
Chapter 8
Validation of Computer Simulations
from a Kuhnian Perspective

Eckhart Arnold

Abstract WhileThomasKuhn’s theoryof scientific revolutions does not specifically
deal with validation, the validation of simulations can be related in various ways to
Kuhn’s theory: (1) Computer simulations are sometimes depicted as located between
experiments and theoretical reasoning, thus potentially blurring the line between
theory and empirical research. Does this require a new kind of research logic that
is different from the classical paradigm which clearly distinguishes between theory
and empirical observation? I argue that this is not the case. (2) Another typical
feature of computer simulations is their being “motley” (Winsberg in Philos Sci
70:105–125, 2003) with respect to the various premises that enter into simulations.
A possible consequence is that in case of failure it can become difficult to tell which
of the premises is to blame. Could this issue be understood as fostering Kuhn’s
mild relativism with respect to theory choice? I argue that there is no need to worry
about relativism with respect to computer simulations, in particular. (3) The field
of social simulations, in particular, still lacks a common understanding concerning
the requirements of empirical validation of simulations. Does this mean that social
simulations are still in a prescientific state in the sense of Kuhn? My conclusion is
that despite ongoing efforts to promote quality standards in this field, lack of proper
validation is still a problem of many published simulation studies and that, at least
large parts of social simulations must be considered as prescientific.
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8.1 Introduction

Kuhn (1976) famously introduced the term paradigm to characterize the set of back-
ground beliefs and attitudes shared by all scientists of a particular discipline. Accord-
ing to Kuhn these beliefs and attitudes are mostly centered around exemplars of good
scientific practice as presented in the textbook literature, but classical texts, spe-
cific methodological convictions or even ontological commitments can also become
important for defining a paradigm. Furthermore, paradigms comprise shared con-
victions as well as unspoken assumptions of the group of researchers (Kuhn 1976,
postscript). An important function of paradigms is that they both define and limit
what counts as relevant question and legitimate problemwithin a scientific discipline.

Kuhn’s concept of a paradigm is closely connected with his view of how science
develops. According to Kuhn phases of normal science where science progresses
within the confinements of a ruling paradigm are followed by scientific revolutions
which, in a process of creative destruction, lead to a paradigm shift. Scientific revo-
lutions are triggered by the accumulation of problems that are unsolvable within the
ruling paradigm (so called anomalies). With an increasing number of anomalies sci-
entists grow unsatisfied with the current paradigm and start to look for alternatives—
a state of affairs that (Kuhn 1976, Chap. 7/8) describes as the crisis of the ruling
paradigm. Then, a paradigm shift can occur that consists in a thoroughgoing con-
ceptual reorganization of a scientific discipline or, as the case may be, the genesis of
a new sub-discipline. Unless there is a crisis, the search for alternative paradigms is
usually suppressed by the scientific community.

This theory could be relevant for computer simulations and their validation.
Because computer simulations are sometimes characterized as a revolutionary new
tool that blurs the distinction between model and experiment, the question can be
asked if this tool brings about or requires new paradigms of validation. Under vali-
dation I understand a process which allows to test whether the results of a scientific
procedure adequately capture that part of reality which they aremeant to explain or to
enable us to understand. It is widely accepted that for theories or theoretical models,
the process of validation consists in the empirical testing of their consequences by
experiment or observation, which in this context is also often described as verifi-
cation or falsification or, more generally, as confirmation.1 The question then is, if
the same still holds for computer simulations, that is, if computer simulations also
require some form of empirical validation before they can be assumed to inform us
about reality.

For the purpose of this paper, I understand empirical validation in a somewhat
wider sense that does not require strict falsification, but merely any form of matching
theoretical assumptions with empirical findings. In this sense, a historian checking

1In the realm of computer simulations the term verification is, somewhat confusingly, reserved for
checking wether the simulation software is free from programming errors (so-called “bugs”) and
whether it is faithful to the mathematical model or theory on which it is based. The term validation
is used for the empirical testing of the simulation’s results. See also Chap. 4 by Murray-Smith in
this volume.

http://dx.doi.org/10.1007/978-3-319-70766-2_4
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an interpretation against the historical sources can also be said to validate that inter-
pretation. However, I assume that proper validation always includes an empirical
component and I therefore use the terms “validation” and “empirical validation”
interchangeably in the following.

In the following, I first summarize Kuhn’s philosophy of science (Sect. 8.2). Then
I list some of the dramatic changes that computer simulations have brought about in
science and—in order to forestall possible misunderstandings—explain why these
changes are not scientific revolutions in the sense of Kuhn (Sect. 8.3). In the main
part of this chapter (Sect. 8.4), I then examine the validation of simulations from
a Kuhnian perspective. Relating to the discussion about the relation between com-
puter simulations and experiments I argue that computer simulations can clearly be
distinguished from real experiments and, therefore, do not require a new paradigm
of validation. In principle, validating simulations is just like validating theory. I con-
tinue by examining whether computer simulations aggravate the problem of theory
choice that is associated with the so called “Duhem-Quine-thesis” (Harding 1976),
which I deny. Finally, I examine some of the issues that the validation of social simu-
lations and in particular agent-based-models raises from the point of view of Kuhn’s
philosophy of science. For the lack of commonly accepted standards of validation,
it seems unclear whether this field has already reached a state of “normal science”
with established paradigms of validation. Because the practices of validation vary
greatly in this field, a general conclusion is not possible, however. I therefore confine
myself to discussing the issue with respect to selected examples.

8.2 Kuhn’s Philosophy of Science

A crucial aspect of Kuhn’s concept of scientific revolutions is the alleged incom-
mensurability of paradigms (Kuhn 1976, Chap. 12, postscript 5.) (Sismondo 2010,
Chap. 2) (Bird 2013, Sect. 4.3f.). Incommensurability means that theories rooted in
different paradigms cannot easily be compared with respect to their scientific merits,
because of

1. methodological incommensurability, which means that the criteria of evaluation
depend on and change with the paradigm,

2. the theory-ladenness of observation, due to which an assessment based on empir-
ical evidence may not be able to resolve the dispute,

3. semantic incommensurability, which means that the differences of the respec-
tive conceptual reference frameworks and taxonomies may render the translation
between the nomenclatures of different paradigms difficult and error-prone.

