
Chapter 13
Validation Metrics: A Case
for Pattern-Based Methods

Robert E. Marks

Abstract This chapter discusses the issue of choosing the best computer model for
simulating a real-world phenomenon through the process of validating the model’s
output against the historical, real-world data. Four families of techniques are dis-
cussed that are used in the context of validation. One is based on the comparison
of statistical summaries of the historical data and the model output. The second is
used where the models and data are stochastic, and distributions of variables must be
compared, and a metric is used to measure their closeness. After exploring the desir-
able properties of such a measure, the paper compares the third and fourth methods
(from information theory) of measuring closeness of patterns, using an example from
strategic market competition. The techniques can, however, be used for validating
computer models in any domain.

Keywords Model validation · State Similarity Measure · Area Validation Metric ·
Generalized Hartley metric

13.1 Introduction

Validation of a computer model broadly means determining whether the model is
behaving as expected, given themodeller’s knowledge of the real-world phenomenon
beingmodelled; validating can aid in the choice of the bestmodel, as discussed below.
This chapter uses the example of agent-basedmodels. Agent-based computer simula-
tions (ormulti-agent systems) are a special case of computer simulationswhichmodel
autonomous or semi-autonomous rule-based agents dynamically interacting out of
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equilibrium, for the purpose of observing the emergence of patterns of behaviour at
the micro (agent) level or at a higher, macro (group) level which might not other-
wise be predicted.1 For agent-based models, validation poses special issues since the
emergent behaviour of such models might be previously unobserved or unexpected.
This chapter explains techniques of validation for such models, in particular, the
choice of a validation metric.2 But the metrics to be discussed below are applicable
in principle to validation of computer models against observed data—time series or
cross sectional—of applications inmany fields in engineering, science, computer sci-
ence or the social sciences. Indeed, any phenomenon in which one set of multivariate
variables is compared against another, time series or cross section.3

Chapter 31 by Fagiolo et al. in this volume presents a clear overview of valida-
tion of agent-based simulation models.4 They remark that there are many kinds of
validation or validity: e.g. output validation, structural validation, theoretical valid-
ity, model validity and operational validity. The simulation model is an attempt to
include the relevant variables in a mechanism to reflect the behaviour and hopefully
to explain the phenomenon being examined. The phenomenon exhibits a certain
(historical) behaviour; the simulation model can generate simulated behaviour. How
closely the simulation model’s behaviour reflects the observed behaviour is one
measure of how well the simulation model reflects the phenomenon being modelled
(output validation). Another is to identify the causal structures underlying the real-
world phenomenon, as revealed in the historical data, and to compare them with the
causal structures of the simulation model or models. This chapter focuses on output
validation, asking howwell do themodel data track existing real-world data, possibly
micro (at the agent level), possibly macro (at the aggregate level).5

In this chapter, four broad families of measures that can be used in this respect will
be explained: what might be called empirical likelihood measures, so-called stochas-
tic area measures, so-called information-theoretic measures and pattern-based or
strategic state measures. There are trade-offs associated with these families of mea-
sures, and several metrics, so far, have been devised for each.6

1For an overview of types of computer simulation modelling, see Gilbert and Troitzsch (2005).
2Wedistinguishbetweenbroadermeasure andnarrowermetric—ametric is ameasure, but ameasure
is not necessarily a metric—as discussed in Sect. 13.2 below.
3See Marks (2007), Midgley et al. (2007), Oberkampf and Roy (2010), and Liu et al. (2010) for
further general discussions of validation.
4As Guerini and Moneta (2017) observe, the appearance of many measures to validate agent-based
simulation models is an indication of “the vitality of the agent-based community.”
5This chapter, in effect, focuses on techniques of output validation (see Chap. 30, Sects. 4.2, 5.1
and 5.2 by Fagiolo et al. in this volume), going into greater detail about three of the six measures
they discuss.
6This chapter puts the work of Marks (2013) into a wider context.

http://dx.doi.org/10.1007/978-3-319-70766-2_31
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In the fourth family, we describe in detail two metrics (the State Similarity Mea-
sure, SSM, and the Generalized Hartley Measure, GHM) which are applicable to
validation of models the output of which is multivariate patterns, unlike other meth-
ods which assume univariate variables. The two measures can be thought of alter-
nate methods of measuring the rowwise distance between any two matrices of equal
dimension, X and Y.

13.2 Validation Metrics

As an example from the social sciences, consider the interactions over time among
several brands, where each brand’s market decisions (prices, promotions, etc.) in
any period affect the other brands’ volumes sold and profits, and the other brands
respond with their own market decisions in the following period. (See Sect. 13.5.)
This “rivalrous dance,” as I have called it, generates a complex dynamical pattern of
prices, profits, volumes sold, etc. The problem is not specific to simulation models
and phenomena in the social sciences: researchers in the biological sciences face the
same issue and have made some seminal advances in our understanding of the issues
(Mankin et al. 1977).

