
Chapter 34
Uncertainty Quantification Using
Multiple Models—Prospects
and Challenges
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Abstract Model evaluation for long-term climate predictionsmust be done on quan-
tities other than the actual prediction, and a comprehensive uncertainty quantification
is impossible. An ad hoc alternative is provided by coordinated model intercom-
parisons which typically use a “one model one vote” approach. The problem with
such an approach is that it treats all models as independent and equally plausible.
Reweighting all models of the ensemble for performance and dependence seems like
an obviousway to improve onmodel democracy, yet there are open questions onwhat
constitutes a “good” model, how to define dependency, how to interpret robustness,
and how to incorporate background knowledge. Understanding those issues have the
potential to increase confidence in model predictions in modeling efforts outside of
climate science where similar challenges exist.
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34.1 Introduction

Whether conceptual, analytical, or numerical, a model is usually an idealization, i.e.,
a simplified representation of a target system. Amodel represents certain elements or
processes in order to reproduce or understand the characteristic behavior of a system,
to test a hypothesis, or to predict target system quantities of interest that cannot
be measured. Often, there are practical limitations that determine the complexity
of a model, like the availability of data, computational cost, or even the lack of
understanding of some processes that are deemed relevant. What is part of a model
and what is not, and how it is represented, is driven by the purpose of the model,
i.e., the research question in hand. Therefore, there is not only one possible model of
one target, but there are many. The benefit of picking another model, or success of
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changing the model (or lack thereof) can usually be quantified in terms of prediction
skill. Thus, while an infinite number of model structures, boundary conditions, and
parameter sets is possible in principle, in practice the decisions on how to further
develop amodel andwhether to accept or reject a proposed change can often bemade
on a pragmatic basis: a change is likely to be implemented if it is more firmly rooted
in theory and if it improves the skill, explanatory power, or usefulness of the model
without compromisingother desirable properties like efficiency. Improving themodel
may still be very challenging. But if the model can be evaluated by repeatedly testing
its predictions (as, e.g., in the case of weather prediction models), this provides a
clear feedback that guides model development. We distinguish model evaluation or
validation as the determination of whether a model represents reality well enough for
a particular purpose from verification as the determination of whether the output of a
simulation approximates the true solutions to the differential equations of the original
model. In what follows, we restrict ourselves to computer simulation models. Our
focus is on model evaluation rather than on verification.

Model evaluation for long-term climate predictions cannot be based on repeated
confirmation of the predictions against observation-based data. Moreover, model
evaluation requires uncertainty estimation, ideally in quantitative terms. However, a
comprehensive uncertainty quantification, which requires testing different assump-
tions in amodel (i.e., variations in the structure, the processes included), exploring the
uncertainty in parameter choices, and quantifying the effect of boundary conditions
and datasets, is effectively impossible (see Sect. 34.2; for methods of uncertainty
quantification in engineering contexts where repeated confirmation is possible; see
Chap. 22 by Dougherty, Dalton and Dehghannasiri in this volume). As an ad hoc
alternative, the climate modeling community has therefore started to establish coor-
dinated model intercomparisons. The resulting ensembles of different models can
be used to explore uncertainties either by testing the robustness of projections or
as a basis for statistical methods that estimate the uncertainty about future climate
change. A model projection is usually called robust if it is simulated by most mod-
els in the ensemble (although that does not imply that it is accurate). The notion of
robustness is more generally used in the sciences to characterize the invariance of a
result under multiple independent determinations, be these multiple different mod-
eling approaches or, e.g., diverse experimental devices and measurement practices
(Woodward 2006; Wimsatt 2012).

Here we use climate modeling to illustrate a few major (and possibly unique)
challenges of determining the robustness of simulation results and estimating their
uncertainty (for a general view on validation in climate science see also Chap. 30
by Rood in this volume). These challenges include definitions of core concepts,
requirements for ensembles, andmetrics for robustness that would support inferences
from the robustness of projections, e.g., to warranted confidence in the projections.
The challenges are interesting from both a philosophical and a practical point of
view. Understanding these issues and finding smarter ways to deal with the resulting
plurality of models has the potential to increase the value of models for climate as
well as for other environmental areas, and potentially beyond. Eventually, this may
increase the confidence we can have in such models as epistemic tools and provide
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scientists with a clearer explanation of what they are doing, and stronger arguments
when it does or does not work.

We first discuss some peculiarities of climate modeling which make a com-
prehensive uncertainty quantification impossible (Sect. 34.2). We then distinguish
between different sources of uncertainty in predicting climate change in order to
better understand the motivation of using model ensembles as a means of esti-
mating uncertainties in climate predictions (Sect. 34.3). The usual “one model one
vote” approach problematically assumes that all models are independent and equally
plausible (Sect. 34.4). As a way to improve on this model democracy, we suggest
reweighting all models of an ensemble for performance and dependence (Sect. 34.5),
and illustrate the idea for the case of Arctic sea ice (Sect. 34.6). We discuss some
open issues, such as whether better agreement with observation reduces uncertainties
in predictions, how to define model dependence, and how to incorporate background
knowledge in the suggested weighting scheme (Sect. 34.7), and close with a short
conclusion (Sect. 34.8).

