
Chapter 10
Assessing the Credibility of Conceptual
Models

Axel Gelfert

Abstract Whether or not the results of a computer simulation are credible depends
to a large extent on the credibility (or lack thereof) of the underlying conceptual
model. If a model has been developed explicitly with the goal of running a computer
simulation in mind, the two types of credibility may seem deeply intertwined. Yet,
often enough, conceptual models predate the subsequent development of simulation
techniques, or were first developed outside the context of computer simulation. In
such a situation, the specific contribution that a conceptual model makes to the
credibility of a simulation requires considerable analysis. How, then, should we
assess the credibility of a conceptual model, and which factors ought to play a
role in judging whether simulation results derived on its basis are trustworthy? In
order to answer these questions, the present chapter begins with the premise that
models are never by themselves credible simpliciter, but acquire credibility within
a given context of inquiry, which itself depends on the cognitive interests of the
inquirer. Judgments concerning the credibility of a conceptual model thus need to
be based partly on a characterization of the intrinsic features of the model, partly
on the cognitive goals and interests of its users. This realization helps explain why
credible models have been variously understood as (pragmatically and empirically)
adequate representations of real-world target systems, as constructions of “credible
worlds” that display internal coherence, and as exploratory tools that may aid our
understanding even before a well-developed underlying theory takes shape.
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10.1 Introduction

Contemporary science would not be what it is, were it not for the emergence of
computer simulation techniques from the mid-twentieth century onwards. First pio-
neered in such disciplines as nuclear physics and meteorology, numerical methods
for implementing computer simulations have since spread to awide range of scientific
disciplines, including astrophysics, high-energy physics, materials science, quantum
chemistry, biochemistry, molecular biology, ecology, climate science, economics,
sociodynamics, and many others. This applies equally to fundamental and applied
research, and also extends to neighboring disciplines such as design and engineering.
As things stand, much of our best—and instrumentally most important—scientific
knowledge is best thought of as being simulation-based.

Typically, discussions of computer simulation go hand in handwith discussions of
scientific models, and for good reason: modeling and computer simulation both are
modes of inquiry that scientists engage inwhen the behavior of a target system cannot
easily be derived from an underlying theory—either because this task is too complex
(and, for example, does not allow for an analytical solution) or because no underlying
theory can be unequivocally specified (e.g., since the phenomenon in question is
the result of a heterogeneous mix of factors). In order to construct a model and
implement any simulation, decisions need to be made—however implicitly—about
how to represent the target system in the real world that is the subject of the proposed
simulation study. Such decisions concern, amongst others, the level of detail, overall
structure, relevant factors, and purported causal mechanisms of the target system that
is to be represented and simulated. Constructing a model of this sort will not only
guide future inquiry, but will also shape how we should interpret any subsequent
results; in this sense, specifying a model determines—at least in broad, qualitative
terms—the very content of a simulation study.

This suggests that whether or not the results of a simulation study are credible also
hinges on the credibility, or lack thereof, of the underlying model, which is often
called the conceptual model. Crudely speaking, and notwithstanding the specific
insights that only computer simulation methods can afford, a simulation can only
ever be as good as the conceptual model on which it is based. It seems legitimate,
then, to spend some time reflecting on what makes models credible in the first place,
and it is precisely this question that the present chapter tackles. Yet models are never
by themselves credible simpliciter, but acquire credibility within a given context
of inquiry, which itself depends on the cognitive interests on the inquirer. To the
extent that models are credible, then, they are credible for an inquirer in a particular
problem situation, or so it will be argued. Combining these two perspectives—a
focus on the particular model at hand, and a recognition of their significance to the
model user—thus leads to the thesis that judgments concerning the credibility of
a conceptual model need to be based on a characterization of the intrinsic features
of the model as well as of the cognitive goals and interests of its users. This also
helps explain why credible models have been variously understood as (pragmatically
and empirically) adequate representations of real-world targets, as constructions of
“credibleworlds” that display internal coherence (andmay also serve as an “intuition-
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pump”), or as exploratory tools that may aid our understanding even before a well-
developed theoretical account of a phenomenon has become available.

The remainder of this chapter is organized as follows: Sect. 10.2 reviews the
twin notions of verification and validation in connection with computer simulation
and relates them to the multiplicity of functions of scientific models more generally.
Section 10.3 takes our commonsense understanding of “credibility” (in connection
with human interlocutors) as the starting point for a discussion of the qualities
required for attributions of credibility to nonhuman agents and entities; Sect. 10.4
then applies these ideas to examples from scientific practice. Sections 10.5 and
10.6, respectively, reflect on specific—sometimes competing—criteria for model
credibility: empirical fit and furthering causal understanding on the one hand
(Sect. 10.5), and the construction of “credible worlds” along with exploratory
uses of models on the other hand (Sect. 10.6). The chapter concludes with a brief
reflection on how credibility is jointly constituted by features of the model itself and
the overall goals and cognitive interests of its users (Sect. 10.7).

10.2 Simulation-Based Knowledge, Verification, Validity,
and the Function of Models

Whether a particular scientific investigation begins with data collection or theoretical
analysis, once we turn to computational methods to derive simulation-based knowl-
edge, conceptual models are never very far off. If studying a problem using computer
simulation is the explicit goal of a given process of inquiry, then deriving a concep-
tual model may be understood as an important first step in preparing the problem
for the deployment of computer simulation methods. Yet, arguably, many conceptual
models in science were developed independently of concerns with computer simula-
tion—either because they predate the development of powerful simulation techniques
or because they initially served independent illustrative, descriptive, or explanatory
purposes and were only later found to lend themselves to computer simulation. Tack-
ling a scientific problem using computer modeling is, rightly, often characterized as
a multi-step process, with decisions concerning the problem domain preceding the
process of designing a simulation model. This model can then be implemented on a
given type of computer system. Thus, even before a conceptual model is proposed,
“a description of the problem situation and the system in which the problem situation
resides” (Robinson 2011, p. 1432) must be given. Where an underlying fundamental
theory can reasonably be assumed to exist (e.g., in the case of planetary motion), this
may involve specifying the relevant background assumptions (e.g., considering only
objects on closed orbits and looking into their relative position to one another); where
a fundamental theory is absent (e.g., in the case of modeling vehicular traffic flow),
this may involve selecting well-delineated research questions (“How do spontaneous
traffic jams occur?”) and specifying the variables that are thought to best describe
the phenomenon in question (say, measurable changes in average vehicular speed).