13.2.1 Four Types of Measurement Scales

The variables compared in Ferson et al. (2008) and Roy and Oberkampf (2011),
like almost all variables in scientific and engineering validation, share one property:
they are interval scales. That is, they measure ordered magnitudes, defined so that
the intervals of pairs of variables can be compared, or measured. (They could be
ratio scales, such as Kelvin for temperature, with absolute zero and where ratios are
meaningful,7 but this is less common.)

Almost all validation methods in finance, science and engineering are applicable
to interval-scaled variables, but not to order-scaled variables, in which the variables
might be increasing (decreasing) in one (or the other) direction but where distances
in these directions are meaningless because order is their highest characteristic. And
such validation methods cannot be applied when the variables are nominal scales
only: when their order is arbitrary, and their highest characteristic is unique identity,
with arbitrary, separate names or numbers.

The main focus of this chapter is on methods of validation which can deal with
nominal-scaled variables, or patterns, such as those that are seen in the historical phe-

7A temperature of 100K is twice as hot as 50 K, but 100 ◦C is not twice as hot as 50 ◦C: K is a ratio
scale, but ◦C is only an interval scale (“by how much?”); “hotter” and “colder” is only an ordered
scale.
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nomena (and the computer programswritten to simulate them) described in Sect. 13.5
below.

Two metrics in particular—the State Similarity Measure and the Generalized
Hartley Measure—have been developed to deal with nominal-scaled data. These
can be thought of as generalizations of the interval-scale-based metrics of Ferson
et al. (2008). They also overcome an issue that does not arise with interval-scaled
variables: the disappearance of any state in one but not the other of the two sets of
matrices X and Y: interval-scaled measures do not exhibit gaps in which one state
appears in X but not in Y, or vice versa.

13.2.2 The Desirable Properties of a Validation Metric

Ferson et al. (2008, p. 2415) state that “a validation metric is a formal measure of the
mismatch between predictions [of the model] and data that have not previously been
used to develop the model.” And that the closer the match between the model output
and the historical observations, the smaller the measure. Specifically, they argue that
a desirable measure should exhibit six properties:

1. it should be objective (and quantitative) so that the same predictions and the same
data will result in the same assessment, no matter who conducts it.

2. if there is a comparison between deterministic values without stochasticity, then
the metric should generalize this in a reasonable way.

3. the metric should reflect all differences in the two distributions (of the predictions
and of the history), not just the lower moments of these distributions (mean,
standard deviation); it should not be too sensitive to outliers.

4. for ease of understanding, the unit of the metric should be the same as the unit of
the variables, if possible.

5. the modulus of the measure should be unbounded above.
6. the measure should be a true metric: that is, it should be non-negative and sym-

metric, should satisfy the delta inequality:

d(x, y) + d(y, z) ≥ d(x, z)

and should satisfy the identity of indiscernables8:

d(x, y) = 0 ⇐⇒ x = y.

Property 6 defines a metric. Properties 1, 3 and 6 are, I believe, crucial to any
validation measure. Property 4 is desirable for interval-scaled variables and Property

8Lacking only symmetry, it is a quasi-metric; lacking only the identity of indiscernables, it is a
semi-metric; lacking only the triangle inequality, it is a pseudo-metric.
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2 is desirable for validation of stochastic models. Property 5 is not necessary and is
inapplicable where the variables are order- or nominal-scaled.

The issue of measuring the distance between the dynamics of the output produced
by a simulation model and the historical counterpart raises the question of how to
define ametric to measure this distance. For simple phenomena (and simple models),
the output might be simple too. Measuring the distance between two time series, say,
is simple. When the phenomenon is dynamic and multivariate, with more than one
interrelated time series output, however, the issue of defining and measuring the
distance between the pair of sets of outputs is not simple.

If, moreover, the variables of the data and the model predictions are not interval-
scaled, but only nominal-scaled, then the units of the measure will not in general be
those of the data and predicted variables (Property 4). And it is not clear whether
Properties 2 and 3 will be satisfied. First, in the application of oligopolistic pricing
below, the historical data and the model predictions are deterministic. (The com-
puter simulation is a deterministic model, mapping from market state, determined
by curtailed historical data, to the next period’s marketing actions—here, prices). It
is not clear how to generalize this to a stochastic model, except perhaps by Monte
Carlo simulations (Marks 2016). Second, the metrics we propose below are no more
sensitive to (less frequent) data than they are to more frequent data: the tails are not
too influential.

