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Preface

This volume is interdisciplinary all the way through. It all started, when a social
scientist (NJS), who had done simulations for quite some time, consulted the
philosophical literature to obtain a better grip on what she was doing. At some
point, she raised a question to a philosopher (CB) who had written on computer
simulations. The cross-disciplinary exchange that emerged in this way eventually
led to our collaboration.

The first significant step was the organization of an interdisciplinary conference
about the validation of computer simulations. It took place at Herrenhausen Castle
in Hanover, Germany, in 2015 and was generously supported by the Volkswagen
Foundation. We invited working scientists doing simulations in the natural and
social sciences, e.g., in astrophysics, ecology, and economics, further, mathemati-
cians, computer scientists, and philosophers to share their experiences of validating
simulations, to propose frameworks to think about validation, and to offer philo-
sophical reflections about it. The conference was different from most conferences at
which we had been before and which were typically meetings with lots of old
friends. This time, by contrast, even the organizers had not met most of the par-
ticipants before. Despite this (or, rather, therefore?), the conference featured very
lively discussions, and we learned a lot from the talks. But in our view, the con-
ference also showed that, first, more cross-disciplinary dialogue is needed to
facilitate exchange about validation across disciplinary boundaries. Second, our
impression was that many valuable accounts of, and techniques for, validation have
been developed for restricted areas of research, but that researchers from other
disciplines might benefit from them. So it is important to find out whether, and, if
so, to what extent, these accounts and techniques may be transferred to other areas.
Third, we felt that validation raises a lot of questions of broader relevance to
scientific methodology and a philosophical understanding of scientific practice.
This was motivation enough to edit this volume, which is meant to serve as a
handbook about the validation of computer simulations.

Many people have helped us to publish this volume, and we are grateful to all
of them. Our first thanks go to our authors (some of which were at the conference,
while we became only aware of others when putting this volume together). The
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authors have not only contributed their chapters, which was often significant work
because there is a lot of uncharted territory when it comes to validation and also
because they had to address a broad readership. Most authors have also reviewed at
least one other chapter of the volume and often given invaluable advice to their
fellow contributors. We are particularly grateful to David Murray-Smith, William
Oberkampf, and Patrick J. Roache who have each kindly refereed more than one
chapter. Finally, we also owe our authors a lot of useful comments and suggestions.
To give just one example, Richard B. Rood worked through the whole introduction
and sent us very useful comments.

We are also grateful to a number of “external” referees who have helped us to
review the chapters, viz., Petra Ahrweiler, Stefan Gruner, Paul Humphreys, Stephan
Poppe, Rush Stewart, and Eric Winsberg.

Our thanks go further to our (former) student assistants who have helped with
proofreading and literature reviews, viz., Soham Astik, Sarah Gloor, Christoph
Merdes, and Audrey Salamin.

We are grateful to the series editor, Louis Birta, for his encouragement and
support.

Last but not least, we wish to thank our publisher and the Springer team with
which we have collaborated, in particular, Simon Rees and Wayne Wheeler. The
cooperation was extremely smooth, and we are grateful for their support, their
professional advice, quick answers to our questions and for the patience that is
needed for long-term projects such as editing this volume.

Bern, Switzerland Claus Beisbart
Erlangen, Germany Nicole J. Saam
October 2018
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Chapter 1
Introduction: Computer Simulation
Validation

Claus Beisbart and Nicole J. Saam

Abstract To provide an introduction to this book, we explain the motivation to
publish this volume, state its main goal, characterize its intended readership, and
give an overview of its content. To this purpose, we briefly summarize each chapter
and put it in the context of the whole volume. We also take the opportunity to stress
connections between the chapters. We conclude with a brief outlook.

The main motivation to publish this volume was the diagnosis that the validation
of computer simulation needs more attention in practice and in theory. The aim of
this volume is to improve our understanding of validation. To this purpose, com-
puter scientists, mathematicians, working scientists from various fields, as well as
philosophers of science join efforts. They explain basic notions and principles of
validation, embed validation in philosophical frameworks such as Bayesian episte-
mology, detail the steps needed during validation, provide best practice examples,
reflect upon challenges to validation, and put validation in a broader perspective. As
we suggest in our outlook, the validation of computer simulations will remain an
important research topic that needs cross- and interdisciplinary efforts. A key issue
is whether, and if so, how very rigorous approaches to validation that have proven
useful in, e.g., engineering can be extended to other disciplines.

1.1 Introduction

During the second half of the twentieth century, computer simulation has established
itself as a new method in most natural and social sciences. These days, computer
simulations are used to investigate as diverse phenomena as the healing of wounds
(e.g.,Walker et al. 2004), the climate of our planet (see, e.g., IPCC 2014, in particular,
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2 C. Beisbart and N. J. Saam

Chap. 9 for an overview), or the distribution of taxpayers in societies (e.g., Harding
et al. 2010). In many areas, computer simulations have replaced experiments and led
to insights that would otherwise have been utterly impossible. But to what extent
can we trust the results from simulation research, e.g., the predictions from climate
simulation models?

To address this question, scientists try to validate their simulations. Validation
comprises the efforts to show that computer simulations provide adequate represen-
tations of their target systems. According to a very famous definition, validation is
supposed to substantiate “that a computerized model within its domain of applicabil-
ity possesses a satisfactory range of accuracy consistent with the intended application
of the model” (Schlesinger et al. 1979, p. 104, emphasis deleted).

This may seem straightforward and not particularly difficult. However, as it hap-
pens, validation of computer simulations is a challenging issue both from a practical
and a more theoretical perspective.

As far as practice is concerned, some working scientists have expressed their
unease about validation. As, e.g., Kleindorfer et al. (1998, p. 1087) report, “[t]here is
still considerable doubt and even anxiety among simulation modelers as to what the
methodologically correct guidelines or procedures for validating simulation models
should be.” In a more recent contribution, Ghetiu et al. (2010, p. 1) complain that “a
cohesive understanding of what scientific validation requires, is not captured by the
existing efforts that mainly try to solve pieces of the ‘puzzle’” (emphasis deleted).
Accordingly, in practice, activities of validation are often neglected or only done
sloppily and superficially.As a consequence, some results fromcomputer simulations
have later turned out to rest on erroneous numerical artifacts. In the absence of
clear guidelines of how to validate simulations, the method of computer simulation,
successful as it might seem, is not yet fully developed.

It is remarkable in this regard that some working scientists from, e.g., business
analysis have resorted to the philosophical literature. Authors such as Herskovitz
(1991), Kleindorfer et al. (1998), Feinstein and Cannon (2003), Klein andHerskovitz
(2005) have examined various philosophical positions to see whether they can make
sense of validating simulations.

As far as the theoretical understanding of validation is concerned, several issues
have emerged that haven’t yet been treated satisfactorily. Already the very term
“validation” is a matter of controversy. In an often-quoted paper, Oreskes et al.
(1994) try to show that the term is misleading because a simulation cannot be shown
to be true or valid except in trivial cases. However, as Rood in Chap. 30 of this
volume argues, Oreskes et al. have gone too far with their skeptical outlook. We are
not merely talking about verbal disputes here; there is a real issue about how we may
properly characterize the epistemic situation that successful validation can optimally
produce. A related key question is how one can determine the overall confidence of
simulation results if a battery of tests have been carried out. What is also a matter of
discussion is the question of how validation is related to what people call verification,
i.e., the attempt to show that a simulation reliably traces the predictions of amodel. In
the philosophical literature, we find a discussion about the extent to which computer
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simulation and its validation are novel and require a new epistemology (see, e.g.,
Winsberg 2001).

This volume is meant to be a reaction to this dissatisfying understanding of vali-
dation. It aims at a methodological and philosophical discussion of the validation of
computer simulation and its techniques. True, the last few years have seen impres-
sive systematic work on validation, notably the monographs by Roache (2009),
Oberkampf and Roy (2010) and Murray-Smith (2015). But the focus of these books
is mostly on the physical sciences and engineering, so it is not clear whether and how
their approaches may be generalized to other disciplines. To give just one example,
Oberkampf and Roy stress the importance of model validation experiments, which
cannot be done in many parts of the social sciences.

In our view, validation needs a much broader discussion. Validation is an issue not
just for the physical sciences and engineering but is rather relevant to all disciplines in
which computer simulations have currency. Thus, cross-disciplinary communication
about the understanding and the practices of validation is needed to put validation in
a broader perspective and to avoid misunderstandings that arise in interdisciplinary
research, when scientists from various fields differ in their tacit assumptions about
validation. Scientific exchange across disciplinary boundaries can also help to dis-
seminate knowledge of new techniques and to share experiences about validation. It
is thus time to approach the topic by taking seriously the perspectives of all parties
that can contribute to a better understanding of validation. These parties comprise first
and foremost practicing simulation scientists from the natural and social sciences as
well as computer scientists. Mathematicians are needed first not only because many
computer simulations are based on approximation schemes, the appropriateness of
which needs close analysis, but also because validation involves the testing of sta-
tistical hypothesis and the quantification of uncertainties. Finally, the expertise of
philosophers of science is called for, since some questions raised about validation
touch upon more general issues about scientific method.

1.2 Goals and Readership of this Handbook

This handbook aims to significantly improve the understanding of validation of
related methods and thus ultimately to promote more thorough and sustained vali-
dation practices. To this purpose,

• Experts in validation and philosophers of science explain and clarify basic concepts
and principles used to frame validation, e.g., the notions of validation, verification,
and error.

• Philosophers embed validation in general philosophical frameworks that try to
explain how scientific method works, e.g., in Bayesian epistemology.

• Experts from some sciences and engineering as well as mathematicians explain
the steps needed for validation, provide practical advice, and introduce related
techniques.
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• Working simulation scientists from various fields share their experience about
what they take to be best practice of validation.

• Practicing simulation scientists reflect upon challenges of validation, e.g., the
sparseness of data.

• Philosophers address philosophical questions that have been raised about valida-
tion.

The focus of this book is on the validation of computer simulations in scientific
research. By computer simulation, we mean, very roughly, a method in which a
computer program traces the dynamics of a target system by providing (typically
approximate and partial) solutions to a model of the target. But a lot of results from
the chapters collected in this volume are also relevant to other scientific computer-
based methods in which a target system is represented using a model, for instance
to representations of spatial structures (a building, a bone) at one time. Further,
many results are transferable to computer simulations done outside science, e.g., in
business companies or administration. These days, computer simulation programs are
distributed on a commercial basis, and customers rightly expect that the programs be
validated. Note, too, that computer simulations are also a valuable tool in education.
Although the validation of simulations used in areas such as education raises issues
outside the scope of this volume, many concepts and approaches from validation in
scientific research can be applied, as far as the adequate representation of the target
system is concerned (see Chap. 2 by Beisbart, Chap. 17 by Saam and Chap. 36 by
Köstlbauer in this volume for contributions that touch upon the use of simulations
outside science).

This volume is unique in at least three respects: To begin with, it is the first, and so
far only, handbook-like collection on validation in which international experts join
forces to explain the fundamental concepts, strategies, and techniques of validation
to a broad readership. Second, it is first to draw on the expertise from various fields
ranging from engineering and the physical sciences to the social sciences and history.
Third, it is unique in providing new and original philosophical reflections about
validation. Although the philosophy of science has featured a lively debate about
computer simulations during the last few years, the thorny issue of validation was so
far much neglected by philosophers. Part IX of the book provides the first collection
of philosophical articles on validation of simulations.

The intended readership of this book is mainly comprised by working scientists
from all natural and social sciences (see Table 1.1). We hope that this volume will
be particularly helpful for young scholars who start research with computer simu-
lations. On top of this, we wish to engage with philosophers of science as well as
methodologists who want to increase their understanding of simulation validation.

Before we start with an overview of this book, two remarks are in order. First,
sincewe have aimed to bring together the perspectives of various disciplines, we have
decided not to base the chapters on a shared understanding of validation. Instead, the
contributors were asked to specify their preferred view of validation. Note though
that Chap. 2 by Beisbart systematically compares various understandings of valida-
tion. Second, depending on their principal aims, the chapters differ significantly in
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Table 1.1 Readership of this volume

Disciplines Readership Features that will appeal to
this audience

Empirical sciences, natural and
social

working scientists as well as
advanced students,
methodologists

- exposition of the
foundations of validation
and related concepts

- introduction to steps of
validation and
corresponding techniques

- introduction to
mathematical frameworks
that are useful for
validation

- best practice examples
- reflection upon challenges
of validation

Philosophy of science Philosophers of simulation,
methodologists

- exposition of the
foundations of validation
and related concepts

- reflections about whether
validation can fit into
existing philosophical
frameworks

- general philosophical
reflection about validation
and its significance

style. While many chapters are survey articles, others provide introductions or even
tutorials. A couple of chapters, finally, are something like original research articles
because they address questions that haven’t been discussed yet. But we have always
tried to make sure that the chapters are accessible to a broader readership and that
they explain the needed background knowledge.

1.3 Structure and Topics

This handbook comes in nine parts. Foundations are explained in Parts I (about basic
concepts) and II (about philosophical frameworks for thinking about validation).
Parts III through VI detail the methodology of validation by considering the crucial
steps and building blocks: preparatory steps (Part III), points of reference and related
techniques (Part IV), mathematical frameworks (Part V), and the organization and
management of simulation validation (Part VI). Part VII provides best practice exam-
ples from various fields. Challenges that arise from peculiarities of certain types of
simulationmodels or some disciplines are reflected upon in Part VIII. Part IX, finally,
collects chapters that address philosophical issues surrounding validation.
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1.3.1 Foundations (Parts I–II)

Part I of the book begins with a series of chapters that explain fundamental concepts
and principles related to validation.

Chapter 2 by Claus Beisbart addresses the question: “What Is Validation of Com-
puter Simulation?” (thus, the title). This question has so far been answered using
various definitions. The objective of the chapter is not to argue for one specific
definition, but instead to understand how and why existing characterizations of the
validation of simulation differ. Beisbart considers a representative sample of attempts
at defining validation, e.g., the famous definition by Schlesinger et al. (1979) and def-
initions that authors from this volume use in their chapters. The definitions agree that
validation is an evaluation, but differ on what exactly the proper object of the eval-
uation is, e.g., results from a simulation, a simulation program or a model. Beisbart
thus clarifies how these entities hang together. The definitions, too, mention different
standards of evaluation, e.g., truth, accuracy, credibility, and adequacy for a purpose.
Beisbart explains these standards and argues that the validation of a whole computer
simulation can at best establish a high credibility for claims on the accuracy of the
simulation outputs. This view is to some extent compatible with the idea that simula-
tions should be adequate for a purpose, as famously suggested by Parker (2009). But
it is arguable that adequacy for a purpose requires researchers to take into account
additional epistemic values, in particular, if simulations are supposed to explain some
phenomena. Beisbart thus considers the notion of what is called structural validation
and discusses reasons for and against allowing an appeal to additional standards in
validation. Beisbart concludes by presenting a scheme for defining validation.

Chapter 3 is written by William L. Oberkampf and titled “Simulation Accuracy,
Uncertainty, and PredictiveCapability: APhysical Sciences Perspective”. The author
expounds and defends a conception of validation which he calls “the restrictive
notion of model validation”. Validation in this sense is an assessment of model
accuracy relative to available experimental data. It is necessary, but not sufficient
for showing the predictive capability of simulations. A simulation has predictive
capability if it can foretell, within an estimate of uncertainty, the response of a system
for conditions that have not yet been observed in nature. This capability is extremely
important for applications of simulations in engineering and simulation-informed
decision-making.AsOberkampf explains,what ismost important for validation in the
restrictive sense is the assessment of the accuracy and of uncertainties. As he further
points out, validation in this sense needs code verification and solution verification
and the estimation of uncertainty. The chapter details what these activities are and
how they should be accomplished in practice. In this context, Oberkampf defines
crucial terms needed for carrying out these activities, e.g., model form error and
validation metrics. He stresses that model validation should not be confused with
model calibration. He further explains the definition and use of model validation
experiments. All in all, the chapter describes a powerful approach to validation that
has been proven extremely valuable in the physical sciences. It is quite demanding
though because it requires the availability of appropriate data, and it is restricted to
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areas in which simulations are built upon the known principles that govern the target
system. In his conclusions, Oberkampf argues that these conditions are not met in the
social sciences. As a consequence, the notion of validation defended in this chapter
is not applicable in the social sciences.

In Chap. 4, titled “Verification and Validation Principles from a Systems Perspec-
tive“, David J. Murray-Smith offers a broader perspective on validation and verifica-
tion. He calls it a systems perspective because the real-world target of the simulation
is regarded as a system, which is often composed of many elements. Murray-Smith’s
focus is on so-called lumped parameter models, which typically model each element
of the system using one characteristic. The models then use ordinary differential
equations or a combination of ordinary differential and algebraic equations to model
the interconnections between the elements. Note though that most of the notions
and principles developed in the chapter can be extended to other simulations. As
does Oberkampf in his Chap. 3, Murray-Smith stresses that both verification and
validation of the simulation are required, where the former is characterized as inter-
nal, while the latter is said to be external. The chapter explains the principles that
guide verification and validation. As far as the latter is concerned, the focus is on
accuracy, and Murray-Smith points out that the latter should be assessed not only
by comparing simulation outputs and measured data, but also by using methods
such as identifiability and parameter sensitivity analysis. What is distinctive about
the approach by Murray-Smith in comparison with Oberkampf is, maybe, that the
former is more friendly towards face validation, a method which is crucially based
upon expert judgment. He thinks that face validation is particularly helpful during
the early stages of the development of a simulation.

Two basic notions that are decisive for both validation and verification are those of
error and uncertainty. Both validation and verification can be described as attempts
to deal with various kinds of errors that can arise in computer simulations. But what
exactly are these errors? How can they be classified? And how can researchers appro-
priately deal with them?These are the questions at the center of Chap. 5 byChris Roy,
titled “Errors andUncertainties, Their Sources andTreatment”.Hedefines error as the
difference between a specific number included in the output of a simulation and the
corresponding true value. If the true value of a quantity is not determinate, this gives
rise to uncertainty. Roy distinguishes between aleatoric and epistemic uncertainty:
While the former arises from random processes in nature, the latter derives from
our ignorance. Because the true value of a quantity is often not known, the related
error is uncertain and can only be estimated. Errors are often classified according to
their sources. For instance, round-off errors arise because digital computers cannot
properly represent irrational numbers and effectively work with rounded numbers.
Roy explains how the various kinds of errors can be tested for and estimated. He
also discusses how the estimates of the various types of errors can be combined as
to yield a total error for a simulation output.

Part II turns to foundations of validation in a slightly different sense. The broad
idea is to understand validation in terms of frameworks that philosophers of sci-
ence have proposed for scientific method and inference. Very roughly, the scientific
method comprises those rules and recipes that scientists qua scientists should follow
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in their research. At a fine-grained level, we find several methods such as observation,
experiment, thought-experiment, or computer simulation, each coming with its own
methodological rules. But some philosophers have thought that scientific method, in
particular, scientific inference, can be characterized at a more general level. If this is
correct, then the general rules of scientific method apply to computer simulation too.
The question of this bundle of chapters thus is what prominent general philosophical
accounts of scientific method and inference imply for validation and whether this is
useful advice.

The first account under scrutiny is falsificationism or the Popperian philosophy
of science. Popper‘s approach is in fact in high esteem in many scientific circles
(see, e.g., Godfrey-Smith 2003, p. 57). Although mostly concerned with empirical
science, Popperwas convinced that scientists cannot, and should not, inductively infer
theories, since he took induction not to be rational. What is crucial for Popperian
science is instead the attempt to subject hypothesis and theories to severe testing.
Once a theory has been shown to be false (or falsified) because it contradicts what
we observe, it should be rejected. Popper did not consider computer simulation,
specifically, but if we apply his outlook to simulation science, then the focus should
be on invalidation rather than on validation, as Keith Beven and Stuart Lane point
out in Chap. 6 titled “Invalidation of Models and Fitness-for-purpose: A Rejectionist
Approach”. Indeed, testing simulation models for all kinds of problems is common
practice. However, as the authors show further, strict invalidation is often not possible
because simulation models involve many uncertainties. Beven and Lane thus explain
methods with which uncertainties can be handled while sticking with the idea that
invalidation should be the aim. They admit that invalidation becomesmore subjective
in this way, but point out that being explicit about the assumptions of analysis will
help facilitate communicationwith practitioners and help avoid the use of simulations
that are not fit-for-purpose in practical applications. They ultimately recommend
invalidating computer simulations in science and argue that this opens upnewavenues
of research (see also Chap. 27 by Roache for a discussion of the falsificationist
perspective on model validation).

A falsificationist outlook in philosophy of science is often criticized because it
does not allow for the positive confirmation of hypotheses as, e.g., suggested by
simulations. The Bayesian approach to philosophy of science, also called Bayesian
epistemology, by contrast, can describe how trust in scientific results is built. The
basic premise underlying Bayesian epistemology has it that belief (or trust) comes in
degrees and can be measured in terms of probabilities. The probabilities express how
(un)certain an agent feels about a certain proposition. As new evidence comes in,
the probabilities are updated, e.g., using Bayesian conditionalization. The question
of Chap. 7 by Claus Beisbart (“Simulation Validation from a Bayesian Perspective”)
thus is whether Bayesian epistemology provides a useful framework for doing vali-
dation. After a presentation of the basics of Bayesian epistemology, the author argues
that data-driven validation can be conceptualized using Bayesian updating. For Beis-
bart, Bayesian epistemology offers more than that because it can also describe how
the prior credibility of the conceptual model underlying a simulation impacts on
the credibility of the whole simulation. A problem in this respect is, however, that
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a computer simulation deviates from the conceptual model due to approximations.
Beisbart argues that this problem can, too, be solved in Bayesian terms. In the final
discussion, the Bayesian account of validation developed in the chapter is system-
atically assessed. Beisbart admits that some general objections against Bayesian
epistemology, e.g., the so-called old evidence problem, are relevant to a Bayesian
approach to validation. However, he argues that Bayesians are in a better position to
conceptualize the inferences implicit in validation than are falsificationists.

In the second half of the twentieth century, philosophy of science underwent what
is often called a historical turn. Following, in particular, Thomas Kuhn, philosophers
turned their attention to the history of science. Kuhn himself distinguished three
types of phases of development within science, viz., pre-paradigmatic research, so-
called normal science, and scientific revolutions. In Chap. 8, titled “Validation of
Computer Simulations from a Kuhnian Perspective”, Eckhart Arnold discusses the
consequences of Kuhnian philosophy of science for validation. After a short intro-
duction to Kuhn’s outlook, Arnold argues that we should resist the temptation to
call the development of the method of computer simulation revolutionary in Kuhn’s
sense. But it might still be argued that computer simulation requires a new paradigm
of validation. Arnold rejects this idea, too, and stresses that the validation of com-
puter simulation is not in principle different from attempts to confirm a theory. In the
last part of his paper, Arnold has a closer look at simulations in the social sciences.
He observes that some agent-based simulations are not properly validated and that
there is not even much of an interest in validation in related fields. He thus concludes
that these fields from the social sciences are pre-paradigmatic in Kuhn’s sense.

A fourth philosophical approach that is applied to validation is hermeneutics
(Chap. 9). The latter is sometimes thought to be the art, or the theory, of understand-
ing with a clear focus on the understanding of texts and other products of human
culture. But hermeneutics can also be seen as a philosophical movement or school,
with Dilthey, Heidegger, and Gadamer being its most famous proponents. At first
sight, a hermeneutical approach to validation may not seem very promising because
hermeneutics appears more appropriate to provide foundations for the humanities,
which have human culture and its products as their main subject matter. But in
an often-quoted paper, in which Kleindorfer et al. (1998) consider several philo-
sophical positions to obtain advice for validation, they come to sympathize with a
hermeneutical outlook on validation. This is motivation enough for Nicole J. Saam
(“Understanding Simulation Validation—The Hermeneutic Perspective”) to have a
closer look at the potential benefits and pitfalls of a hermeneutic approach to val-
idation. She distinguishes between hermeneutics in validation and hermeneutics of
validation. While the former tries to use methodological advice from hermeneutical
scholarship within the practice of validation (as Kleindorfer et al. suggest), the lat-
ter tries to understand validation itself as a practice. Saam argues that hermeneutics
in validation is a failure; what hermeneutics implies about the validation of com-
puter simulation is at best vague, if not inappropriate. A hermeneutics of validation,
by contrast, is found to be viable. Saam argues that the hermeneutics of validation
may even be useful for working scientists. She thinks that such a hermeneutics can
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proceed via interdisciplinary dialogue in which historically influential “prejudices”
about validation in certain disciplines may be corrected.

1.3.2 Methodology (Parts III–VI)

Parts III through VI turn to the methodology of validation itself. The basic aim of
these parts is to give an overview of the various strategies and techniques that are
available for validation and to discuss their viability. Part III considers steps that have
to be taken prior to validation proper, but that are very important for validation.

A lot of simulations are built upon independent models such as, e.g., the Ising
model. In such cases, the accuracy and the credibility of the results of the simulations
depend on how credible the models are. Chap. 10 by Axel Gelfert, titled “Assess-
ing the Credibility of Conceptual Models”, analyzes the credibility of such models.
His questions are what credibility of a model amounts to and how credibility can be
achieved. He proposes to understand the credibility of models following the credibil-
ity that we assign to people in everyday talk. It is common that a person is a credible
source of information for certain questions and in certain contexts, while less so in
others. Likewise, Gelfert suggests, a model may be credible in some contexts, while
not in others. He thus stresses that the credibility of a model crucially depends on the
purposes and research questions that researchers have in mind when working with a
model. A similar point has been made by Parker (2009) when she has suggested that
models and simulations should be evaluated following their adequacy for purpose.
Gelfert distinguishes two broad classes of purposes, viz., the representation of real-
world systems and the exploration. Concerning the first aim, he argues that fit with
empirical data and the faithful representation of mechanisms underlying a range of
phenomena in the target system are important criteria for model credibility.

The best model does not help if a computer simulation fails to yield approximate
solutions to it. If there is a bug in the program, for instance, then the simulation
program does not provide what it is supposed to. This is where so-called verification
steps in. Roughly, verification aims to ensure that the computer simulation does
yield approximate solutions to the model that the researchers intend to use. While
Oberkampf in Chap. 3 and Murray-Smith in Chap. 4 cover the basic principles that
guide verification, Part III includes two chapters that deal with the verification of
a special type of simulation. The reason is that verification is particularly difficult
if the original model (often called the conceptual model) consists of systems of
ordinary or partial differential equations (ODEs or PDEs, for short). Such equations
involve variables that may vary in a continuous way and differential operators such
as the first derivative in time. Due to their digital nature, computers cannot correctly
represent such differential operators. Consequently, the ODEs and PDEs need to be
discretized, which is to say that the differential operators are approximated. This
leads to characteristic errors often called discretization errors (cf. Chap. 5 by Roy in
this volume). The chapters that we have commissioned about verification for Part III
deal with related problems, which arise if models consist of ODEs and PDEs.
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In Chap. 11 (“The Foundations of Verification in Modeling and Simulation”),
William J. Rider introduces the basic techniques of verification that are relevant in
this setting. He draws a basic distinction between two steps of verification: code ver-
ification and solution verification. Code verification is aimed at making sure that the
output of a simulation program does approximate the solutions to the model under
investigation. As Rider points out, this can be done by showing that the outputs
of the simulation program converge to a correct solution, as the so-called resolu-
tion is increased. To show this, researchers run the program with several resolutions
(e.g., with different time steps) and compare to a benchmark solution. The differ-
ence between the output and the benchmark is called error, and the mark of code
verification is that the rate with which the error becomes smaller is consistent with
a certain theoretical expectation. Rider considers various benchmarks and stresses
that they need case-specific documentation. Solution verification, by contrast, is sup-
posed to determine the errors associated with the output of a computer simulation.
Rider emphasizes that, during solution verification, typically, no benchmark solu-
tions are available. This is to say that there are more unknowns. The basic idea then is
to fit a simple numerical model for the convergence to the output obtained. Both the
methods of code and solution verification are illustrated using a concrete example.
Note that Oberkampf (Chap. 3) and Roy (Chap. 5), too, comment on both steps of
verification.

Chapter 12 (“The Method of Manufactured Solutions”) by Patrick J. Roache is
focused on a novel technique that can be used during code verification. As just
mentioned, the latter is based upon comparing the outputs from a simulation with
correct solutions to the equations of the model implemented in the simulations.
For complicated ODE or PDE models, such solutions are barely available. This is
where the method of manufactured solutions can step in. As Roache points out, the
central idea is to assume that an arbitrarily chosen function solves a variation of the
model equations. To obtain the modifiedmodel equations, a source term is added that
compensates for the fact that the equation does not hold for the chosen function. The
advantage is that the chosen function is known to be an exact solution of the modified
equations. In this way, the usual tests constitutive of code verification can be applied.
In his chapter, Roache describes themethod in detail by considering simple examples.
As he points out, it is important that all terms from the original model equations are
exercised by the chosen function. By contrast, it is not an issue whether the chosen
function is realistic regarding the applications. The last few sections of the chapter
discuss the broader significance of the method.

The chapters of Part III explain further preparatory steps on which the practice
of validation is based. These steps include, for example, the choice of a validation
metric. This is the topic of Chap. 13 by Robert E. Marks “Validation Metrics: A
Case for Pattern-Based Methods”. A validation metric is a distance measure that
quantifies how far the outputs from a simulation are from measured data from the
target system. The choice of a validation metric is of utmost importance because the
measure determines which kinds of deviations between simulation output and data
are taken to pose a problem for the simulation. In the simplest case, a validationmetric
may just be the modulus of the difference between the output value, say for pressure
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at some time, and its measured value. But it is often more appropriate to construct
a measure that takes into account not just one instance of time and not just one
characteristic such as pressure. Further, both the simulation outputs and themeasured
data are subject to uncertainties. If the latter are expressed using probabilities, then
probability models arising from the simulation output and the measured data need
to be compared. In his chapter, Marks first lists properties that have been proposed
for validation metrics. He then distinguishes between several families of measures
that are defined for the comparison of probabilities. His focus is on what he calls
“pattern-basedmeasures”.One subgroup of the pattern-basedmeasures is based upon
information theoretic terms, e.g., Shannon entropy. A second group is constituted by
strategic state measures. Marks’ focus is on the state similarity measure that he has
suggested elsewhere. Its application is illustrated using a simple agent-based model
for interacting brands. A very comprehensive treatment of validation metrics can
be found in Oberkampf and Roy (2010, Chap. 12). A short overview of validation
metrics is also contained in Chap. 17 by Saam in this volume.

Before we can compare the output of a simulation with data using a validation
metric, we have to make sure that the simulation output is properly produced and
well understood. This is particularly an issue for stochastic simulations. In Chap. 14,
“AnalyzingOutput fromStochastic Computer Simulations: AnOverview”, Christine
Currie explains how to run stochastic simulations properly and how to preprocess
the output. She distinguishes between terminating and nonterminating simulations.
As the name suggests, terminating simulations are finished if a certain type of event
occurs. This requires some care to set the initial conditions. Nonterminating simula-
tions often run into what is called a steady state. If only the steady state is of interest,
then a so-called warm-up period of the simulation output has to be removed. Currie
details two possible methods. She further explains how often a stochastic simulation
has to be run to obtain a certain level of significance. The chapter is self-contained
as all required statistical notions are defined.

Results of computer simulations are usually validated by comparing them to var-
ious types of reference points. The chapters of Part IV describe reference points that
are commonly used as well as related techniques. The reference points considered
include data, stylized facts, and the users’ judgements. In addition, there is a chapter
that proposes to conceptualize the comparison with reference points in terms of the
terminology known from benchmarking.

Data are clearly the most important reference point, thus David J. Murray-Smith,
in his Chap. 15 (“The Use of Experimental Data in Simulation Model Validation”),
considers the use of experimental data for the validation of deterministic simulation
models. Of course, many computer simulations have target systems, on which the
researchers cannot run experiments. But even if the target system cannot be experi-
mented on, experimental data fromother systems that resemble the target systemmay
provide insight. Murray-Smith discusses graphical and quantitative methods of com-
paring data sets from the target system with output from the simulation model. But
his main emphasis is on the design of experiments to obtain suitable data. He argues
that so-called identifiability analysis (which is focused on the possibility of estimat-
ing model parameters using data) can provide valuable information for experiment
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design. Murray-Smith emphasizes that well-designed validation test specifications
should include initial conditions and all boundary conditions, the form of inputs and
the measuring equipment used. All relevant operating conditions and the full range
of parameter values must be considered. It is also important to specify and to take
into account the accuracy of the data. Murray-Smith uses a model of the pulmonary
gas exchange processes in humans to illustrate these issues. While Chap. 15 is con-
centrated on the validation of deterministic models, this volume contains several
chapters that deal with stochastic simulations, e.g., Chap. 13 by Marks, Chap. 14 by
Currie, and Chap. 26 by Mättig.

Besides experimental data, there are other kinds of data, in particular, observa-
tional data and historical data. There are some other chapters in this volume which
deal with the use of observational data, in particular, Chap. 29 by Theis & Baldauf
and Chap. 30 by Rood who describe the validation of weather forecasts resp. climate
models. Chapter 33 by Seibert and co-authors demonstrates the use of observational
data in the validation of hydrological modeling. The peculiarities of historical data
are addressed by Köstlbauer in Chap. 36.

Matthias Meyer (Chap. 16, “How to Use and Derive Stylized Facts for Validating
Simulation Models”) considers stylized facts, which have become prominent in eco-
nomics and other social sciences. This concept was introduced by economist Kaldor
who suggested that theorists “should be free to start off with a stylised view of the
facts – i.e. concentrate on broad tendencies, ignoring individual detail” (Kaldor 1968,
p. 178). Stylized facts may also be called patterns, empirical regularities or statistical
properties of a phenomenon (Grimm et al. 2005). Meyer clarifies the concept and
proposes to define stylized facts as broad, but not necessarily universal generaliza-
tions of empirical observations that describe the supposed essential characteristics
of a phenomenon that require explanation. Meyer argues that stylized facts can not
only provide a reference point for model construction ex ante but also for the purpose
of model validation. In addition, he addresses the question of how to obtain stylized
facts. Four approaches to establish stylized facts are presented and assessed, among
them a new, particularly transparent approach which has been developed by Meyer
and his colleagues.

Sometimes judgments are recommended as reference points for the validation
of simulation. Most often, these are supposed to be expert judgements, but in cer-
tain areas of research, the users’ judgements may matter too. An example of such
an area is so-called action research, which is considered in Chap. 17 by Nicole
J. Saam (“The Users’ Judgements—The Stakeholder Approach to Simulation Val-
idation”). This is a type of research in the social sciences which is supposed to
foster social change and thus involves the participation of citizens. The researcher
is not a detached observer anymore, but instead an active participant. In this area, a
so-called stakeholder approach has been suggested for simulation validation. Saam
uses the validation of socio-ecological simulation models as a typical example of
action research that involves the stakeholders in simulation validation. A model of
a socio-ecological system is typically supposed to represent the stakeholders them-
selves, in particular, their behavior and their tacit knowledge, as well as the envi-
ronment in which they live. Saam argues that action researchers have to consider
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the stakeholders’ judgements as an indispensable point of reference for simulation
validation, if they submit to a constructivist view of social reality. Not only are
stakeholders needed to ensure that their tacit knowledge is reflected in the simula-
tion; rather, they have also to accept the simulations and to act on the results, if the
simulations are to be successfully used. To obtain the stakeholder’s judgements in
such a framework involves repeated efforts of communication, which requires a
strong background in qualitative methods of empirical social research as well as
gaming simulation.

The last chapter in this row is not about a specific reference point but rather
introduces a general framework for thinking about the comparison with reference
points, viz., the terminology of benchmarking. Benchmarking is well known from,
e.g., management, but has occasionally been used and discussed in the context of
validation too. In Chap. 18, titled “Validation Benchmarks and Related Metrics”,
Nicole J. Saam discusses validation in the terms of benchmarks and benchmarking.
Benchmarking in general is defined as the evaluation of a performance that crucially
involves comparison. Saam distinguishes between benchmark variables, which cap-
ture those aspects that are of interest for the evaluation, and proper benchmarks, i.e.,
determinate threshold values of the benchmark variables. The focus of the chapter
is on a descriptive account of benchmarking in simulation validation. Saam offers a
typology of benchmarks and argues that benchmarking allows for some flexibility
such that standards of varying degrees of strictness can be accounted for. She also
stresses that benchmarking often involves a social component: It is frequently groups
of people who have to agree on benchmark variables and benchmarks proper, if some
benchmark is supposed to make a difference for a practice. Saam distinguishes vali-
dation metrics and benchmarking metrics, which both can be used as a measure that
takes the distance with respect to some benchmark.

Validation deals with various kinds of uncertainties. This raises a lot of ques-
tions, e.g., how the uncertainties should be expressed and assessed and what sorts of
inferences they still allow. There are several mathematical approaches from statistics
that answer these questions. The chapters from Part V explain these approaches and
apply them to validation.

Hypothesis testing using frequentist statistics is a method that is well known
in many branches of science and used for instance in the analysis of experimental
results. In his Chap. 19, “Testing Simulation Models Using Frequentist Statistics”,
Andrew Robinson discusses this method for the validation of computer simulation.
He first reviews the method in general terms. In the simplest variety of the method,
a null hypothesis is formulated, and a rejection region for some characteristic is
defined. If the null hypothesis is true, then it is very unlikely that the characteristic is
measured to be in the rejection region, and thus the null hypothesis is rejected if the
measured characteristic takes a value in the rejection region. This method is often
supposed to spell out the idea of Popperian attempts at falsifying a hypothesis (cf.
Chap. 6 by Beven and Lane). During validation, it is natural to propose a null hypoth-
esis according to which the simulation output matches measured data to a certain
accuracy. However, as Robinson argues, this way of applying the method leads to
problematic results; for instance, a computer simulation may be rejected too quickly
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if the data is sparse. Robinson thus proposes a different way to apply frequentist
statistics to simulations. The essential trick is to turn to so-called equivalence tests,
under which the role of the null hypothesis is reversed. The content of the latter then
is that the computer simulation is invalid. Robinson details the application of his
preferred method using two examples.

Hypothesis testing can also be done using Bayesian methods. In Chap. 20 (“Vali-
dation Using BayesianMethods”), Xiaomo Jiang and co-authors detail related meth-
ods for simulation models. The crucial idea is to accept or reject a hypothesis on the
basis of quantities well known from Bayesian statistics. This idea moves beyond
mere updating one’s probabilities, which is in the focus of Chap. 7 by Beisbart. To
decide on a hypothesis, the so-called Bayes risk is formed. It is something like a
negative expected utility and based upon information on what the costs are for tak-
ing certain decisions. This function needs then to be minimized. It turns out that
this is equivalent to checking that the so-called Bayes factor is larger than a certain
value. The chapter considers interval hypothesis testing for the uni- and the multi-
variate case and summarizes a lot of technical results that are useful in this regard. In
particular, the Box-Cox transformation is introduced to deal with non-normal data.
Further, Bayes networks are introduced. Jiang and co-authors use several examples
to illustrate Bayesian hypothesis testing in validation.

Both frequentists and Bayesians use probabilities that are assumed to have precise
values. But in the literature about modeling, Frigg et al. (2014) have argued that it
is at best misleading to handle so-called structural model error (i.e., errors about
the structure of the model equations) using probabilities. A possible way out are
imprecise probabilities. In the literature about validation, they are in fact referred to
by Oberkampf and Roy (2010). The aim of Chap. 21, “Imprecise Probabilities” by
Seamus Bradley is to introduce imprecise probabilities and to discuss their applica-
tion to validation. As Bradley points out, the basic idea is that events or propositions
are assigned a set of probabilities, typically an interval. Bradley explains how such
imprecise probabilities are dealt with mathematically and how they may be inter-
preted. He further points out problemswith interval probabilities. One problem is that
it is not quite clear how we can make decisions on the basis of interval-valued prob-
abilities. Bradley’s conclusion is nevertheless that imprecise probabilities provide a
promising framework for thinking about validation.

In Chap. 22, titled “Objective Uncertainty Quantification”, Ed Dougherty and co-
authors propose a framework that is useful if validation proves infeasible. This is so
if there are significant uncertainties about the simulation model itself. The challenge
then is to quantify these uncertainties. The authors take the perspective of engi-
neering where the aim is to achieve a certain goal with a system that is insufficiently
known. The uncertainties arise as uncertainties about values ofmodel parameters that
describe the systemof interest. The framework they propose is Bayesian because sub-
jective probabilities are used to express the uncertainties. The main idea is to define
a cost function and to find the best way of achieving the goal on average, relative to
the cost function, given the probabilities. It is then possible to express the costs of the
uncertainties. Dougherty and co-authors explain their method using the example of
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regulatory gene networks and experimental design. Note though that their framework
is not one for validation itself.

The validation of simulation models is likely to become a permanent task in
many disciplines. The chapters in Part VI “The Organization and Management of
Simulation Validation” describe legal prescriptions as well as administrative and
procedural activities related to simulation validation as a permanent task.

Based on experience from environmental meteorology, Heinke Schlünzen (Chap.
23, “Standards for Evaluation of Atmospheric Models in Environmental Meteorol-
ogy”) explains how a shared standard on simulation validation can be obtained,
starting from developing evaluation guidelines. In the field of environmental mete-
orology, evaluation was a long-standing issue, since in this field model results are
used to take decisions relevant for humans and the environment. In the process of
guideline development, it turned out that verification, validation and evaluation were
differently understood. Securing agreement on definitions of these terms was impor-
tant. An evaluation guideline helps to harmonize different approaches and aims at
determining what counts as sound practice. However, such a guideline is not manda-
tory or legally binding and thus cannot be enforced. It is only a standard that serves
as a norm. Schlünzen describes how such a standard was obtained in environmental
meteorology. Relevant stakeholders were involved to achieve an agreement sup-
ported by a broader community. Schlünzen highlights that developing a standard
often requires compromises between desiderata based upon science and practical
needs and practicability. She proposes a generic outline for developing a model eval-
uation guideline: First, the application area has to be specified. Second, the model
developer has to define evaluation steps. Finally, the model user has to work on
these evaluation steps. This three-step procedure is detailed using examples from
environmental meteorology.

If simulations become very complex, then their validation becomes so challenging
that they need professional management. Validating such simulations needs tremen-
dous efforts involving numerous steps and even several teams of scientists. Validators
have to consider various types of physical devices and models coming from different
areas. Models may be distributed on different computers. To guide users to manage
the validation of complex simulation systems professionally, Fei Liu andMingYang,
in their Chap. 24 (“The Management of Simulation Validation”), present principles
for simulation validation and amanagement framework. For instance, important prin-
ciples state that validation of a model is conducted with respect to its purpose, and
that validation must be conducted throughout the whole life cycle of a simulation
system. These and further principles are introduced and discussed. In their man-
agement framework, Liu and Yang adopt a process-oriented view. They distinguish
four components: process, scheme, metrics, and tools—each addressing verification
and validation (V&V). In particular, Liu and Yang argue in favor of V&V schemes
based on optimization techniques, a tree-like V&V metric system distinguishing
top metrics, bottom metrics, performance measures, and evaluation values, and the
computer-aided management of simulation V&V.

The validation of complex simulation models is also the background of the next
chapter titled “Valid and Reproducible Simulation Studies—Making It Explicit”



1 Introduction: Computer Simulation Validation 17

(Chap. 25). Oliver Reinhardt and co-authors emphasize that a multitude of data sets
and a lot of additional information accompany the validation process, e.g., output
from several runs of the simulation program, data used during calibration, input data,
information about test cases, and so on. Also, as simulation models are rarely devel-
oped from scratch, but often reuse existing models, there is information on these
prior models and their validation. Reinhardt and co-authors summarize all these
different kinds of information and data as “artifacts”. To make these artifacts and
their mutual relationships accessible, Reinhardt and co-authors propose the use of
a declarative formal modeling language for simulation, as well as a declarative lan-
guage for specifying and executing diverse simulation experiments. They emphasize
that all information that is important for the validator to establish trust in the model
should be made explicit. To this purpose, they propose a provenance model. Such
a model does not only cover the artifacts but also the processes through which they
were obtained. The authors present the development and validation of an agent-based
model of migration from Senegal to Europe to illustrate their argument.

1.3.3 Validation at Work—Best Practice Examples (Part VII)

The aim of Part VII is to present best practice examples that demonstrate how the
methods and techniques of validation are applied in various disciplines and with dif-
ferent types of simulation models. Depending on the discipline and the simulations,
the examples cover different aspects of the validation process. While some chapters
concentrate on the use of experiments (Chaps. 26 and 27), others focus on standards
for simulation validation (Chap. 27), model-to-model comparison (Chap. 28), ide-
alized test cases (Chap. 29), and on the validation culture of a whole research field
(Chap. 30), or on techniques for calibration, estimation, input, and output validation
(Chap. 31). But the chapters, too, show significant differences in the broader outlook
on validation.

The first chapter in this part comes from the scientific investigation of the smallest
constituents of the physicalworld, viz. particle physics. Experimental particle physics
has seen spectacular breakthroughs in the last few years; in particular, the so-called
Higgs particle was discovered using the ATLAS and CMS experiments at the Large
Hadron Collider at the CERN. Experimental physics is heavily based upon computer
simulations. Thus, in Chap. 26, “Validation in Particle Physics Simulation”, Peter
Mättig describes validation in this field using the ATLAS experiment as an example.
As he points out, the simulations are primarily used to obtain model predictions
that can be compared to data. The simulations have two crucial components, viz.,
the so-called physics generators that model the collisions between the particles and
their decays, and the simulation of the detector. Mättig explains in detail how these
components are validated, for instance, using data from previous precision measure-
ments. The validation of computer simulations is particularly interesting because it is
an integral part of experimental research. The experiment itself needs validation, and
computer simulations are used for this validation. So, to some extent, the experiment
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and the simulations are validated by cross-comparing them to each other. For Mättig,
there is nothing problematic about this.

The next chapter, Chap. 27 by Patrick J. Roache (“Validation in Fluid Dynamics
and Related Fields”), turns to fluid dynamics. Since fluid dynamics describes flows
of liquids and gases, it has a huge range of applications, including aerodynamics,
weather forecasting, ocean currents, blood flow in artificial hearts, etc. In all these
applications, a medium (e.g., ocean water) is described as a continuum due to a clear
separation of scales between molecular motion, on the one hand, and the continuum
flow, on the other. The latter is described in terms of aggregated quantities such as
velocity, pressure, density, and temperature. Classical fluid dynamics is based on the
conservation of mass, momentum, and energy, expressed in integral or differential
form. This leads to theNavier–Stokes equations, a set of partial differential equations,
which most often do not have closed-form solutions. These equations are included
within much more complicated models as used in astrophysics (Chap. 28), weather
forecasting (Chap. 29), and climate science (Chap. 30). Thus, the validation concepts
described by Roache in this chapter are of broader relevance; they are in fact useful
for all simulations that use PDEs. In the main part of his chapter, Roache explains
ASME (2009), V&V 20-2009, which is an American National Standards Institute
Standard document. Current validation practice in fluid dynamics is based upon this
standard. The focus of V&V20-2009 is on “unit problems”, which isolate one simple
physical system rather than complex systems. Roache also considers a new paradigm
of experiments designed specifically for validation. This paradigm recognizes that
requirements for validation are distinct and that validation experiments are much
easier than traditional experiments in some respects, but more demanding in others.

Astrophysics is a typical field in which experiments cannot be done on the tar-
get. Alan C. Calder and Dean M. Townsley (Chap. 28, “Astrophysical Validation”)
present two studies aimed at validating components of Flash, a freely available, par-
allel, adaptive mesh simulation code used for modeling astrophysical phenomena
and other applications. They first present a study of validating the hydrodynamics
routines in Flash with experiments that replicate the high energy density environ-
ments of astrophysics in a laboratory. Calder and Townsley stress that a quantitative
comparison between the simulations and the experiments and the determination of
the uncertainty required close collaboration between experimentalists and theorists.
The second study addresses thermonuclear combustion in supernovae explosions.
The validation is to some significant extent based upon a model-to-model compari-
son: A simplified model is tested against higher fidelity models for a given physical
process. Calder and Townsley clarify that this type of comparison combines elements
of verification and validation.

Weather forecasting is a very prominent application of computer simulations for
making predictions. As citizens, farmers, companies, etc. need weather forecasts
all over the world and every day, there is an immense experience about validating
weather forecasts. In their chapter on the validation of weather forecasts (Chap. 29,
“Validation in Weather Forecasting”), Susanne Theis and Michael Baldauf explain
that the atmospheric model that underlies the simulations can be partitioned into
various parts, in particular, the dynamical core—i.e., partial differential equations
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and their numerical solver—and the parameterizations. During validation, first the
dynamical core is tested via idealized test cases, then parameterizations are added.
Finally, the output of the whole program is compared to observed weather. Theis
and Baldauf explain how meteorologists deal with forecast uncertainty. Some of
the sources of forecast uncertainty are known. They are sampled from a realistic
range of options. In particular, it is well known that initial conditions are a major
source of uncertainty. This is due to the chaotic nature of the atmosphere. Another
source of uncertainty are imperfections of themodel.Meteorologists have established
the practice to transform the outcome of the ensemble forecast into probabilistic
forecasts. The quality of these forecasts is then assessed in a statistical manner.

Climate science is another field in which experiments cannot be done on the tar-
get. A major difference to astrophysics is that climate models are highly relevant for
political decision-making. Politicians need validated models and results to decide
on societal attempts at mitigating climate change or to plan measures of adaptation.
Validation of climate simulation models is considered in Chap. 30 by Richard B.
Rood (“Validation of Climate Models: An Essential Practice”). As he notes in his
introduction, his field was challenged by the paper by Oreskes et al. (1994), which
argued that numerical models of geophysical phenomena cannot be validated. Rood
doesn’t agree with this verdict and replies that it is meaningful only in an abstract,
philosophical sense. It is at odds with evidence for the successful use of models
and their ubiquitous and successful applications in society. In the main part of the
chapter, he gives a most encompassing description of validation practice in his field.
Rood describes how different aspects, such as validation criteria, independent obser-
vational data, validation metrics, and statistical models as well as evaluations of
physical consistency are interrelated in the practice of climate model validation or
evaluation, as some climate scientists prefer to call it. He emphasizes that verification
and validation processes are not purely quantitative. Rood describes evaluation as
an iterative, deliberative process. He even uses the concept of deliberative validation
to highlight the role that expert judgments have in this practice. Rood also stresses
the emergence of intercomparison projects which have promoted the development
of shared standards of evaluation. And he addresses issues of the management of
simulation validation, such as validation plans and protocols. Rood emphasizes that
a culture of verification and validation has emerged in the climate-modeling com-
munity, and that validation/evaluation has been established as an essential practice
in climate science.

Whereas the previous chapters from this part have basically dealt with models
using nonlinear partial differential equations, the next chapter, Chap. 31, by Gior-
gio Fagiolo and co-authors (“Validation of Agent-based Models in Economics and
Finance”), turns to a different type of model. Agent-based models are becoming
increasingly popular in economics and other social sciences. These models are not
based upon approximations of differential equations. Thus, crucial parts of verifi-
cation as understood and practiced for ODE and PDE models are neither possible
nor necessary. In their chapter, the authors first introduce agent-based models. They
emphasize that the complex microeconomic interactions and the presence of ubiqui-
tous nonlinearities (even in the simplest models) do not allow one to obtain closed-
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form solutions. Then they elaborate a theoretical framework for validating agent-
based models that is in stark contrast with validation as conceived of in mainstream
economics, where a falsificationist outlook prevails. For Fagiolo and co-authors,
validation is different from falsification and does not fit into a binary framework
of rejecting versus not rejecting the model. Instead, validation comes in degrees,
which also allows researchers to judge to what extent a model performs better in
comparison to another. This allows for choosing among alternative model specifi-
cations. Notwithstanding the differences between calibration, estimation (which are
not the focus of this volume), and validation, Fagiolo and co-authors discuss all three
methods and related techniques. They distinguish between what they call input vali-
dation and output validation. The former addresses the assumptions of the model as
well as the initial conditions and assesses the impact of different parameters on the
dynamics of the model. This is needed because agent-based models are not based
on a well-confirmed conceptual model. By contrast, output validation, as referred to
by Fagiolo and co-authors, corresponds to what is simply called validation in many
other chapters of this volume. The chapter reviews numerous techniques for both
ways of validating agent-based simulation models.

1.3.4 Challenges in Simulation Model Validation (Part VIII)

The chapters of Part VIII cover important practical challenges that simulation scien-
tists face when applying the methods and techniques described in Parts III through
VI. These challenges go back to peculiarities that are specific of either some type of
simulation models or some discipline.

The first challenge addressed in this part has been called equifinality. Equifinality
means, roughly, that simulations that differ in some respects produce very similar
output and thus fare equally well as regards observational data. In his Chap. 32,
“Validation and Equifinality”, Keith Beven discusses equifinality using examples
from the environmental sciences. Results from many computer simulations with a
variety of hydrological models have shown that equifinality is generic to modeling
in this area. Beven explains the peculiarities of the inexact sciences with respect to
errors and uncertainties in the input and observational data, and points out that this
limits the use of traditional statistical hypotheses testing. Beven then introduces the
Generalized Likelihood Uncertainty Estimation (GLUE) method which is related to
Bayesian methods of validation, in particular, to Bayesian updating. This method
rejects the idea of one single optimal solution. Rather, an evolving ensemble of
models considered acceptable is identified. This ensemble is assumed to be useful in
prediction and can be refined as new information becomes available over time. The
basic idea behind the GLUE analysis is, roughly, to start from a prior set of models,
parameters, and variables. Simulations are run and solutions obtained. For every
single simulation, parameter sets are rated according to the degree to which they fit
observed data. The ensemble of models is then divided into two ensembles, one with
non-acceptable solutions and a second one with acceptable solutions. Eventually, as
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more observations become available, the parameter sets in each ensemble can be
updated.

GLUE allows that each acceptable solution is assigned a likelihood measure. If
its output is considered to be unrealistic, the simulation is rejected as having zero
likelihood. In this way, researchers obtain a discrete joint likelihood function for all
the models, parameters, and variables. Beven argues that GLUE allows for testing
models as hypotheses becausemodels that do not provide simulated values within the
limits of acceptability will be rejected. Finally, the ensemble of acceptable models
is used to produce likelihood weighted simulations. Beven emphasizes that it is
the set of parameters that will be considered as acceptable or not within a given
model structure. Thus, within this framework, model structures can be compared
and combined, or one model structure can be chosen over another.

The next chapter resumes the discussion of equifinality and discusses its rela-
tion to underdetermination, over-parameterization, as well as other problems such
as over-fitting. In philosophy of science, underdetermination is used to describe sit-
uations in which there is insufficient evidence to decide between different theories.
Over-parameterization is present whenmore parameters are used in a model than can
be identified based on the available information. In mathematical terms, an example
is when a polynomial with more than n free parameters is fitted to n data points. Jan
Seibert and co-authors (Chap. 33, “Validation and Overparameterization—Experi-
ences from Hydrological Modeling”) explain that the term is used a bit differently
in environmental modeling, where it refers to situations in which a model contains
more free parameters than are identifiable with confidence. As it happens, most
environmental models suffer from over-parameterization. It is a serious problem in
environmental modeling, as this means that a model may work well for the wrong
reasons. Seibert and co-authors discuss different ways to validate models that sim-
ulate hydrological processes at the catchment scale. They point out that the balance
between model testability and over-parameterization has to be considered.

The next challenge is posed by long-term predictions. Obviously, such predic-
tions cannot be confirmed in terms of empirical data now and are very uncertain.
But how can the uncertainties be assessed? In their Chap. 34, “Uncertainty Quan-
tification Using Multiple Models – Prospects and Challenges”, Reto Knutti and co-
authors consider coordinated model intercomparisons which have been established
by the climate-modeling community. In these intercomparison projects, models from
ensembles are evaluated against each other. The ensembles are used to explore uncer-
tainties either by testing the robustness of projections or as a basis for statistical
methods that estimate the uncertainty about future climate change. Here, a model
projection is called robust if it is produced by most models in the ensemble (where of
course robustness does not imply accuracy). Knutti and co-authors point out weak-
nesses of this approach. One problem is that it treats all models as independent and
equally plausible. Speaking figuratively, each model has one vote, as have citizens
in democracies, which has led to talk of “model democracy.” Knutti and co-authors
argue that model democracy becomes harder to justify. For instance, often parts of
models are reused in other models, which leads to a violation of the independence
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condition. As a solution, Knutti and co-authors suggest reweighting all models of
the ensemble for performance and dependence.

In the remainder of this part, we turn to challenges that pertain to specific disci-
plines. Some social sciences (e.g., sociology, political science) and historiography
face particular difficulties already when developing formal models. In all these dis-
ciplines, there are no fundamental laws of (social, political or historical) dynamics.
Also, many social scientists do not assume realism, i.e., they do not think that they
describe a reality that is independent from their theories and models. They also reject
the idea that the social sciences are based upon an epistemology that is modeled after
the natural sciences. For instance, they do not think that social sciences should aim
at theories, at mathematized models and predictions, etc. (see, e.g., Kertész 1993).
They opt for a pluralism in perspectives how the same objects, i.e., social phenom-
ena, should be scientifically investigated: Approaches from the social sciences differ
considerably in their ontological, epistemological, and methodological assumptions.
Concerning validation in the social sciences, they hold what Nickles has claimed
about theory competition in science studies: “There is not just one thing in dispute
here, of course, but a whole thicket of nasty problems involving social construction,
psychological construction, the balance of nature and nurture, realism, relativism,
the relation of reason or thought to interests, whether justification is ultimately social
or internal (and conventional or natural), to what extent the world is intelligible to
human beings, whether or not the world is ultimately messy and uncodifiable; (…),
and so on. Moreover, all of these terms are multiply ambiguous!” (Nickles 1989,
p. 245). An immediate consequence for this volume is that its related chapters can-
not fully reflect the pluralism present in the social sciences.

In this chapter on challenges to validation in the social sciences, Michael Mäs
(Chap. 35, “Challenges to Simulation Validation in the Social Sciences. A critical-
rationalist perspective”) concentrates on models of social influence dynamics in
networks and on one epistemological perspective, viz., critical rationalism. Note,
however, that his argument is meant to apply more generally to the validation of
models in social science.Mäs identifies five challenges to validation: social-scientific
theories are based on many obscure concepts, many social-scientific concepts are
latent (i.e., refer to an unobservable realm), the representation of time is unclear,
various processes influence the dynamics in parallel, and context dependencies limit
the development of general models. He then formulates four recommendations for
future theoretical and empirical research that will help tackling these challenges:
Modelers should compare models and identify critical assumptions, defend their
assumptions, explore the scope of amodel and its boundaries, and domore validation.

The last challenge addressed in this volume is the extreme case of a n � 1 type
problem. The paradigmatic example of a discipline dealing with n � 1 type prob-
lems is historiography. It is no surprise then that historians have been slow to apply
computer simulations, and in his chapter about validation (Chap. 36, “Validation and
the Uniqueness of Historical Events”), Josef Köstlbauer first needs to consider the
possible use of simulations before turning to challenges of validation, more specifi-
cally. In the philosophy of the science, there is a distinction between idiographic and
nomothetic research.While the latter aims at deriving general laws that explain types
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or categories of objective phenomena, the first is directed at understanding the mean-
ing of contingent, unique and sometimes also subjective phenomena, e.g., in culture
and society. Historiography, Köstlbauer explains, belongs to this latter group of dis-
ciplines. Since computer simulation is perfectly suitable for nomothetic research,
but not so much for understanding and for unique phenomena, there is a problem
in applying computer simulations fruitfully in historiography. Historiographers do
not formulate general laws nor do they rely on deductive-nomological approaches.
Köstlbauer argues that this should not keep historians from exploring the potentials
of computer simulations as far as this is possible. In particular, he considers three
uses that even go beyond computer simulations to also encompass social simula-
tion and games: simulations of the big-data/longue durée type which operate on a
macro-level, microhistorical research using agent-based models, and digital games
and simulation games. The latter facilitate reflections on the various options, and
thus potential futures, that historic figures faced during their deliberation. History
video games have been developed to demonstrate both historical causalities as well
as the fundamentally undetermined character of history. Köstlbauer argues that in
all cases, validation has the potential to make historians reflect more on evaluative
assumptions, and on the ways in which they pose questions and explain processes.

1.3.5 Reflecting on Simulation Validation: Philosophical
Perspectives and Discussion Points (Part IX)

Part IX of this book steps back from the various difficulties encountered in validation.
It opens the perspective and offers more general philosophical reflections on valida-
tion. To some extent, this is to take up loose ends that the other chapters have left
here and there. To another part, the point is to explore the significance of validation
for science and its understanding in a broader perspective. While, so far in this book,
philosophical inquiry has most often been employed to clarify fundamental concepts
(Part I) and to frame thinking about validation (Part II), philosophers of science will
now write about topics that are hotly debated in their own field. The last decade or
so has in fact seen the emergence of a field that may be called the philosophy of
computer simulation, and we have asked some philosophers from this area to survey
crucial debates in this field and to connect them to validation.

One question that has been much debated in the philosophical literature is what
type of method computer simulation is. The challenge is not so much to characterize
computer simulation using a definition, as have done Hartmann (1996, Sect. 2.2)
or Humphreys (2004, p. 110). The question is rather whether computer simulation
qualifies as a species of another method, e.g., experimentation or thought experi-
mentation, or whether simulation is at least very similar to one of the methods, as
has sometimes been suggested. Clearly, if something like this is the case, it should
have consequences for the way we think about validation of simulations, in par-
ticular, since the term “validation” has been used for some other methods too. In
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Chap. 37, titled “What Is a Computer Simulation and What Does This Mean for
Simulation Validation?”, Claus Beisbart considers various proposals to account for
computer simulation by referring to other methods and discusses the consequences
for conceptualizing validation. The idea that computer simulations are experiments
is quickly dismissed by Beisbart, although authors like Parker (2008) have noted
significant similarities between the validation of experiments and of simulations. A
more convincing account of computer simulation takes them to be thought experi-
ments. As Beisbart points out, this account isn’t very telling for validation because
there are no established principles for validating thought experiments. He finally
considers models and argues that simulations can be in many ways regarded as mod-
els. But once more, this doesn’t have telling implications for validation, because
the validation of models isn’t well developed independent from simulations; quite
often, model validation is in fact facilitated by computer simulations. It is not without
irony when Beisbart concludes that the validation of experimentation offers the most
illuminating perspective on the validation of simulations.

In Chap. 38, titled “How Do the Validations of Simulations and Experiments
Compare?”, Anouk Barberousse and Julie Jebeile take a much closer look at the
validation of experiments and the validation of simulations. Their question is how
both sorts of validation compare to each other? The authors first propose a notion of
validation that is common to both methods, the main idea being that the results of
the methods comply with requirements on the part of the users. They further assume
that both experiments and simulations try to represent a target system in the real
world either in terms of an experimental setup in a lab or using a computer code.
The main claim of the chapter is twofold: First, the methods of experiments and
computer simulations differ, in particular, because the former involve “materiality”
with respect to their target, while the latter do not. This is to say that the system
experimented on and the target often share material properties, which is not so in
simulations. But this difference, and this is the second claim, does not play out for
validation. Barberousse and Jebeile use recent experiments and simulations from
evolutionary biology to illustrate their findings. These findings are consistent with
Parker’s (2008) diagnosis that experimenters and simulationalists use the same type
of strategies to validate their results.

In Chap. 39, titled “How Does Holism Challenge the Validation of Computer
Simulation?”, Johannes Lenhard takes up the issue of holism. Holism about testing
or confirmation is a very important claim in philosophy of science, advanced by, e.g.,
P. Duhem: Many hypotheses or theories from empirical science cannot be tested or
confirmedbyobservation, if taken in isolation. The reason is that auxiliary hypotheses
are needed to connect the theories to observation, e.g., hypotheses about the working
of measurement devices. So, it is really a whole of several hypotheses that is up
to empirical scrutiny. Since the validation of computer simulations is concerned
with confirming the results of the simulation, it is natural to ask whether holism
is an issue for simulations too. Lenhard argues that this is so, the idea being that
simulations form wholes that consist of many assumptions. This would not be too
much of a problem if the simulation program was built up in a modular way. The
whole could then be decomposed in an orderly manner. But according to Lenhard,
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there are two systematic reasons why modularity is threatened, even if a program
was initially modular. One is that researchers tune parameters that are operative in
some modules to the performance of the whole simulation, as Lenhard shows using
many examples. Further, in software development, all kinds of bugs in coding are
often not properly corrected; rather their effects are compensated using ad hoc fixes,
so-called kluges. The effect is that the modules are interconnected with each other in
a very intransparent way to form a whole that is not easily understood. As a result,
it is difficult to improve a simulation program if it does not perform as intended.
Lenhard further argues that holism threatens the neat separation between validation
and verification that is often postulated (e.g., by Oberkampf in Chap. 3).

Validating a computer simulation is certainly a matter of evaluating them. But
what exactly are the values to which we may appeal when validating a simula-
tion? And how exactly can such values be used? These questions are addressed by
Gertrude Hirsch Hadorn and Christoph Baumberger in Chap. 40 (“What Types of
Values Enter Simulation Validation and What are Their Roles?”). The authors draw
on a general discussion on how values shape choices faced by scientists, and apply
crucial insights from this debate to computer simulations. In this way, they focus on
a very broad notion of validation, which may not coincide with narrower uses of the
term in, e.g., engineering. Hirsch Hadorn and Baumberger distinguish between three
types of values, viz., epistemic, cognitive, and social ones. While epistemic values,
in particular, empirical accuracy, determine the degree to which a result is credible,
cognitive values fix how useful a simulation is. For instance, a simulation is practi-
cable, if it is easily run, and it is useful in the sense of relevant for, e.g., explanation,
if it has explanatory power. Since usefulness can become important for assessing
the credibility of a simulation, some cognitive values are related to epistemic ones.
While appeal to epistemic and cognitive values is quite uncontroversial, it is less
clear whether scientists may draw on social values when they make choices. Hirsch
Hadorn and Baumberger examine a famous argument by Rudner (1953) that favors
the appeal to such values and find it convincing, even as far as computer simulations
are concerned. However, as they point out, social values may only be used in a higher
order function, viz., to fix the level of credibility that is needed for acceptance of a
hypothesis, and not for determining how credible it is. All in all, Hirsch Hadorn and
Baumberger paint a pluralistic picture of evaluating computer simulations.

Some influential authors, e.g., Oberkampf in his Chap. 3, stress that simulation
results should be assessed for accuracy (in the sense of a blind prediction) when
new experimental data become available. But what exactly is the epistemic value
of simulation predictions that later turn out to be true? This question is particularly
challenging if prediction is contrasted with calibration. Amodel is calibrated to some
data, if model parameters are adjusted, or tuned, to that data. The question then is:
Is there epistemic surplus value when new predictions of a model turn out to agree
with observations, or is the epistemic significance just the same as in a case in which
a model accommodates the data to which it has been tuned? This is the question
of Chap. 41 by Mathias Frisch (“Calibration, Validation, and Confirmation”). The
author uses Bayesian epistemology to answer his question. This first leads into a
problem, because, in a very straightforward application of Bayesian updating, known
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data can never confirm a model. This is known as the old evidence problem. Frisch
thus turns to solutions that Bayesians have proposed for the problem. He argues that
the solutions do not lead to a special value of predictions. But he does finally find a
setting in which the success of predictions has epistemic surplus value. This is so,
very roughly, if it is not known whether a correlation between certain characteristics
extends beyond a certain range of applications that has been covered by data so far.

As some previouslymentioned chapters from this volumemake clear, e.g., Chap. 3
by Oberkampf or Chap. 4 byMurray-Smith, verification of a simulation is crucial for
validation. But what exactly is the relationship between verification and validation,
both of which are often combined in what is called „V & V“? Some practitioners,
e.g., Oberkampf in his Chap. 3, argue for a clean separation between verification
and validation. Some philosophers, by contrast, notably Winsberg (2010), but also
Lenhard in his Chap. 39 in this volume, have challenged this view to some extent.
Chapter 42 by Claus Beisbart (“Should Validation and Verification Be Separated
Strictly?”) thus discusses the distinction between verification and validation and the
relationship between bothmethods. His first point is that bothmethods are clearly dif-
ferent from a conceptual point of view since they have different aims. But this doesn’t
exclude that, e.g., one method is used in order to apply the other. Since verification
is concerned with the relation between the prior model upon which a simulation
is based (conceptual model) and its implementation in the computer (computational
model), Beisbart argues that we should distinguish between the validation of the con-
ceptual and the computational model. An immediate consequence is that validation
of the computational model can in principle be achieved by verifying the solutions
and by validating the conceptual model independently. But the required independent
validation of the conceptual model is most often impossible. This means that the
validation of the conceptual and the computational model go hand in hand. Beisbart
reconstructs this in terms of inferences. He stresses that some prior credibility in
the conceptual model and in the verification of the simulation are necessary to vali-
date both types of models. In the final part, the author discusses Winsberg’s doubts
about the distinction. He concludes that they point to some qualifications but do not
fundamentally threaten the results obtained earlier in the chapter.

A further issue about simulations that has been discussed in philosophical circles
is whether computer simulation is significantly novel and whether it challenges fun-
damental ideas entrenched in present-day philosophy of science. This is of course a
question that is most important for philosophers because it is related to their daily
business. Philosopher Winsberg has argued that simulation is in fact in an interest-
ing sense novel (e.g., Winsberg 2001). In our context, it is interesting to note that
his argument is related to the justification of results from simulations and thus to
validation. For Winsberg, validation is novel because it is downward, autonomous
and motley. This view was challenged by Frigg and Reiss (2009). In Chap. 43, titled
“The Multi-Dimensional Epistemology of Computer Simulations: Novel Issues and
the Need to Avoid the Drunkard’s Search Fallacy”, Cyrille Imbert discusses the nov-
elty of validation of computer simulation. He adopts a theoretical framework from
philosopher Goldman (1999), the broad idea being that computer simulation is part
of belief-generating processes in a social setting. He then discusses theways inwhich
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such a process can go wrong. He mentions not just issues that are by now familiar to
readers of this introduction, but considers also, e.g., the use of random numbers, the
replicability of simulations and the access to simulation results. He stresses that the
reliability of simulations is contingent on the practices of simulation scientists and
encourages his fellow philosophers to take the whole belief-generating process seri-
ously. In this way, novel issues arise, and Imbert warns his fellow philosophers not
to commit the drunkard’s fallacy, which would invite them to stick with those episte-
mological aspects of simulations that they are familiar with, or that lend themselves
to an investigation in terms of their favorite concepts, methods, or questions.

1.4 Outlook

Althoughwe hope that this volume significantly contributes to a better understanding
of the validation of computer simulations, we feel thatmore research is needed. Let us
thus make a few suggestions for avenues of future research. They are to some extent
based upon our experience to put the volume together and to systematize previous
literature about validation. To some part, the suggestions draw on our readings of
the chapters. Needless to say that the suggestions are preliminary and not meant to
be complete in any sense. Our focus is on general issues about validation.

One fundamental problem for general research about validation is that the term
itself (along with related terms) is used differently in different circles. However, the
disagreement is not as pervasive as to suggest that people are not talking about the
same kind of thing. As Chap. 2 by Beisbart in this volume shows, various definitions
of validation can be related to each other, and there is a common ground on which
different views about what validation is can be compared. But there is substantial dis-
agreement too. This is a problem first because it hinders cross-disciplinary exchange
about validation, which is beneficial as it can disseminate knowledge about valida-
tion. One threat is that researchers from one field take their notion of validation as
given and misunderstand what they adopt from other disciplines. A different prob-
lem is that researchers from one area may come to think that work about validation
in some other area is not relevant to them because the notions of validation differ
too much. Since it seems unlikely that researchers from different disciplines will
quickly agree on a common understanding of validation, we propose that at least a
“translation manual” be created that helps to understand each other. Such a manual
would be particularly helpful given that unease about the term “validation” has led
many researchers to propose alternative terms such as “evaluation” or the neologism
“evaludation” (Augusiak et al. 2014).

Presumably, the most significant disagreement about what validation is, or should
be, centers around the standards inherent in validation and their strictness. Very
roughly, there is the following divide: In some areas, notably in applied fields, in
which safety is a vital concern, people require a comprehensive evaluation of a
simulation. A quantitative comparison between simulation outputs and measured
data is required to obtain reliable information about the accuracy of a simulation.
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Ideally, validation experiments should be designed to test the simulations (see, e.g.,
Chap. 3 by Oberkampf in this volume). In other fields, the mathematical rigor and the
strict requirements implicit in this account are not an option. One reason is that the
results of simulations are often meant to provide qualitative rather than quantitative
information. As a result, the notion of accuracy does not seem to be applicable.
Additionally, in the social sciences, predictions turn often out to be false because,
when they become known, people change their behavior. This means that a lot of
care is needed if model predictions are compared to data to validate a simulation.
Moreover, data is typically quite sparse and restricted to somemacro-level.Validation
experiments are out of reach, so it is not possible to test the simulations rigorously
using empirical data, and there is often not a well-established theory that can be
used to argue for the validity of the model underlying the simulation. It is, therefore,
no surprise when researchers from these fields resort to face validation and expert
judgment.

The description of this divide may seem something like a caricature, and it is a
variation on a well-known theme, which is roughly the difference between the exact
natural sciences and the social sciences. But there is more than a grain of truth in this
picture. The divide is real, and it raises a significant problem: Researchers that deal
with the challenges of sparse data, etc., have an interest to make their simulations
credible to at least some degree and thus have a legitimate interest in validation.When
they talk about the validation of their simulations, researchers from the “other side”
will likely become suspicious because they think that efforts to make, e.g., social
science simulations more credible should not be called validation simply because
this activity lacks rigor. In our view, this calls for research about whether, and if so,
to what extent and how, the more rigorous approach to validation may be extended to
fields for which it does not seem to be applicable at present. The challenge here is that
there is not just one dimension in which the fields differ, but rather several, e.g., basis
in mathematical theory versus no such basis, well-confirmed versus contested model
assumptions, quantitative versus qualitative results; data at the micro level versus
data at the macro-level, and so on. Although simulations in some field will often be
at the same end of the spectrum on several of the dimensions, this is not always the
case. Each dimension thus needs its investigation, the main question being whether,
and if so, how, the more rigorous account may be sensibly extended and generalized.
If an extension proves impossible in one or the other dimension, then we should ask
what alternative ways there are to make a case for the results of simulations and what
this means for our understanding of validation (cf. Chaps. 9 and 17 by Saam in this
volume).

When it comes to standards and requirements, a sensible point tomake is that their
strictness should depend on the intended uses of a simulation. This is true, but only
pushes things one step further: What we need is a classification of the possible uses
to which computer simulations may be put and a mapping from the various classes
to standards for validation. The classification may go as far as to suggest what sorts
of validation metric may be chosen for each class. This would help to systematize,
and to develop existing validation metrics further. What is interesting concerning the
plurality of uses too is that there are several “qualified” notions of validation that
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look at specific aspects of a simulation, e.g., structural validation (see Chap. 31 by
Fagiolo). The proposed classification may help to clarify these notions.

Apart from these “large-scale” issues about validation, there are of course some
more specific problems that call for more research. We name but two of them.

First, the use of statistics in the comparison between simulation output and data
as well as the representation of uncertainties need further scrutiny. It is telling in this
respect that both the chapters about frequentist statistics (Chap. 19 by Robinson)
and Bayesian epistemology (Chap. 7 by Beisbart) indicate some unease about the
standard methods used in both camps. There are further strong arguments to the
effect that so-called epistemic uncertainties can often not be dealt with appropriately
using probabilities. Instead, something like imprecise probabilities is needed (see
Chap. 21 by Bradley in this volume). Conceptual as well as mathematical work is
required to elaborate imprecise probabilities and to show how they can be used in
decisions.

Second, it is often a problem that researchers are interested in simulation pre-
dictions about system S and aspects A, but that only data about a slightly different
system S’ and/or different aspects A’ are available (see Chap. 34 by Knutti et al.).
The question then is how they can evaluate their simulations for S and A by using
data concerning S’ and A’. Technically, the question is how a validation metric can
be chosen that works on S’ and A’ but measures howwell S is represented in respects
A. The answer depends of course on how S and S’, and A and A’, are related to each
other, but the general question is how these relationships play out in the choice in
the validation metric.

There are also philosophical questions that need more scrutiny. For instance, talk
about simulations and their validation often sounds thoroughly pragmatist: Uses
and usability seem to be the most important desiderata. Despite that, we do not
find pragmatist or instrumentalist accounts of simulation validation. More research
is needed to see whether simulation validation makes a case for a pragmatist or
instrumentalist approach to the philosophy of science. We should note though that
there are some deep philosophical disagreements about how science works (e.g.,
between those who want to shun induction and those who do not take this to be
required). It is unlikely that parties that disagree in this profound way will agree
on validation. Conversely, validation will not make a substantive difference to their
debate.

In any case, there are fascinating research questions about validation that require
cross- and interdisciplinary efforts. We hope that this volume helps to put them on
the agenda for future research.
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Chapter 2
What is Validation of Computer
Simulations? Toward a Clarification
of the Concept of Validation
and of Related Notions

Claus Beisbart

Abstract This chapter clarifies the concept of validation of computer simulations
by comparing various definitions that have been proposed for the notion. While the
definitions agree in taking validation to be an evaluation, they differ on the following
questions: (1) What exactly is evaluated—results from a computer simulation, a
model, a computer code? (2) What are the standards of evaluation––truth, accuracy,
and credibility or also something else? (3) What type of verdict does validation lead
to––that the simulation is such and such good, or that it passes a test defined by
a certain threshold? (4) How strong needs the case to be for the verdict? (5) Does
validation necessarily proceed by comparing simulation outputs withmeasured data?
Along with these questions, the chapter explains notions that figure prominently
in them, e.g., the concepts of accuracy and credibility. It further discusses natural
answers to the questions as well as arguments that speak in favor and against these
answers. The aim is to obtain a better understanding of the options we have for
defining validation and how they are related to each other.

Keywords Evaluation ·Model · Code · Truth · Accuracy · Credibility · Adequate
representation · Adequacy for purpose · Explanation · Data-driven validation · Test

C. Beisbart (B)
University of Bern, Bern, Switzerland
e-mail: Claus.Beisbart@philo.unibe.ch

© Springer Nature Switzerland AG 2019
C. Beisbart and N. J. Saam (eds.), Computer Simulation Validation,
Simulation Foundations, Methods and Applications,
https://doi.org/10.1007/978-3-319-70766-2_2

35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-70766-2_2&domain=pdf
mailto:Claus.Beisbart@philo.unibe.ch
https://doi.org/10.1007/978-3-319-70766-2_2


36 C. Beisbart

2.1 Introduction

This volume is built on the premise that the validation of computer simulations needs
more attention. Here, very roughly, validation comprises the efforts to show that a
computer simulation represents its target appropriately. Validation needs more atten-
tion in practice, because we can only rely upon results from computer simulations
both for scientific purposes and in applications, e.g., in engineering or policy advice,
if the results have been shown to be genuine. As a matter of fact, however, validation
is often done sloppily and superficially, if it is done at all (see Chap. 8 by Arnold for
examples). Validation needs more attention at a theoretical level because researchers
complain that validation is not well-understood (see, e.g., Ghetiu et al. 2010, p. 1 for
testimony).

A first step forwards to better understand validation is to address the question of
what validation is. Ideally, we answer this question with a full-fledged definition of
validation. Since “validation” is a general term that denotes a concept, it is natural to
think that the definition explains, and thus clarifies, the concept (or the notion, as we
will also say) of validation: The definition unpacks what is thought under the label
of “validation”, and thus what the term “validation” means, or should mean.

Of course, even if we have explained the concept of validation in this way, this will
not answer all questions we may have about validation, e.g., how it should be done in
practice. But a clarification of the concept at least helps to avoid misunderstandings
about validation. Moreover, answers to more substantive questions about validation
depend on what we mean by “validation”, so a clarification of the concept is the first
necessary step to address other questions.

The aim of this chapter is to make progress in clarifying the concept of validation
of computer simulations. This chapter is philosophical in nature because the clari-
fication of concepts is a genuinely philosophical task, at least if the concepts are as
fundamental as is the one of validation. To explain this point in very simple terms, we
may say that concepts are tools that we need in our thinking, and that philosophers
try to improve our thinking by explaining fundamental concepts. Such a project, it
seems, can be undertaken without much recourse to empirical data and is thus not
part of the empirical sciences. The so-called conceptual engineering, i.e., the crit-
ical appraisal and development of our concepts, does in fact figure prominently in
present-day philosophy (see, e.g., Blackburn 1999, p. 2 for a programmatic statement
and Cappelen 2018 for a recent account of this endeavor).

As it turns out, clarifying the notion of validation is a challenge, since we find
various proposals for a definition in the literature. While some differences between
the definitions are merely verbal, there are also substantial disagreements (see below
for evidence), and so the question arises: Which definition should we adopt? In
this chapter, we will not argue for one specific definition or concept of validation.
Our main aim is more modest: We will compare and discuss prominent proposals to
define validation and classify the differences between them. To this purpose, it will be
useful to clarify notions that are prominently mentioned in definitions of validation,
e.g., that of accuracy. We hope that our comparative investigation yields at least two
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benefits: First, we obtain a systematic overview and a closer understanding of the
options on the table. Second, we can better appreciate what substantial controversies
about validation there are. The reason is that different understandings of validation
have different consequences. At the same time, they reflect different stances on
scientific inquiry more generally, and it is worthwhile to see how these stances
manifest themselves in our thinking about validation.

Themost comprehensive and interesting discussions of the notion of validation so
far are due to Roache (2009)1 and to Oberkampf and Roy (2010, Chap. 2). An often
quoted article about the notion is provided by Oreskes et al. (1994). We will engage
with this literature in what follows. Note though that our perspective is broader than
the one taken by Roache, Oberkampf and Roy: While these authors focus on engi-
neering and the physical sciences,we alsowant to take serious other disciplines.Also,
the way in which we proceed is more modeled after the methods of a philosophical
inquiry.

This chapter is organized as follows:We start with some preliminaries in Sect. 2.2
For instance, we detail how we think about concepts and clarify our focus on the
validation of computer simulations.We list some definitions of validation in Sect. 2.3.
The definitions are compared and discussed in detail in Sect. 2.4, which contains the
main work of this chapter. We draw conclusions in Sect. 2.5 by summarizing our
clarifications using a scheme for a definition of validation.

2.2 Preliminaries

In this chapter, we are interested in the concept of validation. For our purposes,
we need not elaborate on what concepts are (see e.g., Margolis and Laurence 2014
for an overview of philosophical work on concepts). Suffice it to say that concepts
are general and can apply to several particular things, which, in turn, instantiate the
concept. We should not confuse concepts with words. The latter can stand for, or
denote, concepts. Note though that ambiguous words can stand for several different
concepts, depending on the context.

In the philosophical literature, various desiderata on the clarification of concepts
have been proposed (see e.g., Carnap 1950/1962, Chap. 1 for a famous classic in this
respect). One important standard may be called descriptive accuracy: If a definition
of a concept is proposed, it should capture the way in which the concept is in fact
understood and used in a community of speakers, or at least approximate it as closely
as is possible. In the terms used by Carnap, the concept specified in the definition
should be as similar as possible to the one used in the community. How a community
thinks of a concept can be found out by observing the way in which competent people
use the term denoting the concept. So we have to make sure that a clarification of the
notion of validation does notmove too far from theway inwhich the term“validation”
is used in relevant circles (although nothing hinges on the word as such).

1This article is reprinted with an addendum as Chap. 3 of Roache (2013), see also Roache (1998).
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The quest for descriptive accuracy runs into trouble though, if a notion is not
always understood in the same way. This condition is likely met for the use of “vali-
dation” among scientists. This at least is indicated by the fact that different definitions
have been proposed. To choose between the various definitions, we need to appeal
to different desiderata, and recourse to such desiderata will have the consequence
that the proposed clarification is to some part stipulative, because it regiments exist-
ing uses of the concept. The most important additional desiderata considered in the
philosophical literature comprise exactness, fruitfulness, and simplicity (see Car-
nap 1950/1962, pp. 5–8; see Brun 2016 for analysis and elaboration). One important
aspect of exactness is that vagueness be removed in the following sense: There should
be as few cases as possible in which it is not clear whether the concept applies or
not (Brun 2016, p. 1222). A concept is simpler if it is more easily defined (Carnap
1950/1962, p. 7); finally, we can call a concept more fruitful if it facilitates theory
building, e.g., by allowing for more generalizations (ibid., p. 7). Whether a certain
clarification of a concept is fruitful or not, often depends on background knowledge.
Thus, in what follows, our argument will often be based upon views about what can
sensibly be achieved during validation. Clearly, a concept of validation would not be
fruitful if it could never be instantiated.2

After these general reflections about the clarification of concepts, we can turn
to validation more specifically. The word “validation” is derived from the term “to
validate” (which, in turn, derives from “valid”). The term is slightly ambiguous in
the following sense: “validation” may either refer to a type of activity or to its results.
For instance, when we say that validation has been achieved, we mean that a certain
result has been reached. This result may also be described by saying that validity
(in some sense) was attained. There is a close connection between this validity and
the practice of validation, and we might define validity to be the result of successful
validation qua activity, or the other way round. But these ways of defining validity,
or validation, are not illuminating because they move us in a circle that does not
really explain what the whole business of validation is about. So we have to break
the circle and to define at least one of the concepts in terms of different concepts, and
this will also clarify the other concept. In this chapter, our efforts into clarification
will be targeted at the activity of validation.We thus assume that the term “validation”
denotes a type of practice (which is, of course, also denoted by “to validate”). The
concept, or the type is instantiated by several concrete activity tokens that are grouped
together.3—One reason to focus on the practice of validation is simply that this book
is about the steps that need to be taken during validation qua practice. Also, it is not
so clear what “validity” really means in this context.4

2We have roughly, but not in every detail, followed Carnap in specifying the desiderata.
3This is not the place to clarify the relationship between concepts and types. For our purposes,
it suffices to note that both are general because they can be instantiated by several particulars or
tokens.
4In logic, there is a clear-cut definition of validity:An argument is valid if, and only if, it is impossible
that the premises are true and the conclusions false. It is not clear though how this notion of validity
should be applied to simulations. True, a simulation or a model involves an inference from the
model to the target system, and this inference is supposed to be a reasonable argument. But there
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Validation has always an object that is validated. In the context of this book, it is
worth noting that experiments,models and computer simulations are often considered
as objects of validation. Certain types of software and programs or codes are also
often said to be validated. What is most important in the context of this book is, of
course, the validation of computer simulations, and we only want to clarify what
this amounts to. But as we will see, there is a tight connection with models, so we
need to consider the validation of models too. Likewise, there is a close relationship
to computer codes and software, so will also briefly consider their validation (and
what is called their “verification”, cf. Chap. 11 by Rider and Chap. 27 by Roache
in this volume). Note too that, if computer simulations turn out to be experiments,
then the validation of the former can be expected to be more or less the validation
of experiments, but we will not pursue this line of thought here any further (see,
however, Chap. 37 by Beisbart and Chap. 38 by Barberousse and Jebeile in this
volume).

By “computer simulation” (or just “simulation”, for short) we mean a method that
crucially involves the execution of a computer code,which traces at least approximate
solutions to equations that are essential parts of a model of the dynamical evolution
of some real or imagined target system under real or counterfactual conditions. In
this way, the dynamical behavior within the target system is imitated using a digital
computer. This definition is supposed to cover simulations based upon (ordinary
or partial) differential equations and agent-based simulations as well as cellular
automata. Monte Carlo simulations that trace the stochastic dynamics of a system
are included too. What is further decisive according to our working definition of
simulations is that the equations to be solved have an interpretation in terms of a target
system. As detailed in our working definition, this is often a real system, but there
are computer simulations for which a real-world target system is missing; e.g., when
simulations consider a world of point particles in which gravity behaves differently
from gravity as we know it. The equations that are (approximately) solved in the
simulation are supposed to provide a model of the target system; either in the sense
that they represent a real-world system or in the sense that the equations define the
dynamics of amerely imagined system. Finally, the definition excludes computations
that (approximately) solve equations from amodel that does not describe a dynamical
evolution (for instance, a model may only represent the spatial distribution of some
objects at one instance of time). At least the philosophical literature about computer
simulation has mainly reached a consensus that simulations imitate a time evolution
of a system (see e.g., Hartmann 1996, Sect. 2.2; Humphreys’s definition in his 2004,
pp. 110–111 is an exception). But the restriction to representations of a time evolution
does in fact not make any substantial difference to validation. Thus, in what follows,
the restriction is not necessary to our argument, even though our jargon (“tracing
evolution”) and our examples center on simulations of some dynamical behavior.5

is most often no chance that the argument is logically valid (because it is, e.g., analogical). Other
uses of the term “valid”, e.g., in “valid rules” are even more remote from simulations.
5There are simulations that do not use a digital computer, e.g., analog simulations. Our focus is
entirely on simulations done with a digital computer.
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Our working definition of computer simulation is meant to make clear what
method we refer to when talking of simulations, but it is not supposed to answer
deeper philosophical questions as to what computer simulations really are (see Chap.
37 by Beisbart in this volume). Thus, later in this chapter, further discussion will be
needed to get clear about what object is validated.

With these preliminary clarifications in mind, we can now consider prominent
definitions of the validation of simulations.

2.3 Influential Definitions of Validating Computer
Simulations

In the 1970s, the Society for Modeling and Simulation International (SCS) instituted
the SCS Technical Committee on Model Credibility, headed by S. Schlesinger. This
committee proposed the following definition of model validation (Schlesinger et al.
1979, p. 104):

Val-SCS “Substantiation that aCOMPUTERIZEDMODELwithin itsDOMAINOFAPPLI-
CABILITY possesses a satisfactory RANGE OF ACCURACY consistent with the intended
application of the model.” (uppercase letters as in the original; they indicate terms for which
definitions are given)

Here the range of accuracy is the

demonstrated agreement between the COMPUTERIZED MODEL and REALITY within a
stipulated DOMAIN OF APPLICABILITY. (ibid., emphasis theirs)

The American Institute of Aeronautics and Astronautics (AIAA) has recom-
mended the following definition of validation, which was later adopted by the Amer-
ican Society of Mechanical Engineers (AIAA 1998; ASME 2006; see Oberkampf
and Roy 2010, Sect. 2.1.4, pp. 26–31 for the history):

Val-AIAA “The process of determining the degree to which a model is an accurate represen-
tation of the real world from the perspective of the intended uses of the model” (here quoted
after Oberkampf and Trucano 2008, p. 719)

This definition is also adopted by Oberkampf and Roy (2010, p. 32). Roache
(2009/2013, p. 79) starts with this definition too and elaborates it as follows:

Val-Roache “Validation: The process of determining the degree to which a model with its
associated data is an accurate representation of the real world as determined by experimental
data, themetrics of which are chosen from the perspective of the intended uses of themodel.”

Since the authors who contribute to this book come from various fields, we have
also collected a survey of the definitions they propose for validation. Of course, many
of the definitions (e.g., the ones adopted by Gelfert, Chap. 10 and Frisch, Chap. 41)
draw on the ones already mentioned. But here are some examples that do not do so in
an obvious way: Murray-Smith (Chap. 4 in this volume, abstract) defines validation
as follows:
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Val-MS “The word ‘validation’ is used to describe procedures for establishing whether the
model fidelity is adequate for the purposes of the given application.”

Saam (Chap. 18, Sect. 1) quotes the following definition due to Caldwell and
Morrison (2000, pp. 202 f.):

Val-CM “Validation is a proactive, diagnostic effort to ensure that the model’s results are
reasonable and credible” and “to assess whether the model’s outputs are reasonable for
their intended purposes.”

Social scientist Mäs (Chap. 35, Sect. 1) defines validation as follows:

Val-Mäs: “In the present chapter, the term ‘validation’ describes the process of confronting
a theory with empirical evidence with the ultimate aim of developing a sound explanation
of the empirical phenomenon.”

It is finally worth quoting a definition that is concerned with validation of software
more generally (not just related to computer simulations): The Institute of Electrical
and Electronics Engineers (IEEE) has set standards for validation and verification
of software and proposed the following definition of validation of software (IEEE
2012, p. 11):

Val-IEEE “(A) The process of evaluating a system or component during or at the end of
the development process to determine whether it satisfies specified requirements. (B) The
process of providing evidence that the system, software, or hardware and its associated
products satisfy requirements allocated to it at the end of each life cycle activity, solve the
right problem (e.g., correctly model physical laws, implement business rules, and use the
proper system assumptions), and satisfy intended use and user needs.”

2.4 Discussion of the Definitions

The definitions just quoted and most other definitions, as, e.g., used by other authors
in this book, have a lot in common, but differ in a couple of crucial dimensions. In
the next subsection, we will stress important common traits. We will then turn to a
systematic discussion of the dimensions on which the definitions differ.

2.4.1 Commonalities

The definitions that we know of concur in that validation is, or at least involves,
an evaluation or assessment. Sometimes, this is very explicit in the wording of the
definition (see e.g., Chap. 31 by Fagiolo et al., Sect. 2.1; Chap. 40 by Hirsch Hadorn
and Baumberger, Sect. 2 in this volume), sometimes it is more implicit. For instance,
Val-SCS speaks of a substantiation that a computerizedmodel is sufficiently accurate.
Since accuracy is value-laden (more accuracy being better) and accuracy is supposed
to be substantiated, it is clear that validation is taken to imply an evaluation. True,
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there are definitions of validation that only speak of a comparison (e.g., Rood in his
Chap. 30, Sect. 2 in this volume), but we can safely assume that the comparison is
not merely descriptive, but crucially involves evaluation too.

A more interesting issue is whether validation goes beyond evaluation or assess-
ment. Some authors suggest that this is so, e.g., Lenhard in his Chap. 39 in this
volume assumes that validation includes the improvement of a model as a reac-
tion to an evaluation. The term “substantiation” used by Schlesinger et al. (1979)
is not entirely clear on this issue and may be understood as encompassing efforts
to improve a computer simulation too. But given the fact that most definitions of
validation do not include such efforts, we will not consider them any further in this
chapter. This is not to deny that, in practice, evaluation and model development are
often much intertwined. But if a simulation code is first evaluated and then improved
as to better match measured data, this is not just validation of the former version of
the code; rather, we may want to call the whole process calibration (see e.g., Chap. 3
by Oberkampf for this notion).

A lot of definitions, e.g., Val-AIAA, let the assessment implicit in validation refer
to some real-world system. It is likely that this is also meant by other definitions that
do not explicitly mention the real world. In what follows we will thus assume that
a real-world system is decisive for the assessment implicit in validation. Now, this
makes only sense if the target system of a simulation is a real-world system (which
may be considered under counterfactual conditions though). So we will assume that
the simulations to be validated do have such a real-world target. This excludes other
simulations,which have amerely imagined systemas their target (which is allowedby
ourworking definition of simulation). This exclusion is not a problem. It is, of course,
true that such simulations should be assessed in terms of their target too. But a related
assessment can only make sure that the simulation properly reflects the imagined
target. Since the latter is defined in terms ofmodeling assumptions about the imagined
scenario, the assessment has tomake sure that themodeling assumptions are properly
reflected in the imagined system. Now, this is a question that is answered during so-
called verification of a simulation. Very roughly, the verification of a simulation has
to make sure that the results of the computer simulation approximate solutions to the
model to a sufficient accuracy (see Chap. 11 by Rider and Chap. 13 by Roache in this
volume). In this sense, one may say that simulations with a merely imagined target
are subject to some sort of validation, but that the latter reduces to what is known as
verification in this particular case.

2.4.2 Difference 1: The Object of the Validation

If validation is crucially an evaluation, the next natural question to ask is: What
exactly is evaluated? This question is obviously the same as to what the proper object
of validation is—a question that has already emerged above in our preliminaries. We
are of course interested in the validation of a computer simulation, but this does not
really specify what the proper object is because a simulation may be thought to be
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several things. In fact, the definitions thatwe have collected differ in this regard.Many
of them put the (computer/simulation) model at the center of validation, very often
with some restriction, e.g., that the focus be on the intended applications of themodel.
There are exceptions though; Val-CM assumes that the results of a simulation are
evaluated, while Rood, in his Chap. 30, mentions the code as object of evaluation.
This is also implicit in Val-SCS, since Schlesinger et al. (1979) assume that the
computerized model is a code. Some authors even show sympathy to the idea that
the practice of running computer simulations is assessed, when it comes to validation
(see Chap. 40 by Hirsch Hadorn and Baumberger in this volume).

In what follows, we will not assume that, in validation, the practice of running
simulations is a primary object of evaluation. One reason is that only a few authors
take this to be the case. A second reason is that the practice of doing computer
simulations is clearly aimed at producing an adequate simulation model or code and
related results. So the practice is first and foremost to be evaluated using the models,
codes, and results that are produced, which brings us back to the other candidates
for proper objects of validation. What needs closer scrutiny then to become clearer
about the proper object of validation is the question of how the other candidates, i.e.,
simulations, their results, the models, and the code, relate to each other.

We take it that the results of a simulation arise from the outputs that were produced
when the simulation codewas run once or several times (so the results aremeant to be
actual results). Very often, what is called a result from a simulation consists in claims
about the target system, e.g., that the mean global surface temperature raises only
moderately for a certain emission scenario considered in a climate simulation (see
Beisbart 2012, 2017 for a detailed account of how such results arise from the output).
In philosophical parlance, such results are propositional; they can be expressed in
terms of assertive sentences.We assume that they are about the target system. Results
may be formulated about a model too, but then there is no need for validation in
the sense assumed here. There are arguably also results that are no claims, most
importantly viewgraphs and animations. But these kinds of results are only of interest
to the extent towhich they represent the target system.For the purposes of this chapter,
we can assume that their representational content can be expressed in claims too, so
it is propositional too.6

Results in this sense are obviously a subset of the possible/potential results one
may obtain from the computer simulation in a broader sense (e.g., its code or the
underlying model). Thus, if the simulation in this latter sense is evaluated, all results
it can yield for a certain range of applications are up to assessment. We can thus con-
clude that the assessment of a whole simulation includes the assessment of its actual
results, but significantly goes beyond this. Accordingly, assessing a model/code is
more interesting, but also more demanding, than assessing a finite series of results.
While actual results of computer simulations can often be fully stated in a small

6This is not meant to answer the general question of whether we can fully capture the content of
paintings, etc., in terms of language. The answer is probably no; but our focus is here on viewgraphs,
etc., that are used for scientific purposes, and it seems more likely that their content is fully reflected
in claims expressible in language.
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number of claims that can each be checked empirically, this is not possible for all the
potential results a simulation may yield. The question of whether the assessment of
a computer model or code is exhausted by the evaluation of its results will be tackled
below.

Turn now to computer codes. Clearly, every computer simulation involves a code,
and, very often, computer simulations are identified and individuated using the code.
For our purposes, it is most appropriate to think of the code as an interconnected
set of instructions written in the machine language such that a suitable computer
hardware can carry out the instructions. For the most part of our discussion, this
code need not be distinguished from programs written in higher level programming
languages such as C or from an algorithm.

Consider finally models. It is too clear that there is a close connection between
computer simulations andmodeling, for “to simulate”means roughly “tomodel”, and
according to our working definition, a computer simulation yields at least approxi-
mate solutions to equations from a model. But things are a bit more complicated
(see e.g., Beisbart 2014 for closer analysis). As various authors, e.g., Winsberg
(1999), have stressed, there is, very often, not just one model involved in a computer
simulation. The reason is that models are typically changed and further developed
when they are implemented on a computer. This is particularly clear for simula-
tions that are based on differential equations, e.g., models of fluids that employ the
Navier–Stokes equations. Here, typically, the differential equations have been pro-
posed as a model independently of computer simulations. To implement them on
the computer, scientists have to discretize them, which is to say that the differential
equations are approximated using, e.g., difference equations. It then is natural to say
that the latter equations form the core of a second model that is distinct from the
initial one.7 More generally, it is often useful to distinguish between the conceptual
and the computational model (Oberkampf and Roy 2010, p. 38; cf. Schlesinger et al.
1979, p. 103). While the conceptual model is made of assumptions that reflect the
scientific understanding of the target system independently of, and prior to, a simu-
lation (at least up to some simplifications), the computational model is implicit in the
computer code in the sense that the latter provides exact and correct solutions to it.
In this way, the dynamics of the computational model is uniquely defined in terms of
the code. By contrast, there is some leeway as to what exactly the conceptual model
is; it is a model that is somehow implemented in the computer code, but not in every
detail or with 100% accuracy. How we identify the conceptual model in a concrete
example of a computer simulation is a matter of interpretation.8

7In the example of the Navier–Stokes equations, the models do not differ in their ontology, i.e., in
the range of things they assume, but only in their equations that govern the dynamics. But there are
in fact approximations that involve a change in the ontology.
8A general problem about identifying models is that ordinary talk is often quite imprecise on what
exactly a model is. For instance, sometimes, a set of differential equations with a free parameter is
called a model, while, other times, the parameter is assumed to have a specific value to yield one
model. So what we call models differ in the degree in which they are specific. In this way, some of
the types of models that Winsberg (1999) uses to understand computer simulations differ because
they add assumptions to the assumptions of other models. In this chapter, do not assume that the
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Since the computational model and the simulation code are closely connected, so
are their respective validations. We can in fact legitimately claim that the validation
of a simulation code is no more than the validation of the computational model. This
is not to deny that a code is a different sort of thing than a model. A code is a set
of instructions, while a mathematical model is defined in terms of assumptions that
are independent of language. But in the context of validation, the computer code is
only of interest qua implementing a model, and we need not differentiate between
the validation of the simulation code and of the computational model.9

By contrast, the validation of the conceptual model differs from that of the com-
puter code simply because the conceptual model is in general only implemented to
some approximation in the code. So we can only think of a simulation in terms of a
conceptual model if the results of both the conceptual and the computational mod-
els are close enough for the purposes of some inquiry, such that the outputs of the
simulations can, in fact, be used to constrain the solutions to the conceptual model,
although the outputs specify strictly speaking solutions to the computational model
only. As far as validation is concerned, if a researcher is interested in evaluating
the results of a conceptual model, she can only use the computer output if the latter
faithfully reflects the behavior of the conceptual model. Activities that show that this
condition is fulfilled are called verification (see Chap. 3 by Oberkampf, Chap. 4 by
Murray-Smith, Chap. 11 by Rider and Chap. 27 by Roache in this volume).

Since verification can be quite difficult, it may be suggested that researchers
should concentrate on the computational model if they engage in validation. But
there is a problem with this suggestion. As defined above, the computational model
is implemented in the computer code such that running it delivers correct solutions
to it. This model is first difficult to grasp because the computer code deviates from
the equations at the core of the conceptual model. For instance, the execution of
the code leads to roundoff errors that are not naturally described in terms of simple
equations about the model. Second, the working scientist may be mistaken about
the computational model, for instance, if the code contains an unknown “bug” going
back to amistake in the programming. Thus, verification is needed even if researchers
do not consciously change the model with which they start, when they implement
it on the computer (this is so for many agent-based models and cellular automata
for which no approximations are needed). The focus of verification is then not on
approximations but rather on a test whether the code really solves the equations
constitutive of a certain conceptual model that scientists intend to use. We leave the

conceptual and the computational model differ in their degree of specificity. Rather, both types of
models are assumed to have roughly the same degree of specificity, but to differ in their model
assumptions.
9Since a computer code forms the software, we can briefly consider Val-IEEE at this point, which
was given for software validation more generally. The definition stresses the fulfillment of certain
requirements (part A), or the satisfaction of intended use and user needs (part B). This covers the
validation of computer simulation codes if, during the validation of simulations, the requirements
mentioned in Val-IEEE are just the requirements that are set on codes in the validation of simulation
codes, and if we make an analogous assumption about user needs. In this sense, the validation of
simulation codes is a special case of validation of codes.
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discussion of whether verification is part of, or rather a precondition of, validation to
Chap. 42 by Beisbart in this volume (see also Chap. 27 by Roache in this volume).

Altogether, our discussion leaves us with two distinctions that can be used to
classify the possible objects of validation: First, we need to distinguish between the
results of a simulation and a simulation itself. While the former comprise claims
that were obtained from a small number of runs of the simulation code and thus
focus on a couple of trajectories within the target system, the simulation as such is
more comprehensive, e.g., because it traces model behavior in the sense of many
possible trajectories.10 What exactly the computer simulation is, e.g., a program in a
high-level language, a code or a model does not matter for our purposes, because the
computer simulation matters for validation only to the extent it implements a model.
What needs to be distinguished though—and this is the second distinction—are
conceptual and computational models and their respective validations.

2.4.3 Difference 2: The Standard of Evaluation

If validation is an evaluation, another natural question to ask is what the standard of
evaluation is. The definitions that we have quoted appeal to the standards of accuracy
(Val-SCS, Val-AIAA, Val-Roache), adequacy for purpose (Val-MS), reasonableness
and credibility (Val-CM). Val-Mäs mentions the ideal of sound explanations. What
we find in the literature too sometimes is an appeal to truth. For instance, Naylor and
Finger (1967, p. B93) define validation of a model thus:

To […] validate any kind of model (e.g., management science models) means to prove the
model to be true.

But they add immediately that truth can most often not be proven.
While some of the standards mentioned here and elsewhere, e.g., accuracy, are

quite specific, others, e.g., reasonableness, are very unspecific. Many types of things
can in some sense be called reasonable. For the purposes of this chapter, it is most
fruitful to focus on more specific standards because they are more informative. Stan-
dards such as reasonableness, by contrast, would need interpretation in terms of
more specific standards (see Lacey 1999, Chap. 2 for standards that are appealed to
in theory choice).

When it comes tomore specific standards, it is notable that some of them primarily
apply to model results, while others do not. For instance, truth and credibility are
characteristics that are first and foremost instantiated by claims or specific results. A
code (qua series of instructions) or a model (e.g., qua simplified system) cannot be
true or credible, properly speaking. It may only be true or credible in the derivative
sense, e.g., because it produces true or credible results. By contrast, the standard of

10In Monte Carlo simulations, one run of the code typically yields an ensemble of trajectories in
the target system, but the distinction between a few actual results and model behavior in a more
comprehensive sense applies here too.

https://doi.org/10.1007/978-3-319-70766-2_2
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reliability (mentioned in Chap. 38, Sect. 2.1 by Barberousse and Jebeile) is primarily
said to hold of processes and procedures that are meant to produce knowledge, and
thus applies to simulations qua models or codes.

Let us thus first consider standards that are primarily relevant for the results of
computer simulations, viz. truth, credibility and accuracy.

2.4.3.1 Truth, Credibility and Accuracy

It is clear that practicing scientists are interested in the truth of their results. The
result that p (e.g., that there is an increase in precipitation in some region at some
time) is true if, and only if, p is the case (i.e., if there is an increase in precipitation in
this region at this time). This is a platitude, but it has proven surprisingly illuminating
in philosophical inquiry on what truth is (see e.g., Künne 2003). There is no need to
dig deeper into philosophical theories about truth, because almost nothing hinges on
that for the purposes of this chapter. The reason is that the truth of a claim can only
be shown with an appeal to other standards (see below), so it will only be important
as a background ideal.

Credibility, as it is understood here and in much philosophy, is related to truth
as follows. That a claim is credible or trustworthy (to some degree) is meant to
say that it deserves belief (to that degree; degrees of beliefs form a basic notion
within Bayesian epistemology, see Chap. 7 by Beisbart in this volume). In this vein,
Oberkampf and Roy (2010, p. 12) state that credible “results of analysis […] are
worthy of belief or confidence”. Belief is an attitude that people take toward claims,
and this attitude is aptly characterized as taking something true. So, the credibility of
a result is the worthiness to take it true. Howworthy of belief a result depends on how
well it is justified.11 That is, it depends on how much it is supported by the evidence
that speaks in favor of it. For instance, the claims of string theory or another fancy
physical theory of quantum gravity are not particularly credible at present since we
lack evidence for them.12

To many people, the term “credibility” sounds very subjective. And indeed, if
credibility were just the degree to which people find something plausible, then it
would be subjective in the sense that it differed between people. But credibility is
not apparent plausibility or something like this, but rather worthiness of belief, and
it is at least arguable that the degree to which a claim is credible in a certain context
(given specific evidence) can be determined in an objective way. The idea is that it is
a function of the available evidence: The stronger the latter speaks in favor of a claim,
the more credible is the claim. In ordinary talk, we often assume that we agree on
how strong the evidence is for a claim and how worthy of belief it is. There are some

11Justification is a key term in epistemology (the philosophical study of knowledge), one important
idea being that knowledge is justified, true belief.
12To support the claim that results of a simulation about a real-world target in nature hold true, the
evidence needs to be empirical. Thus, in this chapter, evidence is meant to be empirical evidence.
This does not preclude that validation is to some part built on mathematical proof. But such proof
cannot replace the recourse to observation.
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philosophical reasons to doubt that (see e.g., Chap. 7 by Beisbart in this volume),
but we cannot settle this issue here. So let it be noted that credibility is meant to be
as objective as it can be. Note also that, in this chapter, credibility is not meant to
suggest a fairly low degree of credibility, as it is often in the ordinary talk (compare
“this is certain” vs. “this is credible”).

As we have just noted, at present, string theory is not particularly credible. But
it may nevertheless be true. Conversely, a claim may be supported by considerable
evidence, but still be false. So truth and credibility can come apart. If so, which
aim should we give priority? It is clear that our fundamental interest is in truth. But
whether or not some results are true cannot be read off from them, as it were, and
we need evidence to assess whether they are true. Weighing the various pieces of
evidence that speak for and against the truth of some claim determines how credible
the claim is. Once we have determined the credibility of a claim, what should we
say about its truth? Well, roughly, we should take the claim true if, and only if, it
is sufficiently credible. Consequently, from the first personal perspective of truth-
seeking people, truth and credibility cannot pull in different directions.13

The notion of accuracy is best explained using the example of measurement as
follows (cf. Humphreys 2004, p. 16): Consider a characteristic, e.g., the mass of
a certain body or the pressure of air at a certain location. Suppose further that a
measurement device yields a value for this characteristic, say, a mass of 1,334 kg.
Assume further that, as a matter of fact, the mass of the body takes a certain value,
say, 1,335 kg. Call this value its true value of mass. The value that is output by the
measurement or the simulation is the more accurate the closer it is to the true value,
and the degree of accuracy may itself be measured by taking a distance measure
between the measured and the true value.

This account of accuracy can be generalized to computer simulations: An output
value of a characteristic, for e.g., mass, is the more accurate the closer it is to the true
value. The resulting account of accuracy is consistent with the definition quoted from
Schlesinger above, if “range” means degree and if the term “disagreement” refers to
the level with which the value obtained in the simulation differs from the true one.14

This understanding of accuracy presupposes that two conditions are met: first
that there is a true value, and second that deviations from the true value can at least
be ordered, if not quantified in terms of numbers. Both conditions are fulfilled in
our example with mass, as they are regarding many simulation results, e.g., about
the mean global surface temperature. However, some computer simulations contain
parameters for which the assumption of a true parameter value is taken to be false,

13A conflict between truth and credibility may arise if we consider the evidence which other people
have to take something true. Their evidence may favor a claim that we think to be false.
14Reference to a true value is innocuous here. The true value of a characteristic is just the value that
the characteristic takes as a matter of fact (if it takes one, see below for this assumption). Note too
that true values are not restricted to the present time. We thus assume that we can talk now about the
true value of temperature at noon tomorrow. Predictions that a certain characteristic takes this and
this value at noon tomorrow are true if, and only if, the value given coincides with the true value for
tomorrow at noon. So, if we want to say that predictions of this type can be true, we need to allow
for a notion of a true value at some future time.
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for instance, because the parameter is only well-defined in an idealized model of
the target system. Further, some characteristics take values that cannot be ordered
in a natural way, so neither can be deviations from the true value. For instance,
the characteristic of the preferred musical style of a person takes values such as
“classical music”, “jazz”, and “rock”, and it is dubious whether these can be ordered
in a nonarbitrary way. For the time being, we will assume that both conditions on
accuracy are fulfilled.

The notion of accuracy is closely related to that of error (cf. Chap. 5 by Roy in
this volume). In a setting as described above for measurement and simulation, the
deviation of the value obtained from the true one is called error. If a distance between
both values is meaningful, the error is quantified in terms of the distance, where it
is natural to use the same distance measure as for accuracy. A value obtained in a
simulation is thus the more accurate the smaller the error is. Accordingly, accuracy
can informally be described as closeness to truth.

How accurate a specific output from a computer simulation is can in principle
be determined by comparing the output and the true value. But in practice, the true
value is most often not known, and there is no information about the true value
independently of the computer simulation. There is thus uncertainty about the error.
The best thing that scientists can do then is to constrain the size of the error in some
way, e.g., via knowledge about how the computer simulation functions.

There are least two basic ways in which the sizes of errors, and thus accuracy, may
be constrained: In some rare cases, exact bounds on the errors can be demonstrated
using mathematical proof. This assumes that the emergence of the errors can be
fully described in terms of mathematics, as is the case when the errors are due to
mathematical approximations. In other cases, a probability model over the errors can
be specified. For instance, on the basis of experience, researchers may know that a
computer simulation produces errors that follow a Gaussian probability model with
a certain mean and variance. On the basis of such a probability model, researchers
can specify a range of errors such that the true error is within this range with a certain
probability, say of 95%. There aremore sophisticated ways to express the uncertainty
about an error, see e.g., Chap. 21 by Bradley in this volume. In what follows, for ease
of presentation, the term “estimate” is used as an umbrella term for any way in which
information about the error is specified. Obviously, “estimate” is not an estimator in
the statistical sense.

Errors are generic in computer simulations (see Chap. 5 by Roy in this volume).
Thus, every serious report about outputs from computer simulations is accompanied
by an estimate of the errors (the same is true about measurements). In fact, what
we call results of simulations incorporate, or should at least do so, estimates of
errors. For an illustration, suppose that a computer simulation has output a value of
15.4910159137125 °C for the mean temperature at some place at some time in the
future. The output number is affected by many errors, e.g., roundoff errors that arise
because the precision with which the computer can represent irrational numbers is
limited, such that there is almost no chance that it is true.What has the chance of being
true is only a statement to the effect that the temperature is within a certain range of
values around the output value 15.4910159137125. Indeed, some essential part of
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converting the numbers that are output from a simulation into propositional results
is to determine estimates for the errors or their bounds. If the accuracy of an output
number is taken into account in formulating the result of a simulation, e.g., by saying
that the value of some characteristic is in this and this range, then the result itself, and
not just an output, can be said to have a certain accuracy, viz., the accuracy that is
specified. In what follows, we assume that results comewith estimates of the (bounds
of) errors and with a specified level of accuracy, as is common in measurement too.

Of course, to state a result intowhich a specific level of accuracy has been inscribed
is strictly speaking no more than making a claim. The question is whether this claim
is true. The answer depends on whether the accuracy that is specified is too high.
Since the accuracy of a result of a simulation is most often not directly known, what
scientists can at best do is to provide evidence for the claim that the results are such
and such accurate. Accordingly, such claims become more or less credible. Thus,
what researchers can at most obtain in typical cases are more or less credible claims
about the accuracy of results. As credibility of accuracy is a very important standard,
we call it cred(acc). It is important because it is the closest we can get in direction
of truth.15

When researchers investigate a result for its cred(acc), there is a tradeoff between
accuracy and credibility: Claims that the errors are smaller, or that accuracy is higher,
are logically stronger and thus more difficult to justify and so less credible. Accord-
ingly, the more accurate you want your result to be, the less credible is your claim.
This point can well be illustrated using statistical methods, e.g., the confidence inter-
val (see Chap. 19 by Robinson in this volume). This interval comprises a range of
values such that the confidence to find the true value in it can be quantified using a
probability. The smaller the interval, and thus the higher the accuracy, the smaller
is the probability. Note though that this tradeoff does not create any real conflict,
because a researcher can well formulate various claims about accuracy with differ-
ent credibility. For instance, she can say that the error is smaller than 1 m with this
and this probability, and smaller than 2 m with a higher level of probability. These
statements do not conflict with each other. A conflict arises only if the researcher
has set predefined values for both credibility and accuracy and if there is no way to
reach both. Then at least one of the requirements for accuracy and credibility needs
to be relaxed.16

So far, our discussion is premised on the assumptions that (i) there is a true value
and that (ii) there is a range of possible values that can be ordered. Both assumptions
can be relaxed. Turn first to outputs for which no true value exists, for instance,
because the output is a parameter that presupposes an unrealistic idealization. Obvi-

15Although we refer now, strictly speaking, to evidence for accuracy, and not for truth, we are not
appealing to a different sort of evidence. The idea is rather that we have only one type of evidence
and that it typically only supports a claim of the sort that a characteristic takes such and such value
with this and this accuracy, and not the claim that the characteristic takes such and such value full
stop.
16Accuracy is also an issue in the construction of models and may then be balanced against various
other desirable features. But since our focus is on the validation of an existing model and not on
model construction, we need not comment on such tradeoffs.
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ously, claims to the effect that such a variable takes this and this value cannot be
assessed for accuracy and credibility, but nor is there any interest in their accuracy or
credibility. Thus, such outputs do not matter for validation in the way other outputs
do. This is not to say that the values of such parameter cannot be assessed in different
terms.

Turn second to results that do not assign a characteristic a value from a range of
orderedvalues.These aremost oftenqualitative results, e.g., that a thunderstorm takes
place during the next week. Often, such qualitative results arise in a simulation not
because a variable in the simulation program traces whether there is a thunderstorm
or not; rather, the thunderstorm in the simulation is identified on the basis of the
values of other variables, e.g., differences in pressure. Drawing on work by Bogen
and Woodward (1988), we may say that a (simulated) phenomenon is constructed
from given (simulated) data. Unlike the claim that some temperature has a value of
15.4910159137125 °C, the claim about the thunderstorm has a reasonable chance of
being true. So the most natural way to handle such claims or results during validation
is to say that such claims are as accurate as they can be and that validation is only
concerned with the credibility of this 100% accurate result.

To sum up our discussion about standards of validation so far: The contenders
truth, credibility, and accuracy are related to each other and not really alternatives.
What researchers reallywant is truth or, at least, that the outputs from their simulation
code come closest to the true values of the characteristics of interest. But what they
can only establish realistically is the credibility of claims about the accuracy of the
outputs (cred(acc)). This suggests that references to truth, credibility, and accuracy
in the definitions of validation merely stress different aspects of this main idea. In
what follows, we will thus take truth, accuracy, and credibility together under the
label of “cred(acc)”.

So far, we have dealt with truth, credibility, and accuracy as applied to single
results (claims). But can the standards be applied to a whole simulation too? In
principle, it is at least conceivable that a simulation model produces true results
for all intended applications, and that all of its model assumptions are true of the
target system. Likewise, a simulationmodelmay yield results that are all accurate to a
certain degree, and the underlying model assumptions may also have a certain degree
of accuracy. And all this may become more or less credible due to suitable evidence.
But all this does not happen in practice. Models are based upon simplifications,
e.g., abstractions and idealizations. This means that they are never fully true of their
targets, and there will be limits to the accuracy of their results. Thus, overall truth
or accuracy is not a sensible standard on models (see e.g., Bailer-Jones 2003 and
Parker 2009 for this argument). There is talk about the accuracy of models, but what
is often meant by this is only that a certain, limited range of results from a model
has a certain degree of accuracy. Such general claims may be argued for if there is
sufficient knowledge about the relationship between a model and its target. We can
quantify accuracy overall by first defining the accuracy of one single simulation run
by, e.g., adding the squares of the accuracies in single characteristics. Defining such
a measure is crucial for setting what is called a validation metric (see Oberkampf
and Roy 2010, p. 68 for a definition and ibid., Chap. 13 for many examples; see also



52 C. Beisbart

Chap. 13 by Marks and Chap. 18 by Saam in this volume). By generalizing over all
possible runs of the simulation code, we may obtain a measure of the accuracy of
the code or a related model (be it the computational or the conceptual one).17

2.4.3.2 Adequacy for Purpose

Apart from truth, accuracy, and credibility, the main contender for a standard of
validation is adequacy for purpose. A prominent paper arguing that models (be it
conceptual or computational ones) should be assessed for adequacy for purpose
rather than for truth is Parker (2009).

At first sight, adequacy for purpose seems quite different from truth and cred(acc)
considered so far. But there are in fact connections, and to some extent, cred(acc) and
“adequacy for purpose” can be combined. A first thing to note in this respect is that
the purposes to which researchers can appeal in validation are limited. For instance,
the possible purpose to produce beautiful animations with a simulation code does
not matter for validation.

What then are legitimate purposes that researchers can appeal to when validating
simulations? A prime example is prediction in a very broad sense: The computer
simulation is supposed to provide information, which is typically not known other-
wise. This information may refer to the future, but we will also allow for information
about the present and the past. The information may be quantitative or qualitative;
it may refer to a particular token event or to a type of phenomenon. Whatever the
details, the purpose of obtaining information obviously leads us back to cred(acc) as
follows. The purpose is fulfilled, if we obtain correct information, i.e., if the claims
we obtain as predictions are true. Since there will be errors, which are not known
(recall our argument above), the best we can hope for are accurate predictions with
a high credibility. So, for a very broad range of purposes of computer simulations,
adequacy of purpose boils down to cred(acc) of some claims.

Another purpose that is quite common for computer simulation is exploration
(see e.g., Chap. 10 by Gelfert). The idea is to explore phenomena that might occur
if the target system was changed. For instance, scientists may wish to explore how
traffic might flow if certain speed limits were introduced. There are two ways to
understand this exploration: Either scientists are interested in what is possible “as
a matter of fact”, i.e., given the laws of nature, etc. Then they are interested in true
claims about the target system, but in claims that are different from the claims that
we have investigated so far. The claims now hold that a certain characteristic can take
this and this value. But if we assume that there are true values for various possibilities
or counterfactual scenarios (and we have to make this assumption if we want to say
that the claims under consideration are truth-apt), such claims can be dealt with in the
same way as before. Alternatively, scientists may be interested in what is possible

17In defining the overall accuracy of a (simulation) model, researchers may also want to include the
accuray of the assumptions underlying the model. Whether or not this is feasible will be discussed
in Sec. 4.6, where we consider so-called structural validation.
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given their knowledge about a target system (this is called epistemic possibility).
But then the question is simply what is compatible with some assumptions (viz., the
assumptions taken to be knowledge about the target system). In this case, validation
is not an issue anymore because the simulation is not supposed to represent a real-
world target as it is. All in all, exploration does not imply that validation has to go
beyond cred(acc).

So important purposes of simulations lead back to cred(acc). Conversely, there is
a route from cred(acc) to a plurality of purposes. The reason is that a typical com-
puter simulation traces a lot of characteristics (positions, velocities of particles; the
intensities of various fields at various locations…) and thus produces a lot of output.
Researchers pick some characteristics as relevant, while neglecting other characteris-
tics,when they assess cred(acc) of the simulation. For instance, climate scientistsmay
use a simulation to predict the temperature in some region and neglect its predictions
for precipitation, and validate the simulation accordingly. Now very often, a simula-
tion that is good at predicting temperature is not good at predicting precipitation, and
vice versa (see e.g., Baumberger et al. 2017b, pp. 4–5). So depending on whether
a simulation is validated with an emphasis on temperature or with an emphasis on
precipitation by appeal to cred(acc), the assessment will be different, and researchers
have to decide which characteristics they take to be relevant to validation according
to their purposes. It follows that validation is inherently purpose-relative even if it is
focused on cred(acc).18

What emerges then, so far, is that cred(acc) and adequacy for purpose can get along
with each other. For one thing, the basic purpose of obtaining information leads us
back to cred(acc). This is the standard thatmatters for individual results of simulations
as far as the purpose of gaining information is concerned. For another thing, truth
and accuracy cannot sensibly be demanded of a model or simulation overall, so the
implications of the model or simulations that are assessed for their cred(acc) have to
be chosen according to purposes.

In fact, if cred(acc) is restricted to certain results of a model, it spells out what
adequate or accurate representation in virtue of this model is (cf. Val-AIAA and Val-
Roache). For to claim that a model delivers an adequate representation of its target is
to say that we can infer a lot of information about the target by using the model (this
is e.g., manifest in Suárez’ 2004 account of modeling). Now, information is specified
in terms of true claims, and the more accurate the claims are, the more information
they give us. Since truth and accuracy cannot be read off from claims, what we can
assess only is their credibility. And because a model is not supposed to represent
its target in every respect, cred(acc) is restricted to some claims that can be inferred
using the model.

However, there are different scientific purposes that may be pursued with simu-
lations. The most important candidate is explanation (mentioned, e.g., in Val-Mäs):

18In practice, the specification of the purpose and the intended applications of a computer simulation
is often less than precise. This seems to allow that a simulation is later applied to systems that are
quite different from the target system that was originally intended. But such an application would
need new validation.
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Researchers may want to explain some phenomenon, say a certain chemical reac-
tion, using simulations, and explanatory aims pursued with simulations may matter
in validation. To see whether this introduces additional standards in validation, we
need to answer two questions: 1. Can the purpose of explanation be spelled out in
terms of cred(acc) too? 2. If not, i.e., if different standards become important, is it
still a matter of validation to assess simulations following these standards? These
questions are relevant not just for simulations, but also, for e.g., theories, but we will
here discuss them with a focus on simulations. Our discussion is concentrated on
simulations that are supposed to explain something.

To address the first question, consider a social scientist who tries to explain an
event at the level of society, say a revolution, in terms of an agent-based model
that takes into account the degree to which individual people are willing to use
violence, the degree of their dissatisfaction with the political system, and possible
causes thereof. As a result of a computer simulation study, she comes up with a
certain explanation, e.g., that the revolution was due to corruption in the system
and the dissatisfaction that it produced.19 What might a validation be that takes this
explanation into account? A first answer is that explanations consist of claims too,
e.g., that the dissatisfaction with the political system was large. Such claims may be
thought of as results of the simulation and then be validated in terms of truth or, since
this is not possible, cred(acc), or so the first answer is.

But there are problems with this answer. Explanatory claims are quite special as
far as evidence for them is concerned. For instance, causal claims are explanatory,
but as philosopher David Hume famously insisted, we cannot observe that A causes
B (e.g., Hume 1748, Sect. VII, Part I, 50). True, researchers do have methods to
establish explanatory, in particular causal claims (see e.g., Pearl 2000 about causal
inference), but the question is whether related methods introduce different standards
than cred(acc).

There is a case for a positive answer to this question. Researchers need often to
choose among competing candidate explanations to settle on the real explanation.
They will, of course, pick the best explanation. They then infer that the assumptions
introduced by the best explanation are true. This inference is called inference to
the best explanation (see Harman 1965 for the introduction of this term and Lipton
2000 for discussion). Now it is arguable that explanations are, other things being
equal, better when they are simpler or more elegant. As far as computer simulations
are concerned, some simulation may incorporate explanatory assumptions that are
simpler and less complex than those from another. Simplicity and elegance are clearly
standards that differ from cred(acc).

But the appeal to standards such as simplicity and elegance to infer explanatory
statements is controversial. For instance, van Fraassen (1980) is a famous skeptic
about inference to the best explanation quite generally. It is also debatable whether
simplicity and elegance are really features that render an explanation more likely

19See Grüne-Yanoff (2009) for a philosophical analysis of explanatory claims obtained from agent-
based simulations.
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to be true. So a definite answer to our first question above needs to await closer
philosophical investigation.

Turn now to our second question. Even if elegance, simplicity etc. count as virtues
that allow to infer explanatory claims, they are only relevant for validation if computer
simulations as such are in the business of picking the correct explanation and if
conclusions about the best explanation form part of the results from a simulation.
But it is very dubious whether this is so. Computer simulations can clearly yield
the so-called how-possibly explanations: They can show that a certain combination
of factors would lead to a certain type of phenomenon. They can do so by drawing
the consequences from assumptions to the effect that some combination of factors
obtains. But to judge that a particular how-possibly explanation is better than another
(e.g., because it is simpler or more elegant) is not a matter of running computer
simulations, nor is the inference to an explanation that is judged best. Such inferences
go beyond simulations and should thus not matter for validation.

All this is not to deny that computer simulations, i.e., the underlying models and
their results, can be assessed for their explanatory power. But the question is whether
such an assessment is part of validation. There is a case for a notion of validation
that is restricted to some purposes and standards that do not go beyond cred(acc),
as applied to some aspects of a simulation. First, a lot of authors think that the
relevant standards in validation comprise accuracy and credibility, but not simplicity
or elegance. This is evident from the most influential definitions of validation. In
the terms familiar from conceptual engineering, we here appeal to similarity, i.e., to
the way a concept is used as a matter of fact. Second, a more restricted notion of
validation is likely more fruitful than a broader one. As argued above, cred(acc) can
be used to spell out that something is a good representation. Note also that cred(acc)
straightforwardly applies to results of simulations, while elegance and simplicity do
not. So it is arguable that the assessment of a simulation in terms of cred(acc) is
closely related to an assessment of the results, whereas standards such as simplicity,
etc., are different because they only concern the simulation programor the conceptual
model as a whole.

This is not the place to decide the issue about which standards should matter for
validation. A lot of authors from this volume, e.g., Oberkampf (see Chap. 3 in this
volume) would resist attempts to respect standards that move beyond cred(acc). A
few other authors, e.g., Saam in her Chaps. 9 and 17 as well as Hirsch Hadorn and
Baumberger in their Chap. 40 seem more sympathetic to a broader understanding of
validation that includes standards such as simplicity. Instead of settling the question,
our aim here is to provide some understanding of the issues involved.20

In any case, every decision on the issue has consequences for elaborating the
understanding of validation. If several different standards are involved in validation,
the question emerges whether validation is exhausted by an assessment with respect

20There are other purposes that are typical of scientific inquiry and that may be postulated to
matter for validation too. For instance, to the extent that understanding goes beyond explanation
(see Baumberger et al. 2017a for a recent overview of the debate about understanding), it may
be claimed that validation appeals to values that matter for understanding. Such values may be
discussed in the same way as we have discussed explanatory virtues.
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to each of the standards, or whether the results of this exercise are combined to arrive
at an overall assessment of a simulation or its results. The term “validation” suggests
that such an overall assessment is reached, because validation seems oriented after
validity, which seems to be one standard. The question then is how the various
standards are prioritized or weighted to obtain an overall assessment (an analogous
question is important for theory choice too where various standards compete, see
e.g., Kuhn 1977) . This is not so much of a problem if the focus is on cred(acc)
because accuracy and credibility combine in a certain way.

After this quite involved discussion about the standards of evaluation, we can now
turn to other dimensions on which the definitions differ. Here, the discussion can be
much briefer. To simplify the discussion, in what follows, our focus is mainly on
cred(acc) applied to a restricted part of the possible results.

2.4.4 Difference 3: Type of Evaluation

Some definitions of validation take it that validation is about determining the extent to
which the standards constitutive of validation aremet. The idea is to place a simulation
on the scale of all possible values of, say, accuracy. The expression “determining the
degree” in Val-AIAA refers to this idea (Val-AIAA refers to intended uses too,
but the intended uses are meant to determine aspects in which the representation is
adequate, and not a threshold for a pass-fail-criterion). Other definitions, by contrast,
assume that the point of validation is to check whether or not some predefined
requirements are fulfilled by certain results or by a simulation. In this way, e.g.,
Val-SCS speaks of a “satisfactory RANGE OF ACCURACY”. The difference can
succinctly be characterized in terms of the type of verdict that the evaluation leads to:
Is this verdict of the type “The score of the simulation (result) on the relevant scale
is such and such” (this assumes that the scale can be measured in terms of numbers)
or of the type “The requirement set has (not) been fulfilled.”?

Both answers are compatible with the idea that the basic standard(s) constitutive
of validation may be fulfilled to various degrees. The difference between the answers
is rather that, under the first, but not the second, requirements, e.g., thresholds, have
been set. This leads to a binary set of outcomes of validation depending on whether
the requirement has been satisfied or not.

How may we argue for one or the other view? One argument goes as follows:
Validation is about validity, but validity is not a matter of degree. So, validation
should involve a binary test. But this argument is very dubious because it is not clear
what sort of validity is the aim of validation. It is clear, for instance, that we are
not talking about logical validity. The claim that validation is about validity needs
elaboration, and our attempts of specifying the standards constitutive of validation
have led to standards that may be fulfilled to various degrees.

A different argument is that binary tests have an epistemological significance that
evaluations without such a test lack. This point may be supported with the following
intuition: If a simulation (result) passes a test with a predefined requirement, then it
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has achieved something. There was a risk that the test was not passed. No such risk
is undertaken if a simulation (result) is just placed on a broad spectrum of possible
outcomes. This thought accords well with a Popperian outlook of science, which
stresses the testing of hypotheses (see Chap. 6 by Beven in this volume, see also
below). But it is dubious whether it is indeed advantageous to frame validation as a
binary test. Simulations can be put to many uses, and whether they prove useful in
one or the other regard depends on the extent to which a standard is fulfilled, e.g.,
the extent to which a simulation (result) is accurate in a certain respect. If we place
a simulation (result) in the space of possible values of accuracy and find that it is
here and there, it follows that it is apt for some uses (i.e., those that require no more
accuracy), but not for others. This means that we may reject the simulation for some
uses. It is not clear what the added value is if we frame validation in terms of a test
with a single requirement. Rather the opposite, we are more flexible if we do not do
so (see Roache 2013, p. 68 for this argument).

If validation is conceived of as a binary test, an additional question emerges:
Does validation of a computer simulation (result) imply that the test is passed? Or
is validation the test independent of the result? If validation entails that the test is
passed, “validation” is a so-called success term, while mere attempts at validation
count as validation, if no passing of the test is required. There is some case for the
former view (see Roache 2013, p. 69 following I. Celik), since it would be strange
to say that a simulation was validated, if it has not passed the test. This point may
be extended to an argument in favor of the “testing view” discussed above: It would
be strange so state that a simulation was validated if it was assessed and if a low
degree of accuracy was found (see ibid.). But it is not clear whether this point about
the understanding of a very specific phrase (“has been validated”) should outweigh
other considerations, e.g., flexibility in use.

2.4.5 Difference 4: Cogency (Degree of Credibility)

Some of the definitions of validation stress that a certain degree of accuracy (or the
fulfillment of an alternative requirement) has to be demonstrated (cf. the definition
of accuracy used in Val-SCS) or shown (see Chap. 6, Sect. 1 by Beven in this vol-
ume). This requires something like a proof that a certain accuracy is reached. This
requirement is quite strong (see below), and it may be relaxed e.g., by saying that a
claim about the degree of accuracy needs only to be justified to some extent or that
a certain case be made for it (cf. Chap. 37, Sect. 2 by Beisbart in this volume). Let
us thus say that the definitions vary regarding the degree of cogency that is required
for the verdict reached by validation.

Now if a definition of validation requires that accuracy of the simulation be shown
with this and this cogency, this is in effect a statement about cred(acc): The claim
that the results of the simulation have a certain accuracy is supposed to have a certain
degree or level of credibility. If other standards figure in a definition of validation, then
cogency is the credibility of the claim that a simulation complies with the standards.
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This is at least so if the evidence that bears on the credibility is the same evidence
that creates cogency, as should be the case.

Whether or not cogency is cred(acc) or the credibility of other claims, the ques-
tion that emerges for the definition of validation is whether a certain minimal degree
of credibility is required for validation (e.g., reasonable plausibility, strong or even
conclusive reasons). Note that, in case cred(acc) is the only relevant standard for vali-
dation, this question is a special case of the question considered in the last subsection.
But the question is different from the one considered in the previous subsection, when
we talk about different standards. The question then reads how credible it needs to
be that a different standard is realized to such and such degree.

If some definitions require high credibility, e.g., by demanding that a certain
accuracy be demonstrated, this is well understandable. High credibility is a general
standard in the sciences. It is often expected that the sciences deliver knowledge,
which needs a high degree of credibility. It thus seems more than reasonable to keep
up the standards. However, there is also the question of which degree of credibility
can realistically be attained. This is a big theme in Oreskes et al. (1994), who argue
that typical results of simulations cannot be shown to be true.

The question of how much credibility is possible crucially depends on what pre-
cisely is the object of validation. We can get as close as is possible to something like
a demonstration when we talk about one result with a specified accuracy, e.g., that
the value of a temperature is in a certain range. If we have a measurement of this
temperature, we can check whether the temperature is in the range specified by the
simulation result. Even if this is the case, this does not amount to a proof that the
result is accurate enough, since the measured value of the temperature may be wrong
due to errors in the measurement. This is why measurement errors have to be taken
into account when simulation results and real data are compared. Consequently, what
can at most be attained is a high credibility of the claim that a simulation result and
a measurement outcome are compatible within some specified accuracy. This is not
proof, but it comes as close as one can get to show that the results are as accurate as
has been specified.

But a situation in which we can directly compare simulation results with mea-
surement results in the way described is neither particularly interesting nor common.
It is not interesting, because simulations are barely needed if we have measured
results about the characteristics of interest (at least if the measurements are highly
credible). It is not common because we often lack measurements corresponding to
the outputs of computer simulation. This is so if the results refer to the future or to
unobservable characteristics. The problem is even more significant when we turn to
the validation of whole computer simulation models, because they can yield a lot of
results depending on the initial conditions set.

In such cases, the credibility of the results cannot be directly established by com-
paring with data. Rather, we need some argument to the effect that the results are
such and such accurate. The argument will start from certain premises that support
the conclusion that the result is such and such accurate. Depending on how credible
the premises are and how strongly they support the conclusion, the claim that the
result is such and such accurate is made more or less credible. It is no surprise then
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that frameworks inspired by argumentation theory have been proposed for validation.
Baumberger et al. (2017b) develop a framework for arguing that projections from
climate simulations get it right, but their account can easily be extended to other
simulations. Saam in Chap. 18 in this volume uses Toulmin’s model of argument to
propose a framework for validation.

As far as the concept of validation is concerned, it seems prudent not to require a
specific degree of credibility for successful validation. It is more appropriate to stip-
ulate that validation determines the degree to which a simulation (result) is credible.
Even results that are not highly crediblemay be useful, for instance, in the framework
of Bayesian decision theory, or if the question is whether there is a certain risk at
all (see Resnik 2003). Oreskes et al. (1994) are certainly right to stress that some-
thing as cogent as mathematical proof is not possible in validation. In this respect,
the definition SCS-Val is too strict since it requires demonstration of a certain accu-
racy. To what extent arguments allow for a high credibility of simulation results is a
philosophical question to which we return in the next subsection.

2.4.6 Difference 5: Empirical Methodology

Some definitions of validation, e.g., Val-Roache and Val-Mäs, constrain validation
by requiring a certain method, viz., the comparison between outputs or results from
the simulation with measured data. We assume that the measurements need not
come from experiments proper (as suggested by Val-Roache), but may also stem
from mere observations (e.g., astronomical observations). We further take it that the
comparison between simulation outputs andmeasured data refers to a limited number
of data points (i.e., characteristics at certain times and certain locations) that do not
exhaust the actual results of a simulation, not to mention the possible results that
may be obtained from running a code. Consequently, an inference is necessary that
mediates between the comparisons between simulation output andmeasured data, on
the one hand, and additional (possible) results from the simulation, on the other. This
inference can be cast as an argument. It is inductive in the sense that the premises
(which state a certain agreement between simulation output and measured data),
even if true, do not guarantee that the conclusion (that additional results hold) are
true. In typical cases, the inference runs from certain times (for which a comparison
between simulation output and measured data has been made) to other times (for
which a prediction ismade); or from some types of situations (forwhich a comparison
between simulation outputs and measurements was available) to others (which are
described in terms of different initial conditions and parameter values). The inference
is much more dangerous when it runs from some types of characteristics (that have
been found to agree between simulation and measurements, e.g., temperature) to
others (e.g., precipitation, for which predictions are of interest).

Is it a good idea to require per definition that validation be carried out via com-
paring simulation output and measured data, for short: that it is data-driven (see
Roache 2013, pp. 71–72 for a brief discussion)? The answer depends on two further
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questions: 1. What is the significance of a comparison between simulation output
and measured data? 2. Are there any alternative methods that can have a comparable
significance for validation? Let us take both questions in turn.

1. Assume for the sake of the argument that simulation outputs and measured
data agree within a certain range of accuracy to some credibility. To simplify the
presentation, we will now suppress talk of accuracy and credibility of the agreement.
What does the agreement mean for other outputs from the simulation? It is clear that
there is no guarantee that other outputs from the simulation have the same accuracy.21

Logically speaking, the situation is like this: We have a simulation or a broad set of
(possible) simulation outputs. Both give rise to a broad set of claims (viz. that the
outputs reflect the values of characteristics in the target system). This set of claims
can be regarded as something like a theory, a model or a strong hypothesis from
which a lot of specific claims about values of characteristics from the target system
follow. Some of the latter claims have been found to agreewithmeasured data, but the
hypothesis has excess content. Inferring the hypothesis from the agreement would
constitute an inductive inference.

The question of what can be rationally inferred in this situation is controver-
sial in philosophical circles. Popperians shun inductive inference from science since
they take it that Hume has shown induction to be irrational (see Beven, Chap. 6 in
this volume for a Popperian outlook; see also Chap. 27 by Roache). Consequently,
the agreement between the simulation outputs and the measurements for some data
points has no significance. Popperians instead focus on the falsification of scientific
hypotheses in terms of observations. The simulation (for instance qua underlying
model) could have been falsified by comparing the simulation outputs and the mea-
surements. In this case, the simulation should have been rejected. If falsification fails
despite severe testing, a hypothesis or a simulation is said to be corroborated, but
this is not supposed to mean that it has become more credible.

Other philosophers think that a hypothesis is to some extent confirmed if some
of its consequences agree with measurements. Here, confirmation is much less than
proof, the idea rather being that some case, however minimal, for the hypothesis has
been made (see Hempel 1945, Sects. 1–2 for basic clarifications). This is expressed
in quantitative terms in Bayesian epistemology, where credibility (for some person)
is expressed in terms of probabilities. Using Bayesian updating, the credibility of a
hypothesis is increased if it coincideswith observed evidence (seeChap. 7 byBeisbart
in this volume). For Bayesians it depends on the credibility of other hypotheses
(or the agent’s probability function over a whole set of hypotheses) how much the
credibility of some hypothesis (here e.g., a simulation model) is raised. This seems

21This is even true for outputs within the so-called validation domain (see e.g., Oberkampf and Roy
2010, pp. 39–44). This domain is often constructed from the data points for which measurements
and simulation outputs have been obtained. The idea is that these points sample a larger domain
for which the simulation has been validated. As is rightly stressed, quite often a lot of intended
applications are not from the validation domain. But the so-called validation domain too is only
sampled using a limited number of data points. So there is no guarantee that the simulation works
as intended even in the validation domain. This is not to deny that it is often reasonable to trust
results obtained in the validation domain.
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appropriate, because it often depends on background knowledge to what extent an
inductive inference can legitimately raise one’s confidence in the conclusion. This
point is stressed too by J. N. Norton’s account of induction (see e.g., Norton 2003).
Very roughly, for Norton, particular inductive inferences must be underwritten by
known facts to be legitimate. In a similar vein, Harman (1965) suggests that it is only
reasonable to infer from a limited sample of data points to a more general hypothesis,
if this is implied by the best explanation we have for the data points.

So independently of whether we follow Bayesians, Norton or Harman, the sig-
nificance of the agreement between some outputs and measurements for a broader
hypothesis (e.g., that a certain simulation model is accurate more generally) cru-
cially depends on the context. The extent to which we can rationally take the broader
hypothesis credible is a function of what we know otherwise. This is as it should
be. For instance, it is a substantial question of whether a simulation the outputs of
which match observed values of the temperature, can predict precipitation too. This
question cannot be answered a priori but needs to be addressed to make an inference
from agreement about temperature to predictions of precipitation and thus to validate
a simulation more broadly.

What then is required to answer this question in practice? One option is knowl-
edge that a model describes the interconnections between certain characteristic (here
temperature and precipitation) appropriately because it represents the underlying
mechanisms appropriately. Then, if there is strong evidence that the temperature is
correctly described by the model, it is likely that the model describes precipitation
well too (cf. Baumberger et al. 2017b). A slightly different option (cf. Chap. 41
by Frisch in this volume for a similar case) is some trust that a model describes a
certain range of aspects of the target system well (here we assume that the range of
aspects has been fixed e.g., by knowledge about how the model was constructed). If
the model is then shown to agree with measured temperature, for instance, then we
may say that the model as a whole has been confirmed, as far as the fixed range of
aspects is concerned. In the terms suggested by Harman, we may say that the best
explanation for the agreement is that the model does indeed work well for the whole
range of aspects. If precipitation is one of these aspects, we can reasonably infer that
the model can predict precipitation too (to some accuracy, with some credibility). It
is, of course, a substantial question whether it is in fact part of the best explanation
of the agreement that the model is good in the whole range of aspects.

To sum up then, if we don’t turn Popperian and deny that inductive inference can
bestow any credibility (and I have no hesitation to reject the Popperian view), then
we should say that the significance of the agreement between simulation output and
measured data depends very much on the context. What scientists can reasonably
infer depends on what they know about the simulation and the target system.22

2. The second question is whether there is any alternative to validation in terms of
comparing simulation outputs tomeasured data. In termsof arguments, the question is
whether we can use different premises to make a case for results from a simulation.

22In Chap. 41 in this volume, Frisch addresses the question of how significant agreement between
simulation outputs and measured data is if the simulation has been tuned to agree with the data.



62 C. Beisbart

There seems to be a case for a positive answer as follows: To make results of a
simulation credible, we can argue that the simulations incorporate a model that has
been confirmed a lot. Suppose for instance that we have a system of almost rigid
bodies, for which Newton’s laws and some force law are known to hold with high
accuracy. Suppose further that we know very well the geometry of a container in
which they are enclosed (i.e., the boundary conditions) and their initial positions and
velocities. Then we have a strong argument from prior knowledge (or something
close to it) to the accuracy of the conceptual model.23 Suppose now further that
this model has been implemented in a computer simulation and that the simulation
can be shown to approximate the solutions to the conceptual model with sufficient
accuracy. This is to say that the simulations have been verified. Then it follows that the
computational model is accurate to some degree (see Chap. 42 by Beisbart for a more
elaborate version of this argument). Altogether, we seem to have an argument for
the accuracy of the simulations that is not built on a comparison between simulation
output and measured data. So we seem to have validation that is not data-driven (cf.
Parker 2008, pp. 170–171 for this strategy).

But there are a number of problems with the claim that validation may not be
driven by data. First, the scope of such validation is very narrow. As Oreskes et al.
(1994) remind us, hitherto unknown causes may interfere with the target system and
e.g., change its geometry. This would invalidate the simulations. Also, very often,
only some part of the assumptions that enter a simulation is known to hold of the
target system, while others are only assumptions. If this is so, then the case suggested
for the accuracy of the simulation crumbles. As a consequence, there are very serious
limitations to validation that is not data-driven.

At a different, conceptual level, there are two other objections to the idea that
validation may not be data driven. It may first be objected that claims to the effect
that validation may not be driven by data are a cheat because the argument that is
given for the accuracy of the simulations implies that validation has already been
achieved before. But this objection is too quick. It is true that somevalidation has been
achieved before, and in this sense, the proposed form of validation is derivative. But
the validation thatwas in fact done before applies to the assumptions of the conceptual
model and not to the simulations. Some crucial assumptions from the conceptual
model may be drawn from a theory and thus have been confirmed using data from
systems different from the target. The validation of the simulations consists of a new
argument that takes the validation of the conceptual model as one premise and the
verification as another. This is a new argument that validates a certain simulation.

The second conceptual objection is as follows: The type of validation that has been
proposed as not driven by data just boils down to prediction. But again this objection
is too quick. A prediction is just a claim. But the proposed form of validation is not
just a claim but rather an argument that is supposed to support predictions.

The upshot then is that there is in principle a method that can be used to make
simulations and their results credible and that is not driven by data. This is some case

23In the terms of Fagiolo et al. (Chap. 31 in this volume), showing that the model is adequate in
this way would qualify as input validation.
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for a notion of validation that does not always require the comparison between simu-
lation outputs and measured data. This conclusion accords very well with the answer
we have suggested for the first question, viz. that the significance of an agreement
between simulation outputs and measurements is somehow limited because we need
knowledge about the model and its relation to the target to infer the credibility and
accuracy of other results. Despite this, it may still be argued that validation does need
a comparison between simulation outputs and measurements, for instance, because
this is a well-established understanding of validation (Carnap’s similarity). In any
case, whatever, we think about the possibility of a form of validation that is not
data-driven, it is true that, in practice, the comparison between simulation output and
measured data is most often absolutely needed for validation.

As far as data-driven validation is concerned, we may ask how far this method can
be pushed. In particular, can the agreement between simulation output and measured
data be used to show that not just further results, but also the model assumptions
are true or sufficiently accurate? To raise this question is effectively to ask whether
the validation of a simulation is exhausted by validation of its (possible) results or
whether it can address the underlying model assumptions too.

Consider thus the following setting: A simulation, i.e., the conceptual or the com-
putational model, assumes a certain structure for the target, i.e., certain components
with such and such properties and such and such mutual relationships. Suppose that
this structure cannot be compared to the structure of the target system because the
latter is not fully known. For instance, an agent-based simulation assumes that a
certain group of people have such and such beliefs and behave following these and
these rules, although it is not known whether the rules hold of the target system.
The hope is nevertheless to make a case that the model structure is correct, at least
to some combination of accuracy and credibility, and thus to validate the model in
the following way: The model is run using a computer simulation, some observable
consequences of the model structure (e.g., about prices on a certain market) are taken
and compared to measured data. The hope then is that agreement between the model
output and measurements makes a case for the structure of the model being correct.
Following Chap. 31 by Fagiolo et al. in this volume, we may call this structural
validation.24

It is in principle correct that the confidence in a model structure is boosted in
this way. For instance, in the terms of Bayesian conditionalization, it can be shown
that the confidence in the model structure increases if the prior probability of the
observed data is smaller than the probability of the data given the model structure.
Since the latter probability is very high in our setting, there will most often be a
boost in credibility. However, this boost in credibility may be very small and, often,
the overall credibility reached for the model structure will not be very high if there
are other model structures that produce the same effects about the data (cf. Chap.
32 by Beven in this volume). What is more realistic is that a small subset of model
assumptions become quite credible if they were combined with very well-confirmed

24If the focus is on the conceptual model and its structure, then verification is crucial for this sort
of validation.



64 C. Beisbart

model assumptions and if there was good agreement between simulation output and
measured data.

It may be objected that structural validation can make a model very credible, if
the model is inferred to be the best explanation of the data to which the simulation
output has been compared. But what can be established with the simulation alone
is at best a how-possibly explanation of some data, i.e., a possible way in which
the latter may have been produced. It’s a significant further step to argue that the
explanation is best and thus true. In particular, it is arguable that theoretical virtues
that go beyond cred(acc) are relevant for this step, and it is debatable whether such
standards should matter in validation. The consequence is that it is debatable too
whether or not structural validation should appeal to such virtues.

Altogether, structural validation is possible in the sense that agreement between
simulation output and measured data can increase the confidence in assumptions that
underly a simulation. But very often, structural validation will not reach a high level
of credibility, and it is arguable that genuinely explanatory concerns that hinge on
simplicity, etc., should not matter in structural validation.

2.5 Conclusions

To conclude, let me summarize the main results of our discussion. The definitions
of validation of simulations that I have looked at concur in taking validation to be an
evaluation. But there are disagreements about what is evaluated, what the standards
of evaluation are,what type of verdict the evaluation results in, what sort of cogency is
required and whether the evaluation proceeds only in terms of a comparison between
simulation output and measured data.

We can put this together by proposing a scheme for definitions of validation. The
scheme leaves certain lacunae that may be filled in different ways, which leads to
various full definitions of validation:

Validation of computer simulation is a ___________(3b) ___________(3a) evaluation of
___________(1) following the standards ___________(2) with cogency ___________(4)
and using ___________(5)

The numbers follow the numbers of the differences noted in Sect. 2.4 above.
Lacuna (1) is to be filled with the proper object of simulation validation. Natu-

ral candidates are simulation results, the simulation codes, the computational or the
conceptual model. The different ways to fill the lacuna do not really lead to sub-
stantial disagreement because they lead to different types of validation: validation of
results, a code, etc., and it is clear that we want to leave space for the validation of
results, code etc. To make this clearer we may define not the validation of computer
simulation (as our scheme suggests), but rather the validation of ___________(1).
But our discussion suggests that, what is really of most interest, is the validation
of a simulation code or, equivalently, the computational model for some range of
intended applications, where this is equivalent to the validation of a huge range of
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results that may be obtained using the code. What is also of interest is the validation
of the conceptual model, which is typically different from the computational one.
An interesting question is to what degree models, be it conceptual or computational
ones can be validated not just concerning their predictions, but also their underlying
model assumptions.

The lacuna (2) is for the standards appealed to in validation. The most natural
candidate is what we have called cred(acc) in certain respects, i.e., credibility of
accuracy regarding certain characteristics. What is often mentioned too is adequacy
for purpose. I have argued that this standard can to some extent be unpacked using
accuracy and credibility. But some people might want to include other standards such
as simplicity.

The lacunae (3a) and (3b) are supposed to specify the kind of evaluation or, more
specifically, the type of verdict that is reached. What is meant here is difficult to
express in natural language, so let us coin technical terms. Let us say that evaluation
is binary if it only allows for the outcomes “requirements met” and “requirements not
met”; otherwise, it is called nonbinary. Lacuna (3a) is thus to be filled with “binary”
or “non-binary”. If the “binary” is chosen, lacuna (3b)may be filledwith “successful”
or be left as it is. In the first case, the idea is that validation is only achieved if it the
requirements are met.

Lacuna (4) allows one to require a specific degree of credibility. Otherwise, the
lacuna is just canceled.

Lacuna (5) permits one to stipulate that all validation is done via a comparison
with empirical data. Otherwise, the lacuna is dropped.

In this chapter,we have discussed severalways of filling the lacunae. This is not the
place to decide between the options and to settle on a unique definition of validation.
It is a task for future research to see whether a unique definition of validation can
usefully be applied in different fields. The answermaywell be no. It may turn out that
some lacunae can only be filled relative to purposes that are specific to a discipline,
a type of simulation, etc. This is not a problem at all as long as simulation scientists
make clear in which sense they talk about validation.
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Chapter 3
Simulation Accuracy, Uncertainty,
and Predictive Capability: A Physical
Sciences Perspective

William L. Oberkampf

Abstract Most computational analysts, aswell asmost governmental policy-makers
and the public, view computational simulation accuracy as a good agreement of
simulation results with empirical measurements. However, decision-makers, such as
business managers and safety regulators who rely on simulation for decision support,
view computational simulation accuracy as much more than agreement of simula-
tion results with experimental data. Decision-makers’ concept of accuracy is better
captured by the term predictive capability of the simulation. Predictive capability
meaning the use of a computational model to foretell or forecast the response of a
system to conditions without available experimental data, even for system responses
that have never occurred in nature. This chapter makes this important distinction
by discussing the crucial ingredients needed for predictive capability: code verifi-
cation, solution (or calculation) verification, model validation, model calibration,
and predictive uncertainty estimation. Each of these ingredients is required, whether
the simulation results are used in the generation of new knowledge, or for decision
support by business managers, government policy-makers, or safety regulators.

Keywords Verification · Validation · Uncertainty quantification · Predictive
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3.1 Introduction

Computational simulation plays an ever-increasing role in scientific research, busi-
ness pursuits, and government activities. Combined with dazzling computer graphics
and phenomenal temporal and spatial resolution, computational simulation is reveal-
ing details of physical processes and systems never seen before. From a historical
perspective, however, computational simulation is newfound in its contributions to
human activities and scientific knowledge, and therefore is not considered a mature
and trustworthy provider of knowledge and information. While some may find this
characterization unduly harsh, it can be argued that the history of the natural sci-
ences, including both the theoretical and experimental traditions, required centuries
of development and refinement to be considered trustworthy. Even then, some of
the foundational concepts were occasionally destroyed and rebuilt on a more solid
underpinning.

Computational simulation is extraordinarily interesting not only because of its
potential capability in essentially every aspect of human activity, but also because it
intertwines the modeling of real-world systems, mathematics, and high-performance
computing. With the ever-increasing worldwide access to high-performance com-
puting, the growth of computational simulation will only accelerate in the future.
The issues addressed in this chapter, as well as other chapters in this book, deal
with the accuracy and uncertainty of simulation results, the ability of simulations to
predict future events (most never seen before), and how simulations are increasing
their influence on decision-making in business, governmental policy, and regulatory
safety. This chapter addresses the simulation of any type of inanimate (nonliving)
physical system. Such simulations can deal with physics, engineering, chemistry,
astronomy, earth sciences, atmospheric sciences, and oceanography.

Over the last four decades, many simulation communities have interpreted the
accuracy assessment of computational simulation to be composed of two distinct
activities: verification and validation. Most communities consider that verification
deals with numerical solution accuracy and software correctness issues. A major
exception to this perspective is the atmospheric sciences community. Their perspec-
tive will be discussed in Sect. 3.2: Foundational issues in simulation credibility.
Validation, sometimes referred to as external model validation, has a wide range of
interpretations; sometimes even contradictory interpretations between communities.
For example, the computer software community has very different interpretations
of the terms verification and validation, compared to many simulation communi-
ties. Section 3.2 discusses some of these diverse interpretations and the widespread
confusion and conflict in terminology of verification and validation.

The root cause of the diverse perspectives of the terms verification and validation is
most likely that they are both closely related to the concepts of truth and correctness.
These concepts are certainly appropriate from a philosophical perspective, but these
concepts are ineffective and unproductive from a practical perspective. Truth and cor-
rectness are absolute concepts; seldom of importance in the use of most simulations,
such as design of technological systems and governmental policy questions. The vast
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majority of simulations occur in a setting where two practical issues are central. The
first issue is the adequacy of the estimated accuracy of the simulation for the goal or
task at hand. For example, “Is the accuracy of the simulation adequate to meet the
requirements to answer a specific set of questions, such as a system design, safety, or
performance issue?” The second issue is the comprehensiveness or completeness of
the simulation. For example, “Does the simulation address the relevant issues for its
intended purpose over a specified range of conditions, such as varying operating con-
ditions, failure modes, or for a specified time into the future?” In a practical setting,
both adequacy and comprehensiveness are fundamentally impacted by the issue of
uncertainties in the inputs to the simulation, the uncertainty of the simulation results,
the adequacy requirements, and the comprehensiveness requirements. Most fields
of simulation have not tried to specifically separate all of these aspects. Section 3.2
discusses these issues and how many in the engineering community have not only
separated these issues, but have also segregated the issues of model calibration and
predictive capability.

Section 3.3 addresses the issue of verification, in the sense of numerical accuracy
and software correctness, with a brief description on the topics of code verification
and solution verification. Code verification deals with (a) testing whether numeri-
cal algorithms used in obtaining a numerical solution are correct and (b) assessing
software quality assurance issues. Solution verification, also referred to as calcula-
tion verification, deals with the estimation of numerical error of a given discretized
solution to a set of partial differential or integral equations. In many computational
simulations of interest, the mathematical model describing the process or system of
interest is given as a set of partial differential or integral equations.

Section 3.4 deals with model validation, as well as two closely related topics:
model calibration andmodel predictive capability.Model calibration is defined as the
use of empirical measurements to optimize or update parameters in the mathematical
model. Predictive capability is the ability of the mathematical model to foretell
the response of a system, including relevant uncertainties, for conditions which the
system has never experienced. Whether we are concerned with a time-dependent
system or a steady-state system, a prediction for the system means that there are no
experimental data/observations available for precisely the same conditions that we
are interested in at present. Somewriters, such as (Silver 2012), find it useful to make
a distinction between prediction and forecast, but that distinction is not useful here. It
should be noted thatmost simulation results that are reported are of the retrodiction or
postdiction variety, meaning that the experimental result or observation of the system
under consideration (or something very similar) is available to the computational
analyst beforehand.

The final section provides some concluding remarks dealing with the current
state of code verification, solution verification, validation, and predictive capability
in computational simulation. Observations are given concerning the general unreli-
ability of simulation results, whether they are published in journals or provided to
decision-makers, and what should be done to improve this unfortunate situation.
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Fig. 3.1 Mapping of input data �x through the mathematical model of the system of interest to
obtain simulation results �y Adapted from Oberkampf and Roy (2010)

3.2 Foundational Issues in Simulation Credibility

The process of the computational simulation ofmost physical systems can be thought
of as a mathematical mapping of input data, through a mathematical model, to obtain
the output data, as shown in Fig. 3.1. The input data can commonly be divided into
two categories: system input data and surroundings input data. The system data can
be further divided into geometric characteristics of the system, initial state condi-
tions, and the physical modeling parameters of the system. Examples of physical
modeling parameters are thermal conductivity, fluid viscosity, modulus of elastic-
ity, and refractive index. The surrounding input data can be divided into boundary
conditions and system excitation. System excitation refers to how the surroundings
affect the system other than through the boundary conditions. Some examples of
system excitation are gravity, electric fields (or magnetic fields) acting on a system,
and vibrational excitation of the system from the surroundings; sometimes referred
to as body forces and moments. The surrounding input data provide independent
information on how the surroundings influence, and sometimes interact with, the
system of interest.

All of the input data is represented as the vector �x , which can have a length
of hundreds to thousands of elements. The mathematical model f (�x) is commonly
given by a set of partial differential equations (PDEs) or a set of integrodifferential
equations. For simplicity, both types of equations are referred to as PDEs. PDEs
are presumed to be of such complexity that their solutions can only be obtained
by an approximate numerical solution on a digital computer. The output data from
the mathematical model is referred to as the system response quantities (SRQs) and
represented by the vector �y. The SRQs can be local quantities within the solution
domain on the PDEs, such as dependent variables of the PDEs. They can also be
global quantities, such as an integral quantity, e.g., lift and drag of an aircraft, total
strain energy within a structure, or net heat flux out of a system.

Simulation credibility deals with the assessment of the accuracy of �y with respect
to some true value or referent,whether or not it is knowable ormeasurable.As a result,
there are three central issues in the quantitative assessment of simulation credibility:
(a) how is �y compared to the true value?, (b) what is regarded as the true value?,
and (c) what is the requirement for the simulation result to be considered credible or
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adequate by the user or customer of the simulation? There are a multitude of both
technical and practical complexities involved in comparison assessment, defining
the true value, and specifying adequacy of the simulation. Most fields of simulation
have developed their own approaches for dealing with some of these issues, but few
have clearly separated and dealt distinctly with each of them. Although it is beyond
the scope of this chapter to address how various fields address these issues, a few
comments on each are included.

Quantitative comparison of simulation results with the true value can take many
forms. In some simulation communities, this field of research is now referred to
as the construction of validation metrics. Section 3.4: validation, calibration, and
prediction discuss this topic, as well as other chapters in this volume (e.g., Chap. 13
byMarks and Chap. 18 by Saam in this volume). The central issue in the construction
of quantitative comparison measures, or validation metrics, is “What features of
the simulation result relative to the true value are important to the customer of the
simulation?” Stated differently, the method of comparison of the simulation result
with the referent should directly incorporate what features are important to the user
of the information produced by the simulation. Some examples of simulation results
that can be assessed with regard to the true value in increasing level of detail and
difficulty are (a) global quantities for a boundary value problem, (b) global quantities
for an initial-boundary value problem, (c) specified statistical features of the response,
and (d) the time-dependent response of a local quantity in the solution domain. A
major complexity that enters into the issue of comparison approaches is uncertainty
in either or both the simulation result and the true value.

There are normally many true values because each true value (or function) is true
for a specific situation of the physical system. As a result, the true value or referent
is more complex than many people realize. For example, even assuming that a set
of PDEs has a unique solution for each initial/boundary value problem, there is an
infinite set of true solutions, one for each set of input data. Note that the infinite
set occurs even if input data is deterministic, i.e., the input data, the mathematical
model, and the solution are not even stochastic. If the true value is defined as the
exact solution to the mathematical model, then the activity of comparison is referred
to in most communities as verification. This type of accuracy assessment is entirely
focused on the accuracy of the numerical solution of the PDEs and has nothing to do
with ability of the mathematical model to replicate the physical system of interest.
Some engineering communities have emphasized the importance of this activity,
which is discussed in some detail in Sect. 3.3: verification activities, as well as other
chapters in this volume. If the true value is defined as experimental measurements
of the system, as discussed in Sect. 3.4 of this chapter, then most communities refer
to this activity as validation. However, the atmospheric sciences community refers
to this concept of validation as forecast verification. Jolliffe and Stephenson (2011)
define forecast verification as “the process of summarizing and assessing the overall
forecast quality of previous sets of forecasts.”

If the true value is defined asmeasurements from an experiment, the uncertainty of
themeasurement of the true value is a never-ending issue.Whenmeasurement results
are available, or any type of empirical observations of the system is available, these
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results can be used to assess the accuracy of the model. A more common simulation
situation is when the input data to the model are adjusted to obtain improved agree-
ment of the simulation with the empirical results. Adjusting the model or the input
data, given observations of the system, is referred to as solution of the inverse prob-
lem. This topic, model calibration, is further discussed in Sect. 3.4 and in Chap. 41
by Frisch in this volume.

If the true value is an unknown quantity then, no quantitative assessment of accu-
racy can be obtained. This situation is the most common situation in the assessment
of simulation credibility because most simulations address, at least in part, situations
that have never been empirically observed. Similar situations to the simulation result
may have occurred in recorded history, but not the specific situation that is simu-
lated. Some examples include failure of a bridge design, impact of a new drug on
human organs, long-term underground storage of high-level nuclear material, and the
impact of CO2 on global warming. When the true value is not known, the accuracy
of the simulation is assessed in qualitative and subjective terms, such as face vali-
dation, believability, plausibility, and reasonableness. Even if comparisons are made
between results of various competing models, this is still a qualitative assessment of
credibility in the sense that there is no assurance that any of the models are correct.

The requirement for the simulation to be considered credible or fit-for-purpose
for the intended use of the simulation is rarely addressed in most communities.
This requirement must be judged relative to the accuracy of the simulation relative
to the true value, even if the true value is also unknown or uncertain. In addition,
the adequacy requirement should be set by the customer of the simulation; not the
simulation analyst. In practice, if the customer does state a requirement, the accuracy
requirement is not commonly satisfied initially. The customer may then loosen the
requirement or use the simulation results in a different way than originally intended.
The customermay also provide additional time and funding to improve the simulation
results, obtain new experimental measurements, or obtain improved estimates of the
true value.

Certain engineering and hydrology communities (Beven 2002; Refsgaard and
Henriksen 2004; Rykiel 1996) have specifically separated the issues of accuracy
assessment, definition of the true value, and simulation accuracy requirements. If the
true value is unknown, then the adequacy requirement is entirely focused on the issues
of uncertainty estimation in both the simulation result and the true value. Thus, as
opposed to attaining the truth, the focus shifts completely to uncertainty estimation,
physical-based principles, statistical inference, and adequacy for intended use of the
simulation. Two engineering societies in the United States, the American Institute
of Aeronautics and the American Society of Mechanical Engineers, have codified
this practical framework into engineering standards documents (AIAA 1998; ASME
2006, 2009, 2012).
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3.3 Verification Activities

Verification activities can be split into code verification and solution verification
activities.

3.3.1 Code Verification

Code verification deals with two separate technical issues: (a) software quality assur-
ance (SQA) practices and (b) testing the numerical algorithms used in obtaining a
numerical solution (Oberkampf and Roy 2010; Roache 2009, 1972). SQA empha-
sizes determining whether or not the computational code is correctly programmed,
e.g., coding errors have been removed and the code produces repeatable results on
specified computer hardware and system software. The system software includes
the computer operating system, compilers, libraries, data communications software,
and data storage software. SQA focuses on the code as a software product and
assessing its reliability and robustness from the perspective of software engineering.
SQA procedures are particularly important during software development and soft-
ware modification. Numerical algorithm verification addresses the reliability of the
implementation of the numerical algorithms that affect the numerical convergence
characteristics of the code. In other words, the numerical algorithm verification pro-
cess focuses on accuracy and reliability of the numerical algorithms to approximate
the solution to the original mathematical model of the system of interest, e.g., the
PDE or integro-differential equations.

Numerical algorithmverification is fundamentally empirical, i.e., the activities are
based on observations of performance, consistency, and convergence characteristics
of the code for specific test cases. The goal of numerical algorithm verification is to
accumulate sufficient evidence for a wide range of specific solutions to demonstrate
that the numerical algorithms in the code are implemented correctly and functioning
as intended. The most common technique for testing the numerical algorithms is to
compare the numerical solutions obtained with the correct answer. (This technique,
as well as others, is discussed in Knupp and Salari 2002; Oberkampf and Roy 2010;
Oberkampf and Trucano 2008; Roache 2009.) In this sense, numerical algorithm
testing is an error evaluation procedure as opposed to an error estimation procedure.
The correct answer to the mathematical model is obtained from analytical solutions,
manufactured solutions, or very accurate (i.e., benchmark) numerical solutions. As
a result, the testing is case specific, meaning that the testing can only be exercised in
a relatively small number of specialized cases. Therefore, these cases assume very
important roles in code verification and should be carefully formalized and well
documented in test plans for both the computational analyst and the customer of the
simulation.

The most challenging aspect of code verification is the generation of accurate
solutions for a wide variety of mathematical, usually nonlinear, models. Oberkampf
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and Trucano (2008) defined four categories of highly accurate solutions in terms
of strong-sense benchmarks for code verification. Many researchers recognize that
analytical solutions constructed by the method of manufactured solutions (MMS)
can be the most powerful and effective approaches to generating benchmark solu-
tions. Manufactured solutions are solutions to a class of mathematical models in the
sense that the class is not restricted to any specific set of initial or boundary condi-
tions. This results in significantly larger coverage of solution features as compared
to traditional analytical solutions. An additional feature of manufactured solutions
is that they are not restricted to mathematical models of physical reality. This occurs
because the assumption of a manufactured solution happens at the very beginning of
the process, as opposed to the traditional process of obtaining analytical solutions.
Using this assumed solution, the right side of the original PDE is modified, resulting
in nonphysical solutions. As long as these nonphysical solutions do not cause math-
ematical difficulties, such as negative temperatures or density, then these solutions
provide an effective test. Some researchers, who are unfamiliar with MMS, view this
shift to nonphysical solutions as making the method irrelevant to verification of their
software. This view is erroneous because the purpose of code verification is testing
the software and the numerical algorithms, not testing of the fidelity of the physical
principles in the models. Thus, code verification is focused on testing of the software
and the numerical algorithms that are used to solve a general set of PDEs. In the case
of MMS, the right side of the original PDE is modified to achieve a much broader
class of analytical solutions to a modified PDE that is closely related to the original
mathematical model of the system of interest. (See also Chap. 11 by Rider and Chap.
12 by Roache in this volume.)

Trucano et al. (2005) noted that when solving complex systems of PDEs, a com-
putational analyst finds it virtually impossible to decouple the distinct problems
of mathematical correctness, algorithm correctness, computer hardware and oper-
ating system features, and problem-specific software implementation correctness.
For instance, algorithms often represent non-rigorous mappings of the mathemati-
cal model to the underlying discrete equations. Whether such algorithms produce
correct solutions to the PDEs cannot be assessed without executing the code on spe-
cific problems; the execution of the code is, in turn, coupled to the hardware and
software implementation. One consequence of coupling mathematics, algorithms,
computer hardware, and the software implementation is that the source of a numer-
ical inaccuracy cannot always be easily identified. As simulations become more
complex in terms of coupled physical processes and stochastic systems, the overlap
between mathematical model complexities, discrete mathematics, SQA, and mas-
sively parallel computing will become more intertwined and much harder to dissect
and understand.
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Fig. 3.2 Three types of error sources in solution verification

3.3.2 Solution Verification

Solution verification, also referred to as calculation verification or numerical error
estimation, deals with the estimation of the numerical error of a given discretized
solution to the PDEs. The goal of solution verification is distinctly different from that
in code verification. That is, the primary goal of solution verification is to estimate the
numerical accuracy of a discrete solution to the mathematical model of the system
of interest for specific input data. Solution verification is dependent on the quality
and completeness of code verification. Code verification could be described as the
detailed exploration of solutions to a set of specializedmathematicalmodels, whereas
solution verification is the identification and estimation of numerical errors that are
site specific to problems of interest to the computational analyst and the simulation
customer.

Solution verification attempts to identify and quantify three sources of errors that
can occur in the exercise of a simulation code (Fig. 3.2):

• Errors, blunders, or mistakes made by the computational analysts in preparation
of the input data for the simulation code;

• Numerical solution errors resulting from computing the discretized solution of the
mathematical model; and

• Numerical errors, blunders, or mistakesmade by the computational analysts in any
processing or presentation of the output data that is produced by the simulation
code. (See also Chap. 5 by Roy in this volume.)

The first error source excludes errors or approximations made in the formula-
tion or construction of the mathematical model. This important source of error will
be discussed in Sect. 3.3: validation, calibration, and prediction. Human errors and
unintentional misuse of simulation software packages are key components in the first
and third sources of error. The human component is rarely discussed or addressed
in simulation results, except in simulations conducted for high-consequence sys-
tems. Human errors can be difficult to detect, even in relatively small-scale analyses,
because they are usually procedural or simulation-process errors. Fields that deal
with these types of errors, such as human reliability assessment, have found that
procedural or independent data checking methods are the most effective for identifi-
cation of these types of errors. For example, if a solid mechanics simulation contains
tens of computer-aided design (CAD) files, perhaps hundreds of different material
models, and thousands of Monte Carlo simulation samples, then human errors, even
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by the most experienced and careful practitioners, commonly occur. (For a more
detailed discussion of these error sources, see Neumann 1995; Oberkampf and Roy
2010; Reason 1997, 2008.)

The second error source shown in Fig. 3.2, numerical solution errors, includes
errors that occur due to the computation of the discrete solution to the mathematical
model on a digital computer. With modern computer hardware using a 64-bit word
length, computer round-off errors rarely are a significant source of error. Iterative
solution errors are those caused by incomplete iterative convergence of the numerical
methods used to solve the discrete form of the equations of the mathematical model.
For example, if one has a nonlinear boundary value problem as the mathematical
model for the system of interest, then the iterative solution error is due to a nonzero
residual of the discrete equations for a given spatial mesh resolution. Several reliable
methods are available for estimating and controlling the iterative solution error. (See
Duggirala et al. 2008; Ferziger and Peric 2002; Golub and Van Loan 2013 for a more
detailed discussion.)

Themost troublesome error source in the second block in Fig. 3.2 is the discretiza-
tion error. This is troublesome not only because it is typically the largest source of
error in solution verification, but also because it is difficult to estimate in most practi-
cal problems of interest. Discretization error is the numerical error due to the discrete
approximation of the mathematical model for the specific set of input data character-
izing the system of interest. This error exists regardless of what numerical method
is used, e.g., finite element methods, finite difference methods, spectral methods, or
mesh-free methods.

For the most common numerical methods, such as finite element and finite differ-
ence methods, the key issue is estimating and controlling the error due to spatial and
temporal discretization of PDEs. The two basic approaches for estimating the dis-
cretization error are a priori and a posteriori error estimation techniques (Ainsworth
and Oden 2000; Babuska and Strouboulis 2001; Oberkampf and Roy 2010; Roache
2009; Verfurth 2013). An a priori technique only uses information about the numeri-
cal algorithm that approximates the given PDE and the given initial conditions (ICs)
and boundary conditions (BCs). An a posteriori approach can use all the a priori
information as well as the computational results from previously obtained numerical
solutions, e.g., solutions using different mesh resolutions or solutions using different
order-of-accuracy methods. The last two decades have clearly shown that the only
way to achieve a useful quantitative estimate of discretization error in practical cases
for nonlinear PDEs is by using a posteriori error estimates.

A posteriori error estimation methods can be categorized as either higher order
estimators (Type I) or residual-based estimators (Type II) (Roy 2010). The Type I
methods involve post-processing of the solution (or multiple solutions) and include
Richardson extrapolation, order extrapolation, and recovery methods for finite ele-
ments. The Type II methods employ additional information about the problem being
solved and include discretization error transport equations, defect correction meth-
ods, adjoint methods, and implicit/explicit residual methods for finite elements.
Regardless of the approach used for estimating the discretization error, the relia-
bility of the estimate depends on the solutions being in or near the asymptotic mesh
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convergence region. Since complexity of the physical principles in the mathematical
models has increased significantly over the last few decades, attaining the asymptotic
convergence region or determining if you have attained it is extremely difficult. The
spatial and temporal discretization resolution required to attain asymptotic conver-
gence is computationally unaffordable onmost complex problems, even onmassively
parallel computers. (For amore detailed discussion of solution verification, see Chap.
11 by Rider in this volume.)

3.4 Validation, Calibration, and Prediction

3.4.1 Model Validation

3.4.1.1 The Restrictive Concept of Model Validation

This section discusses two of the three issues presented in Sect. 3.2 that deal with
simulation credibility: (a) the comparison of simulation results with the true value
and (b) defining the true value. The restrictive concept of model validation is a
perspective that has been developed, debated, and tested over the last two decades
and has been found to be extremely useful in engineering and the natural sciences.
The perspective has been adopted by various engineering societies in the US (AIAA
1998; ASME 2006, 2009, 2012) and some simulation communities in Europe. The
hydrological and atmospheric sciences communities have also struggled with the
concepts of validation, calibration, and predictive capability and have come to similar
perspectives to that presented here (Anderson and Bates 2001; Beven 2002; Chiles
and Delfiner 1999; Jolliffe and Stephenson 2011; Refsgaard and Henriksen 2004;
Rykiel 1996; Wilks 2011).

Model validation, as defined here, is focused on the assessment of the error due
to the approximations and assumptions made in the formulation of the conceptual
and mathematical models. The conceptual model comprises all relevant informa-
tion concerning the system of interest, modeling assumptions, simplifications, and
approximations regarding the processes of interest within the system, as well as
specification of the interaction of the surroundings with the system of interest. The
mathematical model is the quantitative embodiment of the mental abstraction given
in the conceptual model. The procedure for assessing the conceptual and mathe-
matical modeling errors relies on the quantitative comparison of simulation results
with experimental measurements from specially designed and executed experiments
(see Fig. 3.3). Model validation, as depicted in Fig. 3.3, is usually referred to as the
restricted concept of validation.

Figure 3.3 depicts a model validation experiment that has several key features
that are different from other types of experiments (Aeschliman and Oberkampf
1998; AIAA 1998; ASME 2006; Marvin 1995; Oberkampf and Aeschliman 1992;
Oberkampf and Roy 2010). A validation experiment can be conducted on many
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Fig. 3.3 Restricted concept of model validation

accessible systems of interest. For engineering systems, validation experiments can
be conducted at the system level, subsystem level, component level, or down to the
level of single physical processes. For example, the hierarchy of experiments that are
conducted on a gas turbine engine is conducted on several different levels. These are
listed from the top-level system to the simplest level: an experiment conducted on
the complete engine at actual operating conditions; an experiment conducted on the
compressor or the turbine sections; an experiment conducted on a single compressor
blade or turbine blade; and a heat transfer experiment conducted on a flat surface.
For large-scale natural systems, such as earth sciences (e.g., climatology, geology,
and oceanography) and astronomy (e.g., cosmology, astrophysics, and planetary sci-
ences), the concept of conducting validation experiments is unworkable because all
of the input data needed for the model cannot be measured. Experimental measure-
ments obtained for these types of systems would be referred to as model building
experiments ormodel calibration experiments, both forms of model retrodiction that
are discussed later.

Two important points regarding Fig. 3.3 stress the herein defined concept ofmodel
validation. First, the diagram assumes that code verification testing and solution ver-
ification activities have been adequately completed before model validation. Second,
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the computational analyst is attempting to predict the specific experiment conducted
in the validation experiment. As a result, the experimentalist is expected to measure
the model input data needed by the computational analyst to produce a solution. This
expectation placed on the experimentalist is clearly not a traditional responsibility in
experimental activities. For the experimentalist to measure the needed model input
data, the experimentalist must be aware of what may be needed by computational
modelers. An active partnership between the experimentalist and the analyst during
the design and execution of the experiment is much preferred.

Recalling the depiction of the simulation process is shown in Fig. 3.1, themapping
of the input data through the mathematical model, D , to obtain the system response
quantity of interest, SRQ, can be written as

D(G, IC,MP,BC,SE) → SRQ (3.1)

G is the geometry of the system, IC are the initial conditions of the system,MP
is the model parameters of the system, BC is the boundary conditions imposed by
the surroundings, and SE is the system excitation imposed by the surroundings. If G,
IC, MP , BC, and SE are left unspecified, then Eq. (3.1) is referred to as the weak
definition of a model (Leijnse and Hassanizadeh 1994). A weak model definition
cannot be validated because it is a general statement of the mapping of the model
input to the model output, i.e., it lacks the specificity needed to obtain a solution to
themodel. IfG, IC,MP ,BC, andSE are all measured in an experiment, as indicated
in Fig. 3.3, then the mathematical modelD is referred to as the strong definition of a
model (Leijnse and Hassanizadeh 1994). Measuring all of the input data means that
parameters that exist in the model are also measured, for example, system material
parameters as well as their variability. As indicated in Fig. 3.3, since the SRQ of
interest is measured in the validation experiment, then the model form error, MFE,
can be defined. Stated differently, given the measurement of the model input data, the
SRQ, and their uncertainty, the only remaining error that exists is that is due to the
conceptual and mathematical models. The model form error, also called the model
discrepancy error, can be written as

‖D(GE , ICE ,MP E ,BCE ,SE E ) − SRQE‖ � MFEE (3.2)

SubscriptE indicates ameasurement of the quantity ismade during the experiment
and ‖·‖ indicates some type of norm that is appropriate for the type of functions
involved. Furthermore, the subscript E on MFE indicates that the model form error
is site specific for the conditions of the experiment. From a philosophy of science
perspective, Fig. 3.3 and Eq. (3.2) state that based on empirical observations, the
computational analyst can only make a very restricted evaluation of the accuracy
of a mathematical model. Confidence in a broader sense of validity of a model can
only be inferred based on the strength or difficulty of the test of the model and the
accumulation of evidence over a wide range of conditions for which the model is
tested.
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If the input data to the model given in Eq. (3.2) is deterministic, then the simu-
lation result will also be deterministic, e.g., a scalar value or vector field. However,
if the input data is nondeterministic, i.e., stochastic, then the simulation should be
stochastic, e.g., an ensemble of simulations is used to characterize the input data
and the corresponding system response. Note that even if the input data were deter-
ministic, MFEE will be nondeterministic because of the existence of experimental
measurement uncertainty in the SRQE .

The formal concept of a difference measure as indicated in Eq. (3.2) and at the
bottom of Fig. 3.3 is a relatively new concept. The equation is entirely focused on
quantitatively measuring the magnitude of the difference between simulation and
experiment; not on the issue of “good or bad” or an “adequate or inadequate” agree-
ment. Furthermore, it is a mathematical measure that can be intuitively interpreted
as a distance between simulation and experiment, especially when given in terms
of the dimensional units of the SRQ. The measure can be quantified at a point in
space or time or over any domain of interest by use of an appropriate norm. The field
of research that deals with the estimation of MFE is now referred to as validation
metrics, a term coined by Trucano et al. (2001). The concept of model parameter
estimation or optimization in order to minimize the magnitude of MFE in Eq. (3.2)
is a much older concept. These concepts, and their relationship to the estimation of
MFE, are discussed in the next section.

Equation (3.2) is entirely focused on an assessment of physicalmodeling errors, as
opposed to a mixture of physical and numerical errors. If extensive code and solution
verification have not been completed and documented, then the magnitude of MFE
can be misleading. Since there are so many opportunities for numerical and human
errors in simulation, the computational analyst can easily have the cancellation of the
impact of these errors in various portions of the mathematical model and sub-models
such that they obtain a small value ofMFE. For example, a commonly occurring situ-
ation is that the modeler finds close agreement with experimental measurements and
declares the model validated. Later, either the original modeler or another researcher
who attempts to reproduce the earlier comparisons uses a more refined mesh or
refined time step and discovers that now the model disagrees significantly with the
experiment. With the ubiquitous use of numerical simulation in science and engi-
neering around the world, and the generally poor quality of verification activities,
this situation is unfortunately widespread.

3.4.1.2 Approaches to Validation Metrics

A wide range of approaches has been developed to implement Eq. (3.2). (In this
volume, see Chap. 7 by Beisbart, Chap. 13 by Marks, Chap. 19 by Robinson, Chap.
20 by Jiang et al. and Chap. 23 by Schlünzen.) The three most common approaches
for estimating MFE are statistical hypothesis testing, Bayesian estimation, and use
of the area metric. In hypothesis testing, the accuracy assessment is formulated as
a decision problem of whether or not the model’s predictions are consistent with
the available empirical data. The consistency between the model and the data is



3 Simulation Accuracy, Uncertainty, and Predictive Capability … 83

characterized as a probability, with low probability values denoting a mismatch of
such magnitude that it is unlikely to have occurred by chance. Hypothesis testing is
not well suited to the task of model validation because the primary goal of hypothesis
testing is to identify statements for which there is compelling evidence of truth or
falsehood. But, this goal is different from that of model validation, which is more
pragmatic and more focused on the degree to which the model and experimental
measurements concur. Two practical difficulties arise with the interpretation of the
hypothesis test, or statistical significance, result. First, how should amodel developer,
project manager, or decision-maker interpret the result? It is not clear how to interpret
a probability result as an accuracy measure. For example, how does one interpret the
result, “There is an 80% probability that the model agrees with the experimental
measurements?” The natural perspective of a design engineer, project manager, or
decision-maker is to ask, “What is the physically interpretable difference between
the model and the experiment and how does that compare with what is an acceptable
tolerance for a particular application or decision?” Second, no matter what level of
accuracy is specified, the model can be proven false at a given level of significance if
more experimental data are obtained. That is, any model can be proven false, given
enough data. (For an overview of hypothesis testing, see Lehmann andRomano 2005;
Wellek 2010; Ziliak and McCloskey 2008.)

Bayesian model validation has received the greatest attention during the last two
decades. Bayesian estimation is mathematically sophisticated and can be applied in
very wide range of applications. However, it is extremely demanding in terms of
the number of mathematical model evaluations, e.g., solutions of the PDEs that are
needed for the process. Bayesian estimation could be described as a procedure to
improve model predictions by updating uncertain model parameters when experi-
mental data for the system of interest are available. The procedure to update the
probability distributions of the model parameters uses Bayes’ equation, the simu-
lation result for the system of interest, and the available experimental data for the
system. As a result, Bayesian estimation is a parameter optimization procedure oper-
ating under the constraint of the particular formof themathematicalmodel being used
and the experimental data available. As the amount of experimental data increases,
the probability distributions of each of the model parameters converge to probability
distributions that allow the model result to yield the most accurate reproduction of
the experimental data, conditional on the mathematical model. Note that the claim
of convergence of the parameter distributions also relies on the assumption of a suf-
ficient number of mathematical model evaluations. For computationally expensive
solutions, Bayesian estimation resorts to using surrogate or response surface models
to approximate the actual model evaluations.

Bayesian estimation has taken a much more important role in model valida-
tion since the transformative work of Kennedy and O’Hagan (2001). Kennedy and
O’Hagan devised a statistical method to quantify what they referred to as the model
inadequacy or discrepancy as part of the Bayesian model parameter updating pro-
cedure. They state, “we define a model inadequacy to be the difference between the
true mean value of the real world process and the code output at the true values of
the inputs.” Their model discrepancy term, also called model bias, is closely related
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to the model form error defined in Eq. (3.2). Most Bayesian model validation proce-
dures use a form of Bayesian hypothesis testing by incorporating the use of Bayes
factor (or factors). The factor is interpreted as the ratio of the relative likelihood of the
null hypothesis that the experimental data supports the model predictions divided by
the alternative hypothesis that the data does not support the prediction. Bayes factors
aid the decision regarding the acceptance or rejection of the null hypothesis test. As
pointed out by some researchers (Ferson et al. 2008; Liu et al. 2011; Oberkampf and
Barone 2006; Oberkampf and Roy 2010), however, it is not clear how a designer or
policy-maker should interpret this factor in a decision context concerning how much
error is incurred by using the model. For an overview of Bayesian model validation,
see Babuska et al. (2008), Bayarri et al. (2007), Chen et al. (2008), Higdon et al.
(2008), Li et al. (2014, 2016); Liu et al. (2008, 2011), McFarland and Mahadevan
(2008), O’Hagan (2006), Rougier (2007), Trucano et al. (2006), Wang et al. (2009),
Wilks (2011), as well as Chap. 7 by Beisbart and Chap. 20 by Jiang et al. in this
volume.

The area validation metric is defined as the mismatch between the simulation
and the experimental measurements as quantified by the area between the cumula-
tive distributions functions (CDF) of each (Ferson et al. 2008). As a result, it is a
straightforward difference measure that quantifies the left side of Eq. (3.2) directly
in terms of the SRQ of interest. Stated differently, the area metric is a measure of
distance between the stochastic simulation result and the uncertain experimental
measurements in terms of the dimensional units of the particular SRQ of interest.
As a result, the area metric is much more physically understandable to simulation
analysts, designers, and decision-makers. The area metric uses the Minkowski L1

metric to measure the difference between the two CDFs,

d(F, Sn) �
∞∫

−∞
|F(z) − Sn(z)|dz, (3.3)

where F is the empirical distribution function (EDF) of the simulation and Sn is the
EDF of the experimental measurements. The EDFs are used, as opposed to the CDFs,
because then the integral can be computed regardless of the number of samples of
simulation and experimental data. Three advantageous features of the area metric
should be noted. First, the metric can be computed regardless of how much data are
available from the experiment or from the simulation. For example, if the simulation
is computationally expensive such that only several realizations can be computed
using a Monte Carlo simulation, the area metric can still be computed without
resorting to approximations of the model response. Second, the metric generalizes
deterministic comparisons between scalar values that have no uncertainty. That is, if
the prediction and the observation are both scalar point values, the areametric is equal
to their difference. Third, the area metric is the evidence for the mismatch between
the simulation and the measurements, instead of the evidence for agreement. Thus, if
there are only single realizations for both the simulation and the experiment, and the
area metric is large, it does not necessarily mean that there is a large disagreement
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between simulation and experiment. This may mean that the difference between the
two is entirely due to the random variability of each. As a result, the strength of
the evidence for disagreement depends on the quantity of data available for both the
simulation and the experiment. For a more detailed discussion of the area metric and
how the concept has been extended to multivariate data, see Ferson and Oberkampf
(2009), Ferson et al. (2008), Li et al. (2016), Liu et al. (2011), Oberkampf and Roy
(2010), Voyles and Roy (2015) as well as Chap. 13 by Marks in this volume.

3.4.1.3 Difficulties in Model Validation

There are many situations where technical difficulties eliminate the possibility of
comparing simulation results with model validation experiments, as depicted in
Fig. 3.3. These difficulties can be generally grouped into inability to measure (a)
the input data needed for the mathematical model and (b) the SRQs of interest. One
example of this is the simulation of underground transport of pollutants or toxic chem-
icals, primarily due to water seepage through porous media. This requires knowledge
of the porosity and permeability parameters of the subsurface material that appears
as a random field in the PDEs. Although some characteristics of the subsurface mate-
rial can be obtained by removing drill cores from the area of interest and conducting
laboratory experiments, it is impossible to characterize the three-dimensional field
over the entire underground volume. Another example from the field of solid dynam-
ics is the simulation of the vibration of assembled structures, such as aircraft and
automobiles, which requires knowledge of the mechanical stiffness and damping of
every material connection in the entire structure. It is impossible, even on a single
connection of two materials, to measure the local stiffness and damping within the
surface connecting the two materials. The procedure that is used for vibrational sim-
ulation is to use a rudimentary model of the macro effects of the connection and then
calibrate the parameters that exist within the sub-model of the material connection.
As can be seen in both of these examples, this results in the requirement to solve
the inverse problem. That is, given the measured response, and the given form of
the mathematical model, the values of the model parameters to best reproduce the
measured response are determined. The topic of model parameter calibration, which
is actually a feature of model building, will be discussed in the next section.

The second common situation occurs when it is technically impossible to measure
important SRQs of interest. An example of this situation is the process of hyperve-
locity impact of a particle with a target material. Typical experimental results are
photographs of the impact crater or hole through a material after the impact. In some
facilities, high-speed imaging of the penetration event is available. These data are
useful in model validation, but they greatly limit the ability to quantitatively assess
the accuracy of many SRQs predicted by the model. An example where it is concep-
tually impossible to obtain the needed experimental data for validation is inmodeling
physical phenomena with very long time scales or very large physical scales. Some
examples are (a) long-term prediction of the effect of various contributors to global
warming (b) response of the global environment to a large-scale atmospheric event,
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such as a volcanic eruption or the impact of a large asteroid, and (c) physical processes
on planets, stars, and solar systems.

There are also many situations where it is impractical or not allowed to conduct
validation experiments. Examples of impracticality include conducting validation
experiments on the failure of a full-scale dam, major failure of a nuclear power
reactor, and collapse of a skyscraper. Forbidden validation experiments include test-
ing the physiological response of humans exposed to toxic chemicals or radiation,
experimental drug testing that poses a high risk of major physical or mental impair-
ment to humans, and hazardous or environmentally damaging weapon tests that are
banned by international treaties. The most common method of partially assessing
the predictive capability of a model for the situations discussed in this paragraph is
to conduct experiments on subsystems or components of the system of interest, or to
conduct experiments on surrogate systems, such as animals. It is important to note
that even if an experiment is conducted on a system component or on a surrogate for
the real system of interest, the concept of a model validation experiment depicted
in Fig. 3.3 still applies. Therefore, the concept of a model validation experiment as
discussed in this section applies regardless of the complexity or physical scale of the
experimental system.

3.4.2 Calibration and Predictive Capability

3.4.2.1 Model Calibration and Bayesian Estimation

As discussed in Sect. 3.4.1, there is a strong conceptual distinction between model
validation and model calibration. Model validation, as defined here, is the activity of
quantitatively assessing model accuracy by way of comparison of simulation results
with experimental measurements. Model calibration, or model tuning, is the activity
of updating input parameters to the mathematical model such that improved agree-
ment is achieved between simulation results and experimental measurements. Recall
from Fig. 3.1 that input parameters can describe features of either the system of inter-
est or the impact of the surroundings on the system. Usually, the input parameters
are stochastic, e.g., given by a probability distribution, but they can also be deter-
ministic scalars. A philosopher of science might ask, “Why is there such confusion
and ambiguity concerning the terms validation and calibration, when the concepts
seem so distinct?” One of the reasons is that computational researchers spend the
majority of their efforts on improving and updating their models given experimental
observations, as opposed to assessing the accuracy of their models relative to the
observations. For example, as soon as any experimental observations are available,
the researcher will immediately use the new data to improve the agreement of the
simulation with the measurements. Improvement of the model, which is a type of
retrodiction, can take many forms, such as rejection of the entire model and replace-
ment with a better model, reformulation of the model assumptions so as to obtain
better agreement with the observations, and replacement of some sub-models with
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other sub-models that produce better agreement with observations. However, by far
themost commonmethod ofmodel improvement is optimization of themodel param-
eters to obtain better agreement with the observations. The Bayesian framework is
perfectly suited to this approach of model improvement.

Since the Bayesian approach is the dominant framework in model calibration,
two fundamental issues are raised: (a) What is the scientific basis or defensibility for
using Bayesian parameter estimation andmodel validation? and (b)Why is Bayesian
estimation so effective and widely used in computational simulation? Concerning
scientific defensibility, the Bayesian estimation of parameters can be justified for
some situations, but not for others.

Bayesian updating, or some other parameter optimization procedure, is defensible
for (a) physical modeling parameters that are not measurable outside of the context
of the mathematical model of the system under consideration and (b) ad hoc model
parameters. Ad hoc parameters are those that are introduced into models simply to
provide amethod for adjusting the results of the simulation to obtain improved agree-
ment with empirical observations. Using the descriptive terminology of Lenhard and
Winsberg (2010) for the evolutionary and adaptive nature of complex models, I
would refer to these types of parameters as kludges. A third type of physical mod-
eling parameter is one that is independently measurable exclusive of the context of
the mathematical model of the system under consideration. Using Bayesian updating
on these parameters, however, is not scientifically defensible. Essentially all models
have all three types of parameters imbedded in them and modelers make no attempt
to distinguish between them during parameter updating. As a result, model formu-
lation/approximation errors, uncertainties in model input parameters, and numerical
solution errors are all intertwined in the updating procedure. Because of this coupled
nature, cancellation of errors and compensation for other errors and uncertainties in
the updating process is inevitable. Furthermore, these parameters change every time
new observational data become available, when other sub-models are changed, or
when changes inmesh resolution occurs. According to Lenhard andWinsberg (2010,
p. 257), “complex simulation models acquire an intrinsically historical character and
show path-dependency. The choices that modelers and programmers make at time
one about how to solve particular problems of implementation have effects on what
options will be available for solving problems that arise at time two. And they will
have effects on what strategies will succeed and fail.” Adjusting physical modeling
parameters and ad hoc parameters is the lubricant that allows complex models to
function adaptively.

Bayesian inference, which is a broader topic than Bayesian parameter estimation,
is widely used and particularly effective in complex simulations. Although there
have been hundreds of articles written on this topic over the last four decades, a
few observations should be noted. For physical-based models, as opposed to other
model construction approaches such asmachine learning, Bayesian inference is quite
effective for two reasons. First, it is able to update the stochastic parameters in
some optimal sense, given the constraints of the physical-based model. For example,
Bayesian inference is able to adjust probability distributions to obtain best agreement
with available experimental data, given the constraints of conservation of mass,
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species, momentum, and energy. For relatively simple physical systemswith few free
parameters, specifically physical modeling parameters and ad hoc parameters, the
impact of the physical constraints on Bayesian updating of the parameters is rather
restrictive. For complex systems with hundreds or thousands of free parameters,
however, there is great flexibility to optimize the stochastic parameters. There is
commonly weak physical-based justification for this optimization and the resulting
parameter correlation structure. (In this volume, see the chapter by Seibert et al.)

Second, a strong argument can be made that Bayesian estimation produces the
optimal posterior probability density function (PDF) for the SRQs of interest, given
as follows:

• The available empirical evidence;
• The constraint of the mathematical model;
• The assumed priors for the free parameters; and
• The ability to compute, or approximate, a very large number of solutions to the
mathematical model.

According to an interview with James Berger, Bayesian inference is very widely
used today (Wolpert 2004). Prof. Berger believes that widely available, high-
performance computing and general-purpose software packages are two of the key
reasons that have allowed technical analysts in essentially every field of physical,
life, and social sciences to apply Bayesian inference. Additionally, Berger stresses,
“that Bayesian statistics allows one to ask any desired question and obtain an answer
to that question.” To emphasize his point, he comments that many times he hears
the following comment from avowed non-Bayesians: “I do not believe in Bayesian-
ism philosophically, but the Bayesian approach (with Markov chain Monte Carlo)
was the only way I could analyze this complex problem, so I used the approach.”
Combining high-performance computing, widely available software packages, and
extraordinary effectiveness in answering just about any question result in an unstop-
pable technology.

3.4.2.2 Predictive Capability and Uncertainty

Over the last two decades, the term predictive capability has developed to better
capture the concept of foretelling anoutcome. Predictive capability stresses the notion
of forecasting system responses based on the physical fidelity in the mathematical
model, as opposed to a model emulating or imitating the response of the system.
Although the concept of forecasting an event or outcome has been recognized for
centuries in science, the increased emphasis on the basis of the prediction has been
appropriate because of the questions raised about the ability of highly calibrated
models to foretell events not seen before. Note that when the term predict or foretell
is used, it not only refers to time but also steady-state responses of a system that have
not been observed before. Included in the category of highly calibrated models are a
wide range of models, including machine learning, data mining, Bayesian networks,
and artificial neural networks that can emulate or imitate system responses. To clarify
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the distinctionmade here, consider two examples. The first example has no predictive
capability, but the model can emulate the system, whereas the second example has
predictive capability. First, suppose one constructs a surrogate model (or metamodel
or emulator) of a stochastic physical process that is known to be a function of (only)
N input quantities. Further, assume that a large number of random observations of
the process over a specified domain of theN-dimensional input space have been used
to construct the surrogate model. The domain of the input space where observations
have been made is referred to as the convex hull of the input space. If the number
of observations is sufficiently large, one could show that the surrogate model would
have essentially perfect ability to predict the likelihood of the SRQ inside the convex
hull. This type of model is referred to as a descriptive model (Bossel 1994).

Next, consider a stochastic system where the physical-based mathematical model
is assumed to be perfect. That is, it is assumed that all of the relevant physical phenom-
ena in the system are fully captured by the physical assumptions in the construction
of the mathematical model. Furthermore, all parameters in the mathematical model
are perfectly known, whether from theoretical considerations or from experimental
measurements. A computational analyst could argue that this model could perfectly
predict the likelihood of the SRQ over any range of the input data, as long as no new
physical processes occur, other than those captured in the mathematical model. This
type of model is referred to as an explanatory model because it represents the sys-
tems’ detailed, coupled physical structure and the interaction of components such
that it can predict future system behavior, even under conditions that have never
been seen before (Bossel 1994). The present-day use of the term predictive capabil-
ity emphasizes this type of explanatory capability of the model. Stating the inverse,
even highly calibrated models cannot be expected to have predictive capability or
reliable information content outside of the domain over which the model has been
calibrated.

Physical-based models in engineering and science are situated between the two
examples just described. The nature of physical-based models is that there is not only
weaker confidence in the explanatory capability of our physical-based models, but
also limited data with which to calibrate the model parameters. Figure 3.4 shows a
two-dimensional input space defined by the two parameters α and β, each one char-
acterizing some feature of the system or the conditions imposed by the surroundings.
The validation domain is shown as the region inwhich various validation experiments
have been conducted, denoted byV, i.e., the convex hull of V. The application domain
shows the region where we intend to use the model from an application perspective,
i.e., where predictive capability is desired. As is typical of operating conditions of
a system, the corners of the operating envelope are specified in terms of pairs of
coordinates (αi, βi), i � 1, 2, … 5. The relationship between the application domain
and the validation domain shown in Fig. 3.4 indicates that the validation domain is a
subset of the application domain. For most complex engineering systems, there are
no model validation experiments of the complete system. There may be, however,
operational data of the system or of a similar system for certain operating conditions,
such as normal or slightly off-normal operating conditions. Since it is either imprac-
tical or impossible to measure all of the input data needed for model validation of
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Fig. 3.4 Validation domain and application domain within a two-dimensional input space Adapted
from Trucano et al. (2002)

a complex system, operational data for the system are used to calibrate model input
parameters, as discussed earlier.

Presume that a validation metric result, i.e., an estimate of the model form error
(MFE), has been computed at each of the conditions marked with a V in Fig. 3.4.
A quantitative metric result for individual SRQs could be obtained from the model
discrepancy term using either Bayesian estimation, or using the area validation met-
ric, as discussed earlier. The boundary of the validation domain would represent the
bounds where the model accuracy has been assessed. To account for model form
error in a model prediction anywhere within the validation domain, some type of
interpolation method could be used to estimate the model form uncertainty. The esti-
mate of model form uncertainty could be added directly to the prediction of the SRQ
where no data are available, in addition to the impact of model input uncertainty
on the SRQ. Within the validation domain, the rigor of adding model form uncer-
tainty to input uncertainty is dubious because they are two very different sources of
uncertainty. Model form uncertainty is an epistemic uncertainty because it is lack
of knowledge, specifically due to approximations and assumptions in the formula-
tion of the model. But model input uncertainty is commonly thought of as aleatoric
uncertainty and characterized as a random variable. For model predictions outside of
the validation domain, the distinction between the two types of uncertainty becomes
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much more important because the information content in different characterizations
of uncertainty can be dramatic. A critical source of uncertainty outside the validation
domain is epistemic because the basis of the prediction is the fidelity of the physical
principles in the mathematical model used to extrapolate to conditions that have not
been already observed. Statistical extrapolation outside of the validation domain has
no basis, but it is used routinely in computational simulation.

While there are different ways to classify uncertainty, this chapter uses the tax-
onomy prevalent in the risk assessment community which categorizes uncertainties
according to their essence (Cullen and Frey 1999;Haimes 2009;Morgan andHenrion
1990; Vose 2008):

• Aleatoric—uncertainty due to inherent variation in a quantity that, given sufficient
samples of the quantity, can be characterized via a probability density function;
and

• Epistemic—uncertainty due to lack of knowledge by the individuals involved, be
they modelers, analysts, or experimentalists.

Aleatoric uncertainty (also called irreducible uncertainty, stochastic uncertainty,
or variability) is uncertainty due to inherent randomness and can occur among mem-
bers of a population or due to spatial or temporal variations. Aleatoric uncertainty
is generally characterized by either a probability density function (PDF) or a cumu-
lative distribution function (CDF). A CDF is simply the integral of the PDF from
minus infinity up to the value of interest. Examples of aleatoric uncertainty are: (a)
unit-to-unit variability in the geometric and mass properties of a manufactured prod-
uct, (b) spatial and temporal variability in the wind speed and direction near a nuclear
power plant, (c) spatial variability of the roughness of a highway surface, and (d)
spatial variability in the porosity and permeability of underground material. With a
sufficiently large number of samples of each of these quantities, both the form of the
CDF and the probability parameters describing the distribution of the population can
be accurately determined, at least in concept.

Epistemic uncertainty (also called reducible uncertainty or ignorance uncertainty)
is uncertainty that arises due to our lack of knowledge of the quantity. If knowledge
is added through experimental measurements or observations, control of a quantity,
expert opinion, or improved physical understanding, then the uncertainty can be
reduced. If sufficient knowledge, which costs time and resources, is added, then
the epistemic uncertainty can be reduced or eliminated, possibly resulting in only
aleatoric uncertainty. Epistemic uncertainty is commonly represented as either a PDF
representing the degree of personal belief of the analyst (as opposed to frequency of
occurrence of an event) or as an interval-valued quantity with no associated PDF. If
nothing is known about a quantity except its bounds, then an interval representation
is the precise characterization of the state of knowledge. Some Bayesians claim that
a uniform PDF over the range of the interval is an equivalent characterization. This
is clearly not the case because a uniform distribution makes the further assertion
that all values are equally likely over the range of the interval. Thus, an interval-
valued quantity could be characterized as the infinite set of all possible PDFs over
the interval. Obviously, the uniform PDF is only one member of the set. Some
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Bayesians, who accept the difference in information content between an interval-
valued quantity and a uniform PDF, claim that in real-world uncertainty analyses
there is never a situation where there is such little information (Cooke 2004). This
is patently false. A more accurate description of the Bayesian perspective is that a
Bayesian statistician only allows lack of knowledge to be a PDF. The reason for this
rigid stance is that an interval-valued quantity wrecks the Bayesian mathematical
machinery, i.e., the usual Bayesian machinery cannot function.

Examples of epistemic uncertainty are model form uncertainty, poor understand-
ing of complex physical processes or model input parameters, numerical solution
error, a complex sequence of subsystem/component/human failures, and uninten-
tional or intentional misuse of a system. As information is gathered concerning an
epistemically uncertain quantity, one of the following situations typically occurs.
First, the magnitude of the initial possibility interval typically decreases. In fact,
if sufficient information is obtained, or control of the quantity is possible, then the
quantity may become a single value. Second, as samples of the quantity are obtained,
it may be found that the quantity is actually a random quantity, but the PDF is not
known. For example, sufficient information may be obtained to characterize the
quantity as random variable that can be described by a specific family of proba-
bility distributions, but the distribution parameters themselves are interval-valued
quantities. This type of characterization of a quantity is referred to as an imprecise
probability, i.e., a mixture of aleatoric and epistemic uncertainty. (In this volume, see
the chapter by Bradley, but also Augustin, Coolen, de Cooman, and Troffaes 2014;
Bernardini and Tonon 2010.) A particularly important application of these types of
uncertainties is risk assessment of rare events, commonly called black swans (Taleb
2007), because they occur in the tails of distributions. Tails are particularly sensitive
to epistemic uncertainty because they commonly have the feature of exponential
decay, where epistemic uncertainty in the exponent produces a very large impact
on likelihood. Taleb (2008) refers to these situations as the fourth quadrant because
traditional statistics tends to be notoriously poor at predicting these events.

As a final observation of the important difference between aleatoric and epistemic
uncertainty, note that the characterization of all uncertainties as precise probabili-
ties versus imprecise probabilities serves two very different goals of an uncertainty
analysis. That is, the use of precise probabilities tells the customer of the analysis
the most likely outcome given the present state of incomplete knowledge. A recent
example of this type of analysis is the search for the missingMalaysia Airlines Flight
370 (Davey et al. 2016). Specifically, this was an analysis that required an estimate
of the most likely location to focus expensive search operations to find the lost air-
craft. The use of imprecise probabilities tells the customer the range of likelihoods
of outcomes, given the present state of incomplete knowledge. An example when
this type of analysis is appropriate is the likelihood of failure of a high-consequence
system.
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3.5 Concluding Remarks

Most simulation analysts probably believe that my stress on the importance of code
verification is erroneous. Most would argue that they are careful programmers and
computational analysts and that all of the important coding bugs and algorithm defi-
ciencies have been found and eliminated. There is rigorous code testing experience
that shows that this assertion is unfounded. Hatton (1997) conducted extensive test-
ing of 100 scientific codes over a period of 7 years. These were production codes
in 40 application areas ranging from nuclear engineering to chemical engineering
to medical software. To the disbelief of many, he found a dismal picture of soft-
ware unreliability. The CFD community has found the same miserable picture from
extensive code verification testing (Abanto et al. 2005; Rumsey et al. 2006), as well
as workshops focusing on solving the same challenge problem by many different
participants (Eca and Hoekstra 2002; Morrison 2014). Because of this recognition
by the CFD community, additional research and practice to improve the reliability
of software by way of more rigorous code verification testing have been done. It is
encouraging that researchers from other fields are also beginning to call attention
to the lack of reproducibility of simulation results (Donoho et al. 2009; Fomel and
Claerbout 2009; LeVeque et al. 2012; Stodden 2012).

Solution verification is awell-understood issue, but it is almost universally ignored
in computational simulation. This state of affairs exists for two reasons. First, most
computational analysts do not feel that numerical solution error is important in their
analysis. They feel that the numerical error is small based on their experiences with
similar analyses. When numerical error estimators have been used, however, many
researchers have shown that the analyst’s experience is consistently unreliable. Sec-
ond, existing numerical error estimators are not dependable outside of the asymptotic
convergence region. Since the computational costs needed to achieve the asymptotic
region for some system response quantities of interest, particularly local quantities,
is so expensive on complex simulations, the vast majority of simulations do not use
the existing estimation techniques. As a result, numerical solution error contributes
to the lack of simulation reliability and reproducibility mentioned above.

The restricted concept ofmodel validation discussed in this chapter iswell founded
in the philosophy of science. The common criticism of the concept is that it is too
restrictive in the sense that it is not useful in most computational simulations. My
counterargument to this criticism is that the restrictive view forces the conversation
away from the vague and personally expedient concepts of validation, specifically,
“My experience says the model is good (or good enough).” The restricted concept of
validation compels the conversation into “Show me how your simulation performs
for conditions where experimental data are available, then we will discuss how you
estimate predictive uncertainty where no data are available.” This should be the
essence of predictive science.

The concept of predictive capability of a model as discussed here, particularly
how it is related to model validation and model calibration, stresses the notion of
foretelling system responses based on the physical principles in the mathematical
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model. Physical-basedmodels have explanatory capability because they represent the
systems’ detailed, coupled physical structure, and its interaction of components such
that they can predict future systembehavior, even those never seen before.Descriptive
models, such as those built on machine learning, data mining, and artificial neural
networks, do not have the capability to predict physical phenomena for conditions
that have never been seen before. Given the high dimensionality of the model input
space for complex simulations, it should be recognized that nearly all simulation
results of both descriptive and explanatory models are outside the convex hull of the
observed data.

This chapter is focused on physical-based models, but several chapters in this vol-
ume describe models for the social sciences. Most social scientists agree that their
theories and models are fundamentally different from physical-based models. Social
science behavior models are descriptive, as opposed to explanatory, models that are
based on themodel builder’s interpretation of the behavior of another living organism
or the interaction of a group of organisms. Two brief observations contrasting the
concepts of modeling and model validation discussed in this chapter, versus mod-
eling human behavior must be noted. First, physical-based models must obey a set
of fundamental principles, such as conservation of mass, momentum, and energy. In
modeling human behavior as a system, there are no such mandatory or general prin-
ciples. For example, the assumption that human behavior must be directed toward
survival is not always accurate. Second, Fig. 3.1 in this chapter depicts the concept
that model input data for the system and the surroundings drive the system response.
As part of model validation, system responses can be measured in an experiment and
compared with model predictions. However, in human behavior modeling, the depic-
tion of input→model→response must include a feedback loop from the response to
both the input as well as the model itself. That is, humans anticipate an expected
outcome and commonly adapt both the input data and their internal model of the
decision-making process to achieve some type of personally optimized result. As
stated in certain social science research, humans are anticipatory systems with real-
time feedback control. Furthermore, humans will change their input data and internal
decision-making model simply if they know they are being observed. These types
of complexities in modeling human behavior and in validating these models must be
incorporated at the conceptual level.
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carefully reviewing an earlier version of this chapter and providing many helpful suggestions for
improvements and clarifications.

References

Abanto, J., Pelletier, D., Garon, A., Trepanier, J.-Y., & Reggio, M. (2005). Verification of some
commercial CFD codes on atypical CFD problems. Paper presented at the 43rd AIAAAerospace
Sciences Meeting and Exhibit, Reno, NV.



3 Simulation Accuracy, Uncertainty, and Predictive Capability … 95

Aeschliman, D. P., & Oberkampf, W. L. (1998). Experimental methodology for computational fluid
dynamics code validation. AIAA Journal, 36(5), 733–741.

AIAA. (1998).Guide for the verification and validation of computational fluid dynamics simulations
(AIAA-G-077-1998). Retrieved from Reston, VA.

Ainsworth, M., & Oden, J. T. (2000). A posteriori error estimation in finite element analysis. New
York: Wiley.

Anderson, M. G., & Bates, P. D. (Eds.). (2001). Model validation: Perspectives in hydrological
science. New York, NY: Wiley.

ASME. (2006). Guide for verification and validation in computational solid mechanics (ASME
Standard V&V 10-2006). Retrieved from New York, NY.

ASME. (2009). Standard for verification and validation in computational fluid dynamics and heat
transfer (ASME Standard V&V 20-2009). Retrieved from New York, NY.

ASME. (2012). An illustration of the concepts of verification and validation in computational solid
mechanics (ASME Standard V&V 10.1-2012). Retrieved from New York, NY.

Augustin, T., Coolen, F. P. A., de Cooman, G., & Troffaes, M. C. M. (Eds.). (2014). Introduction
to imprecise probabilities. Chichester, UK: Wiley.

Babuska, I., & Strouboulis, T. (2001). The finite element method and its reliability. Oxford, U.K.:
Oxford University Press.

Babuska, I., Nobile, F., & Tempone, R. (2008). A systematic approach to model validation based on
bayesian updates and prediction related rejection criteria.ComputerMethods in AppliedMechan-
ics and Engineering, 197(29–32), 2517–2539.

Bayarri, M. J., Berger, J. O., Paulo, R., Sacks, J., Cafeo, J. A., Cavendish, J., et al. (2007). A
framework for validation of computer models. Technometrics, 49(2), 138–154.

Bernardini, A., & Tonon, F. (2010). Bounding uncertainty in civil engineering. Berlin: Springer.
Beven, K. (2002). Towards a coherent philosophy of modelling the environment. Proceedings of
the Royal Society of London Series A, 458(2026), 2465–2484.

Bossel, H. (1994). Modeling and simulation (1st ed.). Wellesley, MA: A. K. Peters.
Chen, W., Xiong, Y., Tsui, K.-L., & Wang, S. (2008). A design-driven validation approach using
bayesian prediction models. Journal of Mechanical Design, 130(2), 021101–021112.

Chiles, J.-P., & Delfiner, P. (1999). Geostatistics: Modeling spatial uncertainty. New York: Wiley.
Cooke, R. (2004). The antomy of the squizzel: The role of operational definitions in representing
uncertainty. Reliability Engineering and System Safety, 85(1–3), 313–319.

Cullen, A. C., & Frey, H. C. (1999). Probabilistic techniques in exposure assessment: A handbook
for dealing with variability and uncertainty in models and inputs. New York: Plenum Press.

Davey, S., Gordon, N., Holland, I., Rutten, M., & Williams, J. (2016). Bayesian methods in the
search for MH370. Springer Nature (Open Access).

Donoho, D. L., Maleki, A., Shahram, M., Rahman, I. U., & Stodden, V. (2009). Reproducible
research in computational harmonic analysis. Computing in Science & Engineering, 11(1), 8–18.

Duggirala, R. K., Roy, C. J., Saeidi, S. M., Khodadadi, J. M., Cahela, D. R., & Tatarchuk, B. J.
(2008). Pressure drop predictions in microfibrous materials using computational fluid dynamics.
Journal of Fluids Engineering, 130(7), 071302–071313.

Eca, L., & Hoekstra, M. (2002). An evaluation of verification procedures for CFD applications.
Paper presented at the Proceedings of the 24th Symposium on Naval Hydrodynamics, Fukuoka,
Japan.

Ferson, S., & Oberkampf, W. L. (2009). Validation of imprecise probability models. International
Journal of Reliability and Safety, 3(1–3), 3–22.

Ferson, S., Oberkampf, W. L., & Ginzburg, L. (2008). Model validation and predictive capability
for the thermal challenge problem. Computer Methods in Applied Mechanics and Engineering,
197(29–32), 2408–2430.

Ferziger, J. H., & Peric, M. (2002). Computational methods for fluid dynamics (3rd ed.). New York:
Springer.

Fomel, S., &Claerbout, J. F. (2009). Guest editors’ introduction: Reproducible research.Computing
in Science & Engineering, 11(1), 5–7.



96 W. L. Oberkampf

Golub, G. H., & Van Loan, C. F. (2013).Matrix computations (4th ed.). Baltimore, MD: The Johns
Hopkins University Press.

Haimes, Y. Y. (2009). Risk modeling, assessment, and management (3rd ed.). New York: Wiley.
Hatton, L. (1997). The T experiments: Errors in scientific software. IEEE Computational Science
& Engineering, 4(2), 27–38.

Higdon, D., Nakhleh, C., Gattiker, J., & Williams, B. (2008). A bayesian calibration approach to
the thermal problem. Computer Methods in Applied Mechanics and Engineering, 197(29–32),
2431–2441.

Jolliffe, I. T., & Stephenson, D. B. (Eds.). (2011). Forecast verification: A practitioner’s guide in
atmospheric science (2nd ed.). Hoboken, NJ: Wiley.

Kennedy, M. C., & O’Hagan, A. (2001). Bayesian calibration of computer models. Journal of the
Royal Statistical Society Series B-Statistical Methodology, 63(3), 425–450.

Knupp, P., & Salari, K. (2002). Verification of computer codes in computational science and engi-
neering. Boca Raton, FL: Chapman & Hall/CRC.

Lehmann, E. L., & Romano, J. P. (2005). Testing statistical hypotheses (3rd ed.). Berlin: Springer.
Leijnse, A., & Hassanizadeh, S. M. (1994). Model definition and model validation. Advances in
Water Resources, 17, 197–200.

Lenhard, J., & Winsberg, E. (2010). Holism, entrenchment, and the future of climate model plural-
ism. Studies in History and Philosophy of Modern Physics, 41, 253–262.

LeVeque, R. J., Mitchell, I. M., & Stodden, V. (2012). Reproducible research for scientific comput-
ing: Tools and strategies for changing the culture. Computing in Science & Engineering, 14(4),
13–17.

Li, W., Chen, W., Jiang, Z., Lu, Z., & Liu, Y. (2014). New validation metrics for models with
multiple correlated responses. Reliability Engineering and System Safety, 127, 1–11.

Li,W., Chen, S., Jiang, Z., Apley, D.W., Lu, Z., &Chen,W. (2016). Integrating bayesian calibration,
bias correction, andmachine learning for the 2014 sandia verification and validation challent prob-
lem. Journal of Verification, Validation and Uncertainty Quantification, 1(1), 011004–011012.

Liu, F., Bayarri,M. J., Berger, J. O., Paulo, R., & Sacks, J. (2008). A bayesian analysis of the thermal
challenge problem. Computer Methods in Applied Mechanics and Engineering, 197(29–32),
2457–2466.

Liu, Y., Chen, W., Arendt, P., & Huang, H.-Z. (2011). Toward a better understanding of model
validation metrics. Journal of Mechanical Design, 133(13), 071001–071013.

Marvin, J.G. (1995). Perspective on computational fluid dynamics validation.AIAA Journal, 33(10),
1778–1787.

McFarland, J., & Mahadevan, S. (2008). Multivariate significance testing and model calibration
under uncertainty. Computer Methods in Applied Mechanics and Engineering, 197(29–32),
2467–2479.

Morgan, M. G., & Henrion, M. (1990). Uncertainty: A guide to dealing with uncertainty in quan-
titative risk and policy analysis (1st ed.). Cambridge, UK: Cambridge University Press.

Morrison, J. H. (2014). Statistical analysis of the fifth drag prediction workshop computational fluid
dynamics solutions. Journal of Aircraft, 51(4), 1214–1222.

Neumann, P.G. (1995).Computer-related risks.NewYork:ACMPress,Addison-WesleyPublishing
Company.

Oberkampf, W. L., & Aeschliman, D. P. (1992). Joint computational/experimental aerodynamics
research on a hypersonic vehicle: Part 1, experimental results. AIAA Journal, 30(8), 2000–2009.

Oberkampf, W. L., & Barone, M. F. (2006). Measures of agreement between computation and
experiment: Validation metrics. Journal of Computational Physics, 217(1), 5–36.

Oberkampf, W. L., & Trucano, T. G. (2008). Verification and validation benchmarks. Nuclear
Engineering and Design, 238(3), 716–743.

Oberkampf, W. L., & Roy, C. J. (2010). Verification and validation in scientific computing. Cam-
bridge, UK: Cambridge University Press.

O’Hagan,A. (2006).Bayesian analysis of computer code outputs:A tutorial.Reliability Engineering
and System Safety, 91(10–11), 1290–1300.



3 Simulation Accuracy, Uncertainty, and Predictive Capability … 97

Reason, J. (1997). Managing the risks of organizational accidents. Burlington, VT: Ashgate Pub-
lishing Limited.

Reason, J. (2008). The human contribution: Unsafe acts, accidents and heroic recoveries. Burling-
ton, VT: Ashgate Publishing Co.

Refsgaard, J. C., & Henriksen, H. J. (2004). Modelling guidelines-terminology and guiding princi-
ples. Advances in Water Resources, 27(1), 71–82.

Roache, P. J. (1972). Computational fluid dynamics. Albuquerque, NM: Hermosa Publishers.
Roache, P. (2009). Fundamentals of verification and validation. Socorro, New Mexico: Hermosa
Publishers.

Rougier, J. (2007). Probabilistic inference for future climate using an ensemble of climate model
evaluations. Climate Change, 81(3–4), 247–264.

Roy, C. J. (2010). Review of discretization error estimators in scientific computing. Paper presented
at the 48th AIAA Aerospace Sciences Meeting, Orlando, FL.

Rumsey, C. L., Reif, B. A. P., & Gatski, T. B. (2006). Arbitrary steady-state solutions with the k–ε
model. AAIAA Journal, 44(7), 1586–1592.

Rykiel, E. J. (1996). Testing ecological models: The meaning of validation. Ecological Modelling,
90(3), 229–244.

Silver, N. (2012). The signal and the noise. New York, NY: Penguin Books.
Stodden, V. (2012). Guest editor’s introduction: Reproducible research-tools and strategies for
scientific computing. IEEE Computing in Science and Engineering, 14(4), 11–12.

Taleb, N. N. (2007). The black swan: The impact of the highly improbable. New York: Random
House.

Taleb, N. N. (2008). The fourth quadrant: A map of the limits of statistics. Retrieved September
14, 2008, from https://www.edge.org/conversation/the-fourth-quadrant-a-map-of-the-limits-of-
statistics.

Trucano, T. G., Easterling, R. G., Dowding, K. J., Paez, T. L., Urbina, A., Romero, V. J., … Hills,
R. G. (2001). Description of the sandia validation metrics project (SAND2001-1339). Retrieved
from Albuquerque, NM.

Trucano, T.G., Pilch,M.,&Oberkampf,W. L. (2002).General concepts for experimental validation
of asci code applications (SAND2002-0341). Retrieved from Albuquerque, NM.

Trucano, T.G., Post, D. E., Pilch,M.,&Oberkampf,W. L. (2005). Software engineering intersection
with verification and validation of higher performance computational science software: Some
observations (SAND2005-3662P). Retrieved from Albuquerque, NM.

Trucano, T.G., Swiler, L. P., Igusa, T.,Oberkampf,W.L.,&Pilch,M. (2006).Calibration, validation,
and sensitivity analysis: What’s what. Reliability Engineering and System Safety, 91(10–11),
1331–1357.

Verfurth, R. (2013). A posteriori error estimation techniques for finite element methods. Oxford,
UK: Oxford University Press.

Vose, D. (2008). Risk analysis: A quantitative guide (3rd ed.). New York: Wiley.
Voyles, I. T., & Roy, C. J. (2015). Evaluation of model validation techniques in the presence of
aleatory and epistemic input uncertainties. Paper presented at the American Institute of Aero-
nautics and Astronautics SciTech Conference, Kissimmee, FL.

Wang, S., Chen,W., & Tsui, K.-L. (2009). Bayesian validation of computer models. Technometrics,
51(4), 439–451.

Wellek, S. (2010). Testing statistical hypotheses of equivalence and noninferiority (2nd ed.). Boca
Raton, FL: Chapman & Hall/CRC.

Wilks, D. S. (2011). Statistical methods in the atmospheric sciences (3rd ed.). Amsterdam: Elsevier.
Wolpert, R. L. (2004). A conversation with James O. Berger. Statistical Science, 19(1), 205–218.
Ziliak, S. T., & McCloskey, D. N. (2008). The cult of statistical significance: How the standard
error costs us jobs, justice, and lives. Ann Arbor, Michigan: University of Michigan Press.

https://www.edge.org/conversation/the-fourth-quadrant-a-map-of-the-limits-of-statistics


Chapter 4
Verification and Validation Principles
from a Systems Perspective

David J. Murray-Smith

Abstract This chapter introduces concepts and principles associated with the veri-
fication and validation of simulationmodels, mainly in the context of models of com-
plete systems. The word ‘verification’ is used here to describe testing processes to
establishwhether a computer-based representation correctly describes the underlying
mathematical, logical and theoretical structure of the model. The word ‘validation’
is used to describe procedures for establishing whether the model fidelity is adequate
for the purposes of the given application. Verification is internal to the model and
the computer-based representation while validation processes involve information
external to the model, normally using data or observations from the corresponding
real system. The goal of the testing process for a simulation model must always be
to establish the extent to which a model has the quality and credibility required for
the intended application. These model testing processes, involving both verification
and validation, are inherently iterative.

Keywords Continuous system simulation models · Testing · Sensitivity ·
Identifiability · Documentation ·Model acceptance ·Model upgrading

4.1 Introduction

The purpose of this chapter is to introduce concepts and principles associated with
the testing of simulation models. In this context a ‘simulation model’ is taken to be
representation of a real system of some kind (often termed the ‘target’ system). The
simulation model is normally based on a ‘conceptual’ or mental model which is then
translated into mathematical relationships and logical statements (i.e. the underlying
‘model’), together with a computer-based representation obtained from that model
(as manifest in the ‘simulation’ program). The complete simulation model, once
tested and shown to be an adequate representation for the purposes of the intended

D. J. Murray-Smith (B)
School of Engineering, University of Glasgow, Rankine Building, Glasgow G12 8QQ, UK
e-mail: David.murray-smith@glasgow.ac.uk

© Springer Nature Switzerland AG 2019
C. Beisbart and N. J. Saam (eds.), Computer Simulation Validation,
Simulation Foundations, Methods and Applications,
https://doi.org/10.1007/978-3-319-70766-2_4

99

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-70766-2_4&domain=pdf
mailto:David.murray-smith@glasgow.ac.uk
https://doi.org/10.1007/978-3-319-70766-2_4


100 D. J. Murray-Smith

application, offers a basis for experimentation and analysis that would be difficult or
impossible in other ways.

The emphasis within this chapter is onmodels based on ordinary differential equa-
tions (ODEs) or differential algebraic equations (DAEs) involving combinations of
ordinary differential and algebraic equations to describe ‘lumped-parameter’ mod-
els (involving discrete entities that approximate the behaviour of separable elements
of the target system under certain assumptions). Lumped-parameter descriptions
have many applications and, for example, form the basis for many simple models
used to describe electrical circuits involving resistors, capacitors and inductors. In
a lumped-parameter model each of the elements normally has only one property
(e.g. resistance, capacitance or inductance), while the corresponding real element in
the circuit would have more than one property. For example, a resistor may have
some inductive properties as well as the dominant property that we recognize as
resistance. The ordinary differential equations of lumped-parameter models allow a
variable, such as an electrical voltage or current, to be found as a function of time at a
specific point, whereas a ‘distributed parameter’ model involving partial differential
equations would be necessary if the quantity of interest has to be found not only
as a function of time but also as a function of another variable (such as position).
Although they may provide a more accurate description of the underlying physical
processes within the target system, the use of distributed parameter models involving
partial differential equations can introduce significant computational burdens.

Lumped-parametermodels are verywidely used for the study of systems involving
interactions between a number of separate elements including, perhaps, energy con-
version and storage elements, actuators, sensors and communication elements. The
modelling of systems of this kind may involve many separate elements and may lead
to complex non-linear behaviour and may be described as being based on a ‘systems
perspective‘. Examples can be found in many different areas, including engineering
and physiology. Regardless of the application area, issues of testing that are raised in
this chapter are typical of those encountered with other forms of simulation models
too.

Approaches available for modelling and simulation have changed in recent years
because of increased computational power at relatively low cost, improved software
tools and enhanced user interfaces. Also, simulation software can be moved easily
from one computing environment to another, leading to more re-use of programs, to
the development of libraries of sub-models and to models that are, to some extent,
generic and can be used to represent a range of different target systems. All these
developments mean that testing issues are now as important as ever before and
possibly even more important because of the rapid growth in the use of simulation
techniques in many different application areas. However, detailed consideration of
specific methods and their application is left to later chapters and the emphasis in
this chapter is rather broader, with a focus on concepts and principles.

Testing issues are especially important in safety-critical areas of engineering (such
as the aerospace, defense, marine, off-shore and nuclear application areas) as dis-
cussed by several contributors to the volume edited by Cloud and Rainey (1998) and
considered further by other authors such as Pace (2004) and Oberkampf and Roy
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(2010). In those fields formal approval schemes, are often applied throughout the
design and development process, including rigorous testing of simulation models
(see, for example Mitre Systems Engineering Guide 2014). However, in some other
application areas, the attention paid to model quality issues is often inadequate. Fre-
quently, the use of a model is justified by the fact that it is ‘based on well-known
physical principles’, or involves ‘an industry standard’, or even that this form of
model ‘has always been used by us, so must be right’. Also, proper documentation
of model development processes has often been neglected, although, in some fields
such as biology and medicine, much more emphasis is now being given to model
testing as well as to documentation issues. It is vitally important that good prac-
tice in those fields, as well as in safety-critical engineering applications, should be
extended to simulation modelling for all application areas. One very encouraging
sign is the publication of the results of work carried out by the Modeling Good
Research Practices Task Force established jointly by the International Society for
Pharmacoeconomics and Outcomes Research (ISPOR) and the Society for Medi-
cal Decision Making (SMDR). Reports published by both societies (e.g. Caro et al.
2012; Eddy et al. 2012)make recommendations for achieving transparency and valid-
ity in simulation modelling activities and strong proposals are made regarding best
practices. Although these relate immediately to biomedical and health care system
modelling, many of the recommendations apply equally to simulation and modelling
activities in other fields.

Simulation models should always be developed for a specific application and then
subjected to tests which are considered appropriate for that application. Such tests
must include all the processes associated with establishing that a given model is
suitable for the intended use. Reaching a conclusion about model acceptability is
never straightforward and testing issues should be considered from the outset of the
model development process. Rigorous documentation is important and must include
information about the model requirements, details of testing procedures, results of
tests, names of model developers and testers (if different), dates of the start of model
development and of changes in the model, details of re-testing carried out, reasons
for acceptance/rejection of the model and any limitations that may apply to its use if
accepted. Transparency is vitally important in all aspects of the development, testing
and application of simulationmodels and the application of sound principles ofmodel
management, including extensive, clear and easily used documentation is essential.

These testing procedures for simulationmodels fall into two distinct parts, defined
here as ‘verification’ and ‘validation’. There is an unfortunate lack of unanimity
about the meaning of these words and they are considered interchangeable by some.
However, there is general agreement that the process of simulation model testing
involves two issues one of which concerns the correctness, or otherwise, of the
process of translating the conceptual, mathematical and logical basis of a model
into the description implemented on a computer. The other issue is concerned with
potential errors and uncertainties within the structure and logic of the underlying
model, along with limitations of that description in terms of accuracy.

Ifwe accept that the first part of the testing procedure involves a process based only
on the underlying model and the associated simulation software, it can be described
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conveniently as an internal process. Not only must the structure and internal logic of
the computer programbe shown tobe correct, but the algorithmswithin the simulation
programmust also be shown to be appropriate and implemented properly. It can never
be claimed, following verification, that a simulationmodel is correct. However, it can
be stated that the model has been exercised over the full range of relevant conditions
and that it has successfully passed the specific tests that were applied. Errors that are
detected during verification may be categorized as ‘acknowledged’ errors which can
be estimated (such as errors arising from the use of a specific numerical algorithm) or
‘unacknowledged’ errors which are simply due to mistakes (in coding, for example).

Successful verification does not tell us that a model adequately represents the
corresponding real-world system. That involves the second part of the testing process
and is based on information that is external to themodel and the associated simulation
program and may involve many different comparisons with real-world data. The
goal in validation must always be to ensure that the underlying model is sufficiently
accurate for the planned application.

The validation of simulationmodels thus involves establishing the extent to which
a model is an accurate representation of the real world from the viewpoint of end-
users of thatmodel. Comparedwith verification, validation is amore open-ended task
in which comparisons are made between model behaviour and behaviour of the real
system for the same conditions. Some would claim that the emphasis should be on
‘invalidation’, since any suggestion that a model is correct may be refuted at any time
when someone undertakes a different test yielding data that are not fully explained
by that model. Thus, although decisive invalidation is always possible, statements
involving decisive validation, suggesting that a model or facts derived from it are
true, should be avoided. However, the word ‘validation’ is generally convenient to
describe the process of building up trust in a model for a specific application and this
view of validation procedures is of great practical importance.

For many modelling applications, such as in climatology or economics, experi-
ments cannot be performed on the real system and the only data sets available for
validation are historical. Often only one historical data set is available and may have
to be split into two, with one part being used for estimation of unknown or ill-defined
model parameters and the second for testing. The same data cannot be used both for
model development processes, such as estimation of parameters, and for validation.
For applications in engineering, physical sciences and biology, experiments on the
real system may be possible and this simplifies the situation, as discussed by the cur-
rent author in Chap. 15 of this volume. However, a simulation model is often needed
for the design of a new engineering system and validation of that model using exper-
iments is clearly impossible until at least a prototype system is available, usually at
quite a late stage of the design project for which the model is being developed.