Kuhn did not go as far as the proponents of the strong program of sociology of
science who maintain that the resolution of inter-paradigm-disputes is primarily, if
not exclusively, determined by social factors such as group allegiance and power-
structures (Bird 2013, Sect. 6.3). However, he did deny that the choice between
different theories is guided by a scientific meta-method such as systematic falsifica-
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tion or by any other particular set of rules. In this respect one can describe Kuhn’s
stance as a mild relativism. Kuhn’s relativism is restricted by his belief that a com-
mon ground for theory choice can still be found in such general characteristics as
empirical accuracy, consistency, breadth of scope, simplicity or parsimony, fruitful-
ness for future research (Kuhn 1977, Chap. 13). And he furthermore holds that the
comparison and mutual evaluation of paradigms is possible on the pragmatic basis
of their problem-solving capacity.

Although Kuhn regarded scientific revolutions and the paradigm shifts they bring
about as scientifically perfectly legitimate processes, that is processes that are primar-
ily driven by a scientificmotivation and not just by social power, he nonetheless found
that in almost any paradigm change some things get lost—if only that certain ques-
tions will not be considered worthwhile any more. An example is the question how
physical bodies influence each other over a distance, which cannot be answered by
Newton’s theory of Gravity and therefore simply was not asked any more, although,
beforeNewton it was considered important (Kuhn 1976, Chap. 12). The phenomenon
that accepted questions, problems and even solutions can become orphaned after a
paradigm shift has subsequently been called Kuhn loss (Bird 2013, Sect. 2).

Also, even though Kuhn allowed for paradigm shifts to make sense scientifically,
this does not always need to be the case, but one should expect that sometimes
paradigm shifts are primarily due to social factors. Not in the least because of the
popularity of Kuhn’s theory of scientific revolutions, it has become seductive for
scientists to stage a paradigm shift to promote their scientific agenda. In order to dis-
tinguish illegitimate paradigm-shifts terminologically, the derogatory term scientific
imperialism can be used, which has been coined to describe the take-over of a branch
of science by a single paradigm (Dupre 1994) by unfair means. Following Kuhn’s
line of thought the problem solving capacity could be a criterion by which to qualify
a paradigm shift as either legitimate or imperialistic. Because of the incommensu-
rability issues described before, an objective judgment about this can, of course, be
difficult.

A contemporary of Kuhn that is often mentioned in the same breath, is Paul Fey-
erabend, who is (in-)famous for the slogan “anything goes”. In popular folklore this
is sometimes understood as meaning that Feyerabend advocated that in science any
method is as good as any other. However, what Feyerabend actually demonstrated
in his book “Against Method: Outline of an Anarchist Theory of Knowledge” (Fey-
erabend 1975/1983) and other works was that even from the most humble historical
beginnings, a serious scientific theory or school of thought can still emerge. Feyer-
abend’s work gains its thrust from the fact that he can show that some of the game
changers in the history of science such as, for example, Galileo’s theory of motion,
violated accepted scientific standards of their time (Feyerabend 1975/1983, Chap.
9). Just as Kuhn he denies that the historical development of science is or can be
guided by methodological or epistemological rules. Similar to Kuhn, Feyerabend’s
philosophy has a certain relativistic flair, which Feyerabend other than Kuhn was
ready to accept (Preston 2016, Sect. 5).
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Nonetheless, despite what the subtitle of his major work suggests, Feyerabend’s
analyses do not warrant a strong relativism. Almost all of Feyerabend’s examples
concern theories that—later in their historical development—would be considered as
scientific even by conventional standards. Thus, what we can learn from Feyerabend
is a certain tolerance against the methodological chaos of new scientific approaches
in their infant stages. This can be important, for example, when evaluating social
simulations, which according to some authors suffer from a lack of proper empirical
validation (Heath et al. 2009). The question is then not so much whether these
simulations adhere to a particular scientific standard but rather whether the respective
scientific community learns from its failure to do so and will be able to develop
appropriate methodological standards in the future.

Another point that deserves clarification, because it is—at least in the philosoph-
ical discussion—almost habitually mentioned in context with Kuhn, is the Duhem–
Quine thesis (Harding 1976). The Duhem–Quine thesis draws on the fact that if the
logical consequence of a whole system of premises turns out to be false then it is still
unclear which one or more of the premises are false.2 This means that if a theory is
empirically disconfirmed, we do not (yet) know which part of the theory is wrong.
The Duhem–Quine thesis can be seen as supporting a certain degree of arbitrariness,
if not relativism in theory choice. And it corresponds well to Kuhn’s view that the
way scientists cope with anomalies is not strictly guided by methodological rules. It
may be a matter of creative choice. As we shall see later, this choice is in practice
much less arbitrary than it may appear in the formal logical representation of a theory
as a system of propositions.

Despite all reservations, Kuhn’s picture of the history of science is still one of
linear development,where normal science and revolutionary phases followeach other
in time. For Kuhn the prolonged coexistence of several competing paradigms was
the mark of a prescientific stage where much intellectual energy is wasted in disputes
between rivaling schools of thought. Recent research, however, has emphasized that
the coexistence of different paradigms within one and the same science is much too
common to be dismissed as prescientific (Kornmesser 2014; Schurz 2014). This is
particularly true of the social sciences, where hardly ever one paradigm can claim to
solve all puzzles so successfully that it is able to gather the entire scientific community
under its flag. That Kuhn may have underestimated the amount of coexistence of
paradigms in science does not invalidate his analyses, though. The concepts ofnormal
science and scientific revolutions can still be employed as ideal-types to characterize
the scientific proceedings within an established paradigm on the one hand and the
discourse between different coexisting paradigms on the other hand.