In recent years there has been a growing recognition of the heterogeneous char-
acter of model building in science, where models are constructed as representations
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to investigate a target system, not merely conceived of as realizations of theoretical
relationships that are posited as true. On this view, not all models are “derived” from
fundamental theory—not only because many research questions require models to
be “made up from a mixture of elements, including those from outside the domain
of investigation” (Morrison and Morgan 1999, p. 23), but also because models often
represent phenomena that have yet to be subsumed under anything resembling a self-
contained underlying theory. In the absence of a theory of the domain of investigation,
models may thus serve an exploratory function (Gelfert 2016): it is by constructing
models that scientists attempt to find out whether a purported phenomenon really
does survive closer scrutiny and try to devise “proto-theories” whose relation tomore
fundamental theories then needs to be analyzed further. It is only once a decision has
beenmade that a particular problem situation can, at least tentatively, be characterized
using a certain set of representational tools that a conceptual model can be devel-
oped. Or, to put it another way, any conceptual model that is being advanced—be it
in the form of a set of mathematical equations with corresponding physical interpre-
tations, or as a less formalized set of assumptions, simplifications, and explanatory
mechanisms—will already implicitly include some assumptions about which sorts
of problem situations and approaches are appropriate. It is important to keep this in
mind since, as we shall see, a conceptual model’s credibility partly depends on it.

If we were only interested in constructing a model to represent a target system
or phenomenon, arriving at a viable conceptual model might be considered a fit-
ting conclusion to the process of scientific modeling. And indeed, a fair amount of
philosophical writing on scientific models takes the construction of models to be
the goal and outcome of scientific inquiry—even as it acknowledges that scientific
models serve a variety of epistemic and non-epistemic functions. In this sense, what
simulationists call the “conceptual model” is generally referred to by philosophers of
science as “scientific model” simpliciter. Yet, the work of the simulationist does not
stop with devising a conceptual model; instead, it is taken as a starting point for the
further processes of designing a numerical model in computer code, and implement-
ing the numerical model on a computer model. From the simulationist’s viewpoint,
the conceptual model is “a non-software specific description of the computer simula-
tion model (that will be, is or has been developed), describing the objectives, inputs,
outputs, content, assumptions and simplifications of the model” (Robinson 2008,
p. 283). Seen in this light, the construction of a conceptual model by a simulationist
is teleologically oriented toward the creation of a piece of software, the computer
simulation model, in order to answer specific hypotheses about the target system by
running a simulation. It would be hasty, however, to infer from this that the concep-
tual model play s a merely auxiliary role. Simulationists are keenly aware that many
conceptual models enjoy independent support and justification, and that the success
of implementing a simulation model partly depends on adequately translating the
conceptual model into computer code.

The relationship between a (numerically implemented) simulation model and
the (underlying) conceptual model is a nontrivial one, as becomes evident once we
consider what we can infer—about the simulation and the conceptual model, respec-
tively—from the empirical success (or lack thereof) of the numerical output thus
generated. Even before we compare the numerical output against our observations or
measurements, we may ask whether the simulation model does, indeed, adequately
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reflect the conceptual model; that is, we may engage in verification (see Chap. 11
by Rider and Chap. 12 by Roache in this volume). On the one hand, this involves
“determining that a simulation computer program performs as intended, i.e., debug-
ging the computer program” (Law and Kelton 1991, p. 299); in a departure from
established usage in philosophy of science, the term “verification,” thus understood,
does not refer to the process of generating observable predictions and testing them
empirically. The guiding idea behind verification in this sense is not empirical test-
ing, but formal demonstration in the spirit of logic and mathematics: “Purely formal
structures are verifiable because they can be proved by symbolic manipulation, and
the meaning of these symbols is fixed and not contingent on empirically based input
parameters” (Oreskes et al. 1994, p. 641). What is being verified, then, is not that the
model is a successful representation of the target system, nor that the numerical out-
put matches empirical observations, but rather that an already constructed conceptual
model is correctly solved in the software code that constitutes the (implemented)
simulation model. In this sense, verification (also called “technical validation”) aims
to demonstrate internal consistency, sometimes by way of benchmarking numerical
results against analytical solutions (where available). On the other hand, this usage
of “verification” involves the problematic assumption that formally verifying that a
computer simulation approximately solves a set of underlying mathematical equa-
tions answers all relevant questions that may arise in the course of computationally
implementing a conceptual model. For example, there is considerable latitude in
how one should discretize the underlying equations in a simulation model, and
each such choice may have advantages and drawbacks, yet these are not a matter
of meeting (or failing) certain formal standards. It is, therefore, important to realize
that verification is itself typically part of an iterative process of implementing
and subsequently tweaking a simulation model and its implementation. As Eric
Winsberg puts it, “there can be no justification of the final [conceptual] model that
is independent of its discretized implementation, and there can be no justification
of the implementation that is independent of the model” (Winsberg 2018, p. 158).

Turning to the second element in the often jointly used phrase “verification and
validation,” validation aims to ascertain the simulation model’s performance across
a range of empirical contexts, for example by simulating a real data source and
comparing the calculated outcomes with real-world observations. (See Chap. 4 by
Murray-Smith in this volume.) This can be a formidable task, given that “directly
making the validity assessments requires technical expertise and full access to the
model and external data” (Caro et al. 2014, p. 178). The ability to predict, or oth-
erwise reproduce, empirical aspects of the behavior of the target system is key to a
simulation model’s external validity, where this refers to the generalizability of the
findings of a simulation to the intended class of real-world cases. Different strategies
can be pursued: at minimum, an implemented computer simulation should be able
to adequately reproduce data sources that went into the creation of the model in the
first place (“dependent validation”), though generally, it will be preferable to test a
simulation’s performance with respect to independent data sets—that is, data that is
of a type that the simulation should be able to account for, but which was not actively
utilized in the process of simulation design. As in the case of testing theories, the
predictive capacity of simulation models, too—that is, its ability to predict empiri-
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cal results before they have been measured or observed—is often seen as carrying
great weight (“predictive validation”). At the same time, drawing too close a paral-
lel between validation of a simulation model and theory-testing, can be misleading.
Scientists themselves have occasionally emphasized that “[v]alidation is not a pro-
cedure for testing scientific theory or for certifying the “truth” of current scientific
understanding, nor is it a required activity of every modelling project” (Rykiel 1996,
p. 299), and have lamented the widespread belief “that validation establishes the
veracity of the model” (Oreskes et al. 1994, p. 642).

