here that the noise
level § satisfying

IfP—fl <8 )

is known. For the stable solution of problem (1) it will be regularized to guarantee
the convergence of regularized solutions to an exact solution u, of (1) as § goes to
zero (see [9, 34]). Often ill-posed problems are formulated in infinite-dimensional
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space, but for using computers the problem will be discretized, leading to some
finite-dimensional (n-dimensional) problem. Typically discretization and regular-
ization are used as separate procedures (see [14] for error estimates in regularized
projection methods). However, if the data are exact, the successful discretization
can lead to well posed problem with unique solution, which may converge to
the solution of the original infinite-dimensional problem, if the dimensions of
the discretized problems tend to infinity (see [20] for convergence conditions of
projection methods). In this situation the self-regularization is possible: if data are
noisy with known noise level §, then by proper choice of n = n(§) the solutions
of discretized equations with noisy data converge to the solution of the original
problem with exact data.

Self-regularization is probably the oldest regularization method. It is folklore
of numerics that in numerical differentiation of a given noisy function by finite
difference scheme, the discretization step 4 as the regularization parameter should
be chosen in dependence of the noise level (see e.g. [9, 26]). From 1972 it is known
(see [2]) that the quadrature formula method is a self-regularization method for the
solution of the Volterra integral equation of the first kind; the rules for choice of the
discretization step & = h(§) as the regularization parameter in dependence of noise
in the kernel and in the right-hand were given in [2] (see also [1]).

In this paper we consider projection methods. Let E, C E, Z, C F*,n € N,
be finite-dimensional nontrivial subspaces which have the role of approximating
the spaces E and F™, respectively. The general projection method defines a finite-
dimensional approximation u,, to ux by

u, € E,and Vz, € Z, : (vaAun>F*,F = (Znsf8>F*,F- (3)

We also consider the least squares method (the “least residual” method would be a
more natural name)

u, € argmin{ ||Ait, —f°||F : @iy € Ep} 4)
and the least error method
uy, € argmin{ ||iil|g : Yz, € Zy : (Zu Al e p = (20, f2) e F ). %)

The name “least error” method is justified by the fact that the obtained approxi-
mation u, satisfies in case of exact data the inequalities

”“* - “n” =< ”“* - Un”a D(“*a un) =< D(M*, Un) an €E,

in Hilbert and Banach spaces respectively (see [16, 32]), where D(u«, u,) is the
Bregman distance and E,, C E is a certain subspace. It means that u, is respectively
the orthogonal projection or Bregman projection of u, onto E,. This method is
called dual least-squares method in [3, 9, 21, 24, 26] and moment method in [21]. If
E, F are Hilbert spaces, the least squares and least error methods are characterized
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by the equalities Z, = AE, and E, = A*Z, respectively. If E = F is a Hilbert
space and A = A* > 0, Galerkin method E, = F), also can be used. Approximate
solutions of the least squares and least error methods are found from a system of
equations which is linear in Hilbert spaces and unfortunately nonlinear in Banach

spaces.

In the collocation method, Z, = span{§(t — ;),i = 1,...,n} consists of linear
combinations of Dirac’s §-functions 6 (#—t;) with support at collocation points f;, i =
1,...,n. Then (3) are the collocation conditions

u, € E,, Au,(t) = (1), i=1,....n (6)

for finding u, from arbitrary fixed subspace E,,.

Use of Z, = span{d(r — 1;),i = 1,...,n} in the least error method (5) gives
the least error collocation method, called also least-squares collocation [8, 9, 25]
or moment collocation [21]. This method uses also collocation conditions (6), but
the approximate set E, is not arbitrary, it results from the condition that u, is a
minimum-norm solution of Eq. (6). If E is Hilbert space, then E,, is a subspace of E,
but if E is a Banach space, then E,, is not necessarily a linear space.

Self-regularization by projection method was studied in [26], where the error
estimates were given in Banach space formulation, convergence conditions were
given for the collocation method, in Hilbert space formulation also for least squares
and least error methods. The error estimates there (in Sobolev space formulation for
least squares and Galerkin method also in [27]) allow to formulate a priori rules for
the choice of dimension n = n(8). For operator equations with noisy operator and
noisy right-hand side the least squares, least error and Galerkin method were studied
with a priori parameter choice in [12] and with a posteriori choice via discrepancy
principle in [13]. Necessary and sufficient conditions for regularization by general
projection methods in Hilbert spaces were given in [32], applications to mentioned
methods and to class of integral equations of the first kind with Green type kernels
were given. Convergence of the least error collocation method in case of exact data
was proved for the space £ = L, in [8, 21, 25], for Sobolev space £ = W}" in [33],
for a priori choice n = n(8) in [8], for a posteriori choice n = n(§) by the monotone
error rule in [15]. In the least error method in Hilbert spaces, a posteriori choice
by the monotone error rule was studied in [10, 15], by the balancing principle in
[3] (these both rules need weaker assumptions than the discrepancy principle). In
Banach spaces the discrepancy principle was studied in [21] for a method close to
the least squares method, in [16] for the general projection method and for the least
squares method. Error estimates in Sobolev and Holder-Zygmund norms of various
discretization methods in certain boundary integral equations with a priori choice
of n = n(8) were given in [4]. Convergence of collocation method in case of exact
data was analysed in [5-7], convergence by choice of n = n(8) by discrepancy
principle was proved in [16]. See also other works [11, 17, 18, 22-24] about self-
regularization.

In this paper we consider in Sect. 2 the general projection method. The necessary
and sufficient conditions for self-regularization by a priori choice n = n(8) are
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given. Our approach is similar to [21], instead of a projector we use operator Q,
defined by (7). In previous treatments of the a posteriori choice of n = n(§) by the
discrepancy principle it was required that the projection operators are uniformly
bounded. We modify the discrepancy principle so that this requirement is not
needed. In Sect. 3 we consider the least squares method, in Sect. 4 the collocation
method, where also numerical examples are given.

2 The General Projection Method

Let O, be the linear operator defined by
Ow:F—Z5 NgeF.z0€Zy: (Ong )z z, = (2. 8)F*.F (7
which allows us to write (3) as
u, €E, and Q,Au, = Q,f . (8)

The norm of Q, equals one since

10nll = sup ”Qng”Z;“ = sup (Qng,zn}Z,T.Zn =
g€F. llgllFr=1 g€F, llgllFr=1,21€Zp, | znll p =1
= sup (vag>F*,F =1.

8EF, ||g||1-=1,anZ,1, ”Zrz”F* =1

In the following lemma from [16] we give conditions under which the operator
A = QAlg, : E, — Z; has an inverse, the quantities

vnlle . 1 - 1 [vnlle
Ky 1= . Kni=|A,Oull, Kn:i= A, || = sup ,
v, E€E, |Av, [l v, €E, | QnAv, | F
4 )
T, =  sup l4v Iz . (10)
Vp €En v, 70 ”QnAvn”Z,T
are finite and u,, from (3) is well-defined.
Lemma 1l Let
dim(E,) = dim(Z,) (11

and
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hold. Then the operator A, has an inverse and (3) is uniquely solvable for any
% € F. We have the inequalities

Kn < Kn < Kn < Tukn. 13)
If
dr<oo: 1, <1t VmneN (14)
then also
Kn < TKp,

i.e. the quantities k,, K, and K, are all equivalent as n — oc.

Remark 1 1f Z(A) # Z(A) and the subspaces E, satisfy the condition

in£ lvi —v|| >0 VYveEasn— oo, (15)
€

Un €Ly

then A~! is unbounded and k,, — oo as n — oo.

2.1 Convergence with A Priori Choice of n

Theorem 1 Let the operator A be injective. Let for n > ng the assumptions (11),
(12) be satisfied. Then for n > nqy the projection method (3) defines the unique
approximation u,, and the following error estimate holds:

A

ot = el < min [flues —vnlle + 1A, QA (s — v) ] + K28 (16)

vn€E,

IA

(1 + |A QA dist(ux, En) + Ki6.
In case of exact data (§ = 0) the convergence
Iy, — ux|lg = 0asn — oo a7

holds if and only if there exists a sequence of approximations (lty)nen, Uy € E,,
satisfying the convergence conditions

lese — tnlle — O as n — oo (18)
and

4 0pA (s — 1) || — 0 as n — . (19)
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If these conditions hold and the data are noisy, then choosing n = n(8) according
to a priori rule

n(8) — oo and Ku8 — 0as § — 0 (20)
we have convergence
|tnes) — uslle = 0as § — 0. 21
Proof For any v, € E, we have, due to linearity of A,
it = ttall e < Nt = Valle + Nlttn = valle = Nt — valle + 14" Qu(f® — Ava)|l& =
= llux = vallz + 1A QulA s — va) +f° =l <
< Nl = valle + 147" QuA s — va) | + K.

hence the convergence estimate (16) holds.
If (18), (19) hold, then estimate (16) with v, = &, and our assumptions on the
choice of n(8) give convergence in both cases § = 0 and § > 0.
To show the necessity of (18), (19), note that if § = 0 and the convergence (17)
holds, then &, = u, satisfies (18) and (19) (then A ' Q,A(ux — ity) = u, — fty = 0).
O

According to the previous theorem in case 6 = 0 convergence (17) may hold due
to sufficient smoothness of the solution. From this theorem we get in the following
theorem conditions for convergence for every f € Z(A) (i.e. for every u, € E
without additional smoothness requirements).

Theorem 2 Let the operator A be injective. Let for n > ny the assumptions (11),
(12) be satisfied. Then in case of exact data (§ = 0) the convergence (17) holds
for every f € Z(A) if and only if the subspaces E, satisfy condition (15) and the
projectors A;'Q,A : E — E, are uniformly bounded, i.e.,

1A QA < M (22)

for all n > ng and some constant M.
The last two conditions are necessary and sufficient for existence of relations
n = n(8) for convergence (21) for every f € Z(A) given approximately as arbitrary

owith || f° =[] < 8.
Proof At first we show that conditions (15), (22) are sufficient for convergence of
u,. If condition (22) holds, then the error estimate (16) is of the form

et — x|l = (1 + M) min [lux —vnle + Kad, (23)
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this together with (15) guarantees convergence (17) for § = 0 and with parameter
choice (20) also for § — O.

To show necessity of conditions (15), (22) for convergence of u,, note that
convergence (21) for every £ with ||f® — f|| < § implies convergence (17) for f
(i.e. convergence (17) for § = 0). Let § = 0 and u,, — u for all u, € E as n — oo.
Then (15) holds. But in case u, = A,'Q,Ausx — us we have that A,'Q,A — I
pointwise on E. By the uniform boundedness principle (Banach—Steinhaus theorem)
this implies that A;l 0,A must be uniformly bounded, which is condition (22). 0O

Remark 2 The boundedness property (22) holds, if uniformly bounded operators
{P,: E— E,, ne N} exist, satisfying

Knll A= Pp)|| =M. (24)
Namely condition (22) is equivalent to the condition
|4 QoAU = Pl < M, (25)

while A, '0,A(I — P,) = A;'0,A — A;'0,AP, and the operator A, 'Q,AP, = P,
is bounded. If (24) holds then using equality £, = [|A; 10, | we get (25).

For the convergence analysis in case of exact data we can choose different image
spaces, particularly such that the equation becomes well-posed. But for noisy data
the image space is determined by the data.

The following theorem (about the case of the exact data) shows, that convergence
for one equation implies convergence also for certain other equations.

Theorem 3 Let the operator A be injective. Let conditions (11), (12), (18) hold
for n > ny. Let the operator A : E — F have the form A = S + K, where S :
E — W C F is invertible, W is a Banach space with continuous imbedding and
K : E — W is compact. Let the operator S, := Q,S|g, : E, — Z be invertible and
1S:10,S|| < M for some constant M. Then the projection equation Q,Au, = Quf
has for n large enough a unique solution u, € E, , and u,, — usx as n — oo.

Proof From compactness of K follows the compactness of operator S~'K. Denote
Sy = Q.S|g,- Since S™' : W — E is bounded, the pointwise convergence
S10,8 — I on W as n — oo implies the pointwise convergence S, 'Q, — S~!as
n — oo. From the pointwise convergence Sn_lQn — S~! and the compactness of K
follows the norm convergence

(I +S,'0.K) — (I + ST'K)|| = 0 as n — oo.
Therefore the inverse operator [/ + S, '0,K]™' : E, — E, exists and is uniformly

bounded for large n. Due to equality Q,A = Q,S[I + (Q,S)"'Q.,K] the operator
0,A on E, is invertible for large n with the inverse

(0, )7 =1+ (0.9 ' QK] (QaS) .
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The equality
(2:A) ' QA = [ + (0,8 ™ QKT (Q4S) ™' QS + ST'K)
allows to estimate
1(0:4) "' QuAll < I + (a9 ™' QKT IMIT + ST'K || =: M.

This estimate may be rewritten in the form ||A;'Q,A| < Mg, where the constant
Mk depends on the operator K. Therefore condition (22) is satisfied and Theorem 2
guarantees convergence. O

For considering the influence of the noisy data, the behaviour of the quantities
Ky is essential. For estimating these quantities we introduce operators I1, : Z) — F
such that the equality Q,I1,0, = Q, holds. Then the operator IT,0Q, is a projector
in F. Let F,, = Z(I1,). We assume that F,, C W and let W,, = F,,, equipped with
the norm of W. Let I, be the identity operator, considered as acting from F, to W,,.

Theorem 4 Let conditions (11), (12), (22) hold for n > ny. Let the operator A :
E — W be invertible. Assume the projectors I1,Q, are uniformly bounded in F.
Then

Kn < ClL |17 w, n > ny. (26)
Proof We have
Ko = 147 Qullr—g, = 1A, CulaTaQullr—E, = 1A, QuAA™ LT, r—>E, <
< 147 QuAllz—£llA™ w7 w, T2 Qo ll 7, -

This implies (26), since the other multipliers besides ||/, | r,—w, are bounded. O

We point out that the choice of operators [I, is quite arbitrary and is not
determined by the method itself. For example, in collocation methods I7,Q,, should
be an interpolation projector, but it can be interpolation by splines, or polynomial
interpolation or trigonometric interpolation or maybe something else, which may
suit the particular problem. The only conditions are that the result is smooth enough
(it must belong to the space W) and I1,,Q,, are uniformly bounded.

Estimates for ||1,||r,—w, can be found using inverse properties of approximation
subspaces (estimating elements of F), via their norm in W,,). Splines are often useful
here, because their inverse properties (estimates of the derivatives in terms of the
splines themselves) are well known. Estimates for operators |A(I — P,)|| in con-
dition (24) can be derived from the approximation properties of the approximation
subspaces. Often the norm ||(I — P;)A*| = ||A(I — P,)|| is easier to estimate.
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2.2 Convergence with A Posteriori Choice of n:
The Discrepancy Principle

For the discrepancy principle, in previous works the assumption (14) about uniform
boundedness of 1, was required. For collocation methods this is the uniform
boundedness of the interpolation projector onto the subspace AE, C F.If F = C™,
(14) does not hold in general. In the next two theorems we consider two versions of
the discrepancy principle, condition (14) is assumed only in the first version.

Theorem 5 Let the assumptions of Lemma 1 be satisfied for n > ny, and let u, be
defined by the projection method (3). Let the convergence

Kny1dist(f,AE,) — 0asn — o0 27
holds. We also assume that there exists a sequence of approximations (ity)nen, iy €
E,, satisfying (18) and (19). Let condition (14) holds. Let b > t + 1 be fixed and for
8 > 0, let n = npp(8) be the first index such that

A, — f2||F < bS. (28)
Then npp(8) is finite and
ltnppsy — uslle — 0 as§ — 0. (29)
Proof For any n let v, € E, be such that || f® — Av, || = dist(f?,AE,). We have
Ay = £l < IAG = v)llF + AV, = fllF <
< Gl QoA = v)ll + 1AV =1l = Tll Qu(f* = Av) || + Avw = F <
< (t + D dist(f*, AE,) < (t, + 1) (§ + dist(f, AE,)). (30)
This inequality together with (14) and relation
dist(f,AE,) < |[A(usx — ;)| = 0 asn — oo 3D
imply that npp is finite.
If for some §; — 0 (k — o00) the discrepancy principle gives npp(8;) < N with
N > 0, then the sequence uy,,,(s,) lies in a finite-dimensional subspace — the linear
hullof E,,n =1,...,N. Since

[RUMES: _fgk lF < bSk, (32)

then Au,,;,,5,) — f as k — oo. This implies convergence uy,,,5,) — U+ as k — oo,
since the operator A has the bounded inverse on finite-dimensional subspaces.
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Consider now the general case npp(8) — oo as § — 0. Letm = npp(§) — 1 > 0.
For n = m the inequality (28) does not hold, and (30) with (14) gives

b8 < || Ay — fPlF < (r + 1)(8 + dist(f. AE,)), (33)
therefore also
b=1=D3 _ jis(r.AE,). (34)
T+ 1

The convergence (27) implies

. T+1 | .
Knppl < b1 Knppdist(f,AE,,,—1) — 0 as npp — 00. (35)
—1-x
Therefore the second term in estimate (16) converges as n = npp — OQ.
Convergence of the first term there follows as in the proof of Theorem 1, using
Uy, = Uy, n = npp(8) and assumptions (18), (19). O

Theorem 6 Let the assumptions of Theorem 5 be satisfied without require-
ment (14). Let the sequence

by>0+1)(1+e) (36)
be fixed with some fixed ¢ > 0 and n = npp(8) be chosen as the first index such that
Aty =1l < bub. (37)

Then npp(8) is finite and the convergence (29) holds.

Proof The proof is similar to the proof of the previous theorem. Condition (36)
gives the inequality (t, + 1)§ < b,8§ — e(z, + 1)8, and the estimate (30) can be
continued as follows:

lAu, — f2||F < bu + (4 + 1)(dist(f, AE,) — &6).

Due to convergence (31) the second summand here will be negative for sufficiently
large n, therefore npp(8) will be finite. If for some §; — 0 (k — oo) the discrepancy
principle gives npp(dr) < N, the proof of convergence u,,,(s,) — U+ as k — oo
is the same as in the previous theorem with the exception, that the inequality
| Attnpps) — f|lF < bady is used instead of (32). The proof of convergence (29)
in case npp(8) — oo as § — 0 is the same as in the previous theorem, only in the
inequalities (33)—(35) the quantities b, t and b ¢ _1'_ ! . are replaced by b, 7, and
—1 Ty + 1

e < , respectively. O
b,—1-—1,
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3 The Least Squares Method

In the least squares method (4) we use the condition

N (A) NE, ={0} (38)
instead of the requirement of the injectivity of the operator A. In [16] the following
result is proved.
Theorem 7 Let condition (38) be satisfied for all n € N. Then an approximation u,,

according to the least squares method (4) exists and the error estimate

”un - M*” =< 12£ { ”u* - Un”E + 2k, ”AM* _Avn”F} + 2Kn8
Un€Lp

holds. If there exists a sequence of approximations (y)en, Uy € E,, satisfying (18)
and

Kn|[A(us — ity)||F = 0 as n — o0, (39)

then we have in case of exact data convergence ||u, —ux||g — 0 as n — oo, and in
case of noisy data with the choice of n = n(8) according to

n(8) — oo and k,56 — 0as§ — 0
convergence
llttn(s) — ux|g — 0as§ — 0. (40)

If in addition to convergences (18), (39) also kn+1 |A(ux — ty)||F = Oasn — oo
holds, then convergence (40) holds also with the choice of n(8) by the discrepancy
principle: for fixed b > 1 choose n(8) as the first index such that ||Au, — f°|| < bé.

The discrepancy principle fits better to the least squares method than to other
projection methods in the sense that there is no need to calculate or estimate the
quantities t, 7, which may be a hard task.

4 Application: Collocation Method for Volterra Integral
Equations

We consider collocation method for Volterra integral equations. In the first two
examples these equations are cordial integral equations studied in [19, 28-31]. We
give properties of these equations in Sect. 4.1 and consider the collocation method
in Sect. 4.2.
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4.1 Cordial Integral Equations

Consider cordial integral equations of the first kind
1 s
/ ta(t, s)qb(t)u(s)ds =f(@), 0=<r<T, 41)
0

where ¢ € L'(0, 1) is called the core of the cordial integral operator, and a, f are
given smooth enough functions. Define the cordial integral operators

Va0 = [ oCus, Vo0 = [ a6 uras,

Denote Ar = {(s,t) : t € [0,T], s € [0, ]}. The following results are proven in
[28-31].

Theorem 8 Let ¢ € L'(0,1), a € C"(Ar). Then Vi, € £(C™[0,T)) and
Vp.allcnpry < Cligllonllallcnar-

Theorem 9 Let ¢ € L'(0,1) and let A € C with ReA > 0. Then t* is an
eigenfunction of Vy in C[0,T], and the corresponding eigenvalue is ¢p(A) =
fol ¢ (x)x*dx. If Re A > m, then the eigenfunction belongs to C™[0, T).

Theorem 10 Let ¢ € L'(0,1), a € C"(Ar). Then the spectrum of V., in C"[0, T]
is given by 0,(Vy.a) = {0} U {a(0,0)p(k), k = 0,...,m} U {a(0,0)p(1), ReA >
m}.

Theorem 11 Let ¢ € L'(0, 1), x(1 — x)¢'(x) € L'(0,1), [, ¢(x)dx > 0 and there
exists B < 1 such that (x*¢ (x))’ > 0 forx € (0, 1). Assume also thata € C"T'(Ar)
and a(t,t) # 0. Then Vg, is injective in C[0, T}, "o, 1) C V4.a(C"[0,T]) C
C"[0, T}, and V! € 2(C"*'0,T], C"[0, T]).

Corollary 1 Let the assumptions of Theorem 11 be satisfied and let f € C"+1[0, T]
be given. Then Eq. (41) is uniquely solvable in C[0, T| and its solution is in C"[0, T).

4.2 Polynomial Collocation Method for Cordial Integral
Equations, Numerical Results

According to Theorem 9, functions * k € N are eigenfunctions of the cordial
integral operator V4, therefore the polynomial collocation method is well adapted
for these equations. We look for solutions in the form u,(s) = > /_;¢;s’. In the
collocation method we choose the collocation points # € [0,7], k = 0,...,n and
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find ¢k, k = 0, ..., n from the collocation equations
" 1 s
ch/ a(te, )¢ )s'ds = f(r), k=0,...,n.
=0 Jo Ik Tk

To set up the system, one has to calculate exactly or “well enough” the integrals

/ . a(te, ) )s'ds.
o Tk

For theoretical results it is convenient to use the basis {s/} for polynomials;
for practical calculations though, this results in very badly conditioned systems.
So for larger N one has to use a better basis, for example the (scaled) Chebyshev
polynomials 7,(f) = cos (p arccos (th — 1)) In fact, it may be simpler to make
first the change of variables ¢ = g(l — cosy) and then work with trigonometric
polynomials in y instead.

In the following Examples 1,2, E = F = C[0, T], E, is the space of polynomials
of order up to n and Z, is the linear span of §-functions with supports #, k =
0,...,n. Leta(t,s) = 1. Then V4 : E, — E, and 7, is simply the norm of the
interpolation projector from C to C with the interpolation nodes #, k = 0, ..., n. If
t; are the Chebyshev nodes, then 7, ~ 721 In(n+ 1) + 1.

In Examples 1, 2 certain noise levels were chosen and the noise was generated
by random numbers with uniform distribution at the collocation nodes, and on
nine times denser mesh for calculating the discrepancy. We also found the optimal
number n,,, and the corresponding error e, = min,en ||uy —tx ||z = [[ttn,, — v || £-
The discrepancy principle was used for finding proper n = n(§). The condition (14)
is not satisfied in Examples 1, 2. According to the discrepancy principle from
Theorem 6 we found the first n = npp satisfying the inequality ||Au, — f°|r < b,8
with b, = 1.001(1 + 7,,). We denote the corresponding error by epp = |[uty,, — t«]|-
The optimal errors and the errors obtained by using the discrepancy principle are

presented in the following Tables 1 and 2. In these tables also b,,,, are presented.

Example 1 Consider the cordial integral equation (here ¢ (x) = lx)

" u(s)ds 1
= ) te 07 T 42
0 /st 2+1 [0.7] (42)

2
2(%s24?)$v1)2 :
Markoff’s inequality, by Cn?. Since the right-hand side of the equation is analytic,
dist(f,AE,) converges to zero exponentially, hence the assumptions of Theorem 6
are satisfied.

We took T=10 and used noisy data with noise levels §=10"%,107°,..., 1074,
The number of collocation nodes was 10, 15, 20,...,110.

with exact solution u(s) = For this equation «, can be estimated using
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Table 1 Optirpal errors with § Copr Moy epp nop bupy
the corresponding n,,, and 10—4 6102 25 §.10-2 20 3.94
errors obtained by using the :

discrepancy principle with 107¢  1.01-1073 40 2.4-1073 30 4.19
by, for Eq. (42) 107%  1.51-107° 40 1.51-107° 40 4.36

10710 1.8-1077 50 1.8-1077 50  4.56
10712 4.69-107° 75 9.58-107° 60  4.62
1074 7.04-107" 105 7.57-107'" 70 471

Table 2 Optimal errors with s Copt Mop €pp nop bupy
the corresponding 7,,, and 10=3 15-10-! 10 15-10-! 10 353
errors obtained by using the : : :
discrepancy principle with 107* 51072 40 1.1-107! 30 3.94
by, for Eq. (43) 107> 524-1073 20 2-1072 50 4.5

107% 6.13-107* 40 5.16-107% 100 4.94
1077 9.17-107° 90 577-107% 230 5.46

Example 2 Consider the equation

t
d
WOds _ s g5 e 0.2, 43)
0 /st
5
The exact solution is u(s) = 25%/%(2 — 5)*/> — ~s*/?(2 — 5)*?. Since the integral

operator is the same as in Example 1, «,, is the same. The distance dist(f, AE,) can
be estimated by Cn ™, hence the assumptions of Theorem 6 are satisfied.

We used noisy data with noise levels § = 1073,107,..., 1077, The number of
collocation nodes was 10, 20, 30,..., 300.

4.3 Spline-Collocation for Volterra Integral Equation,
Numerical Results

We consider a Volterra integral equation of the first kind

(Au)(¢) = /OIK(t, sSu(s)ds = f(t), t € [0,1] (44)

with the operator A € L(L?(0, 1), C[0,1]), 1 < p < oo. The approximation space
iSE, = S,(;ll) (I4), the space of discontinuous piecewise polynomials of order k — 1
with mesh A. In the collocation method we find u, from the spline space E, such
that

Auy(ti)) =), i=1,....,n,j=1,... .k
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Table 3 Optimal errors and errors obtained by using the discrepancy principle for Eq. (45); left
with ¢ = 3/2 and right with ¢ = 5/2

1) Copt Nopt epp npp Copt Nopt epp npp
107" 2.5-107! 1 2.5-107! 1 2.9-107! 1 2.9-107!
1072 6.8-1072 2 6.8-1072 2 5.4-1072 2 5.4-1072 2
1072 13-1072 8 1.8-1072 5 9.1073 6 1.1-1072
10~* 32-1073 24 3.3-1073 20 1.7-1073 15 3-1073 8

107 7.6-107* 72 8.4-1074 86 3.5-1074 32 62-1074 18
107¢  1.9-107% 128 331074 512 6.8-107° 72 9.9-107° 46
1077 45-107° 512 1.2-107*% 2048 1.5-107° 128 1.5-107> 128

where t;j = (i— 1+ ¢)h €[0,1],i =1,...,n,j = 1,..., k are collocation nodes
and 0 < ¢; < ... < ¢, <1 are collocation parameters whose choice is essential.

Example 3 Consider the equation
t tq
Au(t) = / u(syds= , te€][0,1], qe€{3/2,5/2} (45)
0 q

with operator A : L'(0,1) — C[0, 1]. The exact solution is u(s) = s7~'. We used
for E, the space of discontinuous linear splines with uniform mesh i, i = 0,...,n,
where i = 1/n. The collocation points are t;; = (i — 1 4 ¢)h, tp = ih, ¢ € (0,1).
For this problem «, can be estimated using Theorem 4. Here we can take for F), the
space of continuous linear splines and the inverse property of these splines gives

VYwy € Fu,  [IW, || < Cnllwall.

hence K, < Cn. The distance dist(f, AE,) can be estimated by Cn™4.
It can be shown that here

\

L'z :
1+ 21—c)® if ¢ > 2

T =
1+ @09 ife

A

— 2"

The quantity t is minimal for ¢ = é, then t = 1.25. In this example 7, = ©
holds, i.e. 7, does not depend on n. We used ¢ = é and for satisfying the condition
b > v + 1 in Theorem 5 we actually took b = 1.01 4+ t = 2.26 for the discrepancy
principle.

The noisy data were generated by the formula f(z; j) = f(tij) + 86;;, where
§ = 107", m € {2,...,7} and 0;; are random numbers with normal distribution,
normed after being generated: max;; |6;;| = 1 (Table 3).

We can conclude that for these model problems the discrepancy principle gave
reasonable results.
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Monotonicity-Based Regularization for )
Phantom Experiment Data in Electrical Shethie
Impedance Tomography

Bastian Harrach and Mach Nguyet Minh

Abstract In electrical impedance tomography, algorithms based on minimizing the
linearized-data-fit residuum have been widely used due to their real-time implemen-
tation and satisfactory reconstructed images. However, the resulting images usually
tend to contain ringing artifacts. In this work, we shall minimize the linearized-
data-fit functional with respect to a linear constraint defined by the monotonicity
relation in the framework of real electrode setting. Numerical results of standard
phantom experiment data confirm that this new algorithm improves the quality of
the reconstructed images as well as reduce the ringing artifacts.

1 Introduction

Electrical Impedance Tomography (EIT) is a recently developed non-invasive
imaging technique, where the inner structure of a reference object can be recovered
from the current and voltage measurements on the object’s surface. It is fast,
inexpensive, portable and requires no ionizing radiation. For these reasons, EIT
qualifies for continuous real time visualization right at the bedside.

In clinical EIT applications, the reconstructed images are usually obtained by
minimizing the linearized-data-fit residuum [3, 7]. These algorithms are fast and
simple. However, to the best of the authors’ knowledge, there is no rigorous global
convergence results that have been proved so far. Moreover, the reconstructed
images usually tend to contain ringing artifacts.
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Recently, Seo and one of the author have shown in [19] that a single linearized
step can give the correct shape of the conductivity contrast. This result raises a
question that whether to regularize the linearized-data-fit functional such that the
corresponding minimizer yields a good approximation of the conductivity contrast.
An affirmative answer has been proved in [18] for the continuum boundary data. In
the present paper, we shall apply this new algorithm to the real electrode setting and
test with standard phantom experiment data. Numerical results later on show that
this new algorithm helps to improve the quality of the reconstructed images as well
as reduce the ringing artifacts. It is worth to mention that our new algorithm is non-
iterative, hence, it does not depend on an initial guess and does not require expensive
computation. Other non-iterative algorithms, for example, the Factorization Method
[14, 16] and the Monotonicity-based Method [4, 20, 30, 31], on the other hand, are
much more sensitive to measurement errors than our new algorithm when phantom
data or real data are applied [5, 10, 22, 33].

The paper is organized as follows. In Sect.2 we introduce the mathematical
setting, describe how the measured data can be collected and set up a link between
the mathematical setting and the measured data. Section 3 presents our new
algorithm and the numerical results were shown in Sect. 4. We conclude this paper
with a brief discussion in Sect. 5.

2 Mathematical Setting

Let 2 € R",n > 2 describe the imaging subject and ¢ : 2 — IR be the
unknown conductivity distribution inside §2. We assume that §2 is a bounded domain
with smooth boundary 952 and that the function ¢ is real-valued, strictly positive
and bounded. Electrical Impedance Tomography (EIT) aims at recovering o using
voltage and current measurements on the boundary of §2. There are several ways
to inject currents and measure voltages. We shall follow the Neighboring Method
(aka Adjacent Method) which was suggested by Brown and Segar in [6] and is
still widely being used by practitioners. In this method, electrodes are attached
on the object’s surface, and an electrical current is applied through a pair of
adjacent electrodes whilst the voltage is measured on all other pairs of adjacent
electrodes excluding those pairs containing at least one electrode with injected
current. Figure 1 illustrates the first and second current patterns for a 16-electrode
EIT system. At the first current pattern (Fig. 1a), small currents of intensity Iil)
and Iél) = —I;l) are applied through electrodes E; and E, respectively, and the

voltage differences U. ) U (1), LU g) are measured successively on electrode pairs
(Es,E4), (E4,Es),...,(E15,E6). In general, for a L-electrode EIT system, at the

k-th current pattern, by injecting currents I,ﬁk) and I,ilfg | = —I,((k) to electrodes

Ey and Ej4; respectively, one gets L — 3 voltage measurements {Ul(k)}, where
[ € {1,2,...,L} and |k — I] > 1. Note that here and throughout the paper, the
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Fig. 1 The Neighboring Method: (a) first current pattern, (b) second current pattern

electrode index is always considered modulo L, i.e. the index L + 1 also refers to
the first electrode, etc.

Assuming that the electrodes E; are relatively open and connected subsets of
a2, that they are perfectly conducting and that contact impedances are negligible,
the resulting electric potential u®) at the k-th current pattern obeys the following
mathematical model (the so-called shunt model [8]):

V-(Vu) =0 in £2,

Sy oduds=1"  fori=1.....L,
odyu =0 on 32\ Ui, E1.
ulg =const. forl=1,...,L.

ey

Here v is the unit normal vector on 052 pointing outward and Il(k) = (Oks — Ok+1.0)1
describes the k-th applied current pattern where a current of strength / > 0 is driven
through the k-th and (k + 1)-th electrode. Notice that {/ l(k)} satisfy the conservation
of charge 21L=1 Il(k) = 0, and that the electric potential #®) is uniquely determined
by (1) only up to the addition of a constant. The voltage measurements are given by

k
U = u® g —u®g, . )

The herein used shunt model ignores the effect of contact impedances between
the electrodes and the imaging domain. This is only valid when voltages are
measured on small (see [15]) and current-free electrodes, so that (1) correctly
models only the measurements Ul(k) with |k — [| > 1. For difference measurements,
the missing elements U,(k) with |k — | < 1, on the other hand, can be calculated
by interpolation taking into account reciprocity, conservation of voltages and the
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geometry-specific smoothness of difference EIT data, cf. [17]. For an imaging sub-
ject with unknown conductivity o, one thus obtains a full matrix of measurements

3 Monotonicity-Based Regularization

3.1 Standard One-Step Linearization Methods

In difference EIT, the measurements U(o) are compared with measurements
U(oy) for some reference conductivity distribution oy in order to reconstruct the
conductivity difference o0 — 0y. This is usually done by a single linearization step

U'(00)(0 — 00) ~ U(0) — U(00).

where U'(0p) : L®(2) — RIE is the Fréchet derivative of the voltage
measurements

U'(0g) : k (—/ KVuf,’f)) . Vuf,lg dx)
2 I<kI<L

We discretize the reference domain 2 = UlePj into P disjoint open pixels P;
and make the piecewise-constant Ansatz ‘

,
k) =Y Kixn ().
j=1

This approach leads to the linear equation
Sk =V 3

where V and the columns of the sensitivity matrix S contain the entries of the
measurements U(o) — U(0p) and the discretized Fréchet derivative, resp., written as
long vectors, i.e.,

K = (k)-, € R,
2 2 .
V=)L, eRE,  with Vit = U (0) — UM (0p),

00 00

S = (S,'J') € RLZ’P, with S(l—l)L+kJ = —/ Vu(k) . Vu(l) dx.
P

Most practically used EIT algorithms are based on solving a regularized variant
of (3) to obtain an approximation k to the conductivity difference 0 —ay. The popular
algorithms NOSER [7] and GREIT [3] use (generalized) Tikhonov regularization
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and minimize

2 2 .
Sk — Vs + @l || pen — min!
with (heuristically chosen) weighted Euclidian norms || - ||rs and || - ||pen in the
residuum and penalty term.

3.2 Monotonicity-Based Regularization

It has been shown in [19] that shape information in EIT is invariant under lineariza-
tion. Thus one-step linearization methods are principally capable of reconstructing
the correct (outer) support of the conductivity difference even though they ignore
the non-linearity of the EIT measurement process. In [18] the authors developed
a monotonicity-based regularization method for the linearized EIT equation for
which (in the continuum model) it can be guaranteed that the regularized solutions
converge against a function that shows the correct outer shape. In this section, we
formulate and analyze this new method for real electrode measurements, and in the
next section we will apply it to real data from a phantom experiment and compare it
with the GREIT method.

The main idea of monotonicity-based regularization is to minimize the residual
of the linearized equation (3)

Sk — V||? — min!

with constraints on the entries of k that are obtained from monotonicity tests.

For the following, we assume that the background is homogeneous and that
all anomalies are more conductive, or all anomalies are less conductive than the
background, i.e., 0y is constant, and either

o) =00 +yX) o), or o(x)=00—yx)xpx).

D is an open set denoting the conductivity anomalies, and y : D — R is the contrast
of the anomalies. We furthermore assume that we are given a lower bound ¢ > 0 of
the anomaly contrast, i.e. y(x) > c.

For the monotonicity tests it is crucial to consider the measurements and the
columns of the sensitivity matrix S as matrices and compare them in terms of matrix
definiteness, cf. [9, 17, 21] for the origins of this sensitivity matrix based approach.
Let V := U(o) — U(op) € RY*E denote the EIT difference measurements written
as L x L-matrix, and S; € Rl denote the k-th column of the sensitivity matrix
written as L X L-matrix, i.e. the (j, /)-th entry of S is given by

(@) l
—/ VMG{) -Vul(,g dx.
Py
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We then define for each pixel Py
Bi := max{a > 0: aS; > —|V[}, “)

where |V| denotes the matrix absolute value of V, and the comparison oSy > —|V|
is to be understood in the sense of matrix definiteness, i.e. Sy > —|V| holds if and
only if all eigenvalues of aS; + |V| are non-negative.

Following [18] we then solve the linearized EIT equation (3) using the monoto-
nicity constraints ;. We minimize the Euclidean norm of the residuum

Sk — V||? — min! 5)

under the constraints that

(C1) inthe case 0 > 0y: 0 < k; < min(a4, B¢), and
(C2) inthe case 0 < 09: 0 > kyx > —min(a—, Bi),
%
op+c’
For noisy data V® with ||V® — V|| < § this approach can be regularized by
replacing B with

where a4 := 0p — anda_ :=c.

BY := max{a > 0: aS; > —|V°| — 81}, (6)

where I € RE*L is the identity matrix. For the implementation of ,B,f see Sect. 4.

For the continuum model, and under the assumption that D has connected com-
plement, the authors [18] showed that for exact data this monotonicity-constrained
minimization of the linearized EIT residuum admits a unique solution and that the
support of the solution agrees with the anomalies support D up to the pixel partition.
Moreover, [18] also shows that for noisy data and using the regularized constraints
,3,‘3, minimizers exist and that, for § — 0, they converge to the minimizer with
the correct support. Since practical electrode measurements can be regarded as an
approximation to the continuum model, we therefore expect that the above approach
will also well approximate the anomaly support for real electrode data.

In the continuum model, the constraints §; will be zero outside the support of
the anomaly and positive for each pixel inside the anomaly. The first property relies
on the existence of localized potentials [11] and is only true in the limit of infinitely
many, infinitely small electrodes. The latter property is however true for any number
of electrodes as the following result shows:

Theorem 1 If Py C D, then

(a) in the case o > oy the constraint By fulfills Bx > a4 > 0, and
(b) in the case o < oy the constraint By fulfills By > a— > 0.
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Proof If P, € D and 0 > 0y then

o2

2
(o) O'O 0
(0—00) =00— ~ >|00— XPe = A4 XPes
o o oo+ ¢

and if P, C D and 0 < 0y then

00— 0 = CYXpy = A—)py;-

Hence, it suffices to show that aS; > —|V| holds for all « > 0 that fulfill

(@) ayxp, < 7 (0 —0p), or
(b) ayp, <0p—o0.

We use the following monotonicity relation from [23, Lemma 3.1] (see also [24, 25]
for the origin of this estimate): For any vector g = (gj)jL=l € R’ we have that

O 2 2
[ o= ulg P av= Ve = [ (00— o [Vug ™
2 2

with 1) = ZJ-L=1 ngu,(,{;) .
Ifayp, < % (0 —0p), then

2 [oJ0) 2
0>g" (@S)g=— / o |[Vul®|” > / , (@0=0) (Vul®|” > gTvg,
Py 2

which shows that |V| = =V > —aS;.
If ayp, < 0o—o0,then

2 2
OEQPMM=/aW%’§/%—®W%)SH%
Py 2

which shows that |V| = V > —aS;. O

4 Numerical Results

In this section, we will test our algorithm on the data set iirc_data_2006
measured by Professor Eung Je Woo’s EIT research group in Korea [26, 27, 29, 32].
iirc stands for Impedance Imaging Research Center. The data set is publicly
available as part of the open source software framework EIDORS [2] (Electrical
Impedance and Diffused Optical Reconstruction Software). Since the data set
iirc_data_2006 is also frequently used in the EIDORS tutorials, we believe
that this is a good benchmark example to test our new algorithm.
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4.1 Experiment Setting

The data set iirc_data_2006 was collected using the 16-electrode EIT system
KHU Mark1 (see [28] for more information of this system). The reference object
was a Plexiglas tank filled with saline. The tank was a cylinder of diameter
0.2m with 0.0l m diameter round electrodes attached on its boundary. Saline
was filled to about 0.06m depth. Inside the tank, one put a Plexiglas rod of
diameter 0.02 m. The conductivity of the saline was 0.15 S/m and the Plexiglas rod
was basically non-conductive. Data acquisition protocol was adjacent stimulation,
adjacent measurement with data acquired on all electrodes.

The data set iirc_data_2006 contains the voltage measurements for both
homogeneous and non-homogeneous cases. Measurements for the homogeneous
case were obtained when the Plexiglas rod was taken away (reference conductivity
in this case is 0.15S/m). In the non-homogeneous case, 100 different voltage
measurements were measured corresponding to 100 different positions of the
Plexiglas rod.

4.2 Numerical Implementation

EIDORS [2] (Electrical Impedance and Diffused Optical Reconstruction Software)
is an open source software that is widely used to reconstruct images in electrical
impedance tomography and diffuse optical tomography. To reconstruct images with
EIDORS, one first needs to build an EIDORS model that fits with the measured
data. In this paper, we shall use the same EIDORS model described in the EIDORS
tutorial web-page:

http://eidors3d.sourceforge.net/tutorial/EIDORS_basics/tutorialll0.shtml

Figure 2 shows the reconstructed images of the 9th-inhomogeneous measure-
ments with different regularization parameters using the EIDORS built-in command
inv_solve, which follows the algorithm proposed in [1]. We emphasize that,
Fig. 2b (regularization parameter is chosen as 0.03 by default) was considered at the
EIDORS tutorial web-page, we show them here again in order to easily compare
them with the reconstructed images using our new method later on.

4.3 Minimizing the Residuum

In the EIDORS model suggested in the EIDORS tutorial web-page, the reference
body was chosen by default as a disk of diameter 1 m and the default reference
conductivity was 1 S/m. However, in the experiment setting, the reference body was
a cylinder of diameter 0.2 m and the reference conductivity was 0.15 S/m. Hence,
an appropriate scaling factor should be applied to the measurements, to make sure
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(a) (b) (©)
Fig. 2 Reconstructed images for the 9th-inhomogeneous voltage measurements with different
regularization parameters. (a) Parameter = 0.003. (b) Parameter = 0.03. (¢) Parameter = 0.3

that the EIDORS model fits with these measurements. In the EIDORS tutorial
web-page, the measurements were scaled by multiplying by a factor 10™*. In this
paper, to increase the precision of the model, we shall find the best scaling factor
that minimizes the error between the measured data and the data generated by the
EIDORS model. More precisely, let call vh the measured data for homogeneous
case and vh_model the homogeneous data generated by the EIDORS model, the
best scaling factor is a minimizer of the following problem

min ||¢ * vh — vh_model||;
ceER

For this experiment setting, the best factor is 2.49577 % 10™>. From now on, by
measured data we always refer to scaled measured data with respect to this best
factor.

The next step is to recover the missing measurements on the driving electrodes.
We shall follow the result in [17] to obtain an approximation for these missing
measurements using interpolation.

Now we are in a position to minimize the problem (5) under the linear constraint
(C1) or (C2). To do this, we need to clarify a4, a—, and B in the linear constraints.
After scaling, the reference conductivity is o0p = 1S/m, and D still denotes the
Plexiglas rod with conductivity ¢ = 0S/m. Thus, y = 1, a— = infpy = 1 and
Br is calculated using (4). In practice, there is no way to obtain the exact value of
the matrix V in (4). Indeed, what we know is just the measured data V4 = U%(0) —
U%(0y), where § denotes the noise level. When replacing |V| by the noisy version
|[V?], it may happen that there is no @ > 0 so that the matrix |V®| 4+ aS; is still
positive semi-definite. Therefore, instead of using (4), we shall calculate 8; from

Bi = max{a >0 : |V?| + aS, > —8I}.

Here, I represents the identity matrix, and § is chosen as the absolute value of the
smallest eigenvalue of V. Notice that, in the presence of noise, |V?| 4 I plays the
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role of the positive semi-definite matrix |V|. We shall follow the argument in [18] to
calculate By. Let L be the lower triangular Cholesky decomposition matrix of | V| 4
81, and let A,(L7'S;(L*)~") be the smallest eigenvalue of the matrix L~ (L*)~".
Since S is negative semi-definite, so is L™'Sx(L*)~". Thus, A{(L™'Sp(L*)™!) < 0.
Arguing in the same manner as in [18], we get

Bi= =0
Tt T
The minimizer of (5) is then obtained using two different approaches: one
employs cvx (Fig.3a), a package for specifying and solving convex programs
[12, 13], the other (Fig.3b) uses the MATLAB built-in function quadprog

(©) (d)

Fig. 3 Reconstructed images for the 9th-inhomogeneous voltage measurements with different
algorithms (after scaling the measured data w.r.t the best scaling factor). (a) cvx. (b) quadprog.
(¢) EIDORS inv_solve. (d) GREIT
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(trust-region-reflective Algorithm). We also show the reconstructed
result using the built-in function inv_solve of EIDORS [1] (Fig.3c) with the
default regularization parameter 0.03 and with GREIT algorithm [3] (Fig. 3d) to see
that scaling the measured data with the best scaling factor will improve a little bit
the reconstructed image. Notice that reconstructed images are highly affected by the
choice of the minimization algorithms (see Table 1 for their runtime), and we will
see from Fig. 3 that the images obtained by cvx has less artifacts than the others.

It is worth to emphasize that although each EIDORS model is assigned to
a default regularization parameter, when using the EIDORS built-in function
inv_solve [1], in order to obtain a good reconstruction (Fig.2) one has to
manually choose a regularization parameter, whilst the regularization parameters
a— and B in our method are known a-priori provided the information of the
conductivity o and the reference conductivity oy exists. Besides, if we manually
choose the parameters min(a—, B;), we even get much better reconstructed images
(Fig. 4).

Last but not least, our new method proves its advantage when there are more than
one inclusions (Fig. 5).

Table 1 Runtime of pictures in Fig. 3

Algorithm Runtime (s)
cvx 839.3892
quadprog (trust-region-reflective) 5.4467
EIDORS (inv_solve) 0.0231
GREIT 0.0120

(a) (b) (©)

Fig. 4 Reconstructed images for the Oth-inhomogeneous voltage measurements with
monotonicity-based algorithm and different choices of lower constraint. (a) min(2, B;). (b)
min(3, Bx). (c) min(4, Bi)
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r Y
.
rY
|: I- ..
.

(d)
(g)

Fig. 5 Reconstructed images for simulated data with 0.1% noise. (From left to right) First column:
True conductivity change, Second column: our new method (with cvx), Third column: EIDORS
(inv_solve), Last column: GREIT

5 Conclusions

In this paper, we have presented a new algorithm to reconstruct images in EIT in
the real electrode setting. Numerical results show that this new algorithm helps to
reduce the ringing artifacts in the reconstructed images. Global convergence result
of this algorithm has been proved in [18] for the Continuum Model. In future works,
we shall aim to prove global convergence result for the Shunt Model setting as well
as reduce the runtime to fit with real-time applications.
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An SVD in Spherical Surface Wave M)
Tomography i

Ralf Hielscher, Daniel Potts, and Michael Quellmalz

Abstract In spherical surface wave tomography, one measures the integrals of a
function defined on the sphere along great circle arcs. This forms a generalization
of the Funk—Radon transform, which assigns to a function its integrals along full
great circles. We show a singular value decomposition (SVD) for the surface wave
tomography provided we have full data.

Since the inversion problem is overdetermined, we consider some special cases
in which we only know the integrals along certain arcs. For the case of great
circle arcs with fixed opening angle, we also obtain an SVD that implies the
injectivity, generalizing a previous result for half circles in Groemer (Monatsh Math
126(2):117-124, 1998). Furthermore, we derive a numerical algorithm based on the
SVD and illustrate its merchantability by numerical tests.