2See also Chap. 39 by Lenhard in this volume.

http://dx.doi.org/10.1007/978-3-319-70766-2_39
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8.3 A Revolution, but not a Kuhnian Revolution: Computer
Simulations in Science

Kuhn’s theory of scientific revolutions is so popular that his concept of a paradigmhas
by now become part of the common vocabulary. Inevitably, it is often used in a sense
that is different from what Kuhn had in mind. It may therefore help to make clear
what is not a revolution or paradigm change in Kuhn’s sense. Amost salient example
in this context is that of the introduction of computer simulations to science, because
it can with some justification be said that computer simulations have revolutionized
many areas of science.

Computer simulations can roughly be defined as the imitation of a natural process
(or, in the case of social simulations, a social process) by a computer program (Hart-
mann 1996). Undoubtedly, computer simulations have brought about considerable
changes in scientific practice and theoretical outlook. Here are but some examples:

• In engineering, simulations have been used before long to simulate the properties
of machinery and processes. A large class of simulations is based on the method
of finite elements which has as far reaching applications as structural engineering,
car crash tests and even cardiovascular simulations (Carusi et al. 2013).

• In chemistry simulations are employed in order to simulate chemical processes on
a quantum-mechanical bases, some of which are even outside the reach of direct
experimentation (Arnold 2013).

• In climate science the simulations are used to simulate the possible future develop-
ment of the world climate. Naturally, experimentation with the world climate is not
possible. By the same token, unfortunately, these simulations cannot be validated
directly.

• The theory of nonlinear dynamical systems (“chaos theory”) can even be said to
owe much of its origin to computational methods (Gleick 2011). At any rate its
development has certainly been propelled by the use of computers, though it might
not necessarily have been computer simulations in the narrower sense of imitations
of a natural process in the computer.

• In social science there exists a now already long-standing tradition of simulating
social processes. However, the social simulations community still struggles for the
acceptance within the broader social sciences community (Squazzoni and Casnici
2013).

Some of these examples certainly warrant the characterization as “revolutionary”.
Are they revolutionary in a Kuhnian sense, though? And would it be reasonable to
call simulation-based science in general a new paradigm of science?

For one thing, the way Kuhn used the term paradigm, paradigms are always tied
to specific scientific disciplines. Even though we are not tied to Kuhn’s definition
and the term paradigm has indeed been used more liberally by other authors since its
original introduction, it would appear a bit vague to speak of a paradigm of computer
simulations, because it is not at all clear what would be the content of this paradigm.
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Even more importantly, Kuhn reserves the concept of scientific revolutions for
changes that are caused by a crisis of the conceptual framework of a scientific disci-
pline and that lead to a reconstruction of the conceptual system that is incommensu-
rable with the previous reference framework. Not any dramatic change in science is
a revolution in the Kuhnian sense. A prominent example for a dramatic change that
is not a Kuhnian revolution is the discovery of the structure of the DNA-molecule by
Watson and Crick. While this discovery was a door-opener for molecular genetics, it
neither required nor effected a conceptual reconstruction and there was no question
of it being incommensurable with the previously held views on hereditary biology.
Quite the contrary, it fit in nicely with the existing body of knowledge. The discovery
of the DNA was normal science at its best, not a Kuhnian revolution.

Similarly, the introduction of computer simulations into a particular branch of
science alone is not a Kuhnian revolution, no matter how dramatic the changes in
scientific practice and the extension of our knowledge through computer simulations
might be. Only, if the use of computer simulations leads to a revision of established
fundamental concepts, it is a Kuhnian revolution. A possible candidate from the list
above might be chaos theory, in so far as it has modified the received picture of
causality.

8.4 Validation of Simulations from a Kuhnian Perspective

Can Kuhn’s concept of paradigm illuminate the validation of computer simulations?
And, if so, how? In the following, I am going to state several questions that can
be raised in this context and then try to give answers to these questions based on
the current discussion on computer simulations in the philosophy of science. The
questions that in my opinion deserve consideration are

1. Notwithstanding the question (discussed earlier) to what extent computer simula-
tions have prompted paradigm shifts in science, another question is, whether com-
puter simulations have lead to, or require new paradigms in the logic of scientific
discovery. Classical research logic assumes a clear distinction between theoretical
research based on deductive inference and empirical research based on experi-
ment and (potentially theory-laden) observation.3 Most importantly, there is a
hierarchy between the theoretical and empirical realm. Theoretical assumptions

3Because theory-ladenness of observation is an often misunderstood topic, two remarks are in
order: (1) Theory-ladenness of observation as such does not blur the distinction between theory
and observation. At worst we have a distinction between pure theory (without any observational
component) and theory-laden observation. (2) Theory-ladeness of observation does not lead to
a vicious circle when confirming theories by empirical observation. This is true, as long as the
observations are not laden with the particular theories for the confirmation of which they are used.
There are areas in science where no sharp distinction between theoretical reasoning and reporting
of observations is made. However, as far as computer simulations are concerned, it is clear that
because Turing Machines do not make observations, a computer program is always a theoretical
entity—not withstanding the fact that a computer program may represent an empirical setting or
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are confirmed or disconfirmed by empirical tests—not the other way round. Com-
puter simulations are sometimes depicted as being located somewhere between
empirical and theoretical research, and—as the common metaphor of “computer
experiments” suggests4—blurring the lines between the two (Morrison 2009).

2. In a similar vein, computer simulations often rely on a richmixture of assumptions
and technicalities that are drawn from diverse sources. In the philosophical lit-
erature on simulations this has been described as their being “motley”(Winsberg
2015) and not simply falling from theory. This can raise worries concerning
the prospects of empirical validation of computer simulations. In particular, the
question can be asked if the sort of problems associated with the Duhem–Quine
thesis increase with computer simulations: You may know that your simulation
contains many abstractions, simplifications, and presumptions, but you cannot be
sure which of these are potentially dangerous.

3. Finally, some thoughts shall be given to the validation of simulations in the social
sciences. Because the social sciences are multi-paradigm-sciences the validation
of simulations raises specific problems in this area. Given that it is still not com-
mon practice to validate simulations, one can even ask whether the field of social
simulations has already emerged from a prescientific state.

