
Chapter 12
The Method of Manufactured Solutions
for Code Verification

Patrick J. Roache

Abstract Verification of codes that numerically approximate solutions of partial
differential equations consists in demonstrating that the code is free of coding errors
and is capable, given sufficient discretization, of approaching exact mathematical
solutions. This requires the evaluation of discretization errors using known bench-
mark solutions. The best benchmarks are exact analytical solutionswith a sufficiently
complex solution structure; they need not be physically realistic since verification
is a purely mathematical exercise. The Method of Manufactured Solutions (MMS)
provides a straightforward and general procedure for generating such solutions. For
complex codes, the method utilizes symbolic manipulation, but here it is illustrated
with simple examples. When used with systematic grid refinement studies, which
are remarkably sensitive, MMS can produce robust code verifications with a strong
completion point.

Keywords Manufactured solutions · Simulation · Benchmark · Verification ·
Turbulence · Convergence · Symbolic manipulation

12.1 Introduction

We are concerned in this chapter only with simulation models that are based on
discretization of partial differential equations (PDEs). This covers most of classical
physics, broadly defined, as well as some models in economics, ecological systems,
and other disciplines of basic and applied science and engineering.

General code verification was defined rather tersely by the IEEE three decades
ago (IEEE 1991) as “Formal proof of program correctness.” This definition has
stood the test of time, but arguably benefits from expanded description; e.g., see
Roache (1998a, b, p. 26 ff.) A definition specific to PDE codes in the context of
computational solid mechanics was given in ASME (2006, p. 23): “the process of

P. J. Roache (B)
Consultant, 1215 Apache Dr., Socorro, NM 87801, USA
e-mail: hermosa@sdc.org

© Springer Nature Switzerland AG 2019
C. Beisbart and N. J. Saam (eds.), Computer Simulation Validation,
Simulation Foundations, Methods and Applications,
https://doi.org/10.1007/978-3-319-70766-2_12

295

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-70766-2_12&domain=pdf
mailto:hermosa@sdc.org
https://doi.org/10.1007/978-3-319-70766-2_12


296 P. J. Roache

determining that the numerical algorithms are correctly implemented in the computer
code and of identifying errors in the software.” See also ASME (2009), Oberkampf
and Roy (2010), and Chaps. 2, 3, 5, and 11 in this volume. Generally, we find that
such legalistic definitions tend to be sterile and/or inadequate, and that expanded
descriptions are more useful. Basically, a code should do what the code manual says
it does. See discussions throughout Chap. 2 of Roache (1998a, b).

For verification of PDE codes, we use a restricted definition of code verification,
being concerned only with the ability of the code to producemathematically accurate
answers when sufficient discretization resolution is used. (This can contrast with
computer science concepts of code verification that might include Quality Assurance
issues that may have no effect on accuracy.) Determining this restricted sense of code
correctness can only be accomplished by systematic discretization convergence tests
using a “benchmark” solution which is preferably exact but at least reliable.

Once the verification of the code has been established, one can solve a specific
problem which, if it is nontrivial, does not have an available exact solution. Verifica-
tion of the computational solution then involves error estimation, since the benchmark
solution is not known,whereas verification of the code involved error evaluation from
a known benchmark solution. Both verifications (of code and solution) are purely
mathematical activities, with no concern whatever for the accuracy of physical laws.
That is the concern of validation, i.e., the agreement of the mathematics with obser-
vational science. In this view (see Chap. 27 by Roache in this volume), validation of
computer simulations requires the three distinct activities referred to collectively as
Verification and Validation (V&V): verification of the code, verification of the solu-
tion, and validation. For reasons both logical and practical, these activities should be
performed in this order (Roache 2009; see also Chap. 42 by Beisbart in this volume).

The best benchmark solution is an exact analytical solution, i.e., a solution
expressed in simple primitive functions like sin, exp, tanh, etc. Benchmark solutions
involving infinite series are not desirable, typically being more numerical trouble
to evaluate accurately than the PDE code itself (Roache 2009). It is not sufficient
that the benchmark solution be exact; it is also necessary that the solution structure
be sufficiently complex that all terms in the governing equation being tested are
well exercised. Some early and misleading claims of accuracy of commercial codes
for computational fluid dynamics (CFD) were based on comparisons with Poiseuille,
Couette or Rayleigh problems, which do not even activate the advection terms.Many
papers and reports have approached verification of codes in a haphazard and piece-
meal way, comparing single-grid results for a few exact solutions on problems of
greatly reduced complexity.

TheMethod ofManufactured Solutions (MMS) provides a systematic and general
procedure for generating analytical solutions for code verification. The methodology
provides for convincing, robust verification of a code via systematic discretization
convergence testing. This procedure is straightforward though tedious to apply, and
verifies all accuracy aspects of the code: formulationof the discrete equations (interior
and boundary conditions) and their order of accuracy, the accuracy of the solution
procedure, and the user instructions.



12 The Method of Manufactured Solutions for Code Verification 297

For early history and references, see (Roache 2002, 2009). The first systematic
exposition of the method with application to multidimensional nonlinear problems
appears to be (Roache and Steinberg 1984, Steinberg and Roache 1985) with
expanded applications in Roache (2002, 2009). Acceptance was slow and misunder-
standing was not uncommon, even by senior researchers. Now, MMS is regarded by
many V&V specialists as the “gold standard” for PDE code verification, but still, it
can be difficult to understand on first exposure. Based on experience of colleagues
and myself, including teaching short courses, the misunderstanding seems due to
the deceptive simplicity (elegance?) of the concept. Although applicable to high
dimensional complex problems, the MMS concept is best described with simple
examples in one space dimension (1D).

In what follows, Sect. 12.2 will first present the basic idea of MMS for generating
exact benchmark solutions. Section 12.3will illustrate this process using three simple
examples. Then Sect. 12.4 will detail the application of benchmark MMS solutions
to code verifications. The remaining sections present features and further examples
of MMS.

12.2 Broad Description of MMS

The basic idea of the MMS procedure is to simply manufacture an exact solution,
without being concerned about its physical realism. The “realism” or lack thereof
has nothing to do with the mathematics, and verification is a purely mathematical
exercise. In the original,most straightforward andmost universally applicable version
of the method, one simply includes in the code a general source term and uses it to
generate a nontrivial but known solution structure. We follow the classic counsel of
Polya (1957): Only a fool starts at the beginning; the wise one starts at the end.

We first pick a continuum solution. Interestingly enough, we can pick a solution
almost independent of the code and the hosted equations (using a little prudence).
That is, we can pick a solution, then use it to verify an incompressible Navier–Stokes
code, a Darcy flow in porous media code, a heat conduction code, an electrode design
code, a materials code, etc.

We want a solution that is nontrivial but analytic, and that exercises all ordered
derivatives in the error expansion and all terms, e.g., cross-derivative terms. MMS
can handle discontinuities (see below) but for this broad description, we consider
smooth solutions. For example, chose a solution involving tanh. This solution also
defines boundary conditions, to be applied in any (all) forms, i.e.,Dirichlet,Neumann,
Robin, etc. Then the solution is passed through the governing PDEs to give a source
term that produces this solution. (This description sounds circular, which relates to
difficulties with acceptance.)



298 P. J. Roache

12.3 Three Example Problems in MMS

To emphasize the generality of the concept, we pick the first example solution before
we specify the governing equations. Then, we will use this same solution for two
different problems, i.e., sets of governing PDEs and boundary conditions. The chosen
solution U(t,x) is the following.