1 Introduction

While the famous two-dimensional Radon transform assigns to a function
f:R?> — R all its line integrals, its spherical generalization, the Funk—Radon
transform .%: C(S*) — C(S?), assigns to a function on the two-dimensional sphere
S? = {& € R?: |&| = 1} its integrals

1
Fre =, [ sma g

T J{g.)=0
along all great circles {§ € S> : n L &}, & € S?. The investigation of the Funk—
Radon transform dates back to the work of Funk [11], who showed the injectivity
of the operator .# for even functions. In other publications, the operator .# is
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also known as Funk transform, Minkowski—Funk transform or spherical Radon
transform.

Similar to the Radon transform, the Funk—Radon transform plays an important
role in imaging. Motivated by specific imaging modalities, the Funk—Radon trans-
form has been generalized further to other paths of integration, namely circles with
fixed diameter [34, 38], circles containing the north pole [1, 5, 20, 35], circles
perpendicular to the equator [12, 23, 44], and nongeodesic hyperplane sections
of the sphere [30, 31, 33, 37]. The integrals along half great circles have been
investigated in [13, 18, 36]. Interestingly, some of these generalizations lead to
injective operators.

In this paper, we replace the great circles as paths of integration in the Funk—
Radon transform by great circle arcs with arbitrary opening angle. Let &, ¢ € S? be
two points on the sphere that are not antipodal and denote by y (&, {) the shortest
geodesic connecting both points. Then we aim at recovering f:S*> — C from the
integrals

g<s,C)=/ Fdn, &S E# ¢, )
y(£.8)

The study of this problem is motivated by spherical surface wave tomography.
There, one measures the time a seismic wave travels along the Earth’s surface from
an epicenter to a receiver. Knowing the traveltimes of such waves between many
pairs of epicenters and receivers, one wants to recover the local phase velocity.
A common approach is the great circle ray approximation, where it is assumed that
a wave travels along the arc of the great circle connecting epicenter and receiver.
Then the traveltime of the wave equals the integral of the “slowness function”
along the great circle arc connecting the epicenter and the receiver, where the
slowness function is defined as one over the local phase velocity [29, 40, 43]. Hence,
recovering the local phase velocity as a real-valued spherical function from its mean
values along certain arcs of great circles is modeled by (1), see [3].

Although (1) uses a very intuitive parametrization of great circle arcs on the
sphere, it is not well suited for analyzing the underlying operator since the arc length
is restricted to [0, 7r) and, even for continuous f, the function g has no continuous
extension to a function on S? x S2. Therefore, we parameterize the manifold of all
great circle arcs by the arclength 2y € [0, 277] and the rotation Q € SO(3) that maps
the arc of integration to the equator such that the midpoint of the arc is mapped to
(1,0, O)T. Using this parametrization, the arc transform is defined in Sect. 3.1 as an
operator

o C(S?) — C(SO(3) x [0, 7]).
In Theorem 3.3, we derive a singular value decomposition of .o/, which involves

spherical harmonics in L*(S?) and Wigner-D functions in L*(SO(3) x [0, r]).
Furthermore, we give upper and lower bounds for the singular values.
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Since the function f lives on a two-dimensional manifold but the transformed
function </f lives on a four-dimensional manifold, the inverse problem is highly
overdetermined. For this reason, we consider in Sect. 4 specific subsets of arcs that
still allow for the reconstruction of the function f. Most notably, we investigate
in Sect. 4.3 the restriction of the arc transform to arcs of constant opening angle.
This restriction includes as special cases the ordinary Funk—Radon transform as
well as the half circle transform [18]. For the restricted operator, we prove in
Theorem 4.4 a singular value decomposition and show that the singular values decay
as (n+ é)_%C(w, n). While for opening angles 2y < 7 the constant C(y, n) is
independent of n, it converges to zero for odd n and 2y — 2.

Finally, we present in Sect.5 a numerical algorithm for the arc transform with
fixed opening angle, which is based on the nonequispaced fast spherical Fourier
transform [26] and the nonequispaced fast SO(3) Fourier transform [32].

2 Fourier Analysis on S* and SO(3)

In this section, we present some basic facts about harmonic analysis on the sphere
S? and the rotation group SO(3) and introduce the notation we will use later on.

2.1 Harmonic Analysis on the Sphere

In this section, we are going to summarize some basic facts about harmonic analysis
on the sphere as it can be found, e.g., in [7, 10, 28]. We denote by Z the set of integers
and with Ny the nonnegative integers.

We define the two-dimensional sphere S> = {& € R? : || = 1} as the set of unit
vectors £ = (&1, £, £) " in the three-dimensional Euclidean space and make use of
its parametrization in terms of the spherical coordinates

£(@. ) = (cos ¢ sin®,sing sind,cos¥) ", ¢ €[0,27), ¥ € [0, ).

Let f:S? — C be some measurable function. With respect to spherical coordinates,
the surface measure d&€ on the sphere reads as

T 2
/ £(8) dg = / FE@. D)) sind do db.
s? o Jo

The Hilbert space L?(S?) is the space of all measurable functions f: S?> — C whose

norm ||f||L2(SZ) = ((fsf)LZ(sl))l/z is finite, where (f, g)Lz(Sz) = fng(g)g(s)ds
denotes the usual L?—inner product.
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We define the associated Legendre functions

k n+k
i (=D k2 d n
Pi@t) = it (1-17) 4tk Z-1)", re[-1,1],
of degree n € Ny and order k = 0,...,n. We define the normalized associated

Legendre functions by

3 \/2n+1 (=01 .

no 4 (n+ k)"
and
Pt = (-D'P,
where the factor (—1)F is called Condon—Shortley phase, which is omitted by some
authors.
An orthonormal basis in the Hilbert space L*(S?) of square integrable functions
on the sphere is formed by the spherical harmonics

YE(E(p,9)) = P(cos ®) ¥ 3)

of degree n € Ny and order k = —n, ..., n. Accordingly, any function f € L*(S?)
can be expressed by its spherical Fourier series

f= 3

n=0k=—n

with the spherical Fourier coefficients

= [ o v@ neNo k=

We define the space of spherical polynomials of degree up to N € Ny by

9N=span{Y,’f:n:O,...,N,kz—n,...,n}.

2.2 Rotational Harmonics

We state some facts about functions on the rotation group SO(3). This introduction
is based on [19], rotational Fourier transforms date back to Wigner, 1931, see [42].
The rotation group SO(3) consists of all orthogonal 3 x 3-matrices with determinant
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one equipped with the matrix multiplication as group operation. Every rotation
Q € SO(3) can be expressed in terms of its Euler angles «, 8, y by

Q(as :Bs )’) = R3(Ol)R2(ﬂ)R3()/), o,y € [Os 2.7t), ﬂ € [Ov ”]v

where R;(«) denotes the rotation of the angle o about the & -axis, i.e.,

cosa —sina 0 cosfB 0 sinf
Ri(e) = | sina cosa O, Rx(B) = 0 1 0
0 0 1 —sinf 0 cos

Note that we use this zyz-convention of Euler angles throughout this paper.
The integral of a function g: SO(3) — C on the rotation group is given by

2w Eid 2
/50(3)g<Q)dQ = /0 /0 /0 g(0(a. B.)) sin(B) der dB dy.

We define the rotational harmonics or Wigner D-functions D%/ of degree n € Ny
and orders k,j € {—n,...,n} by

Dﬁ‘j(Q(Ol, :35 )’)) = e_ikadﬁzi(COS ,B)e_ijy,

where the Wigner d-functions are given by [41, p. 77]
ko(t) _ (_l)n_l (n + k)'(l — t)j_k d n—k (1 + t)n+]
T N =+ ) — 0+ itk \de) (=

The Wigner d-functions satisfy the orthogonality relation

28

1
d @) d (1) dr = :
| aoaioa= 2"

We define the space of square-integrable functions L?>(SO(3)) with inner product
(f.8)12¢s003)) = fso<3) f(Q) g(Q)dQ. By the Peter—Weyl theorem, the rotational
harmonics DX are complete in L?(SO(3)) and satisfy the orthogonality relation

2

. /o . ’ i 8r
DkJ, Dk/zl > — / Dk‘] Dk/zl do =
( " esoe)  Jsom " @D @de=,,

41 SOk 8y 4)

We define the rotational Fourier coefficients of g € L?(SO(3)) by

2n +1

ok —
87 =
" 82

(g, D’;=i)L2(SO(3)) , neNy, k,j=—n,...,n. (®)]
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Then the rotational Fourier expansion of g holds

o n ) )
g=>Y_ > &'y

n=0kj=—n

The rotational Fourier transform is also known as SO(3) Fourier transform (SOFT)
or Wigner D-transform.

The rotational harmonics D%/ are eigenfunctions of the Laplace-Beltrami oper-
ator on SO(3) with the corresponding eigenvalues —n(n + 1). The rotational
harmonics D/* are the matrix entries of the left regular representations of SO(3),
see [21, 41]. In particular, the rotation of a spherical harmonic satisfies

YiQ™'8) = Y DINQ) Yi(®). (6)

j=—n

2.3 Singular Value Decomposition

Let #:X — Y be a compact linear operator between the separable Hilbert spaces
X and Y. A singular system {(u,, vn, 0,) : n € No} consists of an orthonormal basis
{un}22, of X, an orthonormal basis {v,}°2, in the closed range of ¢  and singular
values g, — 0 such that operator . can be diagonalized as

o0
%szan(x,un)vn, x € X.

n=0

If all singular values o, are nonzero, the operator J# is injective and for y = JZ'x,
we have

= i o, vn>u
= .

n=0 n

The instability of an inverse problem can be characterized by the decay of the
singular values. The problem of solving J#'x = y for x is called mildly ill-posed
of degree @ > 0 if 0, € O(n™), cf. [8, Sec. 2.2].

3 Circle Arcs

For any two points &, ¢ on the sphere S? that are not antipodal, there exists a shortest
geodesic y(&, ¢) between & and ¢. This geodesic is an arc of the great circle that
contains & and &.
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The manifold of all great circle arcs is four-dimensional since they are deter-
mined by two points &, ¢ € S? and only coincide when & and ¢ are interchanged.

3.1 The Arc Transform

A great circle arc y(&, ¢) can be parameterized by its length 2y = arccos((§, ¢))
and a rotation Q € SO(3) which is defined as follows. Let

e, = (cos g, sing, 0)" e §?
be the point on the equator of S? with latitude ¢ € R. Then there exists a unique
rotation Q € SO(3) such that Q(§) = ey and Q(§) = ey. Such an arc y and its

rotation are depicted in Fig. 1. With this definition, the integral over the arc y (&, §)
may be rewritten as

1 v 1
/ Fnydn = / FQ gy dy = / o0 ' (ey) dg.
y(&.5) 0y(§.%) -

This motivates the following definition of the arc transform

o C(S?) — C(SO(3) x [0, 7r]),

aron = | ZfOQ‘l(ew)dfp- "
Fig. l(s \;i;ualization of the 7
arc y(&,
Y(EL)
o /oy
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The great circle arcs y(&, ) and y(&, &) are identical. This symmetry also holds for

the operator .27 Using Euler angles, we have the identity

Af Q. B.y). ¥) = f(QQ2r —a. 7w — B,y + 7). ¥),

where we assume the Euler angle y as 2z -periodic.

3.2 Singular Value Decomposition of the Arc Transform

In the following, we use double factorials defined by n!! = n(n — 2) - - -2 for n even
or n!! = n(n—2)---1forn odd and 0!! = (—1)!! = 1. The next theorem shows
how the arc transform .o acts on spherical harmonics Y,’f. The corresponding result
for the parametrization in terms of the endpoints of an arc is found in [6, Appx. C],

see also [3].

Theorem 3.1 Letn € Ngandk € {—n,...,n}. Then

AYNQ.¥) = Y PI0) DINQ) 5i(¥),

j=—n
where
2y, j=0
S,(W) = sin(j .
and

" [ant (=) k=D ;
Py =17 \/ b ey M even
n
0, n—+jodd.
Proof By (6), we obtain

AYHQ.Y) = /w

j==n

By the definition (3) of the spherical harmonics, we see that

v —_ v .
[ renap=Fio) [ e ap =Fio) 5.
~y —y

n ) w )
Vi@ e = Y0 o) / Yite)d.

®)

(€))

(10)



An SVD in Spherical Surface Wave Tomography 129

Hence,

YN0, ) = Y DJMQ)PL0) 5;(¥).

Jj==n

Now we calculate P/(0). By Hielscher and Quellmalz [23], P/,(0) = 0 if n 4 j is
odd and otherwise
i n+j—DN

PO =CDTT 0

Hence, we obtain by (2)

=1

~ 2n+1(n—)! wti (n4j = D!
P‘i“))—\/ 4 (n+)) (n =

_ P [ == D= D
=D 4n (n = HN(n + HI!

if n + j is even, which implies (10). |
Lemma3.2 Letn € Nyandj € {—n.....n}. If n + j is odd, then Pi(0) = 0.
Otherwise, we have
2n+1
212/ (n + 1) — j2

< [P0)] = it 1y (1n

Furthermore, forj € Ny,
lim [70) = ' (12)
n—>oQ n T :
n+jeven

Proof We first show that for m € N,

2 2m -1 1
=< =< . (13)
\/T[(Zm +1) 2m! V2m+ 1

With the definition

o emlt N1
u(m)_((2m—l)!!) my1 e
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we see that u(0) = 1 and u is increasing because of m > 1 and

u(m)y @2m)? 2m—1 _ (2m)?

Wm—1) = @m—122m+1 - @m2r—1" 1"

That implies the right inequality of (13). Furthermore, Wallis’ product states the
convergence

224466 2m 2m

" (14)
133557  2m—12m+1 2

u(m) =

for m — oo, see also [4]. This shows the left inequality of (13).

By (10) and (13), we obtain the upper bound

~ —ji—=1N" i— 1N
|P;j1(0)i2=2n+l(n J ‘1)..(n+J .1)..§2n+1 1. 1. '
47 n—H! (n+ )" dr Jn—j+1n+j+1

The lower bound follows analogously. Moreover, we have

2(j+2m) + 1 2m — D! 2m + 2j — D!

~ 2
2 (0) 4n em!! @m+ 2)!

Hence, Wallis product (14) shows that for j € Nj
—~ 2 2(j+2 12 1
lim [P, = 1im (7 + 2m) +
m—o0 | J m—>00 4 T 2m 41 2m+2j+ 1
. 2m+j+ , 1
= lim = _,

m=>oo p2 JQm+j+1)2 -2 7

which proves the assertion. |

Next, we derive a singular value decomposition for the spherical arc transform.
To this end, we define forn € Ny and k = —n, ..., n the functions EX € L*(SO(3) x
[0, 7]) by

n

ENQ.¥) = Y DIMQPIO0) (),  QeS0Q), ¥ €[0,7]. (15)

j==n

Theorem 3.3 The operator o/: L*(S*) — L*(SO(3) x [0, ]) is compact with the
singular value decomposition

(Y5, B, 6,) ine Ny, ke{-n,....n}},



An SVD in Spherical Surface Wave Tomography 131

with the singular values

32 2 "1
On = ”Elr(t ||L2(SO(3)><[O,JT]) = \/Zn + IJ P0(0)| + ij
j=1

— 2
‘o e

satisfying
16 8
37f3§0n«/n+1§ 37r4+47r2, n even, 17
4
4ym <o, n+1<2n +1, n odd, (18)
V3
and the orthonormal function system EZ =0, lEﬁ, n € No, k € {—n,...,n}in

L*(SO(3) x [0, ]).
Proof By the orthogonality (4) of the rotational harmonics, we have

<k k:>
" 12(50(3)%[0,7])

Z Z Pi(0)P/,(0) / Di*(Q) D))" (0)dQ / si() sy (¥) dyr

j=—nj=—n'

2
Z Z ZHZ S 110 87 P1(0) P (0) / si (V) sy () dyr

j=—nj=

n

=8M/8kk/22 " Fof [ swra

872 "o ) 4713’ ji=0
= Snn’ Skk/ PrIL(O) > X
2n+1j=z_:n‘ | 3;’, J#0.

This shows that the functions &/ Y* are orthogonal in the space L2(SO(3) x [0, 7r])
and have the norm

2 872 j=0
“EII;HLZ(SO(?))X[O,n]) = 2n+1 Z i 1(0)| § ]2, i£0.

1673
2n+1

|P°(0)\ +2Z |Pf(0)\



132 R. Hielscher et al.

where we used that ‘?’{;(0)| = |F;j (0)|. In order to prove that ./ is compact, we
show that the singular values o0, decay for n — oco. We have by Lemma 3.2 for
n = 2meven

2 1
2 2
o, <d4m
" 3 2m +1 Z(21)2 V@m +1)2 = (2))2

Replacing the sum by an integral, we estimate for n even

5 1 5 m+1/2 1 1 q
; (2)* J@em+1)2 — 2))2 ~ /1/2 (2)* \/@2m + 1)2 = (2j) !

V@m+ 17— (2,)2]’"“/ 2

_ . 5
|: 2j2m + 1) 2

«/m2+m< 1
Cm+ 12~ 2m+1’

where we made use of the convexity of the integrand. Hence,

03, < dn? S + : = 4’ 27{24—1 !
m = 3 2m+1 2m+1) " 3 2m+1°

For odd n = 2m — 1, we proceed analogously. We have

1
2 2
Y m— S 8” . .
" ; &= 1% /@m)? - (2j—1)?

Note that, for the estimation of the sum by an integral, we extract the summand for
j=1

02 < 872 1 + /'”+1/2 1 : dj
S V@em)? -1 1 @i =1 /@m)? - (2j— 1) ’

o 1 J@2m)?2—1
=57 (\/(2m)2—1+ 2(2m)? )

<8712( 2 + ! ):4712(4 +1)1
- V32m  2(2m) V3 2m’
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For the lower bound of the singular values, we also use Lemma 3.2. For even n,
we extract the summand j = 0 and obtain

1673
o = 2nil ol +2; , [PLOF
700 167°
23(2n+1)‘ HOlE 34 1)

For odd n, we extract the summand j = 1 and obtain

167 167

25 l
g L Pof Jastpot Zatt

”—2 +1

The singular values o,, decay with rate n~'/2. This is the same asymptotic decay
rate as of the eigenvalues of the Funk—Radon transform, cf. [39].

4 Special Cases

The recovery of a function f from the arc integrals <7 f is overdetermined considered
we have full data. In the following subsections, we are going to examine some
special cases, where we can reconstruct f from integrals only along certain arcs.

4.1 Arcs Starting in a Fixed Point

As a simple example, we fix one endpoint of the arcs. Without loss of generality,
we assume that this endpoint is the north pole. The arc connecting the north pole e?
and an arbitrary other point & (¢, ) € S? is given by

y(e. &(@. ) = {n(p.0) € S* : 0 € [0, 9]}

Since, with Q = Q(Z 2 32” —(p) € SO(3), we have Qe* = €y and Q¢ = e_y.
The restriction Z: C(S?) — C(S?) of the operator <7 to these arcs satisfies

b
BE @) = AF (1.7 —¢). 1) =/O Fn(e.0)) do.
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If f is additionally differentiable, it can be recovered from Zf by

fE@. ) = [ &),

The following more general result for injectivity is due to [2, Theorem 4.4.1].
Its proof uses a similar idea combined with an extension by density.

Proposition 4.1 Let S be an open subset of S*> and A, B C S nonempty sets with
AUB=S.Iff € C(S?) and

f(pdyp =0 forall¢ €A, § €B,
7(§.5)

then f =0onS.

For A = {e*} and B = S?, we have the arcs starting in the north pole.

4.2 Recovery of Local Functions

A subset 2 C S? is called convex if for any two points &, € §2 the geodesic arc
y (€, n) is contained in £2. We denote by 052 the boundary of £2.

Theorem 4.2 Let f € C(S?) and 2 be a convex subset of S* whose closure §2 is
strictly contained in a hemisphere, i.e., there exists a § € S* such that (£,&) > 0
forall ¢ € 2. If

/ fpdyp =0 forall &,n € 052, (19)
v

then f = 0on $2.

Proof Without loss of generality, we assume that §2 is strictly contained in the
northern hemisphere, i.e., we have & > 0 for all £ € £2. We define the restriction
of fto §2 by

f@E). &€

.f9(§)={0, £es?\ 0

Since y(&,7n) C §2 for all £, n € 952, the function f¢, also satisfies (19).
For § € S?% denote with & = {5y € S* : (£,9) = 0} the great circle
perpendicular to &. We show that the Funk—Radon transform

Fla(®) = / fa(m)dy + / fo(n) dn 20)
t¢tne eh\e
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vanishes everywhere. The second summand of (20) vanishes because f;; is zero
outside £2 by definition. If £ N 2 is not empty, there exist two points ', 52 € 352
such that y(y',92) = &+ N £, which shows that also the first summand of (20)
vanishes. Hence, #f; = 0 on S?. Since the Funk—Radon transform .Z is injective
for even functions, we see that f must be odd. Since f; is supported strictly inside
the northern hemisphere, so f must be the zero function. By the construction, we
see that f(&) vanishes for all £ € £2. |

An analogue to Theorem 4.2 for §2 being the northern hemisphere and the arcs
being half circles is shown in [36].

4.3 Arcs with Fixed Length

In the following, we consider circle arcs with fixed length v . To this end, we define
the restriction

Ay (Q) = A (Q. V).

Theorem 4.3 Let € (0, ) be fixed. The operator <y L*(S?) — L*(SO(3)) has
the singular value decomposition

(Y528 (0)) n €N, k€ fon, ],

with the singular values

—~ 2
PiO)| 5(¥)? @1

", 8x?

j==n
and the singular functions

k _M//Yr]f_ 1

j=—n
In particular, oy is injective.

Proof Let ¢ € (0, 1) be fixed, n € Ny and k € {—n, ..., n}. We have by (8)

A, Y o, ka>
( Vi 0 12(SO(3))

=Y % [ PP @O P05 5 )d0

j==nj'=—n'
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tE 82 o,
— ]Z /Z/ 2n + 15nn/ Skk/ Sjj/ P;;(O) P}{t’ (O) Sj(l//) Y (1//)
=—njy=—n

= S Suae Z - +1 \P'(O)l si()%.

j=-—n

For the injectivity, we check that the singular values w, () do not vanish for each
n € Ny. We have ’ﬁ{: (0) = 0if and only if n —j is odd. Furthermore, the definition of
s;in (9) shows that so(y) = 21 vanishes if and only if ¢y = 0 and s; (/) = 2sin(y)
vanishes if and only if ¢ is an integer multiple of 7. Hence, the functions 7Y’ ff are
also orthogonal in the space L?(SO(3)). |

Theorem 4.4 The singular values ., () of oy satisfy for odd n = 2m — 1

. 4dm—1 4, efo,?”
tim " s = Y velos] @)
m—oo 4 A —Any, e[, ],
and for even n = 2m
o 4dm+1 4y, elo,”
lim pantyyr = 70 ve ] 23)
m—co 4 27y —4n®, ¢ €[], 7).
Proof We first show (22). Let m € N. We have by (21)
4m — 2 s1n2((2J DY)
) = 16n22 Aol
We denote by v(y) = 47 (3 — | — 5 |) the right-hand side of (22). The Fourier
cosine series of v reads by [14, 1.444]
o0 . o0
sin((2k — 1)y)? 1 —cos((2k — 1)2v)
16 =16 = , 0, ).
2 (2k — 1) k; 202k — 1) @), v el
We have
4m—1 o 72 [P (O)}2 ~1
m — 2 2m—1 .2 .
e = |16 . sin” (2 — D)
H 4 c(o.x)) ; (2j—1)?

C([0.x])

00 2 )’pgin—jl(o))z — 1‘
: ,zzl Q-1 .
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We show that (24) goes to zero for m — oo, which then implies (22). By (12), we
see that 72 |’P§’m ' l(O)|2 converges to 1 for m — oo. Using the singular values (16)

together with their bound (18), we obtain the following summable majorant of (24):

- 2

o 167 F%Im—ll(o)} 4m—1 o Am—l (4
< < .

Z - T o T (¢3+)

Hence, the sum (24) converges to 0 for m — oo by the dominated convergence
theorem of Lebesgue.
In the second part, we show (23) for the odd singular values. Let m € N. We have

dm + 1

iy =82 B0 92 + 42 Y P O o

k=1

We examine both summands on the right side of (25). The first summand converges
due to (12):

lim 87> [PY,(0)" v* = 8y>.
m—>00
We denote the second summand of (25) by

k=1

and define A by the following Fourier cosine series, see [14, 1.443],

) = i sin(2ky) _ i 1= cos(4ky) _ %—21//2 + 7y, yelor
k=1 k2 k=1 2k 29?4+ 3ny —n?, Y e[}, m).
We have
> 22 [P -1
ooy = |57 P e
k=1 c(o.x])

= B -1

= ; (2 -1

As in the first part of the proof, we see with (17) that the last sum goes to O for
m — 00, which proves (23). |
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Fig. 2 The (normalized) singular values (n + ;) (). Top: dependency on the degree n. Note
the oscillation for ¥ > 7. Bottom: dependency on the arc-length ¥ (dashed lines correspond to
even n)

Remark 4.5 Theorem 4.4 shows that the singular values u, () decay with the same
asymptotic rate of n~!/2 as o, from Theorem 3.3. For ¢ < 7, the singular values
(n+ é) i, (¥)? for even and odd n converge to the same limit. However, for ¢ > s
the singular values for even n become larger than the ones for odd n. This might
be explained by the fact that for odd n, the spherical harmonics Yff are odd and
integrating them along a circle arc with length 2, which is longer than a half-
circle, yields some cancellation. In the limiting case y = m, which is not covered
by Theorem 4.3, o7, corresponds to the Funk—Radon transform, which is injective
only for even functions and vanishes on odd functions. This behavior is illustrated
in Fig. 2. O
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Remark 4.6 Since the rotation group SO(3) is three-dimensional, the inversion of
the arc transform M,,, with fixed length is still overdetermined.

In the case ¥ = 7, we have the integrals along all half circles. The injectivity
of the arc transform for half circles was shown in [18]. The restriction of the
arc transform to all half circles that are subsets of either the upper or the lower
hemisphere is still injective, see [36]. This is because every function that is
supported in the upper (lower) hemisphere can be uniquely reconstructed by its
Funk—Radon transform, which then integrates only over the half circles in the upper
(lower) hemisphere. |

The singular value decomposition from Theorem 4.3 allows us to reconstruct a
function f € L*(S?) given g = o,f.

Theorem 4.7 Let f € L*(S?) and g = yf € L*(SO(3)). Then f can be
reconstructed from the rotational Fourier coefficients gJ* given in (5) by

,__,,P O 508,

f= n- (26)
1; k;n /——n Pj (0)2 j(lp)

Proof We have by Theorem 4.3 for the spherical Fourier coefficients

A 1

= (275,

pn () 12(S0(3))
- (1/f)2 Z P(0) 55¥) (8- DY) 2 soay -
j=—n

The assertion follows by (5) and (21). |

Remark 4.8 A big advantage of using the singular value decomposition for inver-
sion is that it is straightforward to apply Tikhonov-type regularization or the
mollifier method [27], which both correspond to a multiplication of the summands
in the inversion formula (26) with some filter coefficients c,, cf. [22]. We obtain

S PO swIE
k. 27)
; k;n /——n Pj (0)2 Sj (W)

Filter coefficients corresponding to Pinsker estimators are optimal for functions in
certain Sobolev spaces, cf. [9]. They were applied to the Funk—Radon transform in
[22]. O

5 Numerical Tests

We consider the arc transform 7, with fixed length ¢ € (0, 7) as in Sect. 4.3.
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5.1 Forward Algorithm

For given f € C(S?), we want to compute the arc transform oyf(Qm) at points
On € SO3), m = 1,...,M. In order to derive an algorithm, we assume that
f € Py(S?) is a polynomial. We compute the spherical Fourier coefficients

ﬁf:/szf(g)yg(g)dg, n=0,...,N, k=—n,...,n,

with a quadrature rule on S? that is exact for polynomials of degree 2N. The
computation of the spherical Fourier coefficients f‘,f can be done with the adjoint
NFSFT (Nonequispaced Fast Spherical Fourier Transform) algorithm [24] in
O(N? log®> N> + M) steps. Then, by (8),

N

Ayf@m) =Y D PO () DI Q).  m=1,....M, (28)

n=0jk=—n

is a discrete rotational Fourier transform of degree N, which can be computed
with the NFSOFT (Nonequispaced Fast SO(3) Fourier Transform) algorithm [32]
in O(M + N> log” N) steps. Implementations of both NFSFT and NFSOFT are
contained in the NFFT library [25].

A simple alternative for the computation of o7, f is the following quadrature with
K equidistant nodes

_2i-1-K

2
Af@~ Y O ). p=

V. (29)

Computing 7 f(Qn) for m = 1,...,M with the quadrature rule (29) requires
O (KM) operations. Hence, for a high number M of evaluation nodes, the NFSOFT-
based algorithm is faster than the quadrature based on (29).

5.2 Inversion

We test the inversion from Theorem 4.7. Let g = &f. For the computation of
the rotational Fourier coefficients g{;*k, n=20,....N,j,k = —n,...,n, we use a
quadrature formula

M
&t = /50(3) S D@ A0~ Y wn g(Qn) DI (Qn) G0

m=1

with nodes Q,,, € SO(3) and weights w,, > 0, m = 1,..., M. Again, we assume that
f € Py(S*), which implies g/* = 0 for n > N. Hence, (30) holds with equality
if the quadrature integrates rotational harmonics up to degree 2N exactly. There
are different ways to obtain such exact quadrature formulas on SO(3). In a tensor
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product approach, we use Gauss-Legendre quadrature in cos 8 and a trapezoidal
rule in both o and y. We can also write SO(3) ~ S! x S? and pair a trapezoidal
rule on S' in o with a quadrature on S? with azimuth y and polar angle S, see
[17]. Furthermore, Gauss-type quadratures on SO(3) that are exact up to machine
precision were computed in [16]. In Fig. 3, one can see the circle arcs corresponding
to different quadrature rules on SO(3), namely Gauss—Legendre nodes (Fig. 3a), the
tensor product of S' x S? (Fig. 3b) and a Gauss-type quadrature on SO(3) (Fig. 3c).
We used Gauss-type quadratures on both S* and SO(3) from [15]. Note that because
of the symmetry of the Gauss-type quadrature on SO(3) we used in Fig. 3c, every
arc corresponds to two quadrature nodes on SO(3).

Fig. 3 Circle arcs y(Q,,,0.2) corresponding to quadrature nodes Q,, € SO(3), all quadrature
formulas are exact for all rotational harmonics D/* of degree n < 8. (a) Gauss-Legendre with 405
nodes. (b) Tensor product S! x S? with 252 nodes. (¢) Gauss-type with 240 nodes
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Fig. 4 Reconstruction of a spherical test function f for degree N = 22, = 0.7 and a tensor
product S! x §? quadrature (M = 30,240). (a) Exact data. (b) Noisy data. (c) Noisy data &
regularization

The reconstruction formula (26) becomes the discrete rotational Fourier
transform

YL PI0) () gk i
/= ZM; YL P05 "

In Fig.4, we compare the reconstruction results, where we use an artificial test
function, the parameter N = 22 and the tensor product of a trapezoidal rule on
S! with a Gauss-type quadrature on S? from [15]. The resulting SO(3) quadrature
uses M = 30,240 nodes and is exact for degree 44. We first perform the inversion
without any noise in the data. The reconstruction has an RMSE (root mean square
error) of 0.0338. Then we add Gaussian white noise with a standard deviation
of 0.2 to the data .27,f(Q,) and achieve an RMSE of 0.2272. Even though we
did not perform any regularization, the reconstruction from noisy data still looks
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considerably well. This might be explained by the fact that the inverse arc transform
with fixed opening angle and full SO(3) data is still an overdetermined problem.
Applying the regularization (27) truncated to degree n < N with filter coefficients
from [22] yields a smaller RMSE of 0.1393.
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Numerical Studies of Recovery Chances m)
for a Simplified EIT Problem St

Christopher Hofmann, Bernd Hofmann, and Roman Unger

Abstract This study investigates a simplified discretized EIT model with eight
electrodes distributed equally spaced at the boundary of a disc covered with
a small number of material ‘stripes’ of varying conductivity. The goal of this
paper is to evaluate the chances of identifying the conductivity values of each
stripe from rotating measurements of potential differences. This setting comes
from an engineering background, where the used EIT model is exploited for
the detection of conductivities in carbon nanotubes (CNT) and carbon nanofibers
(CNF). Connections between electrical conductivity and mechanical strain have
been of major interest within the engineering community and has motivated the
investigation of such a ‘stripe’ structure. Up to five conductivity values can be
recovered from noisy 8 x 8 data matrices in a stable manner by a least squares
approach. Hence, this is a version of regularization by discretization and additional
tools for stabilizing the recovery seem to be superfluous. To our astonishment,
no local minima of the squared misfit functional were observed, which seems to
indicate uniqueness of the recovery if the number of stripes is quite small.

1 Introduction

Electrical impedance tomography (EIT) is an imaging technology that aims to
reconstruct the internal electric conductivity of a given object through electrostatic
measurements obtained on its boundary. Previously, this class of inverse problems
has been studied with a focus on applications in medical imaging and geology. The
problem was first posed in a mathematical way by Calderén in [3]. Conductivity
distributions appearing in medical applications can be considered as piecewise con-
stant functions under many circumstances. Various body tissues have conductivities
which differ sometimes substantially. Therefore the conductivity can be assumed to
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have jumps at organ borders. One might also be interested in identifying the size
and position of an object, whose conductivity is considerably different from the
surrounding tissue, e.g. an organ within a thorax. Numerous results with focus on
such applications have been published in recent years (see, e.g., [5, 8, 11, 18]).

In contrast, the studies presented in this paper were motivated by an engineering
background. Precisely, the technological goal for the used EIT model is the detection
of damages in carbon nanotubes (CNT) and carbon nanofibers (CNF). Connections
between electrical conductivity and mechanical strain have been of major interest
for engineers in recent years (see, e.g., [4, 17, 21, 31]). In this context, numerous
results have been published, preferably with focus on the detection of inclusions or
objects within the structure, in this case the carbon nanotube (see, e.g., [10, 12—
16, 30]). To achieve satisfying assertions, these methods partly rely on a priori
information on the specimen. Usually a known background conductivity and a
substantially different conductivity of the inclusion are supposed. In some cases,
results had been presented without disclosing the underlying recovery method and
algorithm used and moreover the mathematical model is not documented in detail.

The objective of the following model and of corresponding simulations based
on it is to evaluate chances and limitations for the recovery of the mechanical
strain inside the CNT, which is caused by bending the specimen. For this purpose,
this study investigates a simplified discretized EIT model with eight electrodes
distributed equally spaced at the boundary 952 of a disk 2 modelled in two
dimensions and covered with a small number n of material ‘stripes’ of varying
conductivity, see a schematic shape in Fig. 1. Each of the ‘stripes’ is assumed to
possess a constant conductivity o; (i = 1,2, ..., n), but no assumption on inclusions
or background conductivity is made. Results of case studies are presented, in
particular, for n = 2 and n = 5. As is well-known, the EIT-recovery of a full
locally distributed conductivity function o(x), x € £2, represents a severely ill-
posed nonlinear inverse problem, and for example Tikhonov regularization can
be helpful for finding stable approximate solutions. But in this study we have a
situation of ‘regularization by discretization’ due to the small number n of unknowns
occurring here and thus additional tools for stabilizing the recovery process seem to
be superfluous.

Fig. 1 Specimen with
electrodes and finite element
grid
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2 The General EIT Model

For a general two-dimensional conducting object £2 with smooth boundary 952 and
conductivity function o (x), x € £2, the usual elliptic partial differential equation

V. (c(x)Vu(x)) =0 (H

applies, where the state variable u(x), x € §2, denotes the electric potential and
the o-weighted outer normal derivative 0d,u |3 can be interpreted as current. For
practical applications it is desirable to apply current and to measure voltages in
the sense of potential differences rather than vice versa. We follow this route and
consider the current-to-voltage map

As 1 L5(02) — L3(082).  glae = u'lie. 2)
where u# denotes the weak solution of (1) with Neumann boundary values
odvupe = glie -
In this context, we introduce the subspaces
LY (2) :={0 € L™(R2): xiélrfzo(x) > 0}
and

L2(0R) = {g e L*(0R) : / gds = 0}.
a2

For fixed 0 € LS the operator A, is a compact and self-adjoint linear operator
mapping in L2 (382) (cf., e.g., [9]). The forward operator of this model situation is
then given by

F:L2(2) - L(L1(0R2)), o A, 3)

Consequently, the inverse problem is to retrieve the function o(x), x € £2, from
data of the current-to-voltage map A,. Various results on the uniqueness of this
inverse problem for full and partial data have been published, and we refer to [29]
and moreover also to [2, 19, 20, 26].
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3 A Simplified and Discretized Specific EIT Model

In practice it is obviously impossible to obtain measurements on the whole boundary
382 of £2. Therefore the choice of electrode model is crucial in any numerical
study. Widely used electrode models include the Gap Model, Shunt Model and
Complete Electrode Model, and we refer for details to the monograph [28] and the
handbook article [1]. Electrode models have been extensively studied following a
more practical approach in [22, 27] and more recently in [6, 7]. Our investigations
below will use the Shunt Model, and its discretized version is outlined in the
following. For numerical simulations concerning practical applications the problem
has to be discretized with K electrodes ¢, U,I;l €x C 052, on which potential
measurements are taken and current is injected. In this context, I; and U denote
the associated values of current and voltage, respectively, on the k-th electrode. We
further assume steady state 2,1;1 I; = 0 (in- and outgoing currents add up to zero).
As the solution of (1) is not unique, it is assumed that the potentials add up to zero
as well. With RE = {x e RK : YK x; = 0} the mapping

R;: (Ik)kK:l €ERY (Uk)kK=l e RE

is then the basis for required sets of measurements.
As the Shunt Model is used in the following case studies, we assume that no
current flows outside the electrodes, i.e. 09, u| IAU & = 0, and that the current on

electrode € is equally distributed with overall current Iy = |,

Y dyu|yqds. Therefore

we have, 00, u|,, = |£‘; | with arclength |e| of the electrode €. It is further assumed
that the potential on every electrode is constant, i.e. u |, = const. Under these
conditions the underlying elliptic boundary value problem is discretized using a
FEM code (see for details Sect. 4.1).

With the two-dimensional conducting object §2 in disc form in mind, we
concretize the model as follows: We assume that the conductivity is isotropic and
we discretize the geometry by using a triangular mesh with 32 boundary edges and

K = 8 electrodes ¢; (i = 1,..,8) for taking voltage measurements. Neumann
boundary conditions are then set on two neighbouring (although not adjacent)
electrodes as oauuki = 1 and crauukHrl = —1. Moreover, we assume steady

state and, in order to overcome non-uniqueness, #(x) = 0 for one arbitrary chosen
boundary edge which is not an electrode. In its discretized form the forward
operator (3) is a mapping

o= (01,....00)  €eR" +— F(o)eR¥8,

where n denotes the number of ‘stripes’ inside the disc §2. Note that the shape
(geometry) of the stripes is apparently assumed to be known. We are only searching
for the conductivity values o; (i = 1,...,n), which are constant on each of the
stripes. Moreover, the matrix F (o) characterizes the noise-free image. To receive
the 8 x 8-matrix F (o) the electrodes are rotated and the associated elliptic problem
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is solved in a repeated manner until the starting position is reached. We note that the
forward operator F : R" — R83 is nonlinear such that we have a nonlinear inverse
problem under consideration even in this simplified form.

Let us assume that 0* € R’ is the ‘true conductivity vector’ to be identified.
For sufficiently small numbers n it makes sense to compute approximate solutions
by a least squares approach if the data are noisy. Hence, we search for approximate
solutions

o) = argmin || F(o) — F*(6™)]|r . “

o€eQ

In this case, Q C R} is the set of admissible solution vectors, for example obtained
by imposing box constraints, || - || designates the Frobenius norm, and the matrix
F%(c*) indicates the noisy data associated with some noise level § > 0.

For the subsequent case studies we carry out simulations, where the exact matrix
F(c*) is perturbed in an additive way

F(c*) =F(c*) + &

by means of a matrix & = (g;) € R¥® containing Gaussian random i.i.d. entries

€j ~ A (0,d*). For a prescribed averaged relative data error § > 0 defined by the

expectation value

F8 *) _ F(o* 2

E[n (")~ F© )”F} g )
I F(a*)|7

we have to use d = g|| F(0o™)| F as standard deviation of the entries in & for the

8
numerical experiments, since E[|| Fi(c*) — F(o*)||12p] = E[ > 65] = 64d°.
ij=1

4 Numerical Case Studies

4.1 Remarks on Used Finite Element Implementation

To execute the numerical experiments in this case study, a fast finite element solver
for the forward operator (3) in its discretized form were needed. Specifically, we
have applied an updated 2D Kernel SPC-PM2Ad version of an already existing
finite element code SPC, which has originally been developed in the context
of the DFG-funded Collaborative Research Center SFB 393: Parallel Numerical
Simulation for Physics and Mechanics of Continua. For detailed descriptions of the
structure and features of the FEM code we refer to [23—25]. The finite element code
is written in FORTRAN and can solve Eq. (1) for the required boundary conditions
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Table 1 List of stable error-to-noise ratios

Mean value Random Reconstruction Mean Random

noise level  noise level error error-to noise ratio error-to-noise ratio
s SArE A I ST P e
0.0100 0.0181 0.0029 0.2925 0.1876

0.0250 0.0361 0.0045 0.1789 0.1403

0.0500 0.0662 0.0076 0.1516 0.1236

0.0550 0.0722 0.0082 0.1488 0.1222

0.1000 0.1199 0.0142 0.1421 0.1181

0.1500 0.1791 0.0213 0.1421 0.1181

0.2000 0.2372 0.0285 0.1425 0.1184

0.2500 0.2935 0.0360 0.1441 0.1198

exploiting appropriate error estimations and adaptive mesh refinement with high
accuracy in very short computing time.

For series computation it has been called from a C++ OpenMPI implementation
which runs parallel on a distributed memory multicore cluster. Parallelization and
the already fast computing times of the FEM code have been essential for preparing
Sect. 4.3. For the presented case with five unknowns, 8 x 3 1° & 229 million of finite
element simulations were necessary to calculate values for the forward operator (3)
on the whole grid.

In order to present the results of Table 1, the SPC-PM2Ad Kernel has been
wrapped inside a MATLAB-minimizer based on a specific version of the Levenberg-
Marquardt algorithm for solving the nonlinear least squares problem (4).

4.2 The Case of Two Unknown Conductivities

We start our numerical case studies with the investigation of a disc §2 covered by a
‘stripe’ structure (see Fig.2) of n = 2 materials with different conductivities o; and
0,. For the set of admissible pairs of values we use the rectangle

Q = {(0-170-2) € [105 75] X [5546]}5

and for applying the discretized forward operator we calculate the corresponding
matrices F(o) € R®8 for grids with 51 x 51 support points.

As an illustrative example we plot the discrepancy norm || F(o) — F(6*)|r
depending on o = (07, 0)" for 0* = (37.7, 7.9)" in Fig. 3 and the corresponding
level sets in Fig. 4. One easily sees here and for numerous other examples of two-
dimensional points ¢ * that the level sets are of elliptical shape. If, as in our example,
0y K o1, the ellipses are elongated parallel to the axis oj-axis. Then the smaller
parameter (here o) with lower conductivity can be recovered in a more precise
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Fig. 3 Perspective drawing of discrepancy norm || F(0) — F(0*)||r depending on o = (01, 02)"

manner than the parameter with higher conductivity. This observation remains true
if the data are noisy. If we have o1 & 05, then the level sets tend to be concentric

circles.
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30

Fig. 4 Level sets L. = {o = (01,02)" : | F(0) — F(c*)|lr = ¢}

4.3 The Case of Five Unknown Conductivities

In a more detailed second numerical experiment, we consider ‘stripes’ on the disc
£2 with n = 5 different materials, where the conductivities 0} to o5 are arranged
from the bottom to the top. Since the finite element calculations tend to be more
costly and time consuming, the matrices F(o) have been calculated for every
o; (i=1,2,3,4,5) approximately in the interval [1, 50] with only 31 support points
in every component.

The numerical case study shows that very different conductivity distributions
may lead to nearly the same image of the forward operator. An example is presented
by Fig.5.

AANNNARTBREANNNA | {10
VAVAVAVAVAA AV AVAVAVAVAVR R S

-1 -0.5 0 0.5 1
X

Fig. 5 Two very different conductivity distributions with small discrepancy norm, left picture:
oM = (4.26,17.33,7.65,0.99, 1.00)", right picture: 0 = (4.27,23.87,4.34,50.00, 28.99)7,
| F(c M) — F(6@)]|% = 0.000099
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On the other hand, Fig. 6 delivers plots of the function
fQ) = [Flo* +A0® —0*) = F'(c*)|r,  Ae[-51],

characterizing a straight line through the points 0* = (7.53,22.23,14.28,4.26,
4.99)" and 6® = (7.53,45.09,12.63,4.26,4.99)", where in both points the
components 01, 04 and o5 coincide.

More insight into such two-dimensional cross sections of the five-dimensional
space give Figs.7 and 8. Figure 7 shows the level sets of || F(o) — F(c™*)||F, for
o* = (7.53,22.23,14.28,4.26,4.99)7 with respect to the second and to the third

0.02 | 0.022
0.018", ' 0.02
0.016
0.018
0.014
0.012 ™ { o016
2 s | =
£ o.01 1 Soo14
0.008 /1 o012 ™~ i |
0.006 ; '
0.01
0.004 __ /|
0.002 ~. / | o008
e 0 0006543 2 0 1
A A
Fig. 6 Graph of f(A) := || F(c* + A(c® — 6*)) — F¥(6*)||r for A € [—5, 1] without noise

(6 = 0, left picture) and with 5% noise (§ = 0.05, right picture)

50 FTTTTT
45t
a0t
35

_30
25
20
15|
10

5

Fig. 7 Level sets L. = {(03,03) : | F(0) — F*(6*)||r = c} without noise (§ = 0) and for fixed
oy, o) and 0
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Fig. 8 Level sets L. as in Fig. 7, but with noise § = 0.05 (left picture) and § = 0.10 (right picture)

coordinate. The first, fourth and fifth coordinate are again fixed for this numerical
experiment.

If noise is added, i.e. § > 0, then Fig.8 shows that near-to-elliptic areas
characterized by the sublevel sets | J,_.L, grow with 8. Hence, the chances for
recovering the conductivity distribution with a high level of accuracy decrease with
increasing noise level. However, this seems to be the only form of uncertainty if the
number 7 is quite small.

As in the numerical examples used for Fig. 6, where f (1) is strictly decreasing for
A < 0 and strictly increasing for A > 0, and for Figs. 7 and 8, where concentric level
sets occur, we did not at all observe inside of boxes ¢ € Q C R local minima of the
functional || F(0) — F?(c*)| r in the five-dimensional case study, even if the noise
level § > O is rather large. Overall, numerical evidence obtained from these case
studies suggests that the least squares approach (4) has indeed a global minimum,
i.e. the minimizer ¢ is uniquely determined and no local minima seem to disturb
the optimization process when a Levenberg-Marquardt algorithm is applied to find
the least squares solution numerically.

Since the Jacobian has to be calculated in every step of the iteration process,
which in turn requires multiple calculations of forward operator matrices, we used
precalculated values for the discretized F in connection with some kind of multi-
linear interpolation between the support points. In the following table, o, denotes
the optimal solution determined by the algorithm, where the exact conductivity
distribution is assumed to be o* = (37.7,7.9,10.7,18.2,5.6)" and o,,,,
9,32,7, 1,37)T has been used as starting vector for the Levenberg-Marquardt
iteration. Taking into account the fact that the noise level § expresses the relative
data error in expectation value sense (cf. formula (5)) and that I F((TI*F)(;T)(II(;*)”F is
the random counterpart for one specific realization of the noise matrix &, we can
compare the fourth and fifth column of Table 1. The relative reconstruction error in
the third column, which uses the Euclidean vector norm ||- ||, proves the astonishing
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Table 2 List of condition

A Condition number o o) oy  of of
numbers of Jacobian
Ju(a™) (h = 0.01) for 6.74 > >3 >3
varying o* 6.76 5 50 50 50 50
14.73 3 4 5 6 7
14.87 30 40 50 60 70
12.55 300 400 500 600 700
4.07 1 30 1 30 1
4.42 10 300 10 300 10
3.99 100 3000 100 3000 100

stability of the recovery process with n = 5 unknowns, and we refer in particular to
the almost constant quotients in the fifth column even if the noise is up to 25 %.

We complete our investigations by a study of the condition numbers for varying
o* of the approximated Jacobian J,(c*) € R** to F(0*) calculated by finite
differences with increment value 4 = 0.01. Let

51(0%) = 52(07) = 53(07) = 54(0™) = 55(0™) > 0
denote the singular values of J,(0*), and

_ s1(07)
55(0*)

the corresponding condition number. Some selection of ¢ *-situations with associ-
ated condition numbers is presented in Table 2.

All results of the table indicate well-conditioning, regardless of whether the five
conductivity values o (i = 1,...,5) are very different or equal, monotonically
increasing or sinusoidal alternating. A proportional growth of all five values does
not essentially change the condition numbers.
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Bayesian Updating in the Determination )
of Forces in Euler-Bernoulli Beams Shethie

Alexandre Kawano and Abdelmalek Zine

Abstract The beam is among the most important structural elements, and it can
fail by different causes. In many cases it is important to access the loading acting on
them. The determination of loading on beams is important, for example, for model
calibration purposes and or to estimate remaining fatigue life. In this article we first
prove that identification of the loading is theoretically possible from the observation
of the displacement of small portion of it for an arbitrary small interval of time
and then propose a method to infer the spatial distribution of forces acting upon a
beam from the measurement of the displacement of one of its points. The Bayesian
method is used to combine measurements taken from different points at different
times. This method enables an effective way of reducing the practical amount of
time for obtaining meaningful loading estimates.