Simulation models often give rise to large numbers of output variable time histo-
ries, each with errors that may vary with time. It is vital, therefore, to establish the
outputs that are most important for the application. Perfect matching by model vari-
ables of corresponding quantities obtained from measured data sets resulting from
observations or tests on the real system that is being modelled is never a realistic aim.
Model variables should match real system response data only to the level needed
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for the application and models inevitably involve uncertainties however they are
developed and whatever the intended application. These uncertainties may be asso-
ciated with the modelling assumptions and the boundaries being applied in defining
the model. They could also result from environmental unknowns, or the effects of
unmodelled quantities considered as external to the model, or may be due to other
factors such as inaccuracies in values of model parameters. This suggests a trade-off
so that model responses match test data to an acceptable degree, while also showing
adequate robustness to all these different sources of uncertainty.

Testing of a simulation model can never be regarded as a simple straight-through
type of process. It is an iterative procedure in the sense that any changes made in the
underlying model must be followed by further validation tests and then by additional
verification checks. In addition, it can be argued that the verification and validation
processes are, in themselves, iterative since they involve many steps that are applied
many times.

The application of systematic procedures for testing at every stage in the develop-
ment of a model may lead to three possible outcomes, provided verification require-
ments are satisfied at each stage. First, there may be no model structure and set of
parameters consistent with the measured response data obtained from the real sys-
tem. One must then start again at the model formulation stage, taking account of
what has been learned.

A second type of outcome could involve parameter values that give model
behaviour that is in broad agreement with the behaviour of the real system but with
somemajor uncertainties remaining. The model may still be of value if it has a sound
theoretical basis and one step could involve investigating parameter sensitivities to
enhance understanding of the model. The adjustment of parameters within a non-
linear computational model to improve the agreement with real-world information
is often termed ‘calibration’. However, model calibration and adjustment of a model
using system identification methods should be recognized as being different from
validation and re-testing of a model is always necessary after changes have been
made in its structure or parameter values.

The third possible outcome is the most desirable and arises in situations where
testing shows model predictions that are considered acceptable for the intended
application, and where the model structure and parameter values are also plausible.
Further analysis, combined with a review of the accuracy requirements defined at the
outset of themodel development process, may help to establish limits of applicability
for the model and, for operation within those limits, the model may be judged to be
acceptable for the required application, but only for the tests carried out. It is then
possible to use the model, but only until new evidence is found that invalidates the
model and leads to further testing. Good documentation is needed at every stage of
this iterative process of model development so that there is a clear audit trail showing
how every decision is reached, the justification for model acceptance and the range
of conditions over which the accepted model can be used.

Although validation is not straightforward, even for models of physical systems,
it is at least possible in such cases to establish the credibility of a model through
experiments performed on the real system. In contrast, models of social systems
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and models that contain elements of human decision-making, require validation that
more often involves establishing qualitative credibility rather than detailed quantita-
tive comparisons. Conclusions then tend to be based more on statistics rather than
point-by-point comparisons of time histories. The task becomes one of showing that
the model produces sound insights and sound data based on a wide range of tests and
criteria, often without the possibility of experimentation on the real system. The out-
come is always a judgement based on available evidence and the previous experience
of those involved in the assessment of the model, taking account of the requirements
of the intended application.

4.2 Approaches to Verification

As discussed in the Sect. 4.1, the word ‘verification’ describes the process used to
establish that a computer simulation is consistent with the underlying mathematical
and logical description. Verification of a simulation model is a process that extends
more general and traditional processes that arise in software testing such as those
presented by Kit (1995) and by Kaner et al. (1999). However, the situations that
arise in verification can be much more demanding than in many other areas of com-
puter software testing and it is recognized, especially, that simulation models based
on partial differential equations present difficulties which cannot be handled using
traditional software testing processes alone (e.g. Oberkampf and Roy 2010).

Although current research on so-called ‘formalmethods’ in computer sciencemay
well lead to future developments that allow firm statements to be made about the cor-
rectness or otherwise of a given computer program, currently available methods for
routine testing of software do not provide proof that a given computer program is
completely free from errors. The use of well-designed test cases is therefore criti-
cally important for verification. These must be fully documented and must include
information about the computer hardware, operating system and other software used.

There are two distinct phases within the verification process, each involving sev-
eral distinct steps (see alsoChap. 11 byRider andChap. 12 byRoache in this volume).
The first may be termed the ‘code-checking’ or ‘code-verification’ phase:

• The first step of the code-checking part of the verification process is finding and
removing simple errors and mistakes in the source code. This is intended to estab-
lish the correctness and robustness of the code in the context of the application.
It includes checking every line of a program for potential errors and the code
review must include checking links to separately tested sub-models or connec-
tions between functional blocks if the simulation is developed using a graphical
user interface.

• The second step in the code-checking part of the verification process involves
assessment of the suitability or otherwise of numerical algorithms used within
the simulation. This is important since a simulation model may require the use
of many different algorithms, each with its own numerical errors. Whether one
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is dealing with a lumped-parameter simulation model based on ordinary differ-
ential equations, a distributed parameter simulation involving partial differential
equations or a discrete event (e.g. agent based) or hybrid simulation model, many
different types of algorithmic errors can arise and investigation of links between
error sources can be complex. The overall accuracy of a simulation program in
providing an implementation of the underlying model may be very different from
the formal order of accuracy for a single algorithm used within that simulation
(e.g. for numerical integration). For example, problems of quantization may arise
due to the word length being used for certain variables within a simulation model.
Truncation errors may also arise in some algorithms because perturbations in vari-
ables are not small enough to ensure a solution within the asymptotic convergence
region. Also, singularities or discontinuities may lead to problems with integra-
tion algorithms and lead to important hard non-linearities being ignored. Such
issues must be considered carefully in the context of the model structure and the
intended application and establishing the source of any problem often requires
a preliminary examination of the behaviour of sub-models. This could involve
testing the simulation program for each sub-model separately by running it and
examining the results, usually in graphical form, to check for unexpected features,
such as very-high-frequency oscillatory behaviour that could not be expected in
terms of any reasonable behaviour of the sub-system. Other tests might involve
making small changes in parameters associated with each numerical algorithm. If
the algorithm is being used in an appropriate way such small changes would not,
normally, have major effects on simulation results. Any large changes observed in
numerical results following some small change in a parameter associated with a
specific algorithm should, therefore, be investigated further.

• Thefinal stage of this code-checking phase of verification, like algorithmchecking,
also involves testing of the complete simulation program. Although most simula-
tion models are dynamic in form, this step can be applied for specific conditions
in which the model is expected to be in a steady state. Prior knowledge about such
conditions usually comes from analysis of the underlying dynamic model in math-
ematical form and is termed ‘static analysis’ since derivative terms in the ordinary
differential equations of the model are set to zero. The idea is that the results of the
static analysis for the mathematical model should match equivalent steady-state
conditions observed from output results obtained from the simulation model. Such
tests may also involve the examination of the rate of convergence of numerical
solutions to stable values as control parameters within relevant numerical algo-
rithms are adjusted. For example, in fixed-step integration algorithms, this could
involve adjustment of the size of the integration step, while in models involving
partial differential equations the overall spatial resolution of the discretization grid
might be changed.

The second phase of the verification process involves the assessment of numerical
errors in responses obtained from a simulation model and is often termed ‘solution
verification’. It involves a more direct estimation of errors in numerical solutions to
ensure that the simulation model gives outputs that approximate to the true solution
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of the equations of the underlying mathematical description. This involves a process
that is similar in some ways to testing procedures carried out in the first phase but,
whereas that is concerned with errors in coding, the focus in this second phase is
on the overall performance of the numerical algorithms that form the basis of the
simulation model. This could involve separate consideration of specific aspects of
the problem such as the following:

• Investigation of the overall accuracy in the context of the requirements of the
proposed application, such as accuracy in terms of integration errors and any
errors in the detection of discontinuities. In this respect, the model developer must
play an important part in devising suitable tests, which could involve comparisons
of accurate solutions for specific well-understood cases with solutions obtained by
means of the simulation model (such as steady-state conditions or a special set of
conditions for which analytical solutions can be found). Testing of this kind for the
complete simulation model inevitably involves many runs of the simulation code
and raises fundamental issues because simulation techniques are most often used
for applications in which analytical solutions are not readily available. The areas
of the solution space that are of greatest interest often correspond to situations
for which analytical solutions cannot be found. Special cases can be considered
and could even involve some modification of the mathematical model and the
corresponding simulation to represent a case which has an analytical solution that
can then be compared with simulation results. Such testing based on steady-state
and other special cases do not eliminate the possibility that other coding errors
exist but successful completion of such tests does increase overall confidence. This
type of procedure requires considerable experience and insight on the part of the
person carrying out the tests and may be difficult to apply for large and complex
simulation models.

• In the simulation of continuous dynamic systems, it is usually not appropriate to
record simulation variables at every integration step and one very important issue
relates to the interval between the time instants at which the outputs are recorded
for further analysis and plotting. For example, in a real-time simulator which may
include a human operator such as an aircraft pilot, there is also a need to control
data transfer through the various communication channels between the simulation
model, the human operator and any external hardware coupled to the simulation.
Such flows of information are determined by ‘communication intervals’ that are
set within the software of the simulation model and their choice is an important
issue. An inappropriate value of communication interval could cause transients to
disappear from the observed responses of the simulation model even if they were
correctly represented within the simulation.

• Uncertainties about the values of the parameters within the model (e.g. quantities
that are represented by constants in the underlying equations) and about the struc-
ture of the model (e.g. the number and form of the equations describing the system
under investigation) must be given due attention when assessments are beingmade
of simulation results. It is pointless to have high levels of numerical accuracy in
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a simulation model if basic uncertainties about the model structure and the model
parameters remain large.

The practical application of these steps for verification of a specific simulation
model has much in common with procedures that are generally accepted and widely
used for checking and testing of other types of software for many other applications.
However, the following points that relate more specifically to simulation models
should also be considered:

• A graphical representation of the simulation model should be included in the
documentation for simulation models developed using conventional programming
tools. The process of creating this graphical representation for the model may
help identify potential problems with a dynamic model (such as the existence of
algebraic loops).

• All possible outcomes occurring during the operation of the simulation model
should be established and represented within a flow diagram relating to the logical
structure of the model and this should form part of the documentation. Again, this
may help in identifying potential problems with a computer-based model at an
early stage in its development.

• Values of parameters provided as input during testing of a simulationmodel should
be displayed at the end of each test to check that no changes have occurred when
running the simulation.

• An animation may be useful for checking that observations from the simulation
model do not include features that differ significantly from the known or expected
behaviour of the real system. Animations are often easier to understand than a col-
lection of simultaneous output time-history records for different model variables.

• All models and associated simulation programs, together with the documentation,
such as graphical representations and flow diagrams, should be subject to inde-
pendent checks carried out by someone who was not involved in the development
of the model.

Although the stages of the verification process discussed above are of general
applicability, some special issues arisewith specific types ofmodel. For example, dis-
tributed parameter models, which are based on partial differential equations (PDEs),
are discretized for spatial dimensions as well as for time and involve boundary con-
ditions. The solution quality depends both on truncation errors and discretization
errors. Truncation errors depend on the accuracy of the solution of the discretized
equations while the latter arise from errors caused by using discretized equations
to represent the original PDEs. Errors may also relate to the process of discretiz-
ing boundary equations and auxiliary equations (in the form of additional algebraic
equations). As discussed by many authors, including Oberkampf and Roy (2010),
numerical issues of this kind depend on the size of spatial grid used and verification
issues are of great importance. Many approaches are in common use, some leading
directly from early work by Steinberg and Roache (1985), who presented a form of
verification methodology using analytical solutions based on symbolic manipulation
(see Chap. 12 by Roache in this volume).
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Verification processes for discrete-event models also divide conveniently into two
groups. These involve (a) checks to detect coding errors and (b) checks to establish
that the chosen algorithms are appropriate for the application. In the case of discrete-
event simulationmodels, algorithmic checksmust establish, for example that routines
for generation of specific random variables provide the desired statistical properties.
Hybrid models, which are partly continuous and partly discrete, also require algo-
rithmic checks for features involving continuous system simulation elements and
special attention must be given to interfaces between continuous elements and dis-
crete elements. For example, for a model representing a digital processor controlling
some equipment that operates in a continuous fashion (the plant), careful checks
must be made of the sub-models representing analog-to-digital and digital-to-analog
converters.

Establishing whether a set of verification tests is sufficient presents obvious dif-
ficulties and is a process that may be viewed more as an art than a science. How-
ever, some new approaches are being introduced that have an objective basis. One
example that provides a measure of the completeness of testing is Modified Con-
dition/Decision Coverage (MC/DC) which is an approach used in avionic system
development (Heyhurst et al. 2001). The word ‘coverage’ is used here to provide an
indication of the extent to which the model logic has been exercised during testing.
The tools provide a way of analyzing code and detecting reasons for errors when the
simulation program is run and thus provide an alternative to other approaches.

4.3 Approaches to Validation

In engineering and the physical sciences, methods of validation are often quantitative
and involve direct comparisons of chosen model variables with corresponding mea-
sured quantities in the target system. This may be termed ‘predictive’, ‘empirical’
or ‘pragmatic’ validation and is particularly important in applications such as the
design of automatic control systems where the quality of the final control system
performance depends very much on the quality of the plant model, especially in
some specific parts of the relevant range of frequencies. However, it is impossible
to consider every case since the number of tests required to demonstrate consistency
would be very large and there is never any conclusive ‘proof’ of validity. Indeed,
Oreskes et al. (1994) and others have argued that the use of the word ‘validity’ may
be misleading since validity is a property that applies, on a strict basis, only to log-
ical arguments. For practical and cost reasons testing must always be selective and
the number of simulation runs should be based on insight about the behaviour and
properties of the real system and the requirements of the application.

Although the level of agreement between selected model variables and the equiv-
alent measured quantities is important in considering model fidelity, we must also
consider broader questions in terms of the consistency of models with accepted the-
oretical laws and principles. It cannot be assumed that a model giving satisfactory
predictive accuracy for specific variables is based completely on sound theory or
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that parameters within the model are physically meaningful. The predictive agree-
ment simply suggests that the model, as a form of input–output ‘black box’ type of
description, has some level of credibility. Examples of this form of description may
be found in time series analysis in many different application areas (see, for example
Chatfield 2003). For instance, in the chemical process industries and in physiol-
ogy, highly simplified sub-models (incorporating a pure time delay, for example) are
sometimes used to represent much more complex phenomena. This type of approach
is discussed in contributions to a special issue (Schlacher and Schöberl 2011) of a
journal specializing in dynamic system modelling problems. Approximations of this
kind, perhaps used as simplified representations within a larger and more complex
simulation model, inevitably have limitations and it is important to ensure that any
resulting restrictions in the applicability of the complete model are understood by
users. Input–output agreement between model and system is usually only a start-
ing point for analysis aimed at investigating broader issues of ‘theoretical’ validity
which relate to assumptions and simplifying approximations used within the model.
For example, in aircraft flight control system design, a linear model may be used for
one specific operating point within the flight envelope, but a model of this kind is
useful only for small perturbations of variables about that operating point. Such a
model may be helpful during the early stages of design (using linear control system
design techniques), but a more physically based detailed non-linear model would be
essential for investigating system performance for larger changes of model variables
and operating conditions.

In other application areas, computer simulation may sometimes be applied when
initial knowledge about the real system is very limited. Examples could include
situations where experimental investigations may be constrained by practical, safety
or ethical issues, as can often apply in physiology and medicine. Clearly, for models
involving many uncertainties and limited experimental data, validation processes
based on quantitative methods become more difficult to apply and testing may have
to include qualitative ‘face’ validation methods involving peer review and expert
opinion, as discussed by many authors including, for example Murray-Smith (2015).

Accuracy requirements for any model must be established before model testing is
undertaken and such information should really form part of the model requirements
specification established at the start of the model development process. Criteria used
to assess the fidelity of the model must remain the same throughout and should be
linked closely to the model application. Knowledge and understanding of the system
being modelled is of prime importance and is usually enhanced during the model
development process.

The capability of a model to predict system outputs for experimental situations
that differ from those used during tests performed during model development is
often termed ‘generalization’. Although interpolation between operating situations
explored during the testing process is often appropriate, any extrapolation of model
usage beyond the range of conditions for which it was developed and tested must be
treated with caution. Models should always be applied with full knowledge of the
operating conditions and test inputs considered during the validation process.
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4.3.1 Quantitative Approaches to Validation

Quantitative methods of validation may be categorized in several ways. The com-
monest approach involves predictive methods and simple time-history comparisons
whichmay either involve data frommeasurements on the real system or comparisons
with outputs from other models of the same system that have already been success-
fully tested and accepted. This latter type of situation can arise, for example, with a
simulation model intended for application in real time. Many different deterministic
or statistical measuresmay be useful for assessing the closeness of themodel and real
system results. However, validation should not only involve comparisons in which
the data sets from the real system measurements are assumed to be exact and correct
since system observations and measurements also involve errors and uncertainties.

The greater the understanding of all aspects of the real system on the part of all
involved with the model development and testing procedures the more straightfor-
ward the validation process is likely to be. Parts of the model that include significant
uncertainties need to be isolated in some way and one approach to this involves mak-
ing comparisons between selected pairs of variables of the real system and model,
while using othermeasured quantities from the real system asmeasured inputs for the
model. Plots of residual time histories formed from the differences between model
output values and the corresponding measured output values can be particularly
helpful in investigating errors in parameters and model structure. For example, for
an adequate model, we would expect residuals to be uncorrelated and have properties
closely resembling those of white noise. Thus, if the autocorrelation function for a
specific residual time history is formed and is found to have properties close to those
for white noise, the residuals may be regarded as uncorrelated. Any errors in the
model structure would be indicated by correlated residuals.

In applications involving the design of a new engineering system the ‘real system’
only exists towards the end of the design and development process, when a prototype
has been commissioned or when the system itself has been built. Up to that point,
only comparisons with similar models from earlier projects are possible. In such
cases results from validation work carried out in testing sub-system models during
earlier projects can be helpful if these are being re-used but, as pointed out by Hemez
(2004) and others, this is only possible when good documentation exists.

Specialized systems-engineering tools involving the techniques of parameter sen-
sitivity analysis can often provide useful insight relating to model credibility. Such
analysis ofmathematicalmodels can be based on partial differentiation and the result-
ingmathematical expressions can provide valuable and very direct insight even with-
out numerical evaluation. However, the simplest approach involves varying param-
eter values one-at-a-time and using numerical differencing of results. As explained
in early work on this subject by Tomović (1963) and by Frank (1978), such analysis
allows investigation of the effects of variations of model parameters and can high-
light possible parameter interactions associated with the fact that different model
parameters may offset each other in terms of their effects on model variables. This
can introduce difficulties in model validation which can be eliminated if such prior



4 Verification and Validation Principles from a Systems Perspective 111

sensitivity information is available. A review by Hamby (1994) in the context of
environmental models provides much useful information, including comparisons of
different approaches.

Many different researchers, starting from important early work by pioneers such
as Bellman and Åström (1970), Grewal and Glover (1976), Beck and Arnold (1977)
and Goodwin and Payne (1977), have found that system identification and parameter
estimation techniques alsoprovideuseful insight ifmodel responses showunexpected
features. These techniques, which are well established as experimental modelling
tools in fields such as control engineering and pharmacodynamics, provide a further
approach to validation. The concepts of identifiability analysis as presented in the
work of Bellman and Åström (1970) and subsequently extended by many others,
can also provide valuable information about model structures and the effects of
parametric interactions and can help in choosing between competing descriptions.
More recent accounts by Raue et al. (2009) and by Gàbor et al. (2017) demonstrate
the value of identifiability concepts in modelling applications in the bioinformatics
area. As discussed further in Chap. 15 in this volume, identifiability analysis and
system identification methods also provide insight into the design of experiments to
maximize information gathered from tests on the real system.

Although system identification methods usually involve linear models they may
also provide insight into the non-linear case. For example, identifying linear models
for several test signal amplitudes and different operating points across the system
operating envelope allows parameter estimates to be compared with values obtained
from linearised theoretical descriptions for the same operating conditions. Trend
comparisons for these estimated and theoretical values for several operating points
provides an indication of performance of the underlying theoretical non-linearmodel.
This has been successfully used in testing non-linear physically based helicopter
flight-mechanics models where estimated parameter values in low-order linear mod-
els were compared with theoretical values for several flight conditions (Bradley et al.
1990).

While tools such as parameter sensitivity analysis and system identification and
parameter estimation methods are well established, other approaches, such as the
‘model distortion’ methods of Butterfield and Thomas (1986) and the so-called ‘bar-
rier certificate’ methodology described by Pranja (2006), have also been developed
and used in some specific areas. For example, accounts of barrier certificate methods
for model quality assessment for a continuous time biochemical system model and
a discrete-time model of population growth may be found in the work of Anderson
and Papachristodoulou (2009).

It has often been suggested that formal methods from the computing science
field have a role in validation of simulation models, but little evidence can be found
that formal methods are being used currently for validation purposes in large-scale
modelling applications (Kuhn et al. 2002; Gore and Diallo 2013). There are several
difficulties that limit routine adoption of formal methods, but one major problem
is that using this approach requires a large investment in time and effort for a new
simulation model and this is probably unaffordable except, possibly, in a few safety-
critical application areas.However, formalmethods are used for design flawdetection
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in the development of microprocessor chips and other complex electronic hardware
(Heitmeyer 2007) and, as usage increases in those areas, the more likely it is that
formal methods will also find a role in simulation model development.

Asmentioned earlier, the general principles outlined here apply also to distributed
parameter models based on partial differential equations. However, some issues arise
in the validation of distributed parameter models that merit special consideration.
Firstly, testing involving measured data from the corresponding real physical system
is undoubtedly more complicated than it is in the case of lumped-parameter models.
The quantities to be compared in the system and the model, the number of sensors
to be used for measurements in the real system and the positions of those sensors are
all important issues. Using more sensors gives improved resolution, but a balance
always needs to be found between model quality and costs. Also, in some situations,
the measurements may change the system through, for example, the added mass of
sensors, wiring and telemetry hardware for signal transmission. Interest in valida-
tion issues for distributed parameter models has grown in recent years and methods
developed for specific fields, such as computational fluid dynamics, are now being
used for other forms of distributed parameter model (e.g. Oberkampf and Roy 2010).

Validation for discrete-event simulation models must include consideration of
general issues such as the model structure and parameters, as in the case of con-
tinuous system simulation models. However, in discrete-event models, special con-
sideration must also be given to any assumptions that have been made within the
model about the probability distributions of events. When a specific distribution is
used, the underlying assumptions must be tested using data from observations of
the system being modelled. For example, in road traffic modelling, a discrete-event
simulation model involves assumptions about the probability of the time intervals
between the vehicles arriving at each road junction from different directions and such
assumptions must be tested. Although this is particularly important in the testing of
discrete-event simulation models, probability distributions may also appear within
some continuous system simulation models and the underlying assumptions must
again be tested in such cases.

For hybrid system simulation models involving, for example, a system with an
embedded digital processor and associated analog-to-digital and digital-to-analog
converters as well as continuous dynamic elements, the model validation process is
basically the same as for a continuous system model. However, in the hybrid case,
additional quantities must be recorded from the real system, such as information
about the timing of events within the digital processor and converters to ensure
that discrete-time elements within the hybrid system simulation model are properly
represented.

4.3.2 Qualitative Methods: Face Validation Approaches

Instead of depending only on quantitative methods, such as those outlined above,
a more subjective type of test may also be included within the overall assessment
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of a simulation model, in some cases. This takes into account opinions of people,
who have extensive and detailed knowledge of the operation of the real system in
normal and abnormal circumstances (cf. Chap. 17 by Saam in this volume). Such an
approach is often termed ‘face’ validation and, although regarded by some as being
based too strongly on personal opinions, there is no doubt that these methods have
proved beneficial in many simulation applications ranging from aircraft handling
qualities research using flight simulators to modelling problems in physiology and
medicine. When used appropriately, and carried out with rigour, face validation tests
can be regarded as a kind of Turing test in which the human expert is required
to distinguish between the behaviour of the real system and the behaviour of the
simulation model from observations of the available outputs from both. This type of
approach can be especially helpful in establishing the correctness or otherwise of the
logic and input–output relationships within the model. Face validation is often most
important in the early stages of a project where real system data do not exist, but
it can also be helpful in the modelling of cases in which the model parameters and
the model structure might be chosen to cover a range of normal (and possibly also
some abnormal) conditions, as in physiological models. Validation of such models
is then a process which depends very much on interpretation of model behaviour and
broad comparisons and previous experience gained fromcorresponding experimental
results or observations.

Examples of face validation can also arise when computer simulations are used
together with external hardware to form a ‘hardware-in-the-loop’ simulation. This
is especially relevant in control system hardware development where a real-time
simulation model of the system to be controlled (the plant) may first be developed.
Once the plant model is tested and accepted, the real-time simulation may serve
as a test-bed for controller hardware and software development (see, for example,
Murray-Smith 2015). Face validationmethodsmay be particularly useful in checking
the behaviour of the simulationmodel for fault situationswithin the real systemwhere
quantitative comparisons may present practical difficulties.

4.3.3 Validation of Library Sub-models and Generic Models

Libraries of sub-models are often used in engineering and are increasingly being
developed for other fields.Models which are developedwith a structure which allows
them to be applied for a range of different applications are often termed ‘generic
models’ . They are potentially useful in situations where a broadly based description
can be adapted for some new application at a cost that is less than that of developing
a new model specifically for that new case. Good examples of generic modelling can
be found in some areas of engineering, such as gas turbine engine design.

Testing processes leading to a sub-model being accepted for inclusion in a library
are based on the verification and validation procedures that apply for other types
of simulation model. Documentation of tests for library sub-models should be as
detailed as for any other accepted model. The validation process for a generic model
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is usually approached through specific applications where other accepted models are
already available (see, for example Smith et al. 2007).

4.4 Acceptance or Upgrading of Simulation Models

In considering acceptance of a simulation model for a planned application the
computer-based representation must, first and foremost, be consistent with the struc-
ture, parameters and logic of the underlyingmodel. Thismeans that all the verification
tests must have been completed satisfactorily. Although verification is very impor-
tant within the overall testing process for a simulation model, eventual acceptance
or rejection usually depends more critically on the results of external procedures,
considered in the context of the application. Unlike verification processes, which
are essentially quantitative in nature, validation can involve qualitative as well as
quantitative considerations.

When model upgrades are needed, parametric changes are usually considered
before structural changes are looked at. Often, the validity of a model may be
improved simply through parameter adjustment, but this is possible only if the
parameter value remains within an appropriate range. Adjustments using global opti-
mization methods without consideration of physical limits often produce misleading
results. For example, lumped-parameter descriptions are often used to approximate
more complex effects and there are limits to the conditions for which these are
valid. If parameter values arise that lack physical meaning, this may be because the
model has an inappropriate structure. Correction of deficiencies in model structure
often requires considerable insight, but once the structural errors are dealt with the
upgradedmodel should have awider range of applicability and the relevant parameter
values can be reconsidered.

It is important to stress, once again, that the complete testing process for sim-
ulation models is iterative. After every significant change, further verification and
validation tests must be performed and fully documented. To be successful, this pro-
cess requires good management, and this is something that is too often neglected
within organizations that develop and use simulation models. As already discussed
in Sect. 4.1, amodel is only useful if details are recorded andmade available concern-
ing the model requirements, development history, testing processes and acceptance
criteria (e.g. Murray-Smith 2015).

Computer-based simulation models that have been fully tested and accepted
should capture the complex and often non-linear features of the real system and
provide insight that allows the developer and users to gain an understanding of key
variables and their causes and effects. Such understandingmeans that well-supported
statements can be made about why events can or cannot occur within the system and
may allow the model to be used for decision-making or design.
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4.5 Discussion

A careful distinction has beenmade throughout this chapter between the processes of
verification and validation. This distinction is possibly more significant in practice in
some application areas than in others and is possibly most obvious in the engineering
field where the development of complex simulation models is often a group activity,
rather being the responsibility of an individual. In such situations, the procedures for
management and documentation of the model development process may well lead to
a formal separation of the verification and validation procedures. Another practical
issue in many engineering applications is that experiments on a target system to
generate data for comparison with simulation model responses can be expensive and
this means that the cost of validation activities must be factored carefully into the
initial plans for the development of the simulation model. The use of experimental
data in simulationmodel validation is discussed inmore detail by this author in Chap.
15 of this volume.

Although verification and validation activities are often considered as separate
procedures it must be accepted that there are strong links between these two stages
of the overall testing process, as discussed in earlier sections of this chapter. For
example, in Sects. 4.2 and 4.3 specific mention is made of the use of analytical
solutions for special cases (such as steady-state conditions) within both the verifica-
tion and validation process. The inherently iterative nature of the testing processes
for simulation models has also been discussed in Sect. 4.1, with repeated verifica-
tion and validation tests being performed when changes are made in the underlying
model and in the simulation. Winsberg (2018) has argued that conceptual divisions
between verification and validation can be misleading and may lead to difficulties,
since such divisions can weaken the significance of links between these processes in
the minds of those involved. He argues, for example, that the choice of model struc-
ture depends not only on known properties of the target system and the application
of established laws and principles but also on computational tractability. The use of
lumped-parameter descriptions rather than the more complex distributed parameter
form of model, as discussed in Sect. 4.1, is a good example of this. In general, there
are many different forms of mathematical description that may be considered in any
given modelling situation and the chosen model is usually a compromise. Issues
of computational tractability and the overall accuracy necessary for the intended
application of the simulation model, therefore, link strongly with other issues con-
sidered in selecting the model structure. There is, therefore, a similar link between
the associated verification and validation procedures. Although the separation of the
verification and validation stages may often be convenient in terms of model man-
agement and the documentation of testing procedures, it is important that all involved
in the development and testing of a simulation model should be fully familiar with
the details of both the verification and the validation processes that are being applied.
Further consideration of the issues associated with the separation of verification and
validation processes is given in Chap. 42 by Beisbart in this volume.
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The main emphasis within this chapter is on lumped-parameter models based,
normally, on the use of continuous system simulation software tools. However, the
issues that arise in the testing of such simulation models carry over to other types
of simulation, including those involving discrete-event and hybrid models (which
involve both continuous system and discrete-event simulation methods). The broad
concepts of simulation model testing remain broadly similar in all these cases.

Concepts from parameter sensitivity analysis and identifiability analysis can pro-
vide valuable insight, as can the use of face validation where people with an under-
standing of real systems of the type being modelled can propose testing strategies
that are based on years of practical experience and can readily pinpoint aspects of
simulation model behaviour that are in some ways inadequate. Additional, more
quantitative, testing can then be carried out using results from face validation as a
starting point.

Issues of accuracy must be looked at very carefully, both in the context of verifica-
tion and validation. There is little point in having high levels of numerical accuracy
in a simulation model if uncertainties in data or in model structure and parameter val-
ues remain large. Verification and validation issues must be taken fully into account
from the earliest stages of the modelling process and this brings attention back to
the definition of requirements in the initial stages of model development where the
eventual user of simulation results has an important role. Equally, the end-user also
has an important role in decisions regarding the quality and reliability of simulation
results.

Model validation is often compared with legal processes where an accused person
may be declared innocent or guilty, beyond any reasonable doubt. In modelling, the
outcome involves accepting or rejecting a model for a specific application. However,
clear differences do exist between legal processes and model validation procedures
since, in the latter case, we are also interested in establishing the range of conditions
over which the model is useful. In addition, a model must be re-tested whenever
new evidence is found that was unavailable when the model was first tested and
accepted. This resembles a re-trial in the legal context and emphasizes the fact that
validation of a simulation model is an ongoing process and not simply a result. The
process gives the user a better understanding of a model’s capabilities, limitations,
and appropriateness for the intended application but does not prove the correctness
of the model itself. Building confidence is an iterative procedure based on repeated
testing, both in terms of verification and validation, always with the underlying aim
of trying to ‘break’ the model by demonstrating that its behaviour does not match
sufficiently closely the behaviour of the real system that it represents. For this reason,
testing of a given simulation model should, ideally, be carried out by people who had
no part in the earlier development of that model.

Although many techniques for verification and validation are now available, cur-
rent practices in many organizations still leave much to be desired. The influence of
those involved in educating the next generation of engineers, scientists and applied
mathematicians is vitally important if simulation modelling techniques are going
to be properly used in the future. The importance of model testing (both in term
of verification and validation) must be given much more emphasis at every stage
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in the education of those who develop simulation models or apply modelling and
simulation methods.

Systematic testing of simulation models should also be given greater attention
by model developers and users in all fields of application. The proper management
of models and of the complete testing process is of central importance and rigorous
documentation procedures are essential. As discussed in Sect. 4.1, the outcome of
the simulation model testing process is always a judgement that is based on available
evidence. When new evidence is obtained about the behaviour of the real system the
corresponding simulationmodel should, ideally, be re-tested. In the author’s opinion,
development of trust in simulation methods depends more on the general acceptance
and widespread use of already-proven and systematic processes of verification and
validation than on research that may lead to new simulation methods and software
tools. Establishing whether a specific set of verification and validation tests is suffi-
cient for a specific application must still be viewed, in some respects, as much an art
as a science.
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Chapter 5
Errors and Uncertainties: Their Sources
and Treatment

Christopher J. Roy

Abstract There are numerous sources of error and uncertainty in modeling and
simulation. Some of these sources arise because of inherent randomness existing
in the system of interest, while others arise due to incomplete knowledge on the
part of the person conducting the modeling and simulation activity. Other sources
arise due to the fact that all models are imperfect reflections of reality. Finally,
when models are sufficiently complex to require approximate numerical solutions
(for example, when they take the form of partial differential equations), then the
numerical approximations provide an additional source of error and uncertainty.
This chapter discusses these different sources of error and uncertainty as well as
methods to characterize and treat them. Techniques for rolling up these different
uncertainty sources into a total prediction uncertainty are briefly discussed.

Keywords Model · Simulation · Error · Uncertainty · Validation · Calibration ·
Prediction

5.1 Introduction

This chapter is concerned with identifying the sources of error and uncertainty in
modeling and simulation. Mathematical models are used to describe the behavior
of systems in the natural and social sciences as well as in engineering. In some
cases, the model may be sufficiently simple that its solution may be obtained directly
(i.e., without any numerical approximation), as in the case of a regression fit of
experimental data. However, in most cases, these models are more complex and
take the form of partial differential or integral equations, which cannot be solved
directly. In such cases, approximate numerical solutions are needed. The focus of
this chapter is on these simulations which involve discrete approximations of partial
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differential or integral equations and will thus give rise to numerical approximation
errors. There are other kinds of simulations, e.g., agent-based simulations, in which
no numerical approximation errors arise. The general points about modeling errors
and uncertainties made in this chapter apply to them as well.

Before proceeding, it is prudent to define just what is meant by “errors and uncer-
tainties.” An error is defined as the difference between the value obtained and the
true value, and thus has both a magnitude and a sign (Oberkampf and Roy 2010);
the true value depends on the context of use. An uncertainty is an imprecision in
a value (Oberkampf and Roy 2010). Modeling and simulation in the presence of
uncertainty is considered to be nondeterministic in nature, where the output System
Response Quantities (SRQs, i.e., the quantities the analyst in interested in predicting)
no longer take the form of a single, deterministic value, but insteadmay take the form
of a probability distribution, an interval, or some more general form.

In the systems under consideration, some model inputs (e.g., model parameters,
boundary conditions, initial conditions, external excitations)may be uncertain. These
uncertain quantities may be random in nature (i.e., aleatory) or due to a lack of
knowledge on the part of the analyst performing the simulation (i.e., epistemic)
(Oberkampf and Roy 2010; Roy andOberkampf 2011). Uncertainmodel inputs must
be propagated through the model or simulation (an activity known as uncertainty
propagation) to determine their effects on the SRQs of interest.

Uncertainties are also present due to model imperfections and, when simula-
tions are used, due to numerical approximations. Validation is the assessment of the
accuracy of the mathematical model relative to observations of nature which come
in the form of experimental measurements (i.e., data) (Oberkampf and Roy 2010;
Roache 2009). Verification, on the other hand, deals with assessing the numerical
accuracy of a simulation relative to the true solution to the mathematical model
(Oberkampf and Roy 2010; Roache 2009; Roy 2005). Thus, verification and vali-
dation provide a means for assessing the credibility and accuracy of mathematical
models and their subsequent simulations (Oberkampf and Roy 2010; Roache 2009;
Roy and Oberkampf 2016; AIAA 1998; ASME 2006, 2009).

The verification and validation processes are illustrated from a deterministic point
of view in Fig. 5.1. Consider that you wish to know the error in a simulation rela-
tive to the true value in nature, which is not known. To estimate the solution error,
you first make some observation of nature (i.e., obtain experimental data), which
will contain experimental measurement error. Choosing a mathematical model, you
could compare model results to the data in order to estimate the modeling error.
These first two activities would be considered part of the model validation process.
If the model is not directly solvable, then if you could (hypothetically) perform the
simulations on a perfect computer (with infinite speed, memory, digits of precision,
etc.), any differences between the simulation and the exact solution to the mathemat-
ical model would be the due to algorithm deficiencies and software programming
(i.e., coding) errors. Finally, the difference between a simulation performed on an
actual computer and one performed on the hypothetical “perfect” computer would be
due to the numerical approximation errors. These final two activities, which involve
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Fig. 5.1 Overview of verification and validation processes in modeling and simulation (adapted
from Choudhary and Roy 2018)

the instantiation of an algorithm into software and the application of the software to
produce simulation results, are different aspects of verification.

The remainder of this chapter is organized as follows. Verification-related errors
are discussed in Sect. 5.2 including those associated with the discrete algorithm
choice and software programming Sect. 5.2.1 and numerical approximation errors
Sect. 5.2.2. The conversion of numerical errors into uncertainties is addressed in
Sect. 5.2.3, while the estimation of total numerical uncertainty is discussed in
Sect. 5.2.4. Section 5.3 contains a discussion of validation-related errors and uncer-
tainties including those due to experimental measurement Sect. 5.3.1, model form
uncertainty Sect. 5.3.2, and the extrapolation process Sect. 5.3.4. The issue of model
calibration is addressed in Sect. 5.3.3. Section 5.4 discusses uncertainties related
to the uncertainty propagation process including both model inputs Sect. 5.4.1 and
model parameters Sect. 5.4.2. A technique for rolling up all uncertainty sources
into a total prediction uncertainty is presented in Sect. 5.5. Finally, some points for
additional discussion are presented in Sect. 5.6 and conclusions drawn in Sect. 5.7.

5.2 Verification-Related Errors/Uncertainties

For cases where the mathematical model cannot be directly solved, approximate
numerical solutions (i.e., simulations) must be performed. As shown in Fig. 5.2, the
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Fig. 5.2 Summary of the simulation process and associated verification activities (reproduced from
Roy 2015)

steps to go from amathematical model to a simulation result involve: (1) the choice of
the discrete algorithm, (2) the programming of the chosen algorithm into software,
and (3) performing the numerical simulations and estimating the numerical error.
The correctness of the first two activities is assessed through code verification, which
ensures that the simulation software (i.e., the computational model) is an accurate
representation of the underlying mathematical model and its solution (Oberkampf
and Roy 2010; Roache 2009; Roy 2005; Knupp and Salari 2003; Roy et al. 2004).
The last activity comprises solution verification and deals with the estimation of the
numerical errors that occur when mathematical models are discretized and solved
numerically (Oberkampf and Roy 2010; Roache 2009; Roy 2005).

5.2.1 Discrete Algorithm Choice and Software Programming

The discretization process involves both the discretization of themathematical model
as well as discretization of the domain of interest. The latter process results in a mesh
(usually a set of nonoverlapping cells or elements) in space and/or time, depending
on whether the system is spatial in nature, temporal in nature, or both. The dis-
crete algorithm must be selected which will ensure that (1) the discretized equations
approach the mathematical model as the mesh is refined (i.e., consistency), (2) the
numerical solutions obey the stability conditions, and (3) the numerical solution
approaches the exact solution to the mathematical model with mesh refinement (i.e.,
convergence). Lax’s equivalence theorem states that convergence can be guaranteed
when a consistent discretization is used and the stability conditions are met (Strang
1986; Despres 2004); however, along with other caveats, this theorem only applies
to linear problems.

For complicated modeling and simulation applications, the software used to
instantiate the discrete algorithm may consist of thousands or even millions of lines
of source code. While traditional software engineering techniques such as version
control, static analysis, unit testing, regression testing, etc., are critical, they are
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not sufficient for ensuring the correctness of the programming of the computational
model. The main difficulty is that the “correct” values for the code output SRQs
are never known; they depend on the discretization scheme, the mesh, the iterative
tolerance, the digits of precision, etc.

The most rigorous test of code and algorithm correctness for simulation-based
codes is the order of accuracy test (Oberkampf and Roy 2010; Roache 2009; Roy
2005; Roy and Oberkampf 2016; Knupp and Salari 2003). This test determines
whether the discrete solution produced by the code approaches an exact solution to
the mathematical model at the theoretical rate (i.e., at the formal order of accuracy)
as the mesh is refined. The formal order of accuracy is usually determined by a
truncation error analysis. The observed order of accuracy is the actual rate at which
the numerical solutions converge to the exact solution to the mathematical model
with systematic refinement of the mesh and/or time step (Oberkampf and Roy 2010;
Roache 2009) and can be computed as

p �
ln

(
f2− f̃
f1− f̃

)

ln(r)
(5.1)

where f 2 and f 1 are the coarse and fine mesh SRQs, respectively, f̃ is the exact
solution to the mathematical model, and r is the ratio between coarse and fine grid
spacing in each direction (i.e., the grid refinement factor). See Refs. (Oberkampf and
Roy 2010; Roache 2009; Roy 2005; Roy and Oberkampf 2016; Knupp and Salari
2003) for more details.

Code order of accuracy testing is usually applied on simpler problems than the
actual application since it (1) is testing the correctness of the discrete algorithm and
the software programming and (2) requires an exact solution to the mathematical
model. This exact solution can be found from traditional means for simple mathe-
matical models or, for more complex models, it can be obtained using the method of
manufactured solutions (see Chap. 10 and Refs. Oberkampf and Roy 2010; Roache
2009; Roy 2005; Roy and Oberkampf 2016; Knupp and Salari 2003; Roy et al. 2004;
Roache and Steinberg 1984). The main concept behind the method of manufactured
solutions is to take an original mathematical model, made up of partial differential
or integral equations, and modify it by appending an analytic source term so that it
satisfies a chosen (usually nonphysical) solution.

The effects of discrete algorithm and computational model programming errors
on the simulation SRQs are essentially impossible to estimate. When such errors are
present and affect the computed solution, then they are typically identified (via code
or algorithm debugging) and removed. The code order of accuracy testing procedure
described above thus provides a means of ensuring that there are no algorithm or
programming mistakes that affect the numerical solutions.
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5.2.2 Numerical Approximation Errors

This section describes the various sources of numerical approximation errors that
can occur in a simulation and suggests methods for quantifying these errors.

5.2.2.1 Round Off

Round-off errors occur due to the fact that only a finite number of significant figures
can be used to store floating-point numbers in a digital computer. While round-off
errors are usually small, it is their accumulated effects on the SRQs after repeated
arithmetic operations that is of interest. They can be reduced if necessary by increas-
ing the number of significant figures used in floating-point computations (e.g., by
changing from single to double precision arithmetic). Round-off error can be esti-
mated by repeating the simulation with higher precision arithmetic (Oberkampf and
Roy 2010; Roy and Oberkampf 2016). For example, if the underlying simulation is
performed with single precision floating-point arithmetic, then round-off error can
be estimated as

εRound - Off
∼� fSingle − fDouble (5.2)

where f Single is the single precision SRQ and f Double is the double precision SRQ.
Note that both simulations must use the same mesh, and iterative error (if present)
must be reduced well below the round-off error.

5.2.2.2 Iteration

Although not all simulations have iterative convergence error, it can be present when
discretization of the mathematical model results in a simultaneous set of algebraic
equations that are solved approximately or when relaxation techniques are used.
The iterative error can be defined as the difference between the current approximate
solution to the discretized equations and the exact solution to the discretized equations
(Oberkampf and Roy 2010; Roache 2009; Roy and Oberkampf 2016). For a SRQ f ,
we can thus define the iterative error at iteration k as

εkh � f kh − fh (5.3)

where h refers to the discrete solution on a mesh with discretization parameters (Δx,
Δy, Δt, etc.) represented collectively by h, f kh is the current iterative solution, and
fh is the exact solution to the discrete equations (not to be confused with the exact
solution to the mathematical model f̃ ).

The iterative convergence of a simulation is generally assessed by examining the
iterative residuals. The iterative residual is found by substituting the current iterative
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solution into the discrete form of the governing equations and taking a norm of
the resulting nonzero remainder. Although monitoring the iterative residuals often
serves as an adequate indication as to whether iterative convergence of the solution
has been achieved, it does not by itself provide any guidance as to the magnitude of
the iterative error in the SRQ of interest.

The iterative residual normshavebeen shown to followcloselywith actual iterative
errors for many problems, usually differing only by a scaling constant (Oberkampf
and Roy 2010; Roy 2005; Roy et al. 2004). Thus, a small number of cases should
be sufficient to determine how the iterative errors in the SRQ scale with the iterative
residuals for the range of cases of interest. During this process, the iterative error is
usually estimated by iteratively converging down to “machine zero”, i.e., the point
where the iterative error can no longer be reduced due to the presence of round-off
error. See Refs. (Oberkampf and Roy 2010; Roy and Oberkampf 2016) for more
details.

5.2.2.3 Discretization

The discretization error is the difference between the exact solution to the dis-
cretized equations and the exact solution to the mathematical model (Oberkampf
and Roy 2010; Roache 2009; Roy 2005; Roy and Oberkampf 2016). It arises due
to the fact that the spatial domain is decomposed into a finite number of nodes, vol-
umes, or elements and, for time-dependent systems, time is advanced with a finite
time step. The discretization error is difficult to estimate for complex simulations
and is often the largest of the numerical error sources. As shown in Fig. 5.3, meth-
ods for estimating discretization error can be broadly categorized as either recov-
ery methods or residual-based estimators (Oberkampf and Roy 2010). Recovery
methods involve post-processing of the solution(s) and include Richardson extrap-
olation (Oberkampf and Roy 2010; Roache 2009; Roy 2005), order extrapolation
(Oberkampf andRoy 2010), and recoverymethods fromfinite elements (Zienkiewicz
and Zhu 1992; Ainsworth and Oden 2000). Residual-based methods employ addi-
tional information about the problem being solved and include discretization error
transport equations (Oberkampf and Roy 2010; Zhang et al. 2000; Shih andWilliams
2009;Roy2009; Phillips andRoy2011), defect correctionmethods (Skeel 1986; Stet-
ter 1978), implicit/explicit residual methods in finite elements (Oberkampf and Roy
2010; Ainsworth and Oden 2000; Stewart and Hughes 1998; Cao 2005), and adjoint
methods for estimating the error in solution functionals (i.e., SRQs) (Ainsworth and
Oden 2000; Pierce and Giles 2000; Venditti and Darmofal 2000, 2003). The recovery
methods have the drawback of requiringmultiple mesh levels (Richardson extrapola-
tion), requiring multiple solutions with different order of accuracy (order extrapola-
tion), or providing accurate error estimates for only a limited class of problems (finite
element recovery methods). The residual methods all require an additional solution
to be computed (generally on the same mesh) and may provide more accurate error
estimates since they use additional information about the problem being solved.
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Fig. 5.3 Overview of discretization error estimation approaches (reproduced from Roy and
Oberkampf 2016)

For the purposes of this chapter, we will provide high level details of the most
broadly applicable recoverymethod,Richardson extrapolation, which uses solutions
on two (or more) systematically refined meshes to estimate the exact solution to the
mathematical model. This estimate of the exact solution to the mathematical model
can, in turn, be used to provide an error estimate for the numerical solutions. Consider
two systematically refinedmeshes with spacing h and rh, respectively. Assuming that
the solutions are in the asymptotic range (i.e., that the observed order of accuracy is
near the formal order), one may obtain for an estimate f of the exact solution to the
mathematical model f̃ to be

f � fh +
fh − frh
r p − 1

(5.4)

which is generally a (p + 1)-order accurate estimate of the exact solution to the
mathematical model f̃ . This equation can be used to estimate the discretization error
in the fine grid solution, i.e., εh � fh − f , resulting in the error estimate:

εh � frh − fh
r p − 1

. (5.5)

Note that in addition to the assumption that both solutions are in the asymptotic
range, this error estimatewill be accurate onlywhen the other numerical error sources
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(e.g., due to iteration and round off) are much smaller than the fine grid discretization
error (a factor of 100 smaller is recommended Oberkampf and Roy 2010).

5.2.2.4 Surrogate Models

When simulations are expensive and involve the propagation of uncertainty from the
model inputs to the SRQs, surrogate (or response surface) models are often used to
approximate the simulation behavior, but at a much lower cost (Queipo et al. 2005).
Surrogate models thus provide a low-cost method for mapping the uncertain input
parameters to the SRQs, but are usually only feasible for a modest number of input
dimensions (on the order of 10). There are numerous approaches to surrogate model-
ing including multidimensional polynomial curve fitting, least squares, kriging, and
machine learning. A sampling strategy is needed to obtain the training data from
the simulation. Some surrogate modeling approaches satisfy the training data points
exactly (e.g., curve fitting), while other approaches (e.g., least squares) will only
match the training data in an approximate sense. Cross validation is often used to
partition the available simulation results into training data and “validation” data in
order to estimate the accuracy of the surrogate model (Geisser 1993); however, such
procedures can be risky unless one can establish independence between the training
data and the validation data. In the current context, the assessment of the accuracy of
the surrogate model is in fact a verification (i.e., mathematics) activity since it seeks
to characterize the error between the simulation output and the surrogate model.

5.2.3 Conversion of Numerical Errors into Uncertainties

In some cases, when numerical errors can be estimated (both sign and magnitude)
with a high degree of confidence, they can be removed from the numerical solution,
a process similar to that used for well-characterized bias errors in an experiment
(Oberkampf and Roy 2010; Roy and Oberkampf 2011, 2016). More often, however,
the numerical errors are estimatedwith significantly less certainty, for example, only a
rough estimate of the absolute value of the error may be available. As a result, these
error estimates should be treated as numerical uncertainties, with the uncertainty
coming from the error estimation process itself. One of the simplest methods for
converting an error estimate to an uncertainty is to use the magnitude of the error
estimate to apply uncertainty bounds about the simulation prediction, possibly with
an additional factor of safety included. For example, the Richardson extrapolation
estimate of discretization error ε̄h discussed above can be represented as a numerical
uncertainty UDE as,

UDE � Fs |ε̄h | (5.6)
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Fig. 5.4 Example of
converting a discretization
error estimate into a
numerical uncertainty
centered about the numerical
solution (adapted from Roy
and Balch 2012)

where Fs ≥ 1 is the factor of safety (this is in fact a generalization of Roache’s grid
convergence index, see Roache 2009, 1994). The resulting interval for the numerical
solution, accounting for numerical uncertainties, can be approximated by applying
this uncertainty symmetrically about the fine grid solution

fh ±UDE � fh ± Fs |ε̄h |. (5.7)

These concepts are shown graphically in Fig. 5.4 with a factor of safety of approx-
imately Fs � 1.5 (Roy and Balch 2012). The numerical solution f h has a signed error
estimate ε̄h as well as an uncertainty band created by taking plus/minus the abso-
lute value of ε̄h centered on the numerical solution. The factor of safety is needed
because f is only an approximation of f̃ . In other words, even when the error esti-
mate is reasonably accurate, the true exact solution f̃ could still be slightly larger
or slightly smaller than the estimated exact solution f . When the error estimate ε̄h
is poor, this heuristic approach is designed to still potentially provide conservative
numerical uncertainty estimates, depending of course on the chosen factor of safety.
It is recommended that this uncertainty be centered about the numerical solution fh
rather than the estimated exact solution f since the latter can lead to erroneous (and
possibly physically non-realizable) values.

5.2.4 Estimating Total Numerical Uncertainty

When multiple sources of numerical error are present, then a conservative approach
is to simply add the numerical uncertainties together (Oberkampf and Roy 2010;
Roy and Oberkampf 2011), e.g.,

UNUM � URO +UIT +UDE +USURR . (5.8)

where URO, UIT , UDE , and USURR refer to uncertainty due to round off, iteration,
discretization, and surrogate modeling, respectively. While this method assumes that
the uncertainty sources are independent, it is guaranteed to be a conservative bound
on the numerical uncertainty if the uncertainty estimate for each of the components
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is conservative (i.e., the uncertainty bounds the true error). Numerical uncertainties
are epistemic (i.e., due to a lack of knowledge rather than inherent randomness) in
nature since they can be reduced by adding additional information (e.g., more digits
of precision, more iteration, finer meshes, more training points).

5.3 Validation-Related Errors/Uncertainties

There are many ways to use experimental data for uncertainty quantification and
reduction in computational modeling. The most common way is through calibration
of model parameters (including possibly a model error/discrepancy term). While
calibration may result in an improved model, the errors and/or uncertainties asso-
ciated with the newly calibrated model are generally not known. At the other end
of the spectrum, one could use the data to estimate the uncertainty in the original
(un-calibrated) model. In either case, the uncertainty of the experimental data should
be taken into account. Finally, techniques for inferring the modeling uncertainty at
conditions where no data are available (i.e., extrapolation) must also be considered
(see Chap. 3 by Oberkampf and Chap. 15 by Murray-Smith in this volume). This
section describes these various validation-related errors and uncertainties and their
treatment.

5.3.1 Experimental Measurement

There are two types of measurement errors: random measurement errors and sys-
tematic (or bias) errors. The experimental uncertainty due to random error sources
can be reduced by adding additional replicate measurements, with the uncertainty

scaling as 1
/√

N , where N is the number of experimental replicates. Bias errors,

when estimated accurately, can be removed from the measurement via experimen-
tal calibration procedures. Unknown or estimated bias errors are usually converted
to random errors via design of experiments (Montgomery 2017) or other blocking
techniques (Oberkampf and Smith 2017).

The uncertainty in an experimental measurement is the root sum square of the
standard systematic uncertainty and the random uncertainty. See Refs. (ASME PTC
2005; ISO 1995; Coleman and Steele 2009) for details. Reported experimental uncer-
tainty usually refers to some confidence level on themean value. For example, a mea-
surement reported with 10% uncertainty generally means that the true value (i.e., the
actual value found in nature) is within the stated interval (reported value±10%) with
95% confidence.
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5.3.2 Model Validation

Model error arises due to all of the assumptions and approximation that occur during
themodel development process.Model error is often one of the largest contributors to
the overall uncertainty inmodeling and simulation (in thewords of statisticianGeorge
Box “All models are wrong but some are useful” (Box 1979)). If the modeling error
can be accurately characterized over the entire application domain, then it should be
removed via calibration procedures (see Sect. 5.3.3 below); however, this is rarely
the case. It is much more common that the modeling error can only be estimated in
a rough sense, and only in a small portion of the application domain. In such cases,
it is more appropriate to try to estimate the Model Form Uncertainty (MFU), not to
be confused with the uncertainty due to the value of the model parameters.

One approach for treating MFU is to use all experimental data to quantify the
MFU and make no attempt to improve (or calibrate) the model. This process is
called model validation (Oberkampf and Roy 2010; Roache 2009), model accuracy
assessment, or the estimation ofMFU and is discussed in more detail below. Another
approach for dealing with MFU was developed by Kennedy and O’Hagan (Kennedy
and O’Hagan 2000, 2001) and has the advantage of fitting within a Bayesian frame-
work. In their approach, the MFU is quantified by parameterizing the difference
between the outputs of the computational model and experimental observations as
a stationary Gaussian process, whose hyperparameters can either be assumed a pri-
ori or inferred from the data. The Gaussian process model provides the estimated
model discrepancy (i.e., model error) along with a Gaussian uncertainty, which is
generally small where data are available (depending on the uncertainty of the data
themselves) and grows in regions of the parameter space where data are lacking.
Thus their approach inherently incorporates elements of validation, calibration (see
Sect. 5.3.3), as well as extrapolation (see Sect. 5.3.4). Note that the Kennedy and
O’Hagan approach does not result in a true validation metric (as described below)
since it does not provide a true distance measure (see Chap. 7 by Beisbart in this
volume).

Validation metrics provide a means by which the accuracy of a model can be
assessed relative to data (Oberkampf andRoy 2010; Roy andOberkampf 2011, 2016;
Ferson et al. 2008). Liu et al. (2011) proposed a classification system for validation
metrics based on whether or not (1) the metric incorporates uncertainty sources in
the simulation predictions and the experimental measurements (i.e., the metric is
classified as either deterministic or stochastic), (2) the comparison is made for a
single SRQ or multiple SRQs, and (3) the metric provides a quantitative distance-
based measure that can be used to quantify modeling error/uncertainty. Note that the
latter criterion is related to the general requirements for a mathematical metric (see
Chap. 13 by Marks in this volume).

While there are many possible validation metrics, we will discuss one approach
called the area validation metric (Ferson et al. 2008) which is a true mathematical
metric that provides quantitative assessment of disagreement between a stochastic
model SRQ and experimental measurements. When probabilistic uncertainties are
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present in themodel inputs, propagating these uncertainties through themodel allows
the evaluation of a Cumulative Distribution Function (CDF) of the SRQ. Experi-
mental measurements are then used to construct an empirical CDF of the SRQ. The
absolute value area between these two CDFs is referred to as the area validation
metric d (also called the Minkowski L1 norm) and is given by

d(F, Sn) �
∞∫

−∞
|F(x) − Sn(x) |dx (5.9)

where F(x) is the CDF from the simulation, Sn(x) is the empirical CDF from the
experiment, and x is the SRQ. The area validation metric d has the same units as
the SRQ and goes to zero when the experimental and model CDFs are identical,
thus providing a measure of the evidence for disagreement between the two (Ferson
et al. 2008). This metric represents an epistemic uncertainty because it embodies the
bias effect of all of the assumptions and approximations in the formulation of the
mathematical model compared to measurements of the SRQ in nature. The area vali-
dation represents the MFU and is usually applied as an interval symmetrically about
the simulation outcome F(x) as F(x ± d). Note that the area validation metric can
also contain sampling (epistemic) uncertainty due to a finite number of experimental
measurements, or a finite number of computational samples.

An example of the area validation metric for a case with aleatory uncertainties
occurring in themodel input parameters is given in Fig. 5.5. In this figure, the aleatory
uncertainties have been propagated through the model (e.g., with a large number of
Monte Carlo samples), but only four experimental replicate measurements are avail-
able. The stair-steps in the experimental CDF are due to the different values observed
in each of the four experimental measurements and are separated by cumulate prob-
abilities of 0.25. The stochastic nature of the measurements can be due to variability
of the experimental conditions and/or random measurement uncertainty. This metric
can also be computed for cases involving both aleatory and epistemic (including
interval-characterized) uncertainty in the model inputs, as well as situations where
only a small number of simulation samples are available (e.g., see Oberkampf and
Roy 2010; Ferson et al. 2008).

5.3.3 Model Calibration

It is important to draw a clear distinction between the concepts of validation and cali-
bration (see Chap. 41 by Frisch in this volume).While validation involves the quanti-
tative assessment of a model relative to experimental data, calibration (a.k.a., param-
eter estimation, parameter optimization, or model updating) involves the adjustment
of model input parameters to improve agreement with experimental data. For exam-
ple, if all uncertain model inputs are probabilistic, then Bayesian updating can be
used to update the probability distributions of the model inputs. While calibration
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Fig. 5.5 Area validation metric example (reproduced from Ferson et al. 2008)

may be an important part of the model building and improvement process, it does
not in itself provide quantitative estimates of MFU. The key difference is that model
calibration results in a modified model, because model parameters or their distribu-
tions are updated, that must still be assessed for accuracy when new experimental
data become available.

5.3.4 Extrapolation

Extrapolation is the use of a model to make predictions beyond conditions where
experimental data are available. Extrapolation is appropriate when: (1) it is per-
formed using a physics-based (or first principles) model and (2) it is believed that the
physics-based model includes all of the necessary physics involved at the prediction
conditions. Extrapolation should not be performed with regression-based or empir-
ical models, just as one should not apply a polynomial curve fit far outside of the
conditions where data are available. Thus, extrapolation should be a physics-based
process as opposed to a statistical process.

The conditions where the model will be applied is considered the application
domain. The conditions where experimental data are available are called the vali-
dation domain. Figure 5.6 presents a simple example of one possible relationship
between the validation domain (represented by the letters “V”) and the application
domain. Here, the application domain is determined by two (ideally nondimensional)
input parameters, and the validation domain is contained entirely within the appli-
cation domain, but does not fully cover it. The validity of the model may be directly
assessed, using validation metrics along with an interpolation strategy, within the
validation domain; however, the validity of the model outside the validation domain
must be inferred frommodel assessmentsmadewithin the validationdomain.Theval-
idation domain is generally not coincident with the application domain, thus extrap-
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Fig. 5.6 Schematic showing one possible relationship between the validation domain and the appli-
cation domain; many other set relationships are of course possible (reproduced from Oberkampf
and Roy 2010)

olation of the MFU to the conditions of interest is needed. The key point is that
the statistical extrapolation occurs in the estimation of the MFU, not in the simula-
tion prediction itself. When the application domain is defined by a large number of
parameters (i.e., a high-dimensional space), even copious amounts of experimental
data generally only cover a small portion of the application domain. The Kennedy
and O’Hagan model discrepancy approach (Kennedy and O’Hagan 2001) provides a
natural means of extrapolation of the model discrepancy from the validation domain
to the application domain. In other cases, extrapolation of the MFU can be achieved
statistically using prediction intervals (Roy and Oberkampf 2011; Roy and Balch
2012).

5.4 Uncertainty Propagation-Related Uncertainties

For nondeterministic simulations, when model inputs and model parameters are
uncertain, then they must be propagated through the model to assess their effects on
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Fig. 5.7 Schematic showing the general nondeterministic simulation process (reproduced from
Oberkampf and Roy 2010)

the model outputs (i.e., the SRQs). This uncertainty propagation process is shown
graphically in Fig. 5.7, where the model itself is assumed to be deterministic, but
model inputs and parametersmay be uncertain. As discussed in the previous sections,
additional uncertainty may occur in the SRQs due to MFU as well as numerical
uncertainty (when simulations are involved). This section describes the sources of
uncertainty and their treatment related to the uncertainty propagation process.

5.4.1 Model Inputs

Model inputs and model parameters may either be deterministic (i.e., have a sin-
gle, known value) or uncertain. When they are uncertain, they can be classified as
(1) aleatory—the inherent variation in a quantity, (2) epistemic—uncertainty due to
lack of knowledge, or (3) a mixture of the two (Roy and Oberkampf 2011). Aleatory
uncertainty is generally characterized probabilistically by either a probability den-
sity function or a CDF, the latter being simply the integral of the probability density
function from minus infinity up to the value of interest. A purely epistemic uncer-
tainty is usually characterized either probabilistically as a uniform distribution (note
that although this is the least informative distribution, it is still a precise probability
distribution) or as an interval with no associated probability distribution. The interval
characterization is a weaker statement about the value of a quantity than a uniform
probability because any value in the interval is considered possible and no likelihood
is ascribed to any one value over another. Mixed aleatory and epistemic uncertainty
can be characterized by set-theoretical approaches such as probability bounds analy-
sis, evidence theory, and fuzzy probabilities. These approaches are part of imprecise
probability theory which characterizes the uncertainty as a set of possible probabil-
ity distributions that could exist. See Chap. 21 by Bradley in this volume and Refs.
(Ferson and Ginzburg 1996; Beer et al. 2013; Ferson and Hajagos 2004) for more
details.
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When uncertain model inputs are characterized probabilistically, there are a num-
ber of different approaches for propagating input uncertainty through the model.
The simplest approach is sampling (e.g., Monte Carlo and Latin hypercube) where
inputs are sampled from their probability distribution, propagated through themodel,
and then used to generate a sequence of SRQs. However, sampling methods tend to

converge slowly: Monte Carlo methods converge at a rate proportional to 1
/√

N

and Latin hypercube sampling converges as 1
/
N 3/ 2 for small sample size N . Other

approaches that can be used to propagate probabilistic uncertainty include pertur-
bation methods and stochastic spectral methods (e.g., polynomial chaos), the latter
of which comes in both intrusive (i.e., requiring modifications to the computational
model software) and nonintrusive (i.e., employing the code as a black box) formu-
lations (Smith 2013). Furthermore, when a surrogate model of an SRQ as a function
of the uncertain model inputs is available (see Sect. 5.2.2.4), then any nonintrusive
method discussed above, including sampling, can be computed efficiently.

When all uncertain inputs are characterized by intervals, i.e., they are purely epis-
temic, there are two popular approaches for propagating these uncertainties through
the model to the SRQs. The simplest is sampling over the input intervals in order
to estimate the interval bounds of the SRQs. However, the propagation of interval
uncertainty can also be formulated as a constrained optimization problem: given the
possible interval range of the inputs, determine the resulting minimum and maxi-
mum values of the SRQs. Thus, standard approaches for constrained optimization
such as local gradient-based searches and global search techniques can be used. For
mixed probabilistic and interval-characterized uncertainties, a segregated approach
to uncertainty propagation is recommended. See Refs. (Roy and Oberkampf 2011;
Ferson and Ginzburg 1996) for details.

When nonintrusive approaches are used, the errors associated with using a finite
number of samples should be estimated. In some cases, confidence intervals can be
used to assess the accuracy of the output distributions.Although sampling uncertainty
is epistemic in nature (as more samples can be added to reduce it), it is a special case
where the epistemic uncertainty can be appropriately characterized probabilistically.

5.4.2 Model Parameters (i.e.., Parametric Uncertainty)

Uncertainty in model parameters can be propagated in the same way as uncertainties
in model inputs. However, when experimental data are available, model parameters
may also be treated by calibration processes (see Sect. 5.3.3). Distinctions can be
made between different types of model parameters.

1. Measurable properties of the system can be estimated/calibrated independently
from the system.

2. Physical modeling parameters are those not measurable outside of the context of
the model.
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3. Adhocmodel parameters are corrections applied to theSRQsdirectly to “correct”
the model relative to data.

Calibration is recommended for measurable properties, but becomes increasingly
hard to justify as one moves towards the ad hoc model parameters. As discussed
earlier, calibration may be for deterministic values (i.e., parameter estimation) or
probability distributions (via Bayesian updating).

5.5 Total Prediction Uncertainty

When performing modeling and simulation analyses, the analyst is interested in esti-
mating the total uncertainty in their predictions. As described in detail above, the
total prediction uncertainty has contributions from the uncertainmodel inputs (uncer-
tainty propagation), from themodeling process (validation), and, in some cases, from
the simulation process (verification). These three contributors to the total prediction
uncertainty are shown schematically in Fig. 5.8. Model inputs may be determinis-
tic, aleatory, epistemic, or mixed aleatory/epistemic, and are propagated through the
model (or simulation) to determine their effects on the SRQs. Code and solution
verification activities provide estimates of the (epistemic) numerical uncertainties
associated with the simulations. Finally, validation activities are conducted by com-
puting validation metrics which compare simulation and experimental outcomes to
estimate the (epistemic) MFU at the validation conditions. The MFU is then extrap-
olated to the prediction conditions of interest.

Consider an example (Roy and Balch 2012) where there is both aleatory and
epistemic uncertainty in the model inputs. The aleatory uncertainty is characterized
probabilistically and the epistemic uncertainty is characterized as an interval. These
uncertainties are propagated through the model using segregated uncertainty prop-
agation (Roy and Oberkampf 2011; Roy and Balch 2012), resulting in a p-box for
the SRQ (in this case, thrust produced by a rocket nozzle) as indicated by the blue
shaded region in Fig. 5.9. This p-box represents the family of all possible CDFs that
can exist within its bounds. The outer bounding shape of the p-box is due to the
probabilistically characterized input uncertainty and the width of the p-box is due to
the interval-characterized input uncertainty.

If the p-box of the SRQ resulting from propagating both the random and the
interval-characterized model input uncertainties through the model is denoted by
F(x), then accounting for MFU (UMODEL) and numerical uncertainty (UNUM) would
result in an extended p-boxF(x±UTOTAL) whereUTOTAL �UMODEL +UNUM . That is,
the left side of the initial p-box resulting from the propagation of input uncertainties is
displaced negatively byUTOTAL, and the right side of the p-box is displaced positively
by UTOTAL, to obtain the extended p-box for the SRQ. In Fig. 5.9, the contribution
from MFU is shown in green and that from numerical uncertainty is shown in red.

The extended p-box can be interpreted as follows. Consider a requirement that the
thrust produced by the rocket nozzle must be at least 2,600 N. After accounting for
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Fig. 5.8 Overview of the sources contributing to the total prediction uncertainty (adapted from
Roy and Balch 2012)

both MFU and numerical uncertainties, the probability that this requirement could
be violated is in the interval range [0%, 22%]. That is, it could be as low as a 0%
or as high as a 22% chance that the thrust will be below the required value. This
interval range represents the lack of knowledge (i.e., ignorance) that the analyst has
about the system, its inputs, and the modeling and simulation process. The prudent
decision maker would realize that the probability of violating the requirement could
be as high as 22% and would look for ways the epistemic uncertainties could be
reduced. It should be noted that if numerical uncertainty and MFU were ignored,
then the blue p-box of Fig. 5.9 indicates that the thrust requirement will be met with
nearly 100% probability.

In this notional example, there are three ways to reduce the epistemic uncer-
tainty in the prediction. First, additional information could be gathered to reduce
the epistemic uncertainties in the model inputs, thus reducing the width of the ini-
tial p-box. Second, the numerical uncertainty could be reduced by performing the
simulations on a finer mesh, doing more iterations, etc. Finally, the MFU could be
reduced by gathering additional experimental data near the prediction conditions
(reducing uncertainty due to extrapolation) or by improving/calibrating the model
at the conditions where data are available. The choice of which approach to take to
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Fig. 5.9 Example of total prediction uncertainty represented as an extended p-box (reproduced
from Roy and Balch 2012)

reduce the epistemic uncertainty would depend on the cost and time associated with
each of these uncertainty reduction strategies.

5.6 Discussion

There are two primary issues that merit additional discussion. The first has to do
with how uncertainties from the various sources are aggregated to obtain the total
prediction uncertainty. The second issue revolves around how experimental data are
used: for improving the model (calibration), estimating the uncertainty in the model
(validation), or a mixture of the two.

When numerical errors are converted to uncertainties as discussed in Sect. 5.2.3,
they are generally centered about the simulation value, even when they arise from
signed error estimates (e.g., see Roache 1994). To fit more naturally in a probabilistic
framework, one possibility would be to correct the solution with the estimated bias
error, then place the uncertainty about the corrected solution; however, this should
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only be done when the error estimates are deemed reliable. Another approach would
be to treat the uncertainty as an interval about either the simulation value (as discussed
above in Sect. 5.5) or the corrected solution. In general, it is an open question as to
whether the numerical uncertainty sources should be characterized probabilistically
(Stern et al. 2001; Phillips and Roy 2013) or in some other fashion (e.g., as intervals)
(Roy and Oberkampf 2011; Roy and Balch 2012).

There is still a great deal of debate on how to account for model form uncertainty
(MFU) in modeling and simulation. One extreme would be to use all available exper-
imental data to improve (i.e., calibrate) the model and thus reduce the MFU. At the
other end of the spectrum, one may choose use all of the data to estimate the MFU.
Rigorous assessments of the best approach for treatingMFUhave not appeared exten-
sively in the literature to date. The choice of treatment forMFU likely will depend on
the risk associated with how the modeling and simulation predictions will be used as
well as the quantity and quality of the experimental data. For example, in preliminary
system design, model calibration may be appropriate; however, for the final simula-
tions to support the regulatory filing for a new type of nuclear power plant, estimates
of MFU without calibration would carry less risk. In addition, when reliable and
extensive experimental data are available over the entire application domain, then
a calibration approach is feasible. However, when data are sparse and/or deemed
unreliable, then a more conservative approach is recommended where the baseline
model is not calibrated, but instead the MFU is estimated.

5.7 Conclusions

The various sources of error and uncertainty in modeling and simulation were
described in this chapter. Verification, validation, and uncertainty propagation are
the three processes used to estimate these error and uncertainty sources. It is only
after each of these sources has been addressed that one can gain confidence in the
predictions made using modeling and simulation. While no single approach has
emerged to aggregate all of these error and uncertainty sources into a total prediction
uncertainty, some possible approaches were discussed.
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Chapter 6
Invalidation of Models
and Fitness-for-Purpose: A Rejectionist
Approach

Keith Beven and Stuart Lane

I am….an almost orthodox adherent of unorthodoxy: I hold that
orthodoxy is the death of knowledge since the growth of
knowledge depends entirely on the existence of disagreement.

(Karl Popper 1994, p. 34)

Abstract This chapter discusses the issues associated with the invalidation of com-
puter simulation models, taking environmental science as an example. We argue that
invalidation is concerned with labelling a model as not fit-for-purpose for a par-
ticular application, drawing an analogy with the Popperian idea of falsification of
hypotheses and theories. Model invalidation is a good thing in that it implies that
some improvements are required, either to the data, to the auxiliary relations or to
the model structures being used. It is argued that as soon as epistemic uncertain-
ties in observational data and boundary conditions are acknowledged, invalidation
loses some objectivity. Some principles for model evaluation are suggested, and a
number of potential techniques for model comparison and rejection are considered,
including Bayesian likelihoods, implausibility and the GLUE limits of acceptabil-
ity approaches. Some problems remain in applying these techniques, particularly
in assessing the role of input uncertainties on fitness-for-purpose, but the approach
allows for a more thoughtful and reflective consideration of model invalidation as a
positive way of making progress in science.
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6.1 Setting the Scene for Model Evaluation

In this chapter, we discuss the problems in applying a scientific methodology to
computer models and, in particular, to the issue of rejection or invalidation of com-
puter simulation models. We use invalidation of a simulation model structure and
falsification of any of its component hypotheses here equivalently, to indicate that a
simulation model has been shown to fail in some important respect and should con-
sequently not be considered fit-for-purpose in making predictions.We do so from the
point of view of practical environmental modellers in the domains of hydrology and
hydraulics, who have an interest in the philosophical underpinnings of the modelling
process and its role in the development of the associated science. Computer simula-
tion is widely used in this domain, with (often complex) models being constructed to
represent environmental systems with elements that sometimes have a good theoret-
ical basis (e.g. mass and energy balance principles); that sometimes are derived from
empirical studies (e.g. roughness relationships to represent bulk energy losses); and
that sometimes have a purely conceptual basis (e.g. canopy resistance for transpira-
tion from a vegetated surface). In such models, many of the functional relationships
involve parameters that need to be identified for particular applications. These are
often considered to be constant at a particular location and through time (especially
when calibrating parameter values to past data) but have often been shown to change
with the state of the system, or over time. Uncertainties in the input or forcing data
as well as data used in model calibration, and also competing model structures,
are intrinsic to the modelling process (see e.g. Beven 2009, 2012a). The dominant
sources of uncertainty are often epistemic (i.e. the result of a lack of knowledge)
rather than aleatory (i.e. statistical or resulting from random natural variability) in
nature.

This chapter essentially addresses the question of how to do science when using
models in the face of such epistemic uncertainties. This is discussed in the context
of Popper’s falsificationist approach in Sect. 6.2 and how this might then be applied
as a rejectionist methodology in model evaluation when all models are known to
be false to some extent. Sections 6.3 and 6.4 discuss the concepts of verisimilitude
and fitness-for-purpose in the context of how models that are false might be useful.
In Sect. 6.5, some principles of model invalidation as a positive methodology for
advancing the science are discussed and it is shown how rejection can be considered
within a modified Bayesian framework that either allows a choice between model
structures or applies some limits of acceptability. Section 6.6 discusses howepistemic
uncertainties impact on a rejectionist framework, and Sect. 6.7 how to resolve the
advocacy ofmodels that might not be fit-for-purpose withmaking scientific progress.

There is a long and continuing debate in both science and philosophy about what
constitutes, or what should constitute, a scientific method in different domains of
science (e.g. Chalmers 1976; Howson 2000; Hackett 2013). The recent rise of sim-
ulation models as a methodology for doing science has been much discussed in
this respect (e.g. Cartwright 1999; Winsberg 2003). Simulation models combine
elements of deductive inference in arguing from premises based on established con-
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cepts and theories, and inductive inference as a way of deriving functional relation-
ships and parameterisations (see Young 2013 for a recent discussion in the field of
hydrology), but also as a way of inferring values for the parameters of models by
calibration against observational data. Perhaps reflecting the extent to which current
scientific method has given primacy to observation, the parameter values required
to make the model reproduce those data may either have no physical equivalent or
vary from those that have been measured (see Lane et al. 2011; Lane 2012). They
are “effective” in that the calibrated values are needed to make the model perform
against observational data (Beven 1989, 2016). Nearly all, if not all, environmental
simulation models incorporate “conceptual” or inductive elements of this type.

However, as Hume (1748) first pointed out, there is a problem with induction. It
demands that the future will be the same as the past. There is then an implication that
any theory or model of nature can never be verified on the basis of past observations
because there is always a possibility that “the course of nature may change” (Hume
1748, Sect. IV.2). It has proven difficult to provide any philosophical resolution
to Hume’s problem of induction even though it challenges the fundamental belief
that environmental simulation models are a means of getting a handle on events
that have yet to happen. Indeed, Howson (2000) argues that Hume is correct, but
that does not mean that we cannot use reasoned argument based on observations,
as well as deductive argument, to modify our scientific understanding and beliefs
about the future. Widespread use of the term “physically-based” in environmental
modelling is the implicit manifestation of a faith in this form of deductive argument.
The term “physically-based” suggests a simulation model is based upon assumed-
to-be time-invariant “laws of nature” and so capable of better getting at the future
than other kinds of approaches (e.g. belief systems; expert judgement). Of course,
however, physically based a model might be, Hume’s proposition means that we will
sometimes get surprises as the future unfolds.

It would appear evident that the use of simulation models that involve inductive
elements as either parameterisations or calibrated/effective parameter values, might
be most susceptible to future surprise when the observational data used in the infer-
ence comes from the past. Asmodellers, we expect the future to be uncertain and past
experience suggests that we should expect some element of surprise, if only because
future boundary conditions cannot be known (see, for example the post-audit analysis
of groundwater model simulations of Konikow and Bredehoeft 1992; Anderson and
Woessner 1992, discussed later). One aim of simulation modelling is then to min-
imise the element of surprise by ensuring that anymodel used for predicting the future
is fit-for-purpose, in so far as its current and past performance has been evaluated.
This is the process of model evaluation or validation or, from another perspective,
model invalidation or falsification of the theoretical or conceptual components of a
simulation model.



148 K. Beven and S. Lane

6.2 The Falsification Framework of Karl Popper

Wehold that the invalidation view ofmodel evaluation is a useful alternative tomodel
validation because of the critical role of falsification in the development of science.
Popper (1959) argued that either inferring universal statements from singular or
particular ones, or confirming a universal statement with particular statements could
not be justified because no matter how many instances something was observed and
used to justify a particular universal statement, there was always the possibility that
one observation may falsify that statement. In this context, for a hypothesis or theory
to be considered scientific it must be advanced a priori, be testable and have the
capacity to be falsified in some way. Hypotheses or theories that cannot be falsified
in this way consequently can be considered as only pseudo-scientific. Scientific
method is then the process of developing hypotheses and confronting them with the
available evidence. Successful hypotheses in this context are not more probably true,
because obtaining more evidence does not necessarily change the probability that
a hypothesis might be falsified. For this reason, Popper argued that it is better to
talk of the corroboration of hypotheses, where a better corroborated hypothesis is
one that has been tested more rigorously individually, widespread or for a longer
period of time. Equally, the most rapid of scientific progress may be made when a
long-established or well-corroborated hypothesis is shown to no longer hold.

There are distinct parallels with the notion of multiple working hypotheses
(Chamberlain 1895) and the idea that it may be necessary to work with a set of
potentially contradictory hypotheses. In a Popperian framework, in which hypothe-
ses are subject to testing and potential rejection, a hypothesis is defined as admissible
if it is testable. This concept can be applied to simulation models, in that any par-
ticular realisation of a model of a process or system can be considered as a working
hypothesis of how that system functions (e.g. Herskowitz 1991; Beven 2002). While
recognising that all models are idealisations and consequently necessarily false
in some respects, models that are successful in making useful predictions over a
period of time can be considered corroborated; models that not successful should be
considered as invalid or not fit-for-purpose and revised by changing beliefs (Klein
and Herskowitz 2007). Similar considerations apply to simulation models used for
different purposes, either for testing scientific concepts or for practical applications.
The criteria of invalidationmight, however, be different for different types of purpose.

Popper’s falsification approach to scientific inference has not been without its dis-
senters. Indeed, it has been suggested that falsification itself cannot be falsified and
that, in many celebrated examples, theories have not been falsified, despite contra-
dictory observational evidence being available, because of some other intrinsically
attractive features (e.g. Chalmers 1976; Ladyman 2002). Certain theories cannot be
rejected because it would be too costly to do so (Latour and Woolgar 1979). It has
also been pointed out that experimental observations are often conditioned by the
theoretical framework within which they are developed, allowing free parameters
to be derived from the observations and leaving no possibility of falsification (the
Duhem–Quine thesis, see Quine 1975; Chalmers 1976). It may take a change of
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paradigm to evaluate a theory in a different way, causing it to be replaced (though
in the past, this has sometimes happened even though the new paradigm has been
initially less supported by the available observations, see Kuhn 1970; Feyerabend
1975; Lakatos 1978).

More recently a statistical version of the falsification method has been promoted
by Mayo and her co-workers (see, for example, Mayo 1996 and the discussions
in Mayo and Spanos 2010, cf. also Chap. 19 by Robinson in this volume). This
approach recognises that all experimental methods are subject to observational and
sampling uncertainties, so hypotheses and theories should be exposed to strong sta-
tistical testing in validation. Failure of such tests would then constitute falsification.
An example is the “5σ” test used in particle physics, where σ represents the standard
deviation of the observations, such as in the identification of the Higgs Boson in the
Large Hadron Collider at CERN (e.g. CMS Collaboration 2013). This requires that
the variability of the data are well described by a Gaussian distribution, but if this
assumption is accepted, then 5σ represents a 1 in 3.5 m chance (p � 0.0000003) of
making a Type I error, where a false theory is accepted as correct. If this test is passed,
then the hypothesis or theory is not rejected and can be considered as corroborated
by the evidence. Similarly, tests on discrepancies between the data and theoretical
predictions can be used to suggest when a theory should be rejected, though interest-
ingly there do not seem to be any equivalent accepted standards in such cases for the
probability at which falsification is confirmed. This is almost certainly an effect of
the general bias against the publication of failures (see, for example, Masicampo and
Lalande 2012), even though the statistics of negative results might be an important
consideration in risk management (e.g. Mayo 1991). More often, hypotheses and
theories that (to a more or less extent) conflict with observations are modified or
replaced rather than simply being discredited or falsified in the literature. We revise
our beliefs and hence our theories (Quine 1969; Morton 1993; Klein and Herskowitz
2007) through the addition of auxiliary information (e.g. empirical parameterisations
of momentum loss and secondary circulation in rivers) even though we know that the
reason that makes this auxiliary information needed (depth-averaging of the full 3D
Navier–Stokes equations) fundamentally invalidates the capacity of depth-averaged
models to represent the nature of river flow.

An incorrect rejection would be a Type II or false negative error (rejecting amodel
as a hypothesis that should not be rejected). In any statistical test there is a trade-off
between Type I and Type II errors so the lower the required probability of avoiding
a Type I error (as in the 5σ case), the higher the probability of a Type II error. This
probability can be reduced by adding more informative observations, when this is
feasible. Mayo’s response to the Duhem–Quine thesis is to suggest that strong statis-
tical testing implies the testing of any auxiliary conditions related to the theory. “A
claim can only be said to be supported by experiment if the various ways in which the
claim could be at fault have been investigated and eliminated” (Mayo 1996, p. 199).
This represents severe testing but is not always possible, particularly when we wish
to test the implementation of theories, and complex, multi-component models based
on theories, to situations where controlled experiments are impossible or difficult to
justify economically. This is the case for the very many models of environmental
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systems currently being used, where knowledge of parameter values and boundary
conditions may be subject to significant epistemic uncertainties. However, it also
emphasises the need to test not only the model per se, but the constituent hypotheses,
theories, models or auxiliary relations that are contained within it. Testing model
outputs may not be sufficient.

6.3 Simulation Models, Invalidation and Falsification

These difficulties become particularly apparent where theories about some aspect
of reality are combined and implemented as a computer simulation model, and it is
the outputs from the model that are compared with observations. In many cases, for
applications of environmental models to real-world open systems, the models are
based on theories that are not expected to represent fully the complexity of the real
world. This may be because full knowledge of the processes relevant to that complex-
ity is lacking; because the processes have had to be simplified, or even ignored, to
make the model tractable; because knowledge about the boundary conditions, initial
states and characteristics of the system is insufficient; or it may simply be because
the currently available computational resource does not allow a closer degree of
approximation. These are all sources of epistemic uncertainty that might result in
complex and nonstationary structures in model residuals when simulation outputs
are compared against observations.

In such cases, auxiliary rules are often introduced to represent the consequences
of simplification of the system being modelled, whether of the hypotheses being
used in the model, the boundary or initial conditions needed to apply the model
or the spatio-temporal scale at which the model is applied. Such rules commonly
invoke free parameters, difficult to estimate a priori given limited information about
the complex system and thus they are often calibrated against available observations
(e.g. Morton 1993; Beven 2002). For the modeller, such parameters may not simply
be a consequence of model implementation (e.g. simplification, approximation) but
a necessary element of being able to make a model perform through the process
of model calibration (Lane 2012). For example, in river flood modelling, modellers
have typically used a single empirical parameter to represent friction losses due to
a range of different processes (e.g. dispersion effects due to secondary circulation,
turbulence, friction at the stream bed and energy losses at the water surface). Lane
(2014) reports that an attempt to improve the determination of one of these parameters
(the Manning roughness coefficient) was largely rejected in practice, because it was
needed as an adjustable effective parameter that allowed modellers to make their
model perform against observations. The improved parameterisation was not and
could not be adopted. The notion that a model is made to perform reminds us that
this performancemight achieve the right results but this is not necessarily for the right
reasons (Beven 1989): a model can be forced to be empirically adequate (Oreskes
et al. 1994) and in some sense acceptable by the calibration of effective values of
its parameters; even if it might be falsified in terms of the validity of the auxiliary
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relations that are used to make it acceptable. The question is then whether it will be
equally fit-for-purpose in predicting future changed conditions.

There can also be issues about the commensurability of observables and model
variables, due to differences in scale ormeaning, evenwhen both are given equivalent
names in the theoretical context used. In environmental systems, for example it can
often be the case that observations are made at a “point” in space and time, while a
model predicts a variable of the same name at some larger space–time discretisation.
When there is little information about the sub-discretisation heterogeneity of the
observable, it can then be difficult to relate one to the other. In many circumstances,
it can also be difficult to assess that heterogeneity. For example, Hills and Reynolds
(1969) examined the variability of point soil moisture measurements in a field and
concluded that more than 150 measurements were necessary to estimate the mean
value to within ±5%. Even in research projects such a sampling density is rarely
affordable and such a field might represent just a single model grid element. In this
case, recent advances in measurement technology can help overcome this problem
by sampling surface soil moisture at larger scales (e.g. the COSMOS method, Zreda
et al. 2012).However, hydrologists are not only interested in the surface soilmoisture,
but also in the water stored in the full soil profile, which is even more difficult to
observe experimentally (but see the recent study of Güntner et al. 2017, using micro-
gravity as an indication of how new measurement techniques might help constrain
uncertainties). Similar issues arise at larger scales for variables within global or
earth system science models. Such commensurability issues represent a fundamental
limitation for the validation or falsification of such models.

These issues underlie George Box’s aphorism that “all models are wrong but some
are useful” (Box 1979), or as expressed by Morton (1993, p. 662): “the modelling
assumptions are generally false, and known to be false, relative to a standard gov-
erning theory” (emphasis added). There is thus an expectation that our models could
be falsified, especially if we look at what they predict in close detail (even if this is
not reflected in how those models are presented in the literature). In this situation,
therefore, there is an issue of what degree of approximation to the observational
data we are prepared to accept before we allow that our modelling assumptions are
wrong, knowing that there are uncertainties associated with the boundary conditions
and evaluation data for any model application. Effectively, this requires a definition
of the point at which we accept that a model might be invalidated as not fit-for-
purpose in making the predictions required of it, while making proper allowance
for the epistemic and aleatory uncertainties in the modelling process. We can, there-
fore, differentiate between invalidation of a simulation model structure based on the
outputs relevant to a particular purpose, and the falsification of any of the individ-
ual hypotheses or theoretical constructs that might be involved as components of
that model based on more controlled experimental testing (see also the frameworks
suggested by Bennett et al. 2013; Augusiak et al. 2014).
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6.4 Fitness-for-Purpose, Verisimilitude and Likelihood

The question of fitness-for-purpose is analogous to, but somewhat different from,
Popper’s original discussion of the evaluation of the verisimilitude or truthlikeness
of a theory about reality. Popper suggested that we should accept that ultimately we
could never be sure to have found a correct theory; even if it has survived all tests
to date, the next inference it makes might prove to be wrong. However, the very
process of testing and rejecting in this way and consequently building new theories
should, over time, increase the degree of verisimilitude of the theory being applied.
Reasoned argument suggests that we should, in principle, prefer theories ormodels as
hypotheses with a greater degree of verisimilitude than others. This requires a scale
of verisimilitude in order to determine a ranking of the multiple working hypotheses
under consideration. Popper made some specific suggestions about the nature of
that scale: that for a hypothesis to have greater verisimilitude than some competing
hypothesis, the truth content of the first should include that of the second; while the
false content of the first should be a sub-set of that of the second (Popper 1976).
This proposal was shown to be logically untenable byMiller (1974). Subsequently, a
variety of other technical definitions of verisimilitude have been proposed to try and
overcome this limitation (see the recent discussion of Niiniluoto 2017). It also led to
Popper to suggest later that the concept of verisimilitude need not be considered an
essential part of his theory (Introduction 1982, p. xxxvi, in Popper 1983).

However, as scientists we still tend to think that it is possible to move from
hypotheses that are known to be false in some sense, towards hypotheses that are
closer to a correct description of the real system, even if still false in some lesser
sense, i.e. from a lower to a higher degree of verisimilitude.Watkins (1985) expresses
this in the sense of trying to assess the relative merits of hypotheses when one might
be more readily corroborated than another, even if both might be far from the truth.
In his later writings Popper accepted that, even if corroboration could not be used as
a scale of verisimilitude, it could be used as an indicator of verisimilitude. Thus: “If
two competing theories have been criticized and tested as thoroughly as we could
manage, with the result that the degree of corroboration of one of them is greater
than that of the other, we will, in general, have reason to believe that the first is
a better approximation to the truth than the second” (Popper 1983, p. 58). In this
context, the aim of the method is to justify a preference for one hypothesis over
another, as a closer approximation to the truth, based on the evidence available, and
using reasoned argument (Deutsch 1997; Klein and Herskovitz 2007). This does not
now imply, however, that such a preference will necessarily be equivalent to a greater
degree of verisimilitude.

But such corroboration with the evidence can be considered as a form of induction
(e.g. O’Hear 1975), at odds with Popper’s aim of providing a hypothetico-deductive
scientific method. This will be even more the case when the hypotheses are imple-
mented as computer simulationmodelswith free parameters that need to be calibrated
for some specific application, especially in the case of models that become over-
parameterised with respect to the information content of the available observations.
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This inevitably invokes induction from the (uncertain) empirical observations used in
calibration when making inferences about the future behaviour of the system under
study. It alsomakes falsification and the assessment of degrees of verisimilitudemore
difficult. Many potential models might fit the available observations to some accept-
able degree of error (e.g. Beven 2006; Chap. 33 in this volume); some might be more
truth-like or fit-for-purpose than others, but how do we make such an assessment?

Howson (2000) has suggested that one solution to the problem of induction
is to work within a Bayesian framework (see also Chap. 7 by Beisbart and
Chap. 20 by Jiang et al. in this volume). When we may not be able to assess a
degree of verisimilitude of a hypothesis, we might be able to assess how the evi-
dence could change our degree of belief in that hypothesis (see Howson and Urbach
1993 and this volume, Chap. 19). In modern applications of Bayes, the degrees of
belief are most commonly expressed as terms of probability and the degree of expla-
nation is called the likelihood. As new evidence becomes available Bayes theorem
can be applied recursively so that hypotheses that are successful in the sense of having
higher likelihoods will gradually develop higher posterior probabilities or degrees
of belief. At no point, however, is it necessary to invoke any measure of truthfulness
or verisimilitude, which makes the framework evidently suitable for application to
hypotheses implemented as models while accepting that all models are idealisations
of reality (or to some greater or lesser extent false).

This Bayesian framework, however, has been criticised for its subjectivity in both
the prior assessments of degree of belief and in the choice of likelihoodmeasure. The
latter subjectivity has been addressed by statisticians in developing formal likelihood
measures (or objective functions) that follow from specific assumptions about model
errors (see, for example, Box andTaio 1992; Bernado and Smith 2000; Fernandez and
Steele 1998; Beven 2009; Schoups andVrugt 2010; Rougier 2007) but in applications
to complex open systems it may be difficult to justify those assumptions. In such
cases, the use of a formal statistical likelihood can lead to overconfidence in model
evaluationwhen a large number of observations are available, for example,when time
series are used inmodel evaluation (e.g. Beven 2012b, 2016; Beven and Smith 2015).
This is because of the way in which the contributions of individual model residuals
are combined multiplicatively, which may lead to models that have nearly equal
error variance simultaneously having orders of magnitude differences in likelihood
(even when bias and autocorrelation of model residuals are included in the likelihood
function, see Beven 2016). Alternative subjective definitions of likelihood, that allow
for the fact that model errors may not be simply stochastic, can avoid this stretching
of the likelihood surface but do not have the same formal theoretical foundation.

There are other aspects of the formal Bayesian framework as based on probabil-
ities that are relevant to the current discussion. The first results from the fact that
the probability and statistical likelihood distribution functions that are commonly
used have infinite tails (e.g. Bernado and Smith 2000). This means that no hypoth-
esis that has a finite prior probability will be given a posterior probability of zero.
The posterior probability might become very small for those models that do not
perform well relative to the observations, but never zero. Consequently there is no
falsification within this framework, unless some other, more subjective, threshold of
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incompatibility with the evidence is imposed such that the likelihood can be set to
zero. Falsification is then a limiting case of updating, but is outside the framework
of formal statistical likelihood theory.

Another aspect of the formal Bayesian framework is that the hypothesis or model
with the highest posterior likelihood will not necessarily be good enough to be useful
for its intended purpose (let alone approach a truth-like representation of the real
system). A further, related, point is that the approach normally takes no account of
the fact that the probabilities might be incomplete: the approach is normally applied
without taking any account of the fact that theremight be other competing hypotheses
(and consequent model structures) that have not been included.

6.5 If All Models May Be False, When Can They Be
Considered Useful?

In some sense, we are all Bayesians because we have an expectation that additional
evidence should lead to a refinement in our hypotheses and models about how the
real-world system works. The question, therefore, is whether we have sufficient
information to differentiate between hypotheses given the uncertainties associated
with the modelling process. This in the Bayesian context equates to how best to
define a likelihood to condition our degree of belief in a particular hypothesis, and to
determine when the likelihood should be set to zero in cases where we infer that not
only is the model false, but we have no belief that it will be useful for the purpose
for which it is intended to be used.

This represents a challenge for four reasons, that apply to all models in the envi-
ronmental and ecological sciences, including those that claim to be based on physical
principles (Cartwright 1999; Beven 2002, 2012a, 2016). First, repeated runs of the
computer simulation program using Monte Carlo techniques to make many different
realisations using the same model structure, but different parameter sets and (some-
times) boundary and initial conditions, will often reveal a spectrum of responses from
the best models found to those that clearly do not represent the observed behaviour
well at all. Very different values of the same parameter (or even models with very
different structures) may lead to equally “good” evaluation (or likelihood) measures;
this is the equifinality thesis of von Bertalanffy (1968) and Beven (1993, 2006, Chap.
33 in this volume). Second, the evaluation or likelihood measures may reveal differ-
ent things about what constitutes a good model performance. There may be Pareto
trade-offs between the rankings of different models when evaluated against differ-
ent criteria. Different periods of evaluation data can also change the rank ordering.
Third, some of the data available to drive a model and to evaluate the outcomes of a
model run might be disinformative in respect of whether a model performs well or
not (Beven and Smith 2015; Beven 2016). Fourth, fitness-for-purpose implies more
than just an epistemological concern as to when a model cannot be rejected against
certain statistical criteria but also a series of wider concerns that relate to the way in
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which the model sits within both wider scientific communities and decision-making
processes.

In terms of scientific communities, models may continue to be used, even when it
can be shown that alternative model structures can give better performance or even
when the fundamental bases of the model (e.g. an auxiliary relation, as in the case
of effective roughness parameters noted above) are not correct. For example simple
empirical models of climate seem to provide better predictions to recent periods of
historical data than general circulation models of climate (GCMs) climate models,
even for global mean temperature (Fildes and Kourentzes 2011; Suckling and Smith
2013; Young 2018; for validation of climate simulations see Chap. 30 by Rood in this
volume). However, GCMs continue to be used on the basis of the argument that their
theoretical physical basis allows a greater degree of belief in their projections for
the future (Shackley et al. 1998; Knutti 2018), whereas we cannot be sure that data-
based models developed from historical observations will continue to be valid into
the future. This is an argument for fitness-for-purpose based on the physical bases of
process representations (Knutti 2018). Yet, GCMs involve empirical or conceptual
elements in many process representations, and may be just as “empirical” as simpler
models in terms of their dependence upon observational data to parameterise them
(Shackley et al. 1998; Parker 2018). GCMs may also contain significant epistemic
uncertainties, notably because of unknownboundary conditions (e.g. future decisions
on fossil fuel use), which is why GCMs are run with different scenarios of future
emissions. Yet, the number of such runs into the far future is often small because of
the computational expense involved in resolving finer and finer detail in the atmo-
spheric and oceanic circulations with each generation of model. Given these issues,
Shackley et al. (1998) argue that GCMs remain dominant because they havemutually
reinforced relations between GCM scientists, policy communities, climate impact
communities and surrounding scientists, such that they have developed “awider sym-
bolic significance than implied by their scientific credentials alone” (Shackley et al.
1998, p. 188; see Winsberg 2003, for a wider discussion). The resilience of these
relations to being challenged may explain why the question of fitness-for-purpose
has rather rarely been questioned within the climate modelling community (though
see Collins et al. 2012; Hargreaves and Annan 2014; and comments in Parker 2009,
2018 on the adequacy for purpose of climate models).

The above points emphasise that it is necessary to decide on what constitutes
fitness-for-purpose and that such a decision may not be one that is only defined by
scientific communities and past performance.What constitutes being fit-for-purpose,
in general, will be highly context dependent (e.g. Barraque 2002; Wimsatt 2007;
Knutti 2018) evenwheremodels are not developedwith a pragmatic purpose inmind,
but more because “we are intrigued by the possibility of assembling our knowledge
into a neat package to show that we do, after all, understand our science and its
complex interrelated phenomena” (Kohler 1969). For this purpose it is sufficient
to be able to justify giving a likelihood of greater than zero in model evaluation,
i.e. to have some degree of belief that the model mimics the functioning of the real
system in some measurable sense. As Beven (2002) suggests, most modellers are
pragmatic realists in this context. They would like to be able to equate the variables
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in their computer models with quantities and fluxes in the real system, but they
are pragmatic in recognising that there are real limitations as to how far that is
possible. As with GCMs, however, past performance may not be the only factor in
deciding on that degree of belief: there may be strong prior beliefs about the nature
of the assumptions that underlie a model, beliefs that might vary between research
groupings as well as being subject to strong influence by those who wish to use
model results. For this purpose model evaluations are made not only with respect to
demonstrable performance, but also in terms of what is considered acceptable within
a research programme in terms of assumptions and degrees of uncertainty or error in
the predictions, as well as the suitability of the predictions for the purpose to which
they are to be put; the “antecedently established credentials of the model building
techniques developed over an extended tradition of employment” (Winsberg 2003,
p. 122). Thus, the evaluation could be against the opinions of experts or users, as
conditioned on expectations about sources of uncertainty in the modelling process,
as much as against any kinds of observable variables used to test a model. Similar
considerations will apply to experts as referees on scientific papers and research
reports, with their own experiences and impressions of what might be considered as
acceptable.

Given the subjectivity implicit to the above argument, it might be expected that
the faith in models as a contribution to decision-making might be undermined by
the eventual realisation that those models were not fit-for-purpose when viewed
after the fact. But, modellers are protected to some extent from being judged as to
whether past predictions were fit-for-purpose because model predictions are gener-
ally constructed as scenarios or projections.WithGCMs, for instance, themost recent
Intergovernmental Panel for Climate Change report (IPCC 2013, p. 21) estimates a
range in globally averagedwarming by 2100 (as compared to 1986–2005) of between
+0.4 °C and +5.5 °C according to the combination of scenario and aleatory uncer-
tainty chosen. It is not generally expected that any of the assumed scenarios regard-
ing future boundary conditions will actually prove to be correct. The simulations
are projections not predictions. These projections are intended as the best available
simulations conditional on the assumed emissions scenarios and other assumptions
(and therefore not expected to occur in the future). In this way they are deemed to be
useful, despite the better performance of data-based models on decadal time scales
noted earlier.

There has been an interesting discussion in the simulation modelling community
about the value of such projections in terms of the robustness of simulating future
outcomes (e.g. Weisberg 2006; Lloyd 2010, 2018). This debate has recognised that
individual models might be deficient in their predictions in the past, but that across an
ensemble ofmodels, some features of the projectionsmight be robust to the specifica-
tion of parameterisations and auxiliary conditions in individual models (Oldenbaugh
2018). The general trends in global warming in response to specific emission sce-
narios in the CMIP5 ensemble of GCMs is an example. It has also been pointed
out, however, that in the climate model case the different model projections are not
independent, but share common histories of development and prioritisation of added
components over time (Oreskes 2018). It is also the case that robustness of projec-
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tions across the ensemble, in terms of a commonality of outcomes, does not imply
that any of the models is fit-for-purpose, but is simply corroboration of one model
by another (Parker 2018). To get round this, it has been suggested that robustness
should only be inferred when all the models in the ensemble have been empirically
validated against past observations (Lloyd 2010), but clearly GCMs have limitations
in reproducing past observations in detail (Parker 2009, 2018). The CMIP5 ensemble
is currently the set of best available models; it remains unclear as to whether they are
fit-for-purpose when they require bias corrections and flux corrections when used
for evaluating the impacts of future climate changes on societies.

In other areas, where (rarely) post hoc assessments of modelled futures have been
carried out more formally, the results have not been good. Examples are provided in
the post hoc assessments of groundwatermodels reported inKonikowandBredehoeft
(1992) and Anderson and Woessner (1992). In some of the cases considered the
conceptual model of the groundwater system proved to be inadequate; in others, the
conceptual model was adequate but the estimation of future boundary conditions
proved to be totally inadequate. Groundwater modelling is an example of where
modelling technology has developed rapidly in themore than two decades since those
papers were published and the four decades since the original modelling studies have
been done. But, in most groundwater modelling applications, we still have limited
knowledge of the subsurface geological characteristics and parameters, particularly
in fractured rock systems, and future boundary conditions (climate, recharge, well
development, pumping rates, etc.) are necessarily uncertain. Similar issues will arise
in all areas of the inexact natural sciences. It is likely to be an even greater impediment
for the social sciences even though that has not stopped attempts to model the joint
development of natural and social systems into the future (e.g. in sociohydrology,
see Viglione et al. 2014; Elshafei et al. 2014; Jeong and Adamowski 2016; Pande
and Savenije 2016).

6.6 Defining Fitness-for-Purpose and Model Invalidation

The above argument is predicated upon the idea that a simulation model should be
shown to be fit-for-purpose, that is corroborated against some kind of observation
or judgment, even if there are few rules about precisely what constitutes “fit” and
“purpose”, such that its use can be justified. For both the purpose of understanding our
science and informing decisions, the question that arises is how good is good enough
to be useful, given the uncertainties in the modelling process. This can be posed as a
problem of showing that a simulationmodel is invalid for the purpose intended, while
taking proper account of those uncertainties. No modeller wants to present a model
that is invalid of course: within research programmes considerable efforts are put into
ensuring that the assumptions on which the model is based are justifiable; that the
equations derived from those assumptions are correctly formulated; that the coded
version of those equations is debugged and numerically accurate; that the parameter
values used within the model are suitable; and that the model produces presentable
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results against some evaluation observations. However, we wish to argue here for the
importance of seeing model invalidation as a good thing, perhaps the ultimate goal
of model use in science, in contrast with the simple use of the best models available
in applications to society, when the best models (or ensemble of best models) might
not be fit-for-purpose.

From a scientific perspective, model rejection is a positive outcome; it implies
that we need to do better, either in defining better model structures or in generating
better observations to drive and evaluate models. Of course, when modelling is used
in practice, and uncertainties in the modelling process are recognised, there can be
substantial constraints upon the capacity for amodel to be shown to be false or invalid.
The limited research that has traced the transition of model development into model
adoption has revealed how social and economic constraints determine the extent to
which a scientifically rejected model leads to the evolution of modelling practice
(e.g. see Lane et al. 2013, for the case of flood inundation models and the discussion
of GCMs above). Such constraints emphasise the difficulty that can exist in rejecting
a model formulation as false. The philosopher of science, Isabelle Stengers (2013)1

argues for a resistance to the constraints upon scientific practice related to both socio-
economic limits as well as scientists’ own institutional and community settings. She
argues that being “scientific” requires us to recover our own capacity to bewrong and,
in so doing, to raise different questions to those which we are being forced to ask. In
2005 she wrote: “How can we present a proposal intended not to say what is, or what
ought to be, but to provoke thought, a proposal that requires no other verification
than the way in which it is able to ‘slow down’ reasoning and create an opportunity
to arouse a slightly different awareness of the problems and situations mobilising
us?” (Stengers 2005, p. 994). Stengers’ position here is interesting because it is in
marked contrast to one of the traditional raison d’être of models which is to speed up
time, to allow the future to become present today, such that society can invest now to
make the future that becomes manifest more palatable. We develop Stengers’ ideas
more specifically below.

There is a very strong parallel here between the notion of model rejection or
invalidation and the Popperian concept of falsification. By allowing for models to
be invalidated, we may be able to move towards truer theories and models in an
evolutionary way (e.g. Popper 1969; Dolby 1996; Deutsch 1997; Wimsatt 2007).
Popper also made this point in saying that a falsificationist would “prefer to solve
an interesting problem by a bold conjecture, even (and especially) if it turns out to
be false, to any recital of a sequence of irrelevant truisms” (1969, p. 231). Learning
from our mistakes should bring us further to a realistic representation of a system
of interest, even if only an approximation to reality is attainable. The nature of the
rejection can then provide valuable information about the assumptions on which a
model is based, or the data needed to apply and evaluate themodel, providedwe allow
it to do so. The question that then arises is twofold. First, how do we define criteria
to invalidate a model as fit for its intended purpose? This is a problem analogous to
defining a measure of verisimilitude in the Popperian framework, albeit that fitness-

1This is written in French. See Lane (2017) for an English interpretation.
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for-purpose is a lesser requirement than truthlikeness. The secondquestion, addressed
in part below, is how to reconcile the self-interest of model advocates who want to
present predictions as acceptable and useful, with the fundamental scientific progress
that comes from accumulating our (posterior) beliefs that a model is no longer fit-
for-purpose.

Wimsatt (2007, pp. 100–106) provides an analysis of 7 ways in which models
might be wrong, and 12ways of learning frommodels that are wrong (and sometimes
designed to be wrong as a way of illuminating system processes). He suggests that
the ways in which models are modified over time as a result of testing and thoughtful
reasoning is the way in which much of science is normally practiced (similarly
arguments are made by Koen (2003) in a discussion of engineering practice, and
Klein and Herkowitz 2007, from a simulation philosophy perspective). This is a
rather instrumentalist view of scientific method, in that all the time that theoretical
tools andmodels provide some utility, theywill not be rejected; andwhen they appear
to be wrong, we learn from how they appear to be wrong. However, it is very similar
to Quine’s (1969) notion of “belief revision”. Mayo (1996, Chap. 1) also considers
learning frommistakes, but firmlywithin a falsificationist approach, with a heavy use
of error statistics within a statistical theoretical approach. Such an approach depends,
of course, on making strong aleatory assumptions in statistical testing, which may be
difficult in the applications of models to open systems with epistemic uncertainties
that are characteristic of the environmental sciences.

The discussion of the previous sections and past experience suggests some prin-
ciples on which to base any assessment of model invalidation.

a. Within the feasiblemodel space (ofmodel structures and parameter sets) it should
be accepted that model outputs often show a wide spectrum of goodness-of-fit
from the best models found to those that are far from any evaluation data or
evidence.

b. Fitness-for-purpose is concernedwith the best simulationmodels found, but these
may be localised in a high dimensional model space and may not be easy to find.

c. The best simulation models found will depend on the criteria of evaluation used,
and also on the set of forcing and evaluation data used. The criteria used should
therefore, as far as possible, reflect the framing of the purpose intended.

d. Uncertainty in the input or forcing data is important—by analogy with statistical
hypothesis testing we do not want to accept a “false” model or reject a “useful”
model just because of uncertainties or disinformation in the forcing and boundary
condition data (or other auxiliary conditions).

e. The structure of a simulationmodel should add value; we should not accept a sim-
ulation model that is not significantly better than a parsimonious non-parametric
data-based model for the variable of interest. The data-based model might be
overfit, but so could the simulation model when used with the same forcing data.

f. Fitness-for-purpose should be defined prior to running any model simulations,
taking account of understanding of uncertainties in the modelling process; we do
not want to compensate poor performance simply by an error model with large
variance.
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g. A simulation model that is deemed fit-for-purpose should not be expected to
necessarily remain fit-for-purpose if the assimilation of further evidence suggests
the model fails in some important respect.

There are a variety of methods for model choice available. These include methods
based on Bayesian inference, statistical implausibility measures and methods based
on tolerance thresholds or limits of acceptability. As discussed earlier Bayesian infer-
ence is based on defining a measure of likelihood together with any estimates of prior
probability for model formulations that might be based on past applications or test-
ing. The definition of a likelihood measure is now commonly based on more or less
complex statistical assumptions about the nature of themodel residuals (e.g. Bernado
and Smith 2000).

6.6.1 Using Bayes Ratios to Differentiate Between Models

Model comparisons can be made in terms of the posterior marginal probability dis-
tributions for different model structures, expressed as Bayes factors or ratios. The
Bayes ratio can be defined as

KB � ∫[Po(M1{θ1})L(O ∨ M1{θ1})]dθ1

∫[Po(M2{θ2})L(O ∨ M2{θ2})]dθ2
(6.1)

where M1 and M2, with parameter vectors θ1 and θ2, are two different model struc-
tures under consideration; Po is the prior probability for each model and L is the
likelihood when model predictions are evaluated against the observations O. Since
the ratio is defined in terms of probability integrals, it will not give a crisp differen-
tiation between valid and invalid models. Some rules of thumb have been suggested
for model choice using the Bayes ratio. Thus, for ratios of >20 we should have a
strong preference for M1 over M2; and for ratios >150 we should have a very strong
preference for M1 over M2. (e.g. Kass and Rafferty 1995). Note, however, that to
be directly comparable the likelihood definition used in evaluation of each model
should be directly comparable. Where this is based on statistical assumptions about
the nature of the model residuals it requires the same structural assumptions. This
may, or may not, be appropriate for the different error model structures and is an
assumption that should be checked in good practice. Experience suggests that such
ratios can be sensitive to such assumptions and can vary dramatically (by tens of
orders of magnitude) depending on what periods of data are used in the evaluation
(see the discussion in Beven 2016).

For cases where it is difficult to define an explicit likelihood measure, the Bayes
ratio can be approximated using Approximate Bayesian Computation (ABC e.g.
Robert et al. 2011). Interestingly the ABC methodology depends on defining some
tolerance level for model acceptance. This is sometimes refined as the search within
the model space (or spaces in the case of multiple model structures) proceeds. We
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know of no cases, however, where it has been defined on the basis of fitness-for-
purpose, rather than ensuring a sufficient sample of acceptable models.

Note also that the integral for each model in Eq. 6.1 integrates over all plausible
model parameter sets; it does not focus on the best performance for each model
structure. In evaluating fitness-for-purpose it might therefore be better to consider
only themaximum likelihood associatedwith eachmodel inwhich case [3] reduces to
a likelihood ratio test that involves only a single parameter set in eachmodel structure.
Again under the proviso that a similar error model assumption is appropriate for each
of the models considered, the likelihood ratio can be used to evaluate whether one
model is more acceptable than another, but not necessarily whether either is fit-for-
purpose.

6.6.2 Use of Implausibility Measures to Differentiate
Between Models

A somewhat different statistical approach has been suggested by Vernon et al. (2010)
for cases where it is difficult to specify a likelihood measure based on residual error
characteristics. Rather than use a likelihood measure, they propose the use of an
implausibility scaling of the following form:

I 2(xi ) � {Oi − M(xi ; θ)}2
{
Var

(
eM,i

)
+ Var

(
eO,i

)} (6.2)

where xi is the ith model output variable, M(xi; θ) is the model prediction of xi given
a parameter set θ; Oi is the equivalent observed variable, eM,i is an estimate of model
uncertainty (arising from allowable model discrepancy or from stochastic forcing)
and eO,i is an estimate of the observation uncertainty for the ith variable. Separate
implausibility measures can be calculated for all available observation–prediction
matching couples, and combined into a total measure of implausibility. The measure
can be updated as new information becomes available. Implausibility, as defined in
this way, is similar to the Bayes ratio, in that it represents a continuous relative scale
with no sharp cut-off. Again some rule of thumb is required to decide where the limit
of plausibility lies on that scale. In Vernon et al. (2010) and Woodhouse et al. (2015)
the plausible model space is defined by a threshold of I < 3, based on the 3σ rule,
implying that the plausible region contains the most plausible model, allowing for
both model and observational uncertainty, with probability greater than 95%. Other
forms of plausibility measure are discussed in Halpern (2005).
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6.6.3 Use of Limits of Acceptability to Define Behavioural
Models

Both the Bayesian and implausibility measure approaches depend on the magnitude
of the model residuals evaluated after each model run. They do not require any
decision to be made about some threshold of acceptability before making a model
run. An alternative method that does require a prior definition of acceptability is the
Limits of Acceptability implementation of the Generalised Likelihood Uncertainty
Estimation (GLUE) methodology as outlined by Beven (2006). GLUE is based on
Monte Carlo sampling of the model space to identify an ensemble of acceptable or
“behavioural” models that will be used in prediction. Simulations that do not pass the
limits of acceptability test are rejected as non-behavioural or invalidated, i.e. they
are not considered to be fit-for-purpose. The approach is general in that it can be
applied to parameter sets and uncertain boundary conditions for one or more model
structures, with likelihood measures defined and combined in different ways (Beven
and Binley 1992, 2014). Statistical likelihood functions and combining likelihoods
using Bayes equation represent a special case within GLUE, where the necessary
assumptions can be justified. Different search algorithms can be used to explore the
model space (e.g. Beven and Binley 1992, 2014; Blasone et al. 2008; Vrugt 2016;
Vrugt and Beven 2018).

Within this framework, the ensemble of behavioural models can be used to pro-
duce likelihoodweighted predictions, but it also allows for the possibility that none of
the sampled models reach the level of performance required for a particular purpose.
Thus, in GLUE, the choice of a behavioural threshold assumes a particular impor-
tance, but allows the consideration of fitness-for-purpose for a given application in
doing so. In the past GLUE has been criticized for the subjectivity in making such a
choice so Beven (2006) suggested that the choice should be made more objective by
considering what is known about the data that is used to drive and evaluate themodel,
as well as what level of performance is needed for the predictions to be considered
useful. The use of limits of acceptability in this way is analogous to the tolerance
limits used in ABC (e.g. Nott et al. 2012; Sadegh and Vrugt 2013), or applying a
limit to an implausibility measure, except in that the limits should be defined before
making any model runs.

In doing so, limits of acceptability can be applied to predictions of either individ-
ual observations (e.g. Liu et al. 2009), or of summary statistics relevant to the purpose
(e.g. Westerberg et al. 2011; Westerberg and McMillan 2015). It is, therefore, pos-
sible that (harking back to Popperian falsification) a model could be rejected on the
basis of the failure to simulate a single observation within the limits of acceptabil-
ity, if that observation is considered sufficiently important. Popper notes, however,
that “a few stray basic statements contradicting a theory will hardly induce us to
reject it as falsified. We shall take it as falsified only if we discover a reproducible
effect which refutes the theory. In other words, we only accept the falsification if a
low-level empirical hypothesis which describes such an effect is proposed and cor-
roborated. This kind of hypothesis may be called a falsifying hypothesis” (1959,
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p. 86). On the other hand we should, perhaps, be rather wary of generalising this idea
of reproducibility to a form of simple statistical 3σ/95% threshold, since it is quite
possible that the remaining 5% might be those observations that are of most interest
to the purpose for which the model is being used (e.g. the hydrograph peaks in a
hydrological model application, see Beven 2016). However, in considering single
observations the limits of acceptability should reflect the impact of input errors on
how well a model might be expected to perform. This is important so as to avoid the
Type II error of rejecting a good model that would be fit-for-purpose just because of
errors in the inputs or forcing data (models are very much subject to the “garbage in
garbage out” phenomenon).

The advantage of an approach based on model invalidation is that it encourages
honesty in the modelling process, including about just how well we might expect
a model to perform given the understanding of how a particular system works, and
the data available with which to drive and evaluate the model performance (see also
Smith and Stern 2011). It also allows for the possibility that all themodels triedmight
be invalidated as not fit-for-purpose (see for example Brazier et al. 2000; Choi and
Beven 2007; Dean et al. 2009; Mitchell et al. 2011; Hollaway et al. 2017). Where
this happens, the model structure has been effectively invalidated, at least for that
application. Commonly, however, it will survive in other applications, perhaps with
less constrictive evaluation measures or limits of acceptability, rather than being
reconsidered and modified. We would surely learn more from trying to understand
the reasons for such rejections (Beven 2018).

6.7 Epistemic Uncertainties and Model Invalidation

The types of open system models that have been discussed in the last section are
commonly subject to epistemic uncertainties or knowledge gaps. In such cases, the
use of strong statistical assumptions about the sources of uncertainty might lead
to overconfidence in inference because they result in a stretching of the likelihood
surface, such that model and parameter uncertainty tends to be underestimated, and
the residual error variance will expand to compensate. Where there are time series
of data, with large numbers of observations, this stretching can be extreme and
unrealistic (see Beven 2016).

Clearly, other forms of likelihood measure can be used (as, for example, in the
GLUE methodology), but at the expense of losing the formal probabilistic interpre-
tation embodied in a formal statistical likelihood function that follows from specific
distributional assumptions about the model residuals. However, for good epistemic
reasons, it will remain difficult to capture the nature of perceived epistemic uncer-
tainties in the form of a statistical likelihood measure. This is particularly true for
input data that might be subject to epistemic uncertainties because such uncertainties
will be propagated through the (generally nonlinear) dynamic structure of the system
model, interacting with any model structural error to produce complex output error
structures. Even if input errors could be defined simply (e.g. as Gaussian distribu-



164 K. Beven and S. Lane

tions with homoscedastic variance) the output errors would then be nonstationary
in bias, variance and autocorrelation, depending on the sequence of events. But the
input errors are more likely to be epistemically nonstationary in complex ways, com-
pounding the problem of how to represent the uncertainty in model evaluation. In
extreme cases, the available input and output datamight, at least in part, be physically
inconsistent and therefore not informative about whether a model is fit-for-purpose.
Where this can be identified, it can also be taken into account in setting limits of
acceptability and making predictions (e.g. Beven and Smith 2015).

That is one reason why such limits should be defined a priori, before running a
model, to avoid rejecting periods of data just because they are not well fitted by the
model. The question is then how to do so, if we expect that there will be a significant
impact of epistemic input errors on model predictions and consequently the appro-
priate limits of acceptability in assessing fitness-for-purpose. This is analogous to
the problem of defining the term eM,I in the implausibility framework, but without
knowing how to define the stochastic input variation. This remains a problem to
be resolved, including for cases where interaction with stakeholders and decision
makers might introduce more qualitative evaluation of models (see, for example
Landström et al. 2011; Haasnoot et al. 2014).

6.8 The Model Advocacy Problem

Wewant to finish this Chapter with some thoughts on what we call the “model advo-
cacy problem”: how is it that we can move from advocating our models as somehow
useful to seeing scientific progress as arising when we realise from our accumulated
(posterior) beliefs that a model is no longer fit-for-purpose? The relevance of this
question has been touched upon at a number of points throughout this Chapter, in
relation to Global Climate Models and flood inundation models, for instance. It is
an important concern because it has been shown (e.g. Landström et al. 2011) that
“[A]ccustomed to living in their entrenched fields, researchers end up with eyes
only for the problems which are born in their laboratories” (Callon et al. 2009,
pp. 94–95). Research that has followed the evolution of modelling as a practice has
shown that models can become bound into an assemblage that resists attempts (e.g.
new knowledge) that might break it apart. In relation to flood inundation modelling,
the Manning’s n roughness parameter was too valuable as a model parameterisation
tool that attempts to improve its measurement and representation failed (Lane 2014).
If models can develop resistance to their own invalidation through the assemblage
of people (scientists, consultants, policy-makers), technologies and places of which
they come a part, what are the conditions that may break down that resistance, that
make model invalidation possible?

One response is a fundamentally scientific one, to be empirical in the very broadest
sense of the term. How is it that we can establish practices that allow the world “to
speak back” to the modeller, to challenge the way the world is being represented
(Baker 2017; Lane 2017; Beven and Alcock 2012; Beven 2018) by the model. This
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is not always straightforward because of the assembled network of constraints that
serve to protect the model’s (and modeller’s) status as it has become (e.g. Lane et al.
2013). Stengers (2013) argues that one way of doing this is through finding ways that
make a scientist turn away from their normal communities of practice (as scientists)
and the abstraction of their investigation out of the milieu of which it is normally a
part (see also Baker 2017, in relation to hydrology; Landström et al. 2011, in relation
to flood modelling). For Stengers, this should be done through the “enrolment of
phenomena” (trans. p. 127) that don’t dictate how they should be described but
rather are given the “capacity to evaluate the relevance of the way they are being
described” (trans. p. 68). Stengers’ argument points to the need to focus less on a
model’s goodness-of-fit and more on those points that don’t fit the model and, as
a result, cause us to slow down our reasoning to the point at which other kinds of
hypotheses and simulationmodels might be deemed suitable or other, quite different,
kinds of approaches meaningful (Lane 2017).

It is right, then, to admit that our models can be wrong (see Beven 2016, 2018), in
that this implies that further improvements to either input data or modelling hypothe-
ses need to be made. How this might be done in practice is not, however, evident. We
can perhaps distinguish between model use in relation to applied questions, where a
model might be a tool that assists with decision-making, and model use in scientific
research where progress will be made when a model is found to be invalid. When the
latter is the case, it implies that the model might not be fit-for-purpose for applied
uses, but it is clearly evident that for applied use there is so much investment and
vested interests in the development of modelling packages that any invalidation will
tend to be hidden within the improvements associated with new version releases.
A new version will be developed when it is found that modifying parameters or
auxiliary conditions within a modelling framework is not sufficient to match the
observational data to a degree acceptable to the client (or a critical bug in the code
is found), but there may still be significant resistance to the invalidation of the fun-
damental concepts on which a modelling package is based. The question of when to
use model invalidation is then intrinsically embedded in the communities of practice
within which model applications are situated, and dependent on critical feedback
from those communities.

Stengers suggests that model advocacy works against thoughtful scientific
progress. There is also the issue as to whether models that can be considered invali-
datedwith respect to the science can be considered useful when providing predictions
for applied decision-making. We suggest therefore that a new way of appreciating
a problem is required that allows invalidation to be pursued more widely and more
thoughtfully. One way of doing somight be to give the concept of fitness-for-purpose
more prominence in both the scientific and applied use of models.
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6.9 Conclusions

This paper has discussed a number of aspects of invalidation of models as not fit-
for-purpose for a particular application, drawing an analogy with the Popperian idea
of falsification of hypotheses and theories. It has been shown that as soon as epis-
temic uncertainties in observational data and boundary conditions are acknowledged
invalidation loses some objectivity. The original Popperian concept of falsification
as a way of resolving Hume’s problem of induction then becomes less tenable, in
favour of a Bayesian framework of corroboration that contains elements of induction,
particularly when evaluation allows the modification of prior estimates of boundary
or auxiliary conditions and parameter values in model calibration.

This is particularly the case of models of open systems that are subject to epis-
temic uncertainties such that there is an expectation of models being (more or less)
false when examined in detail and where it can be difficult to represent model error
in terms of well-defined probabilistic structures. This means that it can be difficult to
justify the strong assumptions of formal definitions of likelihood within a Bayesian
conditioning framework. In addition, a Bayesian framework based on statistical like-
lihood functions does not explicitly allow for model invalidation, only evaluation of
relative likelihoods of different model formulations (and that only under the assump-
tion that the same statistical error structure is appropriate). Some rules of thumb
for Bayes ratios have been proposed in comparing different model representations,
but where the integral likelihoods are used to define the ratio, the approach does
not explicitly evaluate whether the maximum likelihood models are fit-for-purpose.
Other approaches based on implausibility measures and the prior definition of limits
of acceptability are discussed, both of which can be applied to the evaluation of
simulated individual observations for different variables and which attempt to allow
for input and observational error, either as variances or in terms of support for the
limits of acceptability. The limits of acceptability approach also focuses attention on
how good a performance is required for a model to be fit-for-purpose in a particu-
lar application, whether that is to demonstrate scientific understanding or to inform
a decision-making process. Some problems remain in applying these techniques,
particularly in assessing the role of input uncertainties on fitness-for-purpose, but
the approach allows for a more thoughtful and reflective consideration of model
invalidation as a positive way of making progress in the science.
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Chapter 7
Simulation Validation from a Bayesian
Perspective

Claus Beisbart

Abstract Bayesian epistemology offers a powerful framework for characterizing
scientific inference. Its basic idea is that rational belief comes in degrees that can
be measured in terms of probabilities. The axioms of the probability calculus and
a rule for updating (e.g., Bayesian conditionalization) emerge as constraints on the
formation of rational belief. Bayesian epistemology has led to useful explications of
notions such as confirmation. It thus is natural to ask whether Bayesian epistemology
offers a useful framework for thinking about the inferences implicit in the validation
of computer simulations. The aim of this chapter is to answer this question. Bayesian
epistemology is briefly summarized and then applied to validation.Updating is shown
to form a viable method for data-driven validation. Bayesians can also express how
a simulation obtains prior credibility because the underlying conceptual model is
credible. But the impact of this prior credibility is indirect since simulations at best
provide partial and approximate solutions to the conceptual model. Fortunately, this
gap between the simulations and the conceptual model can be addressed using what
we callBayesian verification.Thefinal part of the chapter systematically evaluates the
use of Bayesian epistemology in validation, e.g., by comparing it to a falsificationist
approach. It is argued that Bayesian epistemology goes beyond mere calibration and
that it can provide the foundations for a sound evaluation of computer simulations.

Keywords Degree of belief · Bayesian updating · Problem of old evidence ·
Error · Uncertainty · Confirmation · Verification

7.1 Introduction

Suppose that Connie is a computer scientist who has recently run a computer sim-
ulation of the Earth’s climate. One result of this simulation is that the mean global
temperature of our planet will increase by 2◦ in the next 30 years, if the carbon
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dioxide emissions continue as usual. This at least is what the outputs of running the
simulation program say: The computed value of the mean global temperature in 30
years is by 2◦ higher than the present one. Can Connie trust this result? Certainly
not if no case can be made for trusting the result. But how can such a case be made?
That is, how can the simulation and its results be validated?

This question concerns scientific inference, which is a crucial part of the scientific
method. Scientific inference is studied in the epistemology of science, which is part
of the philosophical reflection on science. In more detail, epistemology of science
investigates how scientists gain knowledge and understanding. The epistemology
of science will of course not directly answer the above question, which refers to a
specific case on which the answer will depend. But epistemology of science may
offer a useful framework for thinking about the question.

A fairly recent approach to epistemology of science is Bayesian epistemology.
It goes back to ideas by Thomas Bayes (ca. 1701–61) and was elaborated in the
twentieth century by Bruno de Finetti, Frank P. Ramsey and Leonard Savage, among
others.1 Bayesians assume that trust, or, more specifically, belief, comes in degrees
that are measured in terms of probabilities. They further provide principles of ratio-
nality with which the degrees of belief should comply.

The aim of this chapter is to discuss the application of Bayesian epistemology to
the validation of computer simulations. Our main question is whether this approach
offers a useful framework for thinking about validation. Since, so far, little has been
said about this question, I concentrate on the philosophical foundations of a Bayesian
view of validation and thus put technicalities aside.2 My focus is on building up
(or destructing) trust in simulations via so-called updating. Chapter 20 by Jiang
et al. in this volume is complementary first because it provides an introduction to
mathematical techniques and second because it is focused on model acceptance vs.
rejection on the basis of Bayesian notions.

This chapter is structured as follows: It first proves useful to summarize the basics
of Bayesian epistemology (Sect. 7.2). Since very good introductions to Bayesian
epistemology are on the market, I can in principle be brief.3 Nevertheless, to address
a broad audience, the chapter is kept self-contained and does not assume familiar-
ity with Bayesian epistemology. Section 7.3 addresses the application of Bayesian
epistemology to the validation of simulations. In Sect. 7.4, I systematically evaluate
Bayesianism as a framework for thinking about validation. In particular, I compare
it to a falsificationist approach. Conclusions are drawn in Sect. 7.5.

Beforewe start, two comments are in order. First, the central ideas behindBayesian
epistemology allow for much elaboration and many applications. For instance, they

1See e.g., von Plato (1989, 1994), in particular Chap. 8 for the history. Gillies (2000), Chap. 5
contains a brief historical account about the development of Bayesianism in the twentieth century.
2See Oakley and O’Hagan (2004), Bayarri et al. (2007), Chen et al. (2006, 2008),Wang et al. (2009)
for recent Bayesian approaches to validation. I will return to some of this literature below.
3See e.g., Howson and Urbach (2006) for an extensive exposition and defense of Bayesian epis-
temology; see Strevens (2006), Hartmann and Sprenger (2010), Hájek and Hartmann (2010a),
Easwaran (2011a), Easwaran (2011b) and Talbott (2016) for short overview articles of Bayesian
epistemology. Bayesian decision theory is surveyed by Beisbart (2011) and Jensen (2011).
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suggest an interpretation of probabilities. Bayesian decision theory extends Bayesian
epistemology to principles of rational action. In philosophyof science,Bayesian ideas
have been used to spell out notions like unification (Myrvold 2003). It is no surprise
then that Bayesian ideas are controversial and much discussed in philosophy.4 For
the purposes of this chapter, we can neglect many applications and consequences
of Bayesian ideas. We will focus on the core of Bayesian epistemology. The term
“Bayesians” is therefore meant to refer to proponents of Bayesian epistemology.

Second, as far as validation is concerned, I start from the following assumptions:
It is first useful to distinguish between two types of model that are associated with
a computer simulation. The conceptual model is a model that scientists intend to
use for scientific reasons, for instance, because it captures the principles that are
supposed to govern the dynamics of the target system. The computational model, by
contrast, is the model implicit in the computer code such that the simulation output
provides exact solutions to the computational model. In many examples of computer
simulations, the computational model differs significantly from the conceptual one
because the former includes approximations not implicit in the latter. Validation is
supposed to be the evaluation of the conceptual or computational model, as far as
rational credibility of its results or its assumptions is concerned. The focus of my
discussion will be on the credibility of model results, but I will also comment on
the credibility of assumptions that enter the computer model. It is not assumed that
validation only proceeds in terms of comparing simulation outputs with measured
data. Nor is “validation” supposed to be a success term that only refers to a successful
evaluation.

7.2 The Fundamentals of Bayesian Epistemology

7.2.1 Basic Tenets of Bayesian Epistemology

Let us explain the basic tenets of Bayesian epistemology by using Connie as an
example.

One task that Connie has as a scientist is to gain new knowledge. Much scientific
knowledge is propositional because it has a proposition as its content. The content
of such knowledge can be expressed in terms of that-clauses. Connie’s propositional
knowledge includes, e.g., knowledge that the mean global temperature has already
risen during the past century. The conclusion that Connie might want to draw from
her simulation would at best constitute propositional knowledge too.

Most epistemologists take it that knowledge is a species of belief. According
to the traditional definition of knowledge, famously mentioned in Plato’s dialog
“Theaetetus,” knowledge is justified, true belief (Plato 2015, 201c–d). So, Connie’s
belief that the mean global temperature has already risen in the past century only

4See e.g., Howson and Urbach (2006) for a defense of Bayesianism and Earman (1992) for a more
critical evaluation.
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constitutes knowledge since it is true and Connie is justified to believe it. The latter
condition is fulfilled because there is a lot of evidence for this. Challenges to the
traditional definition of knowledge due to, e.g., Gettier (1963) are not relevant for
our purposes.

Whereas belief has often been taken to be an all-or-nothing affair, Bayesian epis-
temologists assume that belief comes in degrees (of belief). That this is correct is
indicated by everyday talk. For instance, we may say that Connie believes strongly
that ..., or that she takes this to be very likely. Note that justification and evidence
come in degrees too, and if justification is a matter of degree, so should be belief,
because it seems sensible to require that we believe a proposition to the extent to
which we are justified in doing so.

Bayesians think further that degrees of belief are quantitative and can bemeasured
using real numbers.5 One method to determine the precise degree of Connie’s belief
that proposition q holds true concentrates on what she takes to be fair bets on q.
Clearly, if Connie feels 100% sure that q is the case, she will take bets unfair that
offer a prize of 1 unit if q is true, but cost either more, or less, than 1 unit. More
generally, Bayesians can define Connie’s degree of belief in a proposition q as her
fair betting quotient for a bet on q (see e.g., de Finetti 1937, p. 62 or Gillies 2000,
p. 55). Here, the betting quotient is the ratio of the costs for accepting the bet (i.e.,
the money that is lost if the bet is lost), on the one hand, and the stakes (i.e., the
prize), on the other hand. The betting quotient is fair for an agent if she would accept
the bet even if she did not know whether she would have to buy the bet or sell it to
another person.

This way of measuring degrees of belief may be motivated as follows. Assume
that Connie thinks that q is true with a belief strength of p(q) (whatever this means
in detail). Suppose further that Connie is offered a bet on q and that she has to
pay a price of l to bet. When she is faced with the decision on whether to bet on
q, it seems rational to consider the money she can expect from taking the bet and
to check whether it is larger than what she can expect without taking the bet. If
Connie wins the bet, she will obtain the stakes s minus the costs for accepting the
bet: s − l. If she loses the bet, she will just have to pay l. The betting quotient is
l/s, and the expected monetary value of accepting the bet, given Connie’s belief, is
p(q) × (s − l) − (1 − p(q)) × l, which reduces to (p(q) × s − l). This expectation
value is nonnegative, and thus larger than the expectation value in case Connie does
not take the bet, if the betting quotient l/s is no larger than p(q). So Connie will only
buy the bet if the betting quotient is no larger than her degree of belief. Likewise, she
will only sell the bet if the betting quotient is no smaller than her degree of belief.
So, her fair betting quotient is her degree of belief assuming that she maximizes the
expected value of money.

5See Ramsey (1926), de Finetti (1931a, b, 1937), Savage (1972) for important original sources on
the measurement of degrees of belief and Gillies (2000), Chap. 5 and Hájek (2012), Sect. 3.3.2
for secondary literature. There are subtle differences between several proposals to measure degrees
belief; they can be ignored in what follows.
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The idea now is to obtain Connie’s degree of belief on q by finding out her fair
betting quotient on q, even if she isn’t aware of any degree of belief and if she
doesn’t run through the calculation. Very roughly, Connie is asked which bets she
would take part in if she didn’t know whether she would be the seller or the buyer.
Bayesians thus conceptualize Connie’s betting behavior by reading themaximization
of expected monetary value into it and obtaining a degree of belief from it. The
so-called representation theorems from decision theory state necessary and jointly
conditions for this to be possible (see e.g., Gillies 2011). Bayesians think further that
there are facts of the matter of what Connie would take to be fair bets even if we
wouldn’t ask her, and thus matters of fact what precisely her degrees of beliefs are.

Some Bayesians think that the bets used for measuring degrees of belief should
not be about money, but rather about what Connie takes to be valuable, where the
value is quantified using utilities (see e.g., Gillies 2000, p. 56 for some discussion of
this issue). As, e.g., Ramsey (1926) and Savage (1972) have shown, it is possible to
obtain both the degrees of belief and the utilities of Connie from her behavior, given
that the latter respects certain constraints. This is the central result from Bayesian
decision theory, which characterizes rational choice in terms ofmaximizing expected
utility. For the most part of this chapter, we will not use Bayesian decision theory, so
it does not matter for our purposes whether we measure degrees of belief using bets
about money or value.

The next step for Bayesians is to argue that degrees of beliefs are probabilities. The
latter obey the axioms of the probability calculus as , e.g., specified by Kolmogorov.6

Following the axioms, probabilities take values from the interval [0, 1]; a tautological
proposition (e.g., that it rains, if it rains) has a probability of 1; and probabilities of
incompatible propositions q1 and q2 add up to the probability of the disjunction
q1 ∨ q2:

p(q1 ∨ q2) = p(q1) + p(q2) . (7.1)

To justify the claim that degrees of belief are proper probabilities, Bayesians use
Dutch book arguments. The latter show first that a person will lose money for sure if
she bets on beliefs the degrees ofwhich are not probabilities. For instance, if Connie’s
probability for q is larger than one, she is willing to pay more than the stakes for a
bet, and she will lose money for sure because she can maximally get back the stakes.
Likewise and conversely, one can show that Connie does not lose money for sure if
her degrees of belief are probabilities.7

Now, it seems irrational to take bets to be fair, although one can lose money with
them for sure. The proper conclusion of the Dutch book argument is thus that the

6The Kolmogorov axioms of the probability calculus (Kolmogorov 1956, Chaps. 1 and 2) were
originally defined for probabilities of so-called events, which are introduced using a sample space.
We have here adapted the axioms for probabilities of propositions, which is more natural for our
purposes (see Howson and Urbach (2006), p. 14 for the relationship between events and propo-
sitions). There are slightly different sets of axioms for the probability calculus, see e.g., Gillies
(2000), pp. 65–69 for an example.
7ADutch book argument can be found inRamsey (1926). For a short proof ofDutch book arguments
see e.g., Mellor (2005), pp. 69–70.
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degrees of belief of a rational agent are probabilities. At this point, there is a nor-
mative twist to Bayesian epistemology because the tenets of Bayesian epistemology
hold only true of rational agents. The principles can thus be understood as telling
what agents ought to think rationally. This normative twist is not a problem because
epistemology of science is to some extent normative anyway; it is concerned with
what scientists should infer, or how knowledge may be justified, which are clearly
normative matters.

As is common, we will call the degrees of beliefs of a rational agent her prob-
abilities. To stress that we think about a rational agent, we will sometimes talk of
rational degrees of belief or credibility too.

The axioms of the probability calculus restrict the degrees of belief of Connie at
one time, but do not fix them uniquely. Nor do they specify how degrees of belief
ought to be changed. In the latter respect, Bayesians assume that probabilities should
be updated as new data/evidence is obtained. To explain this, we first need some
additional probabilities.

As defined so far, the probabilities that measure degrees of belief are uncondi-
tional. A conditional probability of the form p(q1|q2), i.e., the probability of q1 given
q2, can be defined in an analogous manner by considering conditional bets, i.e., bets
that are called off in case the condition is not fulfilled (see Ramsey 1926, p. 180 for
this idea; see Döring 2000 for discussion). Using an additional Dutch book argument
(see e.g., Gillies 2000, pp. 62–64 and Döring 2000, p. 397), one can then show that
conditional and unconditional probabilities relate to each other as follows:

p(q1 ∧ q2) = p(q1|q2)p(q2) . (7.2)

(this is sometimes taken as the definition of conditional probability in case p(q2) �=
0). Given this result, it is easy to prove Bayes’ theorem (e.g., Joyce 2016):

p(q1|q2) = p(q2|q1) × p(q1)

p(q2)
. (7.3)

Although this theorem is much used in Bayesian epistemology, it is not characteristic
of it, but rather a theorem from mathematical probability theory.

To turn back to updating, assume that Connie is rational. Denote her probabilities
as p(·). Suppose further that she observes that e is the case (here e is taken to consti-
tute evidence and thus abbreviated with “e”). According to Bayesian epistemology,
Connie should update her prior probabilities p(·) by replacing them by posterior
probabilities p′(·) that take into account the evidence. It is often suggested that this
should be done via a rule called Bayesian conditionalization: For any proposition q,
the posterior probability is set to be

p′(q) = p(q|e) = p(e|q)

p(e)
× p(q) . (7.4)

Here and below, we assume that probabilities in denominators do not equal zero.
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According to Bayesian conditionalization, the posterior probability is a multiple
of the prior probability. If the latter is zero, the posterior probability will be zero
too. Otherwise, the prior probability is multiplied with the factor p(e|q)

p(e) . Here, p(e|q)

is called the likelihood. It measures how likely the evidence is taken in view of a
hypothesis q. If a hypothesis entails the evidence, i.e., if the evidence follows from
the hypothesis, then the likelihood is 1.8

Bayesian conditionalization has some desirable features. Note first that, qua being
conditional probabilities, the posterior probabilities are in fact probabilities, i.e., they
obey the axioms of the probability calculus. Second, the posterior probability for
the evidence equals 1. In this sense, the evidence is taken into account. Third, any
proposition q that is incompatible with the evidence e is given zero probability.
Thus, falsification, i.e., the rejection of a hypothesis in terms of observations that are
excluded by it, is a special case of Bayesian conditionalization.

All this is desirable, but does not suffice to justify Bayesian conditionalization.
Lewis (1997) has thus provided a Dutch book argument for Bayesian condition-
alization (see also Teller 1973), but the argument has remained controversial (see
Mellor 2005, pp. 119–120 for a brief discussion). So, Bayesian conditionalization
has remained controversial too (see e.g., Howson and Urbach 2006, pp. 80–85).
Nevertheless, Bayesians agree that degrees of beliefs should be updated in some
way when evidence comes in. In the following, we will stick with the simple rule of
Bayesian conditionalization mentioned above.9

Suppose now that Connie’s prior belief in q was strengthened by updating with
evidence e. This is to say that

p′(q) = p(q|e) > p(q) . (7.5)

We may then say that q has been confirmed by the evidence e. Likewise, q is dis-
confirmed via e if, and only if,

p′(q) = p(q|e) < p(q) . (7.6)

Note that confirmation, as defined here, is a matter of degree and doesn’t amount to
proof (see Hempel 1945, Sect. 1).

The condition for Bayesian confirmation holds if, and only if, the factor p(e|q)

p(e) is
larger than 1, i.e.,

p(e|q) > p(e) . (7.7)

This is to say that the hypothesis q makes e more probable than it would otherwise
be. Thus, e confirms a hypothesis q if, and only if, the latter makes e more likely.

8Quite generally, if q1 entails q2, then p(q2|q1) = 1. The reason is that, in this case, p(q1 ∧ q2) =
p(q1).
9A simple generalization of Bayesian conditionalization was provided by Jeffrey (1967), Chap. 11.
Howson and Urbach (2006), pp. 80–85 argue for a different approach, which reduces to Bayesian
conditionalization under certain conditions.
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To summarize, according to Bayesian epistemology, rational beliefs come in
degrees, which are restricted by the axioms of the probability calculus and con-
ditionalization (or some alternative form of updating).

7.2.2 A Brief Discussion of Bayesian Epistemology

But howwell does Bayesian epistemology fare as a theory in epistemology of science
(see Earman 1992, Hájek and Hartmann 2010a, pp. 87–102 or Bartelborth 2013 for
a much more detailed evaluation)?

On the positive side, Bayesian epistemology starts out with a more nuanced
account of belief than traditional epistemology because it allows for degrees of
belief. Since it takes degrees of rational belief to be measurable in terms of prob-
abilities, Bayesian epistemology can draw on the rich resources from probability
theory. This allows for powerful applications of Bayesian epistemology. One exam-
ple is Bayesian statistics, which is a rival to the classical/error-statistical/frequentist
approach to statistics (see Howson and Urbach 2006, Chap. 8 and Lee 2012 for
Bayesian statistics; see Mayo 1996 for a philosophical defense of some sort of error
statistics). Other examples of applications includemeasures of confirmation (see e.g.,
Huber 2007, Sect. 6b for an overview) and measures of coherence (see e.g., Bovens
and Hartmann 2004). For another advantage, Bayesian epistemology is intimately
connected to Bayesian decision theory (see Beisbert 2011 for an introduction). As
a consequence, Bayesian degrees of belief have a characteristic role to play in deci-
sions. Taken together, Bayesian epistemology and Bayesian decision theory provide
a picture of rationality that covers both the rationality of belief formation and of
action. Further, Bayesian epistemology can account for a number of intuitions about
rational belief formation and scientific methodology. For instance, Bayesianism can
explain why a hypothesis q seems particularly strongly confirmed if it predicts some
event that seems very unlikely, but then happens to occur.

But the power of Bayesian epistemology to account for intuitive judgments about
rational belief formation is limited. One famous problem in this regard is the problem
of old evidence (Glymour 1980): Suppose that we have recently constructed a new
theory q without drawing on evidence e, which we did know though when construct-
ing the theory. As a consequence, if q happens to account for e by entailing it, this
does not boost our degree of belief in q. For

p(q|e) = p(e|q) × p(q)/p(e) . (7.8)

Since e is already known, p(e) = 1; and since q entails e, p(e|q) = 1 too. Thus,
q is not confirmed by e. This is not as it should be because, e.g., the credibility of
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Einstein’s General Theory of Relativity was increased because it was able to account
for well-known data.10

There are other problems about Bayesianism. A first complaint is that it includes
too many degrees of freedom to be useful (Bartelborth 2013, pp. 28–30). The reason
is that an agent needs to start with a joint probability distribution over all propositions
under consideration. Note, however, that the number of degrees of freedom shrinks
considerably if groups of propositions are supposed to be independent from each
other. Here, two propositions q1, q2 are probabilistically independent if, and only if,

p(q1 ∧ q2) = p(q1) × p(q2) . (7.9)

Relations of probabilistic independence can well be represented using Bayes nets;
see Neapolitan (2004).

Second, Bayesianism is demanding in that it expects logical omniscience from a
rational agent. The reason is that, following the axioms of the probability calculus,
every tautology is supposed to have a probability of 1.

The most important objection against Bayesian epistemology is presumably that
it is too subjectivist. The principles of rational belief formation acknowledged by
Bayesians only fix probabilities up to some priors. Thus, different agents may ratio-
nally start out with very different priors and thus arrive at different posteriors. As a
further consequence, the agents may disagree onwhether a hypothesis q is confirmed
by evidence e. For it is ultimately a matter of the priors whether Eq. (7.5) or (7.6)
holds in a particular case.

In response, Bayesians can to some extent alleviate the worry about subjectivism
by using convergence results: Under suitable conditions, the posteriors converge to
each other when they are updated using the same data (see Savage 1972, pp. 46–50
and Blackwell and Dubins 1962 for such results). But convergence may be slow, so
two rational agents may significantly differ on their degrees of belief although they
have incorporated the same evidence.

To avoid subjectivism,Bayesians can also try to turn objectivist by expanding their
repertoire of principles of rational belief formation. Some further principles, e.g., the
Principal Principle (see Lewis 1980, 1994, pp. 483–490), are uncontroversial among
Bayesians, but not sufficient to uniquely fix all priors. One famous candidate that
might do this is the Principle of Insufficient Reason (also called Principle of Indif-
ference).11 Following this principle, the prior probabilities of n exhaustive, mutually
exclusive hypotheses should be set to 1/n, if there are no reasons to favor some
hypotheses over others. But the application of the principle leads into paradox (see
e.g., Gillies 2000, pp. 37–49). So the principle is not widely adopted, nor is objective
Bayesianism.

10See e.g., Wagner (1997), Sprenger (2015), Wenmackers and Romeijn (2016) for attempts to solve
the problem. See also Chap. 41 by Frisch in this volume.
11See e.g., Keynes (1921), p. 42 for an influential statement. The maximum entropy approach
famously advocated by E. T. Jaynes generalizes the principle Jaynes (1957, 1968, 1979).

http://dx.doi.org/10.1007/978-3-319-70766-2_41
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The only strategy left then is to bite the bullet and to argue that alternative episte-
mological frameworks do not really delivermore objectivity, since they are ultimately
built on some arbitrary assumptions too (Howson and Urbach 2006, p. 265). The lat-
ter point is often made in the foundations of statistics, where Bayesian statistics is
rivaled by frequentist or error statistics. Under the latter account of statistics, cer-
tain hypotheses should be rejected given suitable evidence, independently of what
the working scientists think. Bayesians reply that error statistics is ultimately based
upon decisions that cannot be justified. For example, the so-called p-value or the
level of significance, which determines when a hypothesis is rejected under the
error-statistical view, is only set conventionally, or so the charge is (see Howson
and Urbach 2006, Chap. V for a thorough analysis of the assumptions underlying
frequentist statistics).

To summarize, we may say that Bayesian epistemology has both astonishing
achievements and dramatic shortcomings. So, a nuanced attitude towardBayesianism
is called for (see Hájek and Hartmann 2010b, pp. 100–101 and Bartelborth 2013,
pp. 61–66 for examples). In this respect, it seems promising to restrict the application
of Bayesian epistemology to local settings, in which only few rival hypotheses are
under consideration and thus have nonzero probability. This circumvents the problem
of the many degrees of freedom. Likewise, in a more local setting, there may be good
reasons to set the priors in this or this way, for instance, because the priors reflect
expert judgment.

7.3 Bayesian Epistemology and the Validation of Computer
Simulations

Turn now to the validation of computer simulations. How should scientists reason
during validation, if we adopt a Bayesian perspective?

To answer this question, Bayesians will, in general, proceed as follows: They
identify suitable propositions related to a simulation, consider rational degrees of
belief in these propositions and apply the Bayesian principles. The resulting posterior
probabilities express the degree of trust that they should rationally invest in the
propositions. These probabilities may eventually be used to maximize an expected
utility related to the model, but in what follows, we will neglect this possible step.

What then are propositions that are relevant to the validation of a simulation?
Natural candidates state the results of a computer simulation. In what follows, these
may be results that have been obtained by actually running the program, or results
that may be obtained in this way.

In our example, Connie’s simulation produces the result that the mean global tem-
perature increases to a certain extent in a business as usual scenario. More generally,
propositional results can be obtained from a simulation as follows: The computer
simulation outputs numbers that are interpreted to be the values of characteristics
about the target system, e.g., mean global temperature. Further, the numbers were
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obtained given some input, which corresponds to some assumptions about, e.g., the
initial state. So a propositional result might be that, for such and such an initial state,
the value of some characteristic is such and such.

If the possible values of a characteristic are from a continuous rather from a
discrete set, e.g., from the interval [1, 2], then there is almost no chance that a result
as constructed so far is true, because the number output is affected by all kinds of
errors. What is only sensible to expect is that the result holds up to some error, or
with some accuracy (see Chap. 2 by Beisbart in this volume). Clearly, that the value
of a characteristic is in a certain range of values is a proposition too that can be
considered by Bayesians.

But Bayesians have an alternative to deal with characteristics with a continuous
range of values. The trick is to consider probability densities rather than probabilities.
Very roughly, for an infinitesimal interval dT , the probability to find the temperature
in the interval [T, T + dT ] equals the probability density times dT . For a finite inter-
val or temperatures [T1, T2], the probability is accordingly obtained by integrating
over the probability density. Probability densities are easily generalized to higher
dimensional spaces (i.e., vector spaces).12 Of course, in Bayesian epistemology,
probability densities too reflect degrees of belief. Rules such as Bayes’ theorem hold
for them too. To keep the presentation simple in what follows, we will thus use p(·)
to either denote a probability or a probability density, as required in the example.

Often, simulation scientists will content themselves with more qualitative propo-
sitions about the simulated systems as result, e.g., that the temperature increases.
In the terms of (Bogen and Woodward 1988), we may say that scientists construct
phenomena out of the (simulated) data. Related results can be formulated in terms
of propositions too.

Let us thus assume that results have been formulated in a set of propositions.13

The next step then is to set values on the probabilities of the propositions.

7.3.1 Data-Driven Validation

A natural way to arrive at such probabilities is to use updating. For this purpose,
simulation results need to be compared with data. In what follows, we’ll first present
a very simple toy example of updating and then expound amore sophisticatedmethod.

For the toy example, assume that scientists are interested in a finite number of
qualitative results. We can conjoin the related propositions in one big proposition,
call it r , and consider the probability of r . To update this probability, scientists can
obtain evidence on some of the results, call it e. Using Bayesian conditionalization,
we obtain for the posterior probability

12See Papoulis and Pillai (2002), Sect. 4.2 for an exact definition of probability densities.
13See Beisbart (2012) for a more extended discussion of how computer scientists obtain proposi-
tional content from simulation output.

http://dx.doi.org/10.1007/978-3-319-70766-2_2
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p′(r) = p(r |e) = p(e|r)
p(e)

× p(r) . (7.10)

In this setting, there are only two possibilities: Either the evidence is incompatible
with the results r , then p(e|r) is amultiple of p(e ∧ r) = 0, so the results are falsified
and obtain zero credibility. Alternatively, the evidence is compatible with r . Then,
p(e|r) = 1 because the results imply e, and the credibility of the whole results r
becomes:

p′(r) = p(r)

p(e)
. (7.11)

This probability is larger than the prior, if the prior probability of the evidence was
less than one (which is natural; otherwise, there was no point in gathering evidence).
To determine quantitatively by how much the probability of the results is boosted,
we need to obtain p(e). This is most naturally done under the assumption of a
restricted range of possible results (or hypotheses) r j ( j = 1, ..., o). The results r j
are assumed to be mutually incompatible and jointly exhaustive, which is to say
that other hypotheses have no credibility. The r j may result from other computer
simulation models. We then have

p(e) =
∑

j

p(e|r j )p(r j ) . (7.12)

So using Bayesian conditionalization (or, maybe, some other type of updating), we
obtain a natural method for data-driven validation.

If we do not want to rely on a set of mutually exclusive hypotheses that exhaust
the space of what we take to be credible, we may at least use Bayesian updating to
compare two hypotheses regarding their posterior probabilities. If we form the ratio
of the probabilities, then p(e) drops out, and we obtain a comparative assessment of
the credibility of both hypotheses (results from different simulations). It turns out,
however, that, in our toy example, the ratio does not change for two results that are
compatible with the existing data. This is good reason to turn to a more powerful
Bayesian method of data-driven validation, as proposed by Bayarri et al. (2007).14

We here present a rough outline of the method.
The results considered by the method are of the type that a certain characteristic

takes an output number as value. Thus, if the possible values of the characteristic are
continuous, we need probability densities in what follows. We let p(x) denote the
probability (density) that a certain characteristic X takes value x .

Absorb all input that is needed to run the simulation program once into a vector
x.15 Here, the input comprises initial conditions and, maybe, some parameter values.
Collect some subset of the simulation output that is supposed to be of interest in
another vector y. If the simulation is deterministic, i.e., if merely one output is
possible given an input, the computer simulation induces a function that maps input

14Earlier versions of this work have been around as Bayarri et al. (2002, 2005).
15As usual in, e.g., physics, vectors and vector-valued functions are denoted using boldface letters.
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to relevant output:
f sim : x �→ y = f sim(x) . (7.13)

The method to be described presently can naturally be generalized to nondetermin-
istic, so-called stochastic simulations.16

Assume that, for each simulation input x, there is a real-world counterpart for the
output. It comprises those values of the selected characteristic that would arise in
reality, if x described the initial conditions and parameter values in reality:

f real : x �→ y = f real(x) . (7.14)

We assume once more that the output is unique, which means that the system is
deterministic too.

The difference between the simulated output and the real counterpart is called
bias:

b(x) := f real(x) − f sim(x) . (7.15)

Bias is a function of the input.17

Assume now that there are measured data {ydi } for a set of inputs to the simulation
program {xi } (i = 1, ..., n). Since there are experimental errors ei , the data points
will in general not coincide with the true values for y:

ydi = f real(xi ) + ei . (7.16)

The proposed method uses these data to obtain a posterior probability density for
f real(xnew) for some arbitrary new input to the simulation program xnew. So the idea
is that the program is run with a new input xnew and produces ynew as output. Our aim
is to derive the posterior probability density for the real counterpart to that output:

p′(f real(xnew)) . (7.17)

Now, due to Eq. (7.15),

f real(xnew) = f sim(xnew) + b(xnew) . (7.18)

So, the posterior probability density for f real(xnew) is basically the one of the bias,
shifted by the simulation output f sim(xnew). Thus, to obtain the probability density

16In this case, fsim and possibly f real defined below should be regarded as random functions. The
method doesn’t essentially change if this is so because we will below assume probabilities for the
functions anyway.
17The assumption that there is a real-world counterpart f real(x) to the model for each input x is not
appropriate for all models.We do not expect a real counterpart, for instance, if x contains parameters
that do not really correspond to characteristics in reality.
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for the value of p′(f real(xnew)), we need only the posterior probability density for the
bias.18

To obtain this, Bayesians have to assume a prior probability for the unknown
quantities, viz., themeasurement errors {ei } and the biasb. Since the bias is a function
of input, the bias has to be thought of as a random function, for which we need a
probability density.19 We condense the priors of the unknown quantities in one joint
probability density

p (b, {ei }) . (7.19)

The posterior for these quantities thus is by Bayes’ Theorem

p
(
b, {ei }|{ydi }

) = p
({ydi }|b, {ei }

) × p (b, {ei })
p

({ydi }
) . (7.20)

Here, ydi is uniquely determined, given a value for the bias and the error, once f sim(xi )
is known, which can be obtained by running the simulation program. This means
that p

({ydi }|b, {ei }
)
reduces essentially to a delta function. The denominator can in

principle be determined as in Eq. 7.12, if we restrict ourselves to some set of models.
From p

(
b, {ei }|{ydi }

)
, we obtain a probability density over the bias by integrating

over the {ei }. Evaluating the bias function at xnew gives the bias of the model we can
expect for input xnew. By adding it to f sim(xnew), which can be known from running
the simulation program, we obtain a degree of belief for the true counterpart to ynew,
f real(xnew). We may use it to calculate the mean value of f sim(xnew) + b(xnew) and
the variance or specify credible intervals, i.e., intervals in which the true counterpart
must be with high probability.

More technical details about the method can be found in Bayarri et al. (2007).
Note that we have neglected two complications of their work. First, they also include
calibration, which is not part of validation, properly speaking. Second, they assume
that a so-called emulator of the simulation program is used (see Chen et al. 2006,
2008; Wang et al. 2009 for very similar approaches). That is, a probabilistic model
for the function that maps simulation input to simulation output is introduced and
updated using actual outputs from a few runs. The model can then be used instead of
the computer program to save computational costs. Although themethod is Bayesian,
it is not relevant for our purposes because it is not a necessary ingredient of validation.

Of course, the method specified above only works given a prior p (b, {ei }). It
is natural to assume that the prior of the unknown quantities, Eq. (7.19), factorizes
because the experimental errors and the bias function are independent. Bayarri et al.
(2007) assume that the bias function is a Gaussian random field with some unknown
parameters, for which prior probabilities are assumed. The idea here is to have a

18Here possible errors in measuring x have been neglected because this would complicate things
further.
19Technically speaking, this probability density lives on a different space than the probability
densities of outputs, but this detail need not detain us.
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broad set of bias functions available and to use the data via updating to restrict the
range of the bias.

All in all, we have a Bayesian method for a data-driven validation of a whole
simulation program. Note that the application of the method works even if the ydi
cover only some aspects of the relevant results. In this way, the application of the
method need not include a comparison between simulation output and data for those
characteristics that are of ultimate interest (i.e., the mean global temperature in our
example); rather, the comparison may be carried out using different characteristics
(say precipitation in our example).20

7.3.2 The Problem of the Priors in Validation

The rational degrees of belief obtained with the method proposed by Bayarri et al.
(2007) depend on priors. As mentioned, the authors make a proposal how to set
the priors, which suffices for a concrete application (see our p. 14). But the priors
were not determined in a principled way, so different priors are possible. Of course,
in some sense, this problem will not disappear because, at some point, the choice
of priors is inevitable in Bayesian epistemology, unless some version of objective
Bayesianism is adopted. Nevertheless, we may ask whether the priors can arise
from the application of principles from Bayesian epistemology on yet other priors.
Ultimately, the question is whether validation (in the broad sense defined in the
introduction) can draw on sources that are different from mere comparison between
simulation outputs and data. This question is of course not specific to a Bayesian
approach to validation.

A very natural answer is that most results from computer simulations do have
credibility that does not derive from a direct comparison with data, because the
simulations are based upon theories and further assumptions that enjoy independent
credibility. For instance, Connie’s simulations assume the Navier–Stokes equations,
which clearly have independent credibility. This credibility ultimately depends on
data too, because theories and other assumptions from the natural and social sciences
only obtain credibility if they can account for some data. But these data are for the
most part very different from data to which simulations may be compared to. For
instance, the Navier–Stokes equations have been tested in a variety of settings that
are not at all in the scope of applications of Connie’s simulations, e.g., in small-scale
experiments that are not resolved in global circulation models.

20There are a few more concrete proposals how to use the notions from Bayesian epistemology
for tasks related to validation. Kennedy and O’Hagan (2000) offer a Bayesian analysis that allows
simulation scientists to work with approximations to complicated models. Kennedy and O’Hagan
(2001) study calibration from a Bayesian perspective. Sensitivity analysis is investigated from a
Bayesian perspective by Oakley and O’Hagan (2004). All of these works use so-called statistical
emulators for the original computer simulation. A useful tutorial to a Bayesian analysis of simula-
tion outputs is given by O’Hagan (2006). In this tutorial, the application of Bayesian methods to
validation is named as an example, but not further pursued (p. 1299).
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Bayesian epistemology can in principle account for the prior credibility of theo-
ries and assumptions that enter a simulation. In the Bayesian framework, the prior
credibility of a theory or an assumption can be measured using a rational degree of
belief from a scientist.21 And this degree of belief will be informed by all kinds of
data. Given that theories or assumptions like the Navier–Stokes equations have been
tested in numerous ways, it is in fact realistic to expect that scientists more or less
agree on the credibility of many assumptions.22 Of course, a simulationmay incorpo-
rate very controversial assumptions, maybe the point being that the simulations are
used within a test of the assumptions, but in this case, the results of the simulations
should be conditioned on the controversial assumptions.

Let us thus explore how Bayesians can quantify the prior credibility of simulation
results. As before, call r a proposition that conjoins many results from a simulation.
Let us for definiteness assume that the simulation is built on a theory t and auxiliary
assumptions a. Apart from the theory, we include all assumptions on which the
simulation is built, e.g., assumptions about parameter values and initial conditions,
in a. Let us call the conjunction of t and a the underlying model m. Assume that
the scientists from a field further agree on priors for the theory and the assumptions,
p(t) and p(a). Suppose further, that the theory and the assumptions are taken to
be independent, which is to say that p(t ∧ a) = p(t) × p(a). So, p(m) = p(t) ×
p(a).23 Now the computer simulation is supposed to trace the consequences of the
model assumptions (see Beisbart 2012 for discussion). If it does, the results are
entailed by the model and thus p(r |m) = 1. As a consequence, the credibility of the
results is at least as high as the credibility of the model:

p(r) ≥ p(r ∧ m) = p(r |m) × p(m) = p(m) = p(t) × p(a) . (7.21)

p(r) will be strictly larger than p(m) if there are alternative credible models that
imply the same results.

But this analysis is threatened by two problems. First, even computer simulations
that are not designed to test controversial assumptions often rely on assumptions
that are not thought to be realistic. Most simulations are based upon abstraction,
idealization and approximation; as a consequence, some of their assumptions are
strictly speaking taken to be false. For instance, simulations that presuppose the
Navier–Stokes equations are ultimately built on Newtonian physics, which is strictly
speaking not correct, since relativistic effects are neglected (despite this, Newtonian
physics is still a very useful approximation). But if an assumption is taken to be
false, its prior probability is zero. And this would mean that the prior probability of

21In what follows, we adopt the standard assumption that a theory can be expressed in terms of one
or more propositions.
22The idea need not be that each scientist has updated her belief many, many times. Rather, she may
have taken it from other scientists in her training. Taking priors from textbooks or other reliable
sources is certainly a reasonable way to set one’s priors.
23More realistically, there will be some model assumptions that are very credible, while there
are uncertainties about some other model assumptions. In this case, a probability model for the
uncertainties seems more useful.
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our whole model p(m) is zero, which would certainly not provide a good basis for
putting credibility on the results of the simulations.

This problem arises if we are too strict about the model assumptions. In practice,
e.g., model equations are only taken to be credible up to some errors. For instance,
the Navier–Stokes equations are not supposed to hold literally, but only to some
approximation. Accordingly, solutions to the Navier–Stokes equations will not state
the literal truth about the dynamics of a fluid, but this is not an issue as long as some
limited imprecision in the solutions is tolerated. A Bayesian analysis has to take this
into account.

The second problem with the analysis above is as follows. What scientists have
trust in are typically conceptual models. But a computer simulation does not exactly
trace implications of a conceptual model because the latter is at best approximated in
the simulations. The reasons arewell known:Differential equations are approximated
using difference equations; other types of numerical approximations are used, e.g.,
in Fourier transformations; round off errors arise; the computer programmay contain
so-called bugs; and the hardware may not function as intended. All this yields errors
of the result with respect to the conceptual model, and this is the reason why we
describe the simulation itself by a computational model (see Chap. 5 by Roy in this
volume). So r may not follow fromm. But then p(r |m) �= 1. In fact, if we understand
the result as saying that a characteristic takes the particular value provided by the
output of the simulation, and if, due to errors, this value does not coincide with what
the model implies, then r andm are incompatible and p(r |m) = 0. Again, this is not
a good basis for obtaining prior credibility for the results.

This problem arises to some extent if we are too strict about the results. Typically,
the outputs of a simulation are taken with some grain of salt. For instance, if the
output for the temperature is T , then a sensible result is that temperature is in a range
around T , and the idea is that this result follows from the conceptual model.

To solve both problems, we may try a thorough quantitative error analysis as
follows.We relax themodel assumptions to avoid thefirst problem.For instance, if the
Navier–Stokes equations are part of themodelm, we relax themby assuming that they
only hold up to correction terms of size εm . To do so requires additional knowledge
about the sizes of possible corrections, but this knowledge is often available.

We then need to obtain bounds on the effects that corrections to themodel assump-
tions smaller than εm make on the results. Further, to address the second problem, all
other sources of errors need to be taken into account. For instance, if a discretization
of differential equations leads to deviations from the original model no larger than εd ,
then the effects on the results are traced too. In this way, we may in principle derive
an upper bound εr on the effects of all kinds of errors. We then interpret r as stating
that the simulation outputs only approximate the true values of the characteristics up
to εr . We then have

p(r |m) = 1 (7.22)

again by construction, which gives us a lower bound on the prior probability of r as
before. Note here that talk of bounds assumes suitable metrics that allow to measure
distances in the spaces of outputs and inputs. For instance we need to be able to tell

http://dx.doi.org/10.1007/978-3-319-70766-2_5
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how far an output is from the true counterpart, if we wish to say that the corrections
are smaller than εr in the results r .24

Unfortunately, the thorough quantitative analysis just sketched is impossible in
practice. For one thing, the deviations from the model equations that are arise due
to the various sources of errors are often not known in terms of upper bounds.
For instance, bugs are typically not known at all nor are their effects. For another
thing, the propagation of the errors and their interactions is very complicated and
difficult to describe. Computer simulations are run precisely because we do not know
what a certain model implies. That is, we do not know how the model assumptions
“propagate” through the calculations of a simulation to effect results. It is roughly as
difficult to know how errors propagate through the calculations or to obtain bounds
on this. So we can only use simulations themselves to learn about these effects.

From a Bayesian point of view, a natural method is to model the errors from the
simulations. We can proceed in a similar way as we did before when we followed
Bayarri et al. (2007).

We assume that, using ametric,we can take distances δ(·, ·) between arbitrary pos-
sible outputs. For an arbitrary input x, let fmodel(x) be the prediction of the conceptual
model for input x. Define the model bias, bmodel(x) (i.e., the bias of the simulations
with respect to the conceptual model), as the distance between the simulation output
and the output that the conceptual model as such would produce for input x,

bmodel(x) = δ(f sim(x), fmodel(x)) . (7.23)

Here, the bias function is not a vector anymore, but rather real-valued, since it just
expresses how far the results of the simulation are from the model predictions in
terms of our metric.

We assume a prior probability density pb(bmodel(x)) over the model bias that
expresses the uncertainty over model bias at x. This prior probability density may
then be updated by running the program for specific inputs x, for which the solutions
to the conceptual model are known. We thus obtain some values of the model bias
to which our model for the bias can be adjusted via updating. This can be done in a
way that is completely analogous to the method specified by Bayarri et al. (2007).

Suppose now that, for new input xnew to the simulation, we tolerate corrections
up to εr in the results. Let r be the claim that the results r constructed from the actual
output of the simulation run have corrections no larger than εr . Then we have for the
probability for the result r

p′(r) ≥
∫ εr

−εr

dδpb(δ, xnew)p(m) . (7.24)

So we obtain a lower bound on the prior for the result. The bound may be used as a
basis for data-driven validation. We have a lower bound because other models with
nonzero credibility may imply the same results.

24A metric does not presuppose quantitative output and may be applied to qualitative output too.
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Call this method Bayesian verification. “Verification” is here meant to refer to
activities that show that a simulation program appropriately traces solutions to the
conceptual model. Note, however, that—as any method of verification—this one
does not take into account errors in the conceptual model. The proposed method of
verification is simpler than the Bayesian method for validation given by Bayarri et al.
(2007), because the bias function is now real-valued and because no experimental
errors need to be taken into account.

An immediate objection against Bayesian verification is that it only pushes the
problem one step back. We were interested in obtaining rational priors for a result,
but it turns out that we now need priors for a model bias. However, the new model
for model bias may not be as contentious as m and easier to investigate, so we can
reasonably expect more agreement about it.25

Independently of the details, Bayesian epistemology faces an interesting concep-
tual problem concerning verification. According to Bayesians, a rational agent has
coherent probabilities in that the axioms of the probability calculus are fulfilled. Sup-
pose now that results r follows from model assumptions m as a matter of fact. The
agent should then set the probability p(r |m) at 1. But in typical examples of models
used in simulations, the agent does not know what the consequences of the model
assumptions are. If she then assumes a probabilistic model for the bias following
Bayesian verification, she will typically set a nonzero probability on results that do
not follow from the model. She thus violates the axioms of the probability calculus.

Accordingly, to handle verification of computer models, Bayesians have to build
what may be called a nonideal theory.26 Such a nonideal theory allows that some
principles of Bayesian epistemology are violated. Nevertheless, other principles are
assumed to hold and still applied.

To summarize this section, we have first shown that there is a distinct Bayesian
methodology for data-driven validation, i.e., validation that compares outputs of
a simulation with data. A problem though is that Bayesian data-driven validation
assumes priors.We have then seen that we can constrain such priors. The crucial idea
is that the modeling assumptions on which the simulation is based have credibility. A
problem is that this credibility doesn’t straightforwardly flow to the results because
the simulation program at best approximates solutions to the model equations. We
can use what we have called Bayesian verification to solve this problem.

As far as validation is concerned, we have so far concentrated on the validation
of results from simulations. But we may also ask to what extent a whole simulation
model (including its underlying assumptions) can be validated. The Bayesian answer
is that we can update model probabilities via

25A slightly different regress problem arises if so-called Monte Carlo simulations are needed to
calculate quantities that are used in Bayesian verification (as is quite often the case if posterior
probabilities are calculated). The threat is that the Monte Carlo simulation needed to obtain some
quantity is not verified. However, in practice, this is not a problem because the verification of the
simulation needed for the integral is easier than the verification of the model of the simulation.
26The term was coined by Rawls (1971), e.g., pp. 9, 247.
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p′(m) = p(m|e) = p(e| m) × p(m)

p(e)
, (7.25)

Thus, the credibility of a model can be enhanced using data. If we want to apply
something like the method used by Bayarri et al. (2007), then it is most natural to
conceive of a model as a function from input to output; and the method detailed
above gives us effectively the posteriors for the model as a function of xnew.

7.4 Discussion

What then has Bayesian epistemology to offer for Connie and to other simulation sci-
entists?What possible problems are there? And do rival epistemological frameworks
better?

To begin with the first question, Bayesian epistemology offers i. the notion of
degrees of belief, which allows for the use of mathematical probability theory, and
ii. principles that constrain the formation of rational degrees of belief. These com-
ponents form a theoretical framework that may be used as a toolbox to determine
rational degrees of belief on propositions related to a computer simulation program.
In Sect. 7.3 of this chapter, we have used the tools from this box. There are different
ways to use them, depending on the choice of the propositions that are evaluated for
credibility.

That Bayesian epistemology approaches simulations and their results in terms of
rational belief or credibility is very natural. For it is a natural question to ask to what
extent we should believe the results of simulations.27 Also, knowledge and rational
belief belong to the aims constitutive of science.

A possible objection is that credibility is not the proper standard for assessing
simulation models. For instance, Parker (2009) argues that climate models and sim-
ulations should be evaluated in terms of adequacy for purpose. A dependence on
purposes is manifest in the use of a validation metric (see Chap. 13 by Marks and
Chap. 18 by Saam in this volume). Roughly, the validation metric quantifies the
distance between the outputs and data taken from the target system. There are in
principle many ways how a distance may be taken, so researchers decide on the basis
of their purposes which distance they choose.

But assuming that the ultimate criterion for computer simulations is adequacy for
purpose need not push us outside the confines of Bayesian epistemology. Note first
that, in her paper, Parker does talk about the confirmation of hypotheses (e.g., p. 233).
These hypotheses hold that a simulation is adequate for a certain purpose. Clearly, we
can treat such propositions in the terms offered byBayesian epistemology and explain
their confirmation in Bayesian terms. Second, and more importantly, adequacy for
purpose often boils down to credibility of some propositions. For instance, if the goal
is to predict precipitation to some accuracy, then the goal is reached as soon as we

27The title of Knutti (2008) is very telling in this respect.
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obtain results with the desired accuracy that have high credibility. More generally,
the main goals pursued using simulations are not arbitrary, but restricted to the gain
of information constructed from simulation outputs. Since information may be more
or less uncertain, the point of a simulation can only be to obtain information about
a specific question with high accuracy and low uncertainty. Thus, when Bayesians
quantify uncertainties about errors using probabilities, as shown in Sect. 7.3, they
address adequacy for a particular purpose.

What if there are other purposes and standards that matter during the validation of
computer simulations? Itmay, for instance, be argued that the simplicity of simulation
models should be taken into account too (see Chap. 2 by Beisbart and Chap. 40
by Hirsch-Hadorn and Baumberger for discussion). But additional purposes and
standards do not pose a problem for Bayesians. First, if standards such as simplicity
are supposed to matter to credibility for some agents, the latter can set higher priors
on models that fulfill the standards. Second, if a simulation is evaluated in terms of
purposes that are not meant to matter to credibility, Bayesians can describe these
purposes in terms of utilities and apply Bayesian decision theory. They may, e.g.,
quantify the benefits (costs) of (true) false predictions from several simulationmodels
and then choose to work with that model that yields maximal expected net gains (see
Chap. 20 by Jiang et al. for this approach). Note also that it is doubtful whether
evaluating simulations following simplicity still counts as part of validation (see
Chap. 2 by Beisbart for a discussion).

As far as validation metrices are concerned, they can be integrated in a Bayesian
framework. Bayesians can use their framework to assess the credibility of propo-
sitions to the effect that the outputs of the simulations are such and such far from
what is true about the real world in terms of a validation metric. Conversely, choices
similar as those that determine a validation metrics are also implicit in the Bayesian
approach. They enter via the propositions that are assessed for credibility. Further,
some Bayesian quantities, e.g., likelihoods may be considered to be validation met-
rices themselves (this point of view is taken by Jiang et al. in their Chap. 20 in this
volume).

In the literature, we find a different objection against Bayesian validation.
Oberkampf and Barone (2006) suggest that Bayesian epistemology is not a suitable
framework for validation because it does not take validation to be an assessment.
They write (p. 10):

From this very brief description of parameter estimation and Bayesian inference, it should be
clear that the primary goal of both approaches is “model updating” or “model calibration.”
Although this goal is appropriate and necessary in many situations, it is a clearly different
goal from that used to evaluate a validation metric. Our emphasis in validation metrics is
in blind assessment of the predictive capability of a computational model (how good is the
model?), as opposed to optimizing the agreement between a given model and experimental
measurements.28

In the terms of the method proposed by Bayarri et al. (2007), the problem may seem
to be that the method returns a posterior probability (density) for the true value at

28Cf. also Oberkampf and Roy (2010), Sect. 13.8.
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xnew. So the focus seems to be what we should think about the true value and not
how good the model is.

But this is not the only way of looking at the method. What is first updated is
not a probability of the model itself or of the value of some model parameters, but
of the bias. The model is left fixed, as it were, and Bayesians identify a different
(merely statistical) model that specifies how far the simulation is from reality in
some respects. The larger the bias is, the worse is the original model.

One may still object against the Bayesian account of validation that it does not
really evaluate a simulation because it does not lead to the acceptance or rejection
of a simulation. But we did at least see the rejection of a result of a simulation
in Bayesian terms on p. 11. Also, if the method proposed by Bayarri et al. (2007)
leads to a probability density that is narrowly peaked about a considerable amount
of the bias, then the results of the simulation are left with small credibility. This has
significant effects for the credibility of the model itself. This is because

p(r) = p(r |m) × p(m) . (7.26)

Given that the model entails the results or at least makes them very likely (i.e.,
p(r |m) ≈ 1), the credibility of themodel cannot be high if the results are not credible.
Further, as indicated above and as discussed in Chap. 20 by Jiang, Bayesians can use
Bayesian decision theory to reject a model for further use.

This discussion naturally leads to our secondquestion, viz.what possible problems
there are for doing validation in a Bayesian framework.

A first, practical problem is that the application of a Bayesian methodology
requires priors. But there are at least two strategies to set priors:

• Obtain the prior credibility of simulation results from the prior credibility of the
underlying model using Bayesian verification (see Sect. 7.3.2).

• Begin with priors that cover a broad range of hypotheses, e.g., about biases, and
use enough data to obtain posteriors with information specific enough for the case
at hand. This strategy is used by Bayarri et al. (2007).

In some cases, expert judgmentmay be used too. The idea is that experts have degrees
of belief in the results of simulations and that these degrees are well-informed by
experience (see e.g., Bayarri et al. 2007, p. 141).

The subjectivity inherent to Bayesianism may be thought to give rise to a second,
more conceptual problem. If validation depends on priors, which are subjective for
most Bayesians, then validation itself becomes subjective and agent-relative. In par-
ticular, how good a particular simulation scores in terms of credibility, ultimately
depends on the prior probabilities that were chosen. Or, if we want to say that a sim-
ulation may be more or less validated, then Bayesians will have to say that a result
or model can only be validated relative to some priors. This is counterintuitive, and
a more objective notion of validation would be preferable.29

29As we have indicated above, every validation presumes a standard or a validation metric, so
validation is relative to the choice of such ametric.More precisely, then, the charge againstBayesians
is that their validation is even relative, once a validation metric has been fixed.
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In response to this problem,Bayesiansmay either turn objectivist or bite the bullet.
In the latter case, they can alleviate some worries about subjectivity by noting that,
in many practical applications, relativity is not an issue. The reason is that scientists
often agree on the priors (at least to some approximation) such that agent relativity
does not really matter. Bayesians who stick with subjectivism can further try to argue
that, in some hidden way, alternative approaches to validation suffer from exactly
the same problem because they are rooted in subjective decisions and thus relative
too, as indicated above. To explore the prospects of this strategy is beyond the scope
of this chapter. Note, in any case, that validation is but one among other notions that
become relative if (subjectivist) Bayesianism is accepted. Another example from this
class is confirmation.

A third problem is the old evidence problem. This problem is relevant to vali-
dation because the data-driven validation of many simulations draws on data that
were already available when the simulation was produced. If the related critique of
Bayesianism is right, then Bayesians cannot use old evidence to validate simula-
tions. So Bayesianism is in stark contrast with actual validation practice, or so the
charge is.

I don’t think that this problem is a reason to reject Bayesianism. As indicated
above in footnote 10 on p. 8, there are some proposals to solve the problem from a
Bayesian perspective. To briefly indicate a direction that seems fruitful, we may say
the following: The problem arises because it is assumed that, as soon as agents have
come upwith a newmodel (or theory), they immediately have a joint probability over
the new model and all evidence that bears on it. But this is not realistic since agents
are not logically omniscient. In particular, they do not immediately recognize the
consequences of their models. So it seems adequate that agents, who construct a new
model, first set some low probability on it and then update it with evidence that was
already available at the time they constructed the model, but not used. The thought
then is that the problem may be solved in the framework of nonideal Bayesian
epistemology. In Chap. 41 in this volume, Frisch discusses some solutions to the
problem too and relates them to the distinction between validation and calibration.

A fourth problem seems to be that validation is often done by groups of scientists,
while the Bayesian account of validation seems to be individualistic and focused on
the belief of individual scientists. It may thus be objected that a Bayesian account of
validation is doomed to neglect a host of complications that arise due to the division
of the labor of validation within larger groups, where researchers with different
backgrounds and power need to collaborate. This objection is not well-founded,
however. Note first that Bayesian epistemology has a clear focus on the question of
how scientific inference should be done. So, Bayesian epistemology is not meant to
describe all sorts of complications that arise when science is done in practice. As
a normative account of scientific inference, Bayesian epistemology can be applied
both at the level of an individual person or at the level of a group if this group can be
said to have beliefs (see e.g., Gilbert 1987 for an account of group belief). In science,
there are good reasons to think that there are group beliefs. First, publications by
research teams seem to express group belief. As far as validation is concerned, in
publications, the uncertainties are often expressed using probabilities, and on this
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basis, a certain result is reached. This is naturally understood in terms of degrees
of beliefs by a group. Second, as Gillies has shown, it is in the interest of a group
of scientists to bet on group beliefs that they have agreed upon (see Gillies 2000,
Chap. 8). If they do not bet in this way, they can fall prey to Dutch books. This leaves
open how the scientists from a team agree on probabilities. Questions like these are
dealt within social epistemology.

A fifth, more profound problem is as follows: Bayesianism is built on the assump-
tion that uncertainties arewell expressed using probabilities. This assumptionmatters
for validation because uncertainties, e.g., about the bias function are articulated in
terms of probabilities. But there are good reasons to assume that uncertainty is not
well expressed using precise probabilities. Consider first complete ignorance, which
may be taken as a limiting case of uncertainty. Even in this case, Bayesians would
try to elicit a precise probability from an agent. But this seems inappropriate. Sup-
pose, for instance, that you travel to a country you have never been to and discover a
fruit on a tree. You have no idea whether it is edible or not. Nevertheless, Bayesians
would ascribe you a fixed degree of belief on the proposition that it is edible, say
of 0.5. This is very different from a case, in which you put a probability of 0.5 on a
specific outcome of a coin toss because you have updated your degree of belief many
times on the basis of statistical evidence (see Huber 2009, Sect. 3.1 for this point).
Second, Frigg et al. (2014) have argued that the use of probabilities is not efficient to
trace the consequences of certain types of model uncertainty, as is done in sensitivity
analysis. A related point has been made against Bayesianism more specifically by
Albert (1999). All this is a good motivation to think that Bayesians do not represent
uncertainty in an appropriate way and to move to a framework that is more differ-
entiated, e.g., imprecise probabilities (see Bradley 2016 and Chap. 21 by Bradley in
this volume).30

In response, Bayesians should admit that imprecise probabilities provide an even
more differentiated option to think about uncertainties. Theymay hope that Bayesian-
ism nevertheless suffices for many applications, that it is sometimes preferable
because it is less complicated than imprecise probabilities and that imprecise prob-
abilities keep a lot of features from Bayesianism.

Let us now turn to our third question: Are there any serious competitors for a
Bayesian way of thinking of validation?

In epistemology, Bayesianism is sometimes contrasted with what may be called
traditional epistemology (e.g., Bartelborth 2013). The latter is a reconstruction that
captures what is common to many pre-Bayesian epistemologies, but different from
Bayesian epistemology. The most basic tenet is that belief is an all-or-nothing affair,
i.e., ungraded. This tenet may be complemented by principles of rationality that
e.g., exclude contradictory beliefs. Conceived in this way, traditional epistemology
is not a powerful rival, when it comes to validation (see Bartelborth 2013) for a

30Roy and Oberkampf (2010), Sect. IV.B recommend imprecise probabilities for certain kinds of
uncertainties.
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general comparison), simply because it does not have interesting implications about
validation specifically.31

In philosophy of science, the most serious rival of Bayesian epistemology is falsi-
ficationism as prominently defended by Popper (1934).32 We here take it that falsifi-
cationism wants to keep science clear from inductive inference, which is thought to
be unjustifiable. Thus, the basic type of scientific inference is supposed to be amodus
tollendo tollens, by which a hypothesis is falsified because one of its consequences
is incompatible with an accepted basic sentence that reports observations. As far as
statistical or probabilistic hypotheses are concerned, we take it that falsificationism
adopts the principles of error statistics, roughly the rejection of hypothesis using a p-
value (seeMayo 1996 for a philosophical defense). As far as validation is concerned,
falsificationism recommends that validation metrics be used to formulate validation
hypotheses, which should then be tested using error-statistical methods.

At least at first sight, error statistics has the advantage of avoiding recourse to
priors. The question though is whether the first impression can stand reflection. It
is clear that, in excluding priors, error statistics incorporates assumptions on which
Bayesians do not draw. The big question then is whether these assumptions can be
justified in some way. This question is at the center of a general debate between
Bayesians and falsificationists.

Even if error statistics justifiably avoids recourse to priors, there are significant
downsides, which correspond to advantages of Bayesian epistemology.

First, unlike Bayesian epistemology, falsificationism about validation does not
allow for a positive evaluation of results from a computer simulation. These results,
the simulation programs andmodels behind themmay be rejected. But if results from
a simulation are not falsified during testing, neither the results nor the simulation as
such is confirmed in any way. Otherwise, falsificationism would have to allow for a
type of induction, which it does not do.33

Second, and relatedly, falsificationists cannot allow that validation takes into
account the prior credibility of the model assumptions used. The reason is sim-
ply that no positive notion of credibility is available to falsificationists. By contrast,
Bayesians can draw on the prior credibility of the model assumptions, as was shown
in Sect. 7.3.2.

We may conclude then that a Bayesian approach to validation has many virtues
and significant advantages, if compared to a falsificationist outlook.

31Maybe, imprecise probabilities allow for a yet different rival to Bayesianism. A discussion of this
issue is beyond the scope of this chapter.
32See Chap. 6 by Beven and Lane in this volume for a falsificationist view of validation. Note that
this chapter moves quite far away from falsificationism. We will here concentrate on a very simple
version of falsificationism.
33Falsificationists cannot solve the problem by introducing the notion of corroboration (see Popper
1934, Sect. 4, Chap. X and App. *IX for this notion and Putnam 1974, Salmon 1981 for a critical
perspective) or that of verisimilitude (see Popper 1969, pp. 385–99 and Keuth 2000, Chap. 7 for
discussion).
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7.5 Conclusions

Bayesian epistemology is a powerful theory of scientific inference. As we have
seen in this chapter, it can be usefully applied to validation too. Bayesianism is
particularly helpful because it can tell how trust should be built up in simulations
and their results: Simulations and their results can have prior probability because the
model assumptions on which they are built have credibility. They can be confirmed
by updating corresponding beliefs using measured data. As we have seen, some
general problems about Bayesian epistemology are pertinent to Bayesian validation
too, but there are proposals for solutions. Bayesian validation raises some interesting
questions of its own, but I have argued that they do not lead to legitimate worries
that Bayesianism can be useful in validation.

The topic of Bayesian validation raises a number of research questions that need
further scrutiny. For instance, the idea of using Bayesian epistemology for verifica-
tion, which is closely related to validation, needs elaboration. From a philosophical
point of view, it would be interesting to see how a Bayesian approach to validation
can be connected to solutions of the old evidence problem (see Chap. 41 by Frisch
in this volume). The most urgent need for future research seems the application of
Bayesian methods in validation. Only more detailed examples can teach us how well
Bayesian validation fares in practice.
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Chapter 8
Validation of Computer Simulations
from a Kuhnian Perspective

Eckhart Arnold

Abstract WhileThomasKuhn’s theoryof scientific revolutions does not specifically
deal with validation, the validation of simulations can be related in various ways to
Kuhn’s theory: (1) Computer simulations are sometimes depicted as located between
experiments and theoretical reasoning, thus potentially blurring the line between
theory and empirical research. Does this require a new kind of research logic that
is different from the classical paradigm which clearly distinguishes between theory
and empirical observation? I argue that this is not the case. (2) Another typical
feature of computer simulations is their being “motley” (Winsberg in Philos Sci
70:105–125, 2003) with respect to the various premises that enter into simulations.
A possible consequence is that in case of failure it can become difficult to tell which
of the premises is to blame. Could this issue be understood as fostering Kuhn’s
mild relativism with respect to theory choice? I argue that there is no need to worry
about relativism with respect to computer simulations, in particular. (3) The field
of social simulations, in particular, still lacks a common understanding concerning
the requirements of empirical validation of simulations. Does this mean that social
simulations are still in a prescientific state in the sense of Kuhn? My conclusion is
that despite ongoing efforts to promote quality standards in this field, lack of proper
validation is still a problem of many published simulation studies and that, at least
large parts of social simulations must be considered as prescientific.

Keywords Computer simulations · Validation of simulations ·
Scientific paradigms

E. Arnold (B)
Bavarian Academy of Sciences and Humanities, Munich, Germany
e-mail: eckhart.arnold@posteo.de

© Springer Nature Switzerland AG 2019
C. Beisbart and N. J. Saam (eds.), Computer Simulation Validation,
Simulation Foundations, Methods and Applications,
https://doi.org/10.1007/978-3-319-70766-2_8

203

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-70766-2_8&domain=pdf
mailto:eckhart.arnold@posteo.de
https://doi.org/10.1007/978-3-319-70766-2_8


204 E. Arnold

8.1 Introduction

Kuhn (1976) famously introduced the term paradigm to characterize the set of back-
ground beliefs and attitudes shared by all scientists of a particular discipline. Accord-
ing to Kuhn these beliefs and attitudes are mostly centered around exemplars of good
scientific practice as presented in the textbook literature, but classical texts, spe-
cific methodological convictions or even ontological commitments can also become
important for defining a paradigm. Furthermore, paradigms comprise shared con-
victions as well as unspoken assumptions of the group of researchers (Kuhn 1976,
postscript). An important function of paradigms is that they both define and limit
what counts as relevant question and legitimate problemwithin a scientific discipline.

Kuhn’s concept of a paradigm is closely connected with his view of how science
develops. According to Kuhn phases of normal science where science progresses
within the confinements of a ruling paradigm are followed by scientific revolutions
which, in a process of creative destruction, lead to a paradigm shift. Scientific revo-
lutions are triggered by the accumulation of problems that are unsolvable within the
ruling paradigm (so called anomalies). With an increasing number of anomalies sci-
entists grow unsatisfied with the current paradigm and start to look for alternatives—
a state of affairs that (Kuhn 1976, Chap. 7/8) describes as the crisis of the ruling
paradigm. Then, a paradigm shift can occur that consists in a thoroughgoing con-
ceptual reorganization of a scientific discipline or, as the case may be, the genesis of
a new sub-discipline. Unless there is a crisis, the search for alternative paradigms is
usually suppressed by the scientific community.

This theory could be relevant for computer simulations and their validation.
Because computer simulations are sometimes characterized as a revolutionary new
tool that blurs the distinction between model and experiment, the question can be
asked if this tool brings about or requires new paradigms of validation. Under vali-
dation I understand a process which allows to test whether the results of a scientific
procedure adequately capture that part of reality which they aremeant to explain or to
enable us to understand. It is widely accepted that for theories or theoretical models,
the process of validation consists in the empirical testing of their consequences by
experiment or observation, which in this context is also often described as verifi-
cation or falsification or, more generally, as confirmation.1 The question then is, if
the same still holds for computer simulations, that is, if computer simulations also
require some form of empirical validation before they can be assumed to inform us
about reality.

For the purpose of this paper, I understand empirical validation in a somewhat
wider sense that does not require strict falsification, but merely any form of matching
theoretical assumptions with empirical findings. In this sense, a historian checking

1In the realm of computer simulations the term verification is, somewhat confusingly, reserved for
checking wether the simulation software is free from programming errors (so-called “bugs”) and
whether it is faithful to the mathematical model or theory on which it is based. The term validation
is used for the empirical testing of the simulation’s results. See also Chap. 4 by Murray-Smith in
this volume.

http://dx.doi.org/10.1007/978-3-319-70766-2_4
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an interpretation against the historical sources can also be said to validate that inter-
pretation. However, I assume that proper validation always includes an empirical
component and I therefore use the terms “validation” and “empirical validation”
interchangeably in the following.

In the following, I first summarize Kuhn’s philosophy of science (Sect. 8.2). Then
I list some of the dramatic changes that computer simulations have brought about in
science and—in order to forestall possible misunderstandings—explain why these
changes are not scientific revolutions in the sense of Kuhn (Sect. 8.3). In the main
part of this chapter (Sect. 8.4), I then examine the validation of simulations from
a Kuhnian perspective. Relating to the discussion about the relation between com-
puter simulations and experiments I argue that computer simulations can clearly be
distinguished from real experiments and, therefore, do not require a new paradigm
of validation. In principle, validating simulations is just like validating theory. I con-
tinue by examining whether computer simulations aggravate the problem of theory
choice that is associated with the so called “Duhem-Quine-thesis” (Harding 1976),
which I deny. Finally, I examine some of the issues that the validation of social simu-
lations and in particular agent-based-models raises from the point of view of Kuhn’s
philosophy of science. For the lack of commonly accepted standards of validation,
it seems unclear whether this field has already reached a state of “normal science”
with established paradigms of validation. Because the practices of validation vary
greatly in this field, a general conclusion is not possible, however. I therefore confine
myself to discussing the issue with respect to selected examples.

8.2 Kuhn’s Philosophy of Science

A crucial aspect of Kuhn’s concept of scientific revolutions is the alleged incom-
mensurability of paradigms (Kuhn 1976, Chap. 12, postscript 5.) (Sismondo 2010,
Chap. 2) (Bird 2013, Sect. 4.3f.). Incommensurability means that theories rooted in
different paradigms cannot easily be compared with respect to their scientific merits,
because of

1. methodological incommensurability, which means that the criteria of evaluation
depend on and change with the paradigm,

2. the theory-ladenness of observation, due to which an assessment based on empir-
ical evidence may not be able to resolve the dispute,

3. semantic incommensurability, which means that the differences of the respec-
tive conceptual reference frameworks and taxonomies may render the translation
between the nomenclatures of different paradigms difficult and error-prone.

Kuhn did not go as far as the proponents of the strong program of sociology of
science who maintain that the resolution of inter-paradigm-disputes is primarily, if
not exclusively, determined by social factors such as group allegiance and power-
structures (Bird 2013, Sect. 6.3). However, he did deny that the choice between
different theories is guided by a scientific meta-method such as systematic falsifica-
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tion or by any other particular set of rules. In this respect one can describe Kuhn’s
stance as a mild relativism. Kuhn’s relativism is restricted by his belief that a com-
mon ground for theory choice can still be found in such general characteristics as
empirical accuracy, consistency, breadth of scope, simplicity or parsimony, fruitful-
ness for future research (Kuhn 1977, Chap. 13). And he furthermore holds that the
comparison and mutual evaluation of paradigms is possible on the pragmatic basis
of their problem-solving capacity.

Although Kuhn regarded scientific revolutions and the paradigm shifts they bring
about as scientifically perfectly legitimate processes, that is processes that are primar-
ily driven by a scientificmotivation and not just by social power, he nonetheless found
that in almost any paradigm change some things get lost—if only that certain ques-
tions will not be considered worthwhile any more. An example is the question how
physical bodies influence each other over a distance, which cannot be answered by
Newton’s theory of Gravity and therefore simply was not asked any more, although,
beforeNewton it was considered important (Kuhn 1976, Chap. 12). The phenomenon
that accepted questions, problems and even solutions can become orphaned after a
paradigm shift has subsequently been called Kuhn loss (Bird 2013, Sect. 2).

Also, even though Kuhn allowed for paradigm shifts to make sense scientifically,
this does not always need to be the case, but one should expect that sometimes
paradigm shifts are primarily due to social factors. Not in the least because of the
popularity of Kuhn’s theory of scientific revolutions, it has become seductive for
scientists to stage a paradigm shift to promote their scientific agenda. In order to dis-
tinguish illegitimate paradigm-shifts terminologically, the derogatory term scientific
imperialism can be used, which has been coined to describe the take-over of a branch
of science by a single paradigm (Dupre 1994) by unfair means. Following Kuhn’s
line of thought the problem solving capacity could be a criterion by which to qualify
a paradigm shift as either legitimate or imperialistic. Because of the incommensu-
rability issues described before, an objective judgment about this can, of course, be
difficult.

A contemporary of Kuhn that is often mentioned in the same breath, is Paul Fey-
erabend, who is (in-)famous for the slogan “anything goes”. In popular folklore this
is sometimes understood as meaning that Feyerabend advocated that in science any
method is as good as any other. However, what Feyerabend actually demonstrated
in his book “Against Method: Outline of an Anarchist Theory of Knowledge” (Fey-
erabend 1975/1983) and other works was that even from the most humble historical
beginnings, a serious scientific theory or school of thought can still emerge. Feyer-
abend’s work gains its thrust from the fact that he can show that some of the game
changers in the history of science such as, for example, Galileo’s theory of motion,
violated accepted scientific standards of their time (Feyerabend 1975/1983, Chap.
9). Just as Kuhn he denies that the historical development of science is or can be
guided by methodological or epistemological rules. Similar to Kuhn, Feyerabend’s
philosophy has a certain relativistic flair, which Feyerabend other than Kuhn was
ready to accept (Preston 2016, Sect. 5).
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Nonetheless, despite what the subtitle of his major work suggests, Feyerabend’s
analyses do not warrant a strong relativism. Almost all of Feyerabend’s examples
concern theories that—later in their historical development—would be considered as
scientific even by conventional standards. Thus, what we can learn from Feyerabend
is a certain tolerance against the methodological chaos of new scientific approaches
in their infant stages. This can be important, for example, when evaluating social
simulations, which according to some authors suffer from a lack of proper empirical
validation (Heath et al. 2009). The question is then not so much whether these
simulations adhere to a particular scientific standard but rather whether the respective
scientific community learns from its failure to do so and will be able to develop
appropriate methodological standards in the future.

Another point that deserves clarification, because it is—at least in the philosoph-
ical discussion—almost habitually mentioned in context with Kuhn, is the Duhem–
Quine thesis (Harding 1976). The Duhem–Quine thesis draws on the fact that if the
logical consequence of a whole system of premises turns out to be false then it is still
unclear which one or more of the premises are false.2 This means that if a theory is
empirically disconfirmed, we do not (yet) know which part of the theory is wrong.
The Duhem–Quine thesis can be seen as supporting a certain degree of arbitrariness,
if not relativism in theory choice. And it corresponds well to Kuhn’s view that the
way scientists cope with anomalies is not strictly guided by methodological rules. It
may be a matter of creative choice. As we shall see later, this choice is in practice
much less arbitrary than it may appear in the formal logical representation of a theory
as a system of propositions.

Despite all reservations, Kuhn’s picture of the history of science is still one of
linear development,where normal science and revolutionary phases followeach other
in time. For Kuhn the prolonged coexistence of several competing paradigms was
the mark of a prescientific stage where much intellectual energy is wasted in disputes
between rivaling schools of thought. Recent research, however, has emphasized that
the coexistence of different paradigms within one and the same science is much too
common to be dismissed as prescientific (Kornmesser 2014; Schurz 2014). This is
particularly true of the social sciences, where hardly ever one paradigm can claim to
solve all puzzles so successfully that it is able to gather the entire scientific community
under its flag. That Kuhn may have underestimated the amount of coexistence of
paradigms in science does not invalidate his analyses, though. The concepts ofnormal
science and scientific revolutions can still be employed as ideal-types to characterize
the scientific proceedings within an established paradigm on the one hand and the
discourse between different coexisting paradigms on the other hand.

2See also Chap. 39 by Lenhard in this volume.

http://dx.doi.org/10.1007/978-3-319-70766-2_39
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8.3 A Revolution, but not a Kuhnian Revolution: Computer
Simulations in Science

Kuhn’s theory of scientific revolutions is so popular that his concept of a paradigmhas
by now become part of the common vocabulary. Inevitably, it is often used in a sense
that is different from what Kuhn had in mind. It may therefore help to make clear
what is not a revolution or paradigm change in Kuhn’s sense. Amost salient example
in this context is that of the introduction of computer simulations to science, because
it can with some justification be said that computer simulations have revolutionized
many areas of science.

Computer simulations can roughly be defined as the imitation of a natural process
(or, in the case of social simulations, a social process) by a computer program (Hart-
mann 1996). Undoubtedly, computer simulations have brought about considerable
changes in scientific practice and theoretical outlook. Here are but some examples:

• In engineering, simulations have been used before long to simulate the properties
of machinery and processes. A large class of simulations is based on the method
of finite elements which has as far reaching applications as structural engineering,
car crash tests and even cardiovascular simulations (Carusi et al. 2013).

• In chemistry simulations are employed in order to simulate chemical processes on
a quantum-mechanical bases, some of which are even outside the reach of direct
experimentation (Arnold 2013).

• In climate science the simulations are used to simulate the possible future develop-
ment of the world climate. Naturally, experimentation with the world climate is not
possible. By the same token, unfortunately, these simulations cannot be validated
directly.

• The theory of nonlinear dynamical systems (“chaos theory”) can even be said to
owe much of its origin to computational methods (Gleick 2011). At any rate its
development has certainly been propelled by the use of computers, though it might
not necessarily have been computer simulations in the narrower sense of imitations
of a natural process in the computer.

• In social science there exists a now already long-standing tradition of simulating
social processes. However, the social simulations community still struggles for the
acceptance within the broader social sciences community (Squazzoni and Casnici
2013).

Some of these examples certainly warrant the characterization as “revolutionary”.
Are they revolutionary in a Kuhnian sense, though? And would it be reasonable to
call simulation-based science in general a new paradigm of science?

For one thing, the way Kuhn used the term paradigm, paradigms are always tied
to specific scientific disciplines. Even though we are not tied to Kuhn’s definition
and the term paradigm has indeed been used more liberally by other authors since its
original introduction, it would appear a bit vague to speak of a paradigm of computer
simulations, because it is not at all clear what would be the content of this paradigm.
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Even more importantly, Kuhn reserves the concept of scientific revolutions for
changes that are caused by a crisis of the conceptual framework of a scientific disci-
pline and that lead to a reconstruction of the conceptual system that is incommensu-
rable with the previous reference framework. Not any dramatic change in science is
a revolution in the Kuhnian sense. A prominent example for a dramatic change that
is not a Kuhnian revolution is the discovery of the structure of the DNA-molecule by
Watson and Crick. While this discovery was a door-opener for molecular genetics, it
neither required nor effected a conceptual reconstruction and there was no question
of it being incommensurable with the previously held views on hereditary biology.
Quite the contrary, it fit in nicely with the existing body of knowledge. The discovery
of the DNA was normal science at its best, not a Kuhnian revolution.

Similarly, the introduction of computer simulations into a particular branch of
science alone is not a Kuhnian revolution, no matter how dramatic the changes in
scientific practice and the extension of our knowledge through computer simulations
might be. Only, if the use of computer simulations leads to a revision of established
fundamental concepts, it is a Kuhnian revolution. A possible candidate from the list
above might be chaos theory, in so far as it has modified the received picture of
causality.

8.4 Validation of Simulations from a Kuhnian Perspective

Can Kuhn’s concept of paradigm illuminate the validation of computer simulations?
And, if so, how? In the following, I am going to state several questions that can
be raised in this context and then try to give answers to these questions based on
the current discussion on computer simulations in the philosophy of science. The
questions that in my opinion deserve consideration are

1. Notwithstanding the question (discussed earlier) to what extent computer simula-
tions have prompted paradigm shifts in science, another question is, whether com-
puter simulations have lead to, or require new paradigms in the logic of scientific
discovery. Classical research logic assumes a clear distinction between theoretical
research based on deductive inference and empirical research based on experi-
ment and (potentially theory-laden) observation.3 Most importantly, there is a
hierarchy between the theoretical and empirical realm. Theoretical assumptions

3Because theory-ladenness of observation is an often misunderstood topic, two remarks are in
order: (1) Theory-ladenness of observation as such does not blur the distinction between theory
and observation. At worst we have a distinction between pure theory (without any observational
component) and theory-laden observation. (2) Theory-ladeness of observation does not lead to
a vicious circle when confirming theories by empirical observation. This is true, as long as the
observations are not laden with the particular theories for the confirmation of which they are used.
There are areas in science where no sharp distinction between theoretical reasoning and reporting
of observations is made. However, as far as computer simulations are concerned, it is clear that
because Turing Machines do not make observations, a computer program is always a theoretical
entity—not withstanding the fact that a computer program may represent an empirical setting or
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are confirmed or disconfirmed by empirical tests—not the other way round. Com-
puter simulations are sometimes depicted as being located somewhere between
empirical and theoretical research, and—as the common metaphor of “computer
experiments” suggests4—blurring the lines between the two (Morrison 2009).

2. In a similar vein, computer simulations often rely on a richmixture of assumptions
and technicalities that are drawn from diverse sources. In the philosophical lit-
erature on simulations this has been described as their being “motley”(Winsberg
2015) and not simply falling from theory. This can raise worries concerning
the prospects of empirical validation of computer simulations. In particular, the
question can be asked if the sort of problems associated with the Duhem–Quine
thesis increase with computer simulations: You may know that your simulation
contains many abstractions, simplifications, and presumptions, but you cannot be
sure which of these are potentially dangerous.

3. Finally, some thoughts shall be given to the validation of simulations in the social
sciences. Because the social sciences are multi-paradigm-sciences the validation
of simulations raises specific problems in this area. Given that it is still not com-
mon practice to validate simulations, one can even ask whether the field of social
simulations has already emerged from a prescientific state.

8.4.1 Do Computer Simulations Require a New Paradigm
of Validation?

While Kuhn’s theory of scientific revolutions is mainly concerned with the supers-
ession of scientific theories, his concept of paradigms can also be applied to other
aspects of scientific practice. For example, it might be applied to changes in the
logic of scientific research. The question whether computer simulations bring about
(or require) a new kind of research logic is particularly salient, because it has been
argued recently that computer simulations somehow blur the line between models
and experiments (Winsberg 2009). But if this means that computer simulations are—
just like experiments—somehow empirical, the question naturally arises whether the
validation of computer simulations can still be understood along the lines of what has
earlier been described as classical research logic. Or, if a new paradigm of validation
is necessary to assess whether a simulation adequately captures its target system or
not?

Before the recent discussion about the relation of simulations and experiments,
this question seemed to be rather trivial and its answer obvious: Computers are calcu-
lating machines and computer simulations are nothing but programed mathematical
models that run on the computer. Therefore, computer simulations can just like mod-
els produce no other than purely inferential knowledge, that is, knowledge that fol-

make use of empirical data. In the latter respect it can be compared with a physical theory that may
in fact represent empirical reality as well as contain natural constants (i.e., empirical data).
4See also Chap. 37 by Beisbart in this volume.

http://dx.doi.org/10.1007/978-3-319-70766-2_37
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lows deductively from the premises built into the simulation. In particular, computer
simulations cannot produce genuine empirical knowledge like experiments or obser-
vations can. It is true that computer simulations can produce new knowledge, because
they yield logical consequences of the built-in premises thatwere not formerly known
to us (Imbert 2017, Sect. 1.3.4). It is also true that computer simulations can—like
any model—produce knowledge about empirical reality, because the premises built
into them have empirical content and so have their logical consequences. But this
is far cry from the empirical knowledge that experiments or observations yield and
which—because it is of empirical origin—is genuine. But then computer simulations
have just the same epistemic status as theories and models and therefore follow the
same research logic and require just the same kind of validation. Now, in order to
validate a model or a theory it must be tested empirically, and so must computer
simulations.

What I have just described is more or less the picture of computer simulations
that was pertaining in the general literature on simulations up to the beginning of the
millennium. It had by that time been fleshed out with two distinctions that make the
difference between computer simulations and empirical research procedures extraor-
dinarily clear: First, by the distinction of the modus operandi. Is it a formal procedure
(computer simulation) or amaterial process (experiment)? Second, by the distinction
of their relation to the target system. Accordingly, this relation could be characterized
as one of formal similarity (Guala 2002) with the object of the simulation being a
representation (Morgan 2003) of the target system or, in the case of experiments,
one of material similarity with the object of experimentation being a representative
of the target system.

In recent years, however, there has been a persistent discussion among philoso-
phers of science during the course of which the distinction between simulations and
experiments has been seriously called into question.Most notably, some authors have
claimed that it is impossible to make a sharp distinction between simulations and
experiments—at least as far their epistemic reach or inferential power is concerned.
(Winsberg 2009; Parker 2009; Morrison 2009; Winsberg 2015). Others have advo-
cated the weaker claim that while there is a distinction between the two categories,
the transition between them is smooth and that there are borderline cases for which
it is difficult to determine into which category they fall (Morgan 2003).

Now, if this were true, then the generally accepted research logic of empirical
science, which relies on the ability to distinguish clearly between empirical obser-
vation and theoretical reasoning would find itself in a serious crisis and we would
have to expect and, in fact, need to hope for new paradigms of research logic and, in
particular, for the validation of computer simulations to emerge.

However, the case for the non-discriminability of simulations and experiments
rests almost entirely on conceptual confusions and an ambiguous use of the term
“experiment”. The examples with which supporters of the non-discriminability the-
sis demonstrate their claim concern almost exclusively atypical kinds of experiments,
where the object of experimentation is not really a representative of the target system.
For example, (Winsberg 2009, p. 590), discusses “tanks of fluid to learn about astro-
physical gas-jets” as an instance of an experiment. But this is an atypical experiment,
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computer simulation analog simulation real experiment
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Simulations

Fig. 8.1 Conceptual relation of simulations and experiments (Kästner and Arnold 2013)

because the tanks of fluid are not representatives of the target system (astrophysical
gas-jets). This kind of experiment is indeed in no better position to produce genuine
empirical knowledge about the target system than any computer model. But the fact
that there are such atypical experiments does not contradict the fact that there exist
real experiments that can produce genuine empirical knowledge about their target
system and that this is a feature that distinguishes real experiments from models.

The conceptual confusion that exists in the philosophical discussion about the
relation of simulations and experiments can easily be clarified by the schema on
Fig. 8.1, which depicts the overlap in the use of the words “simulation” and “exper-
iment”. The kind of experiments that Winsberg and other authors advocating the
non-discriminability between simulations and experiments discuss over and over
again, has been termed “analog simulation” in the schema. As all experiments do,
“analog simulations” operate on a material object, but this object does not have a
material similarity to its target system and therefore is only a representation, but not a
representative of its target system. The latter is required for an experiment to produce
genuine empirical knowledge about its target system.

That simulations are not experiments—save for the ambiguity and overlap in the
use of words—becomes furthermore clear if we consider the kind of experiments that
give rise to anomalies and which in retrospect are declared crucial experiments that
decide the choice between conflicting theories. Because the laws of the scientific
theories are programmed into computer simulations, they cannot be used to test
these very theories. If it really was as difficult to distinguish between simulations
and experiments as some philosophers of science believe, then it should—at least in
principle—be possible to substitute experiments with simulations in any context.

However, if we draw the demarcation line between analog simulations and
real experiments and not, as the authors advocating the non-discriminability-thesis
implicitly do, between computer simulations and analog simulations, thenwe are able
to distinguish clearly those scientific procedures that can generate genuine empirical
knowledge about their target system from those that cannot. Simulations and, in par-
ticular, computer simulations belong to the latter category and therefore have—with
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respect to validation—the same epistemic status as theories and models. They need
to be validated empirically, but they cannot provide empirical validation.5

Summing it up, computer simulations do not break the received paradigm of
research logic of empirical science. Therefore, a new paradigm of validation specif-
ically for simulations is not needed.

8.4.2 Validation of Simulations and the Duhem–Quine Thesis

Another point frequently emphasized in the philosophy of simulation literature is
that computer simulations can become highly complex. This is also one of the major
differences between computer simulations and thought experiments, to which they
are otherwise quite similar. At least in the natural sciences computer simulations can
often be based on comprehensive and well tested theories, such as quantum mechan-
ics, general relativity, Newton’s of gravitation or—in engineering—the method of
finite elements. But even in the natural sciences simulations cannot always be based
on a single theory, but they sometimes rely on different theories fromdifferent origins.
Climate simulations are a well-known example for this. And even where simulations
are based on a single theory, they usually also draw on various sorts of approxima-
tions, local models and computational techniques. None of these can be derived from
theory, so that they need independent credentials. This situation has been described in
the philosophy of simulation literature as their being motley and partly autonomous
(Winsberg 2003). This description echos a recent trend in the philosophy of science
which emphasizes the importance and relative independence of models from theory
(Morgan and Morrison 1999; Cartwright and Press 1983).

So, if simulations are knit together from many independent set pieces of theories,
models, approximations, algorithmic optimizations etc., then the Duhem–Quine the-
sis could point out a potential problem. A possible reading of the thesis assumes that
if validation fails (for example, because an empirical prediction wasmade that turned
out to be wrong), then one cannot knowwhich part of the chain of theoretical reason-
ing failed that leads to the empirical prediction. In the case of computer simulations
this means that one does not know whether the theory on which the simulation is
based, the simplifications that may have been made in the course of modeling or,
finally, the program code has failed.

By the same token, if this reading of Duhem–Quine is accurate, simulation sci-
entists would—for better or worse—enjoy a great freedom of choice concerning
where to make adjustments if a simulation fails, i.e. if it leads to unexpected, obvi-
ously false or no results at all. Some philosophers have even argued that scientists
sometimes deliberately employ assumptions that are known to be false to make their

5In simulation-science the term empirical is sometimes used to distinguish simulation and numerical
methods frommathematical analysis (Phelps 2016 is an example of this.). But this is just a different
use of words and should not be confused with “empirical” in the sense of being observation-based
as the word is understood in the context of empirical science.
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simulations work. Among these are artificial viscosity (Winsberg 2015, Sect. 8), or—
another often cited example—“Arakawa’s trick” (Lenhard 2007). Arakawa based a
general circulation model of the world climate on physically false assumptions to
make it work, which by the scientific community was accepted as a technical trick
of trade.

However, this reading of Duhem–Quine paints a somewhat unrealistic picture of
scientific practice, because in case of failure there usually exist further contextual
cueswhere the error causing the failure hasmost likely occurred.While in the abstract
formal representation of theories that is sometimes used to explain Duhem–Quine,
the premises are represented as propositions with no further information, scientists
usually have good reasons to consider the failure of some premises asmore likely than
others. In science and engineering, the premises are usually ordered in a hierarchy
that starts with the fundamental physical, chemical, or biological theories, ranges
over various steps of system description and approximation down to the computer
algorithms and, ultimately, the programm code. If a simulation fails one would start
to examine the premises in backward order. And this is only reasonable, because
prima facie, it is more likely that your own program code contains a bug than, say,
that the theory of quantum mechanics is false or that some of the tried and tested
approximation-techniques are wrong. Though, of course, this is not completely out
of the question, too.6 It should be understood that the credibility of the various
premises occurring in this hierarchy does not follow their generality, but depends on
their respective track record of successful applications in the past. It can safely be
assumed that this situation is typical for normal science.7

It must be conceded, though, that during a scientific revolution or within cross-
paradigm-discourse, there might be no hierarchy of premises to rely on, because
some of the premises higher up in the hierarchy, like the fundamental theories, are
not generally accepted any more. In this situation, there might, as Kuhn suggested,
only be vague meta-principles left to rely on and we must face the possibility of not
being able to resolve all conflicts of scientific opinion.

What about the conscious falsifications like artificial viscosity and “Arakawa’s
trick” that—according to some philosophers of science—are introduced by simula-
tions scientists in order to make their simulations work? This reading has not gone
unchallenged, and it has been called in to question whether the artificial viscosity
that Winsberg mentions is more than just another harmless approximation (Peschard
2011) or whether “Arakawa’s trick” not merely compensates for errors Error made at
another place, which would make it an example of a simulation the success of which

6See Arnold (2013, Sect. 3.4) for a case-study containing a detailed description of this hierarchy of
premises.
7But see Lenhard in Chap. 39 in this volume, who paints a very different picture. I cannot resolve
the differences here. In part they are due to Lenhard using examples where “due to interactivity,
modularity does not break down a complex system into separately manageable pieces.” (Lenhard
and Winsberg (2010), p. 256) To me it seems that as far as software design goes, it is always
possible—and in fact good practice—to design the system in such a way that each unit can be tested
separately. As far as validation goes, I admit that this may not work as easily because of restrictions
concerning the availability of empirical data.

http://dx.doi.org/10.1007/978-3-319-70766-2_39
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is badly understood rather than one that is very representative of simulation-based
science (Beisbart 2011, 333f.). It seems that these philosophically certainly interest-
ing examples concern exceptions rather than what is the rule in the scientific practice
with simulations. For the time being that is to say, because it is well imaginable that
in the future development of science these tricks become more common.

Summing it up, with respect to the Duhem–Quine thesis there are neither addi-
tional challenges nor additional chances for the validation of simulations. Under
normal science-conditions it does not play a role at all. Other than that it merely
reflects the greater methodological imponderabilities during a revolutionary phase
or in an inter-paradigm context.

8.4.3 Validation of Social Simulations

Most of the discussion so far and all of the examples were centered around science
and engineering. Therefore, in the following I am going to briefly discuss questions
concerning the validation of simulations that aremore specific for the social sciences.

8.4.3.1 Where Social Simulations Differ

In the context of validation of social simulations two features of the social sciences
become relevant that distinguish them from most natural sciences: First, the social
sciences are multi-paradigm-sciences. It is the normal state of these sciences that
there exist multiple more or less mutually incommensurable paradigms at the same
time. This multi-paradigm-character is well described in the textbook by Moses and
Knutsen (2012). For Kuhn such a state of affairs was a sign of a prescientific phase.
But given that the social sciences are—within inevitable confinements—nonetheless
able to produce convincing explanations at least for some social phenomena, the qual-
ification as prescientific seems inadequate. Also, if considered in isolation, most of
these paradigms expose typical features of normal science, like a textbook literature,
role models and exemplars, etc.

Deviating from Kuhn, I therefore suggest, that the qualification as prescientific
should be reserved to those sciences or branches of a science that—given their state
of development—have not yet been able at all to produce results that can be validated
or confirmed by some reasonable procedure. The qualification as prescientific is in
so far justified as without a common understanding and practice of validation one
can never be sure whether the results are indeed reliable.

Secondly, the social sciences include qualitative paradigms, including paradigms
that rely on hermeneutical methods. It is safe to assume that these can neither
be completely ignored nor always be resolved to quantitative or otherwise formal
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methods and paradigms.8 As computer simulations are quantitative, the decision to
use computer simulations is also a decision for a quantitative paradigm.

Here, I understand the term “quantitative” in a wide sense, including anything
that is described in a formal language. This can be formal logic, mathematics, or a
programming language. This wide sense of using the term “quantitative” ismotivated
by the fact all formal descriptions share the same epistemic risks of either losing
important information, because the expressive power of formal languages is limited in
comparison to natural language, or adding arbitrary assumptions in form ofmodeling
decisions. A simulation model forces its author to provide detailed mechanics of all
processes that are included in the model, because otherwise the model would not run.
However, if the mechanics are not known, this amounts to theoretical speculation.
A purely verbal description, in contrast, allows its author to remain silent or at least
adequately vague about underlyingmechanics the details of which are not known. On
the other hand, because of their strict specification, formal models cannot as easily
be misunderstood as verbal descriptions. And they enforce logical consistency.

Both of these features affect the validation of social simulations. Because, when
trying to validate a simulation study, say, on the evolution of cooperation, it might
become necessary to compare its findings with those of biological field research
or, depending on the envisaged application cases, those of cultural history. Thus,
different scientific disciplines with different paradigms might be affected. And, it
might become necessary to translate between a qualitative descriptive language used
in empirical research and the formal languages used in simulation research.

One possible objection when discussing social simulations in the connection with
Kuhn, is that it is not a scientific discipline, but a field that runs across several disci-
plines. However, since this field is shaped by shared attitudes, well-known exemplars
(Axelrod 1984; Axtell et al. 2002; Epstein and Axtell 1996; Schelling 1971) and an
emerging textbook-literature (Railsback and Grimm 2012; Gilbert and Troitzsch
2005), looking at it from a Kuhnian perspective does not seem too far-fetched.

8.4.3.2 Are Social Simulations Still in a Prescientific Stage?

One of the most surprising features to the outside observer of the field of social
simulations is the widespread absence of empirical validation, sometimes combined
with a certain unwillingness to see this as a problem.

In a meta-study on agent-based-modeling (ABM), which is one very important
sub-discipline of social simulations, Heath et al. (2009) find that the models in 65%
of surveyed articles have not properly been validated, which they consider “a practice

8There are scientists who deny even this and who also believe that without formal models no
explanation of any sort is possible in history or social science. I am a bit at loss for giving proper
references for this point of view, because I have mostly been confronted with it either in discussions
with scientists or by anonymous referees of journals of analytic philosophy. The published source
I know of that comes closest to this stance is the keynote “Why model?” by Epstein (2008), which
I have discussed in Arnold (2014).
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that is not acceptable in other sciences and should no longer be acceptable in ABM
practice and in publications associated with ABM” (4.11). While some of these not-
validated simulations can serve a purpose as thought experiments that capture some
relevant connection in an idealized and simplified form (Reutlinger et al. 2017),
many of them are merely follow-ups to existing simulations and bear little relevance
of their own. The practice of publishing simulations without empirical validation and
seemingly little (additional) theoretical relevance is so widespread that it has been
termed the YAAWN-Syndrome where YAAWN stands for “Yet Another Agent-
Based Model ... Whatever ... Nevermind” (O’Sullivan et al. 2016). The fact that such
a term has been coined is an indication that theABM-community is growingweary of
unvalidated or otherwise uninteresting simulations. Thus, the situation may change
in the future. For the time being, lack of validation is still a problem.

To be sure, agent-based-modeling is a broad field. On the one hand side there
are very theoretical simulations that set out from abstract concepts but without any
particular application case in mind. And on the other hand, there exist simulations
that are right from the start related to a particular empirical setting. The latter kind
of simulations is typically found in corporate or political consulting. I am going to
look at the theoretical simulations first and then consider the more applied kinds of
simulations later.

Naturally, unvalidated simulations aremuchmore prevalent among the theoretical
simulations,where the lack of empirical validation is sometimes not evenperceived as
a problem.Thismaybe illustrated by aquotation froman interviewwith a philosopher
who has produced models of opinion dynamics (Hegselmann and Krause 2002)
that have frequently been cited in other modeling studies but that have not been
empirically validated

None of the models has so far been confirmed in psychological experiments. Should one
really be completely indifferent about that? Rainer Hegselmann becomes almost a bit embar-
rassed by the question. “You know: In the back of my head is the idea that a certain sort of
laboratory experiments does not help us along at all.” (Grötker 2005, p. 2)

But if laboratory experiments do not help us along, how canmodels that have never
been confirmed empirically either by laboratory experiments or by field research
help us along? This lack of interest in empirical research is all the more surprising as
opinion dynamics concern a field with an abundance of empirical research. Naively,
one should assume that scientists have a natural interest in finding out whether the
hypotheses, models and theories they produce reflect empirical reality. That this
is obviously not always the case, confirms Kuhn’s view that the criteria by which
scientific research is judged are also set by the paradigm that guides the thinking
of the researchers and that there is no such thing as a “natural” scientific method
independent of paradigms. However, even Kuhn’s mild relativism would rule out
science without any form of empirical validation as unrewarding.

The lack of empirical concern within the field of social simulations can further-
more be attributed to another working mechanism of paradigms that Kuhn identified,
namely, the role of exemplars. As mentioned earlier, according to Kuhn scientific
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practice is not guided by the abstract rules of a logic of scientific discovery. Instead,
scientists follow role models or exemplars of good scientific practice.

Some very influential role models in the field of social simulations concern sim-
ulations that have never successfully been validated. The just mentioned opinion
dynamics simulation by Hegselmann and Krause is one example for this kind of role
model. But the arguably most famous unvalidated model that serves as an exemplar
in Kuhn’s sense is Robert Axelrod’s “Evolution of Cooperation” (Axelrod 1984).
Despite the fact that the reiterated Prisoner’s Dilemma simulations that Axelrod
used as a model for the evolution of cooperation had turned out to be a complete
empirical failure by the mid-1990s (Dugatkin 1997) and despite the devastating criti-
cism Axelrod’s approach had received from theoretical game theory (Binmore 1994,
1998), it continues to be passed down as a role model of social simulations until this
day. In a journal article from 2010 in the prestigious Science-journal, where a similar
research design as Axelrod’s was employed, it is mentioned as a role model that has
been “widely credited with invigorating the field” (Rendell et al. 2010, 2008f.). And
one can easily find recent studies (Phelps 2016) that naively pick up Axelrod’s study
as if no discussions concerning its robustness, its empirical validity or its theoretical
scope had ever taken place in the meantime. If simulation research designs without
proper validation such as Axelrod’s continue to be treated as exemplars, it is no
surprise that many social simulations lack proper validation.

Now, there are two caveats: First, in some cases unvalidated simulations can
serve a useful scientific function, among other things as thought-experiments. Of
a thought experiment one usually does not require empirical validation. Thus, if
Axelrod’s evolution of cooperation or Hegselmann’s and Krause’s opinion dynamics
could be considered thought experiments their status as role models in connection
with their lack of empirical validation could not be taken as an indication that social
simulations still remain in a prescientific stage. However, the way that both these
simulations functioned as role models was not by their (potential) use as thought-
experiments, but as a research programme. Indeed, it would be hard to justify the
literally dozens if not hundreds of follow-up simulations to Hegselmann-Krause
or Axelrod as thought experiments without invalidating the category of a thought-
experiment as a useful scientific procedure. But it has to be kept in mind that not any
kind of unvalidated simulation is an indication of prescientific fiddling about.

Second, and more importantly, not all simulation traditions have, of course,
remained as disconnected from empirical research asAxelrod’s Evolution of Cooper-
ation and Hegselmann’s and Krause’s opinion dynamics simulations. One example
is the Garbage-Can-Model (GCM) by (Cohen et al. 1972) which describes deci-
sion making inside organizations with a four component model, taking “problems”,
“solutions”, “participants” and “opportunities” into account. This model is highly
stylized and, because of this, would be difficult to validate directly. Nevertheless,
it is frequently referred to in studies on organizational decision making, including
empirical studies.

But why, one may ask, could the connection to empirical research, or more gener-
ally, other kinds of research on organizational decision-making be established in this
case while it failed in the aforementioned cases? There are several possible reasons:
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• Modeling organizational decision-making is amuchmore restricted topic than, say,
modeling evolution of cooperation in general. This makes it easier to find the right
abstraction level for modeling. While biologists complained about simulations
of the evolution of cooperation that “Most repeated animal interactions do not
even correspond to repeated games.” (Hammerstein 2003, p. 83), researchers from
organizational science have no such difficulties in relating to the Garbage-Can-
Model in their case studies (Fardal and Sornes 2008; Delgoshaei and Fatahi 2013).

• Within organization theory working with stylized descriptions is generally
accepted. Thus, the target that the simulation model had to match was an already
highly stylized verbal description. (Nonetheless, the simulation model did not rep-
resent the verbal description faithfully (Fioretti and Lomi 2008, p. 1.4)) It is much
easier to cast a stylized verbal description convincingly into a simulation model
than, say, a thick historical narrative as in one of Axelrod’s suggested application
cases.

• For the study of organizational decision-making the Garbage-Can-Model seems to
serve as a kindof vantage point. It helps to analyze and communicate organizational
decision making problems by relating a particular decision-making situation to the
model—even if the model is only used as a conceptual reference framework and
the actual simulation results are ignored.9 Because of its popularity the Garbage-
Can-Model could even be considered an exemplar in Kuhn’s sense. To serve as a
vantage point, a model does not need to be empirically validated or even testable. It
stands to reason, though, that it still needs to be “realistic enough” in some weaker
sense to serve this purpose.

• While for the latter purpose (vantage point) a stylized verbal description could
suffice, simulation models have the advantage that they can be run. This allows to
generate hypotheses about the simulated process which can help to establish the
basic plausibility of themodel, if the simulation itself and its results are plausible in
view of the prior knowledge about the simulated process.10 In the case of the GCM
the model establishes the connection between a certain structure of the decision-
making process and certain characteristics of the outcome, like how efficiently
problems will be solved. In a verbal description this connection can bemaintained,
but not be demonstrated. A simulation can show that such a connection exists, even
if only within the model.

In view of the possible functions of communication and hypotheses-generation,
one can argue that models like the Garbage Can Model can be useful in the context

9This seems to be the standard case for applying the GCM in organizational science. See Fardal and
Sornes (2008) and Delgoshaei and Fatahi (2013) for example. It will be interesting to see whether
the more refined simulation models of the GCM that have been published more recently (Fioretti
and Lomi 2008) will bring about an increased use of simulation models in applied studies referring
to the GCM or not.
10This is precisely where Axelrod’s simulations was lacking, because (a) his tournament of reiter-
ated Prisoner’s Dilemmas is too far removed from the phenomenology of either animal or human
interaction to be prima facie plausible, and (b) his results were—unbeknownst to him—highly
volatile with respect to the simulation setup and thus also lack plausibility.
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of empirical research even without being empirically validated themselves. Still, the
question remains what characteristics amodel of this kindmust have to be considered
useful or suitable, or how one can tell a good model from a bad model. There seems
to exist an intuitive understanding within the scientific communities habitually using
thesemodels, but it is hard tofind any explicit criteria. This strengthens the impression
that a paradigm of validation is not yet in place, at least not for the more theoretical
simulations.

What about applied simulations, though? Agend-based models are, among other
things, used to give advice about particular policy measures, like introducing a new
pension plan (Harding et al. 2010) or determining the best procedures for research
funding (Ahrweiler and Gilbert 2015). Obviously, validation is of considerable
importance if simulations are used for political consulting. So, how do scientists
who apply social simulations get around the restriction that the simulation results
often cannot directly be comparedwithmeasurable empirical data? In particular, how
can simulations be validated that are meant to evaluate the possible consequences of
policy measures that might never be implemented?

In their discussion of the validation of the SKIN-model, which simulates knowl-
edge dynamics in innovation networks, Ahrweiler and Gilbert (2015, Sect. 1.1.2)
do not even assume that there exist objective observations independent of a concrete
research goal or question.11 At least for the sake of the argument they even accept the
view that the observation of a social process is a construct of this process or “what
you observe as the real world” (Ahrweiler and Gilbert 2015, Sect. 1.2), just like the
simulation of the same process is another construct of this process. However, since
the authority over what is observed as the real world lies with the “user community”
(Ahrweiler and Gilbert 2015, Sect. 1.3), the output of a simulation can meaningfully
be compared with the observations.

Since the construction of the simulation as described by (Ahrweiler and Gilbert
2015, Sect. 2.4) is a process in which the user community is deeply involved, it is
tempting to raise the question how unbiased this kind of validation really is. After
all, an administration assigning the task of examining the potential for enhancement
of their administrative procedures to a team of simulation scientists might be more
interested in the vindication of certain administrative procedures than in their unbi-
ased assessment. However, the “user community view” as described by (Ahrweiler
and Gilbert 2015) depicts only the outline of the construction and validation pro-
cess of applied agent-based models. A more detailed analysis of the validation of
applied agent-based-models as provided by (Harding et al. 2010) reveals that there
exists a whole array of validation procedures which, if executed properly, limits the
risk of producing biased or arbitrary results. For the Australian Population and Pol-
icy Simulation Model Harding et al. (2010) report, among other measures: (i) the
calibration and benchmarking of the simulation with available cross-sectional and

11They discuss this under the heading of “theory-ladenness of observations”, though their examples
suggest that the issue at stake is rather different interpretations of observations or a focus on different
observations depending on the research questions than different observations due to a different
theoretical background.
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longitudinal data, (ii) the comparison of the simulation model’s projection with that
of other models, (iii) the modular structure and separate evaluation of each module,
(iv) the examination, if both the individual agent’s simulated life histories and the
summary statistics yield reasonable results. The impact of proposed policy measures
as revealed by the simulation can by its very nature not beforehand be compared
with empirical data. However, one can contend that in the context of policy advise
a simulation is sufficiently validated, if it leads to policy decisions that are better
grounded than they would be without running a simulation model.

Where does this leave us? Are social simulations still in a prescientific stage with
respect to their validation? On the one hand there is a widespread lack of proper
validation and the impression that the increasing number of published agent-based
models does not necessarily pay off in terms of further deepening our understanding
of the simulated processes. While other quality issues of agent-based models, such
as their reproducibility and mutual comparability, have been addressed in recent
years,12 there is still no common understanding concerning how agent-based models
should be validated. So far, the textbooks on agent-based simulations have little to
say about validation. With the central issue of validation still being unresolved, the
field of social simulations does yet seem to have matured into a normal science in
the sense of Kuhn. The situation can positively be a described as a phase of humble
beginnings in the sense of the interpretation of Feyerabend’s anarchic epistemology
that was given earlier.

On the other hand, scientists that apply agent-basedmodels to particular empirical
processes typically invest considerable time and effort into the validation of their
simulations and employ a diverse set of validation procedures to ensure the credibility
of their simulations. So, we might indeed be witnessing a paradigm of validation of
applied agent-based models in the making. It is, so far, only in the making, because
the various validation procedures and criteria used by the practitioners do not yet
seem to have been consolidated to a degree where they become textbook knowledge.

8.5 Summary and Conclusions

Putting it all together, we arrive at fairly conservative conclusions: Kuhn’s theory
of scientific revolutions and his concept of a paradigm does not have any particular
consequences for the validation of simulations.At least it does not have consequences
that are any different from those it has for the validation of theories or non-simulation
models. And neither do computer simulations require us to reconsider Kuhn’s theory
or related topics like theDuhem–Quine thesis. This result is somewhat unspectacular,
but it may be clarifying. With regard to the discussion about the novelty of computer
simulations it means that, whatever the novelty may be, neither the introduction of
computer simulations nor their validation is or requires a Kuhnian revolution.