8.4.1 Do Computer Simulations Require a New Paradigm
of Validation?

While Kuhn’s theory of scientific revolutions is mainly concerned with the supers-
ession of scientific theories, his concept of paradigms can also be applied to other
aspects of scientific practice. For example, it might be applied to changes in the
logic of scientific research. The question whether computer simulations bring about
(or require) a new kind of research logic is particularly salient, because it has been
argued recently that computer simulations somehow blur the line between models
and experiments (Winsberg 2009). But if this means that computer simulations are—
just like experiments—somehow empirical, the question naturally arises whether the
validation of computer simulations can still be understood along the lines of what has
earlier been described as classical research logic. Or, if a new paradigm of validation
is necessary to assess whether a simulation adequately captures its target system or
not?

Before the recent discussion about the relation of simulations and experiments,
this question seemed to be rather trivial and its answer obvious: Computers are calcu-
lating machines and computer simulations are nothing but programed mathematical
models that run on the computer. Therefore, computer simulations can just like mod-
els produce no other than purely inferential knowledge, that is, knowledge that fol-

make use of empirical data. In the latter respect it can be compared with a physical theory that may
in fact represent empirical reality as well as contain natural constants (i.e., empirical data).
4See also Chap. 37 by Beisbart in this volume.

http://dx.doi.org/10.1007/978-3-319-70766-2_37
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lows deductively from the premises built into the simulation. In particular, computer
simulations cannot produce genuine empirical knowledge like experiments or obser-
vations can. It is true that computer simulations can produce new knowledge, because
they yield logical consequences of the built-in premises thatwere not formerly known
to us (Imbert 2017, Sect. 1.3.4). It is also true that computer simulations can—like
any model—produce knowledge about empirical reality, because the premises built
into them have empirical content and so have their logical consequences. But this
is far cry from the empirical knowledge that experiments or observations yield and
which—because it is of empirical origin—is genuine. But then computer simulations
have just the same epistemic status as theories and models and therefore follow the
same research logic and require just the same kind of validation. Now, in order to
validate a model or a theory it must be tested empirically, and so must computer
simulations.

What I have just described is more or less the picture of computer simulations
that was pertaining in the general literature on simulations up to the beginning of the
millennium. It had by that time been fleshed out with two distinctions that make the
difference between computer simulations and empirical research procedures extraor-
dinarily clear: First, by the distinction of the modus operandi. Is it a formal procedure
(computer simulation) or amaterial process (experiment)? Second, by the distinction
of their relation to the target system. Accordingly, this relation could be characterized
as one of formal similarity (Guala 2002) with the object of the simulation being a
representation (Morgan 2003) of the target system or, in the case of experiments,
one of material similarity with the object of experimentation being a representative
of the target system.

In recent years, however, there has been a persistent discussion among philoso-
phers of science during the course of which the distinction between simulations and
experiments has been seriously called into question.Most notably, some authors have
claimed that it is impossible to make a sharp distinction between simulations and
experiments—at least as far their epistemic reach or inferential power is concerned.
(Winsberg 2009; Parker 2009; Morrison 2009; Winsberg 2015). Others have advo-
cated the weaker claim that while there is a distinction between the two categories,
the transition between them is smooth and that there are borderline cases for which
it is difficult to determine into which category they fall (Morgan 2003).

Now, if this were true, then the generally accepted research logic of empirical
science, which relies on the ability to distinguish clearly between empirical obser-
vation and theoretical reasoning would find itself in a serious crisis and we would
have to expect and, in fact, need to hope for new paradigms of research logic and, in
particular, for the validation of computer simulations to emerge.

However, the case for the non-discriminability of simulations and experiments
rests almost entirely on conceptual confusions and an ambiguous use of the term
“experiment”. The examples with which supporters of the non-discriminability the-
sis demonstrate their claim concern almost exclusively atypical kinds of experiments,
where the object of experimentation is not really a representative of the target system.
For example, (Winsberg 2009, p. 590), discusses “tanks of fluid to learn about astro-
physical gas-jets” as an instance of an experiment. But this is an atypical experiment,
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Experiments
︸︸

computer simulation analog simulation real experiment

materiality of object semantic material

relation to target representation (formal similarity) representative

︷︷

Simulations

Fig. 8.1 Conceptual relation of simulations and experiments (Kästner and Arnold 2013)

because the tanks of fluid are not representatives of the target system (astrophysical
gas-jets). This kind of experiment is indeed in no better position to produce genuine
empirical knowledge about the target system than any computer model. But the fact
that there are such atypical experiments does not contradict the fact that there exist
real experiments that can produce genuine empirical knowledge about their target
system and that this is a feature that distinguishes real experiments from models.

The conceptual confusion that exists in the philosophical discussion about the
relation of simulations and experiments can easily be clarified by the schema on
Fig. 8.1, which depicts the overlap in the use of the words “simulation” and “exper-
iment”. The kind of experiments that Winsberg and other authors advocating the
non-discriminability between simulations and experiments discuss over and over
again, has been termed “analog simulation” in the schema. As all experiments do,
“analog simulations” operate on a material object, but this object does not have a
material similarity to its target system and therefore is only a representation, but not a
representative of its target system. The latter is required for an experiment to produce
genuine empirical knowledge about its target system.

That simulations are not experiments—save for the ambiguity and overlap in the
use of words—becomes furthermore clear if we consider the kind of experiments that
give rise to anomalies and which in retrospect are declared crucial experiments that
decide the choice between conflicting theories. Because the laws of the scientific
theories are programmed into computer simulations, they cannot be used to test
these very theories. If it really was as difficult to distinguish between simulations
and experiments as some philosophers of science believe, then it should—at least in
principle—be possible to substitute experiments with simulations in any context.

However, if we draw the demarcation line between analog simulations and
real experiments and not, as the authors advocating the non-discriminability-thesis
implicitly do, between computer simulations and analog simulations, thenwe are able
to distinguish clearly those scientific procedures that can generate genuine empirical
knowledge about their target system from those that cannot. Simulations and, in par-
ticular, computer simulations belong to the latter category and therefore have—with
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respect to validation—the same epistemic status as theories and models. They need
to be validated empirically, but they cannot provide empirical validation.5

Summing it up, computer simulations do not break the received paradigm of
research logic of empirical science. Therefore, a new paradigm of validation specif-
ically for simulations is not needed.

