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Abstract. Brain imaging studies in humans have reported each object category
was associated with different neural response pattern reflecting visual, structure
or semantic attributes of visual appearance, and the representation of an object is
distributed across a broader expanse of cortex rather than a specific region.
These findings suggest the feature-map model of object representation. The
present object categorization study provided another evidence for feature-map
representation of objects. Linear Support Vector Machine (SVM) was used to
analyze the functional magnetic resonance imaging (fMRI) data when subjects
viewed four representative categories of objects (house, face, car and cat) to
investigate the representation of different categories of objects in human brain.
We designed 6 linear SVM classifiers to discriminate one category from the
other one (1 vs. 1), 12 linear SVM classifiers to discriminate one category from
other two categories (1 vs. 2), 3 linear SVM classifiers to discriminate two
categories of objects from the other two categories (2 vs. 2). Results showed that
objects with visually similar features have lower classification accuracy under all
conditions, which may provide new evidences for the feature-map representa-
tion of different categories of objects in human brain.
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1 Introduction

The representation of objects in human brain is a matter of intense debate, and in the
domain of neuroimaging study, three major models exist [1, 2]: category specific
model, process-map model and feature-map model.

The category specific model proposes that ventral temporal cortex contains a limited
number of areas that are specialized for representing specific categories of stimuli.
Evidences from patients with brain lesion showed that patient with lesions in one
paticular brain area lost the ability to recognize facial expressions or other objets [3, 4].
One study found that a farmer with brain lesion no longer recognized his own cows [4].
The study of event-related-potentials (ERP) and magnetic encephalography (MEG)
supported the face specificity in visual processing, human faces elicited a negative
component peaking at about 170 ms from stimulus onset (N170 or M170) [5-7].
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Functional magnetic resonance imaging (fMRI) studies described specialized areas for
faces and some specific objects: the fusiform face area (FFA) for human faces, the
parahippocampal place area (PPA) for scenes and the “extrastriate body area” (EBA) for
visual processing of the human body [8-13].

The process-map model [1, 14—16] proposes that different areas in ventral temporal
cortex are specialized for different types of perceptual processes. The studies from
Gauthier et al. showed that FFA was not just specialized for faces, but for expert visual
recognition of individual exemplars from any object category. For example, for bird
experts, FFA shows more activity when they view the pictures of bird, and for car
experts, FFA shows more activity when they view car than bird. Study also showed
that the acquisition of expertise with novel objects (such as greebles, one kind of
man-made object) led to increased activation in the right FFA [14].

For feature-map model, it proposes that the representations of faces and different
categories of objects are widely distributed and overlapping [2, 17-21]. In the study
Haxby et al. [2], fMRI data of ventral temporal cortex was recorded when subjects
viewed faces, cats, five categories of man-made objects, and nonsense pictures.
A correlation-based distance measure was used to predict the object categories and the
prediction result indicates that the representations of faces and objects in ventral
temporal cortex are widely distributed and overlapping.

The evidences for the three models came mainly from the neuroimaging study of
healthy subjects or patients with brain lesion. Generally, for the analysis of the neu-
roimaging data, univariate method was used, such as general linear model. However,
fMRI was multi-variate in nature. In recent years, multi-variate pattern analysis
(MVPA) methods have been widely used in fMRI analysis [22-26]. Compared with the
traditional univariate method, MVPA method takes the correlation among neurons or
cortical locations into consideration and is more sensitive and informative. In this
study, we further investigate the representation of objects in human brain using Support
Vector Machine (SVM). As one representative MVPA method, SVM is effective in
digging the information behind fMRI data. Four representative objects (house, face, car
and cat) were selected as stimulus, which can be grouped in the following ways: face
vs. other objects, animate vs. inanimate objects. SVM was applied to predict the label
of brain states, i.e. which kind of stimulus the subject was viewing, and 6 classifiers
were trained to classify one object category versus the other category (house vs. face,
house vs. car, house vs. cat, face vs. car, face vs. cat, car vs. cat). To further investigate
the representation of objects in human brain, 15 other classifiers were trained to cover
the possible combinations of the 2-class classification problem for the four categories
of objects (1 vs. 2, 2 vs. 2).

2 Method

2.1 Subjects and fMRI Data Acquisition

The data came from one of our previous study [26]. Fourteen healthy college students
participated in this study (6 males, 8 females). Subjects gave written informed consent.
A 3-T Siemens scanner equipped for echo planar imaging (EPI) at the Brain Imaging
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Center of Beijing Normal University was used for image acquisition. Functional
images were collected with the following parameters: repeat time (TR) = 2000 ms;
echo time (TE) = 30 ms; 32 slices; matrix size = 64 x 64; acquisition voxel size =
3.125 x 3.125 x 3.84 mm’; flip angle (FA) = 90°; field of view (FOV) = 190 ~
200 mm. In addition, a high-resolution, three-dimensional T1-weighted structural
image was acquired (TR = 2530 ms; TE = 3.39 ms; 128 slices; FA = 7°; matrix
size = 256 x 256; resolution = 1 x 1 x 1.33 mm?).