34.2 Challenges for Uncertainty Quantification in Climate
Modeling

Climate and Earth system models of various complexity are used to simulate the
statistics of weather and how these will change in the future as a result of the emis-
sion of greenhouse gases like carbon dioxide and other radiatively active species
(Claussen et al. 2002; Knutti 2008; Flato 2011). The problem of using such models
for simulations has several peculiarities.

The first peculiarity relates to the system’s many dimensions: simulating the
weather in principle requires resolving the atmosphere, ocean, ice, and land sur-
face of the Earth, because of the many processes and timescales that affect weather.
From the condensation of water on a tiny aerosol (on spatial scales of microme-
ters and timescales of fractions of a second) to the large-scale ocean circulations
and melting of ice sheets (extending over thousands of kilometers and thousands of
years), the processes involved occur over at least twelve orders of magnitudes in both
time and space. And from soil microbes that potentially affect the growth of a tree
and its effect on the local carbon and water cycle to complex chemistry affecting
cloud formation, from subglacial hydrology to volcanoes affecting the radiative bal-
ance in the stratosphere, from our technological progress in developing renewable
energy sources to policy instruments that affect the rate of decarbonization, the list
of (potentially) relevant processes that affect future climate is extremely long. The
challenge consists of nothing less than simulating the whole Earth including human
behavior, which by construction is impossible; and even if it were possible, it would
not be reasonable. Due to the interactions of the many aspects in the climate system,
an increase in complexity typically decreases the analytic understanding of a model
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(Lenhard and Winsberg 2010). However, deciding on what to include and exclude,
and how to simplify, is tricky.

The second peculiarity, partly a consequence of the first, is that it is prohibitively
expensive to build a new model for each research question. The expertise and effort
required imply that a big institution typically builds only one or two (often similar)
versions of a model every few years. The same model is then used to study literally
hundreds of different questions. Thus, rather than a specific purpose guiding model
construction, we observe that it is the model, once it is built, that determines what
purposes it can be used for. The third peculiarity, also a consequence of the first, is
the computational cost and volume of data involved. A climate simulation typically
takes days to months running on hundreds to thousands of processors of a supercom-
puter, which makes it prohibitively expensive to systematically optimize the dozens
of parameters it has, or try hundreds of ideas before converging on a new model.
Development is therefore strongly guided by experts’ understanding of what could
work, based on background knowledge and experience of what ideas have worked
in similar situations or in other models in the past (Held 2005).

The fourth peculiarity is that a direct confirmation of the actual prediction is often
impossible. To confirm the prediction of climate in the year 2100, one would have to
wait for nearly a century, and even then a single confirmation would not be sufficient
given the chaotic component of atmospheric variability. The development cycle of
a model is usually much shorter than the typical timescales for confirmation. Model
evaluation for long-term predictions therefore must be done on quantities other than
the actual long-range prediction, e.g., observations of current climate (Gleckler et al.
2008; Knutti 2008; Flato 2011; Schaller et al. 2011), its variability, past changes, or
paleoclimate data (Harrison et al. 2015). The question then becomeswhich quantities
matter most for what question (see Sect. 34.5).

The mentioned peculiarities make it practically impossible to test many different
assumptions in a model (i.e., variations in the structure and the processes included),
different choices for parameters, and to quantify the effects of boundary conditions
and datasets in a systematic way. However, such a systematic assessment would
be required for comprehensive quantification of uncertainties. Coordinated model
intercomparisons offer an ad hoc work-around to this problem. Such efforts were
started by the climate modeling community about two decades ago. They require
whoever is willing to contribute to perform standardized simulations and provide the
results to others for analysis. The resulting ensembles of different models are often
referred to as “ensembles of opportunity”, since they group together existing models
and are not designed to span an uncertainty range (Knutti 2010a; Knutti et al. 2010;
Eyring et al. 2016).
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34.3 Uncertainty Quantification Using Model Ensembles

To better understand the motivation of using ensembles of different models, it is
useful to characterize the sources of uncertainty in predicting climate change. Three
sources of uncertainty can be distinguished: natural variability (both internal to the
system and externally forced from changes in solar irradiance and volcanic erup-
tions), scenario uncertainty and model uncertainty. Natural internal variability is an
inherent property resulting from the chaotic nature of the ocean–atmosphere system.
We cannot predict the weather more than about a week in advance, because tiny
uncertainties in the initial conditions grow as we run the model forward in time. The
system is sensitive to its initial conditions, much like a Lorenz system with multiple
attractors. That does not imply that the system is fundamentally unpredictable; the
models indicate that some aspects like the temperature difference betweenwinter and
summer or the long-term trend resulting from increased CO2 in the atmosphere are
predictable, although bifurcations may exist in parts of the system, e.g., the Atlantic
meridional overturning circulation (Lenton et al. 2008). Climate, the distribution of
all weather states, therefore is very likely predictable, but the individual sequence of
weather events, is not (Deser et al. 2012). This uncertainty, often referred to as ontic
uncertainty because it is due to the chaotic nature of the target system, is largely
accounted for by making statements about the climate averaged over 20 or more
years. Hence, it is not fundamentally impossible to deal with this variability, but
it is challenging because we can only evaluate the model in a probabilistic sense
(i.e., by comparing distributions), and single events are of little value for judging
the adequacy of a model. The second source of uncertainty, scenario uncertainty,
results from uncertainty in emissions of anthropogenic forcings like CO2, methane,
-SO2, or ozone. These are driven by technological progress, climate policy, values
in society, wars, etc., all of which are difficult to predict because they are based on
human behavior. This is also an ontic uncertainty, due to inherent properties of in
this case socio-techno-economic systems. This uncertainty is often accounted for
by considering projections (as opposed to predictions), defined as the response of
climate conditional on a predefined scenario of societal development (along with
emissions, land use change, etc.) (Vuuren et al. 2011).