13.3 Four Families of Validation Measures

We can distinguish between four families of measures that are important in the
context of validation. First, empirical likelihood measures; second, what might be
called stochastic area measures; third, information-theoretic measures; and, fourth,
strategic state measures that compare patterns of data.

13.3.1 Empirical Likelihood Measures

These measures include maximum likelihood, the generalized method of moments,
the method of simulated moments and indirect inference (see Chen et al. 2012); to a
greater or lesser extent, these demand knowledge of the true probabilistic dynamics
of the models’ output or require the use of assumptions about these dynamics.9

But likelihood measures rely on summary statistics and do not explicitly compare
the similarity of distributions or patterns between the data and the simulated data
generated by the models.

9Guerini and Moneta (2017) present a new method of validation, based on comparing structures of
vector autoregressive models estimated from both model and historical data.
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In general, such measures satisfy Ferson et al.’s Properties 1, 4, 5 and 6, but, in
only generating summary statistics, these measures ignore the information contained
in the patterns, especially relevant in strategic, dynamic models; they do not satisfy
Property 3. Moreover, such methods are usually seen not as validation methods,
but as methods of calibration and estimation (see Chap. 31 by Fagiolo et al. in this
volume, Sect. 31.4.1).

13.3.2 Stochastic Area Measures

These have been derived by Ferson et al. (2008) and Roy and Oberkampf (2011) and
others. Specifically, these papers address models and observations with stochastic
characteristics and univariate response quantities. That is, the model output Y and
the observed data X are single random variables. Unfortunately, the generalization
to multivariate responses is not straightforward.

Following Ferson et al. (2008), there are a variety of ways to compare univariate
random variables, expressed as probability density functions (p.d.f.s) or cumulative
distribution functions:

First, the random variables are “equal” or “surely equal” if their p.d.f.s are iden-
tical.

Second (more weakly), the random variables are “equal in mean” if the expecta-
tions of the absolute values of the differences between X and Y are zero.

Third (more weakly), if not quite equal in means, the mean metric provides a
measure of their discrepancy

dE(X,Y ) = E(|X − Y |) �= |E(X) − E(Y )|,

where E is the expectation operator. This can be generalized to higher ordermoments
of the distributions, where equality in the higher order moments implies equality in
all lower order moments.

Fourth (more weakly), if the shapes of the distributions of the two variables are
identical, then the random variables are “equal in distribution”.

Fifth (more weakly), if the distributions are not quite equal in shape, there are
many proposed measures, including the Kolmogorov–Smirnov distance:

dS(X,Y ) = sup
z

|Pr(X ≤ z) − Pr(Y ≤ z)|,

which is the vertical distance between the cumulative distributions functions of the
two random variables, where z takes on all values in the common range of historical
observations X and model output Y . Other measures, such as the Kullback–Leibler
divergence, are discussed below.

The variables compared in Ferson et al. (2008) and Roy and Oberkampf (2011),
like almost all variables in finance, scientific, and engineering validation, share one

http://dx.doi.org/10.1007/978-3-319-70766-2_31


13 Validation Metrics: A Case for Pattern-Based Methods 325

property: they are interval scales. The Area Validation Metric (AVM) introduced by
Ferson et al. (2008) can only be applied when the two variables are interval or ratio
scales. The AVMmeasures the area between the cumulative distribution functions of
the two random variables, that of themodel predictions and of the historical data. The
metric is not defined for ordered scales, in which the variables might be increasing
(decreasing) in one (or the other) direction but where distances in these directions
are meaningless because order is their highest characteristic.

And such interval-scale measures cannot be applied when the variables are nom-
inal only: when their order is arbitrary, and their highest characteristic is unique
identity, with arbitrary, separate names or numbers.

Indeed, the Smirnov distance is not applicable, even with an arbitrary ranking
of the ordering of the states. But the the applications introduced below generate
nominal-scale output, not interval-scaled.

Ferson et al.’s AVM, in measuring the divergence of the p.d.f. of the model output
from the historical data, does take satisfy Property 3, but is limited in that it requires
interval-scaled single variables of both output and observed data.

In what follows, we focus on methods that explicitly compare patterns in the data,
both observed and simulated, and do not in general require interval-scaled variables.
They are from the following two families.

13.3.3 Pattern-Based Measures I: Information-Theoretic
Measures

Information-theoretic measures are derived from Shannon’s measure of entropy
(Shannon 1948), and include the Kullback–Leibler construct (Kullback and Leibler
1951), andmore recentmeasures that attempt to overcome shortcomingsofKullback–
Leibler, such as the GSL-div (Lamperti 2018a, b).

Suchmeasures satisfy Properties 1, 3 and 5, but, as we discuss in Sect. 13.4 below,
they do not in general satisfy Property 6, although that has not eliminated their use in
model validation. I argue here that there are true metrics which should be considered
instead.