2.2 Stimuli and Experimental Procedure

The experiment was designed in a blocked fashion. Subject participated in 8 runs and
each run consisted of 4 task blocks and 5 control blocks. During each task block lasted
for 24 s, 12 gray-scale images belonging to one category (houses, faces, cars or cats)
were presented which were chosen randomly from 40 pictures of that particular cate-
gory, and subject had to press a button with left or right thumb as long as images were
repeated consecutively. Two identical images were displayed consecutively 2 times
randomly during each task block. Each stimulus was presented for 500 ms followed by
a 1500 ms blank screen. Control blocks were 12 s fixation in the beginning of a run
and at the end of every task block (Fig. 1). Each kind of objects block was presented
once during each run, and the order of them was counterbalanced in the whole session
which lasted 20.8 min.
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Fig. 1. The experimental procedure for one run.

2.3 Data Preprocessing

The preprocessing steps were the same as our previous study [26]. SPM2 (http://www.
fil.ion.ucl.ac.uk/spm/) was used to finish the preprocessing job. It mainly contains 3
steps: realignment, normalization and smoothing. Subjects were preprocessed sepa-
rately. In the beginning, the first 3 volumes were discarded as the initial images of each
session showed some artifacts related to signal stabilization (according to the SPM2
manual). Images were realigned to the first image of the scan run and were normalized to
the Montreal Neurological Institute (MNI) template. The voxel size of the normalized
images was set to be 3 * 3 * 4 mm. At last, images were smoothed with 8§ mm
full-width at half maximum (FWHM) Gaussian kernel. The baseline and the low fre-
quency components were removed by applying a regression model for each voxel [23].
The cut-off period chosen was 72 s.
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2.4 Voxel Selection

Voxels that activated for any kind of object within the whole brain were selected for
further analysis (family-wise error correction, p = 0.05) (Fig. 2).

Fig. 2. The voxel selection for one representative subject (slices —8 ~20), (Red: house; Blue:
Face; Green: Car; Yellow: Cat). (Color figure online)

2.5 SVM Method

LibSVM (http://www.csie.ntu.edu.tw/ ~ cjlin/libsvm) was used to predict the brain
states. The data of first 4 runs was used to train the model, and the data of last 4 runs was
used to test the model. To reduce the number of features, principle component analysis
(PCA) procedure was conducted over the features and PCs accumulatively accounting
for 95% of the total variance of the original data were kept for the subsequent classi-
fication. Then the attributes of training data was scaled to the range [—1, 1] linearly; and
the attributes of the test data was scaled using the same scaling function of the training
data. To compensate the hemodynamic delays, the fMRI signals of each voxel were
shifted by 4 s.

3 Results

For all the 21 combinations of two-class classification problems of the four categories
of objects (1 vs. 1, 1 vs. 2, 2 vs. 2), the classification accuracies were all above the
chance level (Kappa coefficients: 0.73 +0.13, M £ SD).

3.1 Classification Results for One vs. One Classifiers

Classification performances for discriminating one category from another category
were shown in Fig. 3. In this situation, 6 classifiers were trained (house vs. face, house
vs. cat, face vs. car, car vs. cat). Significant differences were found among the 6
classifiers (F(3.2, 42) = 11.88,p < 0.001, #*> = .478.). And two groups, house vs. car,
face vs. cat, have the lowest classification accuracy. The lower performance in dis-
tinguishing houses from car (or face from cat) suggests that houses (or face) share more
common activity with car (or cat) and therefore less dissociable.
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Fig. 3. Classification results for One vs. One Classifiers (M £ SE) (H: house; F: Face; R: Car;
T: Cat).

3.2 Classification Results for One vs. Two Classifiers

Classification performances for discriminating one category from the other two categories
of objects were shown in Fig. 4. In this situation, 4 groups, and totally 12 classifiers were
trained, each group contains three categories of objects (e.g., group one: face vs. house
and car; house vs. face and car; car vs. house and face). Significant difference were found
among the 3 classifiers for each group (F(2, 26) =31.22,p < 0.001, 7> =.706; F(1.39,
18.07) =22.88,p < 0.001, n* =.638; F(2,26)=11.18,p < 0.001, n* =.462;
F(2,26)=28.80,p < 0.001, n*> = .689). When distinguishing car (or cat) from the other
two categories of objects, the classifier performed worst, which suggests that car (or cat)
share more common activity with the other categories of objects. Take group one for
example, the classifier performed worst to discriminate car from house and face, which
implies the similar spatial activity of car with house and (or) face. To look the three 2-class
classifiers that involved the three objects (house vs. face, house vs. car, car vs. catin Fig. 4
further, the two classifiers included car had lower classification accuracy. The results were
similar for group 2, 3 and 4.