This leaves us with model uncertainty, which is an epistemic uncertainty, i.e., a
lack of knowledge about whether the model is an appropriate representation of the
target system in question. A model is a representation of reality that is necessarily
simplified in important ways. First, some processes in the climate system are not
fully understood, e.g., changes in complex ecosystems. Second, some are rather well
understood but are so complex or small-scale that their effect has to be parameter-
ized in a simple way as a function of available large-scale properties (Gent et al.
1995; McFarlane 2011), e.g., ocean mixing processes and transports occurring on
scales smaller than the resolution of themodel (typically 100 km). The corresponding
parameters (e.g., an equivalent diffusivity) must be calibrated to match large-scale
observations and have no analog measurable equivalent quantity in reality. Third,
numerical approximations and finite resolution lead to small errors when integrat-



840 R. Knutti et al.

ing the equations. In principle, this could be improved by larger computers, but,
in practice, every doubling of horizontal resolution requires about ten times more
computing capacity, so it will take many decades before the relevant scales (tens to
hundreds of meters) can be resolved in global simulations (Schneider et al. 2017).
In addition, boundary conditions (like the bathymetry of the ocean or the structure
and properties of the soil) at every location are not fully known.

As a consequence of all of the above, it is often said that climate models are
uncertain, but this is amisconception. Strictly, amodel, once it is specified in the form
of equations or code, is perfectly certain, in the sense that applying the equations twice
will give the exact same results, and the effect of any change in the equations can be
quantified precisely. The uncertainty comes from the model being a representation
of a target in the real world, which requires specification and inference steps, in
deciding what to include in the model, and how to interpret the results of the models
for the real world. Of course, every climate model is false, by construction, in the
sense that it is an idealized representation of a real and open system (Oreskes et al.
1994). Not only does the model ignore some climate processes but it also distorts the
represented processes in different ways in order to make them mathematically and
computationally tractable. The question is not whether the model is true but whether
it is “true enough” (Elgin 2017), i.e., how well it represents the real system, and how
useful or adequate it is for learning about a particular aspect of the real system.

This last point, the adequacy of a model, motivates the pluralism in climate mod-
eling: because of the complexity of the system, the computational cost, and the
lack of direct confirmation of prediction, there is no single agreed-on “best” model.
Scientists inevitably have to make choices in what to include, how to parameterize
unresolved processes, and how to manage the tradeoff between complexity, reso-
lution, the number of simulations and number of years to simulate. Since there is
disagreement on how to make these choices, to some extent even for a given purpose,
there is no consensus on which one is the “best” model. So while multiple models
could be seen as ontologically incompatible (strictly speaking, they make conflict-
ing assumptions about the real world), and one could argue that scientists have to
assess how well they are supported by data, the community seems happy with the
model pluralism. The models are seen as complementary in the sense that they are
all plausible (although not necessarily equally plausible) representations of the real
system given the incomplete knowledge, data, and computational constraints; they
are used pragmatically to investigate uncertainties (Parker 2006, 2010, 2013).

The diversity of models across an ensemble provides one avenue to try to esti-
mate the consequences of model uncertainty by testing the robustness of results. For
example, there are several ways one can parameterize atmospheric small-scale con-
vection, and it is helpful to test whether the model behavior depends on the structure
of that parameterization and the parameter values. Robustness in a qualitative sense
is often invoked as a premise in an argument to the effect that a model result can be
trusted (see Parker 2011, for a critical discussion). Robustness analysis goes a step
further, using robust results to confirm certain parts of a model. Robustness analysis
was developed as a modeling strategy in population ecology (Levins 1966). It has
been generalized and systematized (Weisberg 2006; Wimsatt 2012), and also been
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applied to climate science (Lloyd, 2009, 2010). Robustness analysis uses a robust
result as confirmatory evidence for more general relations of a model, which are then
called “robust theorems”. Robust theorems have the form: “Ceteris paribus, if [com-
mon core (causal) structure] obtains, then [robust property] will obtain” (Weisberg
2006). For instance, if all models that share a core causal structure but use a variety
of simplifications show that higher CO2 concentrations lead to substantial warming,
then that result is unlikely to be just a consequence of particular choices made in
a model. This robust result is then used to formulate the robust theorem: “Ceteris
paribus, if [Greenhouse gases relate in law-like interaction with the energy budget
of the earth] obtains, then [increased global mean temperature] will obtain” (Lloyd,
2009, 2010). But there are of course limits to such an argument: there are cases where
all models are known to be robustly wrong in the same way because they all ignore
a process (e.g., ice sheet dynamics) or parameterize it in a similar way. In order to
avoid being misled by the robustness of results that is, in fact, pseudo-robustness
(Wimsatt 2012), models must be sufficiently diverse in the relevant regards. There
is considerable controversy on how to specify this requirement. A typical way is to
specify “diversity” as “independence” (Wimsatt 2012) and to elaborate on a formal
account for explicating this concept, for instance in a Bayesian framework (Fitel-
son 2001; Lloyd 2010; Stegenga and Menon 2017). However, these approaches are
not uncontested (Schupbach 2016), and their appropriate specification remains a
challenge.