U (t, x) � A + sin(B), B � x − Ct (12.1)

12.3.1 Example 1

First, we apply this 1D transient solution to the nonlinear Burgers equation. (This
equation is often taken as a model for CFD algorithm development but it is adequate
to describe MMS for a wide range of PDE problems.)

ut � −uux + αuxx (12.2)

Incidentally, the specified solution U(t,x) is the exact solution for the constant
velocity advection equation ut=−Cux with boundary condition u(t,0) =A + sin(−Ct),
so for highReynolds number problems (smallα) itmay look “realistic” in some sense,
but it is not a solution to our governing Eq. (12.2), and its “realism” or lack thereof
is irrelevant to the task of code verification.

We determine the source term Q(t,x) which, when added to the Burgers equation
for u(t,x), produces the solution u(t,x) = U(t,x). We write the Burgers equation as an
operator (nonlinear) of u,

L(u) ≡ ut + uux − α uxx � 0 (12.3)

Then, we evaluate the Q that produces U by operating on U with L.

Q(t, x) � L(U (t, x))

� ∂ U/∂ t +U∂ U/∂ x − α ∂ 2U/∂ x2 (12.4)

By elementary operations on themanufactured solutionU(t,x) stated in Eq. (12.1),
we obtain

Q(t, x) � −Ccos(B) + [A + sin(B)] cos(B) + αsin(B) (12.5)

If we now solve the modified equation

L(u) ≡ ut + uux − α uxx � Q(t, x) (12.6)



12 The Method of Manufactured Solutions for Code Verification 299

ut � −uux + α uxx + Q(t, x) (12.7)

with compatible initial and boundary conditions, the exact solution will be U(t,x)
given by Eq. (12.1).

The initial conditions are obviously just u(0,x)=U(0,x) everywhere. The boundary
conditions are determined from the manufactured solution U(t,x) of Eq. (12.1). Note
that, we have not yet even specified the domain of the solution. If we want to consider
the usual model 0 ≤ x ≤ 1 or something like it, the same solution Eq. (12.1) applies,
but of course, the boundary values are determined at the corresponding locations in
x. Note also that we have not yet even specified the type of boundary condition. This
aspect of themethodology has often caused confusion. Everyone knows that different
boundary conditions on a PDE produce different solutions; not everyone recognizes
immediately that the same solution U(t,x) can be produced by more than one set of
boundary condition types. The following combinations of inflow (left boundary, e.g.,
x � 0) or outflow (e.g., x � 1) boundary conditions will produce the same solution
U(t,x) over the domain.

Dirichlet—Dirichlet:

u(t, 0) � U (t, 0) � A + sin(−Ct), u(t, 1) � U (t, 1) � A + sin(1 − Ct) (12.8)

Dirichlet—Outflow Gradient (Neumann):

u(t, 0) � A + sin(−Ct), ∂u
/

∂x(t, 1) � cos(1 − Ct) (12.9)

Robin (mixed)—Outflow Gradient (Neumann):
The Robin boundary condition, F = au + bux= c where a, b, and c are constants,

is to be applied as a time-dependent condition at the left boundary, so F(t, 0) � c.

a u + b ux �c applied at (t, 0) →
given a and b, select c � a[A + sin(−Ct)] + b cos(−Ct)

∂u
/

∂x(t, 1) � cos(1 − Ct) (12.10)

For this time-dependent solution, the boundary values are time-dependent. It also
will be possible to manufacture time-dependent solutions with steady boundary val-
ues, if required by the code.

12.3.2 Example 2

To further clarify the concept, we now apply the same solution to a different problem,
choosing as the new governing PDE aBurgers-like equation thatmight be a candidate
for a 1D turbulence formulation based on the mixing-length concept.



300 P. J. Roache

ut � −uux + αuxx + 2λ
[
x(ux )

2 + x2uxx
]

(12.11)

Writing the mixing-length model equation as a nonlinear operator of u,

L(u) ≡ ut + uux − α uxx − 2λ[x(ux )
2 + x2uxx ] � 0 (12.12)

we evaluate the Qm that produces U by operating on U with Lm= L from (12).

Qm(t, x) � Lm(U (t, x))

� ∂U/∂t +U∂U/∂ x − α∂2U/∂ x2 − 2λ [x(∂U/∂ x)2 + x2∂2U/∂ x2]
(12.13)

By elementary operations on the same manufactured solution U(t,x) stated in
Eq. (12.1),we obtain

Qm(t, x) � − C cos(B) + [A + sin(B)]cos(B) + α sin(B)

− 2λ
[
x cos2(B) − x2sin(B)

]
(12.14)

If we now solve the modified model equation

Lm(u) ≡ ut + uux − α uxx − 2λ[x(ux )
2 + x2uxx ] � Qm(t, x) (12.15)

ut � −uux + α uxx + 2λ[x(ux )
2 + x2uxx ] + Qm(t, x) (12.16)

with compatible initial and boundary conditions, the exact solution for this “turbu-
lent” problem again will be U(t,x) given by Eq. (12.1), as it was for the previous
“laminar” problem.

The same initial and boundary conditions and boundary values from the previ-
ous problem can apply, since these are determined from the solution, not from the
governing PDE nor Q.

12.3.3 Example 3

We have shown how the same solution can be used as the exact solution to verify
two different codes with different governing equations, with different source terms
being created to manufacture the same solution. A third example will demonstrate
the arbitrariness of the solution form. Rather than the somewhat realistic solution to
a constant velocity advection equation given by Eq. (12.1), we consider the “unreal-
istic” but equally valuable solution as follows.

Ue(t, x) � sin(t) ex (12.17)



12 The Method of Manufactured Solutions for Code Verification 301

Following the same procedure for the Burgers Eq. (12.2), we evaluate the terms
in Eq. (12.4) from the solution Ue of Eq. (12.17) and obtain

Qe(t, x) � cos(t)ex + [sin(t)ex ]2 − α sin(t)ex (12.18)

(arranged for readability rather than compactness). This, when added to Eq. (12.2),
produces the manufactured solution Eq. (12.17) when compatible initial and bound-
ary conditions are evaluated from Eq. (12.17).

12.3.4 Complex Problems

MMS is applicable to complex nonlinear systems of equations, such as full Navier
Stokes in general non-orthogonal coordinates, provided that the code is capable (or
modifiable) to treat source terms in each PDE. MMS has been used in finite element
codes both at the global solution level and at the element level (basis functions). To
test periodic boundary conditions, one simply chooses a periodic function for the
MMS solution.

12.4 Application to Code Verification

Once a nontrivial exact analytic solution has been generated, by MMS or perhaps
another method, the solution is now used to verify a code by performing systematic
discretization convergence tests (usually, grid convergence tests) and monitoring the
convergence as � → 0, where � is a measure of discretization: �x, �t in a finite
difference (FDM) or finite volume (FVM) code, element size in a finite element
(FEM) code, etc. The procedure has been described in Chap. 11 by Rider in this
volume; also Roache (1998a, b, 2009), Oberkampf and Roy (2010).

The fundamental concept “order of convergence” is based on behavior of the error
of the discrete solution. There are variousmeasures of error, but in some sense, we are
always referring to the difference between the discrete solution f(Δ) (or a functional
of the solution, such as drag coefficient) and the exact continuum solution,

E � f (�) − fexact (12.19)

The most fundamental requirement for code verification is that E → 0 as � → 0.
In addition, we like to verify not only the fact of convergence but the order of con-
vergence, ideally estimated a priori by analysis of the discretization methods used.
By definition, for an order p method and for a well-behaved problem (exceptions are
discussed in Roache 2009, Chaps. 6 and 8), the error in the solution E asymptotically
as � → 0 will be proportional to �p. This terminology applies to every mathemat-



302 P. J. Roache

ically consistent methodology: FDM, FVM, FEM, block spectral, pseudo-spectral,
vortex-in-cell, etc., regardless of solution smoothness. Thus,

E � f (�) − fexact � C �p + H.O.T . (12.20)

where HOT are higher order terms.We thenmonitor the numerical error as the grid is
systematically refined. Thorough iterative convergence is required (see below). Suc-
cessive grid halving is not required, just refinement. Theoretically (from Eq. 12.20),
values of C= E/� p should become constant as the grid is refined for a uniformly
p-th order method (“uniformly” implying at all points for all derivatives). Formulaic
details of the calculation of observed p from grid convergence testing and many
examples are given in Roache (2009), Oberkampf and Roy (2010). If observed p is
not ~ theoretical p, this may indicate a coding error, or it may indicate a limitation
of the approximations in the analysis for theoretical p. In either case, the code is still
useable and would be claimed as “verified” at the observed p. Confidence is greatly
enhanced if observed p ~ theoretical p.