13.3.4 Pattern-Based Measures II: Strategic State Measures

Strategic state measures include Marks’ State Similarity Measure (Marks 2013) and
Klir’s 2006 Generalized Hartley Measure, from early set-theoretic work of Hartley’s
(Hartley 1928). These two measures satisfy Ferson et al.’s Properties 1, 2, 3 and 6,
but not Property 4 (units of measurement), or Property 5 (the measures are bounded
above); I argue that these two properties are not crucial for a validation metric.
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13.4 Measures of Closeness or of Information Loss

Turn now to the third family ofmeasures. The broad idea behind evaluating a distance
between the model output and the real-world data in order to choose the model
“closest” to the real-world data is as follows. If the real data are information full, then
models of the underlying process capture only some of the information. Choosing
the model that loses least information compared to historical data is the criterion for
choosing the “best” model.

Information is often measured using Shannon entropy (1948) (SE).10 It is based
on probability and can be defined as

SE(p(x)|x ∈ X) = −
∑

p(x)log2(p(x))

where p is the probability distribution of random variable x . The function SE exhibits
some useful properties such as additivity, branching, normalization and expansibility.
Shannon entropy led to the Kullback and Leibler (1951) measure of information loss
from historical to model; it has some attractions theoretically, but is not a true metric,
as we shall see.

13.4.1 Kullback–Leibler Information Loss

The Kullback–Leibler (K-L) divergence or information loss (also known as rela-
tive entropy) provides a measure of the information lost when model g is used to
approximate full reality f :

I ( f, g) =
∫

f (x) log

(
f (x)

g(x |θ)

)
dx

in the continuous version, where the models g are indexed by θ , or

I ( f, g) =
k∑

i=1

pi × log

(
pi
πi

)

in the discrete case, with full reality f distribution 0 < pi < 1, and model g distri-
bution 0 < πi < 1, with

∑
pi = ∑

πi = 1. Here, there are k possible outcomes of
the underlying process; the true probability of the i th outcome is given by pi , while
the π1, . . . , πk constitute the approximating model. Hence, f and g correspond to
the pi and πi , respectively.

10Another measure used for information is Hartley information (see Sect. 13.7). Both are special
cases of Rényi entropy (Rényi 1970). Both derive from work done at the Bell Labs.
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But the K-L information loss is not a true metric: it is not symmetric and does
not satisfy Property 6, since I ( f, g) �= I (g, f ).11 Moreover, πi must be positive for
every i ,12 while in data, even for a coarse, dichotomous partition, this value is likely
to be zero for some states, for either set of data (model predictions or real data).13 As
mentioned above, this is a stumbling block for the AVM technique of Ferson et al.
(2008), although AVM is suitable for validation of models with univariate random
variables for output and observations.

13.4.2 The Generalized Subtracted L divergence (GSL-div)

To overcome shortcomings of the Kullback–Leibler divergence, the symmetric L
divergence (Lin 1991) was developed. From this, the GSL-div (Lamperti 2018b) has
been derived to measure the degree of similarity between real and simulated dynam-
ics by comparing the patterns of the time series. Lamperti discusses the procedure
to obtain the GSL-div, and then presents results to discriminate among four differ-
ent classes of stochastic processes. He also compares the GSL-div with alternative
measures of fit (using several summary statistics) commonly used for calibrating
ABMs, and concludes that GSL-div provides much more satisfactory performance
at this. But neither K-L nor Lin’s L-div (and hence GSL-div) satisfy Property 6, and,
hence, are not proper metrics, despite the interesting properties ofGSL-div (Lamperti
2018b).14

Let us now turn to the fourth family of measures, the strategic state measures,
which include the author’s State Similarity Measure (Sect. 13.7) (which uses recti-
linear or Minkowski’s L1 or the cityblock distance), and Klir’s Generalized Hartley
Measure (Sect. 13.7). Both are true metrics. Before we present the measures, we
describe the models for our example.

11It is a semi-quasi-metric.
12The K-L measure is defined only if pi = 0 whenever πi = 0.
13As Akaike (1973) first showed, the negative of K-L information is Boltzmann’s entropy. Hence
minimizing the K-L distance is equivalent to maximizing the entropy; hence the term “maximum
entropy principle.” But, as Burnham and Anderson (2002) point out, maximizing entropy is subject
to a constraint—the model of the information in the data. A good model contains the information in
the historical data, leaving only “noise.” It is the noise (or entropy or uncertainty) that is maximized
under the concept of the entropy maximizing principle. Minimizing K-L information loss then
results in an approximating model g that loses a minimum amount of information in the data f .
The K-L information loss is averaged negative entropy, hence the expectation with respect to f .
Fagiolo et al. (2007, p. 211) note further that “K-L distance can be an arbitrarily bad choice from a
decision-theoretic perspective ... if the set of models does not contain the true underlying model ...
then we will not want to select a model based on K-L distance.” This is because “K-L distance looks
for where models make the most different predictions—even if these differences concern aspects
of the data behaviour that are unimportant to us.”
14Although, as (Lamperti 2018b) points out, so long as the simulated data are always compared
with the historical data, and not with simulated data from other models, GSL-div might still allow
model choice.
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13.5 The Example: Models and Data