12A most notable initiative in this respect has been the introduction of the ODD Protocol for the
standardized description of agent-based-models (Railsback and Grimm 2012).
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The coexistence of multiple paradigms in the social sciences is a challenge for
Kuhn’s theory in its original form. But, again, the validation of simulations does not
raise any specific problems in this context. Presently, many social simulations suffer
from the fact that for the lack of proper validation they are quite uninformative about
their target system. Although, there are also examples where social simulations do
contribute to the understanding of the target system, the field as a whole does not yet
seem to have become normal science in the sense of Kuhn. This is most notably due
to the fact that—as of now—there exists no commonly shared understanding of the
validation requirements of social simulations.
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Chapter 9
Understanding Simulation
Validation—The Hermeneutic
Perspective

Nicole J. Saam

Abstract The thesis of a hermeneutic perspective on validation in simulation has
existed ever sinceKleindorfer et al. (Manag Sci 44:1087–1099, 1998) published their
overview of various positions in the philosophy of science. This chapter introduces
the distinction between a hermeneutics in validation and a hermeneutics of vali-
dation. I argue that the hermeneutic perspective according to Kleindorfer, O’Neill
and Ganeshan, which qualifies as a hermeneutics in validation perspective, is rather
fruitless. Instead, a hermeneutics of simulation validation is proposed on the basis
of Gadamer’s philosophical hermeneutics. The goal of the hermeneutics of valida-
tion is to understand simulation validation. The challenge is to set up a hermeneutic
situation in the first place. Hermeneutic aims to demonstrate how simulation val-
idation is historically situated, revealing the hidden prejudice (prejudgement) in
validating, and distinguishing between legitimate prejudice and prejudice that has to
be overcome. Understanding simulation validation is a dialogic, practical, situated
activity.

Keywords Simulation validation · Philosophical hermeneutics · Understanding ·
Interdisciplinary dialogue

9.1 Introduction

In 1998, Kleindorfer et al. (1998) published an article in which they examined how
well various positions in philosophy of science can account for validation of com-
puter simulations. Remarkably, they not only considered standard positions from the
history of philosophy, such as rationalism and classical empiricism, or from more
recent, analytical philosophy such as logical positivism, diverse falsificationist posi-
tions, Kuhnianism and Bayesianism. Rather, they ended up favouring a hermeneutic
perspective on the validation of simulations. Hermeneutics is presented as a solution
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to the debate between objectivists and relativists—a debate which they consider to
be ‘the underlying plate tectonics in the simulation validation problem’ (Kleindorfer
et al. 1998, p. 1088). Naylor and Finger’s (1967) article is presented as the classic
view of positive simulation validation, which they term ‘objectivist’, while Bar-
las and Carpenter’s (1990) article is presented as the ‘relativist’ antithesis, drawing
on the philosopher Thomas Kuhn (1970). Kleindorfer et al. (1998) follow Ameri-
can philosopher Bernstein (1983) in arguing that there is a Cartesian legacy in the
debate, stating that ‘many simulation modellers apparently believe that model vali-
dation is an ‘either/or’ proposition’ (Kleindorfer et al. 1998, p. 1088), and they seek
a means for breaking out of this dichotomy. Following Bernstein, they present the
hermeneutics of German philosopher Hans-Georg Gadamer as ‘a philosophical ful-
crum’ for transcending the objectivist versus relativist debate (p. 1097). They argue
that whereas, in general, philosophy of science has begun to turn away from the
Cartesian legacy, the discussion of simulation validation still assumes an ‘either/or’
situation. In this state of affairs, Kleindorfer et al. (1998, p. 1087) ‘set out a per-
spective’. The hermeneutic position is favoured, since it refers to Ancient practical
wisdom (phronesis) and requires that practitioners conduct ‘meaningful dialogue on
a model’s warrantability’ (Kleindorfer et al. 1998, p. 1098).

While this article is much quoted and its statements on the hermeneutic account
have often been reproduced, it has never been discussed or elaborated upon in depth.
A description of the hermeneutic approach has yet to be extended beyond the ini-
tial sketch of two pages. Meanwhile, the state of two other related philosophical
debates is unfavourable for hermeneutics: (1) the much broader attempt to establish
a hermeneutics of the natural sciences (e.g. Crease 1997; Heelan 1998; Feher et al.
1999)—separately from a Kuhnian history of science perspective—seems to have
failed, as the articles by Markus (1987), Eger (1997) and Kisiel (1997) indicate.
Most recently, this failure is reflected in the lack of a chapter on hermeneutics and
the natural sciences in part IV, ‘Hermeneutic Engagements’, of Malpas and Gander’s
(2014) Routledge Companion to Hermeneutics. (2) The current philosophical debate
on understanding simulationmodels (Humphreys 2004, 2009; Reutlinger et al. 2018;
Saam 2017) refrains from any reference to hermeneutic perspectives—whether tra-
ditional or modern, although understanding is a topic at the centre of hermeneutics.
Responding to this state rather reminiscent of a standstill or even a drawback of
hermeneutics as applied to (natural) science or scientific methods, this chapter dis-
cusses the fruitfulness of a hermeneutic perspective on validation in simulation.

To this end, I first introduce the distinction between a hermeneutics in valida-
tion and a hermeneutics of validation (Sect. 9.2). I then show that the perspective
of a hermeneutics in simulation validation as proposed by Kleindorfer et al. (1998)
is rather fruitless by arguing that their perspective rests on conditions that are not
fulfilled and on some misunderstandings (Sect. 9.3). I proceed by introducing the
perspective of a hermeneutics of simulation validation. ConnectingGadamer’s (2013
[first German edition 1960]) philosophical hermeneutics and his ideas of prejudice
(German Vorurteil; please note that Gadamer has a positive conception of prejudice
in terms of prejudgment), circularity and historicity to insights from the hermeneu-
tics of the natural sciences discourse, I argue for four claims of a hermeneutics of
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validation: understanding simulation validation requires the setup of a hermeneutic
situation. The simulating scientist shows a hermeneutic naiveté vis-à-vis her valida-
tion practices, as opposed to the philosopher of science and the methodologist. This
naiveté is overcome in interdisciplinary dialogue.Major hermeneutic tasks are show-
ing how simulation validation is historically situated, revealing the hidden prejudices
in validating, as well as distinguishing legitimate prejudice from the prejudice that
has to be overcome (Sect. 9.4). In the discussion, I consider the limitations to, and
the significance of, a hermeneutics of validation (Sect. 9.5). The conclusion suggests
issues for future hermeneutic dialogues.

This chapter uses Schlesinger’s SCS definition of model validation (‘the sub-
stantiation that a computerized model within its domain of applicability possesses a
satisfactory range of accuracy consistentwith the intended application of themodel’;
Schlesinger 1979, p. 104) as a point of reference for defining simulation validation.
Prior to any further analysis, this definition offers no idea of how a hermeneutic
perspective might contribute to simulation validation.

9.2 Hermeneutics in Versus Hermeneutics of Validation

In this chapter, hermeneutics will be used to refer to a philosophical discipline con-
cerned with analysing the conditions of understanding. Hermeneutics emerged as a
crucial branch of text studies. Later on, it came to include the study of ancient and
classic cultures, as well as of day-to-day life, and existence as such. As Ramberg and
Gjesdal (2005) emphasize, the term hermeneutics covers both the art of understand-
ing and interpretation of linguistic and non-linguistic expressions (call this first-order
hermeneutics) as well as the theory thereof (second order). As a philosophical dis-
cipline, based on Gadamer’s (2013) account of hermeneutics, three levels may be
distinguished: hermeneutics as an art aiming at the understanding (1) of any kind of
text; (2) of human life in general, in particular as takes place in language and (3)
of existence as such. All understanding is, according to Gadamer, interpretative, i.e.
disclosure of meaning.

It is important to understand Gadamer’s concept of text. He uses text as a model.
Everything is mediated in the universal medium of language. In everyday life, ‘text’
refers to an object that can be read, something written. A broader understanding
of the text recognizes that everything that is mediated in the universal medium of
language—utterances, verbal communication, e.g. regarding simulation validation
practices, even thoughts—can be transformed into text. Texts can be seen as objecti-
fications of human experience. Finally, all of human life that takes place in language
can be studied as text. In this way, Gadamer uses the textual model to develop his
hermeneutic conception,which is by nomeans restricted to ‘texts’ alone. The concept
of validation texts referred to below is based on this Gadamerian understanding of
text and includes not only any sort of text, such as textbooks or scientific articles on
simulation validation, but all sorts of validation practices and validation knowledge
which are mediated in the medium of language. In the same way, the endeavour of
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Table 9.1 Hermeneutics in versus hermeneutics of validation

Hermeneutics in validation Hermeneutics of validation

Object to be understood Simulation models and their
results relative to target

Simulation validation
procedures and related
practices

Question How can the model and its
results be validated?

How can simulation validation
be understood? How are acts
of understanding involved in
the validation of models and
their results?

Interpreter Working scientist Philosopher of science,
methodologist, working
scientist

Hermeneutics applied First-order art First-order art and
second-order theory

understanding simulation validation is not restricted to themeans of reading literature
on validation.

If we want to apply the hermeneutic perspective to simulation validation this,
therefore, means asking how understanding is related to it. Here, I introduce a
major distinction (see Table 9.1): the difference between a ‘hermeneutics in’ and
a ‘hermeneutics of ’ addresses the position of the interpreter. If the interpreter is
a simulation scientist who uses the hermeneutic perspective when validating her
simulation model, we shall refer to this as hermeneutics in validation (asking the
question of how the model and its results can be validated). This situation has to
be distinguished from a hermeneutic perspective that is taken from the position of
an observer. Philosophers of science, methodologists or simulating scientists then
reflect on simulation validation in order to understand this scientific activity and
its related practices (asking the question of how simulation validation can be under-
stood). RevisitingRamberg andGjesdal’s distinction (2005), ‘hermeneutics in’ refers
to the first-order art while the ‘hermeneutics of ’ validation refers to the second-order
theory of understanding and interpretation.

9.3 Hermeneutics in Validation

The first attempt to outline a hermeneutic position in simulation validation was
presented by Kleindorfer et al. (1998), based on a conference paper by Kleindorfer
and Geneshan (1993), and qualifies as a hermeneutics in validation perspective.

In the following, I reconstruct their claims in Sect. 9.3.1. In Sect. 9.3.2, I interpret
their outline as an effort to directly apply hermeneutics to validation. I argue that
this effort is rather fruitless, since their perspective rests on conditions that are not
given or are based upon some misunderstandings. The second option would be to
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apply hermeneutics in the sense of seeking analogies. However, there prove to be
important disanalogies. This raises the question of whether the remaining claims are
essentially hermeneutic or rather are supported by different philosophical perspec-
tives too (Sect. 9.3.3).

9.3.1 Hermeneutics According to Kleindorfer, O’Neill
and Ganeshan

In their article, Kleindorfer et al. (1998) provide a description of various philo-
sophical positions and summarize the problems and the kinds of arguments these
positions each allow in arriving at defensible simulation models. The motivation for
Kleindorfer et al. (1998, p. 1087) philosophical sketch is a perceived ‘doubt and
even anxiety among simulation modellers as to what the methodologically correct
guidelines or procedures for validating simulating models should be’. Referring to
Bernstein (1983), they describe this anxiety as Cartesian. It is related to an either
(confirmed)/or(refuted) distinction in validation, while in practice confirmation is a
matter of degree. AsOreskes et al. (1994, p. 643) emphasize: ‘In practice, few (if any)
models are entirely confirmed by observational data, and few are entirely refuted’.
Kleindorfer et al. (1998, p. 1087) intention is to ‘free the practitioner to pursue a
varied set of approaches to validation with diminished burden of methodological
anxiety’. Consequently, they do not prescribe a particular technique or algorithm,
but offer hermeneutics as a perspective that frees the validating simulation scientist.

These statements resonate with Gadamer’s (2013) major theme in his most impor-
tant book Truth and Method. There, he developed his philosophical hermeneutics
which provides an account of the proper grounds for understanding. He rejects the
attempt to found understanding on any (‘scientific’) method or set of rules, argu-
ing that there is no methodology that describes the means by which to arrive at an
understanding of human life. Neither is there any such methodology that is adequate
for understanding nature. Insisting on the limited role of method, he emphasizes
that understanding is a dialogic, practical, situated activity. It seems plausible that
Kleindorfer, O’Neill and Ganeshan felt attracted by Gadamer’s claim concerning the
limited role of method and the priority that should be given to dialogue.

Kleindorfer et al. (1998, p. 1090) summarize their paper by saying that the episte-
mological focus of hermeneutics rests on interpretation and understanding through
dialogue and practice.1 They contrast the epistemological focus of hermeneutics to

1The presentation of the hermeneutic perspective on simulation validation by Kleindorfer et al.
(1998, pp. 1096–1098 and one row in Table 9.1, p. 1090) amounts to no more than two pages in
total. Gadamer’s hermeneutics as put forward in Truth andMethod (Gadamer 2013 [original 1960])
serves as a major reference, although it is the reading of Gadamer’s hermeneutics by Bernstein
(1983) which the authors actually adopt. This becomes explicit on p. 1098, where they refer to
‘Bernstein’s hermeneutics’. They introduce Bernstein as a philosopher who presents Gadamer’s
hermeneutics as a philosophical fulcrum for transcending the polarity of the foundationalist versus
anti-foundationalist debate. The authors apply Bernstein’s hermeneutics to validation in simula-
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other foci: the logical justification of knowledge claims (attributed to rationalism,
classical empiricism, logical positivism), theories as frameworks for prediction and
testing (instrumentalism, dogmatic and methodological falsificationism) , consis-
tent treatment of probabilistic induction (Bayesianism) and progressive historical
growth of knowledge (Kuhnianism, Lakatos’ methodology of scientific research
programmes).

In order to facilitate the discussion of Kleindorfer, O’Neill and Ganeshan’s
hermeneutic perspective on simulation validation, I will now reconstruct their most
important statements in five claims. First of all, Kleindorfer, O’Neill and Ganeshan
emphasize the contribution that openness and reason make to the growth of knowl-
edge. This claim is transferred to simulation validation. They put forward claim
C-Open to address the issue of openness:

C-Open: the model builders are free to establish and increase the credibility of the
model by any reasonable means.

Kleindorfer et al. (1998, p. 1098) state that the validation of amodel can be achieved in
any reasonablemanner, and they explain that by reasonablemeans/manner theymean
‘historically situated dialogue, judgment and practical discourse’. This openness
includes, for instance, the possibility of meaningfully comparing different models
and the involvement of further model stakeholders. They refer back to Bernstein’s
concept of rationality, which they describe as ‘historically situated and practical,
involving choice, deliberation and judgement’ (Kleindorfer et al. 1998, p. 1097),
and to phronesis, the term that Aristotele—and Gadamer and Bernstein—used for
‘practical wisdom’. A mere glance at Bernstein’s (1983) final part IV reveals that the
concept of judgment refers to the political philosophyofHannahArendt, developed in
particular inTheHumanCondition (1958), and that the concept of practical discourse
alludes to the discourse theory of Habermas (1984, 1996). Kleindorfer, O’Neill and
Ganeshan claim that practical judgement and interactive orientation bring an ethical
dimension to scientific validation. They contend that in this way ‘we are able to
discern the difference between the good and the bad, theworthwhile and the frivolous,
the “true” and the “false”’ (Kleindorfer et al. 1998, p. 1098). They claim that human
judgement and decision enter the process of validation; judgement and decision
making cannot be avoided. Quoting Forrester (1961, p. 118), they argue that a choice
is made concerning that part of the available knowledge that is to be relied upon. As
an example, they turn to the court system, putting forward claim C-Court:

C-Court: the court system is a framework for simulation validation consistent with
Bernstein’s hermeneutics.

Kleindorfer, O’Neill and Ganeshan argue that to obtain a conviction the guilt of the
defendant does not have to be proved. Rather, guilt would have to be established
beyond reasonable doubt. Biases and prejudice on the part of the jurors would pre-
sumably contribute to what is considered to be ‘reasonable’. In the next paragraph,

tion, taking two quotations from Barlas and Carpenter (1990) and Carson (1989) to support their
arguments.
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they describe the court as a model or metaphor (Kleindorfer et al. 1998, p. 1098).
They relate the court metaphor to the openness of the meaningful dialogues on a
model’s warrantability. They put forward claim C-Part to address the involvement of
further model stakeholders beyond the model builders such as the model users and
referees of journal articles:

C-Part: the simulation validation procedure favoured by hermeneutics is based upon
participation by all interested in the outcome.

Notably, Kleindorfer, O’Neill and Ganeshan’s hermeneutic perspective on validation
does not rest on the concept of the so-called hermeneutic circle.2 However, they
connect the hermeneutic circle to their concept of understanding simulation results:

C-HC: in simulation we experience cognitive processes as described by the
hermeneutic circle.

Kleindorfer et al. (1998, p. 1097) argue that in simulation, there is a persistent play
back and forth ‘whereby our understanding of general principles is increased as we
interpret the particulars in a given application. In the light of that understanding, we
simultaneously begin to see the particulars more sharply and are better able to give
them meaning’. The term ‘general principles’ is not specified and may serve as a
substitute for the principles governing the modelled system as a whole. Immediately
after this statement, they turn to the metaphor of play. They seem to refer to a familiar
saying of modellers who describe aspects of their scientific work in simulation as
‘playing’ with a theory or model. Without any further explanation, they report on the
recognition that this ‘playing’ is perceived as a way of effecting model validation:

C-Play: ‘playing’ with a theory or simulation model is a way of effecting its valida-
tion.

The presentation of Kleindorfer, O’Neill and Ganeshan’s hermeneutic perspective
by Feinstein and Cannon (2003) basically repeats these claims.

9.3.2 A Reply to Kleindorfer, O’Neill and Ganeshan

Before we discuss the claims C-Open through C-Play, two preliminary remarks seem
necessary. They address (i) the theoretical status of the ‘hermeneutic position’ and
(ii) the lack of elaborate claims.

(i) Kleindorfer et al. (1998) seemhesitant to establish a genuine philosophical posi-
tion. While they announce in the abstract that they will ‘set out’ a hermeneutic

2Several formulations of the term ‘hermeneutic circle’ are known. The classic notion refers to the
back-and-forth movement of thought from the whole to a part of the object of investigation and
back to the whole again, each new understanding of the latter modifying the understanding of the
former, and vice versa. The objective is to recover the meaning of the object of the investigation.
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perspective, they write in the introduction that they will ‘describe’ the impli-
cations of hermeneutics to the validation problem in simulation. Altogether,
it strikes me that Kleindorfer et al. (1998) use the subjunctive in establishing
their claims C-Open, C-Court and C-Part (‘The hermeneutic position would
assert… would be consistent with … would be free … would not preclude’),
while the indicative mode is used within claims C-HC and C-Play. This gives
the sketch of the hermeneutic position an ambiguous status. I have decided to
adopt the theoretical claim of Bernstein’s hermeneutics on which Kleindorfer,
O’Neill and Ganeshan rely to gain a definite philosophical position wherever
the subjunctive mode is used by the authors. Consequently, I take the respective
claims (C-Open, C-Court and C-Part) to be descriptive sentences. In contrast,
recognizing that the authors are social scientists, I consider claims C-HC and
C-Play to be empirical sentences.

(ii) In the absence of elaborate claims, one argument is always pertinent, but not
scientifically fruitful: Kleindorfer, O’Neill and Ganeshan’s claims could be
rejected because they are explained in insufficient fashion and are much too
general. I will follow a different path. My objections will be based on an effort
to provide at least some missing explanations in the light of the few hints that
Kleindorfer, O’Neill and Ganeshan give. I have chosen this approach in order
to begin the discussion of their theses, which is still lacking. Ultimately, my
criticism addresses my own reconstructions of what Kleindorfer, O’Neill and
Ganeshan have argued, based on Bernstein (1983) as my primary source, since
he obviously also served as such for Kleindorfer, O’Neill and Ganeshan. As
my goal is not to elaborate Kleindorfer, O’Neill and Ganeshan’s hermeneu-
tic perspective, I will try to keep it brief and only provide the relevant link to
Bernstein’s hermeneutics.

9.3.2.1 Dialogue, Judgment and Practical Discourse (C-Open)

To begin with, I do not wish to refute claim C-Open in general. I recognize that
historically situated dialogue, judgment and practical discourse may have the lib-
erating effect the authors seek to highlight. However, I disagree with subsuming
all three procedures under a hermeneutic position. While the authors seem to fol-
low Bernstein (1983, e.g. p. 110, 112, 176, 219, 229), who argues in favour of the
convergence of Gadamer’s hermeneutics, Habermas’ discourse theory and Arendt’s
political philosophy, I contend that the latter two have objected to basic hermeneutic
assumptions (see the Gadamer Habermas debate; for a recent review of that debate
and its outcomes see Smith 2014) or have taken their inspiration from Kant’s Cri-
tique of Judgment (Arendt) such that the force of the better public argument that
they support is not founded on a hermeneutic position. Thus, these thinkers recom-
mend judgment and practical discourse from other philosophical positions beyond
hermeneutics. Judgment and practical discourse are not only recommended from a
hermeneutic position.
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What I miss in relation to claim C-Open is any explanation as to when either his-
torically situated dialogue, judgment or practical discourse may be suitably applied
to simulation validation. Are they all reasonable for every problem it entails? This
point also holds for the contention that practical judgment and interactive orientation
provide an ethical dimension to the practice. When and how can the ‘good and the
bad’ be discerned? What does ‘the worthwhile and the frivolous’ mean? Why is ‘the
“true” and the “false”’ placed in quotation marks?What practical wisdom is required
and applied?While Kleindorfer, O’Neill andGaneshan quite convincingly relate par-
ticular problems in simulation validation to other philosophical positions described
and discussed in their previous sections, they do not relate any distinct problem to
the application of their hermeneutic position. It seems that there is no problem for
their proposed new perspective—apart from the very general Cartesian anxiety. It
thus seems that claim C-Open is too broad to give useful advice to practitioners. To
illustrate my counterargument, I lookmore closely at the conditions of the possibility
of achieving the validation of a model via historically situated dialogue.

Against claim C-Open, I contend that Gadamer’s conditions to enter into the dia-
logue with the matter at issue are not fulfilled in simulation validation practice. In
simulation validation, the situatedness is bracketed: according to Gadamer, all under-
standing directed at the grasp of some particular subject matter is based on a prior
understanding—a prior hermeneutic situatedness. There are always ‘fore-structures’
of understanding, meaning anticipatory structures that allowwhat is to be interpreted
or understood to be grasped in a preliminary fashion. This situatedness is historically
determined. However, a reflexive hermeneutic awareness of this historically deter-
mined situatedness may be lacking—a situation which has been called ‘historical
amnesia’ by Markus (1987). who had observed that natural scientists are accultur-
ated to write their reports with a depersonalized objectivity that decontextualizes
the situational contingencies. ‘Bluntly put, the natural sciences, in practice, seem
to be in no need of a hermeneutics—they succeed quite well without it’ (Markus
1987, p. 8). Two important reasons he presents as to why this should be so are: (1)
the success of the practice very much depends on tacit knowledge that is incorpo-
rated, e.g. in laboratory activities. There is no pragmatic benefit in reflecting on the
implicit hermeneutics operative in these craft skills. (2) Traditions embodied in val-
idation terminology and methods are subject to an accelerated rate of obsolescence,
rendering the use of Gadamer’s concept of tradition shallow. Markus (1987, p. 46)
concludes in his analysis that ‘a reflexive hermeneutic awareness [is] unnecessary
for the successful practice of the natural sciences’. Suppose that a hydrologist eval-
uates the validity of her groundwater flow simulation model’s results (see Chap. 27
by Roache in this volume). She compares the model results and their uncertainties
with observational (often experimental) results and their uncertainties. She consid-
ers the errors in the simulation result and the experimental result. She reflects on the
proposed purpose and domain of applicability of her model. In these evaluations,
she will neither consider how the concepts of water and velocity she refers to are
historically situated, nor will she reflect on how her concepts of uncertainty and error
and her observational methods are historically situated. Instead, the final judgment
on the validity of the hydrological model’s results will be based on having bracketed
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these questions. Former methods and techniques of validation, as well as historical
concepts of water and velocity, are irrelevant for her present evaluation, because the
model assumptions are based on one, present, state-of-the-art concept of water and
assumptions from computational physics. The irrelevance of historical concepts of
water and velocity is a consequence of the underlying rules of model construction.
In one and the same model, a certain theoretical concept should only be defined
and implemented in one and the same way (and if this rule is violated during model
construction, it is a task for the validator to find that mistake). The validation of this
model’s results depends on validation methods and techniques that primarily reflect
the state of the art and only secondarily on the history of scientific methods. Vali-
dation of a model is not achieved via historically situated dialogue—which might
indeed free the hydrologist to pursue a varied set of approaches to validation with
diminished burden of methodological anxiety—rather it is achieved via thorough
evaluations that reflect the state of the art in the methods and techniques that are
applied. Stating this, I do not question that dialogue is historically situated. It is. I
only argue that the conditions for the possibility of a dialogue are not fulfilled.

Additionally, I point to what I want to call the social scientific misunderstand-
ing of dialogue. Kleindorfer et al. (1998) seem to assume that dialogue requires
the discursive encounter of scientists. However, Gadamer’s concept of dialogue is
philosophical and much broader. It requires an interpreter and a text. To Gadamer, a
dialogue is not necessarily a social encounter. This misunderstanding is relevant in
Kleindorfer et al. (1998) claims C-Open and C-Court. In their interpretation of the
court system as a model and of the court metaphor it becomes obvious that they put
forward a social concept.

9.3.2.2 The Court System and Its Openness (C-Court)

At the centre of their court system claim is the justification of validity claims—a
major topic in the Habermasian discourse model—and not the Gadamerian idea of
pluralistic dialogue between different horizons. Kleindorfer, O’Neill and Ganeshan
do not aim at an understanding that occurs as a hermeneutic ‘fusion of horizons’,
nor do they—as Gadamer does—envision a process in which the subject is altered
(because the interpreter’s horizon is enlarged and enriched). It is not sufficient, how-
ever, to claim C-Court. Kleindorfer, O’Neill and Ganeshan’s claim is much better
suited to Habermas’ than to Gadamer’s model.

The court metaphor contradicts Kleindorfer, O’Neill and Ganeshan’s assumption
of an openness in which meaningful dialogue can be conducted. As Doublet (2003,
p. 62) argues, legal hermeneutics is dogmatic. There is an authorized interpretation
of law from the side of the legislator. Although modern legal hermeneutics also
acknowledges alternative perspectives such as textualist accounts (see e.g. Poscher
2014), so-called intentionalist accounts of legal interpretation remain a strong current.
This raises doubt as to whether the court metaphor—which is a vague conceptual-
ization anyway—can serve as a framework for simulation validation and warrant the
favoured openness.
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Not legal (i.e. a hermeneutics directed to the understanding of legal texts), but
social science hermeneutics (directed to the understanding of social action) may be
applied in court when actions, statements or motivations of the accused person are
interpreted. Social science hermeneutics, for which I prefer to use the concept of
sociology of understanding, may be considered to be more open-ended than legal
hermeneutics. However, it seems that Kleindorfer et al. (1998, p. 1098) rather have
in mind legal hermeneutics, as their summarizing statement shows: ‘By and large, it
is the merits of the case as defined within the parameters of the law that determine a
trial’s outcome’.

9.3.2.3 Participation and Judgement (C-Part)

Claim C-Part calls for the participation of all who are interested in the outcome—the
stakeholders, to use a modern term. Indeed, there are stakeholder approaches to sim-
ulation validation, however, these approaches are restricted to action research v and
to particular conditions that have been explained based on a pragmatic perspective:
action researchers consider theways inwhich social reality is an ongoing accomplish-
ment of social actors rather than something that is external to them and that totally
constrains them. In particular, social realities are perceived as being local, specific
and socially constructed. The local community whose problem is being addressed by
the action research is considered to be experts on their own experience. Their local
knowledge is explored through communication with the action researcher (see Chap.
17 by Saam in this volume). Kleindorfer, O’Neill and Ganeshan do not provide any
specification or qualification addressing social reality as an ongoing accomplishment
of social actors. If they had such a constructionist perspective, they would have to
make explicit: what is the knowledge which is contributed by the stakeholders to
simulation validation? What is its epistemic state compared to the knowledge of
the simulating scientist? When should this knowledge be contributed? What are the
conditions for the participation of the stakeholders?

Ultimately, claim C-Part seems to be an adaptation of Hannah Arendt’s political
philosophy as discussed by Bernstein (1983, pp. 210–221). Interested in politics and
the public sphere, she contends that each personmust be given the opportunity to par-
ticipate in politics (Arendt 1969, p. 233). A second source is Gadamer’s hermeneutics
(Bernstein 1983, p. 137). However, it is in Arendt’s Crisis of the Republic that (polit-
ical) judgment and participation are related (see the discussion in Bernstein 1983,
pp. 207–223). The question of how Arendt’s analysis of judgment as an intrinsically
political mode of thinking can be transferred to simulation validation is not addressed
by Kleindorfer, O’Neill and Ganeshan. As the criterion of equality among citizens
cannot simply be transferred from politics to science, the claim is not convincing
without further explanation.
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9.3.2.4 The Hermeneutic Circle (C-HC)

Claim C-HC is related to simulation validation in an indirect way. Understanding
simulation results may be considered a necessary condition for the validation of sim-
ulation models and their results. I want to point out that Kleindorfer, O’Neill and
Ganeshan’s claim is based on an insufficient application of Gadamer’s concept of the
hermeneutic circle. I do not deny that there is some type of circularity in understand-
ing simulation results. I agree that simulation scientists improve their understanding
of the model’s results based on their foreknowledge that directs the specification of
further simulation experiments. But I amhesitant to applyGadamer’s concept of prej-
udice and understanding here. What is essential for Gadamer’s understanding of the
hermeneutic circle is that the hidden prejudice—the kind of prejudice really relevant
to hermeneutics—is effective for us via history. Prejudice is revealed as prejudice
only in the encounterwith tradition. Gadamer (2013, p. 310) argues that ‘Understand-
ing is, essentially, a historically effected event’. The cognitive processes described
by Kleindorfer, O’Neill and Ganeshan lack this historical dimension. The encounter
with my foreknowledge prior to the previous simulation runs is not an encounter
with tradition. Second, the understanding that results from this encounter is not a
hermeneutic understanding. According to Gadamer, all understanding is disclosure
of meaning (Sinn). But understanding simulation results are not related to conceiv-
ing the meaning of some sort of results. Rather, understanding simulation results is
related to giving well-founded answers to what-if-things-had-been-different ques-
tions (Saam 2017) or grasping the model (Reutlinger et al. 2018). Thus, while there
is some type of circularity in understanding simulation results, this understanding
does not qualify as hermeneutic understanding and it is not based on the hermeneutic
circle.

9.3.2.5 Play (C-Play)

In claim C-Play, play is used as a metaphor. It can best be explicated by Bernstein’s
preferred understanding of play as a ‘to-and-fro movement’ (Bernstein 1983, p. 121,
171), which he takes from one of Gadamer’s analyses of play. I do not deny that there
is some sort of to-and-fro movement from simulation results to target, and vice versa,
aswell as from simulationmodel to theory, and vice versa, in simulation validation. In
simulations that are not based on theory, there may also be such a to-and-fro between
model assumptions and experimental results. However, even in this explicated way
the claim is much too vague to contribute to a hermeneutics in validation, all the
more so because the concept of play is not prominent in hermeneutics and cannot
be reduced to a to-and-fro movement. Hence, while I do not wish to deny that there
is some element of play in simulation (see Saam and Schmidl 2018), I claim that
C-Play is inadequate for describing empirical validation practice.

Altogether, Kleindorfer, O’Neill and Ganeshan’s sketch of a hermeneutic per-
spective in validation is not convincing. My claim is that the Habermasian dis-
course model (Habermas 1984, 1996) fits their basic intention much better. This
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discourse model relies on the force of the better argument among all competent on
an issue. It explicitly addresses validity claims and conforms with claim C-Open.
Thus, core features outlined by Kleindorfer et al. (1998), such as openness, rational-
ity, judgment, understanding, interpretation, participation and critique, characterize
the Habermasian model.

I consider the perspective of a hermeneutics in simulation validation as proposed
by Kleindorfer et al. (1998) to be rather fruitless, since their perspective rests on
conditions that are not given and based upon some misunderstandings. Gadamer’s
philosophical hermeneutics provides neither a logical justification of knowledge
claims, nor theories as frameworks for prediction, testing or probabilistic induction.
In contrast to logical positivism, variants of falsificationism (see Chap. 6 by Beven
in this volume) and Bayesianism (see Chap. 7 by Beisbart in this volume), its contri-
bution is limited to the level of second-order reflexion. If hermeneutics can make a
contribution to simulation validation, it must be on another level. In Sect. 9.4, I will
therefore propose a hermeneutics of validation.

9.3.3 Claim C-Open—A Second View

To reiterate, I do not seek to refute claim C-Open in general. Notably, Gadamer’s
(2013) refusal to found understanding on any (‘scientific’) method or set of rules has
some parallel in Feyerabend’s (1975) polemic Against Method. Thus, the claim that
themodel builders are free to establish and increase the credibility of themodel by any
reasonable means is supported by different philosophical perspectives. I recommend
seeking support and evidence for this claim fromdifferent philosophical perspectives,
rather than subsuming it too superficially under a hermeneutics in validation or an
epistemic anarchism in validation. The claim has a liberating effect; the more so the
better we understand when and why it is supported.

9.4 Hermeneutics of Validation

I takeGadamer’s (2013 [1960]) hermeneutics as a starting point for a hermeneutics of
validation because in his philosophical hermeneutics he establishes a claim to the uni-
versality of hermeneutics. As Steinmann (2007, p. 102) has put it, Gadamer’s claim as
to the universality of hermeneutics indicates the attempt to establish hermeneutics as
a ‘radically modern epistemology’ . According to Gadamer, science, but also art, cul-
ture, history and philosophy, comes to understanding only in the universal medium
of language. Gadamer (2013, p. 491) postulates that ‘man’s relation to the world
is absolutely and fundamentally verbal in nature, and hence intelligible’. Follow-
ing Heidegger, he perceives language as a universal ontological structure. Language
is ‘the basic nature of everything towards which understanding can be directed’
(Gadamer 2013, p. 490). Understanding is the ever-present enactment structure of
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human life, the very mode of human existence. Understanding has to be considered
a basic hermeneutic experience, founding all kinds of cognition and their respective
ways of knowing and acting. AlthoughGadamer often refers to the example of under-
standing a text, his approach is by no means restricted to texts alone. Rather, it holds
for everything within the limits of possible human experience. For Gadamer, under-
standing is not just a kind of knowledge specific to the human sciences. He rejects
the methodological reduction and limitation by traditional hermeneutics (up to and
including Dilthey). Understanding is ‘a universal aspect of philosophy’ (Gadamer
2013, p. 491).

In this way, simulation validation too can become the focus of understanding.
Following the distinction of levels in Sect. 9.2, the hermeneutics of validation con-
siders validation as a human activity which is linguistically mediated. This practice
can be understood referring to the hermeneutics of levels (1) and (2), as introduced in
Sect. 9.2 above. I adopt Gadamer’s basic hermeneutic ideas of prejudice, circularity
and historicity.

In elaborating on this hermeneutic perspective, I first include some findings from
the research on a hermeneutics of the natural sciences. Second, there has been a
tendency to dissolve hermeneutics and to reduce it to a Kuhnian history of sci-
ence perspective (see for instance, the last section in D’Agostino 2014) or to a
social constructivist or cultural studies of sciences perspective (see the review by
Kisiel 1997). My aim is to conserve the originality of the hermeneutic perspective.
Gadamer emphasized that he sought to investigate the conditions of possibility for
understanding as such.

In the following, I will elaborate four theses: (1) Understanding simulation vali-
dation requires a hermeneutic situation. (2) Simulation scientists show a hermeneutic
naiveté vis-à-vis their validation practices. (3) Interdisciplinary dialogue constitutes
a hermeneutic situation in which the hermeneutic naiveté is lost. (4) Hermeneutic
tasks are: showing how simulation validation is historically situated, revealing the
hidden prejudices in validating and distinguishing between legitimate prejudice and
prejudice that has to be overcome.

As indicated in Sect. 9.2, I will distinguish three groups of interpreters: simulation
scientists, methodologists and philosophers of science.

9.4.1 The Requirement of a Hermeneutic Situation

A hermeneutics of validation requires the setup of a hermeneutic situation, in
Gadamer’s definition (2013, pp. 316 f.), a situation in which we encounter the past
having to understand the tradition from which we come (such as the concept of
text—see Sect. 9.2 above—the concept of the past can be understood in a broad
way. For example, in his hermeneutics of conversation, Gadamer describes how two
speakers, say ego and alter, exchange opinions and try to understand each other. Ego
tries to understand alter based on alter’s latest articulated opinion and ego’s prior
understanding of the whole conversation. The same holds vice versa for alter. Here,
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the ‘past’ not only refers to distant history and to our cultural tradition but also to
the beginning of that conversation). The awareness of such a hermeneutic situation
is not self-evident. It requires an awareness of effective history (German Wirkungs-
geschichte), that is the awareness of that particular relation between past and present
in which past tradition is constitutive of present orientation. Understanding occurs
as a hermeneutic fusion of horizons (German Horizontverschmelzung):

‘a hermeneutic situation is determined by the prejudices that we bring with us. They con-
stitute, then the horizon of a particular present, for they represent that beyond which it is
impossible to see […] In fact the horizon of the present is continually in the process of being
formed because we are continually having to test all our prejudices. An important part of
this testing occurs in encountering the past and in understanding the tradition from which
we come […] understanding is always the fusion of those horizons supposedly existing by
themselves’ (Gadamer 2013, p. 316 f.).

Understanding simulation validation thus requires on the part of the interpreter an
awareness of the prejudice and of the tradition on which the validation concepts are
based. I claim that this awareness varies with the interpreter’s role and discipline.

9.4.2 Hermeneutic Naiveté Versus Hermeneutic
Consciousness

FollowingMarkus (1987, p. 9) I claim that the simulating scientist shows a hermeneu-
tic naiveté vis-à-vis her validation concepts, methods, procedures and related prac-
tices. She is engaged with the validation of her model. However, she lacks the
hermeneutic ‘self-consciousness’ (Markus 1987, p. 9) that is typical of many social
scientists. As Markus would put it, simulation validation works on the basis of an
ideology ‘which regards any acceptable scientific text as totally self-sufficient as to
its meaning’ (Markus 1987, p. 9).

However, the hermeneutic naiveté of the simulation scientist is overcome in inter-
disciplinary dialogue. Two other groups of researchers who may be interested in
simulation validation share this hermeneutic consciousness: philosophers of science
engaging in comparative research on simulation validation, and methodologists con-
ducting research on their respective disciplines’ methods. Philosophers of science
and methodologists are those researchers who have to develop the hermeneutic con-
sciousness as part of their professional engagement with science.

9.4.3 Interdisciplinary Dialogue

Interdisciplinary dialogue constitutes a situation in which a hermeneutic situation
is set up. Here, the simulation scientist loses her hermeneutic naiveté vis-à-vis her
validation concepts. She perceives validation concepts different from her discipline’s
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tradition, which makes her increasingly aware of the historical situatedness of her
own validation concepts.

Three approachesmay be followed in empirical interdisciplinary dialogues in gen-
eral, and apply interdisciplinary exchange about simulation validation more specif-
ically: (1) Initially, interdisciplinary dialogue often amounts to the projection of
one’s self onto the other. In this case, validation concepts of one’s own discipline are
projected onto the other discipline. Whatever this approach yields, it is not interdis-
ciplinary understanding. (2) Others emphasize disciplinary alterity, trying to resist
the impulse to subsume other disciplines under their methodological tradition. Dur-
ing the dialogue, they correct their view of other disciplines. Even if this approach
is intended as a guide to the beginning of the conversation between disciplines, it
falls short of interdisciplinary understanding in a philosophical sense. (3) The third
approach consists in comparing specific concepts, e.g. validity concepts, across dis-
ciplines. This approach focuses on specific items which bear both similarities and
differences to a researcher’s discipline. For instance, the concept of validity has a
range ofmeanings in physics, and the question then becomes how it is used in another
discipline.

Versions of these approaches to interdisciplinary dialogue exist in simulation
validation, but hermeneutics has another perspective. Hermeneutic understanding
requires us to look at our prejudice and uncover the misunderstandings that we bring
with us. Understanding involves as much an engagement with one’s own discipline
and the situatedness of its validation concepts as it is about that discipline which is
being understood.

In an interdisciplinary dialogue, hermeneutics can be understood in at least two
ways: (1) as a means for understanding elements of another discipline’s simulation
validation concepts, in order to uncover its standing in relation to that discipline’s
tradition and (2) as a means for understanding elements of a discipline’s own simu-
lation validation concepts, in order to uncover its own standing in relation to its own
tradition. Thus, the ‘other’ that is encountered may be another discipline’s tradition
or it may be one’s own discipline’s tradition or history.

Philosophical hermeneutics allows a self-critical and self-constitutive encounter
with alterity as embedded in validity concepts in diverse academic disciplines. There
cannot be a universal understanding because all understanding depends on preju-
dice and tradition. The hermeneutic perspective preserves pluralism in simulation
validation: it helps establish the awareness that there is (1) no universal strategy
for validation and (2) no single interpretation of a specific tradition of validation.
Understanding simulation validation occurs as a hermeneutic ‘fusion of horizons’
in which the interpreter’s horizon is enlarged and enriched. Hermeneutics’ perspec-
tive is opposed to those perspectives that seek universally shared scientific values in
simulation validation.

Considering the relevance of tacit knowledge (see Markus above), I claim that
an adequate understanding of simulation validation texts cannot be acquired in an
intercourse with the text alone. I therefore propose a more sociological reading of
interdisciplinary dialogue that makes accessible the tacit knowledge. Rather than
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in philosophical dialogue, a social encounter will disclose the tacit knowledge and
promote our understanding of simulation validation.

9.4.4 The Hermeneutic Tasks

Hermeneutic aims in interdisciplinary dialogue are showing how simulation valida-
tion is historically situated, revealing the hidden prejudice in validating and distin-
guishing between legitimate prejudice and prejudice that has to be overcome.

9.4.4.1 The Historical Task

The first hermeneutic aim in theorizing simulation validation is to show how simu-
lation validation is historically situated. At present, there is no one unique definition
of simulation validation. However, Schlesinger (1979) definition of simulation val-
idation serves as a major reference for many simulating scientists who discuss the
question of how to define simulation validation. I will use their definition to illustrate
the task. In Schlesinger et al.’s definition, the computerized model, the domain of
applicability, the intended application of the model and the scientific value they refer
to—accuracy—are historically situated. I concentrate on the most obvious aspect
here: why do they refer to accuracy? Compare Schlesinger et al.’s definition to that
by Caldwell and Morrison (‘Validation is a proactive, diagnostic effort to ensure that
the model’s results are reasonable and credible’ and ‘to assess whether the model’s
outputs are reasonable for their intended purposes’, Caldwell and Morrison 2000,
pp. 202 f.). The relevance of the scientific value of accuracy is historically con-
tingent. The relevance of scientific values is also situated and may depend on the
discipline. The task is to show how the computerized model, the domain of applica-
bility, the intended application of the model and the scientific values are historically
situated. Without going into too much detail here, we may anticipate that an inter-
preter will understand the use of the concept of accuracy after it has been revealed
that Schlesinger et al.’s background is in engineering and the natural sciences, where
the present state of the art allows for quantitative evaluations of validity. It can be
understood, then, that they somehow forgot other disciplines in which the state of
the art does not allow for the meaningful use of measures of accuracy. Economists
Caldwell and Morrison, instead, face a state of their art in which only qualitative
evaluations of the validity of their microsimulation model can be given. In particu-
lar, there are no true experimental data against which to validate the predictions of
their simulation model. It can be understood, then, that in their definition they refer
to more open concepts, such as reasonableness and credibility.
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9.4.4.2 The Epistemological Tasks

Gadamer’s formulation of the hermeneutic circle (Gadamer 2013, p. 279) claims
that the foreknowledge of an interpreter creates expectations in regard to a certain
interpretation. In the hermeneutic situation, prejudice (prejudgements) undeniably
structure the human understanding of the self and the world. The foreknowledge is
the condition of the possibility of understanding. Gadamer rejects the negative con-
notation of prejudice, which he views as a prejudice of the Enlightenment (Gadamer
2013, p. 283). The epistemological task in the hermeneutics of validation is thus to
reveal the hidden prejudice in validating. As Gadamer (2013, p. 310) has argued,
this is a question for effective history (Wirkungsgeschichte)—that particular relation
between past and present in which past tradition is constitutive of present orientation.
The fundamental epistemological task is to distinguish between legitimate prejudice
and prejudice that has to be overcome. Gadamer rehabilitates authority and tradition
because they can be a source of legitimate prejudice (which has led his critics to
argue that he is a conservative).

The foreknowledge of simulation validation includes diverse kinds of foreknowl-
edge and prejudice: in particular, foreknowledge of the theoretical concepts of
the phenomenon that is modelled, foreknowledge of the implemented theory and
hypotheses, foreknowledge of the validation methods and techniques applied, fore-
knowledge of the domain of applicability, foreknowledge of the intended application
of the model and foreknowledge of scientific values that are considered relevant, e.g.
the value of accuracy.

A short illustrative example comes from climate science. As Rood explains (in
Chap. 30 in this volume), ‘an influential paper’ by Oreskes, Shrader-Frechette, and
Belitz (1994) established the formal argument that, in general, numerical models
of geophysical phenomena cannot be validated. He summarizes that the argument
was twofold. (1) ‘The climate’ cannot be observed in its entirety and (2) models are
non-unique estimates of possible climate states. As Rood notes, ‘the echoing of the
statement that weather and climate models ‘cannot be validated’ does not serve the
discipline well’. According to Rood, it has also contributed to a stable foundation of
political argumentation that model-based predictions are too uncertain on which to
base policy.

Let C-Not denote the claim that weather and climate models cannot be vali-
dated. From our hermeneutic perspective, claim C-Not shall be a starting point for a
hermeneutic analysis. C-Not will be considered as foreknowledge, it has served as a
prejudice in climate simulation validation. The hermeneutic analysis would have to
reconstruct in detail how, on the one hand, C-Not led to great caution among climate
scientists—who tended to distrust the term ‘validation’ and prefer to use expressions
such as ‘evaluation’ (see Flato et al. 2013, as well as the study by Guillemont, 2010);
on the other hand, the hermeneutic analysis would have to reveal how tremendous
efforts in testing and validation (see the chapter by Rood) were forced by C-Not.
Rood states that a ‘culture of verification and validation’ has been developed by
climate scientists and software engineers. Empirical studies have identified different
‘epistemic lifestyles’ (Shackley 2001) that include verification and validation. We
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will finally not only understand the present orientation in climate science simulation
evaluation, but also question claim C-Not. Some of the arguments that were used
to support C-Not may be revealed as prejudice that can be overcome. Finally, even
C-Not may be overcome.

I have also used this short illustrative example to indicate that Gadamer’s concept
of effective history (Wirkungsgeschichte) need not refer to the distant past. It may
also apply to significant events of past decades.

9.4.4.3 The Hermeneutic Tasks of Three Groups of Interpreters

Philosophers of science, and—to a lesser degree—methodologists of their disci-
plines, can be expected to deal with the historical and epistemological hermeneutic
tasks. However, working scientists are needed, not only to explore the tacit knowl-
edge but also to interpret and change validation practices in the light of the new
insights obtained. Philosophers of science andmethodologists open up the validation
tradition or traditions vis-à-vis the simulating scientists and support the establish-
ment of a hermeneutic ‘self-consciousness’ among the practitioners. In this way, the
hermeneutics of validation addresses the first-order art and second-order theory.

9.5 Discussion

What are the limitations to a hermeneutics of validation based on Gadamer’s philo-
sophical hermeneutics? These limitations become visible if we apply the criticism
of Gadamer’s approach with representatives of other philosophical perspectives.

Some limitations follow from the Gadamer–Habermas debate on the issues of
rational reflection and material reality (for a recent review on that debate and its
outcomes see Smith 2014). Habermas argued that Gadamer’s hermeneutics leaves
no room for genuinely rational reflection, since it is constitutively blind to potential
sources of domination. These sources are embedded in hermeneutic reflection: tra-
dition, authority and prejudice. As a consequence, argues Habermas, hermeneutic
reflection must fall short as a model of critical reflection. Tradition, authority and
prejudice are accountable to standards that lie beyond them—to rational standards.
Some results of that debate demarcate limitations of the hermeneutics of validation,
in particular for interdisciplinary dialogue. There is a tension between rational reflec-
tion and understanding, and this tension is important for the growth of knowledge,
in particular for the role of traditions in that area. As Gadamer (1990) has pointed
out, hermeneutic reflection at its best has a self-transformative character. Traditions
advance through self-correction. Ultimately, hermeneutic reflection rests on practical
insight. I contend that disciplinary traditions are challenged less by a Gadamerian
dialogue than by a Habermasian discourse. Habermas (1984, 1996) discourse model
establishes a stringent set of rules known as ideal speech situation to support the
deliberation on, and the analysis and justification of, validity claims. Communica-
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tive rationality is more confrontative towards traditions, enhancing the growth of
knowledge in simulation validation.

Markus’ claim (1987, see above) that terminology and methods in the sciences
are subject to an accelerated rate of obsolescence, rendering the use of Gadamer’s
concept of tradition shallow, raises the question as to whether there are traditions
in simulation validation at all. This volume demonstrates that such traditions exist,
providing the opportunity for further studies to reconstruct and describe them in
more detail. From psychology (see e.g. Newton and Shaw 2014), we know thorough
investigations into a discipline’s validation traditions.

What is the significance of the hermeneutics of simulation validation with respect
to the further development of computer simulation? The question of validation is an
urgent one since computer simulations are developed in more and more disciplines.
The hermeneutic perspective is oriented towards past and present. Interdisciplinary
dialogue can advance the spread of validation methods and techniques across dis-
ciplines. It is no coincidence that the author of this chapter—a simulating sociolo-
gist—who is also one of two editors of this Volume wanted to edit this compendium.
This Volume is a major step towards an interdisciplinary dialogue on simulation val-
idation. Interdisciplinary dialogue may be evaluated as suitable for the late adopters,
but not for the leading disciplines such asmeteorology and climate science. However,
these latter disciplines also profit from encountering their past.

9.6 Conclusions

In this chapter, a hermeneutics in simulation validation has been shown to be rather
fruitless. Instead, I have proposed a hermeneutics of simulation validation based on
Gadamer’s philosophical hermeneutics.

The goal of a hermeneutics of validation is to understand simulation validation. Its
contribution to the validation of computer simulation models is on two levels: first-
order art and second-order theory. The challenge that has to be mastered is to set up a
hermeneutic situation in the first place. As Ramberg and Gjesdal (2005) emphasize,
appreciating hermeneutics is fundamentally amatter of perceiving amoving horizon,
engaging a strand of dialogue. This Volume establishes such a hermeneutic situation.

Finally, I want to suggest one issue for the interdisciplinary dialogue. We should
understand the preference for particular scientific values in different validation sim-
ulation traditions. As is shown by Schlesinger’s definition, accuracy is presently
the dominating scientific value in simulation validation. However, there is also, for
instance, the value of comprehensiveness (see Chap. 40 byHirschHadorn andBaum-
berger in this volume), apparently most often inferior. Let us discover and test our
prejudice concerning accuracy and comprehensiveness and encounter the past and
understand the validation traditions from which we come. Doing so will allow us to
expand and enrich our horizons in relation to the prioritization of scientific values in
simulation validation.
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Chapter 10
Assessing the Credibility of Conceptual
Models

Axel Gelfert

Abstract Whether or not the results of a computer simulation are credible depends
to a large extent on the credibility (or lack thereof) of the underlying conceptual
model. If a model has been developed explicitly with the goal of running a computer
simulation in mind, the two types of credibility may seem deeply intertwined. Yet,
often enough, conceptual models predate the subsequent development of simulation
techniques, or were first developed outside the context of computer simulation. In
such a situation, the specific contribution that a conceptual model makes to the
credibility of a simulation requires considerable analysis. How, then, should we
assess the credibility of a conceptual model, and which factors ought to play a
role in judging whether simulation results derived on its basis are trustworthy? In
order to answer these questions, the present chapter begins with the premise that
models are never by themselves credible simpliciter, but acquire credibility within
a given context of inquiry, which itself depends on the cognitive interests of the
inquirer. Judgments concerning the credibility of a conceptual model thus need to
be based partly on a characterization of the intrinsic features of the model, partly
on the cognitive goals and interests of its users. This realization helps explain why
credible models have been variously understood as (pragmatically and empirically)
adequate representations of real-world target systems, as constructions of “credible
worlds” that display internal coherence, and as exploratory tools that may aid our
understanding even before a well-developed underlying theory takes shape.
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10.1 Introduction

Contemporary science would not be what it is, were it not for the emergence of
computer simulation techniques from the mid-twentieth century onwards. First pio-
neered in such disciplines as nuclear physics and meteorology, numerical methods
for implementing computer simulations have since spread to awide range of scientific
disciplines, including astrophysics, high-energy physics, materials science, quantum
chemistry, biochemistry, molecular biology, ecology, climate science, economics,
sociodynamics, and many others. This applies equally to fundamental and applied
research, and also extends to neighboring disciplines such as design and engineering.
As things stand, much of our best—and instrumentally most important—scientific
knowledge is best thought of as being simulation-based.

Typically, discussions of computer simulation go hand in handwith discussions of
scientific models, and for good reason: modeling and computer simulation both are
modes of inquiry that scientists engage inwhen the behavior of a target system cannot
easily be derived from an underlying theory—either because this task is too complex
(and, for example, does not allow for an analytical solution) or because no underlying
theory can be unequivocally specified (e.g., since the phenomenon in question is
the result of a heterogeneous mix of factors). In order to construct a model and
implement any simulation, decisions need to be made—however implicitly—about
how to represent the target system in the real world that is the subject of the proposed
simulation study. Such decisions concern, amongst others, the level of detail, overall
structure, relevant factors, and purported causal mechanisms of the target system that
is to be represented and simulated. Constructing a model of this sort will not only
guide future inquiry, but will also shape how we should interpret any subsequent
results; in this sense, specifying a model determines—at least in broad, qualitative
terms—the very content of a simulation study.

This suggests that whether or not the results of a simulation study are credible also
hinges on the credibility, or lack thereof, of the underlying model, which is often
called the conceptual model. Crudely speaking, and notwithstanding the specific
insights that only computer simulation methods can afford, a simulation can only
ever be as good as the conceptual model on which it is based. It seems legitimate,
then, to spend some time reflecting on what makes models credible in the first place,
and it is precisely this question that the present chapter tackles. Yet models are never
by themselves credible simpliciter, but acquire credibility within a given context
of inquiry, which itself depends on the cognitive interests on the inquirer. To the
extent that models are credible, then, they are credible for an inquirer in a particular
problem situation, or so it will be argued. Combining these two perspectives—a
focus on the particular model at hand, and a recognition of their significance to the
model user—thus leads to the thesis that judgments concerning the credibility of
a conceptual model need to be based on a characterization of the intrinsic features
of the model as well as of the cognitive goals and interests of its users. This also
helps explain why credible models have been variously understood as (pragmatically
and empirically) adequate representations of real-world targets, as constructions of
“credibleworlds” that display internal coherence (andmay also serve as an “intuition-
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pump”), or as exploratory tools that may aid our understanding even before a well-
developed theoretical account of a phenomenon has become available.

The remainder of this chapter is organized as follows: Sect. 10.2 reviews the
twin notions of verification and validation in connection with computer simulation
and relates them to the multiplicity of functions of scientific models more generally.
Section 10.3 takes our commonsense understanding of “credibility” (in connection
with human interlocutors) as the starting point for a discussion of the qualities
required for attributions of credibility to nonhuman agents and entities; Sect. 10.4
then applies these ideas to examples from scientific practice. Sections 10.5 and
10.6, respectively, reflect on specific—sometimes competing—criteria for model
credibility: empirical fit and furthering causal understanding on the one hand
(Sect. 10.5), and the construction of “credible worlds” along with exploratory
uses of models on the other hand (Sect. 10.6). The chapter concludes with a brief
reflection on how credibility is jointly constituted by features of the model itself and
the overall goals and cognitive interests of its users (Sect. 10.7).

10.2 Simulation-Based Knowledge, Verification, Validity,
and the Function of Models

Whether a particular scientific investigation begins with data collection or theoretical
analysis, once we turn to computational methods to derive simulation-based knowl-
edge, conceptual models are never very far off. If studying a problem using computer
simulation is the explicit goal of a given process of inquiry, then deriving a concep-
tual model may be understood as an important first step in preparing the problem
for the deployment of computer simulation methods. Yet, arguably, many conceptual
models in science were developed independently of concerns with computer simula-
tion—either because they predate the development of powerful simulation techniques
or because they initially served independent illustrative, descriptive, or explanatory
purposes and were only later found to lend themselves to computer simulation. Tack-
ling a scientific problem using computer modeling is, rightly, often characterized as
a multi-step process, with decisions concerning the problem domain preceding the
process of designing a simulation model. This model can then be implemented on a
given type of computer system. Thus, even before a conceptual model is proposed,
“a description of the problem situation and the system in which the problem situation
resides” (Robinson 2011, p. 1432) must be given. Where an underlying fundamental
theory can reasonably be assumed to exist (e.g., in the case of planetary motion), this
may involve specifying the relevant background assumptions (e.g., considering only
objects on closed orbits and looking into their relative position to one another); where
a fundamental theory is absent (e.g., in the case of modeling vehicular traffic flow),
this may involve selecting well-delineated research questions (“How do spontaneous
traffic jams occur?”) and specifying the variables that are thought to best describe
the phenomenon in question (say, measurable changes in average vehicular speed).

In recent years there has been a growing recognition of the heterogeneous char-
acter of model building in science, where models are constructed as representations
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to investigate a target system, not merely conceived of as realizations of theoretical
relationships that are posited as true. On this view, not all models are “derived” from
fundamental theory—not only because many research questions require models to
be “made up from a mixture of elements, including those from outside the domain
of investigation” (Morrison and Morgan 1999, p. 23), but also because models often
represent phenomena that have yet to be subsumed under anything resembling a self-
contained underlying theory. In the absence of a theory of the domain of investigation,
models may thus serve an exploratory function (Gelfert 2016): it is by constructing
models that scientists attempt to find out whether a purported phenomenon really
does survive closer scrutiny and try to devise “proto-theories” whose relation tomore
fundamental theories then needs to be analyzed further. It is only once a decision has
beenmade that a particular problem situation can, at least tentatively, be characterized
using a certain set of representational tools that a conceptual model can be devel-
oped. Or, to put it another way, any conceptual model that is being advanced—be it
in the form of a set of mathematical equations with corresponding physical interpre-
tations, or as a less formalized set of assumptions, simplifications, and explanatory
mechanisms—will already implicitly include some assumptions about which sorts
of problem situations and approaches are appropriate. It is important to keep this in
mind since, as we shall see, a conceptual model’s credibility partly depends on it.

If we were only interested in constructing a model to represent a target system
or phenomenon, arriving at a viable conceptual model might be considered a fit-
ting conclusion to the process of scientific modeling. And indeed, a fair amount of
philosophical writing on scientific models takes the construction of models to be
the goal and outcome of scientific inquiry—even as it acknowledges that scientific
models serve a variety of epistemic and non-epistemic functions. In this sense, what
simulationists call the “conceptual model” is generally referred to by philosophers of
science as “scientific model” simpliciter. Yet, the work of the simulationist does not
stop with devising a conceptual model; instead, it is taken as a starting point for the
further processes of designing a numerical model in computer code, and implement-
ing the numerical model on a computer model. From the simulationist’s viewpoint,
the conceptual model is “a non-software specific description of the computer simula-
tion model (that will be, is or has been developed), describing the objectives, inputs,
outputs, content, assumptions and simplifications of the model” (Robinson 2008,
p. 283). Seen in this light, the construction of a conceptual model by a simulationist
is teleologically oriented toward the creation of a piece of software, the computer
simulation model, in order to answer specific hypotheses about the target system by
running a simulation. It would be hasty, however, to infer from this that the concep-
tual model play s a merely auxiliary role. Simulationists are keenly aware that many
conceptual models enjoy independent support and justification, and that the success
of implementing a simulation model partly depends on adequately translating the
conceptual model into computer code.

The relationship between a (numerically implemented) simulation model and
the (underlying) conceptual model is a nontrivial one, as becomes evident once we
consider what we can infer—about the simulation and the conceptual model, respec-
tively—from the empirical success (or lack thereof) of the numerical output thus
generated. Even before we compare the numerical output against our observations or
measurements, we may ask whether the simulation model does, indeed, adequately
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reflect the conceptual model; that is, we may engage in verification (see Chap. 11
by Rider and Chap. 12 by Roache in this volume). On the one hand, this involves
“determining that a simulation computer program performs as intended, i.e., debug-
ging the computer program” (Law and Kelton 1991, p. 299); in a departure from
established usage in philosophy of science, the term “verification,” thus understood,
does not refer to the process of generating observable predictions and testing them
empirically. The guiding idea behind verification in this sense is not empirical test-
ing, but formal demonstration in the spirit of logic and mathematics: “Purely formal
structures are verifiable because they can be proved by symbolic manipulation, and
the meaning of these symbols is fixed and not contingent on empirically based input
parameters” (Oreskes et al. 1994, p. 641). What is being verified, then, is not that the
model is a successful representation of the target system, nor that the numerical out-
put matches empirical observations, but rather that an already constructed conceptual
model is correctly solved in the software code that constitutes the (implemented)
simulation model. In this sense, verification (also called “technical validation”) aims
to demonstrate internal consistency, sometimes by way of benchmarking numerical
results against analytical solutions (where available). On the other hand, this usage
of “verification” involves the problematic assumption that formally verifying that a
computer simulation approximately solves a set of underlying mathematical equa-
tions answers all relevant questions that may arise in the course of computationally
implementing a conceptual model. For example, there is considerable latitude in
how one should discretize the underlying equations in a simulation model, and
each such choice may have advantages and drawbacks, yet these are not a matter
of meeting (or failing) certain formal standards. It is, therefore, important to realize
that verification is itself typically part of an iterative process of implementing
and subsequently tweaking a simulation model and its implementation. As Eric
Winsberg puts it, “there can be no justification of the final [conceptual] model that
is independent of its discretized implementation, and there can be no justification
of the implementation that is independent of the model” (Winsberg 2018, p. 158).

Turning to the second element in the often jointly used phrase “verification and
validation,” validation aims to ascertain the simulation model’s performance across
a range of empirical contexts, for example by simulating a real data source and
comparing the calculated outcomes with real-world observations. (See Chap. 4 by
Murray-Smith in this volume.) This can be a formidable task, given that “directly
making the validity assessments requires technical expertise and full access to the
model and external data” (Caro et al. 2014, p. 178). The ability to predict, or oth-
erwise reproduce, empirical aspects of the behavior of the target system is key to a
simulation model’s external validity, where this refers to the generalizability of the
findings of a simulation to the intended class of real-world cases. Different strategies
can be pursued: at minimum, an implemented computer simulation should be able
to adequately reproduce data sources that went into the creation of the model in the
first place (“dependent validation”), though generally, it will be preferable to test a
simulation’s performance with respect to independent data sets—that is, data that is
of a type that the simulation should be able to account for, but which was not actively
utilized in the process of simulation design. As in the case of testing theories, the
predictive capacity of simulation models, too—that is, its ability to predict empiri-
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cal results before they have been measured or observed—is often seen as carrying
great weight (“predictive validation”). At the same time, drawing too close a paral-
lel between validation of a simulation model and theory-testing, can be misleading.
Scientists themselves have occasionally emphasized that “[v]alidation is not a pro-
cedure for testing scientific theory or for certifying the “truth” of current scientific
understanding, nor is it a required activity of every modelling project” (Rykiel 1996,
p. 299), and have lamented the widespread belief “that validation establishes the
veracity of the model” (Oreskes et al. 1994, p. 642).

To be sure, textbook definitions of “validation” in computer simulation studies
often equate it with “determining whether a simulation model (as opposed to the
computer program) is an accurate representation of the system” (Law and Kelton
2000, p. 265), sometimes with the caveat that a model should be “an accurate rep-
resentation of the real world from the perspective of the intended uses of the model”
(ITT, cited after Zacharias et al. 2008, p. 302). Critics of such definitions have argued
that “[t]he implication is that validated models tell us how the world really is”, when
we should always keep in mind that any agreement between observed measurements
and simulation results “in no way demonstrates that the model that produced the
output is an accurate representation of the real system” (Oreskes et al. 1994, p. 642).
It seems fair to assume, however, that the authors quoted above intended their text-
book definitions to be understood elliptically, in that they would not deny that further
assumptions and inferences are required to warrant moving from empirical valida-
tion of the simulation results to representational success of the underlying model.
Perhaps, then, validation is best understood as both relative to the context of inquiry
and the goal of the inquirer:

Validation is a demonstration that a model within its domain of applicability possesses a
satisfactory range of accuracy consistent with the intended application of the model. (Rykiel
1996, p. 233; italics original.)

What constitutes a “satisfactory range” depends, at least in part, on the applicable
standards of empirical performance which, again, vary between users, depending
on their goals, and across different contexts: “That is, a model is declared validated
within a specific context which is an integral part of the certification. If the context
changes, the model must be re-validated.” (ibid.)

The recognition that context matters stems from the realization that models and
simulation may serve a wide range of purposes, from promoting epistemic goals
(e.g., affording insight into the causal basis of a particular phenomenon) to non-
epistemic objectives (e.g., serving as the basis for policy decisions). It also reflects
the fact—well-known to scientific practitioners, but perhaps underappreciated in phi-
losophy of science—that the process ofmodeling and simulation does not, in practice,
divide up neatly into distinct “phases” of (1) constructing a conceptual model, (2)
translating it into computer code and verifying that the code correctly implements
it, and (3) validating the numerical output by comparison with empirical observa-
tions. Instead, what one finds—often, not always—is that the various phases overlap
and are deeply intertwined. For example, it is not uncommon for approximations
that were initially employed during the stage of implementation and verification to
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become an essential part of the simulation model as a whole, and for them to be
credited with ensuring its overall empirical success (and, thus, its validity).1

Fewpractitioners of computer simulation studieswould consider any given valida-
tion of a simulation model to be sacrosanct. Not only is it the case that, as mentioned
earlier, models that have been validated within one context for a given purpose
may need to be re-validated for a different use in another context. Like models
and simulations in general, the practice of validation, too, serves different (if often
complementary) purposes. Sometimes, when the mutual relationships between the
numerical output, the simulation model, the conceptual model, and the underlying
theory are well-understood, the successful validation of a computer simulation may
indeed be interpreted as (good, but defeasible) evidence that the underlying model
adequately represents theway theworld is. Often, however, the route from a scientific
problem to a computer simulation model is less clear-cut, and the various relation-
ships between models, theories, and simulations are contested. In such a situation,
validationmay also function as a tool “for buildingmodel credibility in the user com-
munity” (Rykiel 1996, p. 230). This is not to say that validation is being carried out
strategically, let alone with manipulative intent to persuade others; rather, validation
ensures that a computer simulation adheres to shared standards of accuracy in the
given context of inquiry.

An excessive focus on verification and validation may, on occasion, obscure other
functions of models and simulations, beyond their ability to reproduce observed
phenomena. As the ecologist Edward Rykiel puts it, “modelling and the benefits
to be gained from it can also be stifled by an overemphasis on model validation”
(1996, p. 240). Such benefits include, but are not limited to, exploratory uses of
models in the absence of a fully formed theoretical framework, which have recently
begun to receive philosophical attention.2 Indeed, “[e]xploration of model behavior
without validation testing is a legitimate, reportable activity” (Rykiel 1996, p. 241).
This—along with the realization that, even where validation of a simulation model
is possible, not much can be inferred with certainty about whether or not “a model
accurately represents the ‘actual processes occurring in a real system’” (Oreskes
et al. 1994, p. 642)—strongly suggests that, in relying on conceptual models in our
simulation design, we implicitly presuppose that those models enjoy independent
justification. For this reason, and because models and simulations enjoy considerable
autonomy from one another, the rest of this chapter will focus on the diverse sources
of credibility of the conceptual model.

1For a fascinating case study, see Lenhard (2007).
2For a detailed argument that exploration is a core function of scientific modeling, see Gelfert
(2016).
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10.3 Taking the Notion of “Credibility” Seriously

If we are to gain a deeper understanding—beyond technical measures of fit, distance,
fractional variance, etc., (which, in any case, can only be determined post hoc)—of
what leads scientists to trust some conceptual models more than others, then it may
be best to begin by taking the notion of credibility seriously. At the risk of appearing
overly literal-minded, in the present section I wish to discuss some of the relevant
connotations of “credibility” as a general concept; in the next two sections, we shall
then encounter a range of examples of how scientists tend to arrive at judgments of
credibility in relation to scientific models.

On the face of it, it may seem puzzling why, in the seemingly neutral context of
model evaluation, one should invoke the term “credibility” at all, given its ethical
and interpersonal overtones. Why not stick with more objective criteria such as
“reliability” or “verisimilitude”? The concept of credibility has its natural place in
human communication and is of a piece with—albeit slightly less emotionally tinged
than—the concept of trustworthiness. (Cf. Chap. 17 by Saam in this volume for the
role of humans in validation.) Yet it is not by chance that scientists should turn to the
notion of credibility in their interactions with scientific models and simulations, or so
I wish to suggest. In interpersonal communication, credibility is usually considered
to be a function of both the trustworthiness and competence of an agent. To be sure,
we also speak of isolated claims as being “credible” if we think they merit belief.
However, when it comes to the credibility of models, the closer analogy is with
epistemic agents, not with the level of individual propositions. To put it another way,
when we believe a model-based prediction, we typically do so because we consider
the model to be credible, not because we have independent reason to think that the
specific prediction in question is somehow ex antemore likely to be true than any of
its close competitors. A credible model, then, is one that we can turn to, with some
confidence, for answers on a suitably wide range of relevant research questions. Once
we consider a model credible, and resolve to work with it for the purposes of inquiry,
we begin to trust its results—not blindly, of course, but in a way that grants its results
some measure of (defeasible) default justification.

In human interactions, once we trust someone, we depend, at least in part, on
their goodwill. When I ask you for directions to the train station and trust your
answer, the success of my subsequent actions depends, among other things, on your
having chosen not to play a prank on me and send me in the wrong direction. What
I end up believing depends, in part, on your mental processes. This is why, for
someone to be deemed credible, they must not only be deemed to be competent
with respect to the subject matter in question, but must also be trustworthy (that is,
honest and sincere). (See e.g., McGinnies and Ward 1980.) In the case of models,
while there is no analogy to the involvement of another mind in our own process of
belief formation, we likewise depend on factors internal to the model which cannot
readily be inspected. Competence and trustworthiness are not categories that can
be directly applied to scientific models, but it is not difficult to identify desiderata
that are structurally similar. Like a competent interlocutor, a good model should be
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able to provide reliable information regarding a broad range of thematically related
questions; similarly, in much the same way that a trustworthy interlocutor would not
suddenly start offering wildly misleading claims, a good model should not exhibit
sudden discontinuities in the quality of information we can extract from it.

It is perhaps no surprise that the very term “inquiry” is ambiguous, inasmuch as
it refers both to objective empirical investigation and to interpersonal requests for
information. Indeed, in the Baconian tradition of experimental natural philosophy
thatwas at the heart of theScientificRevolution, scientific inquirywas often likened to
the process of interrogation—sometimes by violent means, as critics of themetaphor
have pointed out. (SeeMerchant 1980.) Scientific experimentation itselfwas seen as a
method of bringing about conditions that allowed for the extraction of truth—away of
“putting Nature to the question” (where this, of course, was a common euphemism
for torturing someone at the rack). What matters for present purposes is not the
problematic character of Bacon’s imagery, but rather the transactional conception of
inquiry as interrogation. But surely, one might wonder, there is a difference between
experimenting on nature by bringing about material conditions that may elicit novel
observable phenomena, and “interrogating” a conceptual model by various means
of analysis? Indeed, there is; yet, as Joseph Pitt notes (in a passage concerned with
scientific theories, but in a way that naturally extends to models), there are also
striking parallels:

When a scientist works with a theory to derive some results, she is in some sort of communi-
cation with it. She knows that if she does this she will get, or at least, ought to get this result.
It is in her being able to anticipate the response of the theory to her manipulations that she
is communicating with it. (Pitt 2007, p. 55)

Pitt intends this to be more than just a useful metaphor for understanding how
we engage with theories. The key notion is “manipulation”—which seems even
more apt in the case of models which, as mentioned earlier, are often made up of a
heterogeneous mixture of elements, arranged precisely in a way to enable inferences
about the target system (and, thereby,make it possible to extract information about the
world).AsPitt notes, “to the extent thatwemanipulate theories [read:models—A.G.]
we communicate with them”: “The key here is in knowing how to communicate and
with what kinds of things we communicate.” (Pitt 2007, p. 55).

There is clearly a metaphorical element to likening scientific inquiry to verbal
interrogation—but this is no more problematic in the case of scientific models than
with respect to scientific experimentation, or so I wish to suggest. Scientists continu-
ously labor with scientific models—often the same ones, with only minor variations
of the same underlying equations or formalisms—and, over time, come to see them
as “mediators, contributors, and enablers of scientific knowledge” (Gelfert 2016,
p. 127). When they judge a conceptual model to be credible, this is more than merely
an interim assessment of a model’s utility “here and now,” but expresses a commit-
ment to its future use and expected fruitfulness. Judgments of credibility, then, play
an important part in the evaluation of conceptual models, and it will be insightful, in
the next section, to discuss the standards and criteria deployed by scientists in their
assessment of whether a conceptual model deserves our trust.
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10.4 The Credibility of Models: Lessons from Scientific
Practice

Scientists, in assessing the models they are using, are typically less concerned with
reporting overall levels of credibility concerning specificmodels, let alone subjective
judgments of their trustworthiness, but instead—rightly so—tend to acknowledge the
hybrid nature of model credibility:

The credibility of amodeling analysis should be assessed at several levels: validation, design,
data, analyses, reporting, interpretation, and conflicts of interests. Validation assesses how
well the model accords with reality. The design should follow accepted standards for con-
ceptualizing and framing the model. The data used in building model should be suitable for
the purpose, properly analyzed, and incorporated in the model. Analyses should provide the
information required to support decision maker. (Caro et al. 2014, p. 178)

“Reporting” and “interpretation”, which are being acknowledged by the authors
as “not specifically pertaining to amodel’s credibility” (ibid.), nonetheless are central
to the credibility of modeling as a process and its application in practical contexts.
The final point—conflicts of interest—demonstrates how the overall credibility of
a modeling analysis depends both on the credibility of the model (according to the
criteria specified in the previous section) and on the trustworthiness of the modeler
who, after all, has decided to deploy one (type of) model rather than another for a
particular purpose.

If, for the time being, we take actual usage at face value, we find that “credi-
bility” for scientists has an—in the eyes of philosophers perhaps surprisingly—in-
strumentalist character, with strong social connotations. Earlier, we quoted the ecol-
ogist Rykiel as arguing that “validation is not an essential activity for evaluating
research models, but is important for building model credibility in the user commu-
nity” (Rykiel 1996, p. 230; italics added). Credibility, in turn, is best defined in terms
of the demand that, as Stewart Robinson puts it, amodel “[b]e believed by the clients”
(Robinson 2011, p. 1433). And Caro et al. (2014), the same group of health scien-
tists who gave the pithy characterization of the hybrid character of model credibility
quoted above, have also drawn up a list of questions that may guide assessments of
“the relevance and credibility of a modeling study”. In addition to obvious concerns
regarding verification and validation, these include questions such as the following:

Does the model have sufficient face validity to make its results credible for your decision? Is
the design of the model adequate for your decision problem? Are the data used in populating
the model suitable for your decision problem? (Caro et al. 2014, p. 176; format adapted from
table)

“Face validity,” in particular, is thought to be a first criterion by which to screen
out straightforwardly implausible proposals, inasmuch as a model should not contain
unrealistic and implausible assumption about core elements that a model is intended
to get right.3 Whether a model meets this desideratum is thought to be “the easiest

3This should not be understood as contradicting the frequent—and entirely correct—observation
that, as William Wimsatt puts it, false models may function “as means to truer theories” (Wimsatt
2007, p. 94).
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aspect of credibility for a user to check because it does not require in-depth technical
knowhow”; at the same time, if “parts of the model fail face validity, the effect on
credibility depends on the user’s judgment about whether the questionable parts are
so unrealistic or inappropriate that they affect the accuracy of the results” (Caro et al.
2014, p. 179).

As scientists themselves are keen to point out, mere success at reproducing empir-
ical results does not suffice to render a model credible:

Agreement betweenmodel and data does not imply that themodeling assumptions accurately
describe the processes producing the observed climate system behavior; it merely indicates
that the model is one (of maybe several) that is plausible, meaning that it is empirically
adequate. (Knutti 2008, p. 4652)

Just as we do not consider an interlocutor credible merely in virtue of having
made a series of truthful assertions, we do not place trust in a model just because
it happens to have successfully reproduced some amount of data. Attributions of
credibility derive from the warranted presupposition that a source of information is
systematically reliable across a range of relevant contexts and questions. Background
knowledge, thus, is a key to assessments of the credibility of models: “The model
results we trust most are those that we can understand the best, and relate them to
simpler models, conceptual or theoretical frameworks”. (Knutti 2008, p. 4656)

If there is one near-universal feature of how scientists talk about the credibility of
their models, then it would have to be their recognition that models serve a variety
of purposes, such that attributions of credibility depend on the goals of the modeling
process. This is not to suggest that attributions of model credibility are subjective,
or cannot be challenged, but simply to acknowledge that, for such an attribution to
be meaningful (and potentially intersubjectively compelling), the goals and contexts
of the modeling process need to be specified. This is precisely why Caro et al.
(2014), in their proposed list of diagnostic questions concerning the relevance or
credibility of a modeling study, ask researchers to consider what external validation,
internal validation, face validity, design aspects, etc., of a model-based study have
to contribute toward “mak[ing] its results credible for your decision?” (178, italics
added) Other scientists, in a similar spirit, note that models are to be assessed by their
ability to “[p]roduce sufficiently accurate results for the purpose” that a modeler has
chosen (Robinson 2011, p. 1433), and in view of how “acceptable for pragmatic
purposes” (Rykiel 1996, p. 230) its results are. This reflects, once more, the largely
pragmatic-instrumentalist attitude of practicing scientists regarding the utility of
models in specific problem-oriented contexts of inquiry.

WendyParker, in the context of discussing preciselywhat is being confirmedwhen
models—climate models in particular—are found to fit with observations and past
data, resists the thought (to be discussed in the next section) that “as we accumulate
instances of fit between observational data and output from a climate model, we
are accumulating evidence of the truth of the hypothesis embodied by the model”
(Parker 2009, p. 234). Such aview regards attributions of credibility as “divorced from
any particular use or application of the models”; instead, Parker argues, we should
recognize a growing need, especially in the case of complex modeling analyses such
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as in climate science, “to try to discern, in a principled and careful way, what a
[…] model’s performance” in specific contexts “indicates about its adequacy (or
inadequacy) for various predictive and explanatory purposes.” (Parker 2009, p. 243)
Like the scientists quoted above, Parker believes that such adequacy-for-purpose,
for manymodeling contexts, is a more important desideratum than truth or wholesale
empirical adequacy. As Parker puts it,

adequacy-for-purpose does notwork like truth and empirical adequacy[…:] from the assump-
tion that a model is adequate for an explanatory or predictive purpose, information about
how the model is likely to perform in various other respects, or information about what
other properties the model is likely to possess, does not simply follow as a matter of course.
(Parker 2009, p. 238)

This suggests that assessments of the credibility of models will, by necessity,
always have to be tentative and context-dependent—even if, on rare occasions, a
model may turn out to be successful and credible across a wide range of questions
and applications.

None of this should come as a surprise: after all, scientists use models in situa-
tions of incomplete knowledge—for example, because an underlying fundamental
theory cannot be directly applied in any straightforward way to the case at hand,
or because it is not even available in principle, or because the available data sug-
gests, but does not entail, a particular interpretation of an empirical phenomenon.
Models are also being employed in contexts where a “full” description or derivation
may simply be too costly, perhaps because it would require too much time, compu-
tational resources, or the like. In all of these situations, it is natural to expect that
modelers will face trade-offs—e.g., between completeness (of a model description
and derivation) and timeliness (of results and predictions), or between the generality,
realism, and precision of one’s models (Levins 1966). Given that trade-offs prevent
us from maximizing all desiderata simultaneously, and given that different purposes
call for different desiderata to be maximized, we simply should not expect to find
that the same model is the most adequate across all contexts. For the same reason, it
would be largely uninformative to simply extend the same set of “standard criteria
for evaluating the adequacy of a theory” (Kuhn 1977, p. 322) —that is, accuracy,
consistency, scope, simplicity, fruitfulness, and other theoretical virtues—to the case
of models, without specifying in more detail how these—no doubt worthy—desider-
ata can be achieved and ascertained in the case of modeling. (See also Chap. 40 by
Hirsch Hadorn and Baumberger in this volume.) In short, if one’s goal is to achieve
adequacy-for-purpose, a more fine-grained approach to assessing the credibility of
one’s conceptual model should be favored. Achieving model credibility—especially
as the basis for future simulations—is a complex process and, given “the extent to
which this process focuses on elements external to anything we would reasonably
include as part of theory, it would be unrealistic to interpret this warranting process
as being about the relationship of the results to some formal model” of a theory
(Winsberg 2001, p. S450).
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10.5 Empirical Fit and Causal Understanding

Amajor tension in the notion ofmodel credibility arises from the question of whether
models should always strive to fit the actual world, or whether they can serve explana-
tory (and other legitimate) functions by imagining plausible (yet counterfactual) sce-
narios. In this section and the next, we will discuss each of these aspects in detail,
keeping in mind that they point to a difference in emphasis, rather than to any funda-
mental inconsistency. Often, a model that is deemed a successful representation of
real-world findings will also successfully predict what would happen if conditions
were different, for example, because it has correctly identified an underlying causal
mechanism. If we are lucky enough to have a well-confirmed fundamental theory at
our disposal, and if the particular problem situation at hand poses no special obstacles
to the theory’s application, we may even be able to derive a model that “inherits,”
so to speak, the underlying theory’s strengths. This is how philosophers of science
used to think about scientific models in general, before realizing the significantly
greater heterogeneity, diversity, and tentativeness of models in actual scientific prac-
tice. Yet, wherever it is, in fact, possible to embed a model in a theory, the credibility
of the underlying theory can legitimately rub off on the model as well. At the same
time, a highly simplified model—perhaps even one that could not, in principle, be
realized—may also be a source of insight about why things are the way they are, for
example, because it showcases why certain alternative scenarios could not play out
in the world as we know it. Still, there exists more than just a difference in emphasis
between, on the one hand, treating models primarily as accurate representations of
real-world phenomena, and on the other hand, treating them as “credible worlds”
(Sugden 2000) in their own right, which allow us to explore relationships which
may, or may not, obtain in (or shed light on) the actual world.

The tension between thosewho regardmodels as awayof accounting for empirical
data and those who are willing to grant models greater independence from empirical
phenomena, is largely due to the fact that models occupy a middle ground between
theory and data. Some philosophers of scientific models have even gone so far as
to claim that the primary function of models is to serve as “mediators” between the
empiricalworld and the realmof theoretical hypotheses:models, on this account, “are
not situated in the middle of an hierarchical structure between theory and the world”,
but operate outside the hierarchical “theory-world axis” (Morrison andMorgan 1999,
pp. 17–18). On rare occasions, wemay be able to describe themodeling process as an
instance of applying a fundamental theory to a specific case at hand; but more often
than not, such a descriptionwould bewildly inaccurate, sincemodeling often involves
interpolating between different realms, making multiple (sometimes inconsistent)
assumptions, engaging in different rounds of idealization and de-idealization—all
of which render scientific models typically “a mixture of elements, including those
from outside the domain of investigation” (Morrison and Morgan 1999, p. 23). This
echoes a sentiment by Nancy Cartwright, who has long held that theories “do not
generally represent what happens in the world—only models represent in this way”
(Cartwright 1999, p. 180). While such a view of scientific models opens up a wider
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range of considerations that modelers can hope to draw on in their quest for model
credibility, and while it is generally agreed that models are “inherently intended for
specific phenomena” (Suárez 1999, p. 75), when the rubber hits the road—viz., in
any given actual instance of model-based inquiry—this view is no clearer than its
predecessors on when a model should be deemed credible.

Scientists often place great store by a model’s ability to reproduce empirical
data; yet, given the inevitable simplifications that go into the design of serviceable
scientificmodels, they are at the same timewell aware of the fact that perfect empirical
fit, even across a range of situations, may be a fluke—or simply the lucky result of
errors from different sources canceling out. One way to guard against mistaking such
accidental successes of a model for a sign of its overall credibility is to systematically
broaden the range of situations being considered and test a model’s performance
against the corresponding data sets. If a model performs well with respect to a wide
range of independent empirical situations and data sets, it becomes progressively
unlikely that its successful performance is entirely a matter of chance. This is why,
in addition to predictive successes, retrodiction is likewise valued, since it affords
an alternative way of comparing a model against empirical reality—provided the
past data in question was not itself used in the construction of the model: “A model
demonstrates empirical fit to the extent that its logical implications are observed in
data; the data may be historical or not yet observed” (Yuengert 2006, p. 87). When
viewed from this angle, ascertaining thatmodelA has a better empirical fit thanmodel
B becomes a matter of demonstrating that A entails more empirical consequences
found in the data than B.

While continued empirical success is a good, if fallible, indicator of a model’s
“being on to something”, it is clear that it cannot be the final word on what makes a
model credible. As an example from the special sciences, consider economic models
of addictive behavior, in particular, rational addiction models and time inconsistency
addiction models. (The discussion in this paragraph follows Yuengert 2006.) Ratio-
nal addiction models depict consumers as forward-looking and seeking to maximize
utility over their life cycle, all the while taking into account the future consequences
of their (current) choices. Addictive reinforcement, on this model, merely reflects the
assumption that an increase in the addictive stock increases the marginal utility of
current consumption. This contrasts sharply with time inconsistencymodels, accord-
ing to which consumers have self-control problems and cannot trust themselves to
enact their consumption plans, even when in possession of full information. Time-
inconsistent consumers, at any moment, pursue immediate gratification more than
they would have professed to prefer at any previous point in time. One might expect
such radically different assumptions to make an observable difference, once the two
types of models are put to the test. Yet, interestingly, both types of models “are nearly
indistinguishable by conventional econometric methods” (Yuengert 2006, p. 78), and
the case rational addiction and time inconsistency models is sometimes regarded as
a case of underdetermination by data (see Goldfarb et al. 2001).

In situations where two models are empirically equivalent, yet a decision needs
to be made as to which model should be adopted (e.g., because, due to lack of time
and resources, it is not possible to pursue both modeling strategies simultaneously),
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one evidently needs to appeal to selection criteria other than empirical fit. This may
take the form of privileging certain theoretical desiderata—notably, simplicity and
parsimony—or may be guided by background assumptions about the causal basis
of the phenomenon in question. Thus, in the case of addiction models, it has been
argued that ensuring that models of habit information be formulated in terms of
rational decision-making leads to models that are “formally equivalent to models
without habit formation” (Spinnewyn 1981, p. 92), but only by redefining wealth
and the cost of current consumption in unwieldy ways; in other words, the rationality
assumption “leads to unnecessary complications” (Chaloupka et al. 2000, p. 115).Yet
such a conclusion may be unacceptable to proponents of rational choice theory, for
whom the rationality assumption is a nonnegotiable core element of their paradigm.
In addition to background commitments and general theoretical virtues, however,
there is a third set of considerations that stem from realism about the purported
causal basis of the phenomenon being modeled. Thus, in the case at hand, those who
take independent findings, including on issues unrelated to addiction, to establish
beyond doubt the realism and causal significance of time inconsistency for behavior
in general, will likely consider an explanation of addiction as being caused by time-
inconsistent preferences to be superior.

In recent years, predictive modeling, not least on the basis of AI algorithms and
machine learning, has taken hold across a wide range of activities, in the data-
centric sciences as well as in business and the corporate world. To be sure, the
goal of prediction has been an integral part of science (and, by extension, of scientific
modeling and simulation) from early on; only in recent years, however, has it become
a realistic prospect to sift through vast amounts of data in the search for correlations
and to “train” neural networks on training data in the hope that they will successfully
predict new samples (or recognize relevant features in incoming data). Such data-
driven approaches bring their own challenges. Without a firm (and independently
justifiable) set of prior assumptions, the only justification of such models consists in
their continued predictive successes. Common dangers include committing so-called
“Type III” errors (i.e., developing a model that answers the wrong question), over-
fitting of models to the data (e.g., when a model reflects the structure of a given data
set—including its noise—so well that its predictions do not generalize to new data
sets of the same kind), and ignoring systematic changes in the environment (such
that past data fails to be a guide to the future). In such a situation, model-immanent
approaches can only do so much to alleviate any shortcomings a model has acquired
by way of how it was developed—even when a model appears to be empirically
successful, e.g., in relation to a given data set (as in the case of overfitting). Great
care must, therefore, go into the very construction of data-driven models, e.g., by
deploying more sophisticated sampling techniques.

Empirical fit, then, is only one consideration among several that researchers draw
on when they attempt to determine howmuch credibility a model merits. Theoretical
virtues such as parsimony and unification may aid in resolving situations where
multiple models are empirically equivalent; appeals to the realism of assumptions
likewise have a role to play, in particular in the following two cases: “if realistic
assumptions can be expected to result in better empirical fit eventually, or if realistic
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assumptions promote worthy goals other than empirical fit” (Yuengert 2006, p. 87).
To the latter possibility—that empirical fit may be outweighed by, or may at least
trade off against, other worthy goals of inquiry—we shall now turn.

10.6 Models and the Exploration of Credible Worlds

Empirical fit and numerical accuracy may indicate that a model stands in the right
sort of relation to its target system, and to the world at large, but, for the reasons
already outlined, they can at best constitute defeasible evidence that a model satis-
fies the kind of “world-linking conditions” (Grüne-Yanoff 2009, p. 81) that would
merit trust in its future performance and overall credibility. Turning from one set of
desiderata (relating to a model’s accuracy and empirical fit) to the other cluster of
desiderata identified earlier, viz. a model’s aptness for exploring possible scenarios
and generating “modal knowledge about what might be possible about the target sys-
tem” (Massimi 2018, p. 339), as well as its fruitfulness in generating truth-conducive
lines of inquiry, an analogous point can still be made. After all, though it may be
difficult to quantify and compare fit and accuracy—let alone infer on their basis how
credible a model is overall—wemay expect assessments of explanatory success and
exploratory potential to be even more controversial. Nonetheless, in what follows, I
shall sketch two approaches that tackle these more qualitative criteria of how much
insight into the world a given model affords us. The first such approach conceives
of models as a way of constructing credible worlds; the second regards them as
exploratory tools.

The term “credible world” as a characterization of the way models operate is due
to the economist Sugden (2000). It emphasizes that, for a model to afford insight to
its user, it need not always be derived from an idealization of an actual target system.
Sometimes, such idealizations may be possible: when modeling mechanical motion,
friction is often treated as negligible, and the resulting mechanical models may be
considered as idealized representations of actual bodies in motion (where friction
is inevitable), which nonetheless display wide applicability. Yet, in many areas of
science—not least those that deal with complex systems (such as the social sciences,
including economics)—it is often difficult, if not impossible, to determine in advance
which factors can, or cannot, be neglected. If idealization is understood as the pro-
cess of starting from real-world target systems and then proceeding by isolating
causally important factors from those of minor significance, then this methodology
may face serious limitations when it comes to complex systems.4 By contrast, Sug-
den’s notion of “credible world,” in line with other recent accounts of model-based
science, acknowledges the central role of model construction. Modeling, in essence,
amounts to the construction of credible worlds using representational tools (such as
mathematics); whether these successfully “latch on” to the actual world is a question

4This, it should be noted, is not the only that one may interpret the procedure of theoretically
“isolating” relevant factors; for an alternative view, see (Mäki 2009).
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which can only be successfully tackled once a model has been specified. Whereas
in the case of gradual idealization from real target system the satisfaction of world-
linking conditions can be assumed (if, perhaps, only initially), in the case of models
as credible worlds, such a linkage needs to be established subsequently—e.g., by
relying on such criteria as similarity, induction, and explanatory success. As Chao
(2014, p. 591) puts it rather succinctly,

if a prototype theoreticalmodel can be applied to a set of particularmodels across time, space,
and context, and each particular model is regarded as satisfactorily explaining a particular
[…] real-world phenomen[on], then it can be inductively concluded that this prototype
theoretical model is credible.

Naturally, on this account, an important criterion of the credibility of models is
their coherence—both internally and with known external (e.g., causal) constraints:
“If a model lacks coherence, its results cannot be seen to follow naturally from a clear
conception of how the world might be” (Sugden 2000, p. 26). Yet, coherence among
the model’s assumptions does not itself suffice: “For a model to have credibility, it
is not enough that its assumptions cohere with one another; they must also cohere
with what is known about causal processes in the real world”. (ibid.) However, in
order to conclude, with confidence, that a given credible-world model represents the
way the world actually is, a further step will typically be required: viz., the abductive
inference that, “[i]f a result R is caused by a set of causal factors F in the model world
M, and R occurs in the real worldW , then we have reason to believe that F operates
inW” (Chao 2014, p. 592). Failure to establish a model’s real-world connection need
not, however, disqualify the model from further study: while such a model could not
function as a surrogate for its real-world target, it may nonetheless substitute for
real-world inquiry.5

A similar conclusion regarding the sources of amodel’s credibilitymay be reached
from a perspective that acknowledges that models may serve a variety of functions.
In addition to representing actual target systems and deriving specific results, pre-
dictions, and explanations about them, models also help explore further avenues of
inquiry. From this perspective, whether or not a model is credible may not be solely
a matter of how faithfully it represents a given target system, and how closely its
results mirror the latter, but may also depend on how fruitful it is—for example, in the
generation of potential explanations, or when it comes to establishing in-principle
possibilities (or, as the case may be, impossibility theorems—which may play an
important role in guiding future inquiry). On the one hand, this acknowledges that,
in order to make headway in our attempts to model reality, we must sometimes
introduce falsehoods—not merely as an unavoidable side effect of idealization and
abstraction, but as a direct and deliberate consequence of making (sometimes heavy-
handed) model assumptions; on the other hand, it broadens the range of legitimate
uses of models to also include those instances of modeling that precede the full the-
oretical articulation of a phenomenon (or class of phenomena). Not all legitimate
uses of a model should, of course, be thought of as bolstering its credibility. Yet, if

5I am here drawing on Uskali Mäki’s distinction between “surrogate models” and “substitute mod-
els” (Mäki 2009, pp. 35–37).
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we take seriously the earlier idea that one can draw a parallel between the credibility
of models and the trustworthiness of interlocutors (see Sect. 10.2), it is not at all
far-fetched to insist that the credibility of a model goes beyond the brute empirical
reliability of the individual claims it makes about the world. Just as one person may
be deemed a “more credible choice” (as a candidate for political office, say) than
another, some models may be considered more credible than others—not because
of any decisive difference in their past track record, but because background con-
siderations suggest that they hold more promise than their competitors. Judgments
of credibility, we might say, are forward-looking—if positive, they engender trust
in future performance—in a way that is not captured by looking at brute empirical
track record alone. This line of argument is entirely compatible with, but does not
presuppose, the idea that some models may be best thought of as “credible worlds.”
Yet it acknowledges more explicitly that “exploratory modeling often serves the
purpose of developing a grasp of (as yet theoretically inaccessible) phenomena”
(Gelfert 2016, p. 95)—a situation that scientists encounter all the time. It also serves
as a reminder that assessments of a model’s credibility depend importantly on their
role and function: treating a model as a credible “proof of principle” (Gelfert 2016,
pp. 85–86), say, is a quite different matter from relying on it as a credible source of
precise numerical predictions.

As an example of such exploratory models, consider certain types of “toy mod-
els”—viz., models that are strongly idealized and simplified, so much so that they
may border on being minimal, “stylized” accounts of a single aspect of a target
phenomenon. Some such models may be derived from empirically well-confirmed
theories, e.g., when planetary motion is modeled as two point masses orbiting one
another. Such cases may be considered “embedded toy models,” since they are at the
same time models of an underlying well-developed theory and extremely simplified
and idealized models of phenomena. This contrasts with what has been called “au-
tonomous toy models” (Reutlinger et al. 2017): that is, extremely stylized models
that are not models of a theory (and which, in some cases, “seem to bear no rele-
vant relation to a well-confirmed framework theory” at all; ibid.: 11). When the lack
of such a relevant relation to an underlying theory is due to the absence of well-
developed theoretical resources that one might otherwise draw on, we may properly
deem such autonomous toy models “exploratory” in the sense discussed in the previ-
ous paragraph. Whereas, in the case of embedded toy models, the underlying theory
usually contains some of the resources required for successfully “de-idealizing” and
applying a model to a given target situation for predictive purposes, in the case
of autonomous toy models—and of exploratory models, more generally—empir-
ical prediction, let alone numerical accuracy, is rarely the explicit goal. Instead,
researchers often deploy exploratory models with the aim at generating intelligible
explanations of certain types of phenomena. The more we succeed in cultivating our
ability to “recognise qualitatively characteristic consequences […] without perform-
ing exact calculations” (De Regt and Dieks 2005, p. 151), the more trust we place
in exploratory models, all the while recognizing their intrinsic limitations. While we
must guard against mistaking any subjective “aha experiences” or fleeting feelings
of familiarity for signs of the truth of our models, we should not downplay the impor-
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tance of understanding to successful scientific practice. When researchers “refer to
the results of their simulations by saying ‘we trust our results’ or ‘we trust our com-
puter simulations’” they not only claim that the results are true (or approximately
true), but also that they “understand why they are correct (or approximately correct)”
(Durán 2018, p. 98). Recognizing exploratory fruitfulness as contributing to the cred-
ibility of a model does not entail that such fruitfulness can somehow compensate for
other deficiencies (e.g., representational failure, or lack of realism); rather it amounts
to yet another acknowledgment that the credibility of a model is the joint result of
features of the model, aspects of the world, and the cognitive goals and interests of
its users.

10.7 Summary

Simulation-basedmethods in science are deeply intertwinedwith the development of
credible conceptualmodels,where the lattermay be variously thought of as (pragmat-
ically adequate) representations of real-world targets, as constructions of “credible
worlds” that display internal and external coherence, or as exploratory tools that
may aid our understanding even before a well-developed theoretical account of a
phenomenon, or class of phenomena, becomes available. While it would be wrong
to think that computer simulationmethods are a “mere application” of the conceptual
model to a particular problem situation, it would likewise be misleading to assume
that the credibility of a simulation can somehow be divorced from that of the model.
To be sure, verifying that a computer simulation performs as intended and ascer-
taining furthermore that its results are valid across a range of empirical contexts are
important steps in establishing a simulation’s credibility. Yet, whether or not the
results of a simulation are credible also hinges on the credibility, or lack thereof, of
the underlying model. Yet such credibility, as this chapter has aimed to show, is not
up to the model alone, but is jointly constituted by features of the model and the
overall goals and cognitive interests of its users.

In much the same way that we demand of credible human interlocutors that they
be competent and trustworthy—that is, able and willing to give reliable information
across a range of relevant questions, without sudden unexpected failures—credible
conceptual models should make reliable and relevant information available to those
that depend on them. While this will often be a matter of how faithfully a model
represents an actual target system, it would be hasty to think that this exhausts the
concerns of scientists who depend onmodels and simulations. Sometimes, creating a
model that constitutes a “credible world” in its own right—even if does not map on to
the actual world—can help advance our understanding, and on yet other occasions,
the most credible model may simply be the one that shows the most promise in gen-
erating fruitful new lines of research.Whether a conceptual model enjoys credibility,
then, is as much a matter of its intrinsic structure and its relation to the world at large
as it is a reflection of the goals and cognitive interests of its users.
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Chapter 11
The Foundations of Verification
in Modeling and Simulation

William J. Rider

Abstract The practice of verification is grounded in mathematics highlighting the
fundamental nature of its practice. Models of reality are fundamentally mathematical
and verification assures the connection between the modeling intended and achieved
in code. Code verification is a process where the correctness of a computer code for
simulation and modeling is proven. This “proof” is defined by the collection of evi-
dence that the numerical approximations are congruent with the model for the physi-
cal phenomena.The keymetric in code verification is the order of accuracy of the
approximation that should match theoretical expectations. In contrast, solution
verification is an aspect of uncertainty estimation associated with numerical
error in simulations. Solution verification uses many of the same approaches as
code verification, but its principal outcome is an estimate of the numerical error. The
order of convergence is a secondary outcome. Together these two practices form an
important part of the foundation of quality and credibility inmodeling and simulation.

Keywords Verification · Error estimate · Convergence · Order-of-accuracy ·
Solution verification · Robust statistics

11.1 Verification in Modeling and Simulation

A very great deal more truth can become known than can be proven. – Richard Feynman,
“The Development of the Space-Time View of Quantum Electrodynamics,” Nobel Lecture
(11 December 1965, (Brown and Feynman 2000), p. 29)

Many models are expressed using the language of mathematics most often in the
form of differential equations. For simple or idealized cases, the equations for the
model can be solved though analytical means. For a variety of reasons, however, the
analytical solutions are limited and inadequate for modelingmost circumstances. For
this reason models are solved via computers and via numerical approximations. In
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the process of numerical approximation the propriety of computer modeling to the
intended model should not be assumed, but rather proven through careful checks and
tests. How do we do this in practice? How can we provide proof of the correctness
of the intended model as well as the accuracy of the model?

The answer to this question is the processes and procedures of verification. This
chapter is devoted to describing the foundational aspects of verification.

Theoretically, the conditions for the numerical approximation to solve a
model correctly are well known. The process of verification harnesses this the-
oretical knowledge to provide confidence in the numerical solution. In addition,
the numerical solutions are approximate thus (almost) always deviating from the
exact solution.1 Verification also provides means to quantify this error.

Inmodeling and simulation verification is a set of activities broadly supporting the
quality. Verification is a dominantly mathematical exercise that assures the quality
of models. In this chapter the utility of verification is focused on models described
by differential equations. The practice of verification for models based on other
approaches is not discussed here.Verification is paired with validation as a means
to assure modeling quality. Validation is the comparison of simulated results with
physical reality either from experiments or observations. Validation is an exercise in
physics and engineering.

Verification consists of two modes of practice: code verificationwhere the math-
ematical correctness of the computer code is assessed, and solution (calculation)
verification where the numerical error (uncertainty) is estimated (for verification,
these errors include discretization error, linear, and nonlinear equation solution tol-
erance/discrepancy, round-off error, and parallel processing consistency; see Chap. 3
by Roy in this volume for a classification of errors). Solution verification is a core
practice in estimating numerical error in simulations subjected to validation, or sim-
ply as part of a modeled prediction. Both activities are closely linked to each other
and they are utterly complementary in nature. To a large extent the methodology
used for both types of verification is similar. Much of the mathematics and flow of
work are shared in all verification, but details, pitfalls and key tips differ (Rider et al.
2016), and the differences between the two are important to maintain (Roache 1998,
2009; Stern et al. 2001; Oberkampf and Roy 2010).

The remainder of the chapter will provide basic overviews of code verification
(Sect. 11.2) and solution verification (Sect. 11.4) including simple examples of each
of these key practices.

1There are some simple cases where numerical solutions are exact. These cases are often simple or
highly contrived such as the finite element “patch” test.
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11.2 Code Verification

Science replaces private prejudice with public, verifiable evidence. – Richard Dawkins, The
Enemies of Reason, The Irrational Health Service2

Computer modeling and simulation is often an activity where continuousmathemat-
ics is converted to discrete computable quantities. This process involves approxi-
mation of the continuous mathematics and in almost every non-pathological circum-
stance is inexact. The core of modeling and simulation is the solution of (partial)
differential equations using approximation methods. Code verification is a means
of assuring that the approximations used to make the discrete solution of dif-
ferential equations tractable on a computer are correct. A key aspect of code
verification is determining that the discrete approximation of the differential equa-
tion is consistent with the continuous version of the differential equation.

Analytical consistency demands that the so-called order of accuracy of the dif-
ferential equation be at least one. In other words, the discrete equations produce
solutions that are the original continuous equations plus terms that are proportional
to the size of the discretization or to a higher power of it. In verification practice,
consistency is the observation of a positive convergence rate indicating convergence.
Numerical methods can properly exhibit sublinear convergence rates while operating
completely correctly (Banks et al. 2008). This character may be examined by solving
problems with an exact analytical solution (or a problem with very well controlled
and characterized errors) using several discretization sizes allowing the computation
of errors, and determining the order of accuracy.

It has been shown that the combination of consistencywith stability of the approx-
imation means that the approximation converges to the correct solution of the con-
tinuous differential equation (Lax and Richtmyer 1956). A simple definition of sta-
bility is the nature of a solution where small changes in the conditions result in small
changes in solution. If the solution changes greatly due to small changes, the solution
is unstable. The stability is associated with the appropriate concept for the approx-
imation in question, e.g., 0-stability for ODEs or Von Neumann stability for PDEs.
For steady-state solutions require a certain attention to stability of the approximation
when approached iteratively. In these cases the stability can mimic that associated
with time-dependent solutions.

I will examine both the nature of different types of problems to determine code
verification and the methods of determining the order of accuracy. One of the key
aspects of code verification is the congruence of the theoretical order of accuracy
for a method, and the observed order of accuracy. The latter is obtained from a
comparison of simulation outputs with a reference solution. The former is usually
determined via a numerical analysis exercise using a series expansionmethod such as
Taylor series or Fourier series. It can be done via pen and paper, chalkboard or more
recently via symbolic arithmetic. The discrete system of variables is approximated

2Documentary, dir. Russel Barnes; writer Richard Dawkins; 2007, here quoted from https://www.
goodreads.com.
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and the approximations are then replaced by one of these series expansions. Such
methods are described in numerical analysis texts where solvers for ODEs are the
simplest rudimentary examples.

It is important to note that the theoretical order of convergence also depends
upon the problem being solved. The order of convergence is a product of both this
order of accuracy, and the problem being solved and its degree of mathematical
smoothness, the existence of derivatives of the function. The problem must possess
enough regularity to support the convergence rate expected. For some problems the
correct observed rate of convergence does not match the asymptotic rate of conver-
gence because of the nature of the solution or the lack of an asymptotic range itself
(i.e., problems with singularities) (Banks et al. 2008). At this point it is important
to point out that code verification produces both an order of accuracy and an
observed error in solution. Both of these quantities are important. For code ver-
ification, the order of accuracy is the primary quantity of interest. It depends
on both the nature of the approximation method and the problem being solved.
If the problem being solved is insufficiently regular and smooth (sufficient existence
of derivatives of the functional solution), the order of accuracy will not match the
theoretical expectations of the method.

As mentioned above, the key idea behind code verification is determining that the
discrete approximation of the differential equation is consistent with the continuous
version of the differential equation. To ensure this, the error is determined by com-
paring the output of the computer simulation with an otherwise available solution.
Ideally the available solution is produced by a precise analytical method. One can
then produce a sequence of numerical approximations and check to see if the theory
available explains or predicts the dependence of the error on the parameter defining
the sequence. If the theory and the observed behavior is consistent, the sequence
provides evidence of correctness.

When one conducts a code verification study there is a basic flow of activities and
practices to conduct. First, one looks at a code to target and a problem to solve. Several
key bits of information should be immediately focused upon before the problem is
solved.What is the order of accuracy for the method in the code being examined, and
what is the order of accuracy that the problem being solved can expose? In addition
the nature of the analytical solution to the problem should be carefully considered.
For example what is the nature of the solution? Closed form? Series expansion?
Numerical evaluation? Some of these forms analytical solution have errors that must
be controlled and assessed before the codes method may be assessed. By the same
token are there auxiliary aspects of the codes solution that might pollute results?
Solution of linear systems of equations? Stability issues? Computer roundoff or
parallel computing issues? In each case these details could pollute results if not
carefully excluded from consideration.

Next, one needs to produce a solution on a sequence of meshes by running the
simulation program. For simple verification using a single discretization parameter
only two discretizations are needed for verification (two equations to solve for two
unknowns). For code verification the standard model for error is simple, gener-
ally a power law, Ek = Ahak where the error Ek in the kth solution is proportional
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to the discretization parameter hk to the power (order) a. The constant of propor-
tionality is A. The order, a, is the target of the study and one looks at its congruence
with the expected theoretical order for the method on the problem being solved. It is
almost always advisable to use more than the minimum number of meshes to assure
that one simply is not examining anomalous behavior from the code.

One of the problems with code verification is the rarity of the observed order of
convergence to exactly match the expected order of convergence (for numerical work
what does “exact” mean?). The question of how close is close enough haunts investi-
gations. Invariably the observed order will deviate from the expected order by some
amount. The question for the practitioner is how close is acceptable? Generally this
question is given little attention.There are more advanced verification techniques
that can put this issue to rest by producing uncertainties on the observed order,
but the standard techniques simply produce a single result. Usually this results
in rules of thumb that apply in broad brushes, but undermine the credibility of the
whole enterprise. Often the criterion is that the observed order should be within a
tenth of the theoretically expected result. More generally, common sense should be
applied to the decision-making as long as it can be justified.

Another key caveat comes up when the problem is discontinuous, meaning the
solution of the equations contains a jump in variables. In this case the observed order
is either set to one for nonlinear solutions, or weakly tied to the theoretical order
of convergence. For the wave equation this result was studied by Banks, Aslam
and Rider and admits an analytical and firmly determined result. Banks et al.
(2008) In this case the issue of inexact congruence with the expected rate of
convergence remains. In addition for problems involving systems of equations will
have multiple features each having a separate order of convergence, and the rates
will combine within a solution. Ultimately in an asymptotic sense the lowest order
of convergence will dominate as h → 0. This is quite difficult to achieve practically.

The last major issue that comes up in code verification (and solution verification
too) is the nature of the discrete mesh and its connection to the asymptotic range of
convergence. All of the theoretical results apply when the discretization parameter h
is small in a broad mathematical sense. This is quite problem specific and generally
ill defined. Examining the congruence of the numerical derivatives of the analytical
solution with the analytical derivatives can generally assess this. When these quan-
tities are in close agreement, the solution can be considered to be asymptotic. Again
these definitions are loose and generally applied with a large degree of professional
or expert judgment.

It is useful to examine these issues through a concrete problem in code verification.
The example I will use is a simple ordinary differential equation integrator for a linear
equation du(t)/dt = −au(t) coded up inMathematica.We could solve this problem
in a spreadsheet (like MS Excel), python, or a standard programming language. The
example will look at two first-order methods, forwards u(tn+1) + ahu(tn) = u(tn)
and backwards u(tn+1) + ahu(tn+1) = u(tn) Euler methods. Both of these methods
produce leading first-order errors in an asymptotic sense, Ek = Chk + O(h2k). If hk is
large enough, the high-order terms will pollute the error and produce deviations from
the pure first-order error. Let us look at this example and the concrete analysis
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from verification.This will be instructive in getting to similar problems encountered
in general code verification.

Here is the Mathematica code we are going to verify

ForwardEuler[h_, T_, a_] :=

(

uo = 1;

t = 0.0;

While[t < T,

(* integration *)

t = t + h;

un = uo + a h uo;

Print["t= ", t, " u(t) = ", un, " err = ", Abs[un - Exp[a t]]];

uo = un

];

)

BackwardEuler[h_, T_, a_] :=

(

uo = 1;

t = 0.0;

While[t < T,

(* integration *)

t = t + h;

un = uo/(1 + a h);

Print["t= ", t, " u(t) = ", un, " err = ", Abs[un - Exp[a t]]];

uo = un

];

)

This is coded in Mathematica for both a forward and backward Euler method for
a linear ODE. The code is similar to what one might code in C or Pascal. It is a
coded version of the difference equations expressed in the previous paragraph. This
is probably about as simple as a numerical method can be.

Let us look at the forward Euler integrator for several different choices of h,
different end times for the solution and a number of discrete solutions using the
method. I will do the same thing for the backwards Euler method, which is different
because it is unconditionally stable with respect to step size. Both the forward and
backwards Euler methods are first-order accurate as a analyzed via Taylor series
expansions. For this simple ODE, the method is stable to a stepsize of h = 2 and I
can solve the problem to three stopping times of T = 1.0, T = 10.0 and T = 100.0.
The analytical solution is always, u(T ) = exp (−aT ). I then solve this problem using
a set of step sizes, h = 1.0, h = 0.5, h = 0.25, h = 0.125 to demonstrate different
convergence behaviors.
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Table 11.1 Computed order of convergence for forward Euler (FE) and backward Euler (BE)
methods for various stopping times and step sizes. The rates of convergence deviate from theory
under many circumstances

h FE T=1 FE T=10 FE T=100 BE T=1 BE T=10 BE T=100

1 1.64 0.03 0 0.79 1.87 16.99

0.5 1.20 0.33 4e-07 0.88 1.54 11.78

0.25 1.08 0.65 0.002 0.93 1.30 7.17

0.125 1.04 0.83 0.05 0.96 1.16 4.07

0.0625 1.02 0.92 0.27 0.98 1.08 2.40

0.03125 1.01 0.96 0.55 0.99 1.04 1.63

I can give results for various pairs of step sizes with both integrators, and see
some common pathologies that we must deal with. Even solving such a simple
problem with simple methods can prove difficult and prone to heavy interpretation
(arguably the simplest problem with the simplest methods). Much different results
are achievedwhen the problem is run until different stopping times.We see the impact
of accumulated error (since I am using Mathematica so aspects of round-off error
are pushed aside). In cases where round-off error is significant, it would be another
complication. Furthermore the backward Euler method for multiple equations would
involve a linear (or nonlinear) solution that itself has an error tolerance that may
significantly impact verification results.

These results are compiled in Table 11.1 showing significant variation in the
method’s performance. We see good results for T = 1.0 and a systematic deviation
for longer ending times. The good results are associated with the observed con-
vergence rate being close to the theoretically expected rate. This problem has been
acknowledged in the ODE community for long integration times and is expected.
At the core are differences between the local errors associated with truncation error
and global error associated with full calculations (Ascher and Petzold 1998; Hairer
et al. 1993). We would not expect this to occur for boundary value problems. To
get acceptable verification results would require much smaller step sizes (for longer
calculations!). This shows how easy it is to scratch the surface of really complex
behavior in verification that might mask correctly implemented methods.What
is not so well appreciated is that this behavior is expected and amenable to analysis
through standard methods extended to look for it.

11.3 Types of Code Verification Problems and Associated
Benchmarks

Dont give people what they want, give them what they need. – Joss Whedon, Conversations
(University Press of Mississippi, 2011, (Lavery and Burkhead 2011), p. 31)
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The problem types are categorized by the difficulty of providing a solution coupled
with the quality of the solution that can be obtained. These two concepts go hand
in hand. A simple closed form solution is easy to obtain and evaluate. Conversely, a
numerical solution of partial differential equations is difficult and carries a number of
serious issues regarding its quality and trustworthiness. These issues are addressed
by an increased level of scrutiny on evidence provided by associated bench-
marks. Eachbenchmark is not necessarily analytical in nature, and the solutions
are each constructed in different means with different expected levels of qual-
ity and accompanying benchmarks. This necessitates the differences in level
of required documentation and accompanying supporting material to assure
the user of its quality. These recommendations are the direct result of executing
code verification for high consequence programs for nearly twenty years. Invariably
when code verification produces concerns for an important code, the credibility of
the verification problem itself is questioned.

Next, I provide a list of types of benchmarks alongwith an archetypical example of
each. This is intended to be instructive to the experienced reader, who may recognize
the example. The list is roughly ordered in increasing level of difficulty and need for
greater supporting material (Kamm et al. 2008).

• Closed form analytical solution (usually algebraic in nature). Example: Incom-
pressible, unsteady, 2-D, laminar flow given by the Taylor and Green known as
the Taylor-Green vortices (note the 3-D version of this problem does not have an
analytical solution, but is a common benchmark problem) Taylor, G. I. and Green,
A. E., Mechanism of the Production of Small Eddies from Large Ones, Proc. R.
Soc. Lond. A, 158, 499521 (1937) (Taylor and Green 1937; Kim and Moin 1985;
Drikakis and Rider 2006).

• Analytical solution with significantly complex numerical evaluation.
• Series solution. Example:Numerous classical problems, inH.Lambsbook,Hydro-
dynamics, Cambridge University Press (or Dover), 1932 (Lamb 1932). Classical
separation of variables solution to heat conduction. Example: Incompressible,
unsteady, axisymmetric 2-D, laminar flow in a circular tube impulsively started
(Szymanski flow), given in White, F. M. (1991). Viscous Fluid Flow, New York,
McGraw Hill, pp. 133–134 (White 1991).

• Nonlinear algebraic solution. Example: The Riemann shock tube problem, J. Got-
tleib, C. Groth, Assessment of Riemann solvers for unsteady one-dimensional
inviscid flows of perfect gases, Journal of Computational Physics, 78(2), pp. 437–
458, 1988 (Gottlieb and Groth 1988).

• A similarity solution requiring a numerical solution of nonlinear ordinary differ-
ential equations.

• Manufactured Solution. Example: Incompressible, steady, 2-D, turbulent, wall-
bounded flow with two turbulence models (makes no difference to me), given in
Ea, L.,M.Hoekstra, A. Hay andD. Pelletier (2007). “On the construction ofmanu-
factured solutions for one and two-equation eddy-viscosity models.” International
Journal for Numerical Methods in Fluids. 54(2), 119–154 (Eça et al. 2007).
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• Highly accurate numerical solution (not analytical). Example: Incompressible,
steady, 2-D, laminar stagnation flow on a flat plate (Hiemenz flow), given inWhite,
F. M. (1991). Viscous Fluid Flow, New York, McGraw Hill. pp. 152–157 (White
1991).

• Numerical benchmarkwith an accurate numerical solution. Example: Incompress-
ible, steady, 2-D, laminar flow in a driven cavity (with the singularities removed),
given in Prabhakar, V. and J. N. Reddy (2006). “Spectral/hp Penalty Least-Squares
Finite Element Formulation for the Steady Incompressible Navier–Stokes Equa-
tions.” Journal of Computational Physics. 215(1), 274–297 (Prabhakar and Reddy
2006).

• Code-to-code comparison data. Example: Incompressible, steady, 2-D, laminar
flow over a back-step, given inGartling, D. K. (1990). “ATest Problem forOutflow
Boundary Conditions-Flow Over a Backward-Facing Step.” International Journal
for Numerical Methods in Fluids. 11, 953–967 (Gartling 1990).

Below is a list of the different types of data associated with verification problems
defined above. Here, “data” refers to information that needs to be given about the
benchmarks, and not empirical data from the target system of the simulation.

Depending on the nature of the test problem only a subset of these data
are advisable. This will be provided below in the following list of data types. As
noted above, benchmarks with well-defined closed form analytical solutions require
relatively less d than a benchmark associatedwith the approximate numerical solution
of PDEs.

• Detailed technical description of the problem (report or paper)
• Analysis of the mathematics of the problem (report or paper)
• Computer analysis of solution (input file)
• Computer solution of the mathematical solution
• Computer implementation of the numerical solution
• Error analysis of the exact numerical solution
• Derivation of the source term and software implementation or input
• Computer implementation of the source term (manufactured solution)
• Grids for numerical solution
• Convergence and error estimation of approximate numerical solution
• Uncertainty and sensitivity study of numerical solution
• Description and analysis of computational methods
• Numerical analysis theory associated with convergence
• Code description/manuals
• Input files for problems and auxiliary software
• Patch test description, Derivation, input and analysis
• Unusual boundary conditions (inflow, piston, etc.)
• Physics restrictions (boundary layer theory, inviscid,)
• Software quality documents
• Scripts and auxiliary software for verification
• Source code
• Metric descriptions
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• Verification results including code version, date, etc.
• Numerical sensitivity studies
• Feature coverage in verification

The mapping of these forms of documentation to the different types of verification
problems is given in the appendix at the end of the chapter. The wealth of potential
documentation for verification work highlights the complexity of the professional
practice of verification. The work is far more involved and technical than commonly
appreciated.

The use of direct numerical simulation (DNS) (Moin and Mahesh 1998; Moser
et al. 1999; Le et al. 1997) requires a similar or even higher level of documentation
than analytical solutions. This topic is being addressed because of increasing interest
in using comparison to DNS as a means of assessing the quality and correctness
of simulation in many fields most prominently fluid dynamics. DNS is commonly
used in fluid dynamics research and other fields also being called “first principles”
or “fully resolved” and used in a similar vein. Here, I will adopt the term DNS to
describe this broader class of simulations discussing their appropriate use in code
verification (Galli and Pasquarello 1993;Kotschenreuther et al. 1995). This coincides
with the discussion of the last type of verification benchmark where a complex
numerical methodwith significant approximations is utilized to produce the solution.
As a numerically computed benchmark, the burden of proof is much larger.
Code verification is best served by exact analytical solutions because of the relative
ease in assuring benchmark solution accuracy. Nonetheless, it remains a common
practice due to its inherent simplicity. It also appeals to those who have a vested
interest in the solutions produced by a certain computer code. The credibility of the
comparison is predicated on the credibility of the code producing the benchmark
used as the surrogate for truth. Therefore the documentation of the benchmark must
provide the basis for the credibility.

The use of DNS as a surrogate for experimental data has received significant
attention. This practice violates the fundamental definition of validation we have
adopted because no observation of the physical world is used to define the data. This
practice also raises other difficulties, which I will elaborate upon. First the DNS code
itself requires that the verification basis be further augmented by a validation basis
for its application. This includes all the activities that would define a validation study
including experimental uncertainty analysis numerical and physical equation based
error analysis. Most commonly, the DNS is promoted to provide validation, but the
DNS contains approximation errors that must be estimated as part of the error bars
for the data. For most DNS simulations the results are only significant statistically.
As such the data must be processed to produce various statistical measures with
necessary attention being paid to statistical convergence as well. Furthermore, the
code must have documented credibility beyond the details of the calculation
used as data. This level of documentation again takes the form of the last form
of verification benchmark introduced above because of the nature of DNS codes.
For this reason I include DNS as a member of this family of benchmarks.
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11.4 Solution Verification

There are two ways to do great mathematics. The first is to be smarter than everybody else.
The second way is to be stupider than everybody else – but persistent. – Raoul Bott3

The second form of verification is solution verification. This is quite similar to code
verification, but its aim is the estimation of approximation errors in a calculation.
When one runs into a problemwithout an analytical solution, the estimation of errors
is more intricate because errors are not known andmust be estimated from an approx-
imate solution. One examines a series of solutions and estimates the solution that is
indicated by the sequence. Essentially the question of what solution is the approx-
imation appearing to converge toward is being asked. If the sequence of solutions
converges, the error in the solution can be inferred. As with code verification the
order of convergence and the error is a product of the analysis. Conversely to
the code verification, the error estimate is the primary quantity of interest, and
the order of convergence is secondary.

Most often, solution verification involves examining error and results without the
knowledge the exact solution. This makes it a more difficult task than code veri-
fication where an exact solution is known removing a major uncertainty. A sec-
ondary issue associated with not knowing the exact solution is the implications
on the nature of the solution itself. With an exact solution, a mathematical struc-
ture exists allowing the solution to be achievable analytically. Furthermore, exact
solutions are limited to relatively simple models that often cannot model reality.
Thus, the modeling approach to which solution verification is applied is necessarily
more complex. All of these factors are confounding and produce a more perilous
environment to conduct verification.

The way to cope with this generally more hostile analysis environment involves
improved analysis methods. One of the key elements in the analysis is contending
with the lack of certainty about the solution, its nature and character mathematically.
For this reason the knowledge and guarantees about the results is missing. For
instance we do not know what order of convergence to reasonably expect from
the analysis and cannot use this to screen our results. Generally speaking, if
the verification result shows convergence at the theoretical rate for the method we
can be sure we are solving problems that have smooth regular solutions either by
character or sufficient mesh resolution. Usually the applied problems that modeling
and simulation are attacking are mathematically difficult and may not be practically
amenable to computational resolution sufficient to assure regularity. Philosophically,
the whole reason for modeling and simulation is solving problems that are beyond
our analytical grasp. In a deep sense the complex and difficult character to problems
is unavoidable for the practical a use of modeling with computers. When we have
successfully attacked the problem of verification for a problem without an exact
solution, the same analysis methodology can improve our code verification practice.

3Quoted from http://www-history.mcs.st-and.ac.uk/Quotations/Bott.html.

http://www-history.mcs.st-and.ac.uk/Quotations/Bott.html
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It is important to understand solution verification within the broader context of
computational modeling. Solution verification contributes to the overall enter-
prise of analysis uncertainty quantification. The most classical investigation will
involve comparing the modeled results with observations in the real World (ideally
an experiment). There are many elements to the uncertainty in this case including the
model parameters, the constitutive properties, the experimental measurements and
the numerical solution. Solution verification is the process for examining and esti-
mating the numerical error and specifying its uncertainty. Sometimes this is applied
in the use of computational modeling for purposes of decision-making or scenario
testing where no real World data exists. In this case the numerical error is an impor-
tant element in the overall lack of certainty about the results. If the numerical error is
well behaved it will be a bias from the exact continuum solution to the model. This
bias is important to understand in how it might skew the results and any advise.

When one lays out the mathematical framework for solution verification, the
immediate impression is an added difficulty compared to code verification. This is
due to the lack of direct knowledge of the precise solution. The full solution to the
problem is inferred from the inaccurate numerical solutions. The equation to solve
is the following S0 = Sk + Chak where the new unknown is the ostensible estimate
of the exact solution S0 that is the solution where h = 0. The solutions used to
determine this estimate are Sk the solutions found with hk .We notice that we have
three unknowns, S0,C, a meaning that the well-determined solution requires
three pieces of determined data, Sk .As we will discuss, this problem can be solved
in a variety of ways including under-, fully and overdetermined forms. (Here the
problem, is over- (or under-)determined if we have more (or less) Sk than for a well-
determined problem.) We also note that another option when more data is available
would be to expand the error ansatz to include more degrees of freedom.

One of the key issues to recognize with solving this problem is an aspect of
complexity because of the general nonlinearity of the determination of the model.
The solution to this coupled system of nonlinear equations is generally subtle, and
necessarily solved numerically. As such, the solution can have its own errors requir-
ing some care and verification. The system of equations admits a simple analytical
solution in special cases where the discrete solutions use a sequence of meshes
where r = hk/hk−1 is constant. In this case we can write the solution in closed
form log(E1,2/E2,3)/ log(r), where Ek,k−1 = Sk − Sk−1. More generally, we need
to attack this with a coupled nonlinear solve. If we deal with an overdetermined
version of the problem we will use a nonlinear least squares solver (or this is the
knee-jerk response at least). One could also seek to modify or enrich the error ansatz
to utilize the extra degrees of freedom. As I discuss next, following the nonlinear
least squares path opens the door to somemore interesting and robust choices (Huber
1996).

The general overdetermined version of the solution verification equation (i.e.,
more than three grids) would be amenable to solution via nonlinear least-squares
method. This is not the only choice, and consideration of this opens the door to
other choices. The solution to the overdetermined problem is not unique, and
the solution has the imprint of the method of solution.As such the choice of least
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squares implies a number of explicit assumptions that the typical practitioner does
not even know they are making. For example, one may choose to solve the overdeter-
minedproblem in adifferent norm than the twonorm (i.e., least squares) (Bjork1996).
Onemay choose to solve a constrained problem instead of an unconstrained problem.
In addition, one could consider solving an under-determined problem adding either
constraints or regularizing the solution. A classical example of regularization is the
Tikhonov method where a penalty is added to make the problem well determined.
A popular recent approach focuses on a similar regularization, but in the one norm
(compressed sensing, LASSO, ...) (Rider et al. 2016; Tibshirani 1996).

There are several practical issues related to this whole thread of discussion. One
often encountered and extremely problematic issue is insanely high convergence
rates. After one has been doing verification or seeing others do verification for a
while, the analysis will sometimes provide an extremely high convergence rate. For
example a second-order method used to solve a problem will produce a sequence
that produces a seeming 15th order solution (this example is given later). This is
a ridiculous and results in woeful estimates of numerical error. A result like this
usually indicates a solution on a tremendously unresolvedmesh, and a generally
unreliable simulation. This is one of those things that analysts should bemindful
of. Constrained solution of the nonlinear equations can mitigate this possibility
and exclude it a priori. This general approach including the solution with other
norms, constraints and other aspects is explored in (Rider et al. 2016). The key
concept is that the solution to the error estimation problem is not unique and highly
dependent uponmany unwritten assumptions. Different assumptions lead to different
results to the problem and can be harnessed to make the analysis more robust and
impervious to issues that might derail it.

The techniques discussed in that paper were originally devised to deal with the
all too common case where only one or two different grids are used and the error
estimation problem is under-determined. The approach taken to solve this problem
involves adding constraints to the solution based on expert knowledge and judgment.
This problem was then approached when it was realized that the under- fully- and
overdetermined cases should all be treated consistently.The verification problem is
solved repeatedly using different assumptions resulting in a natural variation in
the results providing uncertainty in the error estimation and the rate of conver-
gence. If the data is self consistent with a well-defined solution the uncertainty
in the error will itself be small and the convergence rate will also be certain.
Conversely if the data is conflicting or opposes expert expectations, the uncertainty
will be large. This entire methodology produces a more robust numerical uncertainty
that adapts to the data, and avoids using fixed size safety factors. It turns out that
this expert judgment is usually called into action with verification, but in an ad hoc
manner and only when the issues are serious. So-called robust verification adds the
expert judgment from the outset so that more subtle issues are subject to the same
treatment.

Instead of solving the verification equation once using a nonlinear least-squares
approach, robust verification solves the problem in amultitude of ways. This involves
solving the verification problem using other error norms in a constrained minimiza-
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Table 11.2 Computed solution verification error estimates for forward Euler (FE) for various step
sizes. The same simple linear ODE is solved as in the code verification section

h Solution, t=1 Error, t=1

0.20 0.3277 0.0402

0.10 0.3487 0.0192

0.05 0.3585 0.0094

0.02 0.3642 0.0037

0.01 0.3660 0.0018

Estimate 0.3678 ±0.0002

tion framework. The data from a verification study is also used over. One standard
assumption is that the solutions on the finer grids (smaller h) are closer to the exact
solution, and this data is more prominent in the solution. The end result of the
analysis is a multitude of estimates of the numerical error and convergence. These
results are then subjected to robust statistical examination using median statis-
tics. We report the median of the estimates as the error and convergence rate.
The median deviation is used to place an uncertainty on this estimate. One of
the key benefits of this estimation is its lack of susceptibility to corruption by
outliers in the analysis. Outliers are further suppressed in the analysis by the use of
expert judgment as constraints. For example, the absurdly large convergence rates
are removed by the constraints if the rate of convergence is constrained to be below
a given value.

Before moving to examples of solution verification we will show how robust
verification can be used for code verification work. Since the error is known, the
only uncertainty in the analysis is the rate of convergence. As we can immediately
notice, this technique will get rid of a crucial ambiguity in the analysis. In standard
code verification analysis, the rate of convergence is never the exact formal order,
and expert judgment is used to determine if the results is close enough.With robust
verification, the convergence ratehas anuncertainty and thequestionofwhether
the exact value is included in the uncertainty band can be asked.Before showing
the results for this application of robust verification, we need to note that the exact
rate of verification is only the asymptotic rate in the limit of h = 0. For a finite step
size the rate of convergence should deviate from this value and for simple cases the
value can be derived using a modified version of classical numerical analysis.

Our first example of solution verification will repeat our examination of simple
ODE integrators, but disregard our knowledge of the exact solution. The results of
this study are given in Table 11.2 showing the solution and true error for different
step sizes. It is a useful example because we can examine the efficacy of solution
verification with a precise knowledge of the true errors.We can use the data from
our code verification study to good effect here. Here is the raw data used for the
forward Euler study.
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For the code verification part of the example, the estimated truncation error is
E = 0.2030h1.0245±0.0124 (the constant also has uncertainty, but its value has to be
matched to the solution and convergence rate). The error bars do not take us to the
theoretical convergence rate of one. The data is consistent with the rate being above
one (and this is analytically expected). Using this same data for solution verification
yields the following model, S(h) = 0.3678 ± 0.0002 − 0.2080h1.0386±0.0207. Close
examination shows that this solution is quite close to the exact solution 0.0001 and
within the error bars. If we use the standard techniques of simply least square fitting
the data we get the following model, S(h) = 0.3677 − 0.2239h1.0717. The error esti-
mate here is 0.0017, which ends up being rather over generous when the standard
safety factor of 1.25 is applied. Using the robust verification technique we get a
better estimate of the exact solution, the actual convergence rate and a tighter
error bound.

11.5 Solution Verification for Complex Problems

Supposing is good, but finding out is better. – Mark Twain, Autobiography of Mark Twain,
Vol. 3 (2015, (Twain 2015), p. 99)

It is also useful to look at a pathological case where the rate of convergence is absurd
and standard analysis would be prone tomissing it. The case we have at our fingertips
involved very coarse grid solutions to large eddy simulation in a complex geometry
relevant to heat transfer and fluid flow in nuclear reactors (Sagaut 2006). Early
calculations were used to estimate the mesh required for well-resolved calculations.
As we found out, this is a perilous enterprise. A couple of codes (one production
and one research) we enlisted in this study used some initial grids that were
known tobe inadequate.One of the codeswas relativelywell trusted for this class
of applications and produced three solutions that for all appearances appeared
reasonable. An example solution is shown in Fig. 11.1 (Rider et al. 2010). One
of the key parameters is the pressure drop through the test section. Using grids
664K (664,000), 1224K and 1934K elements we got pressure drops of 31.8kPa,
24.6kPa and 24.4kPa respectively. Using a standard curve fitting for the effective
mesh resolution gave an estimate of 24.3 kPa ± 0.0080 kPa for the resolved pressure
drop and a convergence rate of 15.84. This is an absurd result and needs to simply be
rejected immediately.Using the robust verificationmethodology on the same data set,
gives a pressure drop of 16.1 kPa ± 13.5 kPa with a convergence rate of 1.23, which
is reasonable. Subsequent calculations on refined grids produced results that
were remarkably close to this estimate confirming the power of the technique
even when given data that was substantially corrupted.

Our final example is a simple case of validation using the classical phenomena
of vortex shedding over a cylinder at a relatively small Reynolds number. Solution
verification should be an integral part of any proper validation exercise as part of
a systematic identification of modeling uncertainty. This is part of a reasonable
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Fig. 11.1 A cross section of the flow in a unit cell for the large eddy simulation considered here

effort to validate a research code before using in on more serious problems. The
key experimental value to examine is the Stouhal number defined, St = f �/U the
shedding frequency f normalized by the size � of the cylinder and the velocity U ,
which has the value experimentally of 0.164 ± 0.005 for a flow of Reynolds number
100 (theReynolds number is the non-dimensional ratio of inertial to viscous force in a
flow). In Fig. 11.2 I show the calculations and the raw data for one of the calculations
used (Pawlowski et al. 2006; Lin et al. 2006). Some of the raw data for shedding
frequency is provided in Table 11.3.

When we apply the robust verification methodology to this data I find that the
code produces a Strouhal number that is slightly larger than the experimental value
St (h) = 0.1657 ± 0.0013 + Ch1.8486±0.1476. Including error bars recovers the exper-
imental value within the bounds. This can be regarded as a modest success for the
codes ability to be considered for more complex flows.
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Fig. 11.2 A frame of the solution quantities for the vortex shedding example including the solution
and shedding data generated

Table 11.3 Computed Strouhal number estimates for vortex shedding for mesh sizes

�t RMS h St

0.002 0.054111988 0.110474853

0.002 0.023801688 0.152492294

0.002 0.010786082 0.164777976

0.002 0.005264375 0.165127187

11.6 Conclusion and Prospectus

The foundation of data gathering is built on asking questions. Never limit the number of
hows, whats, wheres, whens, whys, and whos, as you are conducting an investigation. A
good researcher knows that there will always be more questions than answers. – Karl Pippart
III, Operation Mexico! (Pippart 2015)4

In this chapter I have examined the foundational aspects of verification. I have pro-
vided the common core ofmathematical expressions of numerical error used to define
both the process of code and solution verification. In each case we have given exam-
ples of the practice. Code verification is reliant upon exact solutions whereas solution
verification does not have this luxury. I have discussed the numerous ways code ver-
ification can be accomplished. Code verification acts to confirm that a numerical

4Here quoted after https://www.goodreads.com/author/quotes/14129212.Karl_Pippart_III.

https://www.goodreads.com/author/quotes/14129212.Karl_Pippart_III
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approximation is implemented correctly by compiling mathematical evidence of
correctness. Solution verification produces evidence of the magnitude of the numer-
ical error, and the well-behaved nature of the systematic approximations present in
the modeling. Both practices are grounded on the same model for numerical
error and involve solving problems on a sequence of numerical grids to deter-
mine the coefficients in the error model. Together these two practices provide
a cornerstone for credibility of a modeling and simulation activity. Ultimately
the foundation of verification is grounded on asking hard questions about numerical
methods used in simulation and collecting evidence about the answers.
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Appendix

Details of Code Verification Documentation

Below, I briefly describe the characteristics of each type of benchmark documen-
tation (could be called artifacts or meta-data) associated with a code verification
benchmarks. These artifacts take a number of concrete forms such as a written doc-
ument, computer code, mathematical solution in document or software form, input
files for executable codes, input to automatic computer analysis, output from soft-
ware quality systems, among others. While all of these will not typically exist, a
subset of these documents should be available to support any questions or concerns
about the verification problem or its implementation.

• Detailed technical description of the benchmark (report or paper): This can include
a technical paper in a journal or conference proceeding describing the benchmark
and its solution. Another form would be a report informal or formal from an
institution providing the same information.

• Analysis of the mathematics (report or paper): For any solution that is closed
form, or requiring a semi-analytical solution, the mathematics must be described
in detail. This can be included in the paper (report) discussed previously or in a
separate document.

• Computer analysis of solution (input file): If the mathematics or solution is accom-
plished using a computerized analysis, the program used and the input to the pro-
gram should be included. Some sort of written documentation such as a manual
for the software ideally accompanies this artifact.
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• Computer solution of themathematical solution: The actual computerized solution
of the mathematical problem should be included in whatever form the comput-
erized solution takes. This should include any error analysis completed with this
solution.

• Computer implementation of the numerical solution: The analytical solution
should be implemented in a computational form to allow the comparison with
the numerical solution. This should include some sort of error analysis in the form
of a report.

• Derivation of the source term and software implementation or input: In the case of
the method of manufactured solutions, the source term used to drive the numerical
method must be derived through a well-defined numerical procedure. This should
be documented through a document, and numerical tools used for the derivation
and implementation.

• Computer implementation of the source term (manufactured solution): The source
term should be included in a form amenable to direct use in a computer code. The
language for the computer code should be clearly defined as well as the compiler
and computer system used.

• Grids for numerical solution: If a solution is computed using another simulation
code all relevant details on the numerical grid(s) usedmust be included. This could
be direct grid files, or input files to well-defined grid generation software.

• Convergence and error estimation of numerical solution: The numerical solution
must include a convergence study and error estimate. These should be detailed in
an appropriately peer-reviewed document.

• Uncertainty and sensitivity study of numerical solution: The various modeling
options in the code used to provide the numerical solution must be examined vis-
a-vis the uncertainty and sensitivity of the solution to these choices. This study
should be used to justify the methodology used for the baseline solution.

• Description and analysis of computational methods: Themethods used by the code
used for the baseline solution must be completely described and analyzed. This
can take the form of a complete bibliography of readily available literature

• Numerical analysis theory associated with convergence: The nature of the con-
vergence and the magnitude of error in the numerical solution must be described
and demonstrated. This can take the form of a complete bibliography of readily
available literature.

• Code description/manuals: The code manual and complete description must be
included with the analysis and description.

• Input files for benchmarks and auxiliary software: The input file used to produce
the solution must be included. Any auxiliary software used to produce or analyze
the solution must be full described or included.

• Unusual boundary conditions (inflow, piston, outflow, Robin, symmetry,): Should
the benchmark require unusual or involved boundary or initial conditions, these
must be described in additional detail including the nature of implementation.

• Physics restrictions (boundary layer theory, inviscid, parabolized Navier–Stokes,):
If the solution requires the solution of a reduced or restricted set of equations, this
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must be fully described. Examples are boundary layer theory, truly inviscid flow,
or various asymptotic limits.

• Software quality documents: Of non-commercial software used to produce solu-
tions, the software quality pedigree should be clearly established by documenting
the software quality and steps taken to assure the maintenance of the quality.

• Scripts and auxiliary software for verification: Auxiliary software or scripts used
to determine the verification or compute error estimates for a software used to
produce solution should be included.

• Source code: If possible the actual source code for the software along with instruc-
tions for producing an executable (makefile, scripts) should be included with all
other documentation.

• A full mathematical or computational description of metrics used in error analysis
and evaluation of solution implementation or numerical solution.

• Verification results including code version, date, and other identifying characteris-
tics: The verification basis for the code used to produce the baseline solution must
be included. This includes any documentation of verification, peer-review, code
version, date completed and error estimates.

• Feature coverage in verification: The code features covered by verification bench-
marks must be documented. Any gaps where the feature used for the baseline
solution are not verified must be explicitly documented.

Here are the necessary data requirements for each category of benchmark, again
arranged in order of increasing level of documentation required. For completeness
each data type would expected to be available to describe a benchmark of a given
type.

• Common elements for all types of benchmarks (it is notable that the use of proper
verification using an analytical solution results in the most compact set of require-
ments for data, manufactured solutions also).

1. Paper or report
2. Mathematical analysis
3. Computerized solution and input
4. Error and uncertainty analysis
5. Computer implementation of the evaluation of the solution
6. Restrictions
7. Boundary or initial conditions

• Closed form analytical solution

1. Paper or report
2. Mathematical analysis
3. Computerized solution and input
4. Error and uncertainty analysis
5. Computer implementation of the evaluation of the solution
6. Restrictions
7. Boundary or initial conditions
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• Manufactured Solution

1. Paper or report
2. Mathematical analysis
3. Computational solution and input
4. Error and uncertainty analysis
5. Computer implementation of the evaluation of the solution
6. Derivation and implementation of the source term
7. Restrictions
8. Boundary or initial conditions

• Numerical solution with analytical solution
• Series solution, Nonlinear algebraic solution, Nonlinear ODE solution

1. Paper or report
2. Mathematical analysis
3. Computerized solution and input
4. Error and uncertainty analysis
5. Computer implementation of the evaluation of the solution
6. Input files
7. Source code
8. Source code SQA
9. Method description and manual

10. Restrictions
11. Boundary or initial conditions

• Highly accurate numerical solution (not analytical), numerical benchmarks or
code-to-code comparisons.

1. Paper or report
2. Mathematical analysis
3. Computational solution and input
4. Error and uncertainty analysis for the solution
5. Computer implementation of the evaluation of the solution
6. Input files
7. Grids
8. Source code
9. Source code SQA

10. Method description and manual
11. Method analysis
12. Method verification analysis and coverage
13. Restrictions
14. Boundary or initial conditions.
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Chapter 12
The Method of Manufactured Solutions
for Code Verification

Patrick J. Roache

Abstract Verification of codes that numerically approximate solutions of partial
differential equations consists in demonstrating that the code is free of coding errors
and is capable, given sufficient discretization, of approaching exact mathematical
solutions. This requires the evaluation of discretization errors using known bench-
mark solutions. The best benchmarks are exact analytical solutionswith a sufficiently
complex solution structure; they need not be physically realistic since verification
is a purely mathematical exercise. The Method of Manufactured Solutions (MMS)
provides a straightforward and general procedure for generating such solutions. For
complex codes, the method utilizes symbolic manipulation, but here it is illustrated
with simple examples. When used with systematic grid refinement studies, which
are remarkably sensitive, MMS can produce robust code verifications with a strong
completion point.

Keywords Manufactured solutions · Simulation · Benchmark · Verification ·
Turbulence · Convergence · Symbolic manipulation

12.1 Introduction

We are concerned in this chapter only with simulation models that are based on
discretization of partial differential equations (PDEs). This covers most of classical
physics, broadly defined, as well as some models in economics, ecological systems,
and other disciplines of basic and applied science and engineering.

General code verification was defined rather tersely by the IEEE three decades
ago (IEEE 1991) as “Formal proof of program correctness.” This definition has
stood the test of time, but arguably benefits from expanded description; e.g., see
Roache (1998a, b, p. 26 ff.) A definition specific to PDE codes in the context of
computational solid mechanics was given in ASME (2006, p. 23): “the process of
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determining that the numerical algorithms are correctly implemented in the computer
code and of identifying errors in the software.” See also ASME (2009), Oberkampf
and Roy (2010), and Chaps. 2, 3, 5, and 11 in this volume. Generally, we find that
such legalistic definitions tend to be sterile and/or inadequate, and that expanded
descriptions are more useful. Basically, a code should do what the code manual says
it does. See discussions throughout Chap. 2 of Roache (1998a, b).

For verification of PDE codes, we use a restricted definition of code verification,
being concerned only with the ability of the code to producemathematically accurate
answers when sufficient discretization resolution is used. (This can contrast with
computer science concepts of code verification that might include Quality Assurance
issues that may have no effect on accuracy.) Determining this restricted sense of code
correctness can only be accomplished by systematic discretization convergence tests
using a “benchmark” solution which is preferably exact but at least reliable.

Once the verification of the code has been established, one can solve a specific
problem which, if it is nontrivial, does not have an available exact solution. Verifica-
tion of the computational solution then involves error estimation, since the benchmark
solution is not known,whereas verification of the code involved error evaluation from
a known benchmark solution. Both verifications (of code and solution) are purely
mathematical activities, with no concern whatever for the accuracy of physical laws.
That is the concern of validation, i.e., the agreement of the mathematics with obser-
vational science. In this view (see Chap. 27 by Roache in this volume), validation of
computer simulations requires the three distinct activities referred to collectively as
Verification and Validation (V&V): verification of the code, verification of the solu-
tion, and validation. For reasons both logical and practical, these activities should be
performed in this order (Roache 2009; see also Chap. 42 by Beisbart in this volume).

The best benchmark solution is an exact analytical solution, i.e., a solution
expressed in simple primitive functions like sin, exp, tanh, etc. Benchmark solutions
involving infinite series are not desirable, typically being more numerical trouble
to evaluate accurately than the PDE code itself (Roache 2009). It is not sufficient
that the benchmark solution be exact; it is also necessary that the solution structure
be sufficiently complex that all terms in the governing equation being tested are
well exercised. Some early and misleading claims of accuracy of commercial codes
for computational fluid dynamics (CFD) were based on comparisons with Poiseuille,
Couette or Rayleigh problems, which do not even activate the advection terms.Many
papers and reports have approached verification of codes in a haphazard and piece-
meal way, comparing single-grid results for a few exact solutions on problems of
greatly reduced complexity.

TheMethod ofManufactured Solutions (MMS) provides a systematic and general
procedure for generating analytical solutions for code verification. The methodology
provides for convincing, robust verification of a code via systematic discretization
convergence testing. This procedure is straightforward though tedious to apply, and
verifies all accuracy aspects of the code: formulationof the discrete equations (interior
and boundary conditions) and their order of accuracy, the accuracy of the solution
procedure, and the user instructions.
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For early history and references, see (Roache 2002, 2009). The first systematic
exposition of the method with application to multidimensional nonlinear problems
appears to be (Roache and Steinberg 1984, Steinberg and Roache 1985) with
expanded applications in Roache (2002, 2009). Acceptance was slow and misunder-
standing was not uncommon, even by senior researchers. Now, MMS is regarded by
many V&V specialists as the “gold standard” for PDE code verification, but still, it
can be difficult to understand on first exposure. Based on experience of colleagues
and myself, including teaching short courses, the misunderstanding seems due to
the deceptive simplicity (elegance?) of the concept. Although applicable to high
dimensional complex problems, the MMS concept is best described with simple
examples in one space dimension (1D).

In what follows, Sect. 12.2 will first present the basic idea of MMS for generating
exact benchmark solutions. Section 12.3will illustrate this process using three simple
examples. Then Sect. 12.4 will detail the application of benchmark MMS solutions
to code verifications. The remaining sections present features and further examples
of MMS.

12.2 Broad Description of MMS

The basic idea of the MMS procedure is to simply manufacture an exact solution,
without being concerned about its physical realism. The “realism” or lack thereof
has nothing to do with the mathematics, and verification is a purely mathematical
exercise. In the original,most straightforward andmost universally applicable version
of the method, one simply includes in the code a general source term and uses it to
generate a nontrivial but known solution structure. We follow the classic counsel of
Polya (1957): Only a fool starts at the beginning; the wise one starts at the end.

We first pick a continuum solution. Interestingly enough, we can pick a solution
almost independent of the code and the hosted equations (using a little prudence).
That is, we can pick a solution, then use it to verify an incompressible Navier–Stokes
code, a Darcy flow in porous media code, a heat conduction code, an electrode design
code, a materials code, etc.

We want a solution that is nontrivial but analytic, and that exercises all ordered
derivatives in the error expansion and all terms, e.g., cross-derivative terms. MMS
can handle discontinuities (see below) but for this broad description, we consider
smooth solutions. For example, chose a solution involving tanh. This solution also
defines boundary conditions, to be applied in any (all) forms, i.e.,Dirichlet,Neumann,
Robin, etc. Then the solution is passed through the governing PDEs to give a source
term that produces this solution. (This description sounds circular, which relates to
difficulties with acceptance.)
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12.3 Three Example Problems in MMS

To emphasize the generality of the concept, we pick the first example solution before
we specify the governing equations. Then, we will use this same solution for two
different problems, i.e., sets of governing PDEs and boundary conditions. The chosen
solution U(t,x) is the following.

U (t, x) � A + sin(B), B � x − Ct (12.1)

12.3.1 Example 1

First, we apply this 1D transient solution to the nonlinear Burgers equation. (This
equation is often taken as a model for CFD algorithm development but it is adequate
to describe MMS for a wide range of PDE problems.)

ut � −uux + αuxx (12.2)

Incidentally, the specified solution U(t,x) is the exact solution for the constant
velocity advection equation ut=−Cux with boundary condition u(t,0) =A + sin(−Ct),
so for highReynolds number problems (smallα) itmay look “realistic” in some sense,
but it is not a solution to our governing Eq. (12.2), and its “realism” or lack thereof
is irrelevant to the task of code verification.

We determine the source term Q(t,x) which, when added to the Burgers equation
for u(t,x), produces the solution u(t,x) = U(t,x). We write the Burgers equation as an
operator (nonlinear) of u,

L(u) ≡ ut + uux − α uxx � 0 (12.3)

Then, we evaluate the Q that produces U by operating on U with L.

Q(t, x) � L(U (t, x))

� ∂ U/∂ t +U∂ U/∂ x − α ∂ 2U/∂ x2 (12.4)

By elementary operations on themanufactured solutionU(t,x) stated in Eq. (12.1),
we obtain

Q(t, x) � −Ccos(B) + [A + sin(B)] cos(B) + αsin(B) (12.5)

If we now solve the modified equation

L(u) ≡ ut + uux − α uxx � Q(t, x) (12.6)
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ut � −uux + α uxx + Q(t, x) (12.7)

with compatible initial and boundary conditions, the exact solution will be U(t,x)
given by Eq. (12.1).

The initial conditions are obviously just u(0,x)=U(0,x) everywhere. The boundary
conditions are determined from the manufactured solution U(t,x) of Eq. (12.1). Note
that, we have not yet even specified the domain of the solution. If we want to consider
the usual model 0 ≤ x ≤ 1 or something like it, the same solution Eq. (12.1) applies,
but of course, the boundary values are determined at the corresponding locations in
x. Note also that we have not yet even specified the type of boundary condition. This
aspect of themethodology has often caused confusion. Everyone knows that different
boundary conditions on a PDE produce different solutions; not everyone recognizes
immediately that the same solution U(t,x) can be produced by more than one set of
boundary condition types. The following combinations of inflow (left boundary, e.g.,
x � 0) or outflow (e.g., x � 1) boundary conditions will produce the same solution
U(t,x) over the domain.

Dirichlet—Dirichlet:

u(t, 0) � U (t, 0) � A + sin(−Ct), u(t, 1) � U (t, 1) � A + sin(1 − Ct) (12.8)

Dirichlet—Outflow Gradient (Neumann):

u(t, 0) � A + sin(−Ct), ∂u
/

∂x(t, 1) � cos(1 − Ct) (12.9)

Robin (mixed)—Outflow Gradient (Neumann):
The Robin boundary condition, F = au + bux= c where a, b, and c are constants,

is to be applied as a time-dependent condition at the left boundary, so F(t, 0) � c.

a u + b ux �c applied at (t, 0) →
given a and b, select c � a[A + sin(−Ct)] + b cos(−Ct)

∂u
/

∂x(t, 1) � cos(1 − Ct) (12.10)

For this time-dependent solution, the boundary values are time-dependent. It also
will be possible to manufacture time-dependent solutions with steady boundary val-
ues, if required by the code.

12.3.2 Example 2

To further clarify the concept, we now apply the same solution to a different problem,
choosing as the new governing PDE aBurgers-like equation thatmight be a candidate
for a 1D turbulence formulation based on the mixing-length concept.
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ut � −uux + αuxx + 2λ
[
x(ux )

2 + x2uxx
]

(12.11)

Writing the mixing-length model equation as a nonlinear operator of u,

L(u) ≡ ut + uux − α uxx − 2λ[x(ux )
2 + x2uxx ] � 0 (12.12)

we evaluate the Qm that produces U by operating on U with Lm= L from (12).

Qm(t, x) � Lm(U (t, x))

� ∂U/∂t +U∂U/∂ x − α∂2U/∂ x2 − 2λ [x(∂U/∂ x)2 + x2∂2U/∂ x2]
(12.13)

By elementary operations on the same manufactured solution U(t,x) stated in
Eq. (12.1),we obtain

Qm(t, x) � − C cos(B) + [A + sin(B)]cos(B) + α sin(B)

− 2λ
[
x cos2(B) − x2sin(B)

]
(12.14)

If we now solve the modified model equation

Lm(u) ≡ ut + uux − α uxx − 2λ[x(ux )
2 + x2uxx ] � Qm(t, x) (12.15)

ut � −uux + α uxx + 2λ[x(ux )
2 + x2uxx ] + Qm(t, x) (12.16)

with compatible initial and boundary conditions, the exact solution for this “turbu-
lent” problem again will be U(t,x) given by Eq. (12.1), as it was for the previous
“laminar” problem.

The same initial and boundary conditions and boundary values from the previ-
ous problem can apply, since these are determined from the solution, not from the
governing PDE nor Q.

12.3.3 Example 3

We have shown how the same solution can be used as the exact solution to verify
two different codes with different governing equations, with different source terms
being created to manufacture the same solution. A third example will demonstrate
the arbitrariness of the solution form. Rather than the somewhat realistic solution to
a constant velocity advection equation given by Eq. (12.1), we consider the “unreal-
istic” but equally valuable solution as follows.

Ue(t, x) � sin(t) ex (12.17)
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Following the same procedure for the Burgers Eq. (12.2), we evaluate the terms
in Eq. (12.4) from the solution Ue of Eq. (12.17) and obtain

Qe(t, x) � cos(t)ex + [sin(t)ex ]2 − α sin(t)ex (12.18)

(arranged for readability rather than compactness). This, when added to Eq. (12.2),
produces the manufactured solution Eq. (12.17) when compatible initial and bound-
ary conditions are evaluated from Eq. (12.17).

12.3.4 Complex Problems

MMS is applicable to complex nonlinear systems of equations, such as full Navier
Stokes in general non-orthogonal coordinates, provided that the code is capable (or
modifiable) to treat source terms in each PDE. MMS has been used in finite element
codes both at the global solution level and at the element level (basis functions). To
test periodic boundary conditions, one simply chooses a periodic function for the
MMS solution.

12.4 Application to Code Verification

Once a nontrivial exact analytic solution has been generated, by MMS or perhaps
another method, the solution is now used to verify a code by performing systematic
discretization convergence tests (usually, grid convergence tests) and monitoring the
convergence as � → 0, where � is a measure of discretization: �x, �t in a finite
difference (FDM) or finite volume (FVM) code, element size in a finite element
(FEM) code, etc. The procedure has been described in Chap. 11 by Rider in this
volume; also Roache (1998a, b, 2009), Oberkampf and Roy (2010).

The fundamental concept “order of convergence” is based on behavior of the error
of the discrete solution. There are variousmeasures of error, but in some sense, we are
always referring to the difference between the discrete solution f(Δ) (or a functional
of the solution, such as drag coefficient) and the exact continuum solution,

E � f (�) − fexact (12.19)

The most fundamental requirement for code verification is that E → 0 as � → 0.
In addition, we like to verify not only the fact of convergence but the order of con-
vergence, ideally estimated a priori by analysis of the discretization methods used.
By definition, for an order p method and for a well-behaved problem (exceptions are
discussed in Roache 2009, Chaps. 6 and 8), the error in the solution E asymptotically
as � → 0 will be proportional to �p. This terminology applies to every mathemat-
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ically consistent methodology: FDM, FVM, FEM, block spectral, pseudo-spectral,
vortex-in-cell, etc., regardless of solution smoothness. Thus,

E � f (�) − fexact � C �p + H.O.T . (12.20)

where HOT are higher order terms.We thenmonitor the numerical error as the grid is
systematically refined. Thorough iterative convergence is required (see below). Suc-
cessive grid halving is not required, just refinement. Theoretically (from Eq. 12.20),
values of C= E/� p should become constant as the grid is refined for a uniformly
p-th order method (“uniformly” implying at all points for all derivatives). Formulaic
details of the calculation of observed p from grid convergence testing and many
examples are given in Roache (2009), Oberkampf and Roy (2010). If observed p is
not ~ theoretical p, this may indicate a coding error, or it may indicate a limitation
of the approximations in the analysis for theoretical p. In either case, the code is still
useable and would be claimed as “verified” at the observed p. Confidence is greatly
enhanced if observed p ~ theoretical p.

Roy (2001), Roy et al. (2000) showed how to treat mixed-order convergence,
a long-standing and practical difficulty in grid convergence studies. Mixed-order
behavior can arise from the use of first-order discretization for advection and second
order for diffusion, or from the first-order convergence rate of nominally second-
order methods applied to discontinuities. The procedure involves another grid level
to evaluate two leading coefficients in the error expansion. Especially important,
the papers demonstrate how non-monotonic convergence occurs from mixed-order
methods in the non-asymptotic range without blaming nonlinearity. MMS can verify
such mixed-order convergence.

Inadequate iterative convergence produces false-negative evaluations of observed
p. The extrapolation implicit in the order calculation amplifies machine round-off
errors, so the iteration error control is more demanding for evaluation of p than for
the PDE solution itself. Unfortunately, a priori specifications of iterative convergence
criteria (e.g., maximum allowable change of some solution metric over one iteration
divided by the iteration relaxation parameter) are not reliable. The recommended
procedure is to test the sensitivity of the code verification results (notably observed
p) to the iterative convergence stopping criteria. Note that this difficulty is not specific
to MMS but occurs with any calculation of observed p; in fact, widely chosen MMS
solutions are less vulnerable than most classical solutions, as noted above. Also, note
that (as many V&V specialists have warned), the default iteration stopping criteria
used in commercial CFD codes are often highly inadequate.

This verification procedure detects all ordered errorsE, i.e.,E → 0 asymptotically
as � → 0. It will not detect coding mistakes that do not affect the answer obtained,
e.g., mistakes in an iterative solution routine which affect only the iterative conver-
gence rate. In the present view, these mistakes are not considered as code verification
issues, since they affect only code efficiency, not accuracy. Note that such efficiency
issues should not be a concern to regulatory agencies. Other esotericmistakes that are
difficult to detect are described in (Roache 2009, Chap. 8; Knupp and Salari 2003).
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The procedure does not evaluate the adequacy of non-ordered approximations,
e.g., distance to an outflow boundary, distance to an outer (wind tunnel wall-like)
boundary, etc. The errors of such approximations (which, I claim, are not inherently
“numerical”) do not vanish as� → 0, hence are “non-ordered modeling approxima-
tions.” The adequacy of these approximations must be assessed by sensitivity tests
which may be described as “justification” exercises (Roache 2009).

When this systematic grid convergence test is verified for all point-by-point values,
we have verified

• input routines
• any equation transformations (e.g., boundary fitted coordinates),
• the order of the discretization,
• the encoding of the discretization, and
• the accuracy (but not efficiency) of the matrix solution procedure.

This MMS technique was originally applied in Roache and Steinberg (1984),
Steinberg and Roache (1985) to long Fortran code produced by Symbolic Manipula-
tionmethods. The original 3D non-orthogonal coordinate code contained about 1800
lines of dense Fortran. It would be impossible to check this by reading the source
code, yet the MMS procedure verified the code convincingly. Round-off error was
not a problem.

The technique of code verification by monitoring grid convergence is extremely
powerful. Upon initial exposure to the technique, analysts are often negative about
the method because they intuit that it cannot be sensitive enough to pick up subtle
errors. After exposure to numerous examples, if they remain negative it is usually
because the method is excessively sensitive, revealing minor inconsistencies such as
first-order discretizations at a single boundary point in an elliptic problem that effects
the size of the error very little (as correctly intuited) but still reduces the asymptotic
rate of convergence to first order for the entire solution. For examples, see Roache
(2009).

The fact that theMMS solutionmay bear no relation to any physical problem does
not affect the rigor of the accuracy verification of codes. The only important point
is that the solution (manufactured or otherwise) be nontrivial: it should exercise all
the terms in the error expansion. The algebraic complexity may be something of a
difficulty, but it is not insurmountable, and in practice has been easily handled using
Symbolic Manipulation (SM) software packages. Using the source code writing
capability of SM software, it is not even necessary for the analyst to look at the form
ofQ. Rather, the specification of the solution (e.g., tanh function) to the SM software
results in some complicated analytical expression that can be directly converted by
the SM software to a source code segment, which is then readily emplaced in a source
code module (subroutine, function, etc.) that then is called in the code verification
procedure. This “emplacement” can be performed by hand by the analyst without
actually reading the complicated source code expressions, or can itself be automated
in the SM software.

MMS has been applied successfully to nonlinear systems of equations, with sep-
arate Q’s generated for each equation. Both steady (stationary) and unsteady man-
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ufactured solutions may be formulated. Nonlinearity is an issue only because of
uniqueness questions; the source term complexity may be worse because of nonlin-
earity, but managing that is the job of the SM software. Nonuniqueness conceivably
could be an issue because the code might converge to another legitimate solution
other than the MMS solution, producing a false-negative code verification. In much
experience, nonuniqueness has never been an issue.

In Steinberg and Roache (1985), we applied the procedure to the coupled non-
linear (quasi-linear) PDEs of an elliptic grid generation method for non-orthogonal
coordinates; the MMS solution was a 3D analytical coordinate transformation or
parametrization. All operations for source code were performed by SM, including
development of Euler–Lagrange equations for variational grid generation and all
discretizations (Steinberg and Roache 1986a, b, 1992).

Note that theMMS solution should be generated in the original (“physical space”)
coordinates (x,y,z,t). Then the same solution can be used directly with various non-
orthogonal grids or coordinate transformations.

MMS (in this basic Q form) requires that the code being verified must include
accurate treatment of source terms. Many codes, including the most popular modern
commercial and open-source PDE codes, are built with source terms included, and
many algorithms allow trivial extension to include Q’s. However, directionally split
algorithms (e.g., Roache 1998b) involve complexities at boundaries, especially for
non-orthogonal coordinates.

Also see Roache (2009) for the following topics: early applications of MMS
concepts, discussions and examples of mixed first- and second-order differencing,
small parameter (high Reynolds number) difficulties, economics of dimensionality,
applications of MMS to 3D grid generation codes, effects of strong and inappropri-
ate coordinate stretching, debugging with MMS, examples of many manufactured
or otherwise contrived analytical solutions in the literature, approximate but highly
accurate solutions (often obtained by perturbation methods) that can also be uti-
lized in code verification, special considerations required for turbulence modeling
and other problems with multiple scales, example of MMS code verification with a
3D grid-tracked moving free surface, code robustness, examples of the remarkable
sensitivity of code verification via systematic grid convergence testing, and several
methodologies for verification of solutions including the Grid Convergence Index
(see also Chap. 11 by Rider in this volume).

12.5 Features and Examples of MMS Code Verification

12.5.1 Radiation Transport Codes

Pautz (2001) presented his experience applying MMS to a radiation transport code
that uses 3D tetrahedral elements in space and discrete ordinates in the angular dis-
cretization. The author discovered codingmistakes in input routines and in discretiza-
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tion of certain boundary data. Second order convergence for norms and third-order
convergence for average scalar flux were verified. A subtle aspect revealed is the
requirement for consistent finite element weighting on the MMS source term, which
is now a recognized issue. Based on the earlier 1D analysis in the literature, it was
expected that all the examined quantities would exhibit third-order convergence, but
the results of the MMS procedure demonstrated only second-order convergence for
the norms in multidimensions.

Blackwell et al. (2009) applied MMS to enclosure radiation, verifying their non-
rigorous theoretical analysis that indicated p � 2 in contrast to another analysis that
indicated p � 3.

12.5.2 Nonhomogeneous and Nonlinear Boundary
Conditions

An arbitrary MMS solution may have nonhomogeneous boundary conditions, e.g.,
∂u/∂x �� 0. To use suchmanufactured solutions, the codewould require the capability
of treating boundaries with ∂u/∂x �� 0. This might be inconvenient, e.g., some codes
have hard-wired no-slip conditions at a wall with u = 0, or ∂u/∂x � 0. Rather than
modify the code, some thought will produce MMS solutions with homogeneous
boundary values. Fortunately, modern commercial and open-source PDE codes have
this capability for general treatment of boundary conditions, which is also the feature
that facilitates validation; see Roache (2004, 2009) and Chap. 27 by Roache in this
volume.

The so-called “radiation” outflow conditions are usually linear and are already
covered by the previous discussion. Nonlinear boundary conditions, e.g., simple
vortex conditions at outflow, or true (physical) heat transfer radiation boundary con-
ditions, are possible. It may be possible to select an MMS solution that meets the
nonlinear boundary condition; otherwise, a source term would need to be used in the
nonlinear boundary equations.

12.5.3 Shocks, Partitioning, and “Glass-Box” Verification

Shock solutions are treatable by the MMS, with additional considerations. The sim-
plest approach is to verify the shock-capturing algorithms separately on inviscid
benchmark problems such as oblique shock solutions, provided that shock curva-
ture is not viewed as a major question. If it is, one may use attached curved shock
solutions obtained by the method of characteristics and/or detached bow shock solu-
tions obtained by the classical inverse method. Any shock-capturing algorithm based
purely on geometric limiters will be oblivious to the source terms and should work
without modification.
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The assumption involved in this approach is that the option matrix of the code
can be partitioned (Roache 2009). That is, the verification of the shock-capturing
algorithm and coding will not be affected by later inclusion of viscous terms, bound-
ary conditions, etc. Other option-partitioning assumptions will occur to the reader,
such as: separated verification of a direct banded Gaussian elimination routine in a
FEM code; verification of shock-capturing algorithms separate from nonideal gas
effects; radioactive decay option (which is dimensionless) verified separately from
the spatial discretization of flow equations. This partitioning approach requires the
“black-box” verification philosophy to be modified to a “glass-box” (Oberkampf and
Trucano 2002) in which some knowledge of code structure is required to justify the
approach. Thus it will be more difficult to convince reviewers, editors, contract mon-
itors, regulators, stakeholders, etc., that the approach is justified. The work savings
can be enormous, of course, avoiding the factorial increase of complexity inherent
in option combinations.

12.5.4 Shocks, Multiphase Flows, and Discontinuous
Properties

Without using code partitioning, J. Powers and colleagues (Grismer andPowers 1996;
see also Roache 2009 for additional references) pioneered convincing code verifica-
tion for flows with shock waves. The benchmark solutions may involve asymptotic
approximations in geometry and/or Mach number M, e.g., an analysis neglecting
terms of order ε � 1/M2. This approximation can be made very accurate by choos-
ing highM, sayM ~ 20. Note again the distinction of mathematics versus science; it
is not a concern that the code being tested might be built on perfect gas assumptions
that are not valid at such highM. This does not affect the mathematics of code veri-
fication; the code would not be applied at such highM when accuracy of the physics
becomes important, during validation.

Woods and Starkey (2015) appliedMMS to shocks and other discontinuities using
an “integrative MMS approach” (contrasted to “differential MMS” herein) based on
“intelligent subdivision of the integration domains” to obtain a rigorous, one-step
verification procedure for shock-capturing codes.

Brady et al. (2012) appliedMMS tomultiphase flowswhich necessitate discontin-
uous properties at the interface, where careful evaluation of source terms is required.
They also offer additional guidelines to help locate coding mistakes. MMS for mul-
tiphase flows were also considered by Choudhary et al. (2014).

Grier et al. (2014, 2015) treated discontinuousMMSsolutions, focusingonnumer-
ical integration techniques to address the problem of evaluating source terms con-
sistently in finite volume methods. FVM do not store solution values at the center of
the cell but rather integrated average values, which will converge more slowly than
expected to the MMS point values unless special care is taken in the integration; the
discrepancy is aggravated by discontinuous MMS solutions. (Alternately, one might
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consider post-processing theMMS solution to produce cell integrated average values
for direct comparison, using methods consistent with the FVM code. However, this
would add another layer of processing, the details of which would depend on the
FVM solution code algorithm.)

Appendix A of ASME (2009) contains an MMS heat conduction problem with
discontinuous step change in conductivity and contact resistance.

12.5.5 Verification of Boundary Conditions

Bondet al. (2007) presented an exemplary study applyingMMS toCFDcodeverifica-
tion of boundary conditions, including insightful observations. The FEM code being
verified solves Euler, Navier–Stokes, and RANS equations on skewed, nonuniform,
unstructured 3Dmeshes. Particular emphasis was placed on verification of numerical
boundary conditions: slip, no-slip (adiabatic and isothermal), and outflow (subsonic,
supersonic, and mixed), and on code segments that calculate solution gradients, a
nontrivial issue in hexahedral grids with high aspect ratios near boundaries. Themore
demanding L∞ norm was used and recommended, as well as the usual L1 and L2

norms. Among many interesting results, one provided a particular caution regarding
precision issues. The symbolic manipulation software used to generate source func-
tions writes source code in double precision but with only single precision constants,
which later corrupted the initial verification exercise. The authors recommended an
additional criterion for claiming verification of double-precision accuracy; the rela-
tive errors should be smaller than the single precision limit. Another caution involves
orientation of the outflow boundary in supersonic flow along a constant pressure sur-
face, which might permit certain coding errors to go undetected. This difficulty arose
due to an ambitious approach of building boundary condition values into the MMS
solution, rather than treating them crudely with the source term. Especially notewor-
thy was the success of MMS is disclosing a weakness of the solution algorithm in
regard to the partitioning ofmultiprocessors. The paper is also valuable for presenting
anecdotal debugging history, rather than a simple “pass” evaluation.

Choudhary et al. (2016) also focused on MMS verification of various important
boundary conditions for both compressible and incompressible CFD codes.

12.5.6 Unsteady Flows and Divergence-Free MMS

An illustration of MMS applied to unsteady flows was given by Eça and
Hoekstra (2007b). For the 2D laminar flows, a general formulation was developed
that allowed an analyst to specify an arbitrary continuous function that is incorporated
into an analytical form for velocitieswhich satisfy the incompressible continuity con-
straint (divergence-free) exactly. Likewise, nonslip and impermeability conditions
are met exactly by the MMS. Two time dependencies were considered: an exponen-
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tially decaying solution and a periodic solution. The exercise verified the code, and
additionally shed light iteration error.

Choudhary et al. (2016) also gave special attention to MMS solutions which
identically satisfy the divergence-free velocity field for incompressible flows, and to
curved boundaries.

12.5.7 Variable Density Flows; Combustion

Shunn et al. (2012a, b) used MMS for variable density PDE codes applicable to
combustion problems. Issues included use of tabulated state properties and effects of
sub-iterations in the time advancement, especially for problematical time-splitting
methods.

12.6 Attributes of MMS Code Verification

12.6.1 Two Multidimensional Aspects

In the first 1D example problem (Sect. 12.3.1), we noted that the MMS solution,
since it is analytic, can be applied over any range of the dependent spatial variable
x. This feature extends to multidimensions, e.g., the same multidimensional analytic
solution could be applied to flow problems of a rectangular cavity, a backstep, a
wing, etc.

Also, multidimensional problems might require a little more thought to assure
that all terms of the governing equations are exercised. For example, a manufactured
solution of form U(t,x,y) = F1(t) + F2(x) + F3(y) will not be adequate to exercise
governing equations containing cross-derivative terms such as ∂ 2u/∂ x∂ y since these
are identically zero no matter how complex are the F’s.

12.6.2 Blind Study

Salari and Knupp (2000) exercised MMS in a blind study, in which one author
(Knupp) deliberately introduced errors into a CFD code previously developed and
verified by the other (Salari). Then the code author tested the sabotaged code with
the MMS. This exercise was not performed on merely model problems, but on a full
time-dependent, compressible and incompressible, Navier–Stokes code with plenty
of options. In all, 21 cases were studied, including one “placebo” (no mistake intro-
duced) and several that involved something other than the solution (e.g., wrong
time step, post-processing errors). Several formalmistakes (not order-of-convergence
errors) went undetected, as expected (Roache 2002, 2009). All ten of the code errors
that would affect accuracy were successfully detected, as well as several less serious
mistakes.
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12.6.3 Burden of MMS and Option Combinations

An experienced reviewer (Rider 2018) has stated thatMMSputs a rather large burden
on the code development teams, and that the source terms forMMSare difficult, prone
to error, and need a high degree of software quality work and extensive debugging
to produce reliable results.

I acknowledge this burden. In my own experience, the burden first involves some
up-front work of becoming adept at using Symbolic Manipulation software. Once
achieved, this development and training time can be amortized over verifications
of many codes. In my own experience, the indictment of “prone to error” applies
more to traditional methods. And it is true that producing a reliable and general
MMS solution that exercises all the relevant terms certainly involves more work
than coding an already developed single traditional solution, but possibly not if the
simplified solution must be developed. Also, if one considers the suite of traditional
problems usually required, then the amount of work may be less using a single MMS
solution.

This claim is especially justifiable when one considers the curse of large numbers
of code option combinations, discussed inRoache (2009). Suppose the non-separable
option combinations number 100. A singleMMS solution could easily replace a suite
of 10 highly simplified classical solutions, reducing the required number of expensive
grid convergence calculations by an order of magnitude, from 1000 to 100.

It is my opinion that the MMS approach is especially useful, reducing book-
keeping and total workload, when applied to extensive option combinations during
regression verification of codemodifications. (In major computational research envi-
ronments, routine regression code verification activities are sometimes performed
daily.)

12.6.4 Code Verification for Commercial Codes

Since code verification should be accomplished by the code developer, a question
arises. Should a user assume that a commercial, open-source, or government code is
verified? Roy (2015) reassessed previous misgivings by several V&V specialists and
reached the same pessimistic evaluation: generally, the answer is no. This should be
surprising since, as Roy noted, code verification is arguably themost mature subtopic
in V&V; the main code verification techniques have been around for decades. Even
if the vendor has published code verification for option combinations of interest, the
user is strongly advised to scrutinize the results carefully for details and well founded
conclusions.
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12.6.5 Code Verification with a Strong Completion Point

Simple problems (even trivial problems) often serve a purpose during code devel-
opment, and the results are often considered as partial verification. But apparently,
it is not widely recognized that, once a code (for a specific set of code option com-
binations) has been convincingly verified on a complex problem that exercises all
terms in the governing equations, it is nearly pointless to continue verifying the code
on simpler problems. I say “nearly” because the exercises still have some value as
confirmation exercises (Roache 2009, Chap. 1). MMS provides a robust code veri-
fication and terminates. A code user who performs confirmations gains confidence
in the code and in their ability to set up the code and interpret the results. Such
code confirmation exercises are valuable as part of user training but should not be
confused with robust code verification. Similarly, we recognize that simple classical
problems (e.g., 1D linear wave propagation) are useful in algorithm development, in
exploring algorithm and code characteristics, and in comparing the performance of
different codes. In fact, these classical problems aremore useful than MMS for these
purposes, since the general MMS solutions are typically unrealistic and opaque. But
these comparison exercises, though valuable, should not be confused with robust
code verification. These simple problems are complementary to the MMS approach,
but if the comparison is taken as “partial verification” this leads to unending activity
and invites criticism of the basic concept and legitimacy of code verification.

“Code verification is not an ongoing exercise. Verification, as we have said, is
an exercise in mathematics, not science. When one proves a theorem, the work is
completed. Proving the formula for solution of a quadratic equation is not ongoing
work. This is not to say that one could not have made an error in the proof of a
theorem, nor that confirmation exercises… are not valuable in confidence-building.
It is to say that code verification is a mathematical activity that in principle comes to
a conclusion, e.g., a code is or is not 2nd-order accurate.” (Roache 1998a, b, p. 28)
For an alternative view on code verification without a strong completion point, see
discussion in (Roache 2002, 2009).

12.6.6 Proof?

Does such thorough code verification deserve the term proof ? This is another seman-
tic question whose answer depends on the community context. Logicians, philoso-
phers and pure mathematicians clearly view “proof” differently from scientists and
engineers, with an often other-worldly standard. For example, Fermat’s Last Theo-
rem is easily demonstrable, but do such exercises constitute proof ? Certainly not to
a mathematician. Since some philosophers maintain that it is not possible even in
principle to prove Newton’s laws of gravity, they are not likely to accept the notion
of proof of correctness of a complex code.
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The notion of proof is at the heart of very important criticisms, not just of the
subject MMS, but of the concepts of code verification and especially certification for
controversial public policy projects (Roache 2009). One might agree with philoso-
phers who maintain it is not possible to prove Newton’s Laws, but would one be
willing to cancel a public policy project (e.g., nuclear waste disposal) because the
modeling used Newton’s Laws? Presumably not, but stakeholders are willing to can-
cel such projects under the guise of unprovability of code correctness. Great harm
is done when these standards for proof of philosophers, mathematicians or logicians
are applied to down-to-earth science and engineering projects. If we accept such
out-of-context standards then we cannot do anything, literally. For example, we have
no proof of convergence for realistic systems because the Lax Equivalence theorem
only holds for linear systems (Roache 1998b).

The word proof is itself a technical term, with different appropriate standards
in logic, pure mathematics, applied mathematics, engineering, criminal law versus
torts versus civil law (consider “beyond a reasonable doubt”), etc. The first definition
in one dictionary for proof is “The evidence or argument that compels the mind to
accept an assertion as true.” In this sense, if not in a mathematical sense, one could
claim thatMMS can provide proof of code verification. I am unhesitating in claiming
“convincing demonstration” and “robust verification” for the MMS approach.

For further discussion on the possibility of a useful theorem related to MMS, see
(Roache 2002, 2009). For the extensive discussion of V&V issues related specifically
tomodeling of nuclearwaste disposal, seeRoache (1998aAppendixC). For extensive
discussion on semantics of V&V in computational physics specifically related to
Popper’s philosophy, see Roache (2012) and Chap. 27 by Roache in this volume.
For the discussion of some current issues in V&V, including climate modeling, see
Roache (2016).

12.6.7 Mere Mathematics

Rider (2018) noted that “the truism that verification is a purelymathematical exercise
oftenworks against verification. This is often used as an excuse to diminish its priority
in code development. For codes used for science and engineering saying that it’s just
math can be used to say it’s not important. This is unfortunate, but needs to be
acknowledged and dealt with head-on.”

We might expect that model developers would want some assurance that the
code actually solved their model correctly, maybe even before they compared results
to validation experiments! Furthermore, many validation exercises do not compare
point values of all solution variables but only solution functionals, e.g., total heat
flux. Especially in such comparisons, it is possible to achieve satisfactory agreement
at particular experimental set points (i.e., values of experimental parameters) even
though the code may have nontrivial errors.

In such situations, model developers might claim successful validation of their
model M1 but in fact the code may contain an error E1. The actual “model” that is
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“validated” is not M1 but some M2 � M1 + E1, where E1 is unknown to the devel-
opers. The result is a contradiction of a fundamental tenet of science: reproducibility.
Other code developers who incorporate Model M1 correctly will not obtain the same
results, for better or worse.

In recent history of fluid dynamics, it has been difficult to achieve the same
results from different codes that ostensibly incorporate the same RANS turbulence
model due to coding errors and to incomplete specification (documentation) ofmodel
details.

12.6.8 Irrelevance of Solution Realism to Code Verification

MMS generates solutions with no required concern for realism of the solution. Thus,
acceptance requires that the judge recognize code verification as purelymathematical
exercise. Physical realism and even realizability are irrelevant. Actually, there is no
requirement that the MMS solution look unrealistic, and we can invent appealing
solutions if necessary to satisfy managers, regulators, public stakeholders, etc. But
it is worthwhile to understand that this “realism” is mere window dressing when
we consider only the legitimacy of code verification per se. Solution realism is
also risky in that it encourages a dangerous misconception, invites criticism and
arguments about what constitutes “adequate realism” (surely a qualitative concept),
and ostensibly justifies piecemeal and perpetual code verification exercises.

Furthermore, realistic solutions can actually be less desirable because often they
only weakly exercise some terms, e.g., streamwise second derivatives in boundary
layers. For the purpose of detecting ordered errors, it is best that the different solution
terms in the governing equations be very roughly the same size. (An order of mag-
nitude variation is not problematical.) As pointed out by Rider (2018), this is easier
to control with wisely chosen unrealistic MMS solutions than with many classical
solutions.

12.7 Reasons for Solution Realism in MMS

In spite of my claims above that MMS “solution realism” is irrelevant to legitimacy
of code verification per se, it is also true that there are uses for realism, both inside
and outside of code verification.
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12.7.1 Realistic MMS in Code Verification of Glacial Ice
Flow Modeling

Bueler et al. (2007) developed a realistic MMS solution to verify a code for solving
glacial ice flows based on shallow (thin-film) ice approximations. Solution realism
was important to gain acceptance at a time when the glaciology science community
was skeptical of models and verifications. The 3D time-dependent model involves
many difficult features: a free boundary, thermo-mechanical coupling between a
highly nonlinear power law viscosity and the temperature distribution, and coupling
between energy conservation and thin-layer mass conservation PDEs with integrals
in the nonlinear PDE coefficients.

MMS was applied by starting with an exact solution to an isothermal ice model
and then manufacturing a coupled exact solution from it (see Sect. 12.3.1). Solution
realism aided interpretation of controversial temperature “spokes” in ice flows found
by several investigators.

The paper contains highly detailed descriptions, unusual for an archive journal not
devoted to V&V, of the implementation, advantages and disadvantages of the MMS
procedures. The authors state that the glaciology community could substantially
replace intercomparison of codes with true code verification using legitimate MMS
exact solutions.

A subsequent model was described in Bueler and Brown (2009). Development
of the University of Alaska—Fairbanks Parallel Ice Sheet Model continues and the
open-source PISM code (www.pism-docs.org) has been widely used in climate mod-
eling. The MMS verification procedure is built into the system and is used in daily
regression code verifications.

12.7.2 Realistic MMS in Solution Verifications
and Turbulence Models

MMS is applicable to code verification but not to solution verification per se. How-
ever, in devising methods for solution verification, MMS can play an important role
in tuning empirical parameters for the classic Grid Convergence Index (GCI) method
and variations (Roache 1993, 1998a, b, 2009). MMS has also contributed to estima-
tion of errors due to incomplete iteration and outflow boundary conditions, and to
evaluating solution adaptive grid generationmethods (Eça andHoekstra 2007b, 2009;
Pelletier et al. 2004, Roache 2009). Many benchmark-quality solutions are required
to achieve statistical significance, and each solution requires expensive brute-force
discretization convergence computations. MMS solutions, if they are realistic, can
be used to economically obviate the need for such expensive fine-grid solutions.

This approach is especially effective for evaluating turbulence models. However,
it is far from a straightforward application of MMS. RANS turbulence models are
especially difficult due to discontinuous switches, min/max functions, and strongly

http://www.pism-docs.org
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nonlinear terms. As noted by Eça et al. (2007a, b), in a typical RANS model, there
are no linear terms!

Eça and Hoekstra (2007a) and Eça et al. (2007a, b) used realistic MMS to study
wall-bounded turbulence in 2D separated flows using both 1 and 2 equation RANS
models; not surprisingly, they showed that the RANS models were inadequate in the
near-wall region. Eça et al. (2007a, b) published detailed MMS solutions for several
RANS models in conjunction with the Lisbon V&V Workshops (Eça et al. 2009).
The benchmark realistic solutions and MMS source codes for six RANS models are
available at the University of Lisbon website (Eça 2006). See Roache (2009) for
additional references on the Lisbon Workshops.

Pelletier et al. (2004) used realistic MMS to tackle two of these difficult problems
at once, turbulence models and solution adaptive FEMmesh generation, in the simu-
lation of impinging round jets. They used the k-ε turbulencemodel andmanufactured
solutions for turbulent kinetic energy, eddy viscosity, and velocity.

12.7.3 Realistic MMS in Singularity Studies

Sinclair et al. (2006) independently developed realistic MMS (termed Tuned Test
Problems) to evaluate methods for treatment of singularities during grid convergence
studies. The techniques developed automatically detect and distinguish between
cases of TTP-specified power singularities, logarithmic singularities, or simply grids
not yet in the asymptotic range. For a summary, see Roache (2009, Sect. 5.4.10.1).

12.7.4 Other Uses and Generation Methods for Realistic
MMS

Oberkampf and Roy (2010, Sect. 6.4, p. 235) note other cases in which physically
realistic exactMMSsolutions are desired: assessing sensitivity of a numerical scheme
to mesh quality, and evaluating the reliability of discretization error estimators, as
well as judging the overall effectiveness of solution adaptation schemes (see above).
They describe two main approaches to generating realistic MMS solutions: theory-
based solutions (see Sects. 12.3.1 and 12.7.1), and the Method of Nearby Problems.
(The latter does not produce a single global analytical solution and has not seenmuch
use.)
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12.8 Alternative Formulations and General References
for MMS

The basic inverse concept of MMS is to complicate the original problem a little
to manufacture an intended solution; source terms are most straightforward and
universally applicable. Another approach to MMS developed by Knupp and Salari
(2003) is applicable to variable coefficient problems, e.g., groundwater transport
or heat conduction codes with variable properties. A solution is manufactured by
solving inversely for the distribution of variable coefficients that produce it.

Doebling (2016) verified a Lagrangian hydrodynamics code using an old (Fickett
and Rivard 1974) exact solution for detonation problems. It was not described as
MMS, and does not usemanufactured source terms. But by (p. 1) “judicious selection
of the material specific heat ratio, the problem has an exact solution with linear
characteristics.”

Burg and Murali (2004, 2006) developed a “residual formulation of MMS”. The
manufactured exact solution sets the initial condition, and only one iteration is used to
evaluate the residuals. The residuals contain informationonp in the sense of aTaylor’s
series expansion.But this approachdoes not actually verify the observed accuracyof a
code since no solution is produced.While somewhat helpful for identifying locations
of coding errors, the approach is not convincing for robust code verification, in my
opinion.

Other general expositions of MMS are given in Knupp and Salari (2003), Roy
(2005), Pelletier and Roache (2006),Wang et al. (2009), Oberkampf and Roy (2010).
Besides the library ofMMSsolutions for turbulence (Eça 2006) already cited,Malaya
et al. (2013) have created a library of code verification solutions including MMS as
well as analytical solutions.

12.9 Conclusion

The Method of Manufactured Solutions for code verification was often met early
with skepticism, but is now widely accepted. MMS enables one to produce many
exact analytical solutions for use as benchmarks in systematic discretization refine-
ment tests, which tests are remarkably sensitive for code verification. The method
is straightforward and, when applied to all option combinations in a code, can lead
to robust code verification with a strong completion point. It eliminates the typical
haphazard, piecemeal and never-ending approach of partial code verifications with
various highly simplified traditional problems that still leave the user unconvinced.
Although the method requires some up-front work to become adept at using Sym-
bolic Manipulation software, once achieved, this training time can be amortized over
verifications of many codes. Producing a reliable and general MMS solution that
exercises all the relevant terms typically involves more work than a single traditional
solution, but if one considers the suite of traditional problems often used, then the
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amount of work can be less usingMMS. TheMMS approach is especially useful and
reduces the book-keeping and total workload when used for regression verification
of code modifications affecting option combinations.

Acknowledgements I gratefully acknowledge help from C. Beisbart, L. Eça, P. Moin, W. L.
Oberkampf, C. J. Roy, N. Saam, L. Shunn. and especially W. J. Rider.
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Chapter 13
Validation Metrics: A Case
for Pattern-Based Methods

Robert E. Marks

Abstract This chapter discusses the issue of choosing the best computer model for
simulating a real-world phenomenon through the process of validating the model’s
output against the historical, real-world data. Four families of techniques are dis-
cussed that are used in the context of validation. One is based on the comparison
of statistical summaries of the historical data and the model output. The second is
used where the models and data are stochastic, and distributions of variables must be
compared, and a metric is used to measure their closeness. After exploring the desir-
able properties of such a measure, the paper compares the third and fourth methods
(from information theory) of measuring closeness of patterns, using an example from
strategic market competition. The techniques can, however, be used for validating
computer models in any domain.

Keywords Model validation · State Similarity Measure · Area Validation Metric ·
Generalized Hartley metric

13.1 Introduction

Validation of a computer model broadly means determining whether the model is
behaving as expected, given themodeller’s knowledge of the real-world phenomenon
beingmodelled; validating can aid in the choice of the bestmodel, as discussed below.
This chapter uses the example of agent-basedmodels. Agent-based computer simula-
tions (ormulti-agent systems) are a special case of computer simulationswhichmodel
autonomous or semi-autonomous rule-based agents dynamically interacting out of
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equilibrium, for the purpose of observing the emergence of patterns of behaviour at
the micro (agent) level or at a higher, macro (group) level which might not other-
wise be predicted.1 For agent-based models, validation poses special issues since the
emergent behaviour of such models might be previously unobserved or unexpected.
This chapter explains techniques of validation for such models, in particular, the
choice of a validation metric.2 But the metrics to be discussed below are applicable
in principle to validation of computer models against observed data—time series or
cross sectional—of applications inmany fields in engineering, science, computer sci-
ence or the social sciences. Indeed, any phenomenon in which one set of multivariate
variables is compared against another, time series or cross section.3

Chapter 31 by Fagiolo et al. in this volume presents a clear overview of valida-
tion of agent-based simulation models.4 They remark that there are many kinds of
validation or validity: e.g. output validation, structural validation, theoretical valid-
ity, model validity and operational validity. The simulation model is an attempt to
include the relevant variables in a mechanism to reflect the behaviour and hopefully
to explain the phenomenon being examined. The phenomenon exhibits a certain
(historical) behaviour; the simulation model can generate simulated behaviour. How
closely the simulation model’s behaviour reflects the observed behaviour is one
measure of how well the simulation model reflects the phenomenon being modelled
(output validation). Another is to identify the causal structures underlying the real-
world phenomenon, as revealed in the historical data, and to compare them with the
causal structures of the simulation model or models. This chapter focuses on output
validation, asking howwell do themodel data track existing real-world data, possibly
micro (at the agent level), possibly macro (at the aggregate level).5

In this chapter, four broad families of measures that can be used in this respect will
be explained: what might be called empirical likelihood measures, so-called stochas-
tic area measures, so-called information-theoretic measures and pattern-based or
strategic state measures. There are trade-offs associated with these families of mea-
sures, and several metrics, so far, have been devised for each.6

1For an overview of types of computer simulation modelling, see Gilbert and Troitzsch (2005).
2Wedistinguishbetweenbroadermeasure andnarrowermetric—ametric is ameasure, but ameasure
is not necessarily a metric—as discussed in Sect. 13.2 below.
3See Marks (2007), Midgley et al. (2007), Oberkampf and Roy (2010), and Liu et al. (2010) for
further general discussions of validation.
4As Guerini and Moneta (2017) observe, the appearance of many measures to validate agent-based
simulation models is an indication of “the vitality of the agent-based community.”
5This chapter, in effect, focuses on techniques of output validation (see Chap. 30, Sects. 4.2, 5.1
and 5.2 by Fagiolo et al. in this volume), going into greater detail about three of the six measures
they discuss.
6This chapter puts the work of Marks (2013) into a wider context.

http://dx.doi.org/10.1007/978-3-319-70766-2_31
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In the fourth family, we describe in detail two metrics (the State Similarity Mea-
sure, SSM, and the Generalized Hartley Measure, GHM) which are applicable to
validation of models the output of which is multivariate patterns, unlike other meth-
ods which assume univariate variables. The two measures can be thought of alter-
nate methods of measuring the rowwise distance between any two matrices of equal
dimension, X and Y.

13.2 Validation Metrics

As an example from the social sciences, consider the interactions over time among
several brands, where each brand’s market decisions (prices, promotions, etc.) in
any period affect the other brands’ volumes sold and profits, and the other brands
respond with their own market decisions in the following period. (See Sect. 13.5.)
This “rivalrous dance,” as I have called it, generates a complex dynamical pattern of
prices, profits, volumes sold, etc. The problem is not specific to simulation models
and phenomena in the social sciences: researchers in the biological sciences face the
same issue and have made some seminal advances in our understanding of the issues
(Mankin et al. 1977).

13.2.1 Four Types of Measurement Scales

The variables compared in Ferson et al. (2008) and Roy and Oberkampf (2011),
like almost all variables in scientific and engineering validation, share one property:
they are interval scales. That is, they measure ordered magnitudes, defined so that
the intervals of pairs of variables can be compared, or measured. (They could be
ratio scales, such as Kelvin for temperature, with absolute zero and where ratios are
meaningful,7 but this is less common.)

Almost all validation methods in finance, science and engineering are applicable
to interval-scaled variables, but not to order-scaled variables, in which the variables
might be increasing (decreasing) in one (or the other) direction but where distances
in these directions are meaningless because order is their highest characteristic. And
such validation methods cannot be applied when the variables are nominal scales
only: when their order is arbitrary, and their highest characteristic is unique identity,
with arbitrary, separate names or numbers.

The main focus of this chapter is on methods of validation which can deal with
nominal-scaled variables, or patterns, such as those that are seen in the historical phe-

7A temperature of 100K is twice as hot as 50 K, but 100 ◦C is not twice as hot as 50 ◦C: K is a ratio
scale, but ◦C is only an interval scale (“by how much?”); “hotter” and “colder” is only an ordered
scale.
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nomena (and the computer programswritten to simulate them) described in Sect. 13.5
below.

Two metrics in particular—the State Similarity Measure and the Generalized
Hartley Measure—have been developed to deal with nominal-scaled data. These
can be thought of as generalizations of the interval-scale-based metrics of Ferson
et al. (2008). They also overcome an issue that does not arise with interval-scaled
variables: the disappearance of any state in one but not the other of the two sets of
matrices X and Y: interval-scaled measures do not exhibit gaps in which one state
appears in X but not in Y, or vice versa.

13.2.2 The Desirable Properties of a Validation Metric

Ferson et al. (2008, p. 2415) state that “a validation metric is a formal measure of the
mismatch between predictions [of the model] and data that have not previously been
used to develop the model.” And that the closer the match between the model output
and the historical observations, the smaller the measure. Specifically, they argue that
a desirable measure should exhibit six properties:

1. it should be objective (and quantitative) so that the same predictions and the same
data will result in the same assessment, no matter who conducts it.

2. if there is a comparison between deterministic values without stochasticity, then
the metric should generalize this in a reasonable way.

3. the metric should reflect all differences in the two distributions (of the predictions
and of the history), not just the lower moments of these distributions (mean,
standard deviation); it should not be too sensitive to outliers.

4. for ease of understanding, the unit of the metric should be the same as the unit of
the variables, if possible.

5. the modulus of the measure should be unbounded above.
6. the measure should be a true metric: that is, it should be non-negative and sym-

metric, should satisfy the delta inequality:

d(x, y) + d(y, z) ≥ d(x, z)

and should satisfy the identity of indiscernables8:

d(x, y) = 0 ⇐⇒ x = y.

Property 6 defines a metric. Properties 1, 3 and 6 are, I believe, crucial to any
validation measure. Property 4 is desirable for interval-scaled variables and Property

8Lacking only symmetry, it is a quasi-metric; lacking only the identity of indiscernables, it is a
semi-metric; lacking only the triangle inequality, it is a pseudo-metric.
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2 is desirable for validation of stochastic models. Property 5 is not necessary and is
inapplicable where the variables are order- or nominal-scaled.

The issue of measuring the distance between the dynamics of the output produced
by a simulation model and the historical counterpart raises the question of how to
define ametric to measure this distance. For simple phenomena (and simple models),
the output might be simple too. Measuring the distance between two time series, say,
is simple. When the phenomenon is dynamic and multivariate, with more than one
interrelated time series output, however, the issue of defining and measuring the
distance between the pair of sets of outputs is not simple.

If, moreover, the variables of the data and the model predictions are not interval-
scaled, but only nominal-scaled, then the units of the measure will not in general be
those of the data and predicted variables (Property 4). And it is not clear whether
Properties 2 and 3 will be satisfied. First, in the application of oligopolistic pricing
below, the historical data and the model predictions are deterministic. (The com-
puter simulation is a deterministic model, mapping from market state, determined
by curtailed historical data, to the next period’s marketing actions—here, prices). It
is not clear how to generalize this to a stochastic model, except perhaps by Monte
Carlo simulations (Marks 2016). Second, the metrics we propose below are no more
sensitive to (less frequent) data than they are to more frequent data: the tails are not
too influential.

13.3 Four Families of Validation Measures

We can distinguish between four families of measures that are important in the
context of validation. First, empirical likelihood measures; second, what might be
called stochastic area measures; third, information-theoretic measures; and, fourth,
strategic state measures that compare patterns of data.

13.3.1 Empirical Likelihood Measures

These measures include maximum likelihood, the generalized method of moments,
the method of simulated moments and indirect inference (see Chen et al. 2012); to a
greater or lesser extent, these demand knowledge of the true probabilistic dynamics
of the models’ output or require the use of assumptions about these dynamics.9

But likelihood measures rely on summary statistics and do not explicitly compare
the similarity of distributions or patterns between the data and the simulated data
generated by the models.

9Guerini and Moneta (2017) present a new method of validation, based on comparing structures of
vector autoregressive models estimated from both model and historical data.
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In general, such measures satisfy Ferson et al.’s Properties 1, 4, 5 and 6, but, in
only generating summary statistics, these measures ignore the information contained
in the patterns, especially relevant in strategic, dynamic models; they do not satisfy
Property 3. Moreover, such methods are usually seen not as validation methods,
but as methods of calibration and estimation (see Chap. 31 by Fagiolo et al. in this
volume, Sect. 31.4.1).

13.3.2 Stochastic Area Measures

These have been derived by Ferson et al. (2008) and Roy and Oberkampf (2011) and
others. Specifically, these papers address models and observations with stochastic
characteristics and univariate response quantities. That is, the model output Y and
the observed data X are single random variables. Unfortunately, the generalization
to multivariate responses is not straightforward.

Following Ferson et al. (2008), there are a variety of ways to compare univariate
random variables, expressed as probability density functions (p.d.f.s) or cumulative
distribution functions:

First, the random variables are “equal” or “surely equal” if their p.d.f.s are iden-
tical.

Second (more weakly), the random variables are “equal in mean” if the expecta-
tions of the absolute values of the differences between X and Y are zero.

Third (more weakly), if not quite equal in means, the mean metric provides a
measure of their discrepancy

dE(X,Y ) = E(|X − Y |) �= |E(X) − E(Y )|,

where E is the expectation operator. This can be generalized to higher ordermoments
of the distributions, where equality in the higher order moments implies equality in
all lower order moments.

Fourth (more weakly), if the shapes of the distributions of the two variables are
identical, then the random variables are “equal in distribution”.

Fifth (more weakly), if the distributions are not quite equal in shape, there are
many proposed measures, including the Kolmogorov–Smirnov distance:

dS(X,Y ) = sup
z

|Pr(X ≤ z) − Pr(Y ≤ z)|,

which is the vertical distance between the cumulative distributions functions of the
two random variables, where z takes on all values in the common range of historical
observations X and model output Y . Other measures, such as the Kullback–Leibler
divergence, are discussed below.

The variables compared in Ferson et al. (2008) and Roy and Oberkampf (2011),
like almost all variables in finance, scientific, and engineering validation, share one

http://dx.doi.org/10.1007/978-3-319-70766-2_31
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property: they are interval scales. The Area Validation Metric (AVM) introduced by
Ferson et al. (2008) can only be applied when the two variables are interval or ratio
scales. The AVMmeasures the area between the cumulative distribution functions of
the two random variables, that of themodel predictions and of the historical data. The
metric is not defined for ordered scales, in which the variables might be increasing
(decreasing) in one (or the other) direction but where distances in these directions
are meaningless because order is their highest characteristic.

And such interval-scale measures cannot be applied when the variables are nom-
inal only: when their order is arbitrary, and their highest characteristic is unique
identity, with arbitrary, separate names or numbers.

Indeed, the Smirnov distance is not applicable, even with an arbitrary ranking
of the ordering of the states. But the the applications introduced below generate
nominal-scale output, not interval-scaled.

Ferson et al.’s AVM, in measuring the divergence of the p.d.f. of the model output
from the historical data, does take satisfy Property 3, but is limited in that it requires
interval-scaled single variables of both output and observed data.

In what follows, we focus on methods that explicitly compare patterns in the data,
both observed and simulated, and do not in general require interval-scaled variables.
They are from the following two families.

13.3.3 Pattern-Based Measures I: Information-Theoretic
Measures

Information-theoretic measures are derived from Shannon’s measure of entropy
(Shannon 1948), and include the Kullback–Leibler construct (Kullback and Leibler
1951), andmore recentmeasures that attempt to overcome shortcomingsofKullback–
Leibler, such as the GSL-div (Lamperti 2018a, b).

Suchmeasures satisfy Properties 1, 3 and 5, but, as we discuss in Sect. 13.4 below,
they do not in general satisfy Property 6, although that has not eliminated their use in
model validation. I argue here that there are true metrics which should be considered
instead.

13.3.4 Pattern-Based Measures II: Strategic State Measures

Strategic state measures include Marks’ State Similarity Measure (Marks 2013) and
Klir’s 2006 Generalized Hartley Measure, from early set-theoretic work of Hartley’s
(Hartley 1928). These two measures satisfy Ferson et al.’s Properties 1, 2, 3 and 6,
but not Property 4 (units of measurement), or Property 5 (the measures are bounded
above); I argue that these two properties are not crucial for a validation metric.



326 R. E. Marks

13.4 Measures of Closeness or of Information Loss

Turn now to the third family ofmeasures. The broad idea behind evaluating a distance
between the model output and the real-world data in order to choose the model
“closest” to the real-world data is as follows. If the real data are information full, then
models of the underlying process capture only some of the information. Choosing
the model that loses least information compared to historical data is the criterion for
choosing the “best” model.

Information is often measured using Shannon entropy (1948) (SE).10 It is based
on probability and can be defined as

SE(p(x)|x ∈ X) = −
∑

p(x)log2(p(x))

where p is the probability distribution of random variable x . The function SE exhibits
some useful properties such as additivity, branching, normalization and expansibility.
Shannon entropy led to the Kullback and Leibler (1951) measure of information loss
from historical to model; it has some attractions theoretically, but is not a true metric,
as we shall see.

13.4.1 Kullback–Leibler Information Loss

The Kullback–Leibler (K-L) divergence or information loss (also known as rela-
tive entropy) provides a measure of the information lost when model g is used to
approximate full reality f :

I ( f, g) =
∫

f (x) log

(
f (x)

g(x |θ)

)
dx

in the continuous version, where the models g are indexed by θ , or

I ( f, g) =
k∑

i=1

pi × log

(
pi
πi

)

in the discrete case, with full reality f distribution 0 < pi < 1, and model g distri-
bution 0 < πi < 1, with

∑
pi = ∑

πi = 1. Here, there are k possible outcomes of
the underlying process; the true probability of the i th outcome is given by pi , while
the π1, . . . , πk constitute the approximating model. Hence, f and g correspond to
the pi and πi , respectively.

10Another measure used for information is Hartley information (see Sect. 13.7). Both are special
cases of Rényi entropy (Rényi 1970). Both derive from work done at the Bell Labs.



13 Validation Metrics: A Case for Pattern-Based Methods 327

But the K-L information loss is not a true metric: it is not symmetric and does
not satisfy Property 6, since I ( f, g) �= I (g, f ).11 Moreover, πi must be positive for
every i ,12 while in data, even for a coarse, dichotomous partition, this value is likely
to be zero for some states, for either set of data (model predictions or real data).13 As
mentioned above, this is a stumbling block for the AVM technique of Ferson et al.
(2008), although AVM is suitable for validation of models with univariate random
variables for output and observations.

13.4.2 The Generalized Subtracted L divergence (GSL-div)

To overcome shortcomings of the Kullback–Leibler divergence, the symmetric L
divergence (Lin 1991) was developed. From this, the GSL-div (Lamperti 2018b) has
been derived to measure the degree of similarity between real and simulated dynam-
ics by comparing the patterns of the time series. Lamperti discusses the procedure
to obtain the GSL-div, and then presents results to discriminate among four differ-
ent classes of stochastic processes. He also compares the GSL-div with alternative
measures of fit (using several summary statistics) commonly used for calibrating
ABMs, and concludes that GSL-div provides much more satisfactory performance
at this. But neither K-L nor Lin’s L-div (and hence GSL-div) satisfy Property 6, and,
hence, are not proper metrics, despite the interesting properties ofGSL-div (Lamperti
2018b).14

Let us now turn to the fourth family of measures, the strategic state measures,
which include the author’s State Similarity Measure (Sect. 13.7) (which uses recti-
linear or Minkowski’s L1 or the cityblock distance), and Klir’s Generalized Hartley
Measure (Sect. 13.7). Both are true metrics. Before we present the measures, we
describe the models for our example.

11It is a semi-quasi-metric.
12The K-L measure is defined only if pi = 0 whenever πi = 0.
13As Akaike (1973) first showed, the negative of K-L information is Boltzmann’s entropy. Hence
minimizing the K-L distance is equivalent to maximizing the entropy; hence the term “maximum
entropy principle.” But, as Burnham and Anderson (2002) point out, maximizing entropy is subject
to a constraint—the model of the information in the data. A good model contains the information in
the historical data, leaving only “noise.” It is the noise (or entropy or uncertainty) that is maximized
under the concept of the entropy maximizing principle. Minimizing K-L information loss then
results in an approximating model g that loses a minimum amount of information in the data f .
The K-L information loss is averaged negative entropy, hence the expectation with respect to f .
Fagiolo et al. (2007, p. 211) note further that “K-L distance can be an arbitrarily bad choice from a
decision-theoretic perspective ... if the set of models does not contain the true underlying model ...
then we will not want to select a model based on K-L distance.” This is because “K-L distance looks
for where models make the most different predictions—even if these differences concern aspects
of the data behaviour that are unimportant to us.”
14Although, as (Lamperti 2018b) points out, so long as the simulated data are always compared
with the historical data, and not with simulated data from other models, GSL-div might still allow
model choice.
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13.5 The Example: Models and Data

Return to our example of the interactions over time among several brands. We use
three models from simulations described in Marks et al. (1995). Each model has
three interacting brands, and each brand agent independently chooses its weekly
price from its own set of four possible prices in order to maximize its weekly profit,
in a process of co-evolution using theGeneticAlgorithm (GA).With 1-weekmemory,
each agent’s action is determined by the state of the market in the previous week,
which means 43 = 64 possible market states for each agent to respond to. See results
for 2- and 3-week memory below. The GA chooses the mapping from perceived state
to action for each brand (with each brand’sweekly profit as its “evolutionary fitness”).
This means that the models are not derived from historical patterns of oligopolistic
behaviour, and so can be used to predict these patterns.

Each model of the three brands’ interactions corresponds to a separate run of
the GA search for model parameters, using weekly profits of the brands as the GA
“fitness”. Given the complexity of the search space and the stochastic nature of the
GA, each run “breeds” a distinct model, with distinct mappings from state to brand
price, and hence different patterns of brand actions associated with each model.15

Figures 1 and 3 ofMidgley et al. (1997) and also of Marks (2013) show, respectively,
the observed historical weekly prices and volumes sold of several brands of coffee
competing in a U.S. supermarket chain, and a 50-week period of simulated interac-
tions among three brand agents in Model A, where each brand chooses from one of
four possible prices per week.

In order to reduce the number of degrees of freedom, we coarsen the partitioning
of the data, using a dichotomous partition into High and Low prices for both the real
data and the simulated data.

The distribution of the eight possible 1-week states in the historical chain store
(H) with three brands or players and in three models (A, B and C) 16 of the models’
outputs, using 50 weeks of data, are shown in Table 13.1, with “0” corresponding
to a player’s “High” price and “1” to a player’s “Low” price.17 Modelling deeper
memory for the brands results in similar distributions, but the tables are 64 rows and
512 rows deep, with 2-week and 3-week memory, respectively, corresponding to 64
and 512 states.

15The three models differ in more than the frequencies of the eight states (Table 13.1): each model
contains three distinct mappings from state to action, and, as deterministic finite automata (Marks
1992), they are ergodic, with emergent periodicities. Model A has a period of 13 weeks, Model B of
6 weeks, and Model C of 8 weeks. It is not clear that the historical data exhibit ergodicity, absence
of which will make simulation initial conditions significant (Fagiolo et al. 2007). Initial conditions
might determine the periodicity of the simulation model.
16In Midgley et al. (1997) and Marks (2013), Model A is called Model 26a, Model B is called
Model 26b and Model C is called Model 11.
17Figures 2 and 3 of Marks (2013) plot these behaviours. State 000 corresponds to all three players
choosing High prices; State 001 corresponds to Players 1 and 2 choosing High prices and Player 3
choosing a Low price, etc.
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Table 13.1 State frequencies from history and three models

State History Model A Model B Model C

000 32 30 20 0

001 2 11 10 18

010 6 3 7 15

011 1 0 0 0

100 7 5 12 16

101 0 0 0 0

110 2 1 1 0

111 0 0 0 1

Total 50 50 50 50

The important thing to note here is that these are models of strategic interaction:
it is not sufficient to examine a single brand’s time series of actions, since these have
affected—and in turn have been affected by—its rivals’ actions over time. This is
essentially a multivariate validation problem.

13.6 The State Similarity Measure (SSM)

Introduced inMarks (2010), the SSM counts the absolute difference in the frequency
of each possible state in each of two sets of vectors (or time series), and sums these
to obtain the SSM for the pair of sets of vectors. In effect, SSM treats each time
series set as a vector p in an n-dimensional, non-negative, real vector space with a
fixed Cartesian coordinate system, where there are n possible states in the sets of
vectors. The SSM between two sets matrix P and matrixQ of vectors (or time series)
is calculated as the rectilinear Minkowski’s L1 or cityblock distance (Krause 1986)
d1 between their two constructed vectors p and q, given by

dPQ
1 = d1(p,q) =

n∑

i=1

|pi − qi |, (13.1)

where pi is the number of occurrences (or frequencies) of state i in vector set P.
That is, SSM is the sum of the absolute differences of the coordinates of the two sets
of vectors as n-dimensional constructed vectors. (See Marks 2013, Appendix 1 for
details of this procedure.)

As defined here, the SSM is an absolute measure, where its maximum distance
D is a function of the equal length of the pair of sets of vectors. The lower the SSM,
the closer the two sets of vectors.

The maximum D of an SSM measure occurs when the intersection between the
states of the two sets of vectors is null, with D = 2 × S, where S is the number
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of window states, which depends on the memory length, inter alia. In our example,
maximum D would be 100 for 1-week memory, 2 × 49 = 98 for 2-week memory,
and 2 × 48 = 96 for 3-week memory, (given that there are 50 observations per set
of time series). It is possible to define a normalized measure.

13.6.1 Results for the Models

The six pairs of SSMs between the partitioned prices of the three models and the
observed historical data, using 50-week data series, are presented in Table 13.2 for
1-, 2- and 3-week memory. Table 13.3 presents the distances between History, and
the three simulations, Model C, Model A, and Model B from Marks et al. (1995),
with 3-week memory. Model C is far from any of the other sets, and Model B is
closest to Model A, but Model A is closer to the History historical data (at 54/96)
than it is to the closest other simulation, Model B (at 60/96).

As the partitioning becomes finer (with deeper memory of past actions), the SSMs
increase as the two sets of vectors (or time series) become less similar. This should
not surprise us. We also note that with these four sets of time series, the rankings do
not change with the depth of memory: (from closer to more distant) (History, Model
A), (Model A,Model B), (History, Model B), (Model C,Model B), (Model C,Model
A) and (History, Model C). Which of the three models is closest to the historical data
of History? The SSM tells us that Model A is best, followed byModel B, withModel
C bringing up the rear.

13.6.2 Monte Carlo Simulations of the SSM

We can, using Monte Carlo stochastic sampling (Marks 2016), derive some statistics
to test whether any pair of sets is likely to include random series (see below).

As Null Hypothesis we choose: each of two sets of time series is random.

Table 13.2 SSMs calculated between the six pairs of sets

Pair 1-week memory 2-week memory 3-week memory

b History, Model A 18 36 54

f Model A, Model B 22 42 60

c History, Model B 28 48 68

e Model C, Model B 42 60 80

d Model C, Model A 62 76 88

a History, Model C 70 88 92
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Table 13.3 SSMs between observed history and three models

History Model A Model B Model C

History 0 54 68 92*

Model A 54 0 60 88*

Model B 68 60 0 80*

Model C 92* 88* 80* 0

With this null hypothesis, we can set 1% and 5% one-sided confidence intervals
to the SSM numbers. (Note: * in Table 13.3 indicates we cannot reject the null at the
5% level.) With three brands and S = 48, the maximum D is 96. 95% of pairs of sets
of three random time series are at least 80 apart, and 99% of pairs of sets of three
random time series are at least 76 apart.18 This means that, in Table 13.3, we reject
the null hypothesis of random data for the pairs (History, Model A), (History, Model
B), and (Model A, Model B), since all SSMs here are less than 76, so the data are
significantly non-random, and the null hypothesis is rejected. The other three pairs
(all comparisons with Model C), with SSMs above 80, are not significantly (5%)
different from random, and the null hypothesis cannot be rejected. By construction,
none of the simulated data sets is random, although they are not particularly similar
(see Table 13.1). Figure 4 of Marks (2013) plots the Cumulative Mass Function
(CMF) of the MC parameter bootstrap simulation against the six SSMs of the pairs.

13.7 Classical Possibility Theory

Possibility theory offers a non-additive method of assigning a numerical value to the
likelihood of a system assuming a specific state, one of a given set of states. The
likelihood expressed is that of possibility; for this reason, the possibility assigned to
a collection of possible events is the maximum (rather than the sum) of the individual
possibilities (Ramer 1989).

Hartley (1928) solved the problem of how to measure the amount of uncertainty
associated with a finite set E of possible alternatives: he proved that the only mean-
ingful way to measure this dichotomous amount (when any alternative is either in or
out: no gradations of certainty) is to use a functional of the form:

c logb |E |,

18This numberwas determined by aMonteCarlo bootstrap simulation of 100,000 pairs of sets of four
quasi-random time series, calculating the SSM between each pair, and examining the distribution.
The lowest observed SSM of 64 appeared twice, that is, with a frequency of 2/100,000, or 0.002
percent.
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where set E contains all possible alternatives from the larger (finite) set X , and where
|E | denotes the cardinality of set E : b and c are positive constants, and it is required
that b �= 1. If b = 2 and c = 1 (or more generally, if c log2 = 1), then we obtain a
unique functional, H , defined for any basic possibility function, rE , by the formula:

H(rE ) = log2 |E |,

where the measurement unit of H is bits. This can also be expressed in terms of the
basic possibility function rE as

H(rE ) = log2
∑

x∈X
rE (x).

H is called a Hartley measure of uncertainty, resulting from lack of specificity:
the larger the set of possible alternatives, the less specific the identification of any
desired alternative of the set E . Clear identification is obtained when only one of
the considered alternatives is possible. Hence, this type of uncertainty can be called
non-specific.

This measure was first derived by Hartley (1928) for classical possibility theory,
where any alternative element of set X is either possible (i.e. in set E) or not. The
basic possibility function, rE , is then

rE (x) =
{
0 when x ∈ E,

1 when x /∈ E .

and is derived explicitly in Klir (2006, pp. 28). To be meaningful, this functional
must satisfy some essential axiomatic requirements.19

13.7.1 The Generalized Hartley Measure (GHM) for Graded
Possibilities

Following Klir (2006), we relax the “either/or” characteristic of the earlier treatment
and allow the basic possibility function20 on the finite set X to take any value between
zero and one: r : X → [0, 1]. Note that

max
x∈X {r(x)} = 1,

a property known as possibilistic normalization.

19See further discussion in Marks (2013), Appendix 2.
20It is not correct to call the function r a possibility distribution function, since it does not distribute
any fixed value among the elements of the set X : 1 ≤ ∑

x∈X r(x) ≤ |X |.
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The Generalized Hartley Measure (GHM) for graded possibilities is usually
denoted in the literature by U and is called U-uncertainty. U -uncertainty can be
expressed in various forms. A simple form is based on notation for graded possi-
bilities: X = {x1, x2, . . . , xn} and ri denotes for i = 1, . . . n the possibility of the
singleton event {xi }. Possibilities can (although need not) be estimated by frequen-
cies. Elements of X are appropriately rearranged so that the possibility profile:

r = < r1, r2, . . . , rn >

is ordered in such a way that

1 = r1 ≥ r2 ≥ . . . ≥ rn > 0,

where rn+1 = 0 by convention. Moreover, the set Ai = {x1, x2, . . . , xi } is defined
for each i ∈ {1, . . . , n}.

Using this simple notation, the U -uncertainty is expressed for each given possi-
bility profile r by the formula

U (r) =
n∑

i=2

(ri − ri+1) log2 i (13.2)

Klir (2006, p. 160) notes something relevant to our purposes here: “Another impor-
tant interpretation of possibility theory is based on the concept of similarity, in which
the possibility r(x) reflects the degree of similarity between x and an ideal proto-
type, xP , for which the possibility degree is 1. That is, r(x) is expressed by a suitable
distance between x and xP defined in terms of the relevant attributes of the elements
involved. The closer x is to xP according to the chosen distance, the more possible
we consider x to be in this interpretation [our emphasis].”

13.7.2 Applying U-Uncertainty to Our Data

From the frequencies of Table 13.1 (one-week memory), we can reorder21 the pos-
sibilities (observed frequencies) of the three runs and the historical data, to get the
four reordered, non-normalized22 possibility profiles (Table 13.4):

21It might be objected that this reordering loses information. But this overlooks the fact that the
order of the states is arbitrary. It should not be forgotten that the definition of the states with more
than 1 week’s memory captures dynamic elements of interaction.
22Normalization here means r1 = 1, not

∑
ri = 1.
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Table 13.4 The four possibility profiles, one-week memory

History: 32 7 6 2 2 1 0 0

Model A: 30 11 5 3 1 0 0 0

Model B: 20 12 10 7 1 0 0 0

Model C: 18 16 15 1 0 0 0 0

Using Eq. (13.2), the four Hartley measures are calculated23:

1. History:

U (r) = 1

32
(25 log2 1 + 1 log2 2 + 4 log2 3 + 0 log2 4 + 1 log2 5 + 1 log2 6)

= 0.383

2. Model A:

U (r) = 1

30
(19 log2 1 + 6 log2 2 + 2 log2 3 + 2 log2 4 + 1 log2 5)

= 0.516

3. Model B:

U (r) = 1

20
(8 log2 1 + 2 log2 2 + 3 log2 3 + 6 log2 4 + 1 log2 5)

= 1.054

4. Model C:

U (r) = 1

18
(2 log2 1 + 1 log2 2 + 14 log2 3 + 1 log2 4)

= 1.399

The GHMs for the three models and History have been calculated for the three
cases of 1-week, 2-week and 3-week memory, as seen in Table 13.5.

These GHMs are true metrics (they satisfy Property 6, unlike the K-L informa-
tion loss), and so we can compare the differences of Table 13.6 between the four
measures. We can readily see that Model A (0.516) is closest to the historical data

23For clarity, we have included the (i = 1)th element, (r1 − r2) log2 1, which is always zero, by
construction, consistent with Eq. (13.2).
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Table 13.5 GHMs calculated for three memory partitions

Process 1-week memory 2-week memory 3-week memory

History 0.383 0.495 0.782

Model A 0.516 0.679 1.085

Model B 1.054 1.657 2.542

Model C 1.399 2.179 2.787

Table 13.6 GHM differences calculated for the six pairs of sets

Pair 1-week memory 2-week memory 3-week memory

b History, Model A 0.133 0.184 0.303

e Model C, Model B 0.345 0.522 0.245

f Model A, Model B 0.538 0.978 1.457

c History, Model B 0.671 1.162 1.760

d Model C, Model A 0.883 1.500 1.702

a History, Model C 1.016 1.684 2.005

of History (0.383); next is Model B (0.516), with Model C (1.399) furthest from the
Historical data. Moreover, we can see that Model A is closer to the Historical data
than it is to Model B.

Table 13.6 shows the six pairwise differences in GHM, derived from Table 13.5.
It can be compared with the six pairwise SSMs of Table 13.2.

For 1-week memory the maximum GHM, corresponding to 50 equi-likely states,
is log2 50 = 5.644; for 2-week memory log2 49 = 5.615, and for 3-week mem-
ory log2 48 = 5.585. These numbers are the maximum pairwise difference between
GHMs; the minimum difference is zero in all three depths of memory.24

13.8 Comparing the Distances Measured by SSM
and GHM

FromTable 13.2, for 1-weekmemory, the SSMs are ranked (closest to farthest): {b, f,
c, e, d, a}; but, from Table 13.6, the GHMdifferences are ranked (smallest to largest):
{b, e, f, c, d, a}. Model A is closest to History using either measure, and Model C
is farthest. Note, however, from Table 13.2, that although the SSM rankings are the
same for 1-, 2- or 3-week memory, the GHM rankings are sensitive to the depth of
memory (see Table 13.6). That is, the two methods do not always produce identical

24We could also define a normalized GHM.
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rankings, although the degree to which these two measures result in similar rankings
of distances is noteworthy, given their quite different foundations.25

13.9 Conclusions

Is a particular computermodel the bestmodel of a particular real-world phenomenon?
“Best” can have several meanings, but here we mean whether the behaviour (“out-
put”) of the simulationmodel is closest to the observed behaviour of the phenomenon.
Measuring the closeness of the simulated behaviour and the observed (historical)
behaviourmight be simple (for example, for univariate, interval-scaled, deterministic
variables) or not (for example, for multivariate output of nominal-scaled variables).
Measuring this closeness is necessary to validate any model, and can be used to
choose the best model of set of contenders.

We have examined the appropriateness of measures from four families of tech-
niques, as characterized by the kinds of output observed and generated. Using Fer-
son et al.’s “desirable properties” of validation metrics, and focusing on the kind
of phenomenon (oligopolistic, strategic interactions among sellers) which exhibits
multivariate, nominal-scaled behaviour, we have argued that two contenders—SSM
and GHM—are appropriate.

These two strategic measures, SSM and GHM, are true metrics that allow us to
measure the degree of similarity between two sets of vectors (or matrices X and Y),
here multivariate time series. The SSM between two sets of vectors is the absolute
distance between two constructed vectors in non-negative, n-dimensional vector
space, where n is the number of possible states that each set of vectors can exhibit.
GHM is a measure of the possibility of any set P of vectors occurring as a vector p
in n-dimensional space.

Since GHM is a metric, differences of sets of vectors’ GHMs are meaningful.
SSM is also a metric (satisfying Property 6). As such, both measures can be used to
score the distance between any two sets of vectors, such as sets of time series, which
previously was unavailable.

The SSM and GHM strategic state measures have demonstrated closeness in
measuring similarity of sets of time series, although the two measures’ rankings of
distances are not identical, as seen above. The SSM is intuitive: it uses the cityblock
metric to tally the differences in the states between two constructed vectors. It can be
described in six simple steps, as outlined in Marks (2013), Appendix 1. The GHM
is anything but intuitive, based on arcane possibility theory.

Using Occam’s Razor, the SSM, as a simpler, more transparent measure, is pre-
ferred.

The two strategic state measures, SSM and GHM, are not restricted to measuring
the similarity of (or distance between) two sets of time series: they are more general,
as we have reminded the reader, in that they can be applied to pairs of sets of (equal

25Exploration of these differences awaits further research.
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length) vectors. The data used here are illustrative only: the two measures can be
applied to any pairs of simulated data and historical data, so long as the number
of observations of the model output and the historical data are equal, with equal
numbers of vectors, or observations. Even more generally, the two measures can be
thought of alternative methods of measuring the rowwise distance between any two
matrices of equal dimension.
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Chapter 14
Analysing Output from Stochastic
Computer Simulations: An Overview

Christine S. M. Currie

Abstract Proper statistical analysis of the output of a stochastic simulation model
helps to ensure against drawing conclusions based on random fluctuations. In this
chapter, we detail methods for analysing the output of stochastic simulation models.
We consider terminating and non-terminating simulations and demonstrate how to
set initial conditions for the former, and how to determine the length of the warm-up
period in the latter using Welch’s method and MSER-5. The chapter also describes
methods for choosing the number of replications needed to draw statistically valid
conclusions and how to compare between different options.We introduce some basic
statistical concepts at the start of the chapter to help with understanding what follows
and use two examples throughout the chapter to demonstrate the methods.

Keywords Simulation · Output analysis

14.1 Introduction

During the validation of a computer simulation, most often, the output of the simu-
lation program is compared to data (see in particular Chap. 15 by Murray-Smith in
this volume). This assumes that the output is well understood, which can be achieved
using output analysis. Output analysis can be seen as a poor relation to the model-
building process—it is less exciting and perhaps more mundane—but it can make or
break a simulation project. If little consideration is paid to how the model outputs are
interpreted, decisions can be made based on results that are not statistically signifi-
cant and may simply be due to random fluctuations. Alternatively, much time can be
wasted running many replications of long simulations unnecessarily if the statistics
show that significant results can be obtained much earlier or more efficiently with a
well-thought-out experimental structure.
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We consider here the analysis of computer simulation models with stochastic
outputs. Such models use pseudorandom numbers to mimic the randomness inherent
in real systems, where pseudo random numbers are generated by a deterministic
computer algorithm to mimic true random numbers. Examples of the stochastic
simulation model methodologies include discrete event simulation and agent-based
modelling, which have a wide range of applications from modelling of processes
such as hospitals, factories, call centres tomodelling of individual behaviour in crowd
situations, transmission of diseases, customer behaviour in markets, etc. Our focus
is on how to obtain reliable results that take full account of the inherent uncertainty
in the system. The output of non-stochastic or deterministic simulations, by contrast,
is much more straightforward to analyse and is thus not considered in this chapter.

Weuse two examples to demonstrate the techniques covered in this chapter: Exam-
ple 1 is a simple queueing system such as that observed in a bank or post office, with
one server and unlimitedwaiting space; and Example 2 is amore complex individual-
based model of tuberculosis (TB) and HIV, previously published in (Mellor et al.
2011). Both of these models have been programmed using discrete event simulation
such that the system only changes state when an event occurs, e.g. an arrival or a
departure from the queueing model. This means that the simulation can jump from
one event to the next rather than using a fixed time step. Nonetheless, the methods
we describe here will also work with fixed time step models.

The content of this chapter is fairly statistical andwhilewe cover some preliminar-
ies in the following section, readersmaywish to revise some of their basic knowledge
of random variables and statistics before moving on. There is an extensive literature
in output analysis for simulation models that this work draws on and readers who
wish to know more about the subject will find useful articles in the online archive of
the proceedings of the Winter Simulation Conference (http://www.wintersim.org).
There are also a number of excellent books that cover output analysis, which is
referred to during the chapter.

We begin in the following section by defining some of the terminologies that
we will use in the remainder of the chapter as well as going through some of the
background knowledge that the reader will need. In the main part of the chapter, we
focus separately on terminating and non-terminating simulations. These are defined
below and have different challenges for output analysis.We then go on to discuss how
to estimate the number of replications that are needed in Sect. 14.5 before describing
methods for effective comparisons of different options in Sect. 14.6. Finally, we
provide a discussion with details of where to find out more.

http://www.wintersim.org
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14.2 Preliminaries

14.2.1 Definitions

For the purposes of what follows, we split stochastic simulation models into two
broad categories: terminating simulations and non-terminating simulations. Ter-
minating simulations run until a particular event or set of events occur. This might be
a set time or alternatively could be a certain type of random event such as the first time
something happens. Of particular interest in the output analysis of terminating simu-
lations is the setting of initial conditions. In contrast, non-terminating simulations do
not have awell-defined endpoint and tend to be used tomodel steady-state behaviour,
also described as stationary or equilibrium behaviour. A simulation model is said to
be in a steady state if the initial conditions have no influence on the behaviour of the
system, i.e. once the initial transient behaviour has settled down.

It is important to note that in the steady-state, output is not constant and does
still vary, but it will vary according to a fixed, steady-state distribution. For these
simulations, output analysis is needed to determine the length of the warm-up period.
We consider terminating simulations in Sect. 14.3 and non-terminating simulations
in Sect. 14.4.

We here define some of the common simulation terms that we will use in the rest
of the chapter.

• Initial conditions: the initial conditions of a simulation model define the state that
the system is in at the start of the first time step.

• Warm Up: the number of time steps for which the simulation is run before it is
assumed to have reached its desired state. For terminating simulations, this could
be the number of time steps until the model reaches its desired initial state. For
non-terminating simulations, the warm-up is the number of time steps until the
model can be viewed as being in the steady-state.

• Replication: a run of the simulation model.
• Pseudorandom Numbers: these are generated within the simulation model and
should exhibit statistical randomness. Each replication is assumed to use a different
set of pseudorandom numbers.

14.2.2 Background Statistical Knowledge

The mean of a random variable Y can be estimated as

ȳ = 1

n

n∑

i=1

yi , (14.1)

where yi is the i th observation out of a total of n observations.
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The variance of a random variable Y can be estimated by

S2 = 1

n − 1

n∑

i=1

(yi − ȳ)2, (14.2)

where S is the standard deviation.
The confidence interval describes a range of likely values for a calculated statistic

such as the mean of a random variable. Typically, 95% or 90% confidence intervals
are calculated, meaning that if the same population is sampled several times and
interval estimates are made on each occasion, the resulting intervals would include
the true population mean in approximately 95% (or 90%) of the cases. Setting a
confidence interval of 95% implies a significance level α of 5%.

Standard methods for calculating confidence intervals assume that the yi follow
a normal distribution. This is more likely to be true if the yi are themselves sample
means, which have been calculated by averaging over a large number of observations
(e.g. if we use a long simulation run) or if n is large. If the data are not normal, the
following calculation of the confidence interval is invalid and a technique such as
bootstrapping (Efron and Tibshirani 1998) might be a suitable alternative.

There are a number of formal normality tests available that can be used to deter-
mine whether the yi follow a normal distribution, with the EDF tests (Anderson–
Darling, Kolmogorov–Smirnoff, Cramér-von-Mises) probably considered to be the
most powerful. (See, for example, (D’Agostino and Stephens 1986) for how these
can be implemented, although most statistics packages will have them built in). The
above tests work best with a moderate to high number of data points. Shapiro–Wilk
is another useful test, and tends to be more appropriate for small numbers of data
points. Alternatively, a probability or q–q plot provides a visual check of normality.
(A q–q plot or quantile-quantile plot to give it its full name plots the data on the x-axis
against the statistical model—in this case, the normal distribution—on the y-axis.
If the data follow the statistical model, the data points should be evenly distributed
about the 45◦, y = x line).

Assuming the output is normal, the 100(1 − α)% confidence interval around the
estimate of the performance measure, ȳ, is given by

[
ȳ − t1−α/2;n−1

S√
n
, ȳ + t1−α/2;n−1

S√
n

]
, (14.3)

where t1−α/2;n−1 describes the point on the t-distribution with n − 1 degrees of free-
dom where the cumulative distribution function is equal to 1 − α/2.
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14.2.3 Setting Up the Problem

A simulation study will have a set of performance measures that are being calculated
via simulation model outputs. For simplicity, we consider univariate outputs here,
e.g. the number of people waiting in a queue or the number of new infections of TB
disease in the population, and use y to describe the output that we are interested in.
We run n replications of the simulation model and in each replication, we record m
observations of y. Here, m can take on any value but will typically be either equal to
1 or T , the number of timesteps in each replication. Note however that in example 1,
our queueing model, we have C observations, where C is the number of customers
that enter the system.

The values

y =

⎛

⎜⎜⎜⎝

y11 y12 . . . y1m
y21 y22 . . . y2m
...

...
. . .

...

yn1 yn2 . . . ynm

⎞

⎟⎟⎟⎠ ,

constitute the simulation output data, where yi j is the j th observation in the i th
replication of the simulation model. Simulation output data are random, as we are
considering stochastic simulation models. In this sense, running the model is just
like observing reality in that each replication of the model will generate a new set
of results, assuming that we use a different set of pseudorandom numbers in each
replication.

14.3 Working with Terminating Simulations

Working with terminating simulations, it is important that the simulation model is
in the right state when we start collecting results. This means that when the data
collection starts, it should obey the initial conditions. For some systems, the initial
conditions are obvious from the setting, e.g. when simulating a shop from its opening
time, the initial conditions would be that the shop starts empty. In other situations,
starting the system empty is no longer valid. For example, if we are instead interested
in how the shop behaves over the lunchtime period, it would be more realistic to have
some customers in the system at the start of the results collection period. Before we
consider how we can achieve this, let us think about how we can choose the correct
initial conditions for a system.

For real systems, it may be feasible to observe the state of the system at a given
time. For the shop example, this would involve observing the number of customers
in the queue and being served at the start of the lunchtime period over a number
of days. In more complex systems, there may be data available that suggest either
the values of some of the states or alternatively values for the system outputs at the
desired start point.
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For complex models, where it is hard to determine each of the individual state
values, the best way of obtaining the correct conditions is to run the model prior to
the start of the results collection period. We demonstrate this via an example.

Example:Modelling TB andHIVWe use an infectious diseasemodel of tuberculo-
sis (TB) and HIV to illustrate this point. The model is a stochastic, individual-based
simulation model that was built to describe the impact of the HIV epidemic on the
incidence rate of new cases of TB disease in Zimbabwe. To help with modelling
TB transmission, the population were divided into households. Details of the model
can be found in (Mellor et al. 2011) and we consider some experimentation with the
model below.

When setting initial conditions, data were available on the incidence of TB disease
(i.e. the number of reported cases of TB per year per 100,000 population) from 1980,
shortly before the start of the HIV epidemic, until 2002 and the distribution of the
population within households, based on a survey. The epidemic was not expected to
reach a steady-state and so a terminating simulation model was built to describe the
transmission of disease in the population and the progression of the disease within
individuals. Our aim when setting up the model was to ensure that the simulation
model reaches a state in 1980 that allows the impact of HIV on the population
of Zimbabwe to be reproduced as accurately as possible. While we know the HIV
prevalence and TB incidence in 1980 and beyond, we are unable to know the detailed
information of each state, e.g. the number of people in each stage of TB disease, etc.
As a result, we need to run the model from an earlier date so that it is in the correct
state when results collection begins.

In this case, a long run lengthwas needed due to the initial oscillation in the output,
as shown in Fig. 14.1. To save computational time in running the scenario analysis
later in the project, the state of the simulation model at the end of the warm-up was
saved for a large number of warm-up runs, and the first step of each replication of the
simulation model was to sample from this set of initial states, to choose the initial
conditions for that particular replication.