Roy (2001), Roy et al. (2000) showed how to treat mixed-order convergence,
a long-standing and practical difficulty in grid convergence studies. Mixed-order
behavior can arise from the use of first-order discretization for advection and second
order for diffusion, or from the first-order convergence rate of nominally second-
order methods applied to discontinuities. The procedure involves another grid level
to evaluate two leading coefficients in the error expansion. Especially important,
the papers demonstrate how non-monotonic convergence occurs from mixed-order
methods in the non-asymptotic range without blaming nonlinearity. MMS can verify
such mixed-order convergence.

Inadequate iterative convergence produces false-negative evaluations of observed
p. The extrapolation implicit in the order calculation amplifies machine round-off
errors, so the iteration error control is more demanding for evaluation of p than for
the PDE solution itself. Unfortunately, a priori specifications of iterative convergence
criteria (e.g., maximum allowable change of some solution metric over one iteration
divided by the iteration relaxation parameter) are not reliable. The recommended
procedure is to test the sensitivity of the code verification results (notably observed
p) to the iterative convergence stopping criteria. Note that this difficulty is not specific
to MMS but occurs with any calculation of observed p; in fact, widely chosen MMS
solutions are less vulnerable than most classical solutions, as noted above. Also, note
that (as many V&V specialists have warned), the default iteration stopping criteria
used in commercial CFD codes are often highly inadequate.

This verification procedure detects all ordered errorsE, i.e.,E → 0 asymptotically
as � → 0. It will not detect coding mistakes that do not affect the answer obtained,
e.g., mistakes in an iterative solution routine which affect only the iterative conver-
gence rate. In the present view, these mistakes are not considered as code verification
issues, since they affect only code efficiency, not accuracy. Note that such efficiency
issues should not be a concern to regulatory agencies. Other esotericmistakes that are
difficult to detect are described in (Roache 2009, Chap. 8; Knupp and Salari 2003).



12 The Method of Manufactured Solutions for Code Verification 303

The procedure does not evaluate the adequacy of non-ordered approximations,
e.g., distance to an outflow boundary, distance to an outer (wind tunnel wall-like)
boundary, etc. The errors of such approximations (which, I claim, are not inherently
“numerical”) do not vanish as� → 0, hence are “non-ordered modeling approxima-
tions.” The adequacy of these approximations must be assessed by sensitivity tests
which may be described as “justification” exercises (Roache 2009).

When this systematic grid convergence test is verified for all point-by-point values,
we have verified

• input routines
• any equation transformations (e.g., boundary fitted coordinates),
• the order of the discretization,
• the encoding of the discretization, and
• the accuracy (but not efficiency) of the matrix solution procedure.

This MMS technique was originally applied in Roache and Steinberg (1984),
Steinberg and Roache (1985) to long Fortran code produced by Symbolic Manipula-
tionmethods. The original 3D non-orthogonal coordinate code contained about 1800
lines of dense Fortran. It would be impossible to check this by reading the source
code, yet the MMS procedure verified the code convincingly. Round-off error was
not a problem.

The technique of code verification by monitoring grid convergence is extremely
powerful. Upon initial exposure to the technique, analysts are often negative about
the method because they intuit that it cannot be sensitive enough to pick up subtle
errors. After exposure to numerous examples, if they remain negative it is usually
because the method is excessively sensitive, revealing minor inconsistencies such as
first-order discretizations at a single boundary point in an elliptic problem that effects
the size of the error very little (as correctly intuited) but still reduces the asymptotic
rate of convergence to first order for the entire solution. For examples, see Roache
(2009).

The fact that theMMS solutionmay bear no relation to any physical problem does
not affect the rigor of the accuracy verification of codes. The only important point
is that the solution (manufactured or otherwise) be nontrivial: it should exercise all
the terms in the error expansion. The algebraic complexity may be something of a
difficulty, but it is not insurmountable, and in practice has been easily handled using
Symbolic Manipulation (SM) software packages. Using the source code writing
capability of SM software, it is not even necessary for the analyst to look at the form
ofQ. Rather, the specification of the solution (e.g., tanh function) to the SM software
results in some complicated analytical expression that can be directly converted by
the SM software to a source code segment, which is then readily emplaced in a source
code module (subroutine, function, etc.) that then is called in the code verification
procedure. This “emplacement” can be performed by hand by the analyst without
actually reading the complicated source code expressions, or can itself be automated
in the SM software.

MMS has been applied successfully to nonlinear systems of equations, with sep-
arate Q’s generated for each equation. Both steady (stationary) and unsteady man-



304 P. J. Roache

ufactured solutions may be formulated. Nonlinearity is an issue only because of
uniqueness questions; the source term complexity may be worse because of nonlin-
earity, but managing that is the job of the SM software. Nonuniqueness conceivably
could be an issue because the code might converge to another legitimate solution
other than the MMS solution, producing a false-negative code verification. In much
experience, nonuniqueness has never been an issue.

In Steinberg and Roache (1985), we applied the procedure to the coupled non-
linear (quasi-linear) PDEs of an elliptic grid generation method for non-orthogonal
coordinates; the MMS solution was a 3D analytical coordinate transformation or
parametrization. All operations for source code were performed by SM, including
development of Euler–Lagrange equations for variational grid generation and all
discretizations (Steinberg and Roache 1986a, b, 1992).

Note that theMMS solution should be generated in the original (“physical space”)
coordinates (x,y,z,t). Then the same solution can be used directly with various non-
orthogonal grids or coordinate transformations.

MMS (in this basic Q form) requires that the code being verified must include
accurate treatment of source terms. Many codes, including the most popular modern
commercial and open-source PDE codes, are built with source terms included, and
many algorithms allow trivial extension to include Q’s. However, directionally split
algorithms (e.g., Roache 1998b) involve complexities at boundaries, especially for
non-orthogonal coordinates.

Also see Roache (2009) for the following topics: early applications of MMS
concepts, discussions and examples of mixed first- and second-order differencing,
small parameter (high Reynolds number) difficulties, economics of dimensionality,
applications of MMS to 3D grid generation codes, effects of strong and inappropri-
ate coordinate stretching, debugging with MMS, examples of many manufactured
or otherwise contrived analytical solutions in the literature, approximate but highly
accurate solutions (often obtained by perturbation methods) that can also be uti-
lized in code verification, special considerations required for turbulence modeling
and other problems with multiple scales, example of MMS code verification with a
3D grid-tracked moving free surface, code robustness, examples of the remarkable
sensitivity of code verification via systematic grid convergence testing, and several
methodologies for verification of solutions including the Grid Convergence Index
(see also Chap. 11 by Rider in this volume).