In our discussion, we focus on determining the robustness of simulation results
used to estimate the uncertainty in long-term climate predictions, which needs to
be distinguished from robustness analysis used to confirm certain parts of a model.
For brevity, we will focus on the most interesting and challenging case of multiple
structurally different models in the Coupled Model Intercomparison Projects CMIP
(Eyring et al. 2016), noting that similar ideas can, of course, be applied to what is
often called perturbed physics ensembles, a model run with a variety of parameter
sets (Stainforth et al. 2005). Many issues are similar, except that a single model
structure can only capture so much of the range of behavior: no parameter set of
one model will ever behave (in all respects) like a structurally different model that
resolves other processes, although parameter calibration can compensate for some
missing aspects of processes.

34.4 Problems with Model Democracy

Ensembles of opportunity like CMIP are often used for uncertainty quantification
in a naïve way: the average of all models is taken as a best estimate, and the spread
of the models is reported as the uncertainty of the projection. This “one model one
vote” or “model democracy” (Knutti 2010), often used based on a lack of more
convincing or generally agreed-upon alternatives, makes several assumptions which
are rarely explicitly stated and even less frequently defended by actual evidence.
First, model democracy treats all models as reasonably independent, and second, it
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assumes that all models are about equally plausible. Third, it assumes that the range
of model projections represents what we believe is the uncertainty in the projection.
In aweather forecast, the equivalent would be a probabilistic projection that is neither
too broad nor overconfident, so that for many trials, observed outcomes would fall
within the estimated 5–95% confidence intervals in about 90% of the trials.

Unfortunately, none of the assumptions made by model democracy is strictly
fulfilled by present-day model ensembles. On the first point of dependence: many
models use ideas, parts of the code, or even whole components (e.g., the sea ice
model) from other models. The sheer complexity and cost lead groups to merge their
efforts in jointly developing or using components of other groups (Bellouin et al.
2011). New models are almost never developed from scratch but are based on earlier
models (Edwards 2011). As a consequence, some models are not providing much
additional information, and multiple replications of a model may strongly bias the
result toward that particular model (Annan and Hargreaves 2011; Masson and Knutti
2011a; Pennell and Reichler 2011; Knutti et al. 2013). How to actually define model
dependence is not straightforward (Annan and Hargreaves 2016). The models are
of course dependent in the sense that they all describe the same system, but that is
not the point: they are also similarly biased with regard to how they represent reality
because they share structural limitations or simplify things in the same way, and
therefore their projections will likely be biased in the same way. If two models share
several parts, the success of one model in simulation results has implications for the
probability of the other model’s success. This leaves us with the question of how
to explicate an appropriate notion of dependence and specify a metric to determine
model dependence (see Sects. 34.6 and 34.7).

On the second assumption, some models clearly perform better than others in
some metrics (for an introduction and overview on relevant metrics, see Chap. 18
by Saam in this volume), i.e., simulation results are closer to observations of reality,
with differences of up to a factor of two (Knutti et al. 2013). Reductions in the biases
by 20–30% from one model intercomparison to the next imply that some models
are about a decade of model development ahead of others in terms of how well they
reproduce the observations. No model is clearly far superior to all others, consistent
with the idea of pluralism where all models are seen as plausible representations
of reality given some practical boundary conditions; but some are more plausible
in certain respects than others. Some models perform well on certain metrics while
others performwell on others (Gleckler et al. 2008),which reflects differentmodeling
groups’ focus in terms of development and calibration. But a model that performs
well on one metric also tends to performwell on many others for at least two reasons:
the climate system is coupled, so a correct representation of rainfall, for example,
requires humidity (and therefore temperature), the dynamics (weather patterns), and
clouds to be well represented. The other fact is a practical one: some centers simply
have more resources (people and computing power) and experience than others, and
their models tend to do well on many criteria.

On the third assumption, the spread of model projections does not necessarily
represent what we believe is the uncertainty in the prediction. The spread of the
ensemble may be too big if the ensemble contains demonstrably unrealistic members



34 Uncertainty Quantification Using Multiple Models … 843

that can be rejected upfront based on physical understanding or disagreement with
observations (see Chap. 6 by Beven and Lane in this volume). A model of Venus or
Mars, for example, is unlikely to provide a useful projection of climate for the Earth
and should thus be excluded from the respective ensemble. The model spread can
also be too small if all models are missing the same relevant thing and are biased
in the same way. In many cases, we do not know whether the spread tends to be
too large or too small, and that likely depends on the variable, the timescale and the
spatial scale (Masson and Knutti 2011b).