1 Introduction

The beam is among the most important structural elements, and it can fail by
different causes. In many cases it is important to access the loading acting on them
by indirect methods.

In order to show the importance of the subject, we mention one important
example involving the loading acting over risers, which are long tubes used to
transport fluids between the sea bottom and the oil platform that is at the sea level.
The loading over risers have different origins and is the theme of current research.
Needless to say, an accident involving a riser would cause huge environmental
damage. Therefore, design codes must be strict when it comes to safety. However,
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since the history of the use of risers by the oil industry is relatively short, as is the
whole history of offshore oil extraction, data for code calibration is still scarce.
Constant monitoring of the tubes is the key to avoid catastrophic failures. It is
therefore very important to monitor the loading imposed to a riser, and in-situ
monitoring strategies are being proposed [10].

The load determination over beams is viewed as an inverse problem related
to vibration. Damage detection in beams has been studied, among others, by
Barcilon [1], Mclaughlin [8], Morassi [9], and Nicaise and Zair [12]. Here we
employ a new method based on almost periodic distributions [7].

Here we are interested in identifying forces acting in a beam. The point of view
we take of it is that is an inverse problem [4]. First we prove that the data at our
disposal is sufficient for the unique recovery of the loading, and then show a method
based on Bayesian updating scheme.

The central equation in this inverse problem is

9w ow *w 9w .
0 o2 +v Y + EI et T8x2 = g(O)f (), in ]0, To[x]0, L[
w(0,x) = 2(0,x) = 0, Vx €]0, L[
w(t.x) = 24 (t.x) = 0, V1 €]0, To[, Vx € {0, L},

ey

where g € €' ([0, Ty]) is a given function with g(0) # 0 and w is the displacement.
The physical parameters are: E is the Young Modulus, / is the moment of inertia of
the cross section, p is the material’s linear density, v is the damping coefficient and
T is the tension force along the beam.

We are interested in determining f € H™'(]0,L[). The data available in this
inverse problem is the set

Iy g = (. x0) @ 1 €]0, To[}, (2)
where ]0, Ty[ is an arbitrary non empty open set and
xo € {x €]0,L[: sin(nwx/L) # 0, Vn € N}.

We must alert the reader to the fact that more information is used besides the one
given explicitly by (2). It is important to note that in (1) the boundary conditions
are also known. It does not pose any practical problem, for sensors can be put at
the extremes of the portion of the beam being analyzed to measure their relative
displacements and the bending moments acting there. Since the problem is linear,
in the formulation we are allowed to put null boundary conditions.

Due to the presence of damping, measurements taken long after the start of the
process, the initial conditions become irrelevant.
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2 The Direct Problem

We can obtain a formal solution to Problem (1) by a Galerkin method. Consider the
eigenproblem, where S € H(l)(]O, L]):

EI*S T &
BS— BS=,BS, in]0, L[,
p ox*  p d0x?
S(0) = S(L) = 0, @)

S§7(0) = S"(L) = 0.
The eigenvectors are
$,(0) = Gy sin('”L”), )

with the corresponding eigenvalues

El /no\4 T /nm\2
=, )+, (1)
o \L p\L

The constant C, = \/ 2/L s chosen so that [S,||i2qo.rp = 1.

Following a standard method, we conclude that {S, : n € N} is orthogonal and
dense in H{(]0,L[), as well as orthonormal in L?(]0, L[). It follows easily that
ISu ltgoy = "7 ISulleqop = €(n). The set (%), forms an orthonormal
Hilbert basis of H}(]0,L[), and any function in H(l)(]O, L[) can be expressed as
Z+°° /;” Sy, with (A,)nen € £2. From duality pairing, we see that Any distribution

n=1

h € H71(]0, L[) can be represented uniquely as
+o00
h=""AnS,
n=1

with (A,).en € £2. Now we use {S, : n € N} to represent the spatial distribution
feH1(]0,L]) as

f=) AuSa, )
n=1

with (A, /n)en € £2.
By the method of separation of variables, we assume that the dynamic response
of w(t, x) can be represented by:

w(t,x) = ) Gu(1)S, (). 6)

n=1
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From (5) and (6) into (1), we obtain:

oo

> (fo 0+ ;Gﬁ(t) + B.Gi (1) — A, gg)) Sa(x) = 0. (7)

n=1

From the orthogonality of (S,),cn, we have

t
G (1) + "G (1) + BrGalt) — A, 5D =0, )
P P
of which solution is
t
Go(t) = A, / 8(®) =209 Gn((t = Dyw,) dr. ©)
0 Wn
2
where w, = \/ﬂn — (Zp) .
From (6), we have
° A 4 1v
wit.x) =y " [ / g(0)e 20" sin(w, (t — 7)) d‘Ci| Sa(x). (10)
=1 Wy 0

If w, = 0, then sin(tw,)/w, should be replaced by t in the formulas above.

Proposition 1 For any t € [0, Ty, the traces of w at the boundaries are well
defined, and that w € € ([0, To], H(l)(]O, L)) N €'([0. To], Hy (10, L)).

Proof From the fact that g € €'([0, Ty]), by an integration by parts we see that
there is a Cr, > 0 independent of w, and of g such that

t
. Cr,
/ g(t— 1) sin(w,7)dr < w“ [FAPZYSE (11)
0

n

a ! .
o || ge= D@ ar < Cn gl (12

From (10) and (11) we conclude that for any ¢t € [0, Ty], w(?) is an element of
H}(]0, L[), and therefore the traces of w at the boundaries are well defined. Also
from (10) and (11), we obtain that w € % ([0, To], H} (10, L[)).

To see that w € €’ ([0, To], H} (10, L[)), just take an arbitrary ¢ € H~'(]0, L[) and
consider the function ¢ (%‘f (t,-), ¢). Using (12) and the fact that ((S,,, ¢))nen €
£2, we conclude that w € €1 ([0, To], H) (10, L])). O

By applying the Laplace transform in the ¢ variable, we can readily see that w €
([0, Ty, Hy (10, L)) that satisfies (1) is unique.
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From a simple application of the Theorem of Dominated Convergence, we obtain
that the solution (10) can be written as

w(t,x) = /Org(t— 7) |:e_é bt Z 2" sin(a)nt)Sn(x):| dr, (13)

=1 "

for ¢ € [0, Ty] and x € [0, L].

3 The Inverse Problem

We are going to use a result (Theorem 1 below) found in [12], of which proof can
be found in [11] (see also [3]).

For Ty > 0, g € €' ([0, To]), with g(0) # 0, define the operator K : L?(0, Ty) —
L?(0, To) by

K90 = [ sa=9p a5 veeo T
Define the space ¥ C L%(0, T,) by

G = {neL*0,To) : (g Mi20m) =0},

and projection operator P : L2(0, Tp) — ¥.

Theorem 1 The operator PK : 1L*(0,Ty) — 9 can be extended to a bounded
operator from H=1(0, Ty) into L2(0, Ty) that satisfies

c | PKy 207 < 1Y lu—10.1) < CIPKY |l 207 »

for some constant C > Q.

Now apply Theorem 1 to (13), using the data Iy, ,, = {0}, to conclude that

o

> 2" Sin(@nT)Su(x0) =0, V1 € [0, Tol. (14)

n=1 "

Now we invoke a theorem for the uniqueness of the sequence of coefficients in
an almost periodic distribution posed in a form like (14).

The following result is from [7]. We recall that a sequence (1,),ey C C is
uniformly discrete if there is an € > 0 such that p # g = |k,, - Ay | > €, and
s" is the space of slowly growing sequences. That is, if (a,).en € §', then g € Z 4
such that (n™%a,) ey € £'.
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Theorem 2 Given A = (A,),en, uniformly discrete, is such that Iny € N, 3C €
Ry such thatn > ny = | A, | > Cn®, ifa > 1 and (a,)nen € §', then if there is a
T > 0suchthat ), oy an € M =0,Vt € [~1, 1], then (ay)neny = {0}.

Now apply Theorem 2 to (14) to conclude that A, = 0. We conclude that the
data Iy, ,, = {0} is enough to determine uniquely (4,),en, and consequently the
distribution f € H~1(]0, L]) in (1).

To summarize, we have just proved the following uniqueness result.

Theorem 3 In problem (1), with g € €'([0,To]), To > 0, g(0) # O, the data
Iryxy = {w(t,x0) : t €]0, Ty} is enough to determine uniquely f € H™'(]0, L|)
in(1l).

Then rearranging the terms, we would end up with a sum

0 "

A

E " sin(w, 7)S, (x) = 0.
o

n=1 "

If this is true V¢ €]0, To[, then the only possibility is A” = 0, Vn € N. That is, there
exists at maximum only one representation of the form

o

A, .
Z sin(w, )8, (x),
n=1 On

used in (14), and therefore, the set {w, : n € N} is unique.

3.1 Recovery Procedure

In this section, we propose a method for the recovery of f € H™'(]0, L[).
Suppose that

M
gM(t) = Z ki COS((Z)ml‘),

k=0

where @,, = wmt/ T, is obtained by the truncation of the Fourier series of the even
extension of g € €'[0, Ty] to the interval [Ty, Ty], for M € N. It is known that
gu — g absolutely and uniformly. Due to (10) and (11), if wy, is the solution that
satisfies (1) when g is replaced by gy, then wy, — w uniformly in [0, Ty] x [0, L].
Of course, if we have an a priori estimate for the unknown coefficients

I (An)nen [l < €0,
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which is obtained easily from an upper bound of the L? norm of g in the interval
[0, Ty], then, given any € > 0, it is always possible to choose a M € N such that, for
eachx € £2, | w(, x) —wn (-, %) [lL2g0.7,p < €-

We can regard the solution of (1) generating the data for an inverse problem with
gu instead of the original g.

Solving (1) for g replaced by gy, we arrive at the following solution:

e A0
MEIT L L, (02 + 492 — 00)) (V2 + 492 (@ + ©)%)
[e_é o —2vp(v? + 401 (@2 + w?)) sin(w,1) (15)

—4w,p* (V2 + 4p*(w;, — @) cos(w1)]
FA0,p2[(V2 + 422 — @2)) cOS(@mt) + 4DV sin(asmt)]].
Because we are dealing with absolutely convergent series, we can rewrite (15) as

M

= 5,9
W00 =D An D ) 02 1 426, — )02 4 A7+ 0

n=1 m=1
[e_é ;;t[—Zv,o(v2 + 4,02(65,%1 + 0),3)) sin(wy,?)

40,0 (v + 4p%(@2 — B2)) cos(@n)]] (16)

M oo
+ Z Z AnSn(x)
m=1 n—=1 0, (V2 + 4p2(& — @,)?) (V2 + 4p2(O + @4)?)
40,0°[(vV? + 4p*(; — @) COS(Dnt) + 4DV SIN(@)].

Observe that is always possible to choose 7T > 0 so that

{(Z)m: = 1,...,M} N{w, : n € N} = 0.
Ty

In this case, the set A = {@,, : m=1,... .M} U {w, : n € N} is still uniformly
discrete.
Manipulating (16), we get

[oe] M M
wy(t,x) = Z |:< Bf,})n) sin(wyt) + (Z Bﬁ,f)n) cos(wnt):|

n=1 m=1 m=1

|:<Z Cf,})n) sin(@,,t) + (Z Cf,,z)n) cos(cbmt)] ,

n=1 n=1

- (17)
M
+2

m=1
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where

s _ “2UPAS, e (1 + 40(@) + D)
e _wn(V2 + 4p2(d)m - a)n)z)(v2 + 4p2(d)m + a)n)z)

)

o —APAS(Dwe 2 (02 + 4p2(w2 — B2))

i _wn(vz + 4,02(Cbm - wn)Z)(UZ + 4/02(Cbm + wn)z) ,
O 16A,,5,,(X) 0 &P’
i _wn(V2 + 4p2(d)m - a)n)z)(v2 + 4p2(d)m + a)n)z)
o 44,8, ()0, 0* (V2 + 4p* (w2 — &2))
i wn(v2 + 4p2(d)m - a)n)z)(v2 + 4p2(d)m + a)n)z)

)

Writing the trigonometric functions as sums of exponentials, after some manip-
ulation we obtain

+oo M
WM(I,.X) — ZBnel Anat + Z Cmel km,zt’ (18)
n=1 m=1

where A1 = (=1)"wr27 and Ajn = (—1)"@r27. [n/2] denotes the least integer x
such that n/2 < x. Besides,

M (1) M (2)
D om=1 Bm,[n/ﬂ I Zm=le,rn/21
21 2
400 (1) +oo ~(2)
Zn=1 C[m/Z]n + Z”=1 Cfm/ﬂn
21 2 '

Bn = (_l)n

’

(19)
Cp= ()"
Define A1 = (Ay1)nen U (Am2)mez .- Now reorder A increasingly with respect

to the absolute value of its elements to obtain from A; the new ordered sequence
A = (A,)nen. Clearly, (18) can be put in the form

+o0
wa(1,0) = ) e, (20)
n=1

where the majority of coefficients ¢, belongs to the infinite set (En)neN with a finite

In order to use the method to be described below, we approximate each «,, which
depends on ¢, to a constant mean value in time. This amounts to use the average

TO v Tq v
! / e ar= Pa—e
T() 0 2v

1l
in place of the function e 2»".



Bayesian Updating in the Determination of Forces in Euler-Bernoulli Beams 167

Following [7], we use a family of functions

[sin((§ — An) D))

€ — )22 VmeN, Vr > 0.
— )T

¢1,m,t (S) =

Observe that their Fourier transform are compactly supported:
— ~ 1
Grme(t) = (Hy x Hy) (e ™, H (1) = 5 Nl () 20

Define now V(m) = (w(-,x),qb/L,;) and P;(m,n) = ¢1m:(A,). Consider the
operator T : {> — ', given (cty)nen — (V(m))nen. Formally, applying T can be
interpreted as performing a product with a matrix of infinite order,

V(1) P.(1,1) P.(1,2) P.(1,3) ... ] e
v) | = | P.2. 1) P.2.2) P.2.3) ... | | o | 22)

Perform now a truncation of the system in (22) to obtain

V(1) P.(1,1) P.(1,2) ... P,(1,N)7 [
V(2) P.(2,1) P;(2,2) ... P,(2,N) | | o

(23)

V(}V) P, (1;/, 1) P, ()v, 2). P, (1\}, N) oy
o

\

By solving the linear system (23), we obtain the first elements of the desired
sequence (o) en. All formal operations above, including convergence and stability
considerations, are proved in [7].

As far as stability is concerned, suppose that the information we have at our
disposal is w,(t, x0) = w(t,xo) + e(t), where e(?) is the measurement error, which
can be bounded a priori by

||e||L2(]0,T0[) = €error-
When the measurements contain errors, then instead of V(m), we have at our

disposal V(m) = (w,(t,X0), B1.mr)-
The solution of the linear system (23) gives

CHMEES W ((ZCO)MEVESS W ((ACD) MDY
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where

Vo(m) = (e, §rme)-

N—+00

In [7] it is proved that Tx""' ((V (m))N —>  ((an)nen) and that there exists

m=1

C > 0 such that || Ty ((V.(m))N_,)|| given by

N+1

IITN_I(Ve(m)))N=1”|£2 = Ceenor\/ 2
T

In practice, the error €. incorporates not only the measurement errors but also
those arising from numerical computation. Because of this, as usual, precision is
lower than the one expected if only measurement error were present.

3.2 Bayesian Updating

Now we apply the Bayesian updating method. It is well known that the Tikhonov
regularization may be regarded as a special case of Bayesian updating process (see
for instance, [6]). Furthermore, the method makes it possible to incorporate previous
experimental results and even subjective expert opinion into the analysis.

We suppose in this section that vector [V] = [V(1) ... V(N)]" in (23) is corrupted
by noise. That is, [V] is replaced by

[Vl = [V] + €],

where & is random variable. We further suppose that & is normally distributed with
zero mean, and that it possesses a covariance matrix 03 [1].
The likelihood function for [«], given the observation [V] is

L([e] | [V]) oM (V] = [Tx]fe)) (V] - [Tn] [Ot])] 24)

|
= (o2 P

If we attach to [«] a probability density functions in the Bayesian sense, we
can assign to [«] a prior and a posterior probability density functions, f}.or and
Jros: TESPECtively, that quantify the knowledge about [«]. The prior density f,o- can
incorporate previous analysis and also subjective opinions [5, 6].

By the Bayes rule, we have

L([e] [ VD) Fyrior([ex])

‘ﬁvost([a]) = K([V])
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where K ([V]) is a normalizing constant defined so that

/fpm([a]) =1

To ease all computations, we use a Bayesian conjugate pair. Since the likelihood
function L assumes the form of a Gaussian distribution, we assume that the prior
also has this form in the computation of the posterior distribution.

In fact, it is known (see for instance, [2]) that taking [,ior] ~ N([oto]. 03 [No),
that is, [@pyior] is normally distributed, then [ap,] is also normally distributed, with
posterior distribution mean is given

fon] = "OHO T 25)
no+n

where x is the average of the [«] that solves (23), and the pair («g, 19) corresponds to
the prior. Note that ny can be interpreted as the weight attributed to the initial guess.

When all data gathered from measurements are incorporated into the analysis,
the best estimator of [«] is the mean (25).

Now it is important to realize that after the posterior distribution is obtained, it
can be reused as a new prior for a new application of the Bayes rule, when new
data is acquired. This is one of the advantages of the Bayesian method, since it can
incorporate previous experimental evidences in a easy way. Also observe that the
first prior employed in the beginning of the process incorporates subjective opinion
regarding the parameters, about their joint distribution, mean and dispersion.

In the next section, the Bayesian method is illustrated by an example in which
in the first step, the displacement of a point xo is used as the data to obtain the
posterior distribution. Then this posterior is reused as a prior for the next step,
but the observation point is taken in another location x,. This process is continued
iteratively for a finite number of steps.

4 Numerical Experiments

To illustrate the theory above, we show some numerical experiments. Consider a
beam that models a span of L = 100m of a riser under traction with the following
parameters (all values are in the metric system, SI): EI = 2.7 x 107, p = 1.3 x 10!,
T=50x10°v=0.1.

The excitation force used to simulate the dynamics of the system is

h(t, x) = cos(@11)f (x),
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with @ = 6, g(x) = Y2, Ayy/2/Lsin(jx/L), (Au=1..15 = (3.64186,
—2.94632, —0.463688, 2.03586, —0.900316, —0.143288, —0.198724, 0.388815,
0.404651, —0.900316, 0.331078, 0.25921, —0.107005, —0.061409, —0.300105).

Function g is an approximation for an unit uniformly distributed load spanning
fromx = 0.5L and 0.8L. Of course, since the problem is linear, it suffices to multiply
the excitation by a constant factor to obtain more realistic displacement values.

The function w(t, xy) (in this case, w = wy with M = 1) generated with the
data above is shown in Fig. 1. A random noise uniformly distributed over [—e, €],
€ = 0.01 was added to w(z, x9). This disturbed data is used for the recovery of the
first five elements of (A,).

Observe that the synthetic data is obtained using f expressed as a Fourier series
with 15 terms. However, we are going to recover only its first seven terms. Since
each sin or cos function originates two exponential terms, after some manipulation
and reordering, in (20) will end up with 16 terms (14 for the spatial Fourier series
and 2 for the time term cos(®;?)).

Solving the 16 x 16 linear system (23), we get &,, n = 1,...,16. From &, we
obtain A, from (19).

The measurements are done in intervals of time of 7y = 20 and T, = 40s at
point xo = 151 L. The results from the recovery process are shown in Figs.2 and 3.
Note that since we are recovering only the first seven terms of a summation of 15,
the best result possible is represented by the solid line in these figures marked as
“Target f™.

Now we combine information gathered from several measurements by using the
Bayesian updating scheme. The interval of time used in the recovery of f was
considerably less: 7o = 4 s only, but as it is shown in Fig. 4, even with just one
measure point xo = 111 L, the result is better. This is due to the fact that in the
Bayesian scheme there is built-in also a Tikhonov regularization.

[=1
=]
e
——T—
Displacement

0.04 - — without error

Voo with error

Fig. 1 Displacement w(t, xy) without and with error
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Target f

1,02— T

[ Recovered without noise

08
06F
0.4

[ Recovered with noise

02}

i 100
0.2f

Fig. 2 Recovered f with Ty = 20s

f
1.2

a Target f
10f \
038 :
06F
0.4 —

0.2

NN N\ «
; N
—02f

Fig. 3 Recovered f with Ty = 40s

In Fig. 5 it is shown the result when two and three measurement points at 111L
and 121 L are added to xo = 151 L. The time interval is still 7, = 4 s. Observe that the
results obtained for two and three observation points coincide. It becomes clear that
the Bayesian updating scheme can combine measurements taken at different points,
and that the quality of the result is far superior if just one measurement is taken with
no regularization besides truncation.

Now show several numerical experiments similar to the experiment above. We
consider the same beam under the same loading, but we have chosen points x( of

100 200 300 . .
the sequence 1017 101 101 ...}, in increasing order.
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¢

1ok Recovered with noise ey

Target f
Recoverd without noise

0.8
0.6
0.4

0.2

f

Target f

-

osf

0.6 Recovered with noise

o L Recovered without noise
02f
meters

Fig. 5 Recovered f with T, = 4s; two and three observation points with Bayesian updating

The data is organized in tables. We quantify the L' norm of the error between the
target function f* and the function estimated by the Bayesian method as

& = ||f_f;?slimated ”1 .

We define also the mean L' error by & = & /L. In the tables below, n is the
number of measurements and 7 is the period of observation.

To exemplify how the convergence changes with the change of the measurement
error, we show a table, with two distinct €, that denote the standard deviation of the
eITOr.
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e = 0.05 €e=0.2
Ty n & n &
100 1 19.868 1 21.0924
100 5 6.40178 5 4.89268
10.0 10 5.921161 10 4.44392
50 1 19.5052 1 18.9911
50 5 6.55553 5 6.93032
5.0 10 4.6693 10 6.89589
25 1 197712 1 20.8417
25 5 7.72417 5 7.3979
2.5 10 6.89102 10 7.1898
20 1 228154 1 25.2022
20 5 12.3089 5 12.4535
2.0 10 11.682 10 12.116

We made measurements until » = 10, but, as we can see, the mean error &
increases as the time decreases due to the error generated added to the numerical
instability. The condition number of the matrix Ty, when Ty = 1.5, is 15,636, and
its determinant is 1.11 x 1077.

5 Conclusion

In this paper we proved that the spatial distribution of the loading acting on an
elastic beam can be uniquely determined by knowing the displacement of a point
over an arbitrarily small interval of time. However, although it is an relevant
mathematical fact, from the applications point of view, it is more important to verify
if such observation can be used to really identify loads. To answer this question, we
performed some numerical experiments.

If we consider just one observation point, we see, comparing Figs. 2 and 3, that
the time observation span is important. This is a result that we may call intuitive.
What is not intuitive is the efficiency of the Bayesian updating scheme. Comparing
Figs.2 and 4, we see that the Bayesian scheme applied to an observation of 4 s is
better that one obtained with 20 s without that scheme. As remarked earlier, this is
explained by the Tikhonov regularization that is built-in in the Bayesian method.
With two observation points using data gathered for only 4 s we obtained a result
that, from a practical point of view, reached the full recovery of the loading.

The numerical experiments backup the theoretical uniqueness result. Further-
more, inferring from them we may say that the Bayesian updating scheme renders
the recovery of the loading practical.

Acknowledgements The authors thank the partial support of FAPESP Proc. 2015/50461-0.
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On Nonstationary Iterated Tikhonov )
Methods for IlI-Posed Equations in e
Banach Spaces

M. P. Machado, F. Margotti, and Antonio Leitao

Abstract In this article we propose a novel nonstationary iterated Tikhonov
(nIT) type method for obtaining stable approximate solutions to ill-posed operator
equations modeled by linear operators acting between Banach spaces. We propose
a novel a posteriori strategy for choosing the sequence of regularization parameters
(or, equivalently, the Lagrange multipliers) for the nIT iteration, aiming to obtain a
fast decay of the residual.

Numerical experiments are presented for a 1D convolution problem (smooth
Tikhonov functional and Banach parameter-space), and for a 2D deblurring problem
(nonsmooth Tikhonov functional and Hilbert parameter-space).

1 Introduction

In this article we propose and (numerically) investigate a new nonstationary Iterated
Tikhonov (nIT) type method [6, 9] for obtaining stable approximations of linear ill-
posed problems modeled by operators mapping between Banach spaces.

The novelty of our approach consists in adopting an a posteriori strategy for the
choice of the Lagrange multipliers, which aims to achieve a predefined decay of
the residual in each iteration. This strategy differs from the classical choice for the
Lagrange multipliers in [9, 10], which propose an a priori strategy, and leads to an
unknown decay rate of the residual.

The inverse problem we are interested in consists of determining an unknown
quantity x € X from the set of data y € Y, where X, Y are Banach spaces. In
practical situations, one does not know the data exactly; instead, only approximate
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measured data y? € Y are available with

Iy —ylly <8, (1)

where § > 0 is the (known) noise level. The available data y* are obtained by
indirect measurements of the parameter x, this process being described by the ill-
posed operator equation

Ax =", 2)

where A : X — Y is a bounded linear operator, whose inverse A~! : R(A) — X
either does not exist, or is not continuous. For a comprehensive study of this type of
problems, we refer the reader to the text book [13] and to the references therein.

Iterated Tikhonov type methods are typically used for linear inverse problems.
Applications of this method for linear operator equations in Hilbert spaces can be
found in [9] (see also [4] for the nonlinear case). In the Hilbert space setting, both
a priori and a posteriori strategies for choosing the Lagrange multipliers have been
extensively analyzed [6].

The research on the Banach space setting is still ongoing. Some preliminary
results can be found in [10] for linear operator equations, and in [11] for nonlinear
systems. In both references above, the authors consider a priori strategies for
choosing the Lagrange multipliers.

The approach presented here is devoted to the Banach space setting, and consists
in adopting an a posteriori strategy for the choice of the Lagrange multipliers. The
penalty terms used in our Tikhonov functionals are the same as in [11] and consist
of Bregman distances induced by (uniformly) convex functionals (e.g., the sum of
the L?-norm with the TV-seminorm).

This chapter is outlined as follows: In Sect.2 a revision of relevant background
material is presented. In Sect.3 we introduce our nIT method. In Sect. 4 possible
implementations of our method are discussed; the evaluation of the Lagrange
multipliers is addressed, as well as the issue of minimizing the Tikhonov functionals.
Section 5 is devoted to numerical experiments, while in Sect. 6 we present some final
remarks and conclusions.

2 Background Material

For details about the material discussed in this section, we refer the reader to the
textbooks [3] and [13].

Unless the contrary is explicitly stated, we always consider X a real Banach
space. The effective domain of the convex functional f:X — R := (—o00, o] is
defined as

Dom (f) :={xeX: f(x) < oo}.
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The set Dom (f) is always convex and we call f proper provided Dom (f) is not
empty. The functional f is called uniformly convex if there exists a continuous and
strictly increasing function ¢: R(')" — Rg’ with the property ¢ (f) = 0 implies t = 0,
such that

JFOx+ (A= +A20 =D (x—ylD =Af () +A-1)f (), A3)

forall A € (0,1) and x,y € X. Of course f uniformly convex implies f strictly
convex, which in turn implies f convex. The functional f is lower semi-continuous
(in short L.s.c.) if for any sequence (x¢),cy C X satisfying xx — x, it holds

f () =lim inf f(x).

It is called weakly lower semi-continuous (w.l.s.c.) if above property holds true with
x; — x replaced by x; — x. Obviously every w.l.s.c functional is l.s.c. Further, any
Banach space norm is w.l.s.c.

The sub-differential of a functional f: X — R is the point-to-set mapping df: X —
2X" defined by

f)={eX: f(x)+(Ey—x)=f(y) forall yeXj.

Any element in the set df (x) is called a sub-gradient of f at x. The effective domain
of df is the set

Dom (0f) :={x € X : of (x) # 0}.

It is clear that the inclusion Dom (df) C Dom (f) holds whenever f is proper.
Sub-differentiable and convex l.s.c. functionals are strongly connected to each
other. In fact, a sub-differentiable functional f is convex and l.s.c. in any open convex
set of Dom (f) . On the other hand, a proper, convex and l.s.c. functional is always
sub-differentiable on its effective domain.
The definition of sub-differential readily yields

Dedf(x) <= f(x) <f(y) forall yeX.

If f, g: X — R are convex functionals and there is a point x € Dom (f) N Dom (g)
where f is continuous, then

A(f+g (x)=0(x) +dg(x) forall xeX. 4)

Moreover, if Y is also a real Banach space, h: Y — R is convex,b € Y, A: X — Y is
a bounded linear operator and 4 is continuous at some point of the range of A, then

I(h(-=D)(y) = @h) (y—b) and 9 (hoA)(x)=A"(9h(Ax)).
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forall x € X and y € Y, where A*: Y* — X* is the Banach-adjoint of A. As a
consequence,

d(h(A-—b)) (x) = A* (9h) (Ax—b)  forall x € X. (5)

If a convex functional f: X — R is Gateaux-differentiable at x € X, then f has a
unique sub-gradient at x, namely, the Gateaux-derivative itself: df (x) = {Vf (x)}.
The sub-differential of the convex functional

1
f@=_|«lI". p>1, (6)
p
is called the duality mapping and is denoted by J,. It can be shown that for all x € X,
B@={x ex*: (¢ = Il and ) = P
Thus, the duality mapping has the inner-product-like properties:
(& y) < X077 Iyl and (%, x) = [lx]1”,

for all x* € J,(x). In a Hilbert spaces X, by using the Riesz Representation
Theorem, one can prove that J, (x) = x for all x € X. Further, only in Hilbert
spaces J; is a linear map.

Banach spaces are classified according with their geometrical characteristics.
Many concepts concerning these characteristics are usually defined using the
modulus of convexity and the modulus of smoothness, but most of these definitions
can be equivalently stated observing the properties of the functional f defined in (6).!
This functional is convex and sub-differentiable in any Banach space X. If (6) is
Gateaux-differentiable in the whole space X, this Banach space is called smooth. In
this case, J, (x) = df (x) = {Vf (x)} and therefore, the duality mapping J,: X — X*
is single-valued. If the functional f in (6) is Fréchet-differentiable in X, this space
is called locally uniformly smooth and it is called uniformly smooth provided f is
uniformly Fréchet-differentiable in bounded sets. As a result, the duality mapping
is continuous (resp. uniformly continuous in bounded sets) in locally uniformly
smooth (resp. uniformly smooth) spaces. It is immediate that uniform smoothness
implies local uniform smoothness, which in turn implies smoothness. Further, none
reciprocal is true. Similarly, a Banach space X is called strictly convex whenever (6)
is a strictly convex functional. Moreover, X is called uniformly convex if the
functional f in (6) is uniformly convex. It is clear that uniform convexity implies
strict convexity. It is well-known that both uniformly smooth and uniformly convex
Banach spaces are reflexive.

"Normally, the differentiability and convexity properties of this functional are independent of the
particular choice of p > 1.
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Assume f is proper. Then choosing elements x,y € X with y € Dom (df), we
define the Bregman distance between x and y in the direction of & € df (y) as

Def (x,y) :=f ) =f () = (§,x = ).

Obviously D:f (y,y) = 0, and since £ € 9f (y), it additionally holds Def (x,y) > 0.
Moreover, it is straightforward proving the Three Points Identity:

Dflf (-x25x1) - Dflf (X3,.X1) = D&f(.Xz,X:;) + (%‘3 - Slv-x2 —X3> ’

for all x, € X, x;,x3 € Dom (df), & € df (x1) and & € Of (x3). Further, the
functional Def (-, y) is strictly convex whenever f is strictly convex, and in this case,
Def (x,y) = Oiff x = y.

When f is the functional defined in (6) and X is a smooth Banach space, the
Bregman distance has the special notation A, (x,y) , i.e.,

1 1
Ap (x,y) = , IIXII”—p IvII” = (Jp (y) . x = ).

Since J, is the identity operator in Hilbert spaces, a simple application of the
polarization identity shows that A; (x,y) = ; |lx — y||* in these spaces.

If f:X — R is uniformly convex, then for all y € X, x € Dom (df), £ € df (x)
and A € (0,1),
FAx+ (A=) y) =f )+ Ax+ (1 —-2)y) —x)
=f@)+A-21) ¢ y—x),

which in view of (3) implies

Ey—x)+Ao(x=ylD =f (M -f®.

Now, letting A — 17, we obtain ¢ (|x —y||) < Dgf (y,x). Analogously, the
inequality

¢ (Ix=yll) = Def (x.y) (N

holds true for all x € X, y € Dom (df) and £ € df (y), whenever f is uniformly
convex. In particular, in a smooth and uniformly convex Banach space X, the above
inequality reads ¢ (|lx —y|) < 4, (x,).

It is well-known that for 1 < p < oo, the Lebesgue space L” (£2), the Sobolev
space WP (£2) and the space of p-summable sequences £” (R) are uniformly
smooth and uniformly convex Banach spaces.
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3 The Iterative Method

In this section we introduce the nonstationary iterated Tikhonov method to solve (2).
The method we propose here is in the spirit of the method in [11], with the
distinguish feature of using an endogenous strategy for the choice of the Lagrange
multipliers A2

Specifically, fixing » > 0 and a uniformly convex penalty term f, the iterative
method defines sequences (x,‘i) in X and (E,‘f ) in X* iteratively by

x,‘i = arg Igél}r{l Ari HAx -y ||r + fo—lf (x, x,‘i_l)

¢ = o — RAT (A - ),

where the multiplier Ai will be determined using only information about A, §, y
and x,f_l .

Our strategy for selecting the Lagrange multipliers is inspired in the recent work
[1], where it was proposed an endogenous strategy for the choice of the Lagrange
multiplier in the iterative method for solving (2), when X and Y are Hilbert spaces.
This method is based on successive orthogonal projection methods onto a family of
shrinking, separating convex sets. Specifically, the iterative method in [1] obtains
the new iterate projecting the current one onto a levelset of the residual function,
whose level belongs to a range defined by the current residual and by the noise
level. Further, the admissible Lagrange multipliers (in each iteration) shall belong
to a non-degenerate interval.

With the view to extend this framework to Banach space setting we are forced
to work with Bregman distance and Bregman projections. This is due to the well-
known fact that in Banach spaces the metric projection onto a convex and closed set
C, defined as Pc(x) = argmin ||z — x||2, loses the decreasing distance property
of the orthogonal projection in Hilbert spaces. In order to recover this property,
one should minimize in Banach spaces the Bregman distance, instead of the norm-
induced distance.

In what follows we assume the following conditions:

(A.1) There exist an element x* € X such that Ax* = y, where y € R(A) is the exact
data.

(A.2) fisals.c. function.

(A.3) fis auniformly convex function.

(A.4) X and Y are reflexive Banach spaces and Y is smooth.

We define 2, the p-levelset of the residual functional [[Ax — Y. as

1 1
Q=lxeX: JAx—y|"'< u.
r r
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We observe that since A is a continuous linear operator it follows that §2), is closed
and convex.

Now, given X € Dom(df) and § € df(x), we can define the Bregman projection
of X onto £2 ;, as a solution of the minimization problem

min Def(x, X)
1 S||r 1,,r (8)
st A=y |I" = uh
It is clear that a solution of the above problem depends on the sub-gradient £.
Furthermore, since Def (-, %) is strictly convex, which follows from the uniformly
convexity of f, problem (8) has at most one solution.
The fact that the projection is well defined when @ > §, and in this case we can
set P]_é, (x) := arg m!i2n Def(x, %), is a consequence of the following lemma.
I X€E82),

Lemma 1 If it > § then problem (8) has a solution.

Proof Hypothesis (A.1), together with Eq. (1) and the assumption that & > §, imply
that the feasible set of problem (8), i.e. the set £2), is nonempty.

By conditions (A.2) and (A.3) we have that D¢f (-, X) is proper, convex and Ls.c.
Furthermore, relation (7) implies that Dgf (-, X) is a coercive function. Hence, the
lemma follows using that X is a reflexive space and applying [2, Corollary 3.23].

O

It is easy to see that if 0 < u/ < u then .Q;, C £/, and A7l(y) C £2,, for all
@ > §. Furthermore, with the available information of the solution set of (2), 25
is the set of best possible approximate solution for this inverse problem. However,
since problem (8) may be ill-posed when @ = §, our best choice is to generate xi
from x,f_l ¢ £2{ as a solution of problem (8), with X = x,f_l and p = py such that
we guarantee a reduction of the residual norm while preventing ill-posedness of (8).

For this purpose, we now analyze the minimization problem (8) by means of
Lagrange multipliers. The Lagrangian function associated with problem (8) is

A
L) = (lax Y17 = 1) + Def(x.3).

We observe that for each A > 0 the function .Z(-, 1) : X — R is l.s.c. and convex.
For any A > 0 define the following functions

7(%.2) = argmin.Z(x. ). G:(V) = [Am(® 1) —y|I". 9)

The next lemma gives a classical Lagrange multiplier result for problem (8),
which will be useful for formulating the nIT method.
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Lemma 2 Suppose that |AX —y°|| > u > 6, then the following assertions are
equivalent

1. x is a solution of (8);
2. there exists A* > 0 suchthat x = 7 (x,A*) and G3(A*) = u'.

Proof By (1), hypothesis (A.1) and the assumption & > §, we have that x* € X is
such that

lAx" =11 < .

Inequality above implies the Slater condition for problem (8). Thus, using that A
is continuous and Dgf (-, %) is Ls.c., we have that x is a solution of (8) if and only
if there exists A € R such that the point (x, A) satisfies the Karush-Kuhn-Tucker
(KKT) conditions for this minimization problem, see [12].

The KKT conditions [12] for (8) are

220, G = MG -p) =0,  0€dLxA).

If we suppose that A = 0 in relations above, then the definition of the Lagrangian
function, together with the strictly convexity of Def (-, %), implies that X is the unique
minimizer of .Z(-,0). Since ||AX —y?|| > u we conclude that the pair (%, 0) does
not satisfy the KKT conditions. Hence, we have A > 0 and G3(1) — u” = 0. We
conclude the lemma using the definition of 7 (%, A). O

We are now ready to formulate the nIT method for solving (2).
Properties (4) and (5), together with the definition of the duality mapping, imply
that the point x! € X minimizes the Tikhonov functional

AS r
Tf (x) := rk ||Ax — y8 || + Déﬁ_lf (x, x,‘i_l) ,
if and only if
0 € MA*J, (Ax) —y°) + of (x) — &0_,. (10)

Hence, since Y is a smooth Banach space, we have that the duality mapping J, is
single valued and

E1— LA™ (Ax =) € 0f ().

Therefore, s,f in step 3.2 of Algorithm 1 is well defined and it is a sub-gradient of f
at xi.
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Algorithm 1 The iterative method

[1] choose an initial guess xo € X and & € 9f (xo);
[2] choose n € (0,1), 7 > 1 and set k := 0;
[3] while (Jax} —y*|| > ©§) do

3.1] k:i=k+1;
.o ,
[3.2] compute A}, x} such that x = arg min :||Ax—y5|| +D§£71f(x,x£_l),
and & < Gy (&) = (5 + (1 —mllAx_, =
Set & =& — LA™/, (Ax; — ")

4 Algorithms and Numerical Implementation

4.1 Determining the Lagrange Multipliers

" where x; = (A, X)

As before, we consider the function G;(1) = ||Axl —y°
represents the minimizer of the Tikhonov functional
A ST n
L) =" |Ax =y°|" 4+ Def (x. %) (11)
In order to determine the Lagrange multiplier in the iteration k, we need to calculate
Ax > O such that Gy,_, (Ax) € [ax, br], where

ag =8 and b= 8+ (1 —n)|Ax— —y|),

with 0 < n < 1 pre-defined.

For doing that, we have employed three different methods: the well-known secant
and Newton methods and a third strategy, called adaptive method, which we explain
now: fix 01,07 € (0,1), ¢; > 1 and start with /\(8) > 0. In the k-th iteration, k > 1,
we define A3 = ¢ Al_,, where

c—101,  if Gy ,(A2_)) < a4
ek = ck—1/02,  if Gy, (AL_)) > by , fork > 2.
Ci—1, otherwise

The idea behind the adaptive method is observing the behavior of the residual in
last iterations and trying to determine how much the Lagrange multiplier should be
increased in the next iteration. For example, the residual G,,_, ()Li_ D = lAx—1 —
y3||” lying on the left of the target interval [a;_i, by—], means that /\i_l was too
large. We thus multiply the number c,—; by a number o € (0, 1) in order to reduce
the speed of growing of the Lagrange multipliers /\,8(, trying to hit the target in the
next iteration.

Although the Newton method is efficient, in the sense that it normally finds
a good approximation for the Lagrange multiplier in very few steps, it has the



184 M. P. Machado et al.

drawback of demanding the differentiability of the Tikhonov functional, and
therefore it cannot be applied in all situations.

Because it does not require the evaluation of derivatives, the secant method can
be used even for a nonsmooth Tikhonov functional. A disadvantage of this method
is the high computational effort required to perform it.

Among these three possibilities, the adaptive strategy is the cheapest one, since
it only demands one minimization of the Tikhonov functional per iteration. Further,
this simple strategy does not request the derivative of this functional, which makes
it fit in a large range of applications.

Notice that this third strategy may generate a A? such that Gy,_, (A) & [ax, by in
some iterative steps. This is the reason for correcting the factors ¢y in each iteration.
In our numerical experiments, the condition Gy, _, (/\2) € [ax, bi] was satisfied in
almost all steps (see the slope of the green curve on Fig. 3; bottom picture).

4.2 Minimization of the Tikhonov Functional

In our numerical experiments, we are interested in solving the inverse problem (2),
where the linear and bounded operator A : I/ (2) — L?>(2),1 < p < oo, the
noisy data y’ and the noise level § > 0 are known.

In order to apply the iterative method (Algorithm 1), a minimizer of the Tikhonov
functional (11) needs to be calculated on each iteration. Minimizing this functional
can be itself a very challenging task. We have used two algorithms for achieving this
goal in our numerical experiments: (1) the Newton method was used for minimizing
this functional in the case p # 2 and with a smooth function f, which induces the
Bregman distance in the penalization term. (2) The so called ADMM method was
employed in order to minimize the Tikhonov functional for the case p = 2 (Hilbert
space) and a nonsmooth functional f. In the following, we explain the details.

First we consider the Newton method. Define the Bregman distance induced by
the norm-functional f (g) := ; lgll?», 1 < p < oo, which leads to the smooth
penalization term Dgf (g,h) = A,(g.h), see Sect.2. The resultant Tikhonov
functional is

A 2
Ti(g) =, lAg = | + Ay (g.81-1) .
where g;—1 is the current iterate.? In this case, the optimality condition (10) reads:

F(g) = AA*Y’ +J, (gk—1) . (12)

where g € [P (§2) is the minimizer of the above Tikhonov functional and F (g) :=
AA*Ag + T, (g).

ZHere (2) is replaced by Ag = y‘;.
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In order to apply the Newton method to the nonlinear equation (12), one needs
to evaluate the derivative of F, which (if it exists) is given by F’' (g) = AA*A +
Jl/, (g) - Next, we prove that J,, is at least Gateaux-differentiable in L7 (£2) , if p > 2.
Further, we present an explicit expression for Jl/, (g) , which will be used later in our
numerical experiments.

The key for finding a formula for J; (g) is observing the differentiability of the
functiony : R — R, x — [17 |x|” . This function is differentiable in R whenever
p > 1, and in this case,

1, ifx>0
Y (x) = [x]P 'sign(x), where sign(x) =40, ifx=0. (13)
-1, ifx <0

Furthermore, y is twice differentiable in R if p > 2, with derivative given by

Y@ =(p—1) . (14)

This formula still holds true for 1 < p < 2, but only in R\ {0} . In this case, y” (0)
does not exist and y” (x) grows to infinity as x approaches to zero.

i
Since J, (g) = (11, I g||fg,,) can be identified with (see [3])

Jy (g) = |g" " sign (g), (15)

which looks very similar to y’ in (13), the bounded linear operator JI’, (g) : L (£2) —>
L7" (£2) is similar to y” in (14). Indeed, for any fixed g € L7(£2), with p > 2, we
have

(47 (@) h) = {(p= D15l 1), 16)

for every h € LP(£2), where the linear operator (p — 1)|g|’~? is understood
pointwise: & > (p — 1)|g(-)|P~2h(-). This ensures that J, is Gateaux-differentiable
in 17 (£2) and its derivative J, can be identified with (p — 1) |72

In the discretized setting, J[’7 (g) is a diagonal matrix whose i-th element on its
diagonal is (p — 1) |g (x;)|P >, with x; being the i-th point of the chosen mesh.

In our numerical simulations, we consider the situation where the sought solution
is sparse and, therefore, the case p ~ 1 is of our interest. We stress the fact that
Eq. (14) holds true even for 1 < p < 2 whenever x # 0. Using this fact, one can
prove that (16) holds true for these values of p, for instance, if g does not change
signal in £2 (i.e., g > O or g < 0 in £2) and the direction /4 is a bounded function
in this set. However, these strong hypotheses are very difficult to check, and even if
they are satisfied, we still expect having stability problems for inverting the matrix
F’ (g) in (12) if the function g has a small value in some point of the mesh, because
the function in (14) satisfies y” (x) — oo as x — 0. In order to avoid this kind
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of problem in our numerical experiments, we have replaced the i-th element on the
diagonal of the matrix J; (g) by max {(p —1)|g ()P, 106} .

The second method that we used in our experiments was the well-known Alter-
nating Direction Method of Multipliers (ADMM), which has been implemented to
minimize the Tikhonov functional associated with the inverse problem Ax = y5 s
where X =Y =R", A:R" - R", andf : R" — R is a nonsmooth function.

ADMM is an optimization scheme for solving linearly constrained programming
problems with decomposable structure [5], which goes back to the works of
Glowinski and Marrocco [8], and of Gabay and Mercier [7]. Specifically, this
algorithm solves problems in the form:

I(nir)l {(x) + ¢(z) : Mx + Bz = d}, (17)

where ¢ : R — R and ¢ : R — R are convex proper l.s.c. functions, M : R" —
R’ and B : R™ — R/ are linear operators, and d € R/,

ADMM solves the coupled problem (17) performing a sequences of steps that
decouple functions ¢ and ¢, making it possible to exploit the individual structure
of these functions. It can be interpreted in terms of alternating minimization,
with respect to x and z, of the augmented Lagrangian function associated with
problem (17). Indeed, ADMM consists of the iterations

Uk+1 = U —+ IO(M.Xk+1 + sz-l—l - d)’

where p > 0 and .Z), is the augmented Lagrangian function
Ly zou) = 9(x) + ¢(2) + (. Mx + Bz —d) + ‘2’ IMx + Bz —d|2 .

The convergence results for ADMM guarantee, under suitable assumptions, that
the sequences (xy), (zx) and (uy), generated by the method, are such that Mx; +
Bz —d — 0, o(xx) + ¢(zx) — s* and uy — u*, where s* is the optimal value of
problem (17) and u* is a solution of the dual problem associated with (17).

For minimizing the Tikhonov functional using ADMM we introduce an addi-
tional decision variable z such that problem

: 8
mip T30

is rewritten into the form of (17). The specific choice of the functions ¢, ¢ and
the operators M and B is problem dependent. For a concrete example, please see

Sect. 5.2. This allows us to exploit the special form of the functional Tiﬁ and pose
k

the problem in a more suitable manner to solve it numerically.
In our numerical simulations we stopped ADMM when ||Mx;| 4+ Bz — d was
less than a prefixed tolerance.
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5 Numerical Experiments

5.1 Deconvolution

The first application considered here is the deconvolution problem modeled by the
linear integral operator

1
Ax:= / K(s,x(t)dt = y(s),
0
where the kernel K is the continuous function defined by

49s(1—1), s <t

K. = %49t(1—s), s>t

This benchmark problem is considered in [10]. There, it is observed that A :
L]0, 1] — CJ0, 1] is continuous and bounded for 1 < p < co. Thus A : [0, 1] —
L0, 1] is compact, for 1 < r < oo.

In our experiment, A is replaced by the discrete operator A;, where the above
integral is computed using a quadrature formula (trapezoidal rule) over an uniform
partition of the interval [0, 1] with 400 nodes.

The exact solution of the discrete problem is the vector x* € R*? with x*(48) =
2, x*(200) = 1.5, x*(270) = 1.75 and x* (i) = 0, elsewhere.

We compute y = A;x*, the exact data, and add random Gaussian noise to y €
R4 to get the noisy data y? satisfying || y —y*||y < 8.

We follow [10] in the experimental setting and choose § = 0.0005, 7 = 1.001
(discrepancy principle), and ¥ = L?. For the parameter space, two distinct choices
are considered, namely X = L''%! and X = 2.