8.4.2 Validation of Simulations and the Duhem–Quine Thesis

Another point frequently emphasized in the philosophy of simulation literature is
that computer simulations can become highly complex. This is also one of the major
differences between computer simulations and thought experiments, to which they
are otherwise quite similar. At least in the natural sciences computer simulations can
often be based on comprehensive and well tested theories, such as quantum mechan-
ics, general relativity, Newton’s of gravitation or—in engineering—the method of
finite elements. But even in the natural sciences simulations cannot always be based
on a single theory, but they sometimes rely on different theories fromdifferent origins.
Climate simulations are a well-known example for this. And even where simulations
are based on a single theory, they usually also draw on various sorts of approxima-
tions, local models and computational techniques. None of these can be derived from
theory, so that they need independent credentials. This situation has been described in
the philosophy of simulation literature as their being motley and partly autonomous
(Winsberg 2003). This description echos a recent trend in the philosophy of science
which emphasizes the importance and relative independence of models from theory
(Morgan and Morrison 1999; Cartwright and Press 1983).

So, if simulations are knit together from many independent set pieces of theories,
models, approximations, algorithmic optimizations etc., then the Duhem–Quine the-
sis could point out a potential problem. A possible reading of the thesis assumes that
if validation fails (for example, because an empirical prediction wasmade that turned
out to be wrong), then one cannot knowwhich part of the chain of theoretical reason-
ing failed that leads to the empirical prediction. In the case of computer simulations
this means that one does not know whether the theory on which the simulation is
based, the simplifications that may have been made in the course of modeling or,
finally, the program code has failed.

By the same token, if this reading of Duhem–Quine is accurate, simulation sci-
entists would—for better or worse—enjoy a great freedom of choice concerning
where to make adjustments if a simulation fails, i.e. if it leads to unexpected, obvi-
ously false or no results at all. Some philosophers have even argued that scientists
sometimes deliberately employ assumptions that are known to be false to make their

5In simulation-science the term empirical is sometimes used to distinguish simulation and numerical
methods frommathematical analysis (Phelps 2016 is an example of this.). But this is just a different
use of words and should not be confused with “empirical” in the sense of being observation-based
as the word is understood in the context of empirical science.
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simulations work. Among these are artificial viscosity (Winsberg 2015, Sect. 8), or—
another often cited example—“Arakawa’s trick” (Lenhard 2007). Arakawa based a
general circulation model of the world climate on physically false assumptions to
make it work, which by the scientific community was accepted as a technical trick
of trade.

However, this reading of Duhem–Quine paints a somewhat unrealistic picture of
scientific practice, because in case of failure there usually exist further contextual
cueswhere the error causing the failure hasmost likely occurred.While in the abstract
formal representation of theories that is sometimes used to explain Duhem–Quine,
the premises are represented as propositions with no further information, scientists
usually have good reasons to consider the failure of some premises asmore likely than
others. In science and engineering, the premises are usually ordered in a hierarchy
that starts with the fundamental physical, chemical, or biological theories, ranges
over various steps of system description and approximation down to the computer
algorithms and, ultimately, the programm code. If a simulation fails one would start
to examine the premises in backward order. And this is only reasonable, because
prima facie, it is more likely that your own program code contains a bug than, say,
that the theory of quantum mechanics is false or that some of the tried and tested
approximation-techniques are wrong. Though, of course, this is not completely out
of the question, too.6 It should be understood that the credibility of the various
premises occurring in this hierarchy does not follow their generality, but depends on
their respective track record of successful applications in the past. It can safely be
assumed that this situation is typical for normal science.7

It must be conceded, though, that during a scientific revolution or within cross-
paradigm-discourse, there might be no hierarchy of premises to rely on, because
some of the premises higher up in the hierarchy, like the fundamental theories, are
not generally accepted any more. In this situation, there might, as Kuhn suggested,
only be vague meta-principles left to rely on and we must face the possibility of not
being able to resolve all conflicts of scientific opinion.

What about the conscious falsifications like artificial viscosity and “Arakawa’s
trick” that—according to some philosophers of science—are introduced by simula-
tions scientists in order to make their simulations work? This reading has not gone
unchallenged, and it has been called in to question whether the artificial viscosity
that Winsberg mentions is more than just another harmless approximation (Peschard
2011) or whether “Arakawa’s trick” not merely compensates for errors Error made at
another place, which would make it an example of a simulation the success of which

6See Arnold (2013, Sect. 3.4) for a case-study containing a detailed description of this hierarchy of
premises.
7But see Lenhard in Chap. 39 in this volume, who paints a very different picture. I cannot resolve
the differences here. In part they are due to Lenhard using examples where “due to interactivity,
modularity does not break down a complex system into separately manageable pieces.” (Lenhard
and Winsberg (2010), p. 256) To me it seems that as far as software design goes, it is always
possible—and in fact good practice—to design the system in such a way that each unit can be tested
separately. As far as validation goes, I admit that this may not work as easily because of restrictions
concerning the availability of empirical data.

http://dx.doi.org/10.1007/978-3-319-70766-2_39
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is badly understood rather than one that is very representative of simulation-based
science (Beisbart 2011, 333f.). It seems that these philosophically certainly interest-
ing examples concern exceptions rather than what is the rule in the scientific practice
with simulations. For the time being that is to say, because it is well imaginable that
in the future development of science these tricks become more common.

Summing it up, with respect to the Duhem–Quine thesis there are neither addi-
tional challenges nor additional chances for the validation of simulations. Under
normal science-conditions it does not play a role at all. Other than that it merely
reflects the greater methodological imponderabilities during a revolutionary phase
or in an inter-paradigm context.