A further complication is the question whether the ensemble of models is centered
around the truth (the so-called “truth plus error” paradigm, in which every model
simulation approximates the observations of reality with a random error), or whether
the observations of reality and the models are drawn from the same distribution (the
“indistinguishable” paradigm, in which truth is not necessarily in the center). The
former implies that predictionswould get evermore certain asmoremodels are added
(in much the same way as the estimate of the average fall speed of a rock gets more
andmore precise as we continue to measure the time for the rock to reach the ground,
if themeasurement errors are random)which is certainly not the case. But the average
of all models often does perform better than any individual model, suggesting some
truth-centeredness at least for the observations available. This interpretation however
can also change from the past to the future. For projections, the indistinguishable
paradigm appears to be the more plausible interpretation in most cases (i.e., reality
has about the same likelihood to approximately match any of the model realizations,
and it is not necessarily in the center of the distribution) (Annan and Hargreaves
2010; Sanderson and Knutti 2012).

34.5 Beyond Model Democracy

Reweighting the ensemble for performance and dependence seems like an obvious
way to improve on model democracy: poor and duplicated models would be down
weighted and models whose performances agree well with observations and are
relatively independently developed would constitute stronger evidence. Yet the dis-
cussions around such methods have been controversial so far. One argument against
weighting is the sensitivity of the results to the chosen metric and possible overcon-
fidence: if we weight by something that is unrelated to the quantity of interest or
dominated by variability, then there is a possibility that the result gets worse rather
than better (Weigel et al. 2010), and we may not know whether it does get worse.
However, this is really only an issue when the number of models is very small. For
a large number of models, it would essentially converge to random weights which
should not affect the results. Sometimes, there are also political sensitivities: it can be
difficult to dismiss models from certain centers or countries in a coordinated model-
ing effort. The other main argument raised against model weighting is that there are
many ways to do it and the lack of direct confirmation prevents us from testing which
approach is optimal. Indeed we can define an infinite number of model performance
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metrics (measuring the agreement with data in some way, e.g., a root mean square
difference to observations, or a spectrum, or conservation of properties), and arguing
which performancemetric is relevant for the quality of amodel is challenging (Knutti
et al. 2010b). Unlike in weather forecasting, for example, we cannot quantify skill
by repeated confirmation. Many broad brush metrics (e.g., patterns of temperature
or rainfall) in fact appear to be only weakly correlated to large-scale projections like
global temperature across a set of models (Jun et al. 2008; Knutti et al. 2010a). The
reasons for the lack of relationships can be a large structural uncertainty in the mod-
els, lack of observed trend due to large variability, or lack of observations. Another
hypothesis is that most of the observed data have already been used in model devel-
opment and evaluation, such that the current set of models can already be interpreted
as a posterior conditional on the observations; as a consequence, using the same
observations again would not add anything (Sanderson and Knutti 2012).

The argument of model weighting gets more convincing, we would argue, if we
assess model quality in relation to a particular purpose (Parker 2009). The question
of whichmodel is “best” is ill-posed unless we agree on the task themodel is used for.
The answer depends on the task we are trying to accomplish, in much the same way
as which car people would say is best depends on whether they try to go really fast, or
drive off-road, or move furniture. Defining weights for predicting a certain variable
X is easier both politically and scientifically. Politically because one model will get
more weight for predicting X, and another one will get more weight for predicting a
different variable Y, which is only natural as some groups focus their development
more on X and others more on Y. Scientifically, it is easier to select processes and
quantities that are relevant for predicting X: one can refer to background knowledge,
i.e., knowledge of various kinds that are accepted in the scientific community about
the factors that determine X. Such insight can come from process understanding,
trends emerging from natural variability, detection, and attribution, or from so-called
emergent constraints, which typically are strong relationships between an observable
quantity and a prediction. Observing the former can provide a constraint on the latter.
For example, the strength of the albedo feedback on a seasonal timescale is related to
the albedo feedback on decadal timescales (Hall and Qu 2006); hence, e.g., models
that lose Arctic sea ice faster in the past tend to lose it faster in the future (Boé et al.
2009; Mahlstein and Knutti 2012; Overland andWang 2013; Notz and Stroeve 2016;
Knutti et al. 2017). Not all such relationships are robust across awide range ofmodels
and there is a danger of spurious correlationwhen testing a large number of predictors
(Masson and Knutti 2013; Caldwell et al. 2014). But despite all difficulties, when
relationships acrossmodels are well understood in terms of the underlying processes,
they can provide guidance on which quantities to use for model weighting.

As an alternative to attaching weights to models, emergent constraints can also
be used to define a relationship between the observable and the projection (usually
through some form of regression across models). This relationship can then be used
to estimate an observationally constrained projection that is relatively independent
of the set of underlying models (Boé et al. 2009; Mahlstein and Knutti 2012; Cox
et al. 2013). Other options are interpolations in a low-dimensional model space
(Sanderson et al. 2015b) or Bayesian methods (Tebaldi et al. 2004). They all vary
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in their statistical methods but share the idea of deviating from model democracy by
using observed evidence. Also, strategies that combine dynamic models with other
types of models using data-driven methods (Mazzocchi and Pasini 2017) need to
use observational data, which are unavailable for long-term predictions. Data-driven
approaches are genetically independent from dynamicmodels and are using different
modeling schemes and methodological approaches. They may fit observations better
given enough degrees of freedom, but may still be biased when it comes to out-of-
sample prediction.