Numerical results are presented in Fig. 1.> The following methods are imple-
mented:

(Blue) L2-penalization, Geometric sequence;
(Green) Lz-penalization, Secant method;

— (Red) L""*!_penalization, Geometric sequence;
(Pink) Ll'om-penalization, Secant method;
(Black) L!-001 -penalization, Newton method.

The six pictures in Fig. 1 represent:

[Top] Iteration error in L?>-norm (left)*; residual in L?-norm (right);
[Center] Number of linear systems/step (left); Lagrange multipliers (right);

3For simplicity, all legends in this figure refers to the space L'; however, we used p = 1.001 in the
computations.

“For the purpose of comparison, the iteration error is plotted in the in L?-norm for both choices of
the parameter space X = L? and X = L1,
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[Bottom] Exact solution and reconstructions with Lz-penalization (left); exact
solution and reconstructions with L' %!-penalization (right).

5.2 Image Deblurring

The second application of the nIT method that we consider is the image deblurring
problem. This is a finite dimensional problem with spaces X = R" x R* and ¥ =
R" x R"™. The vector x € X represents the pixel values of the original image to
be restored, and y € Y contains the pixel values of the observed blurred image.
In practice, only noisy blurred data y> € Y satisfying (1) is available. The linear
transformation A represents some blurring operator.

For our numerical simulations we consider the situation where the blur of the
image is modeled by a space invariant point spread function (PSF). We use the
256 x 256 Cameraman test image, and y° is obtained adding artificial noise to the
exact data Ax = y (here A is the convolution operator corresponding to the PSF).

For this problem we implemented the nIT method with two different penalization
terms, namely f(x) = [x||3 (L? penalization) and f(x) = 4 ||x||3 + TV (x) (L? + TV
penalization). Here p > 0 is a regularization parameter and 7V (x) = ||Vx||; is the
total variation norm of x, where V : R" x R" — (R" x R") x (R" x R") is the
discrete gradient operator.

We minimize the Tikhonov functional associated with the L? 4+ TV penalization
term using the ADMM described in Sect. 4. Specifically, if f(x) = ||x||% + || Vx||1,
then on each iteration we need to solve

min kHAx R N A TR A2 TR R N

To use ADMM we sate this problem into the form of problem (17) defining z = Vx,
8

000 = Ax = PP+ = 12— (6 x =) 6@ = [zl — 1V,
M=-V,B=1Iandd =0.

In the experiments we choose w = 107%,§ = 0.00001 and T = 1.5. Moreover,
we take as initial guesses xo = y® and & = V*(sign(Vxo)).

Figure 2 shows the recovered images using the two penalization terms, and the
different strategies we considered for choosing the Lagrange multipliers.

Figure 3 presents some numerical results. We implemented for this example the
following methods:

(Blue) L2-penalization, Geometric sequence;

— (Red) L? 4 TV-penalization, Geometric sequence;
(Pink) L2 + TV-penalization, Secant method;
(Green) L? + TV-penalization, Adaptive method.
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50 100 150 200 250 50 100 150 200 250

Fig. 2 Image deblurring problem: (top left) Geometric sequence, L? penalization; (top right)
Geometric sequence, L2 +TV penalization; (bottom left) Secant method, I + TV penalization;
(bottom right) Adaptive method, L +TV penalization

The four pictures in Fig. 3 represent:

[Top] Iteration error [|x* — x{|;

[Center top] Residual [|[Ax} —y3|;

[Center bottom] Number of linear systems solved in each step;
[Bottom] Lagrange multiplier A¢.

6 Conclusions

In this chapter we propose a novel nonstationary iterated Tikhonov (nlIT) type
method for obtaining stable approximate solutions to ill-posed operator equations
modeled by linear operators acting between Banach spaces.

The novelty of our approach consists in defining strategies for choosing a
sequence of regularization parameters (Lagrange multipliers) for the nIT method.

The Lagrange multipliers are chosen (a posteriori) in order to enforce a fast
decay of the residual functional (see Algorithm 1 and Sect.4.1). The computation
of these multipliers is performed by means of three distinct methods: (1) a secant
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Fig. 3 Image deblurring problem: numerical experiments

type method; (2) a Newton type method; (3) an adaptive method using a geometric
sequence with non-constant growth rate, where the rate is updated after each step.

The computation of the iterative step of the nIT method requires the minimization
of a Tikhonov type Functional (see Sect.4.2). This task is solved here using two
distinct methods: (1) in the case of smooth penalization and Banach parameter-
spaces the optimality condition (related to the Tikhonov functional) leads to a
nonlinear equation, which is solved using a Newton type method; (2) in the case of
nonsmooth penalization and Hilbert parameter-space, the ADMM method is used
for minimizing the Tikhonov functional.
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What concerns the Deconvolution problem in Sect. 5.1°:

The secant and the Newton methods produce a sequence of multipliers with faster
growth, when compared to the geometric (a priori) choice of multipliers.

The fact above is observed in both parameter spaces L> and L%,

The secant and the Newton methods converge within fewer iterations than the
geometric choice of multipliers.

The numerical effort required by the secant type method is similar to the one
required by the geometric choice of multipliers.

The Newton method requires the smallest amount of computational effort.

As expected, the sparse solution x* is better approximated by the methods
operating in the L'%! parameter-space.

What concerns the Deblurring problem in Sect. 5.2°:

The secant and the adaptive methods produce a sequence of multipliers with
faster growth, when compared to the geometric (a priori) choice of multipliers.
The secant and the adaptive methods converge within fewer iterations.

The numerical effort required by the secant type method is similar to the one
required by the geometric choice of multipliers.

The adaptive method requires the smallest amount of computational effort.

The first reconstructed image (L? penalization) differs from the other three
reconstructions (L> + TV penalization), which produce images with sharper
edges and better defined contours.
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The Product Midpoint Rule for )
Abel-Type Integral Equations of the First <
Kind with Perturbed Data

Robert Plato

Abstract We consider the regularizing properties of the product midpoint rule
for the stable solution of Abel-type integral equations of the first kind with
perturbed right-hand sides. The impact of continuity and smoothness properties
of solutions on the convergence rates is described in detailed manner by using a
scale of Holder spaces. In addition, correcting starting weights are introduced to
get rid of undesirable initial conditions. The proof of the inverse stability of the
quadrature weights relies on Banach algebra techniques. Finally, numerical results
are presented.

1 Introduction

1.1 Preliminary Remarks

In this contribution we consider linear Abel-type integral equations of the following
form,

@) = i, [ Gy O by = @) for 0= x =0 (1)

with 0 < @ < 1 and a > 0, and with a sufficiently smooth kernel function k :
{(x,y) e R* | 0 <y <x<a}— R,and I" denotes Euler’s gamma function.
Moreover, the function f : [0,a] — R is approximately given, and a function
u:[0,a] — R satisfying Eq. (1) is to be determined.
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In the following we suppose that the kernel function does not vanish on the
diagonal 0 < x = y < a, and without loss of generality we may assume that

k(x,x) =1 for0<x<a 2)

holds.

There exist many quadrature methods for the approximate solution of Eq. (1),
see e.g., Brunner/van der Houwen [4], Linz [18], and Hackbusch [13]. One of these
methods is the product midpoint rule which is considered in detail, e.g., in Weiss
and Anderssen [30] and in Eggermont [8], see also [18, Section 10.4].

In the present text we investigate, for perturbed right-hand sides in Eq. (1),
the regularizing properties of the product midpoint rule, and we also consider a
modification of this method. Continuity and smoothness is classified in terms of
Holder continuity of the solution and its derivative, respectively. We also give a
new proof of the inverse stability of the quadrature weights which relies on Banach
algebra techniques and may be of independent interest. Finally, some numerical
illustrations are presented.

1.2 The Abel Integral Operator

As a first step we consider in (1) the special situation k = 1. For technical reasons
we allow arbitrary intervals [0, b] with 0 < b < a instead of the fixed interval [0, a].
The resulting integral operator is the Abel integral operator

00 = pgy | =00y for 0 < <, @

where ¢ : [0,b] — R is supposed to be a piecewise continuous function. One of
the basic properties of the Abel integral operator is as follows,

(V") (x) = F(Fq ﬁm ) Xt forx>0  (¢=>0), 4)
where y? is short notation for the mapping y — y9. In the following, frequently we
make use of the following elementary estimate:

bll
su YY) (x)| < su , 5
OSngl( P = rg 4 Osygblfp(y)l )
where ¢ : [0,b] — R is a piecewise continuous function. Other basic properties
of the Abel integral operator can be found e.g., in Gorenflo and Vessella [12] or
Hackbusch [13].
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2 The Product Midpoint Rule for Abel Integrals

2.1 The Method

For the numerical approximation of the Abel integral operator (3) we introduce
equidistant grid points

. a
X, = nh, n=,, k=0,1,...,2N, Wlthth, (6)
where N is a positive integer. For a given continuous function ¢ : [0,x,] = R (n €
{1,2,...,N}), the product midpoint rule for the numerical approximation of the
Abel integral (¥*¢)(x,) is obtained by replacing the function ¢ on each subinterval
[xi—1,%], j = 1,2,...,n, by the constant term ¢(x;_/2), respectively:
o I o~ [ .
0o =~ iy 24 [ = ot )
j= Y

- F(al—}— 1 Z { = x5 = (6 — )" o (x-1/2)
=1

= F(ah:- 1 Z {(n —Jj+ D*=(n— )~ }fﬂ(xj—l/z)
=1

=h" > 0ujp(x-1/2) = (250) (). ®)
j=1
where the quadrature weights wo, wy, . .. are given by
= ! 1)* —s*} for s =0,1 9
w‘Y_F(a+1){(S+ ) —s} ors=0,1,.... )
The weights have the asymptotic behavior w; = F(la) s 140 (5% %) as s — 0.

2.2 The Integration Error: Preparations

In the sequel, we consider the integration error

(Ero)(xn) = (V@) (xa) — (2 9) () (10)

under different smoothness assumptions on the function ¢. As a preparation, for
c<d,L>0m=0,1,...and 0 < B < 1, we introduce the space FZH_ﬁ[c,d] of
all functions ¢ : [¢,d] — R that are continuously differentiable up to order m, and
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the derivative ¢ of order m is Holder continuous of order B with Holder constant
L>0,i.e.,

FI'*Ple,d] = Lo € C'c,d] | |9™ (x) — ™ (y)| < Lix—y|? for x,y € [¢,d]}.
an

The space of Holder continuous functions of order m + § on the interval [c,d] is
then given by

F"Ple,d] ={¢:[c,d] >R | g€ FZH_ﬁ[c,d] for some constant L > 0 }.

Other notations for the latter spaces are quite common, e.g., C"P[c,d], cf. [3,
Section 2].

As a preparation, forn € {1,2,...,N}and ¢ : [0,x,] — R we introduce the
piecewise constant interpolating spline gx¢ : [0, x,] — R, i.e.,

(gne) () = @(xj—1/2) for xj| <y <ux; G=12,....n), (12)

and in the latter case j = n, this setting is also valid for y = x,. For ¢ € FP[0, x,]
with 0 < p < 1, it follows from zero order Taylor expansions at the grid points that

o(y) = (@) (y) + O(H), 0=y =<x,, (13)

uniformly both on [0, x, | and for ¢ € F}[0,x, ], with any arbitrary but fixed constant
L > 0, and also uniformly forn = 1,2,...,N.

We consider the smooth case ¢ € C'[0,x,], n € {1,2,...,N}, next. Let r,¢ :
[0,x,] — R be given by

(@) ) = @(xj—12) + (v — Xj—12)¢" (xj=12) for x;1 <y <x; (=1,...,n),
(14)

and in the latter case j = n, this definition is extended to the case y = x,. For
@ € FP[0,x,] with 1 < p <2, first order Taylor expansions at the grid points yield

p(y) = (me)(y) + O(R). 0=y =<x, 15)

uniformly in the same manner as for (13).

2.3 The Integration Error

We are now in a position to consider, under different smoothness conditions on the
function @, representations for the integration errors (E}¢)(x,) introduced in (10).
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Lemmal Let n € {1,2,...,N}, and moreover let ¢ : [0,x,] — R be a
continuous function. We have the following representations for the quadrature error
(Ej @) (xn) introduced in (10):

(a) We have

(Er@)(xa) = (V* (¢ — qn)) (xn).- (16)

(b) For ¢ € C'[0,x,] we have

(Er o) (o) = h*T1 Y " 500! (x-1/2) + (V7 (9 — 14)) (%), a7
j=1
where
B = g O+ DT D (18)
fors=0,1,....

Proof The error representation (16) is an immediate consequence of the identi-
ties (7) and (8). For the verification of the second error representation (17), we use
the decomposition

(Erp)(x) = (V' (¢ — an@)) (xn) = (P (19 — @1 9)) () + (P (@ — rag)) (xn).

and we have to consider the first term on the right-hand side in more detail.
Elementary computations show that

Xj

1 — .
e (=0 —xm12) dy = h* g, for j=1,2,...,n. (19)

Xj—1
From (19), the second error representation (17) already follows. This completes the
proof of the lemma. O

A Taylor expansion of the right-hand side of (18) shows that the coefficients T
have the following asymptotic behavior:

l—«

= or (a)sa_2+ﬁ(sa_3) as § — 00. (20)

Ts
Lemma 1 is needed in the proof of our main theorem. It is stated in explicit form
here since it immediately becomes clear from this lemma that, for each ¢ € FP[0, a]
with 0 < p < « + 1, the interpolation error satisfies

(EXQ)(x,) = O(W) as h— 0

uniformly for n = 0,1,...,N. This follows from (13) and (15), and from the
absolute summability Y o2 | 75| < oo, cf. (20).
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3 The Product Midpoint Rule for Abel-Type First-Kind
Integral Equations with Perturbations

3.1 Some Preparations

We now return to the Abel-type integral equation (1). For the numerical approx-
imation we consider this equation at grid points x, = nh,n = 1,2,...,N with
h = a/N, cf. (6). The resulting integrals are approximated by the product midpoint
rule, respectively, see (8) with ¢(y) = k(x,, y)u(y) for0 <y < x,.

In what follows, we suppose that the right-hand side of Eq. (1) is only approxi-
mately given, with

If —f(x)| <8 forn=1,2,...,N, 1)

where § > 0 is a known noise level. For this setting, the product midpoint rule for
the numerical solution of Eq. (1) looks as follows:

h"an_jk(xn,xj_l/z)uf_l/z :fng, n=1,2,...,N. (22)

Jj=1

The approximations ”i—l/z ~ u(x,—1y2) forn = 1,2,... N can be determined
recursively by using scheme (22).
For the main error estimates, we impose the following conditions.

Assumption 1

(a) There exists a solutionu : [0,a] — R to the integral equation (1) which satisfies
u € FP[0,a), where c,:=min{a, ] —a} <p <2.

(b) There holds k(x,x) = 1 for each 0 < x < a.

(c) The kernel function k has Lipschitz continuous partial derivatives of second
order.

(d) The grid points x,, are given by (6).

(e) The right-hand side of Eq. (1) is approximately given by (21).

3.2 Formal Power Series

As a preparation for the proof of the main stability result of the present paper, cf.
Theorem 1, we next consider power series. In what follows, we identify sequences
(bn)nz0 of complex numbers with their (formal) power series b(§) = Y oo, b,E",
with £ € C. Pointwise multiplication of two power series

oo oo

(ib@‘) : ( chgf) =Y dg". with dn:=2n:bgcn_g for n=0,1,...
£=0

j=0 n=0 =0
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makes the set of power series into a complex commutative algebra with unit element
14+0-£+0-&+--- . For any power series b(§) = > oo | b,&" with by # 0, there
exists a power series which inverts the power series b(§) with respect to pointwise
multiplication, and it is denoted by 1/b(£) or by [b(£)]™'. For a comprehensive
introduction to formal power series see, e.g., Henrici [15].

In what follows, we consider the inverse

(&)™ Zw( Vg (23)

of the generating function w(§) = Y o2 @, §", with w, as in (9).

Lemma 2 The coefficients in (23) have the following properties:

a)(()_l) >0, wr(l_l) <0 forn=1,2,..., (24)
o0

oy V=T@+1)=Y lo"] 25)
n=1

oV = 00" as n— oo, (26)

Estimate (26) can be found in [8]. Another proof of (26) which uses Banach algebra
theory and may be of independent interest is given in Sect.7 of the present paper.
Section 7 also contains proofs of the other statements in Lemma 2.

Lemma 2 is needed in the proof of our main result, cf. Theorem 1 below and
Sect. 8. We state the lemma here in explicit form since it is fundamental in the
stability estimates.

3.3 The Main Result

We next present the first main result of this paper, cf. the following theorem, where
different continuity and smoothness properties of the solution u are considered. For
comments on the estimates presented in the theorem, see Remark 1 below.

Theorem 1 Let the conditions of Assumption 1 be satisfied, and consider
the approximations u? /2,u§/2,...,ufv_l P determined by scheme (22). Let
Ce:=min{e, 1 —a}.

(a) If cq <p <1+ cq, then we have
max [ul_y, —ulv-1)| = O+ 1) as (118 >0 @D)
(b) Let2 —a < p <2, and in addition let u(0) = u'(0) = 0 be satisfied. Then

ke 8
| max N|“fl—1/2 —u(m12) | = O™+ ) as (h8) - 0. (28)
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The proof of Theorem 1 is given in Sect. 8.

Remark 1 We give some comments on Theorem 1. Due to the special form of the
term ¢, appearing in Theorem 1, it makes sense to distinguish the cases o < é and
o> ; which in fact will be done in items (a) and (b).

(a) Inthecase 0 < a < ;, the following estimate holds:

oW+ S ife <p<a+l,

max ui —u(Xy—12)| = _ S .
LN o 1+a+ha), if2—a<p<2, u0)=u0)=0.

(b) In the case ; < a < 1, the following estimate holds:

max i = ulv,—12)| = O+ }fa), iflma<p<2—a,
""" orif 2—a <p <2, u(0) =’ (0) = 0.

For an extension to Volterra integral equations of the first kind with smooth
kernels (¢ = 1), cf. Remark 3 below.

(c) The noise-free rates, obtained for p = 1 and p = 2, basically coincide with those
given in the papers by Weiss and Anderssen [30] and by Eggermont [9].

(d) The maximal rate in the noise-free case § = 0 and without initial conditions
is O(h), and it is obtained for p = 1 + ¢,. This rate is indeed maximal for
sufficiently smooth functions, as can be seen by considering the error at the first
grid point x; />, obtained for the function u(y) = y, cf. Weiss and Anderssen [30].
Under the additional assumption x(0) = #’(0) = 0, the maximal rate is &(h*T"),
obtained for p = 2.

(e) Itisnotclear if the rates presented in Theorem 1 are optimal under the respective
continuity and smoothness conditions. A

In what follows, for step sizes & = a/N we write, with a slight abuse of notation,
h ~ 8P as § — 0, if there exist real constants ¢; > ¢; > 0 such that c;h < §f <
c2h holds for § — 0. As an immediate consequence of Theorem 1 we obtain the
following main result of this paper.

Corollary 1 Let Assumption 1 be satisfied.
o Leta <1/2anda <p <a + 1. For h = h(§) ~ 8"/ we have

max |u)_y ,—u(x,-12)| = O8'") as § — 0.
n=1.2,....N

e Let one of the following two conditions be satisfied: (a) o > 1/2, 1 —a <p <
2—a,or(b)2—a <p <2, u(0)=u'(0) = 0. Then for h = h(§) ~ §"/P~1+2)
we have

o

1—
p=lt2e) g5 § — 0.

s
X ity p=ul2) | = O(8
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Note that in the case o < ;, for the class of functions satisfying the initial conditions
u(0) = u/(0) = 0, there is a gap for  + 1 < p < 2 — o where no improvement
in the rates is obtained, i.e., we have piecewise saturation &(§'/@*+1) for the given
range of p. This is due to different techniques used in the proof of Theorem 1.

We conclude this section with some more remarks.

Remark 2

(a) We mention some other quadrature schemes for the approximate solution of
Abel-type integral equations of the first kind. The product trapezoidal method is
considered, e.g., in Weiss [29], Eggermont [9], and in [22]. Fractional multistep
methods are treated in Lubich [19, 20] and in [21]. Backward difference product
integration methods are analyzed in Cameron and McKee [6, 7]. Galerkin
methods for Abel-type integral equations are considered, e.g., in Eggermont [9]
and in Vogeli et al. [28]. Some general references are already given in the
beginning of the present paper.

(b) For other special regularization methods for the approximate solution of
Volterra integral equations of the first kind with perturbed right-hand sides and
with possibly algebraic-type weakly singular kernels, see e.g., Anderssen [2],
Bughgeim [5], Gorenflo and Vessella [12], and the references therein.

Remark 3 The results of Theorem 1 and Corollary 1 can be extended to linear
Volterra integral equations of the first kind with smooth kernels, that is, for @ = 1.
The resulting method is in fact the classical repeated midpoint rule, and the main
error estimate is as follows: if 0 < p < 2, then we have

1)
max iy, — (i) | = O + ) as (h8) =0,

and initial conditions are not required anymore then. The choice h = h(§) ~
81+ then gives

_max N|u§_l —t(am12)| = O@F/PTD) as § 0.

The proof follows the lines used in the present paper, with a lot of simplifications
then. In particular, the inverse stability results derived in Sect.7 can be discarded
in this case. We leave the details to the reader and indicate the basic ingredients
only: we have w, = 1l and 7, = 0 forn = 0,1,... then, and in addition,
w(()_l) = l,a)f_l) = —1, and w,(l_l) = 0 forn = 2,3,... holds. For other
results on the regularizing properties of the repeated midpoint rule for solving
linear Volterra integral equations of the first kind with smooth kernels, see [23] and

Kaltenbacher [16].
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4 Modified Starting Weights

For the product midpoint rule (8), applied to a continuous function ¢ : [0,a] — R,
and with grid points as in (6), with 1 < n < N and N > 2, we now would like
to overcome the conditions ¢(0) = ¢’(0) = 0. For this purpose we consider the
modification

=(£2n¢) (xn)
- n - 2
($210) (x,) := h* Z Wn—j P (Xj—1/2) +h* Z Wi @ (Xj—1/2) (29)
=1 =1

as approximation to the fractional integral (#*¢)(x,) at the considered grid points
Xn, respectively. See Lubich [19, 20] and [21] for a similar approach for fractional
multistep methods. In (29), w,,; and w,,, are correction weights for the starting values
that are specified in the following. In fact, for each n = 1,2,..., N the correction
weights are chosen such that the modified product midpoint rule (29) is exact at
X, = nh for polynomials of degree < 1, i.e.,

(£2197) (62) = (V%) (x,) for g =0, 1. (30)

4.1 Computation of the Correction Weights

Foreachn = 1,2,...,N, a reformulation of (30) gives the following linear system
of two equations for the correction weights w,;, j =1, 2:

W War +wi2) = (Ef D), B Gwan + Jwin) = (Efy) (),

cf. (10) for the introduction of E}. On the other hand we have

n—1

EiD0) =0, (B =Y .
s=0

Those identities follow from the representations (16) and (17), respectively. From
this we obtain

n—1
Wl = Wi = )T 31)
s=0

This in particular means that the correction weights are independent of 4. We finally
note that the asymptotic behavior of the coefficients t, cf. (20), implies

wy=0() asn—oo for j=1,2. (32)
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4.2 Integration Error of the Modified Quadrature Method

We now consider, for each n = 1,2,...,N, the error of the modified product
midpoint rule,

(E) (0n) = (V9)(x) — (209) (), (33)
where ¢ : [0,a] — R denotes a continuous function.

Lemma3 Letn € {1,2,...,N}, and moreover let ¢ € FP[0,a], with0 <p < 2.
We have the following representations of the modified quadrature error (E},¢)(x)
introduced in (33):

(a) Inthe case 0 < p < 1 we have (EZ@)(xn) = (E¥@)(x,) + O(W+*) as h — 0.

(b) Inthe case 1 < p < 2we have, with' ¢(y):=¢(y) —¢(0) —¢’(0)y for0 <y < a,
(Efe)(x) = (EX@)(xn) + OWT*) as h— 0.

Both statements hold uniformly forn = 1,2,...,N, and for ¢ € F/[0,a], with

L > 0 arbitrary but fixed.

Proof

(a) This follows immediately from (29) and (31)—(33):

(E29) (%) = (EZ9)(x) + B wai (@(x32) — @(x1/2) )
= (EX9)(x,) + O(WPT) as h — 0.

(b) Using the notation g(y):=¢(0) + ¢'(0)y, we have ¢ = @ + ¢, and the linearity
of the modified error functional gives

=0

(E @)(xn) - (Ea’v)(xn) + (Ea Q) (xn) - (Ea’v)(xn) h* an](p(-x]—l/Z)
Jj=1
= (E3@)(xa) + O(WT),

where ¢(y) = O(*) as y — 0 has been used, and the boundedness of the
correction weights, cf. (32), is also taken into account. O

4.3 Application to the Abel-Type Integral Equation of the First
Kind

In what follows, the modified product midpoint rule (29) is applied to solve the
algebraic-type weakly singular Volterra integral equation (1) numerically, with
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noisy data as in (21). In order to make the starting procedure applicable, in the
following we assume that the kernel k can be smoothly extended beyond the triangle
{0 <y < x < a}. For simplicity we assume that the kernel is defined on the whole
square.

Assumption 2 The kernel function k has Lipschitz continuous partial derivatives
of second order on [0,a] x [0, a].

Foreachn = 1,2, ..., N, we consider the modified product midpoint rule (29) with
©(y) = k(x,,y)u(y) for0 <y <a,n = 1,2,...,N. This results in the following
modified scheme:

n 2
R ki, X1 20—y 3+ B Y Wik s X1/ 2) 2 = ) (34)
j=1 j=1
forn = 1,2,...,N. This scheme can be realized by first solving a coupled linear

system of two equations for the approximations 'LTlf_l P u(x,—1/2), n =1,2. The
approximations %f_l P u(x,—1/2) forn = 3,4,... N then can be determined
recursively by using scheme (34).

4.4 Uniqueness, Existence and Approximation Properties of
the Starting Values

We next consider uniqueness, existence and approximation properties of the two
starting values '1718 2 and ﬁf /2 They in fact satisfy the linear system of equations

2
W " (Onj + Wik, X1 2Ty = f7 for n=1,2, (35)

j=1 = == =
=1 wpj

with the notation w_; = 0. In matrix notation, this linear system of equations can
be written as

=5
- N, -
w11 k(x1,x172)  wi12k(x1,x3/2) W, I
ha = . (36)
s £
w1 k(x2,x172)  wank(xz,x3/2) 3/2 B

Lemma 4 The matrix S, € R>? in (36) is regular for sufficiently small values of
h, and ||Si " oo = O(1) as h — 0, where || - || oo denotes the matrix norm induced
by the maximum vector norm on R.
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Proof We first consider the situation k = 1 and denote the matrix S, by T in this
special case. From (4) and (30) it follows

ne na-‘rl

2@n1 F 300 = g 4oy

re+n 2 n=12

Wp1 + O =
Hence the matrix T is regular and does not depend on A.

We next consider the general case for k. Since k(x, x) = 1, we have k(x,, x,,) — 1
as h — 0 uniformly for the four function values of k considered in the matrix Sj,.
This shows S, = T + A, with |Azllee — 0 as & — 0 so that the matrix S, is
regular for sufficiently small values A, with ||S;, ™! ||« being bounded as 4 — 0. This
completes the proof of the lemma. O

We next consider the error of the modified product midpoint rule at the two grid
points x1 /2 and x35.

Proposition 1 Let the conditions of Assumptions I and 2 be satisfied. Consider the
approximations'ﬁ? 12 and 738 /2 determined by scheme (34) forn = 1,2. Then we have

~ > 8
max [Ty, = uCo12)| = O + o) as (h.8) = 0.

Proof From (29), (33) and Lemma 3, applied with ¢(y) = ¢,(y) = k(x,,, y)u(y) for
0 <y < a, we obtain the representation

2
B Y ok Qs xj-1/2) 812 = Egn) (i) + 1 = f ()
=1

=0Wt" +8) as (h8) =0, n=1,2,

where E?—l/z = 'ﬁ'}‘.g_l/z — u(xj—1,2), j = 1,2, and the weights w,; are introduced
in (35). Note that Lemmas 1 and 3 imply, for the two integers n = 1,2, that
(E%@n)(x,) = O(hWPT*) as h — 0. The proposition now follows from Lemma 4.
O

4.5 The Regularizing Properties of the Modified Scheme

Theorem 2 Let the conditions of Assumptions I and 2 be satisfied.

(a) Inthe case a < 1/2 we have

O~ + Sa)ifot <p<a+l,
s I
max N |"‘n—1/2 - “(xn—1/2)| =

=12, o4 4 L) if2—a <p<2.
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(b) Inthecasea > 1/2,1 —a < p <2 we have

p—1+a §
max (W — ()| = OO+ L) as (h8) 0.

Proof Let é;?_l = af_l 2 = uxi—1p2) forj = 1,2,...,N. From (29), (32), (33),
Lemma 3 and Proposition 1 we obtain the representation

n
h¢ Z a)n_jk(xn, Xj_l/z)éf_l/z
J=1

2
= (Eyon) () +F(x) = f = B wigk(n, X1-1/2)8 15

Jj=1
= Erp) () + O +8) = (Efgn) () + OWT +5)
as (h,8) — 0, uniformly forn = 1,2, ...,N, where ¢, = ¢,,if p < 1,and ¢, (y) =

©n(y) —@a(0) — ¢, (0)y for p > 1. The theorem now follows by performing the same
steps as in the proof of Theorem 1. O

As an immediate consequence of Theorem 2, we can derive regularizing
properties of the modified scheme.

Corollary 2 Let both Assumptions 1 and 2 be satisfied.

o Ifa <1/2anda < p < a + 1, then choose h = h(8) ~ §'/P. The resulting
error estimate is

max (@, ,—u(x,—12)| = O(8'*") as § — 0.
n=1.2,...N

e Let one of the following two conditions be satisfied: (a) o > 1/2, 1 —a <p <
2—a,or(b)2—a <p <2 Forh=h(8) ~ §/P~172%) e then have

o
max (70 ,—u(x-12)| = 0@ P7142) as § 0.
n=12,..N

5 Numerical Experiments

We next present results of some numerical experiments with the linear Abel-type
integral equation of the first kind (1). The following example is considered for
different values of 0 <@ < 1 and 0 < g < 2:

1+xy 1 xate

— 2 < <
L2’ f) F(q+2+a)1+x2(¢1+1+a+((1+1)x ), 0=<xy<lI,

(37

k(x’ y) =
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with exact solution (cf. (4))

M(y) = r(ql+1)yq for 0 < y=1, (38)

so that the conditions in (a)—(c) of Assumption 1 are satisfied with at least p = g,
provided that ¢ > c¢,. We present experiments for different values of « and
g, sometimes with corrections weights, sometimes without, in order to cover all
variants in Corollaries 1 and 2. Here are additional remarks on the numerical tests.

* Numerical experiments with step sizes h = 1/2™ form = 5,6,...,11 are
employed, respectively.

* For each considered step size , we consider the noise level § = §(h) = ch’ ™,
where ¢ = 0.3, and v = v(a,p) denotes the rate for exact data, supplied by
Theorems 1 and 2. The available error estimate is then of the form max,, |u® —
u(x)| = 0’y = 0(8"/0+) as h — 0.

+ In the numerical experiments, the perturbations are of the form f% = f(x,) + 4,
with uniformly distributed random values A, with | A, | < 4.

e Inall tables, ||f||co denotes the maximum norm of the function f.

» Experiments are employed using the programming language OCTAVE.

Example 1 We first consider the situation (37)—(38), with ¢ = ; and g = 2. The
conditions in (a)—(c) of Assumption 1 are satisfied with p = 2 (also for any p > 2 in
fact, but then we have saturation). We have u(0) = «’(0) = 0, so correction weights
are not required here. The provided error estimate, with the choice of § = §(h)
considered in the beginning of this section, is max, |u} — u(x,)| = 0(§/*) =
O (h*/?). The numerical results are shown in Table 1.

Example 2 'We next consider the situation (37)—(38), with ¢ = 0.9 and ¢ = 0.4 this
time. The conditions in (a)—(c) of Assumption 1 are satisfied with p = 0.4. Since
p =< 1, correction weights are not needed here. The expected error estimate, with
§ = 8(h) as in the beginning of this section, is max, |u’ — u(x,)| = O("*) =
O (h°3). The numerical results are shown in Table 2.

Example 3 We next consider the situation (37)—(38) with @ = 0.2 and g = 0.5. The
conditions in (a)—(c) of Assumption 1 are satisfied with p = 0.5 then, and correction

Table 1 Numerical results for Example 1

N 5 1008/ flloe max, [l —uCe)|  max, |ud —u(x,)| /674
32 2.9-107* 9.74-1072 2.84-1073 1.27
64 7.3-10—° 2.43-1072 1.12:1073 1.41
128 1.8:10—° 6.09-103 3.77-104 1.35
256 4.6:107° 1.52:1073 1.37-1074 1.38
512 1.1-107¢ 3.80-10¢ 5.20-10—° 1.48
1024 2.9-10~7 9.51-10—° 1.89-10—° 1.53

2048 7.2-1078 2.38-107° 6.55-107° 1.50
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Table 2 Numerical results for Example 2

N 8 1006/ flloe  max, i —ule)|  max, |ud — u(x,)| /8"
32 4.7-1073 6.80-1071 1.88-107! 0.72
64 2.0-1073 2.96-107! 1.32-107! 0.62
128 8.9-10~* 1.29-107! 1.23-107! 0.71
256 3.9-1074 5.61-102 9.61-102 0.69
512 1.7-10~* 2.44-1072 8.12:1072 0.71
1024 7.3-10° 1.06-1072 6.77-102 0.73
2048 3.2:107° 4.62-1073 5.43-1072 0.72

Table 3 Numerical results for Example 3

N 8 100-8/[Ifll oo max, |u§, — u(x,)| max, |ui —u(x,) | /80'6
32 5.3-1072 5.12:10° 1.18-107! 0.69
64 3.8:1072 3.62-10° 8.52:1072 0.61
128 2.7-1072 2.56:10° 7.78-1072 0.69
256 1.9-1072 1.81-10° 5.89-1072 0.64
512 1.3-1072 1.28-10° 5.19-1072 0.69
1024 9.4-1073 9.05-107! 4.20-1072 0.69
2048 6.6:1073 6.40-107! 3.33-1072 0.68

Table 4 Numerical results for Example 4, without correction weights

N 8 1006/ flloe max, [l —uCe)|  max, [ — u(x,)| /6%
32 1.7-1073 2.20-107! 1.26-1072 0.90
64 5.9-107* 7.79-102 6.47-1073 0.92
128 2.1-10~¢ 2.75-1072 3.27-1073 0.94
256 7.3-10° 9.74-1073 1.57-1073 0.89
512 2.6:107° 3.44-1073 7.72:10~* 0.88
1024 9.2:10~° 1.22:1073 3.95-1074 0.90
2048 3.2:10¢ 4.30-10~* 2.06-10~* 0.94

weights are not needed here because of p < 1. The available error estimate is
max, |ul —u(x,)| = 0(8*°) = O(h®3). The numerical results are shown in Table 3.

Example 4 Finally we consider the situation (37)—(38) with « = 0.5 and ¢ = 1.
The conditions in (a)—(c) of Assumption 1 are satisfied with any 0.5 < p < 2
then, and initial conditions are not satisfied in this case. The presented theory
for the product midpoint rule without correction weights suggests that we have
max, |u} — u(x,)| = 0(§*3) = O(h). The corresponding numerical results are
shown in Table 4.

For the same problem, we also consider the modified version of the product
midpoint rule, i.e., correction weights are used this time. The presented theory then
yields max, |1’ — u(x,)| = 0(8%*) = &'(h*/?). The related numerical results are
shown in Table 5.
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Table 5 Numerical results for Example 4, with correction weights

N 5 1008/ flloe max, [l —uCe) | max, |ud — u(x,)| /674
32 2.9-107* 3.89-1072 2.10-1073 0.94
64 7.3-10—° 9.74-1073 6.56-10~* 0.83
128 1.8:107° 2.43-1073 2.88-10~* 1.03
256 4.6:10° 6.09-10~4 8.66-10—° 0.87
512 1.1-107¢ 1.52:10~* 3.46-10—° 0.99
1024 2.9-10~7 3.80-10—° 1.22-10—° 0.99
2048 7.2-1078 9.51-10~¢ 4.31-10~° 0.99

The last column in each table shows that the theory is confirmed in each of the
five numerical experiments.

6 Conclusions

In the present paper we have considered the product midpoint rule for the regular-
ization of algebraic-type weakly singular Volterra integral equations of the first kind
with perturbed given right-hand sides. The applied techniques are closely related to
those used in Eggermont [8]. The presented results include intermediate continuity
and smoothness degrees of the solution of the integral equation in terms of a scale
of Holder spaces. In addition we have given a new proof of the stability estimate
for the inverse of the generating sequence, cf. (26), which may be of independent
interest. Another topic is the use of correction starting weights to get rid of initial
conditions on the solution. Results of some numerical experiments are also given.

7 Appendix 1: Proof of Lemma 2

We next present a proof of estimate (26) for the coefficients of the inverse of the
considered generating power series Y .o, @,&" which differs from that given by
Eggermont [8]. Our proof uses Banach algebra theory and may be of independent
interest.

7.1 Special Sequence Spaces, and Banach Algebra Theory

We start with the consideration of some sequence spaces in a Banach algebra
framework. For an introduction to Banach algebra theory see, e.g., Rudin [26]. The
following results can be found in Rogozin [24, 25], and for completeness they are
recalled here.
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For a sequence of positive real weights (0,,),>0, consider the following norms,

%) %)
”a”oo,o = Suplam|0m+2|an|v ||Cl||1 = Z|an|v a= (an)nzo cC,
m=>0 _ _
n=0 n=0
and the spaces
t'={a=(a)u=0 CC| |lali < o0}, £5° ={a= (anu=0 C C| [lallocs < 00},

& ={aet®|a0,—0 asn— oo}

We obviously have ¢ C £%° C ¢'. By using the canonical identification a(§) =
32 pan€", the spaces ¢2, £2° and £! can be considered as function algebras on

7 ={§cCllg[ =1},

the closed disc with center 0 and radius 1. We are mainly interested in positive
weights (0,,),>0 which satisfy > °2 0! < oco. In that case, sup,, |@n |0 for
(an)n=0 € £3° defines a norm on £2° which is equivalent to the given norm || - [loc.o-
In particular, if 0y = 1 and 0, = nf forn=1,2,... (B > 1), then £2° is the space
of sequences (a,),>o satisfying a, = &'(n™F) as n — oo. In the sequel we assume
that

<j=<n, n=0, (39)

holds for some finite constant ¢ > 0. We state without proof the following
elementary result (cf. [26] for part (a) of the proposition, and [24, 25] for parts
(b) and (c)).

Proposition 2 Let 0y, 01, . .. be positive weights satisfying condition (39).

(a) The space €', equipped with convolution (a * b), = Z;l:o an—jbj,n > 0, for
a,b € ', is a commutative complex Banach algebra, with unite = (1,0,0,...).
(b) The space L is a subalgebra of £', i.e., it is closed with respect to addition,
scalar multiplication and convolution. The norm || - || o0, is complete on £3° and

satisfies
la*bllooo = (2¢c+ Dllallocs - 1bllocs, — a.b € £, (40)

where c is taken from estimate (39).
(c) The statements of (b) are also valid for the space c° (instead of {3°), supplied
with the norm || - ||co.5-

The following proposition is based on the fact that the subalgebra generated by
a(() = £ = (0,1,0,0,...) is dense in the space £! and in c? as well, i.e., both
spaces are single-generated in fact.
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Proposition 3 (Rogozin [24]) Let 09,01, ... be positive weights satisfying con-
dition (39). The spaces L' and cg are inverse-closed, i.e., for each a € Y with
a(§) #0, & € 9, onehas [a(§)]”! € £, and for each a € 2 with a(§) # 0,§ € 9,
one has [a(§)]7! € 0.

For the £;-case, this is Wiener’s theorem, cf., e.g., Rudin [26]. The space £3° is not
single-generated but still inverse-closed which will be used in the following. The
proof is taken from Rogozin [25] and is stated here for completeness.

Proposition 4 (Rogozin [25]) For positive weights (0,)n>0 satisfying condi-
tion (39), the space £° is inverse-closed, i.e., for each a € £3° with a(§) # 0
for& € 9D one has [a(§)] 7! € £2°.

Proof Consider a(§) = Y o2 a,&" € £ with a(§) # 0 for § € 2. Then a is
invertible in £! (cf. Proposition 3), i.e., 1 /a(§) = >0, aS Ve € 1. Let us assume

contradictory that 1/a(§) & £2°. This means that lim sup,,_, ., |a£l_1) |o, = oo and
then

K, = max |a£n_1) |6y — 00 as n — oo, 41
0<m=<n
and k41 >k, >0forn=0,1,... .Leto, = 0,/k, forn =0,1,... . We have
~ Oy Oy Oj .
0<o,= < <c’ =0, 5 <Jj=<n,
Kn Kj Kj

so the space ¢ = {a € {2 | a,6, —> 0 asn — 00} with G = (G,)uz0 is a
Banach algebra which is inverse-closed (cf. Propositions 2 and 3).
By assumption we have sup, .. |a,|0, < oo, and then |a, [0, — 0 asn — oo.
From Proposition 3 it then follows
lai VG, — 0 asn — oo. (42)
However, it follows from (41) that for some infinite subset N C N we have

Ky = |a£l_l) |o, for n e N. (43)

Otherwise there would exist an n; > 1 with k, = maXo<mu<n |a,(,,_l) |o > |a,(1_1) |0
forn = ny,n; 4+ 1,..., which in fact means that k,—; = maxo<mu<n—1 |a£,l_l) |om
> |a£l_1)|o,, holds, and then x, = «,—; forn = n;,n; + 1,..., a contradiction
to (41). From (43) we then get

a1, = a0, /kn =1, neN,

a contradiction to (42). O
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7.2 The Power Series Y o2 \(n + 1)*&"

Our analysis continues with a special representation of the power series Y oo ,(n +
1)*£", and we will make use of the binomial expansion

o0
1=8f =) (=1"(f)&" for € C. [§|<1  (BeR), (44)
n=0
m—1
'O =D dpn P+ 0PI as n—s o0, (45)
s=0
with certain real coefficients dg; fors = 0,1,...,m—1,m =0,1,..., where dgy =

1/r'(-B),B # 0,1,..., cf. e.g., equation (6.1.47) in Abramowitz and Stegun [1].
We need the following result.

Lemma 5 For 0 < o < 1 we have, with some coefficients ry, 1y, . ..,

o0
1 o&n __ _ —a—1
Mot 1) Zo<n+1>s =(1=§)"'r§) for £ C, §] <1, (46)
o0
with r(§) = Zrné", r(y=1, r,=0mn"2) asn— oo. 47
n=0
Proof We first observe that, for each m > 0, there exist real coefficients cy, . . . , ¢;—1
with
| 00 m—1
Py D DE = Ea -6 ) for g€ Colel <1 49
n= j=

with s(§) = Z;’io s,&", where s, = O'(n*™"™) as n — 0o, and we have ¢y = 1. This

. . . . l o

follows by comparing the coefficients in the Taylor expansion Fa+) (n+ 1) =

’,":_01 en®" + O0(n*~™) with the coefficients in the expansions considered in (44)
and (45).

A reformulation of (48) gives, with m = 4,

3

O Z}” + D = (1= (Y-8 + 1 -9 s

J=0

o0
for £ €C, |&| <1, with s(§) = Zs,,é", sp=O0Mm*™*) as n— oo.
n=0
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The statement of the lemma now follows from statement (b) of Proposition 2,
applied with 0y = 1 and 0, = n®*2 forn = 1,2,..., and from (44), (45) applied
withf =a+1,m=0. O

7.3 Asymptotical Behavior of the Coefficients of [w(£)]™!

As a consequence of Lemma 5 we obtain the following representation.

Corollary 3 For the quadrature weights wy, w1, . . . considered in (9) we have, with
the power series r from (46), (47),

wE) =Y " =(1-§7rE) for §€C, [E] < 1. (49)

n=0

Proof The two power series Y oo ,(n + 1)%&" and w(§) = > o2 w,£" with
coefficients as in (9) are obviously related as follows,

O n l_é O aen
Zowns = ra+1) Zo(n+1) g

The representation (46) now implies the statement of the corollary. O

Inverting (49) immediately gives the power series representation

Y ol = (1 -8 )], (50)

n=0

where o) " denote the coefficients of the inverse of the power series w(§) =

Y2 o wn", cf. (23).
Below we examine the asymptotic behavior of the coefficients in the power series

] =) riVen (51)
n=0

Lemma 6 We have ri " = O(m™*2) asn — oo.

Proof 1Tt follows from (47) that the power series r considered in (46) satisfies r € £3°
for the specific choice 0y = 1 and 0, = n®*2 for n > 1. In addition we have

r§) # 0 for § € C, [§] =1, (52)
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which is proven below. From (52) and Proposition 4 we then obtain A =

O(n~*"2) as n — oo. So it remains to show that (52) holds. For this purpose we
consider a reformulation of (49),

r§) =1 —E)“an&‘" for £ €C, |&§] < 1.

n=0

We have

| Yo" = ypa g frEeC <L, (53)
=0

a proof of (53) is presented in the next section. Since r(1) # 0 and r is continuous
on {& € C | |&] < 1}, estimate (53) then implies (52) as desired, and thus the
statement of the lemma is proved. O

Property (52) in fact means that the product midpoint rule is zero-stable; see
Cameron and McKee [6] for an introduction of this notation for weakly singular
Volterra integral equations.

We are now in a position to continue with the verification of the asymptotical
behavior (26) for the coefficients of the power series [w(£)]™!. From the repre-
sentation (44), (45) with B = « it follows that the coefficients in the expansion
(1 =82 = Y20 (=D"(%)g" satisfy (=1)"(%) = O(n™"") as n — oo. This
and Lemma 6 (which in particular means r,(fl) = On ")) and part (b) of
Proposition 2, applied with 6y = 1 and 0, = n*t! forn > 1, finally results in
the desired estimate (26) for the coefficients of the power series [w(£)]7!.

7.4 The Proof of the Lower Bound (53)

To complete our proof of (26), we need to show that (53) holds. We start with a
useful lemma.

Lemma 7 The quadrature weights wy,wy, ... in (9) are positive and satisfy
Y22 s wn = oco. In addition we have

(1),,+1 wn —
o, > o forn=1,2,.... (54)
Proof It follows immediately from the definition that the coefficients wy, wy, . . . are

positive. The identity Y oo, , = oo is obvious, and we next present a proof of the
inequality (54). Using the notation

fx) =x* for x>0
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we obtain the following,

o _ S0+ D=f0 F0) g

l—a . _
i = ffn =1~ -y = (=) =R forn=1.2,...,

with some real number n < t, < n + 1. Here, the identity (%) follows from the
generalized mean value theorem. The function A(s) is monotonically increasing for
s > 0 which yields estimate (54). This completes the proof of the lemma. O

For results similar to those in Lemma 7, see Eggermont [8, 10] and Linz [18,
Section 10.4]. It follows from Lemma 7 that the conditions of the following lemma
are satisfied for g, = cw,, n =0, 1, ..., with ¢ > 0 arbitrary but fixed.

Lemma 8 (cf. Kaluza [17]; see also Szego [27], Hardy [14], and Linz [18]) Ler
80,81, - - . be real numbers satisfying

g >0 forn=0,1,..., g;+1>gg”1 forn=1,2,.... (55)

Then the inverse [g(§)]™" of the power series g(§) = Y oo, g.£" can be written as
follows,

o

&) =co— Y ", (56)
n=1
with coefficients cy,c1,... satisfying ¢, > 0 for n = 0,1,... . If moreover

> 8n = oo holds and the power series g(§) = Y oo gn€" has convergence
radius 1, then we have Y o | ¢, = cy.

Proof Lemma 8 is Theorem 22 on page 68 of Hardy [14]. The proof of ¢, > 0 for
n = 0,1,... is presented there in full detail, and we do not repeat the steps here.
However, the proof of Z;’lil ¢n = co is omitted there, so below we present some
details of this proof. Condition (55) and the assumption on the convergence radius
of the power series g(§) means g,+1/g, — 1 as n — oo. The second condition
in (55) then implies 0 < g,4+ < g, forn =0,1,....Fromc¢, > 0forn=0,1,...
we obtain g, Z;l=1 ¢j < D | 8n—jCj = &nco forn = 1,2,.... The latter identity

j
follows from the representation (56). Thus

n
ci < &n co<cyforn=12,....
J 8n—1

Jj=1
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The latter inequality means that c(§) = ¢y — 221 ¢;& is absolutely convergent on
the closed unit disc {£ € C | |£] < 1} and hence is continuous on this set. This
finally gives

1 o0 o0
0= lim 0o . =co— lim cjxj =co— Cj.
O<x—1 Zj:O gjxf O<x—1 jr ;
This completes the proof of the lemma. O

The following lemma is closely related to results in Erdds et al. [11]. A detailed
proof can be found in [22].

Lemma9 Let ¢y, cy,... be a sequence of real numbers satisfying ¢, > 0 for n =
1,2,...,and Y 02 ¢y = é Then the power series q(§) = é — 3% | c,&" satisfies
lq(&)| < 1 for each complex number & with |§| < 1.