8.4.3 Validation of Social Simulations

Most of the discussion so far and all of the examples were centered around science
and engineering. Therefore, in the following I am going to briefly discuss questions
concerning the validation of simulations that aremore specific for the social sciences.

8.4.3.1 Where Social Simulations Differ

In the context of validation of social simulations two features of the social sciences
become relevant that distinguish them from most natural sciences: First, the social
sciences are multi-paradigm-sciences. It is the normal state of these sciences that
there exist multiple more or less mutually incommensurable paradigms at the same
time. This multi-paradigm-character is well described in the textbook by Moses and
Knutsen (2012). For Kuhn such a state of affairs was a sign of a prescientific phase.
But given that the social sciences are—within inevitable confinements—nonetheless
able to produce convincing explanations at least for some social phenomena, the qual-
ification as prescientific seems inadequate. Also, if considered in isolation, most of
these paradigms expose typical features of normal science, like a textbook literature,
role models and exemplars, etc.

Deviating from Kuhn, I therefore suggest, that the qualification as prescientific
should be reserved to those sciences or branches of a science that—given their state
of development—have not yet been able at all to produce results that can be validated
or confirmed by some reasonable procedure. The qualification as prescientific is in
so far justified as without a common understanding and practice of validation one
can never be sure whether the results are indeed reliable.

Secondly, the social sciences include qualitative paradigms, including paradigms
that rely on hermeneutical methods. It is safe to assume that these can neither
be completely ignored nor always be resolved to quantitative or otherwise formal



216 E. Arnold

methods and paradigms.8 As computer simulations are quantitative, the decision to
use computer simulations is also a decision for a quantitative paradigm.

Here, I understand the term “quantitative” in a wide sense, including anything
that is described in a formal language. This can be formal logic, mathematics, or a
programming language. This wide sense of using the term “quantitative” ismotivated
by the fact all formal descriptions share the same epistemic risks of either losing
important information, because the expressive power of formal languages is limited in
comparison to natural language, or adding arbitrary assumptions in form ofmodeling
decisions. A simulation model forces its author to provide detailed mechanics of all
processes that are included in the model, because otherwise the model would not run.
However, if the mechanics are not known, this amounts to theoretical speculation.
A purely verbal description, in contrast, allows its author to remain silent or at least
adequately vague about underlyingmechanics the details of which are not known. On
the other hand, because of their strict specification, formal models cannot as easily
be misunderstood as verbal descriptions. And they enforce logical consistency.

Both of these features affect the validation of social simulations. Because, when
trying to validate a simulation study, say, on the evolution of cooperation, it might
become necessary to compare its findings with those of biological field research
or, depending on the envisaged application cases, those of cultural history. Thus,
different scientific disciplines with different paradigms might be affected. And, it
might become necessary to translate between a qualitative descriptive language used
in empirical research and the formal languages used in simulation research.

One possible objection when discussing social simulations in the connection with
Kuhn, is that it is not a scientific discipline, but a field that runs across several disci-
plines. However, since this field is shaped by shared attitudes, well-known exemplars
(Axelrod 1984; Axtell et al. 2002; Epstein and Axtell 1996; Schelling 1971) and an
emerging textbook-literature (Railsback and Grimm 2012; Gilbert and Troitzsch
2005), looking at it from a Kuhnian perspective does not seem too far-fetched.

8.4.3.2 Are Social Simulations Still in a Prescientific Stage?

One of the most surprising features to the outside observer of the field of social
simulations is the widespread absence of empirical validation, sometimes combined
with a certain unwillingness to see this as a problem.

In a meta-study on agent-based-modeling (ABM), which is one very important
sub-discipline of social simulations, Heath et al. (2009) find that the models in 65%
of surveyed articles have not properly been validated, which they consider “a practice

8There are scientists who deny even this and who also believe that without formal models no
explanation of any sort is possible in history or social science. I am a bit at loss for giving proper
references for this point of view, because I have mostly been confronted with it either in discussions
with scientists or by anonymous referees of journals of analytic philosophy. The published source
I know of that comes closest to this stance is the keynote “Why model?” by Epstein (2008), which
I have discussed in Arnold (2014).
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that is not acceptable in other sciences and should no longer be acceptable in ABM
practice and in publications associated with ABM” (4.11). While some of these not-
validated simulations can serve a purpose as thought experiments that capture some
relevant connection in an idealized and simplified form (Reutlinger et al. 2017),
many of them are merely follow-ups to existing simulations and bear little relevance
of their own. The practice of publishing simulations without empirical validation and
seemingly little (additional) theoretical relevance is so widespread that it has been
termed the YAAWN-Syndrome where YAAWN stands for “Yet Another Agent-
Based Model ... Whatever ... Nevermind” (O’Sullivan et al. 2016). The fact that such
a term has been coined is an indication that theABM-community is growingweary of
unvalidated or otherwise uninteresting simulations. Thus, the situation may change
in the future. For the time being, lack of validation is still a problem.

To be sure, agent-based-modeling is a broad field. On the one hand side there
are very theoretical simulations that set out from abstract concepts but without any
particular application case in mind. And on the other hand, there exist simulations
that are right from the start related to a particular empirical setting. The latter kind
of simulations is typically found in corporate or political consulting. I am going to
look at the theoretical simulations first and then consider the more applied kinds of
simulations later.

Naturally, unvalidated simulations aremuchmore prevalent among the theoretical
simulations,where the lack of empirical validation is sometimes not evenperceived as
a problem.Thismaybe illustrated by aquotation froman interviewwith a philosopher
who has produced models of opinion dynamics (Hegselmann and Krause 2002)
that have frequently been cited in other modeling studies but that have not been
empirically validated

None of the models has so far been confirmed in psychological experiments. Should one
really be completely indifferent about that? Rainer Hegselmann becomes almost a bit embar-
rassed by the question. “You know: In the back of my head is the idea that a certain sort of
laboratory experiments does not help us along at all.” (Grötker 2005, p. 2)

But if laboratory experiments do not help us along, how canmodels that have never
been confirmed empirically either by laboratory experiments or by field research
help us along? This lack of interest in empirical research is all the more surprising as
opinion dynamics concern a field with an abundance of empirical research. Naively,
one should assume that scientists have a natural interest in finding out whether the
hypotheses, models and theories they produce reflect empirical reality. That this
is obviously not always the case, confirms Kuhn’s view that the criteria by which
scientific research is judged are also set by the paradigm that guides the thinking
of the researchers and that there is no such thing as a “natural” scientific method
independent of paradigms. However, even Kuhn’s mild relativism would rule out
science without any form of empirical validation as unrewarding.