To be sure, textbook definitions of “validation” in computer simulation studies
often equate it with “determining whether a simulation model (as opposed to the
computer program) is an accurate representation of the system” (Law and Kelton
2000, p. 265), sometimes with the caveat that a model should be “an accurate rep-
resentation of the real world from the perspective of the intended uses of the model”
(ITT, cited after Zacharias et al. 2008, p. 302). Critics of such definitions have argued
that “[t]he implication is that validated models tell us how the world really is”, when
we should always keep in mind that any agreement between observed measurements
and simulation results “in no way demonstrates that the model that produced the
output is an accurate representation of the real system” (Oreskes et al. 1994, p. 642).
It seems fair to assume, however, that the authors quoted above intended their text-
book definitions to be understood elliptically, in that they would not deny that further
assumptions and inferences are required to warrant moving from empirical valida-
tion of the simulation results to representational success of the underlying model.
Perhaps, then, validation is best understood as both relative to the context of inquiry
and the goal of the inquirer:

Validation is a demonstration that a model within its domain of applicability possesses a
satisfactory range of accuracy consistent with the intended application of the model. (Rykiel
1996, p. 233; italics original.)

What constitutes a “satisfactory range” depends, at least in part, on the applicable
standards of empirical performance which, again, vary between users, depending
on their goals, and across different contexts: “That is, a model is declared validated
within a specific context which is an integral part of the certification. If the context
changes, the model must be re-validated.” (ibid.)

The recognition that context matters stems from the realization that models and
simulation may serve a wide range of purposes, from promoting epistemic goals
(e.g., affording insight into the causal basis of a particular phenomenon) to non-
epistemic objectives (e.g., serving as the basis for policy decisions). It also reflects
the fact—well-known to scientific practitioners, but perhaps underappreciated in phi-
losophy of science—that the process ofmodeling and simulation does not, in practice,
divide up neatly into distinct “phases” of (1) constructing a conceptual model, (2)
translating it into computer code and verifying that the code correctly implements
it, and (3) validating the numerical output by comparison with empirical observa-
tions. Instead, what one finds—often, not always—is that the various phases overlap
and are deeply intertwined. For example, it is not uncommon for approximations
that were initially employed during the stage of implementation and verification to
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become an essential part of the simulation model as a whole, and for them to be
credited with ensuring its overall empirical success (and, thus, its validity).1

Fewpractitioners of computer simulation studieswould consider any given valida-
tion of a simulation model to be sacrosanct. Not only is it the case that, as mentioned
earlier, models that have been validated within one context for a given purpose
may need to be re-validated for a different use in another context. Like models
and simulations in general, the practice of validation, too, serves different (if often
complementary) purposes. Sometimes, when the mutual relationships between the
numerical output, the simulation model, the conceptual model, and the underlying
theory are well-understood, the successful validation of a computer simulation may
indeed be interpreted as (good, but defeasible) evidence that the underlying model
adequately represents theway theworld is. Often, however, the route from a scientific
problem to a computer simulation model is less clear-cut, and the various relation-
ships between models, theories, and simulations are contested. In such a situation,
validationmay also function as a tool “for buildingmodel credibility in the user com-
munity” (Rykiel 1996, p. 230). This is not to say that validation is being carried out
strategically, let alone with manipulative intent to persuade others; rather, validation
ensures that a computer simulation adheres to shared standards of accuracy in the
given context of inquiry.

An excessive focus on verification and validation may, on occasion, obscure other
functions of models and simulations, beyond their ability to reproduce observed
phenomena. As the ecologist Edward Rykiel puts it, “modelling and the benefits
to be gained from it can also be stifled by an overemphasis on model validation”
(1996, p. 240). Such benefits include, but are not limited to, exploratory uses of
models in the absence of a fully formed theoretical framework, which have recently
begun to receive philosophical attention.2 Indeed, “[e]xploration of model behavior
without validation testing is a legitimate, reportable activity” (Rykiel 1996, p. 241).
This—along with the realization that, even where validation of a simulation model
is possible, not much can be inferred with certainty about whether or not “a model
accurately represents the ‘actual processes occurring in a real system’” (Oreskes
et al. 1994, p. 642)—strongly suggests that, in relying on conceptual models in our
simulation design, we implicitly presuppose that those models enjoy independent
justification. For this reason, and because models and simulations enjoy considerable
autonomy from one another, the rest of this chapter will focus on the diverse sources
of credibility of the conceptual model.

1For a fascinating case study, see Lenhard (2007).
2For a detailed argument that exploration is a core function of scientific modeling, see Gelfert
(2016).
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10.3 Taking the Notion of “Credibility” Seriously

If we are to gain a deeper understanding—beyond technical measures of fit, distance,
fractional variance, etc., (which, in any case, can only be determined post hoc)—of
what leads scientists to trust some conceptual models more than others, then it may
be best to begin by taking the notion of credibility seriously. At the risk of appearing
overly literal-minded, in the present section I wish to discuss some of the relevant
connotations of “credibility” as a general concept; in the next two sections, we shall
then encounter a range of examples of how scientists tend to arrive at judgments of
credibility in relation to scientific models.

On the face of it, it may seem puzzling why, in the seemingly neutral context of
model evaluation, one should invoke the term “credibility” at all, given its ethical
and interpersonal overtones. Why not stick with more objective criteria such as
“reliability” or “verisimilitude”? The concept of credibility has its natural place in
human communication and is of a piece with—albeit slightly less emotionally tinged
than—the concept of trustworthiness. (Cf. Chap. 17 by Saam in this volume for the
role of humans in validation.) Yet it is not by chance that scientists should turn to the
notion of credibility in their interactions with scientific models and simulations, or so
I wish to suggest. In interpersonal communication, credibility is usually considered
to be a function of both the trustworthiness and competence of an agent. To be sure,
we also speak of isolated claims as being “credible” if we think they merit belief.
However, when it comes to the credibility of models, the closer analogy is with
epistemic agents, not with the level of individual propositions. To put it another way,
when we believe a model-based prediction, we typically do so because we consider
the model to be credible, not because we have independent reason to think that the
specific prediction in question is somehow ex antemore likely to be true than any of
its close competitors. A credible model, then, is one that we can turn to, with some
confidence, for answers on a suitably wide range of relevant research questions. Once
we consider a model credible, and resolve to work with it for the purposes of inquiry,
we begin to trust its results—not blindly, of course, but in a way that grants its results
some measure of (defeasible) default justification.