We are now in a position to present a proof of the lower bound (53). In fact, from
Lemma 7 it follows that the coefficients of the power series g(§) = 2I' (@ + 1)w(£)
with w(§) as in (49) satisfy the conditions of Lemma 8, and in addition gy = 2
holds. This implies that the coefficients of the power series

1 o
= co— cp€"
2M (@ + Do) ; §
satisfy ¢, > O forn = 0,1, ... and Zsil ¢y = ¢o = 1/2. Lemma 9 then implies

that 21" (@ + 1)|w(&)| = 1 and thus |w(§)| > 2r(ol¢+1) for¢é € C,|&| < 1. This is
the desired estimate (53) needed in the proof of Lemma 6.

8 Appendix 2: Proof of Theorem 1

1. We apply the representations (8) and (10) with ¢ = ¢,, where

@n(y) = k(xp, u(y), 0=y =<x,.
Scheme (22) then results in the following,
ha an—jk(-xns xi—l/z) ef—]/Z = (Ezwn)(-xn) +f;18 _f(xn) for n = 15 LR ,N,

Jj=1

(57)
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where

ef_l/2 = 14?_1/2 —u(xi-12), j=12,...,N.

2. We next consider a matrix-vector formulation of (57). As a preparation we

consider the matrix A, € RM" given by
woki1/2 0o - 0
wika 12 wokazn - 0
An = wikszn
0
wy—tky1 o0 oor wikyn—3/2 WoknN—1/2

with the notation
knj—172 = k(xp, xj—12) for 1 < j<n <N.
Additionally we consider the vectors

Al = (€] )i<jen. Ri = (Bf @) @) iznzn. Fh = () = () 1<nzn-

(58)

Using these notations, the linear system of equations (57) can be written as
hARAL = Ry+FL, with |||l <6, (59)
where || - ||oo denotes the maximum norm on R”. In addition, occasionally we

consider a modified error equation which can easily be derived from (59) by
applying the matrix D, to both sides of that equation:

h*DyAyAS = DyR, + DyF?, (60)
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where the matrix D), € RYV is given by
w(()‘l) 0 cer e 0
a){_l) wé_l) 0 0
=]t - 1| (61)
0
Bt SUURORR L S )

3. For a further treatment of the identity (59) and the modification (60), we next
show

IDilloc = €(1),  [(DsAN oo = O(1), |44 oo = O(1) as h— 0,

(62)
where || - ||co denotes the matrix norm induced by the maximum vector norm
on RY. In fact, the estimate |Dyllcc = ¢(1) as h — 0 follows immediately

from the decay of the coefficients of the inverse of the generating function w,
cf. estimate (26). For the proof of the second statement in (62) we use the
fact that the matrix D,A; can be written in the form DA, = I+ Kj, where
I, € RV denotes the identity matrix, and K, = (kj,, J) € RMN denotes some
lower triangular matrix which satisfies maxi<j<p<n |knnj| = O(h) as h — 0,
cf. the proof of Lemma 4.2 in Eggermont [9] for more details. We only note
that here it is taken into account that the kernel function is uniformly Lipschitz
continuous with respect to the first variable, cf. part (c) of Assumption 1. This
representation of DA, and the discrete version of Gronwall’s inequality now
yields ||(DyAn) oo = O(1) as h — 0. The third estimate in (62) follows
immediately from the other two estimates considered in (62).

4. In view of (59)—(62), it remains to take a closer look at the representations of the
quadrature error considered in Lemma 1. We consider different situations for p
and constantly make use of the fact that, for some finite constant L > 0, we have

@n € F7[0,x,] forn=1,2,...,N, (63)

cf. Assumption 1.

(i) In the case p < 1 we proceed in two different ways. The first one turns out to

be useful for the case o < é, while the other one uses partial summation and

is useful for the case o > ).
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e Our first approach proceeds with (59), and we assume o < p < 1 in this
case. We then easily obtain, cf. (16), (63),

[Rilloo = max [(E;@n)(xs)| = O(H) as h— 0,
1<n<N

and then, cf. (59) and (62), | Al |lc = O(K4(W* + §)) = O~ + ,ﬁ,).

* In our second approach we would like to proceed with (60), and we need to
consider the vector D,R;, € RY in more detail. For this purpose we assume
that 1 —a < p < 1 holds, and we introduce the notation

rn = (Efon)(xn), n=1,2,...,N.

Partial summation, applied to the nth entry of DRy, gives

n n—1
DRy =Y 01 = Burt + ) Baie(ress — o), (64)
j=1 (=1
where
n—1 [ore}
0<Bu=> o "==Y 0" forn=12...., (65)
=0 {=n

cf. Lemma 2. We thus have, cf. again Lemma 2,
Bn=0m"%) as n— oo, (66)

and thus

n—1
Y B=0N")=00"") as h—0 (67)
(=1

uniformly forn = 1,2, ..., N. Estimate (5), representation (16) and Holder
continuity (63) imply

In | = 1(Ep) )| = O(0),

and we next consider the differences r;4+; — r; in more detail. For this
purpose we introduce short notation for the interpolation error,

Xn(Y) = @a(y) — gunpa(y) for 0 <y <x,, n=12,...,N.
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We then have
Xt

1 X4-1
Feg1 —rg = F(a)</0 (Xz+1—y)“_lm+1(y)dy—/0 (Xz—y)“_‘)(z(y)dy)

1 X1

— _ a1 d
rel, (o1 =9 Xe1(y) dy

.
] = G = 00

F ] e =0 == dy =+ s

We have s; = O (h"T®) which easily follows from SUP)<y<x | | xer10) | =
O (h’). Moreover, first order Taylor expansions of the kernel k with respect
to the first variable at the grid point x; gives forx; | <y <x; (1 < j <{)
the following,

et+1 = x)(y) = k(xet1, )u(y) — k(xe+1, Xj—1/2)u(xj—1/2)
— {k(ee. y)u(y) — k(xe, xji—1 2)u(xj—12)}

ok ok
= (ax (xe. )b+ O(P))u(y) — (ax (¢, Xj—1/2)h + O (1)) u(xj—1/2)
dk dok 2 pt1
= h(ax (xe, y)u(y) — ax(xlvxj—l/Z)u(xj—l/Z)) +O(h°) = OW™),
and this implies s, = ¢'(h**!). Finally,

L B - -
1= [ 0= = e =y

A

_ +a o oy +a
= re T 1) = 00+,

Summation gives s; + s2 + 53 = O(h"+%), and (64) finally results in (see
also (67))

(Dth)n = ﬁ(hp-f—a + ha—lhp-i-a) — ﬁ(hp+2a_l)

uniformly forn = 1,2, ..., N. We note that this estimate is useful for o > é
only. We are now in a position to proceed with (60):

—a o )
1488 lo0 = O(hIDiRAlloo + ) = OB+ 0) as (1.8) — 0,

where also (62) has been used. This gives the desired result.

(i) We now proceed with the case 1 < p < 2. Preparatory results are given
in the present item (ii), and in item (iii) the final steps will be done.
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Representation (17) of the integration error gives

n
(Efn) (o) = hF sy + 1. with s, = Y 1500 (55-172).
i=1

ta = (V(@n — 1h@n)) (Xn),

forn=1,2,...,N, or, in vector notation (for the definition of R, see (58))

Ry = h*T1S, + Ty, with S, = (s)u=1.ns  Th = (t)n=1..N- (68)

In view of (59) and (60), we need to consider the four vectors Sy, DSy, T;, and
D, T, € RY in more detail.

* From the summability of the coefficients t;, cf. (20), it immediately follows
that ||Shllec = O(1) as h — 0.

* Inthe case p > 2 — « and u(0) = /(0) = 0, it turns out to be useful to
consider the vector D;,S),. Partial summation applied to the nth entry of DS,
gives

n n—1
(DnSn)n = Zw,(,:?sz = Bus1 + Z Bu—e(se+1 — 0, (69)
=1 (=1

with B, given by (65). The smoothness property (63), the assumption
u(0) = u/(0) = 0 and the boundedness B, = (1), cf. (66), imply that
Busit = Butow](x1/2) = O(h"~"). In addition,

o+1 ¢
Seqp1—S¢ = Z Top1—j Py (Xj—1/2) — Z Ty (Xj—1/2)
=1 j=1

14

= 1@y (x2) + Z T—i( @ (Gr1/2) — 9L (5—1/2)) = O(™)
j=1

uniformly for £ = 1,2,...,N — 1. The considered partial summation (69)
thus finally results in (see also (65), (67))
IDShlleo = OWTY) + O™ = O, (70)

« It follows from (15) that ||T}||ecc = O(K’) as h — 0. This estimate will be
useful in the case o < ;

*  We next consider the vector D, T}, in more detail. Partial summation applied
to the nth entry of D, T, gives

n n—1
DiTi)n =Y o\t = Butt + Y Buse(teg1 — 10). (71)
=1 =1
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We have
n=0H+), tig1 — te = O(WF9),

uniformly for £ = 1,2,...,N — 1. This in fact is verified similarly as in
the second item of part 4(i) of this proof, this time with second order Taylor
expansions of the kernel k as well as first order Taylor expansions of gly‘ with
respect to the first variable, respectively. We omit the simple but tedious
computations. This gives

IDiThlloo = ORT*) + G170 = G2, (72)

1

This estimate will be useful in the case o > 2

Notice that the second of the four considered items is the only one where the
initial condition #(0) = «’(0) = 0 is needed.

(iii) We continue with the consideration of the case 1 < p < 2. The results from (ii)

allow us to proceed with (59), (60).

e We first consider the case ¢ < ;,1 < p < o+ 1. The consistency

error representations in item (ii) of the present proof yield ||R;|lc0c =
max; zusy [(ELo) ()| = G0 |Sulloo + [Tilloo) = GGt + APy =
O(W’). From the error equation (59) it then follows [Al[e =
Oh™ (W + 8)) = O(W"~* + §/h%).

We next consider the case o > ;, 1 < p < 2 — «a. The integration
error estimates obtained in item (ii) yield |DyRylloo = O* T |Sh]loo +
ID1Thlloo) = OheF! + w221y = @ (hP+22=1), where the first identity
in (62) has been applied. From the error equation (60) it then follows
A% lloo = O (WT271 4 8)) = O~ + §/h%).

Finally we consider the case 2 — o < p < 2 and u(0) = /(0) =
0. The consistency error estimates in item (i) yield |DyRplloc =
O DpShlloo + ID1Thllo) = €(hPT2*1). From the error equa-

tion (60) we then obtain the estimate |Al]loe = OB *(WT27! 4 §)) =
O(hP~'7® 4 §/h%). This completes the proof of the theorem.
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Heuristic Parameter Choice in Tikhonov m)
Method from Minimizers St
of the Quasi-Optimality Function

Toomas Raus and Uno Himarik

Abstract We consider choice of the regularization parameter in Tikhonov method
in the case of the unknown noise level of the data. From known heuristic parameter
choice rules often the best results were obtained in the quasi-optimality criterion
where the parameter is chosen as the global minimizer of the quasi-optimality
function. In some problems this rule fails, the error of the Tikhonov approximation
is very large. We prove, that one of the local minimizers of the quasi-optimality
function is always a good regularization parameter. We propose some algorithms
for finding a proper local minimizer of the quasi-optimality function.

1 Introduction

Let A € Z(H, F) be alinear bounded operator between real Hilbert spaces. We are
interested in finding the minimum norm solution u. of the equation

Au=fe.  fe € Z(A). ey

The range %(A) may be non-closed and the kernel .#"(A) may be non-trivial, so in
general this problem is ill-posed. As usually in treatment of ill-posed problems, we
assume that instead of exact data fi noisy data f € F are given. For the solution of
the problem Au = f we consider Tikhonov method (see [6, 36]) where regularized
solutions in cases of exact and inexact data have corresponding forms
wh = (al +A*A) A, ug = (af + A*A) T AYF

o

and « > 0 is the regularization parameter.
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Denote
el(a) = ||u;' - u*” + Hua —u;' || . 2)

Due to the well-known estimate ||ua —uf H < éa_l/z |f —f«ll (see [6, 36]) the
error ||u, — u«|| can be estimated by

e — sl < e1(@) < ex(e. |If =full) == [ug —us| +

1
syl @
We consider choice of the regularization parameter if the noise level for || f — fi|| is
unknown. The parameter choice rules which do not use the noise level information
are called heuristic rules. Many heuristic rules are proposed, well known are the
quasi-optimality criterion [2, 3, 5, 10, 20-22, 25, 35], L-curve rule [16, 17], GCV-
rule [8], Hanke-Raus rule [15], Reginska’s rule [33], about other rules see [18, 19,
23, 26]. Heuristic rules are numerically compared in [4, 10, 18, 26]. It is also well
known that it is not possible to construct heuristic rule guaranteeing convergence
|lug — u«|| — O as the noise level goes to zero (see [1]). Nevertheless the heuristic
rules give good results in many problems. The problem is that all these rules may
fail in some problems and without additional information about the solution, it is
difficult to decide, is the obtained parameter reliable or not.

In this article we propose a new strategy for heuristic parameter choice. It is
based on analysis of local minimizers of the function ¥p(a) = « H ‘Z‘; H, the
global minimizer of which on certain interval [y, 2] is taken for parameter in
the quasi-optimality criterion. We will call the parameter ag in arbitrary rule R as
pseudooptimal, if

”uOlR - “*” < const minel(a)
a>0

and we show that at least one of local minimizers of ¥y () has this property. Our
approach enables to replace the search of the parameter from the interval [0y, o]
by search of the proper parameter from the set L,,;, of the local minimizers of
the function ¥ («). We consider also the possibility to restrict the set Ly, to its
subset L. still containing at least one pseudooptimal parameter. It occurs that in
many problems the restricted set L), contains only one local minimizer and this is
the pseudooptimal parameter. If the set L. contains several local minimizers, we
consider different algorithms for choice of the proper parameter from the set L, .

The plan of this paper is as follows. In Sect. 2 we consider known rules for choice
of the regularization parameter, both in case of known and unknown noise level.
We will characterize distinctive properties of considered heuristic rules presenting
results of numerical experiments on test problems [17]. In Sect. 3 we consider the
set L, of local minimizers of the function ¥o(c) and prove that this set contains
at least one pseudooptimal parameter. In Sect. 4 we show how to restrict the set Ly,;;;,

to the set LY. still containing at least one pseudooptimal parameter. In Sect.5 we
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consider the case if the set LY. contains several elements and we propose some
algorithms for finding proper pseudooptimal parameter. In all sections theoretical
results and proposed algorithms are illustrated by results of numerical experiments

on test problems [17].

2 Rules for the Choice of the Regularization Parameter

An important problem, when applying regularization methods, is the proper choice
of the regularization parameter. The choice of the parameter depends on the
information about the noise level.

2.1 Parameter Choice in the Case of Known Noise Level

In case of known noise level 8, || f — f«|| < § we use one of so-called §-rules, where
certain functional d(«) and constants b, > by > by (by depends on d(«)) are
chosen and such regularization parameter ¢ (§) is chosen which satisfies b1 < d(«)
< sz.

1) Discrepancy principle (DP) [24, 36]:
b18 < |Aug —f|| <528, b1 =1

2) Modified discrepancy principle (Raus-Gfrerer rule) [7, 28]:

D18 < |Ba (Atte — )| < b6, By =o' (l +447) 72,

3) Monotone error rule (ME-rule) [14, 34]:

2
< |Bo (Aug —f)|| < by8 by > 1.

b1 < < ,
S 1B2 (Aug — )|

The name of this rule is justified by the fact that the chosen parameter aymg
satisfies

o — ]| < llttee — ux| Va > oME.

Therefore amg > oy := argmin||ug — u«|| and by = by = 1 are recommended.
4) Monotone error rule with post-estimation (MEe-rule) [10, 12, 13, 26, 31]. The
inequality ape > a,p suggests to use somewhat smaller parameter than og.
Extensive numerical experiments suggest to take by = b, = 1, to compute
aMme and to use the post-estimated parameter oyg, := 0.4apge. Then typically
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| topee — s ||/ || ttange — sl € (0.7,0.9). To our best knowledge in case of exact
noise level this MEe-rule gives typically best results from all known rules for the
parameter choice.
5) Rule R1 [29]: Let b, > by > 0.325. Let d(e) := a~'/? |A*B2 (Aua — f)|.
Choose «(8) such that d(«(8)) > b1, but d(e) < b6 for all @ < «(§).
Note that

B2 (Aug —f) = Atirg —f,  trg = (af + A*A) ™" (autg + A*f),

where u; 4 is the 2-iterated Tikhonov approximation.
6) Balancing principle [4, 9, 26, 27]. This rule has different forms in different
papers, in [9] the form

- 36
bi§ < */“Jqluu“ tapal _ s p s 1‘2 ~ 0.459,
—dq

Typically balancing principle is implemented by computing a sequence of Tikhonov
approximations, but in case of a smooth solution much better approximation
than single Tikhonov approximation is simple linear combination of Tikhonov
approximations with different parameters — the extrapolated approximation (see
[9, 11, 26]). See [32] about effective numerical realization of rules 1)-6).

The last five rules are weakly quasioptimal rules (see [30]) for Tikhonov method.
If || f — f«ll < 8, then we have the error estimate (see (3))

1
|ttasy — ux || < C(bl,bz)iggez(aﬁ) = C(b1,by) ;I;g [”Ma — ua|| + 2\/048} .
The rules for the parameter choice in case of approximately given noise level are
proposed and analysed in [12, 13, 26, 31].

2.2 Parameter Choice in the Case of Unknown Noise Level

If the noise level is unknown, then, as shown by Bakushinskii [1], no rule for choos-
ing the regularization parameter can guarantee the convergence of the regularized
solution to the exact one as noise level || f — f«| goes to zero. Nevertheless, some
heuristic rules are rather popular, because they often work well in practice and
because in applied ill-posed problems the exact noise level is often unknown.

A classical heuristic rule is the quasi-optimality criterion. In Tikhonov method it
chooses « = «g as the global minimizer of the function

duy

o | =0 AT (Aue =P “)

Vola) = «
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In case of the discrete version of the quasi-optimality criterion we choose o = app
as the global minimizer of the function H Uy — Ugy ||, Where 0 < g < 1.

The Hanke-Raus rule finds the regularization parameter @ = apg as the global
minimizer of the function

Yir(e) = ™% ||By (Aug — )| -

In practice the L-curve rule is popular. This rule uses the graph with log-log scale,
on x-axis ||Auy — f]| and on y-axis ||uy||. The name of the rule is justified by fact
that often the points (||Aug —f|| , ||#«||) have shape similar to the letter L. and
parameter «; which corresponds to the “corner point” is often a good parameter.
In the literature several concrete rules for choice of the ‘corner point’ are proposed.
One natural rule is proposed in [33] where global minimum point of the function

Yre(@) = |Aue = fl [lua|” .

with t > 1 is used. In numerical experiments below we used this rule with t = 1.

Some heuristic rules choose the regularization parameter as global minimizer
of a function a~'/2d(§) with function d(§) from some §-rule 1)-6) from Sect. 2.1
(see [10]). For example, the quasi-optimality criterion and Hanke-Raus rule use
functions d(8) from the rules 5) (R1) and 2) (modified discrepancy principle)
respectively. In [10] heuristic counterpart of rule 3) (ME-rule) is also studied. We
call this rule as HME-rule (H means “heuristic counterpart”), here the regularization
parameter ¢ = oy is chosen as the global minimizer of the function

—1/2 ”Ba (Aug _f)Hz

e T

In the following we will find the regularization parameter from the set of
parameters

=Aejroj=qoy, j=12,....M, 0<g<l}, 5)

where o, g, oy are given. In the case if in the discretized problem the minimal
eigenvalue A,,;, of the matrix ATA s larger than oy, the heuristic rules above choose
parameter oy, which is generally not a good parameter. The works [21, 22, 25]
propose to search the global minimum of the function ¥y(cr) in the interval
[max (aa, Amin), 0p]. We use basically the same approach but consider also local
minimizers.

We say that the discretized problem Au = f do not need regularization if

Amin) = min .
el( mm) 0(69,0112/\,,,,',, el(a)



232 T. Raus and U. Hamarik

If Auin > oy and the discretized problem do not need regularization then , is the
proper parameter while then it is easy to show the error estimate

b, — || < e1(apr) < 2mine; ().
a€ES?

Searching the parameter from the interval [max (cas, Amin), &o] means the a priori
assumption that the discretized problem needs regularization. Note that if A,,;, >
oy, then in general case it is not possible to decide (without additional information
about solution or about noise of the data), needs the discretized problem regular-
ization or not. In practice in the case A,;;, > «y it is meaningful to choose the
regularization parameter g from the interval [A,,;,, &), while then our parameter is
not too small. If we have some information about solution or about the noise then
this information may help to decide, is oy or oy the better final parameter.

Our tests are performed on the well-known set of test problems by Hansen [17].
In all tests we used discretization parameter n = 100. Since the performance
of rules generally depends on the smoothness p of the exact solution in (1), we
complemented the standard solutions us of (now discrete) test problems with
smoothened solutions |A[Pus, |A| := (A*A)'/?,p = 2 (computing the right-hand
side as A(|A|Pu«)). After discretization all problems were scaled (normalized) in
such a way that the Euclidean norms of the operator and the right-hand side were
1. On the base of exact data f, we formed the noisy data f, where | f — f«| has
values 107!,1072,...,107%, f — fi has normal distribution and the components of
the noise were uncorrelated. We generated 20 noise vectors and used these vectors
in all problems. We search the regularization parameter from the set §2, where
oo = 1,g = 0.95 and M is chosen so that oy > 10718 > .

Since in model equations the exact solution is known, it is possible to find the
regularization parameter o, which gives the smallest error in the set £2. For every
rule R the error ratio

g e —uxll g — s

[t —taxll mingegq [t — |
describes the performance of the rule R on this particular problem. To compare
the rules or to present their properties, the following tables show averages A and
maximums M of these error ratios over various parameters of the data set (problems
1-10, smoothness indices p, noise levels §). We say that the heuristic rule fails if the
error ratio E > 100. Table 1 contains the results of the previous heuristic rules by
problems.

This table shows that the quasi-optimality principle succeeds to choose a proper
parameter in almost all problems, except the problem heat where this principle fails
in 66.7% cases. In contrast to other problems in problem heat the maximal ratio A =
MAaX),>max (ay,1,) Ak/Ak+1 Of consecutive eigenvalues A = A; > A, > ... > A, of
the matrix ATA in the interval [max (ap,A,), 1] is much larger than in other
problems. It means that location of the eigenvalues in the interval [max (o, An), 1]
is sparse.
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Table 1 Averages of error ratios E and failure % (in parenthesis) for heuristic rules, p = 0

Problem A Quasiopt. HR HME Reginska
Baart 1666 1.54 2.58 2.52 1.32
Deriv2 16 1.08 2.07 1.72 35.19 (3.3)
Foxgood 210 1.57 8.36 7.71 36.94 (10.8)
Gravity 4 1.13 2.66 2.32 20.49 (0.8)
Heat 4% 10%° > 100 (66.7) 1.64 1.48 23.40 (4.2)
Tlaplace 16 1.24 1.94 1.81 1.66
Phillips 9 1.09 2.27 1.91 > 100 (44.2)
Shaw 290 1.43 2.34 2.23 1.80

Spikes 1529 1.01 1.03 1.03 1.01

Wing 9219 1.40 1.51 1.51 1.18

The rules of Hanke-Raus and HME did not fail in test problems, but the error
of the approximate solution is in most problems approximately two times larger
than for parameter chosen by the quasi-optimality principle. The problem in these
rules is that they choose too large parameter comparing with the optimal parameter.
Reginska’s rule may fail in many problems but it has the advantage that it works
better than other rules if the noise level is large. The Reginska’s rule has average
of error ratios of all problems E = 1.46 and E = 3.23 in cases | f —fix| = 107!
and || f — fi|| = 1072 respectively, the Hanke-Raus rule has corresponding averages
E =3.41and E = 3.50.

By implementing of all these rules the problem is that without additional
information in general case it is difficult to decide, is the obtained parameter good
or not. In the following we propose a methodology enabling in many cases to assert
that obtained parameter is pseudooptimal.

3 Local Minimum Points of the Function ¥ ¢ ()

In the following we investigate the function ¥o(«) in (4) and show that at least
one local minimizer of this function is the pseudooptimal parameter. We need some
preliminary results.

Lemma 1 The function Yo(a) has the estimate (see (2) for notation e, (a))

Vola) < er(a). (6)
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Proof The following equalities hold:

Aug —f = A (el + A™A) T A — f = —a (al +AA%) "' f,

— a0 A B (Aug — f) = 0A* (al + AA*) T f = o (al +A*A) TAY = (7)

2

= aA*A (ol + A*A) Cus + o (al + ATA) TAK(f —fo).

Now the inequality (6) follows from (4) and the inequalities

o |arA (o1 +4%4) P < o (@1 +4%4) ] = ]
o H (af +A*A) " A*(F = fo)] < H (@l +A*A) " A*(f=f)| = [ua—uf . O
Remark 1 Note that limy— o Yo(a) = 0, but limy—o0 €1 () = ||u«||. Therefore

in the case of too large «q this oy may be global (or local) minimizer of the
function ¥o(a). We recommend to take g = ¢ ||A*A||,¢ < 1 or to minimize
the function IﬁQ(a) = (1 + o/ ||[A*A|)¥o () instead of Yo(er). Due to limit
limy—o(1 4/ ||[A*A|)) = 1 the function V() approximately satisfies (6).

Lemma 2 Denote Yop(o) = (1 — g)~" H Ug — Ugy || Then it holds

Vo(@) < Yon(@) < g~ 'Yo(qa).
Proof We use the equalities (7) and
U — Uge = (o +A*A)_1A*f— (qol —}—A*A)_IA*f =
= (q— Do (o +A*A) "' (qal +A*A) 7' A%,
The following inequalities prove the lemma:

Yola) = H (af + A*A) > A*f

<a H (@I +A*A) " (qal + A*A) ™' A%F

— Yon(@) <« H (qal + A*A) > A*f

=4 'Yolqe). O

In the following we define the local minimum points of the function ¥ (c) on the
set £2 (see (5)).

We say that the parameter o, 0 < kK < M — 1 is the local minimum point of the
sequence Vo (o), if Yo(ax) < ¥o(ak+1) and in case k > 0 there exists index j > 1
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such, that Yo(ax) = Yo(ar—1) = ... = Yolok—jr1) < VYolax—;). The parameter
oy is the local minimum point if there exists index j > 1 so, that

Yolam) = Volay—1) = ... = VYolay—j+1) < Yolam—).
Let the number of the local minimum points be K and denote

(k) (1)

_ . (2) (K)
Lyin = {amm T, > > >

min o min} .

The parameter o, 0 < k < M is the local maximum point of the sequence (o)
if Yo(ax) > Yo(ar+1) and there exists index j > 1 so, that

Vol = Yolau—1) = ... = Yolo—j+1) > Vola—)).

We denote by af,lfﬁx the local maximum point between the local minimum points
o« and o 1 < k < K — 1. Denote a,(,?,gx = ao,oc,(nlfll = oy. Then by the

min min’®

construction

(K)

0) (1) 1) (K—1) (K)
Xinax z Olmin > amax > > Olmwc > amin z Unax

Theorem 1 The following estimates hold for the local minimum points of the
Sunction Yo(a):

1
min |ju, — u«|| < g 'C rn1n el(oc) 8)
aELpin oy <
where
C:=1+ max max T(afrl;)n,(xj)§1+cqln(a0),
l5k§K&j€Qsanm\t<aJ§a(fatl am
[t = ug | i Sy

T(o, B) := , ¢, = —=1)/Ing " - 1lifqg— 1.

Vo(B) 0= )

2. Letux = |Al" v, |[v]| < p,p > 0and ag = 1. If §o := Jom < ||f —f«||, then

min g — e | < ¢p 07 maxiin f*” Al =Sl I —fulrb 0 <p <.

QELpin
©))

Proof For arbitrary parameters @ > 0, B > 0 the inequalities

lug — usl| < |ue —up| + up — ux|| < T(e, BYyo(B) + e1(B)
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and (6) lead to the estimate

l[ue — ux|| = (1 + T(a, B)) er(B). (10)
It is easy to see that
min ei(e) <q aMI;l;I;a()el(a), (11)

while in case go < o' < @ we have e; (¢') < g le; (@).
Let ajx = apg’* be the global minimum point of the function e; () on the set of
the parameters £2. Then o € [a,(,gx, a,(,f,;l) | forsome k, 1 < k < K. Denote u; = Uy,

and gy, = U, - Then using (10) we can estimate

min

k
”“kmin - “*“ 5 (1 + T(ar(ni)n’ O{j*)) 6‘1((){/*) S

k .
1+ max T(afm)n, ;) | min e; (o).
<o <ot €82

Since we do not know to which interval [oz,(,ﬁx, a,(fa}l)] the parameter o« belongs, we
take maximum of 7T over all intervals, 1 < k < K. Using also (11) we obtain the
estimate (8).

Now we show that C < 1 + ¢,4In ( 0 ) At first we estimate 7' («

ay
,(rl;)n <a; < oz,(,fajfl) . Then Lemma 2 enables to estimate

(k)

min’

;) in the case
ifa

ttmin — uj|| < Zj<izimin i — wirrll < ¢~ (1 = @) Zj<i<tmin—1¥o(it1)

and
®) | imin — w -1 Yo(dit1)
T(amin’ j) = S q (1 - q)E'_i_kmin—l <
! Vo(e)) == Yo(w)
-1 _ 1
(' = D(kmin—j) < (g~ — M = 1 ) %0 cgln *°
Ing~ oy oy

If 0{5,/,2)[ < < a,(,fi)n, then analogous estimation of T(oz,(rl;)n, ;) gives the same result.

For source-like solution ug — usx = |A|" v, ||v|| < p, p > O the error estimate

min e () < c,p"/ PV f — /P 0<p <2

ay =a=ao
is well-known (see [6, 36]), the relations

m* = Iné;? < 4max | In I/ =7l

oy S

I [|f = felll

lead to the estimate (9). ]
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Table 2 Results for the set L,;,, p = 0

ME MEe DP Best of L,y | Lyin| Apost. C
Problem AverE AverE AverE  AverE MaxE Aver Max Aver Max
Baart 1.43 1.32 1.37 1.23 2.51 6.91 8 319  3.72
Deriv2 1.09 1.08 1.28 1.08 1.34 2.00 2 3.54 449
Foxgood  1.98 1.42 1.34 1.47 6.19 3.63 6 3.72  4.16
Gravity 1.40 1.13 1.16 1.13 1.83 1.64 3 371 4.15
Heat 1.19 1.03 1.05 1.12 2.36 3.19 5 3.92 450
Tlaplace 1.33 1.21 1.26 1.20 2.56 2.64 5 484 6.60
Phillips 1.27 1.02 1.02 1.06 1.72 2.14 3 3.99 4.66
Shaw 1.37 1.24 1.28 1.19 2.15 4.68 7 348 443
Spikes 1.01 1.00 1.01 1.00 1.02 8.83 10 327  3.70
Wing 1.16 1.13 1.15 1.09 1.38 5.20 6 3.07 3.72
Total 1.32 1.16 1.19 1.16 6.19 4.09 10 3.67 6.60

The results of numerical experiments for local minimizers @ € L, of the function
Yo(a) are given in Table 2. For comparison the results of §-rules with § = || f — f«||
are added to the columns 2—4. Columns 5 and 6 contain respectively the averages
and maximums of error ratios E for the best local minimizer o € L,,;,. The results
show that the Tikhonov approximation with the best local minimizer « € L,;;, is
even more accurate than with the best §-rule parameter opge. Columns 7 and 8
contain the averages and maximums of cardinalities |L,;,| of sets L,;, (number
of elements of these sets). Note that number of local minimizers depends on
parameter g (for smaller g the number of local minimizers is smaller) and on length
of minimization interval determined by the parameter o,. The number of local
minimizers is smaller also for larger noise size. Columns 9 and 10 contain the
averages and maximums of values of constant C in the a posteriori error estimate
(8). The value of C and error estimate (8) allow to assert, that in test problems
[17] the choice of « as the best local minimizer in L,,;, guarantees that error of the
Tikhonov approximation has the same order as mingy,, <o<a, €1 (c¢). Note that average
and maximum of error ratio E1 = ||ug, — ux|| / mingep e; (o) for the best local
minimizer ag over all problems were 0.84 and 1.39 (for the MEe-rule corresponding
error ratios were 0.85 and 1.69).

4 Restricted Set of the Local Minimizers of the Function

Yo(a)

We will restrict the set L,,;, using two phases. In the first phase we remove from
L,in local minimizers in interval, where the function || B, (Au, — f)| decreases only
a little bit. On the second phase we remove from set obtained on the first phase
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these local minimizers for which the function (o) for decreasing a-values has
only small growth before the next decrease.

1. Denote 8y := ||By,, (Aua,, —f)|| and by ¢ = aup the parameter for which
|Be (Aug —f)|| = béy, b > 1. Denote aypp := min (aMD,ocQ), where

0o € Ly is the global minimizer of the function ¥, (o) on the set §2. Let

a,(,i‘g} < ampg < oc,(fgx D for some ky,1 < k9 < K. Then the set of local

minimizers what we obtain on the first phase of restriction, has the form me =

k
,(m)n 1 <k< ko} In the case a9 < aupg < ot(l“)

k ki
o) = o)

we change denotation to

2. We remove from the set L?mn these local minimizers oc(
(k)

ers tmayx, which satisfy the following conditions:

., and following maximiz-

* ®
ol 2 g WQ(W() <o 1/fQ(°fmm)( <
& in max’ k — ) . /) ’
WQ (amin) min;<k ‘WQ (am]m)

where c¢o > 1 is some constant. We denote by

L i= o 10 > o > ... > o))

‘min min * min min . min
the set of minimizers remained in Lglm and denote the remained maximizers by
k) . 0 Q)
Opoe & O >

- ~ max min
inequalities hold:

> 0> af,’fjx). According to this algorithm the following

(O) > Ol(l) > Ol(l) > > Ol(k* 1) > Ol(k*) > Ol(k*)

max — min max mmn —

Note that if oy is the global minimizer of the function ¥y («) then apy € LY. . But
in case ayp < o the global minimizer of the function ¥y () may not belong to

the set L. . For the restricted set of local minimizers the following theorem hold.

Theorem 2 The following estimates hold for the local minimum points of the set

L;kmn
1.
min |luy — x| < max{q_lcl min ej(a),C2(b) min ez(a,(S*)},
U‘EL;m ay =a=ap oy <a=ap
(12)
where
*) %o
Cy := 1+ max max T(ocmm,otj) < 1l+4cocyln . (13)
1=sk=ks EQ an1a~:<%<afw]§a~: afn:x)

and 85 = max Sy, || f — fx])), C2(b) = b + 2.
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2. Letuy = AP v, |v]| < p,p> 0,00 = 1. If 8o := Jom < ||f — fx||, then

1
prev || f = fll [ 1 f = fll #1 .0 < p < 2.
(14)

min |Jug — ux| < cocpIn I/ =/l
* 80

Q€L

Proof Due to the inequality 8« > || f —f«|| the global minimizer of the function
ex(w, 8«) is greater or equal to the global minimizer of the function e;(c). Denote
o= aff;;l) , let a4 be the global minimizer of the function e, (e, 6x) and aj* be the
global minimizer of the function e;(«) on the set £2. We consider separately the
casesa) aj* > o, b)ajx <o <ax, ) ox <a.

In the case a) we get the estimate

min [Juy —uxl| < g7'C1 min_e(a) (15)

ay<a<a
a€L,. M=A=0Q

analogically to the proof of Theorem 1, but use for the estimation of T(alifi)n, ;) the
inequality Xj<;<pmin—1 wig)zzjf)‘) < coM.
In the case b) we estimate

g — well < [lug, — us| +0.50%7 2| f — fi]| < min ey («) + min (@, 8x).

(16)

In the case ¢) we have @ < ayp and therefore also || By (Aug —f)|| < bSy < bb.
Now we can prove analogically to the proof of the weak quasioptimality of the
modified discrepancy principle [30] that under assumption «x < o the error estimate

lte —us]l < C2(b) min ex(e. 8,) (17)
ay=o=cag

holds. Now the assertion 1 of Theorem 2 follows from the inequalities (15)—(17).
The proof of assertion 2 is analogical to the proof of Theorem 1. O

We recommend to choose the constant b from the interval [1.5;2] and coefficient
¢o from the interval [1.5; 3]. In all following numerical examples b = ¢y = 2. The
numerical experiments show that the set L. contains in many test problems only
one local minimizer and this is a good regularization parameter. In Table 3 for the
test problems [17] the results are given for the set L. . The columns 2—7 contain the
averages and maximums of the error ratio E for the best parameter from the set L.
the average and maximum of numbers |L*. | of elements of L*. and averages and
maximums of the constants C; in the error estimate. The last column of the table
contains % of cases, where the set L. contained only one element or two elements
one of which was «y,. Tables 2 and 3 show that for the best parameter from the set

L. the error ratio E is smaller than for parameter from the ME-rule. Table 3 shows
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Table 3 Results about the set LY, p = 0

Bestof L, [Ly: Apost. Cy Lyl =1
Problem Aver E Max E Aver Max Aver Max %
Baart 1.40 2.91 1.41 3 6.38 7.93 60.8
Deriv2 1.08 1.34 2.00 2 3.54 4.49 100
Foxgood 1.57 6.69 1.00 1 4.39 4.92 100
Gravity 1.14 2.15 1.00 1 3.02 3.95 100
Heat 1.12 2.36 2.05 3 5.08 5.38 0
Tlaplace 1.23 2.56 1.00 1 4.68 6.68 100
Phillips 1.06 1.72 2.10 3 3.97 4.66 90.0
Shaw 1.39 3.11 1.16 2 5.89 8.06 84.2
Spikes 1.01 1.03 1.64 3 10.07 11.82 55.0
Wing 1.30 1.84 2.18 4 3.03 6.63 1.7
Total 1.23 6.69 1.55 4 5.01 11.82 69.2

also that in test problems foxgood, gravity and ilaplace the set L), contains only one
element and this a good parameter. Due to small values of C, the chosen parameter
is pseudooptimal. Note that average and maximum of the error ratio E1 for the best
local minimizer ag from LY. over all problems were 0.88 and 1.61 respectively.

‘min

5 Choice of the Regularization Parameter from the Set L> .

Now we give algorithm for choice of the regularization parameter from the set

L;km'n'

1. If the set L. contains only one parameter, we take this for the regularization

parameter. On the base of Theorem 2 we know (we can compute also the a

posteriori coefficient Cy), that this parameter is reliable.

2. If the set L. contains two parameters one of which is oy, we take for the
regularization parameter another parameter « # o). This parameter is good
under the assumption that this problem needs regularization.

3. If the set L}, contains after possible elimination of oy more than one parameter,
we may use for parameter choice the following algorithms.

a) Let ap, g be global minimizers of the functions Yo (c), YVur(e) respectively
on the interval [max (otar, Amin), 0to]. Let ag) := max (aQ, aHR). Choose from the

set L*. the largest parameter o, which is smaller or equal to o .

b) Let agg be the global minimizer of the function Ygg(x) on the interval
[max (apr, Amin), o). Let gy be the global minimizer of the function o (cr) on
the interval [, o). Choose from the set L* . the largest parameter o, which is

‘min
smaller or equal to ap.
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*
‘min

VuR ()
llue |
consider as the rough estimate for the relative error ””ﬁ;k””* I under assumption
that parameter « is near to the optimal parameter. We choose for the regular-
ization parameter the smallest parameter o, from the set L*. . which satisfies
the condition R(ax) < C*minyer+ 44, R(o). We recommend to choose the
constant C* from the interval 5 fmICn‘ * < 10. In the numerical experiments we

used C* = 5.

c) For the parameters from L . we compute value R(e) = which we

Note that these algorithms are motivated by experience that global minimizers of
functions Yur(e), R(a«) are typically too large parameters. Therefore we choose
smaller parameter under condition, that in case, if the optimal local minimizer is
larger than chosen parameter, the chosen parameter is still pseudooptimal. Choice
of value of constant C in algorithm c¢) was suggested by numerical experiments.

The results of the numerical experiments for different algorithms for the param-
eter choice are given in Table 4. The results for all three algorithms are very similar
and the average of the error ratio is even smaller than for o from the ME-rule. In
the case if the set L. contained more than three parameters, in 68.1% of cases
all three algorithms gave the same parameter and in 92.7% of cases the parameters
from algorithms b) and c¢) coincided. We changed also the parameters b € [1.5;2]
and co € [1.5; 3], but the overall average of the ratio E changed less than 2%.

The proposed algorithms for parameter choice are complicated (formation of the
set L*. ) but they enable to estimate also the reliability of the chosen parameter and
propose alternative parameters if the set L*. contains several local minimizers. If
some information about solution or noise is available, it may help to find from the
set L». better parameter than algorithms a)—c) find. If the purpose is only parameter
choice, simpler rules below may be used (parameters «g; and o, are defined in
algorithm a), b)).

Table 4 Averages and maximums of error ratios E in case of different heuristic algorithms, p = 0

Algorithm a) Algorithm b) Algorithm c)
Problem Aver E Max E Aver E Max E Aver E Max E
Baart 1.83 3.63 1.61 2.91 1.61 2.91
Deriv2 1.08 1.34 1.08 1.34 1.08 1.34
Foxgood 1.57 6.69 1.57 6.69 1.57 6.69
Gravity 1.14 2.15 1.14 2.15 1.14 2.15
Heat 1.12 2.36 1.12 2.36 1.12 2.36
Tlaplace 1.23 2.56 1.23 2.56 1.23 2.56
Phillips 1.06 1.72 1.06 1.72 1.06 1.72
Shaw 1.48 3.64 1.45 3.64 1.45 3.64
Spikes 1.01 1.03 1.01 1.03 1.01 1.03
Wing 1.50 1.86 1.38 2.04 1.32 1.84

Total 1.30 6.69 1.26 6.69 1.26 6.69
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1. We choose for the regularization parameter the smallest local minimizer afyﬁ*;l) of
the function ¥ (o) which satisfies the following conditions:

(%)

amax
ZQE () =0 k=koko+1,. . ke—1; (18)
o\%in
(k)
o
Yol mm)m <co,  k=koko+1,... ke (19)

minffk 1r//Q (amzn)

where ky is the index for which a(kF’) <ap < amor .

2. We choose for the regularization parameter the smallest local minimizer af:;l) of
the function ¥ («) satisfying conditions (18), (19) where k is index for which
1
ar(m(;z) =< Oor = =< a;{m(l)x )-
These rules give in test problems [17] the same results as the algorithms a)

and b) respectively.

Table 5 gives results of the numerical experiments in the case of smooth solution,
p = 2. The table shows that in case of smooth solution the number of local
minimizers in L,;, and number of elements L. are smaller than in case p = 0.
If the set L. contains several elements, then the algorithms a) and c) gave the same
parameter, which was always the best parameter from L}, with smallest error. In
case of algorithm b) the overall average of the ratio £ was 1.25. In all problems
except the problem wing the heuristic rule gave parameter where the average of
error was smaller than by parameter from the ME-rule, and only 10% larger than by
parameter from the MEe-rule (both ME-rule and the MEe rule used the exact noise
level).

Table 5 Results of the numerical experiments, p = 2

ME MEe Best of Ly |Lyinl  Bestof Ly, Lyl |Ly.l =1

Problem  AverE AverE AverE Aver Aver E Aver %
Baart 1.86 1.19 1.18 4.74 1.41 1.02 98.3
Deriv2 1.10 1.19 1.03 2.00 1.03 2.00 100
Foxgood  1.56 1.13 1.14 2.08 1.20 1.00 100
Gravity 1.33 1.05 1.09 1.72 1.11 1.00 100
Heat 1.13 1.12 1.05 2.10 1.05 2.10 0
Iaplace 1.47 1.06 1.11 2.73 1.11 1.00 100
Phillips 1.26 1.06 1.04 2.10 1.04 2.10 90
Shaw 1.37 1.06 1.11 3.72 1.22 1.01 99.2
Spikes 1.85 1.12 1.19 4.78 1.31 1.00 100
Wing 1.67 1.14 1.22 4.53 1.73 1.01 99.2

Total 1.46 1.11 1.12 3.05 1.22 1.32 88.7
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We finish the paper with the following conclusion. For the heuristic choice of

the regularization parameter we recommend to choose the parameter from the set of
local minimizers of the function vy (cr). Proposed algorithm enables to restrict this
set and in many problems the restricted set contains only one element, this parameter
is the pseudooptimal parameter.
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Modification of Iterative Tikhonov )
Regularization Motivated by a Problem e
of Identification of Laser Beam Quality
Parameters

Teresa Reginska and Kazimierz Reginski

Abstract Presented is a new method for finding an approximate minimum of a
real function given on a discrete set of points where its values are given with some
errors. The applied approach is a certain modification of the iterative Tikhonov
regularization. The essence of the presented method is to reduce the initial problem
to that of finding an approximation of the function in a class of functions whose
minimum can easily be calculated. The presented method is motivated by a
problem of identification of laser beam quality parameters, however the scope of
its applicability is quite general.

1 Introduction

In this paper we propose a new method for finding an approximate minimum of a
function f given on a discrete set of points. The actually available data f°(z) for
zel:=[sy, s2] will be contaminated with noise for which we here use a determinis-
tic model, i.e.,

1f5(2) = f ()] < 8(2). (1)

Let F(v; z) denote a real continuous function of several variables v € D(F) C R¢,
and z € I. Let us consider a set

F ={feCd):3veD(F)f(z) = F(v;z) forz € I}.
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We assume that

. forany v € D(F) F(v;-) is convex and its minimum is easily computable;
. F(vy;+) = F(vy;-) if and only if v; = vy;

. for the exact f there exists v : F(vT;-) = (), ie., f € Z.

. for any z € I a noisy f*(z) can be computed or measured.

BN =

The case when f is not in .% but there exists f € .Z such that ||f — fllec < €
for sufficiently small € can also be considered. Then o' will denote the solution of
F@') =£().

So, the problem of minimizing f is replaced by the following one:

Problem 1 Find v® € D(F) such that F(v®;z) ~ f*(z) on a chosen set of points z
and min,¢; F(vg, 7) ~ min,¢; f(2).

The problem above is generated by the problem of determining the axial profile
of the laser beam. In the case of narrow beam one can assume that this profile is a
hyperbola type [9, 19]. The final aim of the proposed approach is to approximate
laser beam quality parameters such as the waist of an axial profile of the beam and
its position on the axis of beam by corresponding values of a hyperbola which well
approximate the given noisy points of axial profile. The problem for the axial profile
of the laser beam is described in Sect. 2.

The problem of finding v could be formulated as a system of nonlinear equations

Fv:z) =), i=1,....N )

for a fixed set of points {z;}. In [15] we proposed to approximate v’ by vg given
by the Tikhonov regularization method. This method is widely used especially
in connection with the output least squares formulation of parameter estimation
problems (see [1, 5]). However, a small distance between f?(z;) and f(z;) for z;
from the given a priori set of points {z;} does not guarantee a small distance between
arg min,e; F(v}, z) and arg min,e; f(2).

It should be stressed that it is not clear how to choose a priori an appropriate set
of points {z;}. Therefore we propose an iteration method in which the set of points
changes in every step of iteration; to the fixed set of points {z? '—, we add additional
one which is defined successively during iterations. So, let

Zy =4 0
We abbreviate the notation by introducing the operator
Fu() = (F(:2)). . F(:2). F(20)),  Fp:D(F) CR'— R™! 3)
and the vector

F=FE. L) @)
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The norms and inner products in R¢ and R"*! will be denoted by || - || and < -, - >;
they can always be identified from the context in which they appear. Consider the
equation

Fu(v) = fa &)

with a noisy right hand side ff, satisfying

I3 —full <8, <6 (6)

Generally, for the noisy right hand side f? the solution in the classical sense does
not exist. So, as a solution of the problem (5) we chose the concept of so called
v*-minimum norm least-squares solution, i.e. the least squares solution of a minimal
distance to a fixed v* [5]. Available a priori information about the location of least-
squares solutions of (5) has to enter into the selection of v*.

The starting point of our approach is the iterated Tikhonov method [6] for solving
F(v) = f. This regularization method is defined by

§ . §112 $112
v = arg min F(v) — + }3 V—Yv .

Our modification consists in introducing different operators at different steps.
We propose in this article the following regularization method:
Let us denote an initial guess forn = 0

THER (7
Stepn + 1:
szH = argminF(vﬁ;z); (8)
z€I
For1(v) = (FG;2), o JF(520), F (5 2011)) 5 )
Brt1(v) = || Far1 (v) = fit P + Bllv — vy % (10)

§ = 1 >
Vi argvg})l(r}:) D, 41(v) forn > 0. (11
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Here § is an appropriately chosen number (see (26) below). The number r is chosen
a priori and it depends on F. For instance, in the case of a hyperbola (18) we can
take r = 3 (see Sect.5). We apply an a-posteriori stopping rule which employs the
discrepancy principle, i.e., the iteration is stopped after n, steps with

ny =min{n € N : n > 0 and || F,(v}) —f%| < ©6}, (12)

where t > 1. The article is outlined as follows. In Sect. 2 we present the underlying
mathematical model of laser beam and the problem of identification of laser
beam quality parameters. In Sect. 3 disadvantages of the Tikhonov method applied
to the problem stated in Introduction are considered. In Sect.4 we analyze the
proposed method, we formulate basic assumptions and derive a convergence result.
Section 5 contains remarks concerning applicability of the method to the problem
underlaying. Section 6 is devoted to final remarks and conclusions.