3.3 Classification Results for Two vs. Two Classifiers

Classification performances for discriminating two categories from the other two cat-
egories of objects were shown in Fig. 5. In this situation, 3 classifiers were trained
(house and car vs. cat and face; house and cat vs. face and car; house and face vs. car
and cat). Significant differences were found among the 3 classifiers (F(2, 26)=
39.59,p < 0.001, #*> =.753). When discriminating house and car from face and cat,
the classifier performed best, which suggests the dissociative spatial pattern may exist.
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Fig. 4. Classification results for One vs. Two Classifiers (M = SE) (H: house; F: Face; R:Car;
T: Cat).

100
90

1

80
70
60
50
40
30
20
10

0

HR vs. FT HTvs.FR HF vs. RT

Classification Accuracy(%)

Fig. 5. Classification results for Two vs. Two Classifiers (M £ SE) (H: house; F: Face; R: Car;
T: Cat).

3.4 Classification Results for Regions Maximally Responsive to One
Category of Objects

The classification accuracies for One vs. One and Two vs. Two classifiers were also
provided when the voxels that responded maximally to one category were chosen as
features (Fig. 6). Again, significant differences were found (all ps < .001). And similar
patterns were observed across voxel selection schemes.
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Fig. 6. Classification results for One vs. One (up) and Two vs. Two (below) classifiers when the
voxels that responded maximally to one category (i.e. House, face, car or cat) were chosen as
features (MM =+ SE) (H: house; F: Face; R: Car; T: Cat).

4 Discussion and Conclusions

In this study, one MVPA method, SVM was used to analyze the fMRI data when
subjects viewed faces and other objects. We investigated the possibility to classify the
brain states by various groups. This study selected four representative objects to study
the representation of objects in human brain in large scale (i.e. the scale of fMRI
technology). Totally 21 classifiers were trained to cover most of the possible combi-
nations of the four objects (the 1 vs. 3 classifiers were not included, as they provide no
useful information about the representation way of objects in human brain). Results
showed that objects with visually similar features have lower classification accuracy
under all conditions, which may provide new evidence for the feature-map represen-
tation of different category of objects in human brain.

The current analysis applied linear SVM to predict the categories of objects that the
subject viewed. SVM finds a linear combination of features which characterize or
separate two or more classes of objects or events. Thus, the higher the classification
accuracy is, the less in common the spatial activities are, and vice versa. As one
multi-variate analysis method, SVM is powerful in digging information behind fMRI
data. However, the use of multi-variate analysis method in fMRI study when subjects
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viewed the pictures of faces and objects was not new. Haxby et al. applied correlation
based method (it is the first time multi-variate method was used to analyze fMRI data)
to classify the brain states evoked by face, cat and five other man-made objects (houses,
shoes, scissors, bottles and chairs), and the result supported the feature-map model [2].
Different from Haxby’s study, we chose four objects (house, face, car and cat), which
can be further classified as animate (face and cat) vs. inanimate objects (house and car).
Besides, intuitively, face and cat contain information about face processing (such as
features related with eyes, mouth and ears), and house and car contain information
related with scene processing. The result of Fig. 3 shows that it is most difficult to
classify the brain activities elicited by the following two groups, face vs. cat and house
vs. car, which is more likely to support the feature-map model. The similar visual
features are represented adjacent spatially in brain, and the brain activity patterns
recorded by fMRI are adjacent or overlapped, as the patterns of voxel activities cor-
responding to each category on the whole brain shown in Fig. 2. Thus, the classifi-
cation accuracy for linear SVM is low. Besides, when the voxels that responded
maximally to one category of objects were chosen as features, similar patterns of
classification accuracies were observed as that shown in Figs. 2 and 5, and the accu-
racies were all above the chance level, indicating the overlapped representations of
faces and objects. If the definition of feature is not clear, when we grouped any two
categories of objects as one class, the classification result (Fig. 5) shows that the
classifier performed best when discriminating house and car from face and cat, while
the classifier performed worst when discriminating house and face from car and cat.
This result indicates house and car share more features, face and cat share more features
in common, and thus have similar brain activity pattern. In other situations, results also
showed that objects with visually similar features achieved lower classification accu-
racy (Fig. 4), which further supports the feature-map representation of different cate-
gory of objects in human brain.

In conclusion, MVPA methods and fMRI technology provide new way to under the
representation of different categories of objects in human brain. The current study
shows new evidence for feature-map representation of objects.
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