34.6 Illustration of Model Weighting for Arctic Sea Ice

We illustrate the idea of combining projections frommultiple models here for Arctic
sea ice, by weighting models both for their performance relative to observations and
for model dependence. The method is relatively straightforward in the sense that
a single number is defined as a weight for each simulation (although the choices
that need to be made are not trivial, as discussed below), and it has been used in
various contexts (Sanderson et al. 2015a, b; Knutti et al. 2017; Sanderson et al.
2017). The example is taken from an earlier study by Knutti et al. (2017), and is
chosen because the processes are relatively well understood, and the added value of
using observations is immediately obvious: to estimate when the Arctic will likely
be ice-free, the model should have about the right sea ice extent today, and about the
right trend over the past decades. Sea ice loss in the past and the future is correlated
across models (Boé et al. 2009; Mahlstein and Knutti 2012; Overland and Wang
2013; Notz and Stroeve 2016; Knutti et al. 2017), which is plausibly explained by
some models having a stronger sea ice albedo feedback than others. Observed sea
ice trends are therefore an obvious constraint. There are of course other methods to
weight models (Abramowitz and Gupta 2008; Waugh and Eyring 2008; Boé et al.
2009;Massonnet et al. 2012; Abramowitz and Bishop 2015), but themethod outlined
here may be the most straightforward one to illustrate the concepts.

For M models in the ensemble, the weight wi for model i is defined as

wi � e
− D2

i
σ2D

/⎛
⎝1 +

M∑
j ��i

e
− S2i j

σ2S

⎞
⎠ (34.1)

The numerator weighs a simulation by the distance metric Di of model i to observa-
tions (performance), while the denominator effectively takes into account howmany
times parts of a model are replicated based on Sij, the distance metric between model
i and model j, which informs about the dependence of the models in the ensemble.
BothDi and Sij are evaluated here as root mean square differences of a series of vari-
ables, but different choices for the metric and the functional form of the weighting
can be defended. The weights are scaled such that their sum over the whole ensemble
equals one. The constants σD and σ S determine how strongly the model performance
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and dependence (“similarity”) are weighted (see below). This weighting scheme ful-
fills two basic requirements: a model that is infinitely far from observations and does
in no way represent the real Earth (very large Di) gets zero weight. For a model
with no close neighbors, the denominator equals one and has no effect. However,
duplicating an otherwise independent model (Sij � 0) leads to a denominator being
equal to two: as a consequence the two duplicates each get half of the weight, and the
result is unaffected by the duplication. Because initial condition members (multiple
simulations of the same model with slightly different starting conditions) are very
similar, they are effectively treated as near replicates, and all available simulations
can be used in a straightforward way even if the number of initial condition ensemble
members varies strongly between models.

The metrics Di and Sij give equal weight to the climatological mean hemispheric
mean September Arctic sea ice extent (1980–2013), and its trend over the same
period, gridded climatological mean surface air temperature for each month, and cli-
matological mean gridded interannual variability of monthly surface air temperature,
but the sensitivity of the results to the choice of variable is illustrated in the results.

The choice of σD and σ S determines how close a model’s simulation results need
to be to observations to be considered “good” (performance), and how close two
models need to be in order to be considered “similar” (dependence), respectively.
The choice of these parameters is not straightforward. A very small σD, for example,
may lead to the total weight being concentrated on just one or two models, at the
expense of the results’ robustness. A very large value, on the other hand, will result
in the weighting having almost no effect. One way to inform the choice of these
parameters is to use perfect model tests, i.e., sequentially treating one of the models
as reality and using the others to predict its future. Confirmation is possible, in this
case, and allows optimizing the parameters for maximum skill while ensuring that
the predictions are not overconfident. However, if models are similarly wrong then
the perfect model tests might suggest that the method works well even if it does
not in the real world. As such, perfect model tests are a necessary but not sufficient
step for informing the choice of these parameters and to demonstrate the skill of the
proposed method. A more in-depth discussion is provided by Knutti et al. (2017).

Weighting models can be done straightforwardly based on Eq. (34.1), but a num-
ber of choices with regards to variables, regions, time periods, and parameters are
important. Hence, the results’ sensitivity toward these assumptions needs to be tested,
and background knowledge is required to judge which choices are plausible. If clear
constraints exist from observations, then the weighting makes the models more con-
sistent with the past and narrows the model spread of the projection. In the following,
we present an example of how taking the observations into account can improve the
projections relative to a model democracy case.

Figure 34.1 shows the simulated September Arctic temperature and sea ice extent
for all available fully coupled climate models (i.e., structurally different models as
well asmultiple initial conditionmembers). Colors fromgray to yellow to red indicate
increasingly higher weights. The blue line indicates observations. Weighting is not
based on the time series only, but on howwell the models simulated the whole Arctic
climate (see figure caption for details). Figure 34.1c indicates that the observationally
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weighted projection range (red) is substantially narrower than the raw range, i.e., the
model democracy case (gray), and agreement with the observed trends is better. Note
that we would not expect perfect agreement, as the observations represent one single
realization whereas the weighted model average is closer to a forced response with
much weaker variability. In the case of Arctic sea ice, there is evidence that part of
the strong ice loss might be due to natural variability (Kay et al. 2011; Swart et al.
2015; Screen and Francis 2016). This would be consistent with the observed decline
in sea ice being steeper than the weighted model average.