12.5 Features and Examples of MMS Code Verification

12.5.1 Radiation Transport Codes

Pautz (2001) presented his experience applying MMS to a radiation transport code
that uses 3D tetrahedral elements in space and discrete ordinates in the angular dis-
cretization. The author discovered codingmistakes in input routines and in discretiza-



12 The Method of Manufactured Solutions for Code Verification 305

tion of certain boundary data. Second order convergence for norms and third-order
convergence for average scalar flux were verified. A subtle aspect revealed is the
requirement for consistent finite element weighting on the MMS source term, which
is now a recognized issue. Based on the earlier 1D analysis in the literature, it was
expected that all the examined quantities would exhibit third-order convergence, but
the results of the MMS procedure demonstrated only second-order convergence for
the norms in multidimensions.

Blackwell et al. (2009) applied MMS to enclosure radiation, verifying their non-
rigorous theoretical analysis that indicated p � 2 in contrast to another analysis that
indicated p � 3.

12.5.2 Nonhomogeneous and Nonlinear Boundary
Conditions

An arbitrary MMS solution may have nonhomogeneous boundary conditions, e.g.,
∂u/∂x �� 0. To use suchmanufactured solutions, the codewould require the capability
of treating boundaries with ∂u/∂x �� 0. This might be inconvenient, e.g., some codes
have hard-wired no-slip conditions at a wall with u = 0, or ∂u/∂x � 0. Rather than
modify the code, some thought will produce MMS solutions with homogeneous
boundary values. Fortunately, modern commercial and open-source PDE codes have
this capability for general treatment of boundary conditions, which is also the feature
that facilitates validation; see Roache (2004, 2009) and Chap. 27 by Roache in this
volume.

The so-called “radiation” outflow conditions are usually linear and are already
covered by the previous discussion. Nonlinear boundary conditions, e.g., simple
vortex conditions at outflow, or true (physical) heat transfer radiation boundary con-
ditions, are possible. It may be possible to select an MMS solution that meets the
nonlinear boundary condition; otherwise, a source term would need to be used in the
nonlinear boundary equations.

12.5.3 Shocks, Partitioning, and “Glass-Box” Verification

Shock solutions are treatable by the MMS, with additional considerations. The sim-
plest approach is to verify the shock-capturing algorithms separately on inviscid
benchmark problems such as oblique shock solutions, provided that shock curva-
ture is not viewed as a major question. If it is, one may use attached curved shock
solutions obtained by the method of characteristics and/or detached bow shock solu-
tions obtained by the classical inverse method. Any shock-capturing algorithm based
purely on geometric limiters will be oblivious to the source terms and should work
without modification.



306 P. J. Roache

The assumption involved in this approach is that the option matrix of the code
can be partitioned (Roache 2009). That is, the verification of the shock-capturing
algorithm and coding will not be affected by later inclusion of viscous terms, bound-
ary conditions, etc. Other option-partitioning assumptions will occur to the reader,
such as: separated verification of a direct banded Gaussian elimination routine in a
FEM code; verification of shock-capturing algorithms separate from nonideal gas
effects; radioactive decay option (which is dimensionless) verified separately from
the spatial discretization of flow equations. This partitioning approach requires the
“black-box” verification philosophy to be modified to a “glass-box” (Oberkampf and
Trucano 2002) in which some knowledge of code structure is required to justify the
approach. Thus it will be more difficult to convince reviewers, editors, contract mon-
itors, regulators, stakeholders, etc., that the approach is justified. The work savings
can be enormous, of course, avoiding the factorial increase of complexity inherent
in option combinations.

12.5.4 Shocks, Multiphase Flows, and Discontinuous
Properties

Without using code partitioning, J. Powers and colleagues (Grismer andPowers 1996;
see also Roache 2009 for additional references) pioneered convincing code verifica-
tion for flows with shock waves. The benchmark solutions may involve asymptotic
approximations in geometry and/or Mach number M, e.g., an analysis neglecting
terms of order ε � 1/M2. This approximation can be made very accurate by choos-
ing highM, sayM ~ 20. Note again the distinction of mathematics versus science; it
is not a concern that the code being tested might be built on perfect gas assumptions
that are not valid at such highM. This does not affect the mathematics of code veri-
fication; the code would not be applied at such highM when accuracy of the physics
becomes important, during validation.

Woods and Starkey (2015) appliedMMS to shocks and other discontinuities using
an “integrative MMS approach” (contrasted to “differential MMS” herein) based on
“intelligent subdivision of the integration domains” to obtain a rigorous, one-step
verification procedure for shock-capturing codes.

Brady et al. (2012) appliedMMS tomultiphase flowswhich necessitate discontin-
uous properties at the interface, where careful evaluation of source terms is required.
They also offer additional guidelines to help locate coding mistakes. MMS for mul-
tiphase flows were also considered by Choudhary et al. (2014).

Grier et al. (2014, 2015) treated discontinuousMMSsolutions, focusingonnumer-
ical integration techniques to address the problem of evaluating source terms con-
sistently in finite volume methods. FVM do not store solution values at the center of
the cell but rather integrated average values, which will converge more slowly than
expected to the MMS point values unless special care is taken in the integration; the
discrepancy is aggravated by discontinuous MMS solutions. (Alternately, one might



12 The Method of Manufactured Solutions for Code Verification 307

consider post-processing theMMS solution to produce cell integrated average values
for direct comparison, using methods consistent with the FVM code. However, this
would add another layer of processing, the details of which would depend on the
FVM solution code algorithm.)

Appendix A of ASME (2009) contains an MMS heat conduction problem with
discontinuous step change in conductivity and contact resistance.

12.5.5 Verification of Boundary Conditions

Bondet al. (2007) presented an exemplary study applyingMMS toCFDcodeverifica-
tion of boundary conditions, including insightful observations. The FEM code being
verified solves Euler, Navier–Stokes, and RANS equations on skewed, nonuniform,
unstructured 3Dmeshes. Particular emphasis was placed on verification of numerical
boundary conditions: slip, no-slip (adiabatic and isothermal), and outflow (subsonic,
supersonic, and mixed), and on code segments that calculate solution gradients, a
nontrivial issue in hexahedral grids with high aspect ratios near boundaries. Themore
demanding L∞ norm was used and recommended, as well as the usual L1 and L2

norms. Among many interesting results, one provided a particular caution regarding
precision issues. The symbolic manipulation software used to generate source func-
tions writes source code in double precision but with only single precision constants,
which later corrupted the initial verification exercise. The authors recommended an
additional criterion for claiming verification of double-precision accuracy; the rela-
tive errors should be smaller than the single precision limit. Another caution involves
orientation of the outflow boundary in supersonic flow along a constant pressure sur-
face, which might permit certain coding errors to go undetected. This difficulty arose
due to an ambitious approach of building boundary condition values into the MMS
solution, rather than treating them crudely with the source term. Especially notewor-
thy was the success of MMS is disclosing a weakness of the solution algorithm in
regard to the partitioning ofmultiprocessors. The paper is also valuable for presenting
anecdotal debugging history, rather than a simple “pass” evaluation.

Choudhary et al. (2016) also focused on MMS verification of various important
boundary conditions for both compressible and incompressible CFD codes.

12.5.6 Unsteady Flows and Divergence-Free MMS

An illustration of MMS applied to unsteady flows was given by Eça and
Hoekstra (2007b). For the 2D laminar flows, a general formulation was developed
that allowed an analyst to specify an arbitrary continuous function that is incorporated
into an analytical form for velocitieswhich satisfy the incompressible continuity con-
straint (divergence-free) exactly. Likewise, nonslip and impermeability conditions
are met exactly by the MMS. Two time dependencies were considered: an exponen-



308 P. J. Roache

tially decaying solution and a periodic solution. The exercise verified the code, and
additionally shed light iteration error.

Choudhary et al. (2016) also gave special attention to MMS solutions which
identically satisfy the divergence-free velocity field for incompressible flows, and to
curved boundaries.