2 Problem Formulation for a Laser Beam

The laser beam is an electromagnetic field, i.e. from a mathematical point of view
a vector field defined on R?. Usually we measure only one component of this field,
e.g. one component of the electric field u. (For technical details of measurements,
see e.g. [11, 17, 18].) A simplified mathematical model for a collimated laser
beam leads to the Cauchy problem for the Helmholtz equation on u. This problem
is ill-posed. Hence, its numerical treatment requires the application of special
regularization methods. For references to the extensive literature on the subject one
may refer to [7]. The Cauchy problem for the Helmholtz equation can be considered
on different bounded or unbounded domains, but the boundary conditions are always
given only on a part of the boundary. It is considered mainly on an infinite strip or on
arectangle or a cuboid. Methods for an infinite strip based on the equivalent operator
equation in the frequency space were considered for instance in [7, 14-16, 20, 21].
For a treatment of rectangular or cuboidal domains one may refer to [2, 12, 13, 22].

For formulating a mathematical model we follow the papers [14-16] where
the domain is an infinite strip and where the numerical analysis of a spectral
type regularization is presented for the reconstruction of the field. Consider the
Helmholtz equation

Au + Ku = 0 for (x,y,2) € 2 = R? x ©,s),
u(-,-,z) € L*(R?) for z € (0, s), (13)

where u is a component of the electric field, Au = wuy + uyy, + u; and k > 0
is the wave number. We assume that the boundary conditions are given only on
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I' = R? x s, i.e. on a part of the boundary 3£2:

u=g,onl,
u

=h, onl" (14)
0z

while on Iy = R? x 0, a source condition ||u(-, 0)| ., < E is assumed.

In practical applications, instead of defining the laser beam as a vector field, we
often describe it as a geometrical object. In the present paper we consider the axial
profile defined by the radii of the beam at the points z denoted by f(z). In general
the beam is not axially symmetric, i.e. it has different radii in directions x and y, but
for simplicity we restrict further considerations to the x, z plane.

In the literature there are many definitions of the radii of the beam (cf. [9, 19]),
but the most popular one uses the second moment of the power of radiation:

f@ = P;,(Z()Z) (15)
where
Pr.(z) = / ” / ” Xu*(x,y, 2)dxdy, (16)
and
o= [ [ ey an

is the total intensity of the beam on the cross-section at the point z.

In [15], the regularized solutions of the Cauchy problem for the Helmholtz
equation (13) (14) are employed to approximate the axial profile. In order to find
approximate beam quality parameters such as the waist of the axial profile of the
beam and its position, the axial profile has been approximated by a hyperbola.
It is reasonable, because in the case of a narrow beam the exact f is a hyperbola
(see [9, 10, 19)).

Therefore, in the case of axial profiles of laser beams we chose

2
F(viz) = \/az + Zz (z— )2, (18)

where v = (a, b, ¢) and

* ¢ is the center of the hyperbola,
¢ a denotes the transverse semi-axis,
* b denotes the conjugate semi-axis.
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The central equation of the hyperbola is generated by parameters v = (a, b, ¢)

x2 (Z—C)Z
@ I

Now F,+1(v) in (9) transforms D( F) C R* into R"*! where
D(F) :=[a,a] x [b,b] X [c,c]. (19)

We assume, that we are able to indicate a proper D( F) for the considered model.
Moreover, we assume that [c, c] € [s1, s2] C (0, s).
In the paper we will consider two cases:

1. for the exact f(z) there exist the unique vector v’ = (a', b", ¢) such that
f(2) = F(v":2) forz € (s1.52). (20)

2. there exists g € .% such that forany z € I, | f(z) — g(z)| < e for sufficiently small
€ and

g(z) = F(v':2) forz € (s1, ). (21)

The aim of consideration is to find the minimum of axial profile and the point where
itis attained. In the case when f is the branch of hyperbola then its minimum equals
a' and it is attained at the point z = ¢. In the second case a' is the minimum of g
and can be considered as an approximation of the minimum of f.

The finite set of noisy data f?(z) (4) can be obtained in the following way:

— An approximate value of f%(z) is obtained by quadratures applied to numerical
computation of a value of the functional (15) acting on the electric field u(-.z)
(on the beam cross-section at the point z).

— In practice, the available u(-, z) is always corrupted by noise. Instead of the exact
function in (15) we have measured u’ (-, z) or numerically computed ui @)

— If on the beam cross-section at a point z there are no measurements of the field,
we can reconstruct this field by solving an appropriate problem for the Helmholtz
equation:

e if z; € (s1,572) is less than the smallest point z for which we have measurement
data, then we have to deal with an ill-posed Cauchy problem for the Helmholtz
equation on R?> x (0,z) and for a field reconstruction we have to use some
regularization method.

e ifz; € (z,s7) than we can formulate a well posed boundary value problem for the
Helmholtz equation and obtain approximate field by a stable numerical method
(see [14]).
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3 Tikhonov Regularization

In this section we consider the system of equations (2) with a fixed set of points
{z:}'_,. In Tikhonov regularization method a solution of (2) is approximated by a
solution of the minimization problem

v = arg min {| Fx() — A + el -7} (22)

By the assumption on F, Fy is continuous and compact and D(F) is closed and
convex. Thus the minimization problem (22) admits a solution (see [6, Chap. 10.2]).
However, since Fy is nonlinear, the solution will not be unique, in general.

The problem of solving (22) is stable in the sense of continuous dependence of
the solutions on the data f8 (see Theorem 10.2 in [6]). The following convergence
result follows from [6, Theorem. 10.3]:

Theorem 1 Let f € .Z, the solution v’ of (2) be unique, and ||f1§, —fvll < 6. If a(8)
is such that

2
a(8) — 0 and —0asé — 0,
%

)
then

gg% Vgs) = V-

However, this theoretical asymptotic result is not very useful in practical situation
when we have to deal with given measurement errors. Moreover a small distance

between flf, and fy does not guarantee a small distance between arg min,¢; F (vg, )
and arg min e f(2).

4 Modification of Iterated Tikhonov Regularization

In this section we assume that f € F and F € C>(D(F) x I). Since

F(0)* (Fa(v) = f) + Bv — v]_))

is the gradient of the Tikhonov functional @, (v) defined by (10), minimization (11)
corresponds to the iteration

o= — ;F,;(v;z)* (Faol) —17). 23)
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First, let us prove that under some assumptions on the function F, vﬁ is well defined,
i.e., the Tikhonov functional @,(v) in (10) has unique minimizer in a closed ball
B,(v*) of radius p around v*.

Lemma 1 Let p, M, L, be such that

1. || F,(v,2)|| <M forv e B,(v*),z€l;
2. Vzel, ||F (vi,z) — F,(v2,2)|| <Llvi —v2 forvi,va € By(v™).

If B > M? + LC where C = sup{|| F,(v) —f3| : v € B,(v*), | f, = f2|| < 8}, then
v3 is uniquely defined.

n

Proof Suppose that vi, v, € B,(v*) are minimizers of @,. Using (23 ) we get

1

8 < F(v2)* (Fav2) = £2) = Fi(v1)* (Fa(v1) —f) o1 —v2 >

oy = val2 =
=é<0uw—ﬁ%@ﬁm—ﬁw@wrwﬁ>
+; < (Fu(v2) — Fu(v1)) , F(v1)(v) — v2) > .

Since the estimations 1-2 hold in particular for z € Z,, we conclude that
corresponding estimations hold for F,, and its Fréchet-derivative F/. Hence

1
i — va]* < P (CL + M?)|v — va|%,

It means that for 8 sufficiently large, |[v; — va| = 0.

Let us observe that (23) is a modification of the nonlinear Landweber iteration
[8] in which the operator F, changes at each step. Iterations with different operators
occur in Kaczmarz type methods (see [3, 4]). The convergence analysis presented
below follows the lines of the proof of convergence of an iterated Tikhonov-
Kaczmarz method established in [4].

Lemma 2 Forn>0

8 5 2 § 5 2
[ Fn+l(vn+1) _fn+1” < Fn+l(vn) _fn+1|| .
Proof v,+ is a minimizer of (10), thus

| Fu1 03 ) = f2 i 1P < @up1 (V1)) < Brgr (V).

Thus, Lemma follows from the equality

By 1(V0) = || Fu1 (00 — 2,11
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Lemma 3 Let us assume that for the exact f there exists the unique vector v’ such

that f(-) = F(v';-). If
v* € B,a(v') C D(F),

v’ € Byu(vh),

48,41\
B> ( ) .
o

and
[FATE Y[
then
vl,, € B,(v¥)
and

Upsr € Bo(v).

Proof From (10) and (11) it follows that

(24)

(25)

(26)

5 512 5 52 512
Bllveer = vall? < @ur1(Wp41) < Pup1 (V) = [l frer = £21 1P + BlvT — vy |1%,

since F,,+1(v") = f,41. Thus by (25) and (26)

Sut1

VB

$ § $ o
o1 —vnll < + " =i < 5

It means that for

§ § § § P P
lvg 1 — o7l < vy = vill + v = o) < 5Ty
Moreover, by (24)

vy — o™l < 034, =o' + " —v* < p

which ends the proof.

The proof of monotonicity of the method i.e., ||v2+l —vf| < v — v, can
be done like the proof of monotony property for an iterated Tikhonov-Kaczmarz
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method presented in [4, Proposition 1]. In particular, it is based on an auxiliary
lemma which for (11) takes the following form

Lemma 4 Let the assumptions of Lemma 3 be satisfied. If for some n < 1
| F(u:2) — F(v:2) = F'(v;2) (u = v)| < 5l F(u:2) — F(v;2)| 27)

holds for any u, v € B,(v*) and for n > 0, then
2
iy = v I1P = o) = of|1* < B Cor (1 =DChiy + (1 + D) (28)
where
Cort =1 Fur1 (W) = fapa .

Proof The assumption (27) holds for z € Z,+ and for u = vﬁ yandv = v, since
they belong to B,(v*) according to Lemma 3. Thus

5 5 5
I Fag1 (V3 4)) = Fagt 1) = Fl o (03, (i, — oD <

Nl Fag1 (0311) = Fup1 D). (29)
We have

$ 2 2 $ $ $
||vn+1—vT|| —||vn—vT|| §2<vn+1—vT,vn+1—vn>
2 § § ] § ]
= < Fn+l(vn+1) _fn+17 —F;+1(Un+1)(vn+1 - UT) =+ Fn+l(UT) + Fn+lvn+1) >

B

2
<4 Cl ol Fupr 024 ) = Fupr 1) 12, + fur |

2
+ < Fn+l(v2+l) _fj+1,Fn+l(UT) _frf-f—l - (Fn+l(vﬁ+1) _fr?-H) >

p

2
< ﬁCﬁH (n=DC + 4+ DI = farrll) -

This implies the assertion.

Theorem 2 If the assumptions of Lemmas 3 and 4 are satisfied and the constant t
in the stopping rule (12) is such that

1+n

T > s
I—n

(30)

then

8 §
i, =Tl < w3 =T forn < n..
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Proof In the first step of iteration we compute v;. If for n = 1 the stopping criterion
(12) is not satisfied (i.e.: 1 < ny) then

Cl = || Fi(v]) = f{]| > 76.

Moreover, Lemma 3 guarantees that v; € B p(vT). Thus from Lemma 4 and from the
assumption (30) it follows that

2
v§ —of 2 = v — vT|? < ﬁsc§ (n—Dr+@+1) <o0.

In particular v‘f € By (vT). Now, it follows by induction that Lemma 4 is applicable
for all 0 < n < ny, which ends the proof of Theorem.

Corollary 1 Let the assumptions of Theorem 2 hold. Then the stopping index ny in
(12) is finite and

1
ny <14 IB

5 _ 2
- t82(1—n)r—(l+n)”v0 vl

Proof Taking into account that Cl‘i > 16 for 0 < n < ny, and

(-1 + G40 = 0o+ s (T 1),

from (28) we get
R CUMRER BT EE A Ry D
Adding up these inequalities for n from 1 through n, — 1 we obtain
28200 _ £ 532 Bt s T2
87 (ny — 1) < ;(Ck) = d-mr—a +77)”v0 vl

which ends the proof.

Consider now the iteration process (23) for the exact data. The iterates are denoted
by v, in contrast with vﬁ in the noisy case.

Corollary 2 [If§ = 0, then from Theorem 2 and Lemma 4 it follows that

= _ 2 :3 * .12
2 M P =it = 70T =0 (3D

k=nyg
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Proof For § = 0, ny, = min{n > 0 : || F,(vy) — full = O}. If ny is finite then
Up, = vl and then from (10) v, = vl for any n > ns. If n, = oo then for any
n> 0, | F,(vy) —fu|| > 0. Thus (28) can be rewritten as

2
B (11— 77)” Fu(v,) —ﬁ1||2 = “Un—l - UT”2 - ”Un - UTHZ

and holds for any n > 0. By adding these inequalities for all n > 0 we get (31).

Convergence of the method can be obtained in a similar way as it was done for
the Landweber iteration in [6, 8] or for iterated Tikhonov-Kaczmarz method by De
Cesaro et al. in [4].

Theorem 3 If the assumptions of Theorem 2 are satisfied, then for the exact data
the iteration v, converges to v’ as n — oc.

Proof The proof is based on Corollary 2 and monotonicity of e, = |v, — v'|. The
proof follows the lines of the proof of [6, Theorem 11.4] or [4, Theorem 3.2].

Theorem 4 Let the assumptions of Theorem 2 be satisfied and let ny. (= n«(8)) be
chosen according to the stopping rule (12). Then

v, — vlas§ — 0.

Proof Because of the stability of nonlinear Tikhonov regularization (see [6, The-
orem 10.2]), we have continuous dependence of v’ on the data f° for any fixed
iteration index n. Now, the proof is analogous to the proof of [8, Theorem 2.6] and
will be omitted.

The next result shows that the considered method can be used for finding approxi-
mate value of z := argmin,¢;f(2).

Theorem 5 Let the assumptions of Theorem 4 be satisfied and let ny. (= n«(8)) be
chosen according to the stopping rule (12). If for v € B,(v*) and z € I

1. F(v;-) € C*(I), and co > 0 is such that F!(v;z) > co;
2. M, is such that || 3?};F(v; | <M,

then

M-
$ 201,,8
Zne+1 Zn*+1| = Co “vn* — Uny ” (32)

and

Zf,* —zlas§ — 0.

Proof Let § = 0 and z,4 := argminge; F(v,; ). Applying Taylor’s theorem to
Fl(v,:-) we get

Fl(vi;7") = @ = 204 1) F (v 2)
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for some real number Z between z' and z,4 . From this, it follows that
t L prip ot
|2 = zp1] < | Fl(vp:2")| — O as n — o0, (33)
Co ’

since the assumptions on F and Theorem 3 are satisfied.
Now, let us consider the noisy case. Let n = n«(6). Then

F/(Vn;2041) = 0 and F.(v3;2),,) = 0.
Utilizing Taylor’s theorem we have
0=Fl(v):2, ) =FL}:zap1) + @y — 2t )F (v5:2)
for some Zz, and thus
5 Lo s
lZp 1 — Znt1] < COIFZ(vn;Zn+1)|‘ (34)

Similarly, for some 9 from a neighborhood of v,,

d -
0 = Fl(vu; zut1) = FL(02;2041) + avF;(U;Zn+l)(Uﬁ —vp).
Hence
| FL(05; zpg1)| < Mol[vS — v, (35)

Now, (32) follows from (34) and (35). The convergence for § — 0 follows from
Theorems 3, 4 and (33).

5 Application to a Laser Beam Profile

Let r = 3in (3). If £°(21)./%(z2)./° (z3) are not collinear, the equation
F3 V= ff

has a unique solution which can be chosen as the initial guess v* of iteration process.
If £%(21),f%(z2),f% (z3) are collinear, we define

* — . F _ 5112 _ 2 ,
v argvgll)l(r;){ll 3(0) =315 + Bllv — voll*}
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where v, is an a priori information about the location of v'. Let subsequent elements
of the sequence (11) be denoted as

vy = (@, b c3)

according to (18). If vﬁ is computed, then without any additional computation we
have

argmin F(v’;z) = ¢ and min F(v};z) = d°. (36)
z€l z€l

Moreover, if vﬁ approximates v, then the minimum of f(z) as well as its
localization are approximated by a’ and c?, respectively, with the same accuracy.
If n« (= n«(8)) is chosen according to the stopping rule (12), then, in particular

|FSc8 ) —f(cd, )| < . (37)

The crucial point for stating the monotonicity (Theorem 2) and convergence
(Theorem 4) is the question whether the local tangential cone condition (27) is
satisfied. This problem is still open. The remaining constants appearing in lemmas
and theorems of Sect.4 can be computed and their values depend on a choice
of D(F) and I. For example, if D(F) = [0.05,0.15] x [5,15] x [15,25], then
| Fi)] < 1.

6 Conclusion

A new method for finding an approximate minimum of a real function f given
on a discrete set of points (where its values are given with some errors) has been
presented. The initial problem is replaced by that of finding d parameters (denoted
in the paper by v € R?) such that F(v, -) approximates f(-). Here F is appropriately
chosen and F (v, -) are functions whose minima can easily be calculated. The method
for finding v is a certain modification of the iterative Tikhonov regularization. Our
modification consists in introducing different operators at different steps of iteration.
Namely, we propose an iteration method in which the set of points (where noisy
data f® are taken) changes at every step of iteration; to the fixed set of points we
add additional one which is defined successively during iterations. In the paper the
convergence of the method is proved but the rate of convergence is still an open
problem.

As a motivation and illustration of the theory, the problem of identification of
laser beam quality parameters has been used. This theory can serve as a basis of
numerical programs in different applications, which will be a subject of forthcoming
papers.
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Tomographic Terahertz Imaging Using )
Sequential Subspace Optimization e

Anne Wald and Thomas Schuster

Abstract Terahertz tomography aims for reconstructing the complex refractive
index of a specimen, which is illuminated by electromagnetic radiation in the
terahertz regime, from measurements of the resulting (total) electric field outside
the object. The illuminating radiation is reflected, refracted, and absorbed by the
object. In this work, we reconstruct the complex refractive index from tomographic
measurements by means of regularization techniques in order to detect defects
such as holes, cracks, and other inclusions, or to identify different materials and
the moisture content. Mathematically, we are dealing with a nonlinear parameter
identification problem for the two-dimensional Helmholtz equation, and solve it
with the Landweber method and sequential subspace optimization. The article
concludes with some numerical experiments.

1 Introduction

Terahertz (THz) tomography refers to the nondestructive testing of dielectric objects
by illuminating them by electromagnetic radiation with a frequency of about 0.1-
10 THz and measuring the resulting total electric field, see, e.g., [6, 11]. In the
electromagnetic spectrum, THz radiation is located between infrared and microwave
radiation. We are thus dealing with a frequency range for which a neglection
of either the wave character or the ray character is not convenient. Radiation
with a lower frequency has a prominent wave character, and the description of
its propagation in space leads to typical scattering problems as in RADAR and
microwave tomography, or, in the case of mechanical waves, ultrasound tomography
[7]. Conversely, radiation with a higher frequency, such as X-radiation or gamma
radiation, can be treated by purely considering its ray character: the rays travel along
straight lines, which is used in classical computerized tomography [15].
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The inverse problem of two-dimensional THz tomography has already been
addressed by Tepe et al. in [20], where the algebraic reconstruction technique
(ART) has been modified to using refracted ray paths and taking into account
reflection losses. The mathematical model is based on the Radon transform along
these refracted ray paths. In order to complement this work, we now want to treat
an approach that originates from scattering theory. Note that our approach allows an
easy inclusion of the rather complex geometry of the incident Gaussian beam in the
model.

Outline Section 2 is devoted to a detailed analysis of the forward model of THz
tomography. We start by a deduction of the Helmholtz equation as mathematical
model for the propagation of time-harmonic terahertz waves using Maxwell’s
equations as a starting point (Sect. 2.1). Section 2.1 also contains a motivation of
the Gaussian beam as physical model for terahertz beams. As boundary values we
use the Robin condition mimicking the Sommerfeld radiation condition for bounded
domains. Existence and uniqueness of a weak solution of the arising boundary
value problem is proven in Sect.2.2. Since we intend to use iterative methods for
solving the inverse problem, we need Fréchet differentiability. We give an explicit
representation of the Fréchet derivative of the scattering map (Sect.2.3) and of its
adjoint (Sect.2.4). Finally we construct the so-called observation operator which
contains the details of the measurement process (Sect.2.5). This completes the
analytical model of THz tomography. Section 3 contains then implementations
and numerical experiments for solving the inverse imaging problem by using
Landweber’s method as well as regularizing sequential subspace optimization
(RESESOP). The reconstruction techniques are described in Sect.3.1 and the
numerical verification is contained in Sect. 3.2.

2 An Analysis of the Forward Operator in THz Tomography

We begin by introducing the physical basics and the notation. The overall goal
is a description of the nonlinear forward operator F, which turns out to be
the composition of a scattering operator S, the trace operator y, and a suitable
observation operator Q. The resulting nonlinear inverse problem

F(m) =y, (1)

where m represents the complex refractive index and y are the measured data, is
solved iteratively by the Landweber method and an adapted sequential subspace
optimization method that originates from the techniques developed in [21] for
nonlinear inverse problems, which are themselves inspired by subspace techniques
from the theory of linear inverse problems [14, 18, 19]. To this end, expressions of
the form F’(m)*( F(m) —y) need to be evaluated. We present all necessary tools and
analyze the occurring operators in detail.
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2.1 Physical Basics and Notations

Generally, the propagation of electromagnetic waves in space is described by
Maxwell’s equations, which are coupled first order partial differential equations
for the electric field E : R x R* — C, (1, x) +— E(z,x), and the induction field
B: R xR — C,(t.x) — B(t,x). If the wave travels through dielectric, non-
magnetic media, where the dielectric permittivity € : R? — R satisfies

V- (e®X)E(t,x)) ~ €(x)V - E(t,x),

and the magnetic permeability © = o is constant, the electric field E (and also the
induction field B) solves the wave equation

82
AE(t,x) — e(X) Lo o E(t,x) = 0.

If there are neither sinks, nor sources. In our case, we use time-harmonic electro-
magnetic waves E(z, x) = u(x)e™’ with a fixed frequency w, such that a separation
of variables yields the Helmholtz equation

Au(x) + Ku(x) =0

with k2 = w?e(x) 0. In vacuum, we have €(x)po = cy 2, where ¢y is the speed of
light in free space.

In absorbing, anisotropic media, we use a complex electric permittivity €(x) =
€1(x) + ie2(x) to model the absorption losses and write

k = koit = ko(n + ix),

where 71 is the complex refractive index, n is the refractive index and « is the
extinction coefficient. The Helmholtz equation thus reads

Au(x) + kZi*u(x) = 0. (2)

Note that the objects in question usually consist of plastics or ceramics (suitable
materials are discussed in [9]), which have a very small extinction coefficient in the
THz range. This implies a high penetration depth, explaining the relevance of THz
radiation in nondestructive testing.

The radiation that is used to illuminate the object is a time-harmonic, electro-
magnetic Gaussian beam ug : R3> — C? with a fixed wave number k, > 0. An
essential property of Gaussian beams is that they propagate in a certain direction, in
our case in y-direction. A mathematical description of Gaussian beams is given as
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an approximate solution of the paraxial Helmholtz equation

” + 2ik 9 + ” +2k2 Ju(x) =0
14 =
0x2 %9y T 92 0 '

which is derived from the Helmholtz equation Au+k%u = 0 in vacuum by assuming
that the change in the amplitude of the electric field in the direction y of propagation

is small compared to orders of the wave length. Each component ug of the electric
field u is expressed in cylindric coordinates by

W o koy — ¢ () + kor?
1= P T ) P k) @

where r = +/x2 + 22 is the radial component, ay is the amplitude at the origin,
Wy = W(0) the beam waist, the function ¢ (y) = arctan (3/y,) the Gouy phase, and
vo € R. The factor

2
R00=y(ﬂ+£)

defines the radius of curvature of the wavefronts. The function

y2
W(y) = Wo 1+ 5

Yo

is called the spot size parameter. A full derivation and discussion is to be found in
[17].

Let £2 C R? be an open, bounded domain with a C'-boundary 2. The incident
field, which is denoted by w;, is thus given analytically by (3). It approximately
solves the Helmholtz equation (2). The total field u; fulfills

Au + Ki*u, =0
in £2 and is obtained by the superposition principle as the sum
U = + ug, 4)
where u,. is the scattered electric field. Note that the low extinction coefficient
motivates the use of the superposition principle.
The superposition principle (4) and the Helmholtz equation (2) now yield the

scattered field u as the solution of the inhomogeneous Helmholtz equation

Aug + Bituge = (1 —ii*)u;.
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In the context of a (numerical) solution of the above partial differential equation,
we have to impose suitable boundary conditions on u.. The correct physical choice
are radiation conditions such as the Sommerfeld radiation condition. Since we are
required to work on a bounded domain, we use Robin boundary conditions that
approximate the Sommerfeld radiation condition and are sometimes referred to as
first order scattering boundary conditions. They are given by

ouc
* _ikoug = 0.

on

By aan we denote the partial directional derivative in the direction of the outward
normal vector n of the boundary.

Since we are interested in two-dimensional THz tomography, we make some
further simplifications. First, we only aim at reconstructing the object in the x-y-
plane, such that we define 7 as a complex function on §2 and neglect the influence
of the object outside this plane. Second, the use of polarization filters in the receivers
allows us to restrict our considerations to the z-component of the electric field u;.
Given the complex refractive index in £2, the z-component of the total electric field,
denoted by u,, is consequently obtained by solving

Ause + Kittuse = k(1 —iP)ui in 2,
Outg.

— ikouse = 0 on 0S2,
on

Use +ui = uy in £2,

where u; and ug. are the respective z-components of the incident and scattered field.

Remark 1 The propagation of THz radiation is barely influenced by the presence
of air. Consequently, the complex refractive index 71, of air fulfills 7, &~ 1 and
1 -2 ~0.

Generally, the complex refractive index nn : £2 — C is a bounded, complex-
valued function on §2. Note that the function 7 contains the same information as the
function 1 — 72%. This motivates the following definition.

Definition 1 Let m : £2 — C be the bounded, complex-valued function given by
m(x) = 1 —i?(x)

forall x = (x,y) € £2.

Remark 2 Obviously, we have m € L°°(£2). Since m vanishes outside the object,
we also have

m e L3, (2) 1= {f € *(2) : supp(f) € 2},

‘comp
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where the support of f € L?(£2) is defined as

supp(f) := 2\ U{U C 2 : Uopen, fly =0ae.}.
In summary, the inclusion
m € L®(2) N Ly, (2) € LX(2)

allows us to treat m as an element of the Hilbert space L*(£2), which is necessary
for the convergence of our reconstruction algorithms. For the subsequent analysis,
we will, however, exploit that m € L°°(§2). Furthermore, we define
2, — 2
Lo (82) := L(£2) N L, (£2).

From now on, we silently abuse notation and refer to m as the complex refractive
index of the test object.

2.2 Existence and Uniqueness of a Weak Solution

Up to now, we have discussed the physical model for the propagation of the THz
beam through an object with complex refractive index m. The first part of our
forward operator is thus given as the parameter-to-solution mapping, which maps
m to the total electric field

Uy = Ui + Usc in Qa (5)

where u; is the incident Gaussian beam and the scattered field us. solves the
boundary value problem

Auge + k(1 — muse = kgmu; in 2, (6)
9
¢ kot = 0 on 982 )
on

In a first step, we establish the existence and uniqueness of a weak solution u
of (6), (7), i.e., we show that there is a unique u € Hl([?), which solves the
respective variational problem

a(u,v) = b(v) forallv € H'(2), 8)
where the sesquilinear form a : H'(£2) x H!(§2) — C is defined by

a(u,v) := (Vu, Vo) 2(0) — K (1 — mu, V) 12(0) — ko, V) 12302y 9)
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and the linear functional b : H'(£2) — C by
b(v) := —kg(mu;, v)2(q)- (10)

Remark 3 The restriction of u € H'(£2) to 92 is to be understood in the context of
the trace operator

y: Hl(.Q) — L2(8[2), U ulye,

which is well-defined if 942 is of class C!. For reference, see, e.g., [2, 8].

Our approach is inspired by the analysis of the inverse medium problem by Bao
and Li in [3, 4]. We begin with a uniqueness result.

Theorem 1 For any m € Lgéfnop(ﬂ) with real part m; := Re(m) and imaginary
part mi = Im(m) < O there is at most one solution to the variational scattering
problem (8).

Proof We consider the variational problem (8) for v = u, such that a(u, u) = b(u).
Due to the linearity of the elliptic partial differential equation it suffices to show that
u = 0 in case there is no incident field, i.e., u; = 0. We then have

a(u,u):/ Vu-Vudx—k(z)/(l—m)u-udx—ik()/ u-udsy =0.
Q Q2 Ele)

We write m = m, + im; and obtain

ik(z)/ miu-udX:ikO/ u - udsg
2 a2

for the imaginary part of the previous equation. We thus have
2 _ 2
”u”LZ(a_Q) = ko / m;ilu|~dx < 0,
2

as m;(x) < 0 for all x € 2. This yields u|3e = 0, such that our boundary condition
now reads gz = 0 (Neumann boundary conditions) as well as m; - [u]> = 0 a.e.,
which implies m; - u = 0 a.e.. Hence, it remains to show that there is at most one

solution of the Neumann boundary value problem

Au+ k(1 —m)u=0  in,

(11)
Ou =0 on d52.
on

Corollary 8.2 from [10] yields # = 0 in (11) on §2 and consequently, we have u = 0
on £2. O
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Remark 4 The condition m; < 0 holds naturally due to m = 1 — (n + ik)?> =
1—-n?24+«%—i-2nk andn > 1,k > 0. More precisely, it suffices that m; < 0 almost
everywhere in £2.

Having established the uniqueness of a solution of the variational problem (8),
we now have to prove its existence. In the following, we will always assume that the
complex refractive index m satisfies

Im(m) <0,

such that we can apply Theorem 1.
Throughout this section, let ¢; > 0, j € N, be positive constants.

Theorem 2 Let 2 be a bounded domain with Cl-boundary 902, ko € Rt a
nonnegative constant and u; € H'(82) the incident field. If m € L% (R2), the

‘comp
variational problem (8) possesses a unique, weak solution u € H'(2) satisfying

lull (@) < Cillmllzee (@) uill 20) (12)

for some constant C; = C|(ko, £2) > 0.

Proof We split the sesquilinear form a from (9) in two sesquilinear forms a;, a; :
H'(2) x H'(£2) — C, where

ai(vi, v2) = (Vui, V) 2oy — iko(v1, v2) 12 302).
and
ar(v1,v2) = —((1 —m)vy, Uz)Lz(Q),
such that
a=a + k%az.

Note that a, can be defined on L*(£2) x L?(£2) as well.
‘We first show that a; is bounded and coercive. From

lai(vi, v2)| = Vil (@) - V2l (@) + ko [Vill200) - V2l 200

IA

villa @) - lvallar @) + ciko o1 llg o) - V21l 0

IA

crkollvillg ey - Iv2lla (@)

we obtain the boundedness of a;. We have used the semi-norm |- () on H 1(£2),
given by

|v|§11(9) =/QVv-Vvdx
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and satisfying |v|y1 o) < [|[v]lg1(g). and the trace theorem (for reference, see, e.g.,
[1, 8]). The constant ¢, > 0 depends only on £2.
The coercivity of a; is obtained by estimating

1/2
(@10, 0)| = (Il gy + KBIV 12 o))

>3 (|v|§11(9) + kO”””iz«;Q))

> C4k0”v”§11(9)7

using the equivalence of the Euclidean norm and the £'-norm on R?,

“(|U|12L11(9)’kO”””iz(aQ))T”z Z ¢ ”(|U|12L11(:2)’kO”””iZ(aQ))T 1’

and a norm equivalence that can be found in [2, p. 214]. The constant ¢4 depends
only on £2 (also [2, p. 214]).
In the following, we denote by

@ : H'(2) > (H'(2)*. v (0. ) e

the isometric Riesz isomorphism (see, e.g., [5] and [22], Theorem V.3.6). The Lax-
Milgram lemma yields the existence of an isomorphism 7' : H'(£2) — H'(£2) with
1Tl (2)>m1(2) < c2ko and [T~ |10y a1 (@) < (cako) ™', which satisfies

ar(u,v) = (Tu, v)y1 ()

for all u,v € H'(£2) (this operator is associated to ay, see [5, 16]). Now consider
the mapping

B LH(2) —> (H' ()", s> ax(s.),
which is well-defined and the mapping as(s, ) is antilinear for s € L*(£2). For

w € H'(£2), we write Zs[w] = a(s,w). For all s € L*>(£2) and v € H'(£2), we
have

lax(s, v)| = [((1 = m)s, U)LZ(Q)‘ < 1T =mlre@) sz @) lIvilzz )
< | =m|lzoe@) sl 22y 1V a1 ()

Consequently, a; (s, -) is continuous and we have

llaz(s, Ml 2y < 11— mllreo@)llsll2(e)-



270 A. Wald and T. Schuster
This estimate also yields the boundedness of the linear mapping % with
|8l 12 (2)— @ @)y = 11 —ml|Loe ().
We now define the linear operator
o =T'd7' B : [X(2) > H(R).
Consider the operator
o [X(R2) > H'(2) = LX), s~ ds.

Since H'(£2) is compactly embedded in L?(2), &7 : L*(£2) — L*($2) is compact as
a composition of a compact and a bounded linear operator. Note that .27 (L?*(£2)) C
H'(£2). We obtain for every s € L?(£2) the estimate
1 sl @) = 15l i) < 1T m@y—mi@ - 197" Bsllgi @
< (cako) "M Bs |l 2y < (cako) ™' 11 — mllpoo (@) Il 22

and compute

a (s, w) = al(;fs, w) = al(T_IQ_lﬂs, w) = (45_1%& W)HI(Q)

= (@(@~' Bs))[w] = Bs[w] = ax(s, w).
It is easily verified that .7 is unique having this property.
By I : [*(2) — L*(£2), we denote the identity mapping in L*(£2). In the next

step, we show that for every ky > O the operator / + k%ﬁ% is injective.
Lets e JV(I + k(z)xz%) C L*(£2). Then we have s = —k3.o/s € H'(£2) and thus

a(s,s) + kéaz(s, s) = al(— k%;zfs, s) + kéaz(s, s)
= —k(z)al(xzfs, s) + k%az(s, s)
= —k(z)az(s, s) + k(z)az(s, s) =0.
Our uniqueness result, Theorem 1, now yields s = 0. Hence, the operator I + k%;af
is injective.
Consider now the (antilinear) functional b € (H'(£2))*, see (10), and let u €

H'(£2). Using the definitions of a;, ay, and the operator <7, we see that our original
variational problem of finding u € H'(£2),

ai(u,v) + kéaz(u, v) = b(v) forall v e H'(£2)
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is equivalent to finding u € H'(£2), such that

b(v) = ai(u+ kg Au,v) = (T(u+ kjt), v)

HY(2)

for all v € H'(£2). This yields @(T(I + kj/)u) = b and we finally obtain u =

(I + ko )_1 T~'®~1(b), such that our variational problem has at least one solution
u € H'(£2). Now put

i=T"'9o71(b)
and we see that
b(v) = (®Tit)[v] = (Tii,v) = a(@t,v)  forallv € H'(£2).

Since .27 is compact and I + k%ﬁ% is injective, the Fredholm alternative is applicable
and yields the existence of a unique u € H'(£2), such that

(I + Ko )u =i, (13)
and the boundedness of the inverse of I + k%;af ,1.e.,

| (7 + kg (14)

)_l ||H1(9)—>H1(9) = s,

where ¢s = ¢s(ko) depends on the wave number k. We estimate

lulliny < |7+ | 1 o il oy
=¢s ” T ||H1(S2)—>H1(.Q) Hq)_lb“m(g)

< cs(cako) ™! “q)_leHI(Q)

and together with the boundedness of b, which we derive from
||b||(H1(9))* = sup [b(v)|= sup |k(2)(mui, V)|
|v|H1(Q)=l ”v”[.ll(g):l

2
< sup  kpllmllzeo(@)lluill 2 IV llz22)
oll gy =1

2
< sup kplmllzo @) lluill iz lvlla )
”v”Hl(g)=l

2
< kgllmllroo @) lluill 12(2)
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we finally arrive at
-1 2
||”||H1(:2) < ¢5(cako) ! 'k0||m||L°°(9)||”i||L2(Q)
= c;'cs - kollmlloo (@) lluill 2 @)
= Ci|lm||ree () luill 222

where C; = ¢} '¢s - ko depends on kg and 2. O

We now define the first part of our forward operator, the so-called scattering
operator.

Definition 2 Let u; € H'(£2). We define the mapping
S:2(S) - HY(R), m— S(m) = u,,
where
comp

2(8) € {m € 122 (2) : [mlzeo(e) < M and Im(m) < o}

for some fixed M > 0, such that u; = u;+uy. and uy. is the solution of the variational
problem (8) of the boundary value problem (6), (7).

Note, that S is well-defined according to our previous results. The analysis of S is
concluded by a continuity result. In the following, we always refer to weak solutions
of the occurring boundary value problems.

Lemma 1 Let my,m; € 2(S). Then S is Lipschitz continuous on 2(S), i.e., we
have

[[S(m1) — S(mZ)”Hl(Q) =G m - m2||L°°(.Q) ||”i||L2(.Q) ) (15)

where Cy = C; (ko, 2) > 0 and u; € H'($2) is the incident field.

Proof We set uyy := S(m1) — u; and u(z) := S(my) — u;, such that
2 ) L
Augyy + kg (1 —my) ugyy = kgmui,  j =1,2. (16)
From Theorem 2 we deduce that
i |12y = Crllmllzee () lluill 2o - (17)

By subtracting Eq. (16) for j = 2 from the one for j = 1 and by setting w :=
(1) — U(2) we obtain

Aw + K (1 —my)w = kg (my —ma) (ui + ug)) -
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Note that w satisfies the Robin boundary condition of our scattering problem, such
that we can apply Theorem 2. We thus have

Wl @) < Cillmy —malloe ) [ui + uey| o q) -

Combining this estimate with ||u(2) ||L2(Q) < ||u(2) HH‘(Q) and (17) forj = 2 yields

I1S(m1) = Sm) |1y = [uay — ue) ||H1(9)

< Cillmi — ma|lroo (@) |ui + u) ||L2(Q)

< Cillmy —my||roo () (||Mi||L2(Q) + ue HLz(Q))
< Ci(1 + Cillma oo (@) llmy — ma|lLoo (@) Nuill 2
< C(1+ CM)|lmy — ma|l o) lluill 2q) -

By setting C, = C; (ko, £2) := C) (1 + ClM) we obtain the continuity estimate (15).
O

2.3 The Linearized Scattering Problem

In the numerical reconstruction of the complex refractive index, the linearization
of the scattering map S in m € 2(S) plays an important role. Before proving the
Fréchet differentiability of S, we define a further parameter-to-solution operator that
will prove useful for our further investigations.

Definition 3 For a fixed m € Z(S) and the respective total field u; := S(m), let
T, : 2(S) — H'(£2) be the operator that maps 1 € Z(S) to the unique (weak)
solution of the boundary value problem

Aw + k(1 —m)w = k3h - u, in £, (18)
d
Y ikow = 0 on 982. (19)
on

Let us for now assume that S is Gateaux differentiable in an open neighborhood
of m € 2(S). The Gateaux differentiability in m yields the existence of the limit

fim (S(m + ah) — S(m))

a—0 o

. he ().

The boundary value problem (18), (19) is obtained from the original scattering
problem (6), (7) by considering, for m € Z(S), the perturbed boundary value
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problem
Augen + k(1 — (m + ah))usen = kg (m + ah)u; in 2,
3 sc
Hsch - l'k()usc,h =0 on B.Q,
on

where ug. := S(m + ah) — u;. As before, we define ug. := S(m) — u; and note that
both fields us. and uy.j fulfill the Robin boundary condition (7).

Note that g, usen € H 1(£2), which follows from our analysis of the scattering
map S. We subtract the Helmholtz equation for u. from the one for uy.;, and obtain

A(S(m + ah) — S(m)) + k3 (1 — m)(S(m + ah) — S(m)) = k2 (S(m + ah))ach.

We divide this expression by « and consider the weak formulation (8) of this partial
differential equation,

/Vua'VvdX—k%/(l—m)ua~vdx—ik0/ ua-vdsxz—k(z)/ mu; - v dx,
I?; I?; FYe) I?;
(20)

where we replaced u by

_(SGn + ah) — S(m))
o= , .

We postulated the existence of the limit limy—¢ 1, and assume |¢| < o for some
a > 0. Note that due to our previous findings, we estimate
Vugll2(2) = ualm (@) < luallm o)

< c(ko, o, 2, [|m| oo (@) 1]l oo (2) Uil 12 (2) -
As a consequence,

sup (Vug - Vv) € L'(R2).

lor|<a
Obviously, our previous analysis also yields

sup ((1—mug-v) € L'(2). sup (uy-v) € L'(32). sup (mu;-v) € L'(2).

lo|<a lo|<a lo|<a

We let « tend to zero in (20). The dominated convergence theorem (see, e.g., [12])
now allows us to interchange limit and integration. Additionally, the continuity of
the operator V : H'(§2) — L*(£2), which follows from ||Vu| 20y = |ulgi@) <
lull g1 (), allows a further interchange of limit and differentiation. We thus derived
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a variational formulation of
AijO”a +k5(1 m)olélﬁ%)”“ ke 1112}) (S(m + ah))h

with Robin boundary conditions. Since S is continuous, the right-hand side con-
verges to k(z)S(m)h for « — 0. Now define

) ) (S(m + ah) — S(m))
w:= lim u, = lim ,
a—0 a—0 o

which satisfies the inhomogeneous Helmholtz equation (18). This yields a candidate
for the Fréchet derivative of the scattering map S in m. We will further investigate the
linear mapping T,,, prove that S is Fréchet differentiable and show that its Fréchet
derivative coincides with the operator 7.

Similar techniques as applied in the previous section allow us to prove the
existence of a weak solution w € H'(£2) of the boundary value problem (18), (19),
such that 7,, is well-defined on Z(S). Also, we can deduce that 7,, is bounded and
therefore continuous. We will skip the proof as it is similar to the proof of Theorem 2
and the subsequent statements.

Lemma 2 Let m € 9(S) and u; € H'(£2) be fixed. The operator
Ty : 2(S) - HY(2), Tph:=w,

where w is the unique weak solution of (18), (19), is linear and bounded. For h €
2(S), we have

1Tnhll g2y < Ca Al ooy « Uil 2(g) - (21)

where C3 ;= C1(1 + C1M) > 0 depends on ky, 2.

Let us now consider the mapping
T: 9(5) > L(2(8), H'(R)), m+>T(m) := T,

This operator maps a bounded, compactly supported function m to the respective
linear operator 7,,. We can formulate a continuity result for this mapping.

Lemma 3 Let my,my, h € 2(S) and u; € H'(2). The mapping 7fulﬁlls
H?‘(mﬂh —7(m2)h\|H1(9) < Cy|lm — m2||L°°(Q) : ||h||L°°(9) : ||“i||L2(Q) ) (22)

where Cy = C4(k0, [2) > 0.
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Proof For w; := T(Mj)h = Ty;h,j = 1,2, we have
Aw; + k(1 — my)w; = koh - S(m).
By subtracting these two equations from each other, we obtain
A(wi —w2) + k(1 = my)(wi — wa) = kgh(S(my) — S(ma)) + kg (my — ma)w.
Using the previous arguments again, we obtain

w1 = wallg (@) < ko (||h||L°°(.Q) ISCm) = S(m2) || g (2
+ [lm1 — ma| oo () - ||W2||H1(.Q)) .
Finally, we use Lemmas 1 and 2 to further estimate
Wi = wallg @) < ko(Ca + C3) ||hll oo gy - lm1 — ma|l oo () - uill 22y

and set Cy := ko(Cy + C3). O

Theorem 3 The operator S from Definition 2 is Fréchet differentiable with respect
tom € Y(S). The Fréchet derivative in m € Z(S) is the linear operator

S'(m): 2(S) - H'(2), h— S (m)h = w,

where w € H'(2) solves the linearized boundary value problem

Aw + KB (1 —m)w = Ku, - h in 2, (23)
d
Y ikow = 0 on 982. (24)
on

The function u, := S(m) is the weak solution of the scattering problem (5)—(7).
We thus have S'(m)h = T,,h for all h € 9(S) and S'(m) is continuous.

Proof If there is a positive constant C5 = Cs(ky, §2), such that the estimate
1SGn + ) = S(m) — Tuhllg @y < Cslhllfoo () - luill2(2) (25)

holds for m, h € 2(S), we are done.
Define the functions

Usc .= S(m) — Ui,
Usch = S(m + h) — Ui,
w:= T,h,
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which fulfill the Robin boundary condition and

Ausc + k%(l - m)l/lsc = kémui,
Ausc,h + k%(l — (m =+ h))usc,h = k%(m + h)ui,
Aw + k(z)(l — m)w = k(z)h(uSC + ui).

From these equations, we obtain for v := ugp — tse —w = S(m+ h) — S(m) — T,,h
the Helmholtz equation

Av + k(%(l —mpy = k%h(usc,h - Msc)v
and since v satisfies the Robin boundary condition (7), we estimate

[Vl 2) < Cr oo (@) - 1usen — tsell 2 ()
< Cihllpeo (@) - Nusen — scll )

= CICa|hlzoo o) - il 2o -
where we used Lemma 1. Resubstituting v again, we finally have shown
IS+ h) = S(m) = Tl () < Cs hl7os ) - i

with Cs = Cs(ko, §2) = C1C, > 0. The continuity of S’(m) is a direct result of the
boundedness of Tj,. |

Lemma 4 Formy,my € 2(S), the operator S fulfills the estimate

[S(m1) — S(mz) — S (m1)(my —ma)| 122

(26)
=< Cs - IS(m1) — S(m2) | 12(2)»

where Cg = C(,(ko, .Q,M).
Proof Letuy := S(my) — us, up := S(my) —u; and w := §’'(my)(m; —my) satisfying
Auy + k%(l —mpu; = k%mlui,
Auy + k%(l — }712)142 = k%}’l’lzui,
Aw + (1 —my))w = kK (my — ma)(u1 + u;).

Additionally, u;, u>, w, and consequently u; — u, — w obey the Robin boundary
condition. In particular, we have u;,u,,w € H 1(.Q) - Lz(.Q) according to our
previous results.
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Subtracting the equations for u; and w from the one for u; yields
Auy — uy —w) + k(1 —my)(ug — uz — w) = k(my — ma)(uz — uy).
As before, we now estimate

lur —us — w2y < llur — uzs — wllgi (g
< Cy-|lmp —ma||pee(@) - lur — uall 2o

< Ci-2M - |y — wo|| (),

which is equivalent to (26) for C¢ := 2CM due to our definitions of u;, u,, and
w. O

Remark 5 For the constant Cy in the estimate (26) holds
Ce(ko, 2,M) < 1 27)

for M sufficiently small. Lemma 4 then states the validity of the tangential cone
condition for S,

1S(m1) — S(mz) — S (my) (my — m2)||L2(_Q) < ceel|S(my) — S(mz)”LZ(.Q) (28)
with a constant ¢, < 1 for all m,my € Z(S). Note further, that the value of
Ce in (26) depends in particular on the wave number k) and has to be adapted

when working with different frequencies. Finally we like to emphasize that the
estimate (26) is valid in H'(§2) as well, according the proof of Lemma 4.

2.4 The Adjoint Linearized Scattering Operator
on the Boundary

We define the composition of the operators y and S'(m), m € 2(S), by
T D(S) — L*(3R2), h > yS'(m)h.
Let o € L*(0£2). We want to find a function 8m € L?(£2), such that
T¥o = dm. (29)

For that purpose, we will consider the standard L*-inner product, such that for n €
L*(£2) we have

(8m, ﬂ)LZ(Q)xLZ(Q) = (9;0» ﬂ)Lz(Q)XLz(Q) = (o, ym’I)L2(<’)Q)><L2(a:2)-
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Theorem 4 There exists a ¢ € H'(2), such that
T*o = ki -S(m) - ¢, (30)

where m € Y(S). The function ¢ is uniquely determined as the weak solution of the
adjoint problem

A + k(1 —m)p = 0 in 2, (31)
ad
¢ + ikop = —0 on d52. (32)
on
Proof Let w := S'(m)h = T,h. Consider the inner product (-,-);2(2)xz2(2) Of

Eq. (23) with some ¢ € H'(£2),

/ Awg dx + k(%/ (1 —m)wg dx = k(%/ h-ug dx, (33)
2 2 2

where u, := S(m) denotes the solution of the direct scattering problem (5)—(7).
With partial integration, we obtain from the first term

/Aw¢ dx:/ awd) dsx—/ wa¢ dsx—}—/ wA¢ dx.
2 a2 On ae  On 2

By applying the boundary condition (19) of the linearized problem, this yields

/QAwqb dx:/mw-(—ikoq&— ?}ﬁ) dsx+/QwA¢ dx.