In human interactions, once we trust someone, we depend, at least in part, on
their goodwill. When I ask you for directions to the train station and trust your
answer, the success of my subsequent actions depends, among other things, on your
having chosen not to play a prank on me and send me in the wrong direction. What
I end up believing depends, in part, on your mental processes. This is why, for
someone to be deemed credible, they must not only be deemed to be competent
with respect to the subject matter in question, but must also be trustworthy (that is,
honest and sincere). (See e.g., McGinnies and Ward 1980.) In the case of models,
while there is no analogy to the involvement of another mind in our own process of
belief formation, we likewise depend on factors internal to the model which cannot
readily be inspected. Competence and trustworthiness are not categories that can
be directly applied to scientific models, but it is not difficult to identify desiderata
that are structurally similar. Like a competent interlocutor, a good model should be
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able to provide reliable information regarding a broad range of thematically related
questions; similarly, in much the same way that a trustworthy interlocutor would not
suddenly start offering wildly misleading claims, a good model should not exhibit
sudden discontinuities in the quality of information we can extract from it.

It is perhaps no surprise that the very term “inquiry” is ambiguous, inasmuch as
it refers both to objective empirical investigation and to interpersonal requests for
information. Indeed, in the Baconian tradition of experimental natural philosophy
thatwas at the heart of theScientificRevolution, scientific inquirywas often likened to
the process of interrogation—sometimes by violent means, as critics of themetaphor
have pointed out. (SeeMerchant 1980.) Scientific experimentation itselfwas seen as a
method of bringing about conditions that allowed for the extraction of truth—away of
“putting Nature to the question” (where this, of course, was a common euphemism
for torturing someone at the rack). What matters for present purposes is not the
problematic character of Bacon’s imagery, but rather the transactional conception of
inquiry as interrogation. But surely, one might wonder, there is a difference between
experimenting on nature by bringing about material conditions that may elicit novel
observable phenomena, and “interrogating” a conceptual model by various means
of analysis? Indeed, there is; yet, as Joseph Pitt notes (in a passage concerned with
scientific theories, but in a way that naturally extends to models), there are also
striking parallels:

When a scientist works with a theory to derive some results, she is in some sort of communi-
cation with it. She knows that if she does this she will get, or at least, ought to get this result.
It is in her being able to anticipate the response of the theory to her manipulations that she
is communicating with it. (Pitt 2007, p. 55)

Pitt intends this to be more than just a useful metaphor for understanding how
we engage with theories. The key notion is “manipulation”—which seems even
more apt in the case of models which, as mentioned earlier, are often made up of a
heterogeneous mixture of elements, arranged precisely in a way to enable inferences
about the target system (and, thereby,make it possible to extract information about the
world).AsPitt notes, “to the extent thatwemanipulate theories [read:models—A.G.]
we communicate with them”: “The key here is in knowing how to communicate and
with what kinds of things we communicate.” (Pitt 2007, p. 55).

There is clearly a metaphorical element to likening scientific inquiry to verbal
interrogation—but this is no more problematic in the case of scientific models than
with respect to scientific experimentation, or so I wish to suggest. Scientists continu-
ously labor with scientific models—often the same ones, with only minor variations
of the same underlying equations or formalisms—and, over time, come to see them
as “mediators, contributors, and enablers of scientific knowledge” (Gelfert 2016,
p. 127). When they judge a conceptual model to be credible, this is more than merely
an interim assessment of a model’s utility “here and now,” but expresses a commit-
ment to its future use and expected fruitfulness. Judgments of credibility, then, play
an important part in the evaluation of conceptual models, and it will be insightful, in
the next section, to discuss the standards and criteria deployed by scientists in their
assessment of whether a conceptual model deserves our trust.
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10.4 The Credibility of Models: Lessons from Scientific
Practice

Scientists, in assessing the models they are using, are typically less concerned with
reporting overall levels of credibility concerning specificmodels, let alone subjective
judgments of their trustworthiness, but instead—rightly so—tend to acknowledge the
hybrid nature of model credibility:

The credibility of amodeling analysis should be assessed at several levels: validation, design,
data, analyses, reporting, interpretation, and conflicts of interests. Validation assesses how
well the model accords with reality. The design should follow accepted standards for con-
ceptualizing and framing the model. The data used in building model should be suitable for
the purpose, properly analyzed, and incorporated in the model. Analyses should provide the
information required to support decision maker. (Caro et al. 2014, p. 178)

“Reporting” and “interpretation”, which are being acknowledged by the authors
as “not specifically pertaining to amodel’s credibility” (ibid.), nonetheless are central
to the credibility of modeling as a process and its application in practical contexts.
The final point—conflicts of interest—demonstrates how the overall credibility of
a modeling analysis depends both on the credibility of the model (according to the
criteria specified in the previous section) and on the trustworthiness of the modeler
who, after all, has decided to deploy one (type of) model rather than another for a
particular purpose.

If, for the time being, we take actual usage at face value, we find that “credi-
bility” for scientists has an—in the eyes of philosophers perhaps surprisingly—in-
strumentalist character, with strong social connotations. Earlier, we quoted the ecol-
ogist Rykiel as arguing that “validation is not an essential activity for evaluating
research models, but is important for building model credibility in the user commu-
nity” (Rykiel 1996, p. 230; italics added). Credibility, in turn, is best defined in terms
of the demand that, as Stewart Robinson puts it, amodel “[b]e believed by the clients”
(Robinson 2011, p. 1433). And Caro et al. (2014), the same group of health scien-
tists who gave the pithy characterization of the hybrid character of model credibility
quoted above, have also drawn up a list of questions that may guide assessments of
“the relevance and credibility of a modeling study”. In addition to obvious concerns
regarding verification and validation, these include questions such as the following:

Does the model have sufficient face validity to make its results credible for your decision? Is
the design of the model adequate for your decision problem? Are the data used in populating
the model suitable for your decision problem? (Caro et al. 2014, p. 176; format adapted from
table)

“Face validity,” in particular, is thought to be a first criterion by which to screen
out straightforwardly implausible proposals, inasmuch as a model should not contain
unrealistic and implausible assumption about core elements that a model is intended
to get right.3 Whether a model meets this desideratum is thought to be “the easiest

3This should not be understood as contradicting the frequent—and entirely correct—observation
that, as William Wimsatt puts it, false models may function “as means to truer theories” (Wimsatt
2007, p. 94).
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aspect of credibility for a user to check because it does not require in-depth technical
knowhow”; at the same time, if “parts of the model fail face validity, the effect on
credibility depends on the user’s judgment about whether the questionable parts are
so unrealistic or inappropriate that they affect the accuracy of the results” (Caro et al.
2014, p. 179).