12.5.7 Variable Density Flows; Combustion

Shunn et al. (2012a, b) used MMS for variable density PDE codes applicable to
combustion problems. Issues included use of tabulated state properties and effects of
sub-iterations in the time advancement, especially for problematical time-splitting
methods.

12.6 Attributes of MMS Code Verification

12.6.1 Two Multidimensional Aspects

In the first 1D example problem (Sect. 12.3.1), we noted that the MMS solution,
since it is analytic, can be applied over any range of the dependent spatial variable
x. This feature extends to multidimensions, e.g., the same multidimensional analytic
solution could be applied to flow problems of a rectangular cavity, a backstep, a
wing, etc.

Also, multidimensional problems might require a little more thought to assure
that all terms of the governing equations are exercised. For example, a manufactured
solution of form U(t,x,y) = F1(t) + F2(x) + F3(y) will not be adequate to exercise
governing equations containing cross-derivative terms such as ∂ 2u/∂ x∂ y since these
are identically zero no matter how complex are the F’s.

12.6.2 Blind Study

Salari and Knupp (2000) exercised MMS in a blind study, in which one author
(Knupp) deliberately introduced errors into a CFD code previously developed and
verified by the other (Salari). Then the code author tested the sabotaged code with
the MMS. This exercise was not performed on merely model problems, but on a full
time-dependent, compressible and incompressible, Navier–Stokes code with plenty
of options. In all, 21 cases were studied, including one “placebo” (no mistake intro-
duced) and several that involved something other than the solution (e.g., wrong
time step, post-processing errors). Several formalmistakes (not order-of-convergence
errors) went undetected, as expected (Roache 2002, 2009). All ten of the code errors
that would affect accuracy were successfully detected, as well as several less serious
mistakes.



12 The Method of Manufactured Solutions for Code Verification 309

12.6.3 Burden of MMS and Option Combinations

An experienced reviewer (Rider 2018) has stated thatMMSputs a rather large burden
on the code development teams, and that the source terms forMMSare difficult, prone
to error, and need a high degree of software quality work and extensive debugging
to produce reliable results.

I acknowledge this burden. In my own experience, the burden first involves some
up-front work of becoming adept at using Symbolic Manipulation software. Once
achieved, this development and training time can be amortized over verifications
of many codes. In my own experience, the indictment of “prone to error” applies
more to traditional methods. And it is true that producing a reliable and general
MMS solution that exercises all the relevant terms certainly involves more work
than coding an already developed single traditional solution, but possibly not if the
simplified solution must be developed. Also, if one considers the suite of traditional
problems usually required, then the amount of work may be less using a single MMS
solution.

This claim is especially justifiable when one considers the curse of large numbers
of code option combinations, discussed inRoache (2009). Suppose the non-separable
option combinations number 100. A singleMMS solution could easily replace a suite
of 10 highly simplified classical solutions, reducing the required number of expensive
grid convergence calculations by an order of magnitude, from 1000 to 100.

It is my opinion that the MMS approach is especially useful, reducing book-
keeping and total workload, when applied to extensive option combinations during
regression verification of codemodifications. (In major computational research envi-
ronments, routine regression code verification activities are sometimes performed
daily.)

12.6.4 Code Verification for Commercial Codes

Since code verification should be accomplished by the code developer, a question
arises. Should a user assume that a commercial, open-source, or government code is
verified? Roy (2015) reassessed previous misgivings by several V&V specialists and
reached the same pessimistic evaluation: generally, the answer is no. This should be
surprising since, as Roy noted, code verification is arguably themost mature subtopic
in V&V; the main code verification techniques have been around for decades. Even
if the vendor has published code verification for option combinations of interest, the
user is strongly advised to scrutinize the results carefully for details and well founded
conclusions.



310 P. J. Roache

12.6.5 Code Verification with a Strong Completion Point

Simple problems (even trivial problems) often serve a purpose during code devel-
opment, and the results are often considered as partial verification. But apparently,
it is not widely recognized that, once a code (for a specific set of code option com-
binations) has been convincingly verified on a complex problem that exercises all
terms in the governing equations, it is nearly pointless to continue verifying the code
on simpler problems. I say “nearly” because the exercises still have some value as
confirmation exercises (Roache 2009, Chap. 1). MMS provides a robust code veri-
fication and terminates. A code user who performs confirmations gains confidence
in the code and in their ability to set up the code and interpret the results. Such
code confirmation exercises are valuable as part of user training but should not be
confused with robust code verification. Similarly, we recognize that simple classical
problems (e.g., 1D linear wave propagation) are useful in algorithm development, in
exploring algorithm and code characteristics, and in comparing the performance of
different codes. In fact, these classical problems aremore useful than MMS for these
purposes, since the general MMS solutions are typically unrealistic and opaque. But
these comparison exercises, though valuable, should not be confused with robust
code verification. These simple problems are complementary to the MMS approach,
but if the comparison is taken as “partial verification” this leads to unending activity
and invites criticism of the basic concept and legitimacy of code verification.

“Code verification is not an ongoing exercise. Verification, as we have said, is
an exercise in mathematics, not science. When one proves a theorem, the work is
completed. Proving the formula for solution of a quadratic equation is not ongoing
work. This is not to say that one could not have made an error in the proof of a
theorem, nor that confirmation exercises… are not valuable in confidence-building.
It is to say that code verification is a mathematical activity that in principle comes to
a conclusion, e.g., a code is or is not 2nd-order accurate.” (Roache 1998a, b, p. 28)
For an alternative view on code verification without a strong completion point, see
discussion in (Roache 2002, 2009).

12.6.6 Proof?

Does such thorough code verification deserve the term proof ? This is another seman-
tic question whose answer depends on the community context. Logicians, philoso-
phers and pure mathematicians clearly view “proof” differently from scientists and
engineers, with an often other-worldly standard. For example, Fermat’s Last Theo-
rem is easily demonstrable, but do such exercises constitute proof ? Certainly not to
a mathematician. Since some philosophers maintain that it is not possible even in
principle to prove Newton’s laws of gravity, they are not likely to accept the notion
of proof of correctness of a complex code.



12 The Method of Manufactured Solutions for Code Verification 311

The notion of proof is at the heart of very important criticisms, not just of the
subject MMS, but of the concepts of code verification and especially certification for
controversial public policy projects (Roache 2009). One might agree with philoso-
phers who maintain it is not possible to prove Newton’s Laws, but would one be
willing to cancel a public policy project (e.g., nuclear waste disposal) because the
modeling used Newton’s Laws? Presumably not, but stakeholders are willing to can-
cel such projects under the guise of unprovability of code correctness. Great harm
is done when these standards for proof of philosophers, mathematicians or logicians
are applied to down-to-earth science and engineering projects. If we accept such
out-of-context standards then we cannot do anything, literally. For example, we have
no proof of convergence for realistic systems because the Lax Equivalence theorem
only holds for linear systems (Roache 1998b).

The word proof is itself a technical term, with different appropriate standards
in logic, pure mathematics, applied mathematics, engineering, criminal law versus
torts versus civil law (consider “beyond a reasonable doubt”), etc. The first definition
in one dictionary for proof is “The evidence or argument that compels the mind to
accept an assertion as true.” In this sense, if not in a mathematical sense, one could
claim thatMMS can provide proof of code verification. I am unhesitating in claiming
“convincing demonstration” and “robust verification” for the MMS approach.

For further discussion on the possibility of a useful theorem related to MMS, see
(Roache 2002, 2009). For the extensive discussion of V&V issues related specifically
tomodeling of nuclearwaste disposal, seeRoache (1998aAppendixC). For extensive
discussion on semantics of V&V in computational physics specifically related to
Popper’s philosophy, see Roache (2012) and Chap. 27 by Roache in this volume.
For the discussion of some current issues in V&V, including climate modeling, see
Roache (2016).