The second term of (33) is rewritten as
K2 / (1 —m)weg dx = / w(kZ(1 —m)¢) dx.
Q2 2
By setting 7*0 = kJu¢, the right-hand side of (33) yields

k(%/ h- Ltt¢ dx = (ymh,O-)Lz(ag)xLZ(ag) = / wo dSX.
2 2

Summarizing the above results we obtain

/w.(A¢+kg(1—m)¢>) dx=0
2
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and

/ w- (—ik0¢ — 0¢ —0) dsx = 0.
R Bn

As the weak solution w of the linearized scattering problem does generally not
vanish on either £2 or its boundary 952, ¢ fulfills the postulated boundary value
problem from Theorem 4. The existence and uniqueness of a weak solution ¢
of (31), (32) can be derived by similar calculations as in the preceding section. 0O

2.5 The Observation Operator

For our numerical reconstructions, we have to specify the observation operator and
find an expression for its adjoint. We assume there are N € N receivers that measure
the total electric field on the boundary of §2. In order to increase the amount of data
points, the tomograph is rotated around the test object in J € N equidistant steps
0 = (— 1)21” ,j = 1,...,J. The emitter also serves as a receiver. However, the
incident field u;, and correspondingly also the scattered field ug, the total field u;,
the scattering operator S, and the observation operator Q depend on the position j of
the tomograph. We indicate this dependence by an additional index j.

The receivers’ surfaces are denoted by E, forv =1,...,N. A sketch of the setup
is given in Fig. 1.

Definition4 For each j = 1,...,J, the observation operator 0/ maps
the (restricted) electric field yu/ € L2(02) to the measured values y/ =

. NT _ o
(y{, . ,y‘;\,) € CN by y/ = Q/(yu’), where

o 1*32) — CV,

. (34)
[0 — ( / el (x)p(x) dsx) .
bled v=1,...N

The functions ¢} : 02 — [0,00), v = 1,...,N, are called the sensor
characteristics.

Obviously, the observation operator Q” is linear and bounded. The adjoint (Q/)*
of Q7 is given by (Q/)* : CN¥ — L?(352), where

N
B=(Bu=1..n (@)B=D Puel. (35)

v=1

Together with our previous results, we have derived a complete representation of
the forward operator F/ = Q/y¥, its Fréchet derivative (F/)'(m) = Q’y(§') (m)
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Ay
J
E,
— e .
E] E!
Q
L/ /\) XV
Ej E{
J
E
Fig. 1 Sketch of a THz tomograph with N = 6 receivers E{, v =1,...,6, where the receiver E{

also serves as an emitter

inm € 2(S) and the adjoint of ( F/)'(m). In summary, the inverse problem of THz
tomography is formulated as the collection of operator equations

Fl(m) =y, j=1,...,J,

3 Numerical Reconstruction of the Complex Refractive
Index from Simulated Data

This section deals with numerical reconstructions of tomographic THz data, where
we use iterative solvers as the Landweber method and sequential subspace tech-
niques (RESESOP). Nonlinear inverse problems (1) are usually solved iteratively,
and for both methods it is essential to have gradients

g(m) := (F'(m))" (F(m) — ")

of the functional é||F (x) — y%||? available. Due to our previous results, we are able
to determine the gradient g/(m) = ((F/)'(m))"(F/(m) — y¥) in m € 2(S) for
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each positionj = 1, ..., J. However, since we have to evaluate two boundary value
problems in order to calculate g/(m), it is desirable to reduce the number of iterations
until the stopping criterion is fulfilled. The (regularizing) sequential subspace
optimization method ((RE)SESOP) has been developed for this purpose [21]. In
the subsequent sections, we first give an overview of the applied reconstruction
techniques, before we present some numerical reconstructions of m from synthetic
noisy data y* € C¥*/,

3.1 Reconstruction Techniques

The RESESOP method, which is used to solve the inverse problem of THz tomo-
graphy, is a slight variation of the RESESOP algorithm with two search directions
as presented in [21]. Generally, the methods discussed in [21] are suited to solve
nonlinear inverse problems in real Hilbert spaces. In the case of THz tomography,
we are dealing with an inverse problem in complex Hilbert spaces. We give a short
introduction to sequential subspace optimization and derive a method that meets the
requirements of complex Hilbert spaces.

The basic idea of sequential subspace optimization is to reduce the number of
iterations by projecting sequentially onto suitable subsets of the source space in
order to find an approximate solution of a nonlinear operator equation

F(x) = y.

Ineachstep n € N, we choose a finite index set Iﬁ C N. The subsets are intersections
of stripes

§ . § 6 &8 s
Hn,l =H (un,l’ an,l’ gn,l) ’ le In’
where u} , is the normal vector of the bounding affine hyperplanes, o} , is the offset,

and £, > 0 determines the width of the stripe. A stripe in a real Hilbert space X is
defined as

Hu, o, &) = {xEX : | (u, x) —a‘ < E} .
It is essential that each of these stripes contains the solution set of the unperturbed
operator equation. The shape, i.e., the width and the normal vector, are chosen such

that the nonlinear character and the noise level § are taken into account, guaranteeing
a descent property of the form

A e e e
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where {x2} is the sequence of iterates and C, > 0. This is realized by an iteration of
the form

8 0 5 8
xn+l =X, Z tn,l : un,l’ (36)

lers

and the optimization parameters 3 ; are calculated such that the current iterate x5 is
projected onto the intersection of the respective stripes Hﬁ’ nl€ IS.

For our reconstruction, we specify the index set as I,f := {n—1, n} and the search
directions “Z,z = gf for all n € N. The result is a fast regularizing method with two

search directions per iteration. For the stripes H® , where [ = n — 1,1, we choose

nl>
the offset
0‘5,1 = (“i,z’x?)
and the width
3§ = IR - (8 + ce (IR + 6)),

where § is the noise level and ¢, is the constant from the tangential cone
condition (28) with S replaced by F'. The norm of the residual

S . 8 )
R, :=F(x;) —y

not only occurs as a factor in the width of the stripes, but is also needed for the
discrepancy principle.

In the following, we will take a closer look at our inverse problem of THz
tomography,

Flim)=y% j=1,...1J.
Note, that F/ : L*(£2) — CV is a nonlinear operator between complex Hilbert
spaces.
Remark 6 The search directions we use in our RESESOP algorithm (36) are

averaged gradients

J

1 s 1 NP .
o=, 8 = () ()" (Fm) =) G7)

j=1 j=1

Before we are able to apply the RESESOP algorithm, a small and straightforward
adaption is necessary: The source space is a complex Hilbert space, whereas the
algorithm requires it to be a real Hilbert space. By splitting up the gradient into
real and imaginary part, we obtain separate real-valued search directions. The new
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iterate is then obtained by a separate subspace optimization for real and imaginary
part. This means that the full forward model is used to calculate the search direction
F'(m,)* (F(m,)—y"), whereas the step width is determined individually for real and
imaginary part:

5
My,

Re(md, ) +i-Im(md )

Re(mf’;) — Z tﬁj . Re(glg) +i- Im(m‘s) — Zt Im(gl

lers lers

The optimization parameter t z is calculated such that Re(m?) is projected onto the

intersection of the stripes H ', = n — 1, n, with width

o
oy = (Re(g}), Re(mp))

and offset

& = IR - (8 + ce (IR}l + ).

The stripes H, 1 are defined analogously. Note that the width of the stripes must not

be adapted, as it is influenced by the norm of the residual R?, which is determined
by the full forward problem. We set

||Ri||: max |[Fm) =y

The iteration is stopped by the discrepancy principle after step n. satisfying

rnaX HFf(ms) y/8H <-[5< max ||F/(m8)— j8“

for all n < ny.

3.2 Numerical Experiments

We start with an example of a reconstruction from simulated data that were
generated in a test with radiation of the frequency f = 0.1 THz. The second example
serves as a performance test for the two techniques.
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3.2.1 An Example in the THz Regime

For our first numerical experiment, we choose a plastic block with a complex
refractive index m; := 1 — (1.5 4+ i - 0.005)> = —1.249975 — i - 0.015 as a test
object and assume the outer interfaces to be known. Inside the object, there are
two inclusions. One is a hole filled with air, which thus has the complex refractive
index m, = 0, the other one consists of an optically denser material with complex
refractive index m3 = 1 — (1.8 4 i-0.02)> = —2.2396 — i - 0.072. There is no a
priori information about the inclusion or any material parameter. Note that the size
of the inclusions is of the order of the wave length of the THz beam. The domain in
which we reconstruct m is set to

2 = {xeR*: x|} < (0.04m)*}.

The exact real and imaginary part are displayed in Fig. 2.

For the generation of (noisy) data we use the parameters in Table 1.

We set the starting value to mo(x) = (=1 —i-0.001) - yp(x), where the support
of the (intact) block is denoted by D = {x € §2 : —0.0015m < x,y < 0.0015m} and
xp is the characteristic function of D.

0.05 0 0.05 0
0.04
0.04 0.01
0.5
0.03 0.03
-0.02
0.02 1 0.02
0.01 0.0l 0.03
0 L5 0 0.04
-0.01 -0.01 0.08
2
-0.02 -0.02
-0.06
-0.02 -0.03
25
-0.04 -0.04 007
0.05 0.05

-0.05 ]

-0.05 o

(a) (b)
Fig. 2 Real (a) and imaginary (b) part of m

Table 1 Parameters of the

Parameter Value
numerical RESESOP F 01-102H
experiment requency f o z

Wave length A 2.998- 1073 m

Beam waist W, 0.015m

Rayleigh zone y, 0.02m

Number of receivers N 40
Number of positions J 180
Ctc 0.9
T 20
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-0.01
-0.02

-0.03

-0.04

-0.05 -0.05
-0.05 0 0.05 -0.05 o 0.05

(a) (b)

Fig. 3 Reconstruction mﬁ* of real (a) and imaginary (b) part of m after n,. = 30 iterations with

the RESESOP method (using two search directions). The object was scanned using a Gaussian
beam of frequency f = 0.1 THz

The occurring boundary value problems are solved numerically with a Matlab
solver, which uses the finite element method with linear basis functions. The
maximal size of the finite elements should not exceed a tenth of the wave length.
Since the numerical effort to solve one boundary value problem grows quadratically
with the wave number, these evaluations are expensive.

The implementation of the observation operator, however, leads to an unavoid-
able error in the data, which we take into account in an increased noise level.
Additionally, we add 2% uniformly distributed noise to the data.

As the plots in Fig. 3 indicate, the real part of the complex refractive index is
reconstructed satisfactorily (with a relative error of 7.98%), allowing quantitative
and qualitative conclusions, also on location, shape, and size of the inclusions.
However, the reconstructed imaginary part does not yield any information on the
value of Im(m), but admits a localization of the inclusions. A possible reason
might be the model itself, which is based on several assumptions that hold only
approximately (such as the idealized Robin boundary conditions).

Remark 7 There are a lot of parameters occurring in the model, and also in the
RESESOP algorithm, that need to be chosen by trial and error. This leaves some
room for further improvement. Due to the numerically expensive evaluations of the
boundary value problems, a thorough testing of the parameters is time-consuming
and not very economical. This underlines the necessity of faster reconstruction
methods such as the RESESOP method.

3.2.2 A Comparison of Landweber and RESESOP Method

In an additional experiment, we have compared the performance of our RESESOP
method with the standard Landweber method

8 § $ 8
m, = m, —wg,(m,), neN,
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with a fixed relaxation parameter w (see, e.g., [13]). Both iterations were stopped
by the discrepancy principle. We used microwave radiation with a frequency of
2.5-10'"Hz in order to reduce the computational effort. We tested an object as in
the previous experiment, but with larger inclusions (due to the lower frequency).
The object’s complex refractive index is plotted in Fig. 4, along with the respective

reconstructions.
0.05 0.05
0.04 T
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o 0
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Fig. 4 Real (a) and imaginary (b) part of m and the respective reconstructions with the Landweber
method ((c) and (d)) and with the RESESOP method ((e) and (f)), respectively
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Table 2 Performance of Landweber and RESESOP method at the reconstruction of the complex
refractive index

Landweber RESESOP
Number of iterations 7 155 20
Execution time 6h38min49s 1h12min40s
The synthetic noisy data was generated for N = 20 receivers in / = 180

positions. Table 2 shows the performance of the two methods, clearly stating the
reduced run-time of the RESESOP algorithm. We also see that the execution of
a single step in the RESESOP method is a little slower than in the Landweber
iteration, such that the gain is due to the reduction of iterations steps. The RESESOP
method is thus especially interesting, when the calculation of the gradient is
particularly expensive.

Remark 8 We want to state some concluding remarks.

* We have to make a good guess for the constant ¢, from the tangential cone
condition (28) in the RESESOP method since (28) has not been proven for F/.
Experiments indicate that the choice ¢, = 0.6 is fine for f = 2.5 - 10'° Hz and
ce = 0.9forf = 0.1 THz.

* The value of ¢, and the consequences for the reconstruction represent the
nonlinearity of the forward operator: The RESESOP algorithm requires v >
(14 ci)- (1 —ci)~! for the parameter t from the discrepancy principle, such that
a large value of ¢ involves a large value of t, and the stopping criterion tends
to be fulfilled earlier than for smaller values of t. This is not surprising, since cic
can be interpreted as an indicator for the nonlinearity of the forward operator F.

4 Conclusion and Future Work

We outlined a physical description of the forward model of THz tomography and
analyzed in particular the properties of the underlying scattering map S. We have
shown that there is a unique (weak) solution to the variational scattering problem.
Additionally, we have proved the Fréchet differentiability of S, analyzed the Fréchet
derivative §’(m) of S in m, and calculated the adjoint of the composition yS’(m).
Finally, we included a linear observation operator and obtained a mathematical
description of the forward operator, on which the inverse problem of THz tomog-
raphy relies in practical applications, that means, if the measurement geometry is
taken into account. In view of numerical experiments, we derived all necessary
tools to calculate the current gradient of the least squares functional ; H F(m) —y° | 2,
which is essential for the RESESOP algorithm and also for the Landweber iteration.

Further research includes a more general framework for inverse problems based
on the Helmholtz equation, i.e., a generalization of the results presented in this paper
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towards a more general parameter m. Additionally, an extension of the subspace
optimization methods to solving nonlinear inverse problems in Banach spaces is a
natural continuation of our work, with benefits also in the field of THz tomography.
Finally, a combination of our methods and the adapted ART presented in [20]
may yield a hybrid reconstruction algorithm which produces more precise results,
especially for the imaginary part of the complex refractive index. Our numerical
evaluations demonstrate that from the refractive index the singular support of the
object can be well detected. This a priori information is essential for the ART
method developed in [20]. To this end, the observation operator has to be adapted to
the actual measuring process.

Acknowledgements The authors are indebted to Heiko Hoffmann for valuable discussions about
the proof of Theorem 2.
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Adaptivity and Oracle Inequalities in )
Linear Statistical Inverse Problems: A Gt
(Numerical) Survey

Frank Werner

Abstract We investigate a posteriori parameter choice methods for filter based
regularizations fa = qo (T*T) T*Y in statistical inverse problems ¥ = Tf + o€£.
Here we assume that 7 is a bounded linear operator between Hilbert spaces, and &
is Gaussian white noise.

We discuss order optimality of a posteriori parameter choice rules by means
of oracle inequalities and review known results for the discrepancy principle, the
unbiased risk estimation procedure, the Lepskii-type balancing principle, and the
quasi-optimality principle.

The main emphasis of this paper is on numerical comparisons of the mentioned
parameter choice rules. We investigate estimation of the second derivative as a
mildly ill-posed example, and furthermore satellite gradiometry and the backwards
heat equation as severely ill-posed examples. The performance is illustrated by
means of empirical convergence rates and inefficiency compared to the best possible
(oracle) choice.

1 Introduction

Many practical problems ranging from astrophysics to cell biology can be described
by models of the form

Y = Tf + o¢. (1)

Here f € 2 is the unknown quantity of interest, T : 2~ — % is a bounded linear
operator between Hilbert spaces 2" and %/, 0 > 0 denotes the noise level and £
is the observation noise. The aim is to estimate f from the measurements Y. The
difficulty of this problem crucially depends on the behavior of 7', and unfortunately
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in most applications 7 is not continuously invertible (e.g. if 7 is compact). In this
case, no direct inversion is possible and regularization is needed.

Here we focus on purely random noise &, more specifically we will assume that
& is a Gaussian white noise on 2. In this setup, the model (1) has to be understood
in a weak sense as £ ¢ % with probability 1, this is for each y € % we have access
to observations of the form

(Y,y) =A(Tf,y)or + 0 (£.Y)

where (£,5) ~ A (0,113 ) and E[(&,31) (&,y2)] = (y1.32) for all yi,y2 € #.

Gaussian white noise can be considered as a prototype in many applications, and
hence such models have been studied extensively in the literature, see e.g. [9, 16,
32,33,43,51, 64].

In this paper we focus on filter-based regularization methods, i.e. given a family
g : [0,|T*T|] — R, @ € o C Ry of functions we consider estimators of the
form

fo = qo (T*T) T*Y. )

To ensure thatfa is well-defined, we will always assume that 7 is a Hilbert—Schmidt
operator, i.e. the squares of its singular values are summable. In this case we can
identify 7*Y with a Hilbert space valued random variable in 2. Estimators of the
form (2) cover many popular methods frequently applied in practice, i.e. spectral
cut-off and Tikhonov regularization, and are well-known from the literature (see
[22] and the references therein).

Given a family {fa} of estimators as in (2), the remaining question is how
a>0

to choose the parameter « > 0. A common measure for the performance of some
estimator f; (or in our situation for the parameter «) is the mean square error (MSE)

E [|| fu—f ||?9/] Typically, the optimal value

ct 1= argminE [ |1 1% |

a>0

will depend not only on Y and o, but also on the unknown truth f € 2. Here we
focus on a posteriori parameter choice methods, this is choices @ depending only
on the data Y and the noise level o which automatically adapt to all possible f € #
where 7 C 4 is some smoothness class of solutions, e.g. a Sobolev or Besov ball.
The ultimate aim is to find adaptive parameter choice methods & for which the MSE
evaluated at « = & (Y, 0) decays of the same order (or at least almost the same

order up to some logarithmic factors) as E [|| f%r —f ||?%] as 0 N\ 0. One important

tool to obtain such order optimality results are so-called oracle inequalities, which
relate the MSE evaluated at @ with the MSE evaluated at .
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In this study we will try to provide a (limited) survey over some common a
posteriori parameter choice methods, related oracle inequalities, and theoretical
results on order optimality. Furthermore, we will compare the investigated methods
in numerical simulations with a focus on severely ill-posed operators, i.e. situations
when the singular values of T' decay exponentially fast.

The rest of the paper is organized as follows: In Sect.2 we introduce the notion
of a filter, give some examples, and present main facts about the error analysis
of estimators of the form (2). Furthermore we also give a brief introduction to
oracle inequalities. Section 3 is then devoted to a posteriori parameter choice rules,
focusing on four prominent examples. In Sect. 4 we present a numerical comparison
of these strategies for different filter-based regularization methods. Afterwards,
some conclusions are drawn in Sect. 5.

2 Filter-Based Regularization

In this section we will recall basic facts about filter-based regularization. In what
follows, suppose that &/ C R is a bounded set with accumulation point 0. A
family of functions g, : [0, ||T*T||] — R is called a filter if there exist constants
C,, Cy/7 > 0 such that for every o € </ and every A € [0, |[T*T/] it holds

alge(M)] < C, (3a)
Mg (M| < C7. (3b)

Let {0y, ux, vk };ey be a singular value decomposition (SVD) of T. Then the
model (1) is equivalent to the Gaussian sequence model

Y = oufi + o0&y, keN
where Y := (Y, v, fi :== (f,w) and & = (&, v;) Sy A (0, 1). Therefore, the
estimation of f from Y is equivalent to estimate the coefficients f; from Y, and the
most simple (and unbiased) estimator therefore is given by

fe =o' (4)

Unfortunately, in the ill-posed situation one has o; \ 0 as k — oo, and hence this
estimator is highly sensitive to the noise &. The sensitivity is decoded in the rate of
decay of oy, and the operator 7 is called mildly ill-posed, if o} decays polynomially,
and severely ill-posed, if the decay is at least exponential.

With the help of the SVD, the estimator fa in (2) can be written as

o0
fo = ZUkQa (07) Yeu.

k=1
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Compared to (4), the unstable inversion o ! is replaced by a function 0;q, (cr,?).

More precisely, if g, (A) = A~!, then (2) and (4) coincide. Condition (3a) ensures
boundedness of g, (i.e. stability of fa w.r.t. noise), whereas (3b) restricts g, to
functions which are sufficiently close to ().

There exists a vast variety of filters satisfying (3), and many common regular-
ization methods can be written as (2) with suitable g,. Here we will focus on the
following three:

e Spectral cut-off regularization: If g, (A) = il[a,oo) (1), then (2) is known as

cut-off estimator. The condition (3) is satisfied with C; = C;/ =1.

o Tikhonov regularization: If g, (1) = )Hl_a, then (2) is known as Tikhonov

regularization or ridge regression. The condition (3) is satisfied with C; =
c/=1.
q

_ _A
o Showalter’s method: If g, (A) = ! exPl( ”), the estimator (2) arises from
Showalter’s method. Again, (3) is satisfied with C; = C;’ =1.

For a further discussion of these and other filter-based methods we refer to the
monograph [22]. Let us briefly comment on the reasons to focus on the above three
methods: From an analytical point of view, spectral cut-off regularization can be
seen as an optimal regularization method, as in many situations the corresponding
estimators turn out to be (order) optimal over a wide range of smoothness classes
W C Z. However, the implementation of (2) in spectral cut-off regularization
requires the SVD of 7, which might be unknown analytically and difficult to
compute in practice. Therefore we also consider Tikhonov regularization, which can
be implemented directly by fa = (T*T + al)"' T*Y, i.e. the SVD does not have to
be known. Unfortunately, Tikhonov regularization suffers from so-called saturation,
which means that the corresponding estimator can only be minimax if the class
W C Z is not smoother than the range of T*T (see the discussion after (7) below).
Consequently, we also consider Showalter’s method, which does not suffer from
saturation, but can still be implemented avoiding an SVD by employing Runge—
Kutta schemes, cf. [22, Ex. 4.7] or [57].

2.1 Error Analysis

It can be seen by straight-forward computations, that the risk offa satisfies the error
decomposition

2

v

sl o1, | =[efe] o, + 2]

=[re (T 1)1 +0°E | Jau (1°7) T*¢ [ | )

fo —E[f]
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where we abbreviated ry (1) := 1 —Aqq (1). The first term ||ro (T*T) f]| 4 is purely
deterministic and called the bias or approximation error, as it should tend to O as
a \ 0. Itis in fact caused by approximating o, ' by 0xqq (07). The second term

o’E [||qa (T*T)T*& ||?9f] is called the variance or propagated data noise error, and

this term will typically diverge as o \ 0. Therefore, the optimal o should perform
a trade-off between both error contributions.

Due to the classical result by Schock [58], the rate of convergence of fa towards
the true solution f will be arbitrarily slow in general. Here we will follow the
common paradigm to assume that f satisfies a spectral source condition of the form

f=o (TN o, oy <p. (6)

where ¢ : [0,||T*T|] — R is a so-called index function, i.e. ¢ (0) = 0, ¢ is
continuous and strictly increasing. For any underlying truth f there exists a function
¢ such that (6) is fulfilled (cf. [50]).

To ensure that the regularization scheme (2) can take advantage of (6) we have
to assume that the function ¢ in (6) is a qualification of the filter g, this is

sup (1) [ra(A)] = Copp(a) forall o € o7 (7
A€o, I+l

for some constant C, > 0. We refer to [52] for further details on qualification
conditions. In case of spectral cut-off regularization, any index function ¢ is
a qualification of ¢4, whereas for Tikhonov regularization this is only true for
functions which increase slower than ¢ (1) = A close to 0. For Showalter
regularization, it can be said that at least all functions which increase slower than
some polynomial around 0 are qualifications of the corresponding filter g, .

Under (6) and (7), the bias in (5) can obviously be bounded by

[rea (T*T) £|| 5 < Cotp (@) p.

The estimation of the variance term in (5) requires more complicated techniques.
If the noise £ was deterministic and an element of ¢/, the straight-forward estimate

1
laa (T°T) 78] 5 < [lae (T°T) T NEll0r = €]l ®)

already leads to order optimal results. However, in the stochastic case, £ ¢ % with
probability 1 and hence one has to proceed more carefully. Explicit computations
yield

E[|u (1°7) T8

2%] = iokzqa (0,(2)2 = Trace (qa (T* T)2 T* T) . )
k=1



296 F. Werner

In this situation it has been shown by Bissantz et al. [9] that under suitable
assumptions on the decay of the singular values one has

81k 2
;]EC{ENM‘EO‘} as o \0. (10)

E|q. (1°7) "¢ .

Note that this bound can be substantially larger than the deterministic one in (8), as
it depends on the decay rate of the singular values oy.

2.2 Oracle Inequalities

An important tool to analyze the performance of a given parameter choice method
are oracle inequalities. Suppose we are given a family of estimators f,,, @ € <7, and
define the weak and strong risks

Fo(@.f) = E [H /.~ Tfm Con@h)=E [l -1,

which are deterministic functions of the parameter «. (Strong) oracle inequalities do
now relate the MSE of f; with some parameter choice @ = & (Y, o) with the oracle
risks, this is inequalities of the form

|
with some function ® : Rzzo — R which hold true uniformly for f € # . Note
that the expectation on the left-hand side is taken w.r.t. ¥ and hence affects also «,

. 2
fa—f %i| # E[rs (&,f)]. The infimum on the right-

hand side of (11) can either be taken over all possible parameters « € .7, or over
a finite subset depending on the underlying regularization scheme. Equation (11)
might seem strange on first glance, as the classical understanding of an oracle
inequality is of the form

gl
with some constant C > 1 and aremainderterm R (o) = o (1) as o ~\ 0. Obviously,
this is a special case of (11) with & (a,b) = Ca + R (o). If R decays at least as fast
as the strong oracle risk, then the oracle inequality (12) ensures that & performs
up to a constant as good as choosing the optimal & on the smoothness class 7.

Nevertheless, oracle inequalities of the form (12) are hard to obtain in practice, see
e.g. the discussion in [18], where consequently an oracle inequality of the form (11)

N 2
7 —fH%} <6 (igfrs (@.f).infry (a,f)) as 0\ 0 (11)

which implies especially E [

7 —fH;} <Cinfr @f) +R@) a0 \0 (12)
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with ©® depending only on the second argument is proven. Furthermore, as the weak
and strong oracle risks are of different order, it is to be expected that © is non-linear
w.r.t. the second argument.

Similar to strong oracle inequalities, weak oracle inequalities relate the weak
risk with the oracle risks, but due to the ill-posedness the weak risk carries only
little information about the performance of &.

Oracle inequalities in statistical inverse problems have been studied intensively
in the literature over the last two decades. We refer to [13, Sec. 3.2] for a slightly
different introduction to oracle inequalities. Furthermore we mention [12, 20, 34, 35]
for oracle inequalities in wavelet shrinkage approaches and [14-18, 24-26] for
oracle inequalities in weighted projection methods (partially including some of the
filter based methods discussed here). More recently, in [43] an oracle inequality
for general filter based regularization with a specific parameter choice rule also
discussed here (see Sect.3.3) has been obtained. Lepskii [40] and Blanchard et
al. [11] discuss the usage of oracle inequalities in inverse problems from a more
general perspective.

3 A Posteriori Parameter Choice Rules

In this section we will now discuss different a posteriori parameter choice rules
for estimators of the form (2). Over the last decades, a vast variety of such methods
have been proposed, developed, analyzed and compared. For a recent overview with
numerical comparison we refer to [5]. We also refer to a series of papers by Himarik
et al. [27-29], where whole families of parameter choice rules are compared also for
the situation of incomplete information about the noise level. In the following, we
will always assume that the noise level is known exactly, and focus on four popular
methods, namely

* the discrepancy principle,

* Empirical risk minimization, also known as Mallow’s Cy, or Stein’s unbiased risk
estimator (URE),

 the Lepskii-type balancing principle, and

* the quasi-optimality principle.

There are many other parameter choice methods, which we do not consider here for
various reasons. We emphasize, that a method’s omission does not mean that it is
too difficult to implement or that it performs poorly. Nevertheless, here we focus on
methods for which oracle inequalities (11) are known, and which are meaningful
in the infinite dimensional statistical setup chosen here (or can readily be turned
meaningful by discretization as the discrepancy principle). Note that the discrepancy
principle and the quasi-optimality principle have their mathematical origin in the
deterministic setting, whereas URE and the Lepskii-type balancing principle have
been developed in statistics initially (cf. [5, Table 3]).
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Below we will describe the four parameter choice methods investigated here,
highlight their development, and briefly recall known results about their perfor-
mance and analysis. As far as possible, all the results will be given for general
4/, but some of the methods require a discretization of the parameter space by
definition. We furthermore emphasize that all methods are defined by minimizing
or maximizing some score function, and for discretized <7 they can consequently
be implemented straight forward by evaluating the score function at all values and
taking the optimal one. The ordering of the candidate values in 2/ does not matter
in this case. Nevertheless, the discrepancy principle can be implemented faster
by checking the candidate values in a decreasing order, whereas the Lepskii-type
balancing principle can be implemented faster by checking in an increasing order.

3.1 The Bakushinskii veto

In deterministic inverse problems, the famous Bakushinskii veto [1] tells that any
parameter choice method independent of the noise level cannot lead to a convergent
regularization scheme for an ill-posed problem. More precisely, given deterministic
data Y € &, afilter g, and a parameter choice & = & (Y), then it states that worst
case convergence

tim sup {[[Rac ~f, | ¥ €. |Y = Tfly <0} =0

for all f € 2 implies boundedness of 7~' on its range. Consequently, if the
underlying problem is ill-posed, any convergent a posteriori parameter choice rule
must depend not only on Y, but also on the noise level o. However, this result
is not directly transferable to statistical inverse problems as considered here. The
question of transferability was initially raised in [7] and extensively answered in
[8]. In the specific case we consider here, i.e. that the probability distribution of the
noise does not change if the noise level changes, it follows from the results there
that the Bakushinskii veto does not hold true. As an immediate consequence, there
are convergent a posteriori parameter choice rules independent of the noise level .

3.2 Discrepancy Principle

The discrepancy principle dates back to Phillips and Morozov [54, 56] and is based
on the simple idea that the chosen reconstruction f, should not try to explain the
observed data better than the accuracy of the data actually is. If E[||£]|5] < oo,

this means that o should be chosen such that H Tfa -Y H@ ~ 0 ||&]|4 . Typically,

o H Tfy — Y H is increasing as « increases, and hence a reasonable parameter
>
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choice in this spirit is
app =max fa € o | |77, —¥| = oE[£]41] (13)

with a tuning parameter t > 1. However, in the situation of Gaussian white noise
& this principle is not applicable as & ¢ #. This difficulty can be overcome for
example by first applying T* to the data, which then yields an operator equation in
Z of the form

Z =T*Tf + oT*¢,

i.e. with noise T*£ with finite 2 -norm [10, 44]. Here we proceed differently and
apply the original formulation (13) to the discretized equation where 7 is an n X n
matrix and § ~ A4 (0,1,). If ||-||4 is the Euclidean norm, then E[||§|5] = +/n,
and hence (13) can be used. This choice of o has e.g. been analyzed in [19, 46],
and in [11] also an oracle inequality for some iterative regularization methods has
been obtained. One essential drawback of the discrepancy principle is that for order
optimality a higher qualification condition is required. More precisely, not ¢ as
in (6), but A > +/ Ag (A) has to be a qualification of the filter ¢, this is [cf. (7)]

sup VAg (L) |ra (V)] < C, vy (@) foralla € . (14)
Aefo.|T*7|]

It should also be noted that the actual performance can be quite sensitive w.r.t. the
tuning parameter t, and there is no clear roadmap how to choose t in a specific
example. In our simulations we will use T = 1.5. In case of a discretized parameter
set it is immediately clear that the discrepancy principle is computationally very

cheap, as only the residuals H Tf‘ak — YH ” have to be evaluated.

3.3 Empirical Risk Minimization

As the ideal o should minimize the weak risk ry (o, f), one possible idea is to
mimic this behavior by minimizing an (up to a constant) unbiased estimator of
rw (@, f). This idea dates back to Mallows [48] and Stein [59], and therefore it is also
known as Mallow’s Cy, or Stein’s unbiased risk estimator (URE). Straight forward
computations show that with

~ |12 ~
Pl Y) = H 1., - 2<Tfa, Y> + 20 Trace (T*Tgy (T*T)) (15)

it holds

E[fw(. V)] =ry(@.f) =Y oife, aed.

k=1
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Therefore, we define

QURE € argmin 7y (v, Y). (16)
a€

For a more detailed derivation of ayrg we refer to [62, Sec. 7.1] and [47]. Note
that there is some commonality in the definition of oyrg and generalized cross-
validation (GCV) as discussed in [21, 41, 63], but we emphasize that aygg is
meaningful also in the continuous setting (1), in which GCV cannot be applied. It is
known that choosing @ = aygrg in combination with certain regularization schemes

N 2
leads to an order optimal method w.r.t. the weak MSE E [H Tfoire — If H@}’ see

e.g. [42, 45, 61]. Using the seminal results by Kneip [37], it has recently been
shown in [43] that ayrg yields an oracle inequality of the form (11) with &
depending only on the second argument, which then leads to order-optimality

w.r.t. the MSE E

R 2
Joure —f H%:| for mildly ill-posed operators if the stronger

qualification condition (14) is satisfied. Concerning the computational cost, it must
be said that (16) is more expensive than the discrepancy principle due to the
evaluation of the trace operator in (15).

Note that it is also possible to estimate the strong risk s (o, f) in an unbiased
way, as discussed in [16]. Unfortunately, the corresponding parameter choice is
only order-optimal for mildly ill-posed operators, and its practical performance
deteriorates as the degree of ill-posedness grows (see e.g. the simulations in [18]).

3.4 The Lepskii-Type Balancing Principle

The Lepskii-type balancing principle was originally introduced by Lepskii [39], and
was further developed for usage in (statistical) inverse problems in [2,49, 52, 53, 65].
Suppose m possible values a; < ... < «, for the regularization parameter « are
given. Then the Lepskii-type balancing principle consists in choosing

ﬁxj _]Acozk

j*=max{l§j§m|

o <4ko \/Trace (qak (T*T)2 T*T) forall 1 <k 5]’} .
(I7)

and o gp := oy+. Here, k > 1is again a tuning parameter. For an explanatory deriva-
tion of this choice we refer to [49]. It is worth noting that o \/ Trace(qy, (T*T)?T*T)
is in fact an upper bound for the standard deviation of the estimator f‘ak as seen in (5).
Under suitable assumptions on the filter, the noise behavior and the definition of the
regularization parameters oy, . .., @, it has been shown in [6, 53] that one obtains
an oracle inequality of the form (11) with © (a,b) = Cia + Cy/mexp (—Csk?).
From this one can deduce that the MSE decays of optimal order up to a logarithmic
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factor, if k is chosen appropriately. To be more precise, if 7 is mildly ill-posed one
should use x ~ \/ —log (o) and one obtains the optimal rate up to log (—o’) [53],
and if T is severely ill-posed, the choice k ~ \/ log (—log (0)) leads to the optimal
rate up to log (log (—0o)) [6]. In our simulations we always set k = 1. Especially for
severely ill-posed 7', the growth of \/ log (—log (0)) is too slow that any difference
between this choice and k = 1 could be seen in simulations.

Finally, we mention that the computation of o gp is even more expensive than
the one of ayrE, as the reconstructions have to be compared among each other.

3.5 The Quasi-Optimality Criterion

The quasi-optimality criterion was originally introduced by Tikhonov and
Glasko [60], and was further developed for usage in (statistical) inverse problems
by [3, 4, 7, 36, 55]. In the literature, there are different definitions of the quasi-
optimality criterion, depending on the considered setting. In the setting of general
filters, Neubauer [55] defines

aqo = argmin | ry (T* T)fa
o€

P

Apparently, this is not a meaningful choice for spectral cut-off regularization, where
re (T T)JACa = 0 for all @ € /. The more common and initial definition—which we
will use here—works for a discrete set oy < .... < «,, of possible regularization
parameters and is given by

fan _-farz+l

nQo := argmin
1<n<m—1

and 0QO = Ungg - (18)

X

If o, = pq", it can readily be seen that both definitions are consistent for Tikhonov
regularization. Note that the computation of «qo is substantially more simple than
the ones discussed above, as neither an estimate for the variances of faj nor the noise
level o is required. The latter is also very helpful in practice, as no or only rough
knowledge of the noise level makes the methods discussed above not applicable
or unstable. As mentioned before, the famous Bakushinskii veto [1] does not hold
true in the situation considered in this paper. In fact, it has been shown that the
quasi-optimality criterion leads to a convergentregularization scheme under suitable
assumptions. For Tikhonov regularization, [3, 4] show an oracle inequality of the
form (11) if the unknown solution satisfies a source condition (6) of Holder-type
(thisis ¢ (1) = A”) with 0 < v < 1 and if T is mildly ill-posed. For spectral cut-off
regularization, order optimality has been shown in a Bayesian setting in [7]. We also
mention [36] for results in the purely deterministic case.
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4 Numerical Comparison

In this section we will compare the aforementioned parameter choice rules in
several numerical examples. Note that all of them consist in minimizing some
functional w.r.t. @, which can be challenging in general. We therefore discretize
the set &/ of possible regularization parameters in a logarithmically equispaced
way. Furthermore we restrict ourselves to regularization parameters in [02, I T*T||],
as the optimal parameter will (asymptotically) be larger that 0> and smaller than
|T*T|. Consequently,

oy = {ak =02 Fk=0,1,..., L(log (")~ log (0 ”T*T”)J} (19)

with » > 1 should be an appropriate approximation of the continuous parameter set
o/ . Clearly, a larger value of r will result in a worse practical performance, whereas
r ~ 1 typically makes the computations unfeasible. Note that in many examples
one finds from the error decomposition (5) that the discrete parameter set .o7; is able
to resemble the optimal behavior of a continuous parameter set .« up to a constant
depending on r (see e.g. [65]). In our simulations we will always use r = 1.2. We
also tried different values of r which did not influence the results significantly.

In practice, some of the investigated parameter choice methods are very sensitive
w.r.t. too small or too large values of «. This is especially the case for the quasi-
optimality criterion, which is known to oversmooth the solution if <7 contains too
large «’s, and to undersmooth if it contains too small values (cf. [5]). To avoid both,
we furthermore consider only a subset <7 C 7% such that max,e & = 1 and

@ (o) <27 maxgeq, P (@) forall @ € o7 with the variance function
® (a) = 0 Trace (qa (T*71)’ T*T) .

The rationale behind the second restriction is as follows. As @ is monotonically
decreasing one has maxye o @ (o) = @ (ap). Furthermore there exists some & such
that @ (o) < 27'® (o) forall > @ and @ (a) > 27! (ap) for all & < @. Using
that the first term in (5) is monotonically increasing we can now compute

il

407D (@) <4 |r (T*T) f|) +40°® (@)

fu=1[, | = I 111

- o[-

for all ¢ € 4,0 < «. But for the optimal ¢ € .27, a lower bound as proven
above is not to be expected, and hence it is reasonable that the optimal @ € @
should satisfy o« > & or equivalently @ () < 2~ max,e o P (), i.e. it should be
contained in .27}
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Fig. 1 Empirical means of the unbiased risk estimation score function a > 7, («, Y) and the
risk ry, (a,f) (simulated from 10* runs; left) and problematic example cases of both (right) for
Tikhonov regularization with 0 = 6.1035 - 107>. The corresponding minima are always marked

by a cross. Shown are the antiderivative problem (score function: —, true risk: - - -), the satellite
gradiometry problem (score function: , true risk: ), and the backwards heat problem (score
function: —, true risk: - - -)

It will turn out that the score function 7y (&, Y) in the unbiased risk estima-
tion principle is to some extend sensitive w.r.t. the noise in Y, which causes
some instabilities in the corresponding parameter choice strategy. Even though
E[rw (a,Y)] = ry(a,f) up to a constant independent of «, both quantities can
vary significantly for single experiments. This is shown in Fig. 1, where on the left
empirical means of both quantities are shown (simulated from 10* runs), and on the
right some problematic cases of both are depicted. In all cases, 7y (-, Y) has been
shifted such that min,e .y Fw (a0, Y) = ming,¢ o] Tw (. f). In the plot it can be seen
that even though in expectation both quantities agree quite well, in some cases the
variation causes a big difference in the minimizers. We will see that this leads to
instabilities in the parameter choice strategy based on empirical risk minimization.
Up to some extend this is caused by the design of the method, as it is based on some
quantity (7 (a,Y)) which behaves correctly in expectation, whereas all the other
parameter choice strategies are designed based on the available (single) instance of
the problem.

Furthermore we emphasize that ry, (-,f) as well as 7y (-, Y) vary over several
orders of magnitude, and that the more ill-posed the problem, the more flat is
7w (+, Y) around its minimum.

In the following we will compare the empirical MSE and its variance under the
investigated parameter choice methods from Sect. 3 in three different problems with
three different regularization methods. The three problems and the corresponding
results will be given below. As regularization methods we consider spectral cut-
off regularization, Tikhonov regularization, and Showalter regularization, which
are all three described in Sect.2. The empirical MSE and its variance will be
computed by Monte Carlo simulations with 10* experiments per noise level o €
{2_15 s, 2B } For comparison, we will also depict results for the optimal but
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practically unavailable parameter choice rule

Qo 1= argminr; («, f) (20)

/
Q€.

and (in case of the MSE) the optimal rate of convergence known from the theory.
For the empirical variance, the optimal rate of convergence is not discussed in this
study. Nevertheless, asymptotically we expect that

]E [
with functions m, v : Rt — R corresponding to the analytical mean and variance
of the MSE of the estimator. The decay of m is typically considered as the rate
of convergence of the estimator, but the decay of v is interesting as well, as it
can be interpreted as the rate of concentration. If v does not tend to 0, then the

estimator might have a good MSE, but still its practical performance is questionable.
Consequently, in our plots we depict estimates of m and v.

fo=t[, |~ ¥ @00

4.1 A Mildly Ill-Posed Problem: The Second Antiderivative

At first we investigate the empirical rate of convergence in a mildly ill-posed
situation borrowed from [31]. Consider the following Fredholm integral operator
T : L2 ([0, 1]) — L? ([0, 1]) of the first kind

1

(T () = / K f () dy. xe[0.1]

0

with kernel k (x,y) = min{x- (1 —y),y-(1 —x)},x,y € [0, 1]. This implies that
(Tf)" = —f for all f € L? ([0, 1]). Explicit computations show that the singular
values oy of T satisfy o3 ~ k2.

For the discretization of this operator we choose the composite midpoint rule, i.e.

with the equidistant points x; = .} ,x, = ;n, e Xy = 2”2;1 we approximate

2n
1

1 n
@@ = [kwf O d~ ) Y kaa)s@).  1<izn
j=1

0

As exact solution we consider the continuous function

. 1
f(x):{x 1f0§x§2, @1
1—x

if ) <x<1L.
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As argued in [43], the optimal rate of convergence in this situation is & (o 4~°
for any ¢ > 0. To avoid an inverse crime, the exact data g = Tf is implemented

analytically:
x(4x2—3) . 1
g(_x): (_ 1)(2:2 8+l) lfOfXS 2°
x— b —8x o1
24 if , Sx < 1.

The results are shown in Figs.2, 3, and 4. We find that all parameter choice
rules under investigation yield the optimal rate of convergence. The quasi-optimality
criterion seems to be most sensitive w.r.t. the possible regularization parameters,
which is mostly observed in combination with spectral cut-off regularization. This
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Fig. 2 Simulation results for spectral cut-off regularization in the antiderivative problem from
Sect.4.1 with different parameter choice methods: oracle choice (——), empirical risk mini-
mization (—), Lepskii-type balancing principle (—), quasi-optimality criterion (——), and
discrepancy principle (—)
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Fig. 3 Simulation results for Tikhonov regularization in the antiderivative problem from Sect. 4.1
with different parameter choice methods: oracle choice (—), empirical risk minimization (—),
Lepskii-type balancing principle (——), quasi-optimality criterion (— ), and discrepancy princi-

ple (—)
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Fig. 4 Simulation results for Showalter regularization in the antiderivative problem from Sect. 4.1
with different parameter choice methods: oracle choice (—), empirical risk minimization (—),
Lepskii-type balancing principle (—), quasi-optimality criterion (——), and discrepancy princi-
ple (—)

effect has already been observed in [5] and will also be seen in the other two
examples below. Note that the conditions mentioned in Sect.3.5 to ensure order
optimality are satisfied here. Concerning the other parameter choice strategies,
it seems that empirical risk minimization has a slightly higher variance than
the discrepancy principle and the Lepskii-type balancing principle. It is very
likely that this is caused by problems in minimizing o + Fy (@, Y) as show in
Fig. 1.

4.2 A Severely Ill-Posed Operator: Satellite Gradiometry

As a second example we consider an inverse problem in satellite gradiometry [23].
Consider the unitball B = {x eR? \ lxll, = 1} and the unit sphere S := dB. Given

2 . .
measurements of g = 2 ¥ on RS with R > 1 we want to find f in

or?
Au=20 inR?\ B,
u=f onsS,

el =0 (Ilz") s fxll, > oo.

If d = 3 and B is considered as an approximation of the earth, then u describes
the gravitational potential of the earth, and we want to determine this potential on
the earth’s surface from satellite measurements of the potentials second derivative
of the gravitational potential in radial direction. For computational simplicity, we
consider d = 2 in the following. Let us define the forward operator T : f - g as
T : L?(S,u) — L? (RS, p) with the surface measure i on S. Note that u can be
computed explicitly using the Poisson formula. If the corresponding integral kernel
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is furthermore expanded as a power series in R, this gives an explicit representation
of T in form of a Fourier series (cf. [38]), i.e.

oo

(T) ) = Y Ikl (k| + 1) R exp (k) f (k) .

k=—o00

Consequently, T is severely ill-posed with singular values oy = [k| (|k[ + 1) RIK=2,
Furthermore it follows that f (0) cannot be determined from 7f. Hence we choose

f@ =7 -, xelmal

as exact solution. This ensures that ||f + c||i2 is minimal for ¢ = 0, i.e. all reg-
ularization schemes considered here will produce reconstructions which converge
towards f. It follows from [30, Prop.16] and similar computations as in [43] that the

optimal rate of convergence in this situation is & ((— log (0))_3+£) for any ¢ > 0.
Furthermore, g = Tf can be computed analytically from

glx) = j; Z (1 + 2m1+ I)R_Zm_3 cos(2m+ 1)x), x € [-m, 7).

meN

To discretize T we choose again equidistant points xi, . .., X, in [—, 7] and replace

f .bl}; the piecewise constant approximation f = Yi=1f (x) 1[)(]__7r Jnognyo] This
yields

(Tf) (xi) ~ Z (i Z sin (n’;n) (m+ 1R 2 cos (m (x,- —xj)))f (xj) ., 1I<izn

j=1 meN

The inner sum is truncated at m = 64, and to avoid an inverse crime, the summation
in the definition of g is truncated at m = 128. In our simulations, we set R = 2.

The results are shown in Figs. 5, 6, and 7. For spectral cut-off regularization we
observe a different behavior than for Tikhonov and Showalter regularization. This
is due to the fact that the ‘interesting’ regularization parameters for spectral cut-off
regularization are exactly « = o} with the singular values oy of T, but those are
not well covered by our set <7;. More precisely, there are some a; € 7] which
yield the same spectral cut-off reconstruction, and some pairs with several singular
values in between. Still it can be seen that all parameter choice strategies but the
quasi-optimality principle yield the order optimal convergence rate for spectral cut-
off, and all strategies yield the order optimal convergence rate in Tikhonov and
Showalter regularization. Furthermore we observe that empirical risk minimization
behaves slightly worse and its variance decreases only slowly. This is due to the
fact that @ +— 7y (,Y) is nearly constant around its minimum, and hence the
minimizer has a high variance itself, cf. Fig. 1. Consequently, it is questionable if
URE performs optimal in this situation.
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Fig. 5 Simulation results for spectral cut-off regularization in the satellite gradiometry problem
from Sect.4.2 with different parameter choice methods: oracle choice (——), empirical risk
minimization (——), Lepskii-type balancing principle (——), quasi-optimality criterion (— ), and
discrepancy principle (—)
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Fig. 6 Simulation results for Tikhonov regularization in the satellite gradiometry problem from
Sect. 4.2 with different parameter choice methods: oracle choice (—), empirical risk mini-
mization (—), Lepskii-type balancing principle (——), quasi-optimality criterion (——), and

discrepancy principle (—)

4.3 Another Severely Ill-Posed Operator: The Backwards Heat
Equation

As a third example we consider the so-called backwards heat equation. Given
measurements of g = u(-,7) with 7 > 0 we want to find f in the periodic heat

equation
W (x0) =240 in (=] x (0,7),
u(x,0) =f(x) on [—m, ],
u(—m, 1) =u(mw,t) onte (0,7].
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Fig. 7 Simulation results for Showalter regularization in the satellite gradiometry problem
from Sect.4.2 with different parameter choice methods: oracle choice (——), empirical risk
minimization (——), Lepskii-type balancing principle (——), quasi-optimality criterion (— ), and
discrepancy principle (—)

Let us define the forward operator T : f + gas T : L? ([~x, nr]) — L? ([~ 7]).
Separation of variables gives an explicit representation of 7 in form of a Fourier

series, i.e.

oo

(Tf) (x) = Z exp (—sz) exp (ikx) f (k) .

k=—00

Consequently, T is severely ill-posed with singular values oy = exp (—kzi). As exact
solution we choose again

f(x):jzr—|x|, x € [-m, 7).