14.4 Working with Non-terminating Simulations

When calculating statistics for the output of non-terminating simulations we con-
centrate only on the steady-state output, ignoring the initial transient. It is important
to also take account of the variability in the output. There are two main approaches
of doing this. In the first, we run the simulation for a number of replications and
combine results from the replication, e.g. by taking averages. An alternative is to
observe only one, long simulation run and split this up into smaller sections or
batches. This is the technique of batch means. Some care needs to be taken in
applying batch means to allow for autocorrelation in the output. If data are autocor-
related, there are a dependence between data points in the series of output data. An
example of autocorrelated data might be daily ice cream sales over a year in the UK,
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Fig. 14.1 Time series showing the simulation output of TB incidence and setting up the initial
conditions. The TB data for Zimbabwe is shown as black squares; results for 100 runs are shown
in pale blue; the average model output is shown as a black solid line. (© IEEE. Reprinted, with
permission, from (Currie and Cheng 2016), Fig. 5)

where there is likely to be a connection between values on adjacent days due to the
weather dependence of ice cream sales. We do not consider batch means any further
here and instead refer the interested reader to (Robinson 2014) for a good review of
batch means methods.

With non-terminating simulations, the first task of the output analysis concentrates
on ensuring that the initial transient behaviour is not allowed to affect the results of
the simulation study. Estimating the initial transient or warm-up duration can be
done in a number of ways and we consider two options below. Having estimated the
warm-up duration, any output data generated during this time is removed from the
analysis.

Figure 14.2 shows the output from Example 1, what is known as a M/G/1 queue,
inwhich customers arrive into the system following aPoisson distribution (M) and are
then served with the service time following a general distribution (G). The one refers
to the fact that there is just one server. Here, the output is the waiting time of each
successive customer. Service is assumed to follow a truncated normal distribution
(truncated to prevent negative service times). As discussed above, this could be used
to describe the arrival and service process in a small shop or post office.

Although the output is random, it is possible to observe an initial period where
there is an upwards trend, before the data series settles down to what can be regarded
as its steady-state behaviour. The period of fluctuations at the start of the simulation
run is often termed the initial transient and if output from this period is included in
the calculation of statistics of interest (e.g. including the initial small values for the
waiting time in this example), they are likely to bias the results such that we do not
get a good approximation to the steady-state mean.

The most common way of dealing with the initial transient is to delete the output
from this period, which we define to be the warm-up period. For example, if we
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Fig. 14.2 Time series showing the mean waiting time of customers in the queue, averaged over 10
iterations

have a series of simulation output data yi1, yi2, . . . , yiT coming from T observations
of a particular model output y during the i th replication, we would calculate the
mean for replication i , ȳi , as being equal to

ȳi =
∑T

t=t0+1 yit
T − t0

,

where the warm-up period is set to be equal to t0. Other statistics, such as the variance
or range of variables would be calculated in a similar way, i.e. by ignoring the first
t0 observations.

Identification of the warm-up period has been a topic of research for many years
and we recommend (Hoad et al. 2010) as a good review and test of different methods.
In this chapter we consider two alternatives. The first, Welch’s Method (introduced
in (Welch 1981) and described clearly in (Law 2014)) is a graphical method, where
the modeller decides on the warm-up duration based on observations of the time
series. This is simple and easy to implement but subjective and hard to automate.
The secondmethod we introduce isMSER-5, which is a heuristic method introduced
by (White 1997) and tested in (Hoad et al. 2010). The acronym stands for Marginal
Standard Error Rule and the method makes a trade-off between precision and bias,
as we discuss further below.

14.4.1 Welch’s Method

The principle behind Welch’s method is to set the warm-up period t0 such that after
t0, a moving average of the output settles down to a relatively constant value. It is
not possible to determine the warm-up period from just one run of the simulation
model and the standard practice is to carry out at least five replications and find the
average output. It is also important to run the simulation model for long enough to
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Fig. 14.3 Moving average of the average waiting time for the M/G/1 queue using 50 replications
and a moving average window of 500

be certain that the system has reached a steady-state by the end of the run (see e.g.
Chapter 9 of (Robinson 2014)). The procedure is as follows.

1. Run the simulation model n times, where n ≥ 5 to obtain a time series of the
output of interest, y.

2. Calculate the mean of the output over the n replications for each observation
t = 1, 2, ..., T , writing these as ȳt = ∑n

i=1 yit/n.
3. Calculate amoving average for the ȳt using awindowsize ofw, wherew ≤ �T/4�

and T is the number of observations in each replication. The function �T/4� is
known as the floor function and denotes the integer part of T/4.

4. Plot the moving average ȳ(w).
5. If the data do not look smooth, increase the window size w and repeat steps 3

and 4.
6. The warm-up period t0 is the point at which the moving average flattens out.

For reference, we include the equations for calculating the moving average below.

ȳt (w) =

⎧
⎪⎪⎨

⎪⎪⎩

(∑2t−1
τ=1 ȳτ

)
/(2t − 1) t = 1, . . . , w

(∑2w
τ=0 ȳt−w+τ

)
/(2w + 1) t = w + 1, . . . , T − w

Considering the first example of the M/G/1 queue, we plot the moving average
in Fig. 14.3. The output from this queue is highly variable and we find that we need
50 replications and a window length of 500 to obtain a relatively smooth plot. This
suggests a warm-up duration of around 1500, i.e. we remove the waiting time of the
first 1500 customers when calculating the mean and variance of the waiting times.
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14.4.2 MSER-5

The MSER algorithm is based on the fact that, as the duration of the warm-up t0
increases, the bias associated with the result will decrease, improving the estimate.
However, a higher t0 means that a smaller number of observations is used to calculate
the output statistic, and the precision of the statistic will decrease. MSER-5 aims to
balance the bias reduction with the increase in variance.

We define t∗0 to be the optimal warm-up duration. As with Welch’s method, the
simulation is run for n replicationswhere n ≥ 5. For theM/G/1 example, we consider
below, we set n to be much higher than this (50) as the output is highly variable, and
the computational time for each simulation run is very short, but this will vary from
model to model.

The MSER Statistic gives a measure of the statistical error in the output. For a
small t0, the error is mainly due to bias and for a large t0, it is mainly a result of
increased variability. In order to calculate the MSER statistic, we first define the b
batch averages

zk = 1

5n

n∑

i=1

5∑

j=1

yi,5(k−1)+ j , k = 1, . . . , b = �T/5�

and then the estimated mean, ignoring the warm-up period

z̄b,t0 = 1

n(T − t0)

n∑

i=1

T∑

t=t0+1

yit .

If we define b0 = t0/5, the number of batches in the warm-up period, then the
optimal value for b0 is given by the minimum of the MSER statistic

MSER = 1

(b − b0)2

b∑

k=b0+1

(zk − z̄b,t0)
2.

As with Welch’s method, we use a long run length when determining the warm-up
duration such that b >> b0.

If we apply MSER-5 to the M/G/1 queue example, the minimum occurs at
b = 229, corresponding to t = 1145, with the plot shown in Fig. 14.4. This matches
reasonably well with the estimate obtained using Welch’s method but has the advan-
tage that the methodology can be automated.
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14.5 How Many Replications?

The number of replications should be decided based on the level of precision required
for the results and the variability of the simulation output. In what follows, we show
how to set the number of replications n to obtain the desired level of accuracy in
the mean of our output of interest ȳ. The precision/accuracy is indicated by the
sample variance S2 and the confidence interval, which we wrote expressions for in
Sect. 14.2.2.

Equation 14.3 shows that as the number of replications n increases, the width of
the confidence interval decreases at a rate of 1/

√
n. There is also a smaller effect

coming from the t-distribution which has thinner tails as n increases. In order to
determine the appropriate value of n to achieve a desired precision, we must first
decide how we wish to measure it: absolute error or relative error. Absolute error is
a measure of the difference between the estimated mean coming from the simulation
model ȳ and the unknown true mean of the output, μ. In contrast, relative error is
the absolute error divided by the unknown true mean. In effect, the relative error
allows for the scale of the observations, enabling two error rates to be compared. For
example, an absolute error of 10 is large if the mean value is 20 but is unlikely to be
important if the mean value is 2000. These two situations would have relative error
rates of 0.5 and 0.005 respectively. The choice of which error rate to use is likely to
be dictated by the nature of the results being output.

Considering absolute error initially, we define our precision as |ȳ − μ| and assume
that we are setting n such that

|ȳ − μ| < ε is true with probability 1 − α.

In order to determine n, we must make a small number of initial replications, m,
to give us an estimate of the underlying variance based on the first m observations,
S̃2(m). RearrangingEq.14.3,we can then say that the number of replications required
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Fig. 14.4 Plot showing the variation in the MSER Statistic with the customer number
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to obtain a precision of ε, nabsε is the minimum value of n such that n ≥ m and

t1−α/2;n−1
S̃(m)√

n
≤ ε.

When using the relative error, we set n such that

|(ȳ − μ)/μ| < ε is true with probability 1 − α,

i.e. the the estimator should bewithin 100ε%of the true value with probability 1 − α.
A similar principle is used to that for the absolute error, but we now need to take
into account the mean of the relevant performance measure, ȳ(m) calculated after
the first m replications. In this case, the number of replications, nrelε that are needed
for the estimator to be within 100ε% of the true value with probability 1 − α is the
minimum value of n such that n ≥ m and

t1−α/2;n−1
S̃(m)

|ȳ(m)|√n
≤ ε

1 + ε
.

For more details of the derivation of these formulae, see (Law 2014). These estimates
are unlikely to be perfect as they rely on the estimates of ȳ(m) and S̃2(m) calculated
after only a small number of replications. Nonetheless, they can provide a good
ballpark figure for the number of replications that should be made.

14.6 Making Comparisons

Many simulation projects set out to compare different system configurations or to
find the best value for a given parameter. For a more in-depth study, the simulation
optimisation methods described in (Fu 2015) provide an excellent way of optimising
a system via simulation, taking account of the stochasticity of the output. There is
insufficient space available to cover these methods here and we instead describe how
confidence intervals can be calculated for a comparison between two systems. In
what follows, we consider an example used previously in (Currie and Cheng 2016),
which compares the impact of different interventions on the incidence of TB disease.

14.6.1 Comparing Two Systems

When comparing two systems, we wish to run sufficient replications to be confident
that the system we observe to be better is the right one, usually up to a 95% or
90% confidence level. In what follows we assume that we record the mean value of
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our output in each replication, writing ȳi (1), ȳi (2), i = 1, . . . , n to denote the mean
observed in replication i for systems 1 and 2, respectively.

The quantity of interest here is the difference between system 1 and system 2,

�i = ȳi (1) − ȳi (2).

Taking the mean over the n replications,

�̄(n) =
n∑

i=1

�i/n

and the variance of the �i is given by

Var [�̄(n)] =
∑n

i=1(�i − �̄(n))2

n(n − 1)
.

If there is a significant difference between the two systems, themeanof the differences
�̄(n) will have a confidence interval that does not include zero. Assuming a normal
distribution, the (100 − α)% confidence interval is given by

�̄(n) ± tn−1,1−α/2

√
Var [�̄(n)],

where tn−1,1−α/2 is the 1 − α/2 point of the t-distribution with n − 1 degrees of
freedom. This can be found using a statistical package or even Excel.

Returning to the model of TB and HIV considered earlier, we demonstrate how
to compare two interventions designed to counteract the impact of the two diseases.
Intervention 1 mimics the impact of visiting households in which someone has pre-
viously been diagnosed with TB disease and intervention 2 visiting households in
which one or more of themembers is in the later stages of HIV. The output variable of
interest here is the number of cases of TB disease found using the two interventions.

We run 50 replications with each intervention, keeping all other model parameters
the same, and so n = 50, and observe a mean difference of 43 cases, with a variance
of 170. Before calculating the confidence interval, we run the Anderson–Darling test
to check for normality. The null hypothesis (H0) of the Anderson–Darling test is
that the data are a random sample from the normal distribution. We obtain a p-value
of 0.090. Therefore, using a significance level of 0.05, we cannot reject the null
hypothesis that the data is normal, and we are safe to continue with our calculation
of confidence intervals. The t-distribution has n − 1 = 49◦ of freedom, resulting in
a 95% confidence interval of [−21,−65]. As the interval does not straddle zero,
we are safe to conclude that we can see a significant difference between the two
interventions, with the second intervention finding more TB cases.

If the Anderson–Darling test suggests that the differences do not follow a normal
distribution there are other ways of calculating a confidence interval, with the easiest
method to follow being bootstrap resampling. There is insufficient space to discuss
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this here and we recommend (Efron and Tibshirani 1998) as a good introduction to
this technique for the interested reader.When the variance is high, itmay be necessary
to run many replications to find a significant difference between the two systems. In
this case, it can be helpful to use the technique of common random numbers as a way
of reducing the variability (e.g. see (Law 2014)).

14.6.2 Comparing Many Systems

The statistical analysis when comparing many systems is more complicated than
when comparing just two as it is necessary to take account of the fact that several
hypothesis tests are being carried out simultaneously. For example, consider calcu-
lating 95% confidence intervals for 10 comparisons. For each of these comparisons,
there is a 5% or 1 in 20 chance that the true difference lies outside the confidence
interval, a so-called type 1 error. Therefore, the overall confidence interval for those
ten comparisons, the chance that one of the true differences lie outside its confidence
interval, is in fact as low as 60%.

There are methods available that can account for this, the best known being the
Bonferroni correction. The Bonferroni correction is discussed at length in (Law
2014) and we refer the interested reader to this book for more details. In essence,
if the required confidence level is (1 − α)%, and p comparisons are being made,
then each of the individual comparison confidence levels need to be (1 − α/p)%.
This increases the number of replications that need to be made in order to meet the
required significance.

14.7 Conclusion

This chapter demonstrates some useful techniques in output analysis, which allows
for the stochastic output of a simulation model. The key messages should be to think
carefully about the meaning of the output, to plot output data where possible to gain
a better understanding of how it is distributed, and to always run more than one
replication of a stochastic simulation model.

Model verification and validation techniques determine whether a model is cor-
rect.Output analysis sitswithin that by ensuring that the results reported for stochastic
simulationmodels are an accurate representation of themodel output. The techniques
described in this chapter will also help with providing an accurate description of the
uncertainty in the simulation results, which is vital when using them to make deci-
sions.
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Chapter 15
The Use of Experimental Data
in Simulation Model Validation

David J. Murray-Smith

Abstract The use of experimental data for the validation of deterministic dynamic
simulation models based on sets of ordinary differential equations and algebraic
equations is discussed. Comparisons of model and target system data are consid-
ered using graphical methods and quantitative measures in the time and frequency
domains. System identification and parameter estimation methods are emphasized,
especially in terms of identifiability analysis which can provide valuable information
for experiment design. In general, experiments that are suitable for system identifi-
cation are also appropriate for model validation. However, there is a dilemma since
models are needed for this design process. The experiment design, data collection and
analysis of model validation results is, inevitably, an iterative process, and experi-
ments designed for model validation can never be truly optimal. A model of the
pulmonary gas exchange processes in humans is used to illustrate some issues of
identifiability, experiment design and test input selection for model validation.

Keywords Graphical comparisons · Quantitative measures · Identifiability ·
Experiment design · Test inputs

15.1 Introduction

This chapter discusses issues associated with the use of experimental data for simula-
tionmodel validation. This is central to many of the ideas of validation, as introduced
in Chap. 4 by this author in this volume. As explained in that chapter, validation is
concerned with the processes involved in establishing the extent to which a given
model is consistent with the target system using information which is external to
the model, as compared with the more internal processes of verification which are
used to establish the correctness, or otherwise, of the code and algorithms used in
the implementation of the simulation model.
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The words ‘experimental modelling’ are used in this chapter to distinguish the
development of a theoretical model using knowledge and understanding of the target
system frommethods ofmodel development that alsomakeuse of data frommeasured
or observed responses from that system.An appropriatemodel structuremay often be
established on a theoretical basis, but some details, such as precise values of specific
constants (parameters) within the equations, may not be immediately available. For
example, in deterministic dynamic models used in physics, engineering, physiology
and many other fields, the structure of the model (usually nonlinear in form) may
often be found using scientific laws and principles. However, experimental data from
the target system may often be needed to provide estimates of parameters within
that chosen model structure if they cannot be determined from a priori information.
This type of approach to the development of simulation models has interesting and
important implications in terms of simulation model validation methods.

Although we are concerned here with models that may be developed through
a combination of theoretical modelling and experimental modelling methods, it is
important to note that it is also possible to develop simulation models entirely from
measured responses from the target system. This ‘system identification’ process
involves determining both the model structure and the parameter values from exper-
imental data and this may be thought of as the most extreme form of experimental
modelling. System identification is closely related to methods of time series analy-
sis (see, for example, Chatfield 1996) and is much used in the analysis and design
of feedback control systems. Many system identification techniques lead to linear
models and they are applied most often in situations where little prior information is
available about the structure of the system under investigation.

Inmany cases, the target systemsdescribed bymodels derived using a combination
of theoretical and experimentalmodellingmethods involve one ormore variables that
can be regarded as ‘inputs’ in the sense that they can be changed in an independent
fashion, while other variables of the system respond in some way to those applied
changes. For example, the level of water in a bathtub depends on the flow rates at the
hot and cold taps and these could be regarded as inputs for a model of the system,
while the water level could be regarded as an ‘output’ variable. Models of practical
systemsmay involve many variables, some of whichmay be regarded as inputs while
others may be output variables (usually those that are important for the intended
application of the model and for which measurements are often available). Model
variables that are not described as ‘inputs’ or ‘outputs’ are known as intermediate
variables, and measurements are often not available for these.

It must be noted that experimental modelling approaches for model development
and validation are only appropriate in situations where the system being modelled
is available for testing and this is clearly impossible in some cases, such as in the
initial stages of engineering design. However, even when no target system exists,
experimental data from other systems that resemble the target system may provide
insight. This is especially true if the newproject involves subsystems that are identical
or very similar to some existing subsystems and, thus, to sub-models developed
previously.
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In situations where a model is derived from theory, test data from a target system
may be essential formodel validation in the context of the plannedmodel application.
However, experimental data sets are likely to be of limited value for validation of
a dynamic system simulation model unless the tests carried out excite the system
in such a way that the whole of the relevant range of operation is covered. In this
respect, the requirements for experimental design for validation are essentially the
same as those for system identification. Experience gained in system identification
and parameter estimation is therefore directly relevant to the success of experimental
modelling techniques inmodel validation. Themost important point in both situations
is that key variables of the target system must be perturbed during validation tests,
usually through the application of externally applied test inputs and the choice of
initial conditions. The measured time histories of those key variables from the target
system must cover the complete range of importance. Both the amplitudes and rates
of change of variables must be considered, and this has an influence both on the
magnitude and the frequency content of the test inputs applied. Careful experiment
design is therefore very important and best practice requires that experiments should
be tailored precisely to the application, and it is always important that they are fully
documented so that the resulting data sets can be used with confidence in the future.

Experimental data may also allow some aspects of a system to be eliminated from
a theoretically based simulation model. For example, part of a complex theoretical
model could be replaced by measured response data obtained from tests on the target
system. This may simplify both the development of the model and the validation
process. An example of this is given in a later section of this chapter within a case
study involving a model of pulmonary gas exchange processes in human subjects
where one key variable of the model (the gas flow into and out of the lungs) is based
on measured data from the target system. The resulting model is, of course, specific
to the individual human subject being considered.

The aim in validation of amodel is usually to establish the range of conditions over
which model predictions agree with the behaviour of the target system to some spec-
ified level of accuracy, but experimental data can also provide insight into possible
sources of model deficiencies in the context of the intended application. Experimen-
tal conditions should always be chosen to maximize information about the target
system, with special emphasis being given to measured quantities that relate directly
to aspects of the model where most uncertainties exist.

Ideally, we would like to have confidence intervals for model predictions, but
these are not easily found. Usually, the best we can do is to assemble all the available
quantitative information about the model and the target system, together with results
from face validation involving people with expert practical knowledge. Thus, an
aircraft model for a ground-based piloted simulation facility might be tested initially
through quantitative comparisons of simulation model histories and corresponding
flight test data, but could also be assessed by experienced test pilots who would make
suggestions for model improvement using a more subjective approach involving
handling qualities and manoeuverability criteria applied to the simulator and to the
real aircraft during flight tests.
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This chapter starts with a section discussing general issues concerning data used
during the development and testing of deterministic models. An important distinc-
tion is made between applications in which data are based only on observations of
a target system and applications in which it is possible to carry out experiments
involving imposed changes of operating conditions. This leads on to a section in
which an introduction to experimental modelling methods is presented and, in the
two sections that follow, some graphical and quantitative ways comparing data sets
from the target system and the simulation model are discussed. A brief outline is then
given of some system identification and parameter estimation approaches, which are
central to the experimental methods in model validation and the concept of ‘identi-
fiability’ is emphasized. This can provide insight about the structure and choice of
parameters in theoretically based models as well as being important for the design of
experiments that are efficient in terms of extracting information from the target sys-
tem. Some methods that have been found to be particularly effective for experiment
design in the context of model validation are then presented, together with discussion
of model complexity issues and the problems of ‘over-fitting’ and ‘under-fitting’ of
parameters. This leads on to a section in which experimental modelling methods are
applied to a theoretically based simulation model of human pulmonary gas exchange
processes where identifiability and experiment design methods in simulation model
validation are stressed. The final two sections provide some general discussion and
conclusions relating to issues concerning the use of experimental data in the valida-
tion of nonlinear simulation models that are dynamic and essentially deterministic
in form.

15.2 Data Sets for Model Development and Testing

Data from the target system, whether from historical sources or from specially
designed experiments, may provide important information for use in the develop-
ment of a simulation model. The experimental data form the reference against which
competing models are compared during the validation process. It is, therefore, essen-
tial to know the limits of accuracy of the data since, without that information, model
predictions cannot be properly assessed.

Errors in data from the target system may be random or systematic in form.
Random errors are often associated with measurement noise. The scatter of results
obtained when experiments are repeated can give a rough indication of the signif-
icance of such errors. Systematic errors, on the other hand, produce bias in results
and this cannot be reduced through additional testing. Such errors arise from sensor
offsets, sensor calibration errors and problems within the hardware and software
used for data collection, as discussed by many authors (for example, Hughes and
Hase 2010). Although random errors are always present in measurements, much can
be done to eliminate or reduce systematic errors through, for example, introducing
redundancywithin the hardware used and employing sensor fusion or state estimation
methods such as Kalman filtering (see, for example, Tischler and Remple 2006).
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Some modelling applications, such as arise in astrophysics, climatology or eco-
nomics, do not offer possibilities for experimentation and data for validation must
come from observations. Sometimes, only historical data sets are available. In such
cases, datamust be split into subsets formodel development (e.g. using system identi-
fication and parameter estimationmethods) and subsets for subsequentmodel testing.
A data set should never be used in the estimation of unknown model parameters and,
again, at the validation stage.

Although experimental modelling techniques, such as system identification and
parameter estimation, are usually seen as being important for the development of a
model, these tools can also be very valuable for validation. For example, trends in
estimated parameter values over a range of operating conditions may be compared
with corresponding parameter values found from the theoretical model.

15.3 Comparison Methods for Model and Target System
Data Sets

In practical applications, simulation models often involve many different output
variables and can generate large quantities of data. In terms of measures of model
quality, outputs must be chosen which are meaningful for the planned application.

Analysis of model quality may be based on many different model and system
comparison measures, such as particular features of time histories for specific vari-
ables, including steady-state values, or frequencies of oscillation, or rates of decay
of output variables during a transient. It could also involve comparisons of complete
time histories for the target system and the model, recorded over a specified period
for several variables. A combination of quantitative measures and graphical repre-
sentations is often emphasized in discussions of model validation, since graphical
representations can often provide insight not available from quantitative measures
on their own.

15.3.1 Graphical Methods for System and Model Data
Comparisons

Simple graphical methods allow comparisons of experimental data and the corre-
sponding model-generated outputs and any major differences between predicted
output variables from the simulation model and the corresponding time histories
of measured variables of the target system may suggest that the model structure is
wrong, especially if records display distinctive features that are similar across data
sets for different variables.

Graphical presentations are usually based on plots of simulated variables and the
corresponding observed or measured values against an independent variable which,
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for dynamic models, is usually time. Additional plots showing differences between
the model and measured variables versus time may emphasize mismatches and auto-
correlation functions of these residuals can often highlight modelling errors (see,
e.g. Gustavsson 1972). Ideally, the residuals should resemble white noise and the
autocorrelation function should show a distinct peak around the time origin with
other values close to zero. Tools such as parameter sensitivity analysis can also be
used to gain more understanding of residual differences.

Graphs involving plots of simulated values against equivalent measured values
can be useful and should show a straight line at an angle of 45° to the axes in the ideal
case. Points above or below the 45-degree line give ameasure ofmodel discrepancies,
provided experimental errors are negligible.

Wherever possible, estimates ofmeasurement errors should be shown as error bars
superimposedon the nominal values found experimentally (most often represented by
discrete points). In experimental situations where different sensors are available for
themeasured variables, itmay also be possible to check for consistency. Simple visual
checksmay highlight inconsistencies and computational tools for data evaluation and
reconstruction, such as the Extended Kalman Filter, can then provide further checks.
Situations in which data evaluation and reconstruction methods have been especially
successful for validation of experimentally derived models include the testing of
aircraft and helicoptermodels where flight trials can involve different types of inertial
and air data sensors (e.g. Tischler and Remple 2006).

While a graphical output in terms of time history plots is easy to interpret for
two or three variables, such comparisons become harder to use as the number of
variables is increased. The simple time history plot is not the only graphical approach
used to display and compare measured and simulated time histories. Other useful
representations include a form of scaled polar diagram in which key quantities can
be represented as points on radial lines. These points can be linked to create polygon
figures and separate polygons ofmeasured and simulated results on the same diagram
then provide ameasure ofmodel and systemagreement for the chosen quantities. This
form of representation closely resembles the Kiviat diagram used for visualization of
computer performance metrics and has proved useful for several simulation model
applications (see, for example, Kammel et al. 2005; Smith et al. 2007; Murray-Smith
2015).

15.3.2 Some Quantitative Measures for System and Model
Comparisons in the Time Domain

When data values generated from a simulation are compared with data from the
corresponding target system, some specific quantitative measures of differences may
be used instead of graphs and may be very useful in the validation of simulation
models. For example, with n sets of values, differences between observed values yi

and simulated values ŷi may be used to give the mean-squared difference:
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Jmse � 1

n

n∑

i�1

(yi − ŷi )
2 (15.1)

There are many other possible measures and further discussion may be found in
Chap. 18 by Saam in this volume which deals with broader issues associated with
validation benchmarks and benchmark metrics.

One measure that has been used widely for some model validation applications
is Theil’s Inequality Coefficient (TIC) which is defined, for a single variable, as

JT I C �

√
1
n

n∑
i�1

(yi − ŷi )2

√
1
n

n∑
i�1

y2i +

√
1
n

n∑
i�1

ŷ2i

(15.2)

This measure lies between zero and unity. A model capable of perfect predictions
for the data used in the comparison gives a value of JTIC of zero. On the other hand,
a value of JTIC of unity indicates complete failure in terms of model predictions.
Although the useful range of JTIC values for a credible model depends on the appli-
cation and is inevitably subjective, values of JTIC about 0.2 or 0.3 are often suggested
as indicating acceptable agreement. This type of measure can also be used with more
sets of variables, but a single number is then being used to describe the model quality
for several different variables, leading to possible problems of interpretation.

All model quality measures of this kind, involving the use of one number, can
mask differences that may be more obvious from graphical output. This has been
discussed elsewhere by Jachner et al. (2007) and by the present author (Murray-Smith
2015) using specific examples.

15.3.3 Frequency-Domain Measures and Comparisons

An alternative to the methods of system and model comparisons based on time
histories, which are outlined in Sect. 15.3.2, involves moving from the ‘time domain’
to the ‘frequency domain’. Responses from the target systemandmodel are compared
in terms of their magnitude and phase (relative to some reference value) over a range
of frequencies that is significant for the intended application of the model. The
transformation of the system and model time histories to the frequency domain can
be carried out using Fast Fourier Transform (FFT) algorithms and this is a routine
procedure within the time series analysis and digital signal processing fields (see,
e.g. Chatfield 1996).

Graphs of magnitude and phase against frequency for each relevant variable can
often provide insight not so readily gained from time-domain analysis alone. Sev-
eral quantitative measures for frequency-domain data are in common use and one
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such measure is the Frequency Response Assurance Criterion (FRAC) (Heylen and
Lammens 1996). As with the Theil’s Inequality Coefficient discussed in the previous
section, this measure gives values lying between zero and unity. For identical fre-
quency response functions, the FRAC value is unity, while unrelated responses give
a value of zero. For structural dynamics and other engineering applications, such as
pipeline modelling, the FRAC may have advantages over other approaches in that
it makes direct use of measured frequency responses and thus captures the damping
characteristics of the system, including nonlinear effects. Direct examination of mea-
sured and theoretical frequency response functions in graphical form may provide
useful information concerning model validity. All frequency values that are likely to
be important for the model must be included in such comparisons and this requires
careful consideration when experiments are being planned. Any test input applied
to the system and the model must include frequencies that cover the entire range of
interest for the intended application.

Anothermeasurewhich is widely used in experimentalmodelling is the ‘ordinary’
or ‘magnitude squared’ coherence function between two data sets (see, e.g. Priestley
1981). This provides ameasure of the dependencebetween timehistories as a function
of frequency. The ordinary coherence function has a value zero when the two signals
are unrelated and approaches a value of one as the two signals become more similar
in form. In the case of input–output analysis of a physical system, measurement
noise, un-modelled disturbances and nonlinearity are always present so that a value
of ordinary coherence between input and output data sets of less than one may
suggest that the input–output relationship is nonlinear, or that the output includes
components from un-modelled inputs, including measurement noise. Evaluation of
coherence from measurements on the target system can be very useful in checking
that assumptions underlying theoretical models are justifiable. Interesting examples
of the use of spectral methods and coherence functions in the context of model
development and validation may be found in work on helicopter flight mechanics
models (see, for example, Tischler and Remple 2006) and in neural systemmodelling
(see, for example, Rosenberg et al. 1982).

15.4 System Identification and Parameter Estimation
in Model Validation

15.4.1 A Brief Overview of System Identification
and Parameter Estimation

Use of system identification and parameter estimation methods can lead to a func-
tional or ‘black box’ type ofmodel, obtained entirely frommeasured input and output
data. Although black box models are commonly used within control algorithms that
require regularly updated information about the system being controlled, they are
less useful in design and in hypothesis testing where all available knowledge about
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the target system is usually included at the model formulation stage. In most cases
where experimental modelling methods are used, the model is based on a theoretical
structure derived from the application of generally accepted laws and principles, with
only some unknown parameters remaining to be estimated using experimental data.
The latter type of model usually involves a set of ordinary differential equations, par-
tial differential equations or difference equations, together (possibly) with algebraic
equations.

As well as providing estimates of model parameters, system identification tech-
niques provide analytical and computational tools that offer important insight dur-
ing the development of theoretically based models, including the validation stage.
Classical methods of system identification may involve linear discrete-time models
or continuous-time models. For nonlinear models having a structure derived from
theory, parameter estimation is usually based on ‘local’ or ‘global’ optimization
techniques. Local methods may not reach a true optimum, becoming stuck at a local
extremum with the true maximum or minimum remaining undetected. Global meth-
ods, which can help to overcome such difficulties, involve use of random components
to reduce the risk of the algorithm becoming trapped. These global methods include
the use of evolutionary algorithms such as genetic algorithms (GA), genetic pro-
gramming (GP) and simulated annealing (SA) (see, for example, Murray-Smith
2012).

Although widely used as a basis for experimental modelling of dynamic sys-
tems based on ordinary differential equations and algebraic equations (often termed
‘lumped parameter’ models), system identification methods have received less atten-
tion in the case of partial differential equation (PDE) models which are often termed
‘distributed parameter’ models. The use of system identification and parameter esti-
mation techniques for distributed parameter models usually involves repeated solu-
tion of the PDEs, which is a computationally intensive procedure.

Theoretical finite-element models (which are much used in engineering in, for
example, structural dynamics applications) can present difficulties since modelling
errors and uncertainties are not easily estimated. However, experiments on a real
structure may, in principle, be possible and measurements may be obtained with
appropriate actuators and sensors mounted within the structure. Dynamic properties,
such as eigenvalues and mode shapes, can be compared with equivalent measured
quantities in the target system, and conclusions may be reached about the credibility
of the theoreticalmodel. Frequency-domainmethods are often used to comparefinite-
element model responses with measurements. This approach can provide evidence
about the parts of the frequency range over which model deficiencies are greatest.
Such an approach is outlined in (Bryce et al. 1976;Murray-Smith 2015) in the context
of a lumped parameter representation of large hydraulic pipelines which formed a
sub-model within a larger model of a hydroelectric generator system.

One very important issue in system identification and parameter estimation is
the accuracy of parameter estimates. Inevitably, this depends on the form of model
since a large scatter in estimated parameter values often indicates errors in the model
structure. In one approach, direct use is made of the statistical scatter for repeated
parameter estimations. This is relevantwhenmany sets of repeated testmeasurements
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are available for the same conditions but is seldom useful in practical applications
involving continuous system simulation models since the number of repeated esti-
mates is usually insufficient to provide statistically significant results.

A second way of assessing the accuracy of estimated parameters involves a more
theoretical approach based on the Cramer–Rao Inequality which is used to define a
Cramer–Rao bound (see, e.g. Söderström and Stoica 1989). This bound is always
smaller than or equal to the standard deviation of the corresponding estimates that
would be found from scatter analysis frommany repeated tests. Although the bounds
provide theoretical values for the standard deviations of parameter estimates, it must
be noted that, withmost system identificationmethods (e.g. themaximum-likelihood
approach), the theoretical values may have to be multiplied by factors of five or ten
to give realistic estimates of scatter. These factors allow for modelling errors and
the effects of non-Gaussian noise. Noise effects can, of course, be reduced through
filtering but the introduction of a factor of two is still recommended, even for cases
where the noise is properly modelled or completely filtered out. Although variance
values associated with parameter estimates are important indicators of model quality,
it is should be noted that no direct comparisons can be made of variance values
obtained for different model structures.

For the purposes of validation, techniques of system identification and param-
eter estimation provide an alternative to direct comparisons of system and model
behaviour. These methods are appropriate for testing a model of an existing system
and can be used when a prototype system or test rig is available. However, we must
distinguish between system identification and parameter estimation processes used
during model development to obtain information about the target system to be incor-
porated in the model and procedures involving system identification and parameter
estimation to investigate the quality of an optimized model which may be based
partly on experimentation and partly on theory.

Detailed information about methods of system identification and parameter esti-
mation may be found elsewhere (see, for example, Ljung 1999; Nelles 2001; Raol
et al. 2004).Different approaches have strengths andweaknesseswhichmust be prop-
erly understood in the context of the intended application, not only for the estimation
of poorly defined parameters or investigation of structural issues within a model
under development but also for model validation. Software for system identification
and parameter estimation is widely available on a commercial and open-source basis.

15.4.2 Issues of Identifiability

When using system identification and parameter estimation methods, the aim is to
derive reliable estimates for all of the model parameters. This may not be feasible in
practice and, in the testing of models, it is important to know the extent to which esti-
mation of model parameters is theoretically possible. The concept of ‘identifiability’
provides a way of handling this and allows potential problems to be found before an
identification method and test input signal are chosen. Although identifiability issues
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are of greatest importance in the context of identification and parameter estimation,
they are also highly relevant for experimental design within the model validation
process. For example, tests of identifiability can help to overcome the problem of
ill-defined parameters which is an important issue when investigating the quality of
large and complex simulation models.

Identifiability involves at least two different issues. Questions of ‘global’ or ‘struc-
tural’ identifiability are encountered when the number of parameters in a model is
too large to allow them all to be found, whatever input is applied. This form of iden-
tifiability depends on the model structure and is a necessary condition for obtaining
unique parameter estimates. Bellman and Åström (1970) highlighted the practical
importance of global identifiability. They showed that expressing coefficients within
a specific linearized form of a model in terms of the parameters appearing in the
original equations may allow a set of nonlinear algebraic equations to be derived. It
was shown that the linearized form of model is then identifiable, in the global sense,
if these algebraic equations have a unique solution. Although it deals with a lin-
earized version of the model, investigation of this form of identifiability can provide
valuable insight about problems of parameter estimation for the original nonlinear
model structure.

The second form is known as ‘pathological’ or ‘numerical’ identifiability. Uniden-
tifiability of this kind arises if a model which is structurally identifiable is used with
experimental data sets that are, in some way, inappropriate. This may happen if the
test record is short compared with the dynamic properties of the system, such as
dominant time constants or periods of any oscillations. Problems of pathological
unidentifiability are also found if measured data are inaccurate due, perhaps, to un-
modelled measurement noise. This form of unidentifiability has also been discussed
byBrown andGodfrey (1978)who introduced theword ‘determinancy’ in describing
it.

In simple cases, pathological unidentifiability may be established from time histo-
ries of parameter sensitivity functions. These functions provide an indication of how
much each variable of the model is affected by changes of each parameter. Model
parameters may be estimated only if parameter sensitivity functions for output vari-
ables with respect to each parameter are linearly independent (see, for example, Beck
and Arnold 1977). This idea can be examined in more detail through properties of
the ‘sensitivity’ matrix:

X �

⎡

⎢⎢⎣

∂y1
∂q1

. . .
∂y1
∂qp

...
...

...
∂yn

∂q1
· · · ∂yn

∂qp

⎤

⎥⎥⎦ (15.3)

and also using the closely related ‘parameter information’ matrixM � XTX, where
the variables yi are the outputs of interest and the parameter sensitivities ∂yi

∂q j
, as a

function of time, give an indication of the extent to which the time history of variable
yi is influenced by a parameter qj. The sensitivity matrix X allows parameter interde-
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pendencies to be found that are more complex than those that can be seen from direct
inspection of time histories of model variables or their sensitivity functions. Specif-
ically, pathological unidentifiability arises if columns of the matrix X are linearly
dependent. This may also be seen from the condition number of the matrix M (the
ratio of the largest eigenvalue of the matrix to the smallest eigenvalue) or from the
value of the determinant of M. If the condition number is large or if the determinant
is small, the confidence region for the estimates is large and parameter estimates are
poorly defined.

The inverse of the parameter information matrix (M−1) is the ‘dispersion’ matrix,
denoted by D. It provides a useful and highly practical indicator of pathological
unidentifiability through the value of its determinant. This is because, for an efficient
estimator (e.g. a maximum-likelihood estimator), elements of D are related to the
variance of the estimated parameters, through the Cramer–Rao bound.

Inspection for situations involving significant correlations betweenpairs of param-
eters may be carried out using the ‘parameter correlation’ matrix which is denoted
by P and defined in terms of its elements as

pi j � m−1
i j√

m−1
i i m−1

j j

(15.4)

where pi j is the element of P in row i and column j and m−1
i j is the element of M−1

in row i and column j. The diagonal elements of P are all unity and off-diagonal
elements lie between −1 and 1. Small values of the off-diagonal elements of P
show that the parameters are essentially decoupled, but a model is close to being
unidentifiable if the modulus of one or more of the off-diagonal terms is close to
unity, with 0.95 being widely regarded as a practical upper limit.

It should be noted that, in addition to providing an indication of the accuracy
of estimates, large values of Cramer–Rao bound for specific parameters may also
indicate problems of identifiability. Such a situation suggests that those parameters
might be better viewed as fixed quantities within the model or could be removed
completely.

15.4.3 Applications of System Identification and Parameter
Estimation to the Processes of Validation

Although many methods of system identification are applicable only for linear mod-
els, these techniques can still provide useful insight for validation of nonlinear mod-
els. Using parameter estimation methods, linear models can be found for several
test signal amplitudes and several points across the operating envelope of the sys-
tem. Trends in values of estimated parameters can then be compared with trends in
parameters of linearized theoretical descriptions derived from the nonlinear model
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for the same operating conditions. Differences in trends may then provide insight
about limitations of the nonlinear model. This approach has been applied in testing
nonlinear physically based helicopter flight mechanics models (Bradley et al. 1990).

Non-parametric methods of system identification, such as those based on
frequency-domain identification techniques, may also provide empirical models to
which physically based descriptions may be fitted. Thus, for example, transfer func-
tion estimates could be found experimentally, and parameter estimates could also
be derived for an equivalent physically based model. Comparisons could be made
between the experimentally estimated and theoretical values for these quantities
within the model and sensitivity issues could be explored. In the case of single-input
single-output linear models, many methods are available for fitting transfer func-
tion descriptions to time-domain or frequency-domain data obtained experimentally.
For example, measurements using sinusoidal test signals allow amplitude ratios and
phase shift of the measured response relative to the test input to be estimated directly.
Spectral analysis methods may also be used, and broadband test signals are appropri-
ate. However, any linear transfer functionmodel found using experimental modelling
methods in this way needs to be validated using a form of test input that is different
from the one used for the identification process.

Large standard deviations in parameter estimates found using different test data
sets suggest that there may be model structure problems or errors in the measured
data. Parameter correlation issues can also limit the extent to which parameter esti-
mates are useful for validation. In such situations, identifiability analysis may offer
valuable insight. Examining special cases where there is good prior information
available, such as a model parameter which depends on the acceleration due to grav-
ity, can also be useful and any significant deviation from expected values should be
examined carefully and explanations sought. It may be wise to redefine the experi-
mental modelling problem, in some cases, so that well-known quantities are given
fixed values and thus excluded from the parameter estimation process. Time series
analysis methods (see, e.g. Priestley 1981; Chatfield 1996), can provide additional
information about the significance of the experimentally derived evidence.

If adequate agreement between identified and theoretical models is found, the
second stage of validation can be attempted, involving comparison of time histories
for larger input perturbations. If the agreement is satisfactory over a rangeof operating
conditions, the model may then be considered for acceptance.

Accepted models can be applied until a new situation is found where the model
performance is considered inadequate. When such situations are encountered addi-
tional information or data must be sought and further model refinement undertaken,
leading to further verification and validation tests.

When testing nonlinear models using large inputs, validation methods based on
direct comparisons of model and system outputs are of limited value, whether based
on graphical or quantitative measures. Holistic face validation methods involving the
opinions of experts involved with the target system (e.g. pilots in the case of aircraft
or operators in the case of industrial systems) may provide more useful insight since
subjective testing allows attention to be focused on aspects of the model performance
that are judged important. Model structure refinement and parameter adjustment
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processes must be used repeatedly until selected model time histories match those
of the system to some predefined level. If the search space is small, we can examine
possible solutions and find an adequate one by trial and error. However, such simple
search procedures are unlikely to be useful in most practical modelling situations
and computer-based optimization methods are usually needed.

For nonlinear simulation models, the selection of test conditions is more difficult
than for linear descriptions because the system must be excited over the entire fre-
quency range of interest and all the significant nonlinearities must also lie within
the test signal range. Confidence intervals for the predictions made using a complete
model are not generally available but, for nonlinear simulation models, some types
of non-parametric description, such as Gaussian process models, do provide such
information (see, for example, Kocijan et al. 2005; Thompson 2009).

The application of system identification and parameter estimation techniquesmay
lead to the use of ‘frequentist’ methods (McFarland andMahadevan 2008). Such sta-
tistical techniques involve hypothesis testing and may allow acceptance or rejection
of a specific set of model parameters. Examples include the use of the multivariate
Gaussian Hotelling T2 test (Goodwin and Payne 1977) and more recent research on
significance tests (see, for example, Huynh et al. 2012).

The spectral properties and amplitude distributions of data sets applied in valida-
tion must be similar to those applied during identification and parameter estimation.
Although similar in terms of these properties, experimental test records for validation
should differ in terms of their time histories from the records used for parameter esti-
mation. As mentioned earlier, simulation output data being used for comparison with
experiments should always be subjected to the same signal processing procedures
(e.g. filtering) as the corresponding experimental data.

15.5 Design of Experiments and Selection of Inputs
for Model Testing

Well-designed validation test specifications should include initial conditions and
any boundary conditions, the form of inputs and the measuring equipment used.
All relevant operating conditions and the full range of parameter values must be
considered. Specification of the accuracy of measurements is also important since
data provide the standard against which competing models are assessed.

Validation measures should be established at an early stage in the modelling
process. These should be linked tomodel requirements and involve themain variables
of interest for the eventual application. Model quality measures also need to take
account of the potential difficulties and costs of data collection, both for the complete
system model and for sub-models.

The design of experiments and test signals for system identification and validation
must have a quantitative basis. Simple inputs such as steps or pulses are commonly
used, but these are not ‘persistently exciting’ as they can involve significant time
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periods when inputs are constant or have zero value. There are also difficulties with
test inputs based on sinusoidal signals where inputs with different frequencies are
applied sequentially and the system must reach a steady state following each fre-
quency change. Tests may also have to be repeated for a range of different input
amplitudes. This can be time-consuming and, if there is insufficient information about
the characteristics of the system, the applied inputs may not cover a wide enough
range of frequencies and amplitudes initially and tests may have to be repeated.

The use of swept sine waves (also known as frequency-sweep inputs) eliminates
some problems encountered with sine wave testing. With a swept sinusoidal test
input, the frequency is varied from some initial low value to the highest frequency
of interest, continuously over a period of time. This is a form of persistently exciting
signal, and its use can significantly reduce the time required for testing compared
with conventional sine wave signals.

The design of persistently exciting signals can also lead to square wave and binary
multi-step inputs which involve irregular step-like changes between two predefined
levels and, ideally, have no component at zero frequency (i.e. no steady offset).
Pseudo-random binary (PRB) signals belong to this class and have an auto-spectrum
like that of white noise over a limited frequency band.

Measures of model quality, such as those discussed in Sects. 15.3.2, 15.3.3 and
15.4.2, can be useful for experimental design and the selection of input test signals
since, even when the form of test input has been decided, other properties (e.g.
amplitude and frequency content, etc.) must still be chosen. For example, for models
linearized about a specific operating point, the sensitivity matrix X, the parameter
information matrix M and the dispersion matrix D can all be used in establishing
measures of the quality of experiments. The cost functions all involve a general
expression:

J � f (M) (15.5)

where f is a scalar function and J is the cost function. However, such measures
depend onmodel parameter values and this means that experiment designs for model
validation using such a cost function are never optimal. Several different performance
measures of this kind are based on the dispersion matrix,D. Examples include the A-
optimal criterion based on minimization of the trace of D, the D-optimal criterion in
which the determinant of D is minimized and the E-optimal criterion which depends
on the value of the maximum eigenvalue of the matrix D. Some advantages have
been claimed for the D-optimal criterion compared with the others (Hunter et al.
1969; Federov 1972). It has the form

JD � det(D) � det
(
M−1) (15.6)

and gives the same level of emphasis to all parameters within a model. However, if
only a small subset of the parameters are of interest use of a ‘truncated’ D-optimal
criterion may be preferred (Hunter et al. 1969). This criterion has the form
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JDt � det
(
M−1

i i

)
(15.7)

where Mii is a sub-matrix of the full information matrix involving only a subset of i
parameters.

These two D-optimal criteria involve sensitivity matrix elements and thus depend
on the model parameters. These measures can therefore only be used to assess and
compare experimental designs in a general way. Optimal design is impossible due
to the need for a perfect model, which is never available in practice.

15.6 Model Structure Optimisation

In simple terms, model complexity depends upon the number of equations and the
number of adjustable parameters. The words ‘under-fitting’ and ‘over-fitting’ are
widely used in discussions of model testing and validation. Under-fitting arises if a
model has a structure that does not allow it to match observed test data adequately.
If, on the other hand, a relatively complex model is used but predictions are poor,
over-fitting may be the reason. An incorrect model structure is one possible under-
lying cause in both situations, but errors in the estimation of model parameters from
experimental data due, for example, to bias caused by measurement noise is another
possibility. Criteria commonly used for guidance inmodel selection includeAkaike’s
information criterion (AIC) and the Bayesian modification of this (BIC). These cri-
teria and other approaches which penalize models with many estimated parameters
are discussed in many texts on time series analysis methods (see, e.g. Priestley 1981;
Chatfield 1996). However, care must be taken in applying such approaches to deter-
ministic models because many of these methods depend on an assumption that data
are normally distributed.

In general, if any part of a model is derived using experimental modelling tech-
niques, such as system identification and parameter estimation, the model should
be assessed using a test data set that is different from any of the data sets used in
model development, as already mentioned. This allows assessment of the predictive
capability of the model for experimental situations that are different from those used
in the development of the model.

15.7 Experimental Data for Validation: A Physiological
Modelling Example

The example chosen to illustrate the importance of data in simulation model devel-
opment involves a simple physiological model of human respiratory processes. It not
only illustrates some aspects of validation, such as the insight provided by identifia-
bility concepts and the importance of experimental designmethods, but also provides
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an example of a data-driven simulation model. The research upon which this is based
is not recent, but the example considered is ideal for the purpose since it involves a
compartmental model structure and it is hoped that themain findings and conclusions
are understandable for readers from all fields.

Dynamic compartmental models of pulmonary gas exchange processes that take
place in the lungs and circulatory systems in humans are of interest, not only in terms
of physiological knowledge but also for the development of diagnostic techniques.
Several studies have used gas exchange models that incorporate periodic breathing
and thus reflect, properly, the inspiratory and expiratory phases of the breath cycle
(see, for example, Murphy 1969; Tomlinson et al. 1994; Hahn and Farmery 2003).
The gas exchange processes may form a sub-model within a much larger model of
the complete respiratory control system involving multiple feedback pathways from
which the breath cycle pattern involved in lung ventilation is generated. However, in
the model being considered here the requirement was for a representation of the pul-
monary gas exchange processes in a form that could be applied to individual human
subjects. The feedback control systems for the control of breathing are therefore
not included in the model and the representation of the breathing cycle is based on
measured ventilation data from the subject.

The background to this model has been described by Pack (1976), Bache (1981)
andBache et al. (1981). Themodel structure involves a rigid dead space compartment
representing the upper airways and a single compliant alveolar compartment describ-
ing regions of the lungs in which gas exchange takes place between the air spaces
and the blood. Themodel also includes a single compartment to represent the tissues,
connected to the lungs through the bloodstream. The version of themodel considered
here involves carbon dioxide exchange and the structure is shown in Fig. 15.1. For
the levels of partial pressure (concentrations) within the alveolar and tissue com-
partments arising in this application, the dissociation curves for carbon dioxide for
mixed-venous and arterial blood are represented by a set of parallel straight lines.

Mass transfer principles are commonly used in establishing mathematical models
within compartmental systems of this kind. Basically, in each compartment, the rate
of change of mass of a specific substance must equal the difference between the input
and output flow rates for that substance. This is a form of ‘lumped parameter’ model
since, within each compartment, it is assumed that properties are uniform.

Considering the transfer of carbon dioxide between the compartments the follow-
ing model may be derived (see, e.g. Bache et al. 1981):

d PA

dt
� SV̇

VA

(
P∗

I − PA
)
+

Q̇

VA
[ad + b(PT C − PA)]γ (15.8)

d PT C

dt
� Ṁ

bVT C
− Q̇

bVT C
[ad + b(PT C − PA)] (15.9)

The variables PA(t) and PTC(t) represent the partial pressures of carbon dioxide
in the alveolar and tissue compartments, respectively. The quantity Q̇ is a fixed
parameter which represents the mean blood flow through the lungs, VA is the volume
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Fig. 15.1 Compartmental model representing pulmonary gas exchange processes

of the alveolar compartment about which volume changes occur during the different
phases of the breath cycle and VTC is the tissue compartment volume. The quantity V̇
in (15.8) is the ventilation, which is a function of time and is ameasured quantity, thus
providing the data-driven element of the model, mentioned earlier. The quantities ad

and bwhich describe a linearized approximation to the dissociation curve are known,
as is the constant γ.

The breathing cycle is divided into three stages. Stage 1 involves transfer to the
alveolar compartment of gas which was in the dead space at the end of the previous
breath cycle. The condition defining this stage is

V̇ (t) ≥ 0 and
∫ t

tI

V̇ (t)dt ≤ VD (15.10)

where t1 defines the start time of the inspiratory phase. The quantity S in (15.8) is a
switching variable which has value 1 when V̇ ≥ 0 and value 0 when V̇ ≤ 0.

The variable P∗
I (t) has a form that varies over the breath cycle. During the first part

of the inspiratory phase, gas entering the alveolar compartment is gas left in the dead
space at the end of the previous expiration. Thus, throughout Stage 1, the variable S �
1 and P∗

I (t) � PD(t) where PD (t) is the partial pressure of gas entering the alveolar
PA (t) compartment and is taken to be the flow-weighted mean of the alveolar partial
pressure during the final (end-tidal) portion of the previous expiration. The second
stage of the breath cycle involves transfer of gas inspired during the current breath
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cycle to the alveolar compartment from the dead space compartment. The relevant
condition is

V̇ (t) ≥ 0 and
∫ t

tI

V̇ (t)dt > VD (15.11)

The switching variable S remains unchanged at a value of 1 but the variable P∗
I (t) �

PI (t) where PI (t) is now the partial pressure of carbon dioxide in the inspired gas
mixture. In Stage 3, expiration takes place, for which the condition is

V̇ (t) < 0 (15.12)

and throughout this phase of the breath cycle the variable S � 0.
This model structure describes gas exchange processes for human subjects with

normal lungs and circulation for experiments of 10 min or less, not only for carbon
dioxide but also for oxygen and other gases, provided modifications are made to
the representation of the dissociation curve. Statements about the assumptions and
approximations made in developing this lumped parameter compartmental model
may be found elsewhere (see, e.g. Pack 1976; Bache 1981).

The ventilation V̇ (t) can be related to an ‘effective’ ventilation V̇E for the alveolar
compartment by taking account of the dead space volume. For each inspiration, only
part of the air breathed in at the mouth reaches the alveolar compartment and the
effective ventilation under steady-state breathing conditions would be given by

V̇E � V̇ − ḟ VD (15.13)

where VD is the volume of the dead space compartment and f is the breathing
frequency.

A second important variable is the partial pressure of carbon dioxide in the inspired
mixture PI (t) and this, together with the ventilation V̇ (t), provides a basis for gen-
erating test inputs to the system.

The partial pressure of carbon dioxide in the alveolar compartment PA(t) forms an
output variable. Direct measurement of PA(t) in human subjects presents difficulties
but an estimate is available from measurements, at the mouth, of carbon dioxide
partial pressure during the final (‘end-tidal’) phase of each expiration. The variable
PTC(t) in (15.9) may be viewed as being equivalent to the partial pressure of carbon
dioxide in mixed-venous blood and can also be regarded as an output. It cannot,
however, be measured readily on a continuous basis.

Investigation of global identifiability issues for this model may be carried out
using a linearized version of the model of (15.8)–(15.13) written as

d2PA

dt2
+ a1

d PA

dt
+ a2PA � b1

du

dt
+ b2u(t) + terms independent o f u(t) (15.14)
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where the variable u(t) is an input variable defined in terms of the effective ventilation
variable V̇E (t) and the partial pressure of carbon dioxidePI (t) in the inspiredmixture.
Details of this linearization process may be found elsewhere (see, e.g. Bache and
Murray-Smith 1983; Murray-Smith 2015).

Equation (15.14) can be used to establish the global identifiability of the model
andwhich parametersmay be estimated independently and thus determines the scope
for validation. The coefficients within the numerator and denominator of each term
on the right-hand side of (15.14) can be expressed in terms of the parameters of
(15.8)–(15.13). For example,

a1 � Q̇

VT C
+

V̇E

VA(0)
+

k Q̇b

VA(0)
(15.15)

a2 � Q̇V̇E

VT C VA(0)
(15.16)

b1 � 1

VA(0)
(15.17)

b2 � Q̇

VT C VA(0)
(15.18)

Since the effective ventilation V̇E is ameasuredquantity, the set of algebraic equations
can be manipulated to give unique expressions for each of the parameters of (15.8)
and (15.9), provided the parameters ad and b describing the dissociation curves
for carbon dioxide in mixed-venous and arterial blood are known, together with the
constant γ. Since these three parameters can be determined independently, the model
is thus globally identifiable.

Although global identifiability is established, there could also be issues of patho-
logical unidentifiability for thismodel. Pathological unidentifiabilitymay be detected
retrospectively by looking for linear dependence of columns of the sensitivity matrix
X, as defined in (15.3). Unidentifiability or near-unidentifiability is also reflected in
the condition number of the parameter information matrixM and this matrix should
therefore also be examined. If pathological unidentifiability is encountered, careful
consideration should be given to noise levels and to the design of the experiment
from which the measured response data are obtained.

15.7.1 Experimental Constraints

Concentrations of inspired carbon dioxide must be constrained since levels above
normal can only be tolerated for short periods of time. In addition, the cardiac output,
which corresponds to the parameter Q̇ (assumed constant in themodel), is affected by
the inspired carbon dioxide concentration. However, carbon dioxide concentrations
of 5% or less have little influence on the cardiac output if breathed for only a few
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minutes. Therefore, the chosen gasmixture involved 5%carbon dioxide, 21%oxygen
and 74% nitrogen, with a maximum test duration of 10 min (Bache et al. 1981).

Test inputs intended for routine clinical investigations need to be applied in a
straightforward fashion. Input perturbations, in this case, involved manual switching
of the inspired gas between dry air and input from a cylinder containing the chosen
gas mixture, with the switching frequency under the control of the experimenter.

The tests started with one minute of air breathing which was intended to allow
the subject to become comfortable. Following this, the chosen pattern of input was
applied,with gas concentration andflow rate data being sampled ten times per second.
All channels of datawere passed through suitable low-passfilters.Details of the signal
processing and parameter estimation procedures are given elsewhere (Bache 1981;
Bache et al. 1981).

15.7.2 Experimental Design and Test Signal

Amaximum-likelihood approach (see, e.g. Ljung 1999, Söderström and Stoica 1989)
was chosen for parameter estimation but success in applying this method was found
to be highly dependent on experimental design. Tests using a step function form of
input involving the subject breathing air for 40 s and then being switched to a gas
mixture containing 7% carbon dioxide for a further 80 s (i.e. a form of step function
input) produced large off-diagonal values in the parameter correlation matrix for
parameter pairs Ṁ and V TC (0.999), Ṁ and VA (0.840), V A and VTC (0.841) and Q̇
and PTC (0) (−0.952). This suggests that a step function input leads to problems of
pathological unidentifiability and that a more persistently exciting input could be a
better choice (Bache et al. 1981). The input must have suitable frequency content and
the concentration of carbon dioxide and other gases in the inspired gas mixture and
the test duration must take account of the experimental constraints discussed above.

Persistent excitation could involve periodic switching between air and the cho-
sen mixture of gases with an appropriate switching pattern. Suitable forms for this
binary signal were investigated using measures involving the parameter information
matrix, the dispersion matrix and the parameter correlation matrix, as discussed in
Sect. 15.4.2. Elements of these matrices depend on model parameters and, therefore,
analysis aimed at finding suitable switching periods for parameter estimation, or
for model validation, must be based on some initial model. Since parameter values
are unknown, initially, a nominal set of parameters for a ‘normal’ human subject of
average build was chosen for the experiment design process.

One case involved finding the best form of input for simultaneous estimation
of all the parameters of the model using data from a single system identification
test. The design procedure in this case involved the D-optimal criterion discussed
in Sect. 15.5, with the cost function of (15.6). For resting conditions with a typical
subject, the optimum switching period was found to be approximately 55 breaths.

A second case involved finding a persistently exciting input for estimation of indi-
vidual parameters. The truncated D-optimal design approach and the cost function



378 D. J. Murray-Smith

of (15.7) suggested that estimation of the tissue compartment parameters Ṁ and V TC

requires a switching period that was longer (say 60 breaths) than the period found for
estimation of all the parameters simultaneously. On the other hand, for the parameter
V A(0) (the initial steady-state volume of the alveolar compartment), a higher switch-
ing frequency, corresponding to a switching period of about 15 breaths, was shown
to be desirable. This is consistent with physiology since the alveolar compartment
dynamics are fast compared with those of the tissue compartment and the parameter
V A(0) is a factor within a time constant for the alveolar compartment in the linearized
model. Estimation of the parameter Q̇, which represents the total blood flow through
the lungs (the cardiac output for normal subjects), involved a clear optimum with a
switching period of about 24 breaths.

Since the design is dependent on model parameter values, which are initially
unknown, the results above can be used only as a guide in selecting test signals. The
form of input chosen involved alternating periods of air and gas mixture involving
5% or 7% carbon dioxide, with an appropriate switching period depending on the
parameters of interest. Measured quantities were the ventilation and carbon dioxide
partial pressure at the mouth. All subjects had been previously assessed using other
clinical tests andwere judged to be normal in terms of lung function. Estimated values
for each parameter of the nonlinear model were incorporated into the simulations
model for each patient.

Validation of the models developed for each subject involved a separate set of
experimental results in which a different form of persistently exciting test input
was applied. This persistently exciting input involved a switching period of about
30 breaths for adults (approximately two minutes). This input was again chosen
using results of the D-optimal and truncated D-optimal test input design optimization
procedures outlined above. The validation test results also showed good agreement
between measured and simulated outputs, with uncorrelated residuals (Bache et al.
1981). Analysis of sets of results obtained using the model validation test input also
gave small off-diagonal elements in the parameter correlationmatrix, indicating small
interactions between parameters. For example, the results for one typical subject
the element showing interactions between parameters Ṁ and V A was small (0.067)
compared to the result obtained using the step input (0.840). For parameters Ṁ and
VTC , the correlation matrix element was −0.017, which was also small compared
to the value of 0.999 for the case of the step input (Bache et al. 1981; Bache and
Murray-Smith 1983). Similar results were found for other validation data sets. This
information, combined with the satisfactory values found for residuals, suggested
that the chosen form of test signal could ensure that pathological unidentifiability
issues were avoided and could provide reliable parameter estimates. The resulting
simulation models were therefore judged to be suitable for the intended application
for each of the subjects tested.

It is important to be able to distinguish between normal and abnormal patients
in the clinical testing of lung function. Abnormalities may sometimes be associated
with gas exchange inhomogeneity and lumped parameter gas exchange models of
the type described here may be used to describe any maldistribution of ventilation or
blood flow. One approach has involved the introduction of additional alveolar com-
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partments, and amodel similar to that of Fig. 15.1 was developed having two alveolar
compartments. Global identifiability analysis applied to this slightly more complex
model structure showed that it was now impossible to distinguishing between differ-
ent models of this kind from measured ventilation and gas concentration data at the
mouth. Estimation of parameters within this model structure was impossible without
additional measured variables that could only be accessed in more invasive fashion
(Bache 1981; Bache and Murray-Smith 1983). Also, it was shown that meaningful
validation tests would not be possible for this modified model structure using the
available measured variables.

15.8 Discussion

In the validation of deterministic dynamic models, emphasis is always placed on
the assessment of the overall credibility and quality of a given model, developed
for a stated set of requirements and for a specified application. Thus, the successful
development of a simulation model requires close liaison between those responsible
for drawing up the model requirements and those responsible for testing the resulting
model through the processes of verification and validation.

Consideration of issues of availability and accuracy of measured data is an impor-
tant part of the planning process for the validation procedures. There are many cur-
rently available methods for the validation of simulation models that could be used
to better effect. Too many simulation model developers and users are content with
superficial tests involving simple graphical comparisons. More attention should be
given to issues of experiment design. Model properties, such as identifiability, could
be used to provide significant additional insight.

More generally, it is fair to state that withinmany organizations the introduction of
improved procedures for the management of simulation models and measured data
from target systems, togetherwith improved processes for the planning and execution
of model tests and validation procedures could provide immediate benefits. Careful
documentation ofmodels and the associated data sets is also very important (Murray-
Smith 2015; see also Chap. 25 by Reinhardt et al. in this volume).

The example involving the pulmonary gas exchange model was included to pro-
vide an illustration of simulation model development processes involving theoretical
model development based on physical laws and principles, together with experi-
mental modelling procedures for estimation of parameters and for validation. The
example also illustrates how identifiability concepts may be used for investigation of
parametric coupling and for experiment design. In that project, the primary require-
ment in terms of validation was that the test input applied should be capable of fully
exciting the system over the relevant frequency range and covering the full operating
range for each of the variables of the model while taking account of experimental
constraints. The resulting test input applied to system and model provided results
showed good agreement between the model and the system for a number of human
subjects. That case study also provided an illustration of the use of identifiability
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analysis to investigate how available measurements could limit the possibilities for
validation of more complex model structures involving additional variables. In such
cases, identifiability analysis could establish the variables of the target system that
would have to be measured to allow validation to be applied successfully.

15.9 Conclusions

In cases where experimental testing of the target system is possible, considerable
additional insight can be gained if the experiments on the target system are designed
appropriately and the test inputs applied cover the full operating range of the system
in terms of both amplitudes and frequencies. It is always important to ensure that as
much useful information as possible is included within any data sets from the target
system that may be used for simulation model validation. It is suggested that the
requirements for experimental design in simulation model validation are essentially
the same as the requirements for experiment design for system identification and
parameter estimation. Thus, a well-designed experiment for system identification
and parameter estimation should also be a good experiment for the purposes of
model validation and established methods for experiment design from that field can
therefore be applied to simulation model validation.

It is clear that the same data set should never be used in both model development
and model testing. In general, measured data sets should be split into two separate
records, one being used for model development tasks, such as parameter estimation
and the other for validation. When using data obtained by others, it is important to
be aware of the source of the data, any preprocessing that may have been carried out
(such as filtering or averaging) and possible errors in measured values.

Identifiability analysis is a particularly important tool that can be used to avoid
fruitless attempts to separate effects of parameters that are inherently coupled. Iden-
tifiability also has a role in experimental design and especially in the selection of test
inputs which ensure that the important parts of the frequency and amplitude ranges
are covered. Historical data and data obtained from tests carried out for purposes
other than system identification or validation may be of limited value.

System identification and parameter estimation, which are central to experimen-
tal modelling, are relatively mature and well-understood methods that are routinely
used in specialist application areas such as control engineering. However, there are
interesting research developments under way at present which relate to experimen-
tal modelling methods and model validation for some other types of application.
For example, as mentioned previously, one area of current research concerns the
use of Gaussian process descriptions which can provide useful information about
confidence intervals within identified models.

In conclusion, the process of model validation gives rise to an obvious dilemma
sincemodelsmust be available for experimental design and this is unlikely at the early
stages of themodel development cycle. Thus, in applications where tests on the target
system are possible, initial experiment design must be based only on approximate
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models. These approximatemodelsmay be refined later in the validation process and,
in some cases, the experiments themselves may have to be repeated. This transition
from approximate models to more refined models and improved experiments means
that data collection and analysis for model testing and validation is an iterative
process.
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Chapter 16
How to Use and Derive Stylized Facts
for Validating Simulation Models

Matthias Meyer

Abstract Stylized facts are often evoked in a very casual manner in the context of
model validation, a practice that stands in contrast with their popularity and their
potential. Given this situation, it is the aim of this chapter to characterize the concept
of stylized facts from an epistemological perspective, which includes clarification of
interesting ideas behind the concept, development of a definition and discussion of
its possible uses for validating simulation models. The latter includes not only output
validation but input validation and theory validation as well. Second, the need for a
more systematic derivation of stylized facts is addressed. For this purpose, several
approaches to establish stylized facts are presented and assessed. In this context,
an additional approach is presented, which tries to overcome the shortcomings of
current practice. Together, these interrelated aims represent an attempt to strengthen
the basis for the validation of simulation models using stylized facts.

Keywords Assumptions ·Methodology · Simulation models · Stylized facts ·
Validation

16.1 Introduction

Extant literature in economics and other social sciences includes widespread refer-
ences to stylized facts as support for the validity of models; a typical example of
which is found in a paper by Kahn (1987) in the American Economic Review. Kahn
introduces his paperwith a stylized fact about the inventory behavior of firms, accord-
ing to which it is a well-established empirical observation that “the variance of pro-
duction exceeds the variance of sales”. The rest of his paper is organized around this
stylized fact. The paper begins with a discussion of how far the existing approaches
can explain this stylized fact. Then, it develops a model which, according to Kahn,
allows accounting for this stylized fact. As he can reproduce this stylized fact with
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his model, Kahn considers this to be support for its empirical validity. This reference
to stylized facts to support the validity of models is quite frequent in economics and
other social sciences (Troitzsch 2008, p. 667, see also Chap. 31 by Fagiolo et al. in
this volume).1

The popularity of the concept of stylized facts can be observed in the area of sim-
ulation as well. For example, a review on calibration and validation approaches to
agent-based models (Windrum et al. 2007) shows that stylized facts play a prominent
role in the primary alternatives currently discussed for model validation.2 Stylized
facts are used as an empirically based reference point for simulation model calibra-
tion and validation in (a) the indirect calibration approach; (b) the Werker–Brenner
calibration approach; and (c) the history-friendly approach (Windrum et al. 2007,
paragraphs 4.4–4.25). With respect to the level of simulation models addressed,
stylized facts are often used to specify regularly observed patterns at the societal
or macro level (Gilbert 2008; Grimm et al. 2005), but can also be used to specify
relevant characteristics at the level of agents (Grimm et al. 2005).

Thiswidespread use of stylized facts and its prominent role in the process ofmodel
validation is, however, in contrast with the amount of attention typically devoted to
the concept. Most authors still refer—if at all—to Kaldor (1968), who uses the
concept primarily for rhetorical purposes and who, moreover, is not explicit as to
how he derives his set of stylized facts. Such an approach leads to at least two
problems.3 First, there seems to be no clear and shared understanding concerning
the epistemological characteristics of stylized facts. This is reflected in the fact that,
thus far, few authors discuss the interesting ideas behind the concept of stylized
facts from a general, epistemological perspective (e.g., Boland 1994; Lawson 1989;
Schwerin 2001). Second, in most applications, stylized facts are simply “stated” (in
the best case with reference to some supporting sources) and thus far, only a few
studies attempt to systematically derive stylized facts (e.g., Schwerin and Werker
2001; Cont 2001; Heine et al. 2005). Such approaches can easily lead to credibility
problems concerning the respective sets of stylized facts. Given these two problems,
any attempts to validate simulation models based on stylized facts are in danger
of criticism as to lack of solid basis. In other words, one may question whether
stylized facts can be considered to provide a solid epistemological basis for validating
simulation models.

Given this situation, it is the aim of this chapter to elaborate on Kaldor’s original
contribution and to provide an epistemological discussion of the concept of stylized
facts for use in model validation. In particular, the present chapter addresses the two

1A search in Google Scholar for the English and American version of the term “stylized facts”
results in a total of 98,800 hits. [Query 10.07.2018]
2For the purposes of this paper, validation is defined as the process of determining whether a
simulation model is an accurate representation of the system for the objectives of the study. For a
similar understanding, see Law (2006) and Burton and Obel (1995). This paper mainly uses agent-
based models as examples, but its ideas can be transferred to other simulation modeling techniques
as well.
3For a more general critique concerning the replication of stylized facts see Lux and Zwinkels
(2017).
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problems described above. First, it aims to characterize the concept of stylized facts
from an epistemological perspective, which includes clarification of interesting ideas
behind the concept, offering a precise definition and discussing the implications for
the validation of simulation models. Second, the need for a systematic derivation of
stylized facts is addressed. For this purpose, several approaches to derive stylized
facts are presented and assessed. Together, these interrelated contributions aim to
strengthen the epistemological basis for validating simulation models via stylized
facts.

The chapter is structured as follows. The second section addresses the origin
and epistemological foundations of the concept of stylized facts. In this section,
several uses of stylized facts for simulation model validations are also specified. In
the third section, the process of establishing stylized facts and existing approaches
in this respect are presented, which are, at present, scattered throughout different
literature streams. Based on the problems associated with these different approaches,
a fourth approach is developed in the fourth section of the present chapter. The chapter
concludes with a summary of the main results.

16.2 Epistemological Foundations of Stylized Facts

16.2.1 Development and Definition of the Stylized Facts
Concept

The concept of stylized facts is introduced by the economist Kaldor in the context
of debate on growth theory in 1958. In particular, he uses the concept to convince
his peers that his model of economic growth and capital accumulation is a better
representation of reality than the existing neoclassical models of his time (Kaldor
1968, p. 179).4 A closer look at the strategy behind his argument helps to obtain a
first-hand impression of the basic ideas behind the concept.

Kaldor starts by arguing that theories and corresponding models are based on
abstractions, which must be appropriate to the characteristic features of a phe-
nomenon “as recorded by experience” (Kaldor 1968, p. 178). For Kaldor, this implies
that theory and model development should start with a summary of the facts that can
be regarded as relevant for the problem under investigation. The problem is, how-
ever, that “facts as recorded by statisticians, are always subject to numerous snags
and qualifications, and for that reason are incapable of being summarized” (Kaldor
1968, p. 178).5 To handle this problem, Kaldor suggests that theorists “should be free

4Like many economists, Kaldor uses the terms “model” and “theory” interchangeably. For the
purposes of this paper, a model is understood as an isomorphic or homomorphous formal mapping
of a real system. Similarly, a theory is understood as a system of statements (theorems, axioms,
hypotheses, assumptions) on empirical relationships. For a detailed discussion of these two terms
and their usage, see Morgan (1998).
5For this problem, see also Leamer (1983, pp. 42–43), with additional references.
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to start off with a stylised view of the facts—i.e., concentrate on broad tendencies,
ignoring individual detail” (Kaldor 1968, p. 178).With respect to the resulting, broad
tendencies that emerge fromdifferent sources of empirical data,Kaldor coins the term
“stylized facts.” These “stylized facts” form the reference point for theory construc-
tion (Kaldor 1968, p. 178). Based on these general methodological considerations,
Kaldor names, in the second step, six stylized facts of macroeconomic growth6 and
argues that none of the neoclassical models of his time explain these stylized facts
(Kaldor 1968, p. 179). The remainder of his paper is devoted to constructing a model
that at least addresses some of these stylized facts.

Kaldor’s exposition had a considerable impact on the discussion of growth theory
and the term “stylized fact” can often be found as an example of an early research
agenda in this field.7 However, one can argue that the approach outlined by Kaldor
can be fruitful also in more general contexts. In particular, his argument entails two
interesting ideas from amethodological perspective.8 First, he suggests an interesting
way to link empirical research with research based on modeling. Stylized facts can
be interpreted as stepping stones linkingmodels with existing empirical observations
concerning the phenomenon investigated. The aim is to identify characteristics of a
phenomenon that are broadly supported by the existing empirical evidence in such a
way that researchers can regard it as important enough to require an explanation (see
also Lawson 1989, p. 65). This “summary” of existing evidence provides a means
to formulate an empirically grounded research agenda for a research community.
Second, he introduces the idea of a “stylized view” to deal with the diversity of
empirical findings and the associated problems in summarizing the existing empirical
evidence.9 He suggests to ignore minor and even contradictory details and to focus
on broad tendencies over the diverse empirical findings. The aim is to formulate
broad generalizations over the empirical data that need not be universal.10 Based
on these two basic ideas, the following definition is suggested: stylized facts are
broad, but not necessarily universal generalizations of empirical observations and
describe the supposed essential characteristics of a phenomenon that requires an

6“As regards the process of economic change and development in capitalist societies, I suggest
the following “stylized facts” as starting point for the construction of theoretical models: (1) The
continued growth in the aggregate volume of production and in the productivity of labor at a
steady trend rate; no recorded tendency for a falling rate of growth of productivity. (2) A continued
increase in the amount of capital per worker, whatever statistical measure of “capital” is chosen in
this connection” (Kaldor 1968, p. 178).
7See Schwerin (2001). However, in other areas, this term also can be found regularly. Boland (1997,
p. 243) critically remarks that, in addition to widespread use of the term, little of Kaldor’s idea is
understood today.
8For a discussion of the concept, see alsoBoland (1994, 1997), Lawson (1989) and Schwerin (2001).
For detailed discussion from a methodological perspective, see also Heine et al. (2007).
9This becomes even more intricate when different empirical research methods are involved, includ-
ing qualitative designs. For a discussion of these issues, see Sects. 16.3 and 16.4.
10As these broad generalizations do not claim universality, this approach is not directly confronted
with the problem of induction. Nevertheless, in line with Popper (1959), the importance of critical
discussion in deriving and/or revising stylized facts should be emphasized. Similarly, stylized facts
can be refined and/or revised over time like hypotheses.
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explanation (Heine et al. 2007).11 Given this function as a reference point for the
research community, they should be based on a high level of consensus.12

Adiscussion of the concept of stylized facts also has to address brieflyhow the con-
cept and related ideas are applied nowadays in economics and other sciences. While
some researchers explicitly use this term (Aoki 1988; Marcet and Nicolini 2003),
others use different terms but often mean the same or a related concept. Examples
are “patterns” (Grimm et al. 2005; Hayek 1964), empirical regularities (Constance
2007) or statistical properties of a phenomenon (Cont 2001). A characteristic com-
mon to many, but not all is that many of the researchers stress the complexity of
the phenomenon under investigation. A very early example in this respect is Hayek.
More recently, this claim is central to the econophysics position. They identify a
number of stylized facts of financial markets and state that some of them such as fat
tails are an indicator of the complexity of these phenomena (Cont 2001).

An important areawhere the concept is used quite regularly ismacroeconomics. In
this area stylized facts are currently understood as broad, but robust enough, statistical
properties pertaining to a certain economic phenomenon (Marcet and Nicolini 2003,
pp. 245–290). But also other fields such asmanagement (Constance 2007;Heine et al.
2005) or information systems research (Houy et al. 2015) start to use this concept.
Moreover, it is used to map scientific progress in a research area using modeling as
research method and this map can be used as a guide for future model development
(Heine et al. 2007; Meyer 2011).

16.2.2 Using Stylized Facts for Simulation Model Validation

Having a set of stylized facts can not only provide a reference point for model
construction ex ante (asKaldor suggests) but also for the purpose ofmodel validation.
With reference to a given set of stylized facts of a phenomenon, models and their
basic assumptions can be analyzed comparatively, with focus on their productive
implications without distraction by other, minor issues that are also covered by the
models: “[A]s long aswe can come to an agreement regarding the “stylized” facts, the
comparative appropriateness of competing explanatory abstractions can be brought
into clear and decisive focus” (Boland 1994, pp. 535–536).

Two steps can be distinguished in such a model assessment. In the first step, the
contributions of the models are measured. From the stylized facts perspective, the
contribution of a respectivemodel is in its ability to explain the stylized facts of a phe-

11This is already an interpretation and elaboration of Kaldor’s original ideas. For example, it might
be of interest to explore in which respect his concept of stylized facts can be regarded as the
construction of phenomena in the sense of Bogen and Woodward (1988).
12For an earlier definition, see Lawson (1989, p. 65) and Schwerin (2001). The aspect of consensus
is not sufficiently emphasized in earlier definitions, although very different philosophers, such as
Popper, Peirce or Habermas emphasize the importance of social and discursive processes that enable
criticism and lead to a convergence in the beliefs of scientists (Hands 2001, pp. 218–221). The issue
of consensus is addressed further in Sects. 16.3 and 16.4.
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Fig. 16.1 Results of comparative model assessment by Heine et al. (2005)

nomenon. Amodel that contributes to explaining a stylized fact is therefore regarded
as more valuable than another model that is geared toward side issues (Boland 1994,
p. 536). If there are several stylized facts, the contribution of a model increases with
its ability to explain more stylized facts alongside the absence of contradictions relat-
ing to the other stylized facts. Marcet and Nicolini (2003, pp. 245–290) provide a
good example of this first step by demonstrating the value addition of their model
with respect to a list of well-established stylized facts concerning hyperinflation. The
authors show that existing models are not consistent with all of the stylized facts of
hyperinflations on the one hand. On the other hand, their model adds value by being
the first to explain all facts under study consistently.

In the area of social simulation, a study by Heine et al. (2005) provides another
instructive example. In their study, the authors use a set of stylized facts as empirically
grounded reference points to compare simulationmodels with game theoreticmodels
(for a discussion of how stylized facts can be used as validation benchmarks seeChap.
18 by Saam in this volume). In particular, they use these stylized facts to assess the
comparative advantages of these two modeling approaches. By referring to a set of
stylized facts, they are not only able to provide an overview of the state of research
in that field in an economic way, but also to specify the comparative advantages
of simulation methods with respect to a specific phenomenon (see Fig. 16.1). The
authors show that simulationmodels can be related tomore stylized facts and achieve
an equivalent or better reproduction of these facts. Moreover, the authors use these
stylized facts to be very concrete about the potential of simulation models and argue
that they exhibit far greater potential for incorporating yet unaddressed stylized facts,
such for capturing the dynamic nature of the stylized fact changinggroup composition
(Heine et al. 2005).
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Thus far, it has only been discussed how simulation models can be validated with
respect to their output using stylized facts as an empirically grounded reference point.
If one does not wish to hold a simple instrumentalist position, a second step must
be included.13 Since there are different modes of reproducing stylized facts within
a model, it should be analyzed in a second step how exactly the respective stylized
facts are reproduced. In other words, one should “look under the hood” of the model
results.

This expression stems from Hausman, who uses an insightful analogy of buying
a used car to illustrate his argument as to why models should not be judged merely
on the basis of their predictions concerning the phenomenon they attempt to explain.
Hausman argues that when someone buys a used car, it is not sufficient to judge its
future performance simply as a result of a road test. It makes sense to ask a mechanic
to look at the engine and to judge how well the components serve their different
purposes as well. Accordingly, much can be learned by carefully assessing model
construction decisions and underlying assumptions, particularly when a model is
extended to new circumstances or when it must be revised in the face of predictive
failure (Hausman 1995, p. 219). This means that after successful reproduction of
stylized facts, the necessity for testing shifts to the next level. In this level, the model
mechanisms used to reproduce these facts must be assessed as well.14

In this respect, the stylized facts concept offers a clear guide as to how to “look
under the hood”. It helps to reduce complexity in pinpointing relevant components in
the model and what they should do. With one or more stylized facts that a model can
relate to, stylized facts can be used as a starting point to identify the basic assump-
tions and parameters in themodel that are responsible for the reproduction of stylized
facts. Hence, stylized facts can be used to isolate the corresponding model elements
and thereby to enable subsequentmodel validation that is sufficiently focused to yield
significant results. This is of particular interest when stylized facts are not reproduced
adequately. Moreover, one can check whether any direct links from basic assump-
tions and parameters to stylized fact properties can be identified. This introduces a
check for interpretability and plausibility of the basic model elements.15 Such an
interpretability check is particularly important when the modeling approach allows
for certain degrees of freedom, e.g., by setting parameters and their values and/or
when leaving a comparatively well-codified area, such as traditional game theory,
to computer simulation models. Finally, this perspective can provide indications for
future modeling options.

13A standard instrumentalist would contend that this step may be omitted. This position is often
attributed to Friedman, who argues that “the only relevant test for the validity of a hypothesis is
comparison of its predictions with experience” (Friedman 1989, pp. 8–9).
14See also Lawson (1989, pp. 62, 66). An explanation is not limited to the deduction of correct
predictions, but also means isolating the “mechanism” that leads to the results. Models explain by
generating insights, they depict how results are produced.
15It should be noted that the “realism” of assumptions is not assessed directly; rather, it is discussed
whether appropriate and productive abstractions concerning the problem are being analyzed.
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An illustrative example of this approach with respect to agent-based modeling
is provided in Grimm et al. (2005).16 They argue that combining several stylized
facts can lead to more structurally realistic models. In particular, checking whether
a set of stylized facts can be reproduced in a meaningful way allows discrimination
between competing assumptions (e.g., theories about agent behavior) or even allows
one to decide about parameter values. The authors illustrate this with respect to
an ecological model of trout behavior.17 Validating this model, one must decide
between several competing theories about how individual fish select their habitats.
Only one of the theories is able to reproduce all three observed patterns concerning
feeding hierarchy, response to predatory fish and competing species, and response
to reduced food availability (Grimm et al. 2005). This ability to select between
competing assumptions at the level of agents is remarkable, as each of the patterns
by itself is quite weak in terms of its discriminatory power and only their combination
allows for elimination of the other theories.

In this second step, stylized facts can be interpreted as a spotlight for input valida-
tion. In other words, with reference to a set of stylized facts, it is possible to scrutinize
the model mechanics systematically and without unnecessary complexity. Given the
internal complexity of many simulation models, this use can be particularly benefi-
cial in the area of simulation modeling. This analysis of the workings of a model can
be fruitfully complemented by systematic sensitivity analyses (Lorscheid et al. 2012;
Saltelli et al. 2004) and robustness tests used to identify the core mechanisms of a
model, which are responsible for producing the observable model behavior (Grimm
and Berger 2016).

Summing up this section, stylized facts can be used for different types of validation
exercises. First, output validity of simulation models can be tested via using stylized
facts as an empirically grounded reference point. Second, using stylized facts as
a spotlight offers a clear guide as to how to “look under the hood”. They pinpoint
relevant components in the model, e.g., the modeling of agents and their interactions.
This introduces a systematic approach to assess the input validity and the theory
validity of simulations as well.18

16Grimm et al. (2005) call this model validation strategy “pattern-oriented modeling”, but it follows
a very similar basic logic.
17The same approach has been helpful in agent-based modeling applied to identify characteristics
of stock market investors or to model the decisions of nomadic herdsman (Grimm et al. 2005).
18The use of stylized facts does not exclude using additional validation strategies. For example,
Klingert andMeyer (2018) use stylized facts to validate themacro-output of theirmodel and use data
from laboratory experiments for an additional micro-validation. In this spirit and more generally,
newer developments in validation techniques (Lamperti 2017; Richiardi et al. 2006) can be seen as
an important complement to the use of stylized facts. Given the many possible degrees of freedom
of simulation models, a broader set of validation techniques is a clear benefit. In comparison to
other validation techniques, I see the main advantage of stylized facts, in their characteristic, that
they are ideally based on a broad set of observations. This complements data sets typically used for
validation which provide more details about a specific case or system.
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16.3 Existing Approaches to Establish Stylized Facts

In order to realize the benefits that stylized facts canprovide, it is of crucial importance
to ensure the quality of the stylized facts in use. This problem is already recognized by
Solow in his direct response to Kaldor, quoting his stylized facts with the comment,
“[t]here is no doubt that they are stylized, though it is possible to question whether
they are facts” (Solow 1988, p. 2). In addition to the critical nature of this statement,
it also pinpoints a central aspect of a productive use of the concept: the explicit
statement of a specific set of stylized facts by an individual researcher should not be
the end, but rather the beginning of a critical discussion among experts in a particular
field. This discussionmakes explicit and open to criticismwhat is otherwise only used
implicitly by individual researchers (“their view of the phenomenon”).19 Ideally, at
the end of such a process, a consensus emerges, at least with regard to some stylized
facts.Before such a consensus is reached, the transparencyof derivation,20 the amount
and consistency of empirical results and the independence from specific theories or
streams of literature may serve as supporting indicators of stylized fact quality.

Such a discussion must begin with existing empirical data. In order to reduce
biases that might result from focusing on specific empirical methods, such as the use
of only surveys, triangulation is an important concept. By combining different empir-
ical research methods, the respective shortcomings of one individual method are
compensated. More generally, the integration of different perspectives and research
backgrounds also provides a means of coping with the problem of theory-ladeness
(Popper 1959, p. 107).

Consequently, the derivation of stylized facts is ideally based transparently on a
broad set of empirical investigations and ought to be subject to discussion among
experts in the field. Ultimately, good stylized facts are the result of critical discussions
within the expert community, with a high level of consensus that they represent a
robust tendency in a substantial number of different empirical observations.

In the following section, three practices as to how stylized facts are currently
generated are discussed from this perspective.

(1) “Ad Hoc” Approach

This “ad hoc” practice follows the early example of Kaldor, who generates stylized
facts immediately for his specific rhetorical purposes and does not explain how he
derives his stylized facts with regard to economic growth. Basically, two variants of
such an ad hoc approach are distinguishable. With the first variant, the respective
stylized facts are simply stated. Examples of such an approach are found in the papers
already mentioned by Kahn (1987) or Marcet and Nicolini (2003). In such case,
only the scientific expertise of the author(s) can provide an indication with respect

19Stylized facts are fallible. In other words, they can be revised in subsequent discussions and in
light of new empirical findings. Critical discussion is central to Popper’s understanding of science
(Popper 1959).
20In the case of Kaldor’s stylized facts, a lack of transparency is criticized particularly by Schwerin
(2001). For a similar criticism concerning the current practice, see Boland (1997, pp. 243–245).
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to the quality of the stylized facts, assuming that well-experienced researchers are
familiar with relevant empirical literature. In the second variant, presentation of a set
of stylized facts is supported with reference to certain supporting empirical studies
(e.g., Geroski 1995). In the best case, these stylized facts are based on descriptive
overviews of empirical literature that are typically provided by review papers. Taken
together, these two variants are considered the most common current practice.

In assessment of the ad hoc approach, its main advantage is the comparatively low
level of effort it requires to generate a set of stylized facts. As a result, the stylized
facts can be used immediately for the purpose at hand.

However, as the response to Kaldor by Solow shows, this comes at the price of
usually low credibility of the stylized facts stated. At least three reasons for this low
credibility of ad hoc-stated stylized facts can be identified concerning the first variant.
First, it is not transparent as to which empirical observations are used to support the
stylized facts. Second, the logic of the process in which they are generated is not
transparent as well. Finally, the process is not designed to include other experts,
which limits not only credibility, but also awareness with respect to the generated
stylized facts in a scientific community. As a result, it is very difficult for a set of
stylized facts to be established as a focal point for a community of researchers. These
three lines of criticism also apply to the second variant, with the qualification that
the data used as input is made explicit. However, as long as there is no explanation
concerning the selection of these studies, the data basis is possibly susceptible to
strategic behaviors and biases, again limiting the acceptance of these stylized facts.

(2) Survey Approach

A second approach to generating a set of stylized facts is to ask experts in a cer-
tain field what they consider to be the empirically well-established characteristics
of a phenomenon. Methodologically, this is an application of the survey method of
collecting expert knowledge concerning relevant characteristics of a phenomenon.
Illustration of such an approach is provided in the study of Whaples (1995), among
economic historians. In this study, 178 experts in the field of economic history are
asked whether they agree about 40 hypotheses that refer to North American eco-
nomic history. With respect to eight hypotheses, there was a high level of agreement,
up to 90% (e.g., in that slavery was inefficient from an economic point of view).
Another example is a study by Frey, Pommerehne, Schneider, and Gilbert (1984)
who surveyed 2072 economists from five countries regarding basic hypotheses in
areas such as monetary or economic policy. This study shows considerably lower
levels of agreement.

In assessing the survey approach, one of its clear advantages is that it offers an
explicit procedure as to how the stylized facts are generated. Collected statements
are easy to aggregate and the level of agreement offers a clear measure of consensus
that can be reported. Moreover, the judgment of experts is generally considered a
quite effective means to an assessment, particularly with respect to more complex
questions. Finally, the survey approach creates, as a by-product, a higher level of
awareness concerning the stylized facts in a field. Not only is expert attention drawn
to the issue, but discussions are stimulated and results are reported.
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One of the drawbacks of this approach, however—especially given the intended
use of the generated stylized facts for model validation and assessment—is the pos-
sibility of strategic behaviors of the respondents. This susceptibility to opportunistic
behaviors can undermine the credibility of a set of stylized facts. A second prob-
lem is that it can be quite difficult to derive agreement in some research areas. For
example, while the study by Whaples (1995) shows quite high levels of agreement,
in the other study by Frey et al. (1984) the highest level of agreement on a single
hypothesis was only 67.8%. Finally, the derivation of stylized facts via survey is
not based immediately on empirical data. Although one can expect that in the most
cases the judgment of experts is based on data, it is not transparent as to which data
forms the basis of such judgment. As a result, it is difficult to assess whether experts’
judgments are based on a comprehensive set of empirical studies and to what extent
there is a possibility of bias with respect to the studies used.

(3) Statistical Approach

A third practice of deriving stylized facts is based on statistical analysis of large
data sets. This practice is quite prominent in extant finance literature in the form of
sophisticated statistical analyses of large primary data sets from financial markets.
This approach comes in two flavors. In the first variant, the derivation of stylized facts
is based on analysis of one large data set. An example in this respect is the study by
Lampenius (2008), which analyzes the Dow Jones Industrial Average. Lampenius
shows that, for a time period of almost 80 years, certain general patterns in the
data are observed, such as heavy-tailed distributions in the returns of assets. The
second variant is also based on statistical analysis of large data sets but aims at
generalizing the results of several such analyses of different asset markets. This
generalization is done in a qualitative form, “by taking a commondenominator among
the properties observed in studies of different markets and instruments” (Cont 2001,
p. 224). Examples of the derived stylized facts are properties of assets returns, such
as gain/loss asymmetries in returns or volatility clustering (Cont 2001).

Evaluating this third practice, one of the main advantages of the statistical
approach is its transparent and systematic way of data analysis and aggregation.
Moreover, the derivation of stylized facts is immediately based on empirical obser-
vations. As a result, the respective data input can be scrutinized with respect to com-
prehensiveness and possible biases. Finally, the ability of this approach to process
large amounts of data can be considered a further advantage. All these characteristics
are expected to foster the credibility of the resulting stylized facts.

Still, these advantages come at the price of quite restrictive requirements with
respect to data input. First, in many cases the availability of primary data is not as
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Table 16.1 Comparison of the three different approaches to establish stylized facts

Ad hoc approach Survey approach Statistical approach

Transparency
concerning data
input

Low (variant
1)/High (variant 2)

Medium High

Transparency
concerning
aggregation process

Low High High

Consensus-fostering
elements in the
process

Low Medium Medium

Amount of empirical
data

Cannot be assessed
(variant 1)/Varies,
but usually not high
(variant 2)

Cannot be assessed High

Comprehensiveness
and restrictions
concerning data
sources

Cannot be assessed
(variant 1) or
Difficult to assess
(variant 2)

Cannot be assessed Suitable data
necessary

straightforward as with respect to financial markets—researchers in this area are in a
comparatively fortunate position. Second, generating a sufficient level of consensus
and awareness with respect to derived stylized facts can be a problem, as in the
process typically a community of experts is not integrated. This is of particular
relevance with respect to intended generalization in the second variant and it seems
desirable to amend the process in such a way as to integrate the judgment of several
experts and to foster consensus. To summarize, given its restrictive requirements with
respect to data input, the statistical approach should, at best, be considered a special
case for a more general approach. In other words, the statistical approach can offer
improvements in very specific settings, but cannot be considered the only method of
deriving stylized facts.

To conclude, none of the approaches discussed thus far can be considered satis-
factory with respect to all desirable dimensions. Nevertheless, some lessons can be
learned from existing approaches to developing stylized facts. The survey approach
has strengths in terms of its transparency concerning the aggregation process and
its possibility of involving a large number of experts. Both should foster the accep-
tance and awareness of stylized facts. The statistical approach immediately links
relevant empirical observations and offers the ability to process large amounts of
data. Table 16.1 provides a summary of the main results of the discussion.
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16.4 An Alternative Process to Derive Stylized Facts

In this section, a fourth possible way to derive stylized facts is presented, building
on the respective strengths of both survey and statistical approaches. With respect to
the design of such a process, one can draw on existing standards. As it involves the
synthesis of existing empirical studies, this alternative process has a general nature
that is similar to the compilation of reviews (e. g., Cooper 1987; Fink 2005; Petticrew
and Roberts 2006). In this respect, Fink (2005), differentiates the descriptive survey
(qualitative synthesis) from meta-analysis (statistic synthesis)21 as different forms
of the synthesis of scientific literature. The derivation of stylized facts and meta-
analysis have in common that they seek to filter a broad tendency from a high number
of individual empirical observations, in a systematic and reproducible way. For this
reason, the basic approaches behind meta-analyses provide a good orientation.

However, meta-analyses are limited mainly to statistical evidence from quantita-
tive studies.22 As stylized facts should be based ideally on a broad range of method-
ological and theoretical approaches, empirical evidence for stylized facts should not
be restricted to quantitative studies. To integrate qualitative results, the approach pre-
sented draws also on the methodology of systematic reviews (Petticrew and Roberts
2006) and the concept of structural regularities (Schwerin 2001). As a result, the high
level of formalization of a meta-analysis, especially in regard to statistic synthesis,
can mostly not be retained in the suggested derivation of stylized facts. Consider-
ation of all available empirical findings requires modification of the approach, so
that qualitative as well as quantitative results and a variety of different empirical
methods may be considered.23 Therefore, a processing of verbal statements at the
center of the derivation of stylized facts must exist analogically to a synthesis in the
form of a descriptive survey. Furthermore, a specification of the derivation of stylized
facts exists in the fact that an adequate agreement beyond the sources must be given,
whereas literature synthesis can also display a spectrum of different results. As a
result, a traceable demonstration of the level of agreement is taken care of during
the derivation of stylized facts, from which the identification of a stylized fact is
justified.24

21Meta-analyses as a special form of synthesis is introduced by Glass et al. (1984) and are since
methodically refined and applied.
22The emphasis of meta-analyses is on the integration of bi-variate results (e.g., Cooper and Lindsay
1998, p. 332). Utilization of statistic methods in a meta-analysis does not exclude qualitative papers,
because with the method of “content analysis” and/or the computer-based evaluation of encoded,
qualitative papers, the possibilities for the statistic evaluation exist, however, within tight limits
(Babbie 2004, pp. 314–324; 375–392).
23As a special case, stylized facts can possibly be derived quantitatively in order to be approached
analogical to meta-analyses. However, the general case—without such a limitation—is supposed
here.
24The precise determination of a threshold from which the level of agreement is assumed as suffi-
ciently large, presents a challenge. It depends significantly on the informative value of the underlying
studies, from when a generalization of empirical results can be vindicated. General criterions can
insofar not be given (Schwerin 2001, pp. 106–111).
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Search of 
empirical studies
concerning the
phenomenon

Extraction of 
empirical obser-
vations about
the phenomenon

Analysis findings 
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similar findings into
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Conceptualization of 
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Definition Collection of 
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Fig. 16.2 Process of deriving stylized facts

Based on these thoughts, in Fig. 16.2 an outline of the process to derive stylized
facts can be presented. In order to provide high transparency with regard to the
process, an explicit intermediary result is presented as an output for each of the
five steps. These elements in the process aim at fostering consensus, as this enables
the retracing of the process in small steps and creates the basis for a constructive
discussion. The following discussion of the different steps refers to excerpts of a
previous study on deriving the stylized facts of the stability of collusion,25 to illustrate
the process steps, and in particular, the possible intermediary results.26

The starting point for the derivation of stylized facts consists analogical to the
approach of meta-analyses, in a precise conceptualization of the examined phe-
nomenon. This results in a precise definition of the phenomenon and the problem
investigated. In this context, it is important to decide whether a phenomenon should
be defined very generally or whether a certain context is already determined. If there
is a high level of similarity of the phenomenon beyond different contexts, then this
opens the possibility of widening the source material in order to achieve greater
reliability of the stylized facts. The derivation of the stylized facts of collusion can
provide a good illustration in this respect. Collusion can either be defined very gen-
erally as in the cooperation of agents for the increase of their benefit on the expense
of a superior third or already in a specific context, such as the collusion of managers
who are compensated after the Groves-mechanism. In this context, collusion can
then be defined more specifically as the cooperation of managers for the increase of
their compensation at the expense of the company. In this case, it seems reasonable
to exclude the limitation to the specific context of the Groves-mechanism, since it
can be initially assumed that in different contexts, the abstract mechanisms, which
lead to the development of collusion, are sufficiently similar.

The second step, the search of empirical studies concerning the phenomenon is
also in linewith the approach of ameta-analysis. Here, the chosen definition serves as
a criterion for the inclusion and exclusion of individual studies. The retrieval strategy
should be transparent and should ideally comprise the relevant works as comprehen-
sively as possible (Schwerin 2001, p. 106). The identified sources are then inspected
for their respective representativeness for the empirical phenomenon and the compli-

25With this, the aforementioned criticism of Schwerin (2001, pp. 96–97, 99–100), on the missing
transparency with respect to derivation of the stylized facts by Kaldor, are addressed.
26See Heine et al. (2005, 2007).
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ance of other methodical standards (Fink 2005, p. 207). For the derivation of stylized
facts of collusion, a limitation to scientific journals as a form of quality control
is carried out.27 The starting point is the literature database of the Social Science
Citation Index (SSCI), a source often used for bibliometric analyses (similarly,
Schwerin 2001, pp. 138–139).28 Due to the focus on scientific journals, the com-
pliance of methodical standards does not typically demonstrate a shortage and is
capable of being evaluated on the basis of individual cases.29

In the third step, based on the source collection, the empirical observations about
the phenomenon are to be extracted. As the derivation of stylized facts aims at the
integration of qualitative results as well, an important difference with meta-analyses
becomes apparent in this step. Basically, all empirical characteristics of the examined
phenomenon, which are supported by a paper, are listed in verbal form. In the ideal
case, these characteristics are observed in a large sample of papers. Since stylized
facts are only formed where a broad agreement of the results exists, also individual
empirical observations, which on their own are not representative (in the statistical
sense), can be integrated, such as in case studies. A formalization of the synthesis,
as with meta-analyses, is not reasonable due to the scope of qualitative findings, so
that the traceable presentation of the intermediary result is given special importance.
Figure 16.3 shows a possible example in tabular form in which the sources, identified
in the previous step, are listed with the results to the collusion phenomenon extracted
there. The table also includes a note about the research method employed in the
respective studies in order to inform the reader in this respect as well.

In the next step, one must process the resulting collection of empirical results
in order that the general tendencies in the data extracted from different studies can
be identified. In a meta-analysis, a statistical instrument completes this process. In
the derivation of stylized facts, an aggregation of similar findings to patterns takes
this place, whereby transparency and traceability are crucial. To foster this, first, the
results are rephrased in order to abstract from the concrete study context in favor
of implications for the observed phenomenon. The resulting “findings” are then
equivalent to a hypothesis (in the sense of an “if-then-formulation”) and nominate
a variable (“if-part”), which shows an association with a significant criterion of the
phenomenon (“then-part”).30 Based on this, the subsequent aggregation occurs in the
form of formulating comprehensive patterns. These patterns of findings are based on

27The criteria that lead to publication in scientific journals are partly discussed in a controversial
way (Schwerin 2001, pp. 122–125). The problem of a possible “publication bias” is eased in the
context of the derivation of stylized facts since a positive (and thus, easier to publish) study result
need not necessarily be consistent with the stylized fact, but can also confirm the opposite hypothesis
(Fink 2005, p. 205).
28However, literature databases show distortions in their journal selections due to economic and
practical influences. Therefore, the addition of further databases, as well as relevant but not covered
journals, is carried out and transparently displayed. See the addition of the database EconLit by
Stanley (2001, p. 135).
29The intermediary result is not displayed separately here, but is integrated in the next illustration.
30Using the structure of “if-then-formulations” does not necessarily imply a causal relation. Stylized
facts are in a first step robust associations.
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Fig. 16.3 Example for the extraction of empirical results

generalization of the “if-components” and/or the “then-components,” under which
larger numbers of the extracted results can be subsumed. In this process, insignificant
details in comparison to the similarities can be neglected.31 For the collusion example,
rephrasing in regard to the mutual “then-component,” “stability of collusion” details
of the “if-component,” such as context characteristics, which seem irrelevant, are
neglected. Subsequently, patterns are formulated by the described generalization,
such as stabilization of collusion with the existence of punishment mechanisms.32

In the final step, broad tendencies over the different patterns must be identi-
fied—the stylized facts. This encompasses a further generalization as to whether two
or more patterns that are (only) different in detail can be further subsumed under a
more general statement. In the tables, the findings are aggregated in groups with sim-
ilar patterns and single findings. Then, it must be decided whether a sufficient level
of agreement and representativeness of the underlying empirical results is given in
order to assume a stable tendency, which justifies the identification of a stylized fact.
To illustrate this final step, Fig. 16.4 provides an excerpt of the table that underlies the
derivation of the stylized facts for enforcement strategies with respect to collusion.
There, two of the patterns (and the individual empirical finding 1.2) are displayed,
which can be subsumed under this general aspect.

31The question as to when an aspect is to be classified as an insignificant detail can only be decided
in the respective context of this problem (Schwerin 2001).
32An illustration of the intermediary result is combined with the presentation of the result of the
next step.
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1.1 (s)
The existence of a punishment mechanism
stabilizes collusion. 104, 186, 196, 057 4 2 2

1.2 (s)
Missing credibility of punishment mechanisms
destabilize collusive agreements. 207 1 1

2 (s)
The credible threat of punishment stabilizes 
collusion. 74, 142, 160, 173 4 3 1

3.1 (s)
Severe punishment of offences against 
agreements stabilizes collusion. 34, 43, 166 3 3The experience of a price war as a punishment 47 37 119 122 140 194

Empirical evidence for the stylized fact “SF Enforcement”
(“Noticeable enforcement strategies stabilize collusion”)

Fig. 16.4 Example of aggregation to patterns and the identification of a stylized fact

These steps encompasses some challenges. The underlying aggregation and gen-
eralization comprise an inductive element.33 Also, the determination of a threshold
for the identification of a stylized fact is hard to determine precisely. However, indi-
cations, among other observations, can be obtained from the amount and conformity
of the statements, the utilized empirical research methods and the sample sizes of
the individual examinations. Here, particular situations stand out, in which a very
evident, stable tendency exists, or in which the exact opposite is the case. Border
cases, on the other hand, can hardly be decided in one or the other direction. How-
ever, this problem is to a degree inherent in science and thus it must be faced by the
critical discourse in a community. Again, at this point, discourse is to be supported
by a maximum of transparency and traceability, whereby also explicit notes to limits
and/or restrictions (analogical to the meta-analysis) are made.34

Table 16.2 gives an illustration of the expected result of the described process. It
depicts the derived stylized facts of collusion based on 109 empirical studies, which
contributed 147 results concerning the stability of collusion.

Finally, assessing the approach presented in this section along the dimensions used
in Table 16.1, there are some clear advantages from an epistemological perspective.
The process of derivation is transparent with respect to data input and the aggregation
process. Moreover, the approach can encompass a large amount of observations
and a broad set of research methodologies and theoretical approaches. Finally, it
comprises several consensus-fostering elements, which can be further complemented
via application of the Delphi method or using the increasing possibilities of social
software.35 Still, this approach also requires certain accumulated empirical evidence

33Inductive conclusions are mostly problematic when they aim at deriving a universal statement
(Popper 1959). However, this is not the case here, since stylized facts are generalizations without
strictly universal claims.
34See also the discussion of the criterions in Schwerin (2001, pp. 140–142).
35To foster transparency, the derivation of stylized facts could be posted to a Website. There,
discussion forums and voting mechanisms can be implemented to foster critical discussions among
experts.
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Table 16.2 Stylized facts of collusion (elaborated version of results in Heine et al. (2005, 2007)

No. Short
name SF

Stylized fact
∑

1 Group size A small effective group size stabilizes collusion 23

2 Setting Uncomplicated settings stabilize collusion 44

3 Benefits Actual or expected high benefits stabilize collusion 33

4 Time
horizon

A long time horizon stabilizes collusion 10

5 Group
composi-
tion

Little change in group composition stabilizes collusion 19

6 Enforcement Noticeable enforcement strategies stabilize collusion 18

147

as input. Moreover, one should not underestimate the effort necessary to derive a set
of stylized facts.

16.5 Conclusion and Outlook

This chapter argues that in comparison to the widespread use of stylized facts, the
amount of attention devoted to the concept and its adequate use is less. This applies
both to the epistemological foundations of the concept and to the derivation of stylized
facts. This, however, inhibits realization of the full potential of stylized facts, which
can be particularly useful for validating simulationmodels.Against this backdrop, the
paper clarified in thefirst step the epistemological basis of the concept and encouraged
a more reflected use of stylized facts. To this end, Kaldor’s original contribution is
elaborated. This includes developing a precise definition: stylized facts are broad,
but not necessarily universal generalizations of empirical observations and describe
the supposed essential characteristics of a phenomenon that requires an explanation.

In addition, the chapter contributed to clarifying the interesting ideas behind the
concept, especially with respect to model validation. Stylized facts can be used in
the first place for a comparative assessment of simulation models with traditional
modeling techniques. In our short case study, it was shown that in a debate on the
Groves-mechanism simulation models have the potential to explain more stylized
facts than game theoretic models. Moreover, they allow to scrutinize the structure of
simulation models and their basic assumptions, e.g., at the level of agents. The use
of stylized facts as a spotlight for “looking under the hood” goes beyond a simple
instrumentalist approach of validating models and has, given the internal complexity
of many simulation models, particular potential in this area. Hence, stylized facts
have the potential to be used not only for output validation, but for input validation
and theory validation as well.
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In the second step, the need for a more systematic derivation of stylized facts is
addressed. First, the ad hoc approach, the survey-based approach and the statistical
approach to deriving stylized facts are presented and assessed. Based on the prob-
lems associated with these different approaches, a fourth approach is developed,
which aims at transparent analysis and generalization of quantitative and qualitative
empirical studies. Both steps—ideally in combination—are expected to strengthen
the foundations for validating simulation models via stylized facts.

Given the potential of stylized facts for model validation, future research on this
concept seemswarranted.Amongother things, future research could spell out inmore
detail how the use of stylized facts can be combined fruitfully with other validation
approaches. Moreover, from an epistemological perspective a comparison with the
approach of “saving the phenomena” in the sense of Bogen and Woodward (1988)
seems to be worthwhile.
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Chapter 17
The Users’ Judgements—The
Stakeholder Approach to Simulation
Validation

Nicole J. Saam

Abstract This article presents a sociological perspective on the stakeholder
approach to simulation validation using the validation of socio-ecological simulation
models as an example. I develop an argument-based approach to simulation valida-
tion which can be applied in the natural and social sciences and argue that it is the
constructionist camp of action researchers which has to consider the stakeholders’
judgements as an indispensable point of reference for simulation validation. Only the
stakeholders can validate that the model makes explicit their tacit knowledge. Only
the stakeholders’ willingness to accept and act upon the scenarios can decide issues
of credibility. Obtaining the stakeholders’ judgements in such a framework is an
iterative communicative procedure that requires a strong background in qualitative
methods of empirical social research as well as gaming simulation.

Keywords Simulation validation · Argument-based approach · Action research ·
Participatory modelling · Stakeholder

17.1 Introduction

Besides data (see Chap. 15 by Murray-Smith in this volume) and stylized facts (see
Chap. 16 byMeyer) the user’s judgements can serve as points of reference in simula-
tion validation—meaning that these points of reference are compared to simulation
results. However, while at first sight, every simulation model has a user, the user’s
judgement is not always relevant for simulation validation. This chapter introduces
a particular context—action research using simulation models—in which the users’
judgements are indispensable additional points of reference for simulation valida-
tion. The term ‘user’ takes on a special meaning in this context, a meaning that
is better addressed with the concept of stakeholder. A stakeholder of a simulation
model is anyone who has an interest in the model and its results. In the case of
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action research, such stakeholders are typically citizens and the simulation mod-
els are models of socio-ecological systems. Here, laypersons are included in the
process of model development in some way or other. For instance, farmers partici-
pate in the process of model development to explore rules for rural credit (Barnaud
et al. 2008), fishermen participate in developing rules for fishery management (Wor-
rapimphonga et al. 2010), or herders and foresters participate in developing rules
for landscape management (Dumrongrojwatthana and Trébuil 2011). These layper-
sons are referred to as participants and the modelling approach is called participatory
modelling (Barreteau et al. 2013), companionmodelling (Étienne 2014) ormodelling
with stakeholders (Voinov and Bousquet 2010). A model of a socio-ecological sys-
tem typically includes agents which represent the stakeholders and their behaviour
and tacit knowledge as well as an environment which represents the environment
in which the stakeholders are living. The stakeholders also participate in the valida-
tion process. As Barreteau et al. (2013, p. 213) note, ‘validation is the compulsory
stage where stakeholders will have the opportunity to check the effectiveness of the
computer model in representing correctly their behaviours and ways of acting’. The
validation of these models is considered to be ‘a difficult task because they mix
different epistemological references’ (Voinov and Bousquet 2010, p. 1277). Here,
Voinov and Bousquet refer to the natural and the social components in the models.
Although the stakeholder approach to simulation validation has been applied inmany
companion modelling studies, neither the methodology nor the epistemological and
ontological foundations have been clarified. Depending on the nature of the research
being conducted, action researchers can hold various ontological positions (Nicholas
and Hathcoat 2014, p. 572). As Voinov and Bousquet (2010, p. 1272) point out, there
is an ongoing debate between the positivist and the constructivist paradigm among
action researchers using simulation models.

This chapter will present a sociological perspective on the stakeholder approach
to simulation validation using the validation of socio-ecological simulation models
as an example. I develop an argument-based approach to simulation validation which
can be applied in the natural and social sciences. I argue that it is the constructionist
camp of action researchers which has to consider the stakeholders’ judgements as
an indispensable point of reference for simulation validation. Only the stakeholders
can validate that the model makes explicit their tacit knowledge. Only the stakehold-
ers’ willingness to accept and act on the scenarios can decide issues of credibility.
Obtaining the stakeholders’ judgements in such a framework is an iterative com-
municative procedure that requires a strong background in qualitative methods of
empirical social research as well as gaming simulation.

The argument in this chapter is developed in seven steps. Initially, action research
is described as a type of research in the social sciences based on philosophical prag-
matismwhich supports social change and involves the participation of citizens. Here,
simulation models may be used as intermediate objects.1 The simulation model is
used as a shared representation of a social system and its future. It helps us com-
municate about possible futures and find a solution to a problem (Sect. 17.2). In

1Meaning an object that mediates the communication between participants.
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Sect. 17.3, I argue that a logical empiricist concept of simulation validation is not
adequate for validating such simulation models. In Sect. 17.4, I propose a general
concept of simulation validity that is suited for applications in the natural and the
social sciences and an argument-based approach to validation. Both are applied to a
hypothetical socio-ecological simulation model. In Sect. 17.5, techniques from qual-
itative social research and gaming simulation are presented which serve to obtain the
stakeholders’ judgements. In the discussion (Sect. 17.6), I reconsider the concept
of validation and address the concept of judgement and the question whether the
stakeholders’ judgements could be suitable for validation purposes in other research
fields too. Finally, I ask whether the stakeholders’ judgements constitute some sort
of face validity. The conclusion provides a very short summary and an outlook on
important questions for further research.

In the following, the SCS definition of simulation validation will serve as a logical
empiricist point of reference and starting point for this chapter’s discussion: simula-
tion validation is the ‘substantiation that a computerized model within its domain of
applicability possesses a satisfactory range of accuracy consistent with the intended
application of the model’ (Schlesinger et al. 1979, p. 104). This definition directs the
attention to the domain of applicability and to the model’s intended application. It
will be shown that the intended application of a simulation model in action research
makes the stakeholders’ judgements an indispensable additional point of reference
for simulation validation.

17.2 Action Research and the Use of Simulation Models

Action research is a particular approach of social science research with a focus on
topics and issues that will have implications for people’s everyday lives (Reason
and Bradbury 2008, p. 2). As opposed to other social science research where the
researcher takes the position of an observer of social reality, in action research s/he
is an active participant in social change, which gave rise to the very term ‘action’
research. The action researcher collaborates with members of a social setting on the
diagnosis of a problem and the development of a solution based on that diagnosis.
As Greenwood and Levin (1998, p. 62) state, action research ‘aims to solve perti-
nent problems in a given context through a democratic inquiry where professional
researchers collaborate with participants in the effect to seek and enact solutions
to problems of major importance to the local people’. In action research processes,
qualitative and quantitativemethods of empirical social research are appliedwhen the
problem requires it. Popular areas of application of action research include social and
community work, business and organization studies, nursing, healthcare, education,
and development studies.
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17.2.1 Meta-Theoretical Foundations of Action Research

Action research can be assigned to the participatory inquiry paradigm (Heron and
Reason 1997; Lincoln et al. 2011). United by a common interest in participative and
change-oriented initiatives, action research is used in different contexts and with dif-
ferent approaches (Reason and Bradbury 2008). In particular, there is a distinction
between a pragmatic (e.g. Greenwood and Levin 1998, who in particular refer to
Dewey 1900, 1902, 1991a[1927], b) and a critical orientation (e.g. Kemmis 2008)
in action research. Johansson and Lindhult (2008) argue that both orientations suit
different research contexts. The pragmatic orientation is well suited to contexts in
which concerted action or practical knowledge is required (e.g. in the form of techne,
or local knowledge) and in which power needs to be built in a situation of fragmenta-
tion and compartmentalization. In contrast, the critical orientation is preferable when
reflection is crucial, when the development of a more abstract kind of knowledge
is required (e.g. in the form of theory, episteme or reflective knowledge), and when
the situation is characterized by unequal power relations or invisible structures that
hamper thinking and action (Johansson and Lindhult 2008, p. 110). The focus of the
latter is on emancipation of the participants, rather than the workability of the solu-
tion, which is favoured by the former. The goal of emancipation is connected to the
core activity of reflection. Johansson and Lindhult (2008, p. 111) contrast this with
experimentation as the core activity in pragmatically oriented action research. This
distinction fits the empirical observation that action researchers with pragmatic ori-
entation use computer simulation models as an intermediate object while those with
a critical orientation do not use them. This article supports Johansson and Lindhult’s
(2008, p. 110) argument that the distinction of both orientations is rather an ideal-
type construction. In the following, the critical orientation will not be neglected, but
the pragmatic orientation will always serve as a starting point for the analysis.

Both orientations assume a constructionist subjectivist ontology and an interpre-
tive epistemology pertaining to the social world. For the purpose of this chapter, I
rely on Greenwood and Levin (1998) to explain these positions—which they sum-
marize as hermeneutic and which they contrast with a logical positivist view. They
claim that ‘the world’ is only available subjectively (and not objectively given) and
that our epistemic task is to negotiate interpretations of this subjective world (and
not ‘to acquire the truth’; Greenwood and Levin 1998, p. 56). They stress that mean-
ings are constructed and re-interpreted in collaborative communicative processes
between researchers and participants in the action research inquiry process (Green-
wood and Levin 1998, p. 63) and explicitly take a (social) constructivist position by
referring to Berger and Luckmann (1966) as a point of departure. A recent reference
(Coghlan and Brydon-Miller 2014), however, shows that action researchers follow
not only a Berger and Luckmannian (social) constructivist ontology, but also other
(social) constructivist traditions (see Shotter 2014, who prefers to call them social
constructionist; in the following, I adopt his terminology), radical constructivism as
put forward by von Glasersfeld (1982, see Hershberg 2014), critical constructivism
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grounded in the Frankfurt School’s formulation of critical theory (see Steinberg 2014)
or critical realism as developed by Bhaskar (1978, see Houston 2014).

In the following, I assume that action researchers using computer simulations
take a social constructionist ontology as their basis. Thus, action researchers con-
sider social reality to be continuously negotiated in interactions by social actors
rather than as something external to them and totally constraining them. In particu-
lar, social realities are perceived as being local, specific and socially constructed. The
local community whose problem is being addressed by the action research is per-
ceived as experts on their own experience. Their local knowledge is explored through
communication with the action researcher. Action researchers appreciate and respect
diverse (social) realities and commitments of the participants. A reconstruction of
social reality by the researcher is just another socially constructed reality with no
epistemic priority or superiority. There is no such thing as a single (social) reality
(Guba and Lincoln 2005).

17.2.2 The Validity of Action Research Knowledge

Referring to pragmatist philosophy, Greenwood and Levin (1998, p. 63) argue that
the ‘credibility-validity’ of action research knowledge depends on whether actions
that arise from it solve problems (workability) and increase participants’ control over
their own situations. The framework of action research requires that the participants
must be able to use the knowledge that emerges. The knowledge must support the
enhancement of the participants’ goals. Action research supports the creation of new
knowledge that builds on a critical understanding of history and political contexts
within which the participants act and that potentially can be liberating. Greenwood
and Levin (1998, p. 64) describe the inquiry process as a communication process
characterized by mutual relationships in which participants contribute their local
knowledge, historical consciousness, and everyday experience, and researchers their
skills in facilitating learning processes, technical skills in research procedures, and
comparative and historical knowledge of the subject under investigation. The ideas
of the superiority of scientific knowledge and the neutrality and objectivity of the
researcher are rejected (Greenwood and Levin 1998, pp. 64–66); the distinction
between researcher and participant serves only as a provisional statement. Finally,
the action researcher inevitably becomes a participant as well (Greenwood and Levin
1998, pp. 64 f). Based on these ontological and epistemological assumptions, credi-
bility is introduced as an alternative criterion for evaluating action research. Green-
wood and Levin (1998, p. 67) claim that ‘only knowledge generated and tested in
practice is credible’. Altered patterns of social action are the ultimate test of cred-
ibility of the new knowledge. Greenwood and Levin (1998, p. 68) point out that it
is not a community of similarly trained professionals that is deemed to be able to
decide issues of credibility. Instead, it is the stakeholders’ willingness to accept and
act on the results.
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Greenwood and Levin (1998, p. 68) consider two test procedures: (1) the work-
ability test: the researcher has to establish whether the actions taken in the action
research process result in a solution to the problem; (2) the test of credible knowl-
edge making: the researcher has to ascertain whether the new knowledge is being
accepted as a legitimate truth. Drawing on the constructionist framework, Green-
wood and Levin (1998, p. 68) argue that meaning is constructed through deliberative
processes and that there are two theoretical models that help the researcher in her
test. In the communicative settings with participants, chains of arguments evolve and
can be analysed. The credibility of the final argument can be evaluated by comparing
the communicative procedures to a discourse and to Habermas’ (1984) criteria of
the ideal speech situation or to a dialogue and Gadamer’s (2002[1960]) model of the
fusion of horizons.

17.2.3 The Use of Simulation Models in Action Research
and the Subject Matter of Their Validation

In some action research projects simulationmodels are used, in particular in the envi-
ronmental sciences (natural resourcemanagement) andmanagement sciences (group
decision support systems). These simulation models do not necessarily involve
a social component; sometimes the social simulation component may be rather
implicit. Stakeholders may be involved in several stages of the modelling process
or simply for means of data collection.2 In the following, I use the case of socio-
ecological simulation models as an exemplar which allows the problematization of
important aspects that will be addressed in subsequent sections.

A socio-ecological simulation model is used as a shared representation of a socio-
ecological system and its future (see the example in the next paragraph). It is used
to facilitate communication of the stakeholders, whose (tacit) knowledge it makes
explicit. Depending on the stage of development, the model will be considered a rep-
resentation of the shared knowledge of the stakeholders. Initially, there may be no
shared knowledge with respect to the problem. It involves a sample of the stakehold-
ers who represent the heterogeneity of the (tacit) knowledge. The sample seeks to
reproduce the diversity of possible viewpoints and behavioural patterns, bracketing
the statistical representativeness. The simulation model is further developed in sev-
eral cycles throughout the processes of social learning in the action research project.
The stakeholders are supposed to be empowered to circumvent the worst-case sce-
nario and create a shared vision for the solution of the problem in the socio-ecological
system they belong to.

The Larzac companion modelling exercise (Simon and Étienne 2010) will illus-
trate the use of socio-ecological simulation models in action research. The Causse
du Larzac is located in France southeast of the Massif Central. It is a karstic plateau

2Each action research project that uses simulation models can be subsumed under participatory
modelling approaches. Please note that the opposite does not apply. Many projects of participatory
modelling have a commercial, not a scientific background like action research.
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with a long land use history of grazing and cereal cropping. Rural migration and
mechanization are some of the deep socio-economic changes that have also changed
the land use in the area. The objective of the Larzac companion modelling exercise
was to develop alternative forest management plans by supporting forest owners
and livestock farmers while they deliberated on solutions to their forest manage-
ment problems. A bottom-up process was initiated. The project leadership decided
to develop a computer simulation model rather than use role-playing games, based
on an impression that forest owners and farmers preferred to discuss computer sim-
ulations. First, researchers and local professionals built an agent-based model which
was validated via a participatory process. Second, this simulation model was used
by researchers, forest owners and farmers to explore and discuss alternative forest
policies and management strategies. The socio-ecological model included a repre-
sentation of the territory and its land uses (pastures, silvopastures, forests, cultivated
areas), as well as ecological dynamics such as tree encroachment dynamics (called
‘ecological part’ for short). In addition, the model included a significant number of
agentic forest owners and farmers and their grazing and harvesting practices—rep-
resenting almost all of the participants and their behaviour (‘social part’). Note that
model input for the social part was collected essentially by interviewing forest owners
and farmers. Only the individual participants know their own grazing and harvesting
practices, as well as changes in the land use pattern and their consequences in recent
decades. Technically speaking, not only data for calibrating the social part of the
model was collected; rather, all parameters and all variables, all behavioural equa-
tions pertaining to the forest owners and farmers were derived from these interviews.
There are no prior behavioural equations of the social sphere (as opposed to dynam-
ical equations in physics, or behavioural equations in some rational choice-based
social simulations). This also means that prior to the interviews with the forest own-
ers and farmers there is no conceptual model of the social part of the socio-ecological
simulation model.

Howmay such a simulation be validated? Before addressing this question in more
detail, the question will be further elaborated: what exactly is the subject matter
of validation? In the following, I distinguish three subject matters: (1) V-S1: the
simulation model that is used in the action research project; this task is addressed by
Barreteau et al. (2013: 213) who state that ‘validation is the compulsory stage where
stakeholders will have the opportunity to check the effectiveness of the computer
model in representing correctly their behaviours and ways of acting’; (2) V-S2: the
results of the simulations; here, the task is to show that the results of the simulations
are valid; and (3) V-S3: the results of the action research project; although this
handbook focusses on the validation of computer simulation models, it has to be
discussed whether the results of the simulations can be valid without the results of
the action research project as a whole being valid. Irrespective of the answer to this
question, the focus will be on subject matters V-S1 and V-S2.

In the following section, I argue that the constructionist ontology and the interpre-
tivist epistemology, which are based on the intended use and domain of applicability
of the simulation model, reveal that the SCS definition of simulation validation is
not adequate for validating such socio-ecological simulation models.
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17.3 The Logical Empiricist Versus the Post-positivist
Understanding of Validity

Socio-ecological simulation models from action research are hybrids bridging the
natural science–social science divide. As far as the representation of the ecological
part of the simulation model (e.g. the representation of interactions between ground-
water dynamics and surface water in a water management model) is concerned, the
modeller may refer to a realist position. However, with respect to the groups of
stakeholders (e.g. water users, landowners, local community representatives, water
management agency) and their different views on social reality, the social part of the
simulation model has to be based on a constructionist ontology. The validation of
such a socio-ecological simulation is discussed in three steps: (i) validation of the
simulation model, (ii) validation of the simulation results; and (iii) validation of the
results of the action research project—leading from a logical empiricist understand-
ing of validity to the requirement of a post-positivist concept to a general definition
of simulation validity and its application.

17.3.1 The Logical Empiricist Understanding of Validity

Data and stylized facts will serve as points of reference for the validation of the eco-
logical part of such a simulation model. Logical empiricism combined with a realist
ontology justify the assumption that empirical data and stylized facts connected with
an appropriate mathematical framework (see the chapters in Part V) are suitable for
checking that the ecological part represents what it purports to represent. This epis-
temology postulates the empirical and logical values of accuracy, robustness, and
consistency as epistemic standards (see Chap. 40 by Hirsch Hadorn and Baumberger
in this volume). Validation is seen as a ‘strictly formal, algorithmic, reductionist, and
“confrontational” process’ and validity ‘becomes a matter of accuracy’ (Barlas and
Carpenter 1990, p. 157). A more moderate claim states that empirical accuracy is at
the heart of the standard conception of simulation validation (see Chap. 40 by Hirsch
Hadorn and Baumberger in this volume). By and large, 95% of the chapters of this
handbook on simulation validation are dedicated to the question of how simulations
can be validated from the point of view of a realist ontology and an epistemology
that is based on logical empiricism—basically positions that dominate in the natural
sciences and the quantitative social sciences (see also the overview by Feinstein and
Cannon 2003). Following Scheurich’s critique (1996, p. 49), this view and the related
practices can be summarized as a positivist understanding of validity.

For the purpose of this chapter, I assume that there is no particular challenge in
validating the ecological part of such a simulation model. For example, the accuracy
with which the simulated groundwater dynamics represents the empirical groundwa-
ter dynamics can be quantified. In particular, this task nicely fits the SCS definition of
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simulation validation as substantiation that a computerized model within its domain
of applicability possesses a satisfactory range of accuracy consistent with the mod-
els’s intended application (Schlesinger et al. 1979).

17.3.2 The Need for a Post-positivist Understanding
of Validity

If the validity of the social part of such a simulation model is checked, the concept
of accuracy proves problematic. We assume that an agent-based model has been
implemented.

As far as the validation of the social simulation model (V-S1) is concerned, it
has to be shown that the (tacit) knowledge and the perceptions of the social reality
of the participants whose perspectives and views have been collected, for example
by way of qualitative interviewing, are indeed represented correctly by the respec-
tive agents in the social part of the agent-based simulation model. To illustrate the
problem, I return to the Larzac companion modelling exercise. Among other things,
the researchers used French sentences that resembled a programming language orga-
nized as conditional clauses of the form ‘if … then … else …’ to check whether the
rules integrated into the agent-based model represented the farmer’s views correct-
ly—thus, these sentences were part of the validation exercise (Simon and Étienne
2010, p. 1376). Often, the accuracy with which the properties of the agents represent
the participants’ statements cannot be quantified. Note that, for instance, partici-
pants often add further conditions after being confronted with their programmed
statements. Note too that participants’ statements include words with a cultural sig-
nificance and meaning that cannot easily be represented in computer simulations. As
there are limitations to the representation of contradictory views in a single simu-
lation model even the notion of representation becomes vague. For instance, Simon
and Étienne (2010, p. 1376) mention the discussions on pine encroachment in the
validation phase. The final agreement was that pine encroachment would be the most
difficult natural process to control as they had already experienced it on their farms.
The researchers then discussed with the farmers how their respective agents should
be modelled. Farmers considered them to be simple representations of their actual
behaviour but relevant enough to be useful in discussing the problems at stake.

The concept of accuracy does not seem to be appropriate for validating the results
of the simulations (V-S2) either. Assume that the simulation runs of such a socio-
ecological model have produced five qualitatively different results. Let us call these
qualitatively different results scenarios. Each scenario describes one possible future
state of the socio-ecological system. My first argument here is that for a scenario to
be considered valid it is not of major importance that it be accurate. First of all, to
be valid a scenario has to be considered by the stakeholders. The emphasis is on the
future being created by the stakeholders, not on the model predicting the future to
the stakeholders. To be valid, a scenario must help us communicate about possible
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futures. Assume scenario O1 makes the best prediction for harvesting fish of type
F1. If fish of type F1 is rejected by stakeholders S1 and S2 and if their agreement
is needed, scenario O1 will not be considered—irrespective of how accurate the
prediction may have been. My second argument refers to what is discussed as a
self-destroying or self-fulfilling prophecy in the philosophy of the social sciences.
If scenario O2 predicts that all fish are harvested in a 5-year period under certain
circumstances, then stakeholders will most probably consider other scenarios and
scenario O2 will not become true. In other words, there is a moving target. And
the movers are the stakeholders. Only stakeholders’ willingness to accept and act
on a scenario makes the scenario valid. The validity of the model’s results is better
assessed with Greenwood and Levin’s (1998) concept of credibility-validity (see
Sect. 17.2.2 above).

Note that I do not argue that there are no quantities in the models that allow calcu-
lation of some sort of accuracy. I do argue that (a) accuracy is ofminor importance—it
is not appropriate to decide issues of validity—and (b) the point of reference to cal-
culate accuracy is highly questionable as there is a moving target that depends on
stakeholders’ decisions. Note also that this is an empirical statement, not a prescrip-
tive statement or value judgement.

Altogether, the concept of accuracy does not seem to be suitable for the intended
application and in the domain of applicability of this simulation model. I suggest
broadening the SCS definition of simulation validation and replacing the concept
of accuracy because it is not adequate for simulation models which are based on a
constructionist ontology and interpretive epistemology. In the methodology of the
social sciences, qualitative researchers have developed substitutes for the positivist
concept of validity—called post-positivist3 concepts of validity (Scheurich 1996;
recent trends in the discourse on validity in qualitative social research are discussed
by Cho and Trent 2006; Koro-Ljungberg 2008). It is the goal of the general definition
of simulation validity I present in the following section to be sufficiently general as
to allow a logical empiricist and/or post-positivist specification.

17.4 A General Definition of Simulation Validity

Referring to the above discussion, I propose the following general definition of sim-
ulation validity that is suitable for the natural and the social sciences and constitutes
an argument-based approach to validation based on Toulmin’s account (1950, 1958).
Toulmin proposes a five-part model for an argument: (1) claims: the position or
claim being argued for; (2) grounds: reasons or supporting evidence that bolster the

3Please note that I follow Scheurich’s (1996) broad definition of the term post-positivist, embrac-
ing all validity concepts that question the positivist concept. This deviates from Lincoln et al.
(2011) more narrow use of the term. They distinguish five paradigms—positivist, post-positivist,
constructivist, critical and participatory—and subsume under the post-positivist paradigm all those
researchers who recognize and support validity, look for a qualitative equivalence for establishing
validity and employ respective procedures.
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Fig. 17.1 Full claims(C)-grounds(G)-warrant(W)-backing(B) structure of a scientific argument to
support the claim that a simulation model and its result are valid, limited by a qualifier (Q) and a
rebuttal (R)

claim; (3) warrant: the principle, provision, or chain of reasoning that connects the
grounds/reason to the claim; (4) backing: support, justification, reasons to back up
the warrant; and (5) rebuttal/reservation: exceptions to the claim; description and
rebuttal of counter-examples and counterarguments. Additionally, Toulmin consid-
ers that an argument may be sound and yet not be completely convincing. In this case,
we are interested in the strength of the argument. This is expressed by a qualifier.

If applied to the validation of a computer simulation model, the claim is the
conclusion that the model and its results are valid (claims C1 and C2). The grounds
include all kinds of reasoning and analysis or evidence, such as experimental or
observational data, stylized facts, simulation outcome, and expert and stakeholder
judgements that bolster both claims (see Fig. 17.1). Note that arguments can be
chained to support the claim more convincingly.

17.4.1 Definition

Def. V-Mod: A simulation model is valid to the extent to which scientific argumen-
tation supports the claim that the model represents what it purports to represent for
the proposed purpose and domain of applicability.

Def. V-SR: A simulation model’s results are valid to the extent to which scientific
argumentation supports the intended use of the results for the proposed purpose and
domain of applicability.
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Table 17.1 Structure of the warrants connecting the grounds to the claims

Warrants

W1: If grounds Gi(i � 1, …, n) hold and backings support this warrant, then claim C1 follows

W2: If grounds Gj (j � 1, …, k) hold and backings support this warrant, then claim C2 follows

This argument-based approach to simulation validation encourages the validator
to use multiple kinds of evidence to support the use of a computer simulation for
a particular purpose, but it is not overly prescriptive. The approach refrains from
setting strong, prescriptive rules. The task for the validator is to build an argument.
The approach acknowledges that validation can never be established absolutely. It
requires evidence that the simulation model (a) represents what it purports to rep-
resent, (b) is consistent with an appropriate ontological framework assumed for the
intended domain of applicability, (c) meets the requirements of the proposed purpose
(cf. Parker 2009), and that the simulation results (d) are reliable and supported by
reasons and empirical evidence, and (e) their intended interpretations are reason-
able and consistent with an appropriate ontological and epistemological framework
assumed for the intended domain of applicability. Two basic warrants (W1 and W2;
see Table 17.1) connecting the grounds to the claims C1 and C2 derive from this
requirement. A sound argument integrates various strands of reasons and evidence
into a coherent account of the extent to which (i) the model represents what it pur-
ports to represent or (ii) the results can be used for the proposed purpose and domain
of applicability. The task for validators is to create a body of reasons and evidence
sufficient to inform potential users of the strength and limitations of a particular
simulation model and its results for particular purposes. At that level of generaliza-
tion, it is not clear when sufficient evidence has been gathered. Nevertheless, even
this general formulation allows the rejection of an intended use, e.g. if the assumed
epistemological or ontological framework is not suitable for the domain of applica-
bility. Simulation scientists have to elaborate and further specify criteria (a)–(e) for
particular domains of applicability.

17.4.2 Application to Socio-Ecological Simulation Models
in Action Research

The general definition of simulation validity requires that the validator develop a
scientific argument that supports the intended use of her socio-ecological simula-
tion model and its results for the proposed purpose and domain of applicability.
The argument-based approach allows the natural science–social science divide to
be bridged by using a logical empiricist framework for the ecological part of the
simulation model and a post-positivist framework for the social part.

For reasons of space, the full claims-grounds-warrant-backing-rebuttal/
reservation structure cannot be elaborated in this chapter. In the following, the
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focus is on the backings, i.e. support, justification, and reasons for backing up the
warrants.4 On the level of the backings, significant differences in the ontological
and epistemological frameworks have to be made explicit.

17.4.2.1 Validation of the Ecological Part

Backings are elaborated to support warrants W1-W2 referring to a logical empiricist
framework in which data, stylized facts and simulation output will serve as major
grounds together with an appropriate mathematical framework. I do not go into
details here and refer in particular to Chaps. 15, 16, 17 and 19, 20, 21, 22 of this
volume.

Tobe able to present the full structure of backings inSect. 17.4.2.3 (seeTable 17.2),
I assume—without any further explanation—the following backings B1E1 to B1E3 in
relation to warrant W1 and backing B2E in relation to warrant W2 where E denotes
the ecological part.5

B1E1: the ecological part represents what it purports to represent because it is
based on a well-founded theoretical model.6

B1E2: the ecological part is consistent with an appropriate ontological framework
because the assumptions on the nature of ecological reality are plausible.

B1E3: the ecological part meets the requirements of the proposed purpose because
it helps communication about possible futures and finding a solution to the problem.

B2E: the ecological results are reliable and supported by empirical evidence
because they are congruent with relevant data and/or stylized facts.

Recently, Baumberger et al. (2017) have proposed an argument-based framework
for the validation of climate science models. It appears they do not refer to Toulmin.
However, their approach seems appropriate for providing further detail on some steps
in the validation of the ecological part of socio-ecological models.

17.4.2.2 Validation of the Social Part

Backings are elaborated to support warrants W1-W2 referring to a post-positivist
framework in which the stakeholders’ judgements, simulation output and related
reasoning serve as major grounds. The argument is outlined in some detail here.
For reasons of space, I concentrate on two aspects: the choice of a particular post-
positivist concept of validity and the justification of the stakeholders’ judgements as
appropriate grounds for evaluating the post-positivist validity claim.

4Note that we can think of many other backings which are not relevant for my argument here, e.g.
backings related to the methodological frameworks applied in the validation.
5For reasons of space, a thorough explanation cannot be given in this chapter. I acknowledge that
there are diverse ways to specify these backings.
6This is meant to be a necessary, not a sufficient condition.

https://doi.org/10.1007/978-3-319-70766-2_17
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Table 17.2 Structure of the backings

Backing

Ecological part (E) of the socio-ecological model

B1E1: The ecological part represents what it purports to represent because it is based on a
well-grounded theoretical model

B1E2: The ecological part is consistent with an appropriate ontological framework because the
assumptions about the nature of ecological reality are plausible

B1E3: The ecological part meets the requirements of the proposed purpose because it assists
communication about possible futures and finding a solution to the problem

B2E: The ecological results are reliable and supported by reasons and empirical evidence
because they are congruent with relevant data and/or stylized facts

Social part (S) of the socio-ecological model

B1S1: The social part represents what it purports to represent because the stakeholders state that
the relevant features of the implemented model are congruent with their views

B1S2: The social part is consistent with an appropriate ontological framework because the
assumptions on the nature of social reality are plausible

B1S3: The social part meets the requirements of the proposed purpose because it assists
communication about possible futures and finding a solution to the problem

B2S: A simulated scenario is supported by reasons and evidence because the stakeholders
consider this scenario

Overall (O) model

B1O: Warrant W1 is justified in the current context because B1E1-B1E3 and B1S1-B1S3 hold

B2O: Warrant W2 is justified in the current context because B2E and B2S hold

Backings Pertaining to the Simulation Model

Post-positivist Concept of Validity. Based on the constructionist ontology and inter-
pretive epistemology (that relate to backingB1S2, seeTable 17.2; see alsoSect. 17.2.1)
as well as the purpose of solving pertinent problems in a given context through a
democratic inquiry where professional researchers collaborate with participants in
order to seek and enact solutions to problems of major importance to the local people
(that relate to backing B1S3, see Table 17.2), a concept of validity has to be specified
that refers to warrant W1. The simulation model is used to facilitate communica-
tion by the stakeholders whose (tacit) knowledge it makes explicit. It is reasonable
to argue that the representation is considered valid because it makes explicit the
stakeholders’ tacit knowledge and because it facilitates the stakeholders’ communi-
cation about the problem. Qualitative social researchers have been reluctant to apply
the concept of validity, which they relate to a positivist understanding (for a short
overview of that discourse see Lather 2007). A suitable post-positivist concept of
validity has to be selected and justified. For the social part of the socio-ecological
model, the concept of credibility as elaborated by Greenwood and Levin (1998; see
Sect. 17.2.2 above) can be applied fruitfully.
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The Stakeholders’ Judgements. Basedon the concept of credibility, appropriate stan-
dard practices have to be selected and justified. Lincoln and Guba (1985, p. 314)
describe member checks as ‘the most crucial technique for establishing credibility’.7

A member check (also called respondent validation) is a communicative process
whereby a researcher provides the people on whom he or she has conducted research
with an account of his or her findings and requests feedback on that account. Exam-
ples of techniques include the semi-standardized interview using the structure laying
technique and the focus group (see Sects. 17.5.1 and 17.5.2).Withmember checking,
the validation procedure shifts to the stakeholders’ judgements as points of reference.
The backing B1S1 related to warrant W1 then reads: ‘The social part represents what
it purports to represent because the stakeholders state that the relevant features of
the implemented model are congruent with their views’. Thus, the act of validating,
which is the task of the scientist, becomes an act of providing or denying legiti-
macy—a task for the stakeholder (Barreteau et al. 2013, p. 203). This relationship is
also supported by action researchers Greenwood and Levin (1998, p. 68), who points
out that it is not a community of similarly trained professionals that is deemed to be
able to decide issues of credibility, but the stakeholders—an argument which relates
to pragmatist philosophy.8

As pointed out above, the simulation model is further developed throughout the
processes of social learning in the action research project. Validating the simulation
model becomes a continuous task of quality assurance.

Backings Pertaining to the Simulation Results

Post-positivist Concept of Validity. This procedure has to be repeated for the warrant
W2 pertaining to the simulation results. Again, an appropriate post-positivist concept
of validity has to be selected and justified. Remember that rather than being an accu-
rate representation of the possible future of a socio-ecological system, the simulation
results are generated to assist communication about possible futures and finding a
solution to a problem. This purpose is even supported by a simulated worst-case
scenario with no empirical probability of realization. On the other hand, the factual
future of the socio-ecological system that results from the action research project
may not have been simulated at all. The simulated scenarios may just have served as
initial scenarios for a joint discussion and decision by the participants.

The Stakeholders’ Judgements. Typically, simulation experiments provide a large
number of different scenarios as results—too many to be useful as a means of com-

7Other techniques include prolonged engagement, persistent observation, peer debriefing, negative
case analysis, and progressive subjectivity (Guba and Lincoln 1989). Lincoln and Guba (1985) also
recommend the triangulation of sources, methods and investigators, which they deemphasize in
1989 as ‘too positivist’ (Guba and Lincoln 1989, p. 240).
8Note that there is a significant difference to the logical empiricist concept of credibility, which
defines it as the warranted degree of (professionals’) belief in or confirmation of the simulation
results (see Chap. 40 by Hirsch Hadorn and Baumberger in this volume).
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munication among the participants. The intended application of the simulation results
requires that the number of scenarios be small and be confined to those scenarios
which are relevant to the stakeholders. Remember that in the action research frame-
work, a (re)construction of social reality by the researcher is just another socially
constructed reality with no epistemic priority or superiority. Applied to the choice of
scenarios, this means that the stakeholders make the decision on the relevance of the
scenarios that will be simulated. The empirical evidence for a scenario arises from the
willingness of the stakeholders to consider this scenario—an argument which again
relates to pragmatist philosophy.As Schubert (2015, p. 5) summarizes, quoting James
(1907, p. 142): ‘The predictions are “made true”’. This leads to backing B2S relating
to warrant W2: ‘A simulated scenario is supported by reasons and evidence because
the users consider this scenario’. The emphasis is on the future being created by the
stakeholders, not on the model predicting the future to the stakeholders.9 Examples
of techniques that can be used by the action researcher to obtain the stakeholders’
judgements include the focus group or role-playing games and computer games.

17.4.2.3 Validation of the Overall Model

Ultimately, the backings have to be discussed for the overall model. At this stage
of the validation process, the accumulated reasoning and evidence supporting the
ecological and the social part has to be evaluated. The reasoning and evidence for the
ecological part are based on a logical empiricist framework,while the evidence for the
social part relates to a post-positivist framework. This leads to backingsB1O (‘warrant
W1 is justified in the current context because B1E1-B1E3 and B1S1-B1S3 hold’) and
B2O (‘warrant W2 is justified in the current context because B2E and B2S hold’, see
Table 17.2). Note that both backings rather hide conflicts from incommensurable
ontologies and epistemologies. In the end, the constructionist ontology is superior to
the realist ontology because the purpose of the socio-ecological simulation model is
to mediate the communication between participants. The (from a realist perspective)
best ecological part will not be useful if the stakeholders do not accept it as relevant
to their discussions. The intended domain of applicability is the social sphere as
constructed by the stakeholders and their tacit knowledge and its future as created
by the stakeholders (not the social sphere as represented from an objectivist point of
view and its future as predicted to the stakeholders). In practice, this means that a
socio-ecological simulation model which is not accepted by the stakeholders has to
be considered to be invalid, even if the ecological part may be considered to be valid
from a realist perspective. The same holds for simulation results.

9Although the simulation model may calculate a specified probability for the realization of a certain
scenario, this probability cannot be trusted. In the social world, there are always relevant actors
and context conditions that are not represented in the simulation model. They have the power to
dramatically change the probability of realizing the scenarios favoured by the participants of the
action research project. See the study byWorrapimphonga et al. (2010), who report about the change
of a governor, terminating any opportunity for implementing the favoured fishery management
scenario.
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An overview on the structure of backings is given in Table 17.2.

17.4.2.4 Overall Validation of the Action Research Project

This section somewhat transgresses this handbook’s focus on the validation of sim-
ulations. However, the simulation model was used in an action research project, and
finally, the latter has to be validated. Therefore, this subsection will conclude with a
brief examination of the overall validation of the action research project.

The framework of action research requires that the participants must be able to use
the knowledge that emerges. As Greenwood and Levin (1998, p. 68) point out, only
the stakeholder’s willingness to accept and act on the results arrived at collectively
decide issues of credibility. The researcher has to ascertain whether the actions taken
in the action research process result in a solution to the problem (workability test),
and whether the new knowledge is accepted as legitimate truth (test of credible
knowledge making; see Sect. 17.3.2).

While Greenwood and Levin (1998) refer to the concept of credibility, there is
also an alternative. The concept of pragmatic validity as proposed by Kvale (1995)
constitutes a terminological alternative. Essentially, Greenwood and Levin (1998)
have presented a pragmatic concept of credibility which is consistent with Kvale’s
concept. In critically oriented action research on the other hand, Lather’s (1986) con-
cept of catalytic validity may apply. In an anti-foundationalist motivation, this con-
cept relocates validity in achieving social justice, deeper understanding, and broader
visions. Defined as the degree to which the research process reorients, focuses, and
energizes participants towards knowing reality in order to transform it (Lather 1986,
p. 67), catalytic validity considers unequal power relations or invisible structures that
hamper thinking and action—a dimension which is not included in Greenwood and
Levin’s (1998) pragmatic concept of credibility.

It has to be discussed whether this overall concept of validity, applied to the
whole action research project, feeds back into the concept of validity applied to the
validation of the simulation model and its results. A thorough philosophical analy-
sis cannot be provided in this chapter. However, one significant argument shall be
raised that deserves further discussion. This argument relates to the requirement of
representation and may rather be one of validation semantics. To be credible, the
simulation model and its results have to fulfil this requirement to a larger extent than
the results of the whole action research project. It is emphasized that the simula-
tion model represents what it purports to represent, the socio-ecological system—at
least to the degree to which it helps communication among the participants. Action
researchers are not particularly concernedwhether the inferences from the simulation
model represent the solution to the problem at hand. They simply consider whether
the solution works and the new knowledge is accepted as legitimate truth. Here, the
aspect of (social) change is emphasized. The idea that the new knowledge and the
change are represented by the inferences is neglected.

In the following, I consider techniques from qualitative social research which
serve to obtain the stakeholders’ judgements.
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17.5 Validation Techniques Related to the Stakeholder’s
Judgements

Validation techniques to obtain the stakeholders’ judgements refer to two taskswhich
derive from backings B1S1 and B2S: the action researcher has to explore (1) whether
the stakeholders consider the relevant features of the implemented model to be con-
gruent with their views, and (2) which scenarios are considered by them. Validation
techniques are applied repeatedly in a sequence of workshops with the stakehold-
ers. There is no standard procedure for this. The step of validation is one (albeit
repeated) task in a long process of participatory modelling which proceeds in cycles
of developing and validating the simulation model.

The following techniques are suitable as member checks and can be combined.
Finally, all of these techniques provide what Kvale (1995, pp. 30–32) has called
‘communicative validity’—and would better be called ‘communicative validation’,
meaning validation based on communication—which involves ‘testing the validity of
knowledge claims in a dialogue’. Basically, the validity of an interpretation (relating
to the simulation model) is worked out in a dialogue between participants and action
researchers. For analytical reasons, in the following, these techniques are presented
separately.

17.5.1 Qualitative Interviewing

Qualitative interviewing constitutes themost important technique to explore,whether
the stakeholders consider the relevant features of the implemented model to be con-
gruent with their views. The participants are asked whether the model captures their
assumptions about their own behaviour and their environment, whether some impor-
tant dynamics related to the problemaremissing or are notwell represented compared
to their assumptions about social reality. These questions address the participant’s
perceptions of (causal) relations (such as, ‘If y happens, I do x’ and ‘A is a precon-
dition for B’).

The semi-standardized interview (Flick 2014, pp. 217–223) is particularly suit-
able for validation purposes. In social research, this method is usually applied to
reconstruct an interviewee’s subjective theory about an issue under study. Applied to
simulation validation, two phases can be distinguished. In a first meeting, the inter-
viewee’s view is obtained and recorded. Then, the interview is transcribed, roughly
content analysed and transformed into model assumptions. In a second meeting, the
structure laying technique is applied. The essential model assumptions—ranslated
into everyday language—are presented to the interviewee as concepts on small cards
for two purposes: (i) to assess the content: the interviewee is asked to recall the
interview and check if its content is correctly represented on the cards. If this is
not the case, she may reformulate, eliminate, and/or replace assumptions with other
more appropriate ones; and (ii) to structure the remaining concepts from the inter-
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view that could not be transformed into model assumptions by the action researcher:
the interviewee is asked to structure these concepts in a form similar to (causal)
statements by applying the structure laying technique rules. The result of such a
structuring process using the structure laying technique is a graphic representation
of the stakeholder’s statements. Finally, the action researcher compares the inter-
viewee’s view as represented by the cards to the assumptions implemented in the
simulation model. Corresponding assumptions are perceived as being communica-
tively validated. Differing assumptions are changed according to the reconstructed
view of the interviewee based on the graphic representation of the stakeholder’s
statements. Variations of the structure laying technique can also be used in games.

See Barnaud et al. (2008) for a sample study in which interviews were applied
and Dray et al. (2006) for a study in which a structure laying technique was applied.
Flick (2014, Chap. 16) provides a short introduction to qualitative interviewing and
the structure laying technique. Gubrium and Holstein (2001) provide an extensive
introduction to interviewing. Structure laying techniques are explained by Scheele
(1992) and Scheele and Groeben (2010), and applied in diverse contexts by Scheele
and Groeben (1986), Wagner (2003) and Weidemann (2009).

17.5.2 Focus Groups

In action research, focus groups are applied as a form of group discussion, rather
than group interview, with an emphasis on a particular topic. On the one hand, the
group is confronted with the researchers’ interpretations of the individual statements
in the interviews. Here, the group discussion becomes a tool for reconstructing the
stakeholders’ viewsmore appropriately. Corrections by the group concern individual
statements that are perceived as being not correct, not socially shared, or too extreme.
On the other hand, the discussion may generate new knowledge on the group level.
Finally, the group’s viewmay converge to a community consensus on the questions of
‘what is “real”’, ‘what is useful’, and ‘what hasmeaning’, three criteria put forward by
Lincoln et al. (2011, p. 116) for judging ‘reality’ or validity in qualitative inquiry in the
social sciences. ‘The meaning-making activities themselves are of central interest to
social constructionists and constructivists simply because it is the meaning-making,
sense-making, attributional activities that shape action (or inaction)’ (Lincoln et al.
2011, p. 116). The criteria of the ideal speech situation (Habermas 1984) or the fusion
of horizons model (Gadamer 2002 [1960]) serve as quality criteria for assessing the
credibility of the group’s final opinion.

See Barnaud et al. (2008) for a sample study in which focus groups were applied,
Flick (2014, Chap. 17) for an introduction to group discussion methods including
the focus group, and Barbour (2007) for an extensive discussion of this technique.
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17.5.3 Role-Playing Games

Role-playing games, gaming simulation or even computer games constitute the most
demanding technique with which to explore whether the stakeholders consider the
relevant features of the implemented model to be congruent with their views. The
technique provides—and requires—cross-validation of three models: the concep-
tual model, the simulation model, and the role-playing model (or gaming simulation
model, or computer game model). In the following, I concentrate on role-playing
games. On this level of abstraction, the procedure can be adapted to gaming simula-
tion or computer games without significant changes.

The validation (and development) of the agent-based model proceeds in a cycli-
cal way, combining the multi-agent system with a role-playing game. In each cycle,
the role-playing game used with the stakeholders is a simplified version of the
agent-based model. For example, the agents in the model correspond to the play-
ers in the game, the spatial interface of the model corresponds to the gaming board,
and a time step of the model corresponds to a gaming round. The main difference
is that while in the role-playing game decisions are made by human beings—the
players/stakeholders/users –, in the agent-based model the corresponding decision-
making processes are modelled. Thus, the game is a way to make transparent the
model’s assumptions for the stakeholders. The role-playing game allows the players
to understand and therefore criticize and validate the model suggested by the action
research team. In this cyclical process, the validation of the simulation model and the
role-playing gamemutually refer to each other (for the validation of games, see Klab-
bers 2009, Chap. 7) and to the target, the pertinent problem in a given context. Playing
the game triggers lively and germane discussions among the stakeholders concerning
their real situation. See Castella et al. (2005), Barnaud et al. (2008), and Naivinit
et al. (2010) for sample studies. The cyclical procedure can be variated. Dumrongro-
jwatthana and Trébuil (2011) describe a model in which only the ultimate version of
the (in this case computer-assisted) role-playing game validated by the players was
converted into an agent-based model. Barreteau et al. (2001) describe the general
approach behind the joint use of role-playing games and computer simulations. See
Klabbers (2009) for an introduction to gaming simulation.

Additionally, role-playing games, gaming simulation and computer games con-
stitute appropriate techniques to identify scenarios considered relevant by the stake-
holders. In the gaming sessions, the stakeholders discuss diverse scenarios and may
reach a collective agreement on those scenarios that should be further explored, this
time by way of computer simulation. See Barnaud et al. (2008) for a sample study
in which role-playing games were used in this way.
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17.5.4 Inappropriate Techniques and Related Consequences

Techniques known from checking face validity, such as diagrams or figures visualiz-
ing the simulation output (mentioned by, e.g. Simon and Étienne 2010, p. 1376, and
Barreteau et al. 2013, p. 208) have to be questioned as a suitable validation technique.
Although used by some action researchers, they do not constitute member checks in
the sense of qualitative social inquiry. They do not establish communicative validity
in the sense of Kvale (1995). Instead, they reflect a logical empiricist approach. They
are particularly prone to judgemental biases of stakeholders as outlined by Irvine
et al. (1998).

Inappropriate techniques are not just inadequate for supporting the validity of the
simulation model and its interpretation—they are detrimental to the whole action
research project. See the study by Simon and Étienne (2010), who report how data
collection at the request of one stakeholder distorted the cooperation between scien-
tists and participants.

17.6 Discussion

This article claims that the stakeholders’ judgements are indispensable points of
reference in simulation validation in a comparatively small field,10 namely construc-
tionist action research using simulation models that include a social component. The
discussion will focus on four questions: is the term ‘validation’ correct? Is the term
‘judgements’ correct? Could the stakeholders’ judgements be suitable for validation
purposes in other research fields as well? Do the stakeholder’s judgements ultimately
provide some sort of face validity?

Validation Versus Evaluation. You can evaluate simulations or their results on the
basis of, e.g. whether they find consensus, whether they prove applicable, whether
they are in fact applied, whether they help to solve problems, etc. But why call a
related evaluation ‘validation’? The answer of the action researcher with a pragmatic
orientation is that the ‘credibility-validity’ of action research knowledge (Greenwood
and Levin 1998, p. 63; see Sect. 17.2.2) depends on whether actions that arise from
it solve problems (workability) and increase participant’s control over their own
situations. The framework of action research requires that the participants must be
able to use the knowledge that emerges. Accordingly, simulation results obtained
from action research using simulations are considered to be invalid knowledge if
they are not used by the stakeholders. The predictions of the scenarios are made
true only by being used. Based on Greenwood and Levin’s pragmatist definition
of credibility-validity, this is not a matter of evaluation but a matter of validation.
This pragmatist perspective infers from the willingness of the stakeholders to use the

10Action research is applied in the social sciences, and has ‘by and large […] not been a popular
form of social research’ (Bryman 2012, p. 393).
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knowledge (a) its likely truth, (b) the warranted confidence in the simulation results,
and (c) the correctness of the underlying model assumptions.

The Stakeholder’s Judgements. What is the nature of the stakeholder’s feedback
obtained from communicative validation? In particular, is there a principled differ-
ence to data and stylized facts? Or does this feedback constitute some kind of data?
In particular, is there a similarity to experimental data? I claim that there is a prin-
cipled difference. In the cyclical processes of model development and validation,
qualitative interviews, focus groups, and role-playing games provide two types of
feedback: validation statements and corrections. The validation statements are unique
for simulation validation. In all the data and stylized facts-related techniques, the val-
idation statement comes from a scientist. In action research, the validity statement
itself comes from the participant. The action researcher will critically reflect on this
validity statement. However, ultimately the action researcher lacks an independent
(objective) perspective. It is the judgements which constitute the unique point of
reference. Only the corrections can be interpreted as some kind of data collected to
improve the model in the next cycle of model development.

The Domain of Applicability. Could the stakeholders’ judgements be suitable for
validation purposes in other research fields too? Barlas and Carpenter (1990) have
argued this. Based on a relativist position, they highlight the need for a dialogue
between the modeller and other model stakeholders, and they claim that validation
is ‘a matter of social conversation rather than objective confrontation’ (Barlas and
Carpenter 1990, p. 163). Kleindorfer et al. (1998, p. 1098) put forward the claim
that the model builders are free to establish and increase the credibility of the model
through any reasonablemeans. Based on a hermeneutic position, they suggest involv-
ing ‘other model stakeholders, such as model users and referees of journal articles’
to increase the credibility of the model. They put forward the idea of a dialogue
about a model’s warrantability. There is not sufficient space here to discuss this idea
extensively. In short, I wish to point out that the validity claims of Barlas and Klein-
dorfer’s users’ judgements are inferior to those of the participants in action research.
In a social constructionist framework, the action researcher has lost her epistemic
superiority vis-à-vis the stakeholder in accessing social reality. The stakeholder’s
epistemic priority is based on her exclusive access to her social reality, which justi-
fies the trust in her judgements. Concerning Barlas and Kleindorfer’s users, there is
no such epistemic priority vis-à-vis the simulating scientist, which sets limits on their
judgements’ contribution to validating the simulation model. However, Schubert’s
(2015) statement that the predictions of the simulation model are made true holds
for Barlas and Kleindorfer’s users and their societal futures.

A less general claimwould be that the stakeholders’ judgements are suited for val-
idating all social science simulations. Isn’t there always an epistemic priority of the
stakeholder vis-à-vis the simulating scientist, emerging from her exclusive access to
her social reality? Here, my answer is that simulation models do not necessarily aim
to represent people’s everyday lives. There is a long, ongoing, debate on objectivity
and subjectivity in social research. This distinction is reflected in the development of
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nomothetic and idiographic models in social simulation (see Ahrweiler and Gilbert
2009). The majority of social science simulations is developed from a rather objec-
tivist point of view connected to a critical realist ontology. In these simulation studies,
a logical empiricist framework is applied referring to data and stylized facts as points
of reference for simulation validation (see Chap. 31 by Fagiolo et al. and Chap. 35 by
Mäs in this volume). In this framework, the stakeholders’ judgements are dispens-
able additional points of reference because they are perceived as being by largely
inferior to data and stylized facts. From my point of view, the essential question
addressing the validity of social science simulations is not whether these models can
be validated by the stakeholders’ judgements. Rather the question is when is a realist
and when is a constructionist position adequate for modelling the social world. For
example, Ahrweiler and Gilbert (2015) argue that in the case of a policy modelling
exercise, only a constructivist position is appropriate and a user community view of
model evaluation is recommended. It can be assumed that the ontological framework
of several social science simulations is not well-founded.11

A last claim would be that the stakeholders’ judgements are indispensable points
of reference for all action research studies that use simulation models, i.e. including
those studies whose model does not have a social component. Let us assume that
a (purely) ecological model is developed. I question the suitability of such a model
for action research. Such a design violates the requirement of democratic inquiry
in which professional researchers collaborate with participants to seek and enact
solutions to problems of major importance to the local people. A democratic inquiry
simply cannot be established when for instance the interactions between groundwa-
ter dynamics and surface water have to be represented in a simulation model. The
modelling exercise is asymmetric. There is no need for a democratic process. If such
a model were developed and used in a (badly designed) action research project, we
would expect the stakeholders to be unable to understand the model and its inter-
pretation. It would not help them communicate about their problem nor would it
help them enact solutions. Any helpless effort by the action researcher to obtain
the stakeholder’s judgements of such a model will fail because the stakeholders are
simply over-challenged by this, and this fact is known by the researcher and by the
stakeholders themselves. Such a design will lead to action research projects which
fail to achieve their aims.

Communicative validity based on group consensus. In computer simulation,
the concept of face validity has been reformulated as referring to individuals knowl-
edgeable about the target who are asked whether the model and/or its behaviour are
reasonable (Sargent 2013, p. 16). As Murray-Smith (2015, p. 95) notes this tech-
nique is especially helpful in early stages of the development of simulation models
when there is no prototype system available for testing. In action research, there is
typically no such prototype system. The stakeholders’ judgements provide expert
statements in the sense of the face validation approach. It has been objected that

11See, for instance, the critique put forward by Barreteau et al. (2013, p. 210) on the use of Bayesian
belief networks: ‘The translation of participant-provided information into probabilities is mediated
by the modeller and is rather opaque, as in many participatory modelling approaches’.
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‘different stakeholders might well have different views and understandings of their
own behaviour, the behaviour of others and the ways in which stakeholders inter-
act with one another. These are not matters of some objective truth’ (Moss 2008,
Sect. 5.11). This objection ignores the fact that action research considers and models
multiple (social) realities and rejects the idea of an objective truth. So does commu-
nicative validation. Moss’s objection also ignores the numerous built-in credibility
checks: the validation procedure involving qualitative interviews, focus groups, and
role-playing games requires each stakeholder to first validate the relevant part of the
simulation model from his or her perspective. Next a common view of social reality
is established, supported by the simulation model. When debating and deliberating
in the focus groups, the stakeholders may criticize each other and develop new and
shared views together. Finally, the validity of the simulation model and its results
is based on group consensus which overcomes initially different views of the stake-
holders. The sequence of judgements includes numerous model falsifications (and
subsequent model improvements by the action researcher) establishing a high degree
of credibility on the part of the stakeholders which is also approved by the action
researcher. This is face validity as defined by Sargent (2013). However, the cyclical
validation procedure involving qualitative interviews, focus groups, and role-playing
games is a much more sophisticated procedure than the concept of face validity sug-
gests. And, while the intuition of the concept of face validity directs the attention
to the visual sense, the key aspect is instead the human capacity for communicative
action. Therefore Kvale’s (1995) concept of communicative validity captures the
essence of this validation procedure much better than the concept of face validity.

17.7 Conclusions

This article claims that the stakeholders’ judgements are indispensable points of
reference in simulation validation in constructionist action research, if the model
includes a social component. Obtaining the stakeholder’s judgements in an action
research framework is an iterative communicative procedure which requires a strong
background in qualitative methods of empirical social research as well as gaming
simulation and establishes communicative validity. Beyond this rather narrow field,
the stakeholders’ judgements may be obtained as additional points of reference if a
hermeneutic approach to simulation validation is preferred.

17.8 Outlook

What are important questions for further research? (1) Validation techniques. The
presented techniques are well-known in the social sciences, but not for the purpose of
validation however. Procedures and principles for applying these techniques in sim-
ulation validation have to be specified and problems in their application addressed.
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The practitioners already apply such procedures and principles. However, we lack
a related methodological discourse. Quality criteria related to these techniques ulti-
mately help the action researcher evaluate the validity of the stakeholders’ judge-
ments. (2) The proposed argument-based approach to validation has to be elaborated.
Basic assumptions and the philosophical foundation have to be further specified and
juxtaposed with alternative accounts of simulation validation. (3) Different concepts
of credibility from logical empiricist (see Chap. 40 by Hirsch Hadorn and Baum-
berger in this volume) and post-positivist (Greenwood and Levin 1998; Guba and
Lincoln 2005; Lincoln and Guba 1985) perspectives need to be clarified.
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Chapter 18
Validation Benchmarks and Related
Metrics

Nicole J. Saam

Abstract This chapter proposes benchmarking as an important, versatile and
promising method in the process of validating simulation models with an empirical
target. This excludes simulationmodels which only explore consequences of theoret-
ical assumptions. A conceptual framework and descriptive theory of benchmarking
in simulation validation is developed. Sources of benchmarks are outstanding exper-
imental or observational data, stylized facts or other characteristics of the target.
They are outstanding because they are more effective, more reliable or more effi-
cient than other such data, stylized facts or characteristics. Benchmarks are set in a
benchmarking process which offers a pathway to support the establishment of norms
and standards in simulation validation. Benchmarks are indispensable in maintaining
large simulation systems, e.g. for automatic quality checking of large-scale forecasts
and when forecasting system upgrades are made.

Keywords Validation benchmarks · Touchstone · Yardstick · Engineering
reference standard · Benchmarking · Benchmarking metrics

18.1 Introduction

According to its most simple definition, a benchmark is a point of reference or stan-
dard against which things may be compared (Oxford Dictionaries). Benchmarking
is a comparative method for performance evaluation of systems using benchmarks,
and it is known from management science and computer science. In the former, the
quality of an organization’s policies and products is measured, compared and evalu-
ated using standardmeasurements, or similar measurements of its peers, e.g. industry
bests. In the latter, benchmark programmes are developed and run on computers to
compare and evaluate the performance of different processors and computer archi-
tectures. Benchmarking is also known from the stock market, where the performance
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of investment funds is measured against the performance of a point of reference, the
stock market itself.

In computer simulation, benchmarking is predominantly used for engineered sys-
tems (which are not the focus of this volume). In recent years, however, some empir-
ical sciences have adopted benchmarking with respect to modelling and computer
simulations (e.g. hydrology and biogeosciences, see references in Sect. 18.2.2). In
particular, hydrological models are evaluated using benchmarks. Nevertheless, val-
idation benchmarks are comparatively rare in simulation validation. In this chapter,
I argue that the potential of benchmarks for validating simulations is yet to be suffi-
ciently recognized, and propose broading the use of benchmarks in validating sim-
ulations. Validity I understand as the degree to which a scientific argument supports
the intended interpretation of the simulation model and its results for the proposed
purpose and domain of applicability (see Chap. 17, Sect. 17.4 by Saam in this vol-
ume). I thus put forward an argument-based approach to simulation validation. The
benchmarking exercise provides results which support the establishment of such a
scientific argument. In particular, it serves to quantify the fit between simulation
outcome and that part of reality that the simulation model is meant to enable us to
understand or explain. It provides a statement on how close the simulation outcome
is to the benchmark. However, the results of the benchmarking process do not indi-
cate whether the fit is good enough for the intended application, and we do not know
whether the results are good for the right reason(s). Benchmarking can therefore only
be a first step on the long road that is validating a simulation model and its results.

This chapter proposes benchmarking as an important, versatile and promising
method in the overall process of validation of simulation models with an empirical
target. This excludes simulationmodels which only explore consequences of theoret-
ical assumptions. A conceptual framework and descriptive theory of benchmarking
in simulation validation is developed. Sources of benchmarks are outstanding exper-
imental or observational data, stylized facts or other characteristics of the target.
They are outstanding because they are more effective, more reliable and more effi-
cient than other such data, stylized facts or characteristics. Benchmarks are set in a
benchmarking process which offers a pathway to support the establishment of norms
and standards in simulation validation. They are indispensable for maintaining large
simulation systems, e.g. for automatic quality checking of large-scale forecasts and
when forecasting system upgrades are made.

In the following, I define the basic concepts of this theory (benchmark variables,
benchmarks proper, benchmarking; Sects. 18.2 and 18.3), develop two typologies
(types of benchmarking and types of validation benchmarks, Sects. 18.3.1 and 18.4),
explain why validation benchmarks are used (Sect. 18.2.2), which criteria apply
for selecting a benchmark (Sect. 18.3.2) and why which kind of metrics are used
(Sect. 18.5), and finally discuss strengths and weaknesses of the method (Sect. 18.6).
Questions for future research are outlined in the conclusion.
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18.2 The Concept of Validation Benchmarks

18.2.1 Defining Validation Benchmarks

Avoiding a definition that is too narrow, I define a validation benchmark in computer
simulation as point of reference or standard against which the simulation results
may be assessed according to validity characteristics, such as accuracy or credibility.
Validation benchmarks have to be distinguished from verification benchmarks. The
latter refers to the process of determining that a model implemented on the computer
accurately represents the developer’s conceptual description of the model as well as
the solution to the model (see Oberkampf and Trucano 2008), while the first assesses
the degree to which a model represents the target.

While Schlesinger et al. (1979) focus in their definition of model validation (‘the
substantiation that a computerized model within its domain of applicability pos-
sesses a satisfactory range of accuracy consistent with the intended application of
the model’; Schlesinger et al. (1979, p. 104)) on only one validity characteristic—ac-
curacy—my definition is more open and recognizes that simulation results may be
evaluated according to credibility or other criteria. This means that the concept of
validation benchmark can also be used to assess the credibility of a computer sim-
ulation model and its results. In the natural sciences, when introducing the idea of
benchmarks for validating simulations it may be wise to concentrate on the presently
predominant characteristic for the validity of simulation results, i.e. accuracy. In
the social sciences, error often cannot be quantified, setting limits to the knowledge
gained from calculating accuracy statistics.1 In this case, the model’s output is better
assessed according to other or additional criteria. In the long run, particularly if the
use of simulations should spread into many fields in technology and society, it may
be necessary to consider alternative or additional characteristics to accuracy. This
is, at least, what we can learn from the use of computer benchmarks, a mature field
where performance benchmarking was dominating and dependability benchmarking
has since gained recognition (Vieira and Madeira 2009). For the moment, I propose
concentrating on the development of accuracy benchmarks for simulation validation
(please note, however, the more differentiated view that results from developing the
typology of validation benchmarks in Sect. 18.4).

To improve terminological clarity, I introduce a distinction that has not yet to be
made in the literature—I distinguish the benchmark variable from the benchmark
proper—both of which are presently referred to in the literature as benchmarks. The
benchmark variable denotes that variable in a computerized model (and antecedent
conceptual model) for which the decision is made that a benchmark proper will be
sought and defined. The benchmark proper denotes one or more points of reference
or determinate values of the variable on a scale in the benchmark variable’s range

1In some cases, the measure of agreement between the simulation result and the benchmark can
have a large tolerance. In other cases, the benchmark itself is less quantitative (or not quantitative)
and, therefore, a measure of agreement cannot be accurately defined.
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of values (or sometimes a common characteristic of several benchmark variables)
against which the simulation results will be assessed (which was my initial definition
of validation benchmarks at the beginning of this section). As will be elaborated in
Sect. 18.4, there are different classes of benchmarks proper. Note that in the interests
of readability, I will explicitly refer to benchmark variables and benchmarks proper
wherever necessary, but adhere to the concept of validation benchmarks if both
aspects are addressed.

From amerely technical perspective, benchmarks may qualify as (a) one variable,
several variables, or functional relationships of two or more variables, (b) specified
in time and/or space, (c) measured on all available scales (nominal, ordinal, metric)
(d) whose value(s) may have the mathematical form of a scalar, a time series or a
matrix and (e) the statistical form of a distribution, probability distribution etc., or
any combination thereof.

In the empirical sciences, validation benchmarks are useful for different purposes:
(i) To support simulating scientists in the conception of the validity of theirmodel’s

results. The validation results feedback into the further development of models,
especially when models are applied regularly, such as in forecasts of simulating
surface water flooding events.

(ii) Help public agencies and non-governmental organizations to choose themodel
that best fits their requirements by comparing the accuracy and other features of
alternative models. This requires that there are competing models on issues of public
interest, a precondition that is often not fulfilled (an exception is climate modelling).

The latter purpose being rather an exception, validation benchmarks will predom-
inantly serve science and the evaluation and further development of models.

18.2.2 Motivations for Using Validation Benchmarks

There are various reasons for using validation benchmarks. Some important moti-
vations will be illustrated, without being exhaustive. The intention is to sensitize
the reader to the versatility of the method. For some phenomena that are modelled,
no observational data is available to validate the simulation results. For instance,
microsimulation models that forecast population growth are faced with a no data
situation in which official population projections serve as an external benchmark
(see e.g. the study by Harding et al. 2010).

For some other phenomenon, there may be observational data to validate the
simulation results. However, scientists do not merely want to compare observations
and simulation results. Instead, they seek to assess model performance as good or
poor (Seibert 2001). In intercomparison projects, validation benchmarks are used
to set minimum levels of acceptability for model performance (see e.g. the study
by Nicolle et al. 2014). Skill analysis provides an answer to the question as to how
close a forecast was to the observations compared to how close a benchmark was. For
example, in hydrological ensemble prediction, climatological or meteorological data
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may serve as benchmarks (see thebenchmark intercomparison studybyPappenberger
et al. 2015).

Some other simulation models are too complex to expect validation of each simu-
lated process. Luo et al. (2012, p. 3858) for instance argue that a land model typically
simulates hundreds or thousands of biophysical, biogeochemical and ecological pro-
cesses on regional and global scales over hundreds of years. Even if observations
were available, it is unrealistic to expect that so many processes on all spatial and
temporal scales are validated independently. One way to evaluate such models has
been a holistic assessment, as performed in intercomparison projects.A secondway is
benchmarking: a systematic evaluation against data from a range of carefully selected
observations and experiments. A benchmarking process can be organized as a project
(see e.g. the International Land Model Benchmarking project, Hoffman et al. 2017,
and https://www.ilamb.org/), which is recommended if one intends to develop of a
community-basedmodel evaluation system that is open source andmodular, allowing
contributions by many different modelling and measurement teams.

In terms of practical use, a quick warning is sometimes needed. For example, in
urban flood riskmanagement, the computational cost of highest-resolution data is too
expensive, rendering a timely warning difficult. Here, a compromise between com-
putational cost and accuracy is needed and provided by lower resolution benchmark
data (see e.g. the study by Fewtrell et al. 2011).

The use of computer simulation for practical applications such as in medicine
or nuclear reactor safety necessitates a justified confidence that the models are ade-
quate representations of the target. There is a need to establish standards for the
validation of these models that typically evolve in an iterative process. Validation
benchmarks provide users with benchmark examples and benchmark experiments
that can be run with the previous and new versions of a simulation package (see e.g.
the study by Lund et al. 2012). Such validation benchmarks can also be understood as
test problems (Oberkampf and Trucano 2008, p. 718). These test problems may not
only allow quantification of the accuracy of the computational model by comparing
its results with experimentally measured data. They may also enable the interpola-
tion or extrapolation of the computational model to conditions corresponding to the
model’s intended use or determination if the estimated accuracy of the computational
model—for the conditions of its intended use—satisfies the accuracy requirements
specified (Oberkampf and Trucano 2008, p. 724).

This diversity of motivations for using validation benchmarks raises the question
of whether there are different types of validation benchmarks—a question that will
be addressed in Sect. 18.4.

18.2.3 Sources of Benchmarks

Four sources of benchmarks (benchmark variables and benchmarks proper in this
chapter’s terms) are distinguished by Luo et al. (2012, p. 3862): direct observations;
experimental results; observation proxies (‘data-model products’); and functional

https://www.ilamb.org/
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relationships or patterns. These categories seem to overlap, e.g. experiments can
involve direct observations. Patterns are patterns in observational data.

Validation against observational data has been the most common approach to
model evaluation in science (Oreskes 2003). Although observational and experi-
mental data are generally accepted to be the most reliable benchmarks for model
performance, there are also reasons to question them as benchmarks. It is recognized
that even themost directmeasurements need some level of processing, up-scaling and
assumptions to yield the final estimates (Luo et al. 2012, p. 3862). Pappenberger et al.
(2015) discuss the issue of observations or proxies as a basis for benchmarks. They
consider a river discharge proxy, a reference river discharge that is not observed but
simulated by a hydrological model using observedmeteorological inputs. They argue
that observation-based benchmarks are easier to construct than proxy-based ones and
might seem to be more suitable than the latter. They also argue that observational
data can contain errors, e.g. observed discharge data captured during floods usually
contains errors fromwhen measurement devices stop functioning or are destroyed or
bypassed by flood waters. A second reason for proxy-based benchmarks is the lack
of long historic data series (Pappenberger et al. 2015, p. 708). Another suggestion
is made by Luo et al. (2012, p. 3862), who discuss interpolation and extrapola-
tion of data according to some functional relationships in order to extend the data’s
spatial and temporal scales. They argue that related errors may be well-quantified.
Nevertheless, extrapolation functions may introduce artefacts, especially outside the
observation ranges.

In the social sciences, the use of survey data raises the same question of suitability
as a source for benchmarks. The error in survey data often cannot be quantified; for
instance, Harding et al. (2010, p. 57) report ‘noise’ in survey estimates due to small
sample size in some groups and the distorting effect of survey data being collected in a
period of economic prosperity. In this case, proxy-based benchmarks such as official
population projections or cross-sectional data from national bureaus of statistics are
more suited.However, caution is requiredwhen comparing a simulation’s outputwith
that of external projections, depending heavily on the assumptions made. A model
output missing the projection does not necessarily reflect a bad model (Harding et al.
2010, p. 55).

Oberkampf and Trucano (2008, p. 726) emphasize the role of validation experi-
ments to obtain experimental data suited for simulation validation. Validation exper-
iments constitutes a new type of experiment conducted for the primary purpose of
determining the predicative accuracy of a computational model. Such an experiment
should be jointly designed by experimentalists, model developers, code developers
and code users. Validation experiments should not only be distinguished from scien-
tific discovery experiments, model calibration experiments and experiments serving
as system performance tests. They should also be designed, executed and analysed
separately.

Functional relationships or patterns in the data can be used as benchmarks to eval-
uate the model’s results, in particular when uncertainties in data due to both random
and systematic error are unknown. For example, correlations betweenElNino-related
climate anomalies and growth rate of atmospheric CO2 can be used to examine the
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Table 18.1 Types of benchmarking

Object compared
Number of objects

Simulation validation process Simulation outcome

One – Performance benchmarking

Several Process benchmarking Best-in-class benchmarking

consistency between the observed and the simulated ecosystem responses to climate
change (Luo et al. 2012, p. 3862f.).

Benchmark levels of performance that a certain model can be targeted to achieve
have also been defined based on standard simulation results of awell-acceptedmodel,
the model ensemble mean, and statistically based model results (see the references
in Luo et al. 2012, p. 3863).

18.3 The Benchmarking Process

Validation benchmarks are selected and used in a process called benchmarking.
Benchmarking is defined as a practice in and through which the improvement of
a simulation model’s performance is sought through comparison with a reference
point.

I distinguish benchmarking in the narrow sense, which requires a social process
and agreement on benchmark variables, and benchmarks proper from benchmarking
in the broader sense, which relaxes this assumption. In the latter case, it is only
required that the scientist connects the choice of a certain benchmark variable and
related benchmark proper to the claim that both are submitted to the relevant scientific
community in order to achieve an agreement on the use of these benchmarks in all
future models in this domain of applicability and with this intended application of the
model. The social dimension of benchmarking distinguishes this validation practice
from alternative practices in which simulation results are compared to any sort of
points of reference (see Sect. 18.6.2 for further discussion).

18.3.1 Types of Benchmarking

Several types of benchmarking can be distinguished depending on the object com-
pared (simulation outcome versus validation process) and the number of simulation
models (see Table 18.1). All of the types may be used by different disciplines or
industries. Note that these types are not on the same level:

Performance benchmarking requires that the outcome characteristics of a single
simulation model are compared to its benchmarks (level 1).
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Best-in-class benchmarking2 requires that the outcome characteristics of several
models on the same phenomenon are compared to each other (level 2).

Process benchmarking requires that the whole validation process, and not just the
outcome characteristics, of several models are compared to each other (level 3).

Levels 1 and 2 can be classified as benchmarking in validation and level 3 as
benchmarking of validation.

18.3.1.1 Performance Benchmarking

Luo et al. (2012, p. 3857) note that we are in an infant stage of benchmarking
analysis. In those disciplines in which we perceive an enduring effort in developing
simulation models on a particular phenomenon, benchmarking analysis may evolve
into a standard technique for validating new versions of already existing simulation
models.

Six major steps are proposed as a framework for benchmark analysis for per-
formance benchmarking: (1) Develop benchmarking validation concept. This step
includes identification of key aspects of the simulation model that require evaluation.
(2) Select benchmark variables. Potential (candidate) benchmark variables—a set of
benchmark variables—are identified. Note that this may be a long and arduous pro-
cess, in particular for simulation models with many output variables. Several tasks
are hidden behind this step: (a) identification of benchmark variables; (b) choice of
the scale on which each benchmark variable will be measured; and (c) choice of
the error (or resolution) with which each benchmark variable will be measured (see
Sect. 18.3.2 for more details). At the same time, (d) a decision on the quality of
the point of reference has to be made that will be associated with each candidate
benchmark variable (see Sect. 18.4 for more details on different types of valida-
tion benchmarks and their related qualities). Only after these decisions have been
made are data collected or validation experiments run to obtain data on candidate
benchmark variables. Pros and cons of different candidate benchmark variables are
discussed, and finally, a decision is made on which ones to use. (3) Select metrics.
Appropriate validation or benchmarking metrics (see below) are selected on the
basis of the characteristics of the benchmarking data and simulation outcome, e.g.
their scale and error characteristics. (4) Define evaluation criteria and procedure.
Evaluation criteria (such as a level that is still acceptable or a test that has to be
passed) and related procedures are chosen according to the accuracy requirement
of the intended application. (5) Evaluate simulation model. Simulation results are
compared to benchmarking data and assessed using the metrics and the evaluation
criteria. (6) Improve simulation model. Model deficiencies are identified and rectified
(as an example, see the studies by Luo et al. 2012, and Pappenberger et al. 2015).

2Please note that this definition deviates from the use of best-in-class benchmarking in business
benchmarking, where it is also known as process benchmarking.
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In a more narrow interpretation, benchmark analysis would only include the com-
parison exercise, whereas the step of improving the simulation model would be
considered a response, but not a part of the analysis.

18.3.1.2 Best-in-Class Benchmarking

Best-in-class benchmarking compares to rival models and their performance. The
strengths and weaknesses of the peer models are identified in order to determine
each model’s strengths and weaknesses. This helps to prioritize specific areas for
improvement. Intercomparison projects (see also Chap. 34 by Knutti et al. in this
volume) are examples of best-in-class benchmarking (Sundberg (2011, p. 120).

Six major elements are proposed as a framework for best-in-class benchmarking:
(1) Develop benchmarking concept. This step includes identification of the model
domain that requires evaluation. (2) Select benchmarking partners. A number of
simulation models in the domain are identified and modellers contacted and asked
for their cooperation in the intercomparison project. (3)Develop common framework.
A common evaluation framework, including a common set of criteria, a common set
of benchmark variables and their related benchmarks proper, appropriatemetrics, and
a testing scheme are negotiated by the partners. (4) Implement common framework.
Each partner implements the common framework to their simulation model. (5)
Evaluate simulation models. Benchmarking results are compared among models
and models are assessed. (6) Improve simulation models. Model deficiencies are
identified and rectified (as an example, see the study by Nicolle et al. 2014).

Best-in-class benchmarking is not just an extension of benchmarking analysis to
several models. Instead, it establishes a social process characterized as coopetition
(see below) and a moving target which cannot be reached once and for all. Once
best-in-class benchmarking has been chosen, the peers have to be identified and they
have to be involved in a benchmarking project as benchmarking partners providing
their simulation results and model details. This project establishes a hybrid process
of cooperation and competition (WolframCox et al. 1997), also known by the generic
term coopetition (Brandenburger andNalebuff 1998). The normof competitiveness is
endogenous to the endless competition in which best-in-class benchmarking engages
the project partners. This makes the benchmarks proper, i.e. the peers’ model results
that serve as points of reference, a moving target—a target which cannot be reached
because continuous improvement of the models moves it ahead.

18.3.1.3 Process Benchmarking

Process benchmarking looks across multiple disciplines or industries to identify suc-
cessful validation practices—regardless of their source. It is reminiscent of the search
for best practices in business benchmarking and supports continuous improvement,
increased performance levels and movement towards best practices. This type of
benchmarking may involve models on different phenomena in one discipline (inter-
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nal benchmarking) or from different disciplines (external/interdisciplinary bench-
marking). In companies in the simulation software industry, process benchmarking
may be an element of a comprehensive quality assurance strategy. Like best-in-class
benchmarking, process benchmarking can be characterized as a form of coopetition,
but the element of competition is weaker than in best-in-class benchmarking.

Six major elements are proposed as a framework for process benchmarking:
(1) Develop benchmarking concept. This step includes identification of the model
domains and/or disciplines that desire evaluation. (2) Select benchmarking partners.
A number of simulation models in the relevant domains or disciplines are identified
andmodellers contacted and asked for their cooperation in the process benchmarking
project. (3) Develop common framework. A common evaluation framework is nego-
tiated by the partners. However, this framework does not include a common set of
validity criteria, a common set of validation benchmarks (benchmark variables and
the related benchmarks proper), appropriate metrics, or a testing scheme as in best-
in-class benchmarking. Instead, partners agree to collect data or provide information
(e.g. by way of interviewing) on their practices in model development, testing, and
validation as well as on the performance of their models. (4) Implement common
framework. Each partner collects data or provides information on their simulation
practices. (5) Evaluate simulation processes. Benchmarking results are compared
among partners and models and best practices are identified. (6) Improve simulation
validation processes. Process deficiencies are identified and improved based on best
practices.

Process benchmarking is not the focus of this chapter and will not be elaborated
further here.

18.3.2 Criteria of Benchmark Selection

As explained above (see Sect. 18.3.1.1), benchmark selection includes three distinct
tasks: identification of benchmark variables, choice of the scale onwhich each bench-
mark variable will be measured, and choice of the measurement precision/error (or
resolution) with which each benchmark variable will be measured (in some areas of
application, there may be no such choice). First of all, the identification of bench-
mark variables is specific to the problem addressed by the simulation model. For
example, in hydro-meteorological forecasting, the suitability of benchmark vari-
ables was found to depend on the model structure used in the forecasting system,
the season, catchment characteristics, river regime and flow conditions with little
consensus on which benchmark variables are most suited to which application (Pap-
penberger et al. 2015, p. 698). Nevertheless, general criteria of benchmarks exist,
e.g. from theoretical (here, physics), formal and practical points of view. A review
of benchmarking studies reveals that the selection of benchmark variables depends
on methodological (validity, independent observations) and practical criteria (main-
tenance and efficiency).
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18.3.2.1 Validity Criteria

Benchmarks has to meet the criteria of objectivity, effectiveness, and reliability. Luo
et al. (2012, p. 3861f.) argue that an objective benchmark likely derives from data or
data products because data can objectively reflect natural processes in the real world.
They allow that in some instances, models of previous versions or statistical models
be used as benchmarks to gauge improvement ofmodel performance. To be effective,
a benchmark should reflect fundamental properties of the systems modelled. They
argue that the more variable a data set, the less reliable the benchmark.

18.3.2.2 Independent Observations Criterion

Different model structures and different model parameter sets might lead to rather a
similar model outputs, and in particular, rather similar performance when compared
with any available observational data—a feature that has been called equifinality
(Beven 2006; see also Chap. 32 by Beven in this volume). To mitigate the equifi-
nality issue, benchmarks should draw upon a broad set of independent observations
spanning, e.g. multiple temporal and spatial scales (Luo et al. 2012, p. 3862).

18.3.2.3 Maintenance and Efficiency Criteria

Pappenberger et al. (2015) explain that each benchmark variable that was tested had
to be easy to maintain and computationally inexpensive. Benchmark variables have
distinctly varying computational costs (see e.g. Pappenberger et al. 2015, Fig. 10)
and this would often be the main barrier to implementing a benchmark operationally.
Some benchmark variables require a high degree of human supervision or optimiza-
tion. For example, many post-processing methods have a component of forecasting
errors, which could be used to formulate a benchmark. Requiring supervised fitting,
the implementation of such benchmark variables was excluded. High-quality bench-
marking data may be too expensive to collect. For instance, Fewtrell et al. (2011)
benchmark urban flood models using coarse scale topographic data with high and
lower resolution. The most accurate (high-resolution) data set was not proposed as
standard benchmarking data, because it was too expensive to collect. Rather, a less
expensive but sufficiently accurate data set was advocated. The choice was compli-
cated by the inconsistent robustness of single variables to the resolution; for instance,
water depth estimates at grid scales coarser than 1 m appeared robust while velocity
estimates were not.

As Pappenberger et al. (2015, p. 708) note, the ‘most useful and honest bench-
mark’ is one that is tough to beat. But what does it mean to beat a benchmark? The
statement relates to a particular interpretation and use of the benchmarking data in
the comparison. I suggest a broader view in which the benchmarking data is used to
assess performance. There are different types of validation benchmarks.
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18.4 A Typology of Validation Benchmarks

In this section, I propose a typology of validation benchmarks for different domains of
applicability and intended applications of simulation models. The type construction
is based on Weberian ideal types (Weber 1978 [1921]). To form an ideal type, a
conceptual extreme is constructed from empirical reality. In its conceptual purity,
the ideal type does not exist in empirical reality. An ideal type is a heuristic tool
and its value depends on its utility. Thus, ideal types do not require that all of the
requirements are met for each single case. My aim is to highlight the versatility of
validation benchmarks and performance benchmarking.

Four types of validation benchmarks are distinguished: touchstone benchmarks,
yardstick benchmarks, standard benchmarks and strong-sense benchmarks. The dis-
tinction arises from different uses of the reference point in the comparison, e.g. as a
means for validating explanations, forecasts, or newly developed engineered systems
in which different requirements apply. If the point of reference is interpreted as a
touchstone, the benchmark is used to distinguish superior models from inferior ones.
If the point of reference is interpreted as a yardstick, the benchmark constitutes a
hypothetical best-practice result that the simulation model’s results should approach
at its best. If the point of reference is interpreted, in contrast, as an engineering ref-
erence standard, the benchmark establishes requirements for the simulation model’s
results. The interpretation leads to different decisions if the benchmark is not reached
by the simulation result. Models that do not reach their yardstick can be published if
the results are ambitious while models that do not meet their touchstone or standard
will be refuted and their interpretation or engineering application denied.

These types depend on the domain of applicability and the intended applications
of the model which determine the data and accuracy requirements, setting limits on
the source of the benchmark. The latter influences the error characteristics, which
is connected to the feasibility of uncertainty quantification of the benchmarking
data. Different metrics apply, the benchmarking process being endorsed by different
types of actors such as individual scientists, scientific associations or standardization
bodies (see Table 18.2).

Given the complexity of simulation models, the validation of a single model may
include several types of benchmarks. For example, the study by Luo et al. (2012)
uses yardstick and touchstone benchmarks.

18.4.1 Strong-Sense Benchmarks

The concept of strong-sense benchmarks has been introduced by Oberkampf et al.
(2004). Considered an engineering reference standard, they should be of a very
high quality in order to support, e.g. the development and maintenance of high-
consequence, engineered systems in fields such as nuclear reactor safety, under-
ground nuclear waste storage, and nuclear weapon safety. Oberkampf et al. (2004)



18 Validation Benchmarks and Related Metrics 445

Table 18.2 A typology of validation benchmarks

Touchstone
benchmark

Yardstick
benchmark

Standard
benchmark

Strong-sense
benchmark

Interpretation Touchstone Yardstick Engineering
reference
standard

Engineering
reference
standard

Confidence Qualitative Quantitative Quantitative Quantitative

Assessed dimension of
validity

Reasonableness,
robustness,
(accuracy)

Accuracy Accuracy,
reliability

Accuracy,
reliability

Domain of
applicability

Research, in
particular basic
research, inter-
comparison
studies

Research Engineered
systems

High-
consequence,
engineered
systems

Intended applications
of model

No true
application;
explain and
understand
phenomena

Make
forecasts, in
particular
maintain
large-scale
forecasting
systems

Develop and
maintain
engineered
systems

Develop and
maintain high-
consequence,
engineered
systems

Data requirements No-data
situations,
(observational
data)

Historical
(observational)
data

Experimental
data

Experimental
data

Source of benchmark Stylized facts,
functional
relationships
or patterns,
(observations)

Observations
or observation
proxies,
experiments

Case
examples,
experiments

Validation
experiment

Accuracy requirement Low Depends on
application

High Very high

Error characteristics Unknown Depends on
application

Small error Small error

Uncertainty
quantification of
benchmarking data

Infeasible Depends on
application

Required Required

Metrics May be
irrelevant

Relevant Central role Central role

Benchmarking process
endorsed by

Single
scientist, group
of scientists

Group of
scientists,
scientific
association

Standardization
body or
corporation

Standardization
body or
corporation
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and Oberkampf and Trucano (2008) claim that strong-sense benchmarks can be used
in any field of simulation, not just high-consequence simulations. The authors con-
tend that strong-sense benchmarks in the sense they define them do not presently
exist in computational physics or engineering.3 Note that whether the system of
interest, e.g. a component of a nuclear power plant, meets its performance or safety
requirements is a topic separate from the question of model validation (Oberkampf
and Trucano 2008, p. 725).

For this domain of applicability and intended use, the accuracy requirement is
very high, and there is also a requirement of high reliability. Validation experiments
(as a distinct, new type of experiment) is proposed to obtain benchmark data. They
are conducted for the primary purpose of determining the predictive accuracy of
a computational model, involving experimentalists, mathematical model builders,
simulation analysts, code developers and code users. Methodological guidelines and
procedures for designing and conducting validation experiments are summarized in
Oberkampf and Trucano (2008). The goal of these experiments is to establish quan-
titative confidence in the code being used for its intended application. Therefore,
high-quality validation metrics based on statistical procedures are required. Uncer-
tainty quantification of benchmarkmeasurements requires that estimates are provided
of experimental uncertainty for all quantities measured, as well as uncertainty esti-
mates of all the quantities that could be used as possible inputs for the computational
simulation (e.g. boundary conditions, initial conditions, material properties). The
benchmarking process is endorsed by a standardization body or corporation, such as
NAFEMS (National Agency for Finite Element Methods and Standards).

18.4.2 Standard Benchmarks

I introduce the concept of standard benchmarks for engineered systems that do not
cause tremendous damage if the systems fail. While most features are congruent
to the case of strong-sense benchmarks, the major difference is that the accuracy
requirement being high, the source of the benchmark is case examples or experiments,
but not distinct validation experiments. For an illustrative example, see the study by
Lund et al. (2012) on the validation of multibody musculoskeletal models.

Even if the damage in the case of invalid models is not tremendous, it may nev-
ertheless be severe. This distinguishes engineered applications from research in the
natural and social sciences,where errors, uncertainties and unqualified use are unwel-
come, but typically do not have such serious consequences. There is a dividing line
between the domains of research and real applications, offering the opportunity for
a type of benchmark that differs from a standard.

3The fact that the authors contend that strong-sense benchmarks do not presently exist in compu-
tational physics or engineering makes me hesitant to take over their claim that strong-sense bench-
marks can be used in any field of simulation (see Table 18.2, where I specify high-consequence,
engineered systems as the domain of applicability).
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18.4.3 Yardstick Benchmarks

Interpreted as a yardstick, a benchmark constitutes a hypothetical best-practice result
that the simulationmodel’s results should approach at its best. The goal is to establish
quantitative confidence in the code being used for making forecasts, in particular
whenmaintaining large-scale forecasting systems. Such benchmarks are particularly
useful for automatic quality checking of large-scale forecasts and when forecasting
system upgrades are made.

The sources of yardstick benchmarks are diverse, ranging from observations to
observation proxies and experiments. As a consequence, the accuracy requirement,
error characteristics and the feasibility of uncertainty quantification of the bench-
marking data vary with the data and the intended application. In the social sciences
and the life sciences, there are not only a large number of parameters but also often
an intra and intersubjective variability, difficult to describe in terms of probability
distributions, often making uncertainty quantification infeasible, while in physical
systems, uncertainty quantification is certainly feasible (see Chap. 22 by Dalton et al.
in this volume). The benchmarking process is endorsed by a group of scientists or
a scientific association. For illustrative examples, see the studies by Hoffman et al.
(2017), Pappenberger et al. (2015), Luo et al. (2012), and Fewtrell et al. (2011).

18.4.4 Touchstone Benchmarks

Benchmarks is interpreted as touchstones in models explaining and understanding
phenomena constituting no application in the strict sense of the word, such as toy
models. They provide qualitative confidence in the code, and their validation does
not focus on accuracy. Accordingly, Schlesinger et al. (1979, p. 104) definition of
simulation validation that relies on a ‘satisfactory range of accuracy’ is not suitable
here. Rather et al. (2000, p. 202f.) definition may apply. Validation is conceived as
a proactive, diagnostic effort to ensure that the model’s results are reasonable and
credible. Used in no-data situations (e.g. counterfactual simulation experiments) or in
disciplines or applications with high errors in observational data andwith high uncer-
tainty with respect to model parameters, variables and structure, the reasonableness
and robustness of the simulation results is more important than their accuracy (see
also Chap. 4 byMurray-Smith in this volume). The source of touchstone benchmarks
are qualitative characteristics of the target, as represented in stylized facts (see Chap.
16 by Meyer in this volume) or functional relationships or patterns. Uncertainty
quantification of this sort of benchmarking data is infeasible. The benchmarking
process is endorsed by an individual scientist or a group of scientists. For illustrative
examples, see the study by Harding et al. (2010).

In addition, there is a second use of touchstone benchmarks. In intercomparison
projects, a benchmark may be used to set a minimum level of acceptability for model
performance of the models compared. In this case, Schlesinger et al. (1979, p. 104)
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or Caldwell and Morrison (2000) definition of simulation validation may be applied,
depending on the error characteristics of the benchmarking data and the relevance of
unknownmodel parameters and variables. See Nicolle et al. (2014) for an illustrative
example relying on Schlesinger et al. definition.

18.5 Metrics Related to Benchmarking

While the term benchmarking metrics is used by some scientists (e.g. Luo et al.
2012; Hoffman et al. 2017), there seems to be no distinct class of benchmarking
metrics from a statistical point of view. Rather, a wide variety of procedures are used
that are known from descriptive statistics to forecast verification.4 Basically, what
is referred to as benchmarking metrics seems to belong to the badly arranged field
of validation metrics (see Chap. 13 by Marks in this volume)—being identical with
rather than a subclass of the latter class. As Oberkampf and Trucano (2008, p. 738)
note, validation metrics is not only in an early stage of development. In particular,
there is no overview—spanning all disciplines and their applications—of the criteria
for choosing a distinct metric. One reason may be that validation metrics are also
applied beyond the field of simulation validation, with different presuppositions.

In this subsection of the validation benchmarks chapter, I cannot achieve such an
overview. Even after this volume has been published, this seems to remain a desider-
atum. Instead, I introduce some major distinctions and justify the selection of some
metrics in this subsection. To improve terminological clarity, I introduce a distinc-
tion that has yet to be made in the literature—I distinguish validation metrics from
benchmarkingmetrics.Validationmetrics denotes ametric calculated from two types
of variables, e.g. simulated temperature and observed temperature. Benchmarking
metrics denotes a metric calculated from three types of variables with one variable
being a benchmark variable, e.g. simulated temperature, benchmark temperature
and observed temperature. Put differently, only benchmarking metrics imperatively
require a benchmark variable. Defined in this way, skill scores (see below) are the
most important class of benchmarking metrics, while most of the metrics actually
used for calculating the fit between simulation outcome and benchmark data are
validation metrics.

The choice of a validation metric seems to depend on (i) typical statistical features
of the variables in themodel, such as scale level; (ii) the simulation approach: dynamic
model (see the definition by Hartmann 1996, p. 83) orMonte Carlo simulation study;
(iii) the preferred definition of validity: highlighting accuracy or reasonableness; (iv)
the accuracy requirement for the intended application of the model; (v) the error and
uncertainty characteristics of the benchmarking data; (vi) the empirical relevance
of omitted and/or unknown parameters and variables. Several of these criteria are

4The term forecast verification is preferred in the atmospheric sciences, however, it is explained
that synonyms are evaluation or validation.
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interrelated. I do not claim that the list is complete or even includes all of the important
criteria.

In the following, I concentrate on thosemetrics that are actually used in benchmark
studies in the empirical sciences. The overwhelming majority of these studies are
based on dynamic models as defined by Hartmann (1996). Disciplines cover hydrol-
ogy, meteorology, climatology and biogeosciences. Two comprehensive books or
chapters are Jolliffe and Stephenson (2011) and Wilks (2011, Chap. 8). Validation
metrics for Monte Carlo simulation models are the focus of Marks (see Chap. 13 in
this volume). A short overview on validationmetrics in engineering sciences—which
are not in the focus of this volume—is presented in Liu et al. (2011) and Oberkampf
and Barone (2006).

18.5.1 Basic Concepts

Basic concepts suited to comparing simulation results and benchmarking data include
(definitions adapted to benchmarking):

Accuracy. The level of agreement or average correspondence between individ-
ual pairs of simulation results and benchmarking data. The difference between the
simulation results and the benchmarking data is the error. The lower the errors, the
greater is the accuracy (cf. Chap. 5 by Roy in this volume).

Bias (or unconditional bias, or systematic bias). The correspondence between the
average simulation results and average benchmarking data. This concept is different
from accuracy. For instance, simulated temperature that is consistently too warm
exhibits bias whether or not the simulations are otherwise reasonably accurate or
quite inaccurate.

Association. The strength of the linear relationship between simulation results
and benchmarking data (e.g. Pearson’s correlation coefficient measures such a linear
association, see Sect. 18.5.2; cf. also Chap. 19 by Robinson in this volume).

Although accuracy measures measure accuracy, they do not give an answer to
the question of what constitutes acceptable accuracy. To better assess model perfor-
mance, it is suggested that one compare one’s simulation results with results obtained
in some other way. The concept of skill is based on this idea:

Skill. The performance of the simulation results relative to some ‘unskilful’ ref-
erence results. For example, in weather forecasts common choices for the reference
forecasts are climatological values of the predicand (mean values over some recent
reference period, typically of 30 years length), persistence forecasts (values of the
predicand in the previous time period) or random forecasts (see also Sect. 18.5.3 for
more details).

Pappenberger et al. (2015, p. 709) recommend that during the step of benchmark
selection a range of performance measures and skill scores be calculated before a
decision is made on the most suitable benchmark variables and their characteristics.
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18.5.2 Measures of Accuracy

Scalarmeasures of accuracy are suited to summarizing, in a single number, the overall
performance of a set of simulations. Metrics have been developed for dichotomous,
multi-category and continuous variables, as well as for deterministic or probabilistic
models (including the special case of ensemble forecasts). For reasons of space, only
a short introduction into metrics for benchmarking can be given in this subsection of
our chapter on validation benchmarks. Therefore, this subsection will concentrate on
methods for continuous variables. In forecast verification (see Wilks 2011, p. 324),
it is common for scalar performance and skill measures, computed using individual
simulation/benchmark pairs, to be used in evaluating continuous non-probabilistic
simulation results.

Common measures include bias, mean absolute error (MAE), mean squared error
(MSE), root mean squared error (RMSE) and correlation. Definitions, questions
addressed, and features such as range and perfect score are summarized in Table 18.3.
Mean error (also called the additive bias) and (multiplicative) bias do not measure
the magnitude of the errors, and therefore, they are not accuracy measures in and
of themselves. They do not measure the correspondence between simulation results
and benchmark data, i.e. it is possible to obtain a perfect score for a bad forecast if
there are compensating errors. Bias is best suited to quantities that have 0 as a lower
or upper bound. MAE, MSE and RMSE are common coefficients which measure the
magnitude of the errors.MAEandMSEdonot indicate the direction of the deviations.
The MSE will be more sensitive to larger errors than will the MAE, and hence it
will also be more sensitive to outliers. It can be decomposed into component error
sources following Murphy and Winkler (1987). Putting more weight on large errors
than smaller errors is appropriate if large errors are especially undesirable. Often the
MSE is expressed as its square root, RMSE, which has the same dimension as the
simulation results and the benchmarking data.

The correlation coefficient r can be used to measure the linear association of
simulation results and benchmarking data (see Table 18.3). r does not take bias into
account—it is possible for simulation results with large errors to still have a good
correlation coefficient with the benchmarking data. r is sensitive to outliers.

For continuous probabilistic simulation results such as with ensemble forecasts,
the continuous ranked probability score (CRPS, Hersbach 2000; see Table 18.3)
is a well-suited measure. The CRPS compares the distribution of the simulation
results with the benchmarking data. It ranges from 0 to infinity with lower values
representing a better score. It collapses to the MAE for deterministic forecasts.
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Table 18.3 Overview of basic validation metrics and benchmarking metrics (indicated by asterisk)
for continuous variables

Name of
measure

Definition Range Perfect score Question addressed

Mean error
(additive
bias)

MeanError �
1
N

∑N
i�1 (Si − Bi )

[− ∞, ∞] 0 What is the average
error of the
simulation results?

Bias (multi-
plicative
bias)

Bias � 1
N

∑N
i�1 Si

1
N

∑N
i�1 Bi

[− ∞, ∞] 1 How does the
average magnitude
of the simulation
compare to the
average magnitude
of the benchmark?

Mean
absolute
error (MAE)

M AE �
1
N

∑N
i�1 |Si − Bi |

[0, ∞] 0 What is the average
magnitude of error
of the simulation
results?

Root mean
square error
(RMSE)

RM SE �√
1
N

∑N
i�1 (Si − Bi )

2

[0, ∞] 0 What is the average
magnitude of error
of the simulation
results?

Mean
squared error
(MSE)

M SE �
1
N

∑N
i�1 (Si − Bi )

2

[0, ∞] 0 What is the average
magnitude of error
of the simulation
results?

Correlation
coefficient

r =
∑ (

S−S
)(
B−B

)

√
∑ (

S−S
)2

√
∑ (

B−B
)2

[− 1, 1] 1 How well did the
simulated values
correspond to the
benchmark values?

Continuous
ranked
probability
score
(CRPS)

C R P S �∞∫
−∞

(Ps(x) − Pb(x))2dx

[0, ∞] 0 How well did the
simulated
probabilities predict
the benchmark
values?

Skill score*
(generic
form)

SSref �
(A f −Aref )
(Aper f −Aref )

∗ 100%

[depends
on score
used, 1]

1 (0 indicates
no
improvement
over the
reference
results)

What is the relative
improvement of the
simulation results
relative to some
‘unskilful’ reference
results?
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18.5.3 Skill Scores

The skill of a simulation study can be assessed by how close the simulation results
are to the observations compared to how close a benchmark was. This implies a
significant shift in perspective: skill analysis does not examine the difference or
relationship between simulation results and benchmarking data. Benchmarking data
is not a substitute of observational data. Instead, three sources of data are assumed:
artificial data (simulation results), observational data, and benchmarking data. The
relationship between skill, performance of the simulation and a benchmark can be
generalized as: skill ~f (simulation, observations)/f (benchmark, observations). Here,
f denotes a function (i.e. validation metric) which expresses the difference between
quantities, the simulation or benchmark values and the observed values for some
phenomenon. Skill scores for different simulation models can only be compared for
the same underlying benchmark as well as a given validation function or metric.

Skill analysis allows a simulation model to be classified as having (a) no skill: the
simulation model’s results are consistently worse than a set benchmark; (b) naïve
skill: the simulation model is skilful against too simplistic a benchmark. More chal-
lenging (difficult to beat) benchmarks could be designed; or (c) real skill: no bench-
mark which can be implemented at a lower cost than the operational system can beat
the simulation model. Naïve skill should be avoided. This is the situation in which
Pappenberger et al. (2015, p. 708) above-quoted statement applies: the most useful
and honest benchmark for use in simulation model validation is one that is tough to
beat. Benchmarks that are too naïve can easily result in a high skill being calculated.
Thus, the importance of using benchmarks that are known and understood is essential
in assessing how ‘good’ a simulation model’s results are.

The skill (also called forecast skill) is usually presented as a skill score. In generic
form, the skill score for forecasts f characterized by a particular measure of accuracy
A, with respect to the accuracy Aref of a set of reference forecasts is given by SSref �
(Af −Aref )/(Aperf −Aref ) * 100%,whereAperf is the value of the accuracymeasure that
would be achieved by perfect forecasts and Af the value of the accuracy measure that
would be achieved by the forecasts f. If Af � Aperf the skill score attains its maximum
value of 100%. If Af � Aref then SSref � 0%, indicating no improvement over
the reference forecast. If the forecasts being evaluated are inferior to the reference
forecast with respect to the accuracy measure A, SSref < 0% (Wilks 2011, p. 305).

The skill score has to be specified for a suitable measure of accuracy A, e.g. by
the MSE, RMSE or the CRPS, for all Ai. Note that perfect forecasts have RMSE,
MSE or MAE � 0, which allows the rearrangement of the skill score, e.g. to SSref

� 1 − MSEf /MSEref (in proportion rather than percentage terms).
The skill score thus is suited to indicating the improvement of a forecast based

on simulations (Asim) relative to forecasts based on benchmarking data (Abench).
Specified for MSE, we obtain SSbench � 1 − MSEsim/MSEbench � 1 − (1/n

∑
(Si−

Oi)2/1/n
∑

(Bi− Oi)2), with Si denoting the simulation results, Bi the benchmarking
data, and Oi the observational data (Perrin et al. 2006).
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18.5.4 Murphy–Winkler Framework and Beyond

Traditionally, forecast verificationhas emphasized accuracy and skill, conceptswhich
have been amended by Murphy (1993). In particular, the Murphy–Winkler frame-
work (Murphy and Winkler 1987) adds the concepts of reliability, resolution, dis-
crimination and sharpness. The choice of scores depends on which of these attributes
is most important to the scientist. This framework, which is based on the joint distri-
bution of the forecasts and observations, may be transferred to the joint distribution
of simulation results and benchmarking data. It can be used as a diagnostic tool for
decomposing error sources.

A concise overview of metrics suitable for validation benchmarks for variables
on all scales, for deterministic and probabilistic models as well as for use with mod-
els that have a spatial component can be found in Jolliffe and Stephenson (2011)
and Wilks (2011). Granger and Jeon (2003) have extended the concept of distance
to distances other than vertical distances indicating distances between two time
series. ‘Horizontal’ distances can be calculated for one series leading or lagging the
other—known as time–distance. A similar distance can be calculated for spatial
features if a movement is faster or slower than expected.

18.5.5 Holistic Measurement

The challenge for validationmetrics and benchmarkingmetrics is to holisticallymea-
sure model performance. As a comprehensive benchmarking study usually considers
many variables, a suite of metrics across several variables has to be synthesized on
the relevant scales (e.g. spatial, temporal) on which the model operates. Coefficients
used include, e.g. Taylor skill to represent the degree to which simulations matched
the temporal evolution of variables, NMAE (normalized mean absolute error) to
quantify bias (i.e. the ‘average distance’ between observations and simulations in
units of observation—the spatial dimension), and reduced chi-squared statistics to
quantify observational uncertainty (Schwalm et al. 2010). How to combine coeffi-
cients to holistically representmodel performance skill is an issue for further research
in validation metrics. For instance, coefficients could be weighted according to the
intended use of the model (see also Chap. 24 by Liu and Yang in this volume).

To facilitate holistic assessment, new types of diagrams have been developed. For
example, Taylor diagrams have been developed to visualize benchmarking results
and plot several statistics at one time (Taylor 2001).
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18.6 Discussion

As a method, benchmarking unfurls a social dynamic which is unique. It produces
normalizing knowledge (see below) even in the absence of standardization bodies. In
the discussion, I explain the underlying social mechanism and I highlight the pitfalls
of unfocussed benchmarking.

18.6.1 Normalizing Simulation Validation

Drawing on Michel Foucault’s (2008) work on governmentality, benchmarking has
been described as a general technology of performance in and through which various
subjects, such as companies or states, and spaces are constituted and acted upon as
governable objects. In particular, benchmarking has been conceived as a normalizing
governmental technology (Triantafillou 2004, p. 496), normalization being under-
stood in terms of ‘the procedures and processes through which a norm is brought into
play and informs the practices that it seeks to regulate’. Benchmarking encourages
or stimulates self-governance via the production of normalizing knowledge.

We should expect then, that the use of benchmarking in simulation validation will
not only improve a simulation model’s performance but support the establishment of
norms and standards in simulation validation. Benchmarking imposes competitive
pressure on simulating scientists without directly coercing them to benchmark or
seeks to improve their performance according to the norms and standards in ques-
tion. Benchmarking activities will indirectly coerce scientists into improving the
performance of their simulations.

Governmentality studies have repeatedly emphasized that benchmarking is not
neutral with respect to the selected benchmarks (e.g. Fougner 2008; Bruno 2009).
Rather, they reflect the theoretical frameworks informing those who select the bench-
marks. In this respect, benchmarking in simulation validation supports the production
of normalizing knowledge in different theoretical frameworks put forward by simu-
lating scientists in diverse fields.

18.6.2 The Social Character of Validation Benchmarks

When one is selecting validation benchmarks (benchmark variables and the related
benchmarks proper), a social aspect has to be discussed: Benchmarks are set in a
benchmarking process. A benchmark fundamentally represents an agreement of a
community. For instance, in business benchmarking and computer benchmarking
(Vieira and Madeira 2009, p. 69), benchmarks are agreed upon by the companies
involved, and are sometimes even endorsed by a standardization body or corporation,
e.g. the Transaction Processing Performance Council (TPC). The agreement may be
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explicit or tacit. If there is a formal agreement, the benchmark turns from a point
of reference to a standard. The need to develop a consensus by experts on defining
and selecting benchmarks is also emphasized by simulating scientists (e.g. Luo et al.
2012, p. 3864; see also Chap. 23 by Schlünzen in this volume).

Basically, most benchmarks are data of some sort. As Murray-Smith has pointed
out (see Chap. 15 in this volume), data are the major points of reference for the
validation of a simulation model’s results. But while most benchmarks are some
kind of data, the opposite does not hold. The process of benchmarking assumes a key
position. The benchmarking process makes some kind of data a benchmark (while
the overwhelming amount of data just remains data). The feature of agreement is
thus an important one. Here I wish to critically discuss its significance for simulation
validation.

A short review of benchmarking practices in diverse fields shows that agreement
on the benchmarks is no general requirement for benchmarking. Fougner (2008),
for instance, discusses competitiveness indexing and country benchmarking by the
World Economic Forum and the International Institute for Management Develop-
ment. While there is consensus on the benchmarks on the part of the benchmarking
agencies, there is no agreement needed from the benchmarked countries. This exam-
ple suggests distinguishing between an agreement required of prospective bench-
marking partners in a benchmarking project, and consensus on the pertinent bench-
marks. This distinction clarifies that benchmarks in simulation validation need not
be agreed upon right from the beginning. In principle, a single scientist can evaluate
simulation outcomes according to a point of reference that she thinks is important. Of
course, her evaluation may then not matter for other people. There may be a gradual
process starting from performance benchmarking with benchmarks that are not yet
agreed upon by a community of researchers, eventually advancing in the direction
of best-in-class benchmarking with consensus on the pertinent benchmarks. This
gradual process prevents a scenario in which only disciplines with large simulation
communities make use of benchmarks. It will help those empirical sciences without a
significant community of simulating scientists to start working with benchmarks. At
present, in disciplines which adopt computer simulation as a new scientific method,
there are many single simulation models and a significant scientific community often
does not exist yet (and may only develop slowly in the near future).5

The potential danger arising from the use of benchmarks that do not result from an
agreement have been described by the concept of bench-marketing. In the computer
industry, companies developed their own, highly biased benchmarks and misused
their computer’s good performance measurements vis-à-vis these benchmarks for
marketing purposes. Companies created configurations that maximized performance
against the benchmark, not against real-world applications. This gave rise to the
establishment of standardization bodies, e.g. theTransactionProcessingPerformance
Council (Nambiar et al. 2014, p. 2).

5The fact that many authors created their own benchmarks out of necessity has been reported even
for computer benchmarks, see Stratton et al. (2012, p. 1).
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18.6.3 Between Validation and Comparison—the Limitations
of Benchmarking

Benchmarking aims to improve a simulation model’s performance by comparing the
simulation outcome with a reference point. As explained above, the related metrics
denote, e.g. the magnitude of the simulation error, the linear association of simula-
tion results and benchmarking data, or the skill of a forecast. While these metrics
are suited to measuring the improvement of consecutive versions of a simulation
model, there is often no definition of a level that is still acceptable or a test that has to
be passed. This holds particularly for yardstick benchmarks. As a consequence, the
decision on the validity of a simulationmodel and its results rests on the evaluation of
the obtained error, association or skill, etc. The challenge of holistically measuring
model performance makes this evaluation even more difficult—making it prone to
subjective judgments and bias. If there is some agreement between the simulation
output and the point of reference, then the model is declared ‘validated’—meaning
that one trusts the model because it reproduces some important features of the target
sufficiently well. At this stage, a judgment is made by the simulating scientist that the
obtained error, association or skill, etc. either possesses a satisfactory range of accu-
racy consistent with the intended application of the model (referring to Schlesinger
et al. 1979 SCS definition of model validation) or is satisfactory as to indicate that the
model’s outputs are reasonable for their intended purposes (referring to Caldwell and
Morrison 2000 definition). Only standard benchmarks and strong-sense benchmarks
require the definition of a level that is still acceptable or a test that has to be passed.
There is no consensus in the validation benchmarks literature whether validation
metrics should include or be supplemented with, e.g. hypothesis testing. There, the
validation assessment is formulated as a decision problem to determine whether or
not the computational model is consistent with the benchmarking data. This allows
acceptance of amodel and its results as valid or its rejection. For instance. Oberkampf
and Barone have argued that ‘validation metrics should be measures of agreement,
or disagreement, between computational models and experimental measurements;
issues of adequacy or satisfaction of accuracy requirements should remain separate
from the metrics’ (Oberkampf and Barone 2006, p. 12).

This statement leads to the discussion of recommended features of validation or
benchmarking metrics. This discussion is split and scattered in different disciplines,
and cannot be outlined or summarized here. To illustrate the questions addressed,
I again refer to Oberkampf and Barone (2006, pp. 11f.), who discuss, e.g. whether
a metric should include an estimate of the numerical error in the simulated output
variable of interest, the measurement errors in the benchmarking data, or the error
resulting from post-processing of the benchmarking data, or whether a metric should
depend on the number of experimental measurements of the benchmark variable.

Next, the limitations of benchmarking are discussed based on the example of
model-to-model comparison. While this special case of best-in-class benchmarking
fulfils the defining criterion of benchmarking, because each model’s results serve
as points of reference for the validation of the other model’s results, there seems
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to be no general argument making one of them the superior model. This example
seems to be the limit case of a validation that ends up as a mere comparison if
no theoretical argument is found in favour of the superiority of one model. Only
theoretical argumentation makes a model-to-model comparison an exercise in model
validation.Without empirical or experimental data as points of reference, only sound
arguments can establish that one of the models is the most credible one.

18.6.4 The Price of Efficient Benchmarks

A further aspect is the choice of a benchmark to reduce computational cost (see
e.g. Fewtrell et al. 2011). Although constituting a legitimate goal, in particular for
automatic quality checking of large simulationmodels and for when system upgrades
are made, or if in the case of emergency, e.g. expected floods, quick warning is
needed, this practice establishes a second criterion—validation at low cost. From
an epistemological point of view, this practice reduces the standards for simulation
validation. Typically, calculating metrics is followed by benchmarking diagnostics,
i.e. the analysis of errors.Often,more cost-efficient benchmarks have lower precision,
resulting in a loss of knowledge from benchmarking diagnostics.

18.6.5 The Devaluation of Benchmarks Proper

Acritical issue that damages the value of benchmarks in the evaluation of simulations
is related to the parameterization of simulation models. Adjusting parameters is a
necessary step for obtaining sound simulation results even in areas where theoretical
knowledge is very strong. Parameters are adjusted using concepts such as calibration
or tuning, but with a different tone. As Lenhard (see Chap. 39 in this volume) puts
it, ‘calibration’ is commonly used in the context of preparing an instrument, like
calibrating a scale one time for using it very often in a reliable way’. Another concept
used for adjusting parameters is tuning. Tuning is related to achieving a fit with
artificial measures, or to a particular case. The term is more pejorative. In practice,
however, calibration and tuning are not always easily differentiated. Nevertheless,
I will ignore this in the following, where I adhere to the notion that calibration is
performed once and then finished. Tuning, however, is done in many consecutive
steps in which validation metrics are calculated to conceive of the success of the
tuning exercise. There is no restriction on the number of adjustments to be made.
As the tuning of a parameter is performed according to the overall behaviour of the
model, the success is measured on the same global level on which the metrics are
calculated. Basically, the same metrics are calculated. Thus, tuning improves the
agreement of the simulation outcome and the related benchmarks proper. Typically,
the parameters which are tuned are not theoretically well motivated. The result may
be that a model’s output shows an overfit to the related benchmarks, rather than the
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‘true’ fit. The problem is that with further tuning, the agreement between simulation
output and benchmarks proper can technically be increased whereas there is no ‘true’
increase in the validity of the model and its results.

18.7 Conclusions

This chapter has presented a conceptual framework and descriptive theory of bench-
marking in simulation validation. Validation benchmarks and the related techniques
of benchmarking are a flexible method and key to the improvement of simulation val-
idation. Sources of benchmarks are outstanding experimental or observational data,
stylized facts or other characteristics of the target. They are outstanding because they
are more effective, more reliable andmore efficient than other experimental or obser-
vational data, stylized facts or characteristics of the target. Offering starting points
even for toy models, benchmarking will promote the normalizing of simulation val-
idation. In some disciplines, the development of a community-wide benchmarking
system has just begun (e.g. for land models in the biogeosciences). From a normative
philosophy of science perspective, benchmarking is valued particularly for support-
ing the epistemic value of accuracy and the social value of efficiency (see Chap. 40
by Hirsch Hadorn and Baumberger in this volume). Other epistemic values such as
robustness of results and coherence with background knowledge are ignored by the
benchmarking exercise.

For the further establishment of benchmarking in simulation validation, two topics
should be of major concern: the development of a prescriptive benchmark theory and
an integrative view on related metrics:

Benchmark theory. The weakness of the descriptive theory of benchmarking in
simulation validation is obviously that it does not make prescriptions. A prescriptive
theory is needed for the further development of the method. For instance, practi-
tioners need to know when and why they should use which type of benchmark. The
prescriptive theory is functional in providing some orientation. However, it does
not provide methodological rules. Practitioners should also know how standards are
derived (see Chap. 23 by Schlünzen in this volume) from benchmarks. Remarkably,
we do not find such a benchmark theory in other fields, such as business benchmark-
ing, computer benchmarking or benchmarking in the stock market either. However,
the core of the method seems to be comparison, which is applied and theorized in
many disciplines. This is a topic for interdisciplinary research by fields including
methodology, philosophy of science, and mathematics.

Inventory. The development of suitable validation/benchmarking metrics is an
important task.We lack an important precondition for doing this in amore systematic,
rather than an ad hoc way—an integrative view spanning the scattered measures and
their diverse applications in different disciplines. An inventory is recommended first
and foremost. We need to know the available metrics as well as the criteria for
choosing a distinct metric.
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The development of suitable validation/benchmarkingmetrics has to address chal-
lenges on two levels:

New metrics. As Hoffman et al. (2017, p. 14) state, ‘developing metrics that make
appropriate use of observational data remains a scientific challenge because of the
spatial and temporal mismatch betweenmodels andmeasurements, poorly character-
ized uncertainties in observationally constrained data products, biases in reanalysis
and forcing data, model simplifications, and structural and parametric uncertainties’.
In their epilogue, Jolliffe and Stephenson (2011, Chap. 12) note that meteorologists
seem to have made much of their forecast evaluation without the collaboration of
statisticians (ibid., p. 223)—with the exception of the Murphy–Winkler framework.
They consider scoring rules (Gneiting and Raftery 2007; Gneiting 2011) as well as
discriminant analysis (McLachlan 1992) as useful starting points for further studies
in the subject. They review the critique of economists on measures of accuracy, e.g.
the MSE, the development of formal tests of skill and of density forecasting (Tay
andWallis 2000). Recognizing diagnostic medical tests, they argue that atmospheric
science has more measures but is less sophisticated (Jolliffe and Stephenson 2011,
p. 227) than medical studies. They conclude that there is a need to move beyond
purely descriptive sample statistics; in particular, sample scores should only be con-
sidered as finite sample estimates of the true scores of the system. Inference should be
incorporated when calculating validation metrics (ibid., p. 228). Some of the newly
developed metrics are introduced in Marks (see Chap. 13 in this volume).

Coefficients of coefficients. One of the major challenges that have to be addressed
for the further establishment of validation benchmarks is the development of compre-
hensive aggregate or second-order metrics (‘coefficients of coefficients’) that sum-
marize the benchmarking results for numerous model variables. This second-order
metrics is needed to quickly inform us about the validity of competing complex
models, a situation we will face much more often with the growing use of simulation
models in all sciences.

Finally, I suggest researching decision theory to justify the use of benchmarks
in philosophical terms. Since the development of prospect theory (Kahneman and
Tversky 1979), there has been the notion of a benchmark of sorts in expected util-
ity theory—here, a reference point, that is, an outcome that partitions the set of
decision outcomes into perceived gains and losses. Wedgwood’s (2013) benchmark
theory offers a model that considers benchmarks as points of reference in rational
decision-making. The theory ranks actions according to the desirability of an out-
come produced in some state of affairs compared to a standard—a benchmark—for
that state of affairs. Note, however, that Wedgwood (2017) explicitly rejects the idea
that the value of an option is its utility. Robert (2018) applies Wedgwood’s bench-
mark theory assuming—on the contrary—that the value of an option is understood
to be its utility. At the centre of both authors’ account is the idea of expected com-
parative value or expected comparative utility. These basic assumptions have to be
specified for justifying benchmark selection as well as justifying the use of an appro-
priate metrics in simulation validation. Due to its philosophical origin, this theory
will rather not provide formal criteria of benchmark selection for practitioners.
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Chapter 19
Testing Simulation Models Using
Frequentist Statistics

Andrew P. Robinson

Abstract One approach to validating simulation models is to formally compare
model outputs with independent data. We consider such model validation from the
point of view of Frequentist statistics. A range of estimates and tests of goodness of fit
have been advanced. We review these approaches, and demonstrate that some of the
tests suffer from difficulties in interpretation because they rely on the null hypothesis
that the model is similar to the observations. This reliance creates two unpleasant
possibilities, namely, a model could be spuriously validated when data are too few,
or inappropriately rejected when data are too many. Finally, these tests do not allow a
principled declaration of what a reasonable level of difference would be considering
the purposes to which the model will be put. We consider equivalence tests, and
demonstrate that they do not suffer from the previously identified shortcomings. We
provide two case studies to illustrate the claims of the chapter.

Keywords Equivalence testing · Null hypothesis significance testing ·
Statistical models · Model validation

19.1 Introduction

Validation is an essential step in the construction and assessment of computer mod-
els that are intended for application to scientific and operational challenges (see
e.g., Caswell 1976; Gentil and Blake 1981; Reynolds et al. 1981; Mayer and Butler
1993; Oreskes et al. 1994; Rykiel 1996; Loehle 1997; Vanclay and Skovsgaard 1997;
Robinson and Ek 2000; Sargent 2012). Model validation is typically carried out for
one of two reasons, namely, (i) to determine whether predictions from the model can
be used (fit for purpose) and (ii) to determine whether the model sufficiently faith-
fully represents the processes it is designed to represent (goodness of fit). However,
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there is no consensus on what is the uniformly best way to proceed, in part due to
the variety of models, model applications, and candidate tests.

The purpose of this chapter is to review ways of approaching the challenge of
model validation using Frequentist statistical tools. The Frequentist approach to
model validation is to expose the model to some statistical test that compares the
model outputs against data that is the outcome of the process that the model is
intended to represent. If the model survives the test, then it is validated. In order for
this to be possible, the model must produce predictions or estimates that have a mea-
surable analog. For example, a model may be intended to represent the physiological
responses of an idealized forest to climate, and one of its outputs may be the growth
of the forest.We could try to validate this model by comparing field measurements of
forest volume growth against the predicted volume growth obtained from a suitably
tuned execution of the model (Sect. 19.4.2).

Furthermore, the body of the chapter is devoted to a statistical framework for val-
idation for deterministic models, that is, models for which the outcomes are derived
from known functions of the inputs.We extend the class ofmodels to include stochas-
tic models, for which the outcomes are random, in Sect. 19.5.1.

Although the examples that wewill examine in this chapter are reasonably simple,
to keep our exposition brief, the principles that we outline can be applied tomodels of
any level of complexity. The sole prescription is that the model produces predictions
or estimates that have a measurable analog, so that the outputs of the model can be
compared statistically with measures of the process that the model is to represent.
These situations may require greater or lesser amounts of statistical modeling in
order to provide resilient statistical inference—for example, accounting for temporal
correlation, or measurement errors, or hierarchical data—and such contingencies are
not covered here. Nonetheless, the principles in this chapter can be applied when a
model produces quantitative outputs that should align with measurable real-world
processes if the model is valid.

There are two important distinctions between the Frequentist statistical tools that
have been used to validate simulation models. We briefly cover them here but will
provide more detail in the chapter. First, some tools estimate the goodness of fit
of a model, e.g., the root mean squared error (RMSE), as opposed to testing the
goodness of fit. Analysts tend to report the estimates but often omit reporting their
underlying variability. They might claim, for example, that the RMSE is less than a
given number, but fail to acknowledge that the true value of the RMSE is uncertain,
and the reported value is only an estimate of the true value. Goodness of fit tests
provide a framework to capture this uncertainty, but lead to the second distinction,
namely in the disposition of the hypotheses.

As we shall see below, these goodness of fit tests requires the specification of
two hypotheses, a null (or default), and an alternative. Often, analysts will apply
tests for which the default hypothesis equates to the outcome that the model is valid.
This equation leads to counter-intuitive and undesirable behavior. A set of tests,
called equivalence tests, reverse the usual polarity—in them, the null hypothesis
equates to the outcome that the model is not valid—and they do not suffer from the
disadvantages of the other tests.
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Some prefatory remarks are in order. Our goal is not to start arguments about
different techniques. Therefore, we do not indulge in naming and shaming authors
that have approached the problem from different points of view. However, some
referencing of prior work is essential to provide context. The reader is not assumed
to have detailed knowledge of the vocabulary or conceptual apparatus that is applied
in the Frequentist statistics framework; rather, this material is briefly and selectively
introduced.

The chapter is structured as follows.We begin by defining the key concepts that are
used for inference in Frequentist applied statistics, with some simple examples. Then
we briefly describe and critique some of theways that authors have used some of these
statistics to validatemodels. Next, we introduce tests of equivalence, and demonstrate
how these tests improve on the shortcomings of the traditional methods. We provide
some examples of the different approaches before drawing our conclusions.

19.2 Frequentist Statistics

19.2.1 Important Background

Statistics, like most other disciplines, has developed a specialized vocabulary that
is used to express its key concepts. The following material is intended to provide
enough information to help the reader follow the chapter; it is not comprehensive, we
will take shortcuts where possible. Those who are conversant with statistical thinking
and tools may elect to skip this section and begin at Sect. 19.3.

Frequentist statistics is a branch of statistics that includes a collection of statis-
tical tools that build upon a very specific interpretation of probability, namely that
probability is used to represent only the outcomes of infinitely repeatable instances
of experiments. This is in contrast to Bayesian statistics, in which probability can
play a much more extensive role, being used to capture apparently non-repeatable
instances such as the degree of belief of a rational individual as to whether it will
rain on New Year’s Day in 2050.

Informally, we could interpret Frequentist statistics as being a set of concepts and
tools for learning about the world by repetition. Archetypes of Frequentist statistics
include classic devices such as coin tosses, the throwing of dice, shuffling of cards,
and drawing of colored balls from suitable urns. These devices can be generalized
to match a bewildering array of different and more complex circumstances, forming
the superstructure of Frequentist statistics. The interested reader can find more detail
in Casella and Berger (1990), among many others.
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19.2.1.1 The Basic Framework

We use statistics to study processes and populations based on some assumptions and
a (hopefully) representative sample of data. For example, we might want to know the
weights of units being produced by a manufacturing process, or the average height of
all the trees in a forest. There are subtle but important differences between processes
and populations but they are not relevant for our purposes. Here, we will assume
that the interest is about a process, and that observations have been made from an
arguably representative sample of units that have been taken from that process.

The assumption of representativeness can rely on the specification of the sampling
process, for example, that it was simple random sampling. This approach is the basis
of design-based, as opposed to model-based, Frequentist statistics. In any case, the
assumption of representativeness can be justified by using graphical diagnostics to
assess the fidelity of the sample to whatever is known or suspected about the process,
in the sense that the sample shares statistical characteristics with its process. It is
important to keep in mind that having a purely random sample is not essential for
Frequentist statistical inference, but that doing so does make it easier to argue that
the sample is representative.

19.2.1.2 The Random Variable

We use the random variable as a bridge between the useful ideas and tools of prob-
ability and things that we want to measure and observe. Here are two definitions.
Informally, a random variable is a variable that we use to represent the outcome
of a random process. More formally, a random variable is a function that creates a
relationship (called a mapping) between the space of events and a probability line
(that is, the line 0–1).

For example, we can represent the outcome of a single roll of a fair six-sided die
using a random variable; we think that each of the six possible outcomes has an equal
probability, so the random variable is a function that maps the rolls into one of the 1,
2, …6 and we associate equal probabilities to the 1, 2, …6. This device enables us to
use probability to describe outcomes of the process of the fair die roll. For example,
we can now say that the probability of rolling a 1 is 1/6, or the probability that the
upper face is odd is 1/2.

Many kinds of outcomes can be represented by random variables, for example,
the outcome of a coin toss, or the number of heads thrown in five coin tosses, or a
height measurement of a randomly selected person, or even the average of the height
measurements of a group of 10 randomly selected persons.