Return to our example of the interactions over time among several brands. We use
three models from simulations described in Marks et al. (1995). Each model has
three interacting brands, and each brand agent independently chooses its weekly
price from its own set of four possible prices in order to maximize its weekly profit,
in a process of co-evolution using theGeneticAlgorithm (GA).With 1-weekmemory,
each agent’s action is determined by the state of the market in the previous week,
which means 43 = 64 possible market states for each agent to respond to. See results
for 2- and 3-week memory below. The GA chooses the mapping from perceived state
to action for each brand (with each brand’sweekly profit as its “evolutionary fitness”).
This means that the models are not derived from historical patterns of oligopolistic
behaviour, and so can be used to predict these patterns.

Each model of the three brands’ interactions corresponds to a separate run of
the GA search for model parameters, using weekly profits of the brands as the GA
“fitness”. Given the complexity of the search space and the stochastic nature of the
GA, each run “breeds” a distinct model, with distinct mappings from state to brand
price, and hence different patterns of brand actions associated with each model.15

Figures 1 and 3 ofMidgley et al. (1997) and also of Marks (2013) show, respectively,
the observed historical weekly prices and volumes sold of several brands of coffee
competing in a U.S. supermarket chain, and a 50-week period of simulated interac-
tions among three brand agents in Model A, where each brand chooses from one of
four possible prices per week.

In order to reduce the number of degrees of freedom, we coarsen the partitioning
of the data, using a dichotomous partition into High and Low prices for both the real
data and the simulated data.

The distribution of the eight possible 1-week states in the historical chain store
(H) with three brands or players and in three models (A, B and C) 16 of the models’
outputs, using 50 weeks of data, are shown in Table 13.1, with “0” corresponding
to a player’s “High” price and “1” to a player’s “Low” price.17 Modelling deeper
memory for the brands results in similar distributions, but the tables are 64 rows and
512 rows deep, with 2-week and 3-week memory, respectively, corresponding to 64
and 512 states.

15The three models differ in more than the frequencies of the eight states (Table 13.1): each model
contains three distinct mappings from state to action, and, as deterministic finite automata (Marks
1992), they are ergodic, with emergent periodicities. Model A has a period of 13 weeks, Model B of
6 weeks, and Model C of 8 weeks. It is not clear that the historical data exhibit ergodicity, absence
of which will make simulation initial conditions significant (Fagiolo et al. 2007). Initial conditions
might determine the periodicity of the simulation model.
16In Midgley et al. (1997) and Marks (2013), Model A is called Model 26a, Model B is called
Model 26b and Model C is called Model 11.
17Figures 2 and 3 of Marks (2013) plot these behaviours. State 000 corresponds to all three players
choosing High prices; State 001 corresponds to Players 1 and 2 choosing High prices and Player 3
choosing a Low price, etc.
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Table 13.1 State frequencies from history and three models

State History Model A Model B Model C

000 32 30 20 0

001 2 11 10 18

010 6 3 7 15

011 1 0 0 0

100 7 5 12 16

101 0 0 0 0

110 2 1 1 0

111 0 0 0 1

Total 50 50 50 50

The important thing to note here is that these are models of strategic interaction:
it is not sufficient to examine a single brand’s time series of actions, since these have
affected—and in turn have been affected by—its rivals’ actions over time. This is
essentially a multivariate validation problem.

13.6 The State Similarity Measure (SSM)

Introduced inMarks (2010), the SSM counts the absolute difference in the frequency
of each possible state in each of two sets of vectors (or time series), and sums these
to obtain the SSM for the pair of sets of vectors. In effect, SSM treats each time
series set as a vector p in an n-dimensional, non-negative, real vector space with a
fixed Cartesian coordinate system, where there are n possible states in the sets of
vectors. The SSM between two sets matrix P and matrixQ of vectors (or time series)
is calculated as the rectilinear Minkowski’s L1 or cityblock distance (Krause 1986)
d1 between their two constructed vectors p and q, given by

dPQ
1 = d1(p,q) =

n∑

i=1

|pi − qi |, (13.1)

where pi is the number of occurrences (or frequencies) of state i in vector set P.
That is, SSM is the sum of the absolute differences of the coordinates of the two sets
of vectors as n-dimensional constructed vectors. (See Marks 2013, Appendix 1 for
details of this procedure.)