12.6.7 Mere Mathematics

Rider (2018) noted that “the truism that verification is a purelymathematical exercise
oftenworks against verification. This is often used as an excuse to diminish its priority
in code development. For codes used for science and engineering saying that it’s just
math can be used to say it’s not important. This is unfortunate, but needs to be
acknowledged and dealt with head-on.”

We might expect that model developers would want some assurance that the
code actually solved their model correctly, maybe even before they compared results
to validation experiments! Furthermore, many validation exercises do not compare
point values of all solution variables but only solution functionals, e.g., total heat
flux. Especially in such comparisons, it is possible to achieve satisfactory agreement
at particular experimental set points (i.e., values of experimental parameters) even
though the code may have nontrivial errors.

In such situations, model developers might claim successful validation of their
model M1 but in fact the code may contain an error E1. The actual “model” that is



312 P. J. Roache

“validated” is not M1 but some M2 � M1 + E1, where E1 is unknown to the devel-
opers. The result is a contradiction of a fundamental tenet of science: reproducibility.
Other code developers who incorporate Model M1 correctly will not obtain the same
results, for better or worse.

In recent history of fluid dynamics, it has been difficult to achieve the same
results from different codes that ostensibly incorporate the same RANS turbulence
model due to coding errors and to incomplete specification (documentation) ofmodel
details.

12.6.8 Irrelevance of Solution Realism to Code Verification

MMS generates solutions with no required concern for realism of the solution. Thus,
acceptance requires that the judge recognize code verification as purelymathematical
exercise. Physical realism and even realizability are irrelevant. Actually, there is no
requirement that the MMS solution look unrealistic, and we can invent appealing
solutions if necessary to satisfy managers, regulators, public stakeholders, etc. But
it is worthwhile to understand that this “realism” is mere window dressing when
we consider only the legitimacy of code verification per se. Solution realism is
also risky in that it encourages a dangerous misconception, invites criticism and
arguments about what constitutes “adequate realism” (surely a qualitative concept),
and ostensibly justifies piecemeal and perpetual code verification exercises.

Furthermore, realistic solutions can actually be less desirable because often they
only weakly exercise some terms, e.g., streamwise second derivatives in boundary
layers. For the purpose of detecting ordered errors, it is best that the different solution
terms in the governing equations be very roughly the same size. (An order of mag-
nitude variation is not problematical.) As pointed out by Rider (2018), this is easier
to control with wisely chosen unrealistic MMS solutions than with many classical
solutions.

12.7 Reasons for Solution Realism in MMS

In spite of my claims above that MMS “solution realism” is irrelevant to legitimacy
of code verification per se, it is also true that there are uses for realism, both inside
and outside of code verification.



12 The Method of Manufactured Solutions for Code Verification 313

12.7.1 Realistic MMS in Code Verification of Glacial Ice
Flow Modeling

Bueler et al. (2007) developed a realistic MMS solution to verify a code for solving
glacial ice flows based on shallow (thin-film) ice approximations. Solution realism
was important to gain acceptance at a time when the glaciology science community
was skeptical of models and verifications. The 3D time-dependent model involves
many difficult features: a free boundary, thermo-mechanical coupling between a
highly nonlinear power law viscosity and the temperature distribution, and coupling
between energy conservation and thin-layer mass conservation PDEs with integrals
in the nonlinear PDE coefficients.

MMS was applied by starting with an exact solution to an isothermal ice model
and then manufacturing a coupled exact solution from it (see Sect. 12.3.1). Solution
realism aided interpretation of controversial temperature “spokes” in ice flows found
by several investigators.

The paper contains highly detailed descriptions, unusual for an archive journal not
devoted to V&V, of the implementation, advantages and disadvantages of the MMS
procedures. The authors state that the glaciology community could substantially
replace intercomparison of codes with true code verification using legitimate MMS
exact solutions.

A subsequent model was described in Bueler and Brown (2009). Development
of the University of Alaska—Fairbanks Parallel Ice Sheet Model continues and the
open-source PISM code (www.pism-docs.org) has been widely used in climate mod-
eling. The MMS verification procedure is built into the system and is used in daily
regression code verifications.

12.7.2 Realistic MMS in Solution Verifications
and Turbulence Models

MMS is applicable to code verification but not to solution verification per se. How-
ever, in devising methods for solution verification, MMS can play an important role
in tuning empirical parameters for the classic Grid Convergence Index (GCI) method
and variations (Roache 1993, 1998a, b, 2009). MMS has also contributed to estima-
tion of errors due to incomplete iteration and outflow boundary conditions, and to
evaluating solution adaptive grid generationmethods (Eça andHoekstra 2007b, 2009;
Pelletier et al. 2004, Roache 2009). Many benchmark-quality solutions are required
to achieve statistical significance, and each solution requires expensive brute-force
discretization convergence computations. MMS solutions, if they are realistic, can
be used to economically obviate the need for such expensive fine-grid solutions.

This approach is especially effective for evaluating turbulence models. However,
it is far from a straightforward application of MMS. RANS turbulence models are
especially difficult due to discontinuous switches, min/max functions, and strongly

http://www.pism-docs.org


314 P. J. Roache

nonlinear terms. As noted by Eça et al. (2007a, b), in a typical RANS model, there
are no linear terms!

Eça and Hoekstra (2007a) and Eça et al. (2007a, b) used realistic MMS to study
wall-bounded turbulence in 2D separated flows using both 1 and 2 equation RANS
models; not surprisingly, they showed that the RANS models were inadequate in the
near-wall region. Eça et al. (2007a, b) published detailed MMS solutions for several
RANS models in conjunction with the Lisbon V&V Workshops (Eça et al. 2009).
The benchmark realistic solutions and MMS source codes for six RANS models are
available at the University of Lisbon website (Eça 2006). See Roache (2009) for
additional references on the Lisbon Workshops.

Pelletier et al. (2004) used realistic MMS to tackle two of these difficult problems
at once, turbulence models and solution adaptive FEMmesh generation, in the simu-
lation of impinging round jets. They used the k-ε turbulencemodel andmanufactured
solutions for turbulent kinetic energy, eddy viscosity, and velocity.

12.7.3 Realistic MMS in Singularity Studies

Sinclair et al. (2006) independently developed realistic MMS (termed Tuned Test
Problems) to evaluate methods for treatment of singularities during grid convergence
studies. The techniques developed automatically detect and distinguish between
cases of TTP-specified power singularities, logarithmic singularities, or simply grids
not yet in the asymptotic range. For a summary, see Roache (2009, Sect. 5.4.10.1).

12.7.4 Other Uses and Generation Methods for Realistic
MMS

Oberkampf and Roy (2010, Sect. 6.4, p. 235) note other cases in which physically
realistic exactMMSsolutions are desired: assessing sensitivity of a numerical scheme
to mesh quality, and evaluating the reliability of discretization error estimators, as
well as judging the overall effectiveness of solution adaptation schemes (see above).
They describe two main approaches to generating realistic MMS solutions: theory-
based solutions (see Sects. 12.3.1 and 12.7.1), and the Method of Nearby Problems.
(The latter does not produce a single global analytical solution and has not seenmuch
use.)



12 The Method of Manufactured Solutions for Code Verification 315

12.8 Alternative Formulations and General References
for MMS

The basic inverse concept of MMS is to complicate the original problem a little
to manufacture an intended solution; source terms are most straightforward and
universally applicable. Another approach to MMS developed by Knupp and Salari
(2003) is applicable to variable coefficient problems, e.g., groundwater transport
or heat conduction codes with variable properties. A solution is manufactured by
solving inversely for the distribution of variable coefficients that produce it.