Importantly, functions of a random variable can also be random variables, and
functions of multiple random variables can also be random variables, so we can
workwith probability for both of these function types. Here, wewill focus on random
variables as described by their empirical probability distributions and by the summary
measures of the empirical distributions which are calculated as functions of the data.
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19.2.1.3 Distributions

So, the reader imagines, each of these random variables should be quite different—
the outcome of the coin toss, the die roll, and the height measurement. How do we
represent the differences?Without going too much into the weeds, each random vari-
able is described by a distribution. The distribution dictates the relationship between
all possible values that the random variable can take and the values of the proba-
bility line. The way that the distribution is expressed depends on the nature of the
random variable. If the random variable is discrete, then the distribution is usually
expressed as the probability of each of the possible outcomes, called the probability
mass function. If the random variable is continuous, then the distribution is usually
captured by the probability that the outcome will be less than or equal to any given
value, called the cumulative distribution function. Later on, wewill refer to quantities
called quantiles, which can be computed from this function, and are the values of the
distribution below which a given proportion of the distribution lies. For example, the
0.75 quantile is that point of the distribution that has 75% of the distribution below it.

As an example, the random variable that we use to represent the outcome of a
fair coin toss is simply the allocation (mapping) of 0.5 probability to a head and 0.5
probability to a tail. Furthermore, the random variable that we use to represent X
as the count of heads from five fair coin tosses is distributed according to a special
device called the Binomial distribution. For 5 experiments each having probability of
success 0.5 we write X ∼ Bi (5, 0.5). The random variable that we use to represent
the average height of a random sample of ten adults could be captured by one of
a number of different distributions, but commonly one of the Normal family, also
called Gaussian family of distributions, is used.

These examples suggest that identifying the distribution of a random variable is
more than just a matter of picking a name; indeed, the names identify families of
distributions, which are themselves distinguished by quantities that are called param-
eters. We choose the distribution from the family of distributions by selecting the
needed parameters. A substantial part of statistical theory is focused on the estima-
tion of these parameters using functions of observed data. For example, the Normal
distribution is indexed by its mean and variance, we might write H ∼ N (μH , σ 2

H ).
The binomial distribution, mentioned above, is indexed by two parameters, namely,
the number of observations n (considered fixed and known) and the probability of
success (or failure) p. We shall refer to the combination of a random variable, dis-
tribution, and parameters as a statistical model. So, H ∼ N (μH , σ 2

H ) is a statistical
model for the random variable H , and it says that H follows the Normal distribution
with mean μH and variance σ 2

H . As shorthand, we shall commonly say that H is
Normal or Normally distributed.

To sum up, statistics is concerned with modeling data, usually either for discovery
or decision-making. We assume that these data come from a process, and that they
can be represented by a random variable with a given distribution and appropriate
parameters. Generally, we use a capital letter to denote a random variable, and the
same letter in lower case to denote a sample of data taken from the process, x =
(x1, . . . xn).
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19.2.2 Estimation

Whenweknow thevalues of the parameters,we canuse themodel tomakepredictions
or inference. But how do we know what the parameter values should be? That is, for
example, given height measures from a random sample of ten adults, and assuming
that we are willing to invoke the Normal distribution, how do we choose values for
the mean and variance to best represent the data? This process is estimation.

19.2.2.1 Point Estimation

This challenge hints at a huge body of statistical work, but to choose two intuitive
examples, the sample mean and the sample variance are almost always used as
estimators for the process mean and the process variance. There is a lot of solid
theory that suggests that this intuitively reasonable idea is a good idea most of the
time.

Often we denote the estimator of a parameter by means of a hat: the estimator of
the process mean μ (say) is then μ̂. And, commonly we estimate the process mean
by the sample mean, which we often denote using a bar atop the random variable,
so we might say that μ̂X = x̄ ; in words, the process mean for the random variable
X is estimated by the sample mean of the data xi , i = 1 . . . n. We also say that the
sample mean is an estimator for the process mean in general, and any given sample
mean can be an estimate of the mean of the process from which the sample is taken.

19.2.2.2 Interval Estimation

At this pointwehave to introduce a complication, namely that the parameter estimates
are functions of the sample data—for example, themean and the variance—and since
the data are represented by a random variable, then the parameter estimates should
also be random variables, and they also have a distribution. So, the data have a
distribution, and the parameter estimates that are computed from the data also have
a distribution, and the distributions of the parameter estimates are different from
the distribution of the data, although they may be related. For example, there is a
beautiful device called the Central Limit Theorem that in its simplest form says that
if the sample size is sufficiently large then the distribution of the parameter estimate
for the population mean is Normal.

To capture this variability, Frequentist statistics provides a special kind of estimate
as well as the point estimate introduced earlier—the confidence interval estimate.
Confidence interval estimates are the range of numbers that are obtained with a
given probability (e.g., 95%) under an infinite repetition of the algorithm of taking
a fresh random sample from the same process and computing the estimates. The
confidence interval provides valuable information about the uncertainty of the point
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estimate. The intended coverage of the interval must be stated, and commonly 95%
confidence intervals are reported.

19.2.3 Models of Dependence

We now move to the statistical consideration of a specific type of model that allows
the parameters of the distribution of a random variable to vary depending on the
parameter values of other random variables. This development opens up a very rich
class ofmodels for different kinds of processes. A simple example is the linearmodel,

Y = β0 + β1X + ε; ε ∼ N
(
0, σ 2

)
. (19.1)

This model simply states the relationship between a random variable of interest
Y (also called the response variable or the dependent variable) and another random
variable X (called the predictor variable, sometimes also called the independent
variable), for n observations that we have. It says that the fundamental relationship
between X and Y is a straight line, with slope β1 and y-intercept β0, and there are
some random fluctuations or errors from the straight line represented by the ε, which
themselves follow the Normal distribution with mean 0 and variance σ 2.

The slope and intercept can be estimated from data (x, y) in a range of ways,
for example, ordinary least squares, or maximum likelihood. It turns out that the
parameter estimates for the βs are the same in either case but this is not always true.
A great deal of attention has been paid to the different qualities that different kinds
of parameter estimates have—how they work in the long run, how they work when
there are plenty of data, and so on.

We introduce this particular model because we will test simulation models by
comparing predictions that arise from the models against observations that are made
of the processes or populations that the models are intended to represent. In the ideal
case, the predictions and the observations will line up exactly—on the 1:1 line—so
β0 will be 0 and β1 will be 1. However, because there is variability in observations,
the predictions and the observations will not line up, and the values of β0 and β1 will
not be exactly 0 and 1, respectively, even if the model is very good. This concern
naturally leads to the question: how good is good enough? How close should β0 and
β1 be to their designated values for us to be confident about the model? This question
leads us to another statistical protocol: the hypothesis test.

19.2.4 Null Hypothesis Significance Tests

Having introduced the principles of random variables, distributions, parameters, and
models, we can now articulate a process for asking questions about models, and most
particularly model parameters, in the light of data. Many questions are possible; here
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we focus on the following general kind of question: given a process, a model that
we believe represents the process, and observations considered representative of the
outcome of the process, does it seem likely that the true, process values for the
parameters in the model might be or might not be a specific value? These questions
can be addressed by a device called a Null Hypothesis Significance Test (NHST).

More concretely, recall from the previous section that if we had a set of observa-
tions and a set of predictions from a model, then we might be interested in whether
the observations and the predictions match, which can only happen if β0 = 0 and
β1 = 1. We do not know what the true values are of these parameters, we only have
estimates, calculated from data. So, given our estimators and their distributions, what
are likely and unlikely values that the process-representing mode parameters β0 and
β1 might take?

Hypothesis testing traditionally proceeds from identification of a so-called null
hypothesis, which is supposed to represent the current state or the default state,
and is the claim against which we wish to measure evidence. For example, given
a representative sample x of a random variable X that represents a process, and
a statistical model that says X ∼ N (μ, σ 2), we might start with a null hypothesis
that the process mean is truly 0; H0 : μX = 0, with the alternative hypothesis being
H1 : μX �= 0.

Briefly, we tackle this problem in the following way. We determine what the
distribution of the parameter estimator would be if the null hypothesis were true.
We then compute a test statistic from the data. This test statistic also has a known
distribution if the null hypothesis is true (we also say “under the null hypothesis”),
which is used to determine a rejection region, which is a set of values that the test
statistic could take that are so unlikely—relative to the distribution under the null—
that if we observed themwewould become convinced that the null hypothesis cannot
be true.

Imagine, for example, that if the null hypothesis were true then it would be reason-
able to see values of the test statistic between −2 and 2, and the value we computed
was 4. This value being so far away from the reasonable expected range creates doubt
for us in the validity of the model for the test statistic, including the hypothesized
parameter values. Of course, there is more to the model than simply the null hypoth-
esis, as we shall see, but there are ways of assessing the importance of the other
aspects of the model.

Amore detailed description follows.We do not knowμX but we have an estimator
for it: the sample mean, μ̂X = x̄ . However, as we noted earlier, the sample mean has
a distribution because it is a function of the realizations x of the random variable X .
It turns out that if the data are Normal then the sample mean is also Normal, but also
as noted above, if the sample size is large enough, then we can treat the sample mean
as though it were Normal, even if x is not Normal. Another beautiful device called
the Law of Large Numbers tells us that we can assume that the mean of x is the same
as the mean of X , and by algebra (not shown here), we can prove that the variance of
x̄ is just the variance of X (this variance is σ 2, the true population variance) divided
by n, the sample size. So,
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x̄ ∼ N

(
μX ,

σ 2

n

)
. (19.2)

Our goal is to test the null hypothesis that μX = 0. Intuitively, if x̄ is a long way
from 0 then μX probably is not 0, whereas if x̄ is close to 0 then μX might or might
not be close to 0. The open question is: how far from 0 does x̄ have to be before
we cannot support the idea that μX is zero? The answer to this question lies in its
distribution, or more completely, in its distribution assuming the null hypothesis is
true. Under the null hypothesis, μX = 0, and after some algebra, we arrive at the test
statistic z and its distribution under the null hypothesis:

z = x̄

σ/
√
n

∼ N (0, 1) . (19.3)

Note that here we are assuming that we know σ , which is a very unlikely state
of affairs. We will revisit this assumption. Also, the quantity σ/

√
n is called the

standard error.
The hypothesis test simply proceeds by evaluating z and comparing it with nomi-

nated quantiles of the standardNormal distribution N (0, 1), e.g.,±1.96, correspond-
ing to the 95% interval delimited by the 2.5 and 97.5% quantiles. The quantiles create
the rejection region, which comprises all points outside the interval described by the
quantiles.We obtain the quantiles by referring to the cumulative distribution function
of the distribution.

So, if z is between the quantiles, then we do not reject the null hypothesis. If z is
outside the quantiles, then we reject the null hypothesis. Sometimes we refer to the
test result as being significant, or, preferably, statistically significant. This phrase is
shorthand for saying that the test statistic is within the rejection region of the test.

Comfortingly, the rejection region is closely related to the complement of the
corresponding confidence interval estimates, although the rejection region surrounds
the hypothesized value and the confidence interval surrounds the estimate.

Now to clean up some loose ends. We specifically choose the quantiles to deliver
a chosen probability of rejecting the null hypothesis when in fact it is true, that is,
whenμX = 0. This probability is called the size of the test and is generally chosen to
be small. Such an error—namely, the mistaken rejection of a true null hypothesis—is
sometimes called a Type 1 error. So, we choose the quantiles that set the rejection
region in order to control the probability of a Type 1 error, and that probability is
called the size of the test.

It is also possible that the test statistic could be outside the rejection region even
thoughμX �= 0, in which case we would mistakenly fail to reject the null hypothesis.
This kind of error is called a Type 2 error. The probability of that happening depends
on μX and can be computed from the power function of the test. The power function
reports the probability of rejecting the null hypothesis as a function of the true,
unknown value of the parameter, assuming that the model is otherwise true. For
example, the power function is equal to the test size atμX = 0. We can also compute
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the probability that the test statistic will be in the rejection region at other values of
μX , conditional on the model.

The astute reader will have noticed that calculating z involves the sample size n. In
fact, it turns out that z increases as n increases (specifically, z increases proportional
to the square root of n). Consequently, any given hypothesis can be rejected if the
sample size is large enough.

The rejection region is set based on an assumed distribution for the test statistic
assuming that the null hypothesis is true. The test statistic may be in the rejection
region because the chosen distribution, which the region is calculated from, is wrong.
Generally, careful statisticians will use graphical displays of the data to guard against
an inappropriate choice of distribution; these are particularly common in model
construction. Note that the statistical characteristics of the estimators are derived
from the assumed characteristics of the process from which the sample is drawn, not
from the characteristics of the sample itself—although those should be indicative of
the process in any case. So, we examine graphical diagnostics of the sample in the
hope that they provide information about the process.

Up until now, we have been focusing on rejection regions that are symmetric.
Other scenarios may be of interest. Sometimes, all of the inferential interest is in
detecting the possibility that the mean is above the hypothesized value (or, equiva-
lently, below). These cases lead to so-called one-sided tests, in which the rejection
region is only the interval above (below) a given quantile. The rejection region is
then the complement of the one-sided confidence intervals, which we will use to
construct simple equivalence tests below.

Finally, we assumed that we knew the population variance, which is almost never
true. In practice, we tend to estimate the population variance using the sample vari-
ance, which of course is itself subject to variation! There is a simple remedy: we
compute the rejection region using quantiles of the so-called Student’s t-distribution
instead of the standardNormal distribution because Student’s t allows for uncertainty
in the estimator of the population variance.

At this point, the breathless reader should have a grasp of the basic vocabulary and
principles that are used in Frequentist-style estimation and testing. There are many
other kinds of tests under this broad umbrella, and many more in different traditions.
Now we move to the question of how to apply this framework for validating models.

19.3 Statistical Model Validation: Why and How?

Briefly, we shall say that models are validated when they pass a systematic statistical
assessment using appropriate tests, to be discussed,with respect to a dataset other than
that with which they have been constructed. As we shall see, there is a distinction
between a useful model and a validated model. We now look at the reasons that
models are validated, and the implications that these reasons have for the activities
that ensue.



19 Testing Simulation Models Using Frequentist Statistics 475

19.3.1 Why Validate?

Frequentist model validation usually occurs for one of two reasons. First, a user may
wish to validate a model for use in a particular setting, perhaps a different spatial
location or extent, or a different time period, to that in which it was constructed. For
example, a regional model that predicts tree height from tree bole diameter has been
constructed for a number of different species in northern and central Idaho forests.
Such models are constructed over a wide spatial extent using data gathered at a
particular time. We may be interested whether the model holds for a particular forest
within the area, or even outside the area, at some point in time long after the model
was constructed. Second, a user may wish to validate the model to assess whether
it shows patterns that would be expected from theory. For example, co-authors and
I constructed a semi-mechanistic model of tree growth processes called 4-PG (see,
e.g., Duursma et al. 2007). It was of interest to try to validate the predictions of forest
growth using measures of various physical dimensions of the forest. A systematic
comparison of independent observed measures against predictions is a gold standard
in modeling. As a further example, Capes et al. (2017) used equivalence tests to try
to validate an allometric model using field data.

Several activities that are components of model validation are necessary but not
sufficient. First, wemay report statistics that summarize the quality of model fit, such
as R2 or root mean squared error (see below), computed from the dataset used to fit
the model. This is model checking, it comprises an important set of steps undertaken
to help form an opinion of the validity and utility of themodel, but it does not count as
validation in isolation. Second, we may split the available data into complementary
training and testing sets, and compute testing-based fit statistics of a model that was
fit using the training set. This is also model checking, and it provides a useful insight
into whether portions of the data differ systematically from one another. It still does
not qualify as model validation in isolation.

We now consider some popular measures and tests of goodness of fit, and assess
their utility with regards to model validation.

19.3.2 Estimating Goodness of Fit

Although they are not commonly described as estimators of goodness of fit, a number
of the popular regression summary statistics are routinely interpreted in this useful
way. That is, the statistic is routinely reported as evidence of the goodness of fit but
the statistic is rarely compared formally in the sense of a statistical test. An example
of such a statistic is the root mean squared error, RMSE.

RMSE =
√√
√√

n∑

i=1

(xp(i) − xm(i))2 (19.4)
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where xp(i) and xm(i) are the i-th values of the process observation and the model
prediction, respectively.

This quantity reports the square root of the average squared distance between the
observations and predictions, and is coded in the units of the response variable. We
can interpret the RMSE of the model as a measure of the residual uncertainty, that
is, the uncertainty about y conditional on the model. We can informally compare it
with the standard deviation of y; believing in the model and knowing the predictor
variables relieves us of uncertainty about the value of y to the extent that the RMSE
is smaller than the standard deviation of y.

A popular alternative is Pearson’s correlation, which can be computed between
two random variables. The correlation takes a value within [−1, 1] and is 0 when
there is no detectable linear match between the random variables, 1 when there is an
exact linear match (regardless of the slope, so long as it is positive), and −1 when
there is an exact linear match with some negative slope.

A related estimator of the goodness of fit of a model that is routinely reported
by regression software is the R2 statistic, which spans [0, 1]. In linear models, R2

reports the proportion of the variance in the response variable that is matched by
variation in the predictor variables. As a side-note, R2 is known to increase with the
number of predictor variables, so often the adjusted R2 is reported, which is the R2

penalized by the number of predictor variables.
Each of these statistics has been reported, from time to time, as measures of the

validity of a model, however, these summary statistics are useful but not sufficient.
In each case, they report some measure of the closeness of the predictions to the
observations, but they do not provide any evidence of the closeness of the slope to
1 or the intercept to 0, which are the conditions mentioned in Sect. 19.2.3 for the
model to be validated. Therefore it is possible that a model is useful, in that it returns
summary statistics that show a substantial reduction in uncertainty about y, but not
validated.

19.3.3 Testing Goodness of Fit

We now move to the challenge of testing goodness of fit. Not surprisingly, a number
of such statistical tools have been applied to validation problems. For example,
Freese (1960) introduced an accuracy test based on the standardχ2 test, subsequently
extended by Reynolds (1984) and Gregoire and Reynolds (1988). Kleijnen (1974)
mentions common techniques such as χ2 tests, Kolmogorov–Smirnov tests, and
regression analysis of the actual and simulation output, and comparing the output
using parametric or nonparametric statistical tests. Kleijnen et al. (1998) proposed
that the means and variances of the model predictions and the process measures be
compared by NHST, and the correlation between them tested with the one-sided test,
H0 : ρ ≤ 0 and HA : ρ > 0 (hereafter, MVS).

Considering applications of these tests, Ottosson and Håkanson (1997) used R2

and compared with so-called highest-possible R2, which are predictions from com-
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mon units (parallel time-compatible sets). Jans-Hammermeister and McGill (1997)
used an F-statistic based lack of fit test. Landsberg et al. (2003) used R2 and rela-
tive mean bias. Bartelink (1998) graphed field data and predictions with confidence
intervals. Finally, Alewell and Manderscheid (1998) used R2 and normalized mean
absolute error (NMAE).

We examine a few of these tests in greater detail. The traditional approach to
assessing goodness of fit is Pearson’s χ2 goodness of fit test, which is taught in most
introductory statistics classes. In this test, we begin with categorical data (counts in
categories) and a model; for example, we may have the outcome of 10,000 die tosses
arising from a rainy weekend, and as a model that the die is fair: there should be an
equal split between the occurrences of the outcomes 1–6. The null hypothesis is that
the model matches the data, and we reject the null hypothesis if the test statistic is too
unusual relative to a specific member of the χ2 family of probability distributions.
If we fail to reject the null hypothesis, then we treat the model as a defensible
representation of the underlying process. This test is best suited to categorical data,
which are not the focus of this chapter.

The primary alternatives that are commonly applied in testing goodness of fit for
model validation are (i) an NHST with the null hypothesis being that the process
mean is equal to the prediction mean, and (ii) two NHSTs, one on the slope and one
on the intercept parameters of the linear model (Eq.19.1) fit to paired data, with the
null hypotheses being that the true intercept β0 = 0 and the true slope β1 = 1, as
suggested by Cohen and Cyert (1961). A variation on the latter is called a whole-
model test (WMT), which uses the F distribution to test the joint null hypothesis
that the true intercept β0 = 0 and the true slope is β1 = 1 Kleijnen (1995).

As above, outcomes of these tests have been reported, from time to time, as
measures of the validity of amodel, and they are useful but not sufficient.As (Kleijnen
1995) notes for these and related tests, (i) the bigger the sample size is, the smaller the
critical value, so all else being equal a model is more likely to fail to be rejected by a
small sample, in short, the fewer data you have the better your chances of acceptance
are; and (ii) the test statistic may be statistically significant and yet unimportant, and
of course if the sample is very large, then the test statistic is nearly always statistically
significant.

The traditional application of hypothesis tests has been shown to be inappropriate
for model validation (see, e.g. Mayer and Butler (1993); Kleijnen (1995); Loehle
(1997)). This is because, borrowing the parlance from Robinson et al. (2005), the
tests are designed to split, instead of to lump.

19.3.4 Tests for Splitting and Tests for Lumping

The whimsical title for this section sets the scene for thinking about the structure
of statistical testing. Most statistical tests are predicated on a null hypothesis of no
effect, or no difference between means (for example), and they evaluate the evidence
against that null. If the evidence is equivocal, then the null hypothesis is not rejected,
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and we claim, or declare, or act as though there is no effect or no difference between
means. The purpose of such a test is to detect a distinction: to split.

However, what if the inferentially interesting question were instead to prove that
some parameters were startlingly similar? Then the traditional splitting test is less
interesting: its starting point is the condition forwhichwewish to assess the evidence,
rather than being that against which we assess evidence. The type of test we need is a
test of lumping, namely an equivalence test. Briefly, an equivalence test is a statistical
test that has as its null hypothesis the claim that a parameter does not equal a target
value (e.g., 0) and as the alternative hypothesis, the claim that the parameter does
equal the target value. So, equivalence tests simply swap the null and alternative
hypotheses relative to standard NHST, but still using the same familiar statistical
tools.

There is a substantial literature on equivalence testing, we note particularly Berger
and Hsu (1996), McBride (1999), Parkhurst (2001), Wellek (2010), and Meyners
(2012).

19.3.4.1 What is the Goal: Goodness of Fit or Fitness for Purpose?

Although goodness of fit testing as reviewed above is a popular statistical technique
and in common use, it does not satisfy the requirements of model validation. This is
for two important reasons. First, as noted, the typical NHST setup takes as the null
hypothesis the condition that it wishes to disprove, as opposed to the condition that
it wishes to prove. This means that under-powered tests can over-hastily declare a
model to be validated by failing to detect a statistically significant difference. Second,
the typical NHST makes no allowance for the requirements to be placed upon the
model. We detail the latter issue in this section.

The two examples outlined briefly introduced in Sect. 19.3.1 share a common
purpose: in each case the goal was to assess whether the model performed to some
expected level. This observation leads to a key question: on assessing model perfor-
mance, how good is good enough? This question encourages us to think about model
performance from the point of view of fitness for purpose as opposed to its goodness
of fit. In order to assess fitness for purpose, the tester must assert a benchmark, ide-
ally expressed in units that link to the model application or interpretation (see also
Chap.18 by Saam in this volume). In the case of the height–diameter model noted
above, for example, we might say that the benchmark is that the average of the height
predictions be within 1m of the observations. Thinking of the validation of themech-
anistic model, we may assert that the benchmark could be ±10m3ha−1decade−1.

In each case we need to acknowledge that the average differences are random
variables, so to apply a benchmark we need to include a statement of probability. We
might say, for instance, that we wish the average difference to be within a specific
region such as ±1m with a given confidence, say 80 or 90%, depending on the use
to which the model will be put.

We will label this benchmark the region of equivalence. The requirement of a
region of equivalence is both a strength and a weakness of this approach. It is a

http://dx.doi.org/10.1007/978-3-319-70766-2_18
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strength because it is the means by which the model validity can be connected to
the application or decision context. This means that equivalence testing supports the
specification of how accurate the model needs to be in terms of the variable that is
being measured. It is also a weakness, however, because it introduces another (possi-
bly) arbitrary aspect to the specification of the test, in addition to the specification of
the test size. Setting the region of equivalence should involve careful consideration
of how accurate the user needs the model to be.

We recommend theuse of equivalence tests for Frequentist-basedmodel validation
(Robinson and Froese 2004). We next introduce a few of the key Frequentist tests of
equivalence and discuss their application to model validation.

19.3.5 Conceptual Entry Point: TOST

The Two One-Sided Test (TOST ) algorithm is a simple extension of the traditional
NHST, predicated on a different kind of null hypothesis. The null hypothesis in this
setting is that the processes that produce the model outputs and the observations
have importantly different means, where the magnitude of the important difference
is captured using the region of equivalence. The alternative hypothesis is that the
means of the processes for themodel outputs and the observations are not importantly
different.

We provide a verbal description of the TOST and then an algorithm. To apply this
algorithm, we construct two one-sided rejection regions, each one for tests with size
2α, and ask whether the test statistic occupies both rejection regions simultaneously.
If we reject the null hypothesis that the tested parameter is further below the specified
value than the benchmark and we reject the null hypothesis that the tested parameter
is further above the specified value than the benchmark, then we are forced to reject
the joint hypothesis that the tested parameter is further away from the specific value
than the benchmark. We can interpret this result as being evidence that the tested
parameter is significantly close to the target, having declared our equivalence interval
and the size of our tests.

The following algorithm assumes that we have n pairs of observations: those that
represent the target process, xp, and those that represent the output of the model,
xm , that is intended to represent the process. If we could prove that xp = xm then
the model would be validated. The following test is a useful approximation to such
a proof exercise.

1. Compute the n values of xd , which is the difference between the process and the
model for each observation, xd = xp − xm .

2. Choose a test statistic, e.g., themean x̄d , and a size for the test, e.g.,α. This statistic
will be used as follows: if the mean of the difference xd is demonstrably close to
zero, then by the following steps, we can consider the model to be validated.

3. Choose the region of equivalence, I , which is the region that is close enough
to the hypothesized value (0) that the difference is practically irrelevant. This
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Fig. 19.1 Schematic
example of TOST. See text
for details

interval is analogous to the tolerance of an engineered part, plays the role of the
benchmark, and is expressed in the units of x . This is region A in Fig. 19.1.

4. Compute the mean of the difference xd , and a lower and an upper one-sided
1 − α confidence interval (arrows B and C in Fig. 19.1, respectively), the upper
and lower limits of which we denote with C−

α (arrowhead B) and C+
α (arrowhead

C), respectively. Note that the intervals each have coverage 1 − α, rather than
1 − α/2.

5. Form an interval (C+
α ,C−

α ) from the intersection of the two one-sided confidence
intervals around the mean difference (arrow D in in Fig. 19.1). This interval
should be reported along with the test outcome.

6. Reject H0, the null hypothesis of dissimilarity, if the interval D is entirely con-
tained within the interval of equivalence A, i.e., (C+

α ,C−
α ) ⊆ I (this condition

is satisfied in Fig. 19.1).
7. If the null hypothesis of dissimilarity is rejected then the model is validated (this

is true in Fig. 19.1). If the null hypothesis is not rejected then the model is not
validated.

A substantial advantage of the TOST is its flexibility; it can be computed from
a very wide range of experimental or survey setups. TOSTs do not require paired
data, because the test statistics can be computed directly from means and standard
deviations of the observations and predictions. However, a TOST computed on the
differences of paired data will be more powerful than a TOST computed from the
summary statistics of the individual variables. Nonetheless, a TOST can be computed
for any statistic for which a confidence interval can be computed.

A curiosity can occur in that it is possible that the intersection interval D is within
the interval of equivalence and the usual confidence interval for the mean of the
differences does not cover 0. Then, we would reject the null hypothesis that the
difference is 0 and also reject the null hypothesis that the difference is not 0. What
can we do then? Of course these outcomes are not exactly mutually contradictory,
and we could say that the model is fit for purpose but not perfect.

Sargent (2012) and the literature cited within developed a comparable approach to
model validation.However, the authors cautioned that the test requires the assumption
that the underlying population be Normal, whereas the TOST only requires that
the sampling distribution of the test statistic be Normal, which may be justified
by invocation of the Central Limit Theorem if the sample size is large enough. A
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cautious statistician can approximate the sampling distribution of the test statistic
using a bootstrap, but this detail is beyond the scope of this chapter.

19.3.6 A Uniformly Most Powerful Invariant Test

The TOST is useful and flexible but carries no warranty of being the most powerful
test. Wellek (2010) presented an equivalence test that is a uniformly most powerful
invariant (UMPI) test. UMPI tests make at least as good use of the available data as
any other test in their class, so in this sense they are the best test for the job. The
test is, fittingly, labeled the paired t-test for equivalence (PTTE). However, PTTE
only works for paired observations and for a region of equivalence that is scaled by
the population standard deviation, and only enjoys its UMPI status when used upon
intraindividual distances that are drawn from the Normal distribution.

The algorithm for the test is as follows. We calculate the following quantities for
the differences xd :

• mean (x̄d ),
• standard deviation (sd ) and from this,
• the standard error (sx̄d = sd√

n
), which is a measure of the variation of the sampling

distribution of the mean.

Here, n is the number of data pairs. We then calculate the t-value corresponding
to the observed mean and its standard error by

td = x̄d
sx̄d

(19.5)

We will compare the absolute value (positive portion) of this value with a
cutoff, which is computed as follows. We calculate the noncentrality parameter,
ψ2 = n × ε2, where ε is the half-length of the region of equivalence I . Then the
cutoff C̃α;n−1(ε) that corresponds to a test of size α is the α-quantile of the noncen-
tral F distribution with degrees of freedom ν1 = 1 and ν2 = n − 1, and noncentrality
parameter ψ2, as calculated above.

If the absolute value of the t-value is lower than the cutoff then we reject the null
hypothesis of dissimilarity, and the model is validated.

19.3.7 More Descriptive: Test of Fidelity

The following material is more technical, and requires an understanding of how to
fit simple statistical models such as presented in Eq. (19.1).

Getting the mean right and getting the predictions right are different. The TOST
and PTTE permit validation based on the means, but this does not reassure us that
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the individual predictions and observations line up, or even are in the right order.
Robinson et al. (2005) proposed a combination ofTOSTs that provide amore nuanced
test for assessing the goodness of fit of a model given paired observations and predic-
tions. This approach is essentially an equivalence-based version of the test proposed
by Cohen and Cyert (1961).

In essence, we perform a TOST on each of the intercept and slope estimates,
and whereas the usual application of TOST tests for population-level agreement on
average, our proposed strategy will test for point-to-point agreement as well.

1. Make observations xp, and calculate predictions from the model xm .
2. Subtract the mean prediction from the predictions. (We do this so that the esti-

mators of intercept and the slope (conditional on the intercept) are guaranteed to
be independent, because the fitted line passes through the (0, 0) point. The slope
estimate does not change, and if the model predictions are unbiased, then the
intercept will be the same as the mean of the observations.)

3. Establish regions of equivalence: I0 for the shifted intercept and I1 for the
slope, e.g., (a) I0 = x̄m ± 1m for the shifted intercept of our tree height model
and data, and (b) I1 = 1.0 ± 0.2 for the slope. As above, these quantities play
the role of a benchmark.

4. Fit a linear regression using the model predictions as the sole predictor variable
and the observations as the response variable.

5. Test the intercept for equality to x̄m . Calculate the two one-sided confidence inter-
vals for the intercept using, e.g., the estimate of the standard error of the intercept
from the regression output, and determinewhether this interval is contained inside
the intercept region of equivalence. This is identical to testing that the mean of
the observations is equivalent to the mean of the predictions.

6. Test the slope for equality to 1. Calculate the two one-sided confidence intervals
for the slope from, e.g., the estimate of the standard error of the slope from the
regression output, and determine whether this interval is contained inside the
slope region of equivalence.

7. If the null hypothesis that the intercept is different to 0 and the null hypothesis
that the slope is different to 1 are rejected, then the model is validated.

The R code to compute and plot these quantities is freely available in the equiva-
lence package (Robinson 2016). The outcome can be represented graphically, as we
do below.

19.3.8 Statistical Validation Overview

We conclude this section with provides an overview table (Table19.1) that summa-
rizes the key information about the estimators and tests of goodness of fit presented
in this chapter.
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Table 19.1 Summary table of Frequentist statistical tools for model validation. xp represents the
process and xm the model. Here, “Test is backwards” is used to indicate that the null hypothesis is
that the model is valid. Regression modeling is with the model predictions as the predictor variable
and the process observations as the response variable. CLT stands for the Central Limit Theorem

Name Notes Strengths Weaknesses

Correlation The correlation of xm and xp .
High correlation implies a valid
model

Familiar Ignores intercept and
slope

RMSE The square root of the mean of
(xm − xp)2. Low RMSE implies
a valid model

Units are the same as xp Tester has to define
“low”

χ2 test The sum of (xm − xp)2/xp has a
known distribution when the
model is valid. Low χ2 implies a
valid model

Formally tests
validation

Test is backwards

T -test The t-statistic has a known
distribution when the model is
valid. Low t implies a valid
model

Formally tests
validation

Test is backwards

MVS Compare the means of the model
and the process outputs and
variances of the model and the
process outputs using standard
tests and test the null hypothesis
that the regression slope is
nonpositive. Similarity of means,
similarity of variances, and
nonnegative slope imply a valid
model

Formally tests
validation. Covers
location, scale, and
relationship

Test is backwards and
Normality is assumed

Regression Apply standard t-tests to the
intercept (H0 : β0 = 0) and the
slope (H0 : β1 = 1). Low t
statistics imply a valid model

Formally tests
validation. Tests the
mean and point-to-point
agreement

Test is backwards.
Normality is assumed
or CLT is invoked

WMT Apply standard whole-model
style F-test to the model
(H0 : β0 = 0; β1 = 1). Low
F-statistic implies a valid model

Formally tests
validation. Tests the
mean and point-to-point
agreement

Test is backwards.
Normality is assumed
or CLT is invoked

TOST Prove that the mean of xm is at
the same time not too far above
and not too far below the mean of
xp

Formally tests
validation

Tester has to define “not
too far”. Normality is
assumed or CLT is
invoked

PTTE Prove that the mean of xm is at
the same time not too far above
and not too far below the mean of
xp

Formally tests
validation. More
powerful than TOST but
tests different types of
limits

Tester has to define “not
too far”. Normality is
assumed

Fidelity Apply standard TOST to the
intercept (H0 : β0 �= 0) and the
slope (H0 : β1 �= 1). High t
statistics imply a valid model

Formally tests
validation. Tests the
mean and point-to-point
agreement

Tester has to define “not
too far”. Normality is
assumed or CLT is
invoked
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19.4 Examples

This section provides illustrative examples of the estimators and tests that are out-
lined in the previous sections. We show examples that exemplify the two primary
applications of equivalence tests for model validation, namely the assessment of fit-
ness of purpose, and the assessment of model fidelity, in the sense of how well the
model matches the process(es) that it is designed to represent. The R code for all the
tests reported here is available from the author. The equivalence tests were performed
using functions provided in the equivalence package (Robinson 2016).

19.4.1 Fitness for Purpose

Consider the following hypothetical scenario. A forest manager is interested in using
a specific model of tree shape, specifically relating the height of the tree to the cross-
sectional diameter as measured at 1.38m from the ground. Invocation of this model
will relieve the manager from the necessity of measuring the heights of the trees in
the forest, if the model can be relied upon. The manager measures the diameter and
height of a random sample of trees from a particular stand within the forest.

These data are plotted as Fig. 19.2 and available as the “ufc” dataset (Upper Flat
Creek, University of Idaho Experimental Forest) in the equivalence package (Robin-
son 2016) for the open-source statistical environment R Core Team (2017). The
model being tested is an empirical multiple regression-style model as documented in
Wykoff et al. (1982). Two outliers are ignored for the balance of the analysis; these
were dead trees that were measured in error and should not be included in live-tree
data for fitting a model.

We can now apply some of the estimators and tests that have been commonly
applied inmodel validation. The correlation between the predictions and observations
is 0.84. If we try to use a linear model to link the observations and the predictions,
then the point estimate of the intercept is about 1.1m (95% confidence interval:
−0.50, 2.7) and of the slope is about 0.94 (95% confidence interval: 0.87, 1.00). The
R2 value for the regression is 0.70 and the root mean squared error is 4.0m.

We now use these statistics to apply some traditional model validation tests. For
example, the confidence interval for the intercept includes 0 and the confidence
interval for the slope includes 1, so we would consider the model to be validated by
regression-style tests from Cohen and Cyert (1961). Similarly, the test for positive
correlation advanced by Kleijnen (1995) would conclude that the model is valid
because the slope is clearly greater than zero.

Next, we apply the various tests of equivalence. Themanager will be satisfiedwith
the model if the mean of the predictions is within a meter of the mean of the observa-
tionswith 95%confidence. The two one-sided confidence intervals for the difference,
that is the predictions subtracted from the observations, is (−0.76,−0.07), which is
contained completely within ±1m. According to the TOST, the model is valid.



19 Testing Simulation Models Using Frequentist Statistics 485

0

10

20

30

40

50

0 10 20 30 40 50

Predicted height (m)

M
ea

su
re

d 
he

ig
ht

 (m
)

Fig. 19.2 Observed (y-axis) and predicted (x-axis) tree heights for the Upper Flat Creek forest
stand, University of Idaho Experimental Forest. The solid line is the 1:1 line and the dashed line
shows the linear regression model of the measured height as the response variable and the predicted
height as its sole predictor. Two outliers are obvious

This conclusion is conditional on the model assumption that the sampling distri-
bution of the mean of the individual differences is Normal. A resampled estimate of
the distribution provided in the left-hand panel of Fig. 19.3 suggests that the assump-
tion is reasonable; the points are close to the straight line that represents the Normal
distribution.

We also validate the model using Wellek’s PTTE as coded in the equivalence
package of Robinson (2016). To do this we need a value for ε, which describes the
size of the interval of equivalence; Wellek recommends 0.25 as a stringent value, so
we adopt that here. The cutoff is 3.187, and the t statistic is −1.97. The absolute
value of this statistic is 1.97, which is less than the cutoff 3.187, so the model is
validated according to Wellek’s stringent test.
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Fig. 19.3 Normal quantile plots for (i) the repeated sample of the mean of the differences (LHS)
and (ii) the differences (RHS) of the measured UFC tree heights and predictions. The straight line
represents the Normal distribution

This conclusion is conditional on themodel assumption that the distribution of the
individual differences is Normal. A resampled estimate of the distribution provided
in the right-hand panel of Fig. 19.3 suggests that the assumption is reasonable; the
points are fairly close to the straight line that represents the Normal distribution.

Nowwe demonstrate the test of fidelity. Assume that the manager will be satisfied
with the model if the mean of the predictions is within 1 metre of the mean of the
observations with 95% confidence and the slope of the regression line is within 20%
of 1 with 95% confidence.

A graphical representation of the regression-based test of Robinson et al. (2005)
is presented in Fig. 19.4. The figure is interpreted as follows. The points are the
observations as before. The solid black line is the 1:1 line, provided for reference.
Two error bars intersect the solid black line at the mean of the predictions (x-axis).
The shaded rectangle shows the region of equivalence around the intercept: if the
narrower error bar is within the gray rectangle then reject the null hypothesis that
the intercept is dissimilar to zero; in the figure, the narrower error bar is inside the
rectangle. The dashed lines show the equivalence region around the 1:1 line: if the
wider error bar is within the dashed gray lines then we reject the null hypothesis that
the slope is dissimilar to 1; in the figure the wider error bar is within the dashed lines.
This figure shows that we reject the null hypothesis of dissimilarity at α = 0.05 for
the intercept atI0 = ±1m and for the slope atI1 = ±0.2. According to the test of
fidelity, the model is valid.

Based on the equivalence tests we believe that the manager can use the height–
diameter prediction model with reasonable confidence.
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Fig. 19.4 Observed (y-axis) and predicted (x-axis) tree heights for the Upper Flat Creek forest
stand, University of Idaho Experimental Forest, with regression-based TOST super-imposed. Sym-
bols are interpreted in the text

19.4.2 Validation of a Theoretical Model

In this second case study, we seek to test a process-based model of forest growth,
4-PG (Duursma et al. 2007), using measured forest growth data obtained from field
measurements taken in the Priest River Experimental Forest (PREF, for short) in
northern Idaho,USA. Themodelwas designed to be applied tomixed-species forests.
The PREF is a complex mixture of 12 conifer species, with altitude gradient 1000m
(700–1700m), mostly west-facing on steep slopes. Three species comprise 75% of
the basal area: Thuja plicata, Tsuga heterophylla, and Pseudotsuga menziesii. 35
field plots were located at random across the PREF, stratified by altitude and solar
insolation (Pocewicz et al. 2004), to obtain an unbiased sample of the forest structures
present within the PREF. Tree volume growth was estimated based on computations
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Fig. 19.5 Observed (y-axis) and predicted (x-axis) volume growth amounts for the Priest River
Experimental Forest, ID. The solid line is is the 1:1 line and the dashed line shows the linear
regression model of the measured height as the response variable and the predicted height as its
sole predictor

carried out upon 10-year increment cores. A scatterplot of the predicted volume
growth against the observed volume growth is provided in Fig. 19.5.

The correlation between the predictions and observations is 0.57. If we try to use
a linear model to link the observations and the predictions, then the point estimate
of the intercept is about 19.7m3ha−1decade−1 (95% confidence interval: 6.4, 32.9)
and of the slope is about 0.36 (95% confidence interval: 0.18, 0.54) The R2 value
for the regression is 0.33 and the root mean squared error is 14.0m3ha−1decade−1.

As above we can use these statistics to apply traditional model validation tests.
For example, the confidence interval for the intercept does not include 0 and the
confidence interval for the slope does not include 1, so we would consider the model
to not be validated by regression-style tests from Cohen and Cyert (1961). However,
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Fig. 19.6 Normal quantile plots for (i) the repeated sample of the mean of the differences (LHS)
and (ii) the differences (RHS) of the measured PREF forest volume growth and predictions. The
straight line represents the Normal distribution

the test for positive correlation advanced by Kleijnen (1995) would conclude that the
model is valid because the slope is clearly greater than zero.

Next, we apply the various tests of equivalence. We will be satisfied with the
model if the mean of the predictions is within 10m3ha−1decade−1 of the mean of the
observationswith 95%confidence.The twoone-sided confidence intervals for the dif-
ference, that is the predictions subtracted from the observations, is (−29.9,−17.2),
which is not contained completely within ±10m3ha−1decade−1. Under TOST, the
model is rejected as invalid.

This conclusion is conditional on the model assumption that the sampling distri-
bution of the mean of the individual differences is Normal. A resampled estimate of
the distribution provided in the left-hand panel of Fig. 19.6 suggests that the assump-
tion is reasonable; the points are close to the straight line that represents the Normal
distribution.

Again, we also validate the model using Wellek’s PTTE as coded in the equiv-
alence package of Robinson (2016). Wellek recommends 0.25 as a stringent value
for the interval of equivalence, so we adopt that here. The cutoff is 0.187, and the t
statistic is −6.33. The absolute value of this statistic is 6.33, which is greater than
the cutoff 0.187, so the model is not validated according to Wellek’s stringent test.

This conclusion is conditional on themodel assumption that the distribution of the
individual differences is Normal. A resampled estimate of the distribution provided
in the right-hand panel of Fig. 19.6 suggests that the assumption is reasonable; the
points are fairly close to the straight line that represents the Normal distribution.

The regression-based test of Robinson et al. (2005) is presented in Fig. 19.7. The
figure is interpreted as was Fig. 19.4. This figure shows that we fail to reject the null
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Fig. 19.7 Observed (y-axis) and predicted (x-axis) volume growth amounts for the Priest River
Experimental Forest, ID. Explanations of the shapes are in the text

hypothesis of dissimilarity atα = 0.05 for the intercept atI0=±10m3ha−1decade−1

and for the slope at I1 = ±0.2.
Based on the outcomes of the equivalence tests we believe that 4-PG requires

substantial work before it adequately captures volume growth in the Priest River
Experimental Forest; it has failed to have been validated.

19.5 Discussion

Wehave covered three overarching sets of Frequentist tools that can be used for statis-
tical model validation, namely estimates of goodness of fit (correlation, RMSE, etc),
NHST-based tests (t-tests, linear regression), and equivalence-based tests (TOST,
PTTE, and the test for fidelity).
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To some extent, the choice between them will depend on the nature of the valida-
tion required. But, if a validation test is required, then it is clear that the shortcomings
of the traditional tests identified byKleijnen (1995) and Robinson and Froese (2004),
and as outlined in this chapter, are corrected by equivalence tests, so the latter should
be preferred. Another way to consider the difference between traditional NHST and
equivalence tests is to note that …“The probability of a type I error in simulation is
also called the model builder’s risk; the type II error probability is the model user’s
risk” (Kleijnen 1995). That is, NHST protects the model builder by controlling the
model builder’s risk, whereas equivalence tests protect the model user by flipping the
null hypothesis from being that the model is valid to being that the model is invalid.

19.5.1 Generalizations

Anadvantage of the regression-style tests, bothNHST and equivalence, is that in each
case the outcome of the test is based on confidence intervals of the intercept and slope.
The means of obtaining the confidence intervals are up to the analyst. If the data have
hierarchical structure, or some kind of auto-correlation, then these characteristics can
be accommodated in the model used to estimate the slope and intercept, for example
using hierarchical statistical models, and therefore model validation can be tested
even with data that are derived from more complex circumstances.

Similarly, Aigner (1972) pointed out that the regression approach proposed by
Cohen and Cyert (1961) and extended here into the test for fidelity is inappropriate
in the case of stochastic simulation models, because the values of the predictor
variable, which are the model outputs, are not known exactly. In this case, however,
the model parameters can be estimated using a different statistical technique, for
example, major axis regression. The confidence intervals on the slope and intercept
estimates arising from the model can be interpreted as per the algorithm described
in Sect. 19.3.7; all that needs to change is the statistical algorithm used to obtain the
estimates.

The attentive reader will recall that in the analysis of the UFC data, we omitted
two outliers that were the measures from dead trees. This data-cleaning step is an
important one. We were able to remove these two observations with clear conscience
because we had external evidence that they were not relevant to the comparison we
wanted to make: they were dead trees. In our case, it would not have made any
difference to the outcome; the outliers were swamped by the clean data. But what if
we had had no other information about the observations, and therefore no principled
way to exclude them from the exercise? Thenwe could have invoked robust statistical
techniques. Again, we could compute the one-sided intervals needed for the TOST,
but using robust statistical techniques to obtain the estimates and intervals, in place
of the standard statistical approaches used in this case.
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19.5.2 Significant and Important?

One potential criticism that can be leveled at the equivalence tests is the seeming
arbitrariness of the establishment of the region of equivalence. Surely it is possible,
this criticism imagines, to simply select a region of equivalence that corresponds to
our intervals, and thus cook up a spurious validation? And of course this sequence
of events is possible, just as it is possible for a disingenuous analyst to choose a
convenient value for the size of their NHST. However, the magnitude of the region
of equivalence must be declared, and regardless of how it was obtained, if the model
user finds the value inappropriate for their own usage, then they can perform their
own test if the documentation is complete.

Setting this rejoinder aside, in any case, it is also because of the establishment of
this region that the equivalence tests evade the criticism of NHST, namely that arbi-
trarily small differences can be rendered significant—thereby rejecting themodel—if
the test has a sufficient sample size. TheTOST equivalence test, for example, declares
the model as validated if the overlap of the one-sided intervals is contained within the
region of equivalence. Therefore the model cannot fail to be validated for arbitrarily
small differences based on a large sample size.

19.5.3 Nuisance Parameters

A further general concern with the validation of models is in the possibility of tuning
of model outputs by changing parameter values to ensure that the model predictions
better match the process measures. Even in cases where an analyst takes pains to
completely quarantine the model construction from model testing, the parameters
may have been inherited from earlier studies that themselves may have reflected
some tuning. There is no perfect answer in this scenario. However, there are practices
that are clearly less ideal, for example, altering the parameters of a model merely to
improve its performance in a validation setting. The risks can be circumnavigated
by separating the model testing and the model updating steps: the model can fail to
be validated and then the learnings from the validation data can be incorporated into
a new version of the model, which then of course must be validated in a separate
exercise.

19.5.4 Bayesian or Frequentist Approach?

We conclude the discussion with a few comments about the use of Frequentist tools
for model validation as opposed to Bayesian tools, which are described in a com-
panion chapter in this book (see Chap.20 by Jiang; cf. also Chap. 7 by Beisbart in
this volume).

http://dx.doi.org/10.1007/978-3-319-70766-2_20
http://dx.doi.org/10.1007/978-3-319-70766-2_7
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First, any kind of statistical validation is greatly preferable to the sadly all-too-
popular practice of plotting the predictions against the observations and commenting
that they line up pretty well. Visual inspection and interpretation of data patterns
suffer from well known cognitive biases, not least amongst which is overweening
optimism, and the statistical validation will inevitably be more reliable regardless of
whether it is from the Frequentist or Bayesian foundation. The difference between
the Bayesian and Frequentist tools is less important than that reliable statistical tools
be used, and that their application be thoughtful and honest, and that the various
decisions taken be documented carefully.

Briefly, the difference between the Frequentist and Bayesian approaches can be
distilled to a trade-off between resilience and efficiency. It is almost invariably true
that Bayesian approaches are as or more efficient than Frequentist approaches in
terms of how they use the available data. This means that, all else equal, more
precise estimates can usually be drawn from data in the Bayesian setting.

However, this greater efficiency comes at the cost of lower resilience. Bayesian
techniques require the analyst to bring more opinion to the analysis, in the forms
of probability distributions upon all of the parameters. This reliance upon so-called
prior information opens the Bayesian analysis to accusations of arbitrariness. In
vernacular terms, the Bayesian analysis has more moving parts, and therefore greater
vulnerability to breakage.

Often, to try to evade criticisms of arbitrariness, Bayesian analyses will adopt
one of a number uninformative prior probability distributions, which express (to the
best of their mathematical ability) a position of ignorance or indifference about the
true value of the parameter. However, even this adoption represents a choice by the
analyst, and while it may be the best supported or even the most conservative choice,
depending on the context, it is nonetheless a choice, and other choices could be
made that may yield different outcomes. Therefore the outcomes of the analysis are
contingent on this weightier and fragile apparatus.

Frequentist analysis is not entirely safe from analogous accusations. The Fre-
quentist approach also demands the invocation of probability distribution functions
as a fundamental part of inference. Often, the analyst will invoke the CLT in order
to assume that the sampling distribution of the sample mean is Normal; such a step
greatly simplifies the analysis. But then, the CLT does not make any comment about
the Normality or otherwise of the sample mean of the data at hand, rather, it says
that if we had a larger sample, then the distribution of the mean would be likely to
be closer to Normal, and if we had a smaller sample, then the distribution of the
mean would be likely to be less Normal. A resilient way to proceed is by resampling
estimates of the mean from the sample, and comparing the resampled distribution
with the Normal distribution, for example by a quantile–quantile plot—as we have
done in this chapter.

Furthermore, the Frequentist model of probability depends upon the principle
of an infinite sequence of repeatable instances of experiments. This an appealing
principle in cases of very simple experimental setups, such as the flip of a coin or the
shuffling of a deck of cards. However, the principle is less straightforward to invoke in
cases of field or forest experiments (Heraclitus might have said that one cannot take a
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sample from the same river twice). Therefore infinite repeatability is a vexing concept
in the Frequentist setup. However, the Frequentist approach captures the arguably
non-repeatable aspects in the noise parameter of the model (σ 2 in Eq.19.1). The
assumption of infinite repeatability is therefore conservative, and non-repeatability
is arguably compensated in the model, and the tests that arise from it, by the fact that
noisy data lead to less powerful tests.

19.5.5 Conclusion

We have outlined the problem of model validation as tackled through statistical tools
that arise in theFrequentistmodelingparadigm.Wesurveyed a collectionof statistical
tools that have previously been applied to model validation, and pointed out that the
interpretation of some of them is complicated by their very nature: they are tools
designed to split, to detect differences, rather than to lump, to detect similarities. We
showed that equivalence tests can fulfil this latter role, and provided two case studies
demonstrating their application.

Using equivalence tests, arbitrarily small differences cannot be detected through
arbitrarily large samples, and failure to detect a difference cannot be explained away
by low power. The importance, as opposed to statistical significance, enters through
the specification of the region of equivalence. For these reasons we argue that equiva-
lence tests are superior to the usual hypothesis testswhen the goal ismodel validation,
and the former should be adopted whenever possible.

We conclude with an aphorism: there is only one kind of analyst, and some of
them split whereas some of them lump.
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Chapter 20
Validation Using Bayesian Methods

Xiaomo Jiang, Xueyu Cheng and Yong Yuan

Abstract Quantitative model validation is playing an increasingly important role in
performance and reliability assessment of a complicated systemwhenever simulation
is involved. This chapter discusses model validation from a Bayesian perspective,
considering in particular data uncertainty. First, Bayes’ theorem is defined, then
the Bayesian risk rule method is introduced. Explicit expressions for the Bayesian
interval hypothesis testing approach are presented in both univariate andmultivariate
cases. The problemof non-normal validation data is addressed by theBox–Cox trans-
formation. A generalized procedure is presented to implement Bayesian validation
methods. Classic hypothesis testingmethod is utilized to conduct a comparison study.
The impact of the data normality assumption and of the variation of the threshold
on model assessment accuracy is investigated by using both classical and Bayesian
approaches. The Bayesianmethodology is illustrated with a reliability model of rotor
blades, a univariate stochastic damage accumulation model, and a multivariate heat
conduction problem.

Keywords Bayesian statistics · Hypothesis testing · Box–Cox transformation ·
Bayes network · Model validation · Non-normality

20.1 Introduction

Due to the rapid advance of computer technology and to the high prohibitive costs of
full-scale testing, model-based simulation has been increasingly used in the design
and analysis of complex systems in science and engineering (e.g., Roache 1998;
Kennedy and O’Hagan 2001; Oberkampf and Trucano 2002; Babuska and Oden
2004; Chen et al. 2004, 2008). A computational model is established either from
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measured field data, from an underlying mechanism, or comprehensively from the
combination of field data and amechanism, to approximate a real-world process. The
resultingmodel is then used to simulate the process in the target system under various
scenarios, e.g., for design optimization, safety analysis, and reliability assessment
of the underlying physical system. Before the model can be applied, quantitative
validation is needed to establish confidence in the model predictions. The computa-
tionalmodel, however, always contains a broad spectrumof uncertainties or unknown
factors, which stem mainly from uncertainties in the measurement, modeling, cod-
ing, and parameters. These uncertainties are usually classified into two categories:
aleatoric uncertainty and epistemic uncertainty (cf. Chap. 5 by Roy in this volume).
The former is irreducible, as in inherent variability, such as statistically distributed
properties and manufacturing variability, while the latter is potentially reducible
uncertainty due to lack of knowledge, such as model form and initial and boundary
condition v approximations. Quantitative approaches are usually required to handle
the uncertainties in the model validation.

In the past decades, the fundamental concepts andmethodologies formodel verifi-
cation and validation have been widely investigated by several organizations such as
the United States Department of Defense (1996), American Institute of Aeronautics
and Astronautics (1998), Advanced Simulation and Computing (ASC) program of
the United Sates Department of Energy (2000), and American Society of Mechani-
cal Engineers Council (2002, 2006). Figure 20.1 shows the interaction of modeling,
verification and validation, which is modified from the so-called Sargent circle in
Schlesinger (1979). A real-world physical system, e.g., a rotor blade in the engine
rotor of an aircraft, is numerically modeled, leading to a mathematical model. The
mathematical model, for instance, may be represented by a set of partial differential
equations,which is obtained by analyzing the real physical systemconceptually.Note
that, the model yields a conceptual/mathematical/numerical description of the physi-
cal system, including geometrical data, material properties, and initial and boundary
conditions. Next, the mathematical model is converted into a computational model
in terms of a numerical algorithm via programming or coding. The computational
model represents the physical systemwith the initial and boundary conditions as well
as its material properties.Model verification is used to check whether the mathemat-
ical model has been converted into the computational model correctly (cf. Chap. 10
by Rider in this volume). In the process of verification, confidence needs to be estab-
lished via comparing model results with analytical solutions or benchmark problems
to ensure that the code is free of errors. Furthermore, confidence needs to be estab-
lished that the model is an accurate representation of the real-world physical system.
Model validation involves comparing model predictions with data from the target
system. Based on the comparison results, the decision maker can judge whether to
accept or reject the model. This chapter is focused on quantitative validation of the
computational model under uncertainties.

In the past, subjective judgments based on graphical plots were often used to
assess how good the model is. But the quality of the computational model can-
not be assessed quantitatively in a graphical comparison. In addition, many critical
issues, such as data correlation between multiple variables, uncertainties in both test
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Fig. 20.1 Interaction of
modeling, verification, and
validation (modified from
the Sargent circle originally
created by Schlesinger 1979)
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and model predictions, and confidence in the model, are ignored. Oberkampf and
Barone (2006) have demonstrated that model validation has progressed from qual-
itative graphical comparisons, without considering uncertainties in either test data
or model prediction, to quantitative analysis of the differences between experiments
and predictions with the consideration of uncertainties. Recently, increasing atten-
tion has been paid to quantitative validation comparisons considering uncertainties
in both experimental and model outputs. To develop an effective model assessment
approach to ensure sufficient accuracy of model predictions, a proper validation met-
ric is needed as quantitative measure of agreement between two sets of data under
uncertainty (see e.g., Roache 1998; Oberkampf and Trucano 2002; Babuska and
Oden 2004; Mahadevan and Rebba 2005; Oberkampf and Barone 2006; Rebba and
Mahadevan 2006a, b, 2008; Schwer 2007; Jiang and Mahadevan 2007, 2008a, b,
2009a, b, 2010; Chenet al. 2008).

Statistical hypothesis testing is a widely used quantitative approach to validation
of a computational model under uncertainty [see Oberkampf and Barone (2006)
for a comprehensive state-of-the-art review]. Two types of hypothesis testing-based
approachesmaybe pursued to developmodel validationmetrics: classical (also called
frequentist or error statistical) and Bayesian methods. Classical hypothesis testing is
a well-developed statistical method for rejecting amodel on the basis of a test statistic
(see e.g., Hills and Trucano 2002; Chen et al. 2004; Oberkampf and Barone 2006; see
also Chap. 19 byRobinson in this volume). It leads to a decision about themodel: The
so-called p-value is obtained in the hypothesis test and used as a decision variable to
determinewhether to accept or reject the null hypothesis (i.e., to judge a validmodel).
In the past decade, alternatively, Bayesianmethods have been developed to determine
the predictive capabilities of computational models (see e.g., Kennedy and O’Hagan
2001; Chen et al. 2004, 2008; Mahadevan and Rebba 2005; Rebba and Mahadevan
2006a, b, 2008; Jiang and Mahadevan 2007, 2008a, b, 2009a, b, 2010). One major
difference between the Bayesian and classical hypothesis testing approaches lies in
the fact that the Bayesian approach focuses on model acceptance, whereas classical
hypothesis testing focuses onmodel rejection. It should bementioned that not having
enough evidence to reject a model is not the same as having enough evidence to
accept the model. The differences between classical and Bayesian hypothesis testing
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have been discussed in detail by many researchers (e.g., Berger and Delampady
1987; Hwang et al. 1992). Bayesian hypothesis testing-based methods (Zhang and
Mahadevan 2003), Bayesian risk-based decision-making methodology (Jiang and
Mahadevan 2007), and Bayesian structural equation modeling approach (Jiang and
Mahadevan 2009b, 2010) have also been explored for model assessment. These
metrics have been investigated with various model validation problems using limited
amount of experimental data. Refer to Mahadevan and Rebba (2005) and Jiang and
Mahadevan (2007, 2008a, b) for details of the Bayesian validation methods and their
applications.

The aim of this chapter is to introduce Bayesian methods of model validation.
Some basics are given in Sect. 20.2. The Bayesian decision rule is presented in
Sect. 20.3. Then, Bayesian univariate interval hypothesis testing approach is dis-
cussed (Sect. 20.4). The Multivariate case is presented in terms of Bayesian hypoth-
esis testing approaches (Sect. 20.5). Explicit expressions for the interval hypothesis
testing-based Bayes factor are derived for both univariate and multivariate cases.
Next, the Bayesian confidence measure is presented based on the Bayes factor. Non-
normal data transformations and Bayes networks are also introduced. A generalized
procedure is proposed to implement the proposed Bayesian methodology for model
validation of complicated systems with either single or multiple response quantities.
Finally, in Sect. 20.10, the Bayesian methods are investigated with three examples,
namely, a reliability model of rotor blades in aircraft engines, a univariate stochastic
damage accumulation model, and a multivariate heat conduction problem.

20.2 Fundamentals

In the decision-based approach to model validation, let d0 denote the decision to
accept the null hypothesis H0: y � y0, where y0 and y are the predicted and actual
values of a physical quantity of interest, respectively. Let likewise d1 denote the
decision to accept the alternative hypothesis H1: y �� y0. A utility function u(di,
y) is defined in order to choose di based on a decision rule. Given the observed
data Y , the decision d0 is made if and only if E[u(d0, y) − u(d1, y)|Y ] > 0. In the
classical statistics approach, given the experimental observations, a hypothesis test is
conducted in terms of the conditional probabilities of Type I error (rejecting a correct
model) and Type II error (accepting a wrong model). An expected loss function is
defined based on the conditional error probabilities. Either a squared loss function
or an absolute error metric is usually chosen as the difference in the loss function
(Schervish 1995). The task of a decision is to minimize the expected loss. Balci
and Sargent (1981) presented a classical hypothesis testing-based cost–risk decision
analysis to validate a simulation model of a real system, considering the model user’s
risk, model builder’s risk, acceptable validity range, budget, sample sizes, and cost
of data collection.

In the Bayesian approach, the task of deciding between H0 and H1 is conceptually
more straightforward. One merely needs to calculate the posterior probabilities α0
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� Pr(H0|Y ) and α1 � Pr(H1|Y ), or their likelihoods given experimental data. An
expected loss function is then defined as a function of α0 and α1. Its conceptual
advantage is that α0 and α1 are the actual probabilities of the hypotheses in light of
the observed data and prior knowledge.

There are two types of Bayesian hypothesis testing methods: point-based and
interval-based approaches. The former tests whether the difference between model
prediction and experimental observation is equal to zero,while the latter testswhether
the difference is within an allowable limit. The study by Rebba and Mahadevan
(2008) has demonstrated that the interval-based hypothesis testing method provides
more consistent validation results than a point hypothesis testing method. As the
amount of data increases, the interval-based method converges to the correct infer-
ence. Recently, Jiang and Mahadevan (2008b, 2009a, b) have derived an explicit
expression for calculating the Bayes factor based on the interval-based hypothesis
testing,with the purpose of facilitating the overall reliability assessment ofmodel val-
idation. Refer to Jiang and Mahadevan (2008b, 2009a) for details about the interval-
based Bayesian validation metric as well as its applications.

The Bayesian approach to validation makes heavily use of Bayes’ theorem, also
known as Bayes’ rule. The latter is a combination of traditional probabilities and
statistics. Let A and B be the two events. The conditional probability of event A
given that we know event B has occurred, P(A|B), can be mathematically expressed
as

P(A|B) � P(A∩ B)

P(B)
(20.1)

where P(B) is the probability of event B, which must be positive, i.e., P(B) > 0, and
P(A∩B) is the probability that both A and B occurred. Since P(A∩B) � P(B∩A),
Eq. (20.1) can be rewritten as follows:

P(A∩ B) � P(A|B)P(B) � P(B|A)P(A) (20.2)

By dividing the right-hand equality by P(B), one obtains Bayes’ theorem:

P(A|B) � P(B|A)P(A)
P(B)

(20.3)

Bayes’ theorem, as expressed inEq. (20.3), links the conditional probabilityP(B|A) to
the other conditional one P(A|B). It involves two basic concepts specific to Bayesian
methods: the prior probability P(A) and the posterior probability P(A|B). The prior
is the unconditioned probability which is usually used to incorporate the previous
experience or knowledge, while the posterior is the conditional one.

Like traditional statistical validation metrics, for instance, the p-value from
hypothesis testing, the Bayes factor can be considered to be a metric to evaluate
the model accuracy. The Bayes factor is often called the likelihood ratio of data
given the binary hypothesis testing (H0: model accepted vs. H1: model rejected). It
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may be derived explicitly from hypothesis testing or implicitly from a Bayes network
via numerical simulation. In the following, the Bayesian decision rule is presented to
determine a validation threshold considering decision costs. The Bayes factor metric
is then derived from univariate and multivariate interval hypotheses to address the
limited number of data and uncertainties in the model validation.

20.3 Bayesian Decision Rule

Assuming that event A is a hypothesis and that B is new data or evidence, Bayes’ rule
is applied to update the belief about the hypothesis A in the light of new evidence
B. Specifically from Eq. (20.3), the posterior belief P(A|B) can be calculated by
multiplying the prior belief P(A) with the conditional probability (or likelihood)
P(B|A) that B will occur if A is true (see Chap. 7 by Beisbart in this volume for a
philosophical introduction to Bayesianism).

Within the context of binary hypothesis testing in model validation, we need to
consider two hypotheses H0 and H1. The classical interval-based hypotheses are
represented as null hypothesis H0 : |d| ≤ ε versus alternative hypothesis H1 : |d| > ε,
where d is the difference of a univariate variable between the model prediction and
validation data, and ε is a predefined value. The decision maker or model user has
to decide which threshold is acceptable. The symbol |.| denotes the absolute value.
Here we are testing whether the difference d is, in fact, close to zero. The prior
probabilities of two hypotheses are denoted by

π0 � Pr(H0) andπ1 � Pr(H1) (20.4)

Note that π1 � 1 − π0 for the binary hypothesis testing problem. Each time model
validation is conducted given the experimental data, one of the four possible scenar-
ios, [Hi|Hj] (i � 0, 1; j � 0, 1), may happen, where [Hi|Hj] is the event of inferring
Hi when Hj is true. In analogy to the classical testing approach, the type I and II
error probabilities (α and β, respectively) are calculated as

α � Pr(H1|H0) andβ � Pr(H0|H1) (20.5)

Let Z represent the entire experimental data set, and Z0 and Z1 represent two
mutually exclusive subsets of Z such that Z0 ∪ Z1 � Z , and Z0 ∩ Z1 � ∅, where
∪ and ∩ represent union and intersection, respectively, and ∅ represents an empty
set or null space. Thus, Z0 and Z1 represent two decision regions corresponding to
two hypotheses H0 and H1. Every possible observation Y belongs to either decision
region. The problem to be solved here is to assign each experiment to Z0 or Z1 such
that a minimum risk in model validation is obtained. Figure 20.2 shows a schematic
illustration of the decision-based validation method.
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Fig. 20.2 Schematic
illustration of Bayesian
decision-based model
validation
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Assume that the observation Y has a probability density function under each
hypothesis, i.e., Y |H0 ~ f (y|H0) and Y |H1 ~ f (y|H1). Thus, Pr[Hi |Hj ] �∫
Zi

f (y|Hj )dy (i � 0, 1; j � 0, 1) is obtained. The loss function (or risk) for model
validation is defined to be the expected cost of validation, which is obtained by aver-
aging the decision cost (the preferences of a decision maker) over two probabilities:
the prior probability of the hypothesis and the probability of a particular action to be
taken (Nowak and Scott 2004; Jiang and Mahadevan 2007):

R �
∑1

j�0

∑1

i�0

(

ci jπ j

∫

Zi

f (y|Hj )dy

)

(20.6)

where cij � the cost of deciding Hi when Hj is true (decision consequence).
Based on the assumption that the total risk (cost) resulting from a correct decision

is always less than the total risk resulting from a wrong decision, Jiang and Mahade-
van (2007) derive the Bayes decision rule to accept the model through minimizing
the total Bayes risk (Eq. 20.6) as follows:

Λ(y) � f (data|H0)

f (data|H1)
� f (y|H0)

f (y|H1)
>

π1(c01 − c11)

π0(c10 − c00)
� η (20.7)

where�(y) is the likelihood ratio, referred to as Bayes factor, and η is the acceptable
threshold which is dependent on the prior densities of the two hypotheses and the
costs of deciding Hi when Hj is true (i � 0, 1; j � 0, 1). Equation (20.7) is the
Bayesian decision rule developed by Jiang and Mahadevan (2007) for univariate
model validation. When particular cost information ci (e.g., c00 � c11 � 0 and c01 �
c10 � 1) and prior densities π i (e.g., π0 � π1 � 0.5) are assumed, the threshold η =1
is obtained, as the Bayes factor approach proposed by Zhang and Mahadevan (2003)
for model validation. For the sake of simplicity, this particular cost information
is applied in the examples for univariate and multivariate hypothesis testing cases
below.

In practical applications of theBayes risk approach tomodel validation, it becomes
critical to efficiently compute the probability density (or likelihood) function of
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experimental data under each hypothesis. If data is available only on one or more
intermediate quantities, a Bayes network (Jensen and Jensen 2001) approach and
a Markov chain Monte Carlo (MCMC) simulation technique have been suggested
by Mahadevan and Rebba (2005) to estimate the probability density of the response
quantity of interest. In the following Sects. 20.4 and 20.5, the likelihoods of exper-
imental data under two hypotheses are derived mathematically based on Bayes’
theorem for both univariate and multivariate model validation, respectively.

20.4 Bayesian Univariate Hypothesis Testing

In classical interval-based hypothesis testing, the difference d must follow a normal
distribution such that the one-sample t-test can be performed to determine the p-
value. The decision rule based on the resulting p-value is used for the test, i.e., if
the p-value is smaller than some threshold, then H0 is rejected. Note that, not having
enough evidence to reject a model is not the same as having enough evidence to
accept the model, which will be demonstrated later in the illustrative examples.

Bayesian interval-based hypothesis testing is presented here to derive the Bayes
factor metric explicitly. We assume that the difference d has a probability density
function (PDF, or likelihood function) under each hypothesis, i.e., d|H0 ~ f (d|H0)
and d|H1 ~ f (d|H1). Usually, we assume that (1) the difference data vector d � {e1,
e2, …, en} follows a normal distribution N (μ, σ 2) with known standard deviation σ

(estimated from data), and (2) a prior probability density function for the mean μ

under both null and alternative hypotheses, denoted by f (μ), is taken to be normal
too:N(ρ, τ 2). The selection of the proper value of ρ and τ is still a matter of argument
between Bayesians and frequentists (Migon and Gamerman 1999). If no information
on f (μ) is available, the parameters ρ � 0 and τ 2 � σ 2 are suggested in Migon
and Gamerman (1999). This selection assumes that the amount of information in
the prior is equal to that in the observation, which is consistent with the Fisher
information-based method (Kass and Raftery 1995). Given a set of validation data,
the likelihood ratio, referred to as the Bayes factor (Bi) in the interval hypothesis
testing, is calculated using Bayes’ theorem as (Jiang and Mahadevan 2009a)

Bi � f (Data|H0)

f (Data|H1)
� ∫ε

−ε f (d|μ) f (μ)dμ

∫−ε
−∞ f (d|μ) f (μ)dμ + ∫∞

ε f (d|μ) f (μ)dμ
(20.8)

Note that by using Bayes’ theorem in Eq. (20.3), f (μ|d) ∝ f (d|μ) f (μ), Eq. (20.8)
can be easily transferred to the area ratio of the posterior density of μ under two
hypotheses, expressed as follows (see Fig. 20.3, where ε1 � −ε and ε2 � ε):

Bi �
∫ ε

−ε
f (μ|d)dμ

∫ −ε

−∞ f (μ|d)dμ +
∫ ∞
ε

f (μ|d)dμ
� K

1 − K
(20.9)
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Fig. 20.3 Geometric
meaning of interval-based
Bayes factor method in
univariate case
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where K � ∫ ε

−ε
f (μ|d)dμ represents the area of the posterior density of μ under the

null hypothesis and 1 − K represents the area of the posterior density of μ under
the alternative hypothesis (Fig. 20.3). The value of K is calculated by (Jiang and
Mahadevan 2009a)

K � Φ

(
λ2 − μ′

σ ′

)

− Φ

(
λ1 − μ′

σ ′

)

(20.10)

in which �(.) is the standard normal distribution with λ1 � −ε
√
nτ 2 + σ 2, λ2 �

ε
√
nτ 2 + σ 2, μ′ � nēτ 2+ρσ 2√

nτ 2+σ 2
and σ ′2 � σ 2τ 2. Note that the quantity K in Eq. (20.10)

is dependent on the value of ε. The decision maker or model user has to decide what
ε is acceptable. When ε → ∞, Bi in Eq. (20.9) will increase indefinitely, thus the
data will always support the model. When ε → 0, Bi in Eq. (20.9) will approach zero
(i.e., the nominator in Eq. (20.9) or the shadowed area in Fig. 20.3 approaches zero),
thus the data will always reject the model. Refer to Jiang and Mahadevan (2009a)
for the details about the derivative of the interval-based Bayes factor.

20.5 Multivariate Bayesian Hypothesis Testing

The Bayesian interval-based hypothesis testing method has been developed for mul-
tivariate model validation (Jiang and Mahadevan 2008b). Like the univariate case,
explicit expressions were derived to calculate the Bayes factor based on interval
hypothesis testing for the multivariate case, with the assumption of multivariate
normal distribution for difference data. The multivariate model validation problem
becomes testing the two hypothesesH0:μ �E0 versusH1:μ ��E0 withμ|H1 ~N(ρ,
�), where μ is the multivariate mean variable, E0 is a zeros vector, and ρ and � are
the assumed mean vector and covariance matrix for the multivariate normal distribu-
tion, respectively. In this section, the multivariate interval-based hypothesis testing
method is presented to facilitate the overall validation assessment of computational
models with higher accuracy.

Similar to the univariate case, the Bayes factor for the multivariate case, Bi,M, is
expressed as follows:
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Bi,M � f (Data|H0)

f (Data|H1)
� ∫ε2

ε1
f (δ|D)dδ

∫ε1−∞ f (δ|D)dδ + ∫∞
ε2

f (δ|D)dδ
� KM

1 − KM
(20.11)

where the multivariable integral of KM � ∫ ε2
ε1

f (δ|D)dδ represents the volume of the
posterior density of δ under the null hypothesis, and again ε1 and ε2 are the lower and
upper threshold that the decision maker needs to set, respectively. The value of 1 −
KM represents the area of the posterior density of δ under the alternative hypothesis.
Instead of the italic subscript in Eq. (20.8) for the Bayes factor, the bold subscript is
used in Eq. (20.11) to represent the multivariate case. Refer to Jiang and Mahadevan
(2008b) for the details about the numerical integration in Eq. (20.11).

In Eq. (20.11), the parameter KM can be obtained using the standard multivariate
normal distribution as follows

KM � Φ
(
θ′
2,Z0,�

) − Φ
(
θ′
1,Z0,�

)
(20.12)

in which the parameters θ′
1 � (ε1 + e0)

√
n|�| + |�|, θ′

2 � (ε2 + e0)
√
n|�| + |�|,

Z0 � nD̄|�|+ρ|�|√
n|�|+|�| , and � � �|�|, and �(.) presents a multivariate normal cumulative

distribution function, which is computed using the numerical algorithm proposed by
Genz (1992). The symbol� is am×m covariancematrix of all variables. The symbol
|.| denotes the determinant of a matrix. Let Di � [ Di1 Di2 · · · Dim ]T (i � 1, 2, …,
n) represent the ith difference of m component variables, each having n data points,

D̄ � [ D̄1 D̄2 · · · D̄m ]T is them component average values with D̄i � 1
n

n∑

j�1
Di j (i �

1, 2, …, m).
Figure 20.4 shows the geometric meaning of the interval-based Bayes factor in

the bivariate case with the standard normal distribution for the two variables. The
cylinder in Fig. 20.4 represents the volume of the posterior PDF under the null
hypothesis, defined by the density function within the given interval

[
θ′
1, θ

′
2

]
(i.e.,

KM). As the variation of the posterior density of μ decreases, its volume within the
interval increases. Obviously, if validation data are to support the model (i.e., ε1 ≤
|D| ≤ ε2), the volume of the posterior PDF under the null hypothesis will increase
(a larger volume of the cylinder in Fig. 20.4); otherwise, the area will decrease (a
smaller volume of the cylinder in Fig. 20.4).

20.6 A Bayesian Measure of Evidence

Note that, the quantity K in Eq. (20.9) or KM in Eq. (20.11) is dependent on the
initial interval threshold (e.g., ε in Eq. 20.9). The decision maker or model user
has to decide which threshold is acceptable. When the threshold approaches ∞, the
Bayes factor value will increase indefinitely, thus the data will always support the
model. When the threshold approaches 0, the obtained Bayes factor will approach
zero (i.e., the nominator in Eqs. (20.9) or (20.11) or the shadowed area in Figs. 20.3 or
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Fig. 20.4 Geometric meaning of interval-based Bayes factor in bivariate case

20.4 approaches zero), thus the data will always reject the model. Since the obtained
Bayes factor is nonnegative, the Bayes factor is often converted into the logarithm
scale for the convenience of comparison among a larger range of values [e.g., bi �
ln(Bi) for Eq. (20.9)]. Kass and Raftery (1995) suggest interpreting the logarithm of
the Bayes factor between 0 and 1 as weak evidence in favor of H0, between 3 and 5
as convincing evidence, and greater than 5 as very strong evidence. Negative bi of
the same magnitude is said to favor H1 by the same amount. This thumb guideline
is applicable for both the univariate and multivariate cases.

The Bayesian measure of evidence that the computational model is valid may
be quantified by the posterior probability of the null hypothesis Pr(H0|d). Using
the Bayes theorem described previously, the relative posterior probabilities of two
models are obtained as

Pr(H0|d )

Pr(H1|d )
�

[
Pr(d |H0 )

Pr(d|H1 )

][
Pr(H0)

Pr(H1)

]

(20.13)

where the term in the first set of square brackets on the right-hand side is referred to as
“Bayes factor” (Jeffreys 1961), as it is defined in Eq. (20.7). The prior probabilities
of the two hypotheses are denoted by π0 � Pr(H0) and π1 � Pr(H1). Note that
π1 � 1− π0 for the binary hypothesis testing problem. Assume that π0 � π1 � 0.5
in the absence of prior knowledge of each hypothesis before testing. Thus, Eq. (20.13)
becomes:

Pr(H0|d)
/
Pr(H1|d) � Bi (20.14)
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where Pr(H1|d) represents the posterior probability of the alternative hypothesis (i.e.,
model is rejected). In this situation, the Bayes factor is equivalent to the ratio of the
posterior probabilities of two hypotheses. For a binary hypothesis testing we have
Pr(H1|d) � 1− Pr(H0|d). We assume that the prior probabilities of two hypotheses
to be Pr(H0) � π0 and Pr(H1)� 1 − π0. Without loss of generality, from Bayes’
theorem in Eq. (20.13), the confidence in the model based on the validation data can
thus be quantified as

κ � Pr(H0|Data) � Biπ0/(Biπ0 + 1 − π0) (20.15)

Obviously, from Eq. (20.15), Bi → 0 indicates 0% confidence in accepting the
model, and Bi → ∞ indicates 100% confidence. Note that, expert opinion about the
model accuracy may be incorporated in the confidence quantification in Eq. (20.15)
in terms of prior π0. If no prior knowledge of each hypothesis (model accuracy) is
available, the unbiased assumptionπ0 � 0.5 is used to quantify themodel confidence.
For the multivariate case, Bi in Eq. (20.15) will be replaced by BM to quantify the
model confidence.

20.7 Bayes Network

Bayesian validation may be realized by the construction of a Bayes network (Jensen
and Jensen 2001). A Bayes network (BN) is a directed acyclic (one-way) graphical
representation with nodes to represent the random variables and arcs to show the
conditional dependencies among the nodes. It is typically specified as a collection of
conditional distributions. Data in every node can be used to update the statistics of
all other nodes. This property makes the Bayes network a powerful tool to calculate
the Bayes factor or validation metric in some complicated situation. The posterior
distribution of a validation metric is the output of the Bayes network.

Figure 20.5 shows a typical Bayes network to update the validation decisionmetric
d using specific inspection data. An ellipse (for example, for the model parameters
θ and φ) represents a random variable (which may be vector-valued), a bold cir-
cle represents a deterministic variable (i.e., y), and a rectangle (for example, the
inspection data Y) represents the observed data. A solid line arrow represents a con-
ditional probability link, and a dashed line arrow represents the link of a variable
to its observed data if available. The probability densities of the model parameter
variables (θ and φ) are updated using the observed data Y. The updated statistics are
then used to produce model predictions and to estimate the updated statistics of the
decision variable d about the model quality in the validation domain. In addition,
model predictions are related to model parameters (θ and φ) and input variables (X).
The Bayes network thus links the relationship coefficients to the validation domain
to facilitate two objectives: (1) uncertainty quantification and propagation and (2)
decision inference in validation domain.
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Fig. 20.5 Concept of Bayes
network

d 


z

y
Y

Z

X

20.8 Non-normal Data Transformation

So far, the data was required to follow normal distribution. In particular, Bayesian
hypothesis testing-based methods for model assessment are based on the assumption
that the error follows a normal distribution. This assumption is often violated in
practice, which may lead to erroneous decisions on the model validity. In the case of
non-normality, an appropriate transformation may be applied to convert the data, and
then, a Bayesian metric needs to be derived from the transformed data to quantify
the confidence on the model.

Rebba andMahadevan (2006b) have discussed variousmethods for non-normality
data transformation. These approaches include Rosenblatt transformation (Rosen-
blatt 1952), Nataf transformation (Nataf 1962), Power and modulus transformations
(Box and Cox 1964), and Pericchi’s Bayesianmethod (Pericchi 1981). Each transfor-
mation technique may be suitable for a particular application and used according to
the researcher’s preference. Generally speaking, Rosenblatt transformation requires
an actual closed-form conditional distribution of the data, which is almost impossible
in many practical cases, particularly for the multivariate case. The Nataf transfor-
mation requires that the data is not jointly normally distributed, which may not
be accurate in many multivariate cases. Pericchi’s Bayesian transformation method
requires careful selection of priors for the data, which makes the transformation
complicated to implement. In contrast, the power transformation method proposed
by Box and Cos (1964) is mathematically tractable, simple to implement and free
of strict requirements or significant assumptions. In addition, this method does not
require exact closed-form distribution for the response quantity of interest. There-
fore, the power transformation is employed to convert the non-normal data (Jiang
et al. 2013a).

The power transform is a data preprocessing technique used to create a rank-
preserving and normal distribution transformation of raw data by using power func-
tions. For the univariate original data with n points, d� (d1, d2,…, dn), the Box–Cox
transformation is expressed as follows

Td �
{
[(c + d)λ − 1]/λ λ �� 0

ln(c + d) λ � 0
(20.16)
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where Td represents the transformed data in the univariate case, c is a constant used
to ensure that all (c + d) values are positive, and λ is the transformation parameter
obtained from maximum likelihood estimation of the data. The Box–Cox transfor-
mation can be applied to positive values only. If there are negative values in the
data, the data set needs to be shifted by a constant (i.e., c in Eq. 20.16) to ensure
that all data is positive. For λ � 0, the natural log of the data [i.e., ln(.)] is taken in
Eq. (20.16). The geometric mean of the data may be used to scale the transformed
data. In addition, the likelihood estimate of λ can be obtained easily by maximizing
the following function:

f (λ) � −n

2
× log

(
s2

)
+ (−1) ×

∑n

i�1

[
log(di )

]
(20.17)

where s2 is the variance of the transformed data Td.
The transformation shown in Eq. (20.16) may be applied to each variable in mul-

tivariate cases in order to marginally transform the non-normal multivariate data into
a nearly Gaussian distribution. In order to produce nearly jointly normal multivariate
results, a vector of parameters λ � (λ1, λ2, …, λp) may be defined to transform each
of the random variables, where p is the number of variables. The entire vector can be
obtained in a single estimation (Andrews et al. 1971) by finding the maximum value
of the following function:

f (λ) � −n

2
× log(|S|) +

∑p

j�1
{( j−1) ×

∑n

i�1

[
log(di j

)
]} (20.18)

where S is the covariance matrix of the transformed random variables TD � {Td1,
Td2,…Tdp}. Note that in both univariate andmultivariate cases, the parameters can be
estimated using any standard optimization routine such as steepest descent method,
Newton–Raphson method, and genetic algorithm. The transformed data is then used
for classical and Bayesian hypothesis testing in both abovementioned univariate and
multivariate cases (Jiang et al. 2013a).

20.9 Bayesian Model Validation Process

Figure 20.6 shows the generalized procedure of implementing the Bayesian method-
ology for model validation of complicated systems with either single or multiple
response quantities, which consists of seven main steps (highlighted in Fig. 20.6):

(1) Conduct a graphical comparison between validation data and model prediction.
In practice, the widely used method is graphical validation through comparing
graphs of prediction and observation.

This is a straightforward qualitative approach where the quantitative uncertainties
in both model predictions and experimental results are not considered adequately.
In this qualitative approach, a scatter plot of measured versus predicted values on a
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Fig. 20.6 Generalized procedure for Bayesian model validation
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1:1 scale is often used. A straight line with a slope of 1 for the plotted data implies a
good computermodel.Most scatter points should fall within the acceptable boundary
for a failure mode. For example, the model may be acceptable if more than 85% of
the predicted value should fall within +/−S (S � standard deviation of the actual
measurements).

(2) Conduct statistical data analysis to quantify the uncertainty for each variable,
whenever repeated data from multiple experiments is available. In case that
repeated data is not available, for instance, the survey data from opinion pools, a
prior distributionmaybe assumed for the variable based on the domain expertise.

(3) Standardize each set of data to a dimensionless vector for the multivariate case
whenever needed. This step enables multiple variables with different quantities
to be compared simultaneously to avoid the duplicate contribution of the same
variable to the model validation result.

(4) Extract features such as mean, maximum, frequency, and energy from the vali-
dation data to represent the properties of the underlying systems.

(5) Perform normality hypothesis test to verify whether the difference data is nor-
mally distributed, i.e., H0 (null hypothesis): difference data comes from normal
distribution versus H1 (alternative hypothesis): difference data does not come
from normal distribution. The Anderson–Darling goodness-of-fit test (Stephens
1974) can be utilized to perform the normality hypothesis test. Compared with
other methods such as the chi-square test, this approach is more sensitive to
deviations in the tails of the distribution (NIST/SEMATECH 2005). In this
approach, an Anderson–Darling (AD) statistic is obtained through calculating
the area between the fitted normal distribution curve and the step functions based
on the plotted data points. A smaller AD value indicates that the distribution
fits the data better. Furthermore, an associated p-value is calculated based on
the AD value. If the p-value is less than or equal to the predetermined a-level
(commonly 0.05), reject H0, i.e., the data does not follow a normal distribution;
otherwise, accept H0.

(6) Apply a power transformation to convert non-normal data into Gaussian ones
for hypothesis testingwhen needed. Refer to Jiang et al. (2013a) formore details
about the power transformation.

(7) Build statistical hypotheses on the difference between test data and model pre-
diction to assess whether the model is acceptable or not, considering uncertain-
ties in both data sets. For either univariate or multivariate case, the Bayes factor
and the confidence measure (Eq. 20.15) are calculated in the Bayesian approach
for the model assessment, using the equations described previously.

The obtained quantitative information (e.g., confidence level) is then provided as
an indicator to assess the model validity and predictive capacity. If the model is
validated with an acceptable confidence level, it may be either applied for design
optimization or asset management based on the model type (physics-based or data-
driven models) or implementation purpose. For example, a physics-based computer
model may be developed for design optimization to improve hardware operational
performanceswith reducedweights,while reliabilitymodels arewidely implemented
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for condition-based maintenance and asset management of high-value components
in an engineering system. On the other hand, if the model is unacceptable, it can
then be either rejected or proposed for improvement, and the validation process is
repeated until satisfactory model accuracy is achieved.

20.10 Numerical Application

The Bayesian validation methodology and procedure presented in Fig. 20.6 are
demonstrated with three examples. The first example is to validate the reliability
model for high cycle fatigue of rotor blades in aircraft engines (Jiang and Mahade-
van 2007). The second example is a univariate damage accumulation model, which
was established by using real-world inspection data from subway tunnels (Jiang
et al. 2013b). The third example is a multivariate heat conduction problem devel-
oped by Sandia National Laboratories (Dowding et al. 2008) as a model validation
challenging problem.

20.10.1 Example 1: Bayesian Decision Rule

20.10.1.1 Problem Description

The dynamic loading andmaterial properties of the rotor blades in aircraft engines are
usually random variables. The failure probability of a single blade under high cycle
fatigue can be estimated by a limit state-based reliability predictionmodel. The blade
is assumed to have failed when the actual maximum displacement under dynamic
loading exceeds the design or allowablemaximumdisplacement.Generally, the blade
is modeled as a single-degree-of-freedom oscillator and its dynamics is described
by a differential equation consisting of mass, spring, dashpot and with displacement
x as follows (Annis 2002)

F sinωt � mẍ + cẋ + kx (20.19)

where F � magnitude of the external harmonic load, ω � applied load frequency,
m � mass of the oscillating body, c � damping constant, and k � stiffness of the
spring.

The displacement is computed as

x � F

k

1
√
[1 − (ω/ωn)2]2 + [2(c/cc)(ω/ωn)]2

(20.20)
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Table 20.1 Statistics of
variables (Example 1)

Variable Type Mean Std Dev

ωnom Normal 2194 rpm 105 rpm

N Normal 8800 rpm 50 rpm

bnom Normal 0.1 0.005

ξ Lognormal 0.002 0.0005

λl
Normal 1 0.25

λm
Normal 1 0.05

Da Normal 15 mm 0.75 mm

αn Deterministic 5.7427 –

pd Deterministic 25 –

dn Deterministic 15 mm –

where ωn � natural frequency and cc � critical damping factor. The performance
function for the failure of the blade is thus a function of the natural frequency,
damping, load factor and engine speed (all random variables):

g � 1 −
[
pd
100

· λlλm · α

αn
· dn
Da

]

(20.21)

where λl and λm are the load and modal shape factors, respectively, α and αn are
the design and nominal amplification factors, respectively, dn is the allowable design
displacement or the nominal allowable displacement, Da is the allowable displace-
ment, and pd is the percentage of nominal allowable displacement. The limit state is
denoted by the condition g � 0. Table 20.1 gives the statistics of variables used in
this example. Refer to Jiang and Mahadevan (2007) for the calculation of the design
amplification factor α and the natural frequency ωn, as well as the validation data.
The Bayesian rule approach is applied to validate the reliability of the model of the
rotor blade.

20.10.1.2 Bayes Network

In order to calculate the Bayes factor, the series of quantities involved in com-
puting the performance function g was modeled by Mahadevan and Rebba (2005)
as different nodes in a Bayes network. With the availability of every experimental
validation outcome of each node and the statistics of each node, the statistical distri-
bution function associated with all the nodes in the network, including g, could be
updated. Then the likelihood ratio of g is calculated (Jiang and Mahadevan 2007).
In this study, assume that the measured values for two quantities ωn (2220 rpm and
3316 rpm) and β (0.6, 0.87, and 0.9) are available. Their corresponding predicted
values are 2200 rpm and 0.9. Different combinations of the validation data and the



20 Validation Using Bayesian Methods 515

g
0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

Prior

Posterior 1

Posterior 2

f(g)

Boundary

Boundary

Boundary

Boundary

Fig. 20.7 Prior and posterior distributions of g with different validation data (Example 1)

corresponding likelihood ratio values for the overall reliability model prediction can
be obtained. Figure 20.7 shows the prior and posterior densities of g resulting from
Bayesian updating with validation data on single and multiple nodes. The decision
regions can be easily identified through the decision boundaries with the decision
threshold η � 1.

In order to calculate the Bayesian risk, a Bayesian network (Fig. 20.8) is designed
in this study to update the likelihood of g [i.e., f 0(g) � L(Y |y)], given the measured
values of ωn and/or β. In this figure, an ellipse (for example, α) represents a random
variable and a rectangle (for example, the experimental value βexp) represents a con-
stant value. The double line arrow represents a logical relationship link between two
variables (computational formula) and a single line arrow represents a direct proba-
bilistic relationship link. After any data node is added to the network, the posterior
probability densities of all the nodes are computed, including gexp (the experimental
value of g). The statistics of the parameters shown in Table 20.1, the computational
models presented in Eqs. (20.19) and (20.21), and 10,000 iterations of simulation
are used in the Bayesian updating. The likelihood values for the overall reliability
model prediction in different combinations of the validation data are obtained and
subsequently used to perform the risk analyses for model validation in the case of η

� 2.
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Fig. 20.8 Bayes network for updating the PDF of g (Example 1)

20.10.1.3 Case η � 2

Assume that the costs of deciding in favor of Hi when Hj is true are C00 � 1, C11 �
1.2, C01 � 2, and C10 � 1.4 (unit), and the prior information about the hypotheses still
are π0 � π1 � 0.5. Thus, the threshold η � 2 is obtained from Eq. (20.7) and only
the second and third experiments support the model. The 256 possible risk values are
computed again usingEq. (20.21) and plotted in Fig. 20.9. TheminimumBayes risk is
Rmin � 8.168 units when two experimental outputs whose likelihood ratios are larger
than η (� 2) are assigned to the decision region Z0, while the other six experimental
outputs whose likelihood ratios are less than η are assigned to the decision region Z1.
The maximum Bayes risk is Rmax � 9.794 units when all eight experimental outputs
are wrongly assigned to the decision regions (i.e., two experiments that support the
model are wrongly assigned to Z1 and six experiments that do not support the model
are assigned to Z0).

It should be pointed out that the decision threshold η depends on both the cost
information Cij and the prior of each hypothesis πi . Only the cost information is
changed in this example for the purpose of illustration. However, it is easy to incor-
porate the engineers’ or decision makers’ preferences about both the cost and prior
information in the threshold.
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Fig. 20.9 Bayesian risk-based decision analysis for validation of rotor blade high cycle fatigue
reliability model (Example 1)

20.10.2 Example 2: Univariate Model Validation

20.10.2.1 Model Description

The damage accumulation model was established from seepage data inspected on
six real-life subway lines (Jiang et al. 2013b). Each subway line consists of various
numbers of tubes between stations and gives rise to two sets of inspection data
according to the upward and downward operating directions. In addition, there are
three different types of tunnels: single-track, double-track, and cross-looping. In this
example, the model output is the seepage failure ratio per kilometer, denoted by
z, which is defined by the number of observed seepages divided by each segment
length. The seepage damage predictive model is defined as a function of the tunnel
type, operating direction, and operating duration in days, denoted by x1, x2, and t,
respectively. Thus, the problem becomes modeling the failure quantity relationship
z� f (x1, x2, t). The tunnel type andoperating directions are dealtwith as deterministic
variables, while the operating duration is treated as a random variable. Obviously,
the tunnel duration calculation is not precise because not each segment in a given
tunnel is operated in every moment of the day. Refer to Jiang et al. (2013b) for more
information about this problem.

It iswell recognized thatmany influencing factors, such as geographical condition,
construction material and type, operating duration or age, as well as the surrounding
condition of the subway tunnel, impact the life of a subway tunnel. This example
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is simplified for demonstration purpose due to the lack of adequate data about the
possible influencing factors mentioned above.

AWeibull proportional hazard model (orWeibull PHM) was established to model
the distribution of seepage damage as a function of tunnel type, operating direction,
and operating duration in days, expressed as

F(l) � 1 − exp
[
−(

l
/

η
)β

]
� 1 − exp

[
−(

l
/
g1(X, θ)

)g2(X,ϕ)
]

(22)

where the scale and shape parameters, η and β, respectively, are expressed as an
exponential function of vital factors (X’s) and coefficients. Refer to Jiang et al.
(2013b) for details about data preprocessing, model selection, parameter estimation,
andmodel prediction. In this paper, additional 17 data points collected from2 subway
tunnel segments, denoted as Segment 1 and Segment 2, are used to assess the model
validity by using univariate Bayesian hypothesis testing approach.

20.10.2.2 Bayesian Hypothesis Testing

The mean and standard deviation of original difference values (using non-normal
data) for 17 validation data points, μraw � 6.999 and σraw � 29.05, respectively,
are obtained, assuming ρ � 0 and τ � σraw and τ � σtrans for raw data and trans-
formed data by using the Box–Cox transformation, respectively. Assume that the
uncertainty in the validation data ε � σval/4 (� 7.25) is taken for the interval hypoth-
esis testing. From Eq. (20.8), we obtain the Bayes factor metrics in logarithm scale
bi_raw � −1.7069 and Bi_trans � 1.9027, for the raw and transformed data, respec-
tively. Note that the subscripts i_raw and i_trans represent the two cases using raw
and transformed data, respectively. From Eq. (20.15), the probabilities of accepting
themodel are κ i_raw � 15.4% and κ i_trans � 87.0% for the two cases, with the assump-
tion of π0 � 0.5. Clearly, the model is rejected (i.e., b < 0) when the non-normal
data is used for model validation via the Bayesian interval hypothesis testing, but
accepted (i.e., b > 0) with high confidence when the transformed data is used. As
a result, without the normality transformation, the Bayesian approach may produce
inaccurate results for decision making when the raw, non-normal data is used in the
model validation.

To investigate the effect of ε (threshold or tolerance) on model validity, vari-
ous ε values are used in both classical and Bayesian hypothesis testing approaches.
Figure 20.6 shows the variation of validationmetrics (p-value in the classical hypoth-
esis testing denoted by standard line or confidence in the Bayesian approach denoted
by bold line) versus ε in the hypothesis testing by using raw non-normal data (dashed
line) and transformed data (solid line). It is observed in Fig. 20.10 that the p-value
> 0.05 (i.e., no evidence to reject H0) is always met if a value of ε > 0.7 is used in
classical hypothesis testing for both raw data and transformed data. Obviously, the
model should not be judged to be rejected based on the classical hypothesis results
in this example.



20 Validation Using Bayesian Methods 519

 = 7.26

praw =0.485

ptrans =0. 794

raw =0.154

trans =0.870

Fig. 20.10 Effect of various ε values on validation results (Example 2)

It is also observed from Fig. 20.10 that the Bayesian validation metric appears to
be more sensitive to the normality of data than the classical approach. The validation
metric obtained from both the classical (p-value) and Bayesian (accepting confi-
dence) approaches provides consistent decision support if normal data is used. How-
ever, a larger value of ε is needed to accept themodel if the non-normal data is inappro-
priately used in the Bayesian approach. As such, the Bayesian confidence/validation
metric may provide erroneous conclusion on model validity if non-normal data is
used in the validation.

20.10.3 Example 3: Multivariate Model Validation

20.10.3.1 Problem Description

A transient heat conduction example specified by Sandia National Laboratories in
the United States (Dowding et al. 2008) as a validation challenge problem is used
to demonstrate the effectiveness of multivariate Bayesian model validation. The
one-dimensional heat conduction through a slab is described by a set of governing
differential equations (Dowding et al. 2008). The corresponding analytical solution
is approximated by a truncated infinite series. The model output is the temperature at
a given spatial location and the instance of time. The inputs to the model include the
initial temperature, heat flux, slab thickness, thermal conductivity, and heat capacity.
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Fig. 20.11 Model prediction versus experiment results at a given configuration (Example 3)

Refer to Dowding et al (2008) and Jiang and Mahadevan (2008a) for details of this
heat conduction problem.

For illustrative purposes, 21 experimental observations at a specific configuration
at the time increment of 50 s over the period of 0–1000 s are used in this example. The
measurements were taken at discrete, regular time intervals to provide multivariate
data. Given a fixed spatial point, the predicted temperature is generated using the
analytic expression with the random input parameters and various instances of time.
The uncertainty in the input parameters is propagated to the response output through
the approximate model repeatedly to obtain the output statistics. Thus, this example
serves as a case study for multivariate model validation with observations at different
spatial and temporal points for a single response quantity. Note that, the number of
variables is equal to the number of observation time intervals, i.e., m � 10, for a
given configuration, resulting in a 10-variable model validation problem (the initial
temperature is treated as a constant).

Figure 20.11 shows the curves of the mean actual observation and mean value
of 4000 predicted results. It is observed that the mean actual observation (dashed
line) falls in the region of simulated prediction output with 95% bounds. The visual
comparison appears to demonstrate that the mean values of model prediction are not
too distinct from those of experimental measurements.
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Fig. 20.12 Effect of various ε values on validation results (Example 3)

20.10.3.2 Bayesian Hypothesis Testing

We assume ρ � 0 and ε � 0.5 × √
diag(�) as well as � � �raw and� � �trans

for raw data (non-normal) and transformed data, respectively. From Eq. (20.9) we
obtain the Bayes factor metrics Bi_raw � −42.25 and Bi_trans � −174.75, for the raw
and transformed multivariate data, respectively. From Eq. (20.15), the probabilities
of accepting the model are κ i_raw � 4.49 × 10−17 and κ i_trans � 1.74 × 10−75 for the
two cases, with the assumption of π0 � 0.5. Clearly, the model is rejected (i.e., b < 0
and κ → 0) in case either the non-normal or the transformed data is used for model
validation via the Bayesian interval hypothesis testing. It is also noted that, with
the normality transformation, the Bayesian approach provides higher confidence on
model rejection.

To investigate the effect of the value of ε on model validity, again various ε

values are used in the Bayesian hypothesis testing approach. Figure 20.12 shows
the variation of the validation metrics versus ε in the hypothesis testing by using
raw non-normal data (dashed line) and transformed data (solid line). Note that, the
logarithm of the Bayes factor is used for the convenience of comparison. There are
two observations obtained from Fig. 20.12. First, regardless of the ε value selected,
the condition that the logarithm of the Bayes factor be less than zero is alwaysmet for
both raw and transformed data, implying that the model should be rejected based on
the Bayesian hypothesis results. Second, with the Box–Cox transformation applied
to the non-normal data, the logarithm of Bayes factor obtained from the Bayesian
hypothesis testing approach provides stronger confidence onmodel rejection (smaller
value).
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20.11 Concluding Remarks

This chapter has presented Bayesian methods to quantitatively evaluate the valid-
ity and predictive capacity of computer models and simulations, considering data
uncertainty. Explicit expressions for the interval hypothesis testing-based Bayes fac-
tor were presented for univariate and multivariate cases. The Bayesian confidence
measure was defined in order to quantify the confidence on the predictive capac-
ity of the computer model. A generalized procedure is presented to implement the
Bayesian methodology for model validation of complicated systems with either sin-
gle or multiple non-normality response quantities. The impact of the data normality
assumption and of the decision threshold parameter in quantitative model assessment
was illustrated by using Bayesian approaches. The Bayesian methodology was illus-
trated with a reliability model, a univariate stochastic damage accumulation model,
and a multivariate heat conduction problem. Bayesian methods provide a powerful
tool for quantitative model validation in order to further calibrate a computer model
and simulation for practical implementation such as condition-based maintenance
and asset management of complicated systems.

In the future, more research is needed on the development of Bayesian validation
methods for more complicated multi-input-multi-output problems. In addition to the
normality transformation of the non-Gaussian difference data, a Bayesian hypothesis
testing method may be mathematically derived from a non-Gaussian distribution of
data, by using for instance, a kernel density function instead. Furthermore, Bayesian
validationmethods should be seamlessly integrated with calibration of model param-
eters to producemore accurate prediction results, considering both data andmodeling
uncertainties.
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Chapter 21
Imprecise Probabilities

Seamus Bradley

Abstract This chapter explores the topic of imprecise probabilities (IP) as it relates
to model validation. IP is a family of formal methods that aim to provide a better
representation of severe uncertainty than is possiblewith standard probabilisticmeth-
ods. Among the methods discussed here are using sets of probabilities to represent
uncertainty, and using functions that do not satisfy the additvity property. We dis-
cuss the basics of IP, some examples of IP in computer simulation contexts, possible
interpretations of the IP framework and some conceptual problems for the approach.
We conclude with a discussion of IP in the context of model validation.

Keywords Imprecise probabilities · Lower previsions · Credal sets ·
Formal epistemology · Computer simulation

21.1 Introduction

Model validation is an important aspect of quality control when modelling some
phenomenon about which we are uncertain. So, accommodating and representing
uncertainty is of central importance to model validation. Probability theory provides
the standard suite of tools for dealing with uncertainty, but this theory has its lim-
its. For example, models will often contain parameters whose true value we don’t
actually know. Now, we can’t run a simulation without providing a value for this
parameter, so for each simulation we run, we must pick some value. If we sample
this value from a distribution, and run several simulations—sampling from this distri-
bution each time—we can, to some extent, accommodate uncertainty in the parameter
value. In doing so, however, we are assuming that a certain sort of distribution is the
“right” distribution to be sampling from. If the parameter fluctuates randomly and
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we have data on the distribution of fluctuations, perhaps a particular distribution
can be justified. If not, it is typical to pick some “non-committal” distribution that
will not skew the results of the simulation. For example, if bounds can be put on
the range of values the parameter can take, a uniform distribution is often selected.
Now, a uniform distribution seems innocuous, non-committal, but the distribution’s
being uniform for some parameter means that distributions for related parameters are
not uniform. Ferson and Ginzburg (1996) give the example of two independent uni-
formly distributed parameters that give rise to a non-uniformly distributed product.
Or consider two inversely related parameters (like “ice fall rate in clouds” and “ice
residence time in clouds”): if one is uniformly distributed, the other is not. This is,
in essence, the problem that Joseph Bertrand pointed out at the end of the nineteenth
century that is today known as “Bertrand’s paradox.”

The practice of sampling unknown parameters from distributions chosen for
convenience rather than for empirically grounded reasons is a necessary aspect of
standard modelling practice. Imprecise Probabilities is an approach that attempts to
mitigate some of the problematic consequences of such a methodology. This chapter
will outline the basic idea of IP, give some examples of IP in modelling contexts, dis-
cuss how we might interpret the IP framework and point to some potential problems
for IP. We will conclude with a discussion of IP in the context of validation.

21.2 Basics

The core idea of Imprecise Probabilities (IP) is to represent uncertainty using a set
of probability measures rather than a single such measure (although there are a great
many related formal models that we’ll discuss later in this section).1 The basics of
uncertainty quantification is introduced inChap.5 byRoyandChap. 22byDougherty
et al., and the probabilistic/Bayesian approach to uncertainty are discussed in Chap. 7
by Beisbart and Chap. 20 by Jiang et al. in this volume, so let’s jump straight to the
basic idea of IP. We use pr to signify a probability function. The basic idea of IP is
that we represent uncertainty, not by a single such function, but by a set of them—
P – defined over the same state space. If X is an event overwhich theprs are defined,
then we can let P(X) = {pr(X),pr ∈ P}. That is, we can take P(−) to be a set-
valued function that returns the set of values assigned to X by members of P . We
can then apply the rest of the Bayesian machinery “pointwise.” So conditionalising
P involves conditionalising on each member of P and taking the resultant set of

1Although one can find precedents going back to Keynes or even Boole, IP really started in the
middle of the twentieth century with work by people like Koopman (1940), Good (1952, 1962),
Smith (1961) and Dempster (1967). Work in philosophy on IP really starts with Levi (1974, 1980,
1986). Important formal and philosophical work on IP was carried out by Seidenfeld (1983, 1988);
Seidenfeld et al. (1989) (Seidenfeld was Levi’s graduate student). Walley (1991) was a hugely
influential book which, until recently, was still the go-to monograph for many formal details of the
theory. The state of the art in terms of formal theory can be found in Augustin et al. (2014) and
Troffaes and de Cooman (2014). Bradley (2014) provides a philosophical overview.

http://dx.doi.org/10.1007/978-3-319-70766-2_5
http://dx.doi.org/10.1007/978-3-319-70766-2_22
http://dx.doi.org/10.1007/978-3-319-70766-2_7
http://dx.doi.org/10.1007/978-3-319-70766-2_20
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conditional probabilities. Expected values also become sets of values, determined
pointwise for each pr ∈ P .

Recall that a probability function pr is a real-valued function on an algebra of
events that has the following properties:

Bounded For all X , 0 = pr(⊥) ≤ pr(X) ≤ pr(�) = 1 (where ⊥ and � are the
bottom and top elements of the algebra, respectively)

Superadditive If X ∧ Y = ⊥ then pr(X ∨ Y ) ≥ pr(X) + pr(Y )

Subadditive If X ∧ Y = ⊥ then pr(X ∨ Y ) ≤ pr(X) + pr(Y )

A function that satisfies the first and second of these properties is called a “lower
probability” and a function that satisfies the first and third is called an “upper prob-
ability.”

The idea of a set of functions and the idea of a lower probability are intimately
related. Take a set of probabilities, P and define P(X) = infP(X), the lowest
value assigned to X by some member ofP . This functionP is a lower probability.2

Likewise, P(X) = supP(X) is an upper probability. Moreover, P(¬X) = 1 −
P(X).

And going the other way, take a lower probability lpr, and define the associated
credal set of lpr as the set of probability functions such that pr(X) ≥ lpr(X) for
all X , the set of probability functions that “pointwise dominate” it. If lpr is a lower
probability as defined above, such a set is non-empty; let M(lpr) be the associated
credal set of lpr. Since M(lpr) is a set of probabilities, we can take the “lower
envelope” as we did above: M(lpr)(X). The lower envelope theorem entails that lpr
is a lower probability if and only if M(lpr)(X) = lpr(X) for all X (see Sect. 3.3 of
Walley 1991 or Sect. 2.2.2 of Augustin et al. 2014). Note that distinct credal sets
might result in the same lower probability.3

As well as credal sets and lower probabilities, there is a huge range of other
related formal methods for representing uncertainty (see, for example, Halpern 2003;
Augustin et al. 2014; Klir and Smith 2001). For example, Dempster–Shafer theory
(sometimes called Evidence Theory) uses a belief function which is a lower proba-
bility with the further property of being infinite monotone (a sort of strengthening of
superadditivity). DS theory comes equipped with a slightly different interpretation
(see Sect. 21.4) and an alternative kind of updating/aggregation rule.4

This brief discussion merely scratches the surface of the rich and interesting
theory of IP. Many aspects of the statistical method have been replicated inside the
IP framework including statistical inference, graphical models (e.g. Bayes nets) and

2Consider some pr ∈ P for which pr(X ∨ Y ) = P(X ∨ Y ). inf P(X) + inf P(Y ) ≤ pr(X) +
pr(Y ), since pr ∈ P , soP is superadditive. Boundedness is trivial, and much the same reasoning
works if the set P doesn’t attain its bounds (just think in terms of the closure of the set).
3There is a one-to-one correspondence between lower probabilities and a subset of the set of credal
sets, namely those with some nice topological properties. We don’t need to discuss this here, but
see the above-listed references for details.
4See Oberkampf and Helton (2004) for a discussion of DS theory in an engineering context.
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stochastic models (e.g. Markov chains).5 See, for example Augustin et al. (2014),
Troffaes and de Cooman (2014).

21.3 Examples

In this section, we’ll explore two examples of IP-like ideas that show up when
attempting to model physical systems on computers.

21.3.1 Unknown Parameters

Oberkampf and Roy (2010) discuss an example of how IP arises in scientific com-
puting.6 They start from the position of wanting to keep apart epistemic uncer-
tainty – uncertainty arising from things unknown to the experimenter—and aleatory
uncertainty—randomness or natural variability.7 Now, whether some kind of uncer-
tainty counts as one or the other of these kinds is somewhat a matter of perspective,
the distinction is important. Aleatory uncertainty about a parameter can be accommo-
dated by having a probability distribution over that parameter in themodel. Epistemic
uncertainty, on the other hand, is captured by having a set of such distributions, i.e.
having a credal set.

The idea is that if a parameter is subject to aleatory uncertainty, you can sample
values for that parameter (using the given distribution), run the simulation using
those sampled values and then take the distribution of outcome values as telling you
something about uncertainty in the outcomes. However, with epistemic uncertainty,
you must pick specific values of the parameter to run through the model (and you
must pick them using some distribution). You can’t take the distribution of outputs
as telling you about the uncertainty in the outcomes: you can only take the range of
outcome values as telling you what ranges of values of outcome values are possible
given your uncertainty about the parameter. Or perhaps, a more careful way to phrase
the same thing: the distribution of output values might be in part due to the choice of
input distribution for the unknownparamaters. If that distributionwere chosenmerely
for convenience, then we had better not read too much into the output distribution.
As Oberkampf and Helton (2004) say:

If extreme system responses correspond to extreme values of these parameters (i.e. values
near the ends of the uniform distribution), then their probabilistic combination could predict

5For introductions to these aspects of IP, seeAugustin et al. (2014)Chapters 7, 9 and 11, respectively.
6I am drawing mainly from Sect.13.4, but similar ideas appear in a number of other places in the
book.
7This is one dimension of the many ways one can categorise different kinds of uncertainty. See
Chap. 5 by Roy in this volume or Morgan and Henrion (1990), Chap. 4.

http://dx.doi.org/10.1007/978-3-319-70766-2_5
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a very low probability for such extreme responses. Given that the parameters are only known
to occur within the intervals, however, this conclusion is grossly inappropriate (p. 10–3).

As we discussed earlier: the product of independent uniformly distributed variables
will not be uniform: it will give more weight to those values in the “middle” of
the interval of possible values. If we have no reason to think the variables really
are uniformly distributed, then it seems unwise to discount these possible extreme
responses as the standard approach implicitly seems to.

This is sometimes known as “probability bounds analysis” or “p-boxes”. The
following two quotations give you the flavour of this approach.

In a probability bounds analysis, the uncertainty about the probability distribution for each
input variable is expressed in terms of interval bounds on the cumulative distribution function.
These bounds form a p-box for each input variable Ferson and Hajagos (2004, p. 136).

Basically, interval analysis should be used to propagate ignorance, and probability theory
should be used to propagate variability Ferson and Ginzburg (1996, p. 133).

A similar approach is advocated by Stainforth et al. (2007b), where they suggest
that we interpret the range of values produced by ensemble members to be a “non-
discountable envelope” of values of that variable: a range of values that we cannot
dismiss as impossible.

21.3.2 The Challenge Problems

In 2002, a workshop was organised around the idea of a set of “challenge problems”
that were intended to serve as a kind of standard suite of tests for a theory of uncer-
tainty (Helton and Oberkampf 2004). Oberkampf et al. (2004) presents the challenge
problems, and many of the papers in that special issue of the journal respond to them.
The problems are designed to highlight issues of “representation, aggregation, and
propagation of uncertainty through mathematical models” (Oberkampf et al. 2004,
p. 15). The challenge is to come up with some way to predict the behaviour of a
system given a model of the system and some evidence as regards some unknown
parameters of that system. Each problem has two unknown parameters, and some
sort of mathematical model whose output depends on those unknowns. The infor-
mation about the unknown parameters might be given in a number of different ways.
A simple example is in problem 1, we are told that parameter a is somewhere in
the interval [a1, a2]. A more complex example is given by problem 3c where you
are told that you have n independent sources of information regarding parameter b,
each witness j tells you that b lies in an interval [b j

1, b j
2]. The model whose outputs

depends on the parameters can also be more or less complex. For example, for some
of the models, it is simply a function of the parameters. In other cases, the parameters
are meant to represent physical constants of some simple physical system.
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Several papers have presented broadly IP solutions to this problem set. For exam-
ple, de Cooman and Troffaes (2004) use the theory of lower previsons to address the
problems, while Ferson and Hajagos (2004) use p-boxes.8

21.3.3 Nonprobabilistic Odds

Frigg et al. (2014) offer a cautionary tale that suggests that treating distributions
of model output as capturing decision-relevant probabilities is dangerous when the
target system appears to behave chaotically. The starting point is the scepticism about
ensemble forecast probability distributions expressed by Stainforth et al. (2007a):

The frequency distributions across the ensemble of models may be valuable information
for model development, but there is no reason to expect these distributions to relate to the
probability of real-world behaviour. One might (or might not) argue for such a relation if the
models were empirically adequate, but given nonlinear models with large systematic errors
under current conditions, no connection has been even remotely established for relating
the distribution of model states under altered conditions to decision-relevant probability
distributions (p. 2154).

Frigg et al. (2014) develop a simple example that illustrates this point. They start
with a simple mathematical system that an agent wants to use to model a variable of
interest. The target system’s dynamics are similar to but not identical to the system
used for prediction (the one timestep error is always less than one in a thousand).
Unfortunately, both the target system and themodel exhibit chaotic behaviour, which
means that these errors compound and grow. If we are predicting at about eight
timesteps out, the errors can grow to such an extent that the distribution of model
outputs for an ensemble of nearby initial conditions can be located entirely on the
left-hand side of the unit interval while the ensemble of outputs for the target system
is entirely on the right-hand side. What this means is that the model appears to be
telling you that it’s overwhelmingly likely that the variablewill be less than 0.5, while
the truth is that it’s overwhelmingly likely to be greater than 0.5. Obviously betting
using these ensemble probabilities would be disastrous. What Frigg et al. (2014)
show is that, in fact, it’s very often disastrous to bet using ensemble probabilities in a
case like this where the dynamics are nonlinear and there’s a chance of model error.

They suggest that instead of taking the ensemble probabilities at face value, they
should be manipulated to produce “nonprobabilistic odds” which don’t yield ruinous
betting strategies. How exactly this process should be effected is still up for debate,
but what is clear is that the nonprobabilistic odds thus produced will be inversely pro-
portional to upper probabilities, in the same way that probabilistic odds are inversely
related to standard probabilities.

8See also Fetz and Oberguggenberger (2004) and Helton et al. (2004) for further examples of IP
approaches to the challenge problems. See Ferson et al. (2004) for an overview of the range of
responses to the challenge problems.
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21.4 Interpretations

What does it mean to say that our uncertainty is captured by a set of probability
measures (or an upper probability, or a p-box, or…)? In this section, we shall discuss
some ways of interpreting such claims. I will discuss several such ideas, but I do not
mean to suggest that this survey is exhaustive, nor that the ideas presented here are
mutually exclusive: it is certainly possible to be motivated by more than one of these
interpretations of the formalism.9

21.4.1 One-Sided Betting

Consider betting on the value of a random variable.10 LetX be the set of values that
random variable X can take. A bet on the value of X can be described by a function
fromX to the real numbers. Call such functions gambles. How much would you be
willing to pay for a gamble g? That is, when do you find the gamble g − µ desirable?
(Whereµ is the constant gamble that corresponds to the amount you pay to take g). It
seems like the highest price you are willing to pay to take g reflects your valuation of
g. Let lpr(g) = sup{µ ∈ R : g − µ is desirable}. Now consider the minimum price
you would accept to sell the gamble g. That is, the minimum price at which you
find µ − g desirable. Given some reasonable coherence constraints on your set of
desirable gambles,11 if you require that this should be equal to lpr, then lpr is a linear
prevision. And indeed, if we consider gambles over a set of indicator functions for
some set of states, then lpr gives a probability function. The exploration of linear
previsions as a foundation for probability theory goes back to Bruno de Finetti. This
is one version of what is known as the “Dutch book theorem,” since the coherence
constraints on desirability essentially prevent you accepting a collection of bets that
guarantee you a sure loss (see Chap. 7 by Beisbart in this volume).

If you drop the requirement that your maximum buying price and your minimum
selling price should be the same—if you move away from “two-sided” betting to
“one-sided” betting—then lpr behaves somewhat like a “lower expectation” oper-
ator (called a lower prevision) and its restriction to gambles on indicator functions
is a lower probability as defined above. The theory of lower previsions was first
systematically set out in Walley (1991), Troffaes and de Cooman (2014) provides an
admirably clear self-contained treatment of the theory, as well as significant refine-
ments. Note that, the bets discussed in Frigg et al. (2014) are one-sided bets in this
sense.

9For more on the interpretation of IP, see Bradley (2014).
10We earlier described probability theory in terms of events rather than random variables, but
the difference is mostly cosmetic. Real-valued random variables are functions from events to real
numbers, events are “indicator functions” in the space of random variables.
11For example, if you find f desirable, and you find f ′ desirable, you should find f + f ′ desirable;
or if a gamble’s payout is always non-negative, then it is desirable.

http://dx.doi.org/10.1007/978-3-319-70766-2_7
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If we consider real-world instances of bookmakers or financial traders, there is
typically a difference between their buying and selling prices for their commodities
(bets, financial products, whatever). Now, part of this spread is explained by the desire
tomake a profit, but there is evidence that the “bid-ask spread” can also be responsive
to the amount of uncertainty about the future performance of the instrument (Smith
and van Boening 2008).

So, if we interpret lower previsions and lower probabilities as reflecting the agent’s
limiting willingness to bet—as is standard in Bayesian approaches—this gives us a
natural interpretation of the formalism that is broadly in linewith the standard precise
probabilist picture.

21.4.2 Indeterminate Belief

One way to interpret credal sets is to take them to reflect an indeterminacy in rational
belief. IfP(X) is a set of values, this means that it is indeterminate—vague—what
rational belief you ought to adopt in X given the evidence that determined that P .
This approach takes inspiration from the supervaluationist theory of logic, which
uses a set of truth valuation functions to characterise the satisfaction of a vague
predicate. If Wayne is a borderline case of the predicate “bald,” then “Wayne is
bald” is true according to some members of the set of valuations—“true on some
precisifications”—and “Wayne is bald” is false on others (Williamson 1994). Rinard
(2013, 2015) has argued for a supervaluationist understanding of credal sets: if it is
indeterminate whether the agent’s credence in X is stronger than 0.5, some members
of the credal set have pr(X) > 0.5 while others pr′(X) < 0.5. If every member of
the credal set agrees on something (e.g. that pr(X) > 0.1), then it is determinately
true that the agent believes that pr(X) > 0.1. This idea is sometimes characterised
by the metaphor of the “credal committee” (Joyce 2010): each probability in the
credal set is a committee member and the committee as a whole must decide what
to do. When there is unanimity in the committee then things are easy, when there is
conflict—disagreement—then things are tricky.12

If you want to treat your credal sets or your lower probabilities not as subjective
credences but as something akin to objective chances, then you might still be able
to take a view of this form: the imprecision in your probabilities is due to objective
indeterminacy in the world. This is an underexplored possibility, but see Bradley
(2016).

12The idea of IP as reflecting unresolved conflict—either between persons or within a person—is
one that Isaac Levi discussed in great detail Levi (1980, 1986).
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21.4.3 Robustness Analysis

Let’s say you run your model with a particular set of parameters, but you are not
confident that the parameters you chose are the actual ones. If there’s a danger that
the result you obtain depends in a big way on the specific value of the parameter
chosen, then perhaps, it’s best to explore how robust your result is when changing
those parameter values. The range of output values, the range captured by the set
of probability functions, reflects a robust range of possible outcomes. This “robust
bayesian analysis” has a rich history. See, for example Ruggeri et al. (2005). This
idea is very closely connected to the discussion of “probability bounds analysis” and
“non-discountable envelopes” discussed in Sect. 21.3.1.

If one is taking a Bayesian approach to validation (cf. Chap. 7 by Beisbart and
Chap. 20 by Jiang et al. in this volume), then one has to respond to the “problem of
the priors”: the criticism that Bayesian methods rely on epistemically unmotivated
prior probability. One response to such a criticismwould be tomove to an “imprecise
Bayesian” perspectivewhich is, essentially, to apply the robustness analysis approach
to the prior. The set of priors allows one to be confident that one’s conclusions are
not artefacts of the particular prior one chose.

21.4.4 Evidence Theory

Instead of interpreting lpr as a degree of confidence, or a limiting willingness to bet,
one might want to interpret lpr(X) as “the degree to which the evidence supports X”.
This is the interpretation typically associated with the “Dempster–Shafer function”
approach to evidence. A “Dempster–Shafer belief function” is a lower probability
that has the additional property of being “infinite monotone.” The actual formal
description of this property is a little messy, and not particularly illuminating in the
current context, but see Halpern (2003, Chap. 2.4) for the basics of Dempster–Shafer
theory, and see Augustin et al. (2014, Chaps. 4 and 5) and Troffaes and de Cooman
(2014, Chaps. 6 and 7) for belief functions and their relation to lower probabilities.
Dempster–Shafer theory also has a distinct theory of evidence combination which is
beyond the scope of this chapter (but see Halpern (2003, Chap. 3.4)).13

The motivating idea behind this degree of support idea is that your evidence can
support X to degree p without thereby supporting ¬X to degree 1 − p (as would
be required if degree of support were probabilistic). Hawthorne (2005) argues that
Bayesians need to keep degree of belief and degree of support distinct (and that both
concepts are useful).

13See also Oberkampf and Helton (2004) for an example of DS theory in an engineering context.

http://dx.doi.org/10.1007/978-3-319-70766-2_7
http://dx.doi.org/10.1007/978-3-319-70766-2_20
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21.5 Problems

IP suffers from a number of issues. Here, we shall outline some of them. As we’ll
see, not all of them are really that worrying in the context of model validation.

21.5.1 Updating

Recall that earlier, we said that we conditionalise a set of probabilities pointwise.
That is,P(X |Y ) = {pr(X |Y ),pr ∈ P,pr(Y ) > 0}.14 There are two problemswith
conditionalising this way that is worth mentioning briefly.

First, dilation. An early, important discussion of dilation is Seidenfeld andWasser-
man (1993).15 Consider a set of probabilities P constrained as follows for all
pr ∈ P:

• pr(H) = 1
2• pr(H |X) = pr(H)

Now consider the proposition Y which is equivalent to (H ∧ X) ∨ (¬H ∧ ¬X).
It’s easy to show that for all pr ∈ P , pr(Y ) = 1

2 . Let P contain all probability
functions over these propositions other than those ruled out by the above constraints.
So P(X) = [0, 1]. Note that, it follows from the definition of Y and some basic
probability theory that for all pr ∈ P , pr(H |Y ) = pr(X). Therefore P(H |Y ) =
[0, 1]. Note that the same reasoning entails thatP(H |¬Y ) = [0, 1]. This, in essence,
is the phenomenon of dilation. What is this considered a problem? To see this, let’s
consider an example that gives some meaning to the variables.16

I have two coins, one fair and one mystery coin of unknown bias. Let H be the
event that the fair coin lands heads, and let X be the event that the mystery coin lands
heads. (Verify that the above discussed probabilistic constraints seem reasonable
given this interpretation of the propositions). Now I toss both coins and announce
that the two coins landed the same way up (either both heads or both tails), call
this proposition Y . What is your posterior in the fair coin having landed heads?
P(H |Y ) = [0, 1]. Your belief in the fair coin’s having landed heads has dilated:
the interval of probability values has spread out from { 12 } to [0, 1]. And this happens
regardless of whether you learn Y or ¬Y . This seems puzzling. Learning the fact
that the two coins landed the same way up doesn’t seem like it should cause me
to change my belief in whether the fair coin landed heads. It seems like you have
learned something irrelevant to H and it has caused you to become more uncertain
about H . That seems like a strange way to arrange your credences.

14The restriction to non-zero probability in the conditioning event is for convenience: if we had
defined credal sets in terms of Popper functions or similar we could do without such a restriction.
15A recent characterisation of dilation is found in Pedersen and Wheeler (2014).
16This description of the puzzle follows Joyce (2010).
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Dilation, despite initial appearances, isn’t as problematic as some (e.g. White
(2010)) take it to be. For example, in different ways, Joyce (2010), Bradley and
Steele (2014b), Pedersen and Wheeler (2014) and Hart and Titelbaum (2015) all
argue that dilation is actually the correct response to the evidence as specified. Gong
and Meng (2017) argue that dilation is a symptom of a mis-specified statistical
inference problem, not a problem for IP per se.

We can think of the problem as follows. The constraints we placed on our model
place no constraint at all on what values pr(H |Y )might take. It is somewhat intuitive
that H and Y say nothing about each other. If we take this “silence” to be modelled
by probabilistic independence—pr(H |Y ) = pr(H) = 1

2 – then ourP becomes the
singleton with pr(X) = pr(H |Y ) = 1

2 . But, as Pedersen and Wheeler (2014) point
out, independence for sets of probabilities can be much more subtle (Cozman 2012).
As Bradley (2014) explains, probabilistic independence is not the appropriate char-
acterisation of the “silence” of Y with respect to H . As it stands, it is compatible
with the problem set up that Y would be very informative about H , if only we knew
something about the bias of the mystery coin. That is, if we knew that the mystery
coin was biased towards heads, learning that the coins landed the sameway up would
be evidence in favour of heads on the fair coin. It is not that H and Y are unrelated:
it’s just that the nature of their relationship is unknown.

Let’s turn now to another puzzle related to updating sets of probabilities: the
problem of belief inertia. This problem, though not under that name, goes back to
Sect.13.2 of Levi (1980), and is also discussed by Walley (1991); Vallinder (2018)
provides a nice discussion of the current state of the art. Consider the mystery coin
again. Recall that proposition X is “mystery coin lands heads up”, and P(X) =
[0, 1]. Now consider learning that in ten flips of the mystery coin, 8 were heads. Call
this proposition Z . This seems like some evidence that could potentially move your
credences about. But note thatP(X |Z) = (0, 1). Why? Because, even if we assume
that all the priors inP are “well behaved” beta distributions over the unknown bias
of the mystery coin, there are some distributions in P that put so much weight
on the probability for landing heads being really really low that even evidence Z
doesn’t move them very far away from 0. In the case thatP(X) = [0, 1] the “credal
committee” contains members that are so stubborn that they are moved an arbitrarily
small distance by the evidence. And likewise for the top end of the unit interval.
Starting with a vacuous prior like this seems to make learning impossible.

The imprecise probabilities that are likely to arise in a validation setting are not
likely to be vacuous, so perhaps this is less of a concern in the current context.

21.5.2 Decision-Making

Ultimately, we often want to use the results of our simulations for decision support:
we want to take our simulation of the behaviour of a nuclear reactor to inform safety
standards for new reactors, for example. This boils down to the question: how do we
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translate our uncertain predictions into policy advice? We want to take into account
the uncertainty in our simulations and perhaps err on the side of caution by focusing
on, for example the worst case among the plausible scenarios consistent with our
evidence. So how do we make decisions with sets of probabilities?

If you had a single probability function, you can act so as to maximise expected
utility. What is the analogue decision rule for imprecise probabilities? There are a
number of possibilities, each with drawbacks. Should you act to maximise minimum
expectation over probabilities in your set? Pick an option that maximises expected
value with respect to some pr ∈ P?17 Find some way to average over the set of
expectation and maximise that?18 Elga (2010) argues that no imprecise decision
theory is evenminimally adequate, although the consensus now seems to be that Elga
overstated his case (Bradley and Steele 2014a; Chandler 2014; Sahlin and Weirich
2014). In any event, it is still true that providing IP with an adequate decision theory
is an unresolved issue. In a sense, it is not surprising that decision-making with IP is
difficult: the whole point is that we are being careful to represent the full extent of
our lack of knowledge, and we shouldn’t expect decision- making to be easy in such
a case. Indeed, it would appear to be a surprise if decision-making were as easy as
it is in a case where we know the objective probabilities of the events, or have some
reason to believe our subjective estimates are on the right track.

21.6 Validation and IP

So where does all of the above leave the practitioner? What should someone who
works with computer simulations take away from this discussion of imprecise prob-
abilities? We’ll discuss the issues of interpretation and the problems in the sections
below, but first, I want to say something about where to situate IP in general. Some,
particularly in philosophy, seem to see IP as a rival to the standard Bayesian view
of subjective probability. I think this is a mistake. IP is a suite of tools, a range of
methods that extend and improve on the standard probabilistic tools. They are pro-
vided in order to overcome some problems that the standard theory has with severe
uncertainty, careful propagation of uncertainty and giving appropriate weight to seri-
ous dangers. Questions remain about when it is appropriate to deploy the admittedly
more complex machinery of IP, and when it is best to stick with the simpler tools of
standard probability, but the above discussion of the “challenge problems” highlights
that many practictioners do see value in the use of IP.

17This option, called “E-admissibility” by Levi (1974)—and discussed in depth in Levi (1986)—is
a popular one among some IP theorists.
18See Bradley (2015) for some discussion of the options.
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21.6.1 Interpretations

We discussed four ways of interpreting the mathematical framework of IP: betting,
indeterminate belief, robustness analysis and evidence theory. Which of these will
be appropriate depends on your goals and how you are using the tools. Probabilities
show up in validation, and there is a question about how to interpret them.19 Your
general interpretative view on probabilities is going to inform what you think about
IP. If your inclination is to treat probabilities in a subjective Bayesian way, then
the betting approach seems a natural fit for interpreting imprecise probabilities. If,
however, your inclination is to treat probabilities as objective chances or objective
evidential probabilities, then perhaps the “indeterminate belief/chance” route is a
better fit.

If the imprecise probabilities arise from responding to the aleatory/epistemic
uncertainty distinction in an “unknown parameters” context (see Sect. 21.3.1) then
it makes sense to see IP as a kind of “robustness analysis”.

The case of the “evidence theory” view of IP—lpr(X) represents the degree to
which the evidence supports X—is an interesting one. This interpretation is strongly
associated with Dempster–Shafer belief functions which are a special case of lower
probabilities. It seems that much of the literature on this topic doesn’t make a dis-
tinction between the “robustness analysis” view and the “evidence theory” view.

21.6.2 Problems

We looked at twokinds of problems for IP: problems related to updating and problems
related to decision- making.

It seems that the problems for updating aren’t all that problematic in the validation
applications of IP. First, note that conditionalisation plays a relatively minor role out-
side of the Bayesian approach. And even where conditionalisation does play a role,
the goal is to propagate the uncertainty. So if that yields large intervals of output vari-
ables then that is a good thing: the uncertainty has been adequately propagated. Take
dilation: dilation occurs when you have two variables whose interaction is unknown.
By that I mean, when it is unknown whether they are positively or negatively corre-
lated.20 In a validation context, if you were in that situation, you would want to know
the range of possible system responses if the parameters were positively correlated
or if they were negatively correlated: you would want to see that range of responses
represented in your model output. Likewise for belief inertia. If it is consistent with
your evidence that X might not be affected very much by conditioning on Z , then
your model output should accommodate that possibility. In short, the first two prob-
lems discussed are problematic when we interpret P(A|B) as rational credence in
A having learned B, but in a context where the probability models are representing

19See Hájek (2011) for an introduction to interpretations of probability.
20For a more careful and rigorous characterisation of dilation, see Pedersen and Wheeler (2014).
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possible relationships between variables in a model, the phenomena of dilation and
inertia do not seem so problematic.

So what about decision-making? If we are required to make a decision on the
basis of some simulation-based prediction that involves several underconstrained
parameters, it would be a mistake to make decision-making too easy. Take a simple
example of deciding on how high to build your flood defences. Let’s imagine that
you use a climate model to predict whether sea level rises will be small, moderate
or large. We run a bunch of climate models, varying some unknown parameters, and
come up with a range of possible future scenarios. A precise probabilistic approach
might say that on average sea level rise will be moderate. Now, it might be tempting
to build flood defences that can cope with moderate rise but not with a large rise. It
might also be tempting to not bother with investing in defences that can be extended
in the case of a large rise: after all, the models say that won’t happen. Of course, such
a decision maker has made a mistake in paying too much attention to the headline
“moderate rise” and not enough attention to the small print “range of scenarios”. By
taking seriously the task of propagating the uncertainty and presenting the full range
of scenarios consistent with the physical constraints, the IP approach highlights
the ranges of cases that the decision maker cannot discount in her deliberations.
That makes it harder to make a decision, but it does so in a way that will improve
the decisions made. Of course, one can go too far: the range of climate scenarios
consistent with our models range from ice age to everybody dies of heatstroke. It’s
hard to make any sort of decision that will lead to good outcomes across the board
there. But propagating that uncertainty, presenting the “non-discountable envelope”
of scenarios, prevents the decision maker from being misled by the headline model
average.

21.7 Conclusion

Imprecise probabilities can provide an expressively rich and sophisticated theory
of uncertainty that builds on and extends orthodox probability theory. The formal
foundations of IP are fairly solid although there are still some conceptual sticking
points that needwork. Such a theory has the potential to findmany useful applications
in the field of computer simulation validation.
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Chapter 22
Objective Uncertainty Quantification

Edward R. Dougherty, Lori A. Dalton and Roozbeh Dehghannasiri

Abstract When designing an operator to alter the behavior of a physical system,
the standard engineering paradigm is to begin with a scientific model describing
the system, mathematically characterize a class of operators, define a performance
cost relative to the operational objective, and pick an operator that minimizes the
performance cost. Validation ipso facto plays a role because the scientific model
needs to be validated. With complex systems, or those for which experiments are
costly, there may be insufficient data for system identification, with validation being
outside the realm of possibility. Given the resulting model uncertainty, the best one
can do is to design a “robust” operator that is optimal relative to both the objective
and the uncertainty. This robust optimization paradigm entails optimal experimental
design: should one not be satisfied with the performance, choose the experiment
that maximally reduces the uncertainty as it pertains to the objective. In this chapter,
we address these problems and present examples in the context of gene regulatory
network intervention.

Keywords Bayesian experimental design · Robust design · Mean absolute cost of
uncertainty · Uncertainty quantification

22.1 Introduction

In the classical deterministic scenario, a simple model consists of a few variables and
a few parameters that can be estimated from a handful of experiments. The model
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can be tested with a few numerical predictions, and it is contingently accepted if
predictions are deemed to be concordant with observations. As model complexity
grows to hundreds and thousands of variables and parameters, as is typical of many
computer models and simulations, the classical procedure becomes problematic. The
difficulty is exacerbated by stochasticity because prediction then includes testing
the accuracy of probability distributions in the model. Systems with thousands of
variables are virtually unvalidatable.

For a deterministicmodel, initial conditions can be set and, in principle, the state at
some future time determined. If the initial conditions of a test experiment are aligned
with those of the model and the experiment run to some future time, then agree-
ment between the final model and experimental states can be checked. Large-scale
deterministic systems have high-dimensional state vectors, so that test experiments
are more demanding; nevertheless, the ultimate comparison is still between model
and experimental state vectors. It is prudent to run tests using a variety of initial
conditions so that a large portion of the state space is tested.

With a stochastic model, the situation is more challenging. Given an initial state,
the final state will not be determined exactly; rather, there will a probability distribu-
tion of possible final states.Hence, comparisonmust be between the state distribution,
which is generally multivariate, and a state histogram generated by many experi-
mental runs, the number of required runs growing exponentially with the number of
variables. Distributional statistical tests are required. For instance, with hypothesis
testing one decides between two hypotheses: the distributions match or they do not
match. A decision to accept the theory depends on the acceptance threshold. The
theory and test are inter-subjective, but the decision to accept or reject depends on
subjective considerations, as with a hypothesis test, where the acceptance region
depends on a chosen level of significance. The overall procedure can be onerous (or
impossible) depending on the number of experimental runs required, especially with
complex systems, where distributions are high-dimensional.

For complex systems, not only is it practically impossible to validate a model, it
is not even possible to obtain a specific model. Parameter estimation is required for
model construction, but when the number of parameters is too large for the amount
of data, accurate parameter estimation becomes impossible. It may be possible to
assume ranges for the parameters, but then there ismodel uncertainty: all modelswith
parameters lying in the given ranges constitute an uncertainty class of possible mod-
els. In this situation, the classical concept of validation makes no sense. The desire
for knowledge concerning complex systems and the impossibility of testing corre-
sponding models, or even formulating such models, forms a salient epistemological
crisis of the twenty-first century (Dougherty 2016).

Froman engineering perspective, one has to ask a basic question:Howdowemath-
ematically formulate action in nature if we cannot posit a single description of the
part of nature that we wish to act upon? Or: How do we determine optimal operations
to alter natural systems when we cannot precisely specify the mathematical relations
among the variables of the system? The answer is that we must determine the best
operation, not only relative to our objective (diagnosing the system, controlling the
system, predicting future system behavior, etc.), but also relative to our uncertainty
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regarding the system. To do this, the uncertainty must be quantified and merged with
our operational objective to form a criterion to judge operator performance across
the uncertainty class.

Historically, there have been many attempts to characterize and differentiate
between types of uncertainty. For instance, aleatory uncertainty is irreducible and
inherent in a model, while epistemic uncertainty is reducible given additional knowl-
edge or data (Bae et al. 2004) (see also Chap.3 by Oberkampf and Chap.5 by Roy in
this volume). This chapter takes a Bayesian approach, modeling uncertainty in our
scientific knowledge itself (cf. Chap. 7 by Beisbart and Chap. 20 by Jiang et al. in
this volume). We assume a prior distribution over an uncertainty class of plausible
parametric models (states of nature). These can be any scientific model, including
stochastic differential equations, Gaussian or non-Gaussian stochastic processes,
feature-label distributions (as in classification), or Markov chains (as with regula-
tory networks), to name a few. We assume that aleatory uncertainty is accounted for
in the scientific model. For example, given a constrained number of measurement
variables, gene regulation is inherently stochastic; thus, we integrate this inherent
randomness into our gene regulation models through the introduction of a perturba-
tion probability. However, our main focus is not on modeling aleatory uncertainty
but on quantifying epistemic uncertainty in our scientific knowledge.

Rather than quantifying uncertainty in a global sense, for instance using the vari-
ance or entropy ofmodel parameters, we focus on uncertainty quantification from the
perspective of an operational objective. How do we characterize uncertainty when
the objective is to design an operator to optimally achieve a certain engineering goal,
such as filtering an image, classifying an observed object, or controlling a physical
system? Consider a class of candidate operators, and a cost function for each opera-
tor and state-of-nature pair. The cost may be, for example, the error rate of a given
operator. Given a prior distribution on the states of nature, we define the intrinsically
Bayesian robust (IBR) operator to be an operator corresponding to the minimum
expected cost, averaged over the prior. We then quantify uncertainty using the mean
objective cost of uncertainty (MOCU) (Yoon et al. 2013), which is the increase in
cost between the IBR operator and the optimal operator for a given state of nature,
averaged over the prior. Unlike variance or entropy, MOCU quantifies uncertainty
in terms of our ability to make inferences. In gene networks, the engineering goal
is structural intervention, which amounts to blocking interaction between a pair of
genes, thus severing an edge in the regulatory network. For a given intervention and
network pair, cost is quantified by the long-run probability that a certain combination
of undesirable gene activity levels occurs simultaneously. Given a set of candidate
structural interventions, and uncertainty in the underlying regulatory functions in
the actual network, an IBR intervention corresponds to an intervention with mini-
mal expected cost, and the MOCU quantifies uncertainty in our ability to intervene
without knowing the actual state of nature precisely.

An excellent application of MOCU is in the sequential information collection
problem, where the objective is to devise a strategy of selecting real or computer
experiments from a set of available options. A key component of any experimental
design framework is uncertainty. As experiments are observed, uncertainty in some

http://dx.doi.org/10.1007/978-3-319-70766-2_3
http://dx.doi.org/10.1007/978-3-319-70766-2_5
http://dx.doi.org/10.1007/978-3-319-70766-2_7
http://dx.doi.org/10.1007/978-3-319-70766-2_20
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underlying mechanism or state of nature should be reduced, thereby aiding future
decisions. A basic strategy for experimental design is thus to quantify uncertainty
given various potential experimental observations, and to choose the experiment cor-
responding to maximal expected uncertainty reduction in the future. One possible
option is to choose the experiment resulting in maximal reduction in variance or
entropy, but this approach can spend many experiments reducing uncertainty in vari-
ables that are irrelevant to the engineering objective at hand. A better strategy would
be to minimize the expected MOCU in the future, where the expectation is over an
assumed distribution over the experimental outcomes. Then, the future IBR operator
(after the experiment) will have minimal expected cost, averaged with respect to the
state of nature and the future experiment. In other words, we directly maximize our
ability to make accurate inferences in the future, and the optimal inference operator
automatically falls out of the uncertainty analysis.

We begin with a review of our example, gene regulatory networks, in Sect. 22.2.
This is followed by a review of optimal operators in Sect. 22.3, and an example
of optimal intervention in regulatory networks in Sect. 22.4. We review IBR opera-
tors in Sect. 22.5, which have optimal expected cost in the presence of uncertainty,
and present examples of IBR intervention in regulatory networks in Sect. 22.6. In
Sect. 22.7, we review MOCU and discuss how this framework can be used to char-
acterize optimal experimental design. We discuss examples of optimal experimental
design for interventions in regulatory networks in the presence of uncertainty in
Sect. 22.8. In Sect. 22.9, we discuss general issues pertaining to Bayesian inference
and experimental design. We conclude in Sect. 22.10.

22.2 Gene Regulatory Networks

We will illustrate the theory by considering intervention in regulatory networks, in
particular, cell regulation. The regulatory system in a cell is mainly based on its
genetic structure. The basic paradigm has two parts. Transcription is the process
by which genetic information in a gene is copied into messenger RNA (mRNA).
When this process is occurring the gene is said to be expressing (or activated).
Expression is governed by signaling proteins attaching themselves (binding) to the
gene’s promoter region. In essence, each gene is controlled by the states of a set of
genes, so that activation depends on the expression levels of its regulating genes.
Translation, which occurs subsequent to transcription, refers to the production of
protein, based on the code carried by the mRNA, that can either be involved in
maintaining the cell structure or function as a signal (transcription factor) to instigate
or prohibit further gene expression.

A gene regulatory network (GRN) is a mathematical model comprised of a set
of entities called “genes” and a regulatory structure that governs their behavior over
time. GRNs can be finely detailed, as with differential-equation models, or coarse-
grained, with discrete expression levels transitioning over discrete time.We consider
a Boolean network, in which a gene can have logical values 1 or 0, corresponding
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to expressing or not expressing, respectively, and regulation is specified by logical
operations among genes, so that functional relationships between genes can be spec-
ified by a truth table (Kaufmann 1993). Although the original formulation (and the
one we consider) is two-valued, 0 or 1, the Boolean-network concept applies to any
number of discrete gene values and has been extended to probabilistic Boolean net-
works in which the logic is affected by regulation outside the network (Shmulevich
et al. 2002).

An n-node Boolean network (BN) is a pair (V,F), where V = {X1, X2, . . . , Xn}
is a set of binary-valued nodes and F = { f1, f2, . . . , fn} is a set of Boolean functions
such that fi : {0, 1}ki → {0, 1} is the Boolean function that determines the value of
Xi , 0 or 1. In the context of gene regulatory networks, the nodes correspond to “off”
and “on” states of the genes and the Boolean functions represent gene regulation.
The vector X (t) = (X1(t), . . . , Xn(t)) gives the state of the network at time t . The
value of Xi at the next time point,

Xi (t + 1) = fi
(
Xi1(t), Xi2(t), . . . , Xiki

(t)
)
, (22.1)

is determined by the values of ki predictor nodes at time t . Given an initial state,
a Boolean network will eventually reach a set of states, called an attractor cycle,
through which it will cycle endlessly. Each initial state corresponds to a unique
attractor cycle and the set of states leading to a specific attractor cycle is known as
the basin of attraction of the attractor cycle.

To illustrate validation and uncertainty in the context of Boolean networks, con-
sider the tumor suppressor gene p53, which in mammalian genomes is a transcrip-
tion factor for hundreds of downstream genes that modulate cell cycle progression,
repair damaged DNA, and induce senescence and apoptosis (cell self-destruction).
Figure22.1, adapted from Batchelor et al. (2009), shows some major pathways
involving p53 that are activated in the presence of DNA double-strand breaks. An
arrow indicates an activation signal and a blunt end indicates suppression. This kind
of pathway model, common in biology, is under-determined, in the sense that many
networks might generate the pathways. We consider two such Boolean networks
having states [ATM, p53, Wip1, Mdm2]. An external input signal, denoted dna_dsb,
takes on the value 1 or 0, depending on whether there is or is not DNA damage. This
leads to two 4-gene Boolean networks determined by the following logical rules:

ATMnext = Wip1 ∧ dna_dsb

p53next = Mdm2 ∧ ATM ∧ Wip1

Wip1next = p53

Mdm2next = (ATM ∧ (p53 ∨ Wip1)) ∨ (p53 ∧ Wip1)

The symbols ∧, ∨, and represent logical “and”, “or”, and “not”, respectively.
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Fig. 22.1 Major pathways
involving p53 that are
activated in the presence of
DNA double-strand breaks.
[Dougherty, E. R., The
Evolution of Scientific
Knowledge: From Certainty
to Uncertainty, SPIE Press,
Bellingham, 2016; © SPIE
and being used with
permission.]

The state transition diagrams for these networks are shown in Fig. 22.2: (a)
dna_dsb = 0; (b) dna_dab = 1. Absent damage, from any initial state, the network
evolves into the single attractor state 0000; with damage, the network evolves into a
5-state attractor cycle in which p53 (state number 2) oscillates between expressing
and not expressing. There are several ways to validate this kind of genomic network
based on long-run (attractor) behavior (Dougherty 2007).

Now, suppose that the regulatory function for ATM is unknown in the sense that
we know that it is of the form ATMnext = x ∧ dna_dsb. The variable x can be either
p53, Wip1, Mdm2, or any of their negations. Thus, there is an uncertainty class
consisting of six possible networks. Validation is impossible since we don’t know
which of the six is to be validated. One might argue that if we attempt to validate all
six and only the correct one, x being the negation ofWip1, is validated, not only have
we found the correct network but also validated it. The problem is that this assumes
sufficient data for validation, which would be more than sufficient to decide on the
hypothetical network to begin with, which is precisely what we cannot do.

Putting uncertainty aside, suppose there is amutation and the network of Fig. 22.2b
is altered so that state 0000 is an attractor. Then the network stays in 0000 when
there is DNA damage. This is a bad mutation because p53 remains off when there
is DNA damage so that the corrective downstream effects are not actuated. To treat
this condition, we desire a drug that will structurally intervene to alter the mutated
regulatory logic and best treat the condition. It might not be possible to completely
correct the logic, but among a set of possible drugs, which one provides the optimal
correction, where the notion of “optimal” must be medically defined? The present
chapter discusses optimal operations (such as structural intervention in a regulatory
network) when there is model uncertainty.
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Fig. 22.2 Booleannetwork state transitiondiagrams for states [ATM,p53,Wip1,Mdm2]:a dna_dsb
= 0, b dna_dab = 1. [Dougherty, E. R., The Evolution of Scientific Knowledge: From Certainty to
Uncertainty, SPIE Press, Bellingham, 2016; © SPIE and being used with permission.]

22.3 Optimal Operators

Modern engineering beginswith a scientificmodel, but in addition to themodel, there
is an objective. The situation changes from simply modeling behavior to action. In
medicine, engineering is popularly called translational science, which accurately
describes modern engineering. A scientific model, whose purpose is to provide a
conceptualization of some portion of the physical world, is transformed into a model
characterizing human action in the physical world. Scientific knowledge is translated
into practical knowledge by expanding a scientific system to include external inputs
that can be adjusted to affect the behavior of the system and outputs that monitor
the effect of the external inputs and feed back information on how to adjust the
inputs (Dougherty and Bittner 2011). For example, in biomedical science models are
created with the intention of using them for diagnosis, prognosis, and therapy.

If one is going to transform a physical process, then the conceptualization of
that physical transformation takes the form of a mathematical operator on some
mathematical system, which itself is a scientific model for the state of a portion
of nature absent the transformation. The product of science is a validated model,
whereas the product of translational science is an operator that transforms some
aspect of nature in a quantifiably useful manner. For translation, the scientific model
is an intermediate construct used to facilitate control of nature; its descriptive power
is of concern only to the degree that it affects the operator designed from it.

There are two basic operator problems concerning systems. One is analysis: given
a system, characterize the properties of the transformed system resulting from the
operator in terms of the properties of the original system. The second, and the one
that concerns us here, is synthesis: given a system, design an operator to transform
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the system in some desirable manner. Synthesis forms the basis of modern engineer-
ing (translational science). Synthesis begins with the relevant scientific knowledge
constituted in a mathematical theory. This is used to derive an optimal operator for
accomplishing a desired transformation under the constraints imposed by the circum-
stances. A criterion, called a cost function (objective function) is defined to judge the
goodness of the response—the lower the cost, the better the operator. The objective
is to minimize the cost function.

For translational science, synthesis generally involves four steps:

1. Construct the mathematical model (graphical network, ordinary differential
equations, stochastic differential equations, etc.).

2. Define a class of operators.
3. Define the optimization problem via a cost function.
4. Solve the optimization problem.

The optimization problem takes the following form: among all operators ψ in the
operator class F , find an operator ψopt that minimizes the cost C(ψ) of applying
operator ψ to the model.

22.4 Optimal Intervention in Regulatory Networks

Turn back to our example of regulatory networks. Different types of internal stochas-
ticity can be placed into a Boolean network. Here we restrict ourselves to a single,
simple type. In aBoolean networkwith perturbation (BNp), each nodemay randomly
flip its value at a given time with a perturbation probability p > 0, independently
from other nodes. Hence, for a BNp, X (t + 1) = F(X (t))with probability (1 − p)n ,
when there is no perturbation, but X (t + 1) may take a different value, with proba-
bility 1 − (1 − p)n , when there exists one or more random perturbations. On account
of perturbation, the network can jump out of an attractor cycle into a different basin
of attraction and then transition to a new attractor cycle. Thus, from any state, there
is a positive probability of reaching any other state at the next time point. In a BNp,
the sequence of states over time can be regarded as a Markov chain.

A discrete-time, finite-state, homogeneous Markov chain is a vector stochastic
process X (t) completely defined by its initial state X (0) and its one-step transition
probability matrix (TPM) P whose i , j component is the transitional probability
P(X (t + 1) = j |X (t) = i). If there exists a probability distribution {ϕ j } such that
for all states i, j ,

lim
t→∞ P(X (t + 1) = j |X (0) = i) = ϕ j , (22.2)

meaning that in the long-run (as t → ∞) the probability of transitioning to state j
equals ϕ j no matter the initial state i , then {ϕ j } is known as the steady-state (long-
run) distribution. Equivalently, the probability of being in state j in the long-run is
ϕ j , independent of the initial state.
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For a BNp, transitions are made according to a fixed TPM P and Markov chain
theory can be applied for analyzing network dynamics. The general formula of a
TPM using Boolean functions and perturbation probability are derived in Faryabi
et al. (2009). The Markov chain possesses a steady-state distribution.

The issue for intervention in Markovian networks is to choose from a family of
interventions the one that best alters the steady-state distribution of the network. The
Markov-chain states are partitioned into sets D and U of desirable and undesirable
states, respectively, possessing total steady-state probabilitymassϕD = ∑

i∈D ϕi and
ϕU = 1 − ϕD , respectively. The operator class F consists of a family of transfor-
mations ψ on the TPM P and the cost function C is the total steady-state probability
mass of the undesirable states. An optimal intervention minimizes

C(ψ) = ϕ
ψ

U =
∑

i∈U
ϕ

ψ

i , (22.3)

where ϕ
ψ

U and ϕ
ψ

i are the undesirable steady-state mass and steady-state probability
of state i , respectively, following the intervention ψ .

As an illustration, consider the cell cycle, which controls cell duplication and
division. The model contains ten genes: CycD, Rb, p27, E2F, CycE, CycA, Cdc20,
Cdh1, UbcH10, and CycB, with genes numbered in this order. The cell cycle in
mammals is controlled via extra-cellular stimuli. Positive stimuli activate Cyclin
D (CycD) in the cell, thereby leading to cell division. CycD inactivates the Rb
protein, which is a tumor suppressor. The regulatory model, shown in Fig. 22.3, has
blunt arrows representing suppressive regulations and normal arrows representing
activating regulations. This regulatorymodel can also be summarized by a regulatory
matrix R = (Ri j ), where Ri j represents the regulatory relation from gene j to gene
i : Ri j = 1 if the relation between genes j and i is activating, Ri j = −1 if the relation
between genes j and i is suppressive, and Ri j = 0 if there is no relation between
genes j and i . To construct a BNp from the regulatorymodel, we assume themajority
vote rule, where at each time point a gene takes the value 1 if the majority of its
regulator genes are activating and the value 0 if themajority of its regulatory genes are
suppressive; otherwise, it remains unchanged. Under this rule, Xi (t + 1) = fi (X (t))
with probability 1 − p, where

fi (X (t)) =
⎧
⎨

⎩

1 if
∑

j Ri j X j (t) > 0
0 if

∑
j Ri j X j (t) < 0

Xi (t) if
∑

j Ri j X j (t) = 0
. (22.4)

When gene p27 and either CycE or CycA are active, the cell cycle stops, because
Rb can be expressed even in the presence of cyclins. States in which the cell cycle
continues even in the absence of stimuli are associated with cancerous phenotypes.
For this reason, states with down-regulated CycD, Rb, and p27 (corresponding to
x1 = x2 = x3 = 0) are undesirable. A structural intervention removes an arrow from
the regulatory graph because it blocks a regulation between two genes. The interven-
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CycD
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CycB

Fig. 22.3 Regulatory model for the mammalian cell cycle. [Dougherty, E. R., The Evolution of
Scientific Knowledge: From Certainty to Uncertainty, SPIE Press, Bellingham, 2016; © SPIE and
being used with permission]

tion alters the TPM and hence the steady-state distribution. The structural interven-
tion that maximally lowers undesirable steady-state probability blocks the regulatory
action from gene CycE to p27 and reduces total undesirable steady-state probability
from 0.3401 to 0.2639 (Qian and Dougherty 2008). The steady-state distributions
for the original network and the treated network are shown in Figs. 22.4 and 22.5.

22.5 Intrinsically Bayesian Robust Operators

The cost function upon which optimization is based depends on the scientific model
being known with certainty. In many problems, this assumption is warranted. At
worst, there is insignificant deviation between the behavior of the variables in the
model and the empirical behavior they represent. However, this is not always the
case, especially with complex systems. Specifically, while some parameters of the
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Fig. 22.4 Steady-state distribution of the original network. [Dougherty, E. R., The Evolution of
Scientific Knowledge: From Certainty to Uncertainty, SPIE Press, Bellingham, 2016; © SPIE and
being used with permission]
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Fig. 22.5 Steady-state distribution of the treated network. [Dougherty, E. R., The Evolution of
Scientific Knowledge: From Certainty to Uncertainty, SPIE Press, Bellingham, 2016; © SPIE and
being used with permission]

model can be assumed to be known with certainty, for others this assumption is
unwarranted. The result is an uncertainty class of models determined by a parameter
vector θ consisting of the unknown parameters. If Θ is the set of possible values
of θ , then the uncertainty class is referred to as Θ because the uncertainty class of
models is in one-to-one correspondence with Θ . It is crucial to recognize that Θ

defines a class of mathematical processes that characterize our uncertain scientific
knowledge.

To formulate optimization when there is model uncertainty, let F be a family of
operators whose performance on model θ ∈ Θ is measured by the cost function Cθ .
For each operator ψ ∈ F , there is a cost Cθ (ψ) of applying ψ on model θ ∈ Θ .
An intrinsically Bayesian robust (IBR) operator ψΘ

IBR ∈ F minimizes the expected
value overΘ , among all operators inF , of the cost Cθ (ψ), the expected value being
with respect to a prior probability distribution π(θ) overΘ (Yoon et al. 2013; Dalton
and Dougherty 2014). An IBR operator is robust because on average it performs
well over the whole uncertainty class. Since each parameter vector θ corresponds
to a model, a probability distribution on the space of possible models quantifies our
belief that some models are more likely to be the actual model than are others. It
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quantifies our prior knowledge. If there is no prior knowledge beyond the uncertainty
class itself, then the prior distribution is taken to be uniform, meaning that all models
are assumed to be equally likely.

In many instances, the solution for the IBR operator takes a form analogous to the
optimal operator when there is no uncertainty. Specifically, when an optimal operator
is expressed via characteristics of the random processes constituting the underlying
scientific model, where by a characteristic we mean some entity derived from the
processes, such as a covariance matrix, then it is often the case that the IBR operator
is expressed in the same manner except that the random-process characteristics are
replaced by effective characteristics that summarize the information across the uncer-
tainty class. For instance, for wide-sense stationary random processes, the classical
Wiener filter is expressed in terms of power spectra of the processes. When the ran-
dom processes are uncertain, the IBRWiener filter is expressed in terms of effective
power spectra (Dalton and Dougherty 2014). In classification, the optimal classi-
fier is expressed in terms of the class-conditional densities. When the feature-label
distribution is uncertain, the IBR classifier is expressed in terms of the effective class-
conditional densities (Dalton andDougherty 2013). Other examples includemorpho-
logical filtering (Dalton and Dougherty 2014) and Kalman filtering (Dehghannasiri
et al. 2017).

When it is possible to construct effective characteristics, the four-step schema for
optimal operator design is extended by the following five steps (Dougherty 2016):

5. Identify the uncertainty class.
6. Construct a prior distribution.
7. State the IBR optimization problem.
8. Construct the appropriate effective characteristics.
9. Prove that the IBR optimization problem is solved by replacing the model char-

acteristics by the effective characteristics.

We shall not pursue an example using effective characteristics. First, we want to
avoid a lot of domain-specific mathematics, and second, we want to give an example
that is appreciable to a wide audience. The mathematics is avoided when the uncer-
tainty class and operator class are finite, so that finding an IBR filter reduces to a
search among all possible operators to find the best. There is a price because the
computational burden is typically too great, especially when we proceed to experi-
mental design. Hence, in practice one must use some sort of complexity reduction,
thereby obtaining an approximate solution. For instance, one might approximate the
underlying scientific model to reduce the number of parameters. A general approach
is to reduce the operator optimization from being over all operators in the operator
classF by only considering operators that are optimal for some model in the uncer-
tainty class (Grigoryan and Dougherty 1999). The resulting operator is known as a
model-constrained Bayesian robust (MCBR) operator. These have been considered
for various classes of operators.
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22.6 IBR Intervention in Regulatory Networks

Consider uncertainty in themammalian cell cycle network resulting from there being
k pairs of genes forwhich it is known that there is a regulatory relationship but the type
of relationship, activating or suppressing, is unknown. The uncertainty class consists
of 2k networks, each θ ∈ Θ corresponding to a specific assignment of regulation
types to the k uncertain edges. Since we have no knowledge beyond the existence of
regulatory relations, the uncertainty class is governed by a uniform prior distribution
π(θ) = 2−k . A structural intervention blocks the regulatory action between a pair
of genes in the network and the cost function is the total undesirable steady-state
probability. Based on the given mammalian cell cycle network, simulations have
been run in Yoon et al. (2013) that incrementally increase the number of edges with
unknown regulation from k = 1 to k = 10. In each case, 50 uncertain networks
are created by randomly selecting uncertain edges while keeping the regulatory
information for the remaining edges.

For the set of models with from 1 to 5 uncertain edges, 54.0% of the time the
IBR structural intervention, which minimizes the expected undesirable steady-state
mass, is the optimal intervention for the true network, which blocks the regulation
from CycE to p27. As noted previously, when applied to the true model, this reduces
the total undesirable steady-state probability to 0.2639. 41.6% of the time the IBR
intervention blocks the regulation fromCycE to Rb, and reduces the total undesirable
steady-state probability to 0.2643. Four other interventions are chosen a total of 4.4%
of the time. When the simulation is run with 6 to 10 uncertain edges, blocking CycE
to p27 or blocking CycE to Rb accounts for 88.8% of the IBR interventions, as
opposed to 95.6% of the IBR interventions for 1 to 5 uncertain edges. This change
reflects the greater uncertainty.

22.7 Objective Cost of Uncertainty

While optimal over the uncertainty class, an IBRoperator is not likely optimal relative
to the true model. The loss of performance is the cost of uncertainty. To quantify this
cost, for θ ∈ Θ , let ψθ be an optimal operator for θ . Then Cθ (ψθ ) ≤ Cθ (ψ

Θ
IBR). For

any θ ∈ Θ and operator family F , the objective cost of uncertainty (OCU) relative
θ is defined by

UF (θ;Θ) = Cθ (ψ
Θ
IBR) − Cθ (ψθ ). (22.5)

If we knew the true network, then we could insert the corresponding value of θ in the
preceding expression to find the actual objective cost of uncertainty; however, we do
not know it. Hence, we take the expectation of the OCU over the prior distribution,
which gives the mean objective cost of uncertainty (MOCU) (Yoon et al. 2013):

MF (Θ) = EΘ [UF (θ;Θ)]. (22.6)
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The MOCU provides the desired uncertainty quantification. Historically, uncer-
tainty has often been measured by the entropy of a distribution, but entropy ignores
the translational objective. There may be large entropy but with most (or all) of the
uncertainty irrelevant to the objective. For instance, in controlling a network there
may bemuch uncertainty in the overall network but a high degree of certainty regard-
ing the mechanisms involved in the control. In this case, the entropy might be large
but the MOCU small, which is what matters from a translational perspective.

TheMOCU can be used to design experiments to optimally reduce the uncertainty
relevant to the operational objective. Suppose there are k experiments T1, . . . , Tk ,
where experiment Ti exactly determines the uncertain parameter θi in θ = (θ1, θ2,

. . . , θk). Question: Which experiment should be conducted first? Let θ |θ̄i = θ |(θi =
θ̄i ) be the conditional uncertainty vector composed of all uncertain parameters other
than θi , with the experiment now having determined that θi = θ̄i . Let Θ|θ̄i = {θ |θ̄i :
θ ∈ Θ} be the reduced uncertainty class given θi = θ̄i . Elements of Θ|θ̄i are of the
form

θ |θ̄i = (θ1, . . . , θi−1, θ̄i , θi+1, . . . , θk). (22.7)

The IBR operator for Θ|θ̄i is denoted ψ
Θ|θ̄i
IBR and is called the reduced IBR operator

relative to θ̄i .
If the outcome of experiment Ti is θ̄i , then the remaining MOCU given θi = θ̄i is

defined by

MF (Θ|θ̄i ) = EΘ|θ̄i [Cθ |θ̄i (ψ
Θ|θ̄i
IBR ) − Cθ |θ̄i (ψθ |θ̄i )], (22.8)

where the expectation is relative to the conditional distribution π(θ |θ̄i ). The remain-
ing MOCU is the MOCU for the reduced IBR operator relative to the reduced uncer-
tainty class.

The expected remaining MOCU given parameter θi is called the experimental
design value, D(θi ). It is the expectation of MF (Θ|θi ) with respect to the marginal
distribution π(θi ) over θi :

D(θi ) = Eθi [MF (Θ|θi )]. (22.9)

An experiment Ti∗ minimizing the experimental design value is called an optimal
experiment: D(θi∗) ≤ D(θi ) for i = 1, 2, . . . , k (Dehghannasiri et al. 2015b). θi∗ is
called an primary parameter. Putting the definitions together, it is not difficult to
show that i∗ minimizes the residual IBR cost for experiment Ti ,

R(θi ) = Eθi [EΘ|θi [Cθ |θi (ψ
Θ|θi
IBR )]], (22.10)

which is the expectation over the possible outcomes of experiment Ti of the expected
cost of the reduced IBR operator over the reduced uncertainty class. The primary
parameter is the parameter corresponding to i∗, where i∗ minimizes both D(θi ) and
R(θi ), i = 1, 2, . . . , k.
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Rather than performing a single experiment, one can perform a sequence of exper-
iments to iteratively reduce the number of uncertain parameters.

22.8 Optimal Experimental Design for Regulatory
Networks

We now apply optimal experimental design to regulatory networks when there are
uncertain regulations and the aim is to find the optimal regulation based on the
MOCU. Consider a BNp in which network regulations are governed by a regulatory
matrix R that characterizes the regulatory relations between every pair of nodes,
and where nodes are regulated according to the majority vote rule. Uncertainty is
introduced by assuming that for certain node pairs, although a regulatory relation is
known to exist, the type of the regulation (activating or suppressive) is unknown. The
uncertain parameters are the unknown regulatory relations. An uncertain parameter
θi equals 1 for an activating regulation and −1 for a suppressive regulation. If there
are k uncertain regulations, thenΘ contains 2k networks. Experimental design selects
a primary parameter to optimally improve structural intervention.

Computational complexity is a major issue. The complexity of network inter-
vention grows exponentially with network size. It is much worse when performing
experimental design because the optimal intervention must be found for every net-
work in the uncertainty class. Model reduction for structural intervention has been
studied to reduce complexity (Dehghannasiri et al. 2015a) but we do not consider
the issue here. To reduce computation, we utilize the MCBR intervention rather than
the IBR intervention.

Proceeding with our example, simulations have been performed with
k = 2, 3, 4, 5, assuming a uniform prior distribution over Θ (Dehghannasiri et al.
2015b). Networks have six nodes, X1, . . . , X6, each having three regulators. A ran-
dom BNp is generated by randomly selecting three regulators for each node with
uniform probability and randomly assigning 1 or −1 to the corresponding entries
in the regulatory matrix R. The perturbation probability is set to p = 0.001. States
with X1 = 1 are undesirable. For each k, 1,000 synthetic BNps are generated and 50
different sets of k edges (regulations) are randomly selected for each network. The
regulatory information of other edges is retained while that of the k selected edges
is assumed to be unknown.

Unlike real networks, which can be controlled to a certain extent, many randomly
generated networksmaynot be controllable.Hence, regardless of the intervention, the
resulting steady-state distribution shift may be negligible and the difference between
optimal and suboptimal experiments insignificant. Thus, to examine the practical
impact of experimental design, we must take controllability into account. We use
the percentage decrease of total steady-state mass in undesirable states after optimal
structural intervention as a measure of controllability:
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Table 22.1 The average gain of conducting the optimal experiment predicted by the proposed
experimental design strategy in comparison to other suboptimal experiments

Unknown edges Average η1 Average η2 Average η3 Average η4

k = 2 0.0584 N/A N/A N/A

k = 3 0.0544 0.0718 N/A N/A

k = 4 0.0545 0.0750 0.0855 N/A

k = 5 0.0474 0.0696 0.0803 0.0863

Δ = ϕU − ϕ
ψ

U

ϕU
× 100%, (22.11)

where controllable networks have a larger Δ.
Rank the experiments 〈1〉, 〈2〉, . . . , 〈5〉 according to which provide the greatest

reduction in expected remaining MOCU. By definition, experiment 〈1〉 is optimal.
For i = 1, 2, 3, 4, let

ηi = Cθtrue

(
ψ

Θ|θ̄〈i+1〉
MCBR

)
− Cθtrue

(
ψ

Θ|θ̄〈1〉
MCBR

)
(22.12)

be the cost difference between applying the MCBR intervention derived for the
reduced uncertainty class that results from conducting the (i + 1)-ranked experi-
ment to the true network and the cost of applying the MCBR intervention obtained
from conducting the optimal experiment. Table22.1 summarizes the average gain
of performing the optimal experiment over other suboptimal experiments according
to ηi . The average is taken over different sets of uncertain regulations and different
networks with Δ ≥ 40%.

Regarding sequential experimentation, Fig. 22.6 compares the average cost after
performing k experiments iteratively chosen by optimal experimental design to the
average when experiments are chosen randomly. The curves agree at the outset when
no experiments have been performed, and at the end when all parameters have been
determined. The key point is that the cost reduction is much greater when only one
or two experiments are performed; indeed, the cost when two experiments have
been chosen optimally is approximately the same as when four have been chosen
randomly. This is because at each stage the experimental design procedure selects the
experiment that will provide the maximal expected reduction of model uncertainty
related to the operational objective. In practice, this means that one can perform a
fraction of the possible experiments and eliminate most of the objective uncertainty.
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Fig. 22.6 The average cost
of robust intervention after
performing the sequence of
experiments predicted by the
proposed strategy and the
average cost after performing
randomly selected
experiments
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22.9 Discussion

There are numerous Bayesian methods to handle inference in the presence of model
uncertainty (Bernardo andSmith 2001;Clyde andGeorge 2004;Madigan andRaftery
1994). One approach is Bayesian model selection, which aims to select the most
probable model in an uncertainty class given observed data (Barbieri and Berger
2004; Wasserman 2000; Chen et al. 2003). Though an inferred model produced by
Bayesian model selection, or any other model selection method, could be used to
make predictions about a given quantity, the resulting prediction is expected to be
suboptimal relative to that of the IBR operator that directly and optimally infers the
same quantity.

Bayesian model averaging predicts a given quantity by finding the weighted aver-
age of predictions across an uncertainty class of models, where weights in the aver-
age are the posterior probability of the corresponding model (Hoeting et al. 1999;
Raftery et al. 1997; Wasserman 2000). There are several key distinctions between
BayesianModelAveraging and IBRoperators: (1)Whereas BayesianModelAverag-
ing implicitly assumes the minimummean-square error cost function, IBR operators
allow other cost functions. (2) While Bayesian model averaging is typically imple-
mented with a finite number of models to control computational complexity, IBR
operators leverage existing fixed-model optimal operator design methods to effi-
ciently compute the average, often over a continuum of models. (3) The IBR frame-
work summarizes all model uncertainty using either effective processes or effective
characteristics. Effective processes are not required to be a member of the uncer-
tainty class, or even valid stochastic processes, and effective characteristics distill
model uncertainty even further to certain partial descriptors of the stochastic process.
(4) Perhaps most importantly, while Bayesian model averaging and other standard
Bayesian inference techniques place uncertainty on parameters of the operational
model, e.g., the regression coefficients, the IBR framework quantifies uncertainty
on scientific knowledge itself by placing priors directly on the underlying stochastic
process.
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There are also numerous Bayesian approaches to sequential experimental design
(Ryan et al. 2016). However, again, most Bayesian sequential design methods quan-
tify uncertainty on parameters of the operational model, rather than quantifying
uncertainty in the science itself. An example is the knowledge gradient policy (Fra-
zier et al. 2009), which assigns independent Gaussian rewards (sign-flipped cost) to
each alternative experiment and correlated multivariate Gaussian beliefs to the mean
values of these rewards. Although the knowledge gradient approach is a special case
of the MOCU-based experimental design framework, there are fundamental differ-
ences: (1) under knowledge gradient the experiment space and action space must
be the same, while under MOCU they may be different, and (2) under knowledge
gradient uncertainty is modeled directly on the reward function and there is no direct
connection between assumptions in the operational model and the underlying phys-
ical model, while under MOCU prior knowledge and uncertainty in the underlying
physical system can be incorporated into the modeling framework.

Many Bayesian experimental design methods also quantify uncertainty using
information theoretic entropy or other global measures that are not tailored to the
objective. This is in contrast with the MOCU-based framework, which specifically
aims to quantify the degree to whichmodel uncertainty affects the engineering objec-
tive. To illustrate, consider work in Huan and Marzouk (2016), which presents a
general review of Bayesian experimental design and almost immediately assumes
Kullback–Leibler (KL) divergence as a design objective. On page 8, the authors
state that KL divergence may be used as a “general-purpose objective that seeks to
maximize learning about the uncertain environment” and “should lead to good per-
formance for a broad range of estimation tasks.” While this is no doubt true in many
applications, there are perhaps few cases where experimental design is conducted in
the absence of a more specific objective.

22.10 Conclusion

Our approach to uncertainty quantification has two salient aspects: (1) it is based on
scientific uncertainty regarding the underlying random processes and (2) it quantifies
the effect of scientific uncertainty on operator design. In particular, as opposed to
Bayesian methods that place prior distributions on parameters of an operator model,
such as standard Bayesian linear regression, here the prior is placed on the underlying
model and therefore directly reflects our scientific uncertainty. Uncertainty in the
operator follows directly from the form of the operator and uncertainty regarding the
random processes involved. For instance, in IBR classification, prior distributions
are on the parameters of the feature-label distribution, not on the parameters of the
classifier. Not only does this place the mathematical formulation of the uncertainty
where it belongs, it also facilitates the design of prior distributions directly from
our scientific knowledge—for instance, deriving prior distributions for phenotype
classification from known biological signaling pathways (Esfahani and Dougherty
2014; Boluki et al. 2017).
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Objective-based optimal experimental design follows directly from the definition
of the mean objective cost of uncertainty. Our interest in the scientific model lies
solely in our ability to use it to facilitate operator performance. The curves in Fig. 22.6
clearly demonstrate the importance of determining the parameters most relevant
to operator performance. In basing uncertainty quantification on MOCU, we are
quantifying uncertainty relative to an operational objective. The aim is translational
scientific knowledge (engineering) as opposed to general scientific knowledge,which
might be the aim if one were to use entropy over the uncertainty class to quantify
uncertainty. MOCU-based optimal experimental design has been applied in both
biology and materials discovery (Mohsenizadeh et al. 2016; Dehghannasiri et al.
2017).
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Chapter 23
Standards for Evaluation of Atmospheric
Models in Environmental Meteorology

K. Heinke Schlünzen

Abstract This chapter focuses on evaluation guidelines developed in the field of
environmental meteorology. Definitions for verification, validation, and evaluation
as used in the field of environmental meteorology are given. A generic structure of a
model evaluation guideline is introduced consisting of three parts: (A) Specification
of application area, (B) evaluation steps to be performed by the model developer,
and (C) evaluation steps to be performed by the model user. The generic structure is
detailed using two examples from environmental meteorology. For both examples,
an accepted standard for model evaluation was achieved by involving the relevant
stakeholders in the harmonization process. The methodology to achieve a standard
and why standards are relevant in environmental meteorology is outlined.
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23.1 Introduction

Evaluation of models and their results is of uttermost relevance in meteorology.
This is true not only for weather forecast (see Chap. 29 by Theis and Baldauf in
this volume), which is a daily product of meteorological services worldwide and
used by different communities (e.g., industry, public). Evaluation is also a relevant
topic for climate models (see Chap. 30 by Rood in this volume), since results of
climate models are most relevant for planning mitigation and adaptation measures.
In the field of environmental meteorology, evaluation is a long-standing issue, since
also in this field model results are used to take decisions relevant for humans and
the environment. Environmental meteorology investigates, broadly speaking, effects
of anthropogenic changes of the atmosphere that influence the environment. The
assessed environmental changes are often short distance (e.g., 1 km to a few hundred
kilometers) and concern direct impacts on humans or on ecosystems. Global climate
change studies would not be addressed, while local impacts of global change and
locally driven local and regional climate changes are part of environmental mete-
orology studies. This is especially true for studies of the environmental impacts of
intense local forcing, as found in urban areas resulting in heavy pollution and urban
climate.

Models are a very important planning tool in environmental meteorology, for
instance, for decisions on industrial settlement, in traffic planning or on urban devel-
opment. All these decisions are costly in terms of both time and resources. Therefore,
it is important that the models used are tailored for the tasks they are meant to do
and that they deliver reliable results for these tasks. These ideas lead to the need for
evaluation guidelines that should preferably become standards (Sect. 23.3). These
standards shall ensure that the models applied by consultants provide reliable results.
The standards are of interest to the scientific community as well, since they describe
the current state of knowledge with respect to model evaluation. Therefore, they can
also be used to ascertain quality of research models if, for instance, the test cases are
included in a benchmark suite used to evaluate new model versions.

In the process of guideline development, it turned out that definitions for verifi-
cation, validation, and evaluation were quite differently used in the environmental
meteorology community. An agreement was achieved; the definitions are summa-
rized in Sect. 23.2. A generic structure of an evaluation guideline is introduced
in Sect. 23.4. Examples on how this generic structure is detailed in environmental
meteorology are given in Sect. 23.5. Conclusions on limits of the current approach
and future developments in the field of environmental meteorology are given in the
conclusions (Sect. 23.6).
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23.2 Definitions Used

In environmental meteorology, a longer discussion took place in the 1990s on the
meaning of evaluation, validation, and verification that eventually lead to agreeing on
definitions as given in this section. Additional definitions of words frequently used
in this chapter are added but have not been intensely discussed in the environmental
meteorology community.

In the following, citations of previously published papers are used. Additions to
the original citation are given in square brackets, and words omitted marked with
dots.

23.2.1 Specifics of an Atmospheric Model

23.2.1.1 Model and Program

A model shall represent, in a simplified but physically sound way, the real atmo-
spheric processes and relations “… complying with fundamental physical principles
and using fundamental physical equations, approximations, parameterizations and
certain boundary conditions.” (VDI 2017a). It is further noted in VDI (2017a) that
“the systems of equations of the models … are solved with the help of numerical
methods with specified boundary and initial conditions.”

For the realization as computer code, mostly newest versions of the programming
language Fortran are used. Fortran is well suited for numerical models and scientific
computing, and the compilers produce well-performing programs for the types of
equations, number of grid points (106 to 108 per variable), and number of time
steps (~106 to 107) solved in atmospheric models. By the word “program” as used
in this chapter, the “implementation of the model on a computer” (VDI 2017a) is
understood. This includes the executable on a specific computer.

The thinking of model and program being combined is relevant for the evaluation
of a model, which is not seen independently from its realization.

23.2.1.2 Scale

Characteristic size and lifetime of an atmospheric phenomenon determine the spatial
and temporal scale, respectively. Examples of the scales are included in Fig. 23.2.
The scales determine which approximations of the fundamental equations might be
made and which phenomena a model should be able to simulate.
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23.2.1.3 Averaging Approaches

The fundamental equations are averaged in space and time (filtering of equations)
since current computers are not able to resolve all atmospheric phenomena to the
detail. Due to this filtering, phenomena of a specific scale are no longer resolved. Two
filtering approaches are used in atmospheric models. Large eddy simulation models
(LES models) use a spatial filtering and temporally resolve developments of vortices
with a temporal resolution consistent with the time step used for numerical reasons.
Models using the Reynolds-averaged Navier–Stokes equations (RANS models) fil-
ter in space and in time. The spatial filtering is the same as in the LES model of
same resolution, but the remaining timescales are larger in the RANS model. In a
RANSmodel, subgrid-scale turbulent fluxes are parameterized (Sect. 23.2.1.4). This
parameterization is set up in a way that it filters fast changes, so that the characteristic
temporal resolution of a RANS model is about 10–20 min. The actual spatial and
temporal resolution of an atmospheric model needs to be determined per case. This
can be done by comparing spatial and temporal spectra of model results with those
derived from measured data.

23.2.1.4 Parameterization

A parameterization is used in a model to consider the effects of influential processes
that cannot be resolved in a model with the applied resolution or averaging approach.
The effects are described as a function of the simulated variables using someconstants
or parameters that may also depend on the simulated variables. To give a well-known
example, the subgrid-scale turbulent momentum fluxes are frequently parameterized
in dependence of the spatial gradients of the wind field and the exchange coefficient.
The exchange coefficient may again depend on the spatial gradients of the flow field
and on the atmospheric stratification (i.e., how temperature and humidity change
with height).

23.2.2 Modeling

With “modeling” not only the model and its realization are meant but also the use
of the realized model is covered. This use includes the preparation of input data,
the use of the model by its user, and how the output data are further refined (e.g.,
interpolation in space and/or time). Thus, modeling consists of two parts:

I. Theoretical basics and realization of the model in a program: This includes
the basic equations, approximations, parameterizations, in some cases chemi-
cal mechanisms, boundary conditions, initialization method, numerical schemes
(incl. discretization), programming language, internal error checking, and detec-
tion of user errors by code internal checks;
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II. Model use: The user of a model specifies the initial data and how the model
shall be initialized, which boundary values and which time steps are to be used.
Also, the specification of the output times may be relevant for result use. The
user is also responsible for the correctness of the input data (e.g., surface charac-
teristics), for specifying the domain size (large enough?) and the grid resolution
(uniform/nonuniform). The model user needs to determine, if the phenomenon
to be simulated can be simulated with the selected model (is the model applica-
ble?). The technical surrounding and the experience of the model user are further
influencing the model results.

Since how amodel is used (part II) impacts themodel results, even a perfect model
can deliver wrong results (“garbage in—garbage out”), if the user employs the model
in a wrong way. Thus, user training is very relevant for model application and model
results. Training exists, mainly at the meteorological services and universities with
meteorology lectures. It reaches from a few days for model output users (Geertsema
et al. 2018) to several months for model developers (e.g., lectures and postgraduate
studies at universities and research institutions).

23.2.3 Guideline

A guideline recommends how to act, in this case when evaluating a model. It helps
to harmonize different approaches and aims at setting sound practices. A guideline
is not mandatory or legally binding and thus cannot be enforced.

23.2.4 Standard

A standard is a guideline that was accepted by a broader community (involvement of
relevant stakeholders) and therefore is setting a norm. Developing a standard often
involves compromises between scientifically based wishes and practical needs and
practicability.

23.2.5 Verification

VDI 3783 Part 9 (VDI 2017b) defines verification as follows: “Confirmation that the
program corresponds to the model.” This definition is checking for the realization
of the model in the program but is not including the check for the realism of model
results. This, however, would hardly be possible: Based on Popper (1982), Schlünzen
(1997) outlines this for atmospheric models: “To verify a model completely, it has to
be proved that the model is able to simulate all atmospheric phenomena of the model
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application area with the correct solution. Such a proof could only be constructed if
we knew all atmospheric phenomena of the application area, could simulate them all,
and could successfully compare model results with measurements. Apart from the
fact that it is not at all a simple task to compare model results and measurements, a
proof is impractical for complexmodels, becauseweneither knowall the atmospheric
phenomena nor all the initial data. The impossibility of a proof becomes even more
evident if one considers that all possible variations of input parameters have to give
realistic results. Therefore, complex atmosphericmodels cannot in general be verified
completely. However, model results can be verified for single-case studies, e.g., by
comparing them with measurements. In addition, a verification of single aspects of
a model or of a simple model might be possible.” Since the model verification is
practically impossible, VDI (2017b) restricted the definition to software verification.

23.2.6 Validation

VDI 3783 Part 9 (VDI 2017b) defines validation as follows: “An examination to find
out to what extent (with what accuracy) a program describes within the formal scope
of themodel the phenomena it ismeant tomodel.” Similar to verification, it is difficult
to perform this in general for a model. However, for single cases, this can be achieved
and, therefore, the application of a model to a single situation and its comparison
with reference data is often named validation in environmental meteorology.

23.2.7 Evaluation

VDI 3783 Part 9 (VDI 2017b) defines evaluation as follows: “Assessment of a model
and of the associated program with regard to accuracy.” This means that theory and
model basics are not separated from the model realization in a computer code. Both
have to be jointly evaluated with respect to model performance characteristics. As
detailed in Baklanov et al. (2014, Sect. 6.3), “The aims of model evaluation are to
assess the suitability of a model for a specific application (‘fit for purpose’); bench-
marking model performance against reality and other models; quantifying uncertain-
ties; testing individual model components; and providing guidance for future model
developments.”

Based on a paper by Dennis et al. (2010), different types of evaluation can be
distinguished: operational, diagnostic, dynamic, and probabilistic evaluation. For a
full evaluation of a model, all evaluation types should be considered.
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23.2.7.1 Operational Evaluation

This “involves the direct comparison of model output with routine observations …
using statistical metrics such as normalized mean bias, root mean square error, etc.”
Baklanov et al. (2014, Sect. 6.3).

23.2.7.2 Diagnostic Evaluation

The diagnostic evaluation “…examines individual processes and input drivers that
may affect model performance and requires detailed … measurements that are not,
typically, routinely available.” Baklanov et al. (2014, Sect. 6.3).

23.2.7.3 Dynamic Evaluation

The dynamic evaluation “… investigates the model’s ability to predict changes … in
response to changes in … [drivers (input or boundary values)]. …” Baklanov et al.
(2014, Sect. 6.3).

23.2.7.4 Probabilistic Evaluation

The probabilistic evaluation “…explores the uncertainty of model predictions and is
used to provide a credible range of predicted values rather than a single estimate. It is
based on knowledge of uncertainty embedded in observations andmodel predictions,
the latter often being approximated by an ensemble of model simulations.” Baklanov
et al. (2014, Sect. 6.3). Thus, here the uncertainty of model results (e.g., from ensem-
ble simulations) as well as the uncertainty of reference data (here observations) are
considered.

23.2.8 Model Quality Indicator

Amodel quality indicator (MQI) characterizes the quality of a model result in com-
parison to reference data. A summary of those used in environmental meteorology
can be found in Chap. 5 of Schlünzen and Sokhi (2008) and Appendices D-F therein
(see also Chap. 13 byMarks andChap. 18 by Saam in this volume). It should be noted
that many of the statistical metrics used as MQIs assume Gaussian distributions of
the compared values (model results and reference data) or at least of the differences.
However, often the differences are not normally distributed (Fig. 23.1).

The question arises what should be reflected by an MQI. If the interest is merely
in checking how close model results and reference data agree, then the percentage
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Fig. 23.1 Frequency distribution of differences between model results and reference data (straight
line) taking NO2 data as example. Using the bias (here −13.85 µg m−3) and the standard deviation
(here 16.55µgm−3) of the differences, the frequency distribution is also given as normal distribution
(dashed line)

of differences might be determined that are in an acceptable range. This is expressed
by using the hit rate H (Cox et al. 1998; Schlünzen and Katzfey 2003):

H � 1

N

N∑

j�1

{
1 for

∣∣Mj − Oj

∣∣ < A, or
∣∣∣Mj−Oj

O j

∣∣∣ < D

0 else
(23.1)

In Eq. (23.1), Mj denotes an individual model result and Oj the corresponding
reference value taken from a comparison data set with N values. This MQI checks
for absolute and relative differences. It is assumed that the model result is correct
(hit), if either the absolute difference remains below the given value A or the relative
difference is below a given value D. Both values should be prescribed depending on
the accuracy of the available reference data so that their uncertainty can be considered
in the calculation ofMQI. The allowed differencesA,D can be larger, if less accuracy
is needed from the model. By calculating hit rates, two advantages are achieved: the
MQI is independent of the Gaussian distribution, and the reference data uncertainty
can be considered in the evaluation, which is hardly possible in most other MQIs.

To give an example: Assuming an absolute difference and thus an uncertainty of
the measured data of A = 10 and (for simplicity) a relative difference of D = 0 one
receives from the distribution shown in Fig. 23.1 a hit rate of H � 37.5%. This
is higher than from the corresponding Gaussian distribution that fits the very same
values of bias and standard deviation (H � 34.9%). In this case, the agreement of
measured and simulated values is better if one uses the correct distribution and not
the Gaussian distribution. If the errors were less frequent within the assumed allowed
absolute difference A, the values calculated on the basis of a Gaussian distribution
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would show a better agreement. This discrepancy can result for the same values of
bias and standard deviation, since they do not account for a non-Gaussian error distri-
bution. This uncertainty is inherent to all MQIs mentioned before, if the differences
are not normally distributed.

One has to be aware that the deviation from a Gaussian error distribution might
lead to wrong indications of the model performance, since the MQIs measure the
model results’ quality in correspondence to that type of distribution. In the example
given, the MQIs based on the normal distribution indicate worse goodness of the
model results than actually achieved. The possibility that the differences of model
results and reference data are not normally distributed holds for all evaluation types
mentioned in Sect. 23.2.7. Therefore, the use of MQIs independent of the normal
distribution is preferable. Furthermore, data often cannot be quality checked due
to time constrains. Then, they have a higher uncertainty, and a good agreement of
model results and data should not be expected. In any case, theMQIs should consider
uncertainty of the reference data.

23.2.9 Reference Data

Reference data are those data the model results are compared with (see Chap. 15 by
Murray-Smith on data in this volume). These reference data can be derived from ana-
lytic solutions, plausibility assessments, other model results, or observed data. All
of these data are not perfect, but include, besides other errors, conformity problems
(e.g., model complexity and analytic solutions), uncertainties (e.g., representative-
ness, aliasing), and instrumental problems (e.g., measurable minimum or maximum
values). All these uncertainties influence resulting values for the MQIs. The uncer-
tainties need to be considered when selecting and calculating MQIs.

23.3 From Guidelines to Standards

23.3.1 Historical Background

Research in environmental meteorology was intensified after a heavy pollutant
episode more than half a century ago, a 5-day winter smog episode in London in
1952 during which ~4000 people died (GLA 2002). Thereafter, first models (analytic
solution of the dispersion equation, Gaussian plume models) were developed. These
developments were less motivated by scientific curiosity, but more by the need to
improve the environmental conditions for the people, in this case by understanding
dispersion and reducing air pollution. Already at that time, results were compared
with available field data which were taken from dedicated field experiments like
those in 1957 by Hay and Pasquill. Many more field experiments and dedicated
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measurements as well as improved model approaches followed in later decades,
and comparisons of model results with reference data were performed. Mostly, the
outcome of these comparisons was visually evaluated as “Model results and mea-
surements agree well.” in published papers, without using any quantitative model
quality indicator. However, in the past 20–30 years, quantitative MQIs were more
and more introduced to assess the abilities of current models. A summary of evalu-
ation outcomes in the research field of environmental meteorology showed that, in
example, 50% of the model evaluations have a bias in temperature between
−1.1 K and +0.3 K, a correlation coefficient of above 0.62 for wind speed or a
root mean square error of 71° for wind direction (Schlünzen et al. 2016). The eval-
uation approaches used in the analyzed scientific publications were (and many still
are) different from test case to test case. A general agreement on how to evaluate
atmospheric models applied to environmental problems is yet not achieved by the
scientific community.

To ensure that concentration and deposition values neither affect human health
nor ecosystems, standards for air quality have been introduced (EC 1980). In 1980,
the European Communities Programme for Action on Environment set the limit
level for sulfur dioxide concentrations among EU member states (EC 1980). For
US, Canada, Japan, and other countries, similar limits exist. The introduction of
limit values for more pollutants and the lowering of the limit values (e.g., EC 2008)
increased measurement activities to monitor concentration levels. At the same time,
it became clear that impacts of emissions into the atmosphere that result from new
developments (e.g., industrial plants, roads, harbors, and livestock farming) need to
be assessed in advance to minimize negative effects for the environment. Following
EU regulations, models can be applied for this assessment, if they fulfill some quality
criteria and if expected concentrations aremuch lower than the limit values. However,
detailed hints on how to evaluate models were not given.

Severalmodels have been developed and are used for assessment studies.Attempts
to harmonize the modeling approaches started already in 1991 (HARMO con-
ferences; Olesen 2017). The first complete evaluation protocol for atmospheric
mesoscale models tailored for pollutant transport studies and using grid sizes of
500 m to 5 km was suggested by Schlünzen (1997), leading to generic protocols
(Schlünzen, and Sokhi 2008; Schlünzen et al. 2018) as well as detailed evaluation
concepts for high-resolution atmospheric models (Di Sabatino et al. 2011a, b; Franke
et al. 2011). Some of these approaches were further developed and became national
standards (e.g., VDI 2017a, b). Several guidelines have also been developed and
are applied in US, Japan, and Germany for regulations relevant for the atmospheric
environment (Meroney et al. 2016). Currently, a European-wide approach intends to
develop a standard for the evaluation of air quality assessment models (Nordmann
et al. 2017). This shall enhance result comparability throughout the different states
of the European Union.

To summarize, standards for model evaluation are developed for the following
five reasons:
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(1) A quantitative assessment of an actual situation or of scenarios, e.g., of a future
situation, is needed.

(2) Assessment cannot be done reliably by using common sense but need complex
models that are not understandable and verifiable (definition see Sect. 23.2) at
first glance.

(3) The model results have (economic) relevance for different stakeholders (indi-
viduals, community, and developers).

(4) There are regulations that put the model results in a legal framework with clear
decisions to be taken by the management of a company or the administration of
a community.

(5) Different results of the same scenario that have been achieved with different
methodologies might trigger lawsuits and delay further development of a com-
munity.

Thus, evaluation standards become necessary if the model results are used in a
legal and economic framework. However, to become a standard acceptance by the
scientific community is not sufficient. A guideline can only become a standard if all
relevant stakeholders are involved in the development and they finally agree on and
accept a guideline as a standard.

23.3.2 How to Achieve a Standard

In order to illustrate how a standard can be achieved, the development of standards
within the environmental meteorology air quality division of the Commission for
Clean Air (shortened CCA-EM hereafter) is given. The CCA-EM standard develop-
ment takes place within the Association of German Engineers (VDI) and the German
Institute for Standardization (DIN). All standards are in German and English. The
corresponding European-wide standardization organization is CEN (European Com-
mittee for Standardization) and worldwide it is ISO (International Organization for
Standardization).WithinCCA-EMcurrently, around70 standards are in development
or use, plus 2 and 7 developed in the framework of CEN and ISO, respectively.

The development of a standard for application in environmental meteorology
needs to involve the relevant stakeholders, which are all experts. They come from
executive boards (e.g., state administrators), from industry, as well as from science or
are consultants involved in environmental impact assessments. These experts should
be from diverse enough groups so that they represent the relevant stakeholders. They
form the working group of that guideline (5–20 people) and jointly prepare a draft
of a standard.

Typical development times for drafting a standard are 3–5 years, but it can bemuch
faster (VDI 2018) or take even longer (VDI 2017a). Amain reason for different devel-
opment times is the gap in ascertained knowledge about the specific methodology
that needs to be standardized. Another reason is the limitation in resources, since the
work has no basic funding for the experts involved in the different working groups.
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Once an agreed draft of the standard exists, this is sent by the CCA-EM secre-
tariat to a wider circle of interested parties. They function as external reviewer board
in a similar way as in a scientific journal, but they do mostly not express scien-
tific disagreements but more practical problems or possible misunderstanding in the
draft provided. Furthermore, they can object to specific methods or regulations sug-
gested. The interested parties can formulate their objections and comments, and send
them back within a specified deadline (about 2–3 months) to CCA-EM secretariat,
which then ensures that the working group of that standard addresses all comments,
improves the draft of the standard correspondingly, and provides individual answers
to all reviewers. This review process can easily deliver 50 minor to major comments,
even lead to a rejection of the draft of the standard. All objections and comments have
to be addressed if they are not rejected for sound reasons. The draft of the standard
has to be improved correspondingly. If the changes are severe and change the mean-
ing of the standard, a second review and objection round is foreseen; otherwise, the
changed standard will be published and thereby becomes a so-named VDI standard.
In rare cases, the objections initiate a complete rewriting of the standard.

Once a standard is accepted and published, it does not mean this standard is
applied. For this, it has to become part of a legal regulation. As an example of an
environmental regulation, Appendix 3 of the German regulation TA Luft (2002) is
taken. The requirement of using a Lagrangian particle model for dispersion calcula-
tions is specified there. The model has to be consistent with VDI 3945 Part 3 (VDI
2000). This ensures that environmental assessments are based on the same method
at least for the dispersion simulation. Further standards are available concerning the
meteorology fields (VDI 2017a, b), model use (VDI 2015), and assessment setup
(VDI 2010) and might be taken up in a future update of the German air quality
regulations (BMUB 2016).

23.4 Generic Structure of an Evaluation Guideline

Guidelines for model evaluation are not only helpful for standards (e.g., VDI 2017a,
b), but are also of interest for the scientific community. A model developer might
identify model shortcomings much faster by using standardized test cases that come
with robust and tested reference data and model quality objectives (MQOs). Test
cases can also be used as benchmarks for checking code errors in the process of
the further continuous model development (see Chap. 18 by Saam on validation
benchmarks in this volume). Model users have the advantage that the abilities and
limits of a model are well documented once a model is evaluated with a standard (at
least for the application area the model has been checked for). And, last not least,
scientific publications based on model results of evaluated models will include fewer
model results which lack model quality.

A comparable method for evaluating models also allows comparing the perfor-
mance of different models. This helps to distinguish general shortcomings of many
models from deficits of a single model. General shortcomings hint on deficits in



23 Standards for Evaluation of Atmospheric Models … 575

our scientific understanding, while deficits in single models mostly hint on needed
improvements of that one model.

A generic structure of an evaluation guideline is outlined in the following. It can
be applied to all types of models; it consists of three parts:

A. Specification of application area,
B. Evaluation steps to be performed by the model developer, and
C. Evaluation steps to be performed by the model user.

The specification of the application area (Part A of generic structure; Sect. 23.4.1)
is relevant since a model can hardly be verified or validated in general (Sect. 23.2).
A model may, however, be evaluated for one or several specific application areas
by the model developer; the limitations always need to be clearly stated (Part B of
generic structure, Sect. 23.4.2). Since even validated models can deliver unrealistic
results, hints need to be given to the model user as well (Part C of generic structure,
Sect. 23.4.3).

23.4.1 Specification of Application Area

The target variable for themodel’s application (e.g., temperature, population growth)
as well as the application type of the model (e.g., single-case versus statistical aver-
ages; forecast versus assessment) do not only determine what needs to be checked
in the guideline but also the model’s theoretical basics, the scales to be considered,
and applications to be evaluated (Sect. 23.4.2). It also should clearly be stated in
the application area where the limits of the evaluation guideline are, thus it needs
to be specified what might be outside the application area of a model successfully
evaluated following the specified guideline.

23.4.2 Evaluation Steps to be Performed by the Model
Developer

This part of the evaluation is grouped into three parts, general evaluation, scientific
evaluation, and test cases used as benchmarks.

23.4.2.1 General Evaluation

The general evaluation is not specific for an application area: the model should be
comprehensible, meaning it should be documented, a third party should be allowed to
inspect the code, peer-reviewed publications of model results and on model theory
should exist. The documentation should consist of a brief description in the type
of a data/fact sheet, a detailed model description including model theory, a manual
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that also includes installation aspects, and an evaluation report that summarizes the
evaluation outcomes. If the program sources are used by externals, an evaluated
model should also come with a technical reference specifying, e.g., programming
conventions, variable names, etc.

It should be noted that all these above parts, with exception of the publication in
peer-reviewed journals, are in addition to other scientific work and time-consuming.
However, for reliable scientific results, not only publications but also the model
documentation is important, even if a model is used only by themodel developer. The
documentation will support the continuous use and further development of the code
since by documenting it, violations of the coding norms or error-prone realization can
more easily be recognized by the developer. However, to achieve this documentation
status for models and thus a higher code quality, this part of scientific work needs to
be valued higher and thereby get a higher reputation in the scientific community.

23.4.2.2 Scientific Evaluation

For the scientific evaluation, the theoretical requirements on a model are specified
based on the scientific knowledge. In consideration of the application area of the
model evaluation guideline (Sect. 23.4.1), these requirements could concern the
spatial and temporal resolution of the model, necessary output parameters, equations
to be solved, theoretical concepts to be applied, solution methods, boundary values
to be used, and the initialization method.

The criteria for the scientific evaluation should be specified by a group of experts
for the respective application area. It should include the state of the science, but be
open to new developments to not hinder any scientific progress in the application
area. This might happen if, for instance, an evaluation guideline would be chosen
by a funding agency as a pre-condition for a research project, and the guideline is
very specific and detailed with respect to the characteristics of a model. In that case,
the guideline might help to perpetuate outworn modeling methodologies. Thus, the
scientific evaluation should only include criteria which are supported by the scientific
community and that are open to new scientific developments.

23.4.2.3 Test Cases

The test cases have to be specified in detail to validate the model. These test cases
should be relevant for the intended application area and should check the target vari-
ables. The test cases should be selected to cover the whole solution space of the
application area. Even so it is impossible to check the validity of a model in the
whole solution space (even more impossible to verify it), a thoughtful selection of
test cases sampled from the solution space could sufficiently reflect possible solu-
tions. One way is to select the test cases so that they check for possible extremes:
Assuming the solution space to be a cube, the solutions at the corners and at some
arbitrarily taken points within the cube could be chosen. Another way is to tailor the
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test cases to check for typical model shortcomings, e.g., horizontal homogeneity or
stationarity, if these criteria fit the application area specified in the evaluation guide-
line. In practice, a mixture of test cases from both groups is chosen. Also, the test
cases should be selected to perform the different evaluation types (Sect. 23.2.7) so
that not only operational evaluations of the model are performed, but also reasons
for the results (diagnostic evaluation), scenario reliability (dynamic evaluation), and
results uncertainty are investigated (probabilistic evaluation).

All these different requirements call for many test cases. However, often the time
needed to develop a test case is so large and the following application time so long that
the number of test cases is quite limited in reality (5 to 20 test cases). Therefore, the
test cases are mostly selected to detect typical model shortcomings. Consequently,
the model user has a high responsibility for checking the model results (Sect. 23.4.3).

For each test case, a general description with the specifically checked model qual-
ity should be given. This will help to detect model shortcomings based on checking
a specific model quality. The test case should be described with all details, e.g.,
domain size, resolution to be used, topography in the domain, initialization time,
initial values, forcing values, boundary values, output needed, etc. In summary, all
information needed to reliably run and evaluate a model should be given. The test
case description should also include details on the reference data, and at best they
should be provided with the guideline. Furthermore, details should be given how
to compare model results and reference data. This includes MQIs (e.g., correlation
coefficient r, hit rate H) as well as model quality objectives (MQOs). The last states
how large (or small) an MQI has to be in order to comply with the test case criterion
(e.g., r > 0.9, H > 66%, −2 K < bias < 2 K).

23.4.3 Evaluation Steps to be Performed by the Model User

Asmentioned before, even a perfect model might produce wrong results especially if
the model user is not trained. Therefore, an evaluation guideline should also include
recommendations that have to be consideredby themodel user.Reasons for additional
evaluation steps to be taken by themodel user are manifold: The application intended
by the model user might not be covered by the evaluation guideline applied by the
model developer for evaluating themodel. In addition, the impossibility to completely
verify a model but only being able to falsify it (Popper 1982; see also Chap. 6 by
Beven and Lane on falsificationism in this volume) might lead to arguable results
even within the application area. Furthermore, every model solution depends on
(uncertain) initial and boundary values, whichmight bewrongly chosen by themodel
user. Thus, model applications have to be verified or at least evaluated by the model
user.

In a guideline, it should be specified how a user might prepare input data of suf-
ficient quality, what needs to be considered when setting up model grid and domain,
and how it can be ensured that a model solution in the focus area is sufficiently inde-
pendent of selected domain characteristics as well as initial and boundary values. It
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should also be specified what evaluations a model user shall perform for each case
the model is applied to, as routinely done by meteorological services (see Chap. 29
by Theis and Baldauf in this volume). Last not least, hints have to be given how the
model simulations performed by the model user are to be documented so that they
could be reproduced and repeated by any other model user. Furthermore, some test
cases should be specified for training of the model user.

23.5 Examples for Standards

As already outlined in Sect. 23.3, several standards exist in environmental meteo-
rology. The following example is taken from guidelines evaluating flow fields (VDI
2017a, b; Schlünzen et al. 2017) that are needed as input for atmospheric dispersion
studies.

23.5.1 Comparing Application Areas of Two Standards

The application areas of VDI 3783 Part 7 (shortened EGa hereafter) and VDI 3783
Part 9 (shortened EGb hereafter) are outlined in Fig. 23.2 with respect to the phe-
nomena that have to be simulated by the models (in italics in Fig. 23.2). While
environmental meteorology investigates atmospheric phenomena of all scales, the
two standards taken as examples here focus on microscale to mesoscale phenomena.
Spatial scales are a few kilometers (EGb) or up to 100 km (EGa). Both standards are
developed for atmospheric models using Reynolds-averaged Navier–Stokes equa-
tions. Thus, typical model results have an inherent time filter of 10–20 min as a result
of the parametrizations employed and the boundary values used (Sect. 23.2.1.3). This
is independent of the time step needed for numerical reasons or the output frequency
of the model result. Typical forecast times as considered in the standards are hours
(EGb) to days (EGa).

Models evaluated by using EGb are assessed toward their ability to simulate build-
ingwakes effects. If amodel is evaluated by employingEGa, thismodel shall simulate
katabatic flows, urban heat islands, orographic, and sea-breeze effects (phenomena
in italics in Fig. 23.2). Effects of phenomena smaller than the scale resolved by the
model need to be parameterized (e.g., turbulence, and in addition building effects in
EGa). Influences of phenomena larger than the model domain and timescale have to
be considered via the boundary values. In environmental meteorology assessments,
a time slice approach (Schlünzen et al. 2011) is often used; necessary time series are
combined from stationary solutions.

As mentioned before, standards EGa and EGb both assume to use models solving
Reynolds-averaged equations. Therefore, they are (in theory) not applicable to the
evaluation of large eddy simulation (LES) models. Letzel et al. (2012) compare in
their paper results of an obstacle resolving LES model with wind tunnel data. Since
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Fig. 23.2 Possible application areas (in italics) of different wind field evaluation standards with
respect to atmospheric phenomena of characteristic horizontal size (extension) and characteristic
time scales (lifetimes). EGa denotes VDI 3783 Part 7 (VDI 2017a), EGb VDI 3783 Part 9 (VDI
2017b). For more details, see text. Scales based on Schlünzen (1996)

they compare time-averaged values (2 h average), EGb might also be employed for
assessing time-averaged LESmodel results. Then, the resulting time-averaged values
are evaluated, but not the statistics that LES models can additionally provide.

23.5.2 Detailed Specification of an Application Area

Details below are only taken from VDI 3783 Part 7 (EGa). Even with this restriction,
these examples represent only a small number of the specifications given, since
this standard has 83 pages and includes details that are beyond the scope of the
present more general paper. The examples selected shall provide some ideas for
the development of standards in other fields of science. They are also chosen to
illustrate that a standard can be detailed without hindering scientific development
(see Sect. 23.4.2 on scientific evaluation).

In EGa, it is specified by the 10 experts involved in the development of the draft,
in which cases the standard should be applied: The terrain slope should be larger than
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1:5 (>11°). This is specified, since for smaller slopesmore simplified approachesmay
be used. An alternative reason to apply models evaluated by EGa is the interaction of
flow fields resulting from temperature gradients, e.g., katabatic flows. Also, in cases
of time-dependent flow fields, models evaluated using EGa should be employed.

The application area is specified in EGa as atmospheric flow fields above struc-
tured terrain up to a height of 200m above ground in domain sizes of a few kilometers
to 100 km (Fig. 23.2). Since the target is the flow field, the evaluation focuses on the
wind (components, or speed and direction). The standard is developed for evaluating
Reynolds-averaged modeling approaches. Cloud formation is not considered, but a
supersaturation by 10% is permitted.

Limitations of the standard are given as follows: thermodynamic values are cal-
culated, but not explicitly evaluated (Sect. 23.5.3). If the horizontal grid size is below
100 m and the extension of buildings or high vegetation is larger than half the grid
size, then the chosen grid needs to be justified—not explicitly mentioned is that
additional evaluation is needed in that case. If temperature or other thermodynamic
values are needed, additional evaluations have to be performed that are dedicated to
these thermodynamic variables.

23.5.3 Some Detailed Evaluation Steps to be Performed
by the Model Developer

23.5.3.1 General Evaluation

The general evaluation of EGa is prescribing all documentation given in Sect. 23.4.2.
A minimum of two peer-reviewed publications of the model physics or its results is
defined. These publications have to be in two different professional journals, but one
can also be a doctoral or postdoctoral thesis.

From a scientific point of view, the number of publications is very low. The chosen
minimum number is a compromise between a wish for a multitude of external model
evaluations, as peer-reviewed papers can provide, and the desire for remaining open
to new model developments in the field of environmental sciences. If the limit were
higher, it might take too long before newmodel approaches could be used in practice.

23.5.3.2 Scientific Evaluation

The group of experts specified the theoretical requirements on the models to be ful-
filled when using EGa: The fundamental equations that need to be solved are the
conservation of mass, energy and momentum equations as well as the ideal gas law.
The equations can be used in derived form (e.g., vorticity) or in basic form (forwind or
momentum components), but all three wind components need to be calculated prog-
nostic and be Reynolds-averaged. A temperaturemeasure, e.g., potential temperature
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and specific humidity, should be computed with prognostic equations. Rotation of
the Earth resulting in Coriolis force has to be considered. Acceptable approximations
are given as well; these are mainly the anelastic approximation and the Boussinesq
approximation and, for near-surface turbulent fluxes, theMonin–Obukhov similarity
theory. Processes not directly solved by the model should be parameterized. Stability
dependence of turbulence and for subgrid-scale convection has to be considered. The
continuity of the parameterized turbulent fluxes has to be ensured. Concerning build-
ings and other land uses, their properties have to be considered in the model, e.g., by
using a roughness length approach. Theminimum requirement for solving the surface
energy and humidity budgets is to apply a force-restore method (Deardorff 1978) and
a budget equation, respectively. Since orography is considered, the effects of slopes
on incoming radiation as well as shading effects by hills need to be addressed. Some
additional model properties are mentioned, since they are frequently used, but are
not a requirement to apply EGa. These include the use of a nonuniform model grid,
the symmetry of the shear stress tensor, and the use of multilayer soil models for the
surface energy and humidity budgets.

The scientific evaluation does not restrain newmodel developments in the field of
environmentalmeteorology, since the restrictions are small:while the basic equations
are set and a need for considering Coriolis force explicitly mentioned, there are
very few additional restrictions. Especially, no restrictions are given concerning the
parameterizations to be applied, where new developments are to be expected. Only
some general physical preconditions, like continuity of the fluxes, are given. This is
similar for the numerical grid and the solution technique to be used, since in both
fields continuous new developments take place.

23.5.3.3 Test Cases

The test cases are specified in detail in the appendix of EGa. Five test cases use
idealized domain setups (e.g., bell-shaped or Gaussian orography), and one of these
compares with an analytic solution. To ensure some comparability of model results
and this analytic solution, the domain setup and themodel initialization are prescribed
as similar as possible to the assumptions needed to derive the analytic solution.
Nonetheless, the full model is used for this test case and no adjustments are to be
made to the model code, since this approach turned out to be quite problematic in
model evaluations performed in the past (Thunis et al. 2003).

All idealized test cases compare the model results with results of the very same
model. Different model qualities are checked. These include determining themodel’s
ability for reproducing the two-dimensionality of a solution, the correct consideration
of orography, the correct simulation of flow fields, including katabatic winds in
dependence of wind speed or model setup (grid size, shading). All these idealized
cases provide many reference data. Therefore, a hit rate (Eq. 23.1) can reliably be
used as MQI. Values suggested for A and D are given in Table 23.1; they agree with
those suggested by Schlünzen et al. (2016). Hit rate H has to achieve 95% to check
for sufficient domain height or for testing model result homogeneity.
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Table 23.1 Absolute, A, and
relative, D, deviation for
surface measurements to
calculate hit rate H (Eq. 23.1)
as given by Schlünzen et al.
(2016) and VDI (2017a)

Meteorological parameter A D

Component of wind vector 0.35 m/s 10%

Wind speed ff 0.50 m/s 10%

Wind direction (for ff > 1 m/s) 10° Not
applicable

Temperature 0.5 K 0.2%

Specific humidity 0.2 g/kg 2%

Three test cases prescribe realistic complex terrain and corresponding initial data
taken from field measurements. The reference data of all three test cases are based on
field experiments but have been specifically prepared for the model evaluation and
are provided with the standard. The number of comparison data is small; therefore,
MQOs include the uncertainty of the reference data (VDI 2017a).

For each test case, domain and grid size as well as the topography (orography
plus land-use) are given, and the data sets are either given in the standard or available
for download. Initial data, model starting time, and integration period, as well as
the boundary conditions, are prescribed. The variables are summarized with their
position and timing that are both essential for the model evaluation. The data are
either directly given in the standard or provided via a web page where they can be
downloaded. The test cases were all tested by the group of experts, applying up to
six different models to test the test cases and the predetermined MQOs. Only if all
test cases are passed, the evaluated model fulfills the developer-specific part of the
EGa.

23.5.4 Some Detailed Evaluation Steps to be Performed
by the Model User

Detailed information is given on how to select the model domain, e.g., vertical and
horizontal extension, or the relation of the model domain to the focus area. For
determining the independence of model results in the focus area on the domain size
and grid, MQOs are given. It is also outlined where grid stretching is allowed and
what needs to be considered to avoid an artificial flow accelerationwithin the domain.

Another important point for model users concerns the use of field data for model
initialization. Here, another standard (VDI 2017c) is referenced. It is outlined in
EGa how to interpolate model results at single grid points to observational field sites.
Since applications in environmental meteorology often employ stationary solutions,
a section of EGa is dedicated to the methods that have to be applied to determine
(quasi)stationarity solutions.

As mentioned before, even an evaluated model is not perfect. Therefore, it is
recommended in EGa to use the internal checks available in the model. These shall
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determine if wind speed or other meteorological variables remain within plausible
ranges (values suggested in Schlünzen 1997). Furthermore, all results have to be
checked for plausibility, at least in the focus area. If possible, quantitative compar-
isons have to be performed. The uncertainty of the reference data used for evaluation
should be taken into account as outlined before. Last not least, the model simulations
shall be documented to ensure third parties can reproduce the approaches taken.

One point in the user’s part of the standard concerns test cases of EGa that have
to be conducted by the model user. For the model users, three test cases are selected.
This approach was taken to ensure that a model user has at least some basic skill
to apply the model. The successful application includes the evaluation of the model
results and may have to be provided on request to the environmental agency that uses
the model results within an approval procedure.

23.6 Conclusions

Atmospheric models used in environmental meteorology are mostly computer pro-
grams, solving the conservation equations of mass, energy, and momentum with
numerical methods in dependence on initial and boundary values. Evaluation of
such models has a long history and is most relevant since costly investments depend
on conclusions based on model results.

The generic structure of evaluation guidelines as outlined in Sect. 23.3 with its
three parts, (A) specification of application area, (B) evaluation steps to be taken by
the model developer, and (C) evaluation steps to be taken by the model user, can be
applied to all fields of science. Specification for a specific application range helps
not only one model user group but the whole scientific community, since it allows
the detection of knowledge gaps in that field of science. If different models are not
able to simulate a situation that is covered by the application range of an evaluation
guideline, there are still three possible reasons: (1) the setup of the test case is wrong,
or outside the application range, (2) the comparison data are not suitable, and (3)
there is a gap in scientific knowledge, so that relevant processes are still unknown.
This very last reasonwill lead to scientific progress in that science field. This progress
can be systematically triggered, by attempting to falsify a model instead of choosing
only those situations where a model has shown good performance in the past.

Specification of the generic structure of the evaluation guideline needs suitable
test cases. These should be covering the application area. For this, it also needs to be
determined, if forecasts, assessments, and statistics ofmodel results or scenarios shall
be the application focus that is to be assessed. Once this is determined, there is a need
for reliable evaluation data. These have to include information on the uncertainties of
the data used as reference data. The selection and preparation of a data set, including
the test of the test case, easily takes several months and is scientifically challenging
due to the uncertainties in the reference data. If the uncertainties are too large, the
data set might not be sufficient to discriminate well-performing models from those
which are insufficient. If the MQOs of a test case are only fulfilled by one of many
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models, then this model might have accidentally passed the test and this might not
be repeatable even with the same model. Altogether, it is a scientific challenge to
prepare test cases in such a way that a wider community can easily and successfully
employ them.

When given the MQIs for a test case, model quality indicators assuming normal
distributions should be avoided, since the differences of model results and reference
data are mostly non-Gaussian distributed. This might be better considered by using
hit rates. In any case, the uncertainty of the reference data needs to be included in
the MQOs.

The further development from a guideline to a standard includes many steps, as
discussed in Sect. 23.3. This time-consuming process involves the relevant stake-
holders and a reviewing process. This is needed, if the application of a standard
shall become more probable. However, it still does not mean a standard is applied.
For this, it has to become part of legal regulation or a directive (e.g., EC 1980). As
an example of an environmental regulation, Appendix 3 of the German regulation
TA Luft (2002) is taken. The requirement to use a Lagrangian particle model for
dispersion calculations that has to be consistent with VDI 3945 Part 3 (VDI 2000) is
specified there. This ensures that environmental assessments are based on the same
method at least for the dispersion simulation. Further steps are prepared concerning
the meteorology fields (VDI 2017a, b), model use (VDI 2015), and assessment setup
(VDI 2010) and might be taken up in a future update (BMUB 2016). However, how
the formulations will be and if the standards developed will ever be part of a legally
binding regulation is outside the science community but part of political negotiations
and decisions.
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Chapter 24
The Management of Simulation
Validation

Fei Liu and Ming Yang

Abstract In this chapter, we discuss the management of simulation validation for
complex simulation systems. We first present nine principles for simulation valida-
tion, which are important to achieve good management and determine the success
of simulation validation. By considering these principles, we present a management
framework of simulation verification and validation (V&V), which includes four
components: V&V process, V&V scheme, V&V metrics, and V&V tools. That is,
we adopt a process-oriented, optimized, quantitative, and automatic management
manner for simulation V&V of complex simulation systems. We then describe each
component of the framework in detail and discuss the involved management issues.
We hope this chapter could help the user to understand the management of simula-
tion validation for complex simulation systems, and guide the user to manage the
validation of practical simulation systems.

Keywords Simulation validation ·Management · Verification and validation

24.1 Introduction

Modeling and simulation (M&S) has been widely and increasingly applied in many
fields such as military, aerospace, manufacturing, transportation, economic, and bio-
logical areas (Hill et al. 2001; Robinson 2001; Mostafa et al. 2018; Liu et al. 2014),
and played an essential role in some of these areas. By means of M&S techniques,
a real (or even imaginary) system can be modeled as a simulation model (or simula-
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tion system). In order to build the confidence of a simulation system to be studied,
verification and validation (V&V) has to be conducted, which can reveal whether the
simulation system has gained sufficient credibility (Sargent 1991, 2013; Balci 2003).
Among these two terms, verification confirms whether we correctly build a model
with respect to its specification. Simulation verification is similar to software veri-
fication and thus can make use of plenty of software engineering techniques (IEEE
2012). In contrast, validation answers the question: do we build a right simulation
model? That is, does a model represent the real system that it is supposed to model?
Amodel is usually built for a specific purpose and validation assures that the specific
purpose is achieved (Sargent 1991).

For simple simulation models, validation is easy. For example, a three-step
approach (Naylor and Finger 1967) has been widely used for validating simple mod-
els: (1) build a model and make it have high face validity, (2) validate the model
assumptions such as structural and data assumptions, and (3) compare the model
outputs with real outputs to obtain the consistency of these two groups of data. If the
consistency satisfies a predefined threshold for a specific purpose, we can say the
model is valid enough. This means the management of validation for simple models
is not essential.

However, currently simulation systems becomemore andmore complicated (Fuji-
moto 2003). These systems exhibit at least the following characteristics:

• A simulation system is usually composed of different types of computer generated
entities and physical devices, and the involved models may come from differ-
ent areas, e.g., plane models, command and control models, electric models and
different types of environment models.

• Themodels of a simulation systemcould be distributed amongdifferent computers,
which forms a distributed simulation environment. In this case, time synchroniza-
tion introduces more challenging issues for testing and validation.

• A simulation system has different levels of hierarchy, and thus can be broken into
subsystems, submodels, and components. Moreover, many components could be
highly coupled.

• The development of such a simulation system could take years and thus the man-
agement work is hard.

For such complex simulation systems, both the development and validation work
is challenging (Shi et al. 2008; Liu et al. 2008). For such systems, it is not enough
to depend on the validation methods used for simple models. Compared with sim-
ple models, validation of complex simulation systems is not only a technical issue
any more, but involves many management issues (Liu et al. 2008). In some sense,
validation is more like a management job.

• For a complex simulation system, we have to break the whole system to be studied
into different levels, such as subsystems, models, and components. After that,
we validate each component and the coupling of two components and finally
accomplish the validation of the whole system in a bottom to top way. During this
process, a variety of validation techniques couldbe adopted. For such a complicated
task, we have to adopt good manners and a set of tools to manage it:
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• We have to collect experts from different areas to accomplish the validation of
models from different areas. This requires a good organization of all validation
tasks, the validation experts and other resources such as documents.

• We need a good validation plan that facilitates the management of validation tasks
during the long development time of complex simulation systems.

For the validation of complex simulation systems, many research topics have
been proposed, such as constructing reasonable validation processes, considering
appropriate validation metrics, and developing powerful tools. In order to achieve
an effective validation of complex simulation systems, we have to carefully manage
the simulation validation and make them work together well.

In this chapter, we will concentrate on the management of simulation validation
for complex simulation systems. However, most of the time we discuss validation
in conjunction with verification (V&V), as they are closely intertwined. We will
describe our work on how we have achieved an effective validation during the past
few years (Liu and Yang 2009; Shi et al. 2009a, b, 2008; Liu et al. 2006c, b; Liu and
Yang 2005b; Liu et al. 2005; Liu and Yang 2005a; Liu et al. 2008).

The structure of the chapter is as follows. We first summarize the main princi-
ples of simulation validation. After that, we present our management framework of
simulation V&V, followed by the description of each component of this framework.
Finally, we provide the conclusions.

24.2 Simulation Terminology

This chapter defines some important terms, which will be used throughout the paper.

Modeling and simulation. Modeling is a process to build a mathematical or compu-
tational model for a specific real or imaginary system, while simulation is a process
to dynamically run a computational model in a computer. Usually, these two terms
are widely accepted in the simulation community.

Models. We have many types of models in the simulation community, and different
people may give different explanations. In this chapter, we simply differentiate some
of thesemodels as follows.Mathematicalmodels are thosemodels that are described
bymathematical formula, such as differential equations.Computational models are
built with such techniques as finite statemachine, Petri nets orDEVS (Hollmann et al.
2015). Simulation models are implementations of mathematical or computational
models via coding.

A conceptual model (CM) is an intermediate step (or model) which links mod-
eling requirements with simulation design. A conceptual model (Balci et al. 2008;
Robinson 2017, 2013, 2012) describes what a simulation model looks like before it
is implemented.

Besides, a simulation system (SS) is also used to denote a simulation model
(SM) or a group of coupled simulation models. For a real system composed of many
components, we can construct a simulation model for each component and those
components can be combined into a single unified simulation system.
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24.3 Principles of Simulation Validation

Setting up and understanding a set of principles is the primary issue of simula-
tion validation. The principles can help people to manage complicated validation
work, which may determine the success of simulation validation if they are well and
appropriately used in a simulation development project. Based on the analysis of the
literature (Balci 1995; Chew and Sullivan 2000; Robinson 1997; Balci et al. 2000;
Balci 2003) and our practical experience, the following principles are most relevant
to simulation validation:

(1) Validation of a model is conducted with respect to its application purpose.

Any model has an explicit and specific application purpose; validation of the model
has to be done with respect to its application purpose. A model could be valid for
one application purpose and invalid for another application purpose. Therefore, an
accurate specification of the application purpose of a model is the most important
issue for the validation work.

For a complex simulation system, we do not directly validate it against its appli-
cation purpose. Instead, based on the application purpose, we develop validation
requirements or criteria and make validation plans. After that, we validate the system
against the defined validation requirements, which indirectly reflect the application
purpose.

(2) Validationmust be conducted throughout the whole life cycle of a simulation
system.

Like verification, validation is not an activity of a phase, but a series of continuous
activities in the whole life cycle of a simulation system. Validation starts by defining
the validation requirements according to the application purpose of the simulation
system.After that, we draw up a validation plan, which is continuously refined during
several subsequent phases from simulation requirement analysis to system test.When
a conceptual model is under development, the validation plan is used to perform the
validation of the conceptual model. When the simulation development goes to the
implementation phase, the validation of models or subsystems is performed. After
the whole system is finished, the result validation is performed. Even when the
simulation is executed, the result validation is always accompanied with it.

Besides, please note that the validation could be iterative due to the following
reasons. For example, once simulation requirements change, we have to run valida-
tion for those affected parts. There may also be some severe faults during conceptual
modeling or design phases, which cause the change of models. In this case, we also
need to validate the relevant components again. Due to the multi-job, iterative char-
acteristics of the validation work, we can see that there are many management issues
involved in the simulation validation.

(3) Validation is a product/process/project-centered assessment.

For complex simulation systems, validation is not only product-centered assessment
any more, but becomes product/process/project-centered assessment (Balci 1995).
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Here product means the intermediate or final result of a simulation system, e.g.,
requirement analysis results, conceptual model, or the whole simulation system.
Process means how to perform the development with appropriate methodologies
and techniques. Project means those management characteristics such as personnel,
resources, documents, planning, and control.

For complex simulation systems, we not only need to assure the correctness of
simulation products, but also have to consider the correctness and appropriateness
of both process and project. For example, when a conceptual model is validated, we
at least consider the following aspects:

• Conceptual model validation. Check whether the conceptual model product is
right;

• Conceptual model construction process assessment. Check whether the construc-
tion process of a conceptual model is correct and appropriate;

• Conceptual model project assessment. Check whether appropriate personnel and
resources are used, and whether the documents are well written etc.

(4) The validation result should not be considered as a binary variable: Yes or
No, but should be a quantitative metric of the validity.

A model is an abstraction of a real system, so we cannot expect to establish an abso-
lutely valid model; even if we could, few people would like to pay the price (Shannon
1975). Therefore, a model should not be considered as passing the validation simply
by answering yes or no for its validity, but should be done in a quantitative way, e.g.,
using a scale from 0 (absolutely incorrect) too 100 (absolutely correct) to describe
the degree of validity.

In order to obtain a quantitative metric of the validity, we need to quantify all the
validation results of a simulation system, which means we may have to develop a
validation metrics for the simulation system. Therefore, we think constructing and
managing a reasonable validation metric should be an important matter of valida-
tion management of complex simulation systems (see also Chap.13 by Marks and
Chap.18 by Saam in this volume).

(5) Simulation validation should be independent from developers.

When a model gets finished, the developers usually validate it first to make sure they
built the right model. However, this is usually not enough as they are often biased. For
a large simulation system, the independent validation becomes much more essential.
A good practice for this is to set up an independent validation team to perform all
the validation work. Therefore, the formation of a verification and validation group
is usually necessary for the development of complex simulation nowadays.

(6) Complete validation is impossible.

The validation of a model is constrained by time and budget, so a complete validation
should not be expected. Therefore, we have to think of how to spend the limited time
and budget on essential validation activities in order to achieve a better validation
result.

http://dx.doi.org/10.1007/978-3-319-70766-2_13
http://dx.doi.org/10.1007/978-3-319-70766-2_18
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For complex simulation systems, we have to carefully draw up validation plans
by choosing those essential activities hopefully with the help of some optimization
techniques. In the following, we will demonstrate how to do this.

(7) Simulation validation must be well planned and documented.

As described above, validation is a continuous activity throughout the entire life
cycle of a simulation system. During this process, there are many specific validation
activities and different types of documents, so we have to carefully make a plan on
these activities and manage all the documents. For this, a computer aid tool is usually
expected.

(8) The validity of each sub-model does not guarantee the validity of the whole
model.

A simulation system is usually composed of a number of models. Even if we validate
each model and they are all valid with respect to the application purpose, this does
not imply that the whole model can be acceptable.

In fact, for a complex simulation system, the validation at the system level is a
most important job, which can be seen from the validation process model that will
be discussed in the following sections.

(9) Validation and error detection should be done as early as possible.

During the life cycle of a simulation system, correcting errors detected in later phases
is much more expensive. Therefore, we need to try to validate a model and detect its
possible errors as early as possible (see Chap.5 by Roy in this volume).

When we make a validation plan, we need to balance the time and cost for each
phase and should avoid to set the majority of the focus on result validation. Instead,
we should allocate more time and resources on the validation of the conceptual
model.

24.4 Management of Simulation V&V: A Framework

As described above, simulation V&V is a complicated task for complex distributed
simulation systems, involved by many organizations. In order to achieve a successful
V&V, a good management is essential. In the last decades, we have thoroughly
researched this matter.

Before proceeding, we want to first clarify what is simulation V&Vmanagement.
There are different definitions for management depending on different areas and
people. Concerning our scenario, the definition of Fayol (1917) provides an accurate
description. Namely, “to manage is to forecast and to plan, to organize, to command,
to coordinate and to control”.

We adopt this definition to describe simulationV&Vmanagement, which operates
through the aforementioned five basic functions: planning, organizing, coordinating,
commanding, and controlling

http://dx.doi.org/10.1007/978-3-319-70766-2_5
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• Planning. Generate V&V plans according to simulation purposes and V&V
requirements. When doing this, the above-mentioned principles have to be con-
sidered.

• Organizing. Make sure that all the resources available for V&V are put into place.
The usage of a well-defined V&V process model and a computer tool can improve
organizing and the other three following functions mentioned below.

• Coordinating. Coordinate all the people to well accomplish their individual V&V
tasks. This function is proposed from the point of view of different collaborating
teams.

• Commanding. Ask and urge people to accomplish their respective tasks.
• Controlling. Check the V&V progress against the validation plan to make sure
that the V&V plan is well performed.

For simple models, simulation V&V management usually does not matter. How-
ever, this is not the case for complex simulation systems. These years, we have pre-
sented a framework for guiding themanagement of simulationV&V(see Fig. 24.1 for
an illustration), which can also be considered for some V&V management practices
for complex simulation systems

• Developing a V&V process model to organize all the validation activities. This
V&V process should consist of as many V&V activities as we can think of for
a class of simulation systems. When a new simulation system is under study, we
can tailor this V&V process model to obtain those V&V activities suitable for the
current simulation system. In another word, simulation V&V can be considered as
a process-oriented job. TheV&Vprocessmodel can help to perform the organizing

Fig. 24.1 Management of simulation V&V: a framework
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and coordinating functions for a V&Vmanagement. In Sect. 24.5, we will discuss
this issue in detail.

• Drawing up a V&V scheme (plan) to help to accomplish an effective V&V. Based
on the V&V requirements and V&V process model given above, we can draw up
a V&V scheme. This scheme will guide all the V&V work throughout the whole
simulation development. Besides, in order to drawup a better scheme, optimization
techniques have to be developed andused. This issuewill be discussed inSect. 24.6.
This corresponds to the planning function of management.

• Quantifying simulation V&V results to give a measure of the overall credibility.
We developed a V&Vmetric system to quantify the credibility of each component.
By integrating the credibility of each component from bottom to top, we can obtain
the whole metric of simulation V&V (Liu et al. 2006a). Thus, we can control the
V&V results in a quantitative way.

• Developing software tools to manage all the documents, personnel and resources.
This not only assures the traceability of all the V&V work, but also helps to find
issues when something unexpected happens (Klock and Kemper 2010a); see also
Chap.25 by Reinhardt et al. in this volume. Using a set of tools, we can implement
the organizing, coordinating and commanding functions of the simulation V&V
management in an efficient way.

In summary, to achieve a successful V&V, we adopt a process-oriented, opti-
mized, quantitative, and automatic (POQA) management approach. We have applied
our management framework to several complex simulation systems, which show its
effectiveness. In the following sections, we will in detail discuss each component of
this framework and illustrate how it works.

24.5 Process-Oriented Simulation V&VManagement

It has been shown that V&V is accompanied by the whole M&S life cycle (Jennifer
and Cindy 2000). A well-established approach to managing V&V of complex simu-
lation systems is to design a complete and feasible V&V process model for the whole
M&S life cycle. That is, at each M&S phase, appropriate V&V activities have to be
defined, executed, and managed. So far, several V&V processes have been devel-
oped for different simulation applications, such as those for DIS and HLA-based
simulation systems (Jennifer and Cindy 2000; DMSO 1996).

In order to satisfy our requirements, we developed a more generic and detailed
V&V process model (see, e.g., Liu et al. 2008), illustrated in Fig. 24.2. This process
model includes the following main validation activities:

• Develop simulation validation requirements;
• Develop simulation validation scheme;
• Validate conceptual model;
• Validation subsystem models;
• Validate the whole simulation system.

http://dx.doi.org/10.1007/978-3-319-70766-2_25
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Fig. 24.2 A simulation V&V process model

The last two items consist of the so-called result validation.
This process model also includes the following main verification activities:

• Develop simulation verification scheme;
• Verify simulation requirements;
• Verify simulation design;
• Verify simulation implementation.

24.5.1 Simulation Validation Steps

In this section, we will briefly describe these validation activities of the process
model.

(1) Develop validation requirements.

The first step for a good simulation validation practice is to analyze and develop
accurate and necessary validation requirements. In order to balance risk and cost, we
should not try to validate all simulation requirements. Instead, we should focus on
those that are essential in terms of the application purpose.

Here, we adopt the following principle to determine the validation requirements.
We first consider the application purpose of a simulation system as a set of high-
level validation requirements.We then break each high-level requirement into several
small requirements that are operational. We repeat this step until we determine all
the validation requirements. Here the software requirement analysis techniques can
be applied for validation requirement analysis. Please note that we should also main-
tain the traceability between the validation requirements and simulation application
purpose.

When we finish validation requirements, we need to further precisely specify
acceptance criteria, in terms of which we check if validation passes or not (DMSO
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1996). Validation activities and their intensity are always depending on those criteria
which can differ in regard to e.g. usability criteria, suitability, or required precision
of an M&S.

(2) Develop validation scheme.