As scientists themselves are keen to point out, mere success at reproducing empir-
ical results does not suffice to render a model credible:

Agreement betweenmodel and data does not imply that themodeling assumptions accurately
describe the processes producing the observed climate system behavior; it merely indicates
that the model is one (of maybe several) that is plausible, meaning that it is empirically
adequate. (Knutti 2008, p. 4652)

Just as we do not consider an interlocutor credible merely in virtue of having
made a series of truthful assertions, we do not place trust in a model just because
it happens to have successfully reproduced some amount of data. Attributions of
credibility derive from the warranted presupposition that a source of information is
systematically reliable across a range of relevant contexts and questions. Background
knowledge, thus, is a key to assessments of the credibility of models: “The model
results we trust most are those that we can understand the best, and relate them to
simpler models, conceptual or theoretical frameworks”. (Knutti 2008, p. 4656)

If there is one near-universal feature of how scientists talk about the credibility of
their models, then it would have to be their recognition that models serve a variety
of purposes, such that attributions of credibility depend on the goals of the modeling
process. This is not to suggest that attributions of model credibility are subjective,
or cannot be challenged, but simply to acknowledge that, for such an attribution to
be meaningful (and potentially intersubjectively compelling), the goals and contexts
of the modeling process need to be specified. This is precisely why Caro et al.
(2014), in their proposed list of diagnostic questions concerning the relevance or
credibility of a modeling study, ask researchers to consider what external validation,
internal validation, face validity, design aspects, etc., of a model-based study have
to contribute toward “mak[ing] its results credible for your decision?” (178, italics
added) Other scientists, in a similar spirit, note that models are to be assessed by their
ability to “[p]roduce sufficiently accurate results for the purpose” that a modeler has
chosen (Robinson 2011, p. 1433), and in view of how “acceptable for pragmatic
purposes” (Rykiel 1996, p. 230) its results are. This reflects, once more, the largely
pragmatic-instrumentalist attitude of practicing scientists regarding the utility of
models in specific problem-oriented contexts of inquiry.

WendyParker, in the context of discussing preciselywhat is being confirmedwhen
models—climate models in particular—are found to fit with observations and past
data, resists the thought (to be discussed in the next section) that “as we accumulate
instances of fit between observational data and output from a climate model, we
are accumulating evidence of the truth of the hypothesis embodied by the model”
(Parker 2009, p. 234). Such aview regards attributions of credibility as “divorced from
any particular use or application of the models”; instead, Parker argues, we should
recognize a growing need, especially in the case of complex modeling analyses such
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as in climate science, “to try to discern, in a principled and careful way, what a
[…] model’s performance” in specific contexts “indicates about its adequacy (or
inadequacy) for various predictive and explanatory purposes.” (Parker 2009, p. 243)
Like the scientists quoted above, Parker believes that such adequacy-for-purpose,
for manymodeling contexts, is a more important desideratum than truth or wholesale
empirical adequacy. As Parker puts it,

adequacy-for-purpose does notwork like truth and empirical adequacy[…:] from the assump-
tion that a model is adequate for an explanatory or predictive purpose, information about
how the model is likely to perform in various other respects, or information about what
other properties the model is likely to possess, does not simply follow as a matter of course.
(Parker 2009, p. 238)

This suggests that assessments of the credibility of models will, by necessity,
always have to be tentative and context-dependent—even if, on rare occasions, a
model may turn out to be successful and credible across a wide range of questions
and applications.

None of this should come as a surprise: after all, scientists use models in situa-
tions of incomplete knowledge—for example, because an underlying fundamental
theory cannot be directly applied in any straightforward way to the case at hand,
or because it is not even available in principle, or because the available data sug-
gests, but does not entail, a particular interpretation of an empirical phenomenon.
Models are also being employed in contexts where a “full” description or derivation
may simply be too costly, perhaps because it would require too much time, compu-
tational resources, or the like. In all of these situations, it is natural to expect that
modelers will face trade-offs—e.g., between completeness (of a model description
and derivation) and timeliness (of results and predictions), or between the generality,
realism, and precision of one’s models (Levins 1966). Given that trade-offs prevent
us from maximizing all desiderata simultaneously, and given that different purposes
call for different desiderata to be maximized, we simply should not expect to find
that the same model is the most adequate across all contexts. For the same reason, it
would be largely uninformative to simply extend the same set of “standard criteria
for evaluating the adequacy of a theory” (Kuhn 1977, p. 322) —that is, accuracy,
consistency, scope, simplicity, fruitfulness, and other theoretical virtues—to the case
of models, without specifying in more detail how these—no doubt worthy—desider-
ata can be achieved and ascertained in the case of modeling. (See also Chap. 40 by
Hirsch Hadorn and Baumberger in this volume.) In short, if one’s goal is to achieve
adequacy-for-purpose, a more fine-grained approach to assessing the credibility of
one’s conceptual model should be favored. Achieving model credibility—especially
as the basis for future simulations—is a complex process and, given “the extent to
which this process focuses on elements external to anything we would reasonably
include as part of theory, it would be unrealistic to interpret this warranting process
as being about the relationship of the results to some formal model” of a theory
(Winsberg 2001, p. S450).
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10.5 Empirical Fit and Causal Understanding