Doebling (2016) verified a Lagrangian hydrodynamics code using an old (Fickett
and Rivard 1974) exact solution for detonation problems. It was not described as
MMS, and does not usemanufactured source terms. But by (p. 1) “judicious selection
of the material specific heat ratio, the problem has an exact solution with linear
characteristics.”

Burg and Murali (2004, 2006) developed a “residual formulation of MMS”. The
manufactured exact solution sets the initial condition, and only one iteration is used to
evaluate the residuals. The residuals contain informationonp in the sense of aTaylor’s
series expansion.But this approachdoes not actually verify the observed accuracyof a
code since no solution is produced.While somewhat helpful for identifying locations
of coding errors, the approach is not convincing for robust code verification, in my
opinion.

Other general expositions of MMS are given in Knupp and Salari (2003), Roy
(2005), Pelletier and Roache (2006),Wang et al. (2009), Oberkampf and Roy (2010).
Besides the library ofMMSsolutions for turbulence (Eça 2006) already cited,Malaya
et al. (2013) have created a library of code verification solutions including MMS as
well as analytical solutions.

12.9 Conclusion

The Method of Manufactured Solutions for code verification was often met early
with skepticism, but is now widely accepted. MMS enables one to produce many
exact analytical solutions for use as benchmarks in systematic discretization refine-
ment tests, which tests are remarkably sensitive for code verification. The method
is straightforward and, when applied to all option combinations in a code, can lead
to robust code verification with a strong completion point. It eliminates the typical
haphazard, piecemeal and never-ending approach of partial code verifications with
various highly simplified traditional problems that still leave the user unconvinced.
Although the method requires some up-front work to become adept at using Sym-
bolic Manipulation software, once achieved, this training time can be amortized over
verifications of many codes. Producing a reliable and general MMS solution that
exercises all the relevant terms typically involves more work than a single traditional
solution, but if one considers the suite of traditional problems often used, then the



316 P. J. Roache

amount of work can be less usingMMS. TheMMS approach is especially useful and
reduces the book-keeping and total workload when used for regression verification
of code modifications affecting option combinations.

Acknowledgements I gratefully acknowledge help from C. Beisbart, L. Eça, P. Moin, W. L.
Oberkampf, C. J. Roy, N. Saam, L. Shunn. and especially W. J. Rider.

References

ASME. (2006). ASME V&V 10-2006. Guide for verification and validation in computational solid
dynamics.

ASME. (2009). ASME V&V 20-2009. Standard for verification and validation in computational
fluid dynamics and heat transfer.

Blackwell, B., Dowding, K., & Modest, M. (2009). Cylindrical geometry verification problem for
enclosure radiation. Journal of Thermophysics and Heat Transfer, 23, 711–715. https://doi.org/
10.2514/1.39861.

Bond,R.B.,Ober,C.C.,Knupp, P.M.,&Bova, S.W. (2007).Manufactured solution for computation
fluid dynamics boundary condition verification. AIAA Journal, 45(9), 2224–2236.

Brady, P. T., Herrmann, M., & Lopez, J. M. (2012). Code verification for finite volume multiphase
scalar equations using the method of manufactured solutions. Journal of Computational Physics,
231, 2924–2944.

Burg, C. O. E., & Murali, V. K. (2004). Efficient code verification using the residual formulation
of the method of manufactured solutions. AIAA Paper 2004-2628, 34th AIAA Fluid Dynamics
Conference, Portland, Oregon, June, 2004.

Burg, C. O. E., & Murali, V. K. (2006). The residual formulation of the method of manufactured
solutions for computationally efficient code verification. International Journal of Computational
Fluid Dynamics, 20(7), 2006.

Bueler, E., Brown, J., & Lingle, C. (2007). Exact solutions to the thermomechanically cou-
pled shallow-ice approximation: effective tools for verification. Journal of Glaciology, 53(182),
499–516.

Bueler, E., Brown, J. (2009). Shallow shelf approximation as a “sliding law” in a thermomechan-
ically coupled ice sheet model. Journal of Geophysical Research, 114, F03008. https://doi.org/
10.1029/2008jf001179.

Choudhary, A., Roy, C. J., Dietiker, J.-F., Shahnam, M. & Garg, R. (2014). Code verification for
multiphase flows using the method of manufactured solutions, FEDSM2014-21608. In Proceed-
ings of the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting
(FEDSM). Chicago, IL, August 3–7, 2014.16 M3.

Choudhary, A., Roy, C. J., Luke, E. A., & Veluri, S. P. (2016). Code verification of boundary
conditions for compressible and incompressible computational fluid dynamics codes. Computers
& Fluids, 126, 153–169.

Doebling, S. W. (2016). The escape of high explosive products: an exact-solution problem for
verification of hydrodynamics codes. Journal of Verification, Validation and Uncertainty Quan-
tification, 1, 041001–1–041001–13.

Eça, L. (2006). Workshop Website. http://maretec.ist.utl.pt/~maretec.daemon/html_files/CFD_
workshops/Workshop_2006.htm.

Eça, L., & Hoekstra, M. (2007a). Evaluation of numerical error estimation based on grid refinement
studies with the method of manufactured solutions. Report D72-42, MARIN, May 2007.

Eça, L., & Hoekstra, M. (2007b). Code verification of unsteady flow solvers with the method of
manufactured solutions. Paper No. ISOPE-2007-565, International Society of Offshore and Polar
Engineers.

https://doi.org/10.2514/1.39861
https://doi.org/10.1029/2008jf001179
http://maretec.ist.utl.pt/%7emaretec.daemon/html_files/CFD_workshops/Workshop_2006.htm


12 The Method of Manufactured Solutions for Code Verification 317

Eça, L., & Hoekstra, M. (2009). Evaluation of numerical error estimation based on grid refinement
studies with the method of manufactured solutions. Computers and Fluids, https://doi.org/10.
1016/j.compfluid.2009.01.003.

Eça, L., Hoekstra, M., Hay, A., & Pelletier, D. (2007a). A manufactured solution for a two-
dimensional steady wall-bounded incompressible turbulent flow. International Journal of Com-
putational Fluid Dynamics, 21, 175–188.

Eça, L., Hoekstra, M., Hay, A., & Pelletier, D. (2007b). On the construction of manufactured
solutions for one and two-equation eddy-viscosity models. International Journal for Numerical
Methods in Fluids, 54, 119–154.

Eça, L., Hoekstra, M., Roache, P. J., & Coleman, H. (2009). Code verification, solution verification
and validation: An overview of the 3rd Lisbon Workshop. AIAA Paper No. 2009-3647, 19th
AIAA Computational Fluid Dynamics, San Antonio, Texas, June 2009.

Fickett, W., & Rivard, C. (1974). Test problems for hydrocodes. Los Alamos, New Mexico:Los
Alamos Scientific Laboratory, Report No. LA-5479.

Grier, B., Alyanak, E., White, M., Camberos, J., & Figliola, R. (2014). Numerical integration
techniques for discontinuous manufactured solutions. Journal of Computational Physics, 278,
193–203.

Grier, B.,&Figliola, R. (2015).Discontinuous solutions using themethod ofmanufactured solutions
on finite volume solvers. AIAA Journal, 53, 2369–2378.

Grismer, M. J., & Powers, J. M. (1996). Numerical predictions of oblique detonation stability
boundaries. Shock Waves, 6, 147–156.

IEEE. (1991). IEEE standard glossary of software engineering terminology, IEEE Std 610.12-1990,
New York, IEEE.

Knupp, P., & Salari, K. (2003). Verification of computer codes in computational science and engi-
neering. Boca Raon, FL: CRC Press.