When we finish the fist step, we can analyze the cost and risk of each validation
requirement and then draw up the simulation validation scheme. The scheme usually
consists of two main parts: conceptual model validation and result validation. In
fact, throughout the whole simulation system development, the validation scheme
is dynamically improved according to the change of simulation requirements. In
Sect. 24.6, we will in detail discuss how to achieve a good validation scheme.

(3) Conceptual model validation.

As described above, a CM is the key to achieve a successful simulation development,
and thus the validation of a CM is usually the most important job in a complex CS.
The validation of a CM usually includes the following general validation activities:

• Validate the modeling hypothesis and assumptions. A model is a simplification of
the corresponding real system, and thus some modeling hypothesis and assump-
tions have to be made for the simplification from the modeler’s point of view.
Therefore, we also need to verify whether these assumptions satisfy the user’s
application purpose.

• Validate the functions of the whole conceptual model. A real system may have
more than one function, and we only need to concentrate on those functions that
are relevant to the user’s application purpose.

• Validate each entity including its parameters, behavior, internal interactions,
inputs, outputs, etc. Each entity may correspond to a model, which may be devel-
oped by different institutions or people. A good specification and validation of
each entity is the most difficult but important job.

• Validate the interaction among entities, including interface parameters, allowed
precision and fidelity, which is also very important for current distributed simula-
tion systems.

For a complex simulation system, its conceptual model could include many hier-
archies, e.g., model, sub-model, module and sub-module (Robinson 2006). At each
level, we need to perform sufficient validation activities, and thus the total amount
of validation activities can be huge. This issue applies also to the other validation
phases.

In regard to management, the following points need to be explicitly specified in
the validation plan:

• what validation activities have to be conducted,
• what validation metrics should be taken for each validation activity,
• what techniques (see DMSO 1996) for a list of available techniques) should be
employed for each validation activity,

• what experts should be invited and used for each validation activity,
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• what kinds of documents should be produced, and
• how to communicate with developers about the errors or issues detected.

These issues described above also apply to subsystem validation or system vali-
dation.

(4) Result validation.

During result validation of a model, a key task is to select key outputs (see also
Chap.14 by Currie in this volume) or performancemetrics of themodel. The selection
criteria have to consider at least two aspects. On the one hand, the output to be
considered should reflect the confidence of the user in the model (see also Chap.17
by Saam in this volume).On theother hand, the practical experimental data is available
for this output or the output can be judged directly by some experts (Sargent 2015,
2011, 2010; Sargent and Balci 2017); see also Chap.15 by Murray-Smith in this
volume.

The result validation of a system can be done in a similar way to individual model
validation. The only difference is that system validation puts more emphasis on the
coupling effects of different models or subsystems.

Besides, during model validation or system validation, another good practice is
to use more than one method for validating a model output. Due to the use of several
sources of data and several methods (see Sargent 2015, 2011 for a summary of these
available validation methods), the subjectivity can be reduced and the validation
result becomes more accurate (Liu et al. 2009). Using some semi-automated tool can
be another useful method to improve result validation (Klock and Kemper 2010b).

24.5.2 Simulation Verification Steps

In this section, we will briefly describe the verification activities of the V&V process
model (see also Chap.11 by Rider in this volume).

(1) Develop verification scheme. Draw up a verification plan and then execute it to
perform all verification activities. This is similar to the development of a validation
plan.

(2) Simulation requirements verification. Verify simulation requirements to see
whether they address all the functional and performance requirements of users and
whether they are feasible, sufficient, and accurate.

(3) Simulation design verification. Verify simulation design to see if it faithfully
reflects all the simulation requirements.

(4) Simulation implementation verification. Verify simulation implementation to
see if the simulation codes correctly implement simulation design. Basically, verifi-
cation is performed by comparing the product of the current phase with that of the
previous phase.

http://dx.doi.org/10.1007/978-3-319-70766-2_14
http://dx.doi.org/10.1007/978-3-319-70766-2_17
http://dx.doi.org/10.1007/978-3-319-70766-2_15
http://dx.doi.org/10.1007/978-3-319-70766-2_11
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In summary, the V&V process model can improve the V&V management in the
following aspects:

• The process model can help us to determine necessary V&V activities at each
simulation development phase, and thus facilitates the reasonable assignment of
the available V&V resources.

• With the process model, we can also easily locate the V&V experts for each phase
and find suitable ones for performing V&V tasks.

• With the process model, we can coordinate all the people to well accomplish their
own V&V tasks.

We have developed a computer tool tomanage and tailor the process model above.
The details can be found in Fang et al. (2005). This tool is being kept updated and
new functionalities are continuously being added to it.

24.6 Draw up an Optimized V&V Scheme

The starting point of the simulation validation management is to draw up a good
validation scheme (or plan). As we know, any project is constrained by the financial
budget. This budget issue ismore challenging for simulationV&Vas it has to compete
with simulation development for a bigger share of the total money.

We may have to admit that more V&V activities may increase the credibility of
the simulation system to be studied, which, however, may cost more money. So here
is the question: how to spend the limited money for a better V&V result?

The traditional way is to ask experienced experts to select the most appropriate
validation activities; however, although this applies to small simulation systems, it
becomes hard to operate for large ones. This issue has been explored in Muessing
and Laack (1997), but they only gave an informal risk assessment process for roughly
selecting the needed V&V activities.

To address this issue, we presented a rigorous method for optimizing a V&V
scheme of a complex simulation system in Liu and Yang (2009). The method is
illustrated in Fig. 24.3, which involves the following steps:

1. Decompose a simulation system into subsystems, models, components, and key
performance measures considering its hierarchies. Thus we obtain a tree-like
structure of the simulation system. Throughout the entire V&V process, we may
adopt the same decomposition method.

2. Perform risk analysis. We adopt fuzzy FMEA (failure mode and effects analysis)
to assess the risk of each bottom node of the tree obtained by decomposing the
simulation system. That is, for each bottom node, we determine possible failure
modes. For each failure mode, we use linguistic variables to describe severity,
occurrence and detection of the risk associated with this failure, and then employ
a fuzzy rule base to yield the risk of this failure.
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Fig. 24.3 A method for
optimizing a V&V scheme
of complex simulation
systems, adapted from Liu
and Yang (2009)

Decompose a simulation system

Perform risk analysis for each failure

Construct the mathematical model of the
risk and cost

Determine V&V activities for each failure

Construct the optimal model of the V&V
scheme

Draw up an optimal V\&V scheme

Solve the optimal model of the V&V
scheme

1

2

3

4

5

6

7

3. Determine V&V activities and estimate the cost. We determine the necessary
V&V activities for estimated risk and accepted maximum risk of each failure,
and then estimate the cost for addressing this failure.

4. Construct the mathematical model for the relation between the risk and cost for
each failure using the fuzzy linear regression analysis technique.

5. Construct the optimal model of the V&V scheme. In terms of the mathemati-
cal model of the relation between the risk and cost for each failure, we further
construct an optimal model using the fuzzy linear programming technique.

6. Solve the optimal model with the maximum likelihood method.
7. Draw up an optimal V&V scheme. In terms of the solution of the optimal model,

we can select the appropriate V&V activities and also assign reasonable cost to
each V&V activity. Finally, an optimal scheme is obtained.

In Liu and Yang (2009), we also provided a detailed case study, which illustrates
how to apply this method for real simulation systems. For themanagement of simula-
tion V&V, we can employ the above-mentioned method to draw up a good validation
plan.
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From the point view of management, the approach above can be applied in the
following way:

1. The total V&V task consists of three sub-tasks: conceptual model validation
(see also Chap.10 by Gelfert in this volume), subsystem validation, and system
validation. So we first determine the budget for each sub-task. Besides, we also
need to determine other available resources such as experts.

2. We then use the approach above for each sub-task. As a result, we will obtain a
V&V plan for each sub-task.

3. After that, we perform V&V for each sub-task according to the V&V plan.

24.7 Quantify Simulation V&V Results

In the past, we usually adopted a qualitative method to evaluate whether a simulation
system passed V&V. This traditional method is affected by the subjectivity of experts
by evaluating a model in the binary way such as yes or no, or in the fuzzy way such
as high, medium, or low. There are many drawbacks for this method as plenty of
quantitative information is missing.

In order to improve the management of simulation V&V, we present an approach
to quantifying V&V results. That is, we first break the whole simulation system
into different levels, such as subsystem, model, and component, assuming that the
component level is the bottom level.We then consider howmanyperformancemetrics
are essential for the successful V&V of the considered component. As a result, we
obtain a tree-like V&V metric system (Liu et al. 2006a), illustrated in Fig. 24.4,
which at least consists of the following four levels:

1. Top metrics. At this level, we break a simulation system into subsystem and
model. This level usually can be further divided into several sub-levels.

2. Bottom metrics, which correspond to the basic components of a model.
3. Performancemeasures. For eachbottomcomponent,we consider several essential

performancemeasures, according to which we can judge whether this component
is valid.

Fig. 24.4 Simulation V&V
metrics
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http://dx.doi.org/10.1007/978-3-319-70766-2_10
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4. Evaluation values. That is, each performancemeasure gets some evaluation values
either from experts or from different V&V methods like statistical methods (see
Chap.19 by Robinson in this volume).

When we obtain evaluation values for all the performance measures, we can
compute the evaluation values for the top metrics in a bottom to top way. Thus, for
the whole simulation system, we will have a quantitative metric of the credibility.

In our validation work, we require that all the models follow the above-mentioned
quantitative V&V approach. When doing this, we usually adopt the following steps:

1. We develop specific V&V metrics for conceptual model validation, subsystem
validation, and system validation, respectively. This has to be done by considering
the validation plan.

2. Supervise the relevant people to execute their V&V work, and obtain the valida-
tion values.

3. Adopt an appropriate method such as the weighted summation or fuzzy methods
to compute the evaluation values of top metrics (Liu et al. 2006a).

4. Analyze the evaluation results and send the issues to developer.

24.8 Computer Aided Management of Simulation V&V

Considering the fact that the validation of complex simulation systems usually takes a
long time and involves many resources such as people and documents, we developed
a set of V&V tools, which incorporates an integrated management environment,
called HITVICE (Fang et al. 2005), and also several separated tools. Currently, these
tools are still in progress.

24.8.1 Management Platform

This management platform, HITVICE, consists of several interlinked subsystems,
each performing different management jobs. The general functionalities of the plat-
form are shown in Fig. 24.5. In the following, we will briefly introduce each compo-
nent:

1. Workflow manager. Workflow Manager is used to realize the management and
tailoring of V&V activities for a V&V process model (e.g., the one given in
Fig. 24.2). With the workflow manager, we can also coordinate and control dif-
ferent groups of people to accomplish their respective tasks.

2. Project manager. HITVICE offers project manager to manage multiple projects,
which allows to create new V&V projects, monitor projects and control projects.
This facilitates the reusability of existing work such as documents as well as
existing experiences.

http://dx.doi.org/10.1007/978-3-319-70766-2_19
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Fig. 24.5 The V&V management platform

3. Organization manager. With the organization manager, the user can appoint the
V&V staff, and manage their V&V activities. Organization manager employs a
role-team-staff structure to manage an organization.

4. Data manager. Data manager helps the user to collect and organize different types
of data. The user can view, edit, and search data, and the import and export of
data with other systems is also allowed.

5. Document manager. A V&V project usually has different types of documents,
which need to be carefully dealt with. Document manager offers many func-
tions for archiving and managing these documents, such as version control and
document tracing.

24.8.2 Other Validation Tools

Besides the general management functions described above, we also developed sev-
eral validation tools, which are briefly described as follows:

1. Expert systems-like validation tool (Liu et al. 2006b, 2009). The tool supports
the validation of simulation systems with such methods as statistical methods,
Turing testing and face validation. It offers an environment where we can step by
step use these methods to accomplish the validation of a task.

2. V&V metrics tool (Qin et al. 2010). This tool implements the validation metrics
e.g., described in Sect. 24.7, and also offers methods for computing the metrics
at different levels. With this tool, the user can define a validation metric system,
and automatically compute the values of different metrics if the evaluation values
for the performance measures are given.
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24.9 Discussion

(1) Validation for current complex simulation systems is more like a manage-
ment issue than a technical issue.

For small models, validation is basically a technical issue, for which you usually
choose appropriate techniques such as statistical methods or expert’s judgement,
and then you evaluate if the consistency between simulation outputs and real ones
is satisfactory. However, during the validation of complex simulation systems, the
management work makes up a large portion of the work overall. To reduce the
validation cost, a best practice is to set up a set of standards,which should be complied
with for any validation task (see Chap.23 by Schlünzen in this volume). But it is also
important that the sponsor of a simulation system recognizes the essence of validation
and makes sufficient budget for validation.

(2) Model validation versus system validation.

Validation can be basically divided into two levels: system and model. Model val-
idation is usually a technical issue, which has been discussed for more than three
decades since the start of simulation research. System validation has been presented
for complex simulation systems, which usually does not focus on the validity of each
component but rather concentrates on the validity of the interoperability among com-
ponents. A clear distinction of these two levels of validation can help to effectively
manage validation and reasonably assign cost to different jobs.

(3) Sufficient validation versus limited budget.

This is an issue that is never resolved for many projects. To balance these conflicting
requirements, one has to carefully estimate the whole workload necessary to achieve
sufficient validation. Based on this estimate we try to convince the sponsor to offer
more money for validation. Never be positive about this issue, as anyone thinks
development is much more important than validation.

24.10 Conclusions

In this chapter, we discussed the management of simulation validation for complex
simulation systems. We first presented nine principles for simulation validation;
understanding and following these principles is important to achieve good manage-
ment of simulation validation and determine the success of validation.

By considering these principles, we presented a management framework of sim-
ulation V&V, which includes four components: V&V process, V&V scheme, V&V
metrics, and V&V tools. From this framework, we could see that we adopted a
process-oriented, optimized, quantitative, and automatic management manner for
simulation V&V. We then in detail described the four components in the framework

http://dx.doi.org/10.1007/978-3-319-70766-2_23
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and discussed the management issues. We hope this chapter may help the user to
understand the management of simulation validation for complex simulation sys-
tems.

As the validation of complex simulation systems is a very complicated task, we
have been researching this matter for a long time. We hope that the results described
in this paper will advance the state of the simulation validation.
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Chapter 25
Valid and Reproducible Simulation
Studies—Making It Explicit

Oliver Reinhardt, Tom Warnke, Andreas Ruscheinski
and Adelinde M. Uhrmacher

Abstract The validation of complex simulation models is a challenging task. To
increase the trust into the model, diverse simulation experiments are executed to
explore the behavior of the model and to check its plausibility. Thus, these simula-
tion experiments present an important information about the validity of the model,
similarly as the data used for calibration, as input for the model, and for testing its
predictiveness. Simulation models are rarely developed from scratch but by reusing
existingmodels, e.g., by extending or composing them, or for cross-validation. These
models and their validity provide further details about the validity of a model. Thus,
a multitude of artifacts contribute intricately related to the final simulation model
and our “gut feelings” about it. To make these artifacts and their relations explicit
and accessible, we will apply a declarative formal modeling language, a declara-
tive language for specifying and executing diverse simulation experiments, and a
provenance model to relate the diverse artifacts in telling the validation tale of an
agent-based migration model.

Keywords Validation ·Multilevel modeling · Demography · Provenance
25.1 Introduction

Validation is an important part of themodeling and simulation life cycle, as validation
helps to decide whether a useful approximation of the system has been achieved, and
directs a model’s further refinement and enrichment, or as stated by Osman Balci:
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“ModelValidation is substantiating that themodel, within its domain of applicability,
behaves with satisfactory accuracy consistent with the [Modeling and Simulation]
objectives. Model validation deals with building the right model” (Balci 1997, p.
135). Clearly, validation is an approximative process, with which the trust into a
model is successively increased and, correspondingly, different approaches exist.
Zeigler defines three levels of validity (Zeigler et al. 2000): replicative validity or
historical validity, i.e., the model reproduces data which has been observed from the
real system (retrodiction), predictive validity, where a model produces data before it
is observed from the real system, and structural validity, where the model reflects the
structural relations of the real system. Troitzsch’s discussion (Troitzsch 2004) about
the question, “whether a theory which predicts empirical observations correctly at
the same time explains what it predicts”, deals with the difference between the sec-
ond and third level of Zeigler’s approach: explaining being interpreted as “showing
how things work”. Predictive validity refers to testing whether the model is able to
reproduce data it has not seen, i.e., been trained with, before. Calibration contributes
to replicative validity, by finding a parameterization of the model which can repro-
duce the observed behavior of the real system. As the target of the validation is not
the concrete implementation of the simulation model, but the conceptual model, ver-
ification, the “testing process to establish whether a computer-based representation
correctly describes the underlying mathematical, logical and theoretical structure
of the model” (see Chap. 4 by Murray-Smith in this volume), is an important pre-
requisite of validation. Typically, the validity of a simulation model is tested in a
simulation experiment (or to make the goal of validating the model more explicit, a
validation experiment), where simulation runs are executed systematically, and the
results are analyzed and, typically, compared to real-world data.

Figure25.1 shows the layered structure of a typical validation experiment (Rybacki
et al. 2012). The top layer is the validation experiment as a whole. It consists of mul-
tiple simulation configurations. In each of these, a point of the model’s parameter
space is selected, investigated, and then evaluated. In a stochastic model, for each
configuration, a number of simulation runs (or replications) are executed. These
sets of runs have to be analyzed, e.g., by calculation of mean values or confidence
intervals. In a deterministic model, this layer is omitted, as it is not necessary to
execute multiple runs for a single configuration. The bottom layer is formed by a
single simulation run. There, apart from the model execution per se, the model state
must be observed, and the observations of the single run may be analyzed, e.g., for
steady-state detection. Considering the complexity of this experimental process, and
the need to reproduce results of modeling and simulation more easily (Uhrmacher
et al. 2016), modeling and simulation research will benefit by an unambiguous and
sound specification of all these experimental steps (marked with (a) in the figure).

Domain-Specific Languages (DSLs) are programming languages which are not
designed as general-purpose tools, but to solve more easily specific problems of a
defined application domain (vanDeursen et al. 2000). Consequently, domain-specific
languages have been developed for specifying all steps of a simulation experiment
(marked a) as well as for specifying the simulation model itself (marked b). Speci-
fication languages for specific parts of the simulation experiment, e.g., for querying

http://dx.doi.org/10.1007/978-3-319-70766-2_4
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Fig. 25.1 Structure of a validation experiment. Specification of objects or processes in green.
Examples for specification languages are given in Sects. 25.3 (for b) and 25.4 (for a), and (Schützel
et al. 2014). See Rybacki et al. 2012

traces (Laurent et al. 2018) or for the whole simulation experiment (Waltemath et al.
2011; Ewald and Uhrmacher 2014), are a way to simplify the experimentation pro-
cess and to support reproducibility. Domain-specific modeling languages (DSMLs)
are DSLs for describing simulation models in a certain application domain, e.g.,
systems biology (Harris et al. 2016; Maus et al. 2011), digital systems (IEEE 2009),
or demography (Warnke et al. 2017). DSMLs allow a more clear and compact imple-
mentation of the simulationmodel closer to the conceptual model, aiding verification
as well as the reasoning about the model.

Going beyond a single validation experiment to a whole simulation study, model
creation and validation must be well documented (see the nine principles of simula-
tion validation proposed by Liu et al., Chap.24 in this volume). Thereby, not only the
validated model as a product but also the process of model creation and validation is
of interest. Provenance provides “information about entities, activities, and people
involved in producing a piece of data or thing, which can be used to form assess-
ments about its quality, reliability, or trustworthiness” (Groth and Moreau 2013).
Provenance models (Moreau et al. 2011) can be employed to explicitly describe
a simulation model’s history, e.g., the theories and data that contributed to it, and
the experiments conducted with it, allowing to reason about the model’s validity
(Ruscheinski and Uhrmacher 2017).

Throughout the rest of this chapter, we will demonstrate all three kinds of explicit
specification using an agent-based model of migration from Senegal to Europe
(Klabunde et al. 2017) as an example, which is introduced in Sect. 25.2. In Sect. 25.3,

http://dx.doi.org/10.1007/978-3-319-70766-2_24
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we demonstrate how domain-specific modeling languages aid the modeler in imple-
menting, documenting, and validating the model. In Sect. 25.4, we show the advan-
tages of using an experiment specification language for describing and executing
simulation experiments. Finally, in Sect. 25.5, how a provenance model can aid in
ensuring the validity of models over a whole simulation study.

25.2 Example: A Model of the Decision to Migrate

The model presented by Klabunde et al. (2016, 2017) explores the hypothesis that
in a critical phase approximately between the ages of 18 and 40, individuals make
a series of important life decision, e.g., to get married or to have children, with
which the decision to migrate competes. In simulations, it is tested whether based on
this microlevel hypothesis, the observed age pattern of migrants can be explained.
Thereby, the linked life courses of individuals are in the focus. This includesmarriage,
fertility, and mortality of individuals, which are governed by stochastic rates, as well
as income and expenses. The migration decision process itself is modeled based on
the Theory of Planned Behavior (Ajzen 1991). The assumption is, that the decision
to migrate is made in multiple stages, through which every potential migrant goes
(see Fig. 25.2): an intention is formed, plans and then preparations are made, and
finally, the migration is attempted. Each agent has an intention to migrate, which, in
accordancewith theTheory of PlannedBehavior, is derived from their attitude toward
migration, their beliefs about social norms regarding migration, and their beliefs
about behavioral control regarding migration. Those three factors are influenced
by the agent’s personal situation and his or her environment. A total of eight free
weighting parameters determines the strength with which different aspects influence
the migration intention. Finally, the migration intention governs how fast the agent
proceeds through the stages of the decision process, as shown in Fig. 25.2.

The model was then applied to the case of migration from Senegal to Europe.
To this end marriage, fertility, mortality, income, and expenses were estimated from
data. Formarriage a Coale–McNeill model (Coale andMcneil 1972) was fitted, using
data from the Demographic and Health Survey of Senegal (DHS) for individuals
in Senegal, and from the MAFE survey (Migration between Africa and Europe)
(Beauchemin 2015) for individuals who migrated. The individuals are then paired
by employing a marriage market (Zinn 2012). Fertility was also estimated fromDHS
and MAFE data. For mortality, a Heligman–Pollard model (Heligman and Pollard
1980) was fitted to data from the UN World Population Prospects 2015. Income is
taken from IMF data, consumption from World Development Indicators. An initial
population was sampled from the 1988 Senegal census. Initial wealth was estimated
from data by Davies et al. (2011). By adjusting the eight free parameters, the model
was then calibrated to reproduce the distribution of the age at migration and the
distribution of the time passed between starting to plan migration and the actual
migration attempt observed in the MAFE survey. Furthermore, a sensitivity analysis
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Fig. 25.2 The stages of the
migration decision process.
When people are born, they
start in the “no intention”
stage. When they reach a
certain age, they enter the
intention formation process.
As long as the migration
intention is positive, they
advance through the stages,
until they attempt migration.
The waiting times until they
advance are stochastic and
depend on the strength of
their intention. When their
intention gets negative, they
leave the decision process.
See Warnke et al. (2017)

of the model was performed, to determine how changes of the free parameters affect
the result of the calibration.

A preliminary analysis of 213 papers in the Journal of Artificial Societies and
Social Simulation (JASSS) since 2011 by Troitzsch (2017) revealed that 19.2% of
them compare quantitative simulation results to quantitative empirical data, while
another 17.4% discuss the necessity of such comparison. This model clearly belongs
to the current minority of papers published on agent-based social (or demographic)
simulation as it relies on diverse data sets for calibration. In addition, it uses theories
and other models. Although to test the assumed decision-making mechanisms at
microlevel further efforts are required, e.g., controlled cognitive experiments (Conte
et al. 2012), a lot went already into developing the model and substantiating the
claims made. The rest of the paper will be on methods to make these efforts more
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easily accessible and, thus, assessable, using explicit declarative specifications of the
model, its foundation in demographic theory and data, its history, and the validation
experiments conducted with it.

25.3 Managing the Model: Domain-Specific Modeling
Languages

To validate a simulation model, i.e., to ensure the model is the right model for its
purpose, it is necessary to have a precise and deep understanding of it. Therefore, a
thorough and accessible description of the model is needed.

Often, the model is implemented in a general programming language such as
Python (e.g., Noble et al. 2012). However, the implementation of complex models
is often difficult to understand, as models are rather lengthy and burdened with
simulation details, which dilute the essential model mechanisms. Due to their length
and technical nature, they cannot be directly included in publications about themodel.
They are hard to understand for domain experts, who are not necessarily familiar with
programming in general, or the used programming language in particular (Steiniger
et al. 2014).

Grimm et al. (2006) proposed a standardized protocol, the ODD protocol, for
the structured textual description of agent-based simulation models. The protocol is
widely adopted and is also recommended for uploading agent-basedmodels inmodel
repositories such as the OpenABM model repository. Similar approaches exist in
other application domains, e.g., PMRR (Preferred Model Reporting Requirements;
Rahmandad andSterman2012) in the social sciences or theMIRIAM(Minimal Infor-
mation Required in the Annotation of Models; (Novère et al. 2005) for biochemical
models. While these standards facilitate an accessible and assessable documentation
of themodel, the resulting documents are not yet readily executable, and often crucial
details to implement the model based on the documentation are missing.

Domain-Specific Modeling Languages (DSMLs) are aimed at bridging the gap
between documentation and implementation of the model, with the ultimate goal
to provide an executable documentation. DSMLs are designed to be used in one
specific application domain. The use of domain metaphors (e.g., a social network in
the social sciences or molecular bindings in biochemistry) allows for tailoring the
language to the typical problems of the domain. Therefore, it is easier for themodeler
to implement the model, and for a domain expert to understand the implementation.
Practical expressiveness, i.e., how easy is it to specify a model of a domain in the
language and can also more complexmechanisms be expressed, and succinctness are
central requirements for the design of domain-specificmodeling languages.Whereas
the former is difficult to measure, requiring dedicated user studies (Kossow et al.
2016), an indication for the later is the used lines of code.

To demonstrate the advantages of domain-specific modeling languages, we have
re-implemented the migration decision model in the Modeling Language for Linked
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Fig. 25.3 The ML3 declaration of the agent type Person (lines 1–13), and the three possible
kinds of links between persons (lines 15–17). Two of the ML3 rules concerned with the migration
decision process (lines 19–26). Each rule corresponds with one arrow, or kind of equivalent arrows,
in Fig. 25.2. The first rule corresponds the three arrows labeled with “waiting time expired”. The
second rule describes a successful migration attempt. Below that, the definition of the rate with
which agents progress through the stages of the decision process (lines 28–30), and the definition
of the migration intention based on the Theory of Planned Behavior (lines 32–38) are shown

Lives (ML3). ML3 is a domain-specific modeling language specifically designed
to allow a succinct and understandable implementation of agent-based models with
dynamic social networks (Warnke et al. 2017). The main entities of models imple-
mented inML3 are agents, which are interconnected via dynamic links. The behavior
of agents is described by stochastic rules. While most agent-based models are exe-
cuted with discrete time steps (events have a certain chance to happen each unit of
time, e.g., each day or year), time in ML3 is continuous. This property makes it a
good fit for the migration decision model, which is designed with continuous time
in mind. An excerpt of the ML3 implementation of the model is shown in Fig. 25.3.
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In comparison with the original model implementation using NetLogo, the imple-
mentation in ML3 has several advantages. First, model and simulation algorithm are
strictly separated. InML3, the modeler only has to define stochastic rules. The actual
scheduling, the selection when which rule is applied, is done by a separate simula-
tor, that has been implemented by the developers of the language. In the NetLogo
implementation, this scheduling had to be done manually, using a continuous time
extension (Sheppard and Railsback 2015). The separation of concerns inML3makes
the model description much more succinct (about a seventh of the length) and read-
able. As less implementation has to be written, there is less room for errors. Also, it
makes the scheduling logic reusable, allowing to put more effort into implementing
and testing simulation algorithms, enabling the implementation of more efficient
advanced simulation algorithms (e.g., Reinhardt and Uhrmacher 2017).

Separation of concerns does not only apply to model and simulation logic, but
it also applies to the different components of the model. The stochastic rules that
describe behavior inML3operate separately fromeach other in parallel. The different
model components that are concerned with different processes operating in parallel,
e.g., the fertility,mortality, and themigration decision process, can be implemented as
separate sets of rules. This allows themodeler, to implement these different processes
separately as separate componentmodels, validate themseparately, and then compose
them to a complex model (Peng et al. 2017; Pierce et al. 2018). Not only does this
again contribute to an easier identification and validation of specific mechanisms,
but it is also feasible to exchange component models by simply exchanging the
corresponding rules. That way one could, for example, compare different decision
process components in a multi-model approach, as proposed by Gray et al. (2017).
Additionally, the stochastic rules allowed us to implement the transitions through the
stages of the decision process very naturally. The conceptual model of the decision
process (Fig. 25.2) defines stages an agent can occupy, and the transitions to other
stages they can make from each of those. Our implementation (Fig. 25.3) reflects this
structure very directly, as it consists of one rule for every possible kind of transition.

The aspects of ML3 that make it domain-specific to the area of demography also
play a major role in making the model description more succinct while enabling
an easier implementation. For this model, two were of particular importance: the
time-dependent transition rates and parameter maps. Many of the transition rates
in demographic models depend on the age of the agent. For example, mortality is
strongly age-dependent, as are fertility and marriage. ML3 allows such time depen-
dency in transition rates and makes the aging of agents directly part of the language,
which implies a more costly scheduling of events. Parameter maps are a way to deal
with time series data, which is also used excessively in this and other demographic
models.

The example shows the power of domain-specific modeling languages for assess-
ing the structural validity of models and their role inmodeling for explanation (Conte
et al. 2012).
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25.4 Managing an Experiment: Experiment Specification
Languages

To gain confidence in the validity of a complex model, it is necessary to probe
and explore its behavior thoroughly. Therefore, diverse simulation experiments are
required (Klügl 2008; Leye et al. 2009). The results of simulation experiments,
however, depend not only on the model but also on the context in which they are
executed. This insight has led to formalizations of this context, most prominently
Zeigler’s experimental frame (Zeigler et al. 2000). Zeigler proposes to embed the
model in an experimental frame, explicitly described asDEVSmodels, that generates
the model inputs and analyzes the model outputs.

By enabling model users to access and repeat the simulation experiments con-
ducted to validate a model, their confidence in the model’s validity is increased.
However, the two most frequently used ways to provide information about simu-
lation experiments do not facilitate assessing the experiments done. First, executed
experiments can be described informally, e.g., textually, or semi-formally as pro-
posed in Grimm et al. (2006, 2010). Repeating the experiments is typically hindered
by unambiguous or missing information or unavailable software or data. A better
approach is to provide software artifacts to execute the experiments. However, such
executable software is typically hard or even impossible to inspect, leaving unclear
what experiment is getting executed by it. Additionally, technical issues, such as
dependencies on third-party software, make running experiments difficult (or even
impossible, for example, if the dependencies are not available anymore some time
after the experiments have been published). To address the challenges of accessing,
repeating, and thus assessing simulation experiments, explicitly specified simulation
experiments that allow the replication of experiments are needed.

As shown in Fig. 25.2, simulation experiments consist of a multitude of experi-
mental steps. For many of them, explicit specification languages exist. Observations
could be specified using an instrumentation language (Helms et al. 2012). Single-run
analysis might involve checking if the result trajectory of a simulation run fulfills
a certain property. Temporal logic, such as LTL (Rozier 2011), allows specifying
and checking such properties. Trace query languages, e.g., Laurent et al. (2018), can
be used to specify and find specific transitions in a simulation run. In a stochastic
model, properties might only hold with a certain probability. The analysis of such
probabilistic properties is part of multi-run analysis, and formalisms such as MITL
(Maler and Nickovic 2004) allow to specify them. Further examples and perspectives
are given in Schützel et al. (2014).

Other approaches allow specifying the whole simulation experiment, integrating
the description of all parts of the experiment into a single language, tying together
different approaches into a unifying framework. SED-ML (Waltemath et al. 2011)
has been developed in the SBML ecosystem in systems biology, originally to repli-
cate published outputs of simulation experiments. Based on XML and cultivated
by a standardization committee, SED-ML can be processed by many tools. These
tools can interpret specifications with the standardized syntax and semantics, which
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enables tool-independent reproducible experiments. This makes SED-ML an effec-
tive exchange format for experiments. However, due to being a standard, new features
can not easily be introduced in SED-ML. For example, parameter sweeps were not
supported in the first release but introduced in Level 1 Version 2 (Bergmann et al.
2015).

The Simulation Experiment Specification on a Scala Layer (SESSL) (Ewald and
Uhrmacher 2014) aims to mitigate this lack of flexibility. SESSL is an internal
domain-specific language, which enables on-the-fly addition of features through
its host language Scala, for example, to process simulation output data for further
analysis (Peng et al. 2016). The resulting experiment specifications are valid Scala
code with a declarative feel. Thus, SESSL experiments are readable as well as exe-
cutable. Further, by using Maven (https://maven.apache.org) for artifact persistence
andmanagement, SESSL experiments can be reproduced acrossmachines. This way,
model users can access and repeat validation experiments more easily.

Before a model can be validated, values for its input parameters must be found—
the model is calibrated. The migration model, for example, has eight weighting
parameters that control the decision process of individuals. To find valid param-
eterizations of the model, methods to optimize a certain quality criterion can be
employed, for example, to minimize the difference between the model output and
a given observation. Choosing a metric to calculate the difference is not a trivial
task and depends heavily on the data to compare. Similarly, diverse optimization
algorithms are available. Typically, these have to be parameterized as well. To make
such a calibration experiment accessible and replicable, this information has to be
included. Figures25.4 and 25.5 show how this can be realized with SESSL and its
bindings for ML3 and Opt4j (Lukasiewycz et al. 2011).

Once calibrated, behavioral characteristics of the model can be checked by sim-
ulating the model and making sure that the observations from the simulation match
some defined expectations, for example, derived from data. A formal framework for
this approach is Statistical Model Checking (SMC) or simulation-based verification.
SMC answers whether a random simulation run of a model satisfies a given property
with at least a given probability (Agha and Palmskog 2018). Applying SMC to a
model implies executing simulation runs, checking the property on each of the runs,
and using hypothesis testing to infer statistically valid statements about the model’s
behavior. Thus, the properties to investigatemust be defined onmodel outputs that are
observable in a simulation run. Typically, temporal logics are used to express state-
ments about the development of the model outputs in time. SMC experiments can
be specified reproducibly by including the property to check as well as the statistical
parameters in the experiment setup.

Apart from calibration and statistical model checking, many more types of exper-
iments are required to validate a model. To make such experiments accessible, repli-
cable and, thus, assessible, experiment specification languages need to support awide
variety of experiments, the set of which might be constantly growing. Particularly
the later poses a challenge for the design and development of these languages, as
they must satisfy constantly changing requirements while supporting a succinct and
understandable description of experiments.

https://maven.apache.org
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Fig. 25.4 An experiment with the migration model defined in SESSL 0.14. Line 1 declares a Scala
class that represents aML3 simulation experiment that uses parallel execution and parameterization
of models with parameter maps (e.g., age-indexed). Lines 2–8 specify the model file, the simulation
algorithm, the number of parallel threads to use, the number of replications to execute, the method
to build the initial state, as well as the start and stop time of the simulation. In lines 10–17, files
from which to read in parameters that are stored in CSV files with parameter maps are stated. Lines
19–25 specify some further scalar model parameters

25.5 Managing a Simulation Study: Provenance Models

Whereas the above domain-specific languages allow the user to succinctly specify a
model and specify and execute a single simulation experiment,what (Rahmandad and
Sterman 2012) requested in hisPreferredModel Reporting Requirements (PMRR) to
include in addition, i.e., information on the sources of data for the model’s equations
and algorithmic rules, has not been considered yet. However, given that not only
data as input and data for calibration but also theories, such as the Theory of Planned
Behavior (Ajzen 1991), and existing models such as the Heligman–Pollard mortality
model (Heligman and Pollard 1980), and real-world experiments, contribute to a
complex simulation model, only focusing on data will not suffice. Therefore, a more
systematic inspection of a simulation model’s provenance is asked for Ruscheinski
and Uhrmacher (2017).

“Provenance is information about entities, activities, and people involved in pro-
ducing a piece of data or thing, which can be used to form assessments about its
quality, reliability or trustworthiness” (Groth and Moreau 2013). The Open Prove-
nance Model (OPM) (Moreau et al. 2011) is a formalism to describe this provenance
information as a directed graph. Nodes in this graph represent artifacts, processes, or
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Fig. 25.5 A calibration experiment defined in SESSL 0.14, using the migration experiment class
from Fig. 25.4. The experiment uses a particle swarm optimization algorithm (line 43) from the
Opt4j package (Lukasiewycz et al. 2011) that tunes the parameters specified with ranges in lines
35–42. The parameter ranges can be chosen based on model assumptions, but here we set them
based on the known optimum (Klabunde et al. 2017). Lines 6–13 then read the parameters set by
the optimizer and apply them to the model when running simulations. The observation of the model
is configured in lines 15–18: the time between starting to plan a migration and actually migrating
is recorded for every agent that actively migrates, i.e., is not brought with another migrating agent.
The calculation of the target function to minimize is realized in lines 20–31. Specifically, line 20
declares a variable in which the planning times observed in single runs are stored (line 24). Lines
28–30 aggregate the durations to themean and compute the difference to a referencemean (specified
in line 1)
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agents, while edges indicate dependencies between them. Artifacts are digital repre-
sentations of entities within a computer system, e.g., a simulation model, a data set,
or a simulation result. Processes are activities performed with artifacts to generate
new artifacts, e.g., extending a model, or performing simulation experiment. Finally,
agents are the persons enabling and controlling the processes. Between these ele-
ments, five dependencies are distinguished: 1. An artifact was used in a process, 2.
An artifact was generated by a process, 3. A process was controlled by an agent,
4. A process was triggered by another process, and 5. An artifact was derived from
another artifact.

As an example, we have reconstructed the provenance information about the
migration decision model, using the publication about the model (Klabunde et al.
2017), the ODD description (Klabunde et al. 2015), and the information provided
together with the model in the OpenABM model repository (Klabunde et al. 2016).
We focus on the information about artifacts and processes and leave out information
about agents, as we have little information about who exactly was involved in each
process. A general approach is outlined inmore detail in Ruscheinski andUhrmacher
(2017).

The result (published in Reinhardt et al. 2018b) is shown in Fig. 25.6. The top left
of the figure shows the decisionmodel itself as an artifact (mig.mod.). Itwas produced
by composing (process comp. model) a set of submodels, or model components.
While the available information does not allow for a more detailed description of
that process, we can present a lot of information about the creation of the components.
We will look at the top one, the income model (inc.), in more detail. The income
model is based on assuming a log-normal income distribution (artifact LN inc.).
It is parameterized with two parameters, describing the mean income (mean inc.)
and the variation of income (gini). The former is estimated (est. mean) using GDP
and employment data published by the International Monetary Fund for Senegal
(GDP and empl.). The latter is derived from the World Development Indicators
(WDI). Finally, the complete income model was compiled by parameterizing the
log-normal distribution accordingly (comb.inc.). Please note, that the figure only
shows the provenance model’s structure. In the complete provenance model, each of
the artifacts and processes is annotated with further information about them.

The provenance model shows the relations between the processes and arti-
facts contributing to the simulation model, making their interdependencies become
explicit. This explicitness can be used to improve trust into the model. We have now
made it explicit, that the income component of the model is based on a log-normal
income distribution. That model is widely applied and its validity for different appli-
cations has been assessed (Bandourian et al. 2002). At the same time, the provenance
model tells us, which data was used to fit the log-normal distribution to the Senegal
case. This provides an overview about which data sets were used for which parts of
the simulationmodel—an information especially important when it comes to validat-
ing the model, as one has to make sure that the model is not validated using the same
data it was calibrated to. Furthermore, using additional information about assump-
tions, the established models, and theories annotated to the artifacts and the way the
data was collected, the provenance model allows to reason about the adequacy of the
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Fig. 25.6 Open Provenance Model for the migration decision process model, as we have derived
it from the publications about the model. Source (Reinhardt et al. 2018b). See there for additional
information on the artifacts and processes

used theories and data-sources. But the provenance model does not only consider
the artifacts but also the processes through which they were derived. It makes the
process of fitting explicit, pointing the modeler to the need to document it, and mak-
ing a later reader aware of it. Further annotations can reveal information about the
methods used. All together, this information gives us trust in the income component
of the migration model. In general, the provenance information enables us to recon-
struct assumptions made in the components, the theories they were derived from,
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Fig. 25.7 Open Provenance Model for the calibration experiment. Note that the artifacts mig.
model and MAFE are identical to the artifacts of the same name in Fig. 25.6. Source (Reinhardt
et al. 2018b). See there for additional information on the artifacts and processes

methods used for developing them, and data sources used for fitting the components,
and allows for tracing them to their origin. We can use provenance to reason about
the artifacts used and processes executed for developing the model components. For
example, if we identify a methodological error in the collection of a data set, we
can use the provenance model to infer affected model components which need to
be revised. For this, inference mechanisms such as OPQL (Lim et al. 2011) can be
employed.

To the provenance of the simulation models belongs also information about the
simulation experiments. In Fig. 25.7, themigration processmodel artifact (mig.mod.)
is shown once again. The model was calibrated in two steps (Klabunde et al. 2017).
In the first step, a set of candidate configurations (cand. set) was searched, which are
able to reproduce the sex proportion of migrants estimated from the MAFE data (sex
prop.). This is captured by the process exp. cand., which produces the candidate set,
as well as an experiment specification (cand. exp.). In this context, an experiment
specification is anything that allows to reproduce the experimental steps to recreate
the produced data, e.g., a textual description or an SESSL script as in Fig. 25.5. In
the second calibration step, the candidate configuration that most closely reproduces
the distribution of migrant ages observed in MAFE is chosen (exp.age). The result
is the calibrated model (calibr. mod.).

Provenance information about the simulation experiment can be used, similar
to provenance of the model, to trace the origin of data and methods used in the
experiment. Further, we can use the provenance information to find all artifacts used
for the execution of an experiment: the experiment specification produced by the
experimentation process, and all artifacts used by this process. This information can
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be used to bundle these artifacts into a container, which can be shared, allowing to
replicate the experiment result.

The reconstruction of the provenance data by tracing publications using the
model documentation is cumbersome, as is themanual documentation of provenance
information during the modeling process. Therefore, (semi-)automatic methods for
retrieving provenance data are needed.While tool support is not yet readily available,
different techniques were proposed (Ruscheinski and Uhrmacher 2017), where each
method allows retrieving different parts of the provenance information.

First, we can annotate parts of the simulation model and experiments, which
allows to specify all information related to the process of creating the simulation
model or executing the simulation experiment.

To derive the provenance information from these annotations, the annotations
need to be parsed and analyzed. This approach demands a close annotation of all
artifacts to derive the full provenance model. However, it is up to the user to annotate
the simulation model and experiments as part of the documentation and therefore
can only be seen as a semiautomatic approach.

When scripts, scientific workflow, or domain-specific languages are employed to
execute automatic tasks, those can also be used as source of provenance informa-
tion, by integrating the derivation of provenance information into them. All these
approaches allow to describe data-driven processes, but differ in the way the pro-
cess is described and which features are provided by the execution environment. In
scripting environments, like Python or R, the script is executed by the environment
and it is up to the user to implement management procedures for the data by himself.
Scientific workflows are often described by a graph containing nodes representing
data-processing activities whereas the edges represent the flow of the data.

Finally, domain-specific languages can be used to describe a simulation exper-
iment, as we have demonstrated in Sect. 25.4. First, the execution of the script or
created simulation experiment can be observed to determine all read and created files
(Murta et al. 2014), which become individual artifacts in the provenance model. And
second, the script itself can call methods to store provenance information (Bochner
et al. 2008). Scientific workflow environments often provide features to retrieve the
provenance information directly after the execution of the workflow (Scheidegger
et al. 2008).

Finally, a version control system can be used to derive provenance information by
tracking changes to document. For example, if the migration model artifact is stored
in a document, we can track how the model changes over time. However, the version
control system can only capture the changes to artifacts, but not the processes that
produce the changes. This can be supported using tools like Git2PROV (De Nies
et al. 2013), which retrieves a provenance model from the commit history of a git
repository.
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25.6 Discussion

While the approach of “making it explicit” brings significant advantages for mod-
eling, conducting simulation experiments, and the whole simulation study, it is not
always without a cost. Domain-specific languages, be it for modeling or for simula-
tion, make the task they are designed for easier. Somemodel aspects, e.g., continuous
time, might even be infeasible without dedicated support from a simulation system.
However, they are also putting restrictions on the user, compared to a general-purpose
programming language. A domain specific modeling language is designed for a
specific kind of simulation model, with specific properties. Models without these
properties, or with features not accounted for by the DSML, will be difficult or even
impossible to realize. Hence, the right DSMLmust be chosen carefully. Furthermore,
one must take care not to choose the language too early in the modeling process,
as “the limits of [one’s] language mean the limits of [one’s] world” (Wittgenstein
1922, 5.6). In the worst case, this might result in a model that is designed to fit the
language, not the questions it shall answer. This can be partly avoided in an internal
DSL such as SESSL, which allows the addition of features by directly using its host
language Scala (see Reinhardt et al. 2018a, Sect. 6) for a demonstration). However,
the additional freedom comes at a cost as well, e.g., making it impossible to give a
formal semantics of the language.

At the same time, the user of a language is always dependent on the available
support for using the language. A mature and commonly used programming lan-
guage comes with dedicated development tools, e.g., editors or debuggers, ample
documentation, and a large community of language users. A prototypical DSL for
niche applications will lack this level of support. In addition to the language fea-
tures, this language ecosystem must be considered to choose the right languages for
a simulation study.

25.7 Conclusion

The validation of simulationmodels providesmany challenges. Themodeler’s idea of
the mechanisms of the model, the conceptual model, must be implemented in some
programming language or modeling framework to gain an executable simulation
model. Complex simulation experiments must be conducted to calibrate and validate
the model, relating it to data collected from the modeled real-world system. Domain-
specific modeling language provides an executable, yet succinct model represen-
tation, reflecting metaphors of the application field and supporting structures and
dynamics considered essential for modeled systems in a particular area of modeling
and simulation application. Thereby, domain-specific modeling languages facilitate
a model’s development, its maintenance, including its reuse, as well as its validation,
e.g., by inspection. Domain-specific languages for specifying experiments support
not only the documentation but also the replication of simulation experiments. This
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equally refers to exploratory experiments, and experiments done for calibration or
validation. Therefore, domain-specific languages for specifying experiments allow
to retrace and replicate research efforts invested in validating a simulation model
and thus give insight into a model’s behavioral repertoire and validity. Crucial at this
point are the flexibility and extensibility of the languages to account for the increasing
number of simulation methods that, for example, a demographic multilevel model
should be subjected to. Statistical model checking methods are based on explicitly
specifying expectations for the behavior of the model in a formal domain-specific
language, which makes the behavioral assumptions that a simulation model should
adhere to explicit, unambiguous, and automatically verifiable.

Even with a lack of data, evidence for the validity of a simulation model can be
found by examining the history, or provenance, of the simulation model. Exploiting
a provenance model allows to relate and query the diverse artifacts and processes
that contributed to a simulation model. This way, experiment specification, theories
that underlie the model, different variants of a simulation model, as well as data
used as input, for calibration, or for validation can be linked even beyond individual
simulation studies. All together reveal not the whole, but a crucial part of the tale
about the science and art of modeling.
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Chapter 26
Validation of Particle Physics Simulation

Peter Mättig

Abstract The procedures of validating computer simulations of particle physics
events at the LHC are summarized. Because of the strongly fluctuating particle con-
tent of LHC events and detector interactions, particle-based Monte Carlo methods
are an indispensable tool for data analysis. Simulation in particle physics is founded
on factorization and thus its global validation can be realized by validating each
individual step in the simulation. This can be accomplished by drawing on results of
previous measurements, in situ studies, and models. What is particularly important
in particle physics is to quantify how well a simulation is validated such that a sys-
tematic uncertainty can be assigned to a measurement. The simulation is tested for
a wide range of processes and agrees with data within the assigned uncertainties.

Keywords LHC · Simulation · Validation · Higgs

26.1 Introduction

Computer simulations are an important tool for present-day particle physics. The
aim of this chapter is to characterize the procedures of validating one type of simula-
tions in this area, viz., the simulation of particle physics events. As an example, the
ATLAS experiment at the Large Hadron Collider (LHC) is considered. The simula-
tion for other LHC experiments, e.g., CMS (2008), and the specialized experiments
ALICE (2008) and LHCb (2008) work along fairly similar principles.

The chapter is organized as follows.After a short introduction into particle physics
in Sect. 26.2, it will start with a short overview of the principles of data analysis
and the use of simulations in this area (Sect. 26.3). It will then discuss the two basic
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ingredients that enter simulation, themodeling of the physics process (Sect. 26.4) and
that of the detector (Sect. 26.5). It will then characterize the principles of validation
(Sect. 26.6) to motivate validation procedures in particle physics (Sects. 26.7–26.9)
before discussing examples of validation in some detail and how simulation and
validation works in typical analyses (Sect. 26.10). Finally, some points raised in the
philosophical literature on simulations are commented (Sect. 26.11).

26.2 What Particle Physics is About: Example LHC

During the 1960s and 1970s, the descriptions of the electromagnetic, weak and strong
interactions were put on a common ground leading to a theoretical framework, the
StandardModel (SM) (Quigg 2013; Pich 2012). It is based onQuantum Field Theory
and arguably the most encompassing and precisely tested theory of nature ever. It
accommodates all measurements in an energy range of several 100 GeV1 with just
a few fundamental particles, which can be classified in three sectors:

• Twelve spin 1/2 particles (fermions) that can be separated in quarks and leptons
are interpreted as “matter” particles.

• Three kinds of spin 1 particles (vector bosons), the photon (γ ), the W , Z0, and
gluons, that transmit the electromagnetic, weak, and strong interactions of the
matter particles, respectively.

• One spin 0 particle (scalar boson), the Higgs boson, to generate the masses of the
fermions, force carriers and itself.

The SMpredicts the complete dynamics of these particles based on 19 free param-
eters.2 These particles and their interactions appear to be the basis for nucleons, atoms
and eventually all phenomena beyond and are crucial for our current understanding
of cosmology.

26.2.1 The Status of the Standard Model

The development of the conceptual framework was followed by an intensive exper-
imental and theoretical program to establish the existence of all SM components,
measure the free parameters (Patrignani et al. 2016) and test their dynamical prop-
erties. All components of the SM have been observed; the last one, the Higgs boson,
has been found in 2012 at the Large Hadron Collider (LHC) (Evans and Bryant 2008)
of the European Center for Particle Physics (CERN, Geneva), and almost all allowed

1Using quantum mechanical relations this energy range can be interpreted as 10−18 m, which is
about 100 million times smaller than an atom.
2The number increases if the masses of the neutrinos are considered. Not all of the parameters
related to neutrinos have been measured. Since they do not affect physics at the LHC, the subject
of this paper, they will not be considered further.
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interactions have been confirmed. The free parameters are measured to very high
precision, e.g., the values of the coupling strength of the strong interaction and the
mass of the Z0, which will be used later, are determined as

αs(MZ ) = 0.1181 ± 0.0011, MZ = 91.1876 ± 0.0021 GeV (26.1)

Despite intensive searches, no effect has been observed at accelerators that does
not agree with the SM. Therefore, physicists consider the SM as being confirmed
as a theory for an energy scale of up to several 100 GeV. The SM is also internally
consistent, i.e., void of any infinities even at energies many orders of magnitude
beyond what can be probed in any foreseeable future.

Still, there is a reluctance to accept the SM as a final theory. For one thing, the
SM does not explain how many particles there are, why they are organized in certain
families and what the values of the parameters are. In addition, the SM does not
contain gravity,which should only become relevant atMPlanck = 1019 GeV, and it is not
able to explain astrophysical observations like the existence of DarkMatter (Gelmini
2015) andDark Energy (Planck Collaboration 2015). To address these issues, models
have been devised that lead to physics beyond the SM (BSM). Searches for BSM
physics have so far been futile, but they have moved more and more into the focus
of experimental and theoretical activities.

26.2.2 The Forefront Experiment: LHC

Searches for BSMphysics require higher precision on SMprocesses and in particular
higher energies. The energy frontier of particle physics is the LHC, where every 25
nanoseconds a bunch of 1011 protons crosses another bunch flying in the opposite
direction. Currently, each of the protons has an energy of 6.5 TeV leading to the
highest collision energies reached in an accelerator and a huge rate of collisions.
Protons are composed of subcomponents, quarks, or gluons, denoted together as
partons. At the LHC, the protons serve only as vehicles for the partons and high
energetic parton collisions are of the main interest. They produce a large variety of
very different physics processes.

Each LHC bunch crossing leads to “an event” consisting of a spray of some
1000 particles, which are recorded by highly precise and sophisticated detectors
covering almost the whole solid space angle and organized in different components.
Their electronic recordings are translated into “physics objects”, i.e., candidates for
electrons, quarks, photons, etc.—each one a stable SM particle. The content of an
event, i.e., how many of these different objects are found and their relation, e.g.,
relative angle or mass, make up the “event signature”.

As indicated, in this chapter, theATLAS experiment (ATLASCollaboration 2008)
will be considered as the example.
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The ATLAS detector extends 40 m along the beam line and has a diameter of
25 m in the transverse plane. Each of its components is sensitive to a particular
type of particle, offering redundant and rather comprehensive information. The wide
coverage of the particles from the interaction allows ATLAS to probe almost all
of the LHC physics. In a sense ATLAS combines some 100 distinct experiments of
previous times. This allows for optimal use of each event including cross calibrations,
an essential point for the validation of the simulation—as will be discussed later.

The large number and variety of particles in each event reflects the statistical
properties of quantum mechanics. The main experimental challenge is to infer the
underlying parton scattering from the different event signatures. It is at this point that
simulation as a tool for data analysis enters the field. Describing the large number
of particles, their complicated and statistically distributed structure, as well as the
statistical nature of their interactions in the detector cannot be achieved analytically
but requires numerical methods.

Before discussing validation, the article will start with a short overview of the
principles of data analysis and the two basic ingredients that enter simulation, the
modeling of the physics process and that of the detector. It will then formalize the
principles of simulation to motivate validation procedures in particle physics.

26.3 Data Analysis and the Use of Simulations

Before describing the validation process in more detail in Sect. 26.6, we will summa-
rize the ingredients of the simulation in particle physics. The simulation is particle
based, involving a wide range of different scales and is realized with computer codes
applying Monte Carlo (MC) methods.

26.3.1 From Data to Physics

The principal aim of the simulation of LHC events is to understand how the physics
process (“signal”, S) of interest would look in the detector. Comparing the mea-
surement with this expectation allows one to extract information about the physics
process of interest, e.g., a parameter of the SM, dynamic properties, or evidence,
respectively, exclusion of BSM effects.

Each S has a certain event signature. However, such a signature is not unique, but
can also be due to competing processes, the ‘backgroundB’. To reach high sensitivity,
analyses aim at a good S/B ratio by applying special selections exploiting different
properties of the S and the B processes. Arriving at a physics conclusion from the
data requires the measurement to be compared to theory and thus to simulate both S
and B.
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In this article, basic concepts of validation will often be discussed along the
production of a Higgs (h), and its detection via Z0 bosons and electrons.3

g + g → h → Z0Z0∗ → (e+e−)(e+e−) (26.2)

i.e., two gluons g produce a Higgs that decays into two Z0 bosons,4 each of which
then decays into pairs of electrons. This Higgs signal competes with background
processes that also lead to four electrons but do not involve the production of a
Higgs.

A key observable for the Higgs production and decay, but also of general impor-
tance, is the cross-section σS , essentially ameasure of the production yield. The cross
section of a signal process is obtained from the measurement by

σS = Nsel − NB

L · εS
(26.3)

whereL is the luminosity, the total number of all possible proton–proton collisions
provided by the LHC, Nsel is the number of data events selected, here with four
electrons, NB, the number of background events, and ε, the efficiency to detect a
selected signal event, i.e.,

εS = NS
sel

NS
prod

(26.4)

where NS
sel, N

S
prod are the numbers of signal events that are selected, respectively,

produced.

26.3.2 The Role of Simulation for Data Analysis

Both NB and εS are obtained from simulation and should be determined to a high
precision. Per year some 10 trillion events are simulated for ATLAS, each simulation
taking several minutes. To achieve this, 100,000 CPUs and 100s of petabytes of disk
storage are provided by aworldwide computing grid. To guarantee a constant quality,
the simulation is continuously checked with benchmark processes.

Simulations in particle physics are used for several purposes.

• In the data analysis, they are instrumental to obtain model predictions and their
experimental signatures that can be compared to measurements.

This is the broadest and most challenging application that will be primarily con-
sidered in this article. In addition, simulation is used to optimize tools and strategies.

3For simplicity particles and anti-particles will just be denoted by the name of the particle.
4The notation Z0∗ means that the boson is “off shell”, i.e., its mass is different from the default 91
GeV due to quantum mechanical uncertainty.
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• Both in experimental and theoretical studies, simulation is used to evaluate the
feasibility of a technique.

• Simulations are used to optimize the layout of future detectors, or detector condi-
tions to run an experiment.

In all three use cases, simulation is an auxiliary method to experiments, but in no
way replacesmeasurementswith real experiments. E.g., even if a detector component
is first devised with simulation, it is only after studying an actual prototype, that the
component will be integrated into the experiment. Simulations allow complicated
manipulations of fairly involved models. Their results are believable only to the
extent that the input and structure of simulations is believable, which in turn requires
the input to and the structure of simulation to agree with experimental data. I.e.,
validation of the simulation is essential.

In particle physics, two main parts have to be simulated, the underlying physics
processes leading to a distribution of hadrons, photons, and leptons, which can be
measured in the detector, and the detector response to each of these particles. Both
parts will be introduced in turn in the subsequent sections.

26.4 Modeling the LHC Processes

Consider a LHC collision of two partons A, B producing a signal S, which decays
into two particles C, D:

A + B → S → C + D (26.5)

A characterizing parameter for the parton collisions is its hardness Q2, which is
given generically by Q2 = (pC − pA)

2. Here, pi = (Ei ,pi ) are the four momenta
of the particles, with E the energy and pi the momentum components in the three
spatial directions. “Soft collisions” have a Q2 of a few GeV2, hard collisions at the
LHC are typically (100–1000GeV)2.

If the outgoing particles are electrons as in Eq. 26.2, they are rather easy to
simulate. Reactions in which the final state particles C , D are strongly interacting
partons are more complicated. Due to the properties of the strong interactions, these
partons cannot be observed directly, but are “dressed” by many additional partons
at distances smaller than 10−15 m. In the detector, hard partons appear as narrow
cones of some 20–40 particles, deemed “jets”. A jet event recorded with the ATLAS
detector is shown in Fig. 26.1. Understanding this dressing is important for infer-
ring the initial parton collision from the measurement. It is modeled on the basis
of the precisely probed theory of strong interactions (Quantum Chromodynamics,
QCD) and simulated starting from the high Q2 parton collision Eq. 26.5 to low Q2,
where QCD-inspired models of parton emissions are invoked.5 These models are not

5Here the particle physicists’ notion of “model” is used, which refers to a theoretical description of
a physics process that is not fully calculable from the well founded and established “theory” of the
Standard Model.



26 Validation of Particle Physics Simulation 637

Fig. 26.1 Two-jets event recorded at the LHC. The different components of the ATLAS detector
are shown in the plane perpendicular to the beam direction (left), along the beam (upper right) and
in the plane of polar and azimuthal angles (lower right). The tracks in the inner detector and the
energy deposition in the calorimeters are indicated and show that energy is collimated in a rather
small region, i.e., shows “jetty” behavior. (ATLAS Collaboration 2014b) (ATLAS Experiment ©
2018 CERN)

unambiguous and several variants exist, all being cast into computer codes using
Monte Carlo methods. We will now provide more details on the individual steps.

26.4.1 The Matrix Element of the Hard Collision

The fundamental differential equation for the processEq. 26.5 is known, but cannot be
solved in a closed form. Instead, it is perturbatively expanded in the strong coupling
αs(Q2) as given in Eq. 26.1, leading to quantum mechanical matrix elements, which
can be calculated exactly. Schematically this expansion can be written as (see e.g.
Salam 2010)

σ(A + B → S) = σ0(A + B → S) + αsσ1(A + B → S) + α2
s σ2(A + B → S) + .....

(26.6)
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The higher the order in αs , the more complex is the calculation, but since αs is of
the order of 0.1, higher order terms also become smaller. The complete perturbation
series cannot be determined and is instead truncated, for LHC processes typically at
the α2

s term. Consequently, small contributions to the full cross section are missing.

26.4.2 Parton Distribution Functions: Dressing the Initial
State

Since the partons A, B in the initial state are subcomponents of protons they carry
just a fraction x of the proton energy p.

x follows a probability distribution denoted as parton distribution function (pdf),
and enters the prediction of a cross section, but cannot be calculated. The Q2 depen-
dence of the pdfs is, however, given by theory and has been experimentally well
confirmed (see Sect. 26.8.1).

26.4.3 Dressing of the Outgoing Partons

To describe the dressing of the outgoing partons C , D into jets, QCD-based models
are invoked, in which each final parton of the matrix element calculation is assumed
to branch into further partons, which subsequently branch again.

Themodels follow each parton individually neglecting quantummechanical inter-
ferences. Each of these branchings happens at some Q2, which decreases with the
order of the branching. Since Q ∼ 1/t (t denoting time), this parton showering
can be interpreted as a time-ordered (Markov) chain. Modeling particle production
in jets can be classified into three steps (for more details see Salam 2010; Seymour
2004).

1. The scattered partonsC, D split into more partons, a so-called “parton shower”.
How the energy of a single parton is split among its daughters follows directly
from theory.

2. These partons are finally turned into stable hadrons making up “jets”. The details
of this “hadronization” are condensed in “hadronization functions” expressing
the probability of the energy and the kind of hadron to be produced. They are
provided using previous measurements.

3. Whereas in the hard process just one of the many partons inside each proton
interacts, the remnant ones also produce a spray of particles. This “underlying
event” is measured using special LHC processes.

This means that jet evolution can be simulated with a Markov chain by describing
individual steps with special probability distributions. A rather complicated particle
structure emerges, as schematically depicted in Fig. 26.2, where themany and diverse
parton branchings become apparent, motivating the use of Monte Carlo simulation.
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Fig. 26.2 Schematic LHC event: straight lines denote quarks, curly lines gluons. The initial partons
make hard collisions (denoted by the large red circle) and split into other partons. Four immediately
outgoing partons are shown, one (dashed line) decays only after flying a small distance. These
partons branch further with increasingly smaller energy and angle resulting in jet-like structures.
Finally, these partons turn into hadrons (shown as green lines/dots). In parallel, the other partons
inside the protons also interact (elongated pink area) leading to hadrons. (Gleisberg et al. 2009)

Events at the LHC are further complicated by the occurence of hadrons from
additional pp collisions in the same LHC bunches. These contribute a “pedestal” of
particles to the hard collision of interest and are denoted as “pile-up” events. These
can be determined from data (see Sect. 26.8.2).

26.5 Detector Simulation

Themodeling of the physics process terminateswith a list of stable particles: hadrons,
photons, electrons, muons, and neutrinos. These are relevant for what is seen in the
detector. Apart from neutrinos, all particles interact with the detector material and
generate electronic signals. Roughly speaking, as becomes apparent in Fig. 26.3,
each of the components of the ATLAS detector has a special sensitivity to one of
these particles. Their reconstruction provides a picture of what has happened at the
collision point.
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Fig. 26.3 Schematics of the interactions of various types of stable particles in the components of
a typical LHC detector. By combining the information, the particle type can be identified (ATLAS
Collaboration 2013) (ATLAS Experiment © 2018 CERN)

The principle of detector simulation is that each stable particle is traced inside
the detector up to a volume element containing some material. They may interact
according to probabilities obtained frommodels. The products of the interactions are
then further traced to the next volume element with material and so on.6 All materials
that are part of the detector affects the passage of a particle and has to be considered,
but only part is “active” meaning that it generates electronic signals that are used to
reconstruct the event.

These interactions and generated signals are cast into computer codes (GEANT4
Collaboration 2003) that have been developed over the past 30–40 years and applied
and validated in various, rather different detector environments. Themain ingredients
of these simulations are

• the geometry and materials of the detector,
• methods of numerical integration to follow a particle, partly inside a magnetic
field,

6For amore detailed and also historical account of detector simulation in particle physics see (Daniel
Elvira 2017).
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Fig. 26.4 Display of a component of the ATLAS pixel detector. The total length of the object is
2cm, the widths of individual parts are as small as 0.02 mm. a The distribution of the material in
the simulation (ATLAS Collaboration 2013), b the material in the simulation as seen in interactions
of particles, c the material as seen in real collision events. Red indicates many interactions, blue
relatively few (ATLAS Collaboration 2012a). (ATLAS Experiment © 2018 CERN)

• modeling the particle interactions in the material.

The detector geometry is mapped in a first step according to engineering draw-
ings that have been used for building the detector. When relevant, one includes fine
details, in part as small as several µm3, as can be seen from Fig. 26.4(left) showing
schematically one of the 80,000 modules of the pixel detector, the innermost com-
ponent of ATLAS. The interactions with the material are simulated stochastically
using the interaction cross section of the incoming particle h with the material A
under consideration. i.e.,

σint(h + A) = σ1( f1) + σ2( f2) + ...... (26.7)

where the fi are possible final states, which may consist of several particles. The
respective momenta are generated according to models cast into computer codes,
e.g., (Ford and Nelson 1978; Ferrari et al. 2005). Those for incoming electrons and
photons are rather well understood, interactions of hadrons are more uncertain.

The interactions in the active volume will then be digitized, i.e., translated into
an electronic signal.

While the simulation shouldbe as precise as possible, it is notmeaningful to exceed
the measurement uncertainty, and also the precision should be balanced with the
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required computing time. Therefore, some effects are integrated over and condensed
into a single parameter.

The simulation of the pixel detector is an example of the balance between fine
details and required precision. There an electronic signal is caused by some 30,000
electron–hole pairs that are produced from the passage of a particle through a 250µm
thick silicon layer. It iswell understoodhow these pairs are produced andmove toward
the electrodes, thus simulating these would be possible. However, such detailed sim-
ulation is only meaningful if supplemented with a simulation of each of the some-
what different 80,000 electronic circuits, requiring an excessive use of computing
resources. Instead, the response of the pixel detector to particles is measured and the
probability distribution of the signal depending on the particle’s properties is used
in the simulation without considering the details of its generation. No uncertainty is
induced by this discretization.

As a side remark, one should be aware of the hugely different scales in detector
simulation. Within a detector of a global diameter of 25 m, structures of the size
of 0.00001 m are considered, if important. How finely the volume elements in the
simulation are granulated, depends on their impact on the measurement and has been
tested.

The simulated electronic signals in the various parts of the detector are then sub-
jected to the identical procedure as the recorded data to reconstruct physics objects,
i.e., electrons, muons, jets, etc.

26.6 Principles of Validation and Uncertainties

Formally, simulation in particle physics translates an original, “true” distribution T of
partonsC, Dwith energy EC,D , 3-momentapC,D and types fC.D into n reconstructed
particles with respective energies, 3-momenta, and types, i.e.,

⎛
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(26.8)

where n is O(1000 – 100,000). The transformationM expresses what is happening
in the simulation. Instead of listing all momenta of individual particles, the main idea
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can be illustrated in a simpler way by considering some distribution in a variable z
of (physics) interest, e.g., the mass M of an event.

Along the discussion of Sect. 26.4.1, the matrix element calculation in some
model yields the “true” mass distribution T (MC,D). In the simulation, the C, D are
dressed and affected by experimental resolutions such that T (MC,D) is transformed
into a prediction P(M) for the mass distribution that is supposed to be measured
for the model under consideration. Actually measured in the experiment would be a
distribution D(M). To interpret the measurement, e.g., to infer on the validity of the
model, P(M) has to be compared to D(M).

26.6.1 Factorization of Migration

In terms of z, simulation means

P(z) = M T (z) (26.9)

Discretizing z in intervals, the transformation can be expressed by a square matrix
of the migration of a theoretical mass value to an observed one.

M = mij =

⎛
⎜⎜⎝
m11 m12 ..... m1n

m21 m22 ..... m2n

..... ..... .... .....

mn1 mn2 ..... mnn

⎞
⎟⎟⎠ (26.10)

where each element in the matrix relates a value of z in the incoming step to a z
of the outgoing steps, e.g., a generated mass to the measured mass. E.g., m2n is the
probability that an event with a true z in bin n has a reconstructed z in bin 2. In the
previous section it was discussed that simulation proceeds in (time-ordered) steps.
Using the formalism each step corresponds to a special migration matrixMα . Here,
α denotes the effect under consideration, e.g., α = 1 the effect of the pdfs, α = 3 the
one due to hadronization, α = k is the distortion from a detector component etc. The
complete simulationM is then factorized intoMα ,

M = [Mk × ..... × M2 × M1] (26.11)

P(z) = [Mk × ...... × M2 × M1] × T (z) (26.12)

More precisely, adding pile-upU (z) and background processes B(z) to the signal
process S(z), one arrives at modified (primed) results.

T (z) → T ′(z) = (S +U )(z) + (B +U )(z) (26.13)

P ′(z) = M · [(S +U )(z) + (B +U )(z)] (26.14)
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The physics question is whether P ′(z) = D(z), which means that S is correct, if
M ,U (z) and B(z) are correct, but can also be fulfilled if, e.g., S andM are incorrect.
Inferring S from D requires one to validate M and the background distributions.

26.6.2 Is Factorization Correct?

These considerations, which will be crucial for the validation procedure discussed
in the next sections, depend on factorization. The latter holds true if the steps are
incoherent and follow a time sequence. This is clearly true for the detector simulation,
where a particle from the pp interaction first interacts in the tracking detector before
entering the calorimeter etc. That is, only those particles have to be considered in the
simulation of the calorimeter response that leave the tracking detector (cp. Fig. 26.3).

The time-sequence in the transition from the matrix element to the final hadrons
in the physics generator, however, is only approximate since quantum level interfer-
ences are left out. However, the factorization assumption is justified from theoretical
arguments (e.g., Salam 2010), at least for pdfs, to rather high precision. The basic
argument is that the different steps occur at significantly different energy scales,
which hardly influence each other. Similar arguments for the validity of factorization
can be applied to the showering and hadronization effects. In addition, the assump-
tion of factorization has been tested by comparing processes involving electroweak
particles.

26.7 General Procedures of Validation in Particle Physics

At face value, data and simulation agree for SM processes at the LHC to stunning
precision. In so far, the requirement in the philosophical literature, “validation .... is
said to be the process of determining whether the chosen model is a good enough
representation of the real-world system for the purpose of the simulation” (Winsberg
2015) seems to be fulfilled. However, as outlined above, the agreement is a necessary,
but not a sufficient condition to claim the correctness of the model of the underlying
parton process. Instead, the migration matrix M and the backgrounds have to be
validated. The principle validation methods will be discussed in the next sections.
The basic ideas are as follows.

1. For each Mα the corresponding model is validated by either data from previous
experiments, possibly together with a well founded theory, or better even, by an in
situ experimental validation. For the validation of eachMα , specific, particularly
sensitive processes are used, where this transformation can be isolated and there-
fore be tested. Examples will be given below. If all steps of the simulation are
validated, obviously, thewhole simulation is validated and the sufficient condition
is fulfilled to infer from the agreement of simulation and data to the underlying



26 Validation of Particle Physics Simulation 645

physics process. All steps mean that both the underlying physics model, which
is a genuine part of the simulation, and the description of the detector response
have to be validated

2. Given that the simulation should help to provide quantitative statements on SM
parameters or BSM effects, validation should provide an estimate of how well
a process is validated. This is expressed as a “systematic” uncertainty for each
validation step, δ(Mα). In this sense, the process of validation is synonymous
with the process of assigning an uncertainty. By error propagation, this leads to
a total uncertainty δ(P ′(x)) of the simulation prediction (see Chap. 4 by Roy in
this volume about errors and the treatment in general).

It is beyond the scope of this article to cover the complete validation procedure,
which is documented in numerous publications and notes (some will be mentioned
in the text). Instead, some examples will be presented in more detail, highlighting
general methods used in the validation of both physics and detector modeling

• a combination of previous experiments and model assumptions,
• measurements of LHC processes that are complementary to the process of interest,
• in situ measurements of properties of the detector,
• adjusting the simulation to data using previous precision measurements.

As will hopefully become apparent in the following sections, the different “fac-
tors” that enter simulation at the LHC are experimentally tested and simulation is
applied on a significantly constrainedmaterial basis. This discussion, althoughmaybe
sometimes technical, seems to be important in view of claims that “in the context
of the LHC .... there is a lack of experimental data for comparison [with simulated
data]” (Morrison 2015)(290).

26.8 Validation of the Physics Generators

The parton distributions in a space–time region smaller than 10−15 m and the model
of how they turn into hadrons, have been discussed in Sect. 26.4. These processes are
statistically distributed and thus a generic part of the computer simulation.Moreover,
since the parton evolution is described by models, these have to be validated.

As examples, validation of pdfs and pile-up events will be discussed in the follow-
ing sections. But before, a brief comment on the other steps is in order. As discussed,
the perturbation series of the matrix element of the hard process are truncated. The
magnitude of the remaining terms is estimated by a convention that has been tested
in various processes such that uncertainties of typically some 3–5% are assigned.
The basic understanding of the major other steps, i.e., showering and hadronization
(see Sect. 26.4.3), has been obtained from previous experiments at e+e− colliders
(Mättig 1989; Knowles and Lafferty 1997) and cross-checked with LHC data (see
e.g., ATLAS Collaboration 2012b). The steps are described by various models, and
their differing outcomes provide the uncertainty range assigned to showering effects.

http://dx.doi.org/10.1007/978-3-319-70766-2_4
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26.8.1 pdfs

The pdfs are an essential ingredient of the simulation and instrumental for the inter-
pretation of measurements. The cleanest way to measure pdfs is via the scattering of
electrons on nucleons. A compilation of the major experiments is shown in Fig. 26.5
for various values of the parton energy fraction x as a function of Q2. Whereas the
pdfs themselves cannot be calculated from first principles, their Q2 dependence is
precisely known in QCD and excellently confirmed by measurements. Knowing the
pdf at one Q2 allows one to extrapolate it to another Q2 (formore details seeCampbell
2007).

Fig. 26.5 Measurements on the Q2 dependence of the pdf. Shown are measurements from several
experiments and in different bins of x (Patrignani et al. 2016)
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Such extrapolations are needed for the LHC, for which much higher Q2 can be
reached. Validation of the LHC has to address the question: what variations of pdf
models are allowed by data at low Q2? Given the knowledge of the Q2 dependence
how large are the variations at LHC conditions? Are there ways to test pdfs directly
at the LHC avoiding circularity?

The uncertainties of pdfs at a certain Q2 are due to both measurement uncertain-
ties and theoretical ones. The latter ones come e.g., from inter- and extrapolating
the binned measurements to a continuous distribution. Given the number of input
bins there is in general only a small amount of variation allowed. However, at the
extremes like x = 0, 1, measurements are less constraining and these variations can
be important. These ambiguities lead to different pdf models with some variation in
the expectations for the LHC, none of which can be a priori excluded.

As an example, four different pdf models for different kinds of parton species at a
Q = 100 GeV (i.e., close to the relevant scale for the Higgs production) are shown in
Fig. 26.6. As can be observed, the difference between different models is in general
smaller than the uncertainty assumed for an individual model—an indication that
the constraints from data are fairly tight. The variation between these pdf models

Fig. 26.6 Predictions for the pdfs of gluons (upper left), up quarks (upper right), anti-down quarks
(lower left), and strange quarks (lower right) are shown for Q = 100 GeV and an x range stretching
over 5 orders of magnitude. The different colors correspond to different pdf models, all are shown
being normalized to the average of these. The coloured bands correspond to the uncertainties
assigned to the corresponding model. (Butterworth et al. 2016)
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Fig. 26.7 ATLAS Measurement of W± versus Z0 (left), being sensitive to other quark species.
The data are compared to the expectation from various pdf models. The ellipses indicate the corre-
sponding uncertainties, i.e., the 66%certainty range. (ATLASCollaboration 2017a). The right figure
compares production of pairs of top quarks at two different LHC energies (ATLAS Collaboration
2017c). (ATLAS Experiment © 2018 CERN)

together with their individual uncertainties are used as an overall pdf uncertainty of
typically below 10%. A notable exception are very high x values.

In addition, these predictions can be validated by using special LHC processes.
Particularly those involvingW and Z0 production provide in situ constraints on pdfs
(ATLAS Collaboration 2017a). In addition, the energy dependence of the yields of
theoretically well understood processes like the production of top quarks (t t̄) can be
used (ATLAS Collaboration 2017c). Both examples are depicted in Fig. 26.7. These
cross checks show that the assumed pdf models derived from non-LHC experiments
and their uncertainties are consistent with the LHC measurements.

26.8.2 Pile-up in pp Scattering

As stated in Sect. 26.4.3, every hard interaction of interest is accompanied by some
30 additional and incoherent pp interactions in one bunch crossing, called pile-up.
This “pile-up” has to be an integral part of the simulation of a LHC event. Validation
of pile-up simulation requires the properties of these events to be understood. This
is achieved by direct LHC measurements (e.g., ATLAS Collaboration 2016a).

Since pile-up events have a high cross section at the LHC, they are frequently
produced in bunch crossings, but can also be measured individually with short spe-
cial LHC runs. Based on these measurements, QCD-inspired models are devised
to describe pile-up events. These models are then used in the simulation to overlay
pile-up to the physics processes of interest.
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Fig. 26.8 Relevant properties of one pile-up event as measured in low luminosity runs. The produc-
tion angle wrt. the beam direction (left) and the transverse momentum pT distribution of charged
particles are shown (center) and the average event pT as a function of the number of charged
particles in an event (right) (ATLAS Collaboration 2016a) (ATLAS Experiment © 2018 CERN)

Pile-up events are found to largely produce an isotropic spray of low energy
particles as is apparent from the measurements shown in Fig. 26.8. In the Figure,
data are compared to several models. As can be seen, some of them describe the
measurements rather well and are used in simulation. The remaining deviations
between the preferred models and data are small and do not affect the measurement
in any relevant way.

Pile-up events can be seen as an example, where the large variety of LHC pro-
cesses can be used to measure some process i directly as input to simulation for
complementary physics processes j .

26.9 Validation of Detector Simulation

The modeling of the detector is crucial to understand how well particles can be
reconstructed from electronic signals in the detector components (cp. Sect. 26.5).
Here, we focus on detector geometry and simulation of electron properties.

26.9.1 Testing the Detector Geometry

While the starting point for the description of a detector are engineering drawings,
once the detector is installed, details may change rendering the simulation inaccurate.
As an example, consider a module of the pixel detector whose engineering drawing
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is shown in Fig. 26.4(left) and serves as a blueprint for the simulation. Data allow
one to “see” the material distribution with a tomography-like method.

The method is based on the number and position of particle interactions inside
the detector.7 Their frequency is a measure of the material. For a pixel module the
number of interactions in a projected area of 100×100µm3 is shown inFig. 26.4(low,
left) (ATLAS Collaboration 2012a). The one-to-one correspondence with the input
geometry clearly shows the method to work.8

The interesting step is to apply this tomography to data. The result is shown in
Fig. 26.4(low, right). Whereas the general structure agrees well with the simulation,
there are also important differences. E.g., the rectangular component in the simulation
around z ∼10cm correspond to cables, which are much more spread out in the real
detector, the circular shape around x =3cm is a cooling pipe. In the simulation, it
is considered to be mostly filled with a liquid, in the data it becomes apparent that
most of it is in gaseous state. Furthermore at x =−4cm an electronic component
(capacitor) is visible in the data, which had been omitted in the simulation. After
these differences became known, the simulation has been adjusted.

The details of this discussion are not important, but the message is that the geom-
etry of the detector can largely be checked and corrected with the data themselves.

A variety of procedures are used for different components. They are examples of
in situ measurements based on well established types of reactions and redundancies
in the detector.

26.9.2 Validation of Electron Simulation

A key particle for LHC physics is the electron, which is produced in many SM and
perceived BSM processes and relatively easy to identify. Data analysis requires one
to know the detection efficiency (cp. Eq. 26.4), the “true’ energy Etrue and the energy
resolution σE as given by

Emeas = (1 + α) Etrue (26.15)

Etrue → f (E) ∝ e(E−Etrue)
2/2σ 2

E (26.16)

where 1 + α is the electron energy scale indicating a possible mismeasurement, and
σE is a measure of how strongly the measurements fluctuate. Evidently it is crucial
for the simulation to describe these appropriately.

Simulations of interactions of electrons with material are based on a well-
established theory, and have been studied numerous times and with many detectors,
also in test-beams for the calorimeter components later installed in ATLAS. The

7These interactions in the detector are completely distinct from those pp interactions to test the SM
and find BSM signals.
8This test of validation tools represents another use of simulation in particle physics, mentioned in
Sect. 26.3.2.
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electronic response in the calorimeter to the electron energy, however, needs to be
calibrated. Given the precise knowledge of the Z0 mass from previous measurements
at the e+e− collider LEP (LEP 2006), see Eq. 26.1, and the abundant and clean Z0

production at the LHC (see Fig. 26.9(left) ATLAS Collaborations 2016b), the elec-
tron energy is calibrated to reproduce the Z0 mass. To take into account distortions
of the shape of the Z0 peak due to secondary interactions of the electron with the
material in front of the calorimeter, this calibration is based on the Z0 shape obtained
from simulation.

Before this general procedure is realized, the simulation of the electron inside
the calorimeter has to be validated in situ. E.g., inhomogeneous material distribu-
tions are obtained from the longitudinal evolution of a shower, and modifications
of the calorimeter geometry due to gravitational effects are derived from angular
modulations of the ratio of redundant measurements in the tracking detector and the
calorimeter. The observed deviations are taken into account by parametric corrections
of the simulation (ATLAS Collaboration 2014a).

Whereas the Z0 mass has been measured and can serve as a reference, the energy
resolution is detector specific. Still, the Z0 serves as a marker for validation in that
its observed width is a measure of σE . Differences between data and simulation are
actually observed and the simulation is smeared to accomodate this discrepancy. The
impact of this correction in the simulation can be seen in Fig. 26.9(right), where the
ratio of data and simulation ofmee is shown before and after the correction. Similarly,
the electron efficiency is determined by in-situ measurements of the Z0 decay. The
simulation is adjusted to agree with the data (ATLAS Collaboration 2017b).

As an upshot, the simulation of electrons can be validated in situ,making use of the
redundancyof the detector, thewide range ofLHCprocesses and in particular a highly

Fig. 26.9 The e+e− mass distribution observed with the ATLAS detector (left) (ATLAS Col-
laborations 2016b). Also shown are the background contributions. Comparison of data and sim-
ulation before and after adjusting the simulation to the Z0 peak as a function of the e+e− mass
(right) (ATLAS Collaboration 2014a). The ratio between data and simulation is shown in the lower
part. (ATLAS Experiment © 2018 CERN)
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precisely measured reference process. The high statistics and precise knowledge of
the references also imply that the uncertainties assigned to simulation is small. Similar
procedures also exist for other particles, e.g., (ATLAS Collaboration 2014c, 2015).

26.10 How Simulation is Applied in Data Analysis

In this section two examples will be discussed of how simulation is applied in data
analyses. These will also show methods to validate the background simulation. In
the first example properties of a known particle, the Higgs boson, are determined in
a kinematic region that is well probed. The second example is a search for a BSM
effect which requires extrapolations into as yet unexplored energy regions.

26.10.1 Measurement of the Higgs Cross Section

In July 2012 both theATLAS and the CMS collaborations announced the observation
of a new particle with a mass of 125 GeV (ATLAS Collaboration 2012b; CMS
Collaboration 2012) through its decay into pairs of particles, especially into Z Z∗
and γ γ . To establish if this is the long sought for Higgs boson, the properties of
the particle had to be determined. One key measurement is the cross section (cp.
Eq. 26.3) σh→XX for the Higgs production and its decay into two particles XX .
Since the SM and alternative models for mass generation lead to different cross
sections, their precise measurements can discriminate them. Here we will discuss
X = Z , Z∗ along (ATLAS Collaboration 2018), with each Z decaying into a pair
of electrons.

In Fig. 26.10 the observed themass distribution of the four leptons (either electrons
or muons) from the Z Z∗ decays is shown. An enhancement around 125 GeV can be
seen over an almost flat background. How this signal is translated into σh→Z Z∗ , will
be outlined assuming a pure electron signal, although in the analysis both electrons
and muons are used.

In a first step simulation is applied to find selections to reach a good signal to
background ratio (S/B, cp. Sect. 26.3.1). For the analysis, events are selected that
contain four electrons of which at least one has a minimum momentum pT in the
plane transverse to the beam direction of 20 GeV. All leptons should have an angle
larger than 160 mrad wrt the beam axis. This defines the “fiducial volume”, in which
the cross section is determined. Inspecting Eq. 26.3, one needs for the cross section
measurement the efficiency and the background, i.e., the number of events that orig-
inate from other processes but also lead to four electrons.

The efficiency is affected by twomajor contributions. The first one is howmany of
the generated electrons are inside the fiducial volume. This is in a first step given by
the matrix element, however, detector effects like the energy scale and resolution of
electrons (see Sect. 26.9.2) have to be taken into account. The second is the detection
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Fig. 26.10 Spectrum of the
four lepton mass consistent
with a decay Z Z∗ as
measured by the ATLAS
experiment (ATLAS
Collaboration 2018). The
peak around 91 GeV is the
Z0 peak. (ATLAS
Experiment © 2018 CERN)

efficiency of the electrons. Since thematrix element is known and the detector effects
have been validated, the detection efficiency for σh→XX is obtained fromMonteCarlo
simulation by convoluting the physics model with the adjusted detector performance.

The dominant background source is continuum Z0Z∗ production, i.e., without an
intermittentHiggs boson (see red area in Fig. 26.10). Its yield is tightly constrained by
the measurement outside the signal region around 125 GeV. Minor backgrounds are,
e.g.,due to top quark-pair production. These are estimated by a data driven method
similar to the one that will be discussed in the next section.

Relative to the theoretical expectation (LHC Higgs Cross Section 2013) the mea-
sured cross section for a SM Higgs is

(
σ(h → 4l)data
σ(h → 4l)SM

)

fid

= 1.28 ± 0.18 ± 0.07 ± 0.07 (26.17)

where the uncertainties are statistical, experimental systematic and theoretical, the
latter including pdfs. The experimental systematic uncertainty corresponds to the
uncertainty of the validation from simulation.

26.10.2 Search for a Stop Quark

A large fraction of the analyses at the LHC tries to find BSM signals. In this section,
it will be discussed, how simulation is applied in the search for supersymmetry, the
most popular BSM model. The focus will be on methods to validate simulation of
background processes.

More specifically, the search for the pair production of the supersymmetric partner
of the top quark, denoted as stop (t̃), in the decay mode
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pp → t̃ ¯̃t → t t̄χ0χ0 (26.18)

will be considered, where χ0 is a particle that leaves no trace in any detector—and
therefore is also a dark matter candidate. The production and decay properties of
this process are rather precisely predicted such that the distribution of the outgoing
partons can be reliably simulated. Here we assume a stop quark of high mass (of 1
TeV) and a massless χ0, following (ATLAS Collaboration 2016c).

The experimental signatures of this process are a detectable pair of SM top quarks
(t t̄), but in association with a very high imbalance of the detectable momentum in
the plane transverse to the beam axis, caused by the two undetectable χ0s. This is
denoted as “missing transverse energy”, ET,miss. One major background is due to
two neutrinos from decays of top quarks,

pp → t t̄ → νν̄ + X (26.19)

where X represents all other particles in the event. The validation of the modeling of
this process will be discussed here. Simulations are used to suggest a selection that
leads to an optimal S/B ratio for stop production. This signal region (SR) is defined
through six observables, of which the most important are

• mT > 160 GeV, the mass of the lepton pT and ET,miss system.
• amT 2 > 175 GeV, a measure in how far the observed jets and leptons agree with
coming from two stop quarks of mass 1 TeV.9

The retained events are in kinematic regions, which have not yet been probed
and are prone to possible misrepresentations of both Standard Model physics and
detector modeling. Using the formalisms of Sect. 26.6.1, one can separate the whole
distribution for simplicity into regions that have, respectively have not, been probed,
i.e., z < zcut and z > zcut = (zcut + Δ). The zcut may be identified with the selection
requirement used to isolate stop pair—events and the region (zcut + Δ) with the SR.
In this region simulation of the Standard Model distributions is given by

P ′(zcut + Δ) = [M + ΔM ] · (B +U )(zcut + Δ) (26.21)

ΔM represents themigration that has not been tested before,whereas B(zcut + Δ)

the Standard Model distribution in the not yet tested region.
It follows fromEq. 26.21 that the contribution to P(z > zcut) is due to two sources:

the Standard Model contribution B(z > zcut) and the migration of events out of
B(z < zcut) (and of course both together). The simulation of the background yield
needs to be validated in the region (zcut + Δ). This is done in two steps

9The exact definition is

amT 2 = min
qTa+qTb = ET,miss

[max(mTa,mTb)] (26.20)

I.e., the minimum parent mass consistent with the observed kinematic distributions assuming
input masses mTa and ,mTb and certain mass combinations.
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• In a first step, a “control region” (CR) for the process 26.19 is defined, which uses
the same observables as the SR,with cut values in general as close as possible to the
SR, but inverting the amT 2 requirement. This enriches t t̄ events, makes the SR and
CR regions disjunct and the CR void of any signal. The normalized distributions
(shapes) are sensitive to detector effects and data and simulation are compared
for z > zcut. As an example the mT distribution is depicted in Fig. 26.11(left)
showing a good agreement. It underlines that the physics distributions and the
detector effects are well described also for mT > 160 GeV, which is sensitive to
a potential stop particle. Once the shape is confirmed, the simulated cross section
for z > zcut is scaled by.10

rt t̄ =
(

Ndata(t t̄)

Nsimulation(t t̄)

)

CR

= 1.01 ± 0.15 (26.22)

and therefore adjusted to the measurement.
• In a second step, a “validation region” (VR) is defined where the selection is
chosen to be in between the CR and the SR. A small, but negligible, fraction
of events might come from the signal. Using the adjusted cross section for the
simulation of the background, it is tested in how far the observed number and
shape of events agrees with the expectation. Fig. 26.11(right) shows that the data
can be consistently described.

These studies validate the background distributions in the kinematic vicinity of
the SR, but not in the SR itself. After having adjusted simulation to data in the CR and
VR, one uses simulation to extrapolate. However, since these extrapolations depend
on details of strong interactions (see Sect. 26.4.3), a range of QCDmodels is used to
estimate its additional uncertainty taking into account the constraints from the CRs
and VRs.

In conclusion, the background in the new region is estimated with methods which
use simulation as guidance, but in the validation process they are adjusted to agree
with the data. This procedure implies a significant uncertainty such that the search
is sensitive only in regions where the S/B is high. In the stop analysis, the number
of Standard Model background events in the SR is expected to be 3.8±1.0, where
the uncertainty is mostly due to the modeling uncertainties. The expected signal
contribution from a stop would be 6. In the data 8 events are observed, i.e., more than
expected from SM sources alone, but consistent with just a statistical fluctuation.

10Note that using this method, other backgrounds, likeW+jets, show a visible discrepancy between
simulation and data.
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Fig. 26.11 The mT distribution for the control region (CR, left) and the validation region (VR,
right). Shown are the expectations from the dominant Standard Model contributions from t t̄ pro-
duction and the data. The lower part shows the ratio data/simulated events (ATLAS Collaboration
2016c). (ATLAS Experiment © 2018 CERN)

26.11 Discussion

Simulation in science and its validation are debated in the philosophical literature
from various perspectives. In this short section a few points are commented from the
view of particle physics without being able to address them in detail.

Simulation of LHC events is characterized by the remoteness of the underlying
physics and the complexity of the measurement device. As a result it involves hugely
different scales. To put it in striking terms, simulation covers the physics from dis-
tances of 10−18 m to those of several meters in the detector. For the different scales
specific models are employed, such that instead of one model a chain of models is
used in simulation. This is the basis of factorization addressed in this article.

Simulations allow one to take into account nonlinear effects and stochastic distri-
butions and thus a more detailed modeling than analytical calculations. Simulations
are therefore instrumental to improve the precision of the measurements and their
interpretations. At least most of the fundamental techniques of data analysis using
simulations are similar to those that have been invoked before. E.g., it was a stan-
dard method in analytical χ2 minimizations to vary parameters in a model and see
which one fits best. Simulations allow one to account for also subtle effects and
many parameter variations with detailed templates. While such parameter variations
motivate some philosophical literature to consider simulation as an “experiment” by
itself (Winsberg 2015) they are no new type, no new quality of scientific practice
(see Chap.37 by Beisbart in this volume).11

11New potentials through simulations may have been opened for using machine learning techniques
in data analysis.

http://dx.doi.org/10.1007/978-3-319-70766-2_37
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The higher precision comes at the price of higher complexity which naturally
reflects itself in the complexity of validation. Required is the validation of eachmodel
in the chain since incorrectness of one of the models implies the whole simulation to
be incorrect. Since simulation is factorizable, the complexity of validation is broken
down into the validation ofmany “simple”models. To the extent that the factorization
is exhaustive and each factor is validated, the complete simulation is validated.

The models applied used have different confirmation statuses. Most of these are
embedded inwell established scientific practices that have grown and been confirmed
over decades. Once such models have attained a very high level of confirmation, they
acquire an almost autonomous status in simulation, i.e., their predictions are largely
accepted. Other models are less certain, calling for more detailed scrutiny. E.g.,
simulation of the detector response for electrons is significantly better known than
the emergence of jets from partons. Such models are less trusted and call for specific
care in validation.

However, even if models are strongly confirmed, there is a reluctance among
particle physicists to rely too strongly on these. For once all models assume certain
parametrizations and parameter values and it may depend on special circumstances
if these are applicable. For instance, even though the interactions of an electron in
a material are well known, the distribution of the material may be not. Therefore,
in situ validations or data driven methods are used to a large part. As discussed in
this article, the individual model predictions at the LHC can be tested directly with
complementary processes without any circular argumentation and are rather tightly
constrained by the data. This appears to be in contrast to the claim ofMorrison quoted
in Sect. 26.7 above. In all these cases simulation is adjusted to describe the data—not
vice versa, pointing to very different epistemic statuses of data and simulation.

Validation, however, has to account for the obvious fact that simulations cannot
describe phenomena in all fine details. There is no validation “per se” but only a
validation with some uncertainty—validation in particle physics has to be quantifi-
able, leading to a systematic uncertainty of the simulation, which is a systematic
uncertainty of the understanding of the measurement. At the LHC validation of the
simulation and assigning a systematic uncertainty is almost synonymous and most
of the work in LHC’s data analysis is devoted to estimating these uncertainties. For
some processes at the LHC the systematic uncertainty is reduced to the 0.1% level,
for some they are much higher.

26.12 Summary and Conclusion

Simulation in particle physics is performed in factorizable steps that can be inter-
preted as migrating a “true” distribution of an underlying parton process to the mea-
surable one. This factorization allows one to validate the individual steps using spe-
cific measurements in which these steps are isolated and circularity with the target
physics process is avoided.
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In the validation process, several models of different confirmation status are used.
Some have been found to agree with data in many different experiments in the past,
others are relatively new. This confirmation status affects how these models are
applied, respectively which uncertainties are assigned. In all cases, particle physi-
cists take the pain to validate the models and their application using data, trying to
minimize the reliance on simulation and its validation onmodels. One can distinguish
the following methods:

• in situ calibration of detector and physics processes,
• adopting previous precision measurements as references,
• deriving models from previous measurements and applying them to LHC data.

These different methods rely on data and models at different levels, also implying
different ways to estimate the uncertainties.

In conclusion, substantial effort in particle physics is devoted to the validation
of event simulation. The validation is in all steps significantly constraint by data.
Models as autonomous entities are only invoked if they have been strong confirmation
from previous measurements. However, even these are checked in an experiment. A
quantitative estimate of the validity of the simulation is based on the factorization of
individual contributions. Highly efficient methods have been devised to estimate and
minimize the uncertainties with a strong effort to constrain those from data—either
directly or reducing model choices.
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Chapter 27
Validation in Fluid Dynamics
and Related Fields

Patrick J. Roache

Abstract A brief description of fluid dynamics is presented for a general audience.
Within the context of fluid dynamics practice, the distinction ismade between general
(weak) models and specific (strong) models. Three historical options concerning a
working definition of validation are briefly considered. Current validation practice
in fluid dynamics is described based mostly on ASME V&V 20-2009, an ANSI
Standard document.Model form uncertainty and other epistemic uncertainties, while
sometimes important in model applications, are argued not to be important issues in
validation. The weakest link in validation practice is claimed to be the reluctance,
by both experimentalists and computationalists, to go beyond use of nominal set
point data. This is clarified by the paradigm of experiments designed specifically
for model validation. Coding features that facilitate model validation are described.
Counter arguments are given to claims, based on extrapolation of the philosophy of
falsificationism, that validation is impossible even in principle.

Keywords Validation · Verification · Model · Epistemic uncertainty ·
Falsificationism

27.1 Fluid Dynamics and Related Fields

Fluid dynamics is the subset of classical physics that describes flows of liquids
and gases. It has a huge range of applications, including aerodynamics (calculating
forces on airplanes), lubrication in bearings, flow rate through petroleum pipelines,
weather forecasting, heat transfer, groundwater flow in radioactive waste disposal
sites, plasma dynamics, combustion, ocean currents, blood flow in artificial hearts,
microflagellate propulsion, etc. All of these applications require only continuum flow
descriptions because there exists a well-founded separation of scales betweenmolec-
ular motion and the continuum flows for which aggregated quantities like velocity,
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pressure, density, temperature are defined. The interaction effects of molecular-scale
motion are aggregated into macroscopic semiempirical equations and their param-
eters, which are often remarkably simple. For example, viscous drag for low-speed
aerodynamic flows is caused by the complex interactions of atmospheric gases (at
least two principal ones) but the continuum result is a single number, the empirical
viscosity coefficient, which simply multiplies the velocity gradients obtained from
continuum solutions.

Classical fluid dynamics is based on conservation laws for mass, momentum
(Newton’s second law), and energy, expressed in integral or differential form. These
are the Navier–Stokes equations (expanded), which famously do not have closed-
form general (nondegenerate) solutions. Classical fluid dynamics has been expanded
to include relativistic effects, multiphase phase flows (e.g., foams), chemically react-
ing flows, and others. The continuum equations considered herein are nonlinear
partial differential equations (PDEs). These fluid dynamics equation are included
within much more complicated models such as those of the next three chapters:
astrophysics, weather forecasting, climate science.

The validation concepts described herein are applicable to all these disciplines
that incorporate fluid dynamics into their formulations, and indeed to a much broader
range of related non-fluid fields: any that utilize PDEs in their model formulation.
(Note: validation in this chapter refers to model validation; this will be amplified in
later sections.) These include physics problems such as heat transfer (via conduction
and radiation as well as fluid dynamic convection), electric field calculations, optical
scattering, solid mechanics, chemical reaction rate calculations, radioactive decay,
plus non-physics disciplines such as biological systems (e.g., predator–prey models,
disease vectors), and economics models. (This fluid dynamicist has consulted on a
PDE model for forecasting bond prices.)

27.1.1 Weak Models, Strong Models, and RANS Turbulence
Models

The Navier–Stokes equations provide the fluid dynamics continuum “model” of
a general mathematical formulation, often termed a “weak” model. “Model” in a
specific sense, often termed a “strong” model, includes all the parameter values,
geometry, domain size, boundary and initial conditions needed to define a complete
problem; only a strong model can be used in a computation. (Roache 1998a, b, 2009,
Sect. 9.18.)

The classical Navier–Stokes equations for air at common conditions are based on
unchallenged conservation laws and semiempirical relations; thus the weak model
sense of Navier–Stokes is already validated. In principle, only particular “strong”
models of fluid dynamics are yet to be validated. However, fluid dynamics exhibits
chaotic solutions (and historically provided the impetus for modern chaos theory).
For large values of the parameter called Reynolds number (see any fluids text) the
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flow pattern can change abruptly from laminar (smooth) flows to turbulence. In
principle, theNavier–Stokes equations still apply, but the time and length scales of the
solution structure change so radically that the discretization resolution requirements
become almost insurmountable. Brute force Direct Numerical Simulation (DNS) of
even simple turbulence problems are tremendously expensive. The great majority of
practical turbulence simulations are performed not by usingNavier–Stokes equations
but Reynolds-Averaged Navier–Stokes (RANS) equations as the weak-sense PDE
model. (See Wilcox 2006.) There are dozens of different RANS models, each with
disappointingly limited range of applicability. For example, the k-ε model works
passably for attached flows on airfoils as long as the streamwise pressure gradient
is favorable (negative) but quickly fails when the gradient becomes positive. These
RANS models need constant validations for new problems (geometries, etc.).

27.2 Separation of Verification and Validation

Broadly speaking, code verification involves verifying that the code faithfully exe-
cutes the discretized PDE model and converges toward mathematically correct
answers. It implies nothing regarding themodel accuracy, i.e., the agreement between
themodel results and reality. Solution verification involves demonstrating that a com-
putational solution to a particular problem has achieved approximately correct math-
ematical results. Again, this implies nothing regarding the model accuracy, which is
assessed by validation when the model output is compared with reality.

The strong consensus opinion of specialists in verification and validation (V&V)
for Computational Fluid Dynamics (CFD) and many related fields is that code verifi-
cation and solution verification, though necessary forerunners of validation, are best
kept separate from validation. (See Chaps. 3, 4, 11, and 12 in this volume.) All three
topics are separate conceptually since both verifications involve only mathematics
whereas validation involves science, via comparison of the mathematical results of
the PDEmodel with observational science (reality). Furthermore, these three spheres
of activity can be, and in practice often are, performed by different people in relation
to the same computer code which embodies the model.

In this chapter, we assume that code verification and solution verification already
have been performed at the nominal set point of the validation experiment (the
specified conditions and parameter values such as fluid properties, geometry, flow
velocity, boundary conditions, etc.)

27.3 Errors and Uncertainties

The solution verification at the nominal set point of the experiment has produced
estimates of numerical errors and uncertainties. (See Chaps. 4 and 5.) These are
related but distinct concepts. The distinction is not specific to computational mod-
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els, but applies to measurement in any field, e.g., carpentry. If a piece of lumber
is represented as having nominal length Lnom � 2 m and a precise measurement
shows that the length L of one piece is actually L � 1.997 m, then the error δ (true
value—nominal) is δ � (L − Lnom) � − 3 mm. For a population of pieces, the 95%
uncertainty of the true lengths might have been estimated to beU95% � 8 mm, which
means that random samples taken from the population are expected to be within the
range

Lnom −U95% ≤ L ≤ Lnom +U95%

or

1.992 m ≤ L ≤ 2.008 m

in roughly 95% of cases. It is also possible to have asymmetric uncertainties like

Lnom − 8 mm ≤ L ≤ Lnom + 5 mm

which might include one-sided (or signed) uncertainties like

Lnom − 8 mm ≤ L ≤ Lnom.

However, these are less common and are difficult to work with.
In spite of the clear distinction between error estimates and uncertainty estimates,

it is not unusual for the concepts to be confused. This is understandable because they
are related; a signed error estimate corresponds to a signed uncertainty estimate at
the 50% coverage level or U50% (Roache 2009, 2016).

27.4 Validation—What Does It Mean?

Issues involved in the meaning of the term validation in the fluid dynamics commu-
nity were discussed in Roache (2004, 2008, 2009, Appendix B). We can describe
(rather than define) validation broadly (legitimate, minimal validation) as the com-
parison of model results and their associated uncertainties with experimental (more
inclusively, observational) results and their associated uncertainties. In this view,
the term validation refers to the continuum model (PDE and associated boundary
conditions, initial conditions, and parameter values). Strictly speaking, a model is
validated and a code is verified, but loosely one speaks of a validated code meaning
that themodel embodied in the code has been validated.Of course, in order to validate
a model its output must be calculated in a code, but the same validated model can
then be embodied in different codes without a requirement for revalidation provided
that the new codes are verified.
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The descriptive versus legalistic definition approach has the advantage that it does
not give a false impression of precision and universality. When legalistic definitions
have been stated, at least four issues have arisen regarding (1) acceptability criteria
(pass/fail), (2) necessity for experimental data, (3) intended use, and (4) prediction.
Since each choice is binary, this gives 24 � 16 possible interpretations of the legalistic
definition, without even getting into arguments about what is meant by model, i.e.,
computational, conceptual,mathematical, strong,weak (ASME2009;Roache 2009).

27.4.1 Issue #1. Acceptability (Pass/Fail) Criteria

The issue here is not what variable or acceptance level to use, but whether or not to
include any pass/fail decision under the heading of validation. The actual practice is
so disparate that it is necessary to examine any claim of validation in order to have
confidence in the meaning intended. There are good arguments on each side. Initially
people generally assume that validation indicates that the model has passed an accu-
racy requirement due to the correct recognition that pass/fail decisions must be made
in anyproject.However, people quickly see thevalueof the alternative view.Although
project-specific pass/fail criteria are certainly project requirements, those require-
ments do not necessarily need to be included in the term validation; the preferred
terms are accreditation or certification. There are no universal criteria for acceptabil-
ity even for a specific problem and metric; agreement with experiment within 10%
may be adequate for one project while 1% is not good enough for another. Validation
is best thought of as essentially assessment of model accuracy (or its obverse, model
error) for a specific class of problems but probably applicable to multiple scientific
and engineering problems; validation is a scientific activity. Certification or accredi-
tation is best thought of as the next step, combining the accuracy assessment resulting
fromvalidationwith project-specific acceptability (pass/fail) requirements and reach-
ing a decision; it is not a scientific activity so much as an engineering management
activity. The methodologies employed in each process have little in common.

However, there are dangers involved in this position. In someusage, amodelwhose
results have been compared to experiments has been labeled validated regardless
of the agreement achieved. In this loosest use of the term, validated then is not
a quality of the code/model per se, but just refers to the QA (Quality Assurance)
process. Carried to an extreme, this viewpoint gives the designation validated even
to very poor models. It would be misleading to assign the inevitably value-laden
term validated to a model that produces unarguably poor results just because it has
gone through the QA process. A more moderate usage is to call the model validated
but to state explicitly that the model is validated to a specified level and within
the validation uncertainties. Also, some minimal accuracy should be required. The
necessarily vague level ofminimal accuracymust be determinedby commonpractice,
or state-of-the-art standards, in the discipline involved. Certainly, if a model cannot
produce even qualitative trends, it is useless and does not deserve the dignity of the
term validated.
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Many discourage the use of the term validated code (or better, validated model
within a code) because itmight bemisleading or even deliberatelymisused.However,
it does not seem realistic to try to outlaw the past participle, and a code/model that
has gone through a validation exercise will inevitably be referred to as a “validated
code”. Nevertheless, as Tsang (1991) noted, “almost by definition, one can never
have a validated computer model without further qualifying phrases.” The quali-
fications include knowledge of the experimental validation set points, the specific
validation variables or metrics, whether or not pass/fail criteria are included, what
is included in model, and of course the level of validation achieved, which requires
stated uncertainties of both computations and experiments. Especially, the concept
of a totally validated code or model, ascertained to be so independent of the metric,
is a myth. (Roache 1998a, 2009, Sect. 9.19)

27.4.2 Issue #2. Necessity for Experimental Data

The resolution of this issue is clear. Many have said unequivocally that experimental
(observational) data are the sine qua non of validation. Experimental is used here in
a broad sense of reality, rather than limited to controlled laboratory measurements;
it includes field measurements such as familiar weather parameters, ocean currents,
astrophysical data.

No experimental data �> No validation

Many other factors remain, of course, as discussed in Roache (2008) and refer-
ences therein. There have been some dissenters, whose apparentmotivation is to try to
gain the approval implicit in validationwithout the onerous requirement for obtaining
real data. There are difficult problems, e.g., nuclear stockpile certification, for which
further testing is outlawed. It is not always clear what these dissenters would substi-
tute. Some look for agreement between different models. It is true that if one model
has been previously validated, it can be regarded as a repository of experimental
information, a set of second-hand experimental data plus smoothing and interpola-
tion/extrapolation to parameter values other than experimental set points (Roache
2009). But in general, code-to-code comparison is not validation. The recommended
view is uncompromising; no experimental data means no validation.

27.4.3 Issue #3. Intended Use

Whether or not validation requires a statement of intended use for the model might
seem to be intimately related to Issue #1 (pass/fail criteria) but it can also be inde-
pendent. Even though we may agree that pass/fail criteria are not necessary, it has
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been argued that validation requires a statement of intended use because the use will
determine the relevant validation metrics. Indeed, intended use might dictate unusual
validation metrics. But, for example, when Wilcox first evaluated (~validated) the
k-ω RANS turbulence models for adverse pressure gradient flows in 1972 (Wilcox
2006) he did not need to have a specific intended use in mind. And even though he
did have some uses in mind, a modeler need not have the same uses in mind decades
later.

27.4.4 Issue #4. The Prediction Issue

A fourth issue only briefly treated in Roache (2008) is the overly literal interpreta-
tion of prediction. Validation as described here involves a comparison of the model
with experiment. Of course, this means comparison of the outcome or predictions
of the model with the results of the experiment. However, prediction has sometimes
been taken in a literal temporal sense, i.e., the model results for validation should
(or even must) be obtained before the experimental results. Although such temporal
predictions are more persuasive, and avoid problems of post-experiment tuning of
model parameters to improve agreement, we cannot take this issue seriously. If out-
right fraud is not an issue, there is no logical advantage to temporal precedence. The
logical issue is simply comparison of model outcome with experimental outcome;
this applies equally to theory as to computational models. See further discussions in
Roache (1998a, b, 2004, 2009, Sect. 9.2.4).

27.5 Validation Methodology Based on ASME V&V 20-2009

A validation methodology for assessing model accuracy that includes numerical,
experimental, and parametric uncertainties is given in ASME (2009), V&V 20-
2009, which is an American National Standards Institute Standard document. As
an ANSI Standard, it rather unequivocally qualifies as representative of accepted
practice and arguably as “best practice”. The focus of V&V 20-2009 is on “unit
problems” (Oberkampf and Roy 2010) which isolate one simple physical system
(e.g. steady low-speed laminar flow over a sphere) rather than complex systems
(e.g., unsteady turbulent two-phase flows in a maze of piping inside a nuclear reactor
plant experiencing pipe ruptures).
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27.5.1 ASME V&V 20-2009 Background, Motivation,
and Philosophy

The objective of any validation exercise is to estimate the model error δmodel by
comparison of a computational solution S (and its associated uncertainties) with
experimental data D (and its associated uncertainties) for a specified metric at a
specified validation point (or experimental set point) for cases inwhich the conditions
of the actual experiment are simulated, expressed as the experiment “as run.” For
example, in computational aerodynamics, computational results are to be validated
against wind tunnel results, without consideration of the applicability of the wind
tunnel tests to free flight, which is a separate subject. The experiment “as run” is
accepted as the reality of interest, so the conditions of the actual experiment are the
validation point that is simulated. Usually a validation effort will cover a range of
conditions within a domain of interest, which is highly recommended.

Implicit to the V&V 20-2009 development is a definition ofmodel as a continuum
conceptual model (e.g., the Navier–Stokes equations) evaluated at the experimental
set points. Note that this is not a universally used concept; weather, climate, and
ocean modelers typically use model to include the mesh, e.g., speaking of a “1/10
degree model of the Gulf of Mexico.” Others may include discretization schemes in
model.

For the brief description in this chapter, we use two convenient simplifications.
V&V 20-2009 begins its development using standard uncertainty u. This leads to
some complications. Themethodology is more straightforward to describe and apply
using “expanded” uncertainty estimates U � U95%. This familiar concept of uncer-
tainty is more useful and intuitive, indicating roughly 95% coverage, or roughly
20:1 odds of a sample from the parent population being inside the interval [estimate
± U]. Also, it is convenient herein to assume independence of experimental, para-
metric, and numerical uncertainties. This independence is often practical, notably if
the validation metric is a directly measured in the experiment. Otherwise, the pro-
cedures require additional calculations that are straightforward conceptually (either
chain rule numerical differentiation or Monte Carlo calculations) but are tedious to
describe and carry out; see the detailed presentation in V&V 20-2009.

27.5.2 Validation Metrics

There are many possible metrics by which we might compare a model solution with
physical data. The construction of validation metrics based on various functionals of
the solution, often including weighted quadratures of all field points and variables, is
an interesting and important area (Oberkampf and Roy 2010). Here we consider only
the simplest type of metrics or “Quantities of Interest”, e.g., maximum temperature,
wing lift coefficient, net heat transfer rate, etc. Also, only independent single-point
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comparisons are considered; a forthcoming V&V 20-2009 supplement will address
multi-point validations.

27.5.3 Defining Validation Uncertainty Uval

Consider a multiple-realization validation experiment for aerodynamic lift of an
airfoil run at a single set point. We denote by T the True but unknown single value
of lift that would be obtained from an ideal single experiment conducted at the same
set point as the actual multiple-realization experiment. The values of lift produced
by the simulation and the experiment are not single values. Rather, each covers an
interval of lift values defined by a nominal center value and a± uncertainty band; we
denote the single nominal values by S and D. The continuum model errors δmodel are
the lift values that would result from an exact solution of the continuum equations,
minus the true (physical) value T.

The nominal validation comparison error E is defined as

E � S − D (27.1)

(This is what the naive analyst would take as the model error δmodel and, in the
absence of other errors, this would be correct.) The error in the solution value S is
the difference between S and the true value T.

δS � S − T (27.2)

The error in the experimental value D is

δD � D − T (27.3)

From these three equations, E is expressed as

E � S − D � (T + δS) − (T + δD) � δS − δD (27.4)

E is thus the combination of all errors in the simulation result and the experimental
result, and its sign andmagnitude are known once the validation comparison is made.

All errors in the simulation solution S can be assigned to one of three categories
(Coleman and Stern 1997).

• error δMODEL due to (continuum) modeling assumptions and approximations
• error δNUM due to the numerical solution of the equations (discretization error)
• error δINPUT due to errors in the simulation input parameters.

Thus
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δS � δMODEL + δNUM + δINPUT (27.5)

Theobjective of a validation exercise is to estimate δMODEL towithin anuncertainty
range. Combining the previous two equations gives

δMODEL � E − (δNUM + δINPUT − δD) (27.6)

Once the simulation and the experiment are run, S, D, and E are known. The errors
δNUM, δINPUT, and δD are unknownbut the correspondinguncertaintiesUNUM,U INPUT,
and UD would have been estimated. A key step of the V&V 20-2009 methodology
is defining the validation uncertainty UVAL as “an estimate of the uncertainty of the
parent population of the combination of errors (δNUM + δINPUT - δD).” (ASME 2009,
p. 4.)

The estimation of UVAL is thus at the core of the V&V 20-2009 methodology, and
the methodology to estimate it will be described in the following Sect. 27.5.4. Once
it is determined, the estimated UVAL will be used (like any uncertainty estimate) as
follows.

(E ± UVAL) will characterize an interval within which δMODEL probably falls.
The working premise of the V&V 20-2009 project is that the net result of the

model validation exercise would be a hand-off from people performing validation
to the analysts who would be using the model, and that hand-off would essentially
consist of E and UVAL. In the simplest situations, E and UVAL would consist of two
real numbers, which would be either representative of, or upper bounds on, the range
of E andUVAL over all set points defining the domain of validation (flow parameters,
geometries, etc.).

27.5.4 Estimating Validation Uncertainty

Total validation uncertainty UVAL is a combination of UNUM, U INPUT, and UD. The
numerical uncertainty UNUM is determined by various means, e.g. the classical Grid
Convergence Index (GCI) or Least Squares GCI (Chaps. 4 and 11 in this volume;
Roache 2009; Oberkampf andRoy 2010). The parameter uncertaintyU INPUT is deter-
mined from propagation through the code of parameter effects on S by either a
sensitivity coefficient method or a Monte Carlo method; details and extensive exam-
ples are presented in Sect. 27.3 of V&V 20-2009. The experimental uncertainty
UD is determined using well-accepted techniques and is discussed in Sect. 27.4 of
V&V 20-2009. A comprehensive and highly recommended end-to-end example of
the application of the V&V 20-2009 methodology is presented and discussed in
Sect. 27.7 of V&V 20-2009. For a recommended overview of sensitivity analysis
and uncertainty propagation, see Blackwell and Dowding (2006).

If δNUM, δINPUT, and δD are effectively independent and their probability distri-
bution functions (PDFs) are roughly Gaussian, then the corresponding uncertainties
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UNUM, U INPUT and UD can be easily combined by the usual statistical assumption of
root-sum-square (RSS) summation to calculate UVAL as

UVAL � √[
U 2

NUM + U 2
INPUT + U 2

D

]
(27.7)

For good discretization convergence work, the PDF ofUNUM ismore like a shifted
Gaussian. A more conservative summation is obtained by breaking out UNUM from
the RSS, as recommended in Roache (2016).

UVAL � UNUM +
√[

U 2
INPUT + U 2

D

]
(27.8)

There will be little difference between Eqs. (27.7) and (27.8) in case of either
UNUM > > or < < the other two uncertainties. For all three terms equal, the ratio
of Eqs. (27.8) to (27.7) is (1 +

√
2)/

√
3 giving a difference of 39% (corrected from

Roache 2016). This minor modification is probably unnecessary if larger values of
factors of safety are used in calculating UNUM by the GCI. Also, note that UNUM

is not used in any part of the method until this final aggregation of uncertainties to
calculate UVAL, even if the component errors are not independent.

Fortunately, the condition of effective independence is often practical. In the
important case in which the validation variable is directly measured, the assump-
tion of effectively independent errors is generally reasonable. However, in the also
common case in which the validation variable is determined using a data reduction
equation (e.g., see ASME 2009), the experimental and computational values can be
functions of shared variables, and δiNPUT and δD (and to a much lesser extent, δNUM)
are not independent. Much of V&V 20-2009 (all of Sect. 27.5) is devoted to detailed
examples of estimating validation uncertainty when the errors are not independent.
The methods are conceptually simple but tedious, and the simpler use of Eqs. (27.7,
27.8) is expected to be more common. Also, the error of this simpler approach often
will be conservative, since the dependent effects result in some double-counting
which increases the estimate of validation uncertainty.

27.5.5 Interpretation of Validation Results and Caveats

The advantage of the V&V 20-2009 approach is evident when the interpretation of
validation results is considered. (E ± UVAL) characterizes an interval within which
δMODEL probably falls.

δMODELε [E ±UVAL] (27.9a)

E −UVAL ≤ δMODEL ≤ E + UVAL (27.9b)
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Case 1. If

|E| >> UVAL (27.10a)

then the analyst confidently estimates

δMODEL � E. (27.10b)

This is the most important case. |E| > > UVAL indicates a successful validation
exercise since Eq. (27.10b) gives a reliable estimate of δMODEL and the object of
the validation exercise was to evaluate δMODEL. However, it does not indicate a
good or acceptable model; no pass/fail criterion is used here, only assessment. (See
Sect. 27.4.1.) E could be too large for any practical application, and a good validation
exercise has resulted in a well-founded rejection of a poor model. (See Sect. 27.5.8.)

Fuzzy statements like Eq. (27.10a) are common in science an engineering, but for
practical use in a testing protocol we require an algorithmic statement. A common
interpretation of < < or > > is an order of magnitude, which usually morphs without
protests into a specific cut-off as a factor of 10 ratio. Obviously, judgments will
vary. A specific demarcation was proposed in Roache (2017). A factor of 10 for
Eq. (27.10a) would be unnecessarily conservative formany problems. (Note there are
some inherent conservative aspects of the methodology, such as the double-counting
when δNUM, δINPUT and δD are assumed to be independent, and the GCI use of ±
symmetric uncertainty even though the error estimate from which it is calculated
is one-sided.) The fuzzy cut-off Eq. (27.10a) is replaced by the following, which
is judged to be adequate for most projects (perhaps with the exception high-risk
decisions.)

Case 1A. If

|E| ≥ 7UVALthen the analyst estimates δMODEL � E as in Eq. (10b). (27.11)

Case 2. If the validation exercise does not result in |E| > >UVAL then the validation
exercise must be judged of poor quality. Equations (27.9a, 27.9b) still hold but
does not provide a reliable estimate of δMODEL. However, it may still provide some
information, although interpretation is prone to mistake and misunderstanding.

Consider a very poor validation exercise that results not in |E| > > UVAL but
rather UVAL > > |E|. The intended evaluation of δMODEL has been swamped by the
numerical, parametric, and experimental uncertainties. For E� 0, Eqs. (27.9a, 27.9b)
would reduce to

|δMODEL|≤ UVAL (27.12)

Although correct, this equation has multiple problems. It does not give any hint
of the true sign of δMODEL. Further, as noted by Eça (2018), it suggests a functional
relation between δMODEL and UVAL when none exists. Nevertheless, it does provide
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information that we did not possess before we conducted the validation exercise: a
bound on themagnitude of δMODEL. In this sense, the ITTC(2002) validationmethod-
ology for ship hydrodynamics claims validation at the UVAL level for any validation
exercise with UVAL > |E| (See also Stern et al. 2001 and Stern 2007). This would be
literally true only forUVAL > > |E| but still misleading. “Validation at theUVAL level”
would seem to be an endorsement of the model and a desiderata of the validation
exercise, yet it is easily achieved for any model by doing sloppy experimental and/or
numerical work! See also Eça and Hoekstra (2009).

Case 3. Even more difficult to interpret generally is the vague intermediate case of
O(|E|)≈O(UVAL). Equations (27.9a, 27.9b) still hold but provides only asymmetrical
inequalities with little information. For example (Eça 2018), with UVAL � 30 and E
� 20, Eq. (27.9b) gives

−10 ≤ δMODEL ≤ +50

which is close to useless. Without considering all possible cases of combinations of
sign of E and relative magnitudes of |E| andUVAL we can state the symmetric general
bound on magnitude only is (Roache 2017)

|δMODEL|≤ UVAL+ |E|. (27.13)

27.5.6 Observations

As noted, Case 1 provides sharp estimates of both sign and magnitude of δMODEL

whereas Case 2 provides only an unsigned estimated bound on |δMODEL|, and far
from a sharp bound. This cannot fairly be construed as a criticism of the V&V 20-
2009 methodology per se. “Please do not shoot the messenger.” This situation is no
different from that of a physical measurement in which the accuracy or precision of
the instrument is inadequate.

The importance of distinguishing these cases is evident when one considers not
just the evaluation of a computational model but the possibility of improving the
model. In Case 1we have information that can possibly be used to improve themodel,
i.e., reduce the modeling error. In Case 2, however, the modeling error is within the
“noise level” imposed by the numerical, input, and experimental uncertainties, so
that formulating model improvements is more problematic. An analyst could hardly
justify changing the model form, or even tuning parameters, without first reducing
the “noise level” UVAL by repeating the validation exercise to reduce uncertainties.
[Also note that such tuning of parameters constitutes model calibration, which is not
validation (Roache 2009; Oberkampf and Roy 2010).]

This interpretation of Case 2 is more evident with the methodology of V&V 20-
2009 than with older approaches, and provides major advantages. In particular, it
avoids a false-negative evaluation of the model when |E| is larger than some certi-
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fication requirement for δMODEL but UVAL > |E|. It alerts the analyst that a problem
may exist with the experiment rather than with the model. The Third Lisbon V&V
Workshop in 2009 provided a good example of such interpretation. The problem
was the classic CFD computation of 2-D turbulent flow over a backstep using the
Spalart–Allmaras model, for which there were six submissions at theWorkshop. See
Eça et al. (2009) for a complete evaluation, or Roache (2009, Sect. 11.10) for an
excerpt.

27.5.7 Importance of Case 2

Case 2 is not the preferred outcome for a validation exercise. Preferably, |E| would
be small in an absolute sense, say 2%D, and UVAL would be even smaller, say UVAL

� 0.25%. This would allow a confident claim that δMODEL ~ E. But the unfortunate
fact is that many if not most “practical” problems in CFD are simulated using param-
eter ranges, computer resources, and personnel resources that lead to large UNUM

contributors toUVAL. Likewise, economic constraints on validation experimentation
lead to large UD contributions to UVAL. Even if the preferred Case 1 exists, it may
lead to Case 2 later after model calibration. So recognition of Case 2 is important.

27.5.8 Model Quality Versus Validation Quality

It is easy to lose sight of a fundamental fact, related to the easy confusion of error
and uncertainty. If UVAL is unacceptably large, this says nothing about poor quality
of the model. (To avoid semantic confusion it is essential that model here refers to
the continuum model, not including the mesh.)

The magnitude of UVALdoes not re f lect upon the quali t y o f the model.

The magnitude of UVAL increases because of poor computational work, poor
parameter estimation, and poor experiments, not from a poor model. It does not
depend on δMODEL. The model quality and the validation quality are different issues.
The development of a model creates δMODEL while the performance of a validation
exercise (including the execution of the experiment and the use of the model in the
simulations) creates UVAL.

A poor quality model combined with a high-quality validation exercise leads to
|E| > >UVAL and therefore to trustworthy δMODEL ≈ E. If δMODEL is excessively large
for any reasonable application, the result (certainly for certification, and arguably
for validation) is a well-founded rejection of the poor quality model enabled by a
high-quality validation exercise.
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In the reverse situation, we could have a high-quality model, with δMODEL smaller
than any foreseen application needs (or even a perfectmodelwith δMODEL �0), yet the
validation exercise could fail because of excessive UVAL (due to poor computational
work, parameter estimation, and/or experiments). Fortunately, in the V&V 20-2009
methodology, this does not lead to a false-negative evaluation of model accuracy, but
only to very useful information that well-founded conclusions about model quality
cannot bemade unless improvements aremade, not in themodel, but in the validation
exercise itself. Thus, the only link between model quality and validation quality is
that high-quality models can only be assessed with high-quality validations.

27.5.9 Forthcoming Addenda to V&V 20-2009

The ASME V&V 20 committee is presently working on addenda to V&V 20-2009.
One topic is extending the domain of validation, or regression to an application
point. Consider a new simulation SA at application point A, at set-point parameters
within a domain of validation other than validation points themselves. Estimation
of accuracy for SA involves interpolation of model error and uncertainties from
validation points to application points. It also adds new Unum associated with SA.For
initial considerations, see Roache (2009, Sect. 11.12.)

Another topic involves extension to multiple set points. The original validation
approach applies to a single validation set point. A planned supplement will utilize
validation results frommultiple set points (space, time, parameters) using amultivari-
ate metric. Importantly, it accounts for correlations of errors at different set points.
The multivariate metric will facilitate quantitative comparison of performances of
different models.

Other supplement topics will include expanded discussion of interpretations and
caveats (see Sects. 27.5.5, 27.5.6, 27.5.7 and 27.5.8).

27.6 Model Form Errors Versus Parameter Errors

Since the uncertainty contributions to UVAL take into account all the error sources
in δNUM, δINPUT, and δD, then δMODEL includes only errors arising from modeling
assumptions and approximations; these are the model form errors. For example,
in a simple heat conduction problem, deviation from the correct value of constant
conductivity K would be part of the input parameter error δINPUT, while deviation
from the assumption of constant K (i.e., neglect of dependence of K(x,y,z,T,…) and
neglect of tensor versus scalar conductivity would be part of model form error. In
practice, numerous gradations can exist in the choices of which error sources are
accounted for in δinput and which are defined as an inherent part of the model form
error δMODEL. It includes errors in the governing continuum equations of the model
and errors due to any other non-ordered approximations such as inflow and outflow
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boundary conditions (for strong form models); these errors do not → 0 as � → 0
(where � is a representative measure for the grid cell size). Errors resulting from
finite distance to a far-field boundary are not included in δNUM because they are
not ordered in �. Rather, they are included in δMODEL. Actually, there is nothing
inherently “exact” about using free-stream conditions “at ∞” to model free flight
when an exponential atmosphere model would be a better approximation to nature
(Roache1998b).

The code used will often have more adjustable parameters or data inputs than
the analyst may decide to use, especially for a commercial code. The decision of
which parameters to include in the definition of the computational simulation model
(conceptually separate from the code) is somewhat arbitrary. Some (even all) of
the parameters available may be considered fixed for the simulation. For example,
an analyst may decide to treat parameters in a chemistry package as fixed (“hard-
wired”) and therefore not to be considered in estimating U INPUT, even though these
parameters could have been accessed and had associated uncertainties. The point
here is that the computational simulation being assessed consists of the code and a
selected number of simulation inputs which are considered part of the simulation,
while other simulation inputs have uncertainties that are accounted for in U INPUT

and thus do not contribute to δMODEL. If all parameter values are considered fixed
in the model, this is the limit of what has been termed a strong-model approach.
[See Sect. 2.2 of Roache (2009); see also Appendix C of V&V 20-2009 for related
discussions.]

This distinction is required to explain the following paradox. As the analyst
improves the thoroughness of a validation study by investigating parametric uncer-
tainty more extensively, the total validation uncertainty will become larger, not
smaller. Every additional parameter variation considered will add to U INPUT. The
resolution of the paradox lies in recognizing that, with every addition of another
parameter uncertainty (e.g., considering variable conductivity instead of fixedK) one
is changing the “model’ under evaluation. In the limit of a strong model approach,
with all parameter values hard-wired, there simply is no parametric uncertainty;
δINPUT � 0 and U INPUT � 0.

27.7 Model Form Uncertainty and Probability Distribution
Functions

The V&V 20-2009 methodology is implicitly based on the traditional concept of
ProbabilityDistributionFunctions (PDFs) thoughnot limited toGaussianPDFs. In an
unusual casewhere an important input parameter uncertainty cannot be characterized
by some PDF (not even by the usually conservative uniform distribution PDF) then
rigorous analysis may require interval-valued uncertainty. This can be treated by
Probabilistic Bounds Analysis (PBA) or other methods; see e.g., Oberkampf and
Roy (2010). Compared to PDF, PBA and others are expensive, difficult to understand,
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and result in much larger net uncertainties. Interval-valued uncertainties are closely
linked conceptually with model form uncertainties. They arise more commonly in
applications of CFD, and are more likely for complex systems. However, recall that
the focus of V&V 20-2009 is on validation (rather than application) of unit problems
(rather than complex systems).

The point is, we know what model we are trying to validate. Parameter uncertain-
ties in the model are accounted in the input uncertainty term. Essentially, model form
uncertainty, epistemic uncertainty, PBA and related methods are negligible concerns
for validation of unit problems (Roache 2016).

For a paper addressing CFD validation methodology for complex multilevel sys-
tems applied to industrial flare chemistry and emissions with multirange parameters
and including disparate experimental databases, all using a PDF approach, see Jatale
et al. (2017).

27.8 Weakest Link in Validation Practice

My perception of the weakest link in validation practice involves the reluctance, by
both experimentalists and computationalists, to go beyond use of nominal set point
data.

For fluid dynamics experimentalists, this covers the widespread disregard of mea-
suring and documenting initial conditions for unsteady flows and complete boundary
conditions, particularly inflow boundary conditions in wind tunnels. Most accusa-
tions against modelers of post-experiment tuning of model parameters to improve
agreement are actually the fault of incomplete experimentation (Oberkampf and Tru-
cano 2002). Although the importance should be obvious, the meticulous measure-
ments and documentation require high-quality facilities and huge amount of work.
This issue iswhat distinguishes a true validation experiment fromold-fashioned engi-
neering wind tunnel tests (see next section). The pioneering work of Aeschliman and
Oberkampf (1997) remains an exemplar of such scrupulous work.

On the computational side, CFD analysts are often not willing to go beyond
use of nominal parameters rather than doing the tedious work of using such data
when it is available. Code builders often believe it should be sufficient to allow
for nominal inflow properties, e.g., inflow velocity specified by a single number
for axial flow component assumed constant across the inflow boundary. The needed
computational practice requires code functionality that allows user input of boundary
conditions that are functions of (x,y,z,t). This is the same feature that is needed for
code verification by the Method of Manufactured Solutions; see Roache (2004) and
Chap. 12 in this volume. Fortunately, this feature has become more common in
widely used commercial codes.

The third component of blame in an industrial context is the failure of engineering
management to demand and fund this level of work.
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27.9 New Paradigm of Experiments Designed Specifically
for Validation

The recognition of different requirements for CFD validation experiments, particu-
larly in aerodynamics, can be said without exaggeration to constitute new paradigm
in experimentation (e.g., Roache 2004; Oberkampf and Roy 2010, Sect. 10.1). In my
opinion (Roache 2004), themost revolutionary concept in computational physics dur-
ing my half-century career, other than simulation itself, has been the new paradigm
of experiments designed specifically for validation. The new paradigm recognizes
that requirements for validation are distinct and that validation experiments are much
easier than traditional experiments in some respects but more demanding in others.

In aerodynamics, for example, the emphasis in precomputational dayswasonwind
tunnel experiments, which attempted to replicate free-flight conditions. Great effort
was expended on achieving near-uniform inflow, model fidelity, andminimizing wall
and blockage effects. The latter requires small models, which sacrifice parameter
fidelity (Reynolds number) and aggravate geometric fidelity.

The new paradigm approaches the problem differently, sacrificing some fidelity
between the wind tunnel flow and free flight, but requiring that more nearly complete
details of the experimental conditions and field data be obtained. No longer it is so
important to achieve uniform inflow, but it is critically important to report in detail
what those spatially varying inflow conditions are, so that they may be input to
the simulation. The idea is that if the computational model is accurate for a flow
perturbed from the free-flight conditions, it will probably be accurate for the free-
flight condition. Thus blockage effects are not such major issues (and the tunnel wall
itself may be modeled), so physical test models can be larger, thereby improving
fidelity of Reynolds number and test model geometry. Alternately, wind tunnels can
be smaller and therefore cheaper. Analogous situations occur in other experimental
fields.

27.10 Unrealistic Expectations Placed on Experimentalists

The responsibility for matching boundary conditions clearly rests with the modeler.
It is unrealistic, even arrogant, for a code builder or user to require an experimentalist
to match idealized boundary conditions. Simple constant-value boundary conditions
that are a mere convenience for the code builder can require major effort, cost, and
time for an experimentalist. They often compromise other more desirable qualities
of the experiment, and in fact may be literally impossible to achieve. A major contri-
bution by the code builder to the synergistic cooperation between computationalists
and experimentalists (which is also part of the new paradigm) is achieved by this
relatively simple work of building the code with general boundary conditions.
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27.11 Can Models be Validated? A Discussion
of Falsificationism Versus Validation

It has sometimes been asserted, notably by Oreskes et al. (1994), that validation of
computational models is impossible, even in principle, based upon Popper’s widely
known philosophy of falsificationism (Popper 1959). In A Defense of Computational
Physics (Roache 2012) I presented counter arguments. (See also Roache 1998a,
Appendix C). Various interpretations of Popper were paraphrased in a shorthand
statement.

Popular Popper Précis

A scientific theory, and by extension a computational model, cannot be validated, i.e. proven
to be true. It can only be invalidated or falsified, i.e. proven to be false. It must be capable
(in principle) of being invalidated, i.e. be falsifiable, otherwise it is not a scientific theory
but only a pseudo-scientific theory (or perhaps metaphysics).

To avoid the impression of setting up straw men, five examples were given of the
use of Popper’s assertions in modern and important works in computational physics
(very broadly interpreted).

Popper was quoted as an authoritative witness to the fundamental impossibility of
validation of computational physics models by a Blue Ribbon Panel on Simulation-
Based Engineering Science (NSF 2006, pg. 34). Popper’s falsificationism was foun-
dational to the widely cited papers by Oreskes et al (1994) and Konikow and Bre-
dehoeft (1992), the latter titled “Groundwater Models Cannot be Validated.” In my
own professional experience, these two papers have been taken seriously and have
caused real problems. Oden et al. (2010) stated that “in line with Popper’s principle, a
model can never actually be validated.” Hazelrigg (2003) invoked Popper to discredit
validation in general engineering deign.

This importance in the computational physicsmodeling community is remarkable,
considering that the applicable philosophical arguments appear in the first edition of
Popper’s most cited book, The Logic of Scientific Discovery (1959), the first German
edition of which was published in 1934, well before the advent of modern computers
and computational modeling. Whatever Popper’s contributions or claims were, they
were not directed specifically toward validation of computational physics models,
but to scientific theories in general. (In fact, the word validation only appears in two
footnotes.)

The approach in (Roache 2012) was to critique falsificationism at three levels:
(a) philosophy of science, (b) empirical data on how science is actually conducted
in the twenty-first century, and (c) applicability to computational physics modeling
and the question of validation. A summary follows.

Categorical claims of impossibility of validation of computational models based
on Popper’s falsificationism are not justified and can themselves lead to ethical diffi-
culties. Popper’s demarcation criterion of falsifiability is a valuable concept (though
not original), but is not without philosophical problems even when applied to scien-
tific theories, as he intended. It is not adequate for an “if and only if” demarcation
of science versus pseudo-science, as he had finally claimed. And in Falsificationism
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Falsified, Hansson (2006) empirically demonstrated that actual scientific practice
in 69 of 70 cases examined in 2000 did not follow the Popper prescription of how
science is done.

When applied to validation of computational models, falsificationism as usually
understood is inappropriate. However, Popper himself recognized a distinction that
makes sense––that of “numerically exact” (finite in number) comparisons of theory
and experiment which he did in fact recognize as “verifiable.” For computational
models, we would now say “validatable.” The inappropriate application to modeling
of the dictum that a scientific theory is never verifiable but only falsifiable is not only
incorrect but can cause ethical violations, e.g., being used to categorically reject what
possibly might be the best solution for nuclear waste disposal, or to categorically
reject the possibility of usefully accurate climate modeling, etc. And the restriction
(Oreskes et al. 1994) of this dictum to “natural systems” while accepting validation
for manufactured systems is not such a sharp distinction, e.g., airplanes fly in a
“natural” variable environment, etc.

Proponents of the impossibility of validation of computational models often have
a rarefied view of validation that (a) has nothing to do with practical science and
engineering and (b) is contradictory to widely accepted and pragmatic concepts of
validation as used by most computational physics modelers. These include three
graduate-level reference monographs, two ANSI Standards, and three publication
policy statements of scientific journals (see Roache 2012). These have amore author-
itative claim to defining semantic distinctions and setting normative practice for
computational physics modeling than citations of Popper. When there are genuine
fundamental difficulties with computational physics simulations, as in groundwater
flow modeling, the difficulties will be related to obvious technical problems such as
coarse mesh resolution, or lack of knowledge of physical properties, or inadequate
accuracy of “laws” like Darcy flow, or uncertain model input such as rainfall, but
nothing at all to do with Popper’s falsificationism.

27.11.1 Truth Versus Accuracy

A most important distinction is easily made.

Popper and his falsificationism are concerned with Truth, whereas validation of models is
concerned simply with accuracy.

Does validation of a computational model imply truth of the model? The subject
is discussed extensively in Sect. 2.6.4 of Roache (2012). According to Glanzberg
(2006), truth is highly problematical to philosophers.

Truth is one of the central subjects in philosophy. It is also one of the largest. Truth has been
a topic of discussion in its own right for thousands of years. Moreover, a huge variety of
issues in philosophy relate to truth, either by relying on theses about truth, or implying theses
about truth. It would be impossible to survey all there is to say about truth in any coherent
way.
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Table 27.1 Characteristics of Popper’s concept of falsificationism of scientific theories contrasted
with the accepted and normative concept of validation of computational physics models

Popper’s falsificationism Computational validation

Involves science theories Involves computational models

Concerned with Truth Concerned with accuracy

Ambitious Modest

Surprising predictions are valued Surprising predictions are suspect

Goal of universality Limited domain

Kuhn’s “crisis science” or “revolutionary
science”

Kuhn’s “normal science“

The truth of a scientific theory was Popper’s concern. However, in modern use of
validation in conjunction with computational physics models, we are not concerned
with some tortuously defined concept of truth but rather with the simple, well-defined
concept of accuracy. The question for validation is this. Is the computational physics
model accurate? This is an easy question, often with an unambiguous answer after
a good validation exercise. Perhaps a dozen fluid dynamics RANS turbulent models
(Wilcox 2006) have been validated to useful accuracy level for limited ranges of flow
variables; none are, nor claim to be, true.

For a more provocative example of truth versus accuracy, consider the question of
validation of Ptolemaic theory of geocentric motion of planets. This theory was used
and trusted and validated, even in the pass/fail sense, for well over a millennium.
Historically, its accuracy has been demonstrated arguably longer than any other
scientific theory or model. Developed by Ptolemy around 140 C.E., it required 80
distinct circles; not what we would call an elegant model, but accurate. As a scientific
theory, the Ptolemaic systemwas supplanted by the Copernican view of sun-centered
rotations, demonstrated by Galileo in 1609 (published 1610). The Ptolemaic model
is not true. However, the model users (with practical applications to local clocks,
calendars, and navigation aids as well as mystical ones) continued to use it for
another hundred years, and even past Newton, because it was accurate and easier to
use for computations than the elliptical heliocentric orbits of Newton. (Chaisson and
McMillan 2008). As a computational model, it was accurate, i.e., in our terminology,
validated even in the pass/fail sense.

27.11.2 Summary of Falsificationism Versus Validation

Of course, falsifiability (as opposed to falsificationism, which allows “falsifiability
only”) is a tremendously important concept to science. However, Popper’s philos-
ophy of falsificationism (a) is not defensible philosophically, (b) is not normative
of modern science practice, and (c) is neither applicable to modern computational
physics modeling, nor endorsed by most of its practitioners. Table 27.1 summarizes
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some characteristics of falsificationism versus the concepts of computational model
validation. Many of these characteristics involve widely known insights attributed to
Kuhn (1962).

To avoid disputation and agonizing over what Popper or we may mean by truth,
we might grant his statement that “every scientific statement must remain tentative
forever” in some rarefied and hopefully harmless sense, but also note that validation
of computational models is thereby positioned in the same category as Newton’s
laws of motion and gravity, Einstein’s theories, entropy, Darwinian evolution, con-
servation of mass, Fourier heat conduction, etc. We computational modelers are in
good, respectable company.
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Chapter 28
Astrophysical Validation

Alan C. Calder and Dean M. Townsley

Abstract Wepresent examples of validating components of an astrophysical simula-
tion code. Problems of stellar astrophysics are multidimensional and involve physics
acting on large ranges of length and time scales that are impossible to include in
macroscopic models on present computational resources. Simulating these events
thus necessitates the development of sub-grid-scale models and the capability to
postprocess simulations with higher fidelity methods. We present an overview of
the problem of validating astrophysical models and simulations illustrated with two
examples. First, we present a study aimed at validating hydrodynamics with high
energy density laboratory experiments probing shocks and fluid instabilities. Sec-
ond, we present an effort at validating code modules for use in both macroscopic
simulations of astrophysical events and for postprocessing Lagrangian tracer parti-
cles to calculate detailed abundances from thermonuclear reactions occurring during
an event.

Keywords Astrophysics · Supernovae · Nucleosynthesis · Fluid instabilities

28.1 Introduction

Verification and validation (V&V) of models and simulations of astrophysical phe-
nomena present challenges because the problem of studying these phenomena is
largely one of indirectly observing multi-scale, multi-physics events. Other aspects
of astrophysics also contribute to challenges. The enormous length scales of astro-
physical objects and vast distances to most astrophysical events preclude ready
experimental access, limiting the availability of validation data. As with a great
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many applications, models suffer from epistemic uncertainty in the underlying basic
physics (e.g., turbulence, fluid instabilities, and nuclear reaction rates), which is dif-
ficult to control and assess in simulations incorporating multiple interacting physical
processes. The large range of length and time scales in many astrophysical problems
frequently necessitates capturing sub-grid-scale physics within simulations, relevant
examples being thermonuclear flames and turbulent combustion. The requirement
of the development of sub-grid-scale models for these physical processes obviously
introduces an additional level of complexity to V&V. Finally, the magnitude of the
requisite computations for astrophysical events means that even with sub-grid-scale
models, simulations may only capture the bulk effect of the underlying physics and
some properties such as detailed compositions must be obtained by postprocessing
the simulation results with augmenting, higher fidelity routines.

Even with these issues, V&V are vital parts of computational astrophysics as
with any research domain. We present two studies aimed at validating components
of Flash, a freely available, parallel, adaptivemesh simulation code used formodeling
astrophysical phenomena and other applications.Wefirst present a study of validating
the hydrodynamics routines in Flash with experiments designed to replicate the high
energy density environments of astrophysics and probe the underlying physics. The
investigation formally addresses the issues of concern in validating hydrodynamics
and serves as a well-controlled case study. The second study we present addresses
physics that is difficult to include inwhole-star simulations, due to limits in computing
power, but that can be incorporated with approximate models and also calculated by
postprocessing simulation results. The problem is thermonuclear combustion and
describing the overall reactions while including minimal nuclear species, and this
work addresses the issue of comparing prohibitively expensive detailed models and
simpler models that allow three-dimensional simulations.

As we will describe below, the challenges to astrophysical validation made parts
of our study incomplete. The effort, however, was rewarding and verymuchworth the
investment. Verification tests quantified the accuracy of code modules for problems
with an analytic or accepted result, and the regular application of these tests serves
for regression testing as the code is developed. Validation tests, though incomplete,
demonstrated reasonable agreement between experiment and simulation for the case
of the hydrodynamics study. Comparison between models of increasing sophistica-
tion allowed us to quantify the trade-off between fidelity of the method and expense.
These studies all led to a deeper understanding of the underlying physics, and while
we cannot say themodules and codewere completely “validated,” the process greatly
increased our confidence in the results.

28.2 Approach to Verification and Validation

Our methods for V&V largely follow accepted practices from the fluid dynamics
community (AIAA 1998; Roache 1998a, b; Oberkampf and Roy 2010, see Chap.27
by Roache in this volume). We adopt the following definitions (based on definitions
from the American Institute of Aeronautics and Astronautics AIAA 1998).

http://dx.doi.org/10.1007/978-3-319-70766-2_27
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Model: A representation of a physical system or process intended to enhance our ability
to understand, predict, or control its behavior.

Simulation: The exercise or use of a model. (That is, a model is used in a simulation).

Verification: The process of determining that a model implementation accurately repre-
sents the developer’s conceptual description of the model and the solution of the model.

Validation: The process of determining the degree to which a model is an accurate repre-
sentation of the real world from the perspective of the intended uses of the model.

Uncertainty: A potential deficiency in any phase or activity of the modeling process that is
due either to a lack of knowledge (epistemic uncertainty or incertitude) or due to variability
or inherent randomness (aleatory uncertainty).

Error: A recognizable deficiency in any phase or activity of modeling that is not due to
lack of knowledge.

Prediction: Use of a model to foretell the state of a physical system under conditions for
which the model has not been validated.

Calibration: The process of adjusting numerical or physical modeling parameters in the
computational model for the purpose of improving agreement with experimental data.

Our definition of uncertainty differs from the original definition of the AIAA in
that we expand the definition of uncertainty to also include aleatory uncertainty (see
Calder et al. 2018; Hoffman et al. 2019; and references therein).

Another perspective comes from Roache (1998b), who offers a concise, albeit
informal, summary of V&V terminology:

First and foremost, we must repeat the essential distinction between Code Verification and
Validation. Following Boehm (1981) and Blottner (1990), we adopt the succinct descrip-
tion of “Verification” as“solving the equations right”, and “Validation” as“solving the right
equations”. The code author defines precisely what partial differential equations are being
solved, and convincingly demonstrates that they are solved correctly, i.e., usually with some
order of accuracy, and always consistently, so that as some measure of discretization (e.g.,
the mesh increments) � → 0, the code produces a solution to the continuum equations;
this is Verification. Whether or not those equations and that solution bear any relation to a
physical problem of interest to the code user is the subject of Validation.

Roache also notes that a “code” cannot be validated but only a calculation or range
of calculations can be validated. Roache also makes a distinction between verifying
a code and verifying a calculation, noting that “use of a verified code is not enough”.
We also adhere to this explication of V&V terminology and note that following
Roache, validation can be described as probing the range of validity of a code or
model Calder et al. (2002).

Our approach to verification consists of testing simulation results against ana-
lytic or benchmarked solutions and quantifying the error. The comparisons typically
consist of simulations performed at increasing spatial and/or temporal resolutions to
confirm convergence of the simulation to the correct answer. Details of these tests
have appeared in the literature, and many of the tests are incorporated into automated
regression testing of Flash (Calder et al. 2002; Weirs et al. 2005a, b; Dwarkadas et al.
2005; Hearn et al. 2007; Dubey et al. 2009, 2015).

We validate by performing similar tests against data from experiments designed to
replicate astrophysical environments. We take a hierarchical approach to validation,
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beginning by isolating the basic underlying physics and testing how well simula-
tions capture it. We then devise tests of aggregate problems that capture the expected
behavior of the astrophysical events. In the case of sub-grid models or postprocessed
results, we simulate simple problems with these models and compare against either
actual validation data or direct numerical simulations. As with verification, we per-
form convergence tests, though as we describe below the process of demonstrating
convergence is difficult for some fluid dynamics problems.

Another aspect of our testing concerns quantifying error on the adaptive simulation
mesh (described below). Our approach is to test solutions on the finest simulation
mesh against data or a solution, but the methodology for quantitatively comparing
the solution at the different resolutions of an adaptive mesh is incomplete (Li 2010;
van der Holst et al. 2011; Shu et al. 2017; Li andWood 2017). We typically check for
consistency between simulations on an adaptive mesh and simulations of the same
problem on a fully refined mesh while quantifying the accuracy of the solution on the
fully refined mesh (Calder et al. 2002). Also, in addition to problems characterizing
solutions on an adaptivemesh, just simulatingfluids at the extremeReynolds numbers
of astrophysics on adaptive meshes presents challenges (Kritsuk et al. 2006; Mitran
2009). We describe the difficulties of simulating extreme Reynolds number flow in
the discussion of our hydrodynamics method below.

We close discussion of our approach toV&Vwith a general note on the role of val-
idation in astrophysics. Because of the literally astronomical distances to astrophys-
ical events and extreme conditions involved, experimentally accessing astrophysical
phenomena or even just replicating the environments of astrophysics is difficult.
Thus, one cannot readily perform validation experiments, which typically leads to
an incomplete process of validation. Simulations of astrophysical events are there-
fore generally in the realm of prediction, that is, foretelling the state of a physical
system under conditions for which the model has not been validated. Despite this,
the process of V&V in astrophysics serves to build confidence in these predictions
even if one cannot conclude that simulations or codes are “validated”.

28.3 Simulation Instruments

Our principal simulation instrument is the Flash code, which we use for simulating
astrophysical events. Fundamentally, Flash simulates problems of fluid dynamics
and consists of solvers for hydrodynamics and the additional physics of astrophysical
events (described below). With Flash, we construct the numerical implementation
of our conceptual model of the astrophysical event, and the act of simulating is the
exercise of themodel.Wenote that the exercise of amodel is farmore than just solving
a set of differential equations. Multi-physics applications like astrophysics combine
multiple solvers, each of which may rely on possibly uncontrolled assumptions (See
Winsberg 2010, for a thorough discussion). For this reason, we take the hierarchical
approach to validation of modules in Flash mentioned above.
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Our second instrument is a nucleosynthetic postprocessing toolkit used in tandem
with Flash. In the case of supernovae, comparison to observations requires the cal-
culation of light curves (the intensity of light from the object as a function of time)
and spectra. However, the yield of a particular element, titanium for example, may
be critical for accurate spectra, but mostly unimportant to the energy release. Many
elements fall into this category, so that the computation of the explosion is much less
expensive when split into two stages. The energy release and explosion is computed
with a small number of species in Flash, and is followed by postprocessing to obtain
all important species. The postprocessing tools we present below apply state-of-the-
art nuclear reaction networks to Lagrangian thermodynamic histories sampled from
the Flash simulation. The resulting abundances are used to calculate light curves and
spectra (e.g., Miles et al. 2016).

28.3.1 The Flash Code

The simulation instrument we use for modeling astrophysics events is the Flash code,
developed at the University of Chicago (Fryxell et al. 2000; Calder et al. 2000; Dubey
et al. 2009, 2013, 2014). Flash is a parallel, adaptivemesh, hydrodynamics plus addi-
tional physics code originally designed for the compressible fluid flows associated
with astrophysics. Flash incorporatesmultiple hydrodynamicsmethods (Fryxell et al.
2000; Lee and Deane 2009; Lee 2013; Lee et al. 2017a, b) coupled with modules for
the requisite additional physics of the applications. In particular, Flash has undergone
considerable development for high energy density physics applications (Tzeferacos
et al. 2015).

The hydrodynamics modules solve the Euler equations of compressible hydrody-
namics, shown here with gravitational sources as would apply to a self-gravitating
problem such as a star.

∂ρ

∂t
+ ∇ · (ρv) = 0

∂ρv
∂t

+ ∇ · (ρvv) + ∇P = ρg

∂ρE

∂t
+ ∇ · (ρE + P) v = ρv · g + S .

Here, ρ is the mass density, v is the velocity, P is the pressure, E is the internal
energy of the gas, g is the gravitational acceleration, and S represents any additional
source. The system is closed by an equation of state of the form

P = P (ρ, E)
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and Flash offers choices for particular applications. Flash calculates the acceleration
due to gravity from the gravitational potential,

g = −∇� .

which is calculated by solving the Poisson equation for self-gravity

∇2�(r) = 4πGρ (r) .

Here, φ is the gravitational potential and G is Newton’s gravitational constant. Flash
also tracks different material species by advecting mass scalars,

∂Xρ

∂t
+ ∇ · (Xρv) = 0 ,

where X is the mass fraction of a given species (Fryxell et al. 2000).
Our first validation example addressed the Flash hydrodynamics module (without

gravity) for the case of experiments involving fluid instabilities thought to occur
during one class of stellar explosions known as a core collapse supernova (Fryxell
et al. 1991). The particular hydrodynamicmodule in Flash used for this study is based
on the PROMETHEUS code (Fryxell et al. 1989) and evolves the Euler equations in
one, two, or three dimensions using a modified version of the Piecewise-Parabolic
Method (PPM) (Colella and Woodward 1984). The implementation allows use of
general equations of state as is required for simulating stellar material (Colella and
Glaz 1985), but this capability was not used in the validation example.

PPM is a higher order version of the method developed by Godunov (1959),
Godunov et al. (1962), a finite-volume conservation scheme that solves the Riemann
problem at the interfaces of the control volumes to compute fluxes into each volume.
The conserved fluid quantities are treated as cell averages that are updated by the
fluxes at the interfaces. This treatment has the effect of introducing explicit nonlin-
earity into the difference equations and permits the calculation of sharp shock fronts
and contact discontinuities without introducing significant nonphysical oscillations
into the flow. In addition, PPM utilizes a dissipative shock capturing scheme to fur-
ther stabilize shocks and contact discontinuities, and is thus not directly solving the
Euler equations (Majda 1984; Winsberg 2010).

The adaptive mesh of Flash is block structured and is supported primarily through
the Paramesh Library (MacNeice et al. 1999, 2000), though it is under the process
of migrating to the AMReX library (AMReX 2018). The view of AMReX from
other units in the Flash code will remain similar to that of Paramesh, and in the near
future, the two packages will be available as alternative implementations of the Grid
unit. Later, the support for Paramesh may be dropped if it becomes too inefficient on
newer platforms.
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28.3.2 The Postprocessing Toolkit

The nucleosynthetic postprocessing toolkit uses the recorded Lagrangian history of
fluid elements to compute the yield of nuclides (elements and their isotopes) produced
in a stellar explosion (Travaglio et al. 2004; Townsley et al. 2016). The Lagrangian
thermodynamic history is determined by integrating the position of a conceptual
microscopic fluid element by

r(t) = r0 +
∫ t

0
v(r, t ′) dt ′ ,

where r0 is the initial position and v(r, t) is the velocity field as computed by the
hydrodynamic simulation. This conceptual fluid element is often called a particle
because it moves as a fluid-embedded particle would. From the resulting r(t), it is
possible to also record the thermodynamic state, namely T (t) = T (r(t)) and ρ(t) =
ρ(r(t)), the temperature and density, respectively. Such recorded histories are often
called tracks or trajectories because they represent how the fluid element evolves in
location and thermodynamic state space as a function of time.

Nucleosynthetic postprocessing is performed in order to obtain the composition
of material after it is processed by combustion and ejected. Composition is parame-
terized by abundances of various species quantified as the fraction of a unit of mass
that is in the form of a particular species. For example, the fraction, by mass, that is in
the form of 12C, may be written X12C, and must be between 0 and 1. The abundances
are found in postprocessing by integrating

Xi (t) = Xi,0 +
∫ t

0
Ẋi (ρ(t ′), T (t ′)) dt ′ ,

where Ẋi (ρ, T ) are determined by the density and temperature-dependent reaction
rates for processes which involve species i . Any given specie is typically involved in
multiple reactions, forming a network that is used to evaluate each rate. The end of
the necessary integrations is typically well defined. As the star expands, T and ρ fall
until most reactions will become very slow compared to the time being simulated,
effectively freezing out. Consideration of further evolution, typically radioactive
decay, may be necessary depending on the usage of the resulting abundances. These
integrations are typically performed for a large number of tracks which sample the
ejected material by a suitably distributed choice of their initial positions r0.

28.3.3 Simulating Reactive Flow

With both Flash and the postprocessing toolkit, the goal of simulations is to capture
the evolution of stellar material during the course of an astrophysical event. Because
stars are essentially self-gravitating gas, the interiors of stars are well described by
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the equations of fluid flow. During an astrophysical event, thermonuclear reactions
drive the evolution by changing the composition and by releasing energy, which
changes thermodynamic conditions like pressure and density. This combustion typ-
ically occurs in a relatively small region of space, e.g., a thin flame, that may be dif-
ficult to resolve in simulations of the event. The two validation examples we present
address the two principal parts- fluid flow, including shocks and fluid instabilities,
and the evolution of the composition.

For fluid dynamics problems, there are two fundamental classes of simulation
distinguished by whether or not the scales of the numerical grid can resolve viscous
effects (Calder et al. 2002; Winsberg 2010; and references therein). Simulations that
can resolve viscous effects are said to be “DirectNumerical Simulations,”while those
that cannot and rely on a (possibly uncontrolled) sub-grid-scale model for viscous
effects are referred to as “Large Eddy Simulations”. An eddy is a fluid current whose
flow direction differs from that of the general flow, and the motion of the fluid is the
net result of the movements of the eddies that compose it (Encyclopaedia Britannica
2006). Large eddy simulations do not resolve either the explicit viscosity of the fluid
or the contribution to the viscosity from eddies on unresolved scales (Fureby 1996;
Zhiyin 2015, and references therein).

The issue of convergence of a solution for fluid flows is not as simple as it might
seem. The enormous size of objects means that astrophysical regimes typically have
Reynolds numbers far in excess of the Reynolds numbers of terrestrial flows, which
are themselves higher than can be readily captured in hydrodynamics simulations.
Even when run on contemporary supercomputers, simulations cannot capture the
possibly ≥108 Reynolds numbers of astrophysical flows making direct numerical
simulations impossible. Thus simulations of astrophysical events are large eddy sim-
ulations that can either rely on sub-grid-scale models for turbulent flow or just allow
the intrinsic numerical diffusion of the hydrodynamics method to set the limiting
Reynolds number. This latter case, known as Implicit Large Eddy Simulation (ILES),
is frequently applied and is the approach taken in the studies presented here. In ILES,
changing the resolution changes the effective viscosity and hence the Reynolds num-
ber, which changes the problem itself and leads to the question of convergence of
results with resolution. Considerable study has gone into determining the validity
of this approach (Margolin and Rider 2002; Grinstein et al. 2007; Margolin and
Shashkov 2008; Margolin 2014). As our results show, large eddy simulations may
not demonstrate convergence of a solution with resolution.

28.4 Validation Examples

As of this writing, Flash has had 20 years of development by generations of scien-
tists. Much of this effort has been subjected to rigorous V&V (Calder et al. 2002;
Timmes et al. 2004; Weirs et al. 2005a, b; Dwarkadas et al. 2005; Hearn et al. 2007;
Dubey et al. 2009, 2015; Townsley et al. 2016). In this contribution, we present two
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examples of validating the Flash code and postprocessing toolkit for astrophysical
applications. The first example is from early work comparing simulations to labora-
tory experiments addressing fluid instabilities in high energy density environments
similar to the interiors of stars. The second example is ongoing work on computing
reaction products in three-dimensional simulations of type Ia supernovae. This study
includes comparison between methods for use in the simulations of the events and
for calculating detailed abundances from the density and temperature histories of
Lagrangian tracers.

While this contribution describes two examples of the V&V efforts for the Flash
code, we note that V&V efforts continue as the capabilities and applications of
Flash evolve. A recent survey of software engineering practice in scientific com-
puting includes Flash as a case study and offers an independent perspective on the
development of Flash (Storer 2017).

28.4.1 Overview of Flash Problems

The Flash code was originally designed to investigate astrophysical thermonuclear
flashes, explosive events powered by thermonuclear fusion. These events all involve a
close binary star system with matter being transferred (accreted) onto a compact star
(either a white dwarf or a neutron star) from a companion (Rosner et al. 2000). The
three flash problems originally addressed by Flash were type I x-ray bursts (Zingale
et al. 2001), classical novae (Alexakis et al. 2004), and type Ia supernovae (Plewa
et al. 2004; Townsley et al. 2007).

X-ray bursts occur when a thermonuclear runaway occurs in a thin ∼10–100m
layer of H- or He-rich fuel accreted onto the surface of a neutron star. The radius
of the underlying neutron star my be inferred from observations and thereby allow
constraints on the properties of densematter. Classical novae occurwhen a thermonu-
clear ∼104 m thick layer of H-rich material similarly explodes. In this case, material
from the explosion is unbound and these events are thought to synthesize some
intermediate-mass elements found in the galaxy. Type Ia supernovae are thought to
occur when a pair of white dwarf star merge and/or when a white dwarf accretes
enough mass to ignite fusion in the core. In this case, enough energy is added to
overcome the gravitational binding and the star is completely disrupted, producing
a bright explosion that may be used as an indicator for cosmological distances. (See
references in above works for literature on each astrophysical topic, and Calder et al.
2013 for an overview of ongoing investigation of Type Ia Supernovae.)

As mentioned above, these problems involve reactive flow, and in all cases there
is a vast difference between the length scale of the combustion front and the astro-
physical object. Hence the need for sub-grid-scale models. Fluid instabilities that
may influence the burning rate are also of particular importance (Calder et al. 2007;
Zhang et al. 2007; Townsley et al. 2016). Accordingly, the validation examples we
present address problems of combustion and fluid instabilities.



694 A. C. Calder and D. M. Townsley

28.4.2 Shocks and Fluid Instabilities

The high energy density environments of intense lasers interacting with matter are
similar to the interiors of stars, and experiments offer opportunities for a quantitative
comparison between data and simulation not possible with observations of astro-
physical phenomena. The validation study we present was performed by a collab-
oration between Flash developers and experimentalists working at the Omega laser
at the University of Rochester (Soures et al. 1996; Boehly et al. 1995; Bradley et al.
1998). The experiment chosen for the study involved a shock propagating through
a multilayer target with layers of decreasing density and was designed to produce
hydrodynamic instabilities thought to arise during an astrophysical event known as
a core collapse supernova explosion (Arnett et al. 1989; Fryxell et al. 1991). While
this type of supernova is not a thermonuclear flash problem, much of the constituent
physics is the same, allowing this experiment to serve for validation. The decreasing
density configuration is subject to the Richtmyer–Meshkov instability that occurs
when a shock propagates though a material interface with decreasing density (Richt-
myer 1960;Meshkov 1969). The configuration is also subject to the Rayleigh–Taylor
instability (Taylor 1950; Chandrasekhar 1981), which develops after the passage of
the shock and subsequently dominates instability growth.

Interest in the problem of fluid instabilities during the process of a core collapse
supernova followed from the early observation of radioactive elements from deep in
the core of the star in SN 1987A (Muller et al. 1989). Stars with a mass of greater
than 8–10 times that of the Sun end their lives in a spectacular explosion known as
a core collapse supernova. These events are among the most powerful explosions
in the cosmos, releasing energy of order 1053 erg at a rate of 1045−46 watts, and
are important for galactic chemical evolution because they produce and disseminate
heavy elements. Core collapses supernovae also signal the birth of neutron stars and
black holes, which are the basic building blocks of other astrophysical systems such
as pulsars and x-ray binaries.

During their lifetimes, stars are powered by the thermonuclear fusion of elements
beginning with hydrogen fusing into helium. In a massive star, fusion continues all
the way to iron-group elements. A core collapse supernova occurs when the inert iron
core can no longer support the weight of the material above it and the core collapses,
which releases gravitational binding energy that is in part converted to the energy of
an expanding shock that ejects the outer layers of the star. Just prior to the explosion,
the interior of the star has an onion-like structure, with iron-group elements in the
core, then layers of silicon, magnesium, neon, oxygen, carbon, helium, and finally
the outermost layer may be hydrogen. When the supernova explosion occurs, the
shock passes through these layers of decreasing density. The early observation of a
core element suggests some sort mixing must have occurred during the explosion,
and, accordingly, motivated investigation into the effects of fluid instabilities. The
laboratory experiment was designed to probe this scenario.

The experimental configuration consists of a strong shock driven through a target
with three layers of decreasing density. The interface between the first two layers is
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perturbed while the second interface is flat. An initially planar shock created by the
deposition of energy from the laser is perturbed as it crosses the first interface, which
excites a Richtmyer–Meshkov instability. As the perturbed shock propagates through
the second interface, the perturbation is imprinted on the interface. The material
begins to flow, leading to the growth of Rayleigh–Taylor instabilities. The three
layers of the target are in a cylindrical shock tube composed of Be, with the density
decreasing in the direction of shock propagation. The materials were Cu, polyimide
plastic, and carbonized resorcinol formaldehyde (CRF) foam, with thicknesses of
85, 150, and 1500 µm and densities 8.93, 1.41, and 0.1 g cm−3, respectively. The
shock tube delays the lateral decompression of the target, keeping the shock planar.
The surface of the Cu layer was machined with a sinusoidal ripple of wavelength
200 µm and amplitude 15 µm to perturb the shock as it passes this interface.

The experiment was driven by 10 beams of the laser with the target configured so
that the laser beams impinge a thin section ofCHablator to prevent direct illumination
and preheating of the target. The experimental diagnostics were X-ray radiographs
taken at different times during a “shot”. TheBe shock tube, polymide plastic, andCRF
foam are transparent to X-rays, while the Cu layer is opaque to X-rays. Embedded
within the polyimide layer was a tracer strip of brominated CH that is also opaque
to X-rays. This tracer layer provided the diagnostic for polymide-foam interface,
allowing visualization of the shock-imprinted structure.

Figure28.1 showsX-ray radiographs of the experiment at two times, one relatively
early at 39.9 ns (left) and one relatively late at 66.0 ns (right). These images were
from two different shots. The long, dark “fingers” are spikes of expanding Cu, and

Fig. 28.1 Results of the three-layer target experiment. Shown are side-on X-ray radiographs at 39.9
ns (left) and 66.0 ns (right). The long, dark “fingers” are spikes of expanding Cu, and the horizontal
band of opaque material to the right of the spikes of Cu is the brominated plastic tracer showing
the imprinted instability growth at the plastic-foam interface. From Calder et al. (2002) © AAS.
Reproduced with permission
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the vertical band of opaque material to the right of the spikes of Cu is the brominated
plastic tracer, showing the imprinted instability growth at the plastic-foam interface.
The radiographs illustrate the configuration at early and late times in the evolution
of the shocked target. The outer regions of the Cu and brominated strip show the
effects of the shock tube, but the central part is largely immune to these effects.

Making a quantitative comparison between the simulations and the experiments
and determining the uncertainty in the study required close collaboration between
experimentalists and theorists. This is an important point worth stressing. Without
the contribution of both to interpreting and quantifying the experiments and simu-
lations, there would have been little chance for a meaningful quantitative compar-
ison. The data from the experiments are the radiographs, and finding a meaningful
measurement for comparison to the simulation results required understanding the
accuracy of the diagnostics and sources of uncertainty in the experiment. The metric
for comparison between simulation and experiment was chosen as the length of the
copper spikes, which are fairly obviously seen in the radiograph, but which required
a deep understanding of the experiments to quantify. The paragraphs below summa-
rize the sources of error and uncertainty in the experiments and the reader is referred
to the original paper for complete details (Calder et al. 2002). A cautionary note
concerning these details is warranted, however. The intervening years between these
experiments and this writing have seen enormous progress in diagnosing high energy
density experiments and the experiments described here are not the current state of
the art (Gamboa et al. 2012, 2014; Stoeckl et al. 2012).

The lengths of the Cu spikes in the experimental radiographs were determined by
three methods. The first was a straightforward visual inspection of the images using
a spatial reference grid located just below the images of Fig. 28.1. The second used
a contour routine to better quantify the uncertainty in the location of the edges of
the spikes. The third method was consistent with the analysis of the simulations. A
section in the center of the images was vertically averaged to produce a single spatial
lineout of optical depth through the region occupied by the Cu and CH. The same 5
and 90 threshold values were used to quantitatively determine the extent of the Cu
spikes. Taking the average of all three methods, values of 330 ± 25 µm and 554 ±
25 µm are obtained at 39.9 and 66.0 ns, respectively.

Sources contributing to uncertainty in these experimental measurements include
the spatial resolution of the diagnostic, the photon statistics of the image, target
alignment and parallax, and the specific contrast level chosen to define the length of
theCu spikes. These considerations allowed calculation of the experimental error bars
presented in the figure (described below) that compares the experimental results to
the simulation results. In addition to the spatial uncertainty, there were also several
sources of uncertainty in the temporal accuracy. These arise from target-to-target
dimensional variations, shot-to-shot drive intensity variations, and the intrinsic timing
accuracy of the diagnostics. The experimental uncertainty in the timing is, however,
relatively small, and is approximately indicated by the width of the symbols used in
the comparison figure.

The Flash simulations were two-dimensional with a three-layer arrangement of
Cu, polyimide CH, and C having the same densities as those of the experimental
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Fig. 28.2 Schematic of the three-layer target simulation initial conditions. Shown are the locations
of the three materials, Cu, CH, and C, the shock, and the details of the sinusoidal perturbation of
the Cu–CH interface. The schematic is not to scale. From Calder et al. (2002) © AAS. Reproduced
with permission

target to model the experiment. The initial conditions for the Flash simulations
represent the configuration 2.1 ns after the laser shot. At this point, the laser has
deposited its energy and the shock is approaching the Cu–CH interface and the evo-
lution is purely hydrodynamic. The initial conditions (thermodynamic profiles) for
the Flash simulation were obtained from simulations of the laser–material interaction
performed with a one-dimensional radiation hydrodynamics code (Larsen and Lane
1994) thatwas able to describe the process of energydeposition occurring in the initial
2.1 ns. These one-dimensional profiles were mapped onto the two-dimensional grid
with a sinusoidal perturbation added to the Cu–CH interface. Figure28.2 illustrates
the initial configuration of the Flash simulations. For convenience, the simulations
used periodic boundary conditions on the transverse boundaries and zero-gradient
outflow boundary conditions on the boundaries in the direction of the shock propa-
gation. The materials were treated as gamma-law gases, with γ = 2.0, 2.0, and 1.3
for the Cu, CH, and C, respectively. These values for gamma were chosen to give
similar shock speeds to the shock speeds observed in the experiments.

From these initial conditions, the simulations were evolved to approximately
66 ns. Figure28.3 shows simulated radiographs from a simulation at an intermedi-
ate resolution, allowing visual comparison to the experimental results. The figure
presents simulated radiographs at approximately the two times corresponding to the
images from the experiment, 39.9 ns (left panel) and 66.0 ns (right panel). The sim-
ulation in Fig. 28.3 had 6 levels of mesh refinement corresponding to an effective
resolution of 1024 × 512 grid zones. The simulated radiographs were created from
the abundances of the three materials assigning an artificial opacity to each abun-
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Fig. 28.3 Simulated radiographs from the six levels of refinement (effective resolution of
512 × 256) simulation of the three-layer target experiment. The simulated radiographs were created
from the fluid abundances at times corresponding approximately to those of the images from the
experiment, 39.9 ns (left) and 66.0 ns (right). Shown are the parts of the simulation domain that
match the regions in the experimental results. From Calder et al. (2002) © AAS. Reproduced with
permission

dance and applying the opacity to an artificial “beam”. In addition, the abundances
were de-resolved to match the resolution of the pixels in the experimental images
and random Poisson-distributed “noise” was added to the intensity.

An obvious qualitative difference between the simulated and experimental radio-
graphs is readily observed in the curvature of the experimental instabilities that is
not present in the simulations instabilities. The use of periodic boundary conditions
in the transverse directions in the simulation was not consistent with the boundary
conditions of the experiment, which was performed with the three materials of the
target inside a cylindrical Be shock tube. The experiment results show the influence
of the shock tube walls as a curving or pinching of the outer Cu spikes, while the
simulations did not consider these boundary effects.

Comparison of the simulated radiographs to the radiographs from the experiment
show that the simulations captured the bulk behavior of thematerials, particularly the
growth of Cu spikes and the development of C bubbles. We can conclude from this
comparison that the simulations resemble the experimental results. Assessment of the
comparison as“good” or“bad” is difficult, however, with only a visual comparison,
especially one that indicates a difference due to a boundary condition effect. What
is needed is a quantitative comparison, and for that we apply the same techniques as
we apply to verification, a convergence study to show the simulations converge with
resolution and a quantitative comparison to the experimental results.

To test convergence of the solutions, a suite of simulations was performed at
increasing resolution. The effective resolutions of the simulationswere 128× 64, 256
× 128, 512× 256, 1024× 512, 2048× 1024, and 4096× 2048, corresponding to 4,
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5, 6, 7, 8, and 9 levels of adaptive mesh refinement. As noted above, the lengths of the
Cu spikes were chosen as the metric for quantitative comparison to the experiments.
Flash solves an advection equation for each abundance, which allowed tracking the
flow of each material with time. The spike lengths in the simulations were measured
by averaging the CH abundance in the y-direction across the simulation domain
then smoothing the resulting one-dimensional array slightly to minimize differences
that would occur owing to very small-scale structure. The length of the Cu spikes
was then determined by the average distance spanned by minimum locations of
average abundances 0.05 and 0.9. The results were reasonably robust to the amount
of smoothing and threshold values.

The results of testing the convergence of the Cu spike length measurements are
shown in Fig. 28.4, which depicts percent differences from the highest resolution
simulation, 9 levels of adaptive mesh refinement, as functions of time. The trend is
that the difference decreases with increasing mesh resolution, with the 7 and 8 level
of adaptive mesh refinement simulations always demonstrating agreement to within
5%. The trend of decreasing differencewith increasingmesh resolution demonstrates
a convergence of the flow, but it is subject to caveats. We note that the trend does
not describe the behavior at all points in time (that is, the percent difference curves
sometimes cross each other), and this average measurement is an integral property
of the flow and in no way quantifies the differences in small-scale structure observed
in the abundances. In particular, we note that the difference curve for the simulation
with 8 levels of adaptive mesh refinement crosses the curves of both the 7 and 6 level
simulations, suggesting that higher resolution simulations may deviate further from
these results and produce degraded agreement with the experiment. This result is in
keeping with the abovementioned concerns with ILES.
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Fig. 28.4 Percent difference of the Cu spike lengths from those of the highest resolution (9 levels
of adaptive mesh refinement) simulation versus time. The percent differences are from the lower
resolution simulations of 4, 5, 6, 7, and 8 levels of adaptive mesh refinement, with the corresponding
effective resolutions in the legend. We note that the convergence is not perfect. The curve from the
8 levels of refinement simulation crosses those of the 6 and 7 levels of refinement simulations,
indicating a higher percent difference. Adapted from Calder et al. (2002)
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Fig. 28.5 Results from a validation test consisting of a laser-driven shock propagating through a
multilayer target. The lengths of the Cu spikes is plotted versus time from 4 simulations at 6, 7,
8, and 9 levels of adaptive mesh refinement in a convergence study. The effective resolutions are
given in the legend. Also shown are the experimental results at two times with spatial error bars of
(±25μm). The timing error is about the width of the diamonds marking the experimental result.
The differences between the simulations at different resolutions are less than the uncertainty of the
experimental results. Adapted from Calder et al. (2002)

Figure28.5 shows the Cu spike length versus time for 4 simulations at increasing
resolution.Also shown are the abovementioned experimental results. The experimen-
tal error bars correspond to ±25 µm, the spatial error of the experiment. The width
of the symbols marking the experimental results indicates approximately the timing
error. The figure shows that the simulations quantitatively agree with the experimen-
tal results at the early and late times to within the experimental uncertainty.

As noted above, this study has previously appeared in the literature. Complete
details of the validation study may be found in Calder et al. (2002), Calder (2005),
Calder et al. (2006) and additional details of the experiments may be found in
Kane et al. (2001), Robey et al. (2001).

28.4.3 Computation of Reaction Products in Large Eddy
Simulations Of Supernovae

When a laboratory experiment is available, the distinction between verification and
validation is fairly clear, as discussed earlier. However, when creating predictive
simulations of astrophysical processes that cannot be reproduced directly in the
laboratory, even using appropriate scaling laws, the distinction can become less
clear because the task becomes one of confirmation of simulation results without
laboratory results. In many situations, notably in stellar combustion, it is possible
to have a model that is demonstrably more physically valid but is too expensive or
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constrained to be used for the desired predictive simulations. Simpler models must be
applied to simulate observed phenomena, hence the need for comparison of different
methods.

Nuclear reaction networks and multidimensional simulations present a good
example of this confluence of verification and validation. In astrophysical detona-
tions, it is possible to compute the steady-state structure of the propagating reaction
front with a large reaction network with hundreds of species and thousands of reac-
tions using error-controlled numericalmethods (e.g., Sharpe 1999;Moore et al. 2013)
Consider the following question: How many species are necessary to accurately pre-
dict the characteristics of the flow such as peak temperature and reaction front width?
This is not a verification question. We can use verification techniques to demonstrate
that the equations governing the time integration of the reactions are being solved
to a desired accuracy. Such a test, however, does not demonstrate whether or not a
particular selection of species is sufficient for the stated purpose. So, we proceed
to compare our model with say three or a dozen “effective” reactions or species to
another model which we believe to be more physically valid because it has more
complete reaction physics. This situation is neither verification that our model is
being solved correctly (that is already done) nor is it validation against a specific
physical experiment. It is, however, validation under the definition introduced in
Sect. 28.2 above, in that it addresses whether the model is physically correct. Some
terminology refers to this as confirmation of one model with a physically more valid
model. Since the label depends finely on definitions of terminology, it is useful in
discussion to term this type of comparison as something that combines elements of
verification and validation (see Chap. 42 by Beisbart in this volume). It is a model-to-
model comparison, as verification often is, but addresses the physical applicability
of the model, as validation does.

If integration of thousands of reactions were the only issue, this validation of
simplified models might not be worthwhile; instead one would just use the better
model directly. There are areas of prediction, however, where direct use of the better
model can be infeasible. In explosive astrophysical combustion (which powers type
Ia supernova explosions), it is typically desirable to predict the overall products and
the speeds at which they are ejected. Unfortunately, a simulation that can predict
that information must include the entire star, which may be around 109 cm in size.
The reaction front through which the combustion takes place is one cm or less in
thickness (Townsley et al. 2016). Also, the propagation of this front through the
star will generally occur in a way that obeys no particularly symmetry, making it
necessary to simulate this combustion and ejection of material in three dimensions.

The necessity of simulating the whole star in three dimensions presents several
challenges from the standpoint ofV&V. First, since the combustion phenomena occur
far below the best possible grid scale (∼105 cm), the typical method of verification by
convergence study is not valid. Claiming convergence for a numerical solution of dif-
ferential equations presupposes that the relevant gradients are numerically resolved
and become better resolved at higher resolution. This is the very meaning of resolu-
tion.However, in the full-scale astrophysical case, an example of the abovementioned
large eddy simulation situation, the composition gradients representing the physical

http://dx.doi.org/10.1007/978-3-319-70766-2_42
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reaction front (the length scale overwhich the fuel is consumed and converted to prod-
ucts) are never actually resolved. Second, while error-controlled methods for ODE
integration are well-understood, similar automated control of accuracy is not avail-
able in current widely used methods for solution of PDEs, such as in hydrodynamics.
Because this control is not built into the method, performing predictive simulations
involves a constant process of verification to ensure that solutions obtained do not
dependon resolution. That process canbe both expensive and time-consuming.Third,
it may be computationally infeasible to include hundreds of species and thousands
of reactions in the full-scale hydrodynamic simulation, thus even if we were able to
verify the methods for reactive hydrodynamics, we would need to use a model for the
reactions that we know to have specific deficiencies and would therefore need some
form of validation against more physically complete models. Finally, as discussed
earlier, because some physical processes such as fluid dissipation due to viscosity
is left implicit, a higher resolution simulation may not only be more numerically
accurate but also more physically valid. As a result of these issues, verification and
validation of the simulation of a stellar explosion can be mixed in a way that is not
always cleanly separable.

Here, we will present a discussion of ongoing efforts at verification and validation
of methods for computing the products of thermonuclear supernova explosions. The
full-star simulations use a simplified model of the reactions for computational effi-
ciency, and are necessarily under-resolved. The overall goal is to compare the results
from this computational model to computational models ofmuch higher physical and
numerical fidelity. In the case of combustion, those are computationswith large, com-
plete nuclear reaction networks computed using resolved, error-controlled numerical
techniques. The limitation is that the latter methods can only be used under certain
flow conditions, specifically, a steady state. We therefore proceed by treating the
methods used in the full-star simulation as the model to be validated by compari-
son to more physical calculations. This is similar to verification by comparison to a
benchmark, except that the two models are known to be different by construction.

Table28.1 shows a matrix comparing the capabilities of compressible hydrody-
namics simulations in various dimensions aswell as the fully resolvedmethod, which
can only be used in one dimension and for reaction fronts propagating in a steady
state through a uniform medium. As shown, a resolved calculation with the full
network at all densities relevant to the supernova can only be performed with the
steady-state method. However, this method cannot be used to treat transients (e.g.,
ignition or nonspatially uniform density) or general geometries including the full
star. Of the hydrodynamical methods in various spatial dimensions, represented in
the other three columns of the table, only one-dimensional calculations can use a
full reaction network effectively and resolve the reaction front, though not at all den-
sities. The possible importance of transient effects necessitates a multistep strategy
utilizing cross-comparisons of calculations of reaction front structure among several
different methods. For example, we can verify one-dimensional dynamical calcu-
lations at uniform densities using comparison to steady-state calculations, and then
use one-dimensional calculations with nonuniform density to characterize transient
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Table 28.1 Capabilities of simulations in various dimensions and assumptions. Comparison of
results among simulations is performed in order to validate that full-star three-dimensional simu-
lations reproduce the results of more physically valid one-dimensional calculations of steady-state
properties of detonations

Capability 3-d 2-d 1-d 1-d steady

full reaction network × × � �
resolved at low density × × � �
resolved at high density × × × �
transients (dynamical) � � � ×
general geometries � × × ×
full star � � � ×

effects. Even for a transient, it is informative to compare to steady-state solutions in
order to provide physical insight to the importance of nonuniformities in density.

Figure28.6 shows an example of a comparison of the compositional structure of a
propagating detonation reaction front computedwith the one-dimensional dynamical
method and the one-dimensional steady-state method. The hydrodynamical simula-
tion (dashed lines) was performed at a physical resolution of 105 cm, which corre-
sponds to a hydrodynamical time step of about 10−4 s. The fuel here is mostly 12C
and 16O, which is reacted to eventually become 56Ni. The consumption of 12C is not
shown, but is even faster than that of 16O. The structure for a detonation propagating in
steady state (solid lines) is computed with an error-controlled method using adaptive
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Fig. 28.6 Comparison of planar steady-state detonation structure simulated hydrodynamically
at 105 cm resolution using postprocessing of Lagrangian tracers (dashed) with the steady-state
structure computed directly using error-controlled integration (solid). Abundances here are given
as mass fractions. Similar to comparisons made in Townsley et al. (2016). The oxygen consumption
structure will remain unresolvable even with more than an order of magnitude higher resolution in
the hydrodynamic simulation
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time stepping and an error tolerance of order 10−6, and is therefore suitably resolved
by construction. The abundance histories from the hydrodynamical model shown
here are the result of using a simplified reaction model in the hydrodynamics and
then postprocessing the resulting density and temperature histories of fluid elements
with a larger reaction network (Travaglio et al. 2004; Townsley et al. 2016). The goal
of this comparison is to validate that away from the unresolved portion of the reac-
tion front (timescales �10−3 s), the composition history is accurately predicted by
the under-resolved calculation with the simplified burning model. This comparison
shows that the results are in good agreement for steady-state, planar detonations. For
an example of a comparison for nonplanar (curved) detonations, see Moore et al.
(2013).

The validation of methods for computing astrophysical combustion in large eddy
simulations is ongoing. The various possible calculations represented in Table28.1
must be compared for geometries and conditions for which there is overlap in capa-
bility. This process also entails ongoing improvement of both the simplified reaction
model utilized in the large eddy simulations (Townsley et al. 2009; Willcox et al.
2016) as well as improving techniques for computing the final yields (Townsley et al.
2016).

28.5 Discussion

The simulational results for the hydrodynamics validation example fell within the
temporal and spatial error bars of the experimental results thus showing quantita-
tive agreement between simulation and experiment for the metric of the lengths of
the copper spikes. This agreement demonstrates that the hydrodynamics module in
Flash captured the bulk properties of the flow and observable morphology, which
builds confidence in astrophysical simulations.We cannot, however, declare the code
“validated” for a host of reasons:

• The experimental configuration produced essentially a two-dimensional result,
hence our modeling it with two-dimensional simulations. The experiment was
three-dimensional, so correctly describing the fluid instabilities, particularly the
amount of small-scale structure in the flow may require three-dimensional simu-
lations.

• The models were incomplete. The three materials were modeled as ideal gases,
a questionable assumption. Also, for convenience, the simulations neglected the
presence of the shock tube surrounding the target and assumed periodic boundary
conditions. Thus, the simulations did not include effects due to the shock tube.

• The experimental diagnostics, radiographs, are really shadows that cannot ade-
quately capture small-scale structure. Even if three-dimensional simulations that
better described thefluid instabilities had been performed, comparison to the exper-
imental results is limited by the experimental diagnostics.
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• The observed degraded agreement between simulations at the highest resolutions
indicates the results are not converged. We attribute this result to the fact that
the Euler equations allow a changing numerical viscosity with resolution, which
changes the Reynolds number and thus the nature of any turbulence. Additional
commentary on this issue may be found in Calder et al. (2002).

Even with limitations, the demonstrated ability of the simulations to capture the
expected bulk properties of the flow builds confidence in the results of astrophysical
simulations, allowing us to conclude that the shocks and fluid instabilities study was
a success. The principal differences observed between the results from simulations
and the experimental results were in the amount of small-scale structure observed
in the flow, with the amount of small-scale structure in the simulations increasing
with resolution. This behavior is expected because the effective Reynolds number
increaseswith resolution as described above, andwebelieve this effect is the source of
the observed imperfect convergence. Because the experimental data are radiographs
and cannot capture the actual amount of small-scale structure in the flow, the correct
amount of small-scale structure remains undetermined and even if the convergence
of the simulations had been perfect, we could not conclude the solution converged
to the correct result.

In addition to increasing confidence in the results, the hydrodynamics validation
study was well worth the investment because of the lessons learned in comparing
the experimental and simulational results. The collaborative process of determining
the metric for comparison and extracting the results from the experimental and sim-
ulational data resulted in a better understanding of the issues, which also increases
confidence in the astrophysical results. The experimentalists also benefited from the
process of validation because the process of comparison suggested metrics for future
comparisons, provided useful diagnostics, and supplied a virtual model that aided
in the design of future experiments. A point worth stressing again in conclusion
is the importance of close collaboration between the experimentalists and theorists
needed to make a meaningful quantitative comparison. Raw experimental data such
as a radiograph alone does not allow for a quantitative comparison to simulational
results. Finally, we note that the success of this collaboration seeded interest in high
energy density physics among the developers of Flash, which subsequently resulted
in an extended course of collaborative research into high energy density physics (see
Tzeferacos et al. (2015) and references therein).

The product of reactive hydrodynamics study gave a look at the process of com-
paring models of differing fidelity to ensure that macroscopic (three-dimensional)
simulations capture the physics of thermonuclear reactions while also allowing the
calculation of detailed abundances. Our approach is to test simplified models against
higher fidelity models for a given physical process, here thermonuclear combus-
tion. Simplified models then facilitate three-dimensional simulations that would be
intractable otherwise. The results of these studies are also applicable to the problem
of determining detailed abundances from the density and temperature histories of
Lagrangian tracers. We illustrated this process with a comparison between results
from postprocessed tracers from a hydrodynamics simulation and a detailed calcu-
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lation of steady-state burning structure. This study confirmed that our simulations
capture the essence of the reactions in whole-star models, and thereby increased
confidence in our predictions of the astrophysical events.

28.6 Conclusions

The cases we present here are but one part of the continuing effort at verifying
and validating Flash and associated infrastructure (e.g., the postprocessing method
presented here). The first study of validating the hydrodynamics was performed early
in the development of Flash. Though very informative, it could have been continued
further with additional quantification of the effect of missing physics as a good
next step. Also, further modifications to the code would allow it to capture high
energy density phenomena better. Such activities, however, were not critical to the
astrophysical problems. Still, the case was very informative and served to increase
confidence in the results. The second case, the computation of reaction products in
large eddy simulations of supernovae, is verymuch a work in progress and represents
our contemporary effort.

Our conclusion from both of these studies is that like any discipline in computa-
tional science, V&V are an essential part of the process of modeling astrophysical
phenomena. V&V in astrophysics can be particularly challenging due to the inac-
cessibility of the physical conditions attained and limited ancillary measurements
available for distant events. As shown here by these examples, however, positive
steps that build confidence in models can be taken based on comparisons using
related laboratory experiments and more complete physical models where available.
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Chapter 29
Validation in Weather Forecasting

Susanne Theis and Michael Baldauf

Abstract Numerical simulations are the core technique in forecasting the weather.
The simulation calculates a weather forecast by use of an atmospheric model, which
is implemented on a computer. The model itself can be partitioned into various com-
plexity levels, and these can be associated with respective validation concepts. The
proper design and implementation of the ‘dynamical core’ (i.e., partial differen-
tial equations and their numerical solver) is tested via comparison to idealized test
cases. In a subsequent development step, ‘parameterizations’ are added, and then
the simulation is considered a serious attempt to forecast the weather. The quality of
the forecast is estimated by the retrospective comparison between simulation output
and observed weather. In addition, a day-specific estimate of forecast uncertainty is
derived via ‘ensemble forecasting’ on a routine basis.

Keywords Weather forecasting · Dynamical core · Parameterizations ·
Ensemble · Uncertainty

29.1 Introduction

Already in 1950, an early attempt at numerical weather simulation was carried out
(Lynch 2008). Today, numerical weather simulation is the core technique in fore-
casting the weather and is applied on a routine basis. The simulation calculates the
time evolution of the atmospheric state (e.g., wind, temperature, humidity, etc.) by
use of a model which is implemented on a computer. Due to the high complexity of
the model and the time pressure in producing a simulation output, numerical weather

S. Theis (B) · M. Baldauf
Deutscher Wetterdienst, Offenbach am Main, Germany
e-mail: susanne.theis@dwd.de

© Springer Nature Switzerland AG 2019
C. Beisbart and N. J. Saam (eds.), Computer Simulation Validation,
Simulation Foundations, Methods and Applications,
https://doi.org/10.1007/978-3-319-70766-2_29

711

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-70766-2_29&domain=pdf
mailto:susanne.theis@dwd.de
https://doi.org/10.1007/978-3-319-70766-2_29


712 S. Theis and M. Baldauf

prediction still challenges the technical limits of supercomputing facilities (Bauer
et al. 2015).

Forecasting the weather is an ‘initial value problem’, so the simulation is started
from an initial state which has to be specified (Daley 1994). In other words, knowing
the weather of today is the starting point of forecasting the weather of tomorrow.
The computer simulation heavily depends on timely and high-quality input data,
collected by national and international observation systems such as ground stations,
radiosondes, radar networks, or satellites. These observations can also be used to
validate the outcome of the simulations in a retrospective manner. This is standard
practice at very many national and international forecast centers (Casati et al. 2008).
Thereby, it can be objectively demonstrated that weather prediction has improved
substantially during the past decades (Bauer et al. 2015).

However, the optimization of weather forecasts is not just a matter of statistical
fitting to observed weather, for example, by performing numerous forecast trials and
minimizing the gap between observed and simulated weather. This becomes clear
by looking at the architecture of atmospheric models. They are based on physical
conservation laws for mass, momentum, and energy (see the Euler equations (29.1))
combined with physical parameterizations that describe subgrid-scale processes. In
other words, the model can be partitioned into the ‘dynamical core’ and the ‘parame-
terizations’ (e.g., see Bauer et al. 2015; Gramelsberger 2010 and references within).
Different validation concepts exist which act on various complexity levels of the
model. First, the ‘dynamical core’ is tested in idealized test cases, then ‘parame-
terizations’ are added. The combined version is used in the attempt to simulate the
weather as it occurs in reality. Its output is compared to observations as mentioned
above.

Operating the source code on a computer is another integral part of the simula-
tion, because it is essential for deriving results from the source code. For example,
regarding the COSMO-DE weather forecasting model, the international COSMO
Consortium maintains currently about 350,000 lines of source code, which are used
for operational weather forecasting in about 35 different countries. In practice, the
source code of the model is constantly changed due to progress in research, tech-
nology, and user requirements. From a management perspective, these development
and maintenance processes can be validated as well. Even if this is not done in an
entirely systematic way, traditions of best practice have emerged. For the sake of
brevity, this aspect of quality is not described in this chapter.

In many operational weather forecasting centers, uncertainties of the forecast are
addressed. They are estimated along with the prediction and are issued as part of the
forecast. To some extent, this can be achieved outside the computer simulation by
learning from forecast errors observed in the past and applying this knowledge to the
current forecast. However, the nonlinear complexity of the system limits the success
of these methods. During the past 25 years, a method called ‘ensemble forecasting’
has become standard practice (Bauer et al. 2015; Leutbecher and Palmer 2008; Parker
2010) (also see Chap.34 by Knutti et al. in this volume). Sources of uncertainties
are addressed within the simulation, multiple simulations are carried out and each

http://dx.doi.org/10.1007/978-3-319-70766-2_34
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simulation output is supposed to represent a reasonable possibility of the atmospheric
evolution.

For the sake of clarity, we briefly comment on the differences between weather
and climate simulations. Naturally, the simulation of weather is also linked to the
basic principles of climate simulations, because the underlying laws of physics apply
to both prediction ranges. Climate prediction benefits from a realistic simulation of
weather phenomena and their statistics. However, weather and climate predictions do
not share the same concepts of predictability, validation, and uncertainty. Whereas
climate simulations aim at the statistics of meteorological variables on the basis
of many years (see Chap.30 by Rood in this volume), weather prediction aims at
the prediction of specific weather events within the next hours and days. In the
context of climate, ‘weather’ is interpreted as a fast and unpredictable variation
around the climatological state. Climate models incorporate additional components,
which represent slowly varying processes within the earth system. Compared to
weather forecasting, the initial state of ‘fast’ weather components plays a minor role
in climate simulations. In this chapter, we focus on the typical prediction ranges of
a weather forecast, i.e., a few hours up to 1–2 weeks.

Section 29.2 provides relevant information about weather forecasting. The archi-
tecture of atmospheric models is introduced, and the intended use of the simulation
output is explained. Then Sect. 29.3 describes in detail validation concepts, which
are targeted at the different complexity levels of the model. In addition, Sect. 29.4
outlines the method of ensemble forecasting. Section 29.5 contains a discussion and
a summary.

29.2 Setting the Scene

First, we outline the scientific state of the art of atmospheric models, and we show
why and how a model can be partitioned into parts (Sect. 29.2.1). Then, we illustrate
how the computer simulation is embedded in the entire process chain of weather fore-
casting and give an idea about the intended use of the simulation output (Sect. 29.2.2).

29.2.1 The Atmospheric Model: State of the Art

Themain ingredients of the atmosphericmodel are the prognostic equationswith their
discretization in time and space, both for the ‘dynamical core’ and the ‘parameteri-
zations’ (Fig. 29.1). The most relevant input data for a numerical weather prediction
is the ‘initial state’ of the atmosphere. This section provides a brief overview of the
model components.

Dynamical Core
The ‘dynamical core’ consists of a numerical solver for a set of nonlinear partial
differential equations that are derived from physical conservation laws for mass,

http://dx.doi.org/10.1007/978-3-319-70766-2_30
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Fig. 29.1 Key ingredients of the model are placed within the dotted box: prognostic equations with
discretization in time and space, and the parameterizations. The curved arrows indicate that these
ingredients are interrelated to some extent. The arrows in bold type from left to right illustrate the
data flow: the initial state is the starting point, the simulation resembles the time evolution of these
conditions in the atmosphere, and thereby produces a forecast

momentum, and energy. These laws lead to the compressible, nonhydrostatic Euler
equations, which may be formulated for the prognostic variables density ρ, velocity
vector v, and temperature T (alternative formulations are possible):

∂ρ

∂t
+ ∇ · ρv = 0,

∂v
∂t

+ v · ∇v = − 1

ρ
∇ p − gez − 2Ω × v, (29.1)

ρcv

(
∂T

∂t
+ v · ∇T

)
= −p ∇ · v + Q,

p = RρT .

Other variables are pressure p and a diabatic heat source term Q. Furthermore,
g denotes gravitational acceleration, ez is the vertical unit vector, Ω is the angular
velocity vector of the earth rotation, cv is the heat capacity, and R the individual gas
constant of dry air.

These Euler equations may be extended by further prognostic equations for water
vapor, concentrations of cloud and ice water content, rain and snow, turbulent kinetic
energy, or others, depending on the type of physical parameterizations. The param-
eterizations themselves are expressed as additional terms on the right-hand sides of
these equations.
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Due to the complexity of these equations, a simple analytical solution is not
available. This iswhy a computer simulation is needed,which derives an approximate
solution by employing numerical methods.

The numerical method involves a discretization in time. In other words, the future
state of the atmosphere can be estimated from a previous state, by partitioning the
entire forecast horizon (e.g., 3 days) into incremental forecasting steps. For example,
a weather forecast for the next 3 days involves several thousand of small time steps.
These time steps are related first to the numerical stability of the solver and second to
the expected accuracy of the numerical solution. Together with the time criticality of
the simulation (e.g., at the Deutscher Wetterdienst (DWD) a 24-hour forecast must
be ready in about 20 minutes) and the available computing resources, this leads to a
trade-off between these various requirements.

Additionally, the numerical method involves a discretization in space. A common
technique is the discretization on a three-dimensional spatial grid, so the prognostic
variables are defined on prespecified grid points. The density of the grid results
from the horizontal distance between neighboring points and the selected thickness
of the ‘vertical layers’. Today, high-resolution weather forecasting operates with a
horizontal grid spacing of a few kilometers. The vertical thickness ranges between a
few meters near the surface and several hundred meters at higher levels (e.g., at the
5 km height level). The prognostic equations are numerically solved on the spatial
grid. So the computer simulation explicitly resembles atmospheric processes as far
as they are represented by the equations and resolved by the grid. The ‘resolved state’
is defined by the prognostic variables at the grid points.

Parameterizations
The ‘resolved state’ is accompanied by an ‘unresolved state’, pertaining to spatial
information and processes unresolved by the grid spacing. The discretized set of
prognostic equations does not explicitly account for them. However, many physi-
cal processes in the atmosphere or at the surface take place on these small spatial
scales, for example, the formation of clouds, the interaction between solar radiation
and cloud droplets, and the interaction with complex topography. In the real world,
these processes can have a substantial effect on the larger spatial scales, especially
regarding the heat and momentum budgets. Pragmatic solutions are needed to close
the existing gap. These are the so-called ‘parameterizations’, i.e., additional terms
on the right-hand side of Eq. 29.1 and eventually additional prognostic equations.

Conceptual aspects of parameterizations are described inArakawa (2004), and the
most commonly used types are explored in Stensrud (2007). Parameterization aims to
obtain a closed system for predicting theweather. The closure consists of quantitative
statements about the statistical behavior of the ‘unresolved state’, in the sense that
it feeds back to the ‘resolved state’ and that it is a function of the ‘resolved state’.
To some extent, parameterizations embrace physical reasoning, for example, the key
role of buoyancy in convection parameterizations (Arakawa 2004). Nevertheless,
there is ample scope for various theoretical concepts, which are exchanged and
compared within the international meteorological community. It is acknowledged
that parameterizations are indispensable in atmospheric models, but also a major
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source of forecast uncertainties. Especially questionable is the artificial separation
of spatial scales, which is not necessarily accompanied by a clear separation of
physical processes.

Synthesis
In the practical model development process, the dynamical core is set up first and
tested in isolation by applying idealized tests, looking at stability and accuracy of the
numerical solution (Sect. 29.3.1). Then the dynamical core is combined with already
existing or nearly developed parameterization schemes, which have undergone cred-
ibility checks (Sect. 29.3.2). Having combined these model components and having
specified an initial state1 the full-fledged simulation is carried out. Its output is treated
as a serious attempt at forecasting the weather as it occurs in reality. The combined
model is tested onmany different types of weather conditions, by performing numer-
ous simulations and comparing their output to the weather observed in the real world
(Sect. 29.3.3). Lessons learned from the validation of the combined version itera-
tively lead to a fine-tuning2 of the parameterizations. Justification of the specifics in a
parameterization setup remains very limited, but it can be shown whether, or to what
extent, the combined and tuned simulation method is fit for weather forecasting.

As a last remark, we comment on the conceptual separation of the respective
validation procedures. Obviously, different versions of validation procedures exist,
and they pertain to isolated and combined model versions, respectively. However,
their clear separation remains ambiguous, because the development and validation
procedure has an iterative character in practice. As the separation is formally defined
by the prognostic variables on the spatial grid, we can shed further light on the
separation issue by describing the practical procedure of reducing the grid spacing.
Finer grid spacing enables the dynamical core to explicitly account for processes on
smaller scales than before, and the parameterization possibly needs to play a different
role. In practice, the need for an adaptation depends on the atmospheric process. For
example, if the grid spacing is reduced from 10 to 1 km, the simulation of deep
convection needs considerable reformulation, whereas the interaction between solar
radiation and cloud droplets is not revised. This is because deep convection takes
place on scales of a few kilometers, whereas the origin of the radiation effect is
on scales of micrometers. For the described grid refinement, the parameterization
of radiation is ‘grid invariant’. Under this condition, the iterative character of the
development and validation procedure is much less pronounced, due to the weak
interrelation between the parameterization design and the explicit simulation on the
grid.

1Estimating the initial state is a complex and extensive task, called ‘data assimilation’. Observations
of the current state of the atmosphere enter a Bayesian estimation process, which uses a short-range
forecast simulation as prior information. This estimation aims at the specific state of the atmosphere
at present time in a manner that is physically consistent and spatially and temporally coherent (see
Daley 1994 for more information).
2This tuning pertains to the simulation output as an entity. In a subsequent step outside the simulation
(cf. Fig. 29.2), specific variables (e.g., temperature at 2m height) are additionally corrected by
statistical post-processing, which is applied separately to each variable.
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29.2.2 Intended Use of the Simulation Output

As indicated in Sect. 29.1, atmospheric models are not only used in weather fore-
casting, but also in other fields such as air pollution scenarios or climate change sce-
narios. Even within the field of weather forecasting, the intended use is not unique.
For example, it plays a role whether the forecast is intended to cover 1 day or 1 week
and which kind of weather phenomena it is supposed to represent realistically. Given
the intended use, developers of the model make informed decisions about various
aspects of the model:

• set of prognostic variables and explicitly simulated processes (limited by the ability
to describe the process, …)

• size of covered region, vertical extent of the simulation
• boundary values (the atmospheric state at boundaries of the covered region, sea
surface temperatures, etc.)

• density of spatial grid, thickness of vertical layers
• accuracy of numerical solver
• representation of parameterized processes
• speed of computation
• time range of the forecast
• knowledge of an initial state, for all prognostic variables, on the selected grid and
layers

Many of these aspects are interrelated and need to be balanced. The balance is also
guided by validation, by expert knowledge of scientific principles and atmospheric
predictability.

Regarding weather forecasting, applications span a wide range including pub-
lic warnings (e.g., wind peaks, extreme temperatures, thunderstorms), services for
the sector of transport (e.g., road ice, aviation-related forecasting), input for flood
forecasts (e.g., severe rain). Some features (e.g., road ice, thunderstorms) are not
explicitly issued by the raw simulation (cf. Fig. 29.2).

The computer simulation itself delivers the raw forecast data, which is available
on the supercomputer. Then the raw forecast data is extracted, condensed, refined,
tailored, and communicated. Statistical and empirical methods and partly also human
experts (‘forecasters’) are involved. For example, official weather warnings in Ger-
many are issued by meteorologists working on a 24/7 basis. Some of the products are
directly distributed to various customers (‘product delivery’). Some are distributed
internally, interpreted by meteorologists and weather advisors, and then communi-
cated to the customers (‘service delivery’). A major intention of the raw simulation
is to inform the subsequent process chain optimally.

In general, one would expect that in-house metrics of forecast quality should also
reflect the quality criteria of customers. If not, this can be taken as an incentive
to intensify the communication between providers and customers, for example, by
expert and user feedback. In addition, it isworthmentioning that quality requirements
of customers do not only pertain to the diagnosed differences between forecast and
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Fig. 29.2 Weather Prediction at DWD, the national meteorological service in Germany. Adapted
from the respective quality management handbook (Adrian 2016). The dotted box marks the com-
puter simulation. The darker boxes belong to the time-critical 24/7 suite. The dotted horizontal line
marks the deliveries which are also time-critical except the data delivery for long-term monitoring
(such as climate). Another general delivery is the source code itself, as marked by the star within
the bold box and the corresponding footnote (‘delivery to partners and research’)

observedweather events, but also to technical features such as timeliness, availability,
readability, and to the selection and tailoring of weather information according to
the intended use by the customer.

Looking at the intended use from an even broader perspective, weather forecasting
ultimately intends to reach various stakeholders and to provide useful information in
their decision-making context (Kox and Thieken 2017).When adopting this perspec-
tive, a quality assessment may look further down the ‘value chain’, i.e., simulation
output, weather forecast, communication, perception, decision. This is not standard
practice, but attempts in this direction have been made (Lazo et al. 2009). In recent
years, it has been recognized that the assessment of the ‘value chain’ benefits from
an interdisciplinary approach (e.g., meteorology, social sciences, psychology, eco-
nomics). This area of research is beyond the scope of this chapter.

29.3 Validation Concepts

As mentioned in previous sections, we describe validation concepts targeted at the
simulation output. Section 29.3.1 describes how the dynamical core is compared to
idealized test cases, Sect. 29.3.2 very briefly outlines the validation of parameteriza-
tions, and Sect. 29.3.3 describes how the output of the full-fledged weather forecast
simulation is compared to observed weather.

These different sections deal with very different complexity levels of the model.
Accordingly, the various validation concepts are targeted at different expectations,
so they highlight different aspects of ‘quality’ in the simulation output. In addition,
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various challenges come in different flavors, e.g., covering the formal scope of the
model, generating reference data, defining quantitative measures.

In the following sections, the term ‘validation’ is not always applied. Section29.3.1
applies the term ‘verification’ because the proper implementation of equations is
tested for a number of cases with known solutions. Section 29.3.3 also applies
the term ‘verification’, simply due to a tradition in the specific field of weather
forecasting.

29.3.1 Idealized Tests for the Verification of the Dynamical
Core

In the verification of the dynamical core, the proper design and implementation
of the numerical solver are tested. In the context of atmospheric simulations, the
probably most commonly used tools are idealized test cases. The key ingredients
of this verification are reference solutions of the above-mentioned equation system
(Euler equations or analogous equation systems, see below), which can be delivered
for strongly simplified initial and boundary conditions.

A Closer Look at the Dynamical Core
It is commonly accepted that the Navier–Stokes equations for a rotating frame
describe the flow of the earth atmosphere with very high accuracy at least as long as
no diabatic heating Q (i.e., no phase changes and no radiative absorption or emis-
sion) takes place and the height range3 is roughly below 100 km. As mentioned in
the previous sections, phase changes of water, i.e., the formation of cloud droplets,
raindrops, ice, and snow crystals and also their interaction with radiation need an
extension of the compressible, non-hydrostatic Euler equations (29.1) in the form
of several parameterizations. Since numerical simulations for weather and climate
prediction have a resolution that is much larger than the Kolmogoroff scale length
(about a few millimeters), one replaces the Navier–Stokes equations (that describe
molecular diffusion) by the Euler equations plus an additional parameterization for
turbulent diffusion.

So, besides the parameterizations, the numerical solver of the Euler equations
(often called the ‘dynamical core’) is an important building block of an atmospheric
simulation model. Moreover, due to the quite universal meaning of the Euler equa-
tions in almost all fluid dynamic applications (i.e., beyond atmospheric dynamics),
it is reasonable to verify their proper implementation separated from the parameter-
izations.

In this context, it should be mentioned that not only in the past but also today
simplified equations derived from the Euler equations are still used to formulate a
dynamical core. Examples are the hydrostatic approximation (for large-scale flow),

3For height ranges above 100 km, the assumption of thermodynamic equilibrium begins to fail, and
one needs another stage of gas description like the Boltzmann equation.
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several degrees of the anelastic approximation (for smaller scale flow): the Boussi-
nesq approximation, the ‘standard’ form (Ogura and Phillips 1962), the ‘extended’
form (Wilhelmson and Ogura 1972), and the pseudo-incompressible approximation
(Durran 1998), or the ‘unified anelastic and quasi-hydrostatic equations’ (Arakawa
and Konor 2009).

Reference Solutions
There are several possibilities to derive reference solutions:

• analytic solution under certain assumptions,
• numerical solution by a benchmark solver,
• manufactured solution.

While manufactured solutions are relatively widespread in the fluid dynamics com-
munity, this verification method is less often used by meteorological dynamical core
developers. In the technique of manufactured solutions, one prescribes a ‘solution’,
i.e., relatively simple but nontrivial fields in space and/or time, inserts them into
the equation set and derives ‘right-hand sides’ of the equations just in a way that
this solution exactly fulfills this extended equation system (see Chap.12 by Roache
in this volume). We see two reasons why the method is not used extensively by
meteorological dynamical core developers. First, the additional implementation of
the artificial ‘right-hand sides’ may introduce accidental coding errors which remain
undetected. Second (and more severe), the artificially constructed solution may be
far away from meteorological relevance. In atmospheric dynamics, nearly balanced
states (i.e., hydrostatic, geostrophic) are highly relevant. Therefore, analytic solutions
of the true Euler equations are often preferred, because they are closer to realistic
meteorological flows.

More often used are reference solutions that are derived by a benchmark solver.
Imagine that we use a ‘highly enough resolved’ numerical solution of an already
existing ‘well-known’ and ‘highly confidential’ numerical solver. As indicated by
the apostrophes, the drawback of the benchmark is a certain lack of transparency.
However, the general advantage of such kind of reference solutions is their ability
to consider relatively complex and strongly nonlinear flows. In any case, one must
require that the reference solution has converged, implying that the equation system
must contain additional diffusion terms which are also present in the numerical
solver. Examples are the falling cold bubble test of Straka et al. (1993), the warm
bubble test of Robert (1993), both leading to Kelvin–Helmholtz- or shear-instability
phenomena, and for global models the Jablonowski and Williamson (2006) test case
of a baroclinic instability. The practical availability of such reference solutions may
consist in data files, e.g., containing a standard format like NetCDF or GRIB (the
latter recommended by the World Meteorological Organization, WMO) that can be
compared directly with the own solution via graphical plotting tools or by calculating
error measures. However, in many cases, the developer subjectively compares the
figures of a test case publication with his/her figures by ‘eye norm’.

As an alternative, one can try to gain an analytic solution for a test case. The charm
of this approach is the increased transparency compared to the benchmark approach

http://dx.doi.org/10.1007/978-3-319-70766-2_12
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since the derivation of this solution can be documented and therefore be reviewed
by other scientists. From this viewpoint, the use of analytic solutions is probably
the conceptually simplest verification approach. Additionally, the (relatively small)
source code which calculates the analytic solution can easily be delivered.4 How-
ever, nontrivial analytic solutions are in general hard to achieve, because the Euler
equations are very complex. We discuss the following techniques to alleviate this
problem: (1) subsets of the original equations, (2) approximated equation sets.

Considering subsets of the original equation set is relatively unproblematic when
the solver contains a related ‘switch’ tomimic this simplification. Examples for those
‘switches’ are the following:

• the shallow atmosphere approximation, i.e., prefactors 1/r (r = radius of spherical
coordinates) are replaced by 1/a (a = earth radius),

• no orography, i.e., all metric correction terms due to a curved terrain-following
coordinate are switched off,

• ‘flat earth’, i.e., related spherical metric correction terms are switched off,
• no Coriolis term, i.e., the Earth rotation vector Ω or its projection f = 2Ω sin φ

is just set to zero in the model.

Further subsets involve the consideration of ‘advection’ terms only, the consideration
for sound expansion only, the assumption of stationarity, and tests of very small code
parts. As a side remark, some of these groupings into subsets are connected to the
use of symmetries for the solution of the equations (e.g., time invariance or rotational
invariance).

Let us consider the subset of the (multidimensional) advection terms5 for a scalarφ

∂φ

∂t
+ v · ∇φ = 0. (29.2)

inmore detail. Themotivation for considering this relatively small subset of the Euler
equations is twofold. First, the advection process is very important for atmospheric
flows and takes a significant part of computation time. Second, idealized tests with
exact analytic solutions are well known. For example, for a given constant velocity
field v(r, t) = const any initial distribution φ(r, t = 0) = φ0(r) fulfills the advec-
tion equation for any later time t by φ(r, t) = φ0(r − vt). More complicated exact
solutions can be constructed by superposition principles, symmetry arguments in
higher dimensions, or by the method of characteristics for general first-order partial
differential equations. One quickly recognizes that the choice of v relative to the
coordinate axes of the model has an impact on how well the model simulation agrees

4In this context, we probably need to elucidate the term ‘analytic’ which may be beyond elementary
functions like sines or logarithms. The term ‘analytic’ refers to a solution that is given as a series
or in the form of integrals, and its calculation may require numerical methods, too. However, the
calculation of integrals or series is, in general, a much more robust operation compared to the
numerical solution of differential equations.
5In other fluid dynamic areas, these terms are called convective terms. Since the term ‘convection’
is otherwise used, ‘advection’ is preferred in the meteorological literature.
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with this exact solution. Therefore, many model developers prefer the ‘solid-body
rotation test’ with a prescribed velocity field v(r) = k × r around an axis k. Again,
the exact analytic solution of the advection problem is an appropriate rotation of
the initial solution φ0 around the same axis. Also, tests with an instationary velocity
field have been proposed (LeVeque 1996), and a superposition of this field with a
solid-body rotation on the sphere is used (Lauritzen and Thuburn 2012).

The subset of terms responsible for sound expansion (for the compressible Euler
equations) is another option, because simple analytic solutions exist in an isothermal
gas (so-calledN-waves in 3D problems). The assumption of stationarity, i.e., neglect-
ing all time derivativesmay also be useful in finding solutions, for example, Staniforth
and White (2007) present exact steady, axisymmetric, balanced zonal solutions for
the nonlinear Euler equations.

The most simple case of subsets are single parts of the numerical solver like the
divergence operator or the curl operator. Analytic solutions are easily available. For
such small code parts the denomination ‘unit test’ may be used: the entry point of
a test routine needs relatively little information (often only one field) and the result
field is also easily available. Still, for the assessment of a successful passing of this
unit test one has to allow tolerance ranges, a problem that is discussed below.

An analytic solution can sometimes be derived from an approximated equation
set in the sense of equation sets mentioned above (often in combination with some
of the ‘switchable’ simplifications listed above). Examples are the Boussinesq-
approximated linear solution of wave expansion in a channel by Skamarock and
Klemp (1992) or the also Boussinesq-approximated solution of nonlinear flow over
a mountain by Long (1953). Nevertheless, it is still quite difficult to find analytic
solutions for these equation sets. Moreover, a general drawback of such solutions
lies in the fact that it can be hard to assess if a deviation toward the solution of the
dynamical core under inspection is induced by an error or by the approximation; they
are ‘un-controlled’ approximations.

A certain exception is the method of linearization around a basic state or pertur-
bation theory in a broader sense. This approach allows to derive analytic solutions
almost in a recipe like manner. Additionally, it has the advantage to be a controlled
approximation. In other words, by reducing the perturbation parameter, higher order
terms become increasingly unimportant, and the approximated solution converges
to the true one. Examples are solutions of the wave expansion in channels of the un-
approximated, flat Euler equations by (Baldauf and Brdar 2013) for regional models
(see also Fig. 29.3) and of shallow atmosphere approximated equations (Baldauf
et al. 2014) for global models.

Comparing the Reference Solution with the Solution of the Simulation
After having identified a reference solution, it must be compared to the solution of
the simulation properly. This can be done via

• ‘eye norm’,
• convergence criteria,
• and additionally by checks of global conservation properties.
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Fig. 29.3 Comparison of the vertical velocity w between a simulation with the regional model
COSMO (colors and dashed lines) with a horizontal resolution of dx=250m and the analytic
solution of Baldauf and Brdar (2013) (lines)

Comparison by ‘eye norm’ is based on 1D line plots, 2D field plots, or 2D cross-
sections of 3D fields. Since the simulated solution will deviate in any case from the
exact reference solution, some tolerance must be accepted (e.g., Fig. 29.3). In many
cases, an experienced developer subjectively decides whether a particular test has
been successfully passed.

Convergence criteria are much less subjective, but only applicable when the ref-
erence solution is exactly known (i.e., in the sense of the reduced equation subsets
described above). In this case, the simulated solution must converge to the reference
solution when the spatial and temporal grid mesh size is gradually reduced. Ideally,
this convergence rate (it must be at least of first order for a consistent numerical
scheme) is known from the construction of the numerical scheme itself and can be
measured by numerical experiments in running the model with different spatial and
temporal resolutions. In practice, error measures are determined (most often L2 or
L∞-error) between the exact reference solution and the simulated solution for sev-
eral temporal and spatial resolutions. The verification procedure checks whether the
expected convergence occurs (e.g., Fig. 29.4).

Additionally, checks of general (most often global) properties are carried out. A
simple example is again the subset of the advection terms.Advectionwith an arbitrary
divergence-free velocity field has at least the following two properties: an initially
constant field φ0(r) = const should remain constant, and for arbitrary initial fields
the total mass should not change. Whereas any semi-Lagrangian solver easily fulfills
the first property, it has problems with the second one. Inversely any finite-volume
solver by construction fulfills the second property but has problems with the first
one. Similar checks can be done for global integrals of other variables than mass, if
they are globally conserved.

Many of the idealized tests mentioned before have time-dependent solutions
and therefore depend on the initial state. Whereas the initial state in an analytical
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Fig. 29.4 Same test case as
in Fig. 29.3: error measures
L2 (black line) and L∞ (red
line) for the numerical
solution against the analytic
solution given in Baldauf
and Brdar (2013). The two
dashed lines denote first- and
second-order convergence,
respectively; one recognizes
a convergence rate of
roughly 1.5

reference solution is well defined, its numerical implementation is less well defined.
That already a proper initialization can be a principal problem with idealized tests is
illustrated by the following example. For the Euler equations, some test cases assume
a hydrostatically balanced atmosphere which afterward is selectively disturbed, for
example, by warm or cold bubbles. To establish a reasonable test setup, it is neces-
sary to achieve the hydrostatic balance also numerically. In other words, the initial
pressure and density fields must be close to the initial analytic state without inducing
vertical accelerations just by the special numerical treatment of pressure gradient
or buoyancy terms. For most of the dynamical core formulations using a terrain-
following coordinate, such an exact balance cannot be fulfilled numerically in hilly
terrain. Consequently, evaluation of the test results have to deal with the question of
whether a difference between two numerical methods lies in the numerics or just in
differences of the initial balancing procedures.

Recommended Collection of Tests
To sum up: The previous paragraphs have explained how the dynamical core may
be verified by idealized test cases. Such a verification procedure is often complex
and time-consuming. Consequently, in practice, a specific selection of tests is car-
ried out for a new model development project. The selection should be generally
accepted, sufficiently small, sufficiently simple to carry out and interpret, and suf-
ficiently demanding for the dynamical core. Such a collection of tests has been
compiled for global atmospheric simulations, see, for example, the Dynamical Core
Model Intercomparison Project (DCMIP).6 For regional atmospheric simulations,

6www.earthsystemcog.org/projects/dcmip.

www.earthsystemcog.org/projects/dcmip
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this has also been achieved, for example, during the several ‘SRNWP-workshops
on nonhydrostatic modeling’.7 Similar collections can be found in the literature
(e.g., Giraldo and Restelli 2008).

29.3.2 Validation of Parameterizations

The basic concept of a particular parameterization scheme (e.g., deep convection, tur-
bulence) usually results from physical reasoning, intensive observation campaigns,
and special simulations which are usually higher resolved (e.g., Randall et al. 2003).

Regarding observation campaigns in the field, diagnostic studies are a common
procedure, e.g., Yanai and Johnson (1993). The spatial density of the observation
network corresponds to the ‘large scale’, i.e., the large-scale budgets are observed.
These can also be diagnosed based on the prognostic equations, so the respective
residuals are interpreted as the effect of the ‘unresolved state’.

Furthermore, observations can be used to drive a so-called ‘single-column’ simu-
lation. This method is based on the notion that parameterizations mainly describe
processes acting along the vertical axis and only rarely describe interactions between
neighboring grid points in the horizontal directions. In a single-column simulation,
the full-fledged atmospheric simulation is reduced to a single grid point in horizontal
space and still extends into the vertical. The horizontal dynamical flow is prescribed
by observations. Then the result of this simulation is evaluated by additional observa-
tions, assessing the capability of the parameterizations to provide realistic forecasts.

Apart from the single-column simulation, another type of special simulation can
be applied to developing the basic concept of a parameterization. These are atmo-
spheric simulations with an extraordinarily fine grid spacing, the so-called ‘cloud-
system-resolving’ simulations or ‘large eddy’ simulations. Their computational costs
are prohibitively large for time-critical forecasting, but the simulations can produce
highly resolved synthetic data sets. In contrast to ‘coarser’ simulations, their output
contains individual cloud elements in convective systems and individual large eddies
in turbulent flow. The forecast of these elements are not credible in a deterministic
sense, but a statistical analysis becomes possible, especially because the individual
elements cover a sufficiently wide range of time and space scales. The statistical
analysis helps in understanding the underlying physical processes and in testing the
parameterizations within the ‘coarse-grid’ simulations of time-critical weather fore-
casting (Randall et al. 2003). Obviously, the synthetic data sets are associated with
some caveats. They do not entirely rely on first principles, but also contain param-
eterizations pertaining to their ‘unresolved state’. Observations collected in special
field programs are used to ‘certify’ that a high-resolution simulation is a reliable tool
for the simulation of a particular regime, e.g., Heinze et al. (2017).

7http://www2.mmm.ucar.edu/projects/srnwp_tests/index.html.

http://www2.mmm.ucar.edu/projects/srnwp_tests/index.html
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29.3.3 Comparison to Observations

While the previous sections have looked at the model components in isolation, this
section focuses on the simulation output of the comprehensive model including all
ingredients (cf. Fig. 29.1). The output of this kind of simulation is a serious attempt
at forecasting the weather as it occurs in reality.

Weather forecasting is in the lucky situation that the target of the forecast (e.g.,
the weather in 1–10 days) can be observed in due time so that success and failure
of the forecast are known to a reasonable extent. Since several decades, very many
national and international weather forecasting centers estimate the quality of their
weather forecasts quantitatively and systematically. The results show that weather
forecasts have improved substantially during the past 50 years (cf. Fig. 29.5 and also
Bauer et al. 2015).

A systematic comparison between simulation output and ‘observational data’
is usually based on a number of weather forecasts, usually taken from a series of
subsequent days (e.g., several weeks or months) with a weather forecast started
at each of these days. In the terminology of the meteorological community, this
retrospective comparison is referred to as ‘verification’.

Fig. 29.5 Improvement of weather forecasts at DWD over the past 50 years. Meteorological vari-
able: Mean sea level pressure. Measure for quantifying the difference between simulation output
and the model analysis (i.e., the closest approach to observations): Tendency correlation coefficient,
i.e., the correlation of anomalies. In this case, forecasts and analysis were corrected by the mean
sea level pressure at forecast initialization. Global averages of the coefficient were obtained by
arithmetically averaging correlations at each 1.5◦ × 1.5◦ area within the verification region. Yearly
correlations were obtained by averaging daily correlations. Model which was used to produce the
simulation output: the weather prediction model at DWD; type and version which was operational
at that time. Since 1991, these models cover the globe. This verification study refers to a region
confined to the North Atlantic and Mid Europe. Adapted from the annual report by DWD (DWD
Jahresbericht 2016)
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When used in an interdisciplinary context, the term ‘verification’ can be mislead-
ing. First, observations are certainly not considered as ‘perfect’ or ‘true’. Second,
the comparison to observations is not considered as the overarching and sufficient
quality criterion when setting up an atmospheric simulation (cf. Sects. 29.2.1 and
29.3.1). And last but not least, the meteorological notion of ‘verification’ is by no
way related to procedures of ‘source code verification’. Therefore, some meteorol-
ogists prefer the term ‘evaluation’ or ‘validation’, but the tradition of using the term
‘verification’ is very established and still predominant.

A description of common practice in ‘verification’ can be found in Wilks (2011),
Jolliffe and Stephenson (2011), or Casati et al. (2008). The design of a system-
atic comparison between simulation output and observations involves the following
ingredients:

• identify available observations, including their quality control,
• pairwise matching of forecast value and observed value,
• identify a forecast aspect of interest given an application and/or the development
process,

• select quantitative measures or graphics related to the relevant aspect,
• identify a benchmark forecast or a reference level of skill.

Observations are available due to a national and international observation net-
work, including ground stations, radiosondes, ship and aircraftmeasurements, buoys,
satellites, and radar. For example, Germany has an observing network consist-
ing of 180 ground stations (plus 1800 stations working in an honorary capacity),
10 radiosonde stations, and 17 weather radars. In addition, measurements are taken
by hundreds of ships and aircrafts, and the European weather satellite Meteosat.
This is embedded in an international data exchange, so DWD also receives the data
acquired worldwide.

On the one hand, the observation network is used for deriving an initial state
for the time-critical prediction process, and, on the other hand, for the retrospective
quality control of the forecast. In principle (and sometimes in practice), the initial
state specification (i.e., the so-called ‘analysis’) could be also used in the retrospec-
tive quality assessment of forecasts, but this comes with severe caveats because the
computer simulation itself already plays a key role within the specification of its
initial state (Casati et al. 2008).

Quality control of observations consists in the elimination of very unlikely values,
the correction of known errors (e.g., due to instrument limits or the observation site),
and the estimation of uncertainty. The last point, the estimation of uncertainties, is
still often neglected in validation. However, in recent years, forecast accuracy has
become better and better, so the weather forecasting community is now starting to
tackle this question as well (e.g., Bowler 2008).

The traditionalway of comparing the simulation outputwith observationsmatches
the time and location of an observation with the time and location of a forecast
value available on the model grid. As a result of the matching procedure, a set
of observation–forecast pairs becomes available. Various matching procedures exist,
e.g., nearest point, bilinear interpolation. Characteristics of the simulation setup such
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as grid size and the grid-averaged orography are usually taken into account. Further-
more, it is beneficial if the observation is representative for an area as opposed
to a very specific point (otherwise, the so-called representativeness errors arise).
Concerning ground stations, this is partly attained by very thoughtful placement of
observing sites. With decreasing grid size of the simulation, the representativeness
error becomes less and less relevant. Recently, more indirect observations, mostly by
remote sensing observations from radar (microwave reflectivity), lidar (backscatter
signals) or satellites (e.g., photographs of the atmosphere in different electromag-
netic wavelength windows) are compared with equivalent forecast products which
are derived by so-called ‘forward operators’ within the simulation. These operators
produce synthetic versions of radar, lidar and satellite fields which are compatible
with the atmospheric state as seen by the simulation.

Theoretically, the comparison between observations and simulation output could
look at a myriad of variables, locations, quality aspects. Unfortunately, and to a large
extent, options are already reduced by the number and types of available observa-
tions. However, some degree of reduction is also desirable to highlight ‘relevant’
forecast aspects. The identification of ‘relevant’ aspects may be guided by forecast
applications or by research questions posed by developers. The reduction of aspects
(either desired for some reason or dictated by the observation network) may lead to
a focus on specific variables (e.g., temperature, precipitation), vertical levels (e.g., at
the surface, in 100 m height), specific regions (e.g., over complex orography, over
land/sea), a specific range of values (e.g., close to freezing point, severe rainfall
amounts). It may be of interest to aggregate the values (e.g., minimum during the
day, the sum over a hydrological catchment area) or to look for specific patterns
(e.g., a sudden change in time). And last but not least, it can be very helpful to
specifically look at certain conditions (e.g., a specific season, short or long forecast
lead times, convective situations).

Given the applications, forecast aspects are of interest which eventually affects a
decision-making process in the subsequent process chain (e.g., the forecaster decides
to issue a weather warning, leading to protective action by stakeholders). Because of
the development process, it is desirable to find and eliminate the source of potential
errors which propagate through the simulation and eventually affect an application.
For example, errors at 5 km height are certainly of interest, because they may cause
errors near the surface. However, due to the high complexity and nonlinearity, it can
be very challenging to attribute the shortcomings of a forecast to a particular flaw
in the model, e.g., to particular weakness in a parameterization scheme or a missing
physical process. This is why experts sometimes start with a subjective assessment
of a few selected cases to identify certain aspects which are then assessed more
objectively.

For the ‘objective’ comparison between simulation output and observations, a
number of quantitative measures are available, either in the form of graphics or
‘scores’ (see, for example, Jolliffe and Stephenson 2011 and Wilks 2011). It is
common practice to apply many scores rather than just one or two. They can be
categorized by looking at the formulation of the forecast first. The forecast can be
formulated as (1) a continuous variable (e.g., the temperature value), (2) a binary
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event (e.g., temperature below freezing point: yes or no), (3) a probabilistic informa-
tion (e.g., probability of the event ‘below freezing point’: 0–100%).More information
on probabilistic forecasting is provided in Sect. 29.4.

Somemeasures of forecast quality can be found in the standard literature of statis-
tics, especially those for continuous variables. A very obvious example is the sum
of pairwise differences between the previously matched observations and forecasts
(i.e., the forecast ‘bias’). Further obvious examples are the mean square error (see
example in Fig. 29.6) and the Pearson correlation coefficient (see Chap. 18 by Saam
in this volume). In addition, there is a multitude of measures which are confined to

Fig. 29.6 Examples of verification results for a continuous variable (top) and a binary event (bot-
tom). Top: The results refer to the forecast variable ‘temperature in 2m height’. Forecast quality is
estimated by the root mean square error, calculated at each observation site and averaged spatially.
The match between forecast and observation includes horizontal bilinear interpolation of three
model grid points and a correction due to their deviations in altitude. Verification results are shown
as a function of forecast time for two versions of the forecast model ICON. Bottom: The results
refer to the binary event ‘precipitation sum (accumulated over 1 h) greater than 2 mm: yes/no’.
The measure of forecast quality is the ‘Equitable Threat Score’. Verification results are shown as a
function of forecast time for two versions of the regional forecast model COSMO

http://dx.doi.org/10.1007/978-3-319-70766-2_18
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Table 29.1 The contingency table summarizes the bivariate sample of observed/forecast events

Observed YES Observed NO

Forecast YES Hits False alarms

Forecast NO Misses Correct rejections

the meteorological community, especially the scores for binary events (e.g., Heidke
Skill Score, Equitable Threat Score, see example in Fig. 29.6). Many of these mea-
sures summarize the bivariate sample of observed/forecast events as presented in the
‘contingency table’ (Table 29.1).

Some measures directly relate to estimated properties of the underlying joint,
marginal, and/or conditional distribution (e.g., probability that the event is forecast
under the condition that it is observed). Probabilistic forecasts are rated by yet another
set of measures which typically look at ‘reliability’, ‘discrimination’ or ‘resolution’,
‘sharpness’. Typical limitations of various scores are also well known (e.g., Gaussian
assumption, spurious correlations due to trends or the diurnal cycle) and often the
question is posedwhether a particular score has desirable characteristics, for example
being ‘proper’ which prevents hedging (Bröcker and Smith 2007).

Once the forecast has been compared to observations via some quantitative mea-
sure, the estimated quality of the forecast is very often related to the respective quality
of a benchmark forecast. Typical choices of benchmark forecasts are the output of
a slightly different simulation method, the observed weather of the previous day
(‘persistence forecast’), or a random draw from climatological conditions. This way,
a reference level of ‘forecast skill’ is identified.

Taking another look at the matching procedure described above, there is a pitfall
called the ‘double penalty problem’. Imagine that simulation A can capture short
wavelengths of a spatial field (e.g., a small-scale trough in the pressure field) and
that these short wavelengths are also present in the observations, but with a slight
phase shift compared to simulation A. The standard matching of forecast and obser-
vation pairs shows that simulation A predicts the low-pressure event where it was
not observed, and it does not predict the event where it was observed. In a nutshell,
the forecast of simulation A is wrong at all locations. Imagine that the benchmark
simulation B, on the contrary, presents a spatially smoother forecast without any
low-pressure events. Then the benchmark simulation B may be rated as the better
forecast because it is correct at those locations where the low-pressure event was not
observed. From a certain perspective, this result is counterintuitive, so it serves as the
motivation for another set of measures, the so-called spatial methods. They can be
classified into scale-separation, field-deformation, feature-based, and neighborhood
methods (Gilleland et al. 2009; Ebert 2009).

Another critical point is the sampling issue, which exists in several flavors. One is
spatial under-sampling associated with those observation types which cover only few
locations compared to the vast number of grid points of the simulation (e.g., ground
stations, radiosondes). Another one is the number and selection of forecast days that
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are contained in the verification period. When two simulation types are compared in
terms of their measured forecast quality (e.g., Fig. 29.6), the statistical significance
of the estimated differences can be of interest (e.g., attained by bootstrapping or
significance tests). Reaching statistical significance may require a very thoughtful
design of the simulation experiment, considering computational costs (i.e., number
of days) and selection of days (e.g., representing a specificweather regime or season).
Furthermore, if the improvements are targeted at rare weather events, the detection
of forecast improvements faces additional challenges and pitfalls (e.g., Lerch et al.
2017). Statistical significance is harder to reach and, as another challenge, many
traditional verification scores are not suitable which has led to the development of
novel measures (e.g., Ferro and Stephenson 2011).

29.4 Uncertainty Estimation via Ensemble Forecasting

As with many other predictions, the prediction of weather is prone to errors and
uncertainties. Especially in weather forecasting, the ‘perfect’ computer simulation is
principally out of reach. This is not only a flaw of the computer simulation itself but
also a characteristic of the real atmosphere which is a classic example of a so-called
‘chaotic system’ (cf. Bauer et al. 2015 and the original paper by Lorenz 1963). Tiny
errors in the initial state grow rapidly during the time evolution of the atmosphere.
The predictive power of the initial state vanishes when the forecast looks further
and further into the future. Although its underlying equations are deterministic, the
system appears ‘unpredictable’, in the sense that it is extremely sensitive to details
in the initial state which cannot be specified with such tremendous accuracy.