Amajor tension in the notion ofmodel credibility arises from the question of whether
models should always strive to fit the actual world, or whether they can serve explana-
tory (and other legitimate) functions by imagining plausible (yet counterfactual) sce-
narios. In this section and the next, we will discuss each of these aspects in detail,
keeping in mind that they point to a difference in emphasis, rather than to any funda-
mental inconsistency. Often, a model that is deemed a successful representation of
real-world findings will also successfully predict what would happen if conditions
were different, for example, because it has correctly identified an underlying causal
mechanism. If we are lucky enough to have a well-confirmed fundamental theory at
our disposal, and if the particular problem situation at hand poses no special obstacles
to the theory’s application, we may even be able to derive a model that “inherits,”
so to speak, the underlying theory’s strengths. This is how philosophers of science
used to think about scientific models in general, before realizing the significantly
greater heterogeneity, diversity, and tentativeness of models in actual scientific prac-
tice. Yet, wherever it is, in fact, possible to embed a model in a theory, the credibility
of the underlying theory can legitimately rub off on the model as well. At the same
time, a highly simplified model—perhaps even one that could not, in principle, be
realized—may also be a source of insight about why things are the way they are, for
example, because it showcases why certain alternative scenarios could not play out
in the world as we know it. Still, there exists more than just a difference in emphasis
between, on the one hand, treating models primarily as accurate representations of
real-world phenomena, and on the other hand, treating them as “credible worlds”
(Sugden 2000) in their own right, which allow us to explore relationships which
may, or may not, obtain in (or shed light on) the actual world.

The tension between thosewho regardmodels as awayof accounting for empirical
data and those who are willing to grant models greater independence from empirical
phenomena, is largely due to the fact that models occupy a middle ground between
theory and data. Some philosophers of scientific models have even gone so far as
to claim that the primary function of models is to serve as “mediators” between the
empiricalworld and the realmof theoretical hypotheses:models, on this account, “are
not situated in the middle of an hierarchical structure between theory and the world”,
but operate outside the hierarchical “theory-world axis” (Morrison andMorgan 1999,
pp. 17–18). On rare occasions, wemay be able to describe themodeling process as an
instance of applying a fundamental theory to a specific case at hand; but more often
than not, such a descriptionwould bewildly inaccurate, sincemodeling often involves
interpolating between different realms, making multiple (sometimes inconsistent)
assumptions, engaging in different rounds of idealization and de-idealization—all
of which render scientific models typically “a mixture of elements, including those
from outside the domain of investigation” (Morrison and Morgan 1999, p. 23). This
echoes a sentiment by Nancy Cartwright, who has long held that theories “do not
generally represent what happens in the world—only models represent in this way”
(Cartwright 1999, p. 180). While such a view of scientific models opens up a wider
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range of considerations that modelers can hope to draw on in their quest for model
credibility, and while it is generally agreed that models are “inherently intended for
specific phenomena” (Suárez 1999, p. 75), when the rubber hits the road—viz., in
any given actual instance of model-based inquiry—this view is no clearer than its
predecessors on when a model should be deemed credible.

Scientists often place great store by a model’s ability to reproduce empirical
data; yet, given the inevitable simplifications that go into the design of serviceable
scientificmodels, they are at the same timewell aware of the fact that perfect empirical
fit, even across a range of situations, may be a fluke—or simply the lucky result of
errors from different sources canceling out. One way to guard against mistaking such
accidental successes of a model for a sign of its overall credibility is to systematically
broaden the range of situations being considered and test a model’s performance
against the corresponding data sets. If a model performs well with respect to a wide
range of independent empirical situations and data sets, it becomes progressively
unlikely that its successful performance is entirely a matter of chance. This is why,
in addition to predictive successes, retrodiction is likewise valued, since it affords
an alternative way of comparing a model against empirical reality—provided the
past data in question was not itself used in the construction of the model: “A model
demonstrates empirical fit to the extent that its logical implications are observed in
data; the data may be historical or not yet observed” (Yuengert 2006, p. 87). When
viewed from this angle, ascertaining thatmodelA has a better empirical fit thanmodel
B becomes a matter of demonstrating that A entails more empirical consequences
found in the data than B.

While continued empirical success is a good, if fallible, indicator of a model’s
“being on to something”, it is clear that it cannot be the final word on what makes a
model credible. As an example from the special sciences, consider economic models
of addictive behavior, in particular, rational addiction models and time inconsistency
addiction models. (The discussion in this paragraph follows Yuengert 2006.) Ratio-
nal addiction models depict consumers as forward-looking and seeking to maximize
utility over their life cycle, all the while taking into account the future consequences
of their (current) choices. Addictive reinforcement, on this model, merely reflects the
assumption that an increase in the addictive stock increases the marginal utility of
current consumption. This contrasts sharply with time inconsistencymodels, accord-
ing to which consumers have self-control problems and cannot trust themselves to
enact their consumption plans, even when in possession of full information. Time-
inconsistent consumers, at any moment, pursue immediate gratification more than
they would have professed to prefer at any previous point in time. One might expect
such radically different assumptions to make an observable difference, once the two
types of models are put to the test. Yet, interestingly, both types of models “are nearly
indistinguishable by conventional econometric methods” (Yuengert 2006, p. 78), and
the case rational addiction and time inconsistency models is sometimes regarded as
a case of underdetermination by data (see Goldfarb et al. 2001).

In situations where two models are empirically equivalent, yet a decision needs
to be made as to which model should be adopted (e.g., because, due to lack of time
and resources, it is not possible to pursue both modeling strategies simultaneously),
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one evidently needs to appeal to selection criteria other than empirical fit. This may
take the form of privileging certain theoretical desiderata—notably, simplicity and
parsimony—or may be guided by background assumptions about the causal basis
of the phenomenon in question. Thus, in the case of addiction models, it has been
argued that ensuring that models of habit information be formulated in terms of
rational decision-making leads to models that are “formally equivalent to models
without habit formation” (Spinnewyn 1981, p. 92), but only by redefining wealth
and the cost of current consumption in unwieldy ways; in other words, the rationality
assumption “leads to unnecessary complications” (Chaloupka et al. 2000, p. 115).Yet
such a conclusion may be unacceptable to proponents of rational choice theory, for
whom the rationality assumption is a nonnegotiable core element of their paradigm.
In addition to background commitments and general theoretical virtues, however,
there is a third set of considerations that stem from realism about the purported
causal basis of the phenomenon being modeled. Thus, in the case at hand, those who
take independent findings, including on issues unrelated to addiction, to establish
beyond doubt the realism and causal significance of time inconsistency for behavior
in general, will likely consider an explanation of addiction as being caused by time-
inconsistent preferences to be superior.