Malaya, N., Estacio-Hiroms, K. C., Stogner, R. H., Schulz, K. W., Bauman, P. T., & Carey, G. F.
(2013). MASA: A library for verification using manufactured and analytical solutions. Engineer-
ing with Computers, 29, 487–496.

Murali, V., Burg, C. O. E. (2002). Verification of 2D navier-stokes codes by the method of manu-
factured solutions. AIAA Paper 2002-3109, 32nd AIAA Fluid Dynamics Conference, St. Louis,
June, 2002.

Oberkampf, W. L., & Trucano, T. G. (2002). Verification and validation in computational fluid
dynamics. AIAA Progress in Aerospace Sciences.

Oberkampf, W. L., & Roy, C. J. (2010). Verification and Validation in Scientific Computing. Cam-
bridge, UK: Cambridge University Press.

Pautz, S. D. (2001). Verification of transport codes by the method of manufactured solutions: The
ATTILA experience. In Proceedings of the ANS International Meeting onMathematical Methods
for Nuclear Applications, M&C 2001. Salt Lake City, Utah, Sept 2001.

Pelletier, D., & Roache, P. J. (2006). Verification and validation of computational heat transfer. In
W. J. Minkowycz, E. M. Sparrow, & J. Y. Murthy (Eds.), Handbook of Numerical Heat Transfer
(2nd ed.). New York:Wiley.

Pelletier, D., Turgeon, E., & Tremblay, D. (2004). Verification and validation of impinging round
jet simulations using an adaptive FEM. International Journal for Numerical Methods in Fluids,
44, 737–763.

Polya, G. (1957). How to solve it, a new aspect of mathematical method. Princeton, NJ: Princeton
University Press.

Rider, W. J. (2018). Personal communication 5/5/2018.
Roache, P. J. (1993). A method for uniform reporting of grid refinement studies, ASME FED-Vol.
158. In I. Celik, C. J. Chen, P. J. Roache, & G. Scheurer (Eds.), Quantification of uncertainty in
computational fluid dynamics. ASME Fluids Engineering Division Summer Meeting, Washing-
ton, DC, 20–24 June 1993, pp. 109–120.

Roache, P. J. (1998a). Verification and validation in computational science and engineering. Albu-
querque, NM: Hermosa Publishers.

https://doi.org/10.1016/j.compfluid.2009.01.003


318 P. J. Roache

Roache, P. J. (1998b). Fundamentals of computational fluid dynamics. Albuquerque, NM: Hermosa
Publishers.

Roache, P. J. (2002). Code verification by the method of manufactured solutions. ASME Journal of
Fluids Engineering, 114(1), 4–10.

Roache, P. J. (2004). Building PDE codes to be verifiable and validatable. Computing in science
and engineering. Special Issue on Verification and Validation, September/October 2004, 30–38.

Roache, P. J. (2009). Fundamentals of verification and validation, Hermosa Publishers, Albu-
querque, NM, Ch. 3 and Appendix C.

Roache, P. J. (2012). A defense of computational physics. Albuquerque, NM: Hermosa Publishers.
Roache, P. J. (2016). Verification and validation in fluids engineering: some current issues. ASME
Journal of Fluids Engineering. FE-16-1206. https://doi.org/10.1115/1.4033979.

Roache, P. J., & Steinberg, S. (1984). Symbolic manipulation and computational fluid dynamics.
AIAA Journal, 22(10), 1390–1394.

Roy, C. J. (2001).Grid convergence error analysis for mixed-order numerical schemes. AIAAPaper
2001–2606, June 2001 (Anaheim).

Roy, C. J. (2005). Review of code and solution verification procedures for computational simulation.
Journal of Computational Physics, 205(1), 131–136.

Roy, C. J. (2015). Code verification: past, present and future, keynote lecture. In ASME V&V
Symposium, La Vegas, NV, 13 May 2015.

Roy, C. J., McWherter-Payne, M. A., & Oberkampf, W. L. (2000). Verification and validation for
laminar hypersonic flowfields, AIAA 2000-2550, June 2000 (Denver).

Salari, K. & Knupp, P. (2000). Code verification by the method of manufactured solutions,
SAND2000-1444, Sandia National Laboratories, Albuquerque, NM 87185, June 2000.

Shunn, L., Ham, F., & Moin, P. (2012a). Verification of variable-density flow solvers using manu-
factured solutions. Journal of Computational Physics, 231(9), 3801–3827.

Shunn, L., Ham, F., & Moin, P. (2012b). Verification of variable-density flow solvers using manu-
factured solutions. Journal of Computational Physics, 231(9), 3801–3827.

Sinclair, G. B., Beisheim, J. R., & Sezer, S. (2006). Practical convergence-divergence checks for
stresses from FEA. In Proceedings of the 2006 international ANSYS users conference and expo-
sition, 2–4 May 2006, Pittsburgh, PA.

Steinberg, S., & Roache, P. J. (1985). Symbolic manipulation and computational fluid dynamics.
Journal of Computational Physics, 57(2), 251–284.

Steinberg, S., & Roache, P. J. (1986a). Variational grid generation. Numerical Methods for Partial
Differential Equations, 2, 71–96.

Steinberg, S., & Roache, P. J. (1986b). Grid generation: A variational and symbolic-computation
approach. In Proceedings numerical grid generation in fluid dynamics conference, July 1986,
Landshut, W. Germany.

Steinberg, S., & Roache, P. J. (1992). Variational curve and surface grid generation. Journal of
Computational Physics, 100(1), 163–178.

Wang, S. S. Y., Jia, Y., Roache, P. J., Smith, P. E., & Schmalz, R. A. Jr., (Eds.). (2009). Verification
and validation of 3D free-surface flow model. ASCE/EWRI Task Committee.

Woods, C. N., & Starkey, R. P. (2015). Verification of fluid-dynamic codes in the presence of shocks
and other discontinuities. Journal of Computational Physics, 294, 312–328.

https://doi.org/10.1115/1.4033979

	12 The Method of Manufactured Solutions for Code Verification
	12.1 Introduction
	12.2 Broad Description of MMS
	12.3 Three Example Problems in MMS
	12.3.1 Example 1
	12.3.2 Example 2
	12.3.3 Example 3
	12.3.4 Complex Problems

	12.4 Application to Code Verification
	12.5 Features and Examples of MMS Code Verification
	12.5.1 Radiation Transport Codes
	12.5.2 Nonhomogeneous and Nonlinear Boundary Conditions
	12.5.3 Shocks, Partitioning, and “Glass-Box” Verification
	12.5.4 Shocks, Multiphase Flows, and Discontinuous Properties
	12.5.5 Verification of Boundary Conditions
	12.5.6 Unsteady Flows and Divergence-Free MMS
	12.5.7 Variable Density Flows; Combustion

	12.6 Attributes of MMS Code Verification
	12.6.1 Two Multidimensional Aspects
	12.6.2 Blind Study
	12.6.3 Burden of MMS and Option Combinations
	12.6.4 Code Verification for Commercial Codes
	12.6.5 Code Verification with a Strong Completion Point
	12.6.6 Proof?
	12.6.7 Mere Mathematics
	12.6.8 Irrelevance of Solution Realism to Code Verification

	12.7 Reasons for Solution Realism in MMS
	12.7.1 Realistic MMS in Code Verification of Glacial Ice Flow Modeling
	12.7.2 Realistic MMS in Solution Verifications and Turbulence Models
	12.7.3 Realistic MMS in Singularity Studies
	12.7.4 Other Uses and Generation Methods for Realistic MMS

	12.8 Alternative Formulations and General References for MMS
	12.9 Conclusion
	References