34.7 Discussion and Open Issues

As we argued in recent articles (Knutti 2010; Knutti et al. 2017), model democracy
is increasingly hard to justify for climate model projections. Biases in some models
and variables are so large that they cannot be ignored; in the example of Arctic sea
ice discussed above, a model without sea ice in the present day or one with more
sea ice by 2100 than observed today would be challenging to deal with. Simple bias
correction methods that consider anomalies from a reference state will not work well
or at all in such cases, as the change will depend on the reference state (if no sea ice
is left, the change will also be zero). So if there are observations or other sources of
information that can inform, or even better narrow the range of plausible projections,
it would be strange not to use them.

In our view, there are essentially three points that need to be considered: per-
formance as measured by agreement with observed data, model dependence, and
background knowledge. In the case of dynamical models (as opposed to statistical
models that are fitted), good agreement with a variety of observations provides strong
evidence that the models are doing the relevant things correctly, but is not a formal
proof of course (Baumberger et al. 2017). While confidence in the results should be
larger when they are obtained by models that reproduce relevant aspects of current
climate more accurately, performance alone provides insufficient support for long-
term predictions. Furthermore, if the processes likely relevant for specific projections
are sufficiently well understood and captured in the models, the coherence of models
with this background knowledge provides an additional reason that increases our
confidence in a projection (Baumberger et al. 2017). Given the complexity of the
system, a model never agrees with all the data, but that is not required. The question
is whether the model provides insight that we would not have otherwise. But how do
we deal with a situation where improving the model based on process understand-
ing, either through a more physical representation of a process, through increased
resolution, or by explicitly resolving a process that has been prescribed or ignored
before, leads to poorer agreement with data? Such situations are not uncommon, and
can result from observation biases or from compensating errors in the models. From
an understanding point of view, we might trust the new model more than the old one,
and further development might improve the agreement again. Yet in an operational
setting where users depend on predictions, a lower skill is hard to justify. Even in a
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Fig. 34.1 a Arctic
(60–90°N) September
surface air
temperature, b Arctic
September sea ice extent in
all CMIP3/5 simulations.
Gray, yellow, orange and red
indicates those that get
<0.5%, >0.5%, >1%, and
>5% weight, respectively,
from weighting with
Eq. (34.1). Observations
(NCEP) are shown in blue.
c Mean and 5–95% range for
no weighting (black line,
gray band) and weighting
(red line and band). Colored
dots near 2050 and 2100
show 2046–2055 and
2090–2099 average sea ice
extent using (from left to
right) the following metrics:
(1) none (unweighted), (2)
climatological mean
(1980–2013) September sea
ice extent, (3) September sea
ice extent trend 1980–2013,
(4) climatology of monthly
surface temperature
(1980–2013), (5) interannual
variability of monthly
surface temperature, (6) all
2–5. Figure reproduced from
Knutti et al. (2017)
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research context there is a tendency for a “dog and pony show”: the argument that
it “looks good” is easier to sell than the fact that the underlying processes are more
realistically described. This, of course, raises interesting discussion about the value
of fit, and calibration (“tuning”) (Baumberger et al. 2017; Knutti 2018).

It is important to keep in mind that better agreement with observations will not
necessarily reduce uncertainties in projections (Knutti and Sedláček 2012). But even
in cases where it does not (Sanderson et al. 2017), we should not conclude that
the effort was useless. This inability to further constrain the model range can arise
either because the spread was not sufficient to begin with, or because the ensemble
was already weighted due to good models being replicated a lot (Sanderson et al.
2017), or because the observations are not long enough or of sufficient quality or
have too much variability to provide a constraint, or because the quantity of interest
is inherently unpredictable, or because we have already used most of the information
in the model development, evaluation and calibration. But in any case, we would
not know until we have actually done the exercise. If the posterior after weighting
is similar to the prior, then we have not reduced the spread, but we can be confident
that the projection is reasonably consistent (in both magnitude and spread) with the
observations we have on mean and trends. The raw model spread is just a range
across models and cannot be interpreted as an uncertainty. It is an ad hoc measure of
spread reflecting the ensemble design, or lack thereof, whereas the weighted results
can be interpreted as an incomplete measure of uncertainty given all observations
we have. The numbers may be similar, but the interpretation of the range is very
different, and we should have more confidence in the latter.

Stronger constraints will come in the future (and have already in the past) from
better observing systems specifically designed for climate change (early observations
were mostly taken for weather prediction where long-term stability of a system was
less of a concern), and from anthropogenic trends. Often past trends aremore strongly
related to future trends in a model than the mean state is related to future trends. But
past forced trends may have been amplified or masked by natural variability, in
particular over shorter periods (Deser et al. 2012; Fischer and Knutti 2016; Saffioti
et al. 2016; Medhaug et al. 2017). Given the strong limits of available observations
and computational capacity, model development and evaluation will, therefore, be a
continuous process, and uncertainty estimates of projections will continue to change,
as is the case in most other research areas. The lack of direct confirmation and the
reliance on multiple potentially strongly dependent models however is somewhat
unique to climate projections.