In recent years, predictive modeling, not least on the basis of AI algorithms and
machine learning, has taken hold across a wide range of activities, in the data-
centric sciences as well as in business and the corporate world. To be sure, the
goal of prediction has been an integral part of science (and, by extension, of scientific
modeling and simulation) from early on; only in recent years, however, has it become
a realistic prospect to sift through vast amounts of data in the search for correlations
and to “train” neural networks on training data in the hope that they will successfully
predict new samples (or recognize relevant features in incoming data). Such data-
driven approaches bring their own challenges. Without a firm (and independently
justifiable) set of prior assumptions, the only justification of such models consists in
their continued predictive successes. Common dangers include committing so-called
“Type III” errors (i.e., developing a model that answers the wrong question), over-
fitting of models to the data (e.g., when a model reflects the structure of a given data
set—including its noise—so well that its predictions do not generalize to new data
sets of the same kind), and ignoring systematic changes in the environment (such
that past data fails to be a guide to the future). In such a situation, model-immanent
approaches can only do so much to alleviate any shortcomings a model has acquired
by way of how it was developed—even when a model appears to be empirically
successful, e.g., in relation to a given data set (as in the case of overfitting). Great
care must, therefore, go into the very construction of data-driven models, e.g., by
deploying more sophisticated sampling techniques.

Empirical fit, then, is only one consideration among several that researchers draw
on when they attempt to determine howmuch credibility a model merits. Theoretical
virtues such as parsimony and unification may aid in resolving situations where
multiple models are empirically equivalent; appeals to the realism of assumptions
likewise have a role to play, in particular in the following two cases: “if realistic
assumptions can be expected to result in better empirical fit eventually, or if realistic
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assumptions promote worthy goals other than empirical fit” (Yuengert 2006, p. 87).
To the latter possibility—that empirical fit may be outweighed by, or may at least
trade off against, other worthy goals of inquiry—we shall now turn.

10.6 Models and the Exploration of Credible Worlds

Empirical fit and numerical accuracy may indicate that a model stands in the right
sort of relation to its target system, and to the world at large, but, for the reasons
already outlined, they can at best constitute defeasible evidence that a model satis-
fies the kind of “world-linking conditions” (Grüne-Yanoff 2009, p. 81) that would
merit trust in its future performance and overall credibility. Turning from one set of
desiderata (relating to a model’s accuracy and empirical fit) to the other cluster of
desiderata identified earlier, viz. a model’s aptness for exploring possible scenarios
and generating “modal knowledge about what might be possible about the target sys-
tem” (Massimi 2018, p. 339), as well as its fruitfulness in generating truth-conducive
lines of inquiry, an analogous point can still be made. After all, though it may be
difficult to quantify and compare fit and accuracy—let alone infer on their basis how
credible a model is overall—wemay expect assessments of explanatory success and
exploratory potential to be even more controversial. Nonetheless, in what follows, I
shall sketch two approaches that tackle these more qualitative criteria of how much
insight into the world a given model affords us. The first such approach conceives
of models as a way of constructing credible worlds; the second regards them as
exploratory tools.

The term “credible world” as a characterization of the way models operate is due
to the economist Sugden (2000). It emphasizes that, for a model to afford insight to
its user, it need not always be derived from an idealization of an actual target system.
Sometimes, such idealizations may be possible: when modeling mechanical motion,
friction is often treated as negligible, and the resulting mechanical models may be
considered as idealized representations of actual bodies in motion (where friction
is inevitable), which nonetheless display wide applicability. Yet, in many areas of
science—not least those that deal with complex systems (such as the social sciences,
including economics)—it is often difficult, if not impossible, to determine in advance
which factors can, or cannot, be neglected. If idealization is understood as the pro-
cess of starting from real-world target systems and then proceeding by isolating
causally important factors from those of minor significance, then this methodology
may face serious limitations when it comes to complex systems.4 By contrast, Sug-
den’s notion of “credible world,” in line with other recent accounts of model-based
science, acknowledges the central role of model construction. Modeling, in essence,
amounts to the construction of credible worlds using representational tools (such as
mathematics); whether these successfully “latch on” to the actual world is a question

4This, it should be noted, is not the only that one may interpret the procedure of theoretically
“isolating” relevant factors; for an alternative view, see (Mäki 2009).
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which can only be successfully tackled once a model has been specified. Whereas
in the case of gradual idealization from real target system the satisfaction of world-
linking conditions can be assumed (if, perhaps, only initially), in the case of models
as credible worlds, such a linkage needs to be established subsequently—e.g., by
relying on such criteria as similarity, induction, and explanatory success. As Chao
(2014, p. 591) puts it rather succinctly,

if a prototype theoreticalmodel can be applied to a set of particularmodels across time, space,
and context, and each particular model is regarded as satisfactorily explaining a particular
[…] real-world phenomen[on], then it can be inductively concluded that this prototype
theoretical model is credible.

Naturally, on this account, an important criterion of the credibility of models is
their coherence—both internally and with known external (e.g., causal) constraints:
“If a model lacks coherence, its results cannot be seen to follow naturally from a clear
conception of how the world might be” (Sugden 2000, p. 26). Yet, coherence among
the model’s assumptions does not itself suffice: “For a model to have credibility, it
is not enough that its assumptions cohere with one another; they must also cohere
with what is known about causal processes in the real world”. (ibid.) However, in
order to conclude, with confidence, that a given credible-world model represents the
way the world actually is, a further step will typically be required: viz., the abductive
inference that, “[i]f a result R is caused by a set of causal factors F in the model world
M, and R occurs in the real worldW , then we have reason to believe that F operates
inW” (Chao 2014, p. 592). Failure to establish a model’s real-world connection need
not, however, disqualify the model from further study: while such a model could not
function as a surrogate for its real-world target, it may nonetheless substitute for
real-world inquiry.5