In theory, the problem of simulating the uncertainty can be posed regarding equa-
tions describing the time evolution of the probability density function of the atmo-
spheric state vector. Such equations are known: the Liouville equation for the growth
of initial uncertainty, or a form of Fokker–Planck equation if uncertainties in the pro-
cess formulation are also taken into account (Ehrendorfer 1997).

In practice, however, the solution of these equations is hampered by the large
dimensionality of the atmospheric system. Instead, it is possible to attain a prag-
matic ‘Monte Carlo sampling’ of the phase space of the future atmospheric state
(Leutbecher and Palmer 2008). Initial condition uncertainty is addressed by produc-
ing an initial condition sample and by starting a deterministic simulation from each
element of the sample. As a result, an ‘ensemble’ of forecasts is available. Each
scenario, a so-called ‘member’ of the ensemble, is supposed to represent a reason-
able possibility of the atmospheric evolution. Typically, such an ensemble comprises
10–50 members and the ensemble members move apart with increasing forecast
time. They convey an idea of the day-specific predictability of the weather, and they
provide the basis for probabilistic forecasts (e.g., 5% probability that temperature
is below freezing point). The translation from ensemble members into a probability
forecast may involve additional information sources (e.g., Bröcker and Smith 2008).
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In addition, uncertainties in the representation of parameterized processes (cf.
Sect. 29.2.1) are often addressed with explicit perturbations in the formulation of
the parameterization. An ideal design would involve perturbations of all simulation
ingredients which are subject to uncertainty as far as it is known. An all-embracing
implementation of this vision is not common practice but remains a guiding idea.

Ensemble forecasts and the resulting probabilistic forecasts also undergo the stan-
dard quality assessment described in Sect. 29.3.3. As expected, even the simulation
of forecast uncertainty is not perfect. For example, a forecast of ‘30% chance of
rain tomorrow’ can be compared with observations by collecting many of such ‘30%
forecasts’. Then it can be quantified in how many of these cases the observation
detected rain versus the number of cases with ‘no rain’. Many further quality cri-
teria can be checked, such as the ability to discriminate between observed forecast
errors given a high or low forecast confidence. More information on the comparison
of probabilistic forecasts to observations can be found in Jolliffe and Stephenson
(2011) and Wilks (2011).

There certainly are limitations of the ensemble method. First, not every origin of
forecast uncertainty is known and therefore the ensemble method cannot be designed
to represent them properly. Second, the realistic simulation of error growth can be
hampered by imperfections in the model itself. Third, the number of members in the
ensemble is limited by the available computer power or, in other words, has to be
traded against the intrinsic complexity of the deterministic simulation method. This
can result in a dilemma, for example, regarding convective precipitation. On the one
hand, the representation of convective processes benefits from a very dense spatial
grid, because convection takes place on small scales. On the other hand, convection is
very prone to chaotic behavior, so the ensemble approach is vital and it requires many
members to capture also the very hazardous events associated with low probabilities.
To some extent, limitations of the ensemble simulation output can be alleviated
within the subsequent process chain (Fig. 29.2). Human experts or statistical post-
processing schemes can partly account for those deficiencies which are known from
experience or past data (e.g., Wilks and Hamill 2007). When assessing the quality
of the ensemble approach, a pragmatic benchmark can be generated by collecting
several deterministic weather forecasts (e.g., Hamill 2012). These are available when
several weather agencies produce forecasts for the same time range and overlapping
forecast regions.

Another active area of research is the practical use and relevance of uncertainty
information, for example, in the formulation of weather warnings and in decision-
making by stakeholders (e.g., see Kox et al. 2015 and references within). Respective
validation concepts are beyond the scope of this chapter.

29.5 Discussion and Summary

Weather forecasting is in the fortunate situation that the output of weather simu-
lations can be compared to observations in a retrospective manner. In the commu-
nity of weather forecasting, this kind of quality assessment is traditionally called
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‘verification’ which may lead to confusion in interdisciplinary dialogues. The com-
parison between simulation output and observations is recognized as a very fruitful
method, but challenges remain and are subject of current debates:

• Due to the tremendous size of the simulation output (i.e., including all grid points,
levels, and variables), the observation network is certainly not able to cover the
entire simulation output. Therefore, quality can be assessed to some extent, but
this may not match questions arising from the intended use or posed by developers.

• The match between observations and forecasts remains difficult, e.g., due to low
representativeness and quality of observations, or slight shifts in location and
altitude. The general means to tackle this problem is the use of forward operators.

• Furthermore, expert reasoning is required regarding the number and selection of
dayswithin a verification period. For example, the period can be too short (i.e., lack
of statistical significance), or it can be too diverse (i.e., improvements for a specific
weather situation are obscured).

• Further challenges arise when assessing the ability to forecast extreme and rare
weather events.

• In addition, the tendency to use finer and finer spatial grids in weather simulations
has introduced the ‘double penalty’ problem. For example, it is difficult to compare
the quality of fine-grid simulations with the quality of coarse-grid simulations.

• The quality of a forecast can be rated according to a multitude of aspects, and
each of them can be quantified by many different measures. This leads to a variety
of results which require interpretation and priorities, especially when there is a
practical need to identify the ‘superior’ model version.

In terms of uncertainty estimation, a method called ‘ensemble forecasting’ has
made its way into operational centers during the past 25 years. Multiple simulations
are started and result in an ensemble of possible outcomes which aim at representing
the predictability of the day. The known sources of forecast uncertainty are addressed
by sampling from a realistic range of options, which feed into the respective simula-
tions. Due to the chaotic nature of the atmosphere, initial conditions are recognized
as a major source of uncertainty, together with the imperfections of the model. The
outcome of the ensemble forecast is translated into probabilistic forecasts and their
quality can be assessed in a statistical manner. Ensemble forecasting is well estab-
lished today, but challenges remain. Active debate and research arises from several
questions:

• Sources of forecast uncertainty are not known to a full extent.
• A realistic simulation of error growth may be hampered by imperfections of the
model, so the representation of forecast uncertainties is a challenge.

• As the atmospheric system is high dimensional and nonlinear, a considerable
number of ensemble members is required. Due to limited computing resources,
this requires a thoughtful compromise regarding other requirements such as the
complexity of the model.

The comparison between forecasts and observations does not only inform users
of the forecast but also the developers, who wish to translate the diagnosed short-
comings into improvements of the model. In this respect, the architecture of the
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atmospheric model plays a role, especially its partitioning into the ‘dynamical core’
and ‘parameterizations’. The proper implementation of the ‘dynamical core’ is usu-
ally tested via idealized test cases, for example, by deriving analytic solutions for
equation subsets, or by linearizations around a basic state. This kind of verification
is also well established, and some aspects are typically under discussion:

• In practice, the number of tests needs to be manageable. Expert reasoning is
required to agree on a selection, typically balancing the following criteria: demand-
ing for the dynamical core, meteorologically relevant, credible reference solution,
sufficiently simple to interpret and carry out.

• The verification of a ‘dynamical core’ checks for several properties, so developers
need to set priorities in their requirements.

• Directly comparing the quality of different ‘dynamical core’ formulations can be
problematic, as some fulfill a specific check by definition.

After setting up the ‘dynamical core’, ‘parameterizations’ are added which represent
the ‘unresolved state’ of the atmosphere. Their physical basis is much weaker and
they are recognized as a relevant source of forecast uncertainty, but their role in the
atmospheric model is indispensable. To a limited extent, evidence for a particular
formulation is gathered by special observation campaigns and special simulation
experiments. However, their ultimate eligibility and their fine-tuning only come into
reach after putting the entire simulation together and testing its output against obser-
vations as described above. When shortcomings become visible, it can still be very
difficult to translate them into improvements of the model, because the atmosphere is
a high-dimensional and nonlinear system. Typically, the improvement and the assess-
ment of the simulation method have an iterative character. Depending on the degree
of ‘grid invariance’, the separation between the ‘resolved’ and the ‘unresolved state’
is recognized as an unsatisfying compromise and accompanied by a lively debate.

As a summary, validation of the simulation output and uncertainty estimation
are well established in weather forecasting for many years. Some techniques and
questions may be similar in other disciplines, especially when dealing with nonlinear
partial differential equations, data in high-dimensional spaces, chaotic systems.
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Chapter 30
Validation of Climate Models:
An Essential Practice

Richard B. Rood

Abstract This chapter describes a structure for climate model verification and val-
idation. The construction of models from components and subcomponents is dis-
cussed, and the construction is related to verification and validation. In addition to
quantitative measures of mean, bias, and variability, it is argued that physical consis-
tency must be informed by correlative behavior that is related to underlying physical
theory. The more qualitative attributes of validation are discussed. The considera-
tion of these issues leads to the need for deliberative, expert evaluation as a part
of the validation process. The narrative maintains a need for a written validation
plan that describes the validation criteria and metrics and establishes the protocols
for the essential deliberations. The validation plan, also, sets the foundations for
independence, transparency, and objectivity. These values support both scientific
methodology and integrity in the public forum.

Keywords Climate ·Modeling · Verification · Validation · Science · Society ·
Quantitative · Qualitative · Community

30.1 Introduction

This chapter addresses the evaluation and validity of climatemodels. This subject has
been addressed from the point of view of several disciplines: natural science, philos-
ophy, computational science, software engineering, and law. The ultimate conclusion
of this chapter is that an essential practice of climate model validation is needed to
support the scientific, political, and societal uses of the scientific investigation of the
Earth’s climate.

The genesis of this chapter is the management, during the 1990s, of the
Data Assimilation Office at the National Aeronautics and Space Administration’s

R. B. Rood (B)
Department of Climate and Space Sciences and Engineering,
University of Michigan, Ann Arbor, MI 48109, USA
e-mail: rbrood@umich.edu

© Springer Nature Switzerland AG 2019
C. Beisbart and N. J. Saam (eds.), Computer Simulation Validation,
Simulation Foundations, Methods and Applications,
https://doi.org/10.1007/978-3-319-70766-2_30

737

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-70766-2_30&domain=pdf
mailto:rbrood@umich.edu
https://doi.org/10.1007/978-3-319-70766-2_30


738 R. B. Rood

(NASA’s) Goddard Space Flight Center. The Data Assimilation Office1 developed
global weather and climate models that merged observations with model predictions.
This process is called data assimilation.

Because the products of the Data Assimilation Office were to have routine appli-
cations in NASA’s missions and scientific programs, it was required that they have
a transparent and peer-reviewed validation process. The first version of the valida-
tion plan is described in the Data Assimilation Office’s Algorithm Theoretical Basis
Document (Data Assimilation Office 1996). This formalized validation process was
institutional and beyond the testing and evaluation that occurred in the day-to-day
activities of scientists and computational experts.

NASA has a strong culture of verification and validation for hardware, software,
and observational data (for example, National Aeronautics and SpaceAdministration
(NASA) 2016). Extension of this culture to products and predictions from weather
and climatemodels was, on the surface, self-evident. However, many scientists main-
tained that models could not be validated.

An influential paper by Oreskes et al. (1994) sets the formal argument that, in gen-
eral, numericalmodels of geophysical phenomena cannot be validated. The argument
is twofold. First is that “the climate” cannot be observed in its entirety. Second is that
models are nonunique estimates of possible climate states. There are many threads to
be followed in this argument, including that even if one were able to entirely observe
“the climate” and themodel happened to represent that instant, did themodel do it for
the right reasons? At the core of these arguments is that discrete numerical represen-
tations of the climate are always estimates with associated errors. As these models
are constructed, they are designed to account for these errors; model performance is
always a function of compensating errors.

The echoing of the statement that weather and climate models “cannot be val-
idated” does not serve the discipline well. It belittles the consuming efforts of a
large community of scientists and software engineers, who spend their time in many
forms of testing and validation. Given the societal uses of weather and climate mod-
els, ranging from alerts of tornado risks days in advance to requiring changes in the
world’s energy systems to limit environmental warming, the notion that such models
cannot be validated provides an unstable foundation for end users. It also contributes
to a stable foundation of political argumentation that model-based predictions are
too uncertain on which to base policy (Edwards 2010, Chaps. 15 and 16; Lemos and
Rood 2010)

Focusing only on the roles of models and validation in the scientific method, the
conclusion that models cannot be validated is at odds with scientific practice. Though
people often view “science” as the domain of factual truth, the outcomes of scientific
investigation are not “facts.” Rather, the scientific method is the foundation for the
exploration of natural phenomena with the outcomes being knowledge and a descrip-
tion of the uncertainties of that knowledge. The process of validation substantiates
the uncertainty descriptions. Facts are, perhaps, knowledge with vanishingly small
uncertainty, a rare outcome in the study of complex, natural systems. That models

1Now Global Modeling and Assimilation Office (https://gmao.gsfc.nasa.gov/).

https://gmao.gsfc.nasa.gov/
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cannot be validated is a conclusion that is meaningful in an abstract sense, perhaps,
as an asymptotic approach to unknowable truth. However, such an unbounded inter-
pretation of models stands at odds with verifiable evidence of the valid use of models
and their ubiquitous and successful applications in society.

This chapter is organized as follows. The next section outlines some of the philo-
sophical discussions of climate model validation and the development of community
validation efforts by climate scientists. This is followed by the definition of terms
that describe the use of climate models in the practice of scientific investigation.
Then, there is a deconstruction of how weather and climate models are built, eval-
uated, and deployed. The definitions and the deconstruction are then synthesized to
describe a general approach to the roles of testing, evaluation, verification, and vali-
dation in climate science. In the concluding discussion, the crucial role of validation
in scientific organizations is described. The end conclusion is that validation is an
essential practice of climate science, vital not only to the credibility and legitimacy
of the scientific investigation but also to the applications of models in problems of
decision-making in management and policy.

30.2 Climate Model Validation: Emergence of Definition
and Community Practice

The Oreskes et al. (1994) paper serves as the starting point for a quick review of
the verification and validation of models of natural systems. Other chapters in this
volume provide more complete discussions of verification and validation, errors,
uncertainties, calibration, and methodologies. The chapters on Weather Forecasting
and Uncertainty Quantification Using Multiple Models are directly relevant to this
chapter. Therefore, only an outline relevant to climate models is provided here.

Norton and Suppe (2001) discuss the credibility of climate models and point
out that all of modern science relies on models. This is true, even, for what we
define as observations. This is especially important for satellite observations, which
are core to climate model evaluations. As will be discussed later, the reliance on
models to determine the “observations” confounds the issues of independent sources
of information for evaluation purposes.

Climatemodeling is classified as computational science (Post andVotta 2005) and
relies upon computational fluid dynamics. There is a rich literature on verification
and validation in computational fluid dynamics, much of which is directly related to
both weather and climate modeling.

Importantly, there have been efforts to standardize the language, with, broadly,
verification focused on the correctness of the computational implementation, and
validation focused on comparison of simulations with observations of the natural
or experimental states. Oberkampf and Trucano (2002) provide an extensive review
of verification and validation in computational fluid dynamics. In their review, they
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describemultilevel strategies and break down the construction, testing, and validation
of complex codes. Some of the details of their approach will be used later. Roy and
Oberkampf (2011), focusing on emerging techniques of uncertainty quantification,
describe a structured approach to verification and validation. They demonstrate their
methods comparing simulations to measurements from a wind tunnel.

Roache (1998, 2016) separates verification into two types. The first type is a
verification that the computational code does what it is intended to do. The second
type is a verification, focused on computational solutions, that describes the expected
uncertainties in the calculation. Validation is then the comparison of the code with
measures of reality, which can be measures of nature or measures of experiments.

The distinction that verification refers to computational attributes of simulation
science and validation refers to comparisons of simulations to observations will be
used here (see Chap. 4 byMurray-Smith in this volume). We also accept that climate
models can be validated, and that the process of quantifying and describing the
predictive skill of models is “model validation.” (Dee 1995). Dee (1995) states, also,
that constructive approaches to a model validation “process requires not a binary
criterion of (true or false, valid or invalid) but rather a continuous one.”

There are a number of unique practices of climate model evaluation that have
emerged from the internationalmodeling community. This is, in part, a response to the
political and societal uses of climate models and their implications for foundational
changes to global energy practices, built infrastructure, and economic robustness
(see Saam’s chapter on User’s Judgements in this volume).

Notably, the climate science community has developed a culture of model inter-
comparison projects (MIPs). Gates (1992) describes the Atmospheric Model Inter-
comparison Project (AMIP). Characteristics of AMIP included simulation design,
model specification, and the goal of all modeling groups performing the same suite
of simulations. Also, important to the intercomparison is objective evaluation by
independent experts, which is often achieved by spanning a community of experts.
That is, diagnostics are prescribed that all modeling groups have to provide, and the
ultimate analysis and synthesis include scrutiny by others than the model develop-
ers. The Coupled Model Intercomparison Project (CMIP)2 was founded in 1995 and
now focuses on the coupled atmospheric, ocean, land, ice, and biosphere models that
are used for climate modeling. The CMIP experimental design changes from one
community-wide experiment to the next. CMIP design and use are highly motivated
by the needs for international assessments of climate change, such as those under
the auspices of the Intergovernmental Panel on Climate Change.3

Sundberg (2011) investigates the culture of model intercomparison projects. A
finding of Sundberg is that model intercomparison projects serve both social and
scientific functions. The projects define credibility within a community by defining
the type of experiments that the models are expected to be capable of and, ultimately,
the standards of performance in those experiments. Climate model evaluation is
distinguished by comparisons with past observations to establish the credibility of

2https://www.wcrp-climate.org/wgcm-cmip.
3http://www.ipcc.ch/.
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future, unobserved, states. The observational-based analysis provides metrics, which
emerges as defensible standards that have the endorsement of the dominant portion
of the community. Sundberg (2011) contends that one purpose of intercomparison
projects is to establish modeling as a pillar of scientific investigation on par with
observational and theoretical (analytical) methods of investigation.

A number of researchers have studied the institutional practices of climate model
evaluation. Guillemont (2010), interviewing at both European and United States
institutions, concludes that there is “no systematic protocol for evaluating models.”
However, it is clear that the practice of climate model evaluation at all of the cen-
ters involves many of the same steps. These steps address issues of both software
development and scientific development. They span the complexity of the system,
the different scales that need to be represented, and the richness represented by the
observations.

Complexity of both climate models and the Earth’s climate is a recurring theme
in the efforts to evaluate and establish the validity of climate models. Lenhard and
Winsberg (2010) maintain that the complexity of climate models conflated with the
history and practice of climate model development pose fundamental challenges to
model validation. They conclude that “analytic understanding” of climate models
in the sense of being able to link climate model successes or failures to specific
shortcomings in the sub-models that represent specific physical processes is difficult,
unlikely, and perhaps impossible. This leads to an evaluation strategy that looks,
as a system, at the performance of climate models, realism as expressed by the
observations, and consistency of the models and observations with the theory on
which the models are built. Lenhard and Winsberg (2010) maintain that for the
foreseeable future, climate model credentials will rely on expert interpretation of
many simulations by many models, that is, the results of a plurality of models.

The emergence of community intercomparison projects promotes the develop-
ment of shared standards of evaluation. The practice establishes the essential role of
observations in the evaluation process. This contributes to the credibility of model
simulations, by enabling a form of evaluation that is more rigorous than model-to-
model comparisons, which occur in less data-rich disciplines.

A culture of verification and validation emerges from climate modeling com-
munity, which includes both observations and simulations. The models, originally
designed as simplified representations of nature, become, themselves, complex sys-
tems whose behavior is difficult to describe. Evaluation, verification, and validation
are, then,multilayered processes that cross disciplines andwhich usemany sources of
observations and many types of models. Verification and validation are vital aspects
of the construction and applications of climate models, and these processes are so
ingrained into the cultures of modeling centers, they are often not specifically rec-
ognized (Shackley 2001).
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30.3 Definition of Terms

This section defines some key terms to formalize the structure of climate model
validation.4 Relevant material is found Chap. 2 by Beisbart and Saam and in Chap.
4 by Murray-Smith in this volume.

There is a need to define terms to provide a stable foundation for communications
as well as to comply with the principles of scientific investigation and to support
scientific organizations. The challenges of defining terms are made more difficult
because there are needs to establish both the computational and natural science
credibility of models. There are often ambiguities in language, because meaning is
based on the background and goals of individuals and expertise groups.

Evaluation is a general term that includes both quantitative measures and qualita-
tive analysis of a model’s ability to address its design goals. Validation follows from
the comparison of model simulations with observations of nature or experiments to
establish the accuracy of the natural science of the model. Accuracy is informed
by quantitative, often statistical, measurement of the suitability to address a specific
application. Verification is associated with the computational integrity of the code
and might include comparisons with analytic test problems as well as comparisons
to high-fidelity computations. Testing is defined as part of verification and valida-
tion. That is, testing checks the performance, quality, reliability—generically, some
attribute in a way that is narrowly defined compared to the model as a whole (Clune
and Rood 2011).

“Systems” validation is defined as a comparison with an established baseline of
simulations from an earlier release of the modeling system. For example, a compar-
ison might be made with a portfolio of simulations of historical sets of observations.
“Scientific” validation is a more open-ended process focused on the model’s abil-
ity to address classes of physical processes or predictive problems for which it was
designed.

The categories of system validation and scientific validation suggest another way
to classify validation practice. Systems validation considers a candidate model; that
is, a model under development intended to improve upon previously validated mod-
els. Comparison is made with observations as well as with the baseline version of
the model.

Statistical methods are used to quantify spatial and temporal behavior, i.e., mean,
bias, and variability. Statistics-based validation does not provide much information
on the robustness of underlying physical, chemical, or biological processes. That is,
the validation result does not say whether or not the model’s answer is obtained for
the right reasons; cause and effect is not evaluated. Process-based validation focuses
on the representation of phenomena. Process-based validation often relies on the
collection of extraordinary datasets from a quasi-isolated event that is characteristic

4Gettelman and Rood (2016) provides an introduction to climate science and climate modeling.
Gettelman, A., and Rood, R. B. (2016), Demystifying Climate Models: A Users Guide to Earth
Systems Models, Springer, Berlin, Heidelberg, pp. 274. The book is open source and available
electronically at http://www.demystifyingclimate.org/, which also includes a list of errata.

http://www.demystifyingclimate.org/
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of common types of events. An example might be to trace the evaporation of water
from the Earth’s surface to its return to the surface as precipitation in a thunderstorm.
This process-based approach informs whether answers are obtained for the right
reason.

Turning attention to the computational aspects of a model, verification can also
be broken down into many steps and processes. Unit tests are fine-grained, low-level
tests to assure that the programmer has, in fact, programmed instructions or algo-
rithms correctly. Systems verification might include the ability to represent problems
with known analytic solutions or to manipulate synthetic data with known proper-
ties. Another verification strategy is to compare a model simulation that has been
developed as a benchmark through, perhaps, a calculation at an extraordinary reso-
lution with a highly accurate numerical method that is too expensive to be run rou-
tinely (e.g., Jablonowski andWilliamson 2006). In the verification process, tests also
focus on bitwise reproducibility, checkpoint restarts, and parallel versus sequential
computational fidelity. Clune and Rood (2011) describe verification practice more
completely.

As described above, there are multiple steps of verification and validation that
comprise the whole of the evaluation process. The steps of verification and validation
span a range of complexity, which could be described as hierarchical. However, the
steps are better viewed as interactive, part of the iterative, deliberative process, as
opposed to a chain of hierarchical activities streaming up or down a decision tree
(see also Chap. 4 by Murray-Smith in this volume).

The multilayered, iterative evaluation process uses different types of models.
These model types and their use in practice are described more fully in Rood (2010).
The primary and implicit focus, here, is the comprehensive, physical model. Such
models use the first-principle laws of conservation to represent the climate. The con-
servation laws are drawn from classical physics and require that energy, momentum,
and mass be conserved.

It is important to note that in weather and climate modeling, the term “physics”
is often used to mean those processes that act on local spatial scales, as contrasted to
fluid dynamical processes that occur on nonlocal spatial scales. The fluid dynamical
processes and local-scale processes represent the conservation laws, and both are
elements of the physical model—often called by climate modelers the “dynamics”
and the “physics” (see also Chap. 29 by Theis and Baldauf in this volume).

The different types of physical models that find their use in evaluation are com-
prehensive, mechanistic, and heuristic. Comprehensive models seek to model all of
the relevant interactions in a system. Mechanistic models prescribe some variables
or boundary conditions, and the system evolves relative to the prescribed parameters.
The first “climate” models were atmospheric models with the land, ocean, and ice
at the surface specified as boundary conditions. As climate models have evolved,
complexity has increased in incremental ways with coupling of atmospheric models
with land, ocean, and ice models. Today, a climate model and the most advanced
weather models are made of coupled component models.

Heuristic models follow, for example, from limits at large spatial- or time-
averaged scales. They describe correlated behavior based on fundamental theoretical
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considerations. That a comprehensive model compares well with heuristic models at
the comparable scales provides ameasure of consistency, which is defined as an eval-
uation of whether the correlated behavior of variables is consistent with underlying
first-principle considerations. Consistency is an important complement to measures
of accuracy such as mean, bias, and variability.

There are also statistical models of the climate. Statistical models are extensively
used to define the local-scale “physics” and their accumulated effects in physical
models. They often rely on intensive observing campaigns that develop statistical
relationships between observed variables of an evolving dynamical system. This
leads to parameterizations, and the term local-scale parameterization will be used to
describe the finest structure of model decomposition used here. Related to param-
eterization, the term algorithm will be used to represent numerical formulation of
physical processes and functions that are directly derived from the underlying equa-
tion set (see Chap. 41 by Frisch and Chap. 29 by Theis and Baldauf in this volume).

Statisticalmodels, more generally, predict future behavior based on past, observed
behavior. Statisticalmodels are used, for example, to predict sea surface temperatures
in the Tropics from 1 year to the next (e.g., Johnson et al. 2000). Statistical models
rely on having adequately observed behavioral relationships and for that behavior
to remain the same (stationary) with time. That comprehensive models represent
observed statistical behavior is a technique used in evaluation and validation.

Below is a list of selected terms:

• Physically based (physical)model: uses first-principle laws of conservation energy,
momentum, and mass to represent and predict weather and climate.

• Component model: physically basedmodel of atmosphere, ocean, land, ice, chem-
istry, biology, etc. A discipline-based model of a major subdiscipline of climate
science.

• Coupled model: a model built from connected component models—that is, a cli-
mate model

• Application: the end use of a model, for which the model is designed.
• Evaluation: a general term to describe quantitative measures and qualitative anal-
ysis of a model’s ability to address its application(s).

• Testing: checks the performance, quality, reliability—generically, in a way that is
narrowly defined compared to the model as a whole.

• Verification: associated with the computational integrity of the code, and includes
comparisons with analytic test problems, synthetic data, and high-fidelity compu-
tations.

• Benchmark: a routine test using synthetic, numerical, or observational data that
establishes standards or performance—part of verification or systems validation.

• Validation: comparison of model simulations with observations of nature or exper-
iments to establish the accuracy of the natural science of the model.

• Systems validation: a comparison with observations from an established baseline
of simulations from an earlier release of the modeling system.
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• Scientific validation: the process of assessing, by comparison with observations,
a model’s ability to address classes of geophysical problems (applications) for
which it was designed.

• Statistics-based validation: determination of mean, bias, and variability of a can-
didate model relative to observations or previously validated model

• Process-based validation: investigation of model representation of quasi-isolated
phenomena to analyze cause and effect.

30.4 Model Construction, Observations, Assimilation:
Roles in Validation

In the ideal practice of science, observed phenomena are investigated with controlled
experimentation. There is the notion that the experiment is confirmed or refuted
by independent observational data. Such objective purity is rare; absolutism is not
possible.

In weather and climate science, controlled experimentation of the natural system
is not possible. In fact, observations are difficult to make; direct observations of “the
climate” are rare. Temperature, the most familiar and iconic measurement of weather
and climate, might come from thermometers, gases trapped in layers of ice, growth
rings in trees, or radiation measured by space-based satellites. In all of these cases,
a model of some type enters into assigning temperature to an observable.

The practice of computational science to investigate and predict the Earth’s cli-
mate is placed in four elements: observations, infrastructure, models, and assimi-
lation. These elements are related to each other; however, those relationships are
not hierarchical, leading from one step to another. Rather they exist in an ecosys-
tem, dependent upon the particular attributes of the application being addressed.
Evaluation becomes an iterative, deliberative process, which requires diligence and
peer-based scrutiny to assure the integrity of science-based investigation.

Of the four elements, observations are at the foundation. Scientific investiga-
tion relies on measured phenomena, observations. Models rely on observations. The
observations of climate and climate change are many. The incomplete definition
of climate as “average weather” suggests the importance of wind, temperature, and
water. However, climate science and comprehensivemodels, ultimately, requiremea-
surements of many (>100) independent and derived observables to describe the air,
ocean, ice, land, chemistry, and biology and their interactions. As we learn more
about climate change and its impacts, we learn that new types of measurements are
needed. Hence, observations of the “climate” do not sit as a distinct, complete, inde-
pendent body of knowledge; models and their applications steer observational needs.
Conversely, many of the observations require models or model components in their
production.

The explicit mentioning of modeling infrastructure is warranted because of the
complexity of climate models and the distribution of expertise across institutions.
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Climate science evolves and emerges from many different fields of natural sci-
ence—meteorology, oceanography, hydrology, glaciology, etc. (Edwards 2010,
Chap. 7). As a result of the many disciplines involved in climate science, the many
institutions, the independently developed computer codes, the inherent uncertainties,
the societal consequences, and other sources of complexity, infrastructure becomes
part of the scientific credibility and robustness of climate science. Infrastructure
encompasses organizing structures and services, often focused on communication
of information within computer codes, institutions, and people. Of specific interest
is the software and hardware infrastructure required for computational science.

Two types of software infrastructure are introduced. The first is the infrastructure
to support the coupling of the component models that make up climate models
(Theurich et al. 2016). In this case, the infrastructure serves to bring order to model
coupling, which has important consequences for the scientificmethod (see alsoChap.
39 by Lenhard in this volume). First, there is the ability to do controlled simulation
experiments, where component models can be changed one at a time to investigate,
for example, the sensitivity of projections to the choice of oceanmodel. Second, there
are questions of couplingmethodology that need to be investigated and have scientific
consequences. Therefore, infrastructure requires the verification of its computational
integrity and enters into the portfolio of climate model components that require
validation.

The second type of software infrastructure is that which facilitates model analysis
and model intercomparison. Examples of this type of infrastructure include the Earth
SystemGrid Federation5 (Williams et al. 2016), which provides services for the Cou-
pled Model Intercomparison Project. This infrastructure contributes to validation in
several ways. In a formal sense, model simulations are made broadly accessible,
hence, open to independent scrutiny. Models from several institutions are brought
into a commonmethodology of evaluation and intercomparison, with the evaluations
carried out by scientists who were not model developers. Finally, standard tools are
built, collected, curated, and provided, which supports rigor and objectivity in the
community. This infrastructure supports transparency, independence, and objectivi-
ty—all parts of model validation.

In the practice of climate science, models are used in two primary roles (Rood
2010). The first is diagnostic when the models are used to determine and to test the
processes representing a set of observations. In this case, observations determine
whether or not the processes are well known and adequately described; the model is
validated with observations of the process. The second role is prognostic when the
model is used to make a prediction.

A climate model can be viewed as a coupled composite of component models.
Each of the component models can be viewed as the representation of a “process”, in
this case, the atmospheric processes, the oceanic processes, etc. Taken in isolation,
the atmosphere model is made of many processes, for example, different types of
clouds, the transfer of energy through the atmosphere by radiation, and turbulence.
This reduction-based approach to model building is called process splitting and is a

5http://esgf.llnl.gov/.

http://esgf.llnl.gov/
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standard way to build models (e.g., Strang 1968). The strength of the approach is that
problems become tractable. The weakness of the approach is that the theories and
algorithms that describe the processes are developed with some degree of isolation.
They have to be connected, coupled, in the formation of the model as a whole. It is
difficult to assure physical consistency.

This introduction of how models are built provides context for the relationship
betweenmodels anddata, andhence, validation.Adiagnostic, process-focused exam-
ination of an isolated thunderstorm might rely on unique, high-quality observations.
These observations might be used with a statistical model to define the parameteri-
zation that represents how heating at the Earth’s surface, turbulence near the Earth’s
surface, leads to updrafts that cause clouds and thunderstorms. Hence, observations
are used to guide the definition ofmodel processes; they define local-scale parameter-
izations. Then, the model is used to predict future states, and different observations,
likely with vastly different temporal and spatial attributes, are used to measure suc-
cess and failure.

The use of observations to both construct and evaluate climate models hints at
the intertwined relationships between observations and simulations that must be
managed and disentangled in the validation process. The entanglement ofmodels and
observations becomes even greater when the fourth element of practice, assimilation,
is considered.

Assimilation is the melding of model predictions with observations (Rood 2010).
Originally used to provide the initial condition for weather forecasts, assimilation has
become a core practice of weather and climate science. Many studies use assimilated
data products as “observations.”Weather forecasts are accurate enough in time ranges
of hours to days that they are used to generate estimates of observations of sufficient
accuracy to provide quality control of monitoring observing systems (e.g., Stajner
et al. 2004). Such predictions also provide first guesses of observations to assist in,
for example, retrieval of geophysical parameters from space-based observations of
radiance.

The most powerful attribute of data assimilation in climate studies is to fill in
the gaps. This gap-filling ranges from filling in the spatial and temporal gaps of
observing systems, to estimating processes that are not observed. Of course, these
data-influenced estimates of “observations” are reliant upon the model parameter-
izations, which were, originally, defined with the help of other observations. The
broad use of assimilated datasets known as reanalyses in model validation raises
philosophical and practical concerns that make it incumbent upon expert peer review
to inform the legitimacy, credibility, and integrity (Cash et al. 2003) of the validation
process.

30.5 Validation of Climate Models in Practice

The evaluation and validation of climate models is a core activity of the practice
of climate change. Flato et al. (2013) describe the evaluation process and results
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used in the evaluation of the models used in the Intergovernmental Panel on Climate
Change’s Assessment Report 5.

The verification and validation of weather and climate models consider many
criteria (see Chap. 24 by Liu and Yang in this volume). These include

• the correctness of a set of equations to represent phenomena;
• the accuracy of the representation of those equations with discrete mathematics
suitable for digital computers;

• the correctness of the implementation on the computers;
• the construction, by coupling, of comprehensive models from component models
in which functions and physical processes have been represented in a split or
granular fashion;

• the ability of component and coupledmodels to represent observationswith correct
physical, chemical, and biological processes; and

• the ability of the coupled model to represent the conservation of energy, mass, and
momentum,

The verification and validation processes are not purely quantitative as there are
expert judgments and management of information that is a balance of positive and
negative attributes. In climate model validation, it is also important to consider the
attention that the validation process will receive in the public discourse about the
societal uses of climate simulations.

This section provides a structure for the verification and validation process. It
opens by establishing transparency, independence, and other values that are critical
to the scientific method as well as public scrutiny. Then, the issues of identify-
ing suitable observational validation data are discussed. A process anchored around
a documented validation plan is introduced. First, the attributes of validation that
require deliberation and expert analysis are introduced. Then, quantitative analysis
is described as layers characterized by increasing geophysical complexity.

30.5.1 Independence, Transparency, and Objectivity: Basic
Values of Verification and Validation

Independence, transparency, and objectivity are values of the scientific method and
validation. For climate science, these values have broader importance. The results
from the investigation of the Earth’s climate motivate societal interventions that are
disruptive. Therefore, observational data, simulation data, and how they are validated
become societal assets. This opens them up to the scrutiny that is far broader than
science-based validation. They become part of political arguments, which often focus
on aligning scientific uncertainty with political goals (Lemos and Rood 2010).

Model developers and model scientists, individually, are responsible for perform-
ing and documenting test procedures and results. However, when many people and
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institutions are providing model components, algorithms, and local-scale parameter-
izations, their individual efforts at verification and validation do not assure that the
collectivewhole is validated. Therefore, inmodeling centers, it is essential to develop
organization-wide and model-system-wide testing, verification, and validation pro-
cedures. The validation process and evaluation criteria need to be documented and
results must be available for scrutiny by those not directly involved in, for example,
building the model. This suggests two principles of validation, independence, and
transparency.

The validation process needs to be designed and agreed upon at the beginning of a
model development cycle or a simulation experiment.Metrics need to be determined,
as well as standards for comparison.

Testing and validation plans that can be executed and evaluated by experts, who
are not directly involved in building and deploying a model, are necessary. Such
independence serves to evaluate the robustness of logic and correctness of the imple-
mentation. Independent review is well suited to reveal confirmation bias, where a
developer or scientist might have limited their evaluation once a result agreed with
their expectations. Independent review brings different perspectives and different
expertise bases to an evaluation; it addresses issues of conflicts of interest.

Transparency and the documentation of models and their validation support
another attribute of scientific investigation, reproducibility. Reproducibility and peer
review by the scientific community are part of the practice of the scientific method
and are part of the scientific validation.

All of these principles of validation aim at objectivity and the development of trust
that conclusions are based on evidence of quantitative measures. The end result, in
this case, is a determination that a model is suitable for its application. There is a
description of what has been concluded and descriptions of uncertainties, perhaps,
including a description of unsuitable applications of the model.

30.5.2 Identification of Independent Observational Data

As described in the previous section, observations and simulations are intertwined.
Therefore, a priori expectations that observational data and simulation data are inde-
pendent of each othermust be evaluated as part of the validation process. This subsec-
tion considers the issues regarding the independence of simulation and observational
data. The controversy concerning the relationship between satellite temperaturemea-
sures and simulation is used as an example (Mears and Wentz 2017; Santer et al.
2017). Lloyd (2012) provides a philosopher’s perspective of the controversy.

Detectors on satellites measure electromagnetic radiation at specific frequencies.
Tomeasure temperature from space relies on understanding the absorption and emis-
sion of radiative energy in the Earth’s atmosphere. In order to relate the space-based
measured radiances to temperature, a radiative-transfer model is required. The equa-
tions of the radiative-transfer model are the same for the observational application
and the climate model. The details of the radiative-transfer model implementation
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for temperature determination and the one used in a weather or climate model will
be different.

Validation approaches for satellite observations have a fundamental difference
from climate model validation. The validation of observations is a problem of reduc-
tion, which ultimatelymight be the comparison of a set of independentmeasurements
at a single point in space and time. Instrument validation looks toward less complex-
ity. A climate model, however, looks towardmore complexity. As component models
are combined into climate models, more complexity is included. It is a problem of
expansion.

In the case of validating satellite temperature observations, the narrowing view
supports deductive conclusions about the quality of the satellite observations. Suc-
cessful validation of the satellite temperature provides quantitative information about
radiative-transfer models, and hence, information relevant to the correctness of anal-
ogous equations and their computational implementation in climate models.

The controversy over discrepancies between observed satellite temperature trends
and climate model trends (Lloyd 2012) is framed by their being multiple algorithms
for calculating satellite-based temperatures. The discrepancies between models and
different calculations of observational information help to define research directions
for both observational and simulation scientists. If there is convergence of themodels
and observations, then confidence in conclusions increases. If there is divergence,
then errors are exposed, which can be corrected. In either event, the intertwined roles
of models and observations challenge both the researcher and the communication of
the research for societal use.

In cases when there are not truly independent observations, there are strategies
that withhold some observations to assure their independence. There are other strate-
gies that isolate models based on their use in data analysis and assimilation. That is,
a model used to calculate merged model–observation assimilation products is not,
then, used for climate predictions. This is in contrast to weather forecasting, where
the assimilation is used to provide the best possible initial state of the weather pre-
diction. The use of assimilation products in climate model validation, always, carries
philosophical concerns. Some observational datasets have too big a role in model
development to allow them to be used in validation; they are only measures that the
model was implemented correctly. Such observations have transitioned from valida-
tion to verification. For the purpose of this chapter, it is assumed that due diligence
has been exercised to assure simulation–observation independence.

30.5.3 Deliberative Validation and Expert Judgment

The goals of testing, verification, and validation are to assess correctness at all stages
of development and implementation. The validation process communicates the trust-
worthiness of models to their users. Therefore, the validation process must address
the principles of independence, transparency, and objectivity.
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Fig. 30.1 Structure of a validation plan. The selection of the application of the model defines the
details of the validation plan. The plan aspires to assure the values of Independence, Transparency,
andObjectivity. The plan assumes that themodeling organization will participate in the community-
based model intercomparison projects (MIPs)

The first step in validation is the development of a validation plan. The elements of
a validation plan are highlighted in Fig. 30.1 and described below. If the validation cri-
teria are known at the beginning, then the definition is added to the validation process.
Transparency is provided to both developers and end users. During development, it
is always the case that scientists and developers can identify further improvements.
The plan, therefore, defines an endpoint, based on how well the model performs at a
particular snapshot and assures that the model addresses particular user needs.

The determination of evaluation criteria, metrics, and standards of comparison
requires careful consideration of the purpose, the application, of the model. Example
applications might be weather forecasting, seasonal forecasting, decadal climate
projections, and multi-century climate projections.

The presence of an application gives the model purpose, an anchor in reality;
it relieves the model from the impossibility of representing an unknowable truth.
Increasingly, organizations seek to use unified modeling systems for a range of
applications. This has both scientific and management motivations. A validation
plan that spans the suite of applications advances unified modeling systems; how-
ever, it causes tensions when model development improves one application at the
expense of another. In this case, deliberations that consider management and organi-
zational priorities are required; protocols for managing these deliberations are part
of the validation plan. This is but one place where expert judgment contributes to
climate model validation (see Saam’s chapter on User’s Judgment in this volume).

Adherence to a validation plan improves the ability of an organization to allocate
human and computational resources. A well-documented testing and verification
procedure eases coordinationwithin an organization and collaborations with external
organizations. An organization is better able to meet goals within budget and on
schedule.



752 R. B. Rood

Within the plan, independence benefits from the definition of a validation team.
The validation team should be largely independent of model developers. Model
developers, as well as end users, are an essential part of writing the validation plan.
Their presence helps to assure the relevance of the validation criteria and metrics.
Model developers are also essential in the analysis to understand cause and effect.
However, the exercise of scoring and ranking model performance should fall to an
independent group. Such independence contributes to objectivity and is consistent
with the scientific method.

Statistical evaluation gives quantitative measures of accuracy. However, there are
nuanced scientific considerations that need to be considered in the validation plan.
A new local-scale physics parameterization, fluid dynamics scheme, treatment of
topography, etc. can represent a significant improvement in the correctness of the
equation set or their numerical representation, i.e., a science-based improvement.
Such an algorithm might improve the realism of features such as fronts, that is,
simulated frontal passages “look like” nature’s frontal passages (see Chap. 16 by
Meyer in this volume). It is possible, perhaps even likely, that the first implementation
of the scientific improvement will lead to decreased performance in some metrics.
Indeed, in the hands of an expert calibrator, less scientifically correct schemes can be
modified to meet specified statistical measures. However, in the end, the correctness
of the equations and their representation as numerical algorithms improve the basic
construction of the model.

The seeming paradox of a “more correct” model leading to less accurate statistical
scores occurs because the balance among algorithmic and parametric approximation
errors is changed (see Chap. 5 by Roy in this volume). The validation team is, there-
fore, sometimes faced with a judgment call of accepting a lower scoring model with
an improved scientific basis. Such a decision has long-term consequences. The val-
idation plan, therefore, needs to consider the balance between potential quantitative
degradation versus more robust future development.

The design of the validation plan should assure that the model is susceptible to
quantitative validation. In an ideal world, models submitted for validation would
evaluate a small number, perhaps single, changes. However, this is not practical. Sci-
entific development moves forward in the component models as well as the technical
development of the model infrastructure. Significant validation occurs with compo-
nent models, leaving the challenge of multiple changes being tested in a coupled
environment. Analysis of the expected outcomes of the individual changes needs
to be posited and included in the evaluation criteria. Again, protocols to manage
the reality of multiple changes in multiple components and what can and cannot be
tolerated in validation are required.

Final validation requires that the coupledmodel be validated. This is expensive and
validation strategies continue to evolve. A manageable subset of coupled model test
cases needs to be defined based on application priorities. Adjudication of conflicting
information will be required.

The validation plan needs to anticipate the role of a model in community
efforts in validation; that is, model intercomparisons such as the Coupled Model
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Intercomparison Project.6 Model intercomparisons have a strong influence on model
validation and greatly enhance the confidence in climatemodel results. The intercom-
parisons are an important foundation for describing the uncertainty (see Chap. 34 by
Knutti et al. in this volume). Therefore, experimental design and validation criteria
for simulations extend outside of institutions to allow community-based experiment
and validation protocols.

30.5.4 Quantitative Evaluation

With the foundation and scope of a validation plan set, protocols for testing, ver-
ification, and validation need to be defined. The validation plan described in Data
AssimilationOffice (1996)will be used in concert with the verification and validation
structures described in Oberkampf and Trucano (2002).

Model categories are organized in relation to geophysical complexity.With regard
to validation, the algorithms and parameterizations are least complex and can be eval-
uated and validated with data from isolated process experiments and, in some cases,
with analytic solutions. The process models, which represent a quasi-isolated, highly
observed geophysical feature, are composites of algorithms and parameterizations.
An example of a process study is the growth and decay of a type of Arctic cloud
(e.g., Roesler et al. 2017).

The component models require observations that span their domain of purpose,
atmosphere, ocean, etc. The coupled models span multiple domains, with the most
comprehensive model requiring observations representative of the entire system.
The need to manage this complexity through the design of controlled simulation
experiments and the design of validation exercises that have realizable metrics is
self-evident. The requirement for an application or suite of applications to limit the
complexity is, likewise, self-evident.

Figure 30.2, pictorially, describes quantitative evaluation in layers of increasing
complexity. The left panel shows a notional four-layered structure presenting the
construction of a model. At the bottom layer are local-physics parameterizations
and algorithms. The next layers represent composites of these parameterizations into
process models and component models. The top layer is a fully coupled climate
model. These layers of models need to undergo both verification and validation.

30.5.4.1 Verification

Verification has two major goals. The first is to assure the algorithms are correctly
implemented and doing what they are intended to do. The second is through compar-
ison with analytic and well-described benchmark cases to characterize uncertainty

6https://www.wcrp-climate.org/wgcm-cmip.

https://www.wcrp-climate.org/wgcm-cmip
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Fig. 30.2 Linking model structure to verification and validation. Following Oberkampf and Tur-
cano (2002). The dashed arrow from Validation to Verification suggests that as Systems Validation
with certain datasets evolves to a level of maturity that they no longer represent unique model
quality; those tests move to verification. That is, they become benchmark standards that all models
are expected to achieve

associated with the numerical representation of the science-based equations set (see
Chap. 11 by Rider in this volume).

The verification process assures the computational integrity of the implementa-
tion. The targets of such testing include parallelism, checkpoint/restarts, and per-
formance. In addition, it is important to check that model configurations run to
completion, run on multiple platforms, are sensitive to parallel decomposition, and
are sensitive to compilers or computational libraries (Clune and Rood 2011). These
tests are not just of computational consequence as some applications rely on simu-
lations with slightly altered initial conditions. It is important to know whether or not
results differ due to computational differences or science-inspired differences.

With regard to benchmarks and test cases, at the local-physics parameterization
and algorithm level, there are synthetic tests, the possibility of analytic tests, and
well-defined numerical tests (see Saam’s chapter on Benchmarks in this volume).
For example, does a remapping scheme and its inverse remapping return the original
field—is mass conserved? There is also the potential to check algorithms with nar-
rowly defined observation-based tests, whose solutions are established benchmarks.
These tests can be defined as unit tests in that they are fine-grained—at the building
block level. Unit tests assure the quality of the building blocks. Errors revealed at
the unit test level support efficient model development.

At the next level of complexity, when fine-grained parameterizations and algo-
rithms are integrated together into subsystems and systems, verification tests become
more challenging. There are few analytic tests at this level of integration. There is the
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potential to develop rigorous tests using synthetic data, which might verify success-
ful implementation of computational code and perhaps simple (for example, linear)
scientific measures. At this stage, an infrastructure that supports the ability to con-
figure models of different complexities, e.g., process-based models or mechanistic
models, is important as some fields have intensive-observation-campaign problems
and datasets whose solutions arewell characterized. The ability to perform these tests
provides insight into both computational and scientific qualities. Such tests might
be viewed as minimal standards or benchmarks as all models are expected to do the
benchmarks well. Proceeding to the highest levels of complexity, component models
and coupled models, there is a need for benchmark calculations relative to previously
characterized simulations; however, standards are likely to be institutional rather than
community-wide. This level of systems testing, which often involves observational
data sets, will be deferred to systems validation. There is still research and experience
needed to develop routine testing strategies and test problems for coupled systems.

30.5.4.2 Validation

Validation is establishing the suitability of a model for an application by com-
parisons of simulations to observations. At the lowest levels of complexity, there
are often comparisons with observations specifically collected to define and test
parameterizations and processes. These comparisons with observations have, effec-
tively, moved across the transition from validation to verification. If a state-of-the-art
representation is not achieved in these tests, then the parameterizations are not
accepted as credible. The rest of the discussion will focus on systems validation
and scientific validation.

30.5.4.3 Systems Validation

Systems validation is appropriate at the component model and coupled model levels.
From the perspective of the coupled model, the validation of component models can
be described as subsystem validation.

Using the atmospheric model as an example, systems validation is made up of
a series of baseline simulations designed to investigate performance on a class of
problems that represent its applications. Such simulations might be a set of 10-day
weather forecasts from standard specified initial conditions that include all seasons
(see Chap. 29 by Theis and Baldauf in this volume).

Longer simulations of the atmospheric model with specified sea surface temper-
atures allow the investigation of the onset of model bias and the ability to simulate
several modes of climate variability, such as the El Niño–La Niña cycle.7 Such

7See Chap. 9, Gettelman, A., and Rood, R. B. (2016), Demystifying Climate Models: A Users Guide
to Earth Systems Models, Springer, Berlin, Heidelberg, 274 pp. http://www.demystifyingclimate.
org/.

http://www.demystifyingclimate.org/
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simulations generally rely on observations collected after 1979, when the satellite
observing system became global and persistent. Simulations are compared to obser-
vations aswell as large archives of simulations that have establishedmodel credibility
measures. Analysis tools such as the Taylor diagram (Taylor 2001) provide statisti-
cal measures against a range of geophysical quantities that have been determined to
provide a foundational measure of the climate. These tools also document changes
from one generation of models to the next.

Extending the atmospheric models to include atmospheric chemistry introduces
another set of baseline simulations. The field of ozone science has been out front
developing integrated standard measures, which are designed to represent the com-
bined effects of transport and chemistry. The diagnostics of Douglass et al. (1999)
rely on strong theoretical constraints, that is, heuristic models. Such diagnostics can
be automated from the standardized output and provide quick and profoundmeasures
of model performance.

Each component modeling discipline and some coupled models (e.g., chemistry-
transport) will have a set of standard simulations that can be performed and analyzed
in a reasonable amount of time (weeks to months). This will establish the credibility
of the components and justify implementing, testing, verifying, and validating the
performance in coupled systems. At some level, the component-level system-level
evaluation can be automated. An excellent example of publically available automated
validation information for the Community Earth SystemModel can be found online.8

At the coupled model level, a similar approach is used. In models designed for
seasonal or the El Niño–LaNiña forecasting, the ability to forecast historical archives
of the El Niño–La Niña events is a natural focus. The El Niño–La Niña problem is
one where statistical models also play an important role, as coupled physical models
do not definitively establish the state of the art.9

Hindcasting, also known as backcasting, is a primary method of model evalua-
tion and validation. It is critical to choose a historical time period when it can be
established that there are adequate, independent observations to support validation.

With regard to climate models designed for century-scale applications, much
attention is paid to the simulation of twentieth century, or more generally the post-
industrial to the current time. Concurrent with the commerce of the industrial revolu-
tion, weather observations spread across the globe—the observational record greatly
improved. The focus on the twentieth century allows examination of importantmodes
of air–land–sea interactions, response to volcanoes, and some aspects of solar vari-
ability. Longer timescale variability associated with oceans and ice are not fully
represented in the twentieth-century record.

A possible disadvantage of the twentieth-century record from the point of view
of the validation scientist is that there are many human-caused alterations to the
environment that influence global signals. Aside from greenhouse gas emissions,
there are land-use changes, emissions of particulate pollution, policies to control
particulate pollution, and composition changes that led to extreme events such as

8http://www.cgd.ucar.edu/amp/amwg/diagnostics/plotType.html.
9http://iri.columbia.edu/our-expertise/climate/forecasts/enso/2017-June-quick-look/.

http://www.cgd.ucar.edu/amp/amwg/diagnostics/plotType.html
http://iri.columbia.edu/our-expertise/climate/forecasts/enso/2017-June-quick-look/
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the ozone hole. These changes mean that we do not have a highly instrumented,
“natural,” historical period to serve as a control. On the other hand, modeling the
transient behavior associated with all of these environmental alterations provide
valuable model tests.

Simulations of the last thousand years, which capture the onset of large carbon
dioxide release and other influences of a growing human population, are also routine
parts of validation. For these longer simulations, there is a greater reliance on proxy
measures of climate, for example, tree rings, and lake sediments.

Hindcasts focused on isolated events allow full-system, process-based investiga-
tion. The archetypical example is a well-measured volcanic eruption (e.g., Robock
1983). Another example is an El Niño–La Niña event. Though still occurring within
the global environment, these events are relatively short-lived (<5 years) and involve
heating and cooling,water vapor responses (i.e., feedbacks), and atmosphere–land–o-
cean–biological responses. Satellite observations provide global measurements of
key variables. Hence, these events emerge as quasi-controlled test cases, which influ-
ence many key climate variables and exercise model processes and their interactions.

With this level of verification and systems validation, it is justified for an orga-
nization to release a modeling system for broader use. However, further scientific
validation better substantiates credibility.

30.5.4.4 Scientific Validation

Scientific validation is the process of assessing by comparison with observations a
model’s ability to address classes of geophysical problems (applications) for which
it was designed.

If the application of the model includes forecasts in a routine or operational mode,
then forecast or prediction experiments are used as validation. Prediction-based val-
idation is common in weather forecasting (see Chap. 29 by Theis and Baldauf in
this volume). The basic idea is that a candidate model is scored against an existing
model on howwell they verify with future forecasts. Compared with hindcasts, these
forecast cases have not been part of the validation data and, hence, represent states
that are new to the model. If, in a statistically significant number of cases, the can-
didate model performs better than the previous version of the model cases, then the
candidate model is validated for its forecast application.

Weather forecasting is in some ways unique because the short timescale of the
needed forecasts allows the validation process to be concluded in weeks to months.
For longer timescales and climate projections, it is not possible to wait for future
states to be realized. Therefore, other methods of scientific validation are invoked.

For a coupledmodel intended for a portfolio of climate applications, the validation
plan should identify a small number ofmetrics (<10) that the scientific improvements
in the candidate model are expected to address. The priority metrics are largely based
on improvements of documented deficiencies in previous versions of the model.
These deficiencies are not simply those revealed by statistical measures, but, more
importantly, those revealed by scientific investigation of the previous version of
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the model. These scientific investigations occur as communities of users exercise
the model over, on the order, of 18–24 months. This is timescale appropriate for
deliberative research and peer review as well as development and validation of a
model. The development and validation process, presently, support a 3–5-year span
in releases of modeling systems.

For scientific validation, the validation plan needs to identify classes of problems
that are priority foci, for example, climate variability, hydrometeorology, and strato-
spheric ozone. These are each complex interrelated simulation problem. Physical
consistency, as informed by correlative behavior, takes on a high value in this evalu-
ation, that is, processes related to cause and effect. Improvement in the representation
of processes stands along with statistical measures of mean, bias, and variability.

In the validation exercise, it is certain that some metrics will improve and some
will degrade. At this point, it is when a pre-negotiated validation plan, reliance on the
application priorities, and independence of a validation board stand to bring closure to
a validation exercise. Validation becomes a deliberative process, balancing strengths
and weaknesses, relative to objective measures of skill and expert judgment of the
robustness of process representation. The validation results become the foundation
of the uncertainty description as well as part of the next development and validation
phase.

30.6 Discussion

This chapter has deconstructed and described an organized approach to the practice
of climate model verification and validation. On one hand, the interactions between
observations, simulation, computational approximations, and scientific correctness
substantiate the arguments of Oreskes et al. (1994) that, in an absolute sense, climate
models can never be proven to have gotten the right answer for the right reason.On the
other hand, the comprehensive testing and evaluation of weather and climate models
provide a high degree of confidence that weather and climate models provide useful
information for planning and practice. Climate scientists and software engineers have
developed a culture of verification and validation that establish a model’s credibility
and legitimacy.

Guillemont (2010) noted, across modeling institutions, both the similarity of val-
idation practice and the lack of a formalized approach. This chapter provides defi-
nitions in an effort to describe, formally, climate model verification, and validation.
The construction of models from components and subcomponents is discussed, and
the construction is related to verification and validation. In addition to quantitative
measures of mean, bias, and variability, it is argued that a measure of physical con-
sistency is required. Physical consistency is evaluated as correlative behavior that is
related to underlying physical theory.

The more qualitative attributes of validation are discussed. Specifically, the chal-
lenge of improved “science” leading to degraded quantitative skill is discussed. The
role of realism with model weather “looking like” observed weather is introduced.
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There are tensions when a model is required to address a portfolio of applications,
and there is inconsistent improvement across the portfolio. The consideration of these
issues leads to the need for deliberative, expert evaluation as a part of the validation
process.

The chaptermaintains a need for awritten validation plan that describes the valida-
tion criteria and metrics and establishes the protocols for the essential deliberations.
The validation plan, also, sets the foundations for independence, transparency, and
objectivity. These values support both scientific methodology and integrity in the
public forum.

The roles of community-informed validation and software infrastructure are also
discussed. Shared software infrastructure helps tomanage the complexity ofmultiple
disciplines and multiple institutions. Likewise, shared analysis software and proto-
cols contribute to the development of standardized methods and scores. Community-
based intercomparisons contribute strongly to uncertainty descriptions.

Perhaps more so than might be expected, the chapter highlights the roles that rep-
resentation of weather and weather forecasting plays in climate model development.
This contributes to the discussion of the need to assure that observational data and
simulation data are independent. This independence is challenged in many datasets,
especially those which rely on data assimilation.

30.7 Conclusion

Daniel Farber, a law Professor at the University of California Berkeley, analyzed
whether or not climate models were characterized well enough to justify societal
responses to mitigate climate change and use models in adaptation planning. Farber
concludes that with the model intercomparisons and the national and international
assessments (Farber 2007):

Climate scientists have created a unique institutional system for assessing and improving
models, going well beyond the usual system of peer review. Consequently, their conclusions
should be entitled to considerable credence by courts and agencies.

Predictions and projections will always be uncertain, which is a fact of scien-
tific investigation (Lemos and Rood 2010). Given that climate science is embracing
more complexity with each generation of models and observations, it is unlikely
that uncertainty will be reduced in an absolute sense. Uncertainty reduction is not
required to use climate predictions and projections in planning and practice. Uncer-
tainty is always present in decision-making. Verification and validation frame the
uncertainty description for the application.

The basic results of climate science that the Earth will accumulate heat relative
to pre-industrial times, that the air and ocean will warm, that ice will melt, that sea
level will rise, and that the weather will change are known with virtual certainty.
The foundation of that conclusion does not lie on the increasingly complex climate
models described here. The foundation relies on the basic principles of conservation



760 R. B. Rood

of energy. Increasing carbon dioxide and other alterations to the Earth by humans
cause solar energy to be held near the Earth’s surface. That energy heats the Earth’s
surface, and there must be consequences of that heating.

The consequences of that heating are complex. Climate models are the best tool
to inform us about those consequences, their interactions, and their impacts. Climate
models allow us to anticipate and to plan. Climate models allow us to explore policy
options. Indeed, climate models provide perhaps the most knowable aspects of what
the next century will be like.
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Abstract Since the survey by Windrum et al. (Journal of Artificial Societies and
Social Simulation 10:8, 2007), research on empirical validation of agent-based mod-
els in economics has made substantial advances, thanks to a constant flow of high-
quality contributions. This Chapter attempts to take stock of such recent literature
to offer an updated critical review of the existing validation techniques. We sketch
a simple theoretical framework that conceptualizes existing validation approaches,
which we examine along three different dimensions: (i) comparison between arti-
ficial and real-world data; (ii) calibration and estimation of model parameters; and
(iii) parameter space exploration. Finally, we discuss open issues in the field of ABM
validation and estimation. In particular, we argue that more research efforts should
be devoted toward advancing hypothesis testing in ABM, with specific emphasis on
model stationarity and ergodicity.
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31.1 Introduction

Modeling economies as complex systems using agent-based models (ABMs) is a
relatively recent approach in economics (LeBaron and Tesfatsion 2008; Farmer and
Foley 2009; Battiston et al. 2016; Turrell 2016). Nevertheless, since the 80s of the
past century, it has increasingly been attracting many scholars belonging to sev-
eral subfields, becoming both a complement and a substitute for more traditional
economic-modelingmethodologies (Schelling 1969, 1971; Epstein andAxtell 1996;
Axelrod 1997). For example, ABMs are nowadays considered as a valid and effective
competitor of standard Dynamic Stochastic General Equilibrium (DSGE) models in
macroeconomics (see e.g., Dosi et al. 2010; Assenza et al. 2015; Hommes 2013,
and the survey Fagiolo and Roventini 2017). Likewise, ABMs of financial mar-
kets are often considered better than traditional models, which are based on the
efficient-market hypothesis in explaining the statistical properties of buy-and-sell
high-frequency dynamics (cf. e.g., Franke and Westerhoff 2012; Leal et al. 2016).

Existing literature agrees thatABMs in economics provide twomain added values,
as compared to their orthodox counterparts (Dawid andDelliGatti 2018;Dieci andHe
2018). First, ABMs allow for more descriptive richness, as they describe ecologies
of agents, locally interacting through nonobvious network structures, learning to
use incomplete information, and competing within imperfect markets. Second, the
modeler developing an ABM has typically more flexibility in both input and output
validation of its model.

This second feature of ABMs has always attracted a lot of attention and has
generated, especially in the past years, a booming number of contributions. Back
in 2007, the influential article by Windrum et al. (2007) attempted to survey ABMs
validation methods, concluding that a lot of work would have been needed in order
to fully develop a satisfactory set of techniques that consistently take ABMs to the
data. In fact, many developments have occurred in the past 10 years, which this
Chapter tries to review. We go along such developments distinguishing between
three different dimensions: (i) calibration and estimation of model parameters; (ii)
comparison between artificial and real-world data.

The chapter is organized as follows. First, we offer an introduction to the most-
diffused practices in building and running agent-based models in economics (Sect.
31.2). In Sect. 31.3,we also sketch a simple theoretical framework that conceptualizes
existing validation approaches. Sect. 31.4 provides a critical review of the literature,
whereas in Sect. 31.5 we describe the most recent trends as to validation techniques
in ABMs. Finally, Sect. 31.6 concludes with some critical considerations on future
work.

31.2 Agent-Based Computational Economics: Common
Practices

Notwithstanding the existence of different types of agent-based models, which have
been developed by various subfields within economics, such as macroeconomics,



31 Validation of Agent-Based Models in Economics and Finance 765

industrial dynamics, finance, asset pricing, etc., one can identify some general pat-
terns and common practices in the building process, under a common umbrella that
we refer to as Agent-Based Computational Economics (ACE).

31.2.1 The Development of a Typical Agent-Based Model

Researchers typically do not know the true data generating process of phenomena
under study, which we refer to as the real-world DGP (rwDGP). This can be seen as
a very complicated, multiparameter, stochastic process that governs the generation
of a unique realization of some time series and stylized fact that we can empirically
observe and estimate. The goal of the modeler is, therefore, to provide a sufficiently
good approximation of the rwDGP by using an ABM. Naturally, the model releases
a simplified DGP, which we refer to as the model-DGP (mDGP) and which should
provide a meaningful explanation of the causal mechanisms generating the set of
observed stylized facts, and, more generally, a good representation of the data (Heine
et al. 2005). The empirical validation of an ABM is then the process by which one
evaluates the extent to which the mDGP is a good representation of the rwDGP .1

The most adopted procedure for the development of an ABM is the indirect
calibration approach (seeWindrum et al. 2007).2 This procedure is composed of four
separate steps. The first consists in the identification of some real-world stylized facts
of interest that the modeler wants to explain. In the second, one specifies the model,
the time line of the events, the microlevel dynamic equations which embody the
individual agents’ behavior, the set of parameters, and the set of randomdisturbances.
Validation and the hypothesis testing are performed in the third step in order to
compare model’s output with the observations obtained from real- world datasets.
Finally, there could be a fourth step, where the ABM is employed for policy analysis
exercises, implemented by changing some of the behavioral equations (e.g., capital
requirements for macroprudential policy, as in Popoyan et al. 2017) or some of the
parameters (e.g., tax rates for fiscal policies, as in Dosi et al. 2010). In what follows,
we will explore these four steps in more detail.

Stylized facts identification. The starting point of most ABMs is the identification
of a set of micro and macro stylized facts and empirical regularities (e.g., static or
dynamic correlations, empirically observed distributions, etc.); see also Chap. 15
by Meyer in this volume. For the sake of generality, let us define as a stylized fact
any possible type of measurable unconditional object that can be investigated by
means of some econometric exercises or more generally by statistical techniques.

1The validation process might also take different perspectives. In particular, as reported by Burton
and Obel (1995), the model’s assumptions and abstractions have to be judged accordingly with
the model’s purpose. In this paper, we mostly focus on validation of policy-oriented, descriptive
agent-based economic and financial models.
2However, also other viable strategies are available: see, for example, the calibration approach
proposed by Werker and Brenner (2004); Brenner and Werker (2007) and the history friendly
models developed by Malerba et al. (1999).

http://dx.doi.org/10.1007/978-3-319-70766-2_15
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In such unconditional objects (see Brock 1999), the causal generating mechanism,
or data generating process (DGP), is unclear or too complex to be explained by
a simple, low-dimensional system of dynamic equations. Examples of micro and
macro stylized facts that have been empirically identified and replicated by means of
ABMs in different fields encompass fat-tailed distributions of returns, endogenous
emergence of flash crashes, long-run coexistence of heterogeneous investing rules
in finance; fat-tailed distributions of firm growth rates, Zipf distribution of firm size,
negative correlations between prices and market shares in monopolistic competitive
markets in industrial dynamics; investment lumpiness, Okun and Beveridge curve,
cyclical co-movements of variables in macroeconomics.

Model specification. After having singled out a set of possibly interlinked stylized
facts, one can try to find an explanation of the underlying causal forces, i.e., learning
and describing the exact form of the real-world DGP, or at least a sufficiently accurate
approximation of it. This is the ultimate objective of any ABM. The great advantage
of ABMs vis-á-vis traditional ones commonly employed in economics and finance
derives from its generative bottom-up approach genuinely rooted in evolutionary,
complex-system theories (more on that in Lane 1993; Tesfatsion 2006; Fagiolo and
Roventini 2012, 2017). This indeed allows the researcher to take into account the
complex dynamics of a system that is populated by heterogeneous and boundedly
rational agents possessing a partial and possibly biased amount of information about
the global system in which they live. However, agents are adaptive and learn in order
to survive and prosper in such an uncertain framework following some forms of
“Simonesque” (see Simon 1991) satisfying principle.3 Obviously, also when ABMs
are developed to approximate the rwDGP , the number of degrees of freedom is high
and different researchers can follow alternative routes according to their different
expertise, backgrounds, and theoretical hypothesis about the underlying generating
process.4

Output validation. After the modeler has specified the behavioral equations of
the actors populating the system, the ABM takes the form of a high- dimensional,
discrete-time stochastic process. Indeed, a part of the ACE community (especially in
financial and asset pricing models) has strongly relied on Markov processes theory
and on statistical physics tools in order to reduce the dimensionality of the model
and eventually—under specific circumstances—to analytically solve the simplest
model. But in general, as their complexity is high, ABMs are usually simulated
by means of extensive Monte Carlo (MC) exercises in which the random seed is

3In that there is a major departure with respect to neoclassical models, where the (representative)
agent has axiomatic preferences and maximizes some smooth objective function with an easily
computable bliss point.
4This is also one of the critiques that is usually addressed to ACE. Since ABMs do not stick to
some generally accepted axiomatic rule of behavior, they introduce discretionary choices that the
modeler shall take. We will see how practitioners have coped with this issue in Sect. 31.4.2.1. A
possible solution to discipline the construction phase of an ABMs has been put forward by Grimm
et al. (2006) and is called the ODD protocol (from “Overview, Design concepts, and Details”).
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modified along the MC dimension.5 Once such MC exercises are performed and the
synthetic data collected, the researcher can verify whether the model is able to gen-
erate unconditional objects which are not statistically significantly different from the
ones previously observed in real-world datasets.6 Naturally, all these unconditional
objects can be related to micro and macro variables.

Policy analysis. Once themodel has been validated and proved to be able to account
for the micro and macro empirical regularities under study, it can then be employed
as a policy laboratory. Indeed, the impact of different economic policies in alternative
scenarios can be studied by (i) varying some parameters, in particular, those related to
policy-maker interventions or to some broad institutional setting (e.g., tax rates); (ii)
modifying initial conditions related to agents’ state variables (e.g., income distribu-
tion, firms’ technology); (iii) changing some agents’ behavioral rules and interaction
patterns (accounting e.g., for different market setups); (iv) introducing macro and/or
micro heterogenous shocks (e.g., innovation or climate-damages shocks). These can
be interpreted as exogenous policy changes, which allow a researcher to evaluate
their effects in a fully controllable environment, where treatment effects can be eas-
ily identified, and endogeneity issues are almost absent.

In what follows, we will focus mostly on validation, discussing more in depth
what is the relationship between an ABM, its inputs and outputs. In particular, the
interpretation of the ABM as a process that transforms a set of inputs into outputs,
poses two relevant questions: (i) how a ceteribus paribus variation of one input affects
the output (a detailed discussion will be presented in Sect. 31.4.2.1), and (ii) to which
extent the generated output is a good approximation of the real-world phenomenon
that the modeler aims to explain (discussion in Sect. 31.4.2).

31.2.2 Inputs of Agent-Based Models

In ABMs, we can characterize two broad categories of inputs: initial conditions and
parameters.

Initial conditions. They determine the values of macro and agents’ state vari-
ables at the beginning of the simulation. In small- scale ABMs, which are typically
characterized by a deterministic skeleton and may possess at least one computable
deterministic fixed point, initial conditions can be set at the equilibrium or in some
contour of it (see Brock and Hommes 1997; Westerhoff and Dieci 2006; Guerini
2013; Guerini et al. 2017) and then the ABM can be used to locally study the dynam-
ics of the system.7 However, in complex stochastic models, characterized by high

5As stated in Turrell (2016), the first agent-based model was developed in the 30s by the physi-
cist Enrico Fermi in order to study the transport of neutrons through matter. Fermi’s agent-based
technique was later called Monte Carlo method (Metropolis and Ulam 1949).
6In Sect. 31.4.2, we will discuss the tools available for the verification and validation of ABMs.
7One can also study the basins of attraction of the dynamical system to study the robustness with
respect to initial conditions.
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levels of dimensionality, fixed points or statistical equilibria may not exist or not
being known to the modeler. In such a framework, the selection of initial conditions
can become a nontrivial issue, affecting the ergodicity and dynamics of the system,
its output and more generally the very validity of the model. Different solutions are
proposed in the ACE literature. The first one initializes the model in a homogeneity
situation, where all the state variables of the agents are set equal to some econom-
ically meaningful values (see Dosi et al. 2010, 2013, 2015). The second solution
instead draws initial conditions of a category of agents from a specific distribution,
possibly grounded on some empirical regularity (e.g., fat-tailed firm size distribution
as in, e.g., Bianchi et al. 2007, 2008a). Finally, if rich enough datasets are available,
one can employ them to directly impute initial conditions values (Hassan et al. 2008).

Parameters. They can fix some macro conditions, determine the size of agents’
reactions to events, or they characterize the distributions from which stochastic deci-
sions are taken by agents or shocks are drawn. In many economic and finance ABMs,
parameters are of particular interest because they might drive the dynamic of the sys-
tem to different statistical equilibria, they characterize some specific policy relations
or some particular institutional arrangement that the modeler wants to investigate.
Parameters are usually calibrated, or they can be estimated if appropriate data is
available (see Sect. 31.4.1). Moreover, several methods allow to perform sensitivity
analysis exercises in order to map the model responses to parameter variations (see
Lee et al. 2015; Dosi et al. 2017c). These techniques will be discussed in more detail
in Sect. 31.5.

31.2.3 Outputs of Agent-Based Models

ABMs can generate both microlevel and aggregate outputs.

Microlevel output. The output of an ABM is composed of MC (the number of
Monte Carlo simulations) panel datasets containing different micro variables for a
set I of agents over a specified time window T . Therefore, the data can be collected
in the following form:

Zm,k ∈ R
K×MC , Zm,k = {

zm,k,i,t ; i = 1, . . . , I ; t = t0, . . . , T
}
, ∀k ∈ K ,

(31.1)
where m denotes a specific Monte Carlo run, k indicates a micro-variable, i repre-
sents the agent cross-section dimension, and t captures the time dimension. As an
example, in amacroeconomicABMs these variables can represent household income
or consumption levels, firm prices, capital, profits, etc.

Aggregate output. The output of each Monte Carlo simulation m contains also
some time-series variables,which emerge from the aggregation along the agent cross-
section dimension. These aggregate series (denoted by an upper bar) take the fol-
lowing form:
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Z̄m,h ∈ R
H×MC , Z̄m,h = {

z̄m,h,t ; t = t0, . . . , T
}
, ∀h ∈ H, (31.2)

where h denotes the macro variable observed at different time steps t . For exam-
ple, in a macroeconomic ABM, one can aggregate the micro variables concerning
households, firms to compute GDP, price indexes, or the unemployment level.

31.2.4 Relation Between Input and Output

For micro and for aggregate variables, the simulated synthetic datasets can generate
a number of stylized facts or statistical properties that the modeler can compare with
those obtained from the empirical analysis of the corresponding real-world dataset.
This is the core of the indirect calibration approach presented above and the first
validation test that an ABM must satisfy. The similarity between model-generated
and real-world data constitute the essence of the validation problem for ABMs, and
it will be extensively discussed in Sects. 31.4 and 31.5. For the moment, let us only
anticipate that in the past decade, different strategies have emerged tackling a set of
related, but slightly different issues.

For any validation method, one should consider that in ABMs, the set of gener-
ated micro and macro variables

{
Zm,k, Z̄m,h

}
are not intrinsic features of the model

itself, but are emerging properties coming from the complex interaction between
model institutional arrangements and model inputs. Therefore, the statistical prop-
erties of the output might exist only conditionally on the selected initial conditions,
parametrization, the chosen random seed, and the selected institutional arrangement.
This means that a stylized fact that has been obtained under a specific set of inputs,
might not necessarily hold true under different arrangements, and robustness analysis
must be performed before using ABMs for policy analysis exercises.

31.3 Agent-Based Model Validation: Theoretical
Framework

Validation of computer simulation models encompasses a variety of interrelated
issues and concepts. Manson (2002) distinguishes between output validation and
structural validation. The latter asks how well the simulation model represents the
(prior) conceptual model of the real-world system, while the former assesses how
successfully the simulations’ output exhibits the historical behaviors of the real-world
target system. Further, output validation can be directly related to what Leombruni
et al. (2006) define as empirical validity of a model, i.e., validity of the empirically
occurring true value relative to its indicator. Following Rosen (1985), let us consider
two parallel unfoldings: the evolution of the system (an economy, a market, etc.) and
the evolution of the model of the system. If the model is correct, properly calibrated
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and initial conditions have been fixed according to the initial status of the real system,
the simulation should mirror the historical evolution of the real-world system with
respect to the variables of interest. This is exactly the assessment of the relation-
ship between simulated and empirical data that constitutes the focus of this chapter.
However, there are many other validity issues that we do not explicitly address. For
example, Leombruni et al. (2006) discuss theoretical validity (the validity of the
theory relative to the simulation), model validity (the validity of the model relative
to the theory), program validity (the validity of the simulating program relative to
the model), and operational validity (the validity of the theoretical concept to its
indicator or measurement).8

Using Fig. 31.1, let us present our view and definition of model validation (cfr.
Windrum et al. 2007). Assume that the modeler knows (from a preliminary simula-
tion study, or from some ex ante knowledge about the model under scrutiny) that the
real-world system is ergodic, and that the rwDGP displays a sufficiently stationary
behavior for a time period after T ∗. Further, let us assume that for a particular set
of initial conditions, micro and macro parameters, the mDGP runs until it reaches
some form of stable behavior, which can be further summarized by a set of statistics
S = {s1, s2, . . .}. Thus, each realization of the model will produce different values
of the summary statistics s j . Then, one must perform a sufficiently high number of
independent Monte Carlo runs to estimate the distributions of those statistics, from
which moments can be computed.9 Such moments will depend on the initial choices
that were made in terms of parameters and initial conditions. However, by exploring
a sufficiently large number of points in the space of initial conditions and parameter
values, and by computing, at least, the first two moments (E(s j ) and V (s j )) at each
point, one could gain a deep understanding of the behavior of the model, test the
robustness of the results, and identify the set(s) of parameters providing the most
relevant dynamics. Modelers and practitioners can make use of the uniquely observ-
able real-world micro and macro time series and, under the assumptions outlined
above, compute their longitudinal moments. Hence, the statistical properties of the
artificial data and of the real-world can be compared and this constitutes what we
call empirical validation. In that, a relevant issue concerns the availability of suitable
real-world data for validation; in general, the economic and financial literatures tend
to use “macro-level” data (e.g., time series of GDP or stock prices). In the future, we
believe that the increased data availability and computing power will push toward
the systematic inclusion of more informative microlevel data, i.e., data at the level
of agents.

Summing up, validating a simulation model amounts to assessing the extent by
which the model structure represents the data generating process that underlies the
societal reality but that cannot be directly observed. Validation involves use of both

8In agent- based modeling, some of the standard validity aspects that are relevant in many fields
of numerical simulations are not an issue; for example, systems are always represented in discrete
time and, hence, discretization errors are not possible. Further, low emphasis is usually posed on
code verification.
9See also Secchi and Seri (2017) on the issue of selecting the number of times a computational
model should be run.
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Fig. 31.1 A procedure to study the output of ABMs

artificial data derived from the model and real observational data. Validation, in this
general sense, differs from a strict notion of both demonstration and falsification,
because our approach is not framed in a binary framework (i.e., to reject vs. not to
reject the model), but comes in degrees, which also allows us to judge how a model
performs empirically relatively better than another (for a discussion of falsification
and validation see also Chap. 5 by Beven and Lane and Chap. 26 by Roache in
this volume). In many circumstances, indeed, what is needed by the practitioner is,
instead of a response on whether to accept or reject a model, a measure of how
good the model is, which allows the researcher to choose among alternative model
specifications.

31.4 Agent-Based Model Validation: Literature Review

The most general classification scheme for agent-based models (ABM) according to
their level of empirical validity has been proposed by Axtell and Epstein (1994) and
Barde and van der Hoog (2017) and consists of four levels:

• Level 0: the model is a caricature of reality, as established through the use of
simple graphical devices (e.g., allowing visualization of agent motions).

• Level 1: the model is in qualitative agreement with empirical macrostructures, as
established by plotting, e.g., the distributional properties of agent population. This
is the easiest way to matching stylized facts.

http://dx.doi.org/10.1007/978-3-319-70766-2_5
http://dx.doi.org/10.1007/978-3-319-70766-2_26
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• Level 2: the model produces quantitative agreement with empirical macrostruc-
tures, as established through on-board statistical estimation routines.

• Level 3: the model exhibits quantitative agreement with empirical microstruc-
tures, as determined from cross-sectional and longitudinal analysis of the agent
population.

Publishing standards for economic and finance ABMs require at least that satis-
faction of Level 1.10 Under the Level 1 approach, an agent-basedmodel gets validated
through a statistical comparison of unconditional objects: stylized fact observed in
real-world data and emergent properties derived from the simulation environment.
This amounts, therefore, at replicating a large number of possible micro and macro
stylized facts characterizing the phenomena of interest.11

Current developments in empirical validation of ABMs shows a progression from
Level-1 to Level-2 models, as the mere replication of empirical regularities and
other unconditional objects are increasingly replaced or supplemented byquantitative
estimation. Such a fresh stream of research requires the models to generate series
that exhibit the same dynamics (Marks 2007; Lamperti 2018b), the same conditional
probabilistic structure (Barde 2016b), or the same causal structures (Guerini and
Moneta 2017) as those observed in the real-world data. Furthermore, new methods
to estimate and calibrate the parameters of ABMs have been developed with the
aim of minimizing the distance between some distributional properties of the real
simulation outcomes.

We claim that such new contributions will bring agent-based models on the same
ground of advancement of the DSGE literature. Indeed, the emerging literature on
validation and estimation of ABMs represents the ACE counterpart of the progresses
occurred in the estimation of DSGE models and well represented by the works of
Del Negro and Schorfheide (2006); Canova and Sala (2009); Paccagnini (2010);
Fernández-Villaverde et al. (2016).

Notwithstanding the possible overlaps between calibration, estimation, and vali-
dation strategies,12 in what follows we propose a classification based on the central
aim of each procedure. We, therefore, present in Sect. 31.4.1 calibration and esti-
mation procedures, which are essentially exercises for tuning model parameters or
understanding the likelihood that a parameter is responsible for simulation results.
We then discuss in Sect. 31.4.2 the validation procedures, which evaluate how the
inputs or outputs of simulated models resemble some well-defined real-world statis-
tical properties.

10Level 0models can be somehow accepted if their aim ismerely exploratory rather than descriptive.
11See, for example, Dosi et al. (2010, 2013, 2015, 2016a) for replication of business cycle and
growth stylized facts; Dosi et al. (2017a) for accounting of labor-market micro and macro regular-
ities; Popoyan et al. (2017) for the reproduction of many credit and interbank market properties;
Lamperti et al. (2018a, b) for capturing coevolution of economic fundamentals with energy and
emission quantities; Pellizzari and Dal Forno (2007); Leal et al. (2016) for simulating financial
market booms and busts.
12For a discussion of calibration and testability, see Chap. 40 by Frisch in this volume.

http://dx.doi.org/10.1007/978-3-319-70766-2_40
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31.4.1 Calibration and Estimation

Notwithstanding the fuzzy difference between calibration and estimation, in what
follow we discuss the two approaches as both aim at solving the same class of prob-
lems (in line with Hansen and Heckman 1996). Calibration and estimation exercises
have peculiar difficulties in Agent-Based modeling: the complex microeconomic
interactions and the presence of ubiquitous nonlinearities (even in the simplest mod-
els) do not allow one to obtain a closed-form solution of the likelihood function and
of the moments conditions. Therefore, one must resort to indirect inference or other
simulation methods.

31.4.1.1 Indirect Inference

Indirect inference (Gourieroux et al. 1993) is the standard approach that has been
developed for the estimation of small-scale agent-based models, characterized by
relatively few parameters and short computational time.13 Indirect inference allows
one to estimate or to make inferences about the parameters of a model by means
of simulation methods. It has been considered the preferred estimation choice since
the very first ABM estimation attempts (see e.g., Winker and Gilli 2001, 2004).14

Also in the ABM framework, one could try to employ the Generalized Method
of Moments approach (GMM), as in the very stylized models by Alfarano et al.
(2005, 2006). However, in most of financial and economic Agent-BasedModels, the
moment function is completely unknown and one has to approximate it via Monte
Carlo simulation exercises. In such a framework, the consistency and efficiency of the
parameters estimates strongly depend on the level of approximation of the moment
generation function.

Following Chen et al. (2012), the procedure of theMethod of SimulatedMoments
(MSM) can be summarized as follows:

We first choose a vector of parameter values to generate the simulated time series by run-
ning the agent-based model with this chosen set of parameter values. We then compare
some statistics (moments) of this simulated time series, the simulated moments, with those
using real data, the sample moments. The difference between the two is used to form a
distance function (the objective function). The MSM is purported to minimize the distance
by searching over the entire parameter space.

Formally, one must estimate the vector of parameters θ∗ that solves the following
minimization problem:

argmin L(X RW , X AB; θ) (31.3)

13Benchmark models are, for example, the Brock and Hommes (1998) asset pricing model and the
Kirman (1991) speculative bubbles model.
14See also Boswijk et al. (2007); Bianchi et al. (2008b); Goldbaum and Mizrach (2008); Franke
(2009); de Jong et al. (2010); Franke andWesterhoff (2012); Chiarella et al. (2014); Platt andGebbie
(2016).
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where X RW and X AB represent, respectively, the set of chosen moments observed in
the real-world data and their counterpart derived from the ABM simulation.

This procedure is sufficiently general and in principle it is applicable to any type of
ABM, but three drawbacksmake it unfeasible in practice when themodel complexity
increases, and the simulation time becomes a relevant constraint. First, an analytical
solution for the problem of minimization of the approximated distance function is
rarely available, forcing one to rely on numerical approximations. Second, moment
selection is arbitrary and different choices may lead to differing estimation results.
Third, the procedure is computationally intensive as one needs to run a sufficient
number of Monte Carlo simulations of the model for each instance of the parameter
space, and then evaluate the distance between the generated moments and those
observed in sampled real-world data.

Very close alternatives to the MSM for estimating an agent-based model is the
Simulated MinimumDistance (SMD) approach, which has been adopted by Fabretti
(2013) and byGrazzini andRichiardi (2015) and theSimulatedMaximumLikelihood
(SML) by Kukacka and Barunik (2017).

31.4.1.2 Bayesian Approaches

As documented in the previous section, most of estimation and calibration works
have been following a frequentist approach. However, after the popularization of
Bayesian methods for the estimation of DSGE models (see Fernández-Villaverde
and Rubio-Ramírez 2007; Fernández-Villaverde et al. 2016), Bayesian inference
techniques for estimating ABMs have been introduced in Grazzini et al. (2017). In
general, the adoption of Bayesian strategies should reduce the discretionary choices
involved in the somehow ad hoc selection of the moments to be taken into consider-
ation, the auxiliary model, or in any other metric that allows to evaluate the distance
between the real and the simulated time series. Moreover, Bayesian approach could
be more asymptotically efficient as it exploits the information provided by the whole
distribution of the data and not only those of some specific moments.

However, Bayesian methods are not exempted from these issues. First, as doc-
umented by Canova and Sala (2009) and Fagiolo and Roventini (2012, 2017), the
selection of the prior distribution can possibly generate an artificial curvature to the
posterior distribution, when the likelihood tends to be flat, thus ending up in an inter-
val calibration exercise. Second, the computational cost of Bayesian techniques is
especially highwhen they are applied toABMs for estimating the likelihood function.
Such computational costs can be reduced by adopting efficient sampling schemes or
likelihood function approximations, whose appropriateness should be evaluated on a
case-by-case basis. However, as ABMs do not typically have closed-form solutions,
a large number of Monte Carlo instances still need to be simulated (see Lamperti
et al. 2018c).
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31.4.2 Validation

31.4.2.1 Input Validation

Themain focus of input validation has been (i) testing some of the behavioral assump-
tions typically included in Agent-Based models; (ii) selecting the initial conditions
of the model under investigation; and (iii) exploring the parameter space. Let us now
consider each of them.
Selection of behavioral rules. Well in line with behavioral economics (see e.g., the
seminal contribution of Kahneman and Tversky 1979), the very first input validation
exercises ofABMshas resorted to laboratory experiments,which allow the researcher
to directly verify how an individual behaves in a controlled environment. Typically,
these experiments have been used to test specific assumptions on agents’ behavior
embedded in small-scale ABMs (see Hommes 2011, 2013; Anufriev et al. 2016).
Later, controlled laboratory experiments have been employed to estimate heuristic
switching models (as in Anufriev and Hommes 2012; Assenza et al. 2013).

Instead, in more complex ABMs, specific behavioral assumptions cannot be
directly tested, and other approaches have been adopted. We present here three of
them that have allowed researchers to reduce the problem known in the literature
as the “wilderness of bounded rationality.” In the adjustment heuristics approach
(Gaffeo et al. 2008; Assenza et al. 2015; Guerini et al. 2017), economic agents fol-
low very basic economic principles in order to set some of their state variables. For
instance, in these models, prices are fixed by the principle of excess demand. In the
management science approach (see Dawid et al. 2016), the decisions of agents are
modeled starting from the researches carried out in the management literature. More
specifically, consumers and firm behaviors are modeled following, respectively, the
indications provided by the marketing and firm strategy literature. Finally, the empir-
ical microeconomics approach attempts to model the behavior of agents relying on
microeconomic empirical evidence. This is the case, for example, in the “Schumpeter
meeting Keynes” stream of models (Dosi et al. 2010, 2013, 2015).
Selection of initial conditions. Input validation can concern the selection of initial
conditions of the model. Even simple and deterministic ABMs can display chaotic
dynamics, wherein small deviations between two configurations may
generate extremely different time series (see Brock and Hommes 1997, 1998;
Hommes 2013). However, if the model is ergodic, it explores the whole state space
and reaches a stationary distribution. The problem of sensitive dependence on initial
conditions can be tackled in small- scale models, which are typically analytically
solvable and where boundaries conditions and basins of attraction can be easily
studied. On the contrary, it is still an open issue in more complex models, where
the large support from which initial-condition values can be drawn implies huge
computational costs.
Exploration of the parameter space. Apart from parameter estimation and calibra-
tion, which have been thoroughly discussed in the previous section, in Agent-Based
models one may need to explore the parameter space in order to assess the impact
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of different parameters on the dynamics of the model and to perform policy analysis
exercises. An increasing number of works have started to investigate the robustness15

of a model by running Monte Carlo simulations under different parameter settings
(Ciarli 2012; Salle and Yıldızoğlu 2014; Bargigli et al. 2016; Dosi et al. 2016b,
2017b, c). More on that in Sect. 31.5.3.

31.4.2.2 Output Validation

As introduced in Sect. 31.3, output validation is the process of evaluating the extent
to which the outcome of a simulated model is a good representation of real-world
observations. The baseline evaluation process focussing on the replication of stylized
facts has been naturally embedded in most of Agent-Based models, which are often
designed to account for phenomena unexplained by analytically tractable models.

Recently, more sophisticated statistical techniques have been developed to satisfy
more stringent output validation requirements. In particular, they try to account for
the “unconditional object” critique in Brock (1999) and to better discriminate among
different ABMs reproducing the same set of stylized facts.

For instance, Marks (2013) employs three similarity measures—the Kullback–
Leibler, the State Similarity Measure, and the Generalized Hartley Metric—to ana-
lyze and validate an ABM of brand rivalry in the general validation framework
developed in Marks (2007)16. Barde (2016a, b) and Lamperti (2018a, b) develop two
new similarity measures based on information theoretic criteria. Guerini andMoneta
(2017) instead measure similarity by comparing the causal relations entailed in a
Structural Vector Autoregression model estimated on both real and simulated data
(cfr. Sects. 31.5.1 and 31.5.2). Following Grimm et al. (2005), all these compare
model and data according to the patterns conceiving relevant information on the
system under scrutiny.

Note that all these recently developed validation techniques focus only on aggre-
gate time series, while most of ABMs have been been able to replicate both micro
and macro stylized facts. We believe that the next challenge is to further extend the
new approaches to validate ABMs also in terms of microeconomic behaviors.

31.5 A New Wave of Validation Approaches

The debate on ABM validation is still an open one and a novel wave of approaches
has recently blossomed, offering to modelers and policymakers additional tools for
the analysis of their models. This section outlines and discusses some of these con-
tributions in relation to existing gaps in the literature.

15For robustness of the model, we here mean the stability of the results to small variations of the
parameters. See also Lorscheid et al. (2012) and Thiele et al. (2014).
16See also Chap. 12 by Marks in this volume.

http://dx.doi.org/10.1007/978-3-319-70766-2_12
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31.5.1 Validation As Replication of Time Series Dynamics

Output validation concerns the assessment of how successfully simulations from a
model mirror the historical behavior of the real-world target system (cf. Sect. 31.3).
In practice, this amounts at evaluating the degree of similarity between two or more
time series. In most applications, the method of simulated moments and simulated
minimum distance are used, but as we argued before, these might have some short-
comings when applied to ABMs. In order to overcome these shortcomings, Lamperti
(2018b) has recently proposed a novel information theoretic criterion, called Gen-
eralized Subtracted L-divergence (GSL-div), that measures the degree of similarity
between the dynamics observed in real data and those produced by the numeri-
cal simulation of a model. Contrary to simple summary statistics, the GSL-div has
been constructed to compare time series on the basis of their patterns. Validation is
achieved capturing the ability of a given model to reproduce the distributions of time
changes (that is, changes in the process’ values from one point in time to another)
observed in the real-world series, without the need to resort to any likelihood function
or to impose requirements of stationarity. The GSL-div provides a precise quantifi-
cation of the distance between the model and data with respect to their dynamics in
the time domain.17

The GSL-div can be estimated numerically following a simple, four-step proce-
dure.

1. Time series (both real and simulated) are symbolized.
2. Patterns of symbols are observed through rolling windows of different length

l = 1, .., L .
3. Distributions of patterns, fl , are estimated for each windows’ length.
4. The distance between distributions from real and simulated data are evaluated

through an information theoretic criterion and, finally, aggregated.

TheGSL-div has been tested to discriminate among different classes of stochastic
processes, going from simple Autoregressive–Moving-Average (ARMA) models to
randomwalkswith drifts and structural breaks. Systematic comparisonswith alterna-
tive measures of fit commonly used for calibrating ABMs in economics and finance
(e.g., mean squared error (MSE), distance betweenmoments, etc.; for an overview of
these measures see Chap. 17 by Saam in this volume) has revealed that the GSL-div
provides much more satisfactory performances. Such results point the adequacy of
the approach to quantify the degree a simulation model mirrors real-world data.

Lamperti (2018a) applies the described approach to the analysis of a widely used
financial market model with heterogeneous traders. He finds that the GSL-div can
further improve the validation of the model with respect to criterion grounded on the
minimization of the mean squared error as in Recchioni et al. (2015).

17For other interesting approaches on pattern-based validation see Barde (2016b) andMarks (2018).

http://dx.doi.org/10.1007/978-3-319-70766-2_17
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31.5.2 Validation as Matching of Causation

Discovering causal structures is a relevant task for at least two interconnected reasons:
(i) it allows understanding and explaining the origin and propagation of phenomena
that are observed at some point in time; (ii) it provides information on available policy
channels to be used for impacting the system. Given such premises, Guerini and
Moneta (2017) claim that models employed to provide policy prescriptions should
match the causal relationships observed in the real systems they represent. They
propose a procedure to validate a simulation model by estimating and comparing
the causal structures incorporated in the model with those obtained from real-world
data.

The causationmatching approach proposed byGuerini andMoneta (2017) follows
a sequential procedure that can be divided into five steps.

1. Data harmonization and preparation.
2. Analysis of ABM properties.
3. Estimation of Vector Autoregressive (VAR) models.
4. Identification of the Structural Vector Autoregressive (SVAR) models.
5. Validation assessment.

In the first step, some simple transformations are performed to allow the comparison
of empirical and artificial data (e.g., cutting simulated series to make them equally
long as their real-world counterpart, removing trend, etc.). In the second step, two
emergent properties of the series produced by the simulatedmodel are analyzed (e.g.,
stationarity and ergodicity tests). In the third step, the reduced-form VAR model is
estimated via ordinary least squares or accounting for co-integrated variables via the
Johansen and Juselius (1990) procedure. In the fourth step, the structural form of
the model is identified by means of the so-called PC (in case of Gaussian residuals,
Spirtes et al. 2000) or VAR-LiNGAM (if residuals are non-Gaussian, Shimizu et al.
2006 and Hyvarinen et al. 2010) causal search algorithms.18 Finally, in the last
step, the two estimated causal structures are compared according to simple distance
measures.

Guerini and Moneta (2017) also apply their approach to the well-known K+S
macroeconomic agent-basedmodel developed inDosi et al. (2015). Causal structures
frommodel simulations are compared to those obtained fromU.S. data for the period
1959–2014. Results show that the model is able to capture between 65% and 80%
of the causal relations entailed by a SVAR estimated on real-world data. Such a
positive finding could be then compared to the results obtained when the procedure
is also applied to different agent-based and DSGE models. In that, the causality-
matching validation test is highly complementary to GSL-div employed to assess
the replication of time series dynamics (cf. Sect. 31.5.1).

18VAR-LiNGAM stands for Vector Autoregressive Linear Non-Gaussian Acyclic Model.
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31.5.3 Global Sensitivity Analysis via Kriging Meta-Modeling

The understanding ofmodel’s response to (possibly joint) changes in some parameter
values or initial conditions is pivotal to assess the robustness of models’ output as
well as to draw robust implications from policy exercises. It also allows understand-
ing whether variations in some parameters drive the model away from the empirical
reality. However, sensitivity analysis in ABM can often involve high computational
costs stemming from simulating the model for many vectors of parameters, ini-
tial conditions, and seeds of the pseudorandom number generating process. Salle
and Yıldızoğlu (2014) have been the first to propose the combination of design of
experiments (DoE) and kriging meta-modeling (Krige 1951; Van Beers and Klei-
jnen 2004) to address the issue within the economics literature. The strategy they
propose is straightforward: DoE allows to minimize the sample size of parameter
configurations under the constraint on their representativeness. The original model
is, therefore, approximated with a meta-model, which is then employed to connect
the parameters to the variables of interest at virtually zero computational costs. The
meta-model is indeed a simplified version of the original model that can be more
parsimoniously run to evaluate the effect of inputs (parameters) on model’s output.

Building on such an approach, Dosi et al. (2017b, c) provide a global sensitivity
analysis for a relatively simple model of industry dynamics and for a more compli-
cated macroeconomic model. Their procedure runs as follow:

1. employ nearly orthogonal latin hypercubes (NOLH) to sample the parameter
space;

2. develop a kriging meta-model (KMM) to approximate the original ABM19;
3. perform Sobol variance decomposition to analyze the meta-model sensitivity to

parameters;
4. draw three-dimensional surfaces to represent the response of the variable of inter-

est in the meta-model to changes in parameters.

For example,Dosi et al. (2017c) study amodel of industrial dynamics investigating
how the distribution of firms’ growth rates changes in response to different input
variations ranging from the relevance of learning mechanisms to the strength of the
selection process among competing firms. Kriging and Sobol decompositions have
also been successfully employed to themore complexK+Smodel agent-basedmodel
to study the impact of structural reforms in the labor market (Dosi et al. 2016b) and
to detect the emergence of hysteresis (Dosi et al. 2017b).

19Coupling NOLHwith kriging meta- modeling has been frequently used to approximate the output
of computer simulation models (see, for example, McKay et al. 1979; Salle and Yıldızoğlu 2014;
Bargigli et al. 2016).
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Fig. 31.2 Schematic representation of the proposed procedure to learn a surrogate for an ABM.
Source Lamperti et al. (2018c)

31.5.4 Parameter Space Exploration and Calibration via
Machine-Learning Surrogates

Kriging constitutes a valuable meta-modeling technique to approximate the behavior
of an ABM in a given region of the parameter space. However, one may need to
extensively explore the parameter space to detect possible abrupt changes in the
aggregate properties of the model or simply to have a general and precise overview
of its behavior. Such broad explorations are usually either infeasible in terms of
computational costs or tend to boil down to rough approximations obtainedwith small
samples of learning points. This issue is addressed in Lamperti et al. (2018c), who
explicitly tackle parameter space exploration and calibration of ABMs combining
supervised machine-learning and intelligent sampling to build a surrogate meta-
model, which is then used to classify parameter vectors according to the behavior they
produce. The machine-learning surrogate dramatically reduces the computation time
needed to perform large-scale explorations of the parameter space, while providing a
powerful filter to gain insights into the complex functioning of agent-based models.

The original would be practically infeasible in terms of computational costs.
The learning process of a surrogate occurs over multiple rounds, as summarized

in Fig. 31.2). The crucial part of the job is finding a precise approximation of the
original model, which has to be learnt over samples of points selected to minimize
the computational effort of the overall procedure. In particular, the surrogate training
procedure involves three decisions:

1. choose a machine-learning algorithm to act as a surrogate for the original ABM;
2. select a sampling procedure to draw samples from the parameters space in order

to train the surrogate;
3. select a score or criterion to evaluate the performance of the surrogate.

Extreme gradient boosted trees (XGBoost, see Chen and Guestrin 2016) are used as
the predefined surrogate learning algorithm employed to form a random ensemble of



31 Validation of Agent-Based Models in Economics and Finance 781

classification and regression trees (CART, cf. Breiman et al. 1984). This choice allows
the surrogate to learn nonlinear “knife-edge” properties, which typically characterize
ABM parameter spaces. The sampling procedure builds a set of parameter vectors
on which the agent-based model is actually evaluated in order to provide labeled data
points for the training of the surrogate. Sets of parameter combinations are succes-
sively drawn according to a quasi-random Sobol sampling over the parameter space
(Morokoff and Caflisch 1994). Finally, the quality of the surrogate approximation
is measured through the true positive ratio (TPR), a standard classification accuracy
indicator computed as the number of parameter vectors correctly predicted (by the
surrogate) to satisfy the user-specified conditions over the total number of parameters
in the “pool” truly satisfying them.

Lamperti et al. (2018c) provide two applications of themachine-learning surrogate
approach employing a financial ABMand amodel of endogenous growth. Results are
encouraging. In the growth model (Fagiolo and Dosi 2003), parameter vectors deliv-
ering fat-tailed output growth-rate distributions are selected. The authors find that
even for limited budget, the surrogate correctly classifies more than 80% parameter
combinations, and computational costs are extraordinarily lower than those required
by the original ABM.

31.6 Conclusions

Ten years after the influential article byWindrum et al. (2007), the issue of empirical
validation of agent-based models (ABM) in economics and finance is still among the
top items in the to-do list of researchers. This despite the fact thatmany advances have
occurred, especially in the three key areas of: (i) calibration and estimation of model
parameters; (ii) comparison of real-world and artificial data; and (iii) parameter space
exploration.

This Chapter has attempted to critically survey such a recent literature focusing
on developments in the above three areas.

Notwithstanding the huge effortmade in advancing the frontier inABMvalidation
techniques, the process of developing a complete and coherent validation toolbox is
still ongoing and some important issues are still to be better understood.20

First, the pros and cons of each different validation methodology are still not
completely laid out in the literature. This is a pity, as a sort of if-then map would
be extremely useful for practitioners aiming at picking the right tool in each specific
situation. Projects developing such a map would be very welcome in the community,
although it is of course clear that each tool is aimed at a specific task, and no validation
technique is more general than the others. Relatedly, validation software packages
should be developed to ease the adoption of the different existing techniques.

20The interested reader might want to look at Thiele et al. (2014) for a cookbook guiding model
exploration and sensitivity andGrimmet al. (2005) for a pattern-oriented approach atmodel building
and evaluation.
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Second, and most importantly, more research efforts should be devoted toward
advancing hypothesis testing in ABM. In particular, more robust statistical tests
should be developed in order to better characterizing model stationarity and ergod-
icity, and to better understand how the failure of these properties might affect the
problems of estimation, calibration, validation, and exploration.

To conclude, we believe that the development of better empirical-validation tech-
niques is a never-ending process, which must naturally coevolve together with the
developments of new models, new statistical techniques and with the increase in
computational power (see also Chap. 18 by Robinson in this volume). In that, recent
developments in machine-learning and the increase availability of big data could
entail the next leap forward: machine learning offers indeed more flexible method-
ologies that allow one to minimize the number of assumptions when running an
econometric model; big data, instead, allow one to perform more thorough compar-
isons of the model with the real-world situations, by extending validation also to the
microlevel. All in all, these extensions would allow ACE models to progress from
Level 2 to Level 3 in the Axtell and Epstein (1994) classification (see Sect. 31.4).

Furthermore, validation of ABMs will never tell whether a model is a correct
description of the complex, unknown and non-understandable real-world data gen-
erating process. However, in a Popperian fashion, ABMvalidation techniques should
eventually allow researchers to understand whether a model is a bad description of it.
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Chapter 32
Validation and Equifinality

Keith Beven

Abstract In this chapter, the concept of equifinality of model representations is
discussed, from a background of model applications in the environmental sciences.
Equifinality in this context is used to indicate that there may be many different
model structures, parameter sets and auxiliary conditions that might appear to give
equivalent output predictions or acceptable fits to any observation data available for
use in model calibration. This does not imply that the resulting ensemble of models
will give similar predictions when used to predict the future under some changed
conditions. As new information becomes available to allowmodel validation, this can
be used to constrain the ensemble of models within a Bayesian updating framework,
although epistemic sources of uncertainty can make it difficult to define appropriate
likelihood measures. It seems likely that the equifinality concept will persist into the
future in the form of ensembles of (stochastic) model runs being used to estimate
prediction uncertainties. However, more research is needed into the limitations of
model structures, information content of data sets subject to epistemic uncertainties
and means of evaluating and validating models in the inexact sciences.

Keywords Inexact sciences ·Model ensembles · Epistemic uncertainties ·
Environmental models · Equifinality thesis · Audit trail

32.1 Introduction

There are a number of stages in the modelling process. Beven (2012a) distinguishes
a perceptual model stage that may be purely qualitative in nature; a conceptual model
stage, in which our perceptions about a system are approximated by equations; and
a procedural model stage in which those equations are implemented as code, often
with a further level of approximation. In the environmental sciences, which can be
considered as representative of the inexact sciences, nearly all predictive models of
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this type involve parameter values that have to be estimated in some way before a
model can be run for an application to a particular system. This will be the case even
for models derived by deductive reasoning from process theories. This estimation
may be purely on the basis of past experience and observations, though it is often
difficult to relate parameter values determined bymeasurement to the effective values
required to make a model successfully simulate the system response. Thus, it is a
common practice to calibrate or tune the effective parameter values against some
historical data set,where suchdata are available. This chapter discusses the possibility
that there may be many different model representations that might be considered to
give equivalent output predictions or, in particular in the context ofmodel calibration,
simulations that are considered to be acceptable in some sense, given the epistemic
uncertainties involved in the modelling process. This is the equifinality thesis (Beven
2006).

Following model calibration, it is also generally considered as good practice to
carry out an additional stage ofmodel validation. This can involve the reconsideration
of the theoretical basis of a model based on results from the calibration stage, but
more generally involves a further evaluation against some “independent” data set for
the system being simulated. The minimal evaluation, in this respect, is for another
period of observations from the same site: the split-record validation test (Klemes
1986; Refsgaard and Knudsen 1996). A stronger and more independent test would
be to evaluate model outputs against observed variables that have not been used in
calibrating the model. It will be shown that in the context of the equifinality thesis,
this can be a way of refining the ensemble of models considered as acceptable, as a
form of Bayesian updating. It is suggested that this provides a way of testing models
as hypotheses in the inexact sciences, while making allowance for the sources of
uncertainty in the modelling process.

In the following, Sect. 32.2 introduces the equifinality concept. Empirical results
frommany computer experiments with a variety of hydrological models showed that
equifinality is generic to this type of modelling exercise. It is the parameter set that
fully reflects the interactions between parameter values in producing a sequence of
model predictions that will be considered as acceptable or not (Sect. 32.3). Using
environmental models as an example, Sect. 32.4 explains the particularities of the
inexact scienceswith respect to errors and uncertainties in the input and observational
data, and the consequent limitations in using of traditional statistical hypotheses
testing. Section 32.5 introduces the Generalised Likelihood Uncertainty Estimation
(GLUE) method which preserves the effects of parameter interactions within the
model structure. It allows for equifinality in bothmodel structures and parameter sets.
Section 32.6 argues that in GLUE, there is a framework that allows the choice of any
sensible likelihoodmeasure, including the recognition of periods of disinformation in
the data used for model calibration v and evaluation. Section 32.7 turns to simulation
validation in the inexact sciences. Here, the modeller is often caught between the
desire to use as wide a range of conditions as possible in model calibration, and the
need to checkmodel predictions on some validation data set. The suggested ensemble
framework for model evaluation provides a methodology for model validation (and
invalidation), despite, the difficulties of properly evaluating the information content
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of data subject to epistemic uncertainties, and consequently defining an appropriate
measure of acceptability in deciding whether a model is really fit for purpose.

32.2 The Origins of Equifinality Concepts

The word equifinality was originally used in the context of the General Systems
Theory of Ludwig von Bertalanffy (1951, 1968) to describe the concept that open
systems might reach a similar steady state starting from different initial conditions.
The examples he used were mostly concerned with biological systems, but the con-
cepts of General System Theory were introduced into meteorology by Thompson
(1961) and geomorphology by Culling (1957) and Chorley (1962). In geomorphol-
ogy, it was used to convey the idea that similar landforms might derive from different
initial states and histories. Culling (1987) later modified his ideas to a more general
description of stability of formderived from the theory of nonlinear dynamic systems.

Beven (1975, 1993, 2006, 2009) adopted equifinality for use with environmental
models, where empirical results based onMonte Carlo simulation show that different
model structures and different model parameter sets might lead to rather similar
model outputs, and in particular, rather similar performancewhen comparedwith any
available observational data. For such models, it is generally expected that there will
be a gradation of acceptability from the “best” models that can be found, to those that
are clearly not acceptable as simulators of the system of interest. In this context, the
equifinality concept is intrinsically linked tomodel calibration and validation as parts
of the modelling process, including the consideration of uncertainty in the available
data. The equifinality thesis suggests that there will be no singlemodel representation
of an environmental system, but rather an evolving ensemble of models that are
considered acceptable in the sense of being useful in prediction as new information
becomes available over time (Beven 2006, 2012a, b).

This should not be a surprise given the epistemic uncertainties associated with
model representations in the inexact sciences, but it still allows for a form of scientific
methodology to be adopted by treating the ensemble of plausible models as multiple
working hypotheses about how the system of interest is functioning. The interesting
question then is how to test those hypotheses in different ways. Whether any of the
models as hypotheses can be considered as fit for purpose is discussed earlier by
Beven and Lane (Chap. 6 in this volume).

32.3 Equifinality as an Empirical Result

I first started running Monte Carlo experiments with hydrological models in about
1980 at theUniversity ofVirginia. At that time, I had access to aCDC6600mainframe
computer, which allowed many more runs to be made than previous computers I had
been able to use. Modelling strategies in the hydrological community at that time
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were focussed on trying to find the optimum model of a catchment area or water
resource system, including research on finding better methods of optimisation (e.g.
Sorooshian and Gupta, 1995). My previous experience, however, suggested that any
optimum model would be poorly defined, conditional on the period of data used in
model calibration, the errors in that data, and the performancemeasure(s) or objective
function(s) chosen by the modeller. Sometimes, the choice of measure seemed rather
arbitrary, such as the use of an index based on the sum of squared model residuals
(such as the Nash and Sutcliffe (1970) efficiency measure, a form of coefficient of
determination based on the sum of squared residuals), even though the time series
of residuals do not often seem random or independent in nature. In one study, we
showed that an optimisation algorithm resulted in the model being used in a way
that conflicted with the way it was supposed to represent the surface and subsurface
runoff processes (Beven and Kirkby 1979). Discussion of appropriate measures to
use for evaluating hydrological models continues to the present day (see for example,
Schaefli and Gupta 2007; Smith et al. 2008; Gupta et al. 2009; Reusser et al. 2009;
Gupta and Kling 2011; Mizukami et al. 2018).

So a brute forceMonte Carlo method for model calibration, in which many differ-
ent model parameter sets were chosen randomly from prior ranges or distributions,
provided an interesting alternative strategy. Once the runs were made, there was the
possibility of evaluating the outputs from those runs in a variety of different ways
(although at that time storing and retrieving the results was expensive and slow, and
generally involved writing to magnetic tapes). The impact of the initial results was
dramatic, showing that for the types of performance measures being used at that
time, there were very many model parameter sets, spread through the model param-
eter space that gave rather similar results when evaluated against past observations,
indicating a form of equifinality of model representations. This was also the case for
model output variables; many model parameter sets would give similar outputs.

An example of such results for a hydrological model is given in Fig. 32.1, which
shows the results of many Monte Carlo simulations for a single model structure with
different randomly chosen parameter sets. These scatter plots or dotty plots repre-
sent projections onto single parameter axes of point samples from amultidimensional
surface defined by a single performance measure in the model space. Each point rep-
resents the results from a single model run. As point projections, they do not properly
illustrate the nature of that surface which might be rather complex, involving multi-
ple peaks and troughs or ridges and valleys that will reflect the complex interactions
between parameters in the model outputs. In addition, similar values of the perfor-
mance measure might be the result of the model simulating the functioning of the
system in rather different ways (for example, with different dominant processes, or
simply different residual compromises in achieving a similar value of performance).

However, three important points may be drawn from such plots. The first is that
there often seems to be some upper limit of performance. Figure 32.1 shows this
for a single model structure, but this can apply also to multiple model structures
with more or less processes represented. It is known from fitting functions to data
using statistical regression, that the more degrees of freedom, in general, the better
the fit that will be obtained, but with the danger that the data might be over-fitted
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leading to problems in prediction and validation. It seems that it is not always the
case that more complex model structures will give better fits to the evaluation data,
even if they have more parameters that can be varied. This appears to be related
to the limitations of the data sets being used for driving and evaluating the model,
and the limitations of the model structure in representing the system of interest. At
that time, little consideration was given to uncertainties and errors in the input and
observational data, but allowing for such potential uncertainties will only increase
the potential for equifinality.

Second,manyparameters show that the highest values of the performancemeasure
are spread across the range or distribution from which the values are sampled. This
has been seen in such experiments with a wide range of environmental models for
which Monte Carlo experiments are feasible. Indeed, it is often the case that the best

Fig. 32.1 Examples of equifinality in dotty plots for different types of model applications. Y-axes
are proportional to a likelihood measure; X-axes are parameter values across the range of values
sampled. Each dot represents one run of the model with randomly chosen parameter values. In all
of these cases, the samples were taken from uniform distributions across the indicated ranges, and
parameters were sampled independently. The plots, therefore, represent projections of points on
the likelihood surface onto each parameter axis, A Results from a simple four-parameter rainfall-
runoff model, evaluated against observed river discharges using the sum of squares based efficiency
measure, for the Hafren, catchment, mid-Wales (after Page et al. 2007), B Results from a flood
inundation model, evaluated using a fuzzy performance measure against water levels after a major
flood in the Alzette River, Luxembourg (from Pappenberger et al. 2007), C Results from an advec-
tion–dispersion solute transport model evaluated against drainage concentrations for a conservative
tracer and a non-conservative pesticide in the outflow from a large undisturbed soil column. ve is
the mean pore water velocity, D is the dispersion coefficient, R is the retardation coefficient and µE

is the degradation coefficient for the pesticide. The error bars for R and µE indicate the results from
a nonlinear least squares optimization (from Zhang et al. 2006)
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Fig. 32.1 (continued)
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fits extend right to the edges of the specified range (as shown in Fig. 32.1), even if
that range represents the modeller’s choice of physically plausible values. This might
also be related to the limitations of the model structure and data available.

The third point is that for any particular parameter value that shows good fits to
the evaluation data, there will also generally be a full range of poorer fits conditional
on the values of all the other parameters. This means that it is not (usually) individual
parameter values that determine a good fit or bad fit, it is the parameter set that is
important. It is the parameter set that fully reflects the interactions between parameter
values in producing a sequence of model predictions. These interactions will reflect
the nonlinear dynamics of the model representation and will not necessarily map
to simple covariance structures, since the nature of the interaction might vary in
different parts of the model space. Because of these complex interactions, there have
been cases where the parameter set made up of the modal values of each posterior
marginal parameter distribution over the ensemble of acceptablemodels has not itself
produced acceptable simulations.

Note that, these are empirical results from many computer experiments with a
variety of models. They show that equifinality is generic to this type of modelling
exercise and focus attention on parameter sets in model performance. Changing the
performance measure, or the period of calibration data, can modify the shape of the
surface and result in different rankings of the parameter sets. There may also be
Pareto trade-offs between multiple performance measures for a given parameter set
(e.g. Yapo et al. 1998; Madsen 2003; Vrugt et al. 2003; Pokhrel et al. 2012). Note
also that these issues apply to both deterministic and stochastic models.

32.4 Equifinality in Model Calibration in the Inexact
Sciences

The empirical results from environmental models in the last section are examples of
trying to apply models in what can be called the inexact sciences (e.g. Helmer and
Rescher, 1959). The inexact sciences include environmental sciences that is subject
to limited knowledge of their boundary conditions and processes. In the inexact
sciences, we do not expect to achieve very good fits to the observations, since there
will be errors in model structures, uncertainty in input and boundary condition data,
and uncertainty in the observations used in model evaluation (Beven 2002, 2009).
In addition, we do not expect these errors and uncertainties to have simple statistical
structures. They will not be aleatory, but predominantly epistemic in nature. Model
residuals will also be affected by the way in which input errors and uncertainties are
processed through the nonlinear model dynamics. Thus, even if input uncertainties
could be assumed to have a simple statistical structure, then the dependent output
uncertainties from the model, which will affect the model residuals when compared
with observational data, should be expected to have a nonstationary bias, variance
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and correlation structure. If the input uncertainties themselves are epistemic and
complex, then this problem will be greater (Beven 2012b, 2016).

These issues make it difficult to assess the real information content of the data,
particularly of data involving time series or spatial patterns rather than distributions of
values alone. In somemore extreme cases of epistemic uncertainty, the available input
and evaluation data may not be physically consistent and so may not be informative
in determining whether a model gives an acceptable simulation or not in calibration
(e.g. Beven and Westerberg 2011; Beven et al. 2011a; Beven and Smith 2015).

In the inexact sciences, therefore, while wemight want to treat models as potential
working hypotheses to describe system functioning, testing those hypotheses in the
face of epistemic uncertainties is proving to be challenging. Statistical methods of
hypothesis testing will not generally be useful. They are not designed to deal with
equifinality and complex interactions between parameters and nonstationarity in
residual characteristics (unless they can be represented in simple functional forms,
e.g. Renard et al. 2010; Schoups and Vrugt 2010). We might, however, be able to
borrow some concepts from statistical hypothesis testing. In particular, we would
wish to avoid making false positive and false negative errors (see also Chap. 6 by
Beven and Lane in this volume). We might also wish to treat hypothesis testing
and model calibration as a conditioning problem, starting with a prior distribution
of plausible parameter sets and updating that ensemble as more observational data
become available. A number of methods are available for doing so (e.g. Beven 2009).

32.5 Equifinality as Behavioural Model Ensembles

One of the earliest applications of Monte Carlo simulation to an environmental
model was that of George Hornberger, Bob Spear and Peter Young, modelling algal
blooms in Perth Inlet in Western Australia (e.g. Hornberger and Spear 1981; Spear
and Hornberger 1980). Their model was relatively simple, linking algal productivity
to nutrient status in the Inlet. One of the features of their analysis was the division
of their ensemble of model runs into what they called “behavioural” and “non-
behavioural” parameter sets. A model run was considered behavioural if it predicted
an algal bloom in the Inlet; it was non-behavioural if it did not. The focus was on the
parameter sets, rather than the individual parameters, since the effects of parameter
interactions could be seen in whether there was an algal bloom or not.

This division into the two ensembles also provided a method for global sensitivity
analysis. By looking at the marginal distributions for individual parameters in the
behavioural and non-behavioural sets, then those parameters that showed a strong
separation of the cumulative distributions could be inferred as the most sensitive,
while those that showed little or no separation could be considered relative insensitive.
The method has been widely applied, in part because it makes no strong assumptions
about the nature of model residuals or parameter interactions, including to cases
where there is no clear behavioural or non-behavioural indicator (like an algal bloom)
but only relative measures of performance in fitting observations.
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Clearly, this method incorporates the equifinality concept in a rather natural way
(see van Straten and Keesman 1991; and Rose et al. 1991, for other early environ-
mental modelling examples of this type of approach). If there are many different
models that give more or less equally good results then they can be included in the
behavioural ensemble. The behavioural set can then be used to make predictions
about the system. If there are models that do not give acceptable results then they can
be included in the non-behavioural set. This is, therefore, a form of testing models
as hypotheses, if a suitable measure can be defined for deciding whether a model is
behavioural or not. As more observations are made available, the parameter sets in
each ensemble can be updated.

A simple extension of this method was proposed by Beven and Binley (1992)
in the Generalised Likelihood Uncertainty Estimation (GLUE) methodology (see
also Beven and Binley 2014). This allowed for each member of the behavioural
ensemble be to be associated with a likelihood measure based on past calibration
performance. Predictionsmadewith the behavioural ensemble can then be likelihood
weighted so that prediction quantiles can be estimated for any predicted variable. The
plots of Fig. 32.1a, b and c are taken from applications of the GLUE methodology,
where the measures of goodness-of-fit shown on the y-axes are transformed into
likelihood weights for each of the models considered behavioural. This method pre-
serves the effects of parameter interactions within the model structure in producing
a behavioural simulation. It can also be extended to parameter sets within competing
model structures, as long as the model outputs can be compared in the same way so
that the likelihood values from different model structures are commensurate. It can
therefore allow for equifinality in both model structures and parameter sets within
thosemodel structures, even if some parametersmight have quite different meanings,
or different effective values within different structures.

The GLUE methodology requires a number of decisions to be made.

1. Which model structures are to be evaluated?
2. What are the plausible parameter ranges or distributions to be sampled?
3. What sampling method will be used?
4. What are the criteria for differentiating between behavioural and non-behavioural

parameter sets?
5. What likelihood measure or measures will be used for weighting the outputs of

the behavioural parameter sets?
6. Howwill the likelihoods be updated as new observational data become available?

Similar decisions are required within a probabilistic identification methodology
based on Bayes’ equation. In a formal Bayesian framework, it is necessary to decide
on prior distributions for parameters and their covariance; a method for sampling
the model space (normally a form of Monte Carlo Markov Chain sampling); and
a likelihood function based on the statistical characteristics of the model residuals.
The updating step uses Bayes’ equation to combine the prior probabilities and like-
lihoods to produce a posterior joint distribution for the parameters. Effectively, the
Bayesian approach is a special case of the GLUE methodology where specific prob-
abilistic assumptions can be made about the link between model residual structure
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and likelihood value, and where likelihoods are updated using Bayes’ equation (e.g.
Romanowicz et al. 1994, 1996). If the assumptions can be shown to be valid, it has
the advantage that the model outputs and joint parameter distribution can be inter-
preted in a formal probabilistic way. It also avoids any decision about differentiating
between behavioural and non-behavioural models. No model will be rejected; poor
models will be given a very low likelihood but not zero (but will then have only a
small or negligible contribution to the cumulative likelihood). Model structures can
be compared within this framework, as long as the residual error model structures
can be assumed to be the same so that the likelihoods are commensurate. There are
then accepted ways of choosing one model structure over another using, for example
ratios of integral posterior likelihoods for each model structure.

There is a variant of the Bayes’ methodology that is used when it is difficult to
define a formal likelihood function because of the complexity of the model resid-
uals or other epistemic issues. This is Approximate Bayesian Computation (ABC)
where models are evaluated in terms of some tolerance threshold for closeness to the
evaluation data. This is analogous therefore to decisions about behavioural or non-
behavioural models, except in that within ABC the tolerance level can be allowed to
vary as part of the search algorithm, becoming smaller as the area of higher perfor-
mance in the model space becomes better defined. The aim is to find an ensemble of
models that lie in a high likelihood part of the model space. Since there is no formal
likelihood definition, all models found within the tolerance limits are given equal
weight. It has been shown for some simple cases that this approach can provide a
good approximation to the formal Bayes’ methodology.

GLUE is more general than either Bayes’ or ABC approaches in that different
ways of defining likelihoods, rejecting non-behavioural models, and combining like-
lihood weights can be used. It can be used, for example using fuzzy measures and
fuzzy operators (see Beven 2009, p. 134, for example in different application areas),
a framework that lends itself well to a behavioural/non-behavioural model differen-
tiation for cases where the support for the fuzzy measures can be defined in terms of
some limits of acceptability around the evaluation data. This can be for single obser-
vations, or for summary statistics derived from groups of observations. Defining such
limits should allow for the uncertainties in both the input data and evaluation obser-
vations, and should ideally be done prior to running the model (Beven 2006, 2016).
Behavioural models will then be those that satisfy the required limits of acceptabil-
ity. Such an approach is very general, and allows for testing models as hypotheses.
Those that do not provide simulated values within the limits of acceptability will be
rejected (see also Chap. 6 by Beven and Lane in this volume).

GLUE can also include alternative representations of model residuals without the
strong assumptions of a statistical likelihood formulation (e.g. the non-parametric
representation of Beven and Smith 2015) but the treatment of residuals is often
left implicit under the expectation that where a model under- or over-predicts in
calibration it will under- or over-predict in a similar way under similar conditions in
prediction. Where the behavioural model outputs have sufficient range to bracket the
observations, then applying this approach to the full ensemble of behavioural models
can provide a useful estimate of predictive uncertainty (but without the explicit
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probabilistic interpretation of formal Bayes’ likelihoods). Where the ensemble of
model outputs does not bracket the observations, it is in any case, a useful indication
of a modelling problem, either as a result of model structural deficiencies or, as
noted earlier, of inconsistencies with the data that might not be informative in model
calibration. Such cases are perhaps more common than we like to think (e.g. Beven
and Westerberg 2011; Beven et al. 2011b; Beven and Smith 2015).

32.6 Defining a Model Likelihood

The equifinality of model performance shown in Fig. 32.1 necessarily depends on the
definition of a likelihood measure. The GLUE approach has been heavily criticised
in the past (e.g. Montanari 2005; Mantovan and Todini 2006; Stedinger et al. 2008)
because this is often left to the subjective judgement of the modeller rather than
making use of a statistical definition of likelihood (though clearly, the latter is a
choice that could be made within GLUE where deemed appropriate, see Beven et al.
2008; Beven 2009). The effect of using a statistical likelihood is to effectively stretch
the likelihood surface as a result of the multiplicative combination of the probability
estimates from individual model residuals. In general the greater the number of
observations used in the evaluation, the greater the stretching will be. The more the
observations can be considered independent, the greater the stretching will be. This
is, in fact, one solution to the equifinality issue, since the greater the stretching of
the likelihood surface, the smaller the region of apparent equifinality will be. Beven
(2016) shows, again for a hydrological model evaluated against time series data, how
models of very similar error variance can be assigned likelihoods of tens of orders of
magnitude different in this way, even when allowing for correlation in the residuals.
The stretching can be so extreme that it is normal practice to do the calculations, and
report the results, as log-likelihoods to avoid rounding errors in the computations.
The extreme case of this would be to only retain the maximum likelihood model as
behavioural, treating the modelling uncertainties only in terms of the residuals for
that model, with all other models given likelihoods of zero.

The question then is whether that stretching actually reflects a plausible belief in
the relative merits of models with similar error variance. It follows mathematically
from the assumptions about the model residuals (e.g. typically that they have a sta-
tionary Gaussian distribution of constant bias and variance and a simple correlation
structure and that the contributions from individual residuals combine multiplica-
tively in accordance with Bayes’ equation). These assumptions are based on treating
the uncertainties in the modelling process as if they have simple aleatory charac-
teristics. The assumptions can be checked against the characteristics of the actual
model residuals. The claim to objectivity of the approach lies in this possibility of
validation of the assumptions (though where this is done, if at all, it is usually only
done for the model with the highest likelihood value).

But, for me at least, it is hard to accept that the resulting stretching of the likeli-
hoods should represent my belief in the expected performance of different models,
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when if I plot out the time series of residuals for two models of similar error variance
I find it difficult to really say whether one is better than another, even if they might
have calculated statistical likelihoods that are orders of magnitude different. For me,
this seems to be a problem in applying this form of statistical theory to nonlinear
dynamic models in the inexact sciences when the errors and uncertainties may come
from epistemic rather than aleatory sources. It seems counter to common sense in that
it may over-constrain the prediction of future events when the maximum likelihood
model (or more generally, the ensemble of high likelihood models) is not robust to
the use of different periods of data. Including a wider range of predictive models
(accepting equifinality) would then seem to be advantageous.

This question of plausibility may be interpreted in two ways. First, we might
wish to take advantage of statistical theory as an approximation to a more realistic
analysis. In doing so, we recognise the limitations and approximate nature of the
necessary statistical assumptions in representing epistemic uncertainties, but because
those uncertainties are epistemic we do not know how they should be handled more
formally. If we had more information about them then we would have a better idea
of what more sophisticated assumptions might be appropriate. If we can recognise
important sources of epistemic error (such as the rainfall inputs over a catchment
area in a hydrological model) then we might be able to invest more effort in trying
to reduce those uncertainties and refine the approximate analysis.

This is the interpretation of critics of the subjectivity of GLUE likelihood choice
(e.g. Mantovan and Todini 2006; Stedinger et al. 2008) who give preference to the
explicit probabilistic predictions based on the statistical likelihood approach. The
only problemwith considering it as an approximation to a more realistic approach is,
however, precisely in the unrealistic stretching of the likelihood surface that results,
with a consequent over-conditioning of beliefs in the correctness of the model and
its associated parameters. This seems to me to be a preference for mathematical
formalism over common sense.

The second interpretation is to allow that the aleatory statistical assumptions
overestimate the information content of the data being used to run and evaluate the
model. We have suggestions of this in the identification of periods of hydrologically
inconsistent data revealed in some applications of hydrological models (e.g. Beven
and Smith 2015). This is a form of epistemic uncertainty, since we do not know what
it is about those periods of data that results in the inconsistency in mass balance.
Such periods should not, however, be used to evaluate a model based on a principle
of mass balance as it might lead to incorrect inference. This suggests that what is
needed is for the information content of the available data to be reflected in a definition
of likelihood that does not result in extreme stretching of the relative likelihood of
similarly acceptable models, i.e. which reflects the type of equifinality that is obvious
in Fig. 32.1.

In GLUE we have a framework that allows the choice of any sensible likelihood
measure, including the recognition of periods of disinformation (though that result
in problems in validation and prediction, see next section). So, the question is how
to define a likelihood measure that reflects the effects of epistemic uncertainties on
the information content of the calibration data. This has proven difficult, for good
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epistemic reasons of course; we do not generally know enough about the data to
be able to assess its real information content. Indeed the interpretation of the data
itself often depends on a model with its own epistemic errors (e.g. the rating curve
in estimating stream discharges, see Westerberg et al. 2011; Coxon et al. 2015;
McMillan andWesterberg 2015; or in the processing and meaning of remote sensing
images, see Franks and Beven 1999; Gagehan and Ehlers 2000; Lobell et al. 2003).

Recent studies within the GLUE methodology have been based on using limits
of acceptability, defined prior to running any models and defined based on what is
known about uncertainties in the input and evaluation data. Individual evaluation
observations can be associated with their own limits of acceptability. The limits can
also serve to determine whether a model is acceptable or not. It is often possible to
make an estimate of the uncertainty associated with an observation itself. However,
the main problem that arises with this approach is that whether a model produces
a predicted value that falls within the observational uncertainty will also depend on
the uncertainty (which may be both aleatory and epistemic) in the input variables, of
which theremaybe several interacting sources. This could be handled by constructing
many realisations of the inputs, but this would also require assumptions on which
to base the realisations, which may not be easy to justify. It is a problem precisely
because of that lack of knowledge so that any such assumptions would involve a high
degree of subjectivity, especially if there is the potential for nonstationarity in the
epistemic input uncertainties, as there often is.

A simple, but also subjective, solution is to use the limits of acceptability on the
evaluation observations as a base, and to allow those to expand to a sensible degree
to allow for the unknown input uncertainties. To make the limits of acceptability on
different variables commensurate in this respect, they can be normalised to a common
scale (e.g.−1 to +1 fromminimum tomaximum limits). Howmuch expansion should
be allowed? This clearly cannot be defined in anyway objectively but is related to
what the modeller is prepared to accept as acceptable. It does raise the interesting
possibility that the degree of expansion necessary to have any behavioural models
might not be acceptable. This is discussed further in Beven and Lane (Chap. 6, this
volume).

For the caseswhere, perhapswith expanded limits of acceptability, sampling of the
model space results in somemodels that make predictions within the limits for all the
evaluation observations, then we would expect relative belief in those models to be
higher, the closer the predictions are to the observations. A simpleweighting function
within the limits of acceptability allows this to be taken into account. The individual
weights can then be combined in differentways to produce a likelihoodmeasure. This
could include using the multiplicative Bayes’ equation, but with large numbers of
observations (say in a time series evaluation) this would result in a similar stretching
of the likelihood surface. Thus an additive combination might be more appropriate,
making the resulting likelihood measures more analogous to fuzzy possibilities than
probabilities (see for example, Halpern 2005). Similar choices arise in combining
the measures for different types of evaluation variable, or from different evaluation
periods. We could still interpret the resulting weights (relative probabilities within
the ensemble of behavioural models (and their associated residual distributions if
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necessary). Nearing et al. (2016), for example argue that probabilistic reasoning
is the only consistent axiomatic framework for reasoning about uncertainty (see
also O’Hagan and Oakley 2004, for a statistician’s perspective). However, this will
generally require an assumption that those probabilities are complete or bounded,
which may not be the case given the approximate nature of the models and the
epistemic uncertainties involved.

The subjective choices needed in this type of analysis result from common sense
reasoning about the impacts of unknown epistemic uncertainties in the modelling
process. They raise issues about how to interpret the resulting uncertainty estimates,
or to convey the meaning of those estimates to stakeholders and users. Beven and
Alcock (2012) have suggested that, since every uncertainty estimate is conditional
on the assumptions on which it is based, one way of facilitating this communication
is through the use of a condition tree, within which the choices and assumptions
required to perform an analysis are listed and, as far as possible, justified. This also
provides an audit trail for the analysis such that those assumptions can be checked
(and perhaps understood more explicitly) by the potential users. Examples of such
condition trees for some case studies of flood inundation mapping are given in Beven
et al. (2014).

32.7 Equifinality and Model Validation in the Inexact
Sciences

The previous sections have been primarily concerned with model evaluation based
on data for some calibration period but, as noted earlier, many modelling studies
include further validation checks on some “independent” data set for those models
that survive calibration. The modeller is then often caught in a bind: between the
desire to use as wide a range of conditions as possible in model calibration to refine
the ensemble ofmodels used in prediction, and the need to checkmodel predictions on
some validation data set, beforemaking the predictions necessary for an application.
The situation is made more difficult in the inexact sciences by the potential for
epistemic errors in data sets, in ways that might include periods of inconsistent data
or with sources of error that vary between different periods of data.

The type of ensemble framework for model evaluation suggested above provides
a methodology for model validation despite these difficulties. It does so by allowing
the initial estimates of likelihoods associatedwith themodels in the behavioural set to
be updated as new validation observations become available. This might also include
some of the models that have previously been considered behavioural being rejected
as a result of the new evaluations. In some cases, this mightmean all themodels being
rejected (e.g. Page et al. 2007; Dean et al. 2009; Mitchell et al. 2011; Hollaway
et al. 2018). In doing so, it is necessary to take account of potential uncertainties
and inconsistencies in the data, particularly in avoiding false negatives in model
rejection. Those that remain canbe considered to be validated in the sense of surviving
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the further test. At each stage, the ensemble of behavioural models can be used to
make predictions. This is a form of Bayesian updating, but not necessarily using a
multiplicativeBayesian operator in doing the updating. This approach is quite general
but puts more focus on a decision about what should be considered an acceptable or
behavioural model, and what should be considered as invalidated as not useful for
making predictions. This is explored in more detail in Beven and Lane (Chap. 6, this
volume).

32.8 Discussion

In the decades since the concept of equifinality was introduced by von Bertalanffy
(1951) and applied to dynamic models by Beven (1975, 1993, 2006), the idea of
using ensembles of models in prediction has become much more accepted. Even in
the field of earth system science and climatemodelling, which remains strongly com-
putationally constrained, limited ensemble of models are being used to inform future
policy decisions, such as the Paris Agreement within the United Nations Framework
Convention on Climate Change that went into effect after ratification by sufficient
national governments in November 2016. The ensembles of predictions used are
limited in terms of the number of future emissions scenarios used, the numbers of
parameter sets run and the choices of process representations. They largely represent
the collection of the best deterministic projections made by different global mod-
elling groups around the world, with each model being “tuned” in different ways
to historical data sets. These are generally given equal weight, and it is left up to
the expert opinion of the modellers themselves as to whether they are adequately
tuned to the past data. There is no reason, in principle, why such ensembles should
not be weighted according to past performance (see Chap. 34 by Knutti et al. in
this volume), even though many model configurations will have been rejected in the
development and tuning process.

Larger ensembles of climate change projections have been generated and evalu-
ated using rough limits of acceptability in reproducing past change (most recently
using cloud computing resources, e.g. Evangelinos and Hill 2008; Frame et al. 2009;
Fowler et al. 2010; Rowlands et al. 2012) but the models used have generally made
use of coarser grids or simplifying assumptions to reduce the computational burden.
The weight given to these studies has generally been much less because they do
not provide the highest resolution projections. Even after conditioning on past data,
they do, however, give some indication that the finer resolution models might be
underestimating the potential range of future change.

In other areas of environmental science, it is computationally possible to do much
more extensive explorations of model structures, parameter sets and boundary condi-
tions. The ensembles of possible responses and potential for ensembles of acceptable
models can be explored in much more detail in both model evaluation and predic-
tions or projections. Given the epistemic uncertainties associated with environmental
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systems and other similar scientific domains, equifinality of model representations
is a generic problem and should be considered explicit.

However, in most cases, the problem of how to deal with epistemic uncertainty in
the driving variables and boundary conditions remains and has rarely been adequately
addressed. It is very much easier to make the outputs conditional on an assumption
that the input and boundary condition data are correct. Such an assumption is common
in the application of formal statistical likelihoods. That is also one reason why it is
so difficult to properly evaluate the real information content of data used for model
calibration and validation. Consequently, how to define an appropriate likelihood
measure, and how to decide whether models are really fit for purpose or should be
given a likelihood of zero, remain contentious topics in the literature (see Beven
and Lane, Chap. 6, this volume). It seems likely that the equifinality concept will
persist into the future in the form of ensembles of (stochastic) model runs being used
in estimating prediction uncertainties, but that much more research is needed into
model limitations, information content of data and both quantitative and qualitative
means of evaluating and validating models in the inexact sciences.
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Chapter 33
Validation and Over-
Parameterization—Experiences
from Hydrological Modeling

Jan Seibert, Maria Staudinger and H. J. (Ilja) van Meerveld

Abstract Models that simulate environmental processes by quantifying fluxes and
states vary largely in their complexity and number of parameters. Most models suffer
from over-parameterization, meaning that the available information does not allow
identification of all model parameters. Over-parameterization is a serious problem in
environmental modeling, as it might imply that a model works well, but could do so
for the wrong reasons. This can lead to unreliable results when the model is used to
make predictions. Model testing, or model validation, is therefore crucial. Usually,
in more complex models more, internal variables are explicitly simulated, and, thus,
there are more opportunities for model testing against observations than is the case
for simple models. Increasing model complexity, however, comes at the cost of more
parameters, and therefore the risk for over-parameterization increases as well. In this
chapter, we discuss different ways to validate models, which simulate hydrological
processes at the catchment scale, and the balance between model testability and
over-parameterization.

Keywords Model validation · Catchment modeling ·Model complexity ·
Parameter identification

33.1 Introduction

Computer models that simulate environmental processes by quantifying fluxes and
states vary largely in their complexity. In general, they have been developed for
two main purposes: (1) for hypothesis testing and (2) to make predictions (Beven
1989). The time horizon for the predictions can vary largely. For example, for hydro-
logical models, these include short-term forecasts, such as the streamflow in the
coming hours or days, and long-term forecasts, such as the potential impacts of
climate change on water resources. Like most models in environmental sciences,
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hydrological models are over-parameterized, which means that even though a model
appears to work well, it could do so for the wrong reasons. This can lead to unreli-
able predictions. Thus, if a model is used as a predictive tool, it needs to be tested
extensively to ensure that it produces accurate output for the changed (future) setting
in which we want to apply it (Grayson et al. 1992; Klemeš 1983, 1986a). Validation,
as defined in this book, includes any activity that increases our confidence in model
simulations. We use the term in a narrower sense and refer to validation as model
testing using themodel parameters that were determined for a calibration data set and
then remain unchanged. Most hydrological models require at least some calibration
because the parameters are not measurable or cannot be measured at the right scale
(see Sect. 33.2.2). In catchment-scale hydrological modeling (but also other types of
environmental modeling), often split sample tests are used for validation, where one
part of the available data is used for model calibration and another part is reserved
for testing. The aim of the testing is to ensure that the model also works for indepen-
dent periods, for different catchments or for independent variables. In this chapter,
we first discuss what is meant by over-parameterisation and related terms, and then
focus on different ways in which hydrological models can be tested, or validated,
after calibration to improve our trust in the model.

33.1.1 Over-Parameterization Terminology

Environmental studies are usually limited by the amount of available information.
This restricts the possibilities tomodel environmental systems in their full complexity
and heterogeneity. Hence, of necessity, the models aggregate the natural variability
to a large degree. This leads to the fundamental problem that there is not just one
possible model representation but different models can represent the available data
equally well. Several terms are used to describe this situation; they are all caused by
insufficient information but have slightly different meanings.Underdetermination is
used in the philosophy of sciences to describe situations where there is insufficient
evidence to decide between different theories or, with regard to environmental mod-
eling, between different descriptions of a system (Laudan 1990). In environmental
modeling, and especially in hydrological modeling, largely influenced by the work of
Keith Beven (Beven 1993, 2006, see also Chap. 32 by Beven in this volume), the term
equifinality is used to describe this situation. Two models or model parameteriza-
tions are said to be equifinal if they perform equally well in representing the available
observations (note that the term equifinality is used differently in other fields. In geo-
morphology, for instance, the term is used to describe the situation where different
processes lead to similar landforms). Over-parameterization describes the situation
when more parameters are used in a model than can be identified based on the avail-
able information. In mathematical terms, over-parameterization refers to situations
such as when a polynomial with more than n free parameters is fitted to n data pairs.
In environmental modeling, the term is used in a slightly different meaning, which
can be illustrated using an example with six data points (Fig. 33.1). Based on the
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information content of the data one can fit a fifth-degree polynomial function to
the data. While all lower degree polynomial functions show a similar general trend,
only the fifth-degree polynomial function fits all data points exactly. In environmen-
tal modeling, one would never try to fit each data point exactly because each data
point (observation) is affected by observation uncertainty and the model is only an
approximation of the much more complex reality. Hence, no environmental model
is expected to reproduce each observation perfectly. The term over-parameterization
is, thus, used in environmental modeling to describe the situation where a model
contains more free parameters than are identifiable with some confidence. While
in its mathematical meaning, it can be clearly decided whether a model is over-
parameterized or not, this boundary is fuzzy for environmental models. Looking at
the example with six data points (Fig. 33.1), it is not obvious which polynomial or,
more general, which function, to choose. Different models, like the different poly-
nomials in the example, usually do not vary much within the range of observations
that are available for model calibration (situations like the behavior shown by the
blue line of the fifth-degree polynomial between data points 1 and 2 or data points 5
and 6 in Fig. 33.1 are highly unusual for natural systems). It is more common that
models differ largely in their simulations outside the calibration conditions. Usually
one would choose a simple function that does not vary in a highly nonlinear way
beyond the observed data points. Looking at Fig. 33.1, one might say that the first
and second degree polynomials (red and orange curves) are most reliable for the
extrapolation, but in practice, it is often not that easy to decide which model to trust.
In some cases, a model that just continues the trend for the observed data may be less
reliable than a model that predicts large changes beyond a certain point. Consider,
for instance, a bucket with a small hole in the bottom, in which you pour one liter of
water every minute. As long as the bucket is not completely filled, the outflow will
slowly increase (due to the increasing water level, i.e., pressure). However, as soon
as the bucket is filled, each addition of water will immediately cause the bucket to
overflow, leading to a much larger increase in the flow rate. In this case, there is a
clear (storage) threshold beyond which the outflow increases drastically. While this
can be observed and simulated easily for the example of a leaky bucket, identifying
and parameterizing these types of thresholds is more difficult for natural systems.

Obviously, there is an overlap between the terms underdetermination, equifinality,
and over-parameterization, as well as other terms such as over-fitting. The subtle dif-
ferences can be discussed using the example with six data points (Fig. 33.1) as well.
The data do not allow one to decide for one single model or function (underdeter-
mination). Furthermore, for each of the models (functions) there might be different
parameterizations that represent the observed data points almost equally well, espe-
cially when considering the observation uncertainties (equifinality). Finally, with an
increasing number of free parameters (here the degree of the polynomial function)
the range of possible model behaviors increases, especially outside the observation
range, which implies that over-parameterization might have a large effect on the pre-
dictions. For predictions (especially outside the observation range), one might want
to restrict the number of parameters, although each additional parameter leads to a
(slightly) better fit to the observations.
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Fig. 33.1 Polynomial functions of different degree (1 (red) to 5 (blue)) fitted to six data points
(black circles). While the higher degree polynomial functions reproduce the data points better, and
for the fifth-degree function even perfectly, the lower degree functions are more robust between and
outside the data points. See text for a further discussion

33.1.2 Main Types of Hydrological Models

In this chapter, we focus on hydrological models that simulate streamflow responses
to rainfall and snowmelt events and the corresponding changes in the amount of
water stored in the catchment. These models represent hydrological processes (see
Textbox: Short description of catchment hydrology) in different ways and vary in
complexity and range from simple spatially lumped models to complex, spatially
explicit models. The number of parameters ranges from three to six for parsimo-
nious models, up to more than a hundred for complex models. The code representing
the models similarly varies from a few lines to many pages, and the time needed
to simulate, for instance, one year of streamflow, varies from less than a second to
several hours (even with today’s computers). The overall model complexity consists
of process complexity, i.e., the number of hydrological processes that the model
explicitly represents, and spatial complexity, i.e., the degree of spatial discretiza-
tion and connectivity (Clark et al. 2016). While these two types of complexity are
often connected, they do not necessarily have to be connected. A model can have a
simple process representation but a detailed spatial discretization, which can bemoti-
vated by the availability of spatial information for factors that affect the hydrological
response, such as topography (e.g., Grabs et al. 2009). The opposite, i.e., a complex
process representation with a rough spatial discretization usually makes little sense
for catchment-scale hydrological studies because the physical realism of the more
detailed process representation diminishes when averaged over larger heterogeneous
areas (Beven 1989; Kirchner 2006a).
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(a) (b)

Fig. 33.2 Schematic overview of the two main hydrological catchment model types: a conceptual
(bucket-type) model, b spatially explicit physically based model

Within this variety of catchment-scale hydrological models, there are three main
model families: (1) purely empirical models (also called black-box models), (2)
bucket-typemodels, which represent the fluxes in amore conceptual way (also called
conceptual models), and (3) physically based models. Note that the term physically
based model has also been used for bucket-type models in the literature on hydro-
logical modeling. Here, however, we use the term in the strict meaning of a model
that represents the fluxes based on equations that explicitly describe the small-scale
physics, such as the Darcy-Richards equation.

In black-box models, the empirical relationships are based on observed input and
output data without any attempt to represent hydrological processes. These empirical
relationships can be derived, for instance, from regression equations or artificial
neural networks. This model family provides very limited opportunities for model
validation because there are no additional internal variables and therefore we will
not consider the black-box models in the remainder of this chapter.

Bucket-type models represent a catchment in a lumped way, i.e., they represent an
entire catchment by a few boxes that can store and drain water (Fig. 33.2a). Examples
for bucket-typemodels are theHBVmodel (Lindström1997), theVariable Infiltration
Capacity model (ARNO/VIC) (Liang et al. 1994), and the GR4 J model (Perrin et al.
2003). Parameter values in bucket-typemodels are, in general, not directly observable
as they aggregate hydrological processes over the entire catchment or large parts of
it. The values are, thus, effective values at the catchment scale; in most cases, there
are no clear aggregation schemes to derive these effective values from small-scale
measurements. Consequently, model parameter values for bucket-type models are
determined indirectly by model calibration. In the case of ungauged catchments (i.e.,
catchments for which no calibration data are available) regionalisation of parameter
values is needed to estimate the parameter values for the studied catchment (Viviroli
et al. 2009).
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Physically based models usually represent the catchment in a more spatially
explicit way and simulate fluxes for smaller elements (e.g., grid cells), which together
represent the entire catchment (Fig. 33.2b). Examples of spatially explicit physically
basedmodels are InHM(VanderKwaak andLoague 2001; Smerdon et al. 2007;Mirus
et al. 2011), CATHY (Bixio et al. 2002; Camporese et al. 2010), tRIBS (Ivanov et al.
2004), HydroGeoSphere (Jones et al. 2006, 2008; Brunner and Simmons 2012),
and MIKE SHE (Hansen et al. 2013). While these models in theory can represent all
hydrological processes in a physically basedway, in reality often simplified represen-
tations are used for some of the processes.When hydrologists or hydrogeologists, for
instance, apply the same model to the same catchment, the actual model application
can look rather different (Staudinger et al., in review). One assumption of spatially
explicit physically based models is that the physical processes within a catchment
can be represented in a deterministic way and that the final catchment response is
the combination of the processes in the individual areas. Further, it is assumed that
the spatial variability in hydrological processes and responses in the catchment can
be characterized by spatially varying values of the model parameters.

Despite the term physically based, these models are not always as physically
based as one might think at first glance. Many physically based models require
information on soil physical parameters, such as porosity, hydraulic conductivity, and
the relation between soil moisture and matric potential (i.e., pF curve) (see Textbox:
Short description of catchment hydrology). While these variables can be measured
for soil cores, it is often difficult (or impossible) to use this information directly
in hydrological models because soil cores do not capture the large heterogeneity
in the soil and hydrological processes are highly nonlinear. As a result of these
spatial heterogeneities, the hydraulic conductivity often increases significantly with
scale (Schulze-Makuch et al. 1999;Martinez-Landa and Carrera 2005): the saturated
hydraulic conductivity of small soil cores is often at least an order of magnitude
smaller than the saturated hydraulic conductivity of large soil cores, which in turn
is at least an order of magnitude smaller than the effective hydraulic conductivity
obtained from fitting hydrological models (Brooks et al. 2004). This is largely due
to the presence of macropores, which can transmit water at much higher rates than
matrix flow (Beven and Germann 1982), but are generally insufficiently included
in small soil cores. Comparable to soil macropores, but at a larger scale, karstic
systems with flow pathways through caves similarly challenge the use of Darcy’s
law to describe groundwater flow (e.g., Hartmann et al. 2014). Since the Darcy-
Richards equation that is used in many physically based models does not consider
flow throughmacropores or fracture flow, often effective parameters for soil hydraulic
characteristics need to be used.As these effective parameters cannot be obtained from
soil cores or field data, they need to be obtained throughmodel calibration. The usual
procedure is to define a limited number of soil classes, estimate parameter values
for these classes and then assign a class to each grid cell in the model. While this is
a pragmatic solution, the physical realism is compromised by this approach and the
predictive capability of the model is reduced because the parameter values cannot
be determined a priori (Beven 1983; Grayson et al. 1992; James and Burges 1982).
It might even be questionable, whether there is an effective parameter value at the
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scale of the grid cell, as the functional behavior might differ more fundamentally than
is represented by a single effective parameter (Kirchner 2006b; Weiler 2017). For
instance, regarding the application of the Richards equation, Weiler (2017) argues:

“It is really difficult to see how such a misuse of ‘physics’ is justified” and “Although
hundreds of papers have been published showing that the capillary flow hypothesis of the
Richards equations does not work in many field soils, hydrology as a field is still unwilling
to reject it.” (p. 16).

33.1.3 Peculiarities of Hydrological Models

33.1.3.1 Model Development

Many hydrological models have been developed over several decades and the origi-
nal purpose of the model may have gotten lost along the way. Often various people or
groups have contributed to the development of a model, and different routines have
been added during the years of continued model development for specific questions
or case-specific data availability. As a result, many models now have a “shanty town
appearance” (Clark et al. 2017) and for more complex models it can become chal-
lenging to fully understand themodel code, including the assumptions and limitations
behind the computations. This can lead tomodels being applied beyond their original
scope and hence beyond their capabilities (Grayson et al. 1992). While motivated by
individual situations, often these incremental model developments lead to predictive
models that are over-parameterized. Also, internal variables of the models may have
names that suggest that they are a physical variable but do not necessarily represent
this variable at a measurable scale, but rather (if at all) at some effective, integrated
scale. This means that validation against these variables is not straightforward (or
even impossible).

33.1.3.2 Dominance of Streamflow Data for Model Testing

One peculiarity of catchment-scale hydrological modeling is the existence of one
dominant variable that is used for model calibration and validation, namely stream-
flow. While most catchment models also simulate other variables, streamflow time
series are the first and most important information used to evaluate model perfor-
mance. In climate modeling, for instance, the situation is quite different; there are
many potential variables to evaluate climate models against, and there is much more
variation in which one(s) modelers use for model evaluation (Hourdin et al. 2016).

Streamflow is the component of the water cycle that is easiest to measure at the
catchment scale due to its aggregated nature, i.e., streamflow observed at one location
provides information about the entire upstream catchment. Other variables, such as
groundwater levels, soil moisture or evapotranspiration vary largely in space, so that
it is difficult to derive a single representative value at the catchment scale. Obviously,
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streamflow is also a very important variable for many practical issues, such as flood
management and water supply. As a result, streamflow serves as the main variable
in model calibration and validation, even though it might not be the most important
hydrologic variable in all situations and is often also not the largest flux leaving a
catchment (evapotranspiration is often larger). The focus on streamflow also implies
the risk that certain model parts (routines), which are less crucial for streamflow
simulations, are not tested in enough detail and quick fixes (kluges) might remain
in the model code (see discussion on holism versus modularity, and on kluging in
Chap. 39 by Lenhard in this volume).

Streamflow is measured at the outlet of a catchment and integrates the different
hydrological processes that contribute to the streamflow response and their spatial
variability. Hydrological processes at the small scale are often highly nonlinear,
spatially variable and affected by thresholds (Seyfried and Wilcox 1995). However,
streamflow responses at the catchment scale are in most cases rather smooth. For
modeling, this is both a blessing and a curse. On the one hand, streamflow at the
catchment scale can be modeled relatively well without explicitly considering all
small-scale heterogeneities. On the other hand, even very simplistic models without
any physical realism can produce relatively good fits between the observed and
simulated streamflow (Grayson et al. 1992; Seibert and McDonnell 2002; Kirchner
2006a). This, in turn, implies that a good model fit for streamflow is by no means an
indication for a correct model and there is a high risk of being right for the wrong
reasons (Klemeš 1997; Loague and VanderKwaak 2004a; Kirchner 2006a).

The clear focus on one variable might have contributed to two further aspects of
hydrological modeling: (1) there is a large body of literature on model calibration
approaches, including the consideration of uncertainties (for a summary see, for
instance, Chap. 7 (“Parameter Estimation and Predictive Uncertainty”) of Beven
2012) and (2) there is a relatively broad consensus about the calibration criteria.
Most studies evaluate model performance using the model efficiency (Nash and
Sutcliffe 1970), which is the scaled sum of squared errors, although recently other
criteria, such as the Kling-Gupta efficiency (Gupta et al. 2009; Pool et al. 2018),
have gained popularity. In other environmental sciences, e.g., climate modeling,
the situation is quite different: calibration is seen as a rather ‘ugly’ business and is
usually called tuning. There are only few papers describing and evaluating the tuning
(or calibration) approaches in climate modeling and different research groups use
different evaluation criteria (Hourdin et al. 2016).

33.2 Types of Validation in Hydrological Modeling

33.2.1 Validation Based on Independent Time Periods

Over-parameterization may lead to a model that works fine for the period for which
it has been calibrated but performs poorly for an independent period. In hydrological
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modeling, however, this is hardly ever observed because generally the two time
periods used formodel calibration and validation are not that different.Hence,models
tend to perform approximately similar for consecutive calibration and validation
periods (classic split sample test; Klemeš 1986b).

The differential split sample test assesses if the model performs well for a particu-
lar transition and is, thus, amore powerful test ofmodel performance (Klemeš 1986a).
For this test, the period used for validation is chosen such that it is in some aspect
different from the data used for model development and calibration. For instance,
a model can be calibrated on data from years with only small floods and then be
validated based on data from years with larger floods (Seibert 2003; Coron et al.
2012; Dakhlaoui et al. 2017). For instance, to determine the hydrological impacts of
climate change, the periods should be split into a drier and a wetter period and the
one that is assumed to represent the future conditions is used for validation (Klemeš
1986a). This test is generally applicable and not model type dependent.

33.2.2 Validation Based on Independent Catchments

Besides testing for different time periods, we can also validate the model at a differ-
ent location. The proxy-basin test (Klemeš 1986a) is a basic test for the geographical
transferability of a model within a region with similar hydro-climatological, geolog-
ical and land use characteristics. The model is calibrated for two gauged catchments
from a specific region and then reciprocally validated. Only if the validation is satis-
factory for both catchments, the model can be used for a third (ungauged) catchment
in that region (Refsgaard and Knudsen 1996; Motovilov et al. 1999). This test is so
far not used regularly, in part due to the uniqueness of each catchment (Beven 2000),
which makes it difficult to find similar catchments. Usually, even neighboring catch-
ments are very different in their response to rainfall and snowmelt and, therefore, their
model parameterizations might vary largely. The validation based on independent
catchments is especially applicable to the more complex physically based models
because in these models differences in catchment characteristics, such as different
soil depths or land use, can be explicitly considered (if the data are available for both
catchments).

33.2.3 Validation Based on Independent Variables

Validation is also possible by evaluating themodel simulations against other variables
than those used in calibration. This can either be a particular aspect of streamflow that
was not directly used in calibration, streamflow at different locations in the catchment
or different variables, such as groundwater levels, stream chemistry or snow cover.
The validation on independent variables is principally possible for all model types,
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but for simple models the observations have to be transferred into a quantity that is
comparable to the model simulations.

33.2.3.1 Stream Flow Signatures

When a model is calibrated based on observed streamflow data using criteria such as
the model efficiency (Nash and Sutcliffe 1970), this does not imply that all aspects
of streamflow are simulated correctly. For example, it is well known that the model
efficiency puts more emphasis on high flows (Krause and Boyle 2005; Schaefli and
Gupta 2007) and consequently the streamflow simulations might be rather poor
when evaluated against other streamflow-based criteria, such as low flows, reces-
sion shapes, flow duration curve characteristics, etc. (Vis et al. 2015). Therefore,
also aspects of the streamflow time series or the variability of streamflow, so-called
signatures (Gupta et al. 2008; Yilmaz et al. 2008; Euser et al. 2013) or streamflow
characteristics (Vis et al. 2015; Pool et al. 2017), can be used for model validation.

33.2.3.2 Spatial Variation of Streamflow

Within a catchment, there is usually a large spatial variation in streamflow due to,
for instance, differences in topography, geology or vegetation (Karlsen et al. 2016),
which can be used for model validation. A model can be calibrated using streamflow
data for the catchment outlet and then validated using streamflow data from sub-
catchments (e.g., Ambroise et al. 1995; Refsgaard 1997; Uhlenbrook and Leibundgut
2002). In this case, however, the validation is not fully independent as the model
has been calibrated against ‘part of the streamflow’ because streamflow along a
stream network is obviously not independent (i.e., the downstream streamflow used
for calibration includes (parts of) the streamflow for an upstream sub-catchment)
(Seibert 2001a). In such situations it is necessary to use an appropriate benchmark,
such as the specific runoff time series (Seibert 2001b).

33.2.3.3 Other Hydrological Variables

Models can also be validated using variables that were not used in model calibration.
Usually, a model simulates one (or a few)main variables (as mentioned for hydrolog-
ical models this is in most cases streamflow), but there are also other model variables
that describe different fluxes and states inside themodel. Evaluating the simulation of
these variables against observations during model validation is somewhat similar to
the differential split sample test described above, but instead of testing the model for
a different time-period, the simulations are validated for a different variable. Com-
parison against internal variables can be done in a validation type approach, i.e., after
the model has been calibrated, but also during the calibration. This latter procedure,
also called multi-criteria calibration (Seibert 2000; Vaché et al. 2004), aims to reduce
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the parameter uncertainty during calibration. The idea of multi-criteria calibration
is that if the simulation aims for good fits for several variables, the parameter space
will be more constrained (Seibert and McDonnell 2002). However, the value of the
additional variables for model calibration and validation differs. In an application of
a catchment-scale water and salinity model, for instance, it was found that ground-
water level data did not help to constrain model parameters but salinity data did
(Kuczera and Mroczkowski 1998).

One of the issues with model validation based on hydrological variables other
than streamflow is that the scale of the measurements is typically very small (partic-
ularly compared to the size of the grid cell or the entire catchment) and the spatial
variability is large so that effective values need to be used. Another issue is that
some of these variables represent properties below the surface and are difficult to
observe and measure. In general, point measurements need to be transformed so that
they can be used in model validation. When spatially lumped model simulations
are compared with point measurements, such as groundwater level, soil moisture
or snow depth measurements, there are two options: (1) the model simulations are
compared to spatially averaged values (e.g., the mean value of several groundwater
levels or snow depth observations) or (2) the simulations are compared to relative
values or dynamics, rather than the exact values. In the first case, the challenge is to
derive a meaningful average, which usually includes determining weights for differ-
ent observations based on their representativeness. In the second case, only part of
the information is used for model validation.

Some studies have attempted to validate bucket-type models against internal vari-
ables, such as for instance groundwater dynamics or the isotopic composition of
streamflow (Seibert and McDonnell 2002; Fenicia et al. 2008). These studies have
shown that this information is useful for choosing plausible model structures. How-
ever, mainly due to the challenges in comparing point observations and simulated
catchment-scale values, bucket-type models are not routinely validated against inter-
nal variables.

For spatially explicit models, validation against field observations is (in theory)
more straightforward, but this type of validation is still not aswidespread and detailed
as one may expect. One of the main challenges is the lack of suitable data for internal
model testing (Loague and VanderKwaak 2004b; Loague and Ebel 2016). Stephen-
son and Freeze (1974) validated a spatially distributedmodel against streamflow data
and information on water tables and vertical hydraulic gradients from piezometers,
pressure heads from tensiometers and soil moisture. Despite the large number of
measurements that were available, the test failed due to a lack of adequate data, due
to limitations in themodel, due to uncertainties in initial and boundary conditions and
due to computer limitations. Now, more than 40 years later, the computer limitations
are less of an issue, but there are still relatively few studies that validate a model
against other variables (Parkin et al. 1996; Refsgaard 1997; Loague and VanderK-
waak 2002, 2004a; Bathurst et al. 2004). Almost all detailed validation studies that
are reported in the literature were done for a handful of relatively small intensively
studied catchments, such as Coos Bay (Ebel et al. 2007), Tarawarra (Western et al.
1999a) and R-5 (Loague and VanderKwaak 2002).
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A direct comparisonwith observed data is not always possible for spatially explicit
models either. For example, a model might be based on a grid cell representation of
a catchment with a resolution of 250 m by 250 m. Within such a grid cell, variables
like soil moisture might vary considerably and the simulated value only represents
the mean behavior of that grid cell. In other words, even here, some averaging of the
observations or disaggregation of the simulations is required before model simula-
tions can be compared to observations.

Snow
In snow-dominated catchments, snow observations can be beneficial for model val-
idation because the hydrological response of these catchments is closely linked to
snow accumulation and melt (Parajka and Blöschl 2008; Magnusson et al. 2014,
2015; Finger et al. 2015; Griessinger et al. 2016). Usually, the spatial extent of the
snow cover or the snow water equivalent (i.e., the amount of water if the snow would
melt) is used for model validation. These data can be derived from point observa-
tions (Magnusson et al. 2014), digital photogrammetry (Bühler et al. 2015) or satel-
lite remote sensing based on passive microwave and visible spectrum imagery (e.g.,
Andreadis and Lettenmaier 2006; Durand and Margulis 2006; Dong et al. 2007). In
catchments with glaciers, glacier mass balance information can be used in addition
to the snow observation for multi-criteria model validation (Koboltschnig et al. 2008;
Finger et al. 2015).

Below-Ground Storage
If we could easily measure the amount of water that is stored below the ground
at the catchment scale, streamflow would probably not have been the single most
used variable for model testing. New data on the amount of water stored in the
subsurface, e.g., from gravimeters, may be useful for model validation but their use
for catchment-scale hydrological model validation has been limited so far. Global
hydrological models have been validated using remotely sensed storage dynamics
(Werth et al. 2009; Milzow et al. 2011) but this information is too coarse to be used
for catchment-scale hydrological models.

Soil moisture and groundwater level data can provide information on the dynam-
ics (and spatial variability) of the amount of water that is stored in the catchment.
However, usually these are point observations and the challenge is to translate the
point data into something that can be compared to model simulations. In the case of
lumped models, some catchment average has to be computed from the observations.
Besides a direct comparison of absolute groundwater levels, also relative groundwa-
ter levels or groundwater level dynamics can be used for model validation (Refsgaard
1997). For spatially explicit models, observations and simulations can either be com-
pared point by point or their frequency distributions can be compared. Tromp-van
Meerveld and Weiler (2008) demonstrated the value of the latter approach to com-
pare observed and simulated groundwater levels for a hillslope hydrological model.
Additionally, patterns of saturated areas (i.e., areas where the groundwater level is
at or near the surface) can be used for model validation (e.g., Grayson and Blöschl
2001; Blazkova et al. 2002; Glaser et al. 2016).
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For lumpedmodels (or spatially distributedmodels with large grid sizes relative to
the spatial variability), the measured groundwater levels need to be aggregated. This
aggregation is usually not straightforward because groundwater levels vary spatially;
they are very different in the riparian zone and in hillslopes (Seibert et al. 2003; Detty
and McGuire 2010; Haught and van Meerveld 2011; van Meerveld et al. 2015).
Information on shallow groundwater levels is often only available for a few points
in the catchment and information on deep groundwater storage is usually absent.
Groundwater wells are frequently only installed in areas where shallow groundwater
is expected to be present regularly (e.g., riparian areas) and not on upper hillslopes
or areas with very shallow soils, so that it is difficult to determine the change in the
total amount of groundwater stored in the catchment. Groundwater levels may also
drop below the depth of the well so that the actual groundwater level is not known
(this is particularly the case for hillslope and shallow soil areas).

Spatial information on soil moisture has been used effectively in model validation
(Western et al. 1999b; Mirus et al. 2009) but there are very few detailed soil moisture
data sets that can be used for model evaluation. Soil moisture measurements often
represent only a very small area (~0.1–1 dm3; Robinson et al. (2008)), while soil
moisture varies largely in space (in all three dimensions). Remotely sensed soil mois-
ture data can, in theory, be used for model validation but these measurements only
reflect the soil moisture content of the topsoil and often integrate over a relatively
large area, which is particularly problematic in hilly and mountainous terrain where
soil moisture varies greatly with topography. Geophysical measurements (e.g., elec-
tromagnetic induction (Kachanoski et al. 1990; Sheets and Hendrickx 1995)) and
mobile cosmic ray neutron probe measurements (Rivera Villarreyes et al. 2011) can
provide information on soil moisture storage over larger areas. The pattern of veg-
etation or certain types of vegetation can also give an indication of the moisture
state (e.g., waterlogged conditions for wetland plants) and can, therefore, be used to
represent the spatial variability in soil moisture.

Stream Chemistry
Stream chemistry data has not only been used in the calibration and validation of
hydrological models to reduce parameter uncertainty (Mroczkowski et al. 1997;
Kuczera andMroczkowski 1998), but also to compare and test different model struc-
tures (Vaché and McDonnell 2006; Fenicia et al. 2008; Birkel et al. 2011; Davies
et al. 2011;McMillan et al. 2012; Hartmann et al. 2013; Stadnyk et al. 2013). Conser-
vative tracers, such as water isotopes (oxygen-18, deuterium) and chloride (which
is contained in the precipitation), are particularly useful for model testing (Birkel
and Soulsby 2015). Stream chemistry data can be used for model validation either
directly by simulating time series of the streamflow isotopic composition or concen-
trations or indirectly by using the fractions of new water for events (signatures) (de
Grosbois et al. 1988; Mroczkowski et al. 1997; Kuczera and Mroczkowski 1998;
Uhlenbrook and Leibundgut 2002; McGuire et al. 2007; Stadnyk et al. 2013; Birkel
and Soulsby 2015; van Huijgevoort et al. 2016). Recent stream chemistry data sets
are both longer (Kirchner and Neal 2013) and in many cases now also available at a
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higher resolution (van Huijgevoort et al. 2016; von Freyberg et al. 2018) than in the
past, which opens new opportunities for model validation.

In order to use streamchemistry data formodel validation, themodel has to include
a representation of mixing in the catchment. For the simulation of streamflow, it is
sufficient to simulate the hydraulic response, whereas for the simulation of a tracer
response the mixing of different water sources with water that was already stored
in the catchment before a rainfall or snowmelt event has to be considered. Even
for a very simple approach (i.e., complete mixing), this usually requires additional
parameters (Barnes and Bonell 1996; Birkel and Soulsby 2015), although Remondi
et al. (2018) showed that a spatially explicit physically based model can represent
the observed concentrations in the stream reasonably well without additional model
parameters to describe the mixing. While some studies have shown that the use of
stream chemistry data improved parameter identifiability (de Grosbois et al. 1988;
Kuczera and Mroczkowski 1998; McGuire et al. 2007; Stadnyk et al. 2013) and that
it was thus worth the additional parameters (e.g., Iorgulescu et al. 2005), other studies
have shown that these additional parameters may not be identifiable (Seibert et al.
2003; Hrachowitz et al. 2013). The tracer signal is in some cases so damped that it
contains almost no additional information for model calibration (Dunn et al. 2008a).
This led to the cautious statement by Turner and Barnes (1998, p. 725):

One question that can be legitimately raised in the application of environmental isotope or
hydrogeochemical data to catchment studies is whether or not the complementary use of the
additional data simply adds to the problem of over-parameterization.

33.3 Conclusions—All Models Are Wrong, but Which Are
Useful?

Hydrological models usually contain more than the two to four parameters that can
be identified by the information contained in the streamflow data that are used for
model calibration. We usually develop models with more parameters because we
want to represent the dominant hydrological processes (see Box 1) in the model.
As a result, models can contain a dozen or more parameters. Some systems are also
not simple enough to be described by simple models with only very few parameters
(Ebel and Loague 2006).

Over-parameterization leads to the risk that the hydrological model can produce
nice fits to the streamflow observations but does so for the wrong reasons, i.e., inter-
nally, the model does not represent the hydrological processes, and the model hence
cannot be used for predictions. We discussed different ways to validate hydrolog-
ical models and show that multi-criteria model validation can be useful. However
model validation is limited by both the complexity of the model and the ability to
measure the data that are necessary for model validation. In addition, there is a bal-
ance between model parsimony and options for model validation, which needs to be
considered and evaluated for each case individually. Model parsimony reduces the
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Fig. 33.3 As model complexity increases, the number of model parameters and the number of
variables that can be used for validation increase (note that the rate at which both increase with
model complexity depends on the model, parameters and the information content of the data)

risk for over-parameterization, while model complexity increases the possibilities
to evaluate different simulated states and fluxes. Simple models with few parame-
ters might avoid over-parameterization, but also provide few opportunities for model
testing based on other variables than the main model output (i.e., streamflow). In
order to have more options for (internal) model testing, we need models that are
more detailed and these have, as a direct consequence, more parameters (Fig. 33.3).

Logically, if more complexmodels are used then there is a need for richer data-sets
(Ebel and Loague 2006). Stephenson and Freeze stated already in 1974 (Stephenson
and Freeze 1974) that massive data collection campaigns would be needed for the
application ofmore complexmodels.Despite all progress in observational hydrology,
much remains to be done to achieve a better link between field observations and
modeling (Seibert and McDonnell 2002; e.g., Clark et al. 2017). Especially, it seems
to be important that modelers evaluate and communicate better which data are most
informative and, thus, which data should be collected to improve model validation
and to reduce the risk for over-parameterization. Hence, a possible solution to better
validate (particularly spatially explicit) models is to launch targeted measurement
campaigns designed to validate models (Ebel and Loague 2006; Beven 2012; Zehe
et al. 2014; Clark et al. 2016) and to use the model output to further refine the
measurement campaign (Dunn et al. 2008b; Kikuchi 2017; Leaf 2017). A more
fruitful communication between modelers and field hydrologists has been called for
since decades (e.g., Dunne 1983) but is still a desideratum today. In addition, there
is a need to find ways to measure hydrological variables across larger areas (e.g.,
catchment storage instead of ground water level or soil moisture measurements at
a point), so that they can be more easily compared to simulated variables. Already
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in 1986, Klemeš expressed the need for new measurement methods for improved
model testing, a quest that is still valid today:

[…] new measurement methods that would yield areal distributions, or at least reliable areal
totals or averages of hydrologic variables such as precipitation, evapotranspiration, and soil
moisture would be a much better investment for hydrology than the continuous pursuit of a
perfect massage that would squeeze the nonexistent information out of the few poor anaemic
point measurements. (Klemeš 1986b, p. 187S)

Textbox: Short Description of Catchment Hydrology

A catchment is the area that contributes to streamflow at a certain point and is usu-
ally determined based on the surface topography (Fig. 33.4). Precipitation can fall as
snow or rainfall. A fraction of the precipitation is intercepted by the vegetation and
evaporates from the leaves or needles without ever reaching the soil surface. While
rainwater that is not intercepted by the vegetation infiltrates directly into the soil,
snow can accumulate on the surface until it melts, resulting in a significant time lag
between snowfall and infiltration. If the soils are saturated, i.e., the pores between
the soil particles are completely filled with water, or if the precipitation intensity is
higher than the infiltration capacity, part of the rain or meltwater does not infiltrate
but flows over the soil surface to the stream as surface runoff. The infiltrated water
is stored in the soil as soil moisture storage or percolates through the soil to the
groundwater. Groundwater eventually flows to the stream and becomes streamflow,
but flow times for groundwater can vary largely. Some of the water stored in the soil
(and groundwater) is taken up by plants and transpired. To describe the sum of all
forms of evaporation (from the canopy and soil surface) and transpiration, the term
evapotranspiration is used. In the unsaturated zone, the soil pores are not completely
filled with water but partly filled with air; water is held in the pores by capillary
and adhesive forces. The amount of water that a soil can hold against gravity, also
called the field capacity, depends largely on the size distribution of the pores. In
a sand soil with large pores, only little water can be held against gravity, whereas
field capacity is much higher in loamy or silty soils with smaller pores. However,
plants can only extract water that is held not too tightly in the soil. The so-called
wilting point describes the amount of water in the soil that cannot be extracted by
the plants. The soil moisture retention (pF) curve describes the amount of water in
the soil and how strongly it is held back (matric potential). Flow velocities and water
fluxes in the subsurface can be computed based on the hydraulic conductivity and
pressure gradients (Darcy and Darcy-Richardson equation). The hydraulic conduc-
tivity describes how quickly water can flow through the soil and is highly dependent
on the moisture content of the soil. Water flows faster through large pores than small
pores. Therefore, a large portion of the water may flow through macropores (i.e.,
large pores or macropores such as cracks, old roots, or animal burrows), particularly
when the soil is wet and these macro pores are filled with water.
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Fig. 33.4 Overview of the main hydrological processes in a catchment

Over longer time periods (i.e., at least one year), the inputs and outputs are bal-
anced so that the sum of streamflow and evapotranspiration are equal to the precipi-
tation. If shorter periods are considered, storage changes must be considered in the
water balance. The storage term includes all water that is stored in snow and ice,
soil- or groundwater and lakes. The changes in storage are important as streamflow
responses to rainfall and snowmelt are largely dependent on the storage conditions.
Hydrological models simulate how precipitation eventually leaves the catchment as
streamflow, including the above-described processes in more or less detail. While
there are different types of hydrological models as discussed in Sect. 33.2.2, all
catchment-scale hydrological models include one or several differential equations to
describe the relation between storage and streamflow.
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Chapter 34
Uncertainty Quantification Using
Multiple Models—Prospects
and Challenges

Reto Knutti, Christoph Baumberger and Gertrude Hirsch Hadorn

Abstract Model evaluation for long-term climate predictionsmust be done on quan-
tities other than the actual prediction, and a comprehensive uncertainty quantification
is impossible. An ad hoc alternative is provided by coordinated model intercom-
parisons which typically use a “one model one vote” approach. The problem with
such an approach is that it treats all models as independent and equally plausible.
Reweighting all models of the ensemble for performance and dependence seems like
an obviousway to improve onmodel democracy, yet there are open questions onwhat
constitutes a “good” model, how to define dependency, how to interpret robustness,
and how to incorporate background knowledge. Understanding those issues have the
potential to increase confidence in model predictions in modeling efforts outside of
climate science where similar challenges exist.

Keywords Ensemble modeling · Idealization · Model independence ·
Robustness · Structural model uncertainty · Uncertainty quantification

34.1 Introduction

Whether conceptual, analytical, or numerical, a model is usually an idealization, i.e.,
a simplified representation of a target system. Amodel represents certain elements or
processes in order to reproduce or understand the characteristic behavior of a system,
to test a hypothesis, or to predict target system quantities of interest that cannot
be measured. Often, there are practical limitations that determine the complexity
of a model, like the availability of data, computational cost, or even the lack of
understanding of some processes that are deemed relevant. What is part of a model
and what is not, and how it is represented, is driven by the purpose of the model,
i.e., the research question in hand. Therefore, there is not only one possible model of
one target, but there are many. The benefit of picking another model, or success of
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changing the model (or lack thereof) can usually be quantified in terms of prediction
skill. Thus, while an infinite number of model structures, boundary conditions, and
parameter sets is possible in principle, in practice the decisions on how to further
develop amodel andwhether to accept or reject a proposed change can often bemade
on a pragmatic basis: a change is likely to be implemented if it is more firmly rooted
in theory and if it improves the skill, explanatory power, or usefulness of the model
without compromisingother desirable properties like efficiency. Improving themodel
may still be very challenging. But if the model can be evaluated by repeatedly testing
its predictions (as, e.g., in the case of weather prediction models), this provides a
clear feedback that guides model development. We distinguish model evaluation or
validation as the determination of whether a model represents reality well enough for
a particular purpose from verification as the determination of whether the output of a
simulation approximates the true solutions to the differential equations of the original
model. In what follows, we restrict ourselves to computer simulation models. Our
focus is on model evaluation rather than on verification.

Model evaluation for long-term climate predictions cannot be based on repeated
confirmation of the predictions against observation-based data. Moreover, model
evaluation requires uncertainty estimation, ideally in quantitative terms. However, a
comprehensive uncertainty quantification, which requires testing different assump-
tions in amodel (i.e., variations in the structure, the processes included), exploring the
uncertainty in parameter choices, and quantifying the effect of boundary conditions
and datasets, is effectively impossible (see Sect. 34.2; for methods of uncertainty
quantification in engineering contexts where repeated confirmation is possible; see
Chap. 22 by Dougherty, Dalton and Dehghannasiri in this volume). As an ad hoc
alternative, the climate modeling community has therefore started to establish coor-
dinated model intercomparisons. The resulting ensembles of different models can
be used to explore uncertainties either by testing the robustness of projections or
as a basis for statistical methods that estimate the uncertainty about future climate
change. A model projection is usually called robust if it is simulated by most mod-
els in the ensemble (although that does not imply that it is accurate). The notion of
robustness is more generally used in the sciences to characterize the invariance of a
result under multiple independent determinations, be these multiple different mod-
eling approaches or, e.g., diverse experimental devices and measurement practices
(Woodward 2006; Wimsatt 2012).

Here we use climate modeling to illustrate a few major (and possibly unique)
challenges of determining the robustness of simulation results and estimating their
uncertainty (for a general view on validation in climate science see also Chap. 30
by Rood in this volume). These challenges include definitions of core concepts,
requirements for ensembles, andmetrics for robustness that would support inferences
from the robustness of projections, e.g., to warranted confidence in the projections.
The challenges are interesting from both a philosophical and a practical point of
view. Understanding these issues and finding smarter ways to deal with the resulting
plurality of models has the potential to increase the value of models for climate as
well as for other environmental areas, and potentially beyond. Eventually, this may
increase the confidence we can have in such models as epistemic tools and provide
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scientists with a clearer explanation of what they are doing, and stronger arguments
when it does or does not work.

We first discuss some peculiarities of climate modeling which make a com-
prehensive uncertainty quantification impossible (Sect. 34.2). We then distinguish
between different sources of uncertainty in predicting climate change in order to
better understand the motivation of using model ensembles as a means of esti-
mating uncertainties in climate predictions (Sect. 34.3). The usual “one model one
vote” approach problematically assumes that all models are independent and equally
plausible (Sect. 34.4). As a way to improve on this model democracy, we suggest
reweighting all models of an ensemble for performance and dependence (Sect. 34.5),
and illustrate the idea for the case of Arctic sea ice (Sect. 34.6). We discuss some
open issues, such as whether better agreement with observation reduces uncertainties
in predictions, how to define model dependence, and how to incorporate background
knowledge in the suggested weighting scheme (Sect. 34.7), and close with a short
conclusion (Sect. 34.8).

34.2 Challenges for Uncertainty Quantification in Climate
Modeling

Climate and Earth system models of various complexity are used to simulate the
statistics of weather and how these will change in the future as a result of the emis-
sion of greenhouse gases like carbon dioxide and other radiatively active species
(Claussen et al. 2002; Knutti 2008; Flato 2011). The problem of using such models
for simulations has several peculiarities.

The first peculiarity relates to the system’s many dimensions: simulating the
weather in principle requires resolving the atmosphere, ocean, ice, and land sur-
face of the Earth, because of the many processes and timescales that affect weather.
From the condensation of water on a tiny aerosol (on spatial scales of microme-
ters and timescales of fractions of a second) to the large-scale ocean circulations
and melting of ice sheets (extending over thousands of kilometers and thousands of
years), the processes involved occur over at least twelve orders of magnitudes in both
time and space. And from soil microbes that potentially affect the growth of a tree
and its effect on the local carbon and water cycle to complex chemistry affecting
cloud formation, from subglacial hydrology to volcanoes affecting the radiative bal-
ance in the stratosphere, from our technological progress in developing renewable
energy sources to policy instruments that affect the rate of decarbonization, the list
of (potentially) relevant processes that affect future climate is extremely long. The
challenge consists of nothing less than simulating the whole Earth including human
behavior, which by construction is impossible; and even if it were possible, it would
not be reasonable. Due to the interactions of the many aspects in the climate system,
an increase in complexity typically decreases the analytic understanding of a model
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(Lenhard and Winsberg 2010). However, deciding on what to include and exclude,
and how to simplify, is tricky.

The second peculiarity, partly a consequence of the first, is that it is prohibitively
expensive to build a new model for each research question. The expertise and effort
required imply that a big institution typically builds only one or two (often similar)
versions of a model every few years. The same model is then used to study literally
hundreds of different questions. Thus, rather than a specific purpose guiding model
construction, we observe that it is the model, once it is built, that determines what
purposes it can be used for. The third peculiarity, also a consequence of the first, is
the computational cost and volume of data involved. A climate simulation typically
takes days to months running on hundreds to thousands of processors of a supercom-
puter, which makes it prohibitively expensive to systematically optimize the dozens
of parameters it has, or try hundreds of ideas before converging on a new model.
Development is therefore strongly guided by experts’ understanding of what could
work, based on background knowledge and experience of what ideas have worked
in similar situations or in other models in the past (Held 2005).

The fourth peculiarity is that a direct confirmation of the actual prediction is often
impossible. To confirm the prediction of climate in the year 2100, one would have to
wait for nearly a century, and even then a single confirmation would not be sufficient
given the chaotic component of atmospheric variability. The development cycle of
a model is usually much shorter than the typical timescales for confirmation. Model
evaluation for long-term predictions therefore must be done on quantities other than
the actual long-range prediction, e.g., observations of current climate (Gleckler et al.
2008; Knutti 2008; Flato 2011; Schaller et al. 2011), its variability, past changes, or
paleoclimate data (Harrison et al. 2015). The question then becomeswhich quantities
matter most for what question (see Sect. 34.5).

The mentioned peculiarities make it practically impossible to test many different
assumptions in a model (i.e., variations in the structure and the processes included),
different choices for parameters, and to quantify the effects of boundary conditions
and datasets in a systematic way. However, such a systematic assessment would
be required for comprehensive quantification of uncertainties. Coordinated model
intercomparisons offer an ad hoc work-around to this problem. Such efforts were
started by the climate modeling community about two decades ago. They require
whoever is willing to contribute to perform standardized simulations and provide the
results to others for analysis. The resulting ensembles of different models are often
referred to as “ensembles of opportunity”, since they group together existing models
and are not designed to span an uncertainty range (Knutti 2010a; Knutti et al. 2010;
Eyring et al. 2016).
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34.3 Uncertainty Quantification Using Model Ensembles

To better understand the motivation of using ensembles of different models, it is
useful to characterize the sources of uncertainty in predicting climate change. Three
sources of uncertainty can be distinguished: natural variability (both internal to the
system and externally forced from changes in solar irradiance and volcanic erup-
tions), scenario uncertainty and model uncertainty. Natural internal variability is an
inherent property resulting from the chaotic nature of the ocean–atmosphere system.
We cannot predict the weather more than about a week in advance, because tiny
uncertainties in the initial conditions grow as we run the model forward in time. The
system is sensitive to its initial conditions, much like a Lorenz system with multiple
attractors. That does not imply that the system is fundamentally unpredictable; the
models indicate that some aspects like the temperature difference betweenwinter and
summer or the long-term trend resulting from increased CO2 in the atmosphere are
predictable, although bifurcations may exist in parts of the system, e.g., the Atlantic
meridional overturning circulation (Lenton et al. 2008). Climate, the distribution of
all weather states, therefore is very likely predictable, but the individual sequence of
weather events, is not (Deser et al. 2012). This uncertainty, often referred to as ontic
uncertainty because it is due to the chaotic nature of the target system, is largely
accounted for by making statements about the climate averaged over 20 or more
years. Hence, it is not fundamentally impossible to deal with this variability, but
it is challenging because we can only evaluate the model in a probabilistic sense
(i.e., by comparing distributions), and single events are of little value for judging
the adequacy of a model. The second source of uncertainty, scenario uncertainty,
results from uncertainty in emissions of anthropogenic forcings like CO2, methane,
-SO2, or ozone. These are driven by technological progress, climate policy, values
in society, wars, etc., all of which are difficult to predict because they are based on
human behavior. This is also an ontic uncertainty, due to inherent properties of in
this case socio-techno-economic systems. This uncertainty is often accounted for
by considering projections (as opposed to predictions), defined as the response of
climate conditional on a predefined scenario of societal development (along with
emissions, land use change, etc.) (Vuuren et al. 2011).

This leaves us with model uncertainty, which is an epistemic uncertainty, i.e., a
lack of knowledge about whether the model is an appropriate representation of the
target system in question. A model is a representation of reality that is necessarily
simplified in important ways. First, some processes in the climate system are not
fully understood, e.g., changes in complex ecosystems. Second, some are rather well
understood but are so complex or small-scale that their effect has to be parameter-
ized in a simple way as a function of available large-scale properties (Gent et al.
1995; McFarlane 2011), e.g., ocean mixing processes and transports occurring on
scales smaller than the resolution of themodel (typically 100 km). The corresponding
parameters (e.g., an equivalent diffusivity) must be calibrated to match large-scale
observations and have no analog measurable equivalent quantity in reality. Third,
numerical approximations and finite resolution lead to small errors when integrat-
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ing the equations. In principle, this could be improved by larger computers, but,
in practice, every doubling of horizontal resolution requires about ten times more
computing capacity, so it will take many decades before the relevant scales (tens to
hundreds of meters) can be resolved in global simulations (Schneider et al. 2017).
In addition, boundary conditions (like the bathymetry of the ocean or the structure
and properties of the soil) at every location are not fully known.

As a consequence of all of the above, it is often said that climate models are
uncertain, but this is amisconception. Strictly, amodel, once it is specified in the form
of equations or code, is perfectly certain, in the sense that applying the equations twice
will give the exact same results, and the effect of any change in the equations can be
quantified precisely. The uncertainty comes from the model being a representation
of a target in the real world, which requires specification and inference steps, in
deciding what to include in the model, and how to interpret the results of the models
for the real world. Of course, every climate model is false, by construction, in the
sense that it is an idealized representation of a real and open system (Oreskes et al.
1994). Not only does the model ignore some climate processes but it also distorts the
represented processes in different ways in order to make them mathematically and
computationally tractable. The question is not whether the model is true but whether
it is “true enough” (Elgin 2017), i.e., how well it represents the real system, and how
useful or adequate it is for learning about a particular aspect of the real system.

This last point, the adequacy of a model, motivates the pluralism in climate mod-
eling: because of the complexity of the system, the computational cost, and the
lack of direct confirmation of prediction, there is no single agreed-on “best” model.
Scientists inevitably have to make choices in what to include, how to parameterize
unresolved processes, and how to manage the tradeoff between complexity, reso-
lution, the number of simulations and number of years to simulate. Since there is
disagreement on how to make these choices, to some extent even for a given purpose,
there is no consensus on which one is the “best” model. So while multiple models
could be seen as ontologically incompatible (strictly speaking, they make conflict-
ing assumptions about the real world), and one could argue that scientists have to
assess how well they are supported by data, the community seems happy with the
model pluralism. The models are seen as complementary in the sense that they are
all plausible (although not necessarily equally plausible) representations of the real
system given the incomplete knowledge, data, and computational constraints; they
are used pragmatically to investigate uncertainties (Parker 2006, 2010, 2013).

The diversity of models across an ensemble provides one avenue to try to esti-
mate the consequences of model uncertainty by testing the robustness of results. For
example, there are several ways one can parameterize atmospheric small-scale con-
vection, and it is helpful to test whether the model behavior depends on the structure
of that parameterization and the parameter values. Robustness in a qualitative sense
is often invoked as a premise in an argument to the effect that a model result can be
trusted (see Parker 2011, for a critical discussion). Robustness analysis goes a step
further, using robust results to confirm certain parts of a model. Robustness analysis
was developed as a modeling strategy in population ecology (Levins 1966). It has
been generalized and systematized (Weisberg 2006; Wimsatt 2012), and also been
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applied to climate science (Lloyd, 2009, 2010). Robustness analysis uses a robust
result as confirmatory evidence for more general relations of a model, which are then
called “robust theorems”. Robust theorems have the form: “Ceteris paribus, if [com-
mon core (causal) structure] obtains, then [robust property] will obtain” (Weisberg
2006). For instance, if all models that share a core causal structure but use a variety
of simplifications show that higher CO2 concentrations lead to substantial warming,
then that result is unlikely to be just a consequence of particular choices made in
a model. This robust result is then used to formulate the robust theorem: “Ceteris
paribus, if [Greenhouse gases relate in law-like interaction with the energy budget
of the earth] obtains, then [increased global mean temperature] will obtain” (Lloyd,
2009, 2010). But there are of course limits to such an argument: there are cases where
all models are known to be robustly wrong in the same way because they all ignore
a process (e.g., ice sheet dynamics) or parameterize it in a similar way. In order to
avoid being misled by the robustness of results that is, in fact, pseudo-robustness
(Wimsatt 2012), models must be sufficiently diverse in the relevant regards. There
is considerable controversy on how to specify this requirement. A typical way is to
specify “diversity” as “independence” (Wimsatt 2012) and to elaborate on a formal
account for explicating this concept, for instance in a Bayesian framework (Fitel-
son 2001; Lloyd 2010; Stegenga and Menon 2017). However, these approaches are
not uncontested (Schupbach 2016), and their appropriate specification remains a
challenge.

In our discussion, we focus on determining the robustness of simulation results
used to estimate the uncertainty in long-term climate predictions, which needs to
be distinguished from robustness analysis used to confirm certain parts of a model.
For brevity, we will focus on the most interesting and challenging case of multiple
structurally different models in the Coupled Model Intercomparison Projects CMIP
(Eyring et al. 2016), noting that similar ideas can, of course, be applied to what is
often called perturbed physics ensembles, a model run with a variety of parameter
sets (Stainforth et al. 2005). Many issues are similar, except that a single model
structure can only capture so much of the range of behavior: no parameter set of
one model will ever behave (in all respects) like a structurally different model that
resolves other processes, although parameter calibration can compensate for some
missing aspects of processes.

34.4 Problems with Model Democracy

Ensembles of opportunity like CMIP are often used for uncertainty quantification
in a naïve way: the average of all models is taken as a best estimate, and the spread
of the models is reported as the uncertainty of the projection. This “one model one
vote” or “model democracy” (Knutti 2010), often used based on a lack of more
convincing or generally agreed-upon alternatives, makes several assumptions which
are rarely explicitly stated and even less frequently defended by actual evidence.
First, model democracy treats all models as reasonably independent, and second, it
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assumes that all models are about equally plausible. Third, it assumes that the range
of model projections represents what we believe is the uncertainty in the projection.
In aweather forecast, the equivalent would be a probabilistic projection that is neither
too broad nor overconfident, so that for many trials, observed outcomes would fall
within the estimated 5–95% confidence intervals in about 90% of the trials.

Unfortunately, none of the assumptions made by model democracy is strictly
fulfilled by present-day model ensembles. On the first point of dependence: many
models use ideas, parts of the code, or even whole components (e.g., the sea ice
model) from other models. The sheer complexity and cost lead groups to merge their
efforts in jointly developing or using components of other groups (Bellouin et al.
2011). New models are almost never developed from scratch but are based on earlier
models (Edwards 2011). As a consequence, some models are not providing much
additional information, and multiple replications of a model may strongly bias the
result toward that particular model (Annan and Hargreaves 2011; Masson and Knutti
2011a; Pennell and Reichler 2011; Knutti et al. 2013). How to actually define model
dependence is not straightforward (Annan and Hargreaves 2016). The models are
of course dependent in the sense that they all describe the same system, but that is
not the point: they are also similarly biased with regard to how they represent reality
because they share structural limitations or simplify things in the same way, and
therefore their projections will likely be biased in the same way. If two models share
several parts, the success of one model in simulation results has implications for the
probability of the other model’s success. This leaves us with the question of how
to explicate an appropriate notion of dependence and specify a metric to determine
model dependence (see Sects. 34.6 and 34.7).

On the second assumption, some models clearly perform better than others in
some metrics (for an introduction and overview on relevant metrics, see Chap. 18
by Saam in this volume), i.e., simulation results are closer to observations of reality,
with differences of up to a factor of two (Knutti et al. 2013). Reductions in the biases
by 20–30% from one model intercomparison to the next imply that some models
are about a decade of model development ahead of others in terms of how well they
reproduce the observations. No model is clearly far superior to all others, consistent
with the idea of pluralism where all models are seen as plausible representations
of reality given some practical boundary conditions; but some are more plausible
in certain respects than others. Some models perform well on certain metrics while
others performwell on others (Gleckler et al. 2008),which reflects differentmodeling
groups’ focus in terms of development and calibration. But a model that performs
well on one metric also tends to performwell on many others for at least two reasons:
the climate system is coupled, so a correct representation of rainfall, for example,
requires humidity (and therefore temperature), the dynamics (weather patterns), and
clouds to be well represented. The other fact is a practical one: some centers simply
have more resources (people and computing power) and experience than others, and
their models tend to do well on many criteria.

On the third assumption, the spread of model projections does not necessarily
represent what we believe is the uncertainty in the prediction. The spread of the
ensemble may be too big if the ensemble contains demonstrably unrealistic members
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that can be rejected upfront based on physical understanding or disagreement with
observations (see Chap. 6 by Beven and Lane in this volume). A model of Venus or
Mars, for example, is unlikely to provide a useful projection of climate for the Earth
and should thus be excluded from the respective ensemble. The model spread can
also be too small if all models are missing the same relevant thing and are biased
in the same way. In many cases, we do not know whether the spread tends to be
too large or too small, and that likely depends on the variable, the timescale and the
spatial scale (Masson and Knutti 2011b).

A further complication is the question whether the ensemble of models is centered
around the truth (the so-called “truth plus error” paradigm, in which every model
simulation approximates the observations of reality with a random error), or whether
the observations of reality and the models are drawn from the same distribution (the
“indistinguishable” paradigm, in which truth is not necessarily in the center). The
former implies that predictionswould get evermore certain asmoremodels are added
(in much the same way as the estimate of the average fall speed of a rock gets more
andmore precise as we continue to measure the time for the rock to reach the ground,
if themeasurement errors are random)which is certainly not the case. But the average
of all models often does perform better than any individual model, suggesting some
truth-centeredness at least for the observations available. This interpretation however
can also change from the past to the future. For projections, the indistinguishable
paradigm appears to be the more plausible interpretation in most cases (i.e., reality
has about the same likelihood to approximately match any of the model realizations,
and it is not necessarily in the center of the distribution) (Annan and Hargreaves
2010; Sanderson and Knutti 2012).

34.5 Beyond Model Democracy

Reweighting the ensemble for performance and dependence seems like an obvious
way to improve on model democracy: poor and duplicated models would be down
weighted and models whose performances agree well with observations and are
relatively independently developed would constitute stronger evidence. Yet the dis-
cussions around such methods have been controversial so far. One argument against
weighting is the sensitivity of the results to the chosen metric and possible overcon-
fidence: if we weight by something that is unrelated to the quantity of interest or
dominated by variability, then there is a possibility that the result gets worse rather
than better (Weigel et al. 2010), and we may not know whether it does get worse.
However, this is really only an issue when the number of models is very small. For
a large number of models, it would essentially converge to random weights which
should not affect the results. Sometimes, there are also political sensitivities: it can be
difficult to dismiss models from certain centers or countries in a coordinated model-
ing effort. The other main argument raised against model weighting is that there are
many ways to do it and the lack of direct confirmation prevents us from testing which
approach is optimal. Indeed we can define an infinite number of model performance
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metrics (measuring the agreement with data in some way, e.g., a root mean square
difference to observations, or a spectrum, or conservation of properties), and arguing
which performancemetric is relevant for the quality of amodel is challenging (Knutti
et al. 2010b). Unlike in weather forecasting, for example, we cannot quantify skill
by repeated confirmation. Many broad brush metrics (e.g., patterns of temperature
or rainfall) in fact appear to be only weakly correlated to large-scale projections like
global temperature across a set of models (Jun et al. 2008; Knutti et al. 2010a). The
reasons for the lack of relationships can be a large structural uncertainty in the mod-
els, lack of observed trend due to large variability, or lack of observations. Another
hypothesis is that most of the observed data have already been used in model devel-
opment and evaluation, such that the current set of models can already be interpreted
as a posterior conditional on the observations; as a consequence, using the same
observations again would not add anything (Sanderson and Knutti 2012).

The argument of model weighting gets more convincing, we would argue, if we
assess model quality in relation to a particular purpose (Parker 2009). The question
of whichmodel is “best” is ill-posed unless we agree on the task themodel is used for.
The answer depends on the task we are trying to accomplish, in much the same way
as which car people would say is best depends on whether they try to go really fast, or
drive off-road, or move furniture. Defining weights for predicting a certain variable
X is easier both politically and scientifically. Politically because one model will get
more weight for predicting X, and another one will get more weight for predicting a
different variable Y, which is only natural as some groups focus their development
more on X and others more on Y. Scientifically, it is easier to select processes and
quantities that are relevant for predicting X: one can refer to background knowledge,
i.e., knowledge of various kinds that are accepted in the scientific community about
the factors that determine X. Such insight can come from process understanding,
trends emerging from natural variability, detection, and attribution, or from so-called
emergent constraints, which typically are strong relationships between an observable
quantity and a prediction. Observing the former can provide a constraint on the latter.
For example, the strength of the albedo feedback on a seasonal timescale is related to
the albedo feedback on decadal timescales (Hall and Qu 2006); hence, e.g., models
that lose Arctic sea ice faster in the past tend to lose it faster in the future (Boé et al.
2009; Mahlstein and Knutti 2012; Overland andWang 2013; Notz and Stroeve 2016;
Knutti et al. 2017). Not all such relationships are robust across awide range ofmodels
and there is a danger of spurious correlationwhen testing a large number of predictors
(Masson and Knutti 2013; Caldwell et al. 2014). But despite all difficulties, when
relationships acrossmodels are well understood in terms of the underlying processes,
they can provide guidance on which quantities to use for model weighting.

As an alternative to attaching weights to models, emergent constraints can also
be used to define a relationship between the observable and the projection (usually
through some form of regression across models). This relationship can then be used
to estimate an observationally constrained projection that is relatively independent
of the set of underlying models (Boé et al. 2009; Mahlstein and Knutti 2012; Cox
et al. 2013). Other options are interpolations in a low-dimensional model space
(Sanderson et al. 2015b) or Bayesian methods (Tebaldi et al. 2004). They all vary
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in their statistical methods but share the idea of deviating from model democracy by
using observed evidence. Also, strategies that combine dynamic models with other
types of models using data-driven methods (Mazzocchi and Pasini 2017) need to
use observational data, which are unavailable for long-term predictions. Data-driven
approaches are genetically independent from dynamicmodels and are using different
modeling schemes and methodological approaches. They may fit observations better
given enough degrees of freedom, but may still be biased when it comes to out-of-
sample prediction.

34.6 Illustration of Model Weighting for Arctic Sea Ice

We illustrate the idea of combining projections frommultiple models here for Arctic
sea ice, by weighting models both for their performance relative to observations and
for model dependence. The method is relatively straightforward in the sense that
a single number is defined as a weight for each simulation (although the choices
that need to be made are not trivial, as discussed below), and it has been used in
various contexts (Sanderson et al. 2015a, b; Knutti et al. 2017; Sanderson et al.
2017). The example is taken from an earlier study by Knutti et al. (2017), and is
chosen because the processes are relatively well understood, and the added value of
using observations is immediately obvious: to estimate when the Arctic will likely
be ice-free, the model should have about the right sea ice extent today, and about the
right trend over the past decades. Sea ice loss in the past and the future is correlated
across models (Boé et al. 2009; Mahlstein and Knutti 2012; Overland and Wang
2013; Notz and Stroeve 2016; Knutti et al. 2017), which is plausibly explained by
some models having a stronger sea ice albedo feedback than others. Observed sea
ice trends are therefore an obvious constraint. There are of course other methods to
weight models (Abramowitz and Gupta 2008; Waugh and Eyring 2008; Boé et al.
2009;Massonnet et al. 2012; Abramowitz and Bishop 2015), but themethod outlined
here may be the most straightforward one to illustrate the concepts.

For M models in the ensemble, the weight wi for model i is defined as

wi � e
− D2
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The numerator weighs a simulation by the distance metric Di of model i to observa-
tions (performance), while the denominator effectively takes into account howmany
times parts of a model are replicated based on Sij, the distance metric between model
i and model j, which informs about the dependence of the models in the ensemble.
BothDi and Sij are evaluated here as root mean square differences of a series of vari-
ables, but different choices for the metric and the functional form of the weighting
can be defended. The weights are scaled such that their sum over the whole ensemble
equals one. The constants σD and σ S determine how strongly the model performance
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and dependence (“similarity”) are weighted (see below). This weighting scheme ful-
fills two basic requirements: a model that is infinitely far from observations and does
in no way represent the real Earth (very large Di) gets zero weight. For a model
with no close neighbors, the denominator equals one and has no effect. However,
duplicating an otherwise independent model (Sij � 0) leads to a denominator being
equal to two: as a consequence the two duplicates each get half of the weight, and the
result is unaffected by the duplication. Because initial condition members (multiple
simulations of the same model with slightly different starting conditions) are very
similar, they are effectively treated as near replicates, and all available simulations
can be used in a straightforward way even if the number of initial condition ensemble
members varies strongly between models.

The metrics Di and Sij give equal weight to the climatological mean hemispheric
mean September Arctic sea ice extent (1980–2013), and its trend over the same
period, gridded climatological mean surface air temperature for each month, and cli-
matological mean gridded interannual variability of monthly surface air temperature,
but the sensitivity of the results to the choice of variable is illustrated in the results.

The choice of σD and σ S determines how close a model’s simulation results need
to be to observations to be considered “good” (performance), and how close two
models need to be in order to be considered “similar” (dependence), respectively.
The choice of these parameters is not straightforward. A very small σD, for example,
may lead to the total weight being concentrated on just one or two models, at the
expense of the results’ robustness. A very large value, on the other hand, will result
in the weighting having almost no effect. One way to inform the choice of these
parameters is to use perfect model tests, i.e., sequentially treating one of the models
as reality and using the others to predict its future. Confirmation is possible, in this
case, and allows optimizing the parameters for maximum skill while ensuring that
the predictions are not overconfident. However, if models are similarly wrong then
the perfect model tests might suggest that the method works well even if it does
not in the real world. As such, perfect model tests are a necessary but not sufficient
step for informing the choice of these parameters and to demonstrate the skill of the
proposed method. A more in-depth discussion is provided by Knutti et al. (2017).

Weighting models can be done straightforwardly based on Eq. (34.1), but a num-
ber of choices with regards to variables, regions, time periods, and parameters are
important. Hence, the results’ sensitivity toward these assumptions needs to be tested,
and background knowledge is required to judge which choices are plausible. If clear
constraints exist from observations, then the weighting makes the models more con-
sistent with the past and narrows the model spread of the projection. In the following,
we present an example of how taking the observations into account can improve the
projections relative to a model democracy case.

Figure 34.1 shows the simulated September Arctic temperature and sea ice extent
for all available fully coupled climate models (i.e., structurally different models as
well asmultiple initial conditionmembers). Colors fromgray to yellow to red indicate
increasingly higher weights. The blue line indicates observations. Weighting is not
based on the time series only, but on howwell the models simulated the whole Arctic
climate (see figure caption for details). Figure 34.1c indicates that the observationally
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weighted projection range (red) is substantially narrower than the raw range, i.e., the
model democracy case (gray), and agreement with the observed trends is better. Note
that we would not expect perfect agreement, as the observations represent one single
realization whereas the weighted model average is closer to a forced response with
much weaker variability. In the case of Arctic sea ice, there is evidence that part of
the strong ice loss might be due to natural variability (Kay et al. 2011; Swart et al.
2015; Screen and Francis 2016). This would be consistent with the observed decline
in sea ice being steeper than the weighted model average.

34.7 Discussion and Open Issues

As we argued in recent articles (Knutti 2010; Knutti et al. 2017), model democracy
is increasingly hard to justify for climate model projections. Biases in some models
and variables are so large that they cannot be ignored; in the example of Arctic sea
ice discussed above, a model without sea ice in the present day or one with more
sea ice by 2100 than observed today would be challenging to deal with. Simple bias
correction methods that consider anomalies from a reference state will not work well
or at all in such cases, as the change will depend on the reference state (if no sea ice
is left, the change will also be zero). So if there are observations or other sources of
information that can inform, or even better narrow the range of plausible projections,
it would be strange not to use them.

In our view, there are essentially three points that need to be considered: per-
formance as measured by agreement with observed data, model dependence, and
background knowledge. In the case of dynamical models (as opposed to statistical
models that are fitted), good agreement with a variety of observations provides strong
evidence that the models are doing the relevant things correctly, but is not a formal
proof of course (Baumberger et al. 2017). While confidence in the results should be
larger when they are obtained by models that reproduce relevant aspects of current
climate more accurately, performance alone provides insufficient support for long-
term predictions. Furthermore, if the processes likely relevant for specific projections
are sufficiently well understood and captured in the models, the coherence of models
with this background knowledge provides an additional reason that increases our
confidence in a projection (Baumberger et al. 2017). Given the complexity of the
system, a model never agrees with all the data, but that is not required. The question
is whether the model provides insight that we would not have otherwise. But how do
we deal with a situation where improving the model based on process understand-
ing, either through a more physical representation of a process, through increased
resolution, or by explicitly resolving a process that has been prescribed or ignored
before, leads to poorer agreement with data? Such situations are not uncommon, and
can result from observation biases or from compensating errors in the models. From
an understanding point of view, we might trust the new model more than the old one,
and further development might improve the agreement again. Yet in an operational
setting where users depend on predictions, a lower skill is hard to justify. Even in a
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Fig. 34.1 a Arctic
(60–90°N) September
surface air
temperature, b Arctic
September sea ice extent in
all CMIP3/5 simulations.
Gray, yellow, orange and red
indicates those that get
<0.5%, >0.5%, >1%, and
>5% weight, respectively,
from weighting with
Eq. (34.1). Observations
(NCEP) are shown in blue.
c Mean and 5–95% range for
no weighting (black line,
gray band) and weighting
(red line and band). Colored
dots near 2050 and 2100
show 2046–2055 and
2090–2099 average sea ice
extent using (from left to
right) the following metrics:
(1) none (unweighted), (2)
climatological mean
(1980–2013) September sea
ice extent, (3) September sea
ice extent trend 1980–2013,
(4) climatology of monthly
surface temperature
(1980–2013), (5) interannual
variability of monthly
surface temperature, (6) all
2–5. Figure reproduced from
Knutti et al. (2017)
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research context there is a tendency for a “dog and pony show”: the argument that
it “looks good” is easier to sell than the fact that the underlying processes are more
realistically described. This, of course, raises interesting discussion about the value
of fit, and calibration (“tuning”) (Baumberger et al. 2017; Knutti 2018).

It is important to keep in mind that better agreement with observations will not
necessarily reduce uncertainties in projections (Knutti and Sedláček 2012). But even
in cases where it does not (Sanderson et al. 2017), we should not conclude that
the effort was useless. This inability to further constrain the model range can arise
either because the spread was not sufficient to begin with, or because the ensemble
was already weighted due to good models being replicated a lot (Sanderson et al.
2017), or because the observations are not long enough or of sufficient quality or
have too much variability to provide a constraint, or because the quantity of interest
is inherently unpredictable, or because we have already used most of the information
in the model development, evaluation and calibration. But in any case, we would
not know until we have actually done the exercise. If the posterior after weighting
is similar to the prior, then we have not reduced the spread, but we can be confident
that the projection is reasonably consistent (in both magnitude and spread) with the
observations we have on mean and trends. The raw model spread is just a range
across models and cannot be interpreted as an uncertainty. It is an ad hoc measure of
spread reflecting the ensemble design, or lack thereof, whereas the weighted results
can be interpreted as an incomplete measure of uncertainty given all observations
we have. The numbers may be similar, but the interpretation of the range is very
different, and we should have more confidence in the latter.

Stronger constraints will come in the future (and have already in the past) from
better observing systems specifically designed for climate change (early observations
were mostly taken for weather prediction where long-term stability of a system was
less of a concern), and from anthropogenic trends. Often past trends aremore strongly
related to future trends in a model than the mean state is related to future trends. But
past forced trends may have been amplified or masked by natural variability, in
particular over shorter periods (Deser et al. 2012; Fischer and Knutti 2016; Saffioti
et al. 2016; Medhaug et al. 2017). Given the strong limits of available observations
and computational capacity, model development and evaluation will, therefore, be a
continuous process, and uncertainty estimates of projections will continue to change,
as is the case in most other research areas. The lack of direct confirmation and the
reliance on multiple potentially strongly dependent models however is somewhat
unique to climate projections.

Model performance is an issue that any model developer always considers. In
contrast, the issue of model dependence has gotten far less attention in the climate
community. It is something that only becomes apparent after the various institutions
have finalized their models. Only the most recent intercomparisons provided clear
evidence that this problem can no longer be ignored, and there is less of a consensus
on how to deal with it. It is likely to get more pronounced as model development
gets increasingly complex and expensive. People sharing ideas or code, or develop-
ing code in a collaborative way is perfectly fine, but its impact on projections has
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to be considered in the interpretation of the results. In Sect. 34.6, we proposed a
straightforward way how to include model dependence as a term in the weighting.

An open issue is a proper mathematical definition of model dependence that can
actually be implemented in practice (Annan and Hargreaves 2016). Models’ resem-
bling each other by sharing certain parts or features is an indication for them being
related, but once the simulation results of two models converge to observations, the
simulation results of the various models will also get closer and closer to each other
without the models necessarily being dependent. Furthermore, models that are inde-
pendent from others may be irrelevant for the hypothesis in question. Because of
these basic problems, it has also been questioned whether a concept of dependence
is appropriate to explicate the diversity of models or other methods for reliably deter-
mining the robustness of their results (Schupbach 2016). More pragmatic concerns
with applying a formal concept of probabilistic dependence in the case of climate
models are for example how to find out which processes are represented inwhichway
in different models. In most cases of using ensembles for determining the robustness
of simulation results, these concerns are not an issue right now, because the distance
of models’ results to observations is typically far bigger than the distance between
two strongly relatedmodels. Dependence and performance are treated independently
in the example in Sect. 34.6, but further work may come up with different or more
sophisticated alternatives.

Another open issue is an adequate selection process for ensemble members that
avoids both pseudo-robustness resulting fromexcluding relevant plausible but diverg-
ing models (too narrow spread of results, e.g., because few centers in CMIP try
to develop models with extreme behavior) and lack of robustness resulting from
including irrelevant models (too broad spread of results). Which models are relevant
depends on the hypothesis (purpose) for which the ensemble is used, which needs
to be assessed by reference to relevant background knowledge about the problem
in question and experiences with modeling practices. While this is a question that
cannot be answered in general, making the considerations on the relevance of models
explicit in each casewould be a general requirement on using ensembles to determine
the robustness of predictions. Scientists, e.g., often implicitly consider background
knowledge when selecting an ensemble, but these considerations should be made
explicit.

Background knowledge is important for considering whether to exclude or down-
weight models which violate basic physical principles (such as conservation of water
or energy), or which lack representations of processes or feedbacks that are known
to play an important role for future climate. In general terms: If the models within an
ensemble differ strongly in how coherent they are with background knowledge, and
if it is likely that there is a correlation between how well a model is based on process
understanding and the model’s adequacy for long-term projections, then the coher-
ence with background knowledge should be considered in weighting the models for
estimating uncertainties in such projections. It is important to seewhy coherencewith
background knowledge cannot be built into the dimension of performance: If two
models reproduce equally well observed mean climate and trends but we know from
background theories that only the first represents certain feedbacks (e.g., greenhouse
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gas emissions from thawing permafrost) which significantly influence future climate,
then the first model should be given more weight than the second. On the one hand,
one could think of coherence with relevant background knowledge as a consideration
additional to determining the robustness of results (Parker 2013), e.g., for determin-
ing which models to include in an ensemble in the first place. On the other hand, one
might think about integrating coherence with the relevant background knowledge as
a further term in the weighting. In a Bayesian framework, the first option affects the
prior, which is based on the whole ensemble; the second option affects the posterior,
which depends on the weighing of the models. However, there is still considerable
work to do in order to find a qualitative or a quantitative way to consider coherence
with relevant background knowledge. It needs, e.g., to be determined how to deal
with the intransparency of what exactly is in the models, and with limitations in
the state of knowledge. Moreover, a procedure for assessing this coherence, e.g.,
something like eliciting expert judgments, needs to be established. Accounting for
coherence with relevant background knowledge is a challenging task, but it needs to
be addressed in order to improve the epistemic significance of robust results.

34.8 Conclusion

We have used climate modeling to illustrate a few major (and possibly unique) chal-
lenges of determining the robustness of simulation results for long-term predictions
and of estimating their uncertainty. We have proposed to weight the models of an
ensemble in order to avoid biases that result when all models are treated equally. We
have proposed a somewhat ad hoc scheme that considers dependence and perfor-
mance of the models, yet there are challenges that need further work. These include
how to quantitatively account for coherence with background knowledge as a further
important requirement on ensembles, as well as definitions of core concepts andmet-
rics in order to provide a quantitative determination of the robustness of simulation
results. Such an explicit and systematic approach to robustness of results is required
to support inferences from the robustness of projections and to establish confidence
in the projections. These challenges are interesting from both a philosophical and
a practical point of view. Improving our understanding of these issues and finding
better ways to deal with the plurality of models has the potential to increase the
value of models not just for climate but other environmental areas, and potentially
beyond, where determining the robustness of results is a strategy to assess confi-
dence in results. Eventually, this may provide scientists with a clearer explanation
of what they are doing in modeling, and stronger arguments about when modeling
as an epistemic tool does or does not work.
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Chapter 35
Challenges to Simulation Validation
in the Social Sciences. A Critical
Rationalist Perspective

Michael Mäs

Abstract I reflect on challenges to the validation of theoretical models from the
perspective of a critical rationalist seeking to develop true explanations of empirical
phenomena. I illustrate my arguments with examples from the rich literature on
social-influence models, a field that has profited from contributions from various
disciplines such as physics, and mathematics. While this field is characterized by a
large number of competing formal models, it has been criticized for having failed to
generate reliable explanations and predictions, because of a lack of empirical research
validating models. I list five challenges to model validation in the social sciences:
First, social-scientific theories are based on many obscure concepts. Second, many
social-scientific concepts are latent. Third, the representation of time is unclear in
many models. Forth, in most social settings, various processes influence dynamics
in parallel. Fifth, context dependencies limit the development of general models.

Keywords Model validation · Social-influence · Social networks

35.1 Introduction

In 1964, Robert Abelson formulated a research question that many still consider to be
one of the most challenging and persistent puzzles of the social sciences (Bonacich
and Philip 2012; Mason et al. 2007; Hegselmann and Krause 2002; Mäs et al. 2010;
Flache et al. 2017). Abelson developed formal models of social-influence dynamics
in networks where nodes are described by a continuous attribute, often called an
opinion, that is open to influence from network neighbors. Being puzzled by the
finding that social influence generates convergence cascades that inevitably lead to
perfect opinion consensus in connected networks, Abelson wondered “what on earth
one must assume in order to generate the bimodal outcome of community cleavage
studies.” (1964, p. 153). In the past decades, hundreds of articles extended Abelson’s
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work and provided various competing answers to his question, creating an impressive
literature that profited from contributions from disciplines as diverse as sociology,
physics, computer science, philosophy, economics, communication science, politi-
cal science, mathematics, and complexity science. Despite this impressive scholarly
attention, a recent review of the literature concluded that “the literature still cannot
offer reliable explanations and predictions for real-life influence dynamics” (Flache
et al. 2017), criticizing that researchers have accumulated an overwhelming number
of models but failed to develop empirical insights into which of many model can-
didates provides the most accurate description of the social-influence dynamics in a
given real-life setting.

The literature on social-influence dynamics in social networks ideal-typically
illustrates the intricacy of validation in sociological research programs. On the one
hand, there is a rich arsenal of rigorous theoretical models analyzed with both analyt-
ical tools and computer simulation. Researchers also invest heavily into validating
their models, confronting model assumptions and predictions with empirical data
gathered the field and the laboratory. On the other hand, progress appears to be lim-
ited, both in terms of an emerging scholarly consensus on a standard model, and the
ability to make accurate predictions about empirical phenomena.

Here, I reflect on fundamental methodological challenges that social scientists
encounter in the process of model validation, arguing that these challenges might
be responsible for the relatively limited progress in social-scientific modeling and
model validation. The challenges that I list in this chapter are also well known in
other disciplines but I argue that they create particularly problematic road blocks in
the social sciences.

To illustrate my arguments, I repeatedly refer to the literature on social-influence
dynamics in networks that emerged from Abelson’s work. This field serves as an
ideal-typical example, because many contributors follow the methodological guide-
lines of critical rationalism that dominate also in the natural sciences.That is, theypro-
pose general theories and rigorously deduce hypotheses that they critically confront
with empirical data in order to gradually improve their models. What is more, social-
influence models have also been studied by researchers coming from disciplines
that seem to be characterized by faster progress, such as physics, mathematics, and
computer science. This supports the notion that progress in the validation of social-
scientific models is limited not because researchers apply problematic approaches
but because validation is particularly challenging in the social sciences.

The present chapter is written from a critical rationalist perspective. Critical ratio-
nalism holds that in order to adequately explain an empirical phenomenon, scientists
need to develop theories (a synonym is “model”) that are based on general, law-like
statements and demonstrate that statements about the observed phenomenon follow
in a logically valid way from the statements of the theory (Hempel and Oppenheim
1948; Popper 1959; Nagel 1979). That is, it needs to be demonstrated that the state-
ment that is being explained must be true if all implicit and explicit assumptions
of the theory are true. When explanations are complex, human intuition tends to be
too error-prone to demonstrate their logical validity, making it necessary to apply
rigorous methods. Computers simulation is one of the available methods.



35 Challenges to Simulation Validation in the Social Sciences … 859

To run a computer simulation, the assumptions of a theory are translated into com-
puter code. Next, the researcher uses the computer to derive and analyze the impli-
cations of the implemented assumptions. Compared to methods from formal logic,
and mathematical methods, computer simulation tends to provide the researcher
with more flexibility in the choice of modeling assumptions, making simulation the
method of choice whenever analytical solutions are unavailable. While analytical
methods come with the great advantage of providing formal proofs, they often force
the researcher to make restrictive theoretical assumptions about, for instance, the
behavior of humans, their perception of the environment, and the process of indi-
vidual decision-making. Simulation is a powerful method to rigorously study the
implications of theories that are based on more relaxed assumptions, for instance
with the aim of developing more realistic theories, or the aim of answering what-if
questions, or the aim of studying whether important predictions of a theory change
when an assumption has been altered.

Hence, whether a researcher relies on computer simulation or an alternative
method depends very much on the purpose of the theoretical analysis. The literature
on social-influencemodels, for instance, provides numerous examples of models that
were studied with both computer simulation and analytical tools (Hegselmann and
Krause 2002; Lorenz 2005; Castellano et al. 2009). Accordingly, I do not restrict
myself to challenges to the validation of theories studied with computer simula-
tion but discuss the validation of theoretical models in general. However, I illustrate
my arguments with a class of formalized social-scientific theories that are typically
analyzed with computer simulation.

In the present chapter, the term “validation” describes the process of confronting
a theory with empirical evidence with the ultimate aim of developing a sound expla-
nation of the empirical phenomenon. That is, a critical rationalist seeks to develop
theories that are not only “logically valid” but also based only on statements that are
either true or theoretically innocent in that they do not affect important logical impli-
cations of the theory. Accordingly, one would consider a simulation model a “valid”
explanation of a given phenomenon when all implemented assumptions are either
true or innocent (Gilbert and Troitzsch 1999).1 Theories can be empirically tested
either directly, by putting their core assumptions to the empirical test, or indirectly,
by empirically testing model implications that have been derived from the theory.
While computer simulation and other formal methods do not allow to empirically
test theories, they often play an important role in the process of indirect empirical
testing, as they facilitate the process of identifying implications of theories that con-
tradict alternative theories or intuition, theoretical predictions that are the preferred
candidates for empirical tests.

It should be noted that the definition of the term validation used here is very
restrictive in that it can only be applied to modeling efforts aimed at developing

1The concept of validity has been used in many different ways. I use it here in accordance with
many contributions to the social-simulation literature (David 2009), defining a model as valid if
it is based on true assumptions. In the field of logic, one would call such a theory “sound” rather
than “valid,” because in this literature explanations are considered valid when their assumptions
logically imply the explanandum.
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true explanations (Ahrweiler and Gilbert 2015; Gilbert and Ahrweiler 2005). Some
of the most famous simulation work in the social sciences, however, has not been
conducted with this aim. Schelling’s seminal model of residential segregation, for
instance, is frequently used to demonstrate that even cities with unrealistically tol-
erant populations can fall apart into ethnically homogenous districts (Hegselmann
2017; Schelling 1971; Sakoda 1971). Today, Schelling’s model serves as an ideal-
typical example of unintended consequences arising from the social interaction. A
model that is based on more realistic assumptions about when and why individuals
move to another neighborhood would not serve this purpose better. Thus, validity,
as it is defined here, is not a quality criterion for this work on Schelling’s model.

Already, the founding fathers of critical rationalism have acknowledged funda-
mental philosophical problems that also limit their approach (Popper 1959). For
instance, it is argued that an adequate theory requires at least one general, law-like
assumption, a statement about the truth that can never be proven true simply because
it is general and empirical observation is specific. As a consequence, one can never
be sure that one has identified a sound explanation, even when one has repeatedly
failed to prove that it is not sound. Accordingly, one can also never be sure whether
one has developed a valid simulation model. Likewise, a fundamental challenge to
validation is that empirical testing always requires general assumptions about the
measurement of reality, statements that cannot be proven true either. Nevertheless,
the here adopted methodological approach is the dominant approach in many sci-
entific disciplines and has led to important advances also in the social sciences, as
the example of social-influence modeling demonstrates. Furthermore, the here dis-
cussed challenges to model validation, do also apply to alternative methodological
approaches that seek to explain empirical phenomena based on general theories and
consider the empirical testing of theories and their predictions a critical step toward
arriving at true explanations. However, this chapter does not address challenges relat-
ing to the simulation and validation of models which are based on the interpretive
and constructivist traditions in the social sciences (for a discussion of some alter-
native purposes of simulation modeling and competing methodological approaches
in the social sciences see Ahrweiler and Gilbert 2015; Gilbert and Ahrweiler 2005;
for a discussion of the validation of socioecological simulation models and a post-
positivist understanding of the concept of validity see Chap. 17 by Saam in this
volume).

In the following section, I provide a short overview over core contributions to
the literature on social-influence models and approaches to validating these models.
Subsequently, I reflect on five challenges to model validation. Finally, I discuss
implications, formulating four recommendations for future modeling efforts in the
social sciences.
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35.2 Illustrative Example: Models of Social Influence

Models of social influence are concerned with dynamics of the distributions of opin-
ions, beliefs, and behavior in social groups, organizations, and societies. Typical
empirically observed dynamics that modelers seek to explain are the emergence of a
shared consensus, the formation and stability of subgroups with different opinions,
and the process of polarization where subgroups develop, for instance, increasingly
different opinions.

While social-influence models are concerned with collective phenomena, they are
based on assumptions about the behavior of individuals. Individuals are modeled as
network nodes i that exert social influence on each other’s attributes xi,t . Already early
contributions like Abelson’s work represented these attributes xi,t on a continuous
scale ranging from zero to one (0 ≤ xi,t ≤ 1) and referred to them as individuals’
“opinion” on a given issue.

In this general framework, social influence is typically modeled as weighted aver-
aging (Friedkin and Johnsen 2011). That is, when a node i’s opinion is updated, the
new opinion value xi,t+1 is a function of i’s previous opinion xi,t and the weighted
average of the opinions held by i’s network contacts. Formally,

xi,t+1 � xi,t + γ ·
∑K

j�1
wi j,t (x j,t − x j,t ). (35.1)

Parameter γ controls how open nodes are to social influence (0< γ ≤ 1). The
influence weights wij,t describe the social influence between all pairs of network
nodes. When two network nodes i and j are not connected by a network link, the
influence weight wij,t adopts a value of zero. Small positive values, however, imply
that node j exerts weak influence on i. Higher values correspond to stronger social
influence.

The influenceweightswij,t play a critical role in the dynamics that influencemodels
to generate and are, therefore, also in the focus of previous efforts to validate influence
models. Early models assumed that weights remain unchanged over time and that
they either adopt a value of zero, when two nodes i and j do not influence each other,
or a positive value to represent that agents grow more similar due to social influence.
Models that assume fixed and nonnegative weights predict that any population will
inevitably arrive at a perfect consensus unless the social networks consist of two
or more unconnected components. The contradiction between this model prediction
and outcomes of empirical studies in small communities, which often found opinion
differences to be stable and sometimes even increasing, motivated Robert Abelson
to formulate the research puzzle quoted in the introduction of this paper.

A powerful approach to solve Abelson’s puzzle is to drop his assumption that
weights are fixed. Figure 35.1 shows three weight functions that make different
assumptions about how weights might depend on the opinion difference between
nodes. Figure 35.2 shows the collective opinion dynamics that these weight functions
generate in complete networks of 101 nodes. All three dynamics departed from a
uniform opinion distribution. The modeled opinion varies between values of zero
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Fig. 35.1 Three prominent
weights functions

Fig. 35.2 Opinion dynamics predicted by social influence models with three different weight func-
tions. Lines show the opinion trajectory of the 101 agents in each population. Modeling details are
described by Flache et al. (2017)

and one (0 ≤ wij,t ≤ 1). The bold weight function in Fig. 35.1 assumes that influence
weights decrease when i and j disagree which implements the notion that individuals
feel attracted by similar others are, therefore, more open to influence. However,
since weights remain positive unless nodes disagree maximally, model dynamics
result in the same outcome as observed by Abelson, perfect opinion consensus (see
left-hand-side panel of Fig. 35.2).

A prominent approach to prevent opinion convergence is to assume that individ-
uals reject any influence from network neighbors they disagree with (Hegselmann
and Krause 2002; Deffuant et al. 2005; Lorenz 2007). Formally, modelers included
that the influence weights wij,t drop to zero when the opinion distance between i
and j exceed a threshold ε, as the short-dashed line in Fig. 35.1 illustrates. When
this threshold is sufficiently small, these so-called “models of bounded confidence”
can explain the emergence of several internally homogenous but mutually distinct
subgroups (see center panel of Fig. 35.2). These subgroups can remain stable if
members of opposite groups hold opinions that differ too much and therefore fail to
influence each other. These models, thus, provide an explanation for the emergence
and stability of multiple subgroups with different opinions. However, without addi-
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tional assumptions, these models fail to explain the processes of opinion polarization
where the opinion differences between subgroups increase over time (Hegselmann
and Krause 2002).

A further extension was the assumption of negative-influence weights, which
implements the notion that individuals may dislike certain network neighbors and
therefore seek to increase opinion differences to them, an assumption that has
been defended with prominent sociological theories of social differentiation and
social psychological theories of intergroup relations (Macy et al. 2003; Mark 2003;
Salzarulo 2006; Takács et al. 2016). In particular, it has been assumed that network
nodes do not only reject influence from nodes that hold distant opinions but tend to
increase opinion differences to these agents (see the long-dashed line in Fig. 35.1).
When this negative form of social influence is sufficiently strong, networks can
fall apart into multiple subgroups with increasingly different opinions, as the right-
hand-side panel of Fig. 35.2 shows. This polarization process continues until agents
adopted opinions at opposite poles of the opinion scale.

As assumptions about the weight function have critical impact on model predic-
tions, efforts to validate social-influence models focused on the weight functions.
There have been two main approaches to validating weight functions, a micro-
approach, and amacro-approach. Following themicro-approach, empirical studies in
the field and the laboratory measured individuals’ opinions before and after exposure
to information about the opinions of others, measuring or experimentally manipu-
lating opinion differences to the source of influence (Takács et al. 2016; Clemm von
Hohenberg et al. 2017; Marsden and Friedkin 1993; Friedkin and Johnsen 2011; Liu
and Srivastava 2015). Next, it is statistically estimated how the opinion difference
between the individual and the source of influence affected the size and the direction
of the opinion shift after the influence event.

The macro-approach to validating social-influence models takes advantage of
the relationship between microassumptions about influence weights and emerg-
ing macropatterns of opinion convergence, fragmentation into multiple groups, and
opinion polarization (Brousmiche et al. 2016; Chattoe-Brown 2014; Jan Lorenz
2017; Clemm von Hohenberg et al. 2017; Friedkin and Johnsen 2011; Mäs and
Flache 2013). Analyzing, for instance, data from large-scale representative surveys
or controlled laboratory experiment with repeated opinion measurements, scholars
described the observed collective opinion dynamics in terms of shifts in opinion vari-
ance, shifts in the opinion average, and changes in the degree of opinion polarization.
Next, they drew conclusions about which assumptions about influence weights are
necessary to explain the observedmacro-dynamics. For instance, observing that opin-
ions on initially highly controversial issues converged would lead one to conclude
that negative influence played a minor role in these dynamics.

Despite all efforts to validatemodels of social-influence dynamics, a recent review
concluded that the “empirical literature on social influence is still too limited to
validate social-influence models at the level of precision needed for empirically
informed choices betweenmodel alternatives.” (Flache et al. 2017). The same review
admitted that this limitation results from methodological challenges that researchers
face, arguing that “the assumptions of social-influence models, the dynamics that
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they generate, and also many of their predictions are notoriously difficult to put to
the test.” In the remainder of the present paper, I reflect on these difficulties, arguing
that they reflect general methodological challenges that social scientists encounter
and using social-influence models as an illustration.

35.3 Challenges to Model Validation

35.3.1 Obscure Concepts

Most social sciences are very young. Emile Durkheim, who was the first profes-
sor in the discipline of sociology, for instance, received a teaching position at the
University of Bordeaux in 1887, less than 150 years ago. As a consequence, many
social-scientific concepts are still vaguely defined and disciplines have not devel-
oped consensus on the meaning of large parts of their terminology. This is a serious
problem for model validation.

The field of social-influence dynamics serves as an example, as even the term
“opinion” remains obscure in large parts of the literature. Today, most contributions
refer to the characteristics that are socially influenced as individuals’ “opinions”
without including a definition of the concept. A prominent exception is the cultural-
dissemination model by Robert Axelrod, who developed an influence model of “cul-
tural attributes,” defining the term culture as “the set of individual attributes that
are subject to social influence” (Axelrod 1997, p. 204). On the one hand, this very
broad definition comes with the advantage that Axelrod’s model can be applied to
any social context where individuals exert some form of influence on each other. For
instance, the cultural-dissemination model can be applied to all forms of behavior
(e.g., church attendance, signing a petition) and all forms of cognitions (e.g., believ-
ing in god, dissatisfaction with the government) that are open to influence. This is
an important advantage, because models are easier to empirically falsify when they
make predictions about many different contexts. On the other hand, theories suggest
that the social influence of opinions works in very different ways than influence
of behavior. A common and empirically supported assumption, for instance, is that
individuals participate in political protest, such as the Arab Spring or the revolu-
tion in East Germany, more likely when they learn that many other members of their
group also become active (Opp and Gern 1993; Opp 2009). One possible mechanism
explaining this instance of social influence on a behavior is that individuals expect
less repression by the state when they join a bigger movement. This reasoning should
be independent of characteristics of the other protestors—only their number affects
whether state repression is more of less likely. In contrast, the influence of opinions is
explained in very differentways. Social-identity theory and self-categorization theory
(Tajfel andTurner 1986;Brewer 1991; Salzarulo 2006), for instance, predict that indi-
viduals seek to intensify opinion differences to members of psychologically salient
outgroups, trying to maximize their social distinctiveness. Such negative forms of
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social influence are not plausible in the context of individuals avoiding state repres-
sion. This simple example illustrates that social influence on behavioral dimensions
is often traced back to very different psychological mechanisms than influence on
opinions, and that these mechanisms may imply very different assumptions about
how individuals influence each other. Thus, a researcher interested in behavior would
often found her model on very different assumptions than a researcher focusing on
opinions, which suggests that Axelrod’s definition is too general.

However, even if one restricts the term opinion to individuals’ cognitions, more
clarification is needed. This is because there are fundamental differences between dif-
ferent forms of cognitions. One the one hand, there are so-called “beliefs,” statements
about the world that are either true or false (e.g., the statement “It will be raining
today.” is either true or false). On other hand, there are “evaluations” or “prefer-
ences”, statements that are by definition not true or false. For instance, the statement
“I hate rain.” reflects that a person has negative feelings toward an object, which can-
not be described by the attributes true or false.2 The problem is that theories of belief
influence often differ from the theory of influence of evaluations. Belief influence,
for instance, plays an important role in economic theories of stock markets where
traders are often imperfectly informed about the value of a stock (Bikhchandani et al.
1992). A critical assumption, however, is that the price of a good is informative of its
value, as it reflects other traders’ beliefs about the good’s value. Thus, when the price
of a good increases, traders might infer that other traders have different information
and, as a consequence, different beliefs about the value of the stock. Price changes
are reliable signals, because traders invested their own money. As a consequence,
rational traders will be positively influenced by the behavior of others and also invest.
In fact, no matter how much some traders might dislike other traders, it is not wise
to be negatively influenced by their beliefs, as this would likely result in a financial
loss. In contrast, negative influence might play an important role in the context of
political preferences (Baldassarri and Bearman 2007). As already mentioned above,
there are psychological theories that predict that individuals develop increasingly
positive views on a political candidate when they learn that members of the opposite
social category dislike that person.