The lack of empirical concern within the field of social simulations can further-
more be attributed to another working mechanism of paradigms that Kuhn identified,
namely, the role of exemplars. As mentioned earlier, according to Kuhn scientific
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practice is not guided by the abstract rules of a logic of scientific discovery. Instead,
scientists follow role models or exemplars of good scientific practice.

Some very influential role models in the field of social simulations concern sim-
ulations that have never successfully been validated. The just mentioned opinion
dynamics simulation by Hegselmann and Krause is one example for this kind of role
model. But the arguably most famous unvalidated model that serves as an exemplar
in Kuhn’s sense is Robert Axelrod’s “Evolution of Cooperation” (Axelrod 1984).
Despite the fact that the reiterated Prisoner’s Dilemma simulations that Axelrod
used as a model for the evolution of cooperation had turned out to be a complete
empirical failure by the mid-1990s (Dugatkin 1997) and despite the devastating criti-
cism Axelrod’s approach had received from theoretical game theory (Binmore 1994,
1998), it continues to be passed down as a role model of social simulations until this
day. In a journal article from 2010 in the prestigious Science-journal, where a similar
research design as Axelrod’s was employed, it is mentioned as a role model that has
been “widely credited with invigorating the field” (Rendell et al. 2010, 2008f.). And
one can easily find recent studies (Phelps 2016) that naively pick up Axelrod’s study
as if no discussions concerning its robustness, its empirical validity or its theoretical
scope had ever taken place in the meantime. If simulation research designs without
proper validation such as Axelrod’s continue to be treated as exemplars, it is no
surprise that many social simulations lack proper validation.

Now, there are two caveats: First, in some cases unvalidated simulations can
serve a useful scientific function, among other things as thought-experiments. Of
a thought experiment one usually does not require empirical validation. Thus, if
Axelrod’s evolution of cooperation or Hegselmann’s and Krause’s opinion dynamics
could be considered thought experiments their status as role models in connection
with their lack of empirical validation could not be taken as an indication that social
simulations still remain in a prescientific stage. However, the way that both these
simulations functioned as role models was not by their (potential) use as thought-
experiments, but as a research programme. Indeed, it would be hard to justify the
literally dozens if not hundreds of follow-up simulations to Hegselmann-Krause
or Axelrod as thought experiments without invalidating the category of a thought-
experiment as a useful scientific procedure. But it has to be kept in mind that not any
kind of unvalidated simulation is an indication of prescientific fiddling about.

Second, and more importantly, not all simulation traditions have, of course,
remained as disconnected from empirical research asAxelrod’s Evolution of Cooper-
ation and Hegselmann’s and Krause’s opinion dynamics simulations. One example
is the Garbage-Can-Model (GCM) by (Cohen et al. 1972) which describes deci-
sion making inside organizations with a four component model, taking “problems”,
“solutions”, “participants” and “opportunities” into account. This model is highly
stylized and, because of this, would be difficult to validate directly. Nevertheless,
it is frequently referred to in studies on organizational decision making, including
empirical studies.

But why, one may ask, could the connection to empirical research, or more gener-
ally, other kinds of research on organizational decision-making be established in this
case while it failed in the aforementioned cases? There are several possible reasons:
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• Modeling organizational decision-making is amuchmore restricted topic than, say,
modeling evolution of cooperation in general. This makes it easier to find the right
abstraction level for modeling. While biologists complained about simulations
of the evolution of cooperation that “Most repeated animal interactions do not
even correspond to repeated games.” (Hammerstein 2003, p. 83), researchers from
organizational science have no such difficulties in relating to the Garbage-Can-
Model in their case studies (Fardal and Sornes 2008; Delgoshaei and Fatahi 2013).

• Within organization theory working with stylized descriptions is generally
accepted. Thus, the target that the simulation model had to match was an already
highly stylized verbal description. (Nonetheless, the simulation model did not rep-
resent the verbal description faithfully (Fioretti and Lomi 2008, p. 1.4)) It is much
easier to cast a stylized verbal description convincingly into a simulation model
than, say, a thick historical narrative as in one of Axelrod’s suggested application
cases.

• For the study of organizational decision-making the Garbage-Can-Model seems to
serve as a kindof vantage point. It helps to analyze and communicate organizational
decision making problems by relating a particular decision-making situation to the
model—even if the model is only used as a conceptual reference framework and
the actual simulation results are ignored.9 Because of its popularity the Garbage-
Can-Model could even be considered an exemplar in Kuhn’s sense. To serve as a
vantage point, a model does not need to be empirically validated or even testable. It
stands to reason, though, that it still needs to be “realistic enough” in some weaker
sense to serve this purpose.

• While for the latter purpose (vantage point) a stylized verbal description could
suffice, simulation models have the advantage that they can be run. This allows to
generate hypotheses about the simulated process which can help to establish the
basic plausibility of themodel, if the simulation itself and its results are plausible in
view of the prior knowledge about the simulated process.10 In the case of the GCM
the model establishes the connection between a certain structure of the decision-
making process and certain characteristics of the outcome, like how efficiently
problems will be solved. In a verbal description this connection can bemaintained,
but not be demonstrated. A simulation can show that such a connection exists, even
if only within the model.