Model performance is an issue that any model developer always considers. In
contrast, the issue of model dependence has gotten far less attention in the climate
community. It is something that only becomes apparent after the various institutions
have finalized their models. Only the most recent intercomparisons provided clear
evidence that this problem can no longer be ignored, and there is less of a consensus
on how to deal with it. It is likely to get more pronounced as model development
gets increasingly complex and expensive. People sharing ideas or code, or develop-
ing code in a collaborative way is perfectly fine, but its impact on projections has
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to be considered in the interpretation of the results. In Sect. 34.6, we proposed a
straightforward way how to include model dependence as a term in the weighting.

An open issue is a proper mathematical definition of model dependence that can
actually be implemented in practice (Annan and Hargreaves 2016). Models’ resem-
bling each other by sharing certain parts or features is an indication for them being
related, but once the simulation results of two models converge to observations, the
simulation results of the various models will also get closer and closer to each other
without the models necessarily being dependent. Furthermore, models that are inde-
pendent from others may be irrelevant for the hypothesis in question. Because of
these basic problems, it has also been questioned whether a concept of dependence
is appropriate to explicate the diversity of models or other methods for reliably deter-
mining the robustness of their results (Schupbach 2016). More pragmatic concerns
with applying a formal concept of probabilistic dependence in the case of climate
models are for example how to find out which processes are represented inwhichway
in different models. In most cases of using ensembles for determining the robustness
of simulation results, these concerns are not an issue right now, because the distance
of models’ results to observations is typically far bigger than the distance between
two strongly relatedmodels. Dependence and performance are treated independently
in the example in Sect. 34.6, but further work may come up with different or more
sophisticated alternatives.

Another open issue is an adequate selection process for ensemble members that
avoids both pseudo-robustness resulting fromexcluding relevant plausible but diverg-
ing models (too narrow spread of results, e.g., because few centers in CMIP try
to develop models with extreme behavior) and lack of robustness resulting from
including irrelevant models (too broad spread of results). Which models are relevant
depends on the hypothesis (purpose) for which the ensemble is used, which needs
to be assessed by reference to relevant background knowledge about the problem
in question and experiences with modeling practices. While this is a question that
cannot be answered in general, making the considerations on the relevance of models
explicit in each casewould be a general requirement on using ensembles to determine
the robustness of predictions. Scientists, e.g., often implicitly consider background
knowledge when selecting an ensemble, but these considerations should be made
explicit.

Background knowledge is important for considering whether to exclude or down-
weight models which violate basic physical principles (such as conservation of water
or energy), or which lack representations of processes or feedbacks that are known
to play an important role for future climate. In general terms: If the models within an
ensemble differ strongly in how coherent they are with background knowledge, and
if it is likely that there is a correlation between how well a model is based on process
understanding and the model’s adequacy for long-term projections, then the coher-
ence with background knowledge should be considered in weighting the models for
estimating uncertainties in such projections. It is important to seewhy coherencewith
background knowledge cannot be built into the dimension of performance: If two
models reproduce equally well observed mean climate and trends but we know from
background theories that only the first represents certain feedbacks (e.g., greenhouse
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gas emissions from thawing permafrost) which significantly influence future climate,
then the first model should be given more weight than the second. On the one hand,
one could think of coherence with relevant background knowledge as a consideration
additional to determining the robustness of results (Parker 2013), e.g., for determin-
ing which models to include in an ensemble in the first place. On the other hand, one
might think about integrating coherence with the relevant background knowledge as
a further term in the weighting. In a Bayesian framework, the first option affects the
prior, which is based on the whole ensemble; the second option affects the posterior,
which depends on the weighing of the models. However, there is still considerable
work to do in order to find a qualitative or a quantitative way to consider coherence
with relevant background knowledge. It needs, e.g., to be determined how to deal
with the intransparency of what exactly is in the models, and with limitations in
the state of knowledge. Moreover, a procedure for assessing this coherence, e.g.,
something like eliciting expert judgments, needs to be established. Accounting for
coherence with relevant background knowledge is a challenging task, but it needs to
be addressed in order to improve the epistemic significance of robust results.

34.8 Conclusion

We have used climate modeling to illustrate a few major (and possibly unique) chal-
lenges of determining the robustness of simulation results for long-term predictions
and of estimating their uncertainty. We have proposed to weight the models of an
ensemble in order to avoid biases that result when all models are treated equally. We
have proposed a somewhat ad hoc scheme that considers dependence and perfor-
mance of the models, yet there are challenges that need further work. These include
how to quantitatively account for coherence with background knowledge as a further
important requirement on ensembles, as well as definitions of core concepts andmet-
rics in order to provide a quantitative determination of the robustness of simulation
results. Such an explicit and systematic approach to robustness of results is required
to support inferences from the robustness of projections and to establish confidence
in the projections. These challenges are interesting from both a philosophical and
a practical point of view. Improving our understanding of these issues and finding
better ways to deal with the plurality of models has the potential to increase the
value of models not just for climate but other environmental areas, and potentially
beyond, where determining the robustness of results is a strategy to assess confi-
dence in results. Eventually, this may provide scientists with a clearer explanation
of what they are doing in modeling, and stronger arguments about when modeling
as an epistemic tool does or does not work.
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