Similarly as in [30, Rem.15] it can be seen that the optimal rate of convergence
is 0 ((— log (0))_3/ 2+E) for any ¢ > 0. Furthermore, g = Tf can be computed

analytically from

4 exp (— @m+ 1)? i)
T @m + 1)

meN

glx) = cos (2m+ 1)x), x € [-m, 7).

To discretize T we proceed as in Sect. 4.2, which yields

n -
(Tf) (x,-)%z (72r Z xp (mm 7 sin(nnm)cos (m(xi —x)) + ,ll)f(xj), 1<i<n.

j=1 meN
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The inner sum is truncated at m = 64, and to avoid an inverse crime, the summation
in the definition of g is truncated at m = 128. In our simulations, we set 7 = 0.1.
The results are shown in Figs.8, 9, and 10. Again for spectral cut-off regu-
larization the empirical MSE behaves less regular, which is due to the extremely
fast decay of the singular values. A difference is only to be expected once o falls
below the next singular value, which explains the step-like behavior. Besides this,
it seems that all parameter choice strategies yield the order optimal convergence
rate for spectral cut-off, Tikhonov and Showalter regularization. Even though the
severely ill-posed case is not covered by the assumptions from Sect. 3.5 to ensure
this for the quasi-optimality criterion, this result suggests that something similar
should hold true for severely ill-posed operators. For all regularization methods,
the variances behave comparably irregular, even though they are small compared to
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Fig. 8 Simulation results for spectral cut-off regularization in the backwards heat problem
from Sect.4.3 with different parameter choice methods: oracle choice (——), empirical risk
minimization (—), Lepskii-type balancing principle (—), quasi-optimality criterion (——), and
discrepancy principle (—)
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Fig. 9 Simulation results for Tikhonov regularization in the backwards heat problem from
Sect. 4.3 with different parameter choice methods: oracle choice (—), empirical risk mini-
mization (——), Lepskii-type balancing principle (——), quasi-optimality criterion (— ), and
discrepancy principle (—)
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Fig. 10 Simulation results for Showalter regularization in the backwards heat problem from
Sect.4.3 with different parameter choice methods: oracle choice (——), empirical risk mini-
mization (—), Lepskii-type balancing principle (—), quasi-optimality criterion (——), and
discrepancy principle (—)

the MSE and decay as 0 \( 0. The only exception is empirical risk minimization
where the variance roughly stays constant. This is again due to the fact that o —
Fw (@, Y) is nearly constant around its minimum, and hence the minimizer has a high
variance itself, cf. Fig. 1. Again, it is questionable if URE performs optimal in this
situation.

4.4 Inefficiency Simulations

As we are not only interested in convergence rates simulations, but also in oracle
inequalities, we will now try to infer numerically if an oracle inequality of the
form (12) holds, more precisely we want to know if

—~ 2
SRR

is satisfied and if so, what is the best possible value of ¢ > 1. Inspired by [5, 18] we
consider the following setup. The forward operator is a 300 x 300 diagonal matrix
with singular values A (k) = exp (—ak) with fixed parameter a > 0. Consequently,
the ill-posedness is comparable to the satellite gradiometry problem. Then we repeat
the following experiment 10* times : Given a parameter v we generate a random
ground truth f € R by f(k) = +k™ - (1 +.47(0,0.1?)) where the sign is
independent and uniformly distributed for each component. From this ground truth,
data is generated according to Y(k) = A (k) - f (k) + .4 (O, 02) where the noise
is again independent in each component. Based on the data compute empirical

Ju—f H;} (22)
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Fig. 11 Efficiency simulations for Tikhonov regularization with different smoothness parameters
a and v. Shown are Ror /Rure (—), Ror/Riep (—), Ror/Rqo (), and Ror/Rpp (——)

versions of the MSEs

Ru(0) :=E Uﬁ* —fH;] . 0=10213"% k=0,...,47

with * € {OR, URE, LEP, QO, DP}. In Fig. 11 we depict the fractions of the oracle
risk with the different MSEs for several parameters v and a to compare the average
behavior of these parameter choice methods. The closer the value of such a fraction
is to the (optimal) value of 1, the better performs this parameter choice strategy and
the smaller c in (22).

In conclusion we empirically find that the quasi-optimality principle performs
most stable and is in all investigated situations nearly as good as the oracle choice.
This is not clear from the analytical results in Sect. 3.5, as those are limited to mildly
ill-posed problems. The Lepskii-type balancing principle also performs well in our
simulations, but with a larger constant ¢ in (22). The discrepancy principle behaves
comparable. These results are in agreement with the theoretical facts that an oracle
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inequality is satisfied, and that we do not expect the loss of a logarithmic factor for
o gp to be visible here.

The choice ayrg shows a behavior which is harder to interpret. For ayrg we
observe in most situations that the performance decreases as o becomes smaller,
and this effect is stronger for smoother solutions, whereas the ill-posedness seems
to have smaller effect. Especially for smooth solutions f it is questionable if (22) can
be satisfied. On the other hand, the theoretical results on empirical risk minimization
show that (22) is too ambitious anyway, and that a weaker oracle inequality could
still be satisfied.

5 Conclusion

In this study we have investigated four different parameter choice methods in
filter based regularization of statistical inverse problems. For the discrepancy
principle, unbiased risk estimation, the Lepskii-type balancing principle, and the
quasi-optimality principle we have recalled the most important theoretical facts
on order optimality and oracle inequalities, and afterwards compared all of them
in a simulation study with focus on severely ill-posed operators. It turned out all
four seem to perform order optimal in the situations we investigated, with unbiased
risk estimation having a higher variance than the others. We also investigated the
efficiency in terms of the constant ¢ in an oracle inequality of the form (22). In
this simulation, the quasi-optimality principle turned out to be best, followed by
the Lepskii-type balancing principle. For unbiased risk estimation it is questionable
from our simulations if an oracle inequality of the form (22) is satisfied.

In conclusion, the quasi-optimality principle seems to be the most favorable the
parameter choice strategy, as it outperforms the other investigated strategies and is
most simple to implement. Nevertheless, the set of regularization parameters needs
to be chosen carefully. The second favorable choice seems to be the Lepskii-type
balancing principle, which also performs well and very stable in all investigated
situations, but at the price of a substantially higher computational effort.

Acknowledgements Financial support by the German Research Foundation DFG through CRC
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Relaxing Alternating Direction Method )
of Multipliers (ADMM) for Linear Shethie
Inverse Problems

Zehui Wu and Shuai Lu

Abstract We investigate the Alternating Direction Method of Multipliers (ADMM)
for solving linear inverse problems. In particular, a relaxing factor is introduced to
the standard algorithm allowing more flexible updating of the Lagrange multiplier.
The convergence result is established for the Relaxing ADMM for the noise free data
under appropriate assumptions. We also calibrate the convergence of the algorithm
for the noisy data when noise vanishes by a modified discrepancy principle.

1 Introduction and Preliminaries

We consider a linear inverse problem
Ax=b, xe X, (1)

where A is a bounded linear operator acting from 2" to 7, b is the observation
data and x is the unknown variable. We call b consistent if there exists x such that (1)
holds true. Such an inverse problem is usually ill-posed in the sense that the recovery
of x does not depend continuously on the data b. In particular, a small perturbation in
the observation may lead to huge deviation of the solution, see for example [5, 8, 12].

To solve the ill-posed problem (1) stably, we usually minimize a functional
f(Wx) with respect to the constraint such that the following minimization problem
is considered

min  f(Wx) st. Ax=b, xePW)

Z.Wu - S. Lu (>4)
School of Mathematical Sciences, Fudan University, Shanghai 200433, China
e-mail: zehuiwul3 @fudan.edu.cn; slu@fudan.edu.cn

© Springer International Publishing AG 2018 317
B. Hofmann et al. (eds.), New Trends in Parameter Identification for Mathematical
Models, Trends in Mathematics, https://doi.org/10.1007/978-3-319-70824-9_16


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-70824-9_16&domain=pdf
mailto:zehuiwu13@fudan.edu.cn
mailto:slu@fudan.edu.cn
https://doi.org/10.1007/978-3-319-70824-9_16

318 Z.Wuand S. Lu

where f is a specific functional described below. By defining an auxiliary variable
v, we transfer the above problem into a general form

n;i}n F(y)
st. Ax=b, Wx=y, xeZPW). 2)

We collect following definitions and assumptions before we proceed further.

Definition 1 Let % be a Hilbert space. The functional f : % — (—o0, +00] is
called proper, if

2(f) =1y :f(y) < o0}

is not empty.

The functional f : # — (—o0, +00] is called strongly convex, if there exists a
constant ¢ > 0 such that for any y;,y, € # and 0 < r < 1 the following inequality
holds true

Ftyr + (L=1)y2) + cot(1 = D[ y1 — y2l* < tf(y1) + (1 = OF (32).

The main assumption is presented below.

Assumption 1 Let Z', %, 7 be Hilbert spaces. Following items are assumed to
be true.

() A: 2 — H is alinear bounded (or compact) operator, A* : H# — X is its
adjoint operator;
(ll) f : % — (—o0,400] is a proper, lower semi-continuous, strongly convex
functional;
(I11) (W) isdensein & and W : £ — ¥ is a closed linear operator;
(IV) There exists a constant ¢; > 0 such that for any x € (W) there holds

2 2 2
[AX]|” + [Wx|[” = e [lx]|”.

Items (/1]) and (IV) in Assumption 1 are standard in classic regularization theory
where W is usually considered as a differential operator, c.f. [5, 12]. Different
choices of f can be found in [11, 13, 16]. In particular the monograph [15] collects
a systematic investigation of different regularization schemes in Banach spaces,
where f is not quadratic.

The following theorem shows that under above Assumption 1, the variational
problem (2) has a unique solution referring to [10].
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Theorem 1 ([10]) Let the observation data b be consistent and Assumption 1 (I)—
(IV) hold true, then the optimization problem (2) has a unique solution x* € 2(W)
and Wx* € 9(f).

We denote df (y) be the subgradient of the functional f at y defined by
f(y) ={n € :fO)—f(») —(w.y—y) 20, VyeZ}

In particular, we need the Bregman distance in [2] between y and y which is defined
by

D,f(3.y) =f0) —f(y) = (.3 —y), wedf(y).

We note that the Bregman distance plays important roles in convergence analysis
of regularization schemes for linear inverse problems [3, 9, 14] and the Bregman
distance of any strongly convex functional has the following property.

Proposition 1 ([10]) Let f be a strongly convex functional, u and i be the
subgradient of f at point y and y respectively. Then the following estimates hold
true

D,f(3,y) > colly — yl%,
(= f,y—3) > 2c0lly — 3|

We consider the augmented Lagrangian functional of the minimization prob-
lem (2) below

Loy oy (X, y3 A, 1) =f(y) + (A, Ax— D) + (., Wx —y)
P1 P2
+ ) A =B + " Wa =y,

where weighted constants p; and p, are positive. Referring to the optimality
conditions, we investigate the Relaxing ADMM such that

A1 = Ak + yp1(Ax, — b), (3)

Mi+1 = pr + p2 (W — yi), 4)

X1 = argmin Ly, o, (X, s Akt 1, flict1), 5

Y1 = argmin Ly, p, (X1, Y5 Akt 15 [okt1)- (6)
y

Compared with the standard ADMM [1], we have introduced a relaxing factor
y in (3) to allow more flexible updating of the Lagrange multiplier A. In the
Relaxing ADMM (3)—(6), the sub-optimization problem (5) is quadratic, whereas
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the sub-optimization problem (6) can be solved analytically with some prior
information of a specific choice of f. We shall mention that another form of ADMM
updates firstly the iterates (x¢+1, yx+1) then the Lagrange multipliers (Ax+1, fbr+1)-
Its performance in linear inverse problems has been well discussed in [10]. A
relaxing ADMM has been investigated in [4] where a simplified case with W = [ is
considered. Convergence analysis for the Relaxing ADMM (3)—(6) in current work
is not trivial compared with the existing ones.

Rest of the paper is organized as follows. In Sect. 2, we collect several lemmas
verifying that the sub-optimization problems (5) and (6) are well-posed. In Sect. 3,
we prove the convergence of the Relaxing ADMM (3)—(6) with exact data under
Assumption 1. In Sect.4, we calibrate the convergence analysis of the same
algorithm for noisy data when noise vanishes. Finally a conclusion Sect. 5 ends the
manuscript.

2 Basic Lemmas

In this section, we collect several lemmas which are important to carry out the
convergence analysis. We first show that the sub-optimization problems (5)—(6) can
be simplified below.

2

A 2
Xg4+1 = arg min p1 Ax—b + o + P2 Wx —yr + Hiett ,
x p1 2 P2
i )
Yk+1 = arg min gf()’) + 2 Y= Wxpp1 — pirt } .
¥ 2 P2

In particular, the above sub-optimization problems are well-defined as shown in
[10].

Lemma 1 ([10]) Let Assumption 1 (I)—(IV) hold true. For any h € 7 andv € %
the optimization problem

. P 2 P2 2
Az—h Wz —
min LAz =P+ W= v]

has a unique solution and the variables 7 and Wz depend continuously on h and v.

Lemma 2 ([10]) Let Assumption 1 (I)—(IV) hold true. The following optimization
problem

. 02 2
Ly(y) = -
mig 2(y) =f(y) + ) |y —vll

has a unique solution y and the variables y and f (y) depend continuously on v.
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By taking the Euler equations of (7), we obtain

A* A1 + p1(Axis 1 — D) + W1 + p2(Wae 1 — y)] = 0,

®
Mir2 = i1 + p2o(Wxe1r — yea1) € Of (yea1).

Notice that the functional f is strongly convex and we have the following inequality,

(Hit2 = Pkt 1. V1 — Yk) = 20l vt — vl )
Moreover, we define the following residuals
Tk :Axk—b, Sk = ka—yk. (10)

The following lemma is essential to carry out the convergence analysis of the
Relaxing ADMM.

Lemma 3 Let k be the iteration of the Relaxing ADMM. If k = 1, there holds
A*dy = (y = DpiA™r + p2 W (yo —y1) — W™ pia.
For any k > 2, there holds

P1A e+ (v — Dp1A -1 = paW* [(vk—1 — i) — (V=2 — ye—1)] — p2 Wi

Proof The proof follows directly after the sub-optimization problems (3)-(4) and
the optimality condition (8) such that

A" X1 =AM + yp1A i + W (025k + i — Mit1)
= — pA 1 — W* i + pa(Wax — vi—1)] + yo1A™ 1
+ W*(p2sk + ik — ti+1)
=(y — DoA™ e + p2W* (=1 — 1) — Wl 1.

Let k = 1, we obtain the first equality. By implementing (3) and the above equality,
we derive

YO1A e = A% A1 — A" Ay
=(y - DpA* (re — re—1)
+ P2 W*[(yi—1 — y1) — (Vk=2 — Yi=1)] = W* (tg1 — i),

which yields the second equality referring to (8) and (10). O

Lemma 4 Denote Ex = p1y |nill* + p2llsell* + p2ll yk = i1 |%. Forany y € (0.2),
E} is monotonically non-increasing such that

Eit1— Ex < —p12 = ) |1 — rell* = deoll yeg1 — yell* <0,
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and

o0
> vk =i < oo
k=1

Proof By the definition in (10), we have
Fert — T = A1 — Xg)s Sk+1 — Sk = Wxp1 — Wxi + yi — Y1

Implement Lemma 3, we have the following equality,

P1{rirr = i, Tee1) + P2(Sid1 — Sk Sk+1)

=p1 {Ak+1 — Xi), T 1) + P2 (W1 — Wak + (Y — Vi), k1)

=1 — X (1= Y)01A* ) + (1 = X6 2 W[k = Yir1) — (=1 — y0)1)
+ P2V = Vi1, Sk+1)-

From the inequality (9) we derive,

PUTr+1 — T Trr 1)+ P2(Sk1 — Sk Sk1) + ( — Dpi{res1 — e 1)

<pa{sirt — sk + Yert — Yoo (Ve — Y1) — (V=1 — %)) — 2coll v — yell>-
Following three equalities are straight-forward

P1

PL{Fkr1 = Ty Tkt1) = ) U7t 12 = Nrdll® + reer — 7ell),

_ _ M 2 2 o2

P2(Skr1 — Sks Skt1) = 5 ls1ll” = [lswll™ + lsx+1 — sxllI)s

P1
Pi{rk1 — 1, 1) = 2 (—||”/<||2 — |l — Vk+1||2 + [[7%+1 ||2)‘

The Cauchy—Schwarz inequality further yields

P2A (k1 — 5k) + (Vr1 — Y1)s (V& — Yk+1) — (k=1 — Yx))
P2 P2

< 5 i1 — sell* + ) vk = yr1) = (k=1 — yOII?
— o2l Yi1 = Yill? + P2 (Vk = Vi 15 Yee1 — Vi)

P2 2 P2 2, P2 2
= — sl — —will? + — i |-
5 lIsk+1 — sell 5 I i1 — il 5 v = yi—1l

The lemma is then proven by considering above equalities and inequalities. O
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Meanwhile, the following technical lemma is helpful and will be recalled
occasionally in the context.

Lemma 5 Let s, = Wxy — v and integers m < n. For any £ > 0, there holds

. | R
—Ont =y W =) = IWE =) 1> + EUsmll® + llsal®)

n—1

1 3
+ Y e =yentlP + 2 = m— Dl yumr = yall™

2§k=m 2
(11

Proof The proof is a direct consequence of the Cauchy—Schwarz inequality such
that

— (V=1 = Yns WE — x))
n—1

= — (et =Y WE=2)) = D (3t = Y Wt — i)

k=m
n—1

Lo
=, v —x)[I7 A+ =1 = ¥l = Y (nmt = Yo Sk + Yk = Vi1 — k1)

k=m
1 n—2
= IWG =) [P = Gaet = Y5 = 0D = D20t = Yo e = Yiek)
k=m

n—1

L, . 1 £
< WGP 5 (sl +lsal)F 5 D ey P+ (r=m=1) Iy =3l
k=m

|

3 Convergence Analysis with Exact Data

We proceed to the convergence analysis of the Relaxing ADMM with exact data.
First lemma considers the asymptotic behavior of the Bregman distance between
neighbouring iterates and Ej.

Lemma 6 Lety € (0,2), the minimizing sequences {x} and { y;} are bounded and
satisfies

o0

Dy it 1. 1) + Ex) < o0
=1
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Proof Denote (x,y) be a feasible point of the optimization problem (2). By the
Bregman distance and (4), we have

Dy i, f G Yi+1) = Dy SO 90 + Dy o (Vi 1, Y1)
= (fkt1 = Ma+2,Y = Yi+1) = —P2(Sk+1, WX — yiy1)
= —p2(sk1. WE = xiq1) + 5ut1) = —p2llskr1 I — p2(sus1. WE — xi41)).
Implement Lemma 3, we derive
DMkJrzf@v yk+1) - DILkJr]f(j}’ yk) + Dﬂk+1f(yk+1vyk)
= — palsir1 1> = (& = Xt 1, 2 W[ = iet1) — (k=1 — )]
+ (X — xx41, A 1 + (¥ — D 1A% )

= — palsi1 1> = pi 71 11> = (v = Dpi (7, 71

+ 02 (V=1 = Vs WE = xie41)) — P20k — Vi1, W(E — Xpe1))- (12)
We sum up both sides of (12) and obtain

n—1

D;Lr,+1f6/’yn) - DIAer]f@v ym) + ZDMk+1f(yk+lvyk)
k=m
n n—1
=— > (oallscl® + prllrll?) = (v = D1 Y (e risr)
k=m+1 k=m
n—=2 n—1
+02 D k=it WE—xi42)) = p2 ) (k= vk, WE = xiet1))
k=m—1 k=m
n n—1
== Y (ollsl? + prlldl?) = & = Dpr D (e rienn)
k=m+1 k=m
n—2
+ 02 )k = Vet Wkt — Xi42)) + p2 (et = Y WE = Xmp1))
k=m
_pZ(yn—l — Yns W()%_xn»- (13)

Let m = 1, we thus have

n—1

D;Lr,+1f6)vyn) + ZDquf(ka,)’k)

k=1



Relaxing ADMM for Linear Inverse Problems 325

n—1

=D, fG.y) = Y _(pallsel® + pullrel® = (v = Dpr Y (1. i)
k=2 k=1
n—2
+ P20 =y WE=x2)) + p2 Dk = Yier 1, W1 — Xe42))
k=1
_pZ(yn—l — Yn, W(j\c_xn»- (14)

We provide the error estimates for three items appearing in the right-hand side
of (14) below

\- S P+ e P s |
PIC DY 5 <> lnll?, (15)
k=1 k=1 k=1
n—2
D 0k = Vi1 Wit — Xet2))
k=1
n—2
= Ok = Vi1 Sk+1 + (Vkt1 = Ya+2) — Sk+2)
k=1
n—2
= vk = et s+l + 1 ve+1 = Va2l + lse+21)
k=1
n—2
1 1 9 1
=< Isertl? + o skl + - 11y =y 12 + 4 vt = Yol
3 8 2 2
1 n n—1
< 2 selP 53 =y, (16)
k=2 k=1
and

N 1 n 1
—(n—1 =Y WE —xa)) = 4IIW(X—xl)II2 u (s 1% =+ llsa %)

n—1

n
+2) e =yt I? + o[l —yal? (17)
k=1

by lettingm =1, & = i in Lemma 5.
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With the aid of above (in)equalities (14)—(17), we have the following estimate

n—1 n

Dy i fG3n) + Y Dy f w1 y0) < €= (oullrll* + pallsel®)
k=1 k=2

+ly =1 Yl

k=1
P n n—1 0
2 2
'y 2ol 4500 3 e —yent P+ sl
k=2 k=1

n—1

npa
+200 ) lyve =y l® + g I Yu—1 = yull?
k=1

n p2 n
<C—pi(=ly =1D 3 lnell® =) >l
k=2 k=2

n—1

npy
702 )=y I+ 7 v =l (18)
k=1

where the constant C does not depend on .
At the same time, Lemma 4 has shown that

oo

2
Z vk = Y1 [l” < o0
k=1

We can find a subsequence n; — oo such that
nj”ynj — Ynj+1 ”2 -0 (J - OO)

Therefore for arbitrary 0 < y < 2, we have

nj—l nj

nj
P2
D Dy ety + pr (1= 1=y D Il + 7 D sl < €.
k=1 k=2 k=2
Letj — oo,

[e.]

(D f (Yit1, 1) + Ex) < oo0.
k=1
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By Lemma 4, we know that {E}} is monotonically non-increasing, thus

n
np2||yn _yn—l”2 =< nEn =< ZEk < Cs
k=1
and
lim ||y, —yu—1l| =0, lim E, =0.
n—>oo n—>oo

By (18) and the strong convexity of f, we derive

Cc = DM,,+1f®7yn) > 60”5) _yn||2'

Therefore {y,} is a bounded sequence. Moreover, because lim,—. E, = 0, we
further have

lim Ax, =b, lim (Wx,—y,) =0.
n—>o0 n—>o00
Since {Ax,} and {WXx,} are bounded sequences, by Assumption 1 (/V),

crlball? < Ax > + W |1* < oo,

we prove that {x,} is also a bounded sequence. O

Lemma 7 Denote (x,3) be a feasible point of (2) and let y € (0,2). Then the
Bregman distance sequence {D,,,, f(9,yx)} converges.

Proof We consider (13) and obtain

iDunJrlf@’J’n) =Dy, SO, ym)i

n—1 n
<Y D S Gty + Y (oullrel® + pallsel®)

k=m k=m+1
n—2
+ 02 [ Y 0k = w1 Wierr — xi2)) | + o2l et = Y WE = 1))
k=m
n—1
+ :02|(yn—1 — Yn, W()Ac_xn))l + |1 - V|,01 Z |(r/(’ rk+1)|‘ (19)
k=m

Notice that

n—2 n n—1

1
D=y Wi —xie)) | < 0 D0 sl 45 ) =y I
k=m k=m+1 k=m
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Substitute it into (19), we obtain

|DM,,+1f6>v yn) - Dum+1f6}s ym)‘

n—1 n n
<Y D Grrry) + D (oullndl” + pallsll) + 11 = ylor Y lrel?
k=m k=m

k=m+1
P n n—1
2
+ D Isel? 50 Y v — i |?
k=m+1 k=m
+ :02” Ym—1 — ym” ”W()AC - xm+1)“ + :02“ Yn—1 — yn” ”W()AC - xn)“ (20)

By Lemma 6, we verify that the right hand side of (20) tends to 0 when m,n — oo
such that

mltll?oo |DM,,+1f6>v yn) - Dum+1f6}v ym)' = 0.

We thus prove convergence of the Relaxing ADMM.

Theorem 2 Let Assumption 1 (I)—(IV) hold true, y € [g, 2) and the observation

data b be consistent. Denote x*,y* = Wx* be the exact solution. Then the Relaxing
ADMM (3)—(6) converges such that

xe—> x5, ye—= 0y, Wx -yt
f(yk) _)f(y*)v DILkJr]f(y*’yk) - O’ (k - OO)

Proof We first prove { y;} is a Cauchy sequence. Assume (%, ) is a feasible point,
we have the following equality

Dum+1f()’nvym) - Du,n+1f(5’vym) + DMu+1f()A’vyn) = (Unt1 = Hmt1, Y0 — ).
(21)

From (4) we have,

n

(Hnt1 = tmt1, 30— 3) = Z (i1 =t yn = 3)
k=m+1

n
= Y (s —))
k=m+1

n

=—m Z (S, $n) + P2 Z (Sks W(xn_fc))-

k=m+1 k=m+1
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By using Lemma 3, we have

[{nt1 — Mt 1. Y0 — )|

—p2 Y (ses) Y (W (et — ) — (k2 — Y1) X — )

k=m+1 k=m+1

— Y (A 4+ (y — DpiAT e, 6, — §)
k=m+1

—P2 Z (slu sn) + Pz()’m —Yn — Ym—1 + Yn—1, W(xn _)AC»

k=m+1
—p1 Z (re,rn) — (v = Dp Z (=1, 1)
k=1 k=m+1

ORI A
<0 D sl + lsull®) + pal (uet = 30 Wetn = )|
k=m+1

A IR
o2l Gt =y Wt = D)+ 3 (el + )
k=m+1

IR
=l D Ul + Il
k=m+1

n

<3 g PN S e
k=m+1 k=m
+ O A+ L=y D= m)lral> + 2l ot = 3 WCs = D)
+ P2l (Ym—1 = Ym, W(x, — %)) (22)
Notice that y € [2/3,2) allows

i(/“n+l — Mm+1,Yn _)A’H 52 Z Ek + p2|<yn—1 — Yns W(xn _)AC))|
k=m+1

+ p2|(ym—l — Yms W(xn _-Q))' (23)
Implement Lemma 6 and (23), we have

(Mnt1 = Mm+1, Y0 —3) = 0 (m,n — 00). (24)



330 Z.Wuand S. Lu
Lemma 7 and (21) further yield

1Dptyyif s ym)| = 0 (m,n — o0)
and the property of Bregman distance shows lim,, y—co || Yo — Y| = 0. Thus {y,}
is a Cauchy sequence and y, — y(n — 00).
Secondly we prove that there exists x € Z(W) such that
xy > x  (k— o0),
Ax=b, Wx=}).
From Lemma 6 and y; — y, we have

Wx, — 5y, Axp — b.

Furthermore, by using Assumption 1 (/V) we can prove that {x;} is a Cauchy
sequence and

X, > X (n— o).

Thus we have b = lim,_,oc Ax, = AX. Notice that W is a closed operator in
Assumption 1 (III), there holds

xe W), Wx =y.
Next, we prove that
e (), lim f(0) =G, lim Dy fGoye) = 0.
For any feasible point (¥, y) we have,

FO) + (r1. 96 = 9) = f(vw)- (25)

Since f is a proper function and y; is a solution of optimization problem (7), f(yx)
is finite. Because of the lower semi-continuity, we further obtain

f@) < liminff(y) < o0.
k—00
Therefore y € Z(f).
Since (X, ) is a feasible point, we replace (%, ) by (¥,y) and re-consider (23),
oo

limsup (1.6 =3) < Y Ex

k=00 i=m+1



Relaxing ADMM for Linear Inverse Problems 331

Let m — oo, we have |(tx+1,yx — )| = 0 (k — 00), hence, limsup,_, .o f(yx) <
f(®). By the lower semi-continuity, we have limy_, f(yx) = f(¥) which yields

kl_i>noloD/Lk+1f(5}vyk) =0.

Finally, we prove that (%, y) is the exact solution (x*, y*). For any € > 0, referring
to (24), there exists ky > 0 which satisfies

(i1 — Mio+1. Yk — I | < €,

) (26)
P2 (Yko—1 = Yko» Wxx — X)) < €, Yk > ko.

Then (25) yields

F) =fO) + €+ (rgt+1, Yk — 9)-

However,

(ho+1, Yk = 9) = —(fho+1, 5k) + (Mao+1, Wk — X))
ko

= —(lko+1.5%) + (2, W — X)) + p2 Z(Sh W(x, —%)).
i=2

From Lemma 3, we have

(Mrog+1- Yk = 9) = — (Mrot1, k) — (A2, Ao — X)) + (v — Dpi{r1, i)

k() k()

+ p2(yo—y1, W—R)) — p1 Y (i) = (y — Dp1 Y _(rie1, )
i=2

=2
ko

+ 02 Z((,Vi—l =) = (Yie2 = yim1), W(x — X))
i=2

= — (Mko+1, k) — (A2, ) + (v — Dpi(r1, ri)

k() k()

—p1 Y _(riore) = (v = Dp1 D _{rim1 1)

i=2 =2

+ P2(Vko—1 = Yko» Wx — X)). 27

Combine (26) and (27), we obtain

(o126 = DN <ltko+ 1 llisell + A2 el + 110 =y palira el

ko
+ A+ ly = 1D Il + €.

i=1
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From Lemma 6, we derive
limsupf(ye) <f() + 2e.
k—00
Because f is lower semi-continuous, we thus have
JO) = liminff(yo) < f(3) + 2e.
k—>00

Let € — 0, then f(¥) < f(9). Because of the uniqueness in Theorem 1, we thus
conclude

=1
Il
=
<
Il
<

|

We shall mention that the interval y € [g, 2) in Theorem 2 can be released to

y € [¢,2) for any positive constant { < 2/3 such that the right-hand of (22) can be
bounded by some constant, depending on ¢, multiplying the right-hand of (23). We
consider a simple interval y € [g, 2) here just illustrating the role of the relaxing
factor.

4 Convergence Analysis with Noisy Data

Notice that the observation data b is usually contaminated by some noise, careful
calibration of the Relaxing ADMM (3)—(6) shall be considered when noisy data b°
is known instead of the exact one. Moreover, we shall assume that there is a noisy
level § satisfying

I15° = b)) <.
We introduce the residual
r,‘i =Axi -, si = Wxi —yi

and present the algorithm for noisy data as below.

Algorithm 1 (Relaxing ADMM for Noisy Data)
Given the forward operator A and the noisy data b°.

(a) Set initial guesses xo € D(W), yo € ¥, Ay € I, o € ¥, constants p; > 0,
p2 > 0 and the relaxing parametery > 0.
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(b) Let k = 0, x5 = xo, ¥ = Yo, A = Ao, Hg = Ho.
(c) If the stopping criterion is satisfied, with a constant Tt > 1,

v 12112 + p3lIs|? < max (o3, p3) 2282, (28)

then the algorithm terminates.
(d) Update the Lagrange multipliers A, i and solutions x, y by

A/(E+1 = Ai + vp1 (Ax,‘i - b8)§
1o yy = pi + pa (Wl —y0);

. P1 P2
Ky, = argmin(AS, |, Ax) + (ud,,, Wx) + 5 Ax — | + 5 W — y3||%;

XED(W)

. P2
Yi-H = argminf(y) — (/“Li-}-]ay) + ||Wxi+1 _)’”2-
YEW 2

Letk =k + 1 and return to (c).

We shall emphasize that (28) is a modified discrepancy principle which allows
a stable recovery of the unknown variable x. These type of stopping criterion is
necessary in solving ill-posed problems, see for example [6, 7].

Theorem 3 Let (x,‘i, y,‘i, Ai, ui) be the kth iterate of the Relaxing ADMM for noisy
data and (xy, Vi, Ak, i) be the kth iterate of the Relaxing ADMM for exact data.
Then for any k > 0 and § — 0 there holds

Xi — Xk, )’i — Yk» Wxi — Wx,
A= de 1l = e FOR) = ().

Proof Assume that the argument holds true when k = n, we consider the case of
k=n+ 1.1f § — 0, then there holds

A1 = A+ vo1(Ax) — b°) = X + yp1(Axy — b) = Ay,
and similarly ,uf’; +1 > Mn+1. By Lemma 1 we further derive
x,‘i+1 — Xpt1, foH_l — Wxy41 if 86— 0.
Then by implementing Lemma 2 we obtain

Voot = ks FOLL) = f(ugr) if §—0.
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Recall Algorithm 1, we have the explicit updating form
Aiﬂ X =vypir;
Misr = M = p2si;
A* Xy + DA = =Wy + oWy = YD
Wiva € (Vig).

By adjusting the proof of Lemmas 3 and 4, we have the following

Lemma 8 Let k be the iteration of the Relaxing ADMM for noisy data. If k = 1,
there holds

A*XS = (y — DpIA* ) + paW* (3 — ) — W*ps.
For any k > 2, there holds
PlA*rg + (- I)PIA*"I‘E—l = pW* [()’i—l _)’i) - ()’i—z _)’i—l)] - pzW*si.

Lemma 9 Denote Ej = py|Iri||* + pallsil* + pa2ll yi — i_ % Forany y € (0.2),
{E,f} is monotonically non-increasing such that

El  —E <—piQ=p)riy — 1l —4dcoll i — 317 <0

and

n—1
1
D i =il < 4COE:§,, (29)

k=m

n
] $ $
(n=mpallyy =¥oul> = Y E}.
k=m+1

If we have the noisy data, the Bregman distance between the iterates and the exact
unknown variable shall be re-estimated more carefully.

Lemma 10 Denote ks be the first k which satisfies the stopping criterion (28). Then
ks is finite for any § > 0.

Let y(t) be the solution of y + Vi/z = 2. If y satisfies 0 < le <y <yp(r) <2
forl <m < n < ks— 1, the following estimate holds

a8 RS $ o8 8 8
Dy, G-+ k_ZHEk <D, Gy +ly = ol (I 1l/2 + 8)
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N P2 A
+ 020t = WE =)+ IWGE =21
c
+ ol + CE), (30)

where constants c, and C only depend on cy, ps, T and y.

Proof Similar to (21), we have the estimate

,LHf(Y)’kH)—D f()’Yk)+D f()’k+1va)
- (Hk+2 - Nk+1s5’ _)’k+1>- (31

By using Lemma 8, we have

- (Hi+2 - M£+1v5’ _Yi+1) = —,02(5/8<+1’)A’ —)’£+1>

=— P2(5k+1v W — xk+1) + sk+1> P2||S/<+1|| — (0 W* Sk+1’ xi+1>

== P2||s/<+1 || - (PZW*[()’k _Yk+1) - ()’k 1 )’k)] xk+1)
+ (PIA*V;EH + (- 1),01A*V/f,5€ _x/li+1>

== palisiei P = ol P = & = Dpa (1. 7)
+ (v = Dol b =) + pr (i b= b)
+ 20k = WE =) = 0208 = Vg WE = xiy). (32)

Notice that by (31) and (32), the following items are equivalent
(1) = P20y =¥ WE=10)) = P20k =it WE = 01)
=D,y fG.Vig1) =Dy fGID + Dy fOir ) + o2lisil® + pullrig I

+ (v = Dpu(ri ) — (v = Dpi(rd b= b°) — pi (rh, | b — b°) = (1.
(33)

Choose m, n such that 1 < m < n < kg, we add the left-hand side of (33) from m to
n — 1 and obtain

n—1
Z(I) = P2 Z yk+1v Wi — xk+2) — P2 Z()’i - )’i+1s W — xi+1)>
k=m

k=m—1

=00 () = Y5 WE =25, ) — p2 (0, — 38, W(E —x0))

+ p2 Z()’/gc - yi-{—]s W(x/8<+1 - xi_q.z))- (34)
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Two items in the right-hand side of (34) are estimated below.

n—2 n—2
5.8 ) 8 5.3 8 § 8 8
Z(Yk — Verr Wi —xp0)) = Z()’k = Vet 10 Se1 + Vg1 = Vi) — Sip)

k=m k=m
n—2
S 8 8 S § S
=< Z I ye = Yot st |+ 11 — Yool + lsis21D

k=m

n—2
€ € 1 1 1
<Y Latstall+ it + (4 + ) I -kl + ok bl
k=m

n

$ 1
<e 2 WP+ (14 1) X skl (5)

k=m-+1 k=m+1

Let £ = € in Lemma 5, we obtain

. Lo
—(et = Y WE—x))) =, Iv@ — )12+ e(llsy, 17 + lso 1)

n

D =yl + e—mll ¥, =3I

+
2¢ k=m+1

(36)

On the other hand, we add the right-hand side of (33) from m to n — 1. By the
strongly convexity of f, we have

n—l n—1
DUD =Dy fG.Y) =Dy fGI)+ D Dy F(i1 )
k=m k=m

n n—1
+ Y @I+ ol 1) + & = Do Y ()
k=m+1 k=m
n—1 n
—(=Dp Y (kb =) —pr Y (b =)
k=m k=m+1
n—1
=Dys fG.3) =Dy fG.3) +co Do Iy =17
k=m

n—1

IR A AR EES Y

k=m-+1 k=m

g 17 + 1121
2



Relaxing ADMM for Linear Inverse Problems 337

n—1

—yor Y 18— ly = Upnllr I8 — prll 18
k=m+1

2Dy, fO) =Dy fG3)+ D (eallsil + il + coll 3§ = i)

k=m+1
n n—1
. 512 173,117 518
—ly=Tor Y2 1P =ly=tloe 50 =y 3 lriliden
k=m+1 k=m+1
—ly = 1[I7,1801 — |17 1801 (37)

By (34)-(37), we derive

ol
" )
3O+

' 50 X 50 _ $
Dys, O3+ ED <Dy G35 + |y = ot
~ P2 ~
P2(Vot = Yo WE—5,41)) + €pallsy |I* + 1 IWGE = x)I” + (E2);

with

n

ED =Y {1 =y = 1IDIEI* + p2lls 1 + coll ¥ — ¥4 I}

k=m+1
n—1
=8Il =yer > Ir1s: (38)
k=m+1
n 3 n
€ =2 3 WP+ (145 ) 2 kbl
k=m+1 k=m+1

+e(n—mpall v il
If k < ks, we apply the stopping criterion to obtain

max(pi, p3)7°8% < ypiI721” + p3 sl

Therefore, we have

Y 2o

1258|172 || = /28 max 1/2
v/ pi8|rel] (p1. p2) /2 max(p;, p2)1/?

AR
©max(p1,02)

rmax(pi, p2)8% +
<
- 2
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_ 20t + p3ls
27 max(py, p2)

1
= (ol + pallsil?) - (1 <k < ko). (39)

By using inequalities (39) and (38), we derive

(E1) = 2 Z E},

k=m+1
1—|y—1 1
o= min{ . ly =11 _ max(y~"2, yV/HL |
P2 4 T

To ensure that ¢, > 0, we choose y satisfying,

1
0< ,<y<y()<2,
T

where y is the solution of y + yi/z = 2and y € (1,2). By using the inequality (29),
we also have

pr(1+3/Qe))

E2) <3 ES
( )_EZ Kt Aco

k=m+1

Choose € = ¢;,/6, we thus obtain the inequality (30).

Finally, we prove that Algorithm 1 terminates in finite steps for any § > 0.
Assume that the algorithm doesn’t terminate in finite steps, then for any k there
holds

vorllrtI? + p3llstll” > max(of, p3)e*8%.
Hence,
E = ypi IR 17 + palisI® > max(pr, p2)T*6°.
By (30), we conclude

(n— m)c; max(py. p2) 728% < C(m).

Letting n — oo then yields a contradiction. O

Lemma 11 Let y satisfy

! <y < y(r)and| 1] ! + : <@
T) and |y — .
2 =YY 4 2y tyl/? 2
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Ifm < ks — 1, then the following estimates hold true

5
N 5L s . 5 17l
Dy, JO-Yi) +CE =Dy fO-3m) + 1y = Lpiliry| ( , *9

+ 7 2 max(pr, p2) 182 + 2 (38, — ¥ WE =25, )

3r
+ P IWGE =) + Gl | + C:E, (40)

and

~1/2

(g = D <Hdpy vt — D)+ v~/ > max(py . p) 78>

ks
02 A
+C Y B+ W0 = DI, (1)
k=m

where constants ¢, C1, Ca, C3 only depend on ¢y, py, T and y.

Proof Choose k = ks — 1, implement (28), (31), (32) and notice the strongly
convexity of f, we can derive

Dy fO3) + coll vy =i I
< Dy F6. 3,1 — pallsh P = il 12
a0 =Y WG =) — o = WG =)
= (y = Dpi(rioriym1) + (0 = Dpn(ri oy, b= ) + y 7' max (o1, p2) 762,

Three items appearing in the right-hand side of above inequality can be estimated
below
(ylég—z - yib'—l ’ W()% - x/‘ig))

ks—1
= (00 =Wy WE=X)) + Y 0% 5 =3 W — x4, )

k=m
1 .
< WG =X+ 1155 — ve, I

ks—1
§ § § .5 .8 §
+ Z(Ykg—z = Vo1 5% T Ve — Vi1 — Ser1)
k=m

Lo
= WG =) + 02 = Vi1 5 — )
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ks—1
s 52 s s 58
+ 1=z = Ve 7+ Z(Yk5—2 = Vg1 Yk — Vi1

Lo vz €rdze Spd 2y LT €8 52
= JIWGE=)IP + Ul + I 1P+ 12 = Vi
ks—1
4 2 k=i P el = m) 13 = i

k=m
1 A8 €6 €8
< WG =) + SIS+ s P
5 ks—1
(14 ) Tkl + et =mlols bl @)

k=m

Let§ = § in Lemma 5, we obtain
R 1
—( 1 =¥ WE—x)) < 4||W(x A+ (IIanII2 + IIsg, 11%)

ks—1
( ) S 58— s Pkl ol I
k=m

(43)
I 1% + N,y 117
—(y = Dprlrg i) Sly =t 0000
— 2)/ YP1 rkb' ks—1) -
The stopping criterion (28) and (39) yield
(= Do b =) < Iy~ tpulidls < 77 ] @s)
Y PINT 515 =1\ Pl -1 110 = Tyl ks—1°
By further considering (42)—(45) and applying Lemma 9, we obtain
ks—1 P
A 2 N
Dy JG-30) + B <Dy fO3h-) +es Y0 Bt IWGE =)
k=m+1

+ Cilsy > + GE), + y~"? max(p1, p2)78°
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with

ly =11  |r—1|
= 2¢
c3 + 2y + ryl/z

where él, éz only depend on ¢y, p2, T and y. Let € be small enough, and y in the

neighborhood of 1, we allow ¢3 < c»/2. By using (30), we thus obtain (40).
We prove the final inequality. By Lemma 8, we have

ks
(M1 = KoY, —9) = 2 Z (s, =)

k=m+1
ks kg
=—p Y Ashesh) e D (s W, —3)
k=m+1 k=m+1
ks kg
=—p > (shsl) D A =) = Ol — i) WG, — B)
k=m-+1 k=m+1
ks ks
—p1 3 A D) — Do Y ()6 b))
k=m+1 k=m+1
ks ks—1
=—p Y Ashsly—vor Yl — (= Dot
k=m-+1 k=m+1
ks—1
—P1||r;§5||2—)//)1 Z (r,f,b‘g—b)—(y— 1)p1(r‘fn,b5—b)
k=m+1

= P17y b = b) + p2{(3, = ¥) = ey = Yymn)- WO, — D).
Take the absolute value on both sides and apply the triangle inequality, we derive

F] ] ERNIN
|(Hk5+1 — M1 Vig =M

ks—1
1 P2
< ol 1P + p2lisE?) + pullr 112 + pallst, 12 + (ks —m — 1) |1si. |12
2 2
k=m+1
Yp i
1
+ ) s —m = DI I + 1y = Uil )] + v DRI
k=m+1

+ 1y = HpiSlIr Il + prllrg 118 + o2l (0], ) — yi, . Wl — )
+ 02| (68, — 35, W, — 2))
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ks—1
1
§(1+maX(y, )) Z E} + max(y, Dpi8 Y _ |7}

k=m+1 k=m

+ o8l L+ 1y = Upr (. 7))

+ P2l (kg1 = ¥ WO, = D)+ P2l 01 = 3 WG, = D).
Implement the stopping criterion (28) and (39), we can derive

ks—1 ks—1

1
max(y. Derd 3_ It = maxre1) Z E;.

k=m

—-1/2

P8l Il < y~'/2 max(p1, p2)787.

Recall the definition of E,f, we have
ly — 1
2y

pily — 1 [{r. )| < (E) + E}).

and
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(46)

(47)

(48)

(49)

P2l 8,y — Y W, — )| + o2l (0, — ¥5, Wl — )

P2 A
= WG, —DI” + B, +E,

Combine (46)—(50), we prove (41).

(50)

O

Finally we present the main convergence theorem of the Relaxing ADMM for

noisy data.

Theorem 4 Let Assumption 1 (I)—(1V) hold true and the observation data b be
consistent. Denote x* be the unique solution of (2) and y* = Wx*. If ks is the
first k satisfying the stopping criterion (28) and y belongs to the set @ such that

1

2 1 . 1
® = {y|max{3, TZ} <y <y@),ly—1 (2y + 12
then the Relaxing ADMM with noisy data yields

] * ] * ] *
Xpg =X Ve =Y. W =7,

FOL) = £y, D,th(y*,yib,) -0

when § tends to 0.

6‘2}
<
2
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Proof We prove the theorem in two cases.
Firstly we assume that b% satisfies ||b% — b|| < §; — 0 such that ks, = ko < o
holds for all i. By the stopping criterion, we have

yot 1% + p3lls |12 < max(o?, p2) 7267,
Let §; — 0 and apply Theorem 3, we have
Axp, = b, Wy, = yio-
By Algorithm 1, we have Ay 41 = Aks fig+1 = Mk, and g1 € 9f (vk), such that
0 = (Mko1 = Hig» Yko — Yio—1) = 20l kg — Yio—1 1.
Hence yy, = yi,—1. We can easily verify that xi,4+1 = xx, and yi,4+1 = Yi-

Notice that the Relaxing ADMM with exact observation data stops at k. From the
convergence analysis for exact data, we have

xe=x" ye=)y",
for all k > ky. By applying Theorem 3, we have the convergence results.

In the second case, we assume that b% satisfies ||b% — by < §; — 0 such that
ki = ks; — oo (i — 00). We first prove that Dus,- JO*, v ) — 0. By applying
ki+1 !

upper limit to (40), we have
limsupD o f(5".35) = Dityinf (3" 3m) + CIWG™ =) + Ci s
+ oL+ 2l et = Y WO =)+ Iy = 1 .
From the convergence result for the exact data, let m — oo, we obtain

Dy f(Y*¥i) = 0. (51)
kit+1 !

Because f is strongly convex, then there holds y,‘i; — y*. Implement the stopping
criterion, we derive

20145 12 2 Si 82 2 2\ 2¢2
YP1 ||Axkl_ = b|" + Pz”ka, - yk,-” < max(py, p;)T76; .
Leti — oo, we obtain

Axi”: — b, Wxiz — y*.
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From Assumption 1 (IV), we obtain xii — x*(i — 00). Hence,
E,‘Ef -0 (i— 00).
Finally we prove that f (yi:) — f(y*). From (51), we only need to show

(g oy ¥ —y) — 0. (52)

By applying upper limit to (41), we derive

I—00 i—>00

ki—1
lim sup |(uiﬁ+l,y* —yij_)l < C3lim sup (Z E,‘i" + E,i’) )

k=m
From (30),

ki—1
limsup ) ° By sC(DMmf(y*,ym_l) + Cllrma I + Gz = Yme1. W™ = X))

i—~oo .
WO = ) I+ st 2 + Bt ).

Let m — oo, we thus prove (52). O

5 Conclusion

We investigate the ADMM for solving linear inverse problems. In particular, a
relaxing factor is introduced to the standard algorithm allowing more flexible
updating of the Lagrange multiplier. We shall emphasize that in principle another
relaxing factor can be introduced to the Relaxing ADMM (3)—(6) updating both
Lagrange multipliers. But the convergence analysis is much more difficult than what
we have proposed in current work.

We skip the numerical simulation since most of the examples are quite robust.
By choosing the relaxing factor appropriately, one can obtain early convergence
of the Relaxing ADMM with respect to the standard one. The resolution of both
algorithms are comparably the same.
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