As defined here, the SSM is an absolute measure, where its maximum distance
D is a function of the equal length of the pair of sets of vectors. The lower the SSM,
the closer the two sets of vectors.

The maximum D of an SSM measure occurs when the intersection between the
states of the two sets of vectors is null, with D = 2 × S, where S is the number
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of window states, which depends on the memory length, inter alia. In our example,
maximum D would be 100 for 1-week memory, 2 × 49 = 98 for 2-week memory,
and 2 × 48 = 96 for 3-week memory, (given that there are 50 observations per set
of time series). It is possible to define a normalized measure.

13.6.1 Results for the Models

The six pairs of SSMs between the partitioned prices of the three models and the
observed historical data, using 50-week data series, are presented in Table 13.2 for
1-, 2- and 3-week memory. Table 13.3 presents the distances between History, and
the three simulations, Model C, Model A, and Model B from Marks et al. (1995),
with 3-week memory. Model C is far from any of the other sets, and Model B is
closest to Model A, but Model A is closer to the History historical data (at 54/96)
than it is to the closest other simulation, Model B (at 60/96).

As the partitioning becomes finer (with deeper memory of past actions), the SSMs
increase as the two sets of vectors (or time series) become less similar. This should
not surprise us. We also note that with these four sets of time series, the rankings do
not change with the depth of memory: (from closer to more distant) (History, Model
A), (Model A,Model B), (History, Model B), (Model C,Model B), (Model C,Model
A) and (History, Model C). Which of the three models is closest to the historical data
of History? The SSM tells us that Model A is best, followed byModel B, withModel
C bringing up the rear.

13.6.2 Monte Carlo Simulations of the SSM

We can, using Monte Carlo stochastic sampling (Marks 2016), derive some statistics
to test whether any pair of sets is likely to include random series (see below).

As Null Hypothesis we choose: each of two sets of time series is random.

Table 13.2 SSMs calculated between the six pairs of sets

Pair 1-week memory 2-week memory 3-week memory

b History, Model A 18 36 54

f Model A, Model B 22 42 60

c History, Model B 28 48 68

e Model C, Model B 42 60 80

d Model C, Model A 62 76 88

a History, Model C 70 88 92
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Table 13.3 SSMs between observed history and three models

History Model A Model B Model C

History 0 54 68 92*

Model A 54 0 60 88*

Model B 68 60 0 80*

Model C 92* 88* 80* 0

With this null hypothesis, we can set 1% and 5% one-sided confidence intervals
to the SSM numbers. (Note: * in Table 13.3 indicates we cannot reject the null at the
5% level.) With three brands and S = 48, the maximum D is 96. 95% of pairs of sets
of three random time series are at least 80 apart, and 99% of pairs of sets of three
random time series are at least 76 apart.18 This means that, in Table 13.3, we reject
the null hypothesis of random data for the pairs (History, Model A), (History, Model
B), and (Model A, Model B), since all SSMs here are less than 76, so the data are
significantly non-random, and the null hypothesis is rejected. The other three pairs
(all comparisons with Model C), with SSMs above 80, are not significantly (5%)
different from random, and the null hypothesis cannot be rejected. By construction,
none of the simulated data sets is random, although they are not particularly similar
(see Table 13.1). Figure 4 of Marks (2013) plots the Cumulative Mass Function
(CMF) of the MC parameter bootstrap simulation against the six SSMs of the pairs.

13.7 Classical Possibility Theory

Possibility theory offers a non-additive method of assigning a numerical value to the
likelihood of a system assuming a specific state, one of a given set of states. The
likelihood expressed is that of possibility; for this reason, the possibility assigned to
a collection of possible events is the maximum (rather than the sum) of the individual
possibilities (Ramer 1989).

Hartley (1928) solved the problem of how to measure the amount of uncertainty
associated with a finite set E of possible alternatives: he proved that the only mean-
ingful way to measure this dichotomous amount (when any alternative is either in or
out: no gradations of certainty) is to use a functional of the form:

c logb |E |,

18This numberwas determined by aMonteCarlo bootstrap simulation of 100,000 pairs of sets of four
quasi-random time series, calculating the SSM between each pair, and examining the distribution.
The lowest observed SSM of 64 appeared twice, that is, with a frequency of 2/100,000, or 0.002
percent.
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where set E contains all possible alternatives from the larger (finite) set X , and where
|E | denotes the cardinality of set E : b and c are positive constants, and it is required
that b �= 1. If b = 2 and c = 1 (or more generally, if c log2 = 1), then we obtain a
unique functional, H , defined for any basic possibility function, rE , by the formula:

H(rE ) = log2 |E |,

where the measurement unit of H is bits. This can also be expressed in terms of the
basic possibility function rE as

H(rE ) = log2
∑

x∈X
rE (x).