In view of the possible functions of communication and hypotheses-generation,
one can argue that models like the Garbage Can Model can be useful in the context

9This seems to be the standard case for applying the GCM in organizational science. See Fardal and
Sornes (2008) and Delgoshaei and Fatahi (2013) for example. It will be interesting to see whether
the more refined simulation models of the GCM that have been published more recently (Fioretti
and Lomi 2008) will bring about an increased use of simulation models in applied studies referring
to the GCM or not.
10This is precisely where Axelrod’s simulations was lacking, because (a) his tournament of reiter-
ated Prisoner’s Dilemmas is too far removed from the phenomenology of either animal or human
interaction to be prima facie plausible, and (b) his results were—unbeknownst to him—highly
volatile with respect to the simulation setup and thus also lack plausibility.
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of empirical research even without being empirically validated themselves. Still, the
question remains what characteristics amodel of this kindmust have to be considered
useful or suitable, or how one can tell a good model from a bad model. There seems
to exist an intuitive understanding within the scientific communities habitually using
thesemodels, but it is hard tofind any explicit criteria. This strengthens the impression
that a paradigm of validation is not yet in place, at least not for the more theoretical
simulations.

What about applied simulations, though? Agend-based models are, among other
things, used to give advice about particular policy measures, like introducing a new
pension plan (Harding et al. 2010) or determining the best procedures for research
funding (Ahrweiler and Gilbert 2015). Obviously, validation is of considerable
importance if simulations are used for political consulting. So, how do scientists
who apply social simulations get around the restriction that the simulation results
often cannot directly be comparedwithmeasurable empirical data? In particular, how
can simulations be validated that are meant to evaluate the possible consequences of
policy measures that might never be implemented?

In their discussion of the validation of the SKIN-model, which simulates knowl-
edge dynamics in innovation networks, Ahrweiler and Gilbert (2015, Sect. 1.1.2)
do not even assume that there exist objective observations independent of a concrete
research goal or question.11 At least for the sake of the argument they even accept the
view that the observation of a social process is a construct of this process or “what
you observe as the real world” (Ahrweiler and Gilbert 2015, Sect. 1.2), just like the
simulation of the same process is another construct of this process. However, since
the authority over what is observed as the real world lies with the “user community”
(Ahrweiler and Gilbert 2015, Sect. 1.3), the output of a simulation can meaningfully
be compared with the observations.

Since the construction of the simulation as described by (Ahrweiler and Gilbert
2015, Sect. 2.4) is a process in which the user community is deeply involved, it is
tempting to raise the question how unbiased this kind of validation really is. After
all, an administration assigning the task of examining the potential for enhancement
of their administrative procedures to a team of simulation scientists might be more
interested in the vindication of certain administrative procedures than in their unbi-
ased assessment. However, the “user community view” as described by (Ahrweiler
and Gilbert 2015) depicts only the outline of the construction and validation pro-
cess of applied agent-based models. A more detailed analysis of the validation of
applied agent-based-models as provided by (Harding et al. 2010) reveals that there
exists a whole array of validation procedures which, if executed properly, limits the
risk of producing biased or arbitrary results. For the Australian Population and Pol-
icy Simulation Model Harding et al. (2010) report, among other measures: (i) the
calibration and benchmarking of the simulation with available cross-sectional and

11They discuss this under the heading of “theory-ladenness of observations”, though their examples
suggest that the issue at stake is rather different interpretations of observations or a focus on different
observations depending on the research questions than different observations due to a different
theoretical background.
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longitudinal data, (ii) the comparison of the simulation model’s projection with that
of other models, (iii) the modular structure and separate evaluation of each module,
(iv) the examination, if both the individual agent’s simulated life histories and the
summary statistics yield reasonable results. The impact of proposed policy measures
as revealed by the simulation can by its very nature not beforehand be compared
with empirical data. However, one can contend that in the context of policy advise
a simulation is sufficiently validated, if it leads to policy decisions that are better
grounded than they would be without running a simulation model.

Where does this leave us? Are social simulations still in a prescientific stage with
respect to their validation? On the one hand there is a widespread lack of proper
validation and the impression that the increasing number of published agent-based
models does not necessarily pay off in terms of further deepening our understanding
of the simulated processes. While other quality issues of agent-based models, such
as their reproducibility and mutual comparability, have been addressed in recent
years,12 there is still no common understanding concerning how agent-based models
should be validated. So far, the textbooks on agent-based simulations have little to
say about validation. With the central issue of validation still being unresolved, the
field of social simulations does yet seem to have matured into a normal science in
the sense of Kuhn. The situation can positively be a described as a phase of humble
beginnings in the sense of the interpretation of Feyerabend’s anarchic epistemology
that was given earlier.

On the other hand, scientists that apply agent-basedmodels to particular empirical
processes typically invest considerable time and effort into the validation of their
simulations and employ a diverse set of validation procedures to ensure the credibility
of their simulations. So, we might indeed be witnessing a paradigm of validation of
applied agent-based models in the making. It is, so far, only in the making, because
the various validation procedures and criteria used by the practitioners do not yet
seem to have been consolidated to a degree where they become textbook knowledge.

8.5 Summary and Conclusions

Putting it all together, we arrive at fairly conservative conclusions: Kuhn’s theory
of scientific revolutions and his concept of a paradigm does not have any particular
consequences for the validation of simulations.At least it does not have consequences
that are any different from those it has for the validation of theories or non-simulation
models. And neither do computer simulations require us to reconsider Kuhn’s theory
or related topics like theDuhem–Quine thesis. This result is somewhat unspectacular,
but it may be clarifying. With regard to the discussion about the novelty of computer
simulations it means that, whatever the novelty may be, neither the introduction of
computer simulations nor their validation is or requires a Kuhnian revolution.

12A most notable initiative in this respect has been the introduction of the ODD Protocol for the
standardized description of agent-based-models (Railsback and Grimm 2012).
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The coexistence of multiple paradigms in the social sciences is a challenge for
Kuhn’s theory in its original form. But, again, the validation of simulations does not
raise any specific problems in this context. Presently, many social simulations suffer
from the fact that for the lack of proper validation they are quite uninformative about
their target system. Although, there are also examples where social simulations do
contribute to the understanding of the target system, the field as a whole does not yet
seem to have become normal science in the sense of Kuhn. This is most notably due
to the fact that—as of now—there exists no commonly shared understanding of the
validation requirements of social simulations.
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