A similar conclusion regarding the sources of amodel’s credibilitymay be reached
from a perspective that acknowledges that models may serve a variety of functions.
In addition to representing actual target systems and deriving specific results, pre-
dictions, and explanations about them, models also help explore further avenues of
inquiry. From this perspective, whether or not a model is credible may not be solely
a matter of how faithfully it represents a given target system, and how closely its
results mirror the latter, but may also depend on how fruitful it is—for example, in the
generation of potential explanations, or when it comes to establishing in-principle
possibilities (or, as the case may be, impossibility theorems—which may play an
important role in guiding future inquiry). On the one hand, this acknowledges that,
in order to make headway in our attempts to model reality, we must sometimes
introduce falsehoods—not merely as an unavoidable side effect of idealization and
abstraction, but as a direct and deliberate consequence of making (sometimes heavy-
handed) model assumptions; on the other hand, it broadens the range of legitimate
uses of models to also include those instances of modeling that precede the full the-
oretical articulation of a phenomenon (or class of phenomena). Not all legitimate
uses of a model should, of course, be thought of as bolstering its credibility. Yet, if

5I am here drawing on Uskali Mäki’s distinction between “surrogate models” and “substitute mod-
els” (Mäki 2009, pp. 35–37).
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we take seriously the earlier idea that one can draw a parallel between the credibility
of models and the trustworthiness of interlocutors (see Sect. 10.2), it is not at all
far-fetched to insist that the credibility of a model goes beyond the brute empirical
reliability of the individual claims it makes about the world. Just as one person may
be deemed a “more credible choice” (as a candidate for political office, say) than
another, some models may be considered more credible than others—not because
of any decisive difference in their past track record, but because background con-
siderations suggest that they hold more promise than their competitors. Judgments
of credibility, we might say, are forward-looking—if positive, they engender trust
in future performance—in a way that is not captured by looking at brute empirical
track record alone. This line of argument is entirely compatible with, but does not
presuppose, the idea that some models may be best thought of as “credible worlds.”
Yet it acknowledges more explicitly that “exploratory modeling often serves the
purpose of developing a grasp of (as yet theoretically inaccessible) phenomena”
(Gelfert 2016, p. 95)—a situation that scientists encounter all the time. It also serves
as a reminder that assessments of a model’s credibility depend importantly on their
role and function: treating a model as a credible “proof of principle” (Gelfert 2016,
pp. 85–86), say, is a quite different matter from relying on it as a credible source of
precise numerical predictions.

As an example of such exploratory models, consider certain types of “toy mod-
els”—viz., models that are strongly idealized and simplified, so much so that they
may border on being minimal, “stylized” accounts of a single aspect of a target
phenomenon. Some such models may be derived from empirically well-confirmed
theories, e.g., when planetary motion is modeled as two point masses orbiting one
another. Such cases may be considered “embedded toy models,” since they are at the
same time models of an underlying well-developed theory and extremely simplified
and idealized models of phenomena. This contrasts with what has been called “au-
tonomous toy models” (Reutlinger et al. 2017): that is, extremely stylized models
that are not models of a theory (and which, in some cases, “seem to bear no rele-
vant relation to a well-confirmed framework theory” at all; ibid.: 11). When the lack
of such a relevant relation to an underlying theory is due to the absence of well-
developed theoretical resources that one might otherwise draw on, we may properly
deem such autonomous toy models “exploratory” in the sense discussed in the previ-
ous paragraph. Whereas, in the case of embedded toy models, the underlying theory
usually contains some of the resources required for successfully “de-idealizing” and
applying a model to a given target situation for predictive purposes, in the case
of autonomous toy models—and of exploratory models, more generally—empir-
ical prediction, let alone numerical accuracy, is rarely the explicit goal. Instead,
researchers often deploy exploratory models with the aim at generating intelligible
explanations of certain types of phenomena. The more we succeed in cultivating our
ability to “recognise qualitatively characteristic consequences […] without perform-
ing exact calculations” (De Regt and Dieks 2005, p. 151), the more trust we place
in exploratory models, all the while recognizing their intrinsic limitations. While we
must guard against mistaking any subjective “aha experiences” or fleeting feelings
of familiarity for signs of the truth of our models, we should not downplay the impor-
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tance of understanding to successful scientific practice. When researchers “refer to
the results of their simulations by saying ‘we trust our results’ or ‘we trust our com-
puter simulations’” they not only claim that the results are true (or approximately
true), but also that they “understand why they are correct (or approximately correct)”
(Durán 2018, p. 98). Recognizing exploratory fruitfulness as contributing to the cred-
ibility of a model does not entail that such fruitfulness can somehow compensate for
other deficiencies (e.g., representational failure, or lack of realism); rather it amounts
to yet another acknowledgment that the credibility of a model is the joint result of
features of the model, aspects of the world, and the cognitive goals and interests of
its users.

10.7 Summary

Simulation-basedmethods in science are deeply intertwinedwith the development of
credible conceptualmodels,where the lattermay be variously thought of as (pragmat-
ically adequate) representations of real-world targets, as constructions of “credible
worlds” that display internal and external coherence, or as exploratory tools that
may aid our understanding even before a well-developed theoretical account of a
phenomenon, or class of phenomena, becomes available. While it would be wrong
to think that computer simulationmethods are a “mere application” of the conceptual
model to a particular problem situation, it would likewise be misleading to assume
that the credibility of a simulation can somehow be divorced from that of the model.
To be sure, verifying that a computer simulation performs as intended and ascer-
taining furthermore that its results are valid across a range of empirical contexts are
important steps in establishing a simulation’s credibility. Yet, whether or not the
results of a simulation are credible also hinges on the credibility, or lack thereof, of
the underlying model. Yet such credibility, as this chapter has aimed to show, is not
up to the model alone, but is jointly constituted by features of the model and the
overall goals and cognitive interests of its users.

In much the same way that we demand of credible human interlocutors that they
be competent and trustworthy—that is, able and willing to give reliable information
across a range of relevant questions, without sudden unexpected failures—credible
conceptual models should make reliable and relevant information available to those
that depend on them. While this will often be a matter of how faithfully a model
represents an actual target system, it would be hasty to think that this exhausts the
concerns of scientists who depend onmodels and simulations. Sometimes, creating a
model that constitutes a “credible world” in its own right—even if does not map on to
the actual world—can help advance our understanding, and on yet other occasions,
the most credible model may simply be the one that shows the most promise in gen-
erating fruitful new lines of research.Whether a conceptual model enjoys credibility,
then, is as much a matter of its intrinsic structure and its relation to the world at large
as it is a reflection of the goals and cognitive interests of its users.
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