H is called a Hartley measure of uncertainty, resulting from lack of specificity:
the larger the set of possible alternatives, the less specific the identification of any
desired alternative of the set E . Clear identification is obtained when only one of
the considered alternatives is possible. Hence, this type of uncertainty can be called
non-specific.

This measure was first derived by Hartley (1928) for classical possibility theory,
where any alternative element of set X is either possible (i.e. in set E) or not. The
basic possibility function, rE , is then

rE (x) =
{
0 when x ∈ E,

1 when x /∈ E .

and is derived explicitly in Klir (2006, pp. 28). To be meaningful, this functional
must satisfy some essential axiomatic requirements.19

13.7.1 The Generalized Hartley Measure (GHM) for Graded
Possibilities

Following Klir (2006), we relax the “either/or” characteristic of the earlier treatment
and allow the basic possibility function20 on the finite set X to take any value between
zero and one: r : X → [0, 1]. Note that

max
x∈X {r(x)} = 1,

a property known as possibilistic normalization.

19See further discussion in Marks (2013), Appendix 2.
20It is not correct to call the function r a possibility distribution function, since it does not distribute
any fixed value among the elements of the set X : 1 ≤ ∑

x∈X r(x) ≤ |X |.
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The Generalized Hartley Measure (GHM) for graded possibilities is usually
denoted in the literature by U and is called U-uncertainty. U -uncertainty can be
expressed in various forms. A simple form is based on notation for graded possi-
bilities: X = {x1, x2, . . . , xn} and ri denotes for i = 1, . . . n the possibility of the
singleton event {xi }. Possibilities can (although need not) be estimated by frequen-
cies. Elements of X are appropriately rearranged so that the possibility profile:

r = < r1, r2, . . . , rn >

is ordered in such a way that

1 = r1 ≥ r2 ≥ . . . ≥ rn > 0,

where rn+1 = 0 by convention. Moreover, the set Ai = {x1, x2, . . . , xi } is defined
for each i ∈ {1, . . . , n}.

Using this simple notation, the U -uncertainty is expressed for each given possi-
bility profile r by the formula

U (r) =
n∑

i=2

(ri − ri+1) log2 i (13.2)

Klir (2006, p. 160) notes something relevant to our purposes here: “Another impor-
tant interpretation of possibility theory is based on the concept of similarity, in which
the possibility r(x) reflects the degree of similarity between x and an ideal proto-
type, xP , for which the possibility degree is 1. That is, r(x) is expressed by a suitable
distance between x and xP defined in terms of the relevant attributes of the elements
involved. The closer x is to xP according to the chosen distance, the more possible
we consider x to be in this interpretation [our emphasis].”

13.7.2 Applying U-Uncertainty to Our Data

From the frequencies of Table 13.1 (one-week memory), we can reorder21 the pos-
sibilities (observed frequencies) of the three runs and the historical data, to get the
four reordered, non-normalized22 possibility profiles (Table 13.4):

21It might be objected that this reordering loses information. But this overlooks the fact that the
order of the states is arbitrary. It should not be forgotten that the definition of the states with more
than 1 week’s memory captures dynamic elements of interaction.
22Normalization here means r1 = 1, not

∑
ri = 1.
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Table 13.4 The four possibility profiles, one-week memory

History: 32 7 6 2 2 1 0 0

Model A: 30 11 5 3 1 0 0 0

Model B: 20 12 10 7 1 0 0 0

Model C: 18 16 15 1 0 0 0 0

Using Eq. (13.2), the four Hartley measures are calculated23:

1. History:

U (r) = 1

32
(25 log2 1 + 1 log2 2 + 4 log2 3 + 0 log2 4 + 1 log2 5 + 1 log2 6)

= 0.383

2. Model A:

U (r) = 1

30
(19 log2 1 + 6 log2 2 + 2 log2 3 + 2 log2 4 + 1 log2 5)

= 0.516

3. Model B:

U (r) = 1

20
(8 log2 1 + 2 log2 2 + 3 log2 3 + 6 log2 4 + 1 log2 5)

= 1.054

4. Model C:

U (r) = 1

18
(2 log2 1 + 1 log2 2 + 14 log2 3 + 1 log2 4)

= 1.399

The GHMs for the three models and History have been calculated for the three
cases of 1-week, 2-week and 3-week memory, as seen in Table 13.5.

These GHMs are true metrics (they satisfy Property 6, unlike the K-L informa-
tion loss), and so we can compare the differences of Table 13.6 between the four
measures. We can readily see that Model A (0.516) is closest to the historical data

23For clarity, we have included the (i = 1)th element, (r1 − r2) log2 1, which is always zero, by
construction, consistent with Eq. (13.2).
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Table 13.5 GHMs calculated for three memory partitions

Process 1-week memory 2-week memory 3-week memory

History 0.383 0.495 0.782

Model A 0.516 0.679 1.085

Model B 1.054 1.657 2.542

Model C 1.399 2.179 2.787

Table 13.6 GHM differences calculated for the six pairs of sets

Pair 1-week memory 2-week memory 3-week memory

b History, Model A 0.133 0.184 0.303

e Model C, Model B 0.345 0.522 0.245

f Model A, Model B 0.538 0.978 1.457

c History, Model B 0.671 1.162 1.760

d Model C, Model A 0.883 1.500 1.702

a History, Model C 1.016 1.684 2.005

of History (0.383); next is Model B (0.516), with Model C (1.399) furthest from the
Historical data. Moreover, we can see that Model A is closer to the Historical data
than it is to Model B.

Table 13.6 shows the six pairwise differences in GHM, derived from Table 13.5.
It can be compared with the six pairwise SSMs of Table 13.2.

For 1-week memory the maximum GHM, corresponding to 50 equi-likely states,
is log2 50 = 5.644; for 2-week memory log2 49 = 5.615, and for 3-week mem-
ory log2 48 = 5.585. These numbers are the maximum pairwise difference between
GHMs; the minimum difference is zero in all three depths of memory.24

13.8 Comparing the Distances Measured by SSM
and GHM

FromTable 13.2, for 1-weekmemory, the SSMs are ranked (closest to farthest): {b, f,
c, e, d, a}; but, from Table 13.6, the GHMdifferences are ranked (smallest to largest):
{b, e, f, c, d, a}. Model A is closest to History using either measure, and Model C
is farthest. Note, however, from Table 13.2, that although the SSM rankings are the
same for 1-, 2- or 3-week memory, the GHM rankings are sensitive to the depth of
memory (see Table 13.6). That is, the two methods do not always produce identical

24We could also define a normalized GHM.
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rankings, although the degree to which these two measures result in similar rankings
of distances is noteworthy, given their quite different foundations.25

13.9 Conclusions

Is a particular computermodel the bestmodel of a particular real-world phenomenon?
“Best” can have several meanings, but here we mean whether the behaviour (“out-
put”) of the simulationmodel is closest to the observed behaviour of the phenomenon.
Measuring the closeness of the simulated behaviour and the observed (historical)
behaviourmight be simple (for example, for univariate, interval-scaled, deterministic
variables) or not (for example, for multivariate output of nominal-scaled variables).
Measuring this closeness is necessary to validate any model, and can be used to
choose the best model of set of contenders.

We have examined the appropriateness of measures from four families of tech-
niques, as characterized by the kinds of output observed and generated. Using Fer-
son et al.’s “desirable properties” of validation metrics, and focusing on the kind
of phenomenon (oligopolistic, strategic interactions among sellers) which exhibits
multivariate, nominal-scaled behaviour, we have argued that two contenders—SSM
and GHM—are appropriate.

These two strategic measures, SSM and GHM, are true metrics that allow us to
measure the degree of similarity between two sets of vectors (or matrices X and Y),
here multivariate time series. The SSM between two sets of vectors is the absolute
distance between two constructed vectors in non-negative, n-dimensional vector
space, where n is the number of possible states that each set of vectors can exhibit.
GHM is a measure of the possibility of any set P of vectors occurring as a vector p
in n-dimensional space.

Since GHM is a metric, differences of sets of vectors’ GHMs are meaningful.
SSM is also a metric (satisfying Property 6). As such, both measures can be used to
score the distance between any two sets of vectors, such as sets of time series, which
previously was unavailable.

The SSM and GHM strategic state measures have demonstrated closeness in
measuring similarity of sets of time series, although the two measures’ rankings of
distances are not identical, as seen above. The SSM is intuitive: it uses the cityblock
metric to tally the differences in the states between two constructed vectors. It can be
described in six simple steps, as outlined in Marks (2013), Appendix 1. The GHM
is anything but intuitive, based on arcane possibility theory.

Using Occam’s Razor, the SSM, as a simpler, more transparent measure, is pre-
ferred.

The two strategic state measures, SSM and GHM, are not restricted to measuring
the similarity of (or distance between) two sets of time series: they are more general,
as we have reminded the reader, in that they can be applied to pairs of sets of (equal

25Exploration of these differences awaits further research.
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length) vectors. The data used here are illustrative only: the two measures can be
applied to any pairs of simulated data and historical data, so long as the number
of observations of the model output and the historical data are equal, with equal
numbers of vectors, or observations. Even more generally, the two measures can be
thought of alternative methods of measuring the rowwise distance between any two
matrices of equal dimension.
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