Obscure concepts are a problem for model validation, because empirical studies
might generate very inconsistent findings when they are testing the same model
in fundamentally different contexts. Depending on whether one empirically studies
social influence on behavior, beliefs, or evaluations, different models of influence
might be supported by the data, leaving the researcher uncertain about which model
is the best.

2To be sure, the statement “I feel that I hate rain” can be true (if I do hate rain) or false (If I do not
hate rain). Nevertheless, an individual’s evaluation of rain as being negative cannot be described
with the words “true” or “false”.
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35.3.2 Abundance of Latent Concepts

Compared to many disciplines in the natural science, the social sciences seem to
be concerned with an abundance of latent concepts. That is, social scientists study
many phenomena that are not directly observable and, therefore, require more or
less complex measurement techniques for quantification. A typical example of a
latent concept from the natural sciences is temperature, which is defined as the
energy of the random motion of the microscopic particles in a system. Temperature
cannot be observed directly, because particles and their movement are toominuscule.
However, one can take advantage of the close relationship between the temperature
and the volume of a system, which inspired Fahrenheit to develop of the mercury
thermometer in 1714. As temperature increases, the mercury expands and rises in the
thermometer’s tube, which makes it possible to relate the mercury level in the tube
to temperature. While the thermometer actually quantifies the volume rather than
the movement of particles, it allows to quantify temperature on the so-called “ratio
level.” This scale level allows to rank order the temperature of systems in that, for
instance, a temperature of 5 °C is considered warmer than 3 °C. It is also possible
to interpret temperature differences. For example, the difference between 5 °C and
10 °C is the same as the difference between 95 °C and 100 °C. Furthermore, when
measured on the Kelvin temperature scale, there is even a meaningful zero point,
which allows statements about the relative temperature. 100 K, for instance, is twice
as warm as 50 K.

Unfortunately, there are very few social-scientific concepts that can be quantified
directly or that have been measured with a similar accuracy as temperature. On the
level of social collectives, for instance, social scientists struggle with quantifying
key concepts such as a nation’s wealth, social inequality, or a collective’s level of
cohesion. On the level of the individuals, there are debates about measuring concepts
such as an individual’s satisfaction, happiness, social identity, social and human
capital, or social status. Even sex and gender are often hard tomeasure unequivocally.

Measurement problems are a fundamental roadblock for the validation of social-
influence models. A typical example of an opinion that these models are concerned
with is individuals’ political orientation, which is prominently measured on the left-
–right political spectrum. The General Social Survey, one of the most important
social-scientific surveys, for instance, has been asking respondents already since
1972 the following question: “In politics people sometimes talk of left and right.
Where would you place yourself on a scale from 0 to 10 where 0 means the left
and 10 means the right?”3 This measurement instrument seems to have a similar
scale as temperature, but there are many differences. One the one hand, it is possible
to rank-order measurements. For instance, if a respondent’s answer to the question
switches from 2 to 4, one can conclude that her political orientation shifted toward
the right. On the other hand, can one conclude that a respondent choosing answer
category 2 is more leftist than a participant who selected option 4? The problem is
that respondents might interpret the question and the answer categories differently,

3https://gssdataexplorer.norc.org/variables/4971/vshow.

https://gssdataexplorer.norc.org/variables/4971/vshow
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which makes comparison across individuals difficult. Likewise, the same individual
may change her interpretation of the scale over time, because the meaning of the
terms “right” and “left” changed over time. Political stances that were considered
very leftist a few decades ago (e.g., the support of abortion) are today conceived as
beingmoderate. Thus, a person whose actual orientation remained unchanged, might
nevertheless choose today a different answer to the survey question than 20 years
ago, and vice versa. Another problem is that the scale may not be linear. Does an
opinion shift from 1 to 2 indicate the same absolute opinion change as a shift from
4 to 5? We do not know.

Both the macro- and the micro-approach to validating social-influence models
are affected by these measurement problems. Empirically testing model predictions
about the emergence of consensus, fragmentation, or polarization requires a quantifi-
cation of these macroconcepts. For instance, finding that the distribution of political
orientation in a population has two modes, one would conclude that the population
is fragmented into two camps. However, it may be that individuals actually agree
much more than the distribution suggests, but the population consists of members of
different generations who interpret the labels “right” and “left” in different ways.

Another problem for macrovalidation efforts is that the measurement problems
make it difficult to aggregate individual-level data. The degree of polarization in
a population, for instance, is typically measured with the variance of individuals’
opinions or Esteban and Ray’s polarization measure (Boxell et al. 2017; DiMaggio
et al. 1996; Esteban and Ray 1994; Bramson et al. 2016), outcomes that require
opinion measures on a continuous scale. To calculate variance, for instance, one
sums up the squared gap between individuals’ opinions and the opinion average. This
gap cannot be calculated, however, if individuals might have based their answers on
different interpretations of the answer scale.

Likewise, micro-validation is seriously affected by these measurement problems.
One approach to empirically testing which of the three weight functions shown in
Fig. 35.1 is accurate, is to measure as the dependent variable in a statistical regres-
sion model individuals’ opinion shifts resulting from social influence. To this end,
one calculates the difference between the opinions before and after exposure to the
source of influence. Next, one estimates statistical models with the initial opinion
distance between the individual and the source of influence as the main independent
variable, as opinion distance is the determinant of the influence weights in the formal
models (see Fig. 35.1). Finding that individuals who were exposed to a dissimilar
source adjusted their opinions away from the source would be considered support
for the negative-influence assumption. The problem is that both the dependent and
the independent variable of this statistical model require opinion measurements on a
continuous scale, as both quantify a difference between two opinions. Most opinion
scales, however, do not provide continuous measures.

Such measurement problems are well known in the social sciences. Some of
them can be overcome with elaborated statistical methods, such as structural equa-
tion modeling or regression techniques for ordinal dependent variables (Loehlin and
Beaujean 2016). Another approach has been to shoehorn opinion measurements
into ratio scales. For instance, researchers measured individuals’ opinions about the
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smoking ban in restaurants and bars by asking which share of tables in a restaurant
should be reserved for nonsmokers, which can be expressed in percentages (Takács
et al. 2016). In another study, participants had to find the optimal spot for a new
leisure center (Mäs and Flache 2013). They could choose between two cites that
were 50 km apart or any spot between the two cities. Thus, geographic distance pro-
vided a continuous scale. While this approach was applied successfully in laboratory
experiments where the actual opinion issue was not important for the purpose of
the study, it seems difficult to apply it for instance to the measurement of individ-
uals’ political orientation. A third approach to deal with measurement problems of
latent concepts is to operationalize opinions with multiple indicators and aggregate
(e.g., mean, or median) individuals’ answers. For instance, in an attempt to measure
political conservatism, an important dimension of political orientation, a scale has
been proposed that builds on 12 items (Everett 2013). Respondents are confronted
with topics such as abortion, gun ownership, and religion” and are asked to indicate
for each item how positive or negative they feel about each item on the scale of
0–100. However, this solves problems that researchers interested in social influence
encounter only if the mentioned measurement inaccuracies are captured by in the
aggregation process, which is a strong and hard to test assumption.

Despite these efforts to overcome measurement problems, model validation
remains a challenge. The core problem is that models are hard to falsify with prob-
lematic measurement tools. For instance, studies that did not find support for the
assumption that influence can turn negative when the individual and the source of
influence disagree can always be criticized for basing their finding on problematic
opinion measurements (Takács et al. 2016; Clemm von Hohenberg et al. 2017). As a
consequence, it is hard for the discipline to decrease the number of candidate social-
influence models and identify a standard model. A second problem is that empirical
research does not generate insights with a high precision. On the one hand, the theo-
retical models make very precise assumptions about social influence, specifying the
exact change in opinions depending on the attributes of the source. What is more,
often even seemingly minimal changes in these assumptions have critical impact on
model predictions (Mäs et al. 2010; Flache and Macy 2011a). On the other hand, the
described measurement problems make it difficult if not impossible to feed models
with empirically validated assumptions with a comparable precision.

35.3.3 Representation of Time

Any model developed to capture the dynamics of a social system needs to represent
time, independent of whether the time is modeled continuously or as a sequence
of discrete events. The sketched models of social influence, for instance, assumed
that the dynamics can be broken down to a number of discrete events t. At every
event, each agent’s opinion is updated exactly once. Figure 35.2 shows that it took
the model that assumes only positive social influence about 40 events to generate
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opinion consensus. It remains unclear, however, to what amount of time this number
of simulation events corresponds. Is it a month, a year, or 30 min?

This lack of information can create problems for validation efforts testing the
macropredictions of models, as it makes them immune to empirical falsification.
For instance, if one does not find support for one of the macropredictions shown in
Fig. 35.2, one could always argue that the empirical study is based on an insufficiently
long time frame and would have confirmed the predictions had it involved longer
time frames.

To be sure, this is not always a problem. A model of East Germans’ participation
in the political protests of 1989, for instance, could build on the fact that demon-
strations took place every Monday. Thus, in this case, one can safely assume that
individuals updated their beliefs about the number of participants and also their own
behavior exactly once a week. In many other settings, however, such information
is not available. How often, for instance, do individuals update their evaluations of
political candidates? Does this frequency change during election periods?

An additional complication is that many models and also the social systems they
represent display so-called “broken ergodicity”. Dynamics tend to reach rest points,
system stateswhere dynamics have settled in that the central characteristics of entities
on the micro and/or macrolevel remain constant. The three dynamics displayed in
Fig. 35.2, for instance, have reached such rest points. However, in a probabilistic
world, these system states will not be totally stable, even though the dynamics can
rest for a very long time. At some moment, a sequence of random events will always
cause the system to leave the stable state and may, in relatively short amount of
time, lead the system into a new state. The problem with models that generate such
dynamics is that their predictions are difficult to compare to empirically observed
dynamics. While stochastic models allow one to predict that a system state will be
left at some moment and also how probable a shift from one state to the other is at
any given moment, it is usually impossible to predict when this shift will occur. This
makes timing empirical studies challenging.

35.3.4 Interplay of Multiple Processes

A common limitation of many field studies in the social sciences is that observed
dynamics can result from many different processes that act in conjunction. It is,
therefore, often very challenging to draw conclusions about which processes have
actually been responsible for the empirical observations in a given context.

For instance, one of the most robust findings in the social sciences is called “ho-
mophily,” the notion that individuals tend to have social relationships with similar
others (Lazarsfeld and Merton 1954; Wimmer and Lewis 2010; McPherson et al.
2001). Obviously, social influence can generate homophily, because it makes indi-
viduals grow more similar during the interaction. Another explanation, however,
points to selection processes. Research along the similarity-attraction paradigm has
demonstrated that individuals tend to develop more and closer social relationships
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with others who hold similar views (Byrne 1971). It might also be that individu-
als do not seek to develop relationships with similar persons but actually want to
avoid interaction with dissimilar individuals (Rosenbaum 1986). This also generates
homophily. It may even be that neither selection nor influence are active but indi-
viduals who have social relationships tend to expose themselves to similarly biased
media or political opinion leaders who then affect their opinions in similar ways
(Slater 2007; Iyengar and Hahn 2009).

The problem that arises from the fact thatmultiple social processesmight be active
and lead to the same consequences in a given setting is that in order to quantify social
influence and validate influence models, one needs to either experimentally or sta-
tistically control for all alternative explanations. Consider, for instance, a researcher
trying to validate social-influence models with online polling tools. These tools are
abundant these days on online news websites, as many users consider it fun to share
their opinions online and receive information about others’ views. If users were
positively influenced by an online news outlet, one would expect that for instance,
opinions measured on rightist websites will shift toward more rightist views over
time. However, this observation can also be explained by a simple selection process.
It may just be that users with leftist opinions switch to alternative news outlet when
they realize that their original news source has a rightist audience. As these left-
ist users do no longer indicate their opinions, the opinion average measured on the
website will shift to the right, even without social influence.

A powerful approach to tackle the problem of multiple parallel processes is
to develop highly controlled laboratory experiments (Friedkin and Johnsen 2011;
Takács et al. 2016; Mäs and Flache 2013). In the laboratory, researchers can reduce
the number of possible explanations, by either designing artificial settings where the
impact of a given exogenous factors (e.g., media) can be excluded and/or by exposing
all participants to the exact same stimuli. As a consequence, it can be excluded that
observed differences in the behavior of participants result from these factors. How-
ever, since laboratory experiments control away the influence of processes that are
present in the field, controlled experiments are often criticized for studying humans in
artificial settings where their behavior might differ from the behavior in their normal
habitat.

This problem of limited external validity in laboratory studies is also known in
other disciplines. In the natural sciences, for instance, researchers study bacteria in
Petri dish, to create settings where bacteria and their behavior are affected by a very
limited number of external factors. An increasingly recognized problem, however,
is that bacteria quickly adopt to the environment of the Petri dish. Within a few
bacterial generations, researchers might thus study bacteria that differ in potentially
important ways from the bacteria from natural settings that they sought to study in
the first place.

A second powerful approach to tackle the problem of multiple parallel processes
has been to statistically control for potentially interveningmechanisms. In the field of
social-influence research, for instance, so-called “Stochastic actor-oriented models”
(Steglich et al. 2010) have been elaborated to disentangle selection from influence
effects. This method requires longitudinal network data about all relevant social
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relationships in a given population and information about individuals’ characteristics
such as their opinions. With a combination of statistical inference and computer
simulation, this method estimates which combination of alternative processes best
explains the coevolution of network ties and individuals’ characteristics observed in
the data. One problem is that stochastic actor-oriented models require very detailed
data, which is usually gathered only in small population such as school classes or
work teams. As a consequence, it is usually hard to quantify the effects of factors
acting outside of the bounds of the studied populations.

35.3.5 Context Characteristics Matters

One of the key achievements of many fields in the natural sciences was the develop-
ment of accepted, standard models that made correct predictions in a wide range of
applications. With the exception of economics, social sciences lack such a general
and accepted theoretical paradigm. The problem is not that there are no general the-
ories in the social sciences (for an introduction, see Turner 1974, 1995) but unlike
in many other disciplines, these efforts have hardly contributed to the development
of a canon, a set of widely accepted assumptions, predictions, and methods. Exist-
ing grand theories have been criticized for being too remote from reality and, as a
consequence, hard if not impossible to test empirically (Merton 1957).

Having made negative experiences with existing general models, many contem-
porary social scientists follow a so-called “middle-range approach” (Hedström and
Udehn 2009; Hedström andYlikoski 2010; Boudon 1981;Merton 1957). Rather than
being applicable to a wide or even unlimited range of contexts, middle-range theories
have been developed to accurately represent dynamics in a restricted set of contexts,
such as only college dormitories (Garrison and Babcock 2009), or only work teams
(Mäs et al. 2013). Thus, rather than developing a general model that can be applied
to a wide range of social contexts, models are being tailored to very specific social
setting.

Specific characteristics of a given social context can be relevant in two differ-
ent ways. First, context characteristics can affect whether certain microprocesses
give rise to macrooutcomes or not. There are, for instance, social-influence models
that incorporate the notion that demographic differences between individuals can
trigger the microprocess of negative influence, an assumption that has been derived
from theories of intergroup relations and social differentiation (Tajfel 1978; Tajfel
and Turner 1986; Elias 1969; Bourdieu 1984). As negative influence can explain
opinion polarization, one would thus expect that demographic diversity in a given
population should intensify opinion polarization. Modeling work, however, shows
that polarization arises only under certain context conditions, even when there is
high demographic diversity and when demographic differences between agents is
assumed to motivate negative influence (Flache and Mäs 2008b; Mäs et al. 2013;
Flache and Mäs 2008a; Grow and Flache 2011). For instance, in contexts where the
underlying social network is highly segregated along demographic boundaries, in that
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there are demographically homogenous network clusters, individuals hardly interact
with members of a demographic outgroup. As a consequence, negative influence
is rare and social-influence dynamics do not foster opinion polarization. Another
important context condition is that individuals either consider relevant only a single
demographic dimension or, when multiple dimensions are salient, there is a high
correlation between demographic attributes (Lau and Murnighan 2005; Flache and
Mäs 2008b; Mäs et al. 2013). When demographic attributes are not aligned, pairs of
individuals might differ on one dimension but will likely share other demographic
characteristics. These similarities prevent negative influence, despite high levels of
diversity in the population.

The fact that context characteristics can affect whether or not microprocesses have
certain macroeffects is a challenge for validation projects, because the researcher
needs to make sure that all important characteristics of the context of an empirical
study are captured. For instance, if one is unaware of the critical effects of network
segregation, finding no opinion polarization in a demographically diverse setting
would lead one to the false conclusion that there is no negative influence. As one
can never be 100% certain that one has captured all potentially important context
characteristics, it makes it hard to falsify model assumptions.

Second, context characteristics can affect whether core model assumptions about
microprocesses are true or not, which maymake certain models inapplicable to some
contexts. Most models of social influence, for instance, represent social-influence
from the perspective of the target of influence. That is, when updating the opinion
of an agent i, a network neighbor j or a set of network neighbors is selected who
exerts some form of influence on i. This form of communication has been called
“one-to-one communication” or “many-to-one communication” (Flache and Macy
2011b) and represents many forms of communication in offline settings. The models
sketched in Sect. 35.2, for example, assume many-to-one communication, as one
agent’s updated opinion is similar to the weighted average of many other agents’
opinion. On the Internet, however, communication is different. Bloggers and users
of online social networks, for instance, emit online content that is then shared with
all of the contacts at once. Thus, in these online contexts communication is reversed.
Modelers referred to this form of communication as “one-to-many communication”
and demonstrated that it can generate very different social-influence dynamics than
other forms of communication (Flache and Macy 2011b; Keijzer et al. 2018). It
turned out, for instance, that in Axelrod’s model of cultural dissemination, there is
an increased chance that nodes become culturally isolated when there is one-to-many
communication rather than one-to-one communication. When a node i emits a mes-
sage to all of her network contacts and one neighbor j is not socially influenced, then
j will growmore dissimilar to those contacts that he shares with i if these actors were
influenced by i. This process, it turns out, is less likely under other communication
regimes, which shows that models of social influence in online settings require a
different representation of communication than social influence in offline settings.
The implications for model validation are important. The problem is that the results
of model validation efforts in a given settings may not be applicable to other con-
texts. Modelers interested in social-influence processes on the Internet, for instance,
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debate whether their theoretical models can be informed by empirical research on
offline settings (Mäs and Bischofberger 2015).

35.4 Discussion

In the remainder, I formulate four recommendations for future theoretical and empir-
ical research that will help in tackling these challenges.

35.4.1 Compare Models and Identify Critical Assumptions!

The literature on social-influence modeling is very rich in terms of the number of
models that have been developed to understand and predict the opinion dynamics
that social influence generates in networks. Models are based on markedly differ-
ent assumptions about how individuals influence each other and how they select
influential peers. Furthermore, similar theoretical assumptions are often formally
implemented in various forms. Classic models, for instance, implement opinions as
positions on a continuous scale, while Axelrod assumed that agents influence each
other on a nominal scale (Axelrod 1997; Flache et al. 2017; Huckfeldt et al. 2004).
This diversity of models is a strength of the literature, but this strength can only be
exploited when models are compared and differences are identified. So far, however,
modelers tend to propose a novel model without specifying which assumptions have
been adopted from an existing model and which assumption has been added.

Herbert Gintis once criticized that many social scientists handle theories like a
toothbrush, in that they would never use another researcher’s theory. This behavior
limits scientific progress. To improve, modelers should build on existing models
and add assumptions in a step-wise process. Importantly, authors should formally
demonstrate that the predictions of their new model differ from the predictions of
an existing model, as this shows that they have added a critical ingredient. Great
examples of this approach are given by Flache andMacy (2011b) andHuckfeldt et al.
(2004) in theirwork onAxelrod’smodel of cultural dissemination. Likewise, there are
very few contributions to the literature where competing models are integrated into
a joint framework and systematically compared to demonstrate critical differences
(Mäs et al. 2014; Mäs and Bischofberger 2015).

Model validation profits frommore model comparison, because resulting insights
will guide empirical research. First, empirical research is most needed for those
assumptions thatmodel comparison has identified as being responsible for alternative
predictions. Second, themodel comparisonwill highlight the conditions under which
alternative models make different predictions, and thus point to social contexts that
allow to test the competing predictions of alternative models.

In particular, computer simulation is a powerful tool to compare competing mod-
els, because, unlike many other modeling methods, it imposes very few restrictions
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on the choice of theoretical assumptions. As a consequence, it is relatively easy
to represent multiple competing theoretical assumptions in a single computer pro-
gram and then explore how model predictions change when one switches from one
assumption to the other.

35.4.2 Defend Your Assumptions!

Focusing on demonstrating which predictions follow from their model assumptions,
many contributions to the modeling literature do a poor job in defending the assump-
tions. In particular, assumption that change model predictions need to be backed up
with theoretical arguments explaining why an assumption is plausible.What is more,
authors should refer to empirical research that supported their assumptions.

Figure 35.2, for instance, illustrates that the negative-influence assumption
changes the predictions of influence models. General theories from social psychol-
ogy and sociology explain why individuals can be negatively influenced by inter-
action partners, but these theories also imply that negative influence results only
under certain conditions. Social-identity theory, for instance, implies that the nega-
tive influence is only activatedwhen the individual and the source of influence belong
to different social categories that the individual considers salient (Hogg et al. 1990;
Tajfel and Turner 1986). Sociological theories, in contrast, imply that negative influ-
ence is triggered by status differences between individuals (Bourdieu 1984; Elias
1969). In particular, individuals belonging to high classes are assumed to distance
themselves from low-class individuals. These low-class individuals, in contrast, are
assumed to be positively influenced by higher classes, according to these sociological
theories.

Efforts to validate model assumptions can profit from a better theoretical and
empirical foundation of theoretical assumptions, because it informs about the condi-
tions under which assumptions should be tested. The negative-influence assumption,
for instance, should be tested in settings where theories predict that such forms of
influence actually exist. An interesting candidate, for instance, would be a school
class characterized by high ethnic diversity and status differences. In contrast, neg-
ative influence may be very unlikely when individuals do not communicate face-to-
face as students do in a class room, but in a computer-mediated setting like a comment
board on the Internet. Social psychological research suggests that computer-mediated
communication is less affected by individual’s physical appearance as individuals
are not informed about demographic differences (Postmes et al. 2001).

The flexibility that computer simulation creates for modelers implies that the
theoretical consequences of various assumptions can be explored with relatively
little effort. This is a great advantage of computer simulation, but it should not lead
researchers to implement assumptions without a solid theoretical foundation.
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35.4.3 Explore Model Scope and Its Boundaries!

Every theory has a scope, a domain of contexts where it can be applied and where
its predictions can be put to the test. Above, I argued that modelers should clearly
define the scope of their model in order to inform empirical research about the social
contexts in which their model can be tested, because theories can only be falsified
with data gathered in contexts covered by the theory’s scope (see also Chap. 6 by
Beven and Lane in this volume).

In addition, however, empirical research should also explore the boundaries of a
model’s scope, testing whether the scope of a theory may be bigger than expected.
This is often possible without high costs. Above I have argued for instance that
diverse school classes are a promising setting to test the negative-influence model.
Furthermore, I argued in Sect. 35.3.1 that negative influence is more plausible when
individuals influence each other’s opinions rather than their beliefs. This, suggests
that the dynamics of music tastes in a diverse school class are within the scope of the
negative-influence model (Lewis et al. 2012). Nevertheless, it is worthwhile to test
whether the negative-influence model also predicts the dynamics of students’ beliefs
and behavior rather than only opinions. Finding that the negative influence makes
accurate predictions also in contexts that are outside of the model’s scope will guide
the development of more general models.

35.4.4 More Validation!

The described challenges to the validation of formal models in the social sciences are
fundamental. Since these challenges also often act in tandem, there is certainly no
simple solution. Nevertheless, the approach with the highest potential to eventually
lead to the development of standard and accepted models in the social sciences is to
intensify validation efforts.

Diversification of empirical approaches appears to be promising. First, empirical
research should test model assumptions and predictions in various settings, in order
to explore whichmodel is supported under certain conditions. The higher the number
of empirical studies that do not support a given model and the higher the number
of different contexts that these studies explored, the more confidently one can con-
sider a model false. Second, researchers should apply alternative empirical methods
to measure social-scientific concepts (e.g., opinions), in order to exploit their com-
plementary advantages. Third, researchers should also make more use of the huge
arsenal of empirical methods that the social sciences provide. For instance, large-
scale representative surveys allow to reliably describe opinion distributions and their
dynamics. Controlled experiments in the laboratory, in contrast, make it possible
to directly test model assumptions about the opinion changes resulting from social
influence. Furthermore, the Internet provides new opportunities to gather detailed
observational data about human behavior and interaction. The emerging field of
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computational social science applies methods developed in physics, mathematics,
and computer science to gather, manage, and analyze this information (Lazer et al.
2009; Conte et al. 2012; Salganik 2017; Golder andMacy 2014). The social sciences
will profit greatly from these empirical efforts when they are systematically targeted
at those contexts, model assumptions, and predictions where models disagree.
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Chapter 36
Validation and the Uniqueness
of Historical Events

Josef Köstlbauer

Abstract Historians have been slow to include computer simulations into their dis-
cipline’s methodological apparatus. This chapter details the challenges faced when
trying to employ simulations for historical research. Central to this is the idiographic
character of historical research, which leads to problems regarding computer simula-
tions and validation. Historians are concernedwith the unique, with distinct historical
processes, whose ultimate result is known. They do not formulate general laws or
rely on deductive-nomological approaches. But this should not keep historians from
exploring the potentials of computer simulations to the full extent: Big-data projects
may help to dissolve the nomothetic-idiographic divide, microhistorical research
may profit from simulations for contextualization or to compensate for fragmentary
sources. In all cases, validation has the potential to make historians reflect more on
evaluative assumptions, and on the ways, they pose questions and explain processes.

Keywords Simulation · Computer Simulation · History · Humanities · Big Data
in Historical Research · Simulation in History · Validation · Video Games and
History

History and computer simulations make strange bedfellows; they even may seem
to be antithetical. Simulations are about creating models of a system and tinkering
with variables to see what happens. History, on the other hand, seems to forbid such
tinkering: Everything has happened already, the past remains a forbidden land. There
is nothing to meddle with. Or is there?

Before proceeding further, I need to caution readers that the author himself is a
historian. While I have done research on digital games and participated in research
projects which employed digital tools and created digital content, my knowledge
of quantitative methods and their mathematical prerequisites is much inferior to
that of any trained sociologist—as is my knowledge of designing and employing
computer simulations, including the problems of validation contained therein. So
the following is not a sociologist’s perspective on matters of historiography, instead
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it is a perspective from the inside of the discipline. To the knowledgeable reader, this
will be apparent in the language and terminology used. By necessity the historian’s
perspective on computer simulations and validation is interdisciplinary: input and
insights from games studies or cultural studies are as important as from the social
sciences. By presenting perspectives andmethodologies of history, I hope to facilitate
comparison and contribute to interdisciplinary cooperation.

In the following pages, I will present some observations on the problems and
potentials associated with the use of computer simulations and validation in histori-
ography. Doing this, I follow a very basic definition of simulation as the use of a for-
mal model of reality to imitate processes taking place in a system. According to game
theorist Frasca (2003, p. 223), to simulate “is to model a (source) system through
a different system which maintains (for somebody) some of the behaviors of the
original system.” Philosopher Hartmann (2011, p. 83) phrases it more abstractly, “a
simulation results when the equations of the underlying dynamic model are solved.”
Historiography usually is based on the presumption that the world is something tan-
gibly real (leaving aside radically constructivist notions), which can be ascertained
through historical evidence. This reality can be understood as a system and rep-
resented in a model. A model may be classified as “a set of assumptions about a
system” (Redhead 1980, p. 146), with a dynamic model including assumptions of
time-evolution (Hartmann 2011, p. 82). The latter seems central for the simulation
of processes in history, but there might also be problems where static models may
be viable.

Validation is understood as an iterative process integral to model design and
simulation. It includes validation of assumptions guiding model design as well as the
problem of ascertaining the fidelity of a model or establishing deviations. Validation
poses particular challenges to the discipline of history, which has a strong idiographic
orientation.

Being a historian, I feel my discipline can add to a volume on computer simulation
validation by adding a bona fide historical perspective. Therefore, the first chapter
contains a brief historical reflection. Since a summary of the history of simulation
would far exceed the bounds of this essay, I kept myself to a glimpse on the historical
semantics of simulation. The intention is to demonstrate that simulation is a transient
term which has moved through different, if related, meanings and has been used in
a range of contexts.

The second chapter provides a brief introduction to history’s methodological dis-
positions and traditions. Subsequent observations in chapter two deal with the ques-
tion of why there is so little interest in models and simulation in history. The third
chapter discusses the methodological challenges involved with using models and
simulation in history and the concomitant problems of validation. The fourth chapter
is about uses and potentials of simulations in history. This chapter also includes sim-
ulations devised as a heuristic tool as well as simulation games developed outside of
academia. Together these three chapters hopefully will give an idea of major aspects
affecting the employment of simulations in historical research and the challenges
involved in validation.
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36.1 A Brief History of Simulation’s Semantics

Upon close inspection, the definition of the term simulation, like many supposedly
straightforward terms, turns out to be surprisingly slippery.Although in this particular
case this is absolutely fitting; deriving from Latin verb “simulo”, to simulate is to
emulate, to pretend, to fake, to make believe in English as well as in French. This
is the original meaning of the term but looking up the noun “Simulation” in current
encyclopedias, like English and GermanWikipedia or the Encyclopaedia Britannica,
turns up definitions that broadly define simulation as a scientific technique to analyze
systems. Simulation in this sense is a heuristic method. Usually, references to the use
of simulations and simulators for training, education, and entertainment are included,
too.

So an inquiry into the history of the term and its meanings reveals striking changes
over time. In early modern Europe, there was a fascinating discourse on simula-
tion/dissimulation as techniques employed by statesmen and courtiers (Castiglione
2007; Gracián 1993). Partly philosophical, partly didactic, it sought to explain aswell
as to publicize the culture of secrecy and disguise, which was perceived as permeat-
ing European courts (Snyder 2009). Due to the ascendancy of new culture espousing
enlightened civic virtues (Hazard 2013) the term “simulation” increasingly acquired
a strong negative bias, becoming the opposite of truthfulness and close to hypocrisy
(Zedler 1746; Crabb 1824).

During the nineteenth century, the term simulation entered into the vocabularies
of medicine and psychology. Acquiring a scientific veneer, the term nevertheless
retained a negative connotation, most tangibly expressed in the German language.
There the “Simulant” is a malingerer, who uses simulation as a strategy trying to
avoid military service or work. That usage of the term acquired unprecedented cur-
rency during World War I, when European states frantically tried to mobilize their
populations for warfare (War Office Committee 2004, pp. 141–144; Hirschfeld et al.
2009, p. 216; Michl 2007, pp. 185–194, 218).

A cursory inspection of printed English and German publications between 1700
and 2000 using the Google Ngram Viewer shows a substantial increase in the usage
of the term simulation from the middle of the twentieth century onwards. What is
the reason for this? It can be interpreted as indicative of both the diffusion of applied
mathematics and the onset of the digital age. First, during the twentieth century, the
language of mathematics and science completely usurped the term simulation and
superseded its former meanings. Subsequently, with the dissemination of personal
computers, the profusion of digital technologies, and the rise of digital games tomass
media, the term became ubiquitous. As part of an emergent language of computers,
digitality, and virtuality, gained a new semantic field and entered popular culture. The
former meanings may not have ceased, but undoubtedly they have been relegated
to a peripheral position. Today it is unimaginable to think of simulations without
thinking of computers, too. Telling examples are the encyclopedia entries mentioned
above. This also signifies that a very profound change in the term’s meaning has
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taken place. No longer is simulation tainted by negative connotations. It has become
a technical or methodological term.

This seemingly inevitable connection between computers and simulation is mis-
leading insofar as computers are not necessary for conducting simulations. For exam-
ple, one of themost famous simulationmodels, economist Thomas Schelling’s agent-
based model of racial segregation from 1971 was first presented using nickels and
dimes on a checkerboard (Schelling 1978). Also, simulation games are still being
published on paper (Corbeil 2011, p. 421). This book is on computer simulations;
nevertheless, some observations will apply to models and simulations in the broadest
sense.

There is an ironic twist to simulation’s evolution has taken from art of courtiers
to morally dubious pretense to supposedly neutral semantics of technology and sci-
ence when considered in the context of our increasingly digitized world. After all,
our mundane interactions with digital media are made possible only by increas-
ingly powerful techniques of simulation, disguise, and pretense: The graphical user
interface, which has been one of the prime enabling factor in turning computers from
specialist scientific and military equipment into ubiquitous companions, whose pres-
ence pervades almost all aspects of our professional and private lives. Today’s glossy
interfaces imbue visualized abstractions like desktop icons with a treacherous aspect
of materiality. The shiny arrays of virtual buttons, sliders, and spaces niftily conceal
the structures and ontologies of the software, the workings of algorithms, and the
banal flip-flop/yes–no of energy levels. Therefore, one might argue that nowadays
simulation and dissimulation form the very essence of the computer. The interface
has become the place of the cyborg, fusing man and machine, software and brain.
These instances of simulation are rarely reflected upon since they have become such
integral parts of our lives (Köstlbauer 2013).

What needs to be kept in mind is that terms we use so were understood quite
differently a mere hundred years ago. The question of why names and meanings
change points us to problems of historical continuity and discontinuity, to shifting
paradigms and perspectives.

36.2 History

The eminent American historian Bernard Bailyn once described history as
“sometimes being an art, never a science, always a craft” (italics in the original,
Ekirch 1994, p. 636). Historians establish historical facts through careful research
of sources. Historical sources are all documents or objects that have significance for
a historical research issue. As such their nature is not predetermined and for exam-
ple can encompass archival documents as well as movies, paintings, architecture,
digital games, or Instagram accounts. However, sources are not mirrors of the past.
Instead, they are products of interests, ambitions, ideas, and perceptions of the indi-
viduals and societies that produced them. Sources are also media, and thus products
of technology and practices evolving around them, like writing, narrating, painting,
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filing, archiving, etc. So the information on events, persons, and places contained
within sources gets further distorted and warped. Therefore, the discipline’s craft, its
quintessential and most rigorous methodologies, is about analyzing, contextualizing,
and interpreting sources. Based on the findings further hypotheses and questions can
be formulated (Schmale 2006, p. 17–18; Sellin 1995, p. 17).

Furthermore, sources are incomplete: The set of sources we use to reconstruct the
past is the result of the vagaries of chance.Decay,war, fire, andfloods, negligence, and
ignorance are constantly and successfully conspiring against historians and making
historical inquiry ever more difficult and haphazard. Therefore, the identification of
lacunae in sources is of central importance for historical contextualization.

The historian’s work can also be described as a medial operation: History as
an academic discipline is very much a child of the Gutenberg Galaxy (McLuhan
1962). It is profoundly shaped by the forms and logic of typographic media, which
accompanied the formation of historiography as an academic discipline since the
nineteenth century. It tells something about the persistence of such medial forma-
tions that even massive changes in technology–like the one experienced today–seem
to cause little disruption. Historians are writers, and a sizable part of themwill remain
so for the foreseeable future—no matter how much number crunching their actual
work contains and notwithstanding the digital media environs they operate in today.
Symptomatic is a statement by historian William Turkel: “To some extent we’re all
digital historians already, as it is quickly becoming impossible to imagine doing
historical research without making use of e-mail, discussion lists, word processors,
search engines, bibliographical databases and electronic publishing.” (Turkel 2008)
One might say that historians have adapted to technological change without chang-
ing the stance and setup of historical research. So far even the new field of digital
humanities has done little to alter that.

So history still is historiography–the writing of history–and language both spo-
ken and written is its premier medium. The way to a Ph.D., to tenure, influence and,
maybe, fame leads across the pages of books, articles, and essays. Emergent disrup-
tive transformations in the academic publishing system like open access publishing
are not necessarily going to alter the importance of writing. A well established aca-
demic discipline like history has a lot of inertia. Therein lays one of the reasons why
simulations are not part of historian’s standard toolbox. When publishing books and
articles is rewarded, it is risky to concentrate on devising or learning newmethodolo-
gies. It is also harder to acquire funding, and it will be pretty lonely as long as there
is no scholarly community within the discipline to discuss problems and results. But
it is entirely possible to imagine other ways to study history, some of these will be
addressed on the following pages.

Another reason why simulations are rarely employed by historians has to do
with the way historians regard their discipline’s subject. Like other academic dis-
ciplines history attempts to explain the world. Its interpretations of the past are
based on the basic premise of a chain of causality tying the “Then” to the “Now”.
This does not mean that Leopold von Ranke’s famous dictum still holds true,
which says that history is about finding out “what actually happened” (“wie es
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eigentlich gewesen ist”).1 Nowadays, it is well understood that the past remains
elusive and is only partially accessible to reconstruction and interpretation. What
we see is distorted by the bias and incompleteness of sources used. History
remains by necessity a fragmentary and preliminary narrative. Also, the impor-
tance of causality does not translate into bland determinism. History always is
open: historical events are not predetermined but essentially contingent (Koselleck
1989).

Sources and the methodologies of interpreting them are central to the self-
conception of the discipline. It causes a profoundly idiographic approach: Histo-
rians identify sources, which they treat as unique manifestations of a distinct past,
and which lead to unique, distinct historical events. New historical knowledge is
perceived to be gained by uncovering new sources, very much like archeologists
excavating new objects, or by researching topics that have not yet been the subject of
historical inquiry. This stance does not translate into ignorance regarding theory and
methodology; indeed there is a heterogeneous multitude of methods and approaches.
(Lengwiler 2011; Herbst 2004). But it is not conducive to research aiming to formu-
late general theories and to devise models for analyzing hypotheses.

36.3 Challenges

In their “History Manifesto”, Historians Jo Guldi and David Armitage asserted that
“the world around us is clearly one of change, irreducible to models.” (Guldi and
Armitage 2014, p. 3) This strong statement is rather astonishing as both authors are
quite open to methods and tools of the digital humanities. Of course, the world can
be represented in models. But the idiographic stance characterizing history leads to
problems regarding computer simulations and validation. Some areas in the social
sciences are comfortable with deductive-nomological approaches, in which general
laws (explanans) provide the explanation of a phenomenon or event (explanandum),
the latter being logically deducible from thefirst (seeChap. 35 byMäs in this volume).
In history, on the other hand, the result of historical processes is already known. Now,
one could produce a deterministic model of the world, which always provides the
same dynamics as long as the same conditions remain in place. Running simulations,
one could observe which conditions replicate the known historical results. In such
a case validation is the process of observing results and tweaking the model. It
would be a more inductive-statistical approach, which analyzes the probabilities of
the assumptions expressed in the model. Such simulations are of limited use when
causal connections within a historical event are known in detail, but validation would
be relatively straightforward, essentially being achieved by comparing the simulation
to the established chain of events. They alsomay be helpful if there are lacunaewhich

1Franz Leopold von Ranke (1795–886) is considered one of the founding figures of modern his-
toriography. He coined the famous phrase regarding the task of historiography, “zu zeigen wie es
eigentlich gewesen ist” (“To show what actually was”).
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cannot be filled through more orthodox historical research. This would be a way of
complementing poor data. One problem of validation is that results only provide
information on whether the assumptions of the model can give explanations for a
historical phenomenon or not. They do not provide proof. Still, simulationsmay point
researchers to new avenues of research or aid them in reframing research questions.

An example case is the “Simulation on War, space, and the evolution of Old
World complex societies”, an agent-based, spatially and temporally oriented simula-
tion. The researchers modeled “cultural evolutionmechanisms” to examine variables
governing the rise of “large-scale complex societies” throughout an extraordinarily
long period, from 1500 BCE to 1500 CE (Turchin et al. 2013). The fate of the rel-
evant societies is well established, at least as far as rise and decline are concerned.
While the researchers involved do seek a better understanding of historical processes,
they operate within the methodological framework of mathematics, anthropology,
and evolutionary biology. The label applied to this specific area of transdisciplinary
research is Cliodynamics. But the interest is more anthropological and sociologi-
cal than historical; the authors emphatically assert that they are trying to describe
general principles at play in the longue durée processes. Thus, they are not primar-
ily interested in the societies whose development is being modeled; rather they are
interested in analyzing large-scale societies per se. Klaus Troitzsch (1994, pp. 41–44)
pointed out that many other simulations devised to simulate prolonged periods of
social evolution containing a historical aspect are more sociological in outlook than
historical. Of course, that does not mean that historiography is not going to profit
from such efforts. But without rejecting other disciplines interest general theories
or their viability, historians usually endeavor to explain historical processes through
distinct historical conditions.

Interesting to the historian is the researchers’ reference to established historical
knowledge both by framing their hypotheses as well as by validating simulation
results in the abovementioned simulation project. Validation here means that the
results conform to a significant percentage of historical evidence (Turchin et al. 2013).
But is that sort of validation satisfying? There seem to be certain risks, for example
privileging preestablished conceptions. Validation, therefore, needs to encompass the
basic assumptions of the model, too. The study’s authors based their model on the
premise that the institutions needed to enable the existence of large groups evolved
as a consequence of “intense competition, primarily warfare” (Turchin et al. 2013,
p. 16384). This assumption seems rather simplistic. Further assumptions regard-
ing the importance of certain military technologies like horse chariots or cavalry
equipment seem equally questionable when considering the findings of experimen-
tal archeology (see for example Sidnell 2006).

Calling into question the basic historical assumption used in the creation of the
model also calls into question the usability of results. Does it still demonstrate the
significance of warfare of large complex societies? Does it show something else?
Such speculation may lead to outright dismissal, but at the same time, it can be
quite helpful as it inspires new interpretations. The simulation is not going to tell
us what happened or why it happened. It does facilitate the analysis of hypotheses
regarding the long-term significance of large-scale conflict and the impact of tech-
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nologies, thereby potentially aiding researchers of various disciplines in identifying
new avenues of research. Thus, it conforms to two functions of simulation detailed
by philosopher Stephan Hartmann: simulation is a technique of research that makes
it possible to investigate the dynamics of a process or system in detail, and it is a
heuristic tool that allows one to develop hypotheses, theories and models (Hartmann
2011, p. 85; Troitzsch 1994).

Validation of such simulations also entails thinking about complexity. Refining
simple but easy to work with models will create layers of complexity of models and
make it increasingly difficult to comprehend. Transparency of models is an important
prerequisite for validation (Hartmann 2011, pp. 108–112; Turchin et al. 2014).

Deterministic models might come into their own when the historical outcome of
a specific situation is not known. For example, this would be true for simulations
used for predicting future developments (Murauer 2014, p. 15). But it is unclear how
this simulation might be validated. And while there always have been historians,
who unabashedly asserted the prognostic powers of history (Geiss 1998, p. 18–24),
to me, the discipline seems neither conceptually nor methodologically equipped to
deal with prognostics.

More difficult to hypothesize is the use of stochastic models, in which the basic
assumptions change with each iteration of a simulation and produce a different out-
come each time. How might the results be validated? The outcome of history is
evident (facts); simulation results which contradict the actual outcomes of historical
developments can hardly be regarded as valid.

Data poses another problem. Few historians regard computable data a central
result of their research. Mostly this is a specialty of economic and social history,
where sources like church registers, toll registers, shipping lists, or census list are
being used. These are also subdisciplines which have a long tradition of employing
the methods of sociology or economics. Network analysis, too, produces computable
data, for example, on familial, institutional, or correspondence networks. Historical
network analysis also provides examples of the challenges posed by historical data
sets: often, they are uneven, and the unevenness may be unsystematic, making it
difficult to deal with (Meeks 2015).

Typically data assembled by historians during research in archives and the eval-
uation of literature is used toward analyzing and explaining causal relationships. It
is not necessarily regarded as a product of research which merits dissemination and
being shared within the community. As of yet, there is no widespread culture of pub-
lishing and sharing datasets which in turn might foster the formulation of hypotheses
analyzed through models and simulation. This may be expected to change as the
interdisciplinary field of digital humanities is creating new possibilities and tools for
research and increasing the number of researchers.

It is telling that a vast historical database project is being developed outside of
the discipline of history: The Seshat project, named after an Egyptian goddess, tries
to harness big data to quantify historical processes. Founded in 2011, it is financed
both by public and private institutions and claims no less than “to bring together
the most current and comprehensive body of knowledge about human history in one
place” (Seshat 2017). Leaving aside the slightlymegalomaniac tone of this statement,
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the generation of huge databases has its merits, not only for historians but also for
scholars from other disciplines and it undoubtedly can engender interdisciplinary
cooperation. Seshat is created with simulations in mind (Turchin et al. 2015).

The enthusiasm concerning “big data” in business as well as in academic research
has kindled renewed interest in quantitative work, database design, and in models.2

A remarkable project directed by art historian Maximilian Schich extracted spatio-
temporal information on “notable individuals” from various existing datasets, span-
ning a period of twomillennia. This data was used to construct a worldwide historical
migratory network and to study statistical patterns. The project intended to create
a macroscopic perspective of cultural history based on quantitative methods and
network theory (Schich et al. 2014).

Such projects also indicate a requirement for the sort of specialist knowledge pos-
sessed by trained historians. Historical sources provide peculiar pitfalls: Throughout
history, archives were purged, documents forged, biographical dates lied about, etc.
Rarely can biographical data be taken at face value. Datasets that are easy to deal
with, like, for example, birth and death records, tend to have limited informative
value (for examples regarding network analysis see Meeks 2015).

Simulations also are intricately linked to the problem of counterfactual history
(Bunzl 2004; Demandt 2011). Any simulation of counterfactuality, in the end, is
running counter to historical factuality aspired to by historians. Nevertheless coun-
terfactual musings not only have a kind of persistent allure, which has found expres-
sion in popular culture (Rodiek 1997; Brendel 2010), they also are hard to avoid for
historians (Bunzl 2004, p. 846). A century ago Max Weber pointed out that every
assumption on the causal significance of an event or actor presupposes counterfactual
musings (Herbst 2004, p, 75; Nonn and Winnerling 2017, p. 8).

But the counterfactual perspective inherent in historical interpretation does not
necessarily make “what if…?” a valid modus operandi of historical research. To
historians more important than to explore alternative futures is to understand “past
futures”, meaning the range of possibilities perceived and imagined by contempo-
raries (Demandt 2011; Koselleck 1989). Simulations may aid us in comprehending
such possibility-spaces and the ways they closed or opened. But they need clear
delineations and definitions, and they need to be supported by concomitant reflec-
tion on the scientific method, model building, and interpreting results. Exploring the
spectrum of possibilities faced or imagined by historical actors is an important way of
analyzing historical perceptions, hopes, and fears (Bunzl 2004, p. 848). Remarkably
there is little public recognizance of this fact in German historiography. Christoph
Nonn and Tobias Winnerling recently pointed out that there was no major discus-
sion of counterfactuality since the 1980s. The situation is different in Anglo-Saxon
academia, where there is a longer tradition of pursuing such questions (Nonn and
Winnerling 2017, pp. 9–12). But even there, counterfactuality is far from being a
central part of historian’s methodological apparatus.

2For a detailed analysis and several examples see Guldi and Armitage (2014, pp. 88–116, 151),
Porsdam (2011, pp. 2–7).
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36.4 Uses and Potentials of Simulations in History

Some scholars, like Schich (2016), argue that the employment of what he dubs “natu-
ral sciencemethods”within disciplines like art historymight overcome the separation
between nomothetic and idiographic disciplines described by Wilhelm Windelband
in 1894. Windelband himself pointed out the dependency of idiographic disciplines
on general laws formulated by the nomothetic sciences (Windelband 1915). To bring
history and simulations together there seem to be twoways: either identify the nomo-
thetic strands within the discipline (for example, in economic history or quantitative
social history) or set up simulations in a way that makes them useful to idiographic
explanation.

36.4.1 Big-Data and Longue Durée History

Big-data projects, like those introduced inChap. 3 offer newpossibilities of analyzing
evolutionary processes over very long time periods and for testing hypotheses by
running simulations. Taking up a phrase coined by famous French historian Fernand
Braudel, some proponents speak of a new history of the longue durée (François et al.
2016, para. 4–6). Others fervently hope for big-data making possible the escape from
the curse of “short-termism” (Guldi and Armitage 2014, pp. 1–10). That is studying
persistent or very slowly changing structures, which evolve largely untouched by
the outcomes of wars or the actions of individuals (being the pouvoir of the histoire
événementielle) (Braudel and Colin 1987; Braudel 1990).

The most intriguing promise of big-data analysis lies in what Manovich (2017,
pp. 60–61) has termed Cultural Analytics. Its vision is “to describe, model, and
simulate the global cultural universe”. When it becomes possible to analyze “every-
thing by everyone” (Manovich 2017, p. 61), bias rooted in canon, tradition, or other
more or less arbitrary or nonscientific qualitative categorization can be transcended.
The result is a new ability to distinguish the exceptional from the general. Thus, the
nomothetic concernwith the general increases the ability to identify and subsequently
research the particular (Manovich 2017, p. 62–63; see also Manovich et al. 2014).

Simulations of the big-data/longue durée type are operating on a macro-level, and
they are often initiated in other disciplines than history. Micro-level research using
simulations is more unusual to come by. But simulations potentially could bridge
the macro–micro gap which has become recognized as a central methodological
and theoretic problem of the historical discipline (Herbst 2004, p. 17). Microhistory
partly was a reaction to social history in the 1970s and 1980s. Partly it was a con-
tinuation of a tradition of the Annales school of history (Herbst 2004, pp. 192–194).
Well-known representatives are Carlo Ginzburg, Natalie Zemon Davies, and Robert
Darnton. Microhistory is concerned with reconstructing the lives of individuals and
communities. “Micro” indicates the microscopic perspective, the attempt to get at
the details of everyday life. Microhistorical studies delve deeply into archival mate-
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rial and have proven effective in demonstrating how religious beliefs, trade, literacy,
etc., influenced the lives of specific individuals and communities. While ostensibly
denouncing grand theories, microhistorians developed quite a sophisticated method-
ology, allowing them to deconstruct discourses and use sources in innovativeways. In
doing this it contributes to our understanding of the complexity of historical societies,
and it adds variables which have to be taken account of when doing macrohistory.

36.4.2 Microhistorical Research and Simulation

At the same time, this means that microhistory lays bare the often hidden general
assumptions at work in a seemingly idiographic discipline like history. Such general
assumptions about, for example, earlymodern estate based society inWesternEurope
are by no means arbitrary and rest on the knowledge of many cases. Also, they are
generally acknowledged to be broad approximations or representations of general
characteristics. Nevertheless, this means that there are certain models (however,
ill-defined) influencing historical research and the discipline could do worse than
to carefully reframe such assumptions (and the attendant nomenclature) (for the
twentieth century debate on the problem see Herbst 2004, pp. 68–70).

At first glance, microhistorical research and its methodologies do not lend itself to
simulation easily. But given microhistory’s sense for lacunae in the source material
and their interest in small-scale patterns, simulations could provide interesting set-
tings for simulations. Microhistorical research might provide material well suited for
counterfactual simulation, too. As has been pointed out already, simulations could be
used to explore historical alternatives as perceived by contemporaries (Bunzl 2004,
p. 848). The microscopic nature of studies in this field might make it easier to devise
simple and easy to control models and to validate them.

An example of a relatively low-key but effective simulation intended formicrohis-
torical research is Jeremy Throne’s agent-based digital simulation of Robert Darn-
ton’s “communications circuit”. Darnton’s model was created to explain a unique
system: the French book trade inEnlightenment Europe. It was about howbookswere
produced, sold and read, how they spread ideas and influenced discourse. Throne’s
simulation does not intend to assess some general economic theory. But it allows
testing of basic assumptions articulated in the underlying model for consistency. As
Gavin points out, the validation process attains central importance. When agents do
not behave in the way the designer expects them to, modifying the model becomes
a process of intellectual inquiry in itself which helps in the process of reformulation
and refinement (Throne 2014; Gavin 2014; Darnton 1982).
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36.4.3 Digital Games and Simulation Games

Simulations also hold promise as pedagogical tools or as tools of demonstration
(see also Hartmann 2011, p. 85). Most importantly, they can teach students the
indeterminate nature of history (Winnerling 2017;Köstlbauer 2015;Vowinckel 2009)
and provide very helpful aids to cognitive and affective understanding (Bigelow
1978, p. 209–10). The pedagogical use of simulations also brings us to the topic
of digital games: Right from the beginning digital games with historical themes
have been envisaged and indeed used as pedagogical tools by teachers at schools
and universities (Bigelow 1978). The first historically themed digital game seems to
have been an economic simulation game developed between 1962 and 1967 depicting
ancient Sumer (Winnerling 2018). Especially games like those of the Civilization
Series (Microprose, Activion, and Firaxis 1991–2016) or the grand strategy titles
developed by Swedish studio Paradox Interactive are cited as examples of simulation
games suitable for teaching.

History provides popular settings for games, which are a testament to the mimetic
desire shaping a popular approach to history. More than that, many games are
designed and marketed with the outspoken claim to provide a simulation of his-
tory, and this is not simply a marketing trick or a pedagogical streak in game design
communities. There is a considerable demand; it is something players want and ask
for loudly and persistently. They intensely scrutinize games, on forums, there are
huge discussions about the accuracy of the way the past is represented in games,
right down to the level of nitpicking. A striking example is the discussion about the
depiction of Samurai in Total War: Shogun II (Creative Assembly 2011). These were
shown with Horo cloaks on their backs, which seemed strange and inauthentic to
many players despite valid historical existence for their use. Eventually, “no horo”
modifications were produced (Pfister 2017).

It is, of course, debatable whether games (“video games”) should be included in a
discussion of simulation and history. But it is hard to deny that there is a simulation
aspect within games. Gonzalo Frasca, an influential proponent of Game Studies,
even proclaimed simulation the central characteristic of digital games in opposition
to narrative (Frasca 2003). On the other hand, interaction with simulations can be
described as containing basic elements of play (see recently Saam and Schmidl
2018 or Köstlbauer 2015). There is also a historical connection between simulations,
games, and the computer. John vonNeumann built one of the firstworking computers,
and together with Oskar Morgenstern, he published the first works on game theory
(Lévy 1998, pp. 937–944; Hilgers 2008, pp. 175–179).

Digital games also confront us with the vagueness of the term “simulation” in
popular usage. So-called simulation games encompass a heterogeneous range of
games, from vehicle and battlefield simulations such as theDigital Combat Simulator
(Eagle Dynamics 2008) or the Armed Assault Series (Bohemia Interactive 2009)
to more fanciful games like SimCity or The Sims 4. Vehicle simulations and some
military simulations are straddling the divide between serious games/training aid and
leisure games. In the case of The Sims, onewonderswhether the latter are simulations
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in anything but the loosest sense of the word or whether they are better understood
as a warped representation of the dreams and fears harbored by a contemporary
American middle class. They are more akin to “simulacra”, simulations of ideas or
visions (Baudrillard 1994). As such they become a fascinating source of historical
inquiry regarding US culture and society.

What distinguishes a historical simulation game from a game with a bit of his-
torical varnish on top, remains open to debate. So far any attempt at drawing gen-
erally accepted boundaries has proven more or less futile, the distinction remaining
dependent on context (Köstlbauer 2013; Sauvé et al. 2007). But like bland academic
simulations historically themed games need to relate to concepts of reality.

No matter whether off-the-shelf entertainment products or specially developed
pedagogical instruments, simulation games can offer alternatives to deterministic and
teleological representations of history still prevalent in Western culture. Designed
around simplemodels such simulation games can allow the demonstration of specific
mechanisms at work in historiography. They can also facilitate the reflections of the
possible futures governing the actions of historic actors. And they also should be
used to reflect on the ways the design of the simulation influences results. Therefore,
validation becomes a central part of the learning process. Such goals in mind two
historians at the University of Düsseldorf in Germany (Heinrich Heine Universität)
developed a history video game named Lienzo. Built around a well-known chain
of events, the sixteenth century conquest of Mexico, it intends to demonstrate both
historical causalities as well as the fundamentally undetermined character of history
(Winnerling 2017).

Given their status as mass media and the significant number of sales some games
achieve (Bogost 2007), any historical game makes for a worthwhile subject of
research. Furthermore, some games offer tantalizing prospects to be appropriated as
simulations for historical research. In 2015, several historians founded the German
Arbeitskreis Geschichtswissenschaft und Digitales Spiel (research group for History
and digital games). During the German Historikertag 2017 (biannual conference of
German historians), it published a manifesto that also includes a statement on sim-
ulations (gespielt.hypotheses.org 2017). Many of the points regarding simulations
raised in this book chapter are also emphasized in the manifesto.

36.5 Conclusion and Outlook

History will retain its idiographic posture. But that need not keep historians from
exploring more fully the potentials of computer simulations. Ultimately, the use of
models and simulations and the concomitant validation processes have the potential
to make researchers reflect more sharply on the hypotheses and evaluative assump-
tions influencing model design. It leads to reflections on the ways historians compre-
hend their discipline and its subject, how they pose questions and explain processes.
Therefore, even more important than the results produced by runs of a simulation
may be the questions springing from it. Is a solely or primarily idiographic approach
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still feasible? Or, how can an idiographic approach be enhanced or buttressed by
computer simulations and the related scientific methodology?

Introducing computer simulations into historical research requires renewed analy-
sis of what is particular and what is general. Such analysis may provide opportunities
to transcend the idiographic-nomothetic divide, since formulating general laws and
focusing on the unique become near-simultaneous and reciprocal.

The more abstract a simulation and the more limited the hypothesis, the simu-
lation is going to test, the easier it is to understand the model and the dynamics
at work and the easier and cheaper it is to create. Generally, there are persuasive
arguments for simplicity of models (Turchin et al. 2014, in reply to Thomas 2014;
also Troitzsch 1994, p. 62), but it seems doubtful whether they can be particularly
useful to historians (Weber 2007, p. 109–110) because they are likely to produce
very general statements. Creating complex agent-based simulations leads to greater
opacity of the simulation itself, both regarding understanding the code and under-
standing what happens during simulation and why. This makes it so much harder
to judge the validity of results. But it also may create a blind spot regarding techni-
cal design decisions and epistemological assumptions or theoretical bias influencing
model design. These decisions may range from the programming language used to
the ways space determines agent movements (Weber 2007, p. 113) or the way the
factor time is incorporated.

The new interest in historical simulations is a recent phenomenon, hardly a decade
old in 2018. It is part of a “visionary discourse and transformative sentiment” (Svens-
son 2012) associated with digital humanities. The assertion and often enthusiastic
endorsement of the game-changing nature of digital technology for the humanities
(as well as for other disciplines) has lead tomany research initiatives, methodological
innovation, and a new sense of interdisciplinary endeavor (see for Porsdam 2011;
Burdick et al. 2012; Weller 2011). Whatever one might think of these, there is no
doubt that there are very serious efforts underway. This is also proven by the increas-
ing number of chairs, research positions, digital humanities labs being created at
universities or research centers in the last ten years.

On the other hand, there may be concern that the digital humanities are just the
latest fad sweeping the humanities, another turn of the revolving door of academic
fashion, moving in the same merry roundabout as formerly the linguistic, the visual,
the cultural or the spatial turn (for a discussion of this see: Herbst 2004, p. 14–17;
also Porsdam 2011; Weller 2011).

As far as the discipline of history is concerned, it remains yet to be seen whether
there will be a profound methodological and conceptual change anytime soon.
There also remain questions about the ways academic institutions will deal with
the expenses in terms of time and funds that will be required to utilize simulation.
How will historians argue the necessity of such endeavors and how do they assess
risk and cost when preparing applications for research funds? The progressing insti-
tutionalization of digital humanities may alleviate these problems, but the type of
interdisciplinary liaison required is still found far too rarely.
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Chapter 37
What is a Computer Simulation
and What does this Mean for Simulation
Validation?

Claus Beisbart

Abstract Many questions about the fundamentals of some area take the form “What
is …?” It does not come as a surprise then that, at the dawn of Western philosophy,
Socrates asked the questions of what piety, courage, and justice are. Nor is it a won-
der that the philosophical preoccupation with computer simulations centered, among
other things, about the question of what computer simulations are. Very often, this
question has been answered by stating that computer simulation is a species of
a well-known method, e.g., experimentation. Other answers claim at least a close
relationship between computer simulation and another method. In any case, correct
answers to the question of what a computer simulation is should help us to better
understand what validation of simulations is. The aim of this chapter is to discuss
the most important proposals to understand computer simulation in terms of another
method and to trace consequences for validation. Although it has sometimes been
claimed that computer simulations are experiments, there are strong reasons to reject
this view. A more appropriate proposal is to say that computer simulations often
model experiments. This implies that the simulation scientists should to some extent
imitate the validation of an experiment. But the validation of computer simulations
turns out to be more comprehensive. Computer simulations have also been concep-
tualized as thought experiments or close cousins of the latter. This seems true, but
not very telling since thought experiments are not a standard method and since it is
controversial how they contribute to our acquisition of knowledge. I thus consider
a specific view on thought experiments to make some progress on understanding
simulations and their validation. There is finally a close connection between com-
puter simulation and modeling, and it can be shown that the validation of a computer
simulation is the validation of a specific model, which may either be thought to be
mathematical or fictional.

Keywords Definition · Experiments · Thought experiments · Argumentation ·
Models · Internal vs. external validity

C. Beisbart (B)
Institute of Philosophy, University of Bern, Bern, Switzerland
e-mail: Claus.Beisbart@philo.unibe.ch

© Springer Nature Switzerland AG 2019
C. Beisbart and N. J. Saam (eds.), Computer Simulation Validation,
Simulation Foundations, Methods and Applications,
https://doi.org/10.1007/978-3-319-70766-2_37

901

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-70766-2_37&domain=pdf
mailto:Claus.Beisbart@philo.unibe.ch
https://doi.org/10.1007/978-3-319-70766-2_37


902 C. Beisbart

37.1 Introduction

What is validation of computer simulations and how does it work? One strategy to
make progress on these questions is to put another, apparently more fundamental,
question first: What is a computer simulation, to begin with? The idea is that a closer
understanding of what computer simulation is usefully constrains any sensible view
on its validation.

The aim of this chapter is to pursue this strategy. I will thus address the question
of what a computer simulation is and then consider consequences for understanding
validation. The question of what computer simulation is has indeed been at the center
of a lively philosophical debate (see Imbert 2017 and Saam 2017 for overviews). I
will draw on this debate and consider important proposals about what a computer
simulation is.

The question of what computer simulation is can most naturally be answered
in terms of a definition (see Gupta 2015 for a primer on definition). In the recent
philosophical literature about computer simulations, we do find attempts at such a
definition (Hartmann 1996, Sect. 2 and Humphreys 2004, pp. 110–114). But the
question of what computer simulation is has often been answered in a loser sense
by subsuming it under, or relating it to, some known method such as experiment.
In this chapter, I concentrate exclusively on proposals that spell out what computer
simulations are by claiming a close association between computer simulation and
some other method. The reason is that such accounts seem particularly promising for
a better understanding of the validation of simulations because they open pathways
into known territory. I do not require that the proposals under consideration aim at a
full-fledged definition of simulation. Some proposals that have been much discussed
in the literature do not attempt to give such a definition, and it seems inappropriate
to exclude them. There is of course a downside, when I include accounts that do
not provide a full definition and that do not even typify simulations in terms of
a genus: The accounts are weaker and less informative. But more precision as to
what a simulation really is would not likely be of much help for the understanding
of validation. It has in general proven difficult to specify what sort of things other
artifacts or creations of the human mind, e.g., novels or symphonies, are precisely.
Fortunately, the type of thing to which artifacts belong seems rather immaterial for
other questions we may ask about them.1

In this chapter, I will thus go through a number of methods, ask whether com-
puter simulation may be understood by relating it to the method and then trace
consequences for validation. Now a specific proposal to the effect that computer
simulation is closely associated with such and such method will not deepen our
understanding of the validation of simulations, if the proposal itself is implausible.

1If somebody claims that computer simulations are, say, experiments, then what is claimed may
either be regarded as essential of computer simulation (such that it should be included in its defini-
tion), or it may be supposed to be a contingent claim about computer simulations. I take it that the
views under consideration are meant to capture essential properties of simulations, but this is not
necessary for my argument.
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So I’ll briefly evaluate each proposal under consideration. My conclusions in this
respect may not be shared by every author in the field because the nature of computer
simulations has remained controversial. I nevertheless hope to be fair and give most
positions due consideration. For reasons of space, the discussion has to be brief, so I
cannot fully cover the existent literature. Note further that the consequences that the
accounts under consideration have for validation haven’t yet been worked out; so in
this respect, this chapter will move beyond the existent literature.

After some preliminaries, I’ll start with the method of experiment (Sect. 37.3),
move to thought experiment (Sect. 37.4) andmodeling (Sect. 37.5), before I conclude
in Sect. 37.6. Views that take computer simulations to be genuinely novel (see, e.g.,
Winsberg 2001; see Frigg and Reiss 2009 for discussion) are not covered in this
way, but they do not promise an easy route to better understanding validation, so we
can bracket them in what follows (in this volume, Chap. 43 by Imbert addresses the
questions of whether, and how, computer simulation is novel).

37.2 Preliminaries

Before I look at various proposals that relate computer simulation to other methods,
it is useful to comment on two important concepts, viz., those of computer simulation
and of validation. As already implicit in the discussion so far, I assume that computer
simulation qualifies as a scientific method. A scientific method, in turn, is a type of
activity that scientists engage in to promote the ultimate aims of science, e.g., to
gain knowledge and understanding. For the purposes of this chapter, I take it that a
computer simulation crucially involves the run of a simulation program that provides
possibly partial and approximate solutions to equations that trace the dynamical evo-
lution of a target system (this is close to Humphreys’ definition 2004, pp. 110–114).
In this way, the dynamical evolution of the target is imitated or modeled. There are
different ways to specify in more detail what sort of activities form part of a com-
puter simulation (see, e.g., Parker 2009, p. 488), but how exactly this is done will
not matter for our purposes. Simulations that do not involve a digital computer, e.g.,
analogue simulations, are neglected for the purposes of this chapter.

Regarding the notion of validation, we have to be very careful. In the sciences,
not only computer simulations are said to be validated; rather, scientists talk about
the validation of models and experiments too. This suggests that there is a general
idea of validation that covers more specific notions like the validation of experiment,
etc. In what follows, validation in this general sense will be called validationgen. It
comprises, very roughly, the activities that make a case that the results that have
been, or can be, obtained by applying the method in a particular case do in fact hold
true of one or more real-world systems. It is important to note that the activities of
validationgen refer to reality.

Inmy discussion, Iwill sometimes focus on the validation of few actual results that
have been obtained by applying the method in a specific case. But my considerations
are meant to carry over to a more comprehensive validation. The latter covers not



904 C. Beisbart

only the results that have in fact been obtained but also results that could be obtained
by applying the method in a specific case, e.g., by running the same experiment
in slightly different ways. I allow that validationgen can also be concerned with the
question of whether the assumptions built into a specific application of the method
hold.

As far as the validation of computer simulations, validationcs, is concerned, I
assume that it is validationgen, as applied to computer simulations. In this case, the
results are constructed from the output, which consists of values of characteristics
such as position, energy, etc. The results can be cast in claims about the target system,
which are either quantitative or qualitative. In the simplest case, such a claim has it
that certain characteristics of the target system, say, the luminosity of a star, has such
and such value, as output from the simulation. Since the outputs from simulations
are affected by all kinds of errors, the output numbers reflect the target system at best
only up to some accuracy. The question of whether the results of a simulation hold
thus is meant to be the question of whether the results are sufficiently accurate for
the intended applications. The point of validation then is to show that the results are
sufficiently accurate. This understanding of simulation validation accords well with
the famous definition of validationcs by Schlesinger et al. (1979, p. 104).

My focus in this chapter is on validationcs as applied to a simulation program or
themodel implicit in it, call it the computationalmodel. At this point, it does notmake
a difference whether we talk about the program or the computational model because
the program delivers exact solutions to the computational model (this is just how
the latter is defined). The computational model needs to be distinguished, however,
from the conceptual model which is typically the scientific model that scientists are
interested in before they run the simulations. Inmany simulations, thismodel consists
of differential equations, while the computational model approximates the latter in
some way. So-called verification is supposed to show that the computational model
is a faithful representation of the conceptual model for the purposes of the inquiry. If
a simulation is properly verified, then the distinction between the conceptual and the
computational model does not muchmatter. If it is not clear whether the simulation is
verified, then we can in principle distinguish the validation of the conceptual model,
validationcon, from that of the computationalmodel (or the computer program),which
has been called validationcs.

Now if computer simulation turns out to be closely related to another method, then
it is likely that we obtain consequences for validationcs. In particular, if computer
simulation is intimately connected to amethod for which validation is an issue, it may
turn out that validationcs boils down to the validation of the method to which com-
puter simulation is assimilated. Since we will examine several distinct attempts to
relate computer simulations to other methods, it is likely that we will consider differ-
ent, possibly inconsistent claims that arise for validationcs. It may be thought that this
leads to different concepts of validationcs, for instance, the concept of validationcs,e

(validation of computer simulation under the assumption that the latter is an experi-
ment), etc. In what follows, I will refrain from distinguishing such concepts because
we are ultimately interested in one concept, viz., that of validationcs, and since it is
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possible to discuss various views on validationcs without assuming several concepts.
Further, as I will briefly argue in Sect. 37.6 below, the proposals that prove to be
sensible in our discussion are compatible with each other.

37.3 Computer Simulations and Experiments

Computer simulations are often called computer experiments (e.g., Beeler 1983),
where the term “experiment” is sometimes put in scare quotes (e.g., in the title of
Verlet 1967). Likewise, the term “experiment in silico” is used for simulations (e.g.,
Naumova et al. 2008). All this is no accident. There are in fact close parallels between
experiments and computer simulations (seeBeisbart 2018, Sect. 3). As iswell known,
experiments crucially involve two types of causal interaction between the working
scientist and the system she is working on: intervention—an experimental system
is set up or at least manipulated in some way—and observation—the reaction of
the system is observed (see, e.g., Heidelberger 2005; Radder 2009 and Franklin and
Perovic 2016 for reviews about experiment). Computer simulations seem to function
in a parallel way: Simulation scientists interfere with the hardware of a computer
to set up a system, which is then investigated. After the program has been run, they
obtain outputs that are interpreted in the same way as are data from observation of
an experiment. It is no surprise then that some philosophers have tried to understand
computer simulation in terms of experiment.

37.3.1 Computer Simulations as Experiments

Some authors have gone as far as to claim that computer simulations are, or crucially
involve, experiments. In more detail, there are two ways in which this claim may be
spelled out (Beisbart 2018, Sect. 4): Either the computer itself is supposed to be the
system experimented on. The results obtained for this system are then transferred to
the target system of the simulation, e.g., to a cell or a galaxy that is simulated. Parker
(2009) defends this view. She takes it to be obvious that a simulation involves the
twofold causal interaction with a computer that is constitutive of experiment (ibid.,
p. 488). She further argues that the experimental status of simulations is important
for a comprehensive epistemology of computer simulation because certain concerns
that may arise about a simulation hinge on the fact that a material system (here, the
computer) is under investigation (pp. 489–491). As an alternative view, it is suggested
that at least some simulations are really experiments on the target system of the sim-
ulation (e.g., a galaxy). Morrison (2009) takes some steps in this direction, although
she never claims simulations to be experiments. But she definitely takes some simu-
lations and experiments to be on par epistemically, e.g., because models function in
the same way in both methods. Massimi and Bhimji (2015) make a stronger case for
the view that simulations are experiments by arguing that some computer simulations
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from particle physics involve causal interactions that are not relevantly different from
the causal interactions between experimenters and the systems they experiment on
(cf. also Morrison 2015, Part III).

Suppose now, for the sake of argument, that at least some computer simulations
are, or crucially include, experiments. What would this mean for validationcs?

It is first interesting to note that the term “validation” or “validity” is well-
established for experiments too. In some sciences, e.g., the social sciences, it is
common to distinguish between internal and external validitye.2 For our purposes,
we may understand the distinction as follows: Internal validitye is about results that
concern the system with which the experimenter interacts causally (i.e., the system
experimented on) during the time when the experiment is run. External validitye, by
contrast, is about the generalization to other times, condititions, systems, etc. For a
simple example, an experimentalist may suspect that, in the system on which she has
experimented, a particular medical treatment of a person has caused her recovery.
The experiment is internally validatede in this respect, if the experimenter shows that
the treatment did cause the recovery in the specific case under consideration. The
experiment is externally validatede if the effect can be shown to generalize to other
patients. Both ways, validitye is a matter of inference. Note that external validitye

is only a concern if scientists wish to generalize their results. This condition is not
met in all experiments. It is possible to run an experiment on, say, a population of
animals just to learn about this very population at one time.

The distinction between internal and external validitye is quite rough. In some
areas, other, more fine-grained distinctions are drawn. For instance, in educational
and psychological research, people discriminate between construct, content and crite-
rion validitye (see, e.g., Newton and Shaw 2014). Here, construct validitye is roughly
supposed to ensure that a measurement does indeed reflect a theoretical construct.
In what follows, we cannot discuss such domain-specific notions of validitye, but we
will below comment on construct validitye and relate it to validitycs.

If simulations were, or included, experiments on the computer hardware, they
would be internally valide qua experiment if results about the computer were shown
to be genuine (this is in fact suggested by Parker 2008, p. 168). But when running
a computer simulation, scientists do not typically establish any results about the
computer hardware. The outputs of the computer simulation are immediately inter-
preted in terms of the target system, and not in terms of the computer hardware. For
instance, if a simulation program prints a series of numbers, the latter are interpreted
as temperatures of the target system for a series of times. In fact, most simulation
scientists cannot even use the output to infer anything interesting about the hardware
because they know virtually nothing about the hardware. So assuming that com-
puter simulations are experiments, internal validitye is not a matter of concern for
computer simulations. But then, nor can external validitye be. The point of external
validitye is the generalization of results that have been established about the system

2The distinction goes back to Campbell 1957 (see Winsberg 2009, p. 579 following Parker). See
also Campbell and Stanley (1963, p. 5) and Cook and Campbell (1979, p. 37). It was originally
restricted to experiments in social science that aim at causal claims.
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experimented on. If no such results have been obtained, external validitye cannot get
started.

So the notions of internal and external validitye do not make much sense for
computer simulations, if the latter are considered to be experiments on the hardware.
This casts doubts on the very idea that simulations are experiments on the hardware.
It is in fact problematic to say that computers are observed qua experimental system
if working simulation scientists only understand the output in terms of the target
system. Likewise, it seems problematic to suggest that computers are manipulated
in the way experimental systems are, if the working scientists don’t really know
what they are doing with the computer qua material system when they, e.g., type
commands in the keyboard. For these reasons, computer simulations are not, and do
not include, experiments on the hardware of the computer (see Beisbart 2018, Sect. 5
for details).

Turn now to the proposal that computer simulations are experiments on the target.
This view fits better with the distinction between internal and external validatione

of experiments. Suppose for instance that a merger between two known galaxies
is simulated. Qua experiment, the simulation would be internally valide, if it pro-
duced genuine results about the specific galaxies involved in the merger. It would be
externally valide, if the results were shown to extend to other mergers of galaxies.

The problem though is that the proposed view, viz., that computer simulations are
experiments on the target, itself isn’t plausible. First and quite obviously (and pace
Massimi and Bhimji 2015), computer simulations do not involve the characteristic
twofold causal interaction between the experimenter and the experimental system.
If a galaxy is simulated, this system is neither manipulated nor observed (see, e.g.,
Beisbart 2018, Sect. 6). Second, there is a crucial epistemological difference between
computer simulations and experiments in that the assumptions built into a simulation
in some sense imply the results, whereas this is not so for experiments (Arnold 2013,
pp. 59–60, Beisbart 2018, Sect. 6). A consequence is that, in the words of Morgan
(2005, p. 324), whereas simulations may surprise, only experiments can confound
and thus lead scientists to question their assumptions.

37.3.2 Computer Simulations as Modeled Experiments

Now if computer simulations are neither experiments on the hardware nor on the
target of a simulation, how can we explain the striking similarities between both
methods? One proposal is that computer simulations can model possible experi-
ments and do in fact often do so (cf. the title of Winsberg 2003; see Beisbart 2018
for an elaboration). The idea is that simulations first allow the scientist to model
interventions on the target by setting the initial conditions and the parameter values
that serve as input to a simulation program. The reaction of the target then is traced
by running the program. Finally, observation and analysis of the data are modeled by
those activitieswithwhich simulation scientists process the output of the simulations.
In this way, computer simulations allow the representation of possible experiments.
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I’m here talking of possible experiments because the experiments that are repre-
sented may in fact never be carried out on the real target system. Note further that
some actual computer simulations (qua runs of a simulation program) do not model
an experiment because they just try to represent the dynamics of a real-world target
system as it happens to be like without any intervention. It is finally important to
note that the various steps of an experiment are modeled in different ways: While
the reaction of the target system is just modeled using the model implicit in the
computer simulation, the intervention on the target system and the observation are
not (the program does not contain variables that trace the working scientist looking
at the target system, for instance). Rather, intervention and observation are modeled
by activities on the part of the computer scientist, when she sets the initial conditions
and observes the result on the screen.

If this proposal is on the right track (and it may be debated whether it is), then
simulation scientists should appropriatelymodel activities that establish internal and,
if applicable, external validatione. This consequence is not implausible. To show
this, we consider a simple schematic example. We concentrate on internal validitye,
because it is generic. So suppose that nano-scientists want to know how the flow
of a fluid through a nano-channel is influenced by the roughness of the wall of the
channel. They run amolecular dynamics simulation of the system (see Liu et al. 2010
for an example of such a simulation). Suppose that their simulation outputs indicate
that “roughness reduces the electro-osmotic flow rate dramatically even though the
roughness is very small compared to the channel width” in a specific case (ibid.,
p. 7834). In an analogous way, measurements from an experiment may in principle
indicate such an effect. In what follows we assume that this (qualitative) claim is
the result that the scientists are interested in. Now to internally validatee this result,
experimentalists need to show that the effect is genuine. For instance, they have to
make sure that there is in fact a dramatic reduction of the flow rate. Also, since the
reported result has some generality because there are manyways in which the surface
of a wall may be rough, the experiment has to be run for different realizations of
roughness. But if this is needed in the experiment, then simulation scientists should
model this internal validatione, when they run the simulation. That is, they need to
make sure that the simulation output does in fact imply a dramatic reduction of the
flow rate and that the effect holds for many realizations of roughness. They will thus
run the program with different parameters for the roughness. These activities form
certainly some part of validationcs because they are needed to show that there is this
effect in the target. So we can say that, to some extent, validationcs models internal
validatione.

Note though that certain concerns thatmatter for the validatione of experiments are
often not a real issue in the validationcs computer simulations: For instance, in many
experiments, some characteristics are measured using extremely complicated mea-
surement devices. Internal validatione has to make sure that the measurement devices
function as intended. And it’s a matter of construct validitye that the measurements
do in fact reflect the construct scientists are interested in. In many simulations, all
this is not an issue because the characteristics are traced by the computer simulation
program such that their values can be output and directly inspected by the scientists
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(there are some simulations that cover the measurement devices too, for instance
in particle physics; see Massimi and Bhimji 2015 for a philosophical account). For
another issue that need not concern simulation scientists, experimentalists cannot
perfectly shield their experiments from external influences. If they observe a specific
effect, they have to exclude that it was produced by external factors not controlled for
in the experiment. This is not a concern for most simulations because they typically
isolate the system under consideration in a perfect manner simply by not modeling
external factors.3

Conversely, there is also a task in validationcs that does not have a counterpart in
validatione: Simulation scientists need to show that their simulation faithfully traces
the behavior of the real-world target system. If it doesn’t, thenwhat is claimed as result
doesn’t hold. The focus here is on the reaction of the target system. The computer
programmay after all misrepresent the way in which the target system behaves under
the conditions that have been set. The proposal that computer simulations can model
experiments can account for such practices. The reason is that, under the proposal,
the experiment is only modeled and the model needs of course validationm too (see
below for validationm of models).

Thus, assuming the proposal, we can distinguish between two layers of
validationcs: First, it must be shown that the modeled experiment really has such
and such as result. This is to model internal validatione from the experiment. As
indicated, this is typically much easier than for real experiments. Second, it must be
shown that the model of the experiment delivers a faithful representation of the way
in which the target system reacts to the setup produced initially. This covers most
part of the validationcs, as it is known for simulations.

Now when simulation scientists validatee their simulation, this closely resembles
the validatione of experiments. As Parker (2008) argues, at least five validatione

strategies known from the validatione of experiments have close parallels in the
validationcs of computer simulation. For instance, both experimentalists and simu-
lationalists can argue that their apparatus/simulation is built upon well-confirmed
theory. Most importantly, both experimentalists and simulationalists can choose the
so-called Sherlock Holmes strategy, which is to exclude all sorts of errors. Parker
is certainly right in observing such parallels. Maybe, they can to some extent be
accounted for by saying that the simulations model experiments. But the parallels
should not lead us to assimilate validatione/cs of experiments and of computer simu-
lations too much. As noted above, only the latter has to make a case that the reaction
of the target system is faithfully modeled. This point is also clear from Parker’s
discussion when she notes that a simulation may be validatedcs by validatingm the
underlying model and then showing that the computer program does in fact yield
approximate solutions to the model (ibid., pp. 166–7). Showing that a program deliv-
ers such suitable approximations doesn’t have a parallel in experiments. When even
this part of validationcs works in a similar way as does the validatione of experiments,
the reason is not a deeper parallel between computer simulation and experiment, but

3In a computer simulation, the computer hardware may of course be subject to influences not
controlled for. But this is typically excluded by activities of verification, see below.
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rather that prescriptions such as “check that there are no errors” apply quite generi-
cally to situations in which many errors are possible (ibid., pp. 178–179).

If validation does in fact differ between experiment and computer simulation, we
may use validation to discriminate between both methods. This strategy has been
adopted byWinsberg (2009). He assumes that experiment and simulation involve an
inference from the system that is directly studied to a target system that is typically
different from the system studied first. His proposal is (ibid., p. 586):

what distinguishes simulations from experiments is the character of the argument given for
the legitimacy of the inference from object to target and the character of the background
knowledge that grounds that argument.

Very roughly, the crucial idea is that the arguments used in the validationcs of com-
puter simulation drawon trust that theworking scientist has the right sort of principles
for modeling the target system under consideration (ibid., p. 587). This is compatible
with the view that computer simulations can model experiments.

To sum up then this section: Experimentation and computer simulation resemble
each other in many respects. This cannot be explained by saying that the latter are,
or include, experiments since simulations do not obey the conditions constitutive of
experiments. Rather, many simulations can be said to model possible experiments.
The consequence for validationcs is that, to some extent, the validationcs of computer
simulations may be understood as modeling the validatione of a possible experiment.
But this does not exhaust the validationcs needed for computer simulations.Rather, the
validationcs of computer simulation needs also to show that the possible experiment
is after all well traced. As a matter of coincidence, even this part of validationcs

follows general strategies that are used in experimentation such as the exclusion of
errors.

37.4 Computer Simulations, Thought Experiments
and Argumentation

If computer simulations are not really experiments, they may still qualify as thought
experiments. Very roughly, when a scientist runs a thought experiment, she considers
a certain scenario and tries to anticipate in thought what will happen in this scenario.
For instance, Einstein used a thought experiment involving a train running through
a station to show that different observers do not agree on whether two events are
simultaneous or not (the thought experiment is described in Einstein 1920, pp. 11–27;
see Brown and Fehige 2017 for more examples and a review of the philosophy of
thought experiments).4

Thought experiments do not involve any causal interaction of the scientist with
the system investigated. They are thus not a subclass of experiments. Accordingly,

4Our focus in this section is exclusively on scientific thought experiments. Philosophers too engage
in thought experimentation, but it is at least arguable that thought experimentation in philosophy
and the sciences function quite differently.
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crucial objections against the view that computer simulations are experiments do not
apply anymore. It is indeed plausible to say that, in a computer simulation, a certain
scenario is thought through as it is in a thought experiment. The role of the computer
here is to expand the human capacities to think (see Humphreys 2004, Chap. 1 for
this idea).

It does not come as a surprise then that the philosophical literature has closely
associated computer simulations and thought experiments.Humphreys (2004, p. 115)
has noted that computer simulations have taken the role that thought experiments
had in less technologically advanced times. El Skaf and Imbert (2013) argue that
thought experiments and simulations alike fall under the same general description of
unfolding a scenario.5 Beisbart (2012) argues that computer simulation and thought
experiments fall under the broader category of scientific argumentation, although they
differ in a couple of respects. Lenhard (2011), by contrast, draws a starker contrast
between the methods and argues that thought experiments have a transparency that
computer simulations lack.

For the purposes of this chapter, we need not take a stance on whether com-
puter simulations qualify as thought arguments or whether they are species of the
same genus. For even if a close connection between both methods can be estab-
lished, this connection does not much help understanding computer simulation and
its validationcs, unless more is said about thought experiments, and this is in fact
difficult. If thought experimentation is a method of its own at all, it is quite peculiar.
It is not a method that is applied as widely or as standardly as is experimentation. The
examples of scientific thought experiments identified in the philosophical literature
are few. And there is no established methodology of running and validating thought
experiments.

From a philosophical perspective, it is controversial how thought experiments
achieve their tasks. The last two decades have seen a lively philosophical debate on
this topic with a wide spectrum of positions. To mention the most extreme ones,
whereas Norton (1996, 2004a, b) claims that thought experiments are arguments,
Brown (1991, 2004) thinks that some type of thought experiment provides a priori
epistemic access to laws of nature. Other positions hold that at least some thought
experiments rely on quasi-observational intuitions that can provide justification for
belief (Gendler 2004) or that thought experimenting is based upon mental modeling
(Nersessian 1992, 2007; see Sect. 5 below for more on models).

So thought experimentation is neither a particularly well-established method nor
well understood, as far as its philosophical account is concerned. It will thus not
much enhance our understanding of computer simulation if we establish a close
connection between the latter and thought experimentation. We will thus turn to
a particular philosophical account of thought experiments that promises at least
some insight into the validationcs of computer simulations, viz., Norton’s so-called
argument view. As already indicated, the view has it that thought experiments form a
species of arguments and thus instantiate scientific inference.Nortonmakes a case for

5They also include experiments under this description, but in the last section, we have already noted
crucial differences between experiment and simulation.
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this view by, e.g., reconstructing known thought experiments in terms of arguments
(e.g., Norton 1996, Sect. III).6

For our purposes, it is interesting to note that, in defending his view, Norton
addresses potential problems with thought experiments. For one thing, he draws
the attention to pairs of thought experiments that yield incompatible results. So at
least one of the thought experiments must be deficient. If thought experiments are
arguments, the incompatibility of their results can be explained by saying that at
least one of the underlying arguments is not sound (Norton 2004b, Sect. 3). For
another thing, Norton claims that the past record of thought experimentation is not
impressive because many thought experiments have arrived at a wrong conclusion.
He thus demands a mark of reliability for thought experiments. His own proposed
mark is that the form of a thought experiment is taken to be legitimate by some
logic (Norton 2004b, Sect. 4).7 Finally, he suggests that a reconstruction of a thought
experiment in terms of an explicit argumentmay clarify itsmerits, e.g., by uncovering
hidden premises (Norton 1996, Sect. 3.1).

So the argument view has some resources to address the reliability of thought
experiments and, maybe, to develop a related methodology. Argumentation is in
fact some part of the scientific method and has been extensively studied in logic
and philosophy of science. The findings and techniques from logic in particular
are of great help in the assessment of arguments. If the argument view of thought
experiments has it right, logic may turn out helpful in the assessment of thought
experiments too.

Let us thus try to extend the argument view to computer simulations (see Beisbart
2012 for details). The rough idea is that each run of a computer simulation program
goes through some argument. The premises of the argument are the assumptions
that underlie the simulation, e.g., about the dynamics of the target system or about
the initial conditions. The conclusions are the results, which can be obtained from
the output of the simulation. They have it that certain characteristics (temperature,
positions of particles, etc.) take these and these values. Clearly, if all goes well, the
conclusions follow from the model assumptions. So each simulation can at least be
reconstructed as an argument. If we adopt the extended mind hypothesis (Clark and
Chalmers 1998), we can even show that a coupled system consisting of the working
scientist and the computer runs through the argument as a matter of fact.

Set up in this way, the argument view about computer simulations has some
plausibility. When we were discussing above whether computer simulations are
experiments,we have argued that they are not because themodel assumptions implicit
in the simulation imply in someway the result. This is to say that there is an argument
running from themodel assumptions to the result of a simulation. The argument view
is focused on this very argument.

6There is no need here to draw on Nersessian’s view that thought experimenting involves mental
modeling since we’ll examine simulations and models in due course in Sect. 37.4.
7This mark is not sufficient for a good thought experiment because even a valid argument can
arrive at a wrong conclusion if some premise is false. But this complication does not matter for our
argument.
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Suppose now that this view is on the right track. What would the implications for
the validationcs of computer simulations be?8 Well, if a computer simulation is an
argument with the result as a conclusion, the result is likely true if i. the premises
are likely true and ii. if they strongly support the conclusion. This suggests a certain
two-step strategy to validationcs.

How exactly this strategy to the validationcs of computer simulation looks like
turns onwhat exactlywe take the argument and its premises to be. From the viewpoint
of working scientists, it is natural to say that the argument takes the assumptions from
the conceptual model as premises. After all, it is the conceptual model that is at the
center of what scientists think about the target system. Thus, if we assume that the
argument starts from the assumptions of the conceptual model as premises, then, in
the first step in the strategy to validatecs the simulation, scientists need to check that
the assumptions of the conceptual model are likely true. For instance, the premises
may be considered likely true either because they draw on well-confirmed theory
or because they report measurements (e.g., about the initial conditions or of some
parameter values). Now the assumptions of a conceptual model are often known to be
false, because they are based upon approximations and idealizations. But even then,
the assumptions may still be sufficiently accurate for the purposes of the inquiry. So
if we weaken the premises and let them claim that the model assumptions are to some
extent accurate, then scientists may be able to make a case for their likely truth.

In a second step, scientists have to check whether the premises strongly support
the conclusion, i.e., what they obtain as result. Now what the computer does in order
to produce the result is to go through a number of calculations. Exact calculations
can be cast as deductive arguments (in fact, the point of a calculus is to obtain
deductive arguments). This would mean that the arguments are as strong as they can
be because the truth of the premises guarantees the truth of the conclusions. But in
a computer simulation, the computer does not carry out exact calculations about the
conceptual model. As is well known, the calculations done by the computer involve
all kinds of errors with respect to the conceptual model, e.g., errors that arise from
the discretization of differential equations or roundoff errors (see Chap. 5 by Roy
in this volume). There may even be hardware failures or programming errors that
prevent the computer program from working as intended. Now at least the known
errors are usually taken into account when the results are formulated. As indicated in
the preliminaries, scientists do not assume that the value of a characteristics in their
target system is precisely, say, 4325 in some units, if this is the number output by the
computer program. They rather assume that the output number reflects the true value
up to some accuracy. Taken in this way, there is a chance that the premises (i.e., the
model assumptions) do in fact imply the conclusion (i.e., the result), as is expected
for a deductive argument.

But clearly, work is needed to show that the conclusion does in fact follow from
the premises in a specific case. For instance, unknown errors due to hardware failure
have to be excluded. Further, the accuracy of the results needs to be determined in

8Baumberger et al. (2017) have recently proposed to frame validationcs using notions from argu-
mentation theory. But this conceptualization of validationcs is independent of the argument view.
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such a way that they follow from the fact that the model assumptions hold to some
accuracy. And if there are uncertainties in some model assumptions, scientists have
to check what uncertainties they produce for the results. All these activities are well
known as verification of a computer simulation program. To achieve this, scientists
cannot write down an argument and check it using the standards of some logic (as
might somehow be suggested by the argument view). This is too complicated because
too many calculations are involved in a simulation. The reason is that computer
simulations are opaque: We cannot see how the results follow from the premises
in the way in which we can do this in simple thought experiments (see Humphreys
2004, Sect. 5.3 and Humphreys 2009, pp. 618–9 for opaqueness).

So far then, the argument view suggests a two-step procedure for validationcs. If a
computer simulation is an argument with premises from the conceptual model, then,
in a first step, the accuracy of the premises is to be secured. A second step is supposed
tomake a case that the argument is sufficiently strong such that the conclusions follow
from the premises. In principle, this is certainly a sensible approach to validationcs.
If validationcs of a computer simulation is supposed to make a case that the results
hold (up to some accuary), then a viable route is to show that the conceptual model
that underlies the simulation is sufficiently accurate and that the computer program
delivers results that are sufficiently accurate with respect to the conceptual model
(see also Chap. 42 by Beisbart in this volume).

But there is a problem with this two-step strategy. The challenge is to make a
sufficiently strong case for the premises, i.e., for the assumptions of the conceptual
model. Even if the dynamcis of the target system is well understood in terms of a
well-confirmed theory, this does not guarantee sufficient accuracy of the conceptual
model because the theory needs to be combined with additional assumptions, e.g.,
about parameter values, initial and boundary conditions to produce a concrete model,
and many of these assumptions will at best be uncertain. The only route to make a
case for the conceptual model as a whole then is to run the simulation and to see
whether the results match with measurements from the target system to a sufficient
degree of accuracy. This strategy is of course familiar from validationcs, as it is
known and described in the literature. A comparison between data from the target
(or, maybe, a system sufficiently similar to the target) and simulation output is what
many people take to be crucial about validationcs. This data-oriented approach to
validation is not incompatible with the argument view. In terms of this view, what
is crucial in the comparison between simulation output and measured data is, very
roughly, this: Some premises of the argument behind the simulation are uncertain
(e.g., because there is uncertainty about the values of certain parameters), so some
of their consequences are derived using a simulation. If these consequences turn out
to be true, then the premises are to some extent confirmed, and this confirmation
extends to other consequences of the premises in new applications of the program.
This way of reasoning is often called hypothetico-deductive approach. It makes use
of deductive arguments, but in a way that is not as straightforward as to reason from
the premises to the conclusion. A closer analysis of the inferences involved is beyond
the scope of this chapter (but see Chap. 42 by Beisbart in this volume).
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All in all, the argument view about computer simulations accommodates the activ-
ities of validationcs as follows: It conceptualizes validationcs in terms of an argument
that is used as a reconstruction of the simulation. The basic point of validationcs

then is to argue that this very argument is sound. Because validationcs is thus an
argument about an argument, it can be called a meta-inference. What is a natural
suggestion from the viewpoint of the argument view is a separation between the
examination of the premises and of the way they support the conclusion (i.e., the
results). If the premises are supposed to be assumptions from the conceptual model,
then the argument view invites a 2-step procedure: A case is made that the concep-
tual model is sufficiently accurate (we can call this validationcon of the conceptual
model) and a case is made that the results do follow from the premises (this is ver-
ification of the simulation program). However, this two-step procedure is often not
viable because the conceptual model cannot be validatedcon independently from the
simulations, and to this extent, the suggestion on behalf of the argument view is not
useful. Note though that validationcs activities that compare simulation results with
measured data can be accommodated within the argument view too. Nevertheless,
the argument view remains a bit artificial in that the argument that has been proposed
as reconstruction does not lend itself to an investigation because it is unclear how
the conclusion follows from the premise. The argument is also quite far from the
calculations done in the computer, which use all kinds of approximation schemes.9

37.5 Models and Simulations

The proposal that there is a close connection between computer simulation and
modeling, indeed that computer simulations are some sort ofmodels is nowmore than
just in the air. In Sect. 37.3 above, we have proposed to say that computer simulations
canmodel possible experiments. In Sect. 37.4we have observed a continuity between
simulation and thought experiment, where some authors take the latter to crucially
involve mental modeling.

Talk about simulations too indicates a strong link between simulations and mod-
els, e.g., when people speak of simulation models. Hartmann’s 1996 definition of
computer simulation, according to which a simulation forms a process that imitates
another process, also establishes a connection to models, insofar as imitation is a
sort of modeling or representation. What is further promising for our purposes is that
validation is an issue for models too (see, e.g., Koblick 1959, p. 642 for an example).

9We might also have provided a slightly different argument to represent a run of a computer sim-
ulation program: The idea would be that the premises state the computational model. Now the
latter is defined such that results of the simulations are exact solutions to the computational model.
So it is not an issue anymore to check that the argument is deductive. But the work of validation
is only shifted to the examination of the premises. For instance, if we want to make a case that
the computational model is sufficiently accurate by drawing on prior commitments to theory, we
must show that the theory is likely sufficiently accurate and that it is appropriately reflected in the
computational model.
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Let us thus try to conceptualize simulations in terms of models and probe possible
conclusions for the understanding of validationcs.

A challenge that we face when thinking about models is an embarrassment of
riches. There are not just many models, they also belong to different categories (see
Frigg and Hartmann 2017 for a philosophical overview). Some models are material
systems, e.g., scale models of cities or cars. Other models are merely imagined,
e.g., a number of point particles connected by massless springs. Sometimes, a set
of equations is said to form a model too. So we have at least material, fictional and
mathematical models. There are likely more types of models, but the three categories
will suffice for our purposes. Note too that models of different types are often closely
related to each other; for example, mathematical equations can describe a fictional
system.

In view of the plurality of (types of) models, it will hardly be illuminating to call
computer simulations models, unless more is said about models. What then does
modeling amount to and is there anything common to all types of models? A first
observation that is relevant in this respect is that models are typically based upon
simplifications. Various features of the target are abstracted away, idealizations are
assumed and approximations made. For instance, a scale model of a city leaves out
small-scale decorations of houses, it gives all buildings the same color and approx-
imates the marketplace as a square. This gives rise to the following proposal: A
model is a system that is distinct from the target system but used as a surrogate
for the latter. Since the model is simpler than the target, scientists can more easily
learn about the model; nevertheless, some of the findings obtained for the model
can be transferred to the target system. I take this to be the core of insightful philo-
sophical accounts of modeling, e.g., by Hughes (1997), Suárez (2004) and Weisberg
(2007). This core suggests that modeling is an indirect research method that takes
a detour via a surrogate (Weisberg 2007, p. 207). It further implies that modeling
may be split into three stages, viz., construction of the model, analysis of the model
and coordination between model and target (ibid., pp. 222–226). This view nicely
accounts for material models and fictional models. It is less clear, however, how it
applies tomathematical models.Wemay either stretchwords a bit and say that sets of
mathematical equations too constitute systems that are studied as surrogates for their
targets (cf. Suárez 2004). Alternatively, we may say that mathematical equations are
not really models, but model descriptions (see Weisberg 2007, p. 217). We can then
say that they specify the dynamics of other, e.g., fictional models. This makes a lot
of sense as long as the equations involve significant simplifications. If, by contrast,
some equations are not built upon simplifications and iterally hold true of the target
system, then we can take them to be descriptions of the target, and we need not call
them a model.

Validationm is an issue for models because modelers first obtain results for their
models which they then need to translate to their targets. This is not to deny that
the issue may arise whether results obtained for a model are genuine. Echoing the
distinction known for experiments, we can say that this is a matter of internal model
validitym. But issues of internal validitym are not specific to models. For instance, if
an experiment on a material model is run, internal validitym of the results about the
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model is internal validitye of the experimental results. The crucial and characteristic
question of validationm is rather external:What is the justification to assume that some
results obtained for the model apply to the target too? Note that external validitye of
experiments is about a similar sort of inference.

Let us now go back to our main topic and to simulations. What precisely is
their relationship to models? This is an intricate issue because computer simulations
involve various models of several types (see Beisbart 2014 for a more extensive
discussion).

First, each computer simulation crucially involves a mathematical model. This
holds true not only of computer simulations that attempt to solve ordinary or partial
differential equations. It is also true of, e.g., agent-based models. Such models need
not involve variables that take numbers as values, but they nevertheless involve
equations, which trace the time evolution of purely qualitative variables (e.g., the
preferred political party). More generally, every simulation contains rules that are
supposed to trace the dynamics of the target system in some respect, and these rules
can be cast as mathematical equations.

When a set of mathematical equations from a computer simulation involve a lot of
simplifications with respect to the target system, it is natural to say that they directly
refer not to the target system, but rather to a system distinct from the latter that is
then used to understand the target. Since this system typically only exists in thought,
we are talking about a fictional model. In fact, when computer scientists describe
their simulations, they often refer to point particles that collide fully elastically and
so on. Such point particles clearly form a fictional model. Accordingly, at least some
computer simulations involve a fictional model. The latter is of course intimately
connected with the mathematical model in a simulation, because the latter describes
the former, in particular, its dynamics.

Does a computer simulation also involve a material model? Hartmann’s definition
of simulation in terms of a process that imitates another one refers to processes in
a computer hardware. One can in fact show that, in successful deterministic simu-
lations, the dynamics of the programmed computer represents the dynamics of the
target system: The computer runs through a sequence of states that each correspond to
states in the target system that follow the same order (Beisbart 2014). But it stretches
things a bit to say that the computer itself serves as a surrogate for the target system.
The reason should be clear from our discussion of experiments: We cannot really say
that the computer hardware itself is observed or investigated by simulation scientists
because no information about the computer is obtained. So in what follows, our focus
will be on the mathematical and the fictional model involved in a simulation.

Above, we have distinguished between the conceptual and the computational
model. This distinction is orthogonal to the distinction between mathematical and
fictional models behind simulations. It is clear that there are both a conceptual and a
computational mathematical model depending on whether we talk about equations
that the scientists are really interested in on the basis of their knowledge or whether
these are approximations that have to be made to implement the former equations
in the computer. Likewise, we can apply the distinction between conceptual and
computational models at the level of fictional models, if the assumptions about the
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imagined system that are inherent in the simulation program are not exactly the
assumptions that scientists have started with. In particular, very often, the dynamics
of the fictional system traced by the simulation program is not exactly the dynamics
of the fictional system that scientists were originally interested in. This is of course
due to approximations needed for the implementation of the conceptual model in a
digital computer.

Given that there are various models associated with simulations, the question
arises of what the point of running the computer program is. The answer is that
a run of the computer program contributes to the analysis of the model (i.e., the
second stage of modeling). As far as the mathematical equations are considered to
be a model, the run of the simulation program yields information about its solutions.
As far as a fictional model is concerned, information about its dynamical behavior
is derived by working out an (approximate) solution to the equations that describe
the fictional system. In either case, if all goes well, the simulation scientist first and
foremost gains knowledge about the model.

The analysis of a conceptual model (be it mathematical or fictional) can be very
difficult and lead to errors. The reason is that the conceptual model is some distance
away from what the computer does in fact do. The verification of a simulation thus
is supposed to make a case that the analysis produces genuine results about the
conceptual model. Thus, what is called verification of a simulation is the internal
validationm of results about the conceptual model.

If such results have been established, they have to be translated to the target to
make some progress in knowledge about, or understanding of, the latter. In terms
of our modeling terminology, we may say that we need external validationcon/com of
the conceptual or computational model to make sure that what the model suggests
for the target holds true of the latter with sufficient accuracy. But the values that
the computational model suggests for certain characteristics of the target are just the
numbers output from the simulation runs. Thus, the results from the computational
model (be it fictional or mathematical) are the results from the simulation. So, to
validatecs the simulation is to validatecom the computational model, and vice versa.
This is in fact what we have proposed in the introduction, where validationcs was
defined to be validationcom of the computational model. We now see the justification
for this. If the results from the simulation have been verified regarding the concep-
tual model, then the validationcs of the simulation will also establish the external
validitycon of the conceptual model; then, with some right, this validitycon may be
called the validitycs of the simulation too.

It thus turns out that both verification and validationcs of a simulation can be
understood in the terms familiar from modeling. In particular, the validationcs of the
computer simulation turns out to be the validationcom of the computational model,
when we adopt the modeling terminology. As a consequence, principles from the
methodology ofmodeling can be used to validate computer simulations. The problem
is only that a neat and tidy methodology for validating models is as much missing
as one for computer simulations. When we talk about fictional models, validationm

would have to show that some results on the fictional model carry over to the target
because both are similar in relevant respects. Concerning mathematical equations,
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the point of validationm is to show that the equations provide results that are accurate
enough for the purposes of a simulation. Either way, there doesn’t seem any general
principled approach to achieve this. So we cannot simply draw on rich insights into
modeling to make progress on understanding the validationcs of simulations.

37.6 Conclusions

One strategy to understand validationcs of computer simulation is to begin with the
question of which sort of method computer simulations are, or, maybe, how they are
associated with other methods, and then to derive consequences for validationcs. In
this chapter, we have pursued this strategy. What did we earn by doing so?

Computer simulations can be associated with several methods that have some
independent life and that have in fact been practised before the advent of computer
simulation. As it happens, the term “validation” has currency regarding some of these
methods too.

Although computer simulations are not running experiments, properly speaking,
some simulations model possible experiments. An immediate consequence is that,
to some extent, the validationcs of experimental results need to be modeled too.
But there is more to the validationcs of computer simulation: It must be shown that
they properly trace the target system, in particular, its reaction to an intervention.
It turns out that techniques for doing so have close parallels in the methodology of
experiments.

Carrying out a computer simulation is much closer to going through a thought
experiment than running a real experiment. Both computer simulation and thought
experiments do not involve causal interaction with the target system. But thought
experimentation is a peculiar method; there is no worked out methodology, and the
philosophical explanation of how thought experiments work (if they do) is contro-
versial. A useful approach to at least many thought experiments is the so-called
argument view. It can be extended to computer simulations and then basically cashes
out the idea that computer simulations infer what a model implies for the dynamics
of its target. From this perspective, the main question of validationcs is whether the
inference constituted by a computer simulation is sound. It is natural to split this
question into two questions, viz., whether the premises are sufficiently accurate (at
least as far as their impact on the results is concerned) and whether the argument is
such that the premises support the conclusion sufficiently. Whether the premises are
sufficiently accurate is a matter of validationm of the underlying model. Whether or
not the conclusion is sufficiently supported by the premises is in principle a matter
of logic but cannot be investigated using techniques from logic or argumentation
theory in the case of simulations. The reason is that it is not explicit how the results
follow from the premises because simulations are in some sense opaque. Further,
in typical examples of computer simulations, no independent case for the validitym

of the conceptual model can be made. Thus, the comparison between simulation
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outputs and measured data is the preferred method of validation. The argument view
can accommodate this but doesn’t have particularly interesting implications for it.

Computer simulation is finally closely related tomodeling. Each simulation imple-
ments a mathematical model. If the mathematical model is very simplistic, when
compared to the target, it is most natural to say that its equations directly refer to a
fictional system that is then used to learn about the target system. So in this case, the
computer simulation is closely associated with a fictional model too. Regarding both
themathematical and the fictionalmodel, wemay distinguish between the conceptual
and the computational model.What the computer simulation qua run of the computer
program does is to analyze a computational model. If verification is successful, the
results on the computational model can be interpreted in terms of the conceptual
model. Since the most interesting part of validationm of a model establishes that
the results obtained for the model can be translated to the target, validationcs of the
simulation is validationcom of the computational model. But this doesn’t allow for
very interesting insights about the validationcs of simulations.

Our results are not without irony. Although computer simulations are not exper-
iments (or so has been argued), the methodology of experiment seems to provide
the most fruitful perspective on the validationcs of simulations because many strate-
gies of validatingcs simulations have close parallels in the methodology of experi-
mentation (Parker 2008). After some reflection, this shouldn’t come as a surprise,
however. Experimentalists can draw on a long track record of successful experimen-
tation. There is nothing like this for thought experiments; also, the arguments behind
computer simulations cannot be surveyed and assessed with the techniques from
argumentation theory. Modeling, finally, is too close to simulation as to allow for
an interesting perspective on the validationcs of simulations. These days, modeling
and computer simulation are so much intertwined that we cannot expect that there
is an independent storehouse of recipes for modeling that may then be used for the
validationcs of computer simulations. It is true that there has been, and still is, a lot of
modeling without computer simulation. But modeling of this sort has often remained
content with qualitative agreement with the target and is not much concerned with
predictions of high accuracy, which is a vital issue for many simulations.

A possible objection against the claims of this chapter may be that it has been
friendly to various accounts of computer simulation. But do they really fit together?
I don’t see any problems in this respect. That computer simulations can, and often
do, model possible experiments, nicely fits with the view that computer simulations
implement models. Now when we talk about the models implicit in simulations, we
often do not say that they model a possible experiment. To some extent, this is so
because some simulations (viz., those that trace a target system that is notmanipulated
during an experiment) do not in fact model experiments. For other simulations, we
can say that they model an experiment but this is not absolutely necessary for their
understanding. The view that computer simulations can, and do in fact sometimes do,
model possible experiments is also compatible with the idea that they are something
like thought experiments or arguments. The reason is that the result of the modeled
experiment is inferred using the help of a computer and thus in a way anticipated in
thought.
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As we can fit together the various accounts of computer simulations accepted in
this chapter, we can piece together the implications for the validationcs of computer
simulations. What the accounts suggest, for instance, are certain distinctions within
the activities of validatingcs simulations. Clearly, several ways of drawing such a
distinction can be appropriate and useful. The distinctions may further be used to
propose certain strategies to validationcs of simulations, and it is no contradiction to
say that there are various strategies to validatecs simulations.

Acknowledgements I’m grateful to Julie Jebeile and Nicole J. Saam for useful comments and
criticism.
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Chapter 38
How Do the Validations of Simulations
and Experiments Compare?

Anouk Barberousse and Julie Jebeile

Abstract Whereas experiments and computer simulations seem very different at
first view because the former, but not the latter, involve interactions with material
properties, we argue that this difference is not so important with respect to validation,
as far as epistemology is concerned. Major differences remain nevertheless from the
methodological point of view. We present and defend this distinction between epis-
temology (the domain of scientific operations that are justified by rational principles
aiming at improving current knowledge) and methodology (the domain of scientific
operations that are governed by rules, not all of which are grounded on rational,
explicit principles). We illustrate this distinction and related claims by comparing
how experiments and simulations are validated in evolutionary studies, a domain in
which both experiments in the lab and computer simulations are relatively new but
mutually reinforcing.

Keywords Theory-ladeness · Holism of confirmation · Opacity · Duhem–Quine
problem · Verification and Validation · Calibration · Benchmarking · Parameter
tuning · Sensitivity analysis · Measurement errors · Numerical errors ·
Evolutionary studies · Richard Lenski’s Long-Term Experimental Evolution

38.1 Introduction

At first view, computer simulations and experiments in the lab seem to be very dif-
ferent methods to obtain information on target phenomena. There seems to be hardly
anything in common between amaterial setup includingmeasuring instruments and a
computer or supercomputer running through lines of code: in the first case, scientists
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are engaged in physical interactions with a material system, whereas, in the second
case, the physical interactions with the computer are only a means to execute and to
correct the computer program. However, considered with respect to their scientific
aims, computer simulations and experiments do share common features as they are
both designed to learn about physical, biological, or social phenomena that have been
selected as worthy objects of investigation. They do so by using mediators that are
the system that is experimented upon in the case of experiments and the computer
program in the case of simulations.1 A major common feature of experiments and
simulations is that they rely on hypotheses about the relations between the target
phenomenon and the mediator. The experimenter hypothesizes that the system she
is interacting with faithfully represents her target system, at least with respect to the
properties she is interested in, whereas the computer program implements equations
that are hypothesized to correctly represent the behavior of the target system. What
does the concept of correct representation involve in each case? This will be a major
topic of this chapter.

The common features shared by experiments and computer simulations may be
revealed, as above, by a description of their aims and theoretical aspects, but do not
seem to be connected with the actions that experimenters and simulationists have to
perform in order to make sure that their setup (material or code) actually realizes
what it is meant to do. In other words, the description of experiments and computer
simulations that points out their common features does not seem to pertain to their
validation. The validation of experiments and simulations is indeed a rather concrete
endeavor including specific inquiries that their designers and users have to carry
out in order to make the outcomes of their setup acceptable, and thus usable for
further investigations. Therefore, the difference between experiments and computer
simulations strikes back when scientific practice is taken into account. Experiments
involving physical interactions withmaterial systems seem tomake a huge difference
with respect to validation even though this difference does not play a decisive role
from the conceptual perspective. Materiality appears as a major component of the
validation of experiments.

Is this so? The aim of this chapter is to show that, despite the obvious differ-
ences between experiments and computer simulations, these differences are not that
important from the epistemological point of view. Section 38.2 argues in favor of
this claim and introduces a distinction between methodological and epistemological
components of validation. Section 38.3 discusses an example in a domain that is
potentially revealing a lot about validation of experiments and simulations, namely
evolutionary biology, because both methods are relatively new therein, compared
with physics.

1Here and throughout the chapter, we assume that an experiment has a target that may be different
from the system experimented on. The experiment thus crucially involves an inference from the
system with which the experimenter interacts to the target system. This view of experiments is not
uncontroversial, see e.g., Chap. 37 by Beisbart in this volume.
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38.2 Epistemology and Methodology of Validation

Both experiments and computer simulations may be usefully seen as artifacts or
setups, whose aim is to perform certain processes that result in the production of
signals that are in turn interpreted as answers to questions scientists ask about tar-
get phenomena. This analysis of experiments and simulations, which focuses on the
inferences that both allow, helps us to emphasize that these setups are built up in the
first place because they are thought to be able to provide these answers, that is, to be
epistemically useful. The reasons why experiments on the one hand, and simulations
on the other, are considered as epistemically useful surely differ. For instance, in an
experiment, the target phenomenon that is being studied may be reproduced using
relevant material properties, whereas in a computer simulation, epistemic usefulness
is commonly inferred from the quality of the underlying model. Materiality seems to
play an important role in the epistemic usefulness of experiments, whereas the epis-
temic usefulness of simulations seems to rely on assumptions in the models on which
they are based. Materiality makes reproducibility more difficult in experiments than
in simulations. Experiments, to be validated, should be reproducible or replicable,
and yet, running again the same experiment does not systematically yield identi-
cal results, whereas simulations seem less threatened by lack of reproducibility of
results. The concept of epistemic usefulness will play a major role in this chapter, as
it will provide us with a means to describe how experiments and simulations function
with respect to their epistemic aims. This framework of analysis will be the ground
on which we shall compare validation of experiments and simulations.

In this section, we will first propose a working analysis of validation as potentially
applicable to both experiments and simulations, despite differences that we will also
discuss. Second, wewill introduce a distinction concerning two aspects of validation,
namely epistemology and methodology, that will enable us to complete our analysis
of the differences between the validation of experiments and simulations.

38.2.1 The Concept of Validation

What does it mean to validate an experiment or a simulation? In order to answer this
question, it may be useful to examine what it means to count on an experiment’s
or simulation’s results when they have been validated. From this point of view, it
appears that a validated experiment or simulation is one about which it has been
established that it provides its users with the types of results they expected from
their setup, namely, results that they consider relevant and trustworthy given the
questions they ask themselves––which does not preclude the results from being sur-
prising. Accordingly, a validated experiment or simulation is a reliable generating
knowledge process, while validated results are reliable products of such a process.
“Validation” thus refers to the intellectual activity by which researchers establish
that the results of experiments and simulations are reliable. Another important dis-



928 A. Barberousse and J. Jebeile

tinction is between internal and external validation. The latter is about assessing
the representational quality of the mediating setup, namely about checking that one
can draw correct inferences about the target system from the obtained results. In an
experiment, the mediating setup is the experimental system, while in simulations,
it is the computer program. Internal validation, on the other hand, is a precondition
for external validation, as it is about ensuring that the setup properly functions inde-
pendently of being representationally well established. As it will become clear, our
concept of validation is user-centered in that the assessment of results depends on
the users’ aims and expectations about these results. Starting from this user-centered
concept of validation, we will discuss how it relates to experiments and simulations
faithfully representing target phenomena and how both methods may do so in their
respective realms.

Now under which conditions does an experiment or simulation deliver the types
of results that their users expect (again, not necessarily the results they predicted, but
results that, however surprising, they will count as relevant)? It seems fair to say that
this happens when the results faithfully represent the target phenomenon (although
there may be other cases). Does the concept of faithful representation help us to ana-
lyze the concept of validation? Unfortunately, faithfulness in this context is relative
to the experimenter’s or simulationist’s aims and (well informed) expectations about
what counts as a relevant result. For instance, depending on the question the experi-
menter or simulationist asks, the idealizations that are included in the experiment’s
design or the simulation program can be more or less appropriate. Let us illustrate
this point with an example. Drugs are often tested on rats, used as model organisms,
in the hope of curing humans from their diseases. In these cases, the idealization
involved is that the human bodies’ reaction to the treatment depends upon a phys-
iological pathway that has an analog in rats. When this condition is obtained, tests
on rats are significant for human beings. When the physiological pathway has no
analog in rats, another model organism is required, which shares the relevant mate-
rial properties with human bodies (see Parker 2008b, 2009 about this point). Let us
take another example of idealizations being more or less appropriate depending on
the context. The ideal gas model is satisfactory for normal temperatures and pres-
sures; it allows deriving the ideal gas law (PV � nRT ). In the model, molecules are
assumed to be perfectly elastic spheres, exerting no force, and their volume is negli-
gible in comparison with the volume occupied by the gas. Such a model nevertheless
fails to predict the properties of biphasic systems or monophasic systems which
evolve toward a biphasic state (phase transitions). Here, the van der Waals equation
P + (a/V2) (V – b) � RT (where a and b are associated with the intermolecular
forces) is used instead of the ideal gas law. By adding attractive and repulsive inter-
molecular forces, the van der Waals equation yields more accurate results at high
temperatures and low pressures than the ideal gas law. Furthermore, the Dieterici
equation, which is given by P(V – b) � RT exp(–a/VRT ), provides us with even
more accurate results than the van derWaals equation in the case of a heavy complex
gas. Since the concepts of appropriate idealization and faithful representation are rel-
ative to the users’ aims, they cannot provide us with a definite criterion for validation
of experiment or simulation that would help researchers in any circumstance. To be
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sure, the designers of experiments and simulations do rely on these concepts in their
attempts at validating the results they have obtained, because they can only establish
the faithful representation relation when the setup, experiment or simulation, is vali-
dated itself. So, there is a strong link between faithful representation and validation.
But it does not provide us with any criterion that would have a practical impact. Let
us add that the concepts of appropriate idealization and faithful representation are
only dependent on the users’ minds in so far as the users’ aims determine what is
relevant. However, whether some results are appropriate or faithful given the aims
of the users depends only on the physical properties instantiated in the experiment
or on the properties represented in the simulation’s outcomes, once analyzed. The
latter ones themselves depend on whether the involved equations do capture at least
a part of the studied phenomenon.

From the user’s point of view, focusing on themany problems that can let the setup
go wrong, an experiment or a simulation can be said validated when most doubts
about its capacity to answer her questions have been dispelled. This is hardly an all-
or-nothing affair. Rather, the setup may be said to be “validated enough” with respect
to the questions at hand, as well as the availability of other results on the topic of
investigation. The fact that validation comes in degrees (that may not be measurable)
has an important consequence, namely, that it may be progressive (Morrison 2015):
an experiment or a simulation may reach a higher degree of validation if some of
its elements are modified. The gradual nature of validation forces one to take its
dynamics into account: validation has to be considered as a process rather than as a
state of an experimental or computational setup, about which nothing could be done
after it has been reached.

The gradual nature of validation also helps us understand in what sense validation
is the object of rational evaluation. As emphasized above, expected answers are
usually obtained when the setup correctly represents the target phenomenon. The
heart of the (external) validation operation is to check that the representational link
between the target phenomenon and the mediator is sound and well established. This
link is of semantic nature: it ensures that the processes happening in the artificial setup
provide its users with reliable and usable information on the target phenomenon. This
is why validation belongs to the realm of reasons as having to do with the assessment
of representational links that are realized, e.g., in the material setup of the experiment
and in the states of the measuring instruments, but are not of a material nature, for
they are established by the activity of the mind. However, the semantic nature of
the link between mediator and target phenomenon does not help realize the required
monitoring, consisting in the careful examination of each instrument and placewhere
relevant interactions are supposed to occur in order to get the expected outcomes.
Suchmonitoring aims at establishing thematerial conditions enabling the production
of the outcomes; it focuses on material versus rational aspects of the experiment.
In a simulation, the monitoring focuses on aspects like the stability of the code,
the interactions among modules within the program, etc. All these aspects may be
improved step by step and independently of each other because they are conditions
for the quality of the outcomes but are not part of the semantic properties of the
outcomes properly. This is why, from the practical point of view, the experimenter or
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simulationist does not draw anything useful and applicable from this semantic link
between the target phenomena and the mediator. Help for these practical activities
have to be sought from elsewhere.

With respect to the practical concerns of the experimenters and simulationists, it
may seemat first sight that experiments are easier to validate asmediators that are able
to gain reliable information about the target phenomenon because they share more
with the latter. They indeed realize part of the phenomenon itself by instantiating
in the lab the very same physical interactions and processes that are being investi-
gated, like electromagnetic interactions, chemical reactions, etc. In order to assess
whether this sharing of material characters actually facilitates validation of experi-
ments comparedwith validation of simulations, let us now examinewhich actions are
taken in order to establish the required link between the target phenomenon and the
mediator in both cases of experiments and computer simulations. These actions are
meant to ensure the epistemic control that is tantamount to validation. Their main
aim is to anticipate noise or unlooked-for outcomes that would make the overall
outcomes unreliable. For sure, they differ significantly between the experiment and
the simulation because, in the first case, they are directed toward instruments and
other, material elements within the setup, whereas, in the other case, they exclusively
consist in code checking and rewriting. But do they also differ conceptually? This
question has already been addressed by Parker (2008a); however, in the following,
we offer a slightly different answer than hers.

In practice, validation includes control of errors and uncertainties. It is a terri-
bly difficult set of tasks because their aim is to try to identify errors that had first
been undetected. “Error” here refers to any event during the process (experiment or
simulation), or structural feature in the setup, that went wrong (cf. Chap. 5 by Roy
in this volume). Validation amounts to remove as much doubt on possible errors or
mismatch as possible. In principle, if the design of the setup is good and has been
implemented correctly, it is not necessary to worry about validation. In practice,
however, the possibility of error cannot be eliminated beforehand. It is thus neces-
sary to have safeguards in place. These may be tricks of the trade but some of them
may fall into the category of formalized methods, like the Verification & Validation
method (see below) whose aim is to limit risks of error, that is, to increase control
on the ongoing process. Some of these methods are well grounded. This grounding
belongs to epistemology. The distinction between methodology and epistemology
that we develop in the next section relies on the observation that some practices are
justified by rational principles whereas others are best seen as governed by explicit
rules that cannot be justified otherwise than by referring to their efficiency. The for-
mer obey epistemological principles; the latter may do so, but not always. It is a
matter of philosophical discussion on whether they do.

Validation also aims to convince users of the experiment’s or simulation’s out-
comes that major epistemological obstacles (like theory-ladeness, holism of confir-
mation, and opacity) have been overcome. Let us present some of these obstacles.
(There are other epistemological obstacles whose scope is restricted to either exper-
iments or simulations.) First, both experiments and simulations are more often than
not theory-laden and therefore face the risk of circularity. Computer simulations
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are obviously theory-based, whereas experimental measurements may be consid-
ered theory-laden as well, since, in order to perform them, scientists rely on the
theoretical background of the instrument, which may include some assumptions that
pertain to the hypotheses they are examining. Second, both experiments and simu-
lations have to face the Duhem–Quine problem. Experiments do not allow for any
hypothesis to be tested in isolation, because an empirical test also requires auxiliary
hypotheses. According to the model-oriented version of the Duhem–Quine thesis
(Lenhard and Winsberg 2010; Winsberg 2010; Jebeile and Barberousse 2016), the
theoretical assumptions in a computermodel cannot be tested separately either.When
a model’s outputs are found to be irrelevant or untrustworthy, with respect to what is
known about the investigated system and the models at hand, the modeler has usually
no way to cut the model into pieces that could be confirmed or refuted in isolation.
As a result, she cannot identify which part is responsible for the failure. Conversely,
when a model’s outputs are considered relevant, it is not easy to tell whether it is
only due to adjustments or to the model’s core hypotheses. Third, both simulations
and experiments sometimes function as black boxes. An experiment functions like a
black box when the experimenter does not (need to) know some (or all) of the physi-
cal processes at work in what she observes. At first glance, it seems that a simulation
can never be a black box since the program contains the theoretical equations and
data that allow for the simulation, or at least supposedly so. In other words, nothing
in the program is prima facie hidden from the scientists. But simulations involve
long and complex calculations that cannot be mentally surveyed by the human mind
and are thus epistemically opaque (Humphreys 2004).

Before we go further into the distinction between methodology and epistemol-
ogy, let us briefly present the Verification and Validation (V&V) method, which has
been proposed for computer simulations andwhich has recently received some philo-
sophical attention (Winsberg 1999, 2010; Oreskes et al. 1994;Morrison 2015). V&V
aims to check, first, that the code is well implemented, and will not lead to inaccurate
results for mere computer software reasons, and, second, that the simulation model is
a good representation of the target system; the first phase corresponds to verification,
the second to validation (Oberkampf and Trucano 2002; Oberkampf et al. 2002).
Verification is divided into code verification and solution verification (cf. Chap. 11
by Rider in this volume). Code verification emphasizes the good functioning of the
code; it is about checking that the code contains no algorithmic error, and functions
properly on the chosen hardware and system software. Solution verification aims to
assess whether the computed solutions derive satisfactorily from the model assump-
tions. Consistency and stability of the numerical scheme are controlled for reducing,
respectively, truncation errors and computer round-off errors (discretization errors
are often controlled a posteriori, i.e., after calculation, through back-and-forth tests
which consist in changing the meshing size and the discretization steps, cf. Chap. 11
byRider andChap. 12 byRoache in this volume). Validation consists in checking that
the computed solutions match the available empirical data, including those obtained
from experimental measurements and from already validated simulation models.



932 A. Barberousse and J. Jebeile

38.2.2 Epistemology and Methodology

We can now come back to the distinction between methodology and epistemology
with respect to validation. Methodology with respect to validation is the domain of
the rules and strategies that are established by the scientific community for avoiding
errors and legitimating the results of an experiment or of a simulation in practice.
Epistemology with respect to validation is the domain of the principles making either
the experimental setup or the computer program a legitimate epistemic mediator by
justifying (at least) some of the methodological rules. This distinction has been the
topic of a debate between Winsberg (2010) and Morrison (2015). According to the
former, the main difference between experiments and simulations is more method-
ological than epistemological.By contrast, according to the latter, the epistemological
grounding of simulations differs significantly from that of experiments. How are we
to understand the distinction between methods and their rational foundations? This
section is devoted to these questions.

Understood broadly,methodology provides experimenters and simulationistswith
rules allowing them to control possible errors and disfunctionings. These rules may
have a variety of epistemological statuses: some of these are context-dependent (and
may depend on the most local details of the setup), whereas others are grounded in
well-established regularities about the investigated phenomenon. In simulations, an
example of the latter is the acceptance of certain idealizations, like the incompressible
flow condition, commonly introduced in models of fluid dynamics, which allows
neglecting the influences of pressure and temperature on mass density. Examples of
the former are the set of rules aiming at controlling discretization errors in simulations
(Roy 2010). This is achieved by making the grid size and the discretization steps as
small as necessary. But this, in turn, can create convergence issues as the values
of the tested parameters are limited by the computing power of the machine. So,
generally, discretization errors are controlled through back-and-forth tests which
consist in successively changing the grid size and the discretization steps. The user
systematically tests a set of parameters about the grid size and the discretization steps,
and then checkswhether the calculation has converged. She also has to checkwhether
the results seem plausible, as too coarse a meshing could lead to very approximate
or incorrect results.

Be they context-dependent or well grounded, the aim of methodological rules is
to establish the epistemic authority and credibility of the outcomes of the experiment
or simulation, thus warranting their users to trust these outcomes. Making these rules
explicit is a nice way to make progress on the road of providing scientists with an
operational concept of validation, allowing for replication. This is why the method-
ology of validation is so important: as validation is not achieved automatically at the
end of some previously determined procedure but is rather the object of evaluation
and judgement, relying on explicit rules is a nice way to improve the robustness of
validation assessments. However, not all validation rules are explicit, especially in
the case of experiments, as some of them are just local routines that may have been
adopted a long time ago in the lab without anyone remembering why. Moreover,
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others may have been based on good reasons without their users being fully aware
of these reasons. To say the least, trust in the outcomes of the mediator, experiment
or simulation, may be increased by relying on methodological rules, but cannot be
definitively established by means of these rules. In order to reach better prospects for
validation, it is necessary to examine the foundations of methodological rules, that is,
to turn to epistemology. Let us emphasize that the distinction between methodology
and epistemology is not strict: whether methodological rules obey epistemological
principles is a matter of a philosophical discussion.

Epistemologically well-grounded practices are those whose reasons can be expli-
cated. These reasons may provide methodological rules with foundations or explain
why the simulation’s or experiment’s users are warranted to expect the results they
look for by experimenting or simulating. If the setup has been well designed and well
implemented, that is, if it relies on sound epistemological foundations, resorting to
the methodology of error-seeking and-erasing is dispensable; but it is never in prac-
tice since human realizations are affected by contingency. This forces the designers
of experiments and simulations to put various methods in place that take care of
unforeseen errors.

Let us now survey various operations that are commonly associated with vali-
dation, like calibration, parameter tuning, and uncertainty management, in order to
assess whether they fall under the scope of epistemological principles or are just
suggested by methodological rules, not to mention rules of thumb”.2 This will help
us clarify which specific procedures, taken together, compose validation.

• Calibration in experiments and its analog in simulations, when used for validation
purposes, is an epistemologically well-grounded practice because it is based on
principles that lie at the bottom of the very experimental or simulationist project. In
an experiment, calibration is “the use of a surrogate signal to standardize an instru-
ment” (Franklin 1997, p. 31). If the experimental apparatus reproduces known
phenomena, calibration gives us reasons to trust the experimental results (Morri-
son 2009) andmay, therefore, be used as part of the validation process. The precise
counterpart of this practice in simulations would consist in a comparison between
computed solutions and benchmarks as conducted in the second phase of V&V
(called “validation”; see above). Benchmarks include available empirical data as
well as computed solutions from already well-confirmed models (cf. Chap. 18 by
Saam in this volume). But the term “calibration,” in the context of simulations, is
sometimes used to mean something else, i.e., “parameter tuning” (Trucano et al.
2006). We have to say at this point that terminology is fluctuating a lot among
scientists. Overall, calibration in experiments and its analog in simulations are
best seen as a practice whose aim may be reached through different means, such
as benchmarking, parameter tuning, and sensitivity analysis.

• Benchmarking as a validation practice applied to simulations consists in design-
ing test cases for comparing model outputs with data from other origins. It can be
done using various points of reference, e.g., empirical data, computed solutions

2As mentioned above, some operations are not clearly grounded on epistemological principles, so
that the distinction is not clear-cut and is open to discussion.
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from other models, etc. When the data come from experimental sources, bench-
marking is about selecting the physical conditions under which the data should
be adequately measured. Let us consider a mathematical function representing the
evolution of amagnitude against another variable; for example gas pressure against
temperature. If variation in pressure is tested for temperature range [0–100 °C], the
measured points at 91, 93, and 95 °C will not help validate the model on the entire
temperature domain because they are too close to each other. Thus, a selection
criterion for data is their regular distribution on the physical domain to test: the
data have to cover the entire domain to be useful in the validation process. In order
to properly choose the data for comparison, there exist optimization methods, like
optimal designs (e.g., Hadamard matrix and Doehlert matrix), which, coupled
with least squares regression, aim at choosing the optimal conditions for measur-
ing empirical data in order to validate a mathematical model within a physical
domain.

• By contrast, parameter tuning is seldom epistemologicallywell-grounded, because
it is contingent on the details of the realization of the setup. In simulations, param-
eter tuning is a corrective process which consists in tuning some parameters, i.e.,
numerical constants in the model, in order to make model results better fit known
data. Generally, the results to fit are associated with observables while the param-
eters that are tuned are not well known (Hourdin et al. 2017). This is why rules
of thumb are often used for parameter tuning. Parameter tuning may be viewed as
belonging to validation proper or as a precondition for validation (Lenhard 2018).
For Lenhard (2018), indeed, adjustable parameters in simulation models cannot
be kept separate from the model proper. They are part of the representational con-
tent of the model, and as such, have first to be assigned with numbers before the
model can be validated. As Lenhard writes, these parameters “also belong to the
model form, because without assignment of parameters neither the question about
representational adequacy nor the question about behavioral fit can be addressed.
[…] Before the process of adjustment, the mere form of the scheme can hardly be
called adequate or inadequate.” (For Lenhard, parameter tuning is even a precon-
dition for verification, so it reinforces the entanglement between verification and
validation.)

• Sensitivity analysis is also governed by methodological rules rather than well-
grounded epistemological principles. It aims to quantify uncertainties in model
outputs and to trace back to their sources in model inputs. It is about rerunning
simulations with slight modifications in relevant parameters supposed to generate
uncertainties, and assess how significantly these modifications modify simulation
outputs.

Now that we have made clear that establishing a sound representational link via a
variety of practices is an important part of validation, let us turn back to the supposed
privilege of experiments with respect to validation. The fact that experiments are
realized in the material world is supposed to give them some sort of superiority;
however, this does not hold when the representational link is poorly established.
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With the priority of the representational link in mind, many aspects of validation
seem to be common to experiments and simulations:

• comparisons between experiment or simulation results with already established
data,

• parameter tuning, i.e., the process of tuning parameters to make model results
better fit the database,

• the dynamical character of validation, namely, the fact that it is not established
once and for all, but is gradual because it depends on the users’ decisions (Morrison
2015).

Some differences are however important to be taken into account. First, among the
various methods that contribute to validation, one is specific to simulations, namely,
the use of validation experiments (Morrison 2015). They need to be performed under
specific parameter values when existing experimental data is lacking for those val-
ues. Second, the sources of error are different. In experiments, these aremeasurement
errors and measurement noise. Measurement errors can be due to a malfunctioning
detection device, for instance, or to a biased data treatment method (see Parker 2008b
and Mayo 1996). They are sometimes so large that no accurate information can be
drawn from the measurements (see the example in Tal 2011, which illustrates that
a model is sometimes more reliable than an experiment). Measurement noise is due
to interference phenomena. If noise is too severe, it may be easier to run a simu-
lation than an experiment. In simulations, there are at least three sources of error,
i.e., computer round-off errors, discretization and truncation errors in the case of
discretization-based numerical method. Because computers can only store a finite
set of bits which represent the values of variables obtained at each computational
step, computer simulations generate computer round-off errors. When the original
differential equations have no explicit solution, they need to be discretized, i.e., turned
into approximate discrete algebraic equations. Such a transformation generates dis-
cretization and truncation errors. Discretization errors are produced when initially
continuous variables (such as time and space) are replaced by a discrete set of values
because the intervals between these values—the “steps”—cannot be infinitely small.
Truncation errors are introducedwhen the differential equations are transformed into
approximate algebraic equations. For that, the development in a first-order Taylor
series is sometimes used as a discrete approximation of the differential operators. It
provides at every point a linear relation between the partial differentials of a function
and the values of the same function; it becomes nonlinear though, if performed at
a higher order. Truncation errors, therefore, correspond to the neglected terms in
the development to some order (cf. Chap. 5 by Roy and Chap. 11 by Rider in this
volume).

The most important difference between simulations and experiments does not
relate to validation but to the epistemological specificity of experiments. This should
be recalled to conclude this part: only experiments can refute a hypothesis (once
the Duhem–Quine problem has been overcome), whereas simulations, when they
provide us with predictions that are consistent with available data, can increase our
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trust in a hypothesis or a theory that the simulation implements but cannot, in itself,
refute it.

38.3 Illustration: Validation of Experiments
and Simulations in the Field of Evolution

Let us now turn to an example illustrating how validation in experiments and com-
puter simulations can be compared. We have chosen the field of evolutionary studies
to carry out this comparison because it is relatively new, as compared with physics,
and thus exhibits a state of research in which many questions are still open and
explicitly posed by researchers. Even though the field of experimental evolution is
growing quickly (cf. Lenski 2017 for a survey), experiments within it cannot be seen
as routine practice in anyway and are therefore accompanied by pressing epistemo-
logical andmethodological questions. Examples of the former are: Can the simplified
environment of the lab say anything meaningful about the complexity of ecological
and genetic interactions outside the lab? For experiments only involving one species,
are extrapolations to more realistic situations in anyway legitimate? Among the most
pressing methodological difficulties of experimental evolution, one may mention the
risk of contamination of the bacterial strains that are commonly used as “models”,
i.e., as the organisms the generations of which constitute the domain on which the
dynamic of evolution is observed and analyzed. As for computer simulations, which
is more commonly labeled computer “experiments” or “artificial life” in this context,
they began in the early 1990s but are still a minority practice in evolutionary studies.
Their promoters thus face the obligation to defend this practice and its relevance
to the field. Debates bearing on the validity and relevance of both experiments and
computer simulations are thus more explicit than in physics, so that philosophical
questions are openly discussed.

We will focus on Richard Lenski’s Long-Term Experimental Evolution (LTEE)
setup, which began in 1998 and is still going on. This is undoubtedly the major
experiment in evolutionary studies so far. In 1998, 12 populations were made out
of the same ancestral strain of the bacterium Escherichia coli. Between 1998 and
2018, these 12 populations have yielded more than 66,000 generations whose phys-
iological, ecological, and genetic characteristics have been carefully observed and
processed by the researchers at Lenski’s lab (an overview of the general protocol can
be read here: http://myxo.css.msu.edu/ecoli/overview.html). The choice of E. coli
for this long-term experiment is easy to understand and participates in the upstream
process leading to validation: E. coli has been a model organism for long, which
means that it has already been used in multiple experiments in all domains of biol-
ogy; its characteristics are well known and there is no doubt how to have them grow
and reproduce or how to measure their ecological and physiological performance.
Not only is the model organism in this experiment very well known, making data
acquisition easy and robust, but another biotechnological facility has developed since
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the beginning of the experiment, namely, genetic sequencing. For sure, researchers
could sequence small parts of genomes long before the late 1990s, but it was still a
long and expensive process. By the 2000s, it had not only become possible to quickly
sequence whole genomes, but the costs dropped considerably. LTEE has thus bene-
fited from a major technological advance, which was unexpected at the beginning,
but contributed a lot to the interest and validity of the experiment’s outcomes, as the
availability of genomic data enhances the possibility of hypothesis testing.

In order to analyze how LTEE experiments are validated, it is first necessary to
briefly present the general scheme of the experimental protocol, following Lenski
2017 (also described at the E. coli long-term experimental evolution project web-
site: http://myxo.css.msu.edu/ecoli). The populations are propagated in a glucose-
limited medium by transferring 1% of the volume into fresh medium every day.
The 100-fold dilution and resulting regrowth allow about seven generations each
day. Samples from each population are periodically stored at −80 °C, where they
are available for later study. The frozen cells remain viable (i.e., stay alive in the
sense that they can recover their usual physiological capacities once defrosted), so
that changes in performance can be analyzed at later times. From this experimental
setup and dynamics, it is possible to easily measure the extent of adaption by natural
selection by competing bacteria from a later-generation sample against the ances-
tral strain. Relative fitness is expressed as the ratio of the realized growth rates of
the evolved and ancestral bacteria (which are distinguished by colors) as they com-
pete with one another. Fitness measurements are by no means the only outcomes
that LTEE enables. For instance, unexpected and interesting complexities have been
observed as arising spontaneously: one population, called Ara-2, has diverged into
two distinct lineages, called L and S, which have coexisted for over 50,000 genera-
tions. During the establishment of this polymorphism, the L ecotype lost its ability
to use acetate whereas the S type improved that ability. As a result of the trade-off
between growth on glucose and acetate, the two ecotypes can stably coexist (Lenski
2017). Another important observation is related to changes in the mutation rate. Six
populations evolved hypermutability caused by mutations affecting either the DNA
mismatch repair or the ability to remove certain oxidized bases. The most spectacu-
lar observation has been the completely unexpected emergence, after about 31,000
generations, of a population that is able to consume citrate (as opposed to glucose)
as its sole carbon source. All these observations are both qualitative and completed
with measurements.

The questions that motivated LTEE in the first place were very general ones about
evolution that concerned researchers since Darwin’s time like: Is the process of adap-
tation by natural selection invariably slow and gradual, or are there periods of rapid
change and stasis? Does fitness eventually reach some maximum level, or can organ-
isms continue to improve on fitness indefinitely, even in a constant environment?
Will the replicate populations achieve the same fitness peaks, or will some discover
better solutions than others? If fitness trajectories evolve in parallel, does that imply
the same underlying genetic changes? How is phenotypic and genetic evolution cou-
pled, both dynamically and functionally? (Lenski 2017) According to the criteria
mentioned in Sect. 38.1, the LTEE experiments can be said externally “validated”

http://myxo.css.msu.edu/ecoli
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when they are able to answer these questions, in the sense that if this happens, they
do what they are meant to do, namely, provide researchers with the answers to the
questions they are interested in. As the LTEE experiments provide multiple answers
to questions about selection, adaptation, their dynamics, their genetic basis, etc., part
of their external validation is abundantly manifested. This is so because they are the
first systematic experimental, large-scale endeavor aiming at providing researchers
with empirical evidence about natural selection: the very fact that natural selection
occurs in the lab takes part in the external validation of this experiment, whereas usu-
ally, just getting answers is not enough to validate an experiment––the answers have
to be good. But do the LTEE experiments provide good answers? This is the other
part of external validation. (There are other senses of “validation” that we examine
below). In order to examine whether the questions about selection, adaptation, etc.,
find good answers via the LTEE experiments, it is necessary to recall some histori-
cal elements about evolutionary studies. As emphasized by Lenski (2017), all these
questions have found some answers within the last 30 years, which cohere with the
ones provided by the LTEE experiments, but further questions have emerged that
relate to the general epistemological concerns bearing on experimental evolution:
Do the experiment’s outcomes apply to other species? Even though 66,000 gener-
ations is the largest number ever reached in an evolutionary experiment, it is still a
“drop in the bucket” (Lenski’s words) compared with evolution in nature: is not the
scope of LTEE’s outcomes very limited, after all? It might be argued that the over-
simplified and strictly controlled environment of the experiment is a major obstacle
to transferring any conclusion outside the lab, although it is the very condition of its
success. In order to assess both external and internal validation of the LTEE exper-
iments, it is important to examine how these new questions have been answered.
The very first answer is that the experiments’ outcomes, briefly presented above, are
already remarkable and important in themselves, even before trying to extend them
outside the lab. Indeed, Lenski and his teamwere the first to experimentally establish
the effects of natural selection (increase in fitness) that were predicted by Darwin.
For sure, no evolutionary biologist doubted these effects at the end of the twentieth
century, but LTEE provided researchers with no less than an empirical proof of the
action of natural selection. Second, the apparition of the citrate-eating bacteria is
astonishing evidence in favor of the role of contingency in evolution, with all its
unexpected effects.

Following this interpretation of LTEE’s outcomes, it might be suggested that it
is not to be counted as an experiment but rather as an illustration of evolutionary
dynamics, an experiment requiring that its results being extendable to other cases.
However, what could be LTEE if not an experiment, with all its controlled conditions
and careful measurements that are important for its internal validation, as we show
below? LTEE is an experiment, not only an illustration of evolutionary dynamics.
As suggested by an anonymous referee, this is a reason to count some illustrations
as genuine experiments.

From themethodological point of view, the spectacular character of LTEE’s results
should not hide all the painstaking and minute details that allow for their internal
validation: the boring, daily transfer of a tiny part of the bacteria, the freezing away
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of populations every 500 generations (75 days), the measurement of differential
fitness, gene sequencing, genome sequencing, all that for decades, not to speak of the
avoidance of contamination risk, mixing up Petri dishes, miscalculation of statistical
quantities, errors in Polymerase Chain Reaction or in gene identification, etc. In most
published papers, these details are omitted; however, some of them are described in
the “Standard Protocols” part of the LTEE website (http://myxo.css.msu.edu/ecoli/
standprot.html), which allows one to imagine how tedious internal validation may
be in this case. The very existence of this public web page is in itself evidence of the
care that is taken in LTEE to avoid error, mismatch, and malfunction. It allows for
replication of (part of) the experiment in other labs. More generally, transparency
is an often-recognized way to provide readers with evidence that internal validation
has been taken care of.

Let us now turn to simulations of evolutionary processes. We shall focus on those
developed on the digital platform Avida (Ofria and Wilde 2004), itself derived from
the earlier Tierra platform. These computer programs are commonly referred to as
“artificial life”. They involve populations of simulated organisms (namely, programs)
that replicate and are submitted to two sorting processes that simulate natural selec-
tion and genetic drift. They give rise to a variety of evolutionary dynamics, including
the emergence of complexity (Lenski et al. 1999) and contingency (Lenski 2004).

The study of artificial life is motivated by a number of reasons that contribute
to shaping what counts as validation in this domain. The first motivation is that
evolution in nature is too slow for the average span of human life, which gives
us a relevant scale for meaningful experimentations. Even LTEE can only offer
a limited glimpse on evolutionary processes because (i) 66,000 generations, even
though an impressive number, cannot be compared with the scales that are relevant
for evolutionary processes in nature and (ii) it is confined to one level of genomic
complexity (Lenski 2004). The secondmotivation is that in a simulation, every aspect,
however minute, can be scrutinized, whereas on the field, or even in the lab, some
data can be difficult or even impossible to obtain; moreover, it is often impossible
to carry out enough replications that would allow for high statistical accuracy. By
contrast, Avida provides the ability to perform a detailed control over experimental
settings and protocols, as well as a variety of measurement tools, and sophisticated
methods to analyze and post-process experimental data. For instance, Lenski writes
that Avida simulations allow for running “replicated experiments to examine the
statistical repeatability of evolutionary dynamics and outcomes” and “rewind[ing] an
experiment to any particular point in time and restart the experiment, with replication,
from that precise moment” (Lenski 2004). He adds that “the ability to rewind and
restart the tape is critical for putting hypotheses that invoke historical contingency
into an experimental context”. This point is especially important with respect to
validation as hypothesis testing is themain goal of artificial life. Asmentioned above,
evolutionary hypothesis testing is immensely difficult in the field, and even in the lab.
The difficulty is increased when it comes to hypotheses involving contingency. Now,
the easiness and speed of running Avida simulations allow for obtaining evidence
about the role of contingency.

http://myxo.css.msu.edu/ecoli/standprot.html
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Before turning to validation of Avida, let us briefly mention a point that has been
much discussed with respect to these simulations: in the same way, as it was nec-
essary to analyze whether LTEE can actually be counted as an experiment, there is
some ambiguity involved in the expression “simulation of evolution”. Some might
prefer to use the word “simulation” to exclusively designate computer models of
population genetics involving the discretization of continuous equations, and refer
to Avida programs as “experiments”. However, “organisms” in Avida are simulated
by computer programs; this is the main reason why artificial life may be called “sim-
ulations of evolutionary processes”, as computer programs, being artifacts, can by
no means be conceived as undergoing natural evolution––their evolution simulates
evolution in nature. Let us further emphasize that the question of the very nature
of Avida simulations (are they simulations or experiments?) may also raise in other
cases, like agent-based simulations in social sciences. Both this question and the
fact that many experiments, like those in LHC analyzed byMorrison (2015), include
simulations at their very heart and cannot be dispensedwith indicate that experiments
and simulations are best conceived of as complementary, rather than competing, so
that there is no reason to see their respective validation procedures as opposite. As
illustrated below, they have much in common.

With respect to validation, Avida simulations both appear similar and different
from simulations in physics. On the one hand, internal validation involves the same
compound of context-dependent and well-grounded methodological rules as in other
types of simulations, whose aim is to avoid errors and disfunctioning in the code.
On the other hand, external validation is difficult to carry out for the very reason that
triggers researchers to run Avida simulations in the first place: we do not have access
to precise and controlled evolutionary processes in nature that would provide us with
the possibility to clearly identify at which point contingency is explanatory of the
presence of certain traits in a population. As a result, we lack satisfactory comparison
basis for Avida outcomes, which threatens their soundness: because the prospects
of comparison with experimental results are so thin, the question raises whether
the simulations provide us with any evidence at all about evolutionary processes in
nature.

Aswith other types of simulations, the very dynamics of validation has allowed for
a partial answer to the question of whether Avida simulations’ outcomes really bear
on evolutionary processes in nature. LTEE’s results indeed provide simulationists
with a qualitative and quantitative basis that is small, for sure, but well established:
external validation can thus rely on precise statistics, even though for a very limited
number of cases. The recent availability of LTEE’s outcomes has been an important
step toward increased external validation of Avida simulations. The reason for this is
that external validation of both LTEE and Avida relies on the same epistemological
principles, if not on the same methodological rules. These principles themselves
derive from the very nature of evolutionary theory, within which it is very difficult
to sort effects of selection from effects of genetic drift or contingent events. This
difficulty commands incredibly ingenious experimental and data processing design
that is common to experiments and simulations in this field. The first step toward
a spiraling dynamics of progressive validation for both LTEE (and other studies in
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experimental evolution) and Avida (and other simulations of evolutionary processes)
will undoubtedly be followed by others coming from other in vivo evolutionary
experiments. This dynamics is representative of the way both simulationists and
experimenters proceed in practice: validation of experiments and simulations is not
a short-term effort but evolves as new results and techniques become available.

38.4 Discussion and Conclusion

In this chapter we have argued that, even though, from the practical point of view,
validation in experiments and in simulations is obtained with the help of different
operations, it has to be analyzed as being based on the same epistemological princi-
ples, namely, the ones that allow researchers to take the outcomes of the experiment
or simulation at hand as reliable in view of current knowledge in the field. These
principles may depend on background theories, as it is the case in the example we
have presented: reliable outcomes in evolutionary studies are assessed with respect
to the current state of evolutionary theory (a theory that is very well confirmed, but
still lacks predictive power), whereas outcomes in fluid dynamics are assessed with
respect to the knowledge of the numerical solutions of Navier–Stokes equations that
are currently available. There is thus no fundamental difference between validation in
experiments and in simulations, only differences regarding practice, which of course
require specialized actions and assessments.

With respect to materiality, for sure, it makes experiments and computer simula-
tions different, but this difference is not so important from the epistemological point
of view. Major differences remain nevertheless from the methodological point of
view, as illustrated by our example in evolutionary studies.
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Chapter 39
How Does Holism Challenge
the Validation of Computer Simulation?

Johannes Lenhard

Abstract Designing and building complex artifacts like simulation models often
rely on the strategy of modularity. My main claim is that the validation of simula-
tion models faces a challenge of holism because modularity tends to erode over the
process of building a simulation model. Two different reasons that fuel the tendency
to erosion are analyzed. Both are based on the methodology of simulation, but on
different levels. The first has to do with the way parameter adjustment works in
simulation; the second comes from how different groups of software programmers
work together. The chapter will conclude by drawing lessons about how holism chal-
lenges the validation of simulation and by discussing a corollary to conformational
holism: the boundary between validation and verification tends to become blurred,
thus undermining a strategy that insists on keeping them separate.

Keywords Kluge · Modularity · Parameterization · Tuning · Verification and
validation

39.1 Introduction

Computer simulation models have much in common with mathematical models and
it is useful to conceive simulation models as a type of mathematical models. Typical
examples of this type differ from other mathematical models in the algorithmic
nature, the complexity of internal model dynamics, and the role of visualization,
among other factors. While the basic concept of validation is certainly applicable to
simulation, those factors that make simulation models a special type of mathematical
model create special challenges for validation.

The notion of validation is open to different uses, especially regarding the level
of objectivity implied by validation (cf. the Chap. 2 by Beisbart in this volume). The
holism challenge presented in this chapter does not depend on how objective and

J. Lenhard (B)
HLRS, University of Stuttgart, Stuttgart, Germany
e-mail: johannes.lenhard@uni-bielefeld.de

© Springer Nature Switzerland AG 2019
C. Beisbart and N. J. Saam (eds.), Computer Simulation Validation,
Simulation Foundations, Methods and Applications,
https://doi.org/10.1007/978-3-319-70766-2_39

943

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-70766-2_39&domain=pdf
mailto:johannes.lenhard@uni-bielefeld.de
https://doi.org/10.1007/978-3-319-70766-2_39


944 J. Lenhard

final validation is taken to be. The following generic notion of validation suffices:
The validation of a model is a process that includes (a) checking whether a model
agrees in relevant respects to a target system and (b) modifying the model so that
the results of (a) are improved. Validation thus can be a matter of degree, open to
revision, and dependent on a purpose for which a model is supposed to be good
enough.

Holism is best introduced via its counterpart, namely modularity. Designing and
building complex artifacts, from skyscrapers to software, often relies on the strategy
of modularity, i.e., breaking down the complex task into subtasks, starting from
independent modules that show a certain functionality (solving a subtask) and then
putting the modules together in a secured architecture for building the more complex
entity. The strategy of modularity in design has a cousin in validation that bears the
same name. Breaking down complexity is important for validation, too. How can
a model (or another artifact) be improved given that validation step (a) signals that
something is going wrong? If the model is modular, one can test modules separately,
if not, one must address the model as a whole.

That models need often to be addressed as a whole during validation is not just a
purely “philosophical” consideration, but a challenge of actual concern inmanyfields
of simulation. Here is a teaser (before the argumentation starts in the next sections).
A former colleague of mine worked for a company that pioneered digital television.
He oversaw a development group that permanently updated the software, eliminating
those errors and flukes that were detected after market release. The software then
was uploaded to all TV users. Of course, the developers were eager to upload only
software that they had validated in rigid procedures. Nothing is worse than com-
plaining customers. But the entire system was so extensive that it was impossible
to reliably check whether it would perform well in all circumstances. In particular,
any newly developed software module would interact with a number of other com-
ponents, multiplying the number of possible situations where the software has to
function properly. Part of the validation procedure was so-called “monkey-testing.”
They put up a test systemwith the new software and then went through random series
of commands by the remote control. Like a monkey pressing keys—a not so unlikely
scenario if the remote is hidden under a sofa cushion and children are playing on the
sofa. If the system gets hooked up, they could retrace the combination of keys that
caused it and find a patch. The point of this little story is that these engineers had
tested all software modules independently, but modularity was imperfect so that the
(apparently) valid modules plus their (apparently) valid coupling did not result in a
valid overall model. Therefore, the engineers had to move to the “global” level for
validating the system as a whole. The story is not so exotic since it shows a typi-
cal tendency: Validation procedures cannot fully utilize the modularization strategy.
Instead, they have to deal with the entire system at once, i.e., run against a problem
of (confirmational) holism (the word “holism” derives from the Greek word “holon”
meaning the whole).

My main claim is that the validation of simulation models faces a challenge of
holism because modularity tends to erode over the process of building a simulation
model. Consequently, the strategy of modularity is threatened to break down. But



39 How Does Holism Challenge the Validation of Computer Simulation? 945

why is there such tendency to erosion? In fact, there are two different reasons that
fuel this tendency. Both are based on the methodology of simulation, but on different
levels. The first has to do with how parameter adjustment works in simulation; the
second comes from how different groups of software programmers work together.

Section 39.2 introduces and discusses the counteracting concepts of modularity
and holism. I will present two arguments in favor of the erosion claim, one from
parameterization and tuning (Sect. 39.3), the other from kluging (Sect. 39.4). Both
are, in practice, part and parcel of simulation modeling and both make modularity
erode. The chapterwill conclude by drawing lessons about howholism challenges the
validation of simulation (Sect. 39.5) and by discussing a corollary to conformational
holism: the boundary between validation and verification tends to become blurred,
thereby undermining a strategy that insists on keeping them separate.

39.2 Holism and Modularity—Two Counteracting
Concepts

39.2.1 Modularity—The Rational Picture

The term “modularity” is not a particularly philosophical notion. It features promi-
nently in the context of complex design, planning, and building—from architecture
to software. Modularity stands for first breaking down complicated tasks into small
and well-defined subtasks and then reassembling the original global task with a well-
defined series of steps. It can be argued that modularity is the key pillar on which
various rational treatments of complexity rest.

The design of complex systems has a long tradition in architecture and engineer-
ing. At the same time, it has not been much covered in the literature, because the
design was conceived as a matter for experienced craftsmanship rather than analyt-
ical investigations. The work of Pahl and Beitz (1984, revised editions 1996, 2007)
gives a relatively recent account of design in engineering. The design of complex
computer systems (hardware as well as software) is a related field where dealing with
complexity became an issue very quickly. Here, one can find more explicit accounts,
since researchers could not orient their work at existing traditions. A widely read
example is Herbert Simon’s “Sciences of the Artificial” (Simon 1969). Still up to
today, techniques of high-level languages, object-oriented programming, etc., make
the practice of design change on a fast scale.

One original contributor to this discussion is Frederic Brooks, software and com-
puter expert (and formermanager at IBM) and also hobby architect. In hismonograph
“The Design of Design” (Brooks 2010), he describes the rational model of design
that is much more often adopted in practice than explicitly formulated in the theo-
retical literature. The rational picture starts with assuming an overview of all options
at hand. According to Simon, for instance, the theory of design is the general theory
of search through large combinatorial spaces (Simon 1969, 54). The rational model
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Fig. 39.1 A part of Bielefeld University is built from the container modules Courtesy by Norma
Langohr

then presupposes an utility function and a design tree, which are exhausting the space
of possible designs. Brooks rightly points out that this is an idealized picture as the
space of possible designs is normally unknown. Nevertheless, the design is conceived
as a systematic step-by-step process. Pahl and Beitz aim at detailing these steps in
their rational order.

A hierarchical order is a key element of the Rational Picture of design and pre-
sumes modularity when a higher level task is achieved by putting together modules
on a lower level. Let me illustrate this point. Consider first a simple brick wall. It
consists of a multitude of modules (bricks), each with a certain form and static prop-
erties. These are combined into potentially very large structures. It is a strikingly
simple example because all modules are similar.

A more complicated, though closely related, example is the one depicted in
Fig. 39.1 where an auxiliary building of Bielefeld University is put together from
container modules.

These examples illustrate how deeply ingrained modularity is in our way of build-
ing (larger) objects.

Some complex overall task is split up into modules that can be tackled indepen-
dently and by different teams. The hierarchical structure shall ensure that themodules
can be integrated to make up the original complex system; this requires top-down
planning. Even if two tasks are achieved by modules from completely independent
teams, there must be a (hierarchical) structure according to which the module tasks
have been specified so that some higher taskwill be accomplished by putting together
the modular (sub)tasks. Modularity not only plays a key role when designing and
building complex systems, it is also of crucial importance when testing whether
the system works or not. Validation is usually conceived in the very same modular
structure: independently validated modules are put together in a controlled way for
making up a validated bigger system. The standard account of how computational
models are verified and validated gives very rigorous guidelines that are all based on
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the systematic realization of modularity (Oberkampf and Roy 2010, see also Fillion
2017). In short, modularity is the key element for designing as well as for validating
complex systems. One instance is that a program is tested against a number of bench-
mark cases before it enters the shelf of approved building blocks for more complex
systems.

This observation is paradigmatically expressed in Simon’s parable of the two
watchmakers which he expounds in his 1962 paper “The Architecture of Complex-
ity” that later has been turned into a chapter in his immensely influential “The Sci-
ences of the Artificial” (Simon 1969). There, Simon investigated the structure of
complex systems. The stable structures, so Simon argued, are the hierarchical ones.
He expressed his idea by narrating the parable of the two watchmakers named Hora
and Tempus (Simon, 1969, 90–92). In his review of Simon, P. Agre describes the
setting with the following words:

According to this story, both watchmakers were equally skilled, but only one of them, Hora,
prospered. The difference between them lay in the design of their watches. Each design
involved 1000 elementary components, but the similarity ended there. Tempus’ watches
were not hierarchical; they were assembled one component at a time. Hora’s watches, by
contrast, were organized into hierarchical subassemblies whose “span” was ten. He would
combine ten elementary components into small subassemblies, and then he would combine
ten subassemblies into larger subassemblies, and these in turn could be combined to make a
complete watch. (Agre 2003)

Since Hora takes additional steps for building modules, Tempus’ watches need less
time for assembly. However, it was Tempus’ business that did not thrive because of
an additional condition not yet mentioned, namely some kind of noise. From time
to time, the telephone rings and whenever one of the watchmakers answers the call,
all cogwheels and little screws fall apart and he has to restart the assembly. While
Tempus has to start from scratch, Hora can keep all finished modules and work from
there. In the presence of noise, so the lesson goes, the modular strategy is by far
superior. Modularity—Agre speaks of the functional role of components—comes
out as a necessary element when designing complex systems:

For working engineers, hierarchy is not mainly a guarantee that subassemblies will remain
intact when the phone rings. Rather, hierarchy simplifies the process of design cognitively
by allowing the functional role of subassemblies to be articulated in a meaningful way in
terms of their contribution to the function of the whole. Hierarchy allows subassemblies to be
modified somewhat independently of one another, and it enables them to be assembled into
new and potentially unexpected configurations when the need arises. A systemwhose overall
functioning cannot be predicted from the functionality of its components is not generally
considered to be well engineered. (Agre 2003)

In a well-engineered software system, one can replace single modules, like replacing
the module for matrix inversion by a faster new version, without having to adapt
other modules or their connections.

There is an obvious limit to the watchmaker picture, namely the fact that sys-
tems have to remain manageable by human beings (watchmakers). There are many
systems of practical interest that are too complex—from the Earth’s climate to the
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aerodynamics of an airfoil. Computer models open up a new path here since simu-
lation models might contain a wealth of algorithmic steps far beyond what can be
conceived in a clockwork picture. From this point of view, the computer appears as a
kind of amplifier that helps to revitalize the rational picture. Do we have to look at a
simulation model as a sort of gigantic clockwork? In the following, I will argue that
this viewpoint is seriously misleading. Simulation models are different fromwatches
in important ways and I want to focus on the dis-analogy.1 The central notion for
capturing this dis-analogy is holism.

39.2.2 Holism—A Multifaceted Challenge

Holism is a term that appears in different contexts and uses. Variants of holism are
relevant in different fields like philosophy of language, or metaphysics. The Stanford
Encyclopedia of Philosophy, for instance, includes (sub-)entries on methodological,
metaphysical, relational, or meaning holism. Holism generically states that thewhole
is more than the sum of its parts, meaning that the parts of a whole are in an intimate
interconnection, such that they cannot exist independently of the whole, or cannot
be understood without reference to the whole. For more details, I refer the reader
to the Stanford Encyclopedia. W. V. O. Quine has been especially effective in pop-
ularizing the concept in philosophy of science, where one speaks of the so-called
Duhem–Quine thesis. This thesis is based on the insight formulated by scientist-
philosopher Pierre Duhem: One cannot test a single hypothesis in isolation because
any such test depends on “auxiliary” theories or hypotheses, for example, the way
the measurement instruments work. Thus, any test addresses a whole ensemble of
theories and hypotheses (holism about testing or confirmation).

Lenhard andWinsberg (2010) have discussed the problem of confirmation holism
in the context of validating complex climatemodels. They argued that “due to interac-
tivity, modularity does not break down a complex system into separately manageable
pieces” (2010, 256). However, I consider that it is worth to put the thesis into a much
more general context, i.e., pointing out a dilemma that is built on the tension between
modularity and holism and that occurs quite generally in validating simulations. In
fact, the notion of holism has made another appearance in philosophy of simulation,
namely in the controversial debate about the philosophical novelty of simulation,
see Humphreys (2009) versus Frigg and Reiss (2009) for an instructive example.
The latter authors deny novelty in most aspects, but concede that issues of holism
might be an exception. Surprisingly, this caveat went nearly unnoticed. In a sense,
this chapter confirms both parties: holism is indeed a key concept when reasoning
about simulation and it poses the problem of validation in a new way.

1There are several dis-analogies.One I amnot discussing is that clockworks lackmulti-functionality.
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39.3 The Challenge Arising from Parameterization
and Tuning

In stark contrast to the cogwheel picture of the computer, the methodology of sim-
ulation modeling erodes modularity in systematic ways. I want to discuss two sepa-
rate––though related—aspects, first, parameterization and tuning and second, klug-
ing (also called kludging). Both are, for different reasons, part and parcel of simu-
lation modeling; and both make modularity of models erode.

Parameterization and tuning are key elements of simulation modeling that stretch
the realm of tractable subject matter much beyond what is covered by theory. Fur-
thermore, simulation models can make predictions even in fields that are covered
by well-accepted theories only with the help of parameterization and tuning. In this
sense, the latter are success conditions for simulations.

Before we start with discussing an example, let me add a few words about termi-
nology. A parameterization scheme details which parameters (adjustable variables)
are used and how they work together. Assigning concrete values to these parameters
is often an additional step. Parameterization refers to both steps. There are different
expressions that specify what is done with parameters. The four most common ones
are (in alphabetical order): adaptation, adjustment, calibration, and tuning. These
notions describe very similar activities, but also valuate differently what parame-
ters are good for. “Calibration” is commonly used in the context of preparing an
instrument, like calibrating a scale one time for using it very often in a reliable way.
“Tuning” has a more pejorative tone, like achieving a fit with artificial measures, or
fitting to a particular case. “Adaptation” and “adjustment” have more neutral mean-
ings while the former suggests more strongly that simulation modeling is guided
by something it should adapt to. There are interesting reasons why dealing with
adjustable parameters counts as good or as bad practice. These reasons deserve a
separate treatment. In what follows, I will ignore the differences in terminology.

A typical example for parameterization arises in the simulation of atmospheric
circulation. The latter is modeled on the basis of accepted theory (fluid dynamics,
thermodynamics) on a grand scale. Climate scientists call this the “dynamical core”
of their models and there is more or less consensus about this part. Although the
employed theory is part of physics, climate scientists mean a different part of their
models when they speak of “the physics”. It includes all the processes that are not
completely specified within the dynamical core. These processes include convection
schemes, cloud dynamics, and many more. The “physics” is where different models
differ and the physics is what modeling centers regard as their achievements and try
to maintain even if their models change into the next generation.

The physics acts like a specifying supplement to the grand scale dynamics. It
is based on modeling assumptions, like which subprocesses are important in con-
vection, what should be resolved in the model, and what should be treated via a
parameterization scheme, i.e., a form that details how variables and measurements
depend on each other but leave parameters open that control the quantitative details.
Often, such subprocesses are not known in full detail, and some aspects (at least)
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depend on what happens on a sub-grid scale. The dynamics of clouds, for instance,
depends on a staggering span of very small (molecular) scales and much larger
scales of many kilometers. Hence even if the laws that guide these processes would
be known, they could not be treated explicitly in the simulation model. Modeling the
physics has to bring in parameterization schemes.2

How doesmoisture transport, for example, work? Rather than trying to investigate
into the molecular details of how water vapor is entrained into air, scientists use a
parameter, or a scheme of parameters, that controls moisture uptake so that their
model fits to known observational data. Often, such parameters do not have a direct
physical interpretation, nor do they need one, like when a parameter stands for a
mixture of processes not resolved in the model. The important property rather is that
they make the parameterization scheme flexible, so that the parameters of such a
scheme can be changed in a way that makes the properties of the scheme (in terms
of climate dynamics) match some known data or reference points.

From this rather straightforward observation—adequate flexibility is a virtue for
parameterization—follows an important fact. A parameterization, including assign-
ments of parameter values, makes sense only in the context of the larger model.
Observational data are not compared to the parameterization in isolation, but rather to
the parameterizations together with all interactions in the model. The Fourth Assess-
ment Report of the IPCC acknowledges the point that “parameterizations have to be
understood in the context of their host models” (Solomon et al. 2007, 8.2.1.3). In
other words, a good parameterization for model one needs not—and likely is not—a
good parameterization for model two.

The question of whether the parameter value that controls moisture uptake (in
our oversimplified example) is adequate can be answered only by examining how
the entire parameterization behaves and, moreover, how it behaves in the context of
the larger simulation model. Answering such questions would require, for instance,
looking at more global properties like mean cloud cover in tropical regions, or the
amount of rain in some area. Briefly stated, parameterization is a key component
of climate modeling, and tuning (adjusting parameter values) is part and parcel
of parameterization.3 Typically, parameter adjustments are meaningful only with
respect to the model as a whole.

It is important to note that tuning one parameter takes the values of other param-
eters as given, be they parameters from the same scheme, or be they parts of other
schemes that are part of themodel. A particular parameter value (controllingmoisture
uptake) is judged according to the results it yields for the overall behavior (like cloud
cover). In other words, tuning is a local activity that is oriented at global behavior.
Researchers might try to optimize parameter values simultaneously, but for reasons

2Parameterization schemes and their more or less autonomous status are discussed in the philo-
sophical literature, cf. Smith (2002), Gramelsberger and Feichter (2011), or Parker (2013).
3The studies of so-called perturbed physics ensembles convincingly showed that crucial properties
of the simulation models hinge on exactly how parameter values are assigned (Stainforth et al.
2007).
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of computational complexity, this is possible only with a rather small subset of all
parameters.

Furthermore, the procedure of tuning parameters is not only oriented at the global
model performance, it tends to blur the local behavior, like cloud dynamics. This is
because every model will be importantly imperfect, since it contains technical errors,
works with insufficient knowledge, etc.—which is just the normal case in scientific
practice. Now, tuning a parameter according to the overall behavior of the model
then means that the errors, gaps, and bugs get compensated against each other (if
in an opaque way). Mauritsen et al. (2012) have pointed this out in their pioneering
paper about tuning in climate modeling.

In climate models, cloud parameterizations play an important role, because they
influence key statistics of the climate and, at the same time, cover major (remaining)
uncertainties about how an adequatemodel should look like. Typically, such a param-
eterization scheme includes more than two dozen of parameters; most of them do not
carry a clear physical interpretation, but rather are motivated from physical reasoning
together with pragmatic considerations like inserting flexibility in adjustments. The
simulation then is based on the combination of these parameters in the context of
the overall model (including other parameterizations). Over the process of adjust-
ing the parameters, these schemes become inevitably interdependent, i.e., parameter
values of scheme one depend on the setting of parameters in scheme two and vice
versa. I leave aside the fact that models of atmosphere and oceans get coupled, which
arguably aggravates the problem.

Tuning is part and parcel of simulation modeling methodology. It poses great
challenges, like finding a good parameterization scheme for cloud dynamics, which
is a recent area of intense research in meteorology. But when is a parameterization
scheme a good one? On the one hand, a scheme is sound when it is theoretically
well motivated; on the other hand, the key property of a parameterization scheme
is its adaptability. Both criteria do not point in the same direction. One cannot,
therefore, optimize both at the same time; finding a balance is still considered as
an art. I suspect that the widespread reluctance against publishing about practices of
adjusting parameters comes from reservations against aspects that call for experience
and art rather than theory and rigorous methodology.

I want to maintain that nothing in the above argumentation is particular to cli-
mate science. Climate modeling is just one example out of many. The point holds
for simulation modeling quite generally. Admittedly, climate might be a somewhat
peculiar case, because it is placed in a political context where some discussions seem
to require that only ingredients of proven physical justification and realistic interpre-
tation are admitted. Arguably, this expectation might motivate using the pejorative
term of tuning. This reservation, however, ignores the very methodology of simula-
tionmodeling.Adjusting parameters is a necessary condition for obtaining prediction
even in areas where theoretical knowledge is very strong.

Another example will document this. Adjusting parameters is also occurring in
thermodynamics, an area of physics with a very high theoretical reputation. So-called
equations of state (EoS) describe how, e.g., pressure and temperature depend on each
other. The exact form of an equation of state contains much information about chem-
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ical and physical properties. The ideal gas equation is the most basic example; it is
valid only in the low-pressure limit. However, in fact, using thermodynamics requires
working with less idealized equations of state than the ideal gas equation. More com-
plicated equations of state find wide applications also in chemical engineering. They
are typically very specific for certain substances and require extensive adjustment4

of parameters as Hasse and Lenhard (2017) describe and analyze. Clearly, being able
to process specific adjustment strategies that are based on parameterization schemes
is a crucial success condition. Simulation methods have made applicable thermody-
namics in many areas of practical relevance, exactly because equations of state are
tailored to particular cases of interest via adjusting parameters.

One further example is from quantum chemistry, namely the so-called density
functional theory (DFT), a theory developed in the 1960s that won its originators the
Nobel Prize in chemistry in 1998. Density functionals capture the information of the
Schrodinger equation, but are much more computationally tractable than the latter.
However, only many-parameter functionals brought success in chemistry. The more
tractable functionals with few parameters worked only in simpler cases of crystal-
lography, but were unable to yield predictions accurate enough to be of chemical
interest. Arguably, being able to include and adjust more parameters has been the
crucial condition that had to be fulfilled before DFT could be successfully adopted
in computational quantum chemistry. This happened around 1990 when access to
computation had become so easy and cheap that exploring and tentatively adjusting
parameters became convenient procedures. The upswing of DFT is truly impressive.
DFT is by now the most widely used theory in scientific practice, see Lenhard (2014)
for a more detailed account of DFT and the development of computational chemistry.

Whereas, the adjustment of parameters—to use the more neutral terminology—is
pivotal formatchinggivendata, i.e., for predictive success, this very success condition
also entails a serious disadvantage.5 Complicated schemes of adjusted parameters
might block theoretical progress. In our climate case, any new cloud parameteriza-
tion that intends to work with a more thorough theoretical understanding has to be
developed for many years and then has to compete with a well-tuned forerunner.
Again, this kind of problem is more general. In quantum chemistry, many-parameter
adaptations of density functionals have brought great predictive success but at the
same time have rendered the rational reconstruction of why such success occurs hard,
if not impossible (Perdew et al. 2005; discussed in Lenhard 2014). The situation in
thermodynamics is similar, cf. Hasse and Lenhard (2017).

Let us take stock regarding thefirst argument for the erosion ofmodularity. Tuning,
or adjusting, parameters is not merely an ad hoc procedure to refine a model, rather
it is part and parcel of simulation modeling. Tuning convolutes heterogeneous parts
that do not have a common theoretical basis. Tuning proceeds holistically on the
basis of global model behavior. How particular parts function often remains opaque.
Tuning destructs modularity because local and global considerations are interwoven,

4Walter Kohn (1923–2016) shared the price with John Pople (1925–2004). While Kohn received it
for DFT, Pople was awarded it for building and promoting computational models in chemistry.
5There are other dangers, like over-fitting, that I leave aside.
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and various parameter assignments are interdependent. Thus, adjusting parameters
in some scheme of module does not depend on how it works in this very scheme, but
rather on how it works on the whole model.

Looking back at Simon’s clockmaker story, we see that its basic setting does not
match the situation in a fundamentalway. The perfect cogwheel picture ismisleading,
because it presupposes a clear identification of mechanisms and their interactions.
The preceding examples show that building a simulation model, in contrast to build-
ing a clockwork, cannot proceed top-down, i.e., counteracts a hierarchical structure.
Moreover, different modules and their interfaces get convoluted during the processes
of mutual adaptation.

39.4 The Challenge from Kluging

The second argument for the erosion of modularity approaches the matter from a
different angle, namely from a certain practice in developing software known as
kluging (also spelled kludging).6 “Kluge” is a term from colloquial language that
became a term in computer slang. I remember a precise episode of my childhood
when our family accompanied with another befriended one drove toward holidays
in two cars. In the middle of the night, while crossing the Alps, the exhaust pipe
of our friends before us broke, creating a shower of sparks where the pipe met the
asphalt. There was no chance of getting the exhaust pipe repaired, but the father did
not hesitate long and used his necktie to fix it provisionally.

The necktie worked as a kluge, which is in the words ofWikipedia “a workaround
or quick-and-dirty solution that is clumsy, inelegant, difficult to extend ,and hard to
maintain, yet an effective and quick solution to a problem.”7 The notion has been
incorporated and become popular in the language of software programming and is
closely related to the notion of bricolage.

Andy Clark, for instance, stresses the important role played by kluges in complex
computer modeling. For him, a kluge is “an inelegant, ‘botched together’ piece of
program; something functional but somehow messy and unsatisfying”, it is—Clark
refers to Sloman—“a piece of program or machinery which works up to a point but
is very complex, unprincipled in its design, ill-understood, hard to prove complete,
or sound and therefore having unknown limitations, and hard to maintain or extend”.
(Clark 1987, 278)

Kluges carried forward their way from programmers’ colloquial language into
the body of philosophy due to scholars like Clark andWimsatt who are both inspired
by computer modeling and evolutionary theory. The important point in the present
context is that kluges may function for a whole system, i.e., for the performance

6Both spellings “kluge” and “kludge” is used. There is not even agreement of how to pronounce
the word. In a way, that fits to the very concept. I will use “kluge,” but will not change the habits of
other authors cited with “kludge.”
7See https://en.wikipedia.org/wiki/Kludge. Accessed July 10th, 2016.

https://en.wikipedia.org/wiki/Kludge
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of the entire simulation model, whereas they do not serve as fixes in relation to the
submodels and modules:

what is a kludge considered as an item designed to fulfill a certain role in a large system,
maybe no kludge at all when viewed as an item designed to fulfill a somewhat different role
in a smaller system. (Clark 1987, 279)

Since “kluging” stems from colloquial language and since kluging is not seen
as a good practice anyway, examples cannot be found easily in the published sci-
entific literature. This observation notwithstanding, kluging is a widely occurring
phenomenon. Let me give an example that I witnessed when visiting an engineering
laboratory. There, researchers (chemical process engineers) are working with simu-
lation models of an absorption column, the large steel structures in which reactions
take place under controlled conditions. The scientific details do not matter here, since
the point is that the engineers build their model on the basis of a couple of already
existing modules, including proprietary software that they integrate into their sim-
ulation without having access to the code. Moreover, it is common knowledge in
the community that this code is of poor quality. Because of programming errors and
because of ill-maintained interfaces, using this software package requires modifica-
tions on the part of the remaining code outside the package. These modifications are
there for no good theoretical reason, albeit for good practical reasons. They make the
overall simulation run as expected (in known cases); and they allow working with
existing software. These modifications thus are typical kluges.

Again, kluging occurs in virtually every site where large software programs are
built. Simulation models hence are prime instances, especially when the modeling
steps of one group build on the results (models, software packages) of other groups.
One common phenomenon is the increasing importance of “exception handling”,
i.e., of finding effective repairs when the software, or the model, perform well most
of the time, but at rare instances behave in unanticipated and undesired ways. In this
situation, the software might include a bug that is invisible (does not affect results)
most of the time, but becomes effective under certain conditions. Often extensive
testing is needed to find out about unwanted behavior that occurs in rare and particular
situations that are conceived of as “exceptions.” The very fact that researchers speak
of “exception handling” indicates that they do not aim at a major reconstruction, but
at a local repair, counteracting (suppressing) this particular exception. The television
developers mentioned in the introduction hunted after cases of this kind. Exception
handling can be part of a sound design process, but an increased use of exception
handling is symptomatic of excessive kluging.

Presumably, all readers who ever contributed to a large software program know
about experiences of this kind. It is commonly accepted that the more comprehensive
a piece of software gets, the more energy new releases will require for exception han-
dling. Operating systems of computers, for example, often receive weekly patches.
Many scientists who work with simulations are in a similar situation, though not
obviously so.

If, for instance, meteorologists want to work on, say, hurricanes, they will likely
take a meso-scale (multipurpose) atmospheric model from the shelf of some trusted
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modeling center and add specifications and parameterizations relevant for hurricanes.
Typically, they will not know exactly in what respects the model had been tuned, and
also lack much other knowledge about strengths and weaknesses of this particular
model. Consequently, when preparing their hurricane modules, they will add mea-
sures into their new modules that somehow balance out undesired model behavior.
These measures can also be conceived as kluges.

Why should we see these examples as typical, common practice and not as
instances where researchers went astray? Because such situations arise from the
practices of developing software, and because philosophy should accept these prac-
tices as a core part of simulation modeling. Software engineering is a field that was
envisioned as the “professional” answer to the increasing complexity of software.
And, I frankly admit that there are well-articulated concepts that would in principle
ensure that the software is clearly written, aptly modularized, well maintained, and
superbly documented. However, the problem is that science in principle is different
from science in practice.

In practice, there are strong and constant forces that drive software development
into resorting to kluges. Economic considerations are always a reason, be it on
the personal scale of research time, be it on the grand scale of assigning teams of
developers to certain tasks. Usually, software is developed “on the move”, i.e., those
who write it have to keep up with changing requirements and a narrow timeline, in
science as well as industry. Of course, in the ideal case the implementation is tightly
modularized.A virtue ofmodularity is that it ismuch quicker to incorporate “foreign”
modules into a software system than developing such a software from scratch.

If these modules have some deficiencies, however, the developers will usually not
start a fundamental analysis of how the unexpected behavior occurred, but rather
spend their energy adapting the interfaces so that the joint model will work as antic-
ipated in the given circumstances. In common language: repair, rather than replace.
Examples reach from integrating a module of atmospheric chemistry into an existing
general circulation model up to implementing the new version of the operating sys-
tem of your computer. Working with complex computational and simulation models
seems to require a certain division of labor. Software traveling easily is a major factor
that supports such division of labor. At the same time, this will provoke kluges on
the side of those who try to connect software modules.

Kluges thus arise from unprincipled reasons: The throw-away code, which has
been made for the moment, is nevertheless not replaced later but becomes forgotten,
buried in more code, and eventually comes to be permanent. This will lead to a
cascade of kluges. Once there, they prompt more kluges, tending to become layered
and entrenched.8

Foote and Yoder, prominent leaders in the field of software development, give an
ironic and funny account of how attempts to maintain a rationally designed software
architecture constantly fail in practice.

8Wimsatt (2007) writes about “generative entrenchment” when speaking about the analogy between
software development and biological evolution, see also Lenhard and Winsberg (2010).
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While much attention has been focused on high-level software architectural patterns, what
is, in effect, the de facto standard software architecture is seldom discussed. This paper
examines this most frequently deployed of software architectures: the BIG BALLOFMUD.
A big ball of mud is a casually, even haphazardly, structured system. Its organization, if
one can call it that, is dictated more by expediency than design. Yet, its enduring popular-
ity cannot merely be indicative of a general disregard for architecture. (…) Even systems
with well-defined architectures are prone to structural erosion. The relentless onslaught of
changing requirements that any successful system attracts can gradually undermine its struc-
ture. Systems that were once tidy become overgrown as piecemeal growth gradually allows
elements of the system to sprawl in an uncontrolled fashion. (Foote and Yoder 2000, 3)

I would like to repeat the statement from above that there is no necessity in the
corruption of modularity and rational architecture. It is rather a tendency. Again,
this is a question of science in practice versus science in principle. “A sustained
commitment to refactoring can keep a system from subsiding into a big ball of mud,”
Foote andYoder concede (2000, 3). There are even directions in software engineering
that try to counteract the degradation into Foote’s and Yoder’s big ball of mud. The
movement of “clean code,” for instance, is directed against what Foote and Yoder
describe. Robert Martin, the pioneer of this school, proposes to keep code clean in
the sense of not letting the first kluge slip in. And surely, there is no principled reason
why one should not be able to avoid this. However, evenMartin accepts the diagnosis
of current practice.

Similarly, Gabriel (1996), another guru of software engineering, makes the anal-
ogy to housing architecture and Alexander’s concept of “habitability”, which intends
to integrate modularity and piecemeal growth into one “organic order”. Anyway,
when he diagnoses the current state, he more or less duplicates what we heard above
from Foote and Yoder.

Finally, I want to point out that the matter of kluging is related to what is discussed
in philosophy of science under the heading of opacity (like in Humphreys 2009). A
highly kluged software becomes opaque. One can hardly disentangle the various
reasons that led to particular pieces of code, because kluges are sensible only in the
particular context at the time. Furthermore, layered kluges solidify themselves. They
make code hard or impossible to understand; modifying pieces that are individually
hard to understand will normally lead to a new layer of kluges—and so on. In this
important sense, simulation models are historical objects. They carry around—and
depend on—their history of modifications. There are interesting analogies with bio-
logical evolution that have become a topic when complex systems had become a
major issue in discussing computer use. Winograd and Flores, for instance, come to
a conclusion that also holds in our context here: “each detail may be the result of an
evolved compromise betweenmany conflicting demands. At times, the only explana-
tion for the system’s current form may be the appeal to this history of modification.”
(Winograd and Flores 1991, 94)

Thus, the brief look into the somewhat elusive field of software development has
shown us that two conditions foster kluging. First, the exchange of software parts
that is more or less motivated by flexibility and economic requirements. This practice
thrives, where infrastructure is networked. Second, iterations and modifications are
easy and cheap. Due to the unprincipled nature of kluges, their construction requires
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repeated testing which examines whether they actually work in the factual circum-
stances. Kluges hence fit to the exploratory and iterative mode of modeling that
characterizes simulations (according to Lenhard 2016). Kluging makes modularity
erodes because a kluge is oriented at the behavior of the whole model. This is the
second argument why modularity tends to erode in simulation modeling.

39.5 The Limits of Validation

We have seen that the power and scope of simulation come with a tendency toward
the erosion of modularity. Holism and the erosion of modularity are two sides of
the same coin. Hence, holism is driven by the very features that make simulation so
widely applicable! It is through adjustable parameters that simulation models can
be applied to systems beyond the control of theory (alone). What does the tendency
toward holism mean for the validation of computer simulations?

First and foremost, the strategy of modularity breaks down in validation. Step (a),
testing the model, is demanding for any complex model regardless of modularity. In
extreme cases, likemathematics, one can prove complex theorems byputting together
proven simpler theorems. In most usual situations, however, this bottom-up strategy
gets into troubles. Assuming that validated modules plus secured architecture would
guarantee a valid complex entity appears to be a risky strategy. In any case, step (b),
modifying the model appropriately, would be much more feasible given a modular
structure, because researchers could limit their analysis to particular modules. With-
out the modular structure, the search for appropriate modification has to take into
account the entire model.

Second, there is a corollary to holism that challenges prominent concepts of
validation. In the context of simulation models the community speaks of verification
and validation, or “V&V” (cf. Chap. 4 by Murray-Smith and Chap. 41 by Beisbart
in this volume). Both are related, but the unanimous advice in the literature is to
keep them separate. While verification checks the model internally, i.e., whether the
software indeed captures what it is supposed to, validation checks whether the model
adequately represents the target system. A standard definition states that “verification
[is] the process of determining that a model implementation accurately represents
the developer’s conceptual description of the model and the solution to the model.”
While validation is defined as “the process of determining the degree to which a
model is an accurate representation of the real world from the perspective of the
intended uses of the model”. (Oberkampf and Trucano 2000, 3) Though there is
some leeway of defining V&V, the gist of it is entailed in the saying: verification
checks whether the model is right,9 while validation checks whether we have the
right model.

9This sloppy saying should not obscure that the process of verification comprises an entire package
of demanding tasks, see Chap. 10 by Rider in this volume.
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Due to the increasing use and growing complexity of simulations, the issue of
V&V is itself a growing field in simulation literature, witnessed by this volume. One
example is the voluminous monograph by Oberkampf and Roy (2010) that metic-
ulously defines and discusses the various steps to be included in V&V procedures.
The first move in this analysis is to separate model form from model parameters.
Each parameter then belongs to a particular type of parameter that determines which
specific steps in V&V are required. Oberkampf gives the following list of model
parameter types:

– measurable properties of the system or the surroundings,

– physical modeling parameters,

– ad hoc model parameters,

– numerical algorithm parameters,

– decision parameters,

– uncertainty modeling parameters. (Oberkampf and Roy 2010, Sect. 13.5.1, p. 623)

My point is that the adjustable parameters we have discussed in this chapter are of
a type that is evading the V&V fencing. These parameters cannot be kept separate
from the model form, since the scheme prior to adjusting parameters does not aim at
representational (nor behavioral) adequacy. A cloud parameterization schememakes
sense only with parameter values already assigned and the same holds for a many-
parameter density functional. Before the process of adjustment, the mere form of the
functional does not offer anything to be called adequate or inadequate. In simulation
models, as we have seen, (predictive) success and adaptation are entangled.

It is not possible to first verify that a simulation is “right” in view of a model
before tackling the “external” question, namely whether the model is right. The
separation of verification and validation thus cannot be fully maintained in practice.
Performance tests hence become the main handle for confirmation. This is a version
of confirmation holism that points toward the limits of analysis. This does not lead to a
complete conceptual breakdown of verification and validation. Rather, holism comes
in degrees10 and is a pernicious tendency that undermines the verification–validation
divide.11

Holism leaves intact all performance tests that work on the whole computer model
or code. But holism challenges the Rational Picture of design. This challenge works,
if you want, from “within,” It is a central part of simulation modeling, and the way
in which it works in practice challenges the Rational Picture by making modularity
erode.
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Chapter 40
What Types of Values Enter Simulation
Validation and What Are Their Roles?

Gertrude Hirsch Hadorn and Christoph Baumberger

Abstract Based on a framework that distinguishes several types, roles and functions
of values in science, we discuss legitimate applications of values in the validation
of computer simulations. We argue that, first, epistemic values, such as empirical
accuracy and coherence with background knowledge, have the role to assess the
credibility of simulation results, whereas, second, cognitive values, such as com-
prehensiveness of a conceptual model or easy handling of a numerical model, have
the role to assess the usefulness of a model for investigating a hypothesis. In both
roles, values perform what we call first-order functions. In addition, cognitive values
may also serve an auxiliary function by facilitating the assessment of credibility. As
for a third type of values, i.e. social values, their legitimate role consists in speci-
fying and weighing epistemic and cognitive values with respect to practical uses of
a simulation, which is considered a second-order function. Rational intersubjective
agreement on how to specify and weigh the different values is supposed to ensure
objectivity in simulation validation.

Keywords Epistemic values · Cognitive values · Social values · Credibility ·
Relevance · Practicability

40.1 Introduction

In validating computer simulations, scientists typically appeal to values such as
empirical accuracy and robustness when they assess how well simulation results fit
observation-based data and results from other simulations and thus how credible the
results are. Scientists use additional values to also assess the usefulness of a simula-
tion.When, for instance, a representationalmodel is supposed to simulate the regional
climate 20 years from now, they also consider comprehensiveness, complexity, and
spatio-temporal resolution as well as how easily the model can be implemented and
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run on a computer so as to calculate results that are not only credible but also useful
(Flato 2011, p. 797).

There is an ongoing debate about the various values applied in scientific practice,
including the influence of interests and goals pursued in society at large on decisions
about the application of those values. While some defend the position that societal
considerations should not be used in the validation of a simulation (Betz 2013;
Parker 2014), others argue that their influence cannot be eliminated (Winsberg 2010)
or is even desirable and justified under certain conditions (Elliott and McKaughan
2014; Intemann 2015). In this chapter, we systematize the ongoing debate on the
diverse types of values and specifically focus on simulation validation and on the
assessment of scientific representations more generally with the help of a framework
that determines the legitimate roles of values (Hirsch Hadorn 2018). This framework
provides a conceptual basis for discussing the different types of values and their roles
in simulation validation.

The chapter is structured as follows: We introduce our framework in Sect. 40.2.
Section 40.3 deals with epistemic values. Since their role in simulation validation is
addressed inmany other chapters of this volume,we focus on the sociological critique
that questions the possibility of a reasonable distinction between epistemic and social
values. In Sect. 40.4, we review proposals that argue for legitimate roles of cognitive
and social values in the context of credibility assessments. In Sect. 40.5, we move on
to discussing proposals that argue for an application of cognitive and social values
for assessing the usefulness of a simulation, including its relevance to the hypothesis
under investigation and its practicability for the user. Thereafter, Sect. 40.6 deals with
proposals from decision theory and alternatives for evaluating the credibility and the
usefulness of simulations in multi-criteria assessments. Section 40.7 summarizes the
results of our application of the evaluative framework to computer simulations and
closes with open questions and suggestions for further research.

40.2 The Framework

As a crucial preliminary, we have to clarify the pertinent terminology. First, the term
“computer simulation” is sometimes restricted to the execution of a computer pro-
gram that explores the (approximate) behavior of a numericalmodel.We, by contrast,
use the term (or “simulation” for short) in a broader sense for denoting a series of
steps and their products, which includes the development of a conceptual model, the
construction or selection and adaptation of a numerical model, its implementation
and execution on a computer, the interpretation of the outcomes, and the drawing
of inferences with respect to the target system (Winsberg 2015). Second, we use
the terms “evaluation” and “validation” interchangeably for the assessment of the
products (or parts or aspects of them) that follow from the steps of a simulation
in the broad sense introduced above; these products include the outcomes, which
we call “simulation results” (even though “simulation” is used in the narrow sense
here). Finally, we adopt a broad understanding of “value” that includes any kind of
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consideration that can be used as a criterion in an assessment (Laudan 1984, p. xii;
McMullin 1983, pp. 4–6).

The framework for systematizing the debate on values in the assessment of sci-
entific representations is based on Hirsch Hadorn (2018). It distinguishes three types
of values that are also applied in the validation of simulations: epistemic, cognitive,
and social values. We hold that these values fulfill at least one of two possible roles
(i.e. assessing the credibility of simulation results or the usefulness of simulation
models), and that they do this in three distinct functions (i.e. a first-order, a second
order, or an auxiliary function).

Tobeginwith, the performance of simulation results in termsof empirical accuracy
and consistency (partly) determines the warranted degree of belief or confirmation,
i.e., the credibility of the simulation results. The term “epistemic value” refers to the
values used in such a way for assessing credibility. Besides the traditional empiri-
cist criteria, epistemic values include e.g. robustness of results and coherence with
background knowledge and thus values that are frequently applied while assess-
ing the credibility of simulation results. Other values such as comprehensiveness,
complexity, resolution, and easy handling are properties of scientific representations
that result from idealizations, that is to say, deliberate simplifications and distortions
made in designing, adapting, and implementing a representational model (McMullin
1985; Weisberg 2007, 2013). These properties can serve as values in assessing how
useful a simulation model is. Usefulness includes the questions of whether the model
is relevant, for instance whether its degree of resolution is appropriate for investigat-
ing a hypothesis in a given context, and how practicable the simulation model is, for
instance regarding the handling of the code.We use the term “cognitive value” (Dou-
glas 2013, p. 800; Lacey 2004, p. 27; Laudan 1984, p. 42, 2004, p. 19; Levi 1986,
pp. 36–46) to distinguish properties of scientific representations that serve to assess
their usefulness from epistemic criteria for assessing the credibility of simulation
results. Idealizations in the process of constructing and implementing a simulation
model have consequences for the credibility of simulation results; a more complex
simulation model may lead to a higher degree of accuracy, for instance. Since it is
not the degree of complexity as such that is indicative of the credibility of simulation
results but rather the degree of accuracy that is affected by the degree of complexity,
complexity is not used as an epistemic value in such a case. Other authors do not dis-
tinguish between these roles of values and use “epistemic value,” “cognitive value,”
and “scientific value” interchangeably (Kuhn 1977; Hempel 1988/2000). Finally, the
term “social value” refers to moral and prudential principles and considerations that
are typically employed to evaluate goals, decisions, and actions in society at large.
Thus, while “social value” is often used as a synonym for “value”, we understand
the term in a narrower sense. To be specific, we claim that social values are legit-
imately used for specifying and weighing the epistemic and cognitive values with
respect to a given application such as determining what degree of accuracy of results
is required or whether it is acceptable to trade off a higher fit of simulation results for
an easier handling of the simulation model in a given case. Legitimate uses of social
values thus relate to both roles, i.e. assessing the credibility of simulation results and
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assessing the usefulness of models, but, as we will see, their functions differ from
those of epistemic and cognitive values.

The performance of the products of various simulation steps in terms of epistemic
and cognitive criteria is used for justifying evaluative judgments, for example for
deciding that simulation A is better than simulation B because the results are more
accurate in the case of A than in the case of B, or because themathematical model can
be more easily turned into a computer code in the case of A than in the case of B. The
extent to which (the products of) A and B instantiate a particular criterion determines
the evaluative ordering of A and B regarding this criterion. Such an ordering is
called a “value relation” (Rabinowicz 2008). This use of “value” that refers to the
(numerical) degree to which (the products of) A and B instantiate a criterion needs to
be distinguished from our use of the term for evaluative criteria. Because simulation
validation rests on several criteria, it inevitably faces the challenges of multi-criteria
assessments. In consequence, improving the performance of a simulationwith respect
to criteria like simplicity or easy handling ofmodel equationsmay come at the cost of
a lower degree of empirical accuracy, for example. Philosophers of science disagree
on whether this is a critical issue regarding the objectivity of the assessment of
scientific representations at all and under which conditions trading off performance
in terms of epistemic values against performance in terms of other types of values is
legitimate (Levi 1986, pp. 40–42; Kuhn 1977, p. 322).

Both epistemic values that are used to assess the credibility of simulation results,
and cognitive values that are used to assess the usefulness of simulation models,
have what we call a first-order function because performance regarding these criteria
directly indicates the credibility of a simulation result or the usefulness of a simulation
model. Cognitive criteria can also be helpful in determining the extent to which
simulation results instantiate epistemic criteria. If, for instance, a hypothesis is to be
tested by implementing a simulation model with the intention of calculating results
for specified initial conditions, researchers appreciate when the simulationmodel can
be easily implemented on a computer and running the simulation does not require
much time. While these advantages are due to properties of the simulation model
like simple functions in the numerical model, the performance of the model in terms
of simplicity is not in itself an indication of the credibility of the simulation results.
This legitimate role of cognitive values in assessments of the credibility of simulation
results is an auxiliary rather than a first-order function.

Social values that include moral and prudential considerations such as justice and
efficiency are also important when it comes to assessing the credibility of simulation
results and the usefulness of simulation models. Their role consists in specifying
and weighing epistemic and cognitive values in order to account for the purpose and
the context of a simulation. Since they operate on values with a first-order function,
social values perform a second-order function. Figure 40.1 provides an overview of
the various types, roles, and functions of values, and shows how this framework is
reflected in the structure of this chapter.

The current debate on values and their legitimate roles in simulation validation
rests on a broader philosophical debate on science and values.We refer to this broader
debate when we systematize the types, roles, and functions of values in simulation
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Fig. 40.1 Matrix for structuring legitimate roles of different values in the evaluation of computer
simulations

validation since most issues about the role of values in the evaluation of hypotheses,
theories, and models directly relate to simulation validation. This is no surprise
because a simulation model is typically grounded in basic theories or empirical
regularities of a given field, and it can be used for hypothesis testing when it is
implemented under specific initial conditions. One might ask, however, whether
the focus on the investigation of simulations specifies the scope of the discussion
by centering on particular perspectives on values. We nevertheless maintain that
turning from hypotheses, theories, and models to simulations does not require any
modifications of the proposed framework. It might be the case that additional criteria
come into play, e.g. in the evaluation of simulation steps like discretizing model
equations and turning them into a computer code. Whether this is actually the case
needs to be examined by studying different values in detail, which is beyond the
scope of this chapter. Still, we suspect that even additional values are likely to fit the
suggested framework.

40.3 A Defense of Epistemic Values that Assess
the Credibility of Simulation Results

Simulation results are typically evaluated for their credibility through an assessment
of their empirical accuracy, i.e., their distance to observation-based data, and, in
the case of ensemble modeling, the robustness of simulation results, i.e., the degree
of agreement between simulation results of different models or model versions.
Performance of simulation results regarding empirical accuracy and robustness, both
of which serve as epistemic values, is measured using elaborated quantitative metrics
(often called validation metrics, see Chap. 12 by Marks and Chap. 17 by Saam in
this volume). Since the application of epistemic values in simulation validation is
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addressed in many chapters of this volume, this section focuses on a defense of the
distinction between epistemic and social values.

This distinction and the very idea of epistemic assessment, i.e., the thesis that
performance in terms of epistemic values—as distinguished from non-epistemic
values—can justify credibility, has been criticized by radical social epistemologists,
as Longino (2002) has called them. Machamer and Osbeck (2004, pp. 77–78), for
instance, claim “that epistemic, or cognitive, values are ineliminably social, and that
this is so in many important ways.” They see “little practical or theoretical worth
in demarcating these by kind, that is, as social or epistemic.” The idea of dismiss-
ing epistemic justifications for scientific theories altogether can be traced back to
the macro-sociological “Strong Programme” (Barnes and Bloor 1982). The aim of
this program is to “demystify” the epistemic normativity of empiricist standards like
empirical accuracy and consistency by revealing that their use in scientific research
is causally determined by powerful interests that are at work in society at large.
Goldman and Blanchard (2016) call such approaches the “debunking form” of social
epistemology and distinguish them from approaches of “positive social epistemol-
ogy” that are compatible with epistemic normativity. Radical social epistemology is
faced with serious problems. One is that radical social epistemology itself is subject
to its own claim, which means that it has to conceive its own claim as being causally
determined. Another problem is that radical social epistemologists use “social” in
the sense of being shared by all or at least manymembers of a community. As Laudan
(2004, p. 22) reminds us, “this sense of the term social is so broad as to be vacuous.”

Longino, a moderate social epistemologist, uses “social” in the sense of being the
result of interactions between diverse individuals of a community. She argues that
what is required if individuals are to constitute a community is “not a set of shared
substantive beliefs, but a set of public standards towhich communitymembers appeal
in critical discursive interaction” (Longino 2002, p. 148). These standards address,
among others, publicly recognized forums for discussion, uptake of criticism in a dis-
cussion, public criteria for evaluation, and tempered equality of intellectual authority
of the participants (Longino 2002, pp.128–135). Longino’s notion of the social thus
points to the fact that the normative status of considerations that function as criteria in
scientific assessments is based on social interaction and agreement in accordancewith
explicit standards. Thus, for moderate or positive social epistemologists, something
can only legitimately be used as value if it is socially justified. This is compatible
with a distinction of values into different kinds. More specifically, the use of the term
“social” for qualifying procedures and standards of justification does not preclude
the use of a different notion of “social” for distinguishing between social, epistemic,
and cognitive values in scientific assessments, as we propose in our framework. It is
necessary, however, to be explicit about the sense in which “social” is used.
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40.4 Roles of Cognitive and Social Values in Assessing
the Credibility of Simulation Results

Throughout the research process, from identifying and framing a problem to consid-
ering the implications of the results for further scientific inquiry and possible practical
uses, scientists need to decide between alternative options for how to proceed. Social
values (i.e., goals, moral and prudential principles of society) may enter research at
any stage by figuring among the criteria that are considered in taking these decisions
(Machamer andWolters 2004, pp. 4–5). This is uncontroversial except when it comes
to the justification of scientific results. Traditional empiricism adheres to its princi-
ples of empirical accuracy and logical consistency as the only legitimate criteria for
assessing credibility. There is, however, a debate on whether and, if so, how other
values can, or even must, legitimately contribute to an epistemic assessment.

In Sect. 40.4.1, we discuss the proposal that cognitive values can be instrumental
in determining the extent to which a simulation instantiates epistemic values (Dou-
glas 2013; Laudan 2004; Steel 2010). This instrumental use of cognitive values is
compatible with an empiricist position, but this position has been challenged since
the 1940s. It has been claimed that further values are needed for deciding whether
hypotheses, theories, and models should be accepted because assurance provided by
the instantiation of epistemic values is limited for principle reasons. In Sect. 40.4.2,
we discuss the problem of inductive risk that is involved in generalizing empirical
findings from a sample (Rudner 1953) and the corresponding problem for simula-
tions that concerns the uncertainty in inferences from fit between simulation results
and data or results of other simulations to hypotheses about the target.

40.4.1 Assistance in the Assessment of Performance in Terms
of Epistemic Values

The extent to which cognitive values are instantiated does not as such count as
warrant for belief in, or as a confirmation of, a model or simulation results (Hempel
1988/2000, p. 223; Laudan 2004, pp. 16–18; van Fraassen 1980, p. 88). Nevertheless,
properties like broad scope or simple handling may facilitate the assessment of the
performance of a result or a claim regarding epistemic values. Douglas (2013, p. 800),
for instance, argues that simpler claims and broad-scope claims “are easier to work
with. Simpler claims are easier to follow through their implications. Broadly scoped
claims havemore arenas (andmore diverse arenas) of application to see whether they
hold.” In this type of use, cognitive values relate to credibility but not in a first-order
function. A first-order function would require that instantiating a cognitive value
to a higher degree—e.g., a claim of broader scope—indicated a higher degree of
credibility, which is not the case. Since the instantiation of certain cognitive values
may only facilitate the determination of performance in terms of epistemic values,
the function of cognitive values in assessing credibility is an auxiliary function.
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40.4.2 Determining Minimal Probabilities for Accepting
or Rejecting a Hypothesis

In empirical research, the practice of drawing inductive inferences from the findings
in a sample to support the claim that an empirical hypothesis holds in general entails
the twofold risk of error that has been called “inductive risk” (Hempel 1965, p. 92).
The risk of false positives consists in accepting a hypothesis that does not hold in
general, whereas the risk of false negatives consists in rejecting a hypothesis that does
actually hold in general. Rudner (1953, p. 2) and others have claimed that accepting
or rejecting a hypothesis—e.g. that electromagnetic pollution increases the risk of
suffering from cancer—is a task for scientists qua scientists, and that in doing so
they ought to anticipate and consider possible social consequences of an erroneous
decision.Because the inclusion of ethical criteria is indispensablewhen acceptance or
rejection of scientific hypotheses with foreseeable social consequences are to rest on
an appropriate level of risk, scientists qua scientists are required tomake ethical value
judgments. Hence, science cannot be value-free. An analogue of inductive risk in the
context of assessments of simulations is the uncertainty inherent in inferences from
the degree of empirical accuracy and robustness of simulation results to hypotheses
about the target. As a background for discussing the role and the function of social
values in the evaluation of such inferences, we first review the extensive debate on
inductive risk.

In the initial stage of the debate, “the argument from inductive risk against value-
free science,” as it is typically referred to, was questioned in two respects. Jeffrey
(1956) claimed that scientists qua scientists should characterize the uncertainty of a
hypothesis by referring to the evidence available but not accept or reject hypotheses.
Levi (1960), by contrast, contended that scientists qua scientists have to accept or
reject hypotheses based on their minimal probability, but he argued that this does not
imply that the criteria for minimal probability must be ethical in nature and relate to
social risks. Instead of having a practical objective, decisions on the acceptance or
rejection of hypotheses can also have a theoretical objective like, for instance, arriving
at statements with desirable characteristics such as simplicity or explanatory power.

The more recent debate has started with the paper “Inductive risk and values
in science” by Douglas (2000) who defends Rudner’s position. Availing herself of
studies on dioxin and its potential effect on cancer as an example, she argues that
scientists need to rely on social values in various methodological decisions as, for
example, in considering what should count as relevant evidence and how to structure
and classify the data in order to account for the social consequences of error (p. 559).
Douglas calls this use of social values an indirect role, which is to be distinguished
from the direct role of epistemic values (p. 564). Elliott and others have rightly
asked for further clarification of this distinction (Elliott 2011, p. 305; Elliott and
McKaughan 2014, p. 2). Douglas refers to Hempel (1965, p. 92) who distinguishes
between (i) rules of confirmation that determine the degree of evidential support and
(ii) rules of acceptance that determine the requisite strength of evidential support for
acceptance. This distinction between different levels at which values operate can be
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adduced for clarification. It leads to the distinction between two types of functions
that we have already introduced in Sect. 40.2: epistemic values have a first-order
function if the performance of a simulation in terms of these values determines how
well a hypothesis is confirmed. Social values operate on epistemic values because
they serve as rules for specifying minimal probabilities for accepting or rejecting the
hypothesis in question. Thus, they operate on a meta-level and perform, in this sense,
the second-order function of specifying thresholds. We use “second-order function”
since “indirect role”may also be used for the auxiliary functions that cognitive values
take in epistemic assessments (see Sect. 40.4.1).

In the assessment of simulations, the uncertainty affecting inferences from the
degree of empirical accuracy and robustness of simulation results to hypotheses
about the target—as, for instance, discussed for the case of climate predictions by
Intemann (2015, pp. 225–226), Steele (2012) and Winsberg (2010, pp. 93–102)—is
an analogue of inductive risk. Risks of error arise from difficulties in modeling and
in particular from the need for parameterizations that account for the net effect of
climate processes (e.g. cloud formation) that cannot be explicitly modeled and may
havemajor consequences for the outline of climate policy. Some take Jeffrey’s (1956)
position and restrict the tasks of scientists to characterizing the probability (Parker
2014, pp. 24–27) or the possibility (Betz 2013, p. 213) of simulation-based predic-
tions. A case in point is the approach of the Intergovernmental Panel on Climate
Change (IPCC) to assessing uncertainty in findings on climate change by means of
a metric that consists of seven categories for characterizing the probability of an
outcome, ranging from 0–1% probability (� exceptionally unlikely) to 99–100%
probability (=virtually certain) (Mastrandrea et al. 2010, p. 3). In order to justify the
position of the IPCC, one may refer to Bayesian confirmation theory that dispenses
with the notion of acceptance of a hypothesis by conceiving confirmation in a purely
quantitative and dynamic way, i.e., the increase or decrease in the epistemic probabil-
ity of a hypothesis over the course of Bayesian updating (Strevens 2006; see Chap. 7
by Beisbart in this volume).

Still, already Rudner had argued that assigning a probability to a statement is
“nothing more than the acceptance by the scientist of the hypothesis that the degree
of confirmation is p” (Rudner 1953, p. 4). Thus, refraining from accepting or reject-
ing an empirical hypothesis only sets the problem one step back instead of elimi-
nating it. This last move may be resisted by claiming that scientists do not need to
determine precise probabilities for their beliefs to inform decision makers. However,
Steele (2012) has shown that there is a more general problem that supports Rud-
ner’s conclusion. If scientists translate the uncertainty of their beliefs into broader
categories—e.g. those of the IPCC’s confidence scale that rest on the five qualifiers
“very high,” “high,” “medium,” “low,” and “very low” for expressing confidence
in a finding (Mastrandrea et al. 2010, p. 3)—for the purpose of informing policy
makers, the codification of the uncertainty of their complex beliefs in terms of the
broader categories is not fully determined. Referring to the IPCC’s uncertainty rat-
ing, Steele argues that “scientists cannot avoid making value judgments, at least
implicitly, when deciding how to match their beliefs to the required scale” (Steele
2012, p. 899). Steele’s argument speaks against proposals that defend value-free sci-
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ence by using hedged hypotheses, i.e. hypotheses that make the uncertainty explicit
(Betz 2013, p. 212), or by classifying predictions as epistemic possibilities (Betz
2016, p. 139), if these characterizations and classifications are not fully determined
projections.

If social values cannot be eliminated, they need to be made explicit and justified.
Some social epistemologists argue that scientists can legitimately avail themselves
of social values in decisions on methodology if they are democratically endorsed
(Intemann 2015, p. 219; Kitcher 2001).Wilholt (2009, pp. 94–99) claims that relying
on democratically endorsed values is likely to prevent researchers from having a bias
that arises when they just follow their personal preferences in dealing with problems
like inductive risk. It is an open question, however, whether an agreement on goals
and values in a democratic procedure can be achieved in reasonable time.

40.5 Roles of Cognitive and Social Values in Assessments
of the Usefulness of Simulation Models

So far, we have discussed the roles of cognitive and social values in assessments of
the credibility of simulation results. In what follows, we turn to broader conceptions
of validation that justify further functions of cognitive and social values. Such a
broader conception has famously been proposed by Kuhn (1977) in his discussion of
theory choice and has also become common practice in the validation of simulations.
In “Objectivity, Value Judgment and Theory Choice,” Kuhn lists five characteristics
of what constitutes a good scientific theory: accuracy, consistency, broad scope,
simplicity, and fruitfulness. He stresses that these characteristics are not exhaustive
but “individually important and collectively sufficiently varied to indicate what is
at stake” (Kuhn 1977, p. 321). Kuhn replaces the empiricist goal of assessing how
well-confirmed theories are by the goal of assessing how good theories perform with
regard to a range of criteria. While the empiricist position takes epistemic values
to be the only scientifically legitimate criteria for theory choice, Kuhn conceives
epistemic criteria as belonging to a larger set of evaluative criteria with first-order
functions as we call them. The extent to which all these criteria are met counts in
the assessment of a theory. Levi (1960, 1986) and Hempel (1988/2000) likewise
proposed conceiving the principal goal of science as characterized by both cognitive
and epistemic values.

What are the characteristics of a good simulation? Flato’s answer, to which we
referred in the introduction, stating that simulations should “provide useful and reli-
able results” (Flato 2011, p. 797), is not restricted to simulations of earth system
models, which are the subject of his review. Besides assessing whether results are
credible, or “reliable”, in Flato’s terms, the usefulness of a simulation needs to be
assessed as well. Usefulness consists of two aspects. First, a simulation is only useful
if it represents the target in those respects that are relevant to answering the ques-
tion under investigation. Second, the practicability of a simulation for its users is a
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further aspect of its usefulness. In Sect. 40.5.1, we discuss the use of cognitive and
social criteria for assessing the practicability of a simulation. In Sect. 40.5.2, we turn
to the use of values for assessing the relevance of a model to the hypothesis under
investigation.

40.5.1 Accounting for the Practicability of Simulation Models

Practicability issues typically come to the fore when simulations are evaluated for
uses in applied contexts. It has been proposed that simulations in such contexts ought
to be assessed with regard to questions like “‘Is it easy enough to use this model?’, ‘Is
this hypothesis accurate enough for our present purposes?’, ‘Can this theory provide
results in a timely fashion?’ and ‘Is thismodel relatively inexpensive to use?’” (Elliott
and McKaughan 2014, p. 5). The characteristics of simulations that increase their
practicability for the users perform a first-order function in usefulness assessments,
which contrasts with their auxiliary function in epistemic assessments (Sect. 40.4.1).

Taking account of the needs of users requires consideration not only of aspects of
practicability but also of aspects of credibility. In this vein, Elliott and McKaughan
(2014, pp.15 and 19) contend that in applied contexts, performance in terms of values
that relate to the needs of the users of a simulation may legitimately trump perfor-
mance in terms of empirical accuracy if this is in accordance with two individually
necessary and collectively sufficient conditions: these values (i) must be explicit as
criteria that govern the appraisal, and they (ii) should get priority only to the extent
to which they advance the goals associated with the assessment. Expedited Risk
Assessment of hazardous substances (Cranor 1995) is typically used as a case in
point in this regard (e.g., Elliott and McKaughan 2014, Steel 2010). Cranor found
that the social costs of fairly accurate but very slow procedures are greater than those
that arise from Expedited Risk Assessment methods. The latter are less accurate but
much faster methodologies for the assessment of risks, not least because the more
accurate procedures cannot keep up with newly emerging information on hazardous
substances.

We have two comments regarding Elliott and McKaughan’s conditions for legit-
imately trading performance in terms of values for credibility for performance in
terms of values for practicability. First, these conditions do not imply that credibility
of simulation results can always be legitimately traded off for practicability of sim-
ulation models. They are compatible with there being cases in applied contexts such
as warnings about extreme weather events that require high performance regard-
ing, e.g., empirical accuracy and robustness of predictions, while empirical accuracy
might be less important to other goals such as fundamental understanding in basic
research. Second, Cartwright (2006, 2012) rightly argues that appropriate “evidence
for use” is not simply a question of the degree of accuracy. Because idealizations
are indispensable in standardized controlled trials and basic research in general, an
appropriate conception of epistemic assessment for applied contexts has to account
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for causal complexity and the variability of conditions at work in the given context
of use.

The social values held by users, by contrast, function as second-order criteria for
how to specify cognitive and epistemic values. Economic interest in an efficient use of
a simulation, for instance, specifies and prioritizes properties like easy handling, low
demand on resources in running the simulation, and receiving results in a short time.
Thus, societal interests and goals may guide decisions on idealizations in various
steps of a simulation. This is a second-order function that operates on cognitive values
and is analogous to the function of ethical values in the argument from inductive risk,
where ethical values specify the rules for the acceptance of a hypothesis in relation
to the kind of practical use to which it is put. Winsberg (2010, p. 131) concludes
from this that simulations cannot be value-free in the sense of being free from social
values.

Considerations on practicability are not restricted to applied research, however,
but are important in research in general since decisions on idealizations need not be
guided by social values. Parker (2014), for instance, contends that the choice as to
which physical processes should be included in a climate model, i.e., its comprehen-
siveness, can be a relevant aspect and thus argues against Winsberg’s (2010, p. 131)
claim that science cannot be free of social values. She highlights practicability issues
when she points out “that such choices can also be influenced or even determined
by pragmatic factors. […] For instance, the scientist may already have in hand some
computer code for process P but not for processes Q, R, or S. Or, they might judge
that it will be much easier to incorporate P than to incorporate Q or R or S” (Parker
2014, p. 27). Although Parker’s argument defeats the claim that social values nec-
essarily enter simulation evaluation in a first-order function, it does not imply that
using social values as second-order values is illegitimate in every case, however.

40.5.2 Accounting for the Relevance of Simulation Models

Simulations are representational tools that are used for answering specific questions
about their target by providing suitable hypotheses. Hence, they should be assessed
with regard to whether they are appropriate for their purpose (Parker 2009; Frigg
et al. 2015). Hypotheses can be distinguished according to their kind (such as
prediction or explanation) , the specific variables or phenomena investigated, the
temporal or spatial scales of interest, their specificity, or the allowed margin of error
(Baumberger et al. 2017, p. 4). Whether a simulation is appropriate for answering
a specific question does not depend on the empirical accuracy and the robustness of
the simulation results alone. What is also required is that the model represents the
target in a way that is relevant to answering the question at issue. For example, if a
simulation generates empirically accurate results but does not represent the causal
structure of the target, it is not possible to infer from the accuracy of the results that
the simulation provides adequate explanations.
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Relevance is typically discussed in terms of what features of the target system
need to be represented and what data ought to be considered as evidence for or
against the investigated hypothesis (Douglas 2000, pp. 569–572; Intemann 2015,
pp. 220–221; Peschard and van Fraassen 2014). Since simulations are idealized
representations of their target, questions of relevance also arise with regard to how
the represented is represented. Climate simulations provide a case in point. Properties
like simplicity of model structure, elegance of equations (e.g. symmetric equations),
and explanatory power of functions that describe basic mechanisms are relevant to
understanding the dynamics of the global climate system. If, however, the purpose
consists in predicting future regional climate change, relevant properties include
comprehensiveness with respect to processes, complexity of their representation,
high spatio-temporal resolution, and explanatory power of functions that describe
sub-grid processes (Held 2005; Knutti 2008; Schmidt and Sherwood 2015).

Which features of the target system need to be represented and which data ought
to be considered as evidence for or against the investigated hypothesis depends on
the context in which a specific hypothesis is investigated. This needs to be taken
into consideration for specifying and weighing cognitive values of simulations as
well (van Fraassen 1980, p. 89). There are scientific and societal goals that are
connected with the execution of a simulation. The scientific goal is typically con-
ceived as improving the performance of scientific representations with respect to
cognitive and epistemic values like explanatory power, broad scope, and empirical
accuracy. Hempel, for instance, argues that together these values “reflect a profound
andwidely shared human concernwhose satisfaction is the principal goal of scientific
research—namely, the formation of a general account of the world which is as accu-
rate, comprehensive, systematic and simple as possible and which affords us both
understanding and foresight” (Hempel 1988/2000, p. 216). Hence, the use of cogni-
tive values as first-order criteria in assessing simulations is justified if they are part of
what characterizes the scientific goal to which the scientific community is commit-
ted. These abstract values are typically regarded as universal criteria of good science
(Hempel 1988/2000, p. 216; Kuhn 1977, p. 321; Laudan 2004, p. 16; van Fraassen
1980, p. 88). Levi (1986), by contrast, argues for a pluralistic account of scientific
goals and does so by asserting that an application of the criteria in question requires
that they are properly specified for the purpose at issue. Without doubt, interpreting
the specified criteria used in the assessment of simulations as different specifications
and weightings of a universal set of ambiguous and vague criteria would be a difficult
task. Still, even if this were done successfully, this would still not provide a strong
argument for their legitimate use since the way in which the criteria have been spec-
ified and weighted for the purpose of the simulation needs to be justified. A telling
example in this regard is Rochefort-Maranda’s analysis of “simplicity” in the context
of model selection, which distinguishes five concepts of simplicity and shows “that
the importance that we give for a particular notion of simplicity will depend on the
goal that we pursue when we select a model” (Rochefort-Maranda 2016, p. 269).

Since the different values need individual specification and weighing in accor-
dance with the problem to which a simulation is applied, a pluralistic account of
values seems reasonable for the purpose of assessing simulations. Up to now, there
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are only a few systematic analyses of standards for relevance available, however.
One is Weisberg’s (2007, 2013) account of representational ideals. Weisberg devel-
ops this account in the context of the justification of different kinds of idealizations
in science. His thesis holds that not only different intended uses like explanation
or prediction (Weisberg 2007, p. 635) but also the state of the art in the field and
considerations of practicability like easy handling (Weisberg 2007, p. 641) require
different representational ideals that, in turn, guide different kinds of idealization.

Societal goals can also contribute to the justification of using specific cognitive
values.We have already seen this in connectionwith practicability issues, but it is also
the case if the performance of a hypothesis in terms of cognitive criteria is relevant to
using the simulation results for pursuing a societal objective. This has been pointed
out by Intemann: “Social and ethical aims are also relevant to determining the sorts
of features that adequate models will have. For example, some argue that adequate
Integrated Assessment Models (IAMs) must not only provide information about the
aggregate impacts to be expected from climate change, but also information about
the distribution of those impacts to ensure that costs and benefits can be distributed
equitably […] Thus, models that fail to account for the distribution of effects will be
inadequate for developing ethical policies” (Intemann2015, p. 220). Still, evenwithin
such an account, the societal goals have to be made explicit (Elliott and McKaughan
2014), and must be justified by democratic bodies and procedures in society (Kitcher
2001; Longino 2002).

40.6 Simulation Validation as a Multi-criteria Assessment

The application of a broad variety of criteria for credibility and usefulness in sci-
entific assessments faces two difficulties, namely the ambiguity inherent in each
criterion and the need to define trade-offs between the criteria. Kuhn argues that the
criteria should be specified and weighed by using informal considerations, based on
expert judgment and discussion: “The considerable effectiveness of such criteria does
not […] depend on their being sufficiently articulated to dictate the choice of each
individual who subscribes to them. Indeed, if they were articulated to that extent,
a behavior mechanism fundamental to scientific advance would cease to function”
(Kuhn 1977, p. 330; see also Hempel 1988/2000, p. 221). Levi criticized what he
takes to be an implication of Kuhn’s position, namely that controversies about values
in the assessment of hypotheses are settled “through persuasion or coercion” (Levi
1986, p. 41) because this is not the only alternative to the algorithmic procedures
that Kuhn rejects. However, a general hierarchical ordering of values is no reason-
able option even for authors who criticize Kuhn by arguing for lexical priority of
epistemic over cognitive values (Douglas 2016, p. 619).

As an alternative to Kuhn’s approach, Levi proposed to regard controversies con-
cerning cognitive values as cases of “decision making under unresolved conflicts”
(Levi 1986, p. 46). He suggests settling unresolved conflicts through further inquiry
into how to specify the values. In the case of cognitive values, for instance, it needs



40 What Types of Values Enter Simulation Validation … 975

to be determined “what is to count as simple or as explanatory powerful” (Levi
1986, p. 39). Further suggestions that rest on the framework of decision theory have
recently been put forward. Okasha (2011), for instance, reads Kuhn’s thesis that
there is no algorithm for choices with multiple criteria as the claim “that there are
many algorithms, all equally acceptable” (Okasha 2011, p. 110)—a reading which
Kuhn himself considers in a hypothetical dialogue with a Bayesian, though with-
out subscribing to it (Kuhn 1977, 227–330). In order to criticize Kuhn as he reads
him, Okasha reconstructs theory choice as a social choice with each individual rep-
resenting one of Kuhn’s five criteria for theory assessment and shows that Arrow’s
impossibility theorem holds for theory choice. This means that there is no algo-
rithm whatsoever that determines the way of choosing and consequently no rational
choice among theories if multiple criteria are to be applied. Okasha explores several
strategies for avoiding this result, which is possible, for instance, if performances
regarding the criteria can at least be measured on a ratio scale. While this is feasible
as regards empirical accuracy, it seems less so with respect to some cognitive values
like explanatory power. Gaertner and Wüthrich (2015) take a different approach to
model theory choice as a rational choice. They propose scoring rules for measuring
performance in terms of each of the criteria. This allows for inter-criteria compa-
rability while aggregation of scores can be used to determine a weak ordering of
alternative theories. These scoring rules can be applied so as to account for the use-
fulness of a simulation for investigating the hypothesis in a given context. Hence, it
seems that there is a way of formally determining which of the considered theories
or simulations works best for a given purpose and context, all criteria considered.

However, when performances are aggregated with the intention of ranking alter-
native simulations, information about the individual performances regarding the var-
ious criteria gets lost or becomes hidden. Sometimes, this is a disadvantage. For
controlling for, and improving on, both relevance and accuracy, for instance, it may
be required to keep an eye on the extent to which a simulation meets each criterion
over the course of the various steps of a simulation. Doing this provides a basis for
improving the simulation in an iterative assessment procedure (Diekmann and Zwart
2014; Winsberg 2010).

40.7 Summary and Conclusion

Our approach to systematizing the debate on values in simulation validation rests on a
distinctionbetweendifferent types, roles and functions of values. Types of criteria that
are used in the assessment of simulations are epistemic values, cognitive values, and
social values. The legitimacy of their use depends on their function in the assessment
of a simulation. Against this background, we suggested distinguishing between three
formal types of functions, namely first-order functions, second-order functions, and
auxiliary functions. Values with first-order functions are applied to simulations if
information about the credibility and the usefulness of simulations and their results
is to be generated. Values with second-order functions specify and weigh the values
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with first-order functions with respect to the purpose of a simulation, i.e., testing the
hypothesis about the target to be investigated by means of the simulation, and with
respect to its context. Values with auxiliary functions, in turn, take an instrumental
role in assessments of how well a simulation performs in terms of values with a
first-order function.

Epistemic criteria like accuracy, robustness, and consistency have a first-order
function. The extent to which these values are instantiated indicates how credible
simulation results are. Cognitive values are a consequence of idealizations in the
various steps of conducting a simulation. They can perform several functions. Values
like comprehensiveness, complexity, scope, explanatory power, and easy handling
are used in a first-order function if they act as criteria for the usefulness of a simulation
model. Usefulness involves, on the one hand, the question as to whether a simulation
model is relevant, i.e., whether the target is appropriately represented with respect
to investigating the hypothesis about the target, and, on the other hand, the question
as to how practicable the simulation model is for its users. Values with first-order
functions need to be specified in relation to the sort of hypothesis and the context of
investigation. If the practicability of a simulation model that instantiates cognitive
values is simply of help in assessing the performance in terms of epistemic values,
cognitive values serve an auxiliary function for assessing the credibility of simulation
results. Legitimate use of social values is restricted to a second-order function, i.e., to
specifying and weighing the values with a first-order function, if simulation results
are intended to be useful for pursuing a societal objective, as in scientific policy
advice.

An evaluation of how credible simulation results are and of how useful a simula-
tion model is by means of a broad range of criteria often requires a trade-off between
performances regarding epistemic and cognitive criteria with first-order functions.
Normative principles for deciding on legitimate trade-offs refer to the goals of imple-
menting a simulation. In the case of societal goals as, for instance when simulations
are conducted with the intention of informing policy-makers about the effectivity
or possible risks of certain instruments so as to enable them to address these risks
appropriately, it is legitimate to use social values for specifying and weighing the
pertinent values with a first-order function. In the case of scientific goals, such as
promoting the state of the art in the field by improving the complexity, resolution,
simplicity, accuracy, and efficiency of a simulation, these goals serve to specify and
weigh the values with first-order functions.

Neither determining the degree of performance in terms of particular criteria nor
weighing criteria against each other for deciding on acceptable trade-offs needs to
be a matter of subjective, that is to say arbitrary, individual preferences. Instead,
simulation validation understood as a multi-criteria assessment is objective in the
relevant sense if it is based on rational intersubjective agreement on how to specify
and weigh the values with a first-order function (Spohn 2004). Various avenues have
already been explored for answering the question of how rational agreement could
be achieved, but much further work in this direction is still necessary. Elementary
questions to be addressed are the following: Under which conditions would rational
choice provide an appropriate framework? What models of decisions under uncer-
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tainty are applicable? Are there alternative frameworks such as procedural principles
for explicit deliberation that could be used to reach agreement on the specification
and weighting of values with first-order functions? The avenue that will be followed
will also frame the stance on how to conceive scientific rationality since it seems no
longer tenable to build only on empiricist principles.
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Chapter 41
Calibration, Validation,
and Confirmation

Mathias Frisch

Abstract This chapter examines the role of parameter calibration in the confirmation
and validation of complex computer simulation models. I examine the question to
what extent calibration data can confirm or validate the calibrated model, focusing
in particular on Bayesian approaches to confirmation. I distinguish several different
Bayesian approaches to confirmation and argue that complex simulation models
exhibit a predictivist effect: Complex computer simulation models constitute a case
in which predictive success, as opposed to the mere accommodation of evidence,
provides a more stringent test of the model. Data used in tuning do not validate or
confirm a model to the same extent as data successfully predicted by the model do.

Keywords Predictivism · Bayesian epistemology · Problem of old evidence ·
Tuning · Climate models

41.1 Introduction

Many complex computer simulations involve semi-empirical parameterizations.
Parameterizations represent complex processes through simplified, approximate
equations involving parameters that often are only poorly constrained through a
theoretical understanding of the phenomena modeled. Since parameter values are
not determined by any underlying theory, the values need to be calibrated or tuned.
Yetmodelers often express reservations about the need for calibration inmodel devel-
opment, suggesting that this need presents a problem for the degree of trust we can
have in amodel’s predictions. In particular, it is common tomaintain that data used in
calibration cannot unproblematically also be used to evaluate a model’s performance
(Mauritsen et al. 2012; Intergovernmental Panel on Climate Change 2014, Box 9.1).
Calibration data, that is, cannot also be used to validate a model.
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My aim in this chapter is to examine these concerns and ask how the need for
parameter calibration affects the validation of a simulation. The core epistemological
issue presented by calibration—to what extent calibration data can also be used to
evaluate a model’s performance and to validate the model—is a special case of a
problem that has a long history in the philosophy of science, the problem of predic-
tivism: is the ability successfully to predict new evidence more highly confirmatory
of a theory or model than the successful accommodation of existing evidence?

My discussion will concentrate on the calibration of climate models (where the
practice is usually referred to as tuning), since the issue of parameter calibration has
received a fair amount of attention in the climate modeling literature (Hourdin et al.
2016; Baumberger et al. 2017; Bellprat et al. 2012; Masson and Knutti 2012; Golaz
et al. 2013; Kennedy and O’Hagan 2001; Gleckler et al. 2008) (see also Chap. 29 by
Rood in this volume). But the issues I will discuss apply to the calibration of complex
computer simulations more generally. And while I will examine calibration mainly
through the lenses of the philosophical problem of predictivism, I will also briefly
touch on several other conceptual issues concerning calibration.

In the next section I will provide a brief overview of parameter calibration in
climate modeling and of some of the conceptual problems that arise for calibration in
this context. Then I will provide a brief survey of the philosophical debate concerning
predictivism, focusing inparticular onBayesian confirmation theory and the so-called
problem of old evidence. Finally, I will discuss what various strategies for responding
to the problem of old evidence in aBayesian framework entail for the epistemological
status of calibration and its role in model validation. My conclusion in this somewhat
opinionated survey will be that there is at least one kind of argument in support of
the concern frequently expressed by climate modelers that data used in tuning do not
validate a model or do not confirm a model to the same extent as data successfully
predicted by the model. Complex computer simulation models constitute a case in
which predictive success, as opposed to the mere accommodation of evidence, can
provide a more stringent test of the model.

41.2 Computer Simulations, and Calibration

41.2.1 Calibration, Verification, and Validation

We can broadly (and roughly) distinguish two types of computer simulation:
equation-based simulation, and agent-based simulation (Parker 2013). Equation-
based simulations involve dynamical equations, which often will be differential
equations, reflecting our theoretical understanding of the processes modeled. Cli-
mate models, for example, involve equations from fluid dynamics that allow us to
model the flow of mass and energy in the atmosphere. The dynamical equations of
agent-based simulations, by contrast, represent—often very simple—rules of behav-
ior for individual agents. My focus will be on equation-based simulations and in
particular on climate modeling.
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Two central concepts in the evaluation of computer simulations are the verification
and the validation of a simulation. Oberkampf et al. (2004) distinguish the two
concepts as follows:

Verification: The process of determining that a model implementation accurately represents
the developer’s conceptual description of the model and the solution to the model.

Validation: The process of determining the degree to which a model is an accurate represen-
tation of the real world from the perspective of the intended uses of the model. (347)

That is, verification is concernedwith the relation between a simulationmodel and
the conceptual and mathematical model from which it is derived. “Verification deals
withmathematics” (Roachequoted inOberkampf et al. 2004) andnotwith the relation
between a simulation and the world. Validation, by contrast, concerns the relation
between a simulation and the world; or as Roache put it somewhat metaphorically
“validation deals with physics.” Validation, thus, concerns what philosophers call
the empirical confirmation of a simulation model. (cf. Chap. 2 by Oberkampf and
Chap. 3 by Murray-Smith in this volume.)

Some of the equations in complex climate models express basic and well-
understood physical principles or are approximations to such principles. Among
these principles are the principles of mass, energy, and angular momentum conser-
vation or basic equations of thermodynamics or fluid dynamics. These equations
together comprise a mathematical climate model. To obtain numerical solutions, the
equations are discretized on a spatiotemporal grid, which for global climate models
has a grid size of 25–300 km. The question of a climate simulation’s verification
concerns the question as to whether numerical solutions to the discretized system of
equations accurately represents the systems defined by the original set of equations
and whether the discretized equations approximate the original system of equations
sufficiently closely.

One of the complexities of global climate models consists in the fact that they
need to integrate processes taking place at different scales. Here parameterizations
that constitute sub-models for processes not explicitly represented in the complex
model play an important role. Parameterizations allowmodelers to represent complex
processes involving scales smaller than the models’ grid size through simplified,
approximate equations. Parameterizations are chosen when more fully resolving
processes in the model may be numerically too costly, or when a process may be too
ill understood physically to be represented more fully (Hourdin et al. 2016).

A distinction that is important in this context is that between a family ofmodels and
model instances. A family of models is characterized by a common set of equations,
whichmay include parameterizations. A family ofmodels consists of differentmodel
instances, each of which is characterized by a set of specific parameter values. For
example, the linear equation y�ax+b defines a family ofmodels comprising different
model instances. Each model instance is defined by a tuple (an; bn) of specific values
for the parameters a and b. Thus, one or several parameterized equations help to
define a family of models, whereas a particular set of parameter values serves to pick
out a specific model instance.
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Parameter calibration can take the form of conducting a so-called “perturbed
physics experiment” (Parker 2010), in which a model with the same model-structure
is run several times with different parameter values to determine the values with
the best observational fit. Due to the computational costs of running complex mod-
els, however, modelers generally cannot explore the full space of parameter values.
Instead, ranges of plausible parameter values that can be computationally explored
need to be determined by expert judgment (Bellprat et al. 2012). That is, models are
not calibrated to the parameter values that we know to provide the best fit among
all possible values, but to the values that provide the best fit among the small set of
values modelers find plausible or worth exploring and do in fact test.

Moreover, there may be more than one parameter set that is equally compatible
with the observational evidence used to calibrate the data (Knutti et al. 2008) and
values of different parameters may depend on one another. Thus, the data used to
calibrate a model may underdetermine possible parameter values and observational
constraintsmay, in this sense, be tooweak.At the same time observational constraints
may also be too strong in that it may not be possible to calibrate a givenmodel equally
well to different data sets (Ibid.). Instead of rejecting a model completely in such
cases, modelers often argue that the model is adequate for some purposes but not
for others. This raises the question how much we can trust a model that is calibrated
with respect to one type of data set (such as twentieth century changes in global
mean surface temperature) to be predictively adequate with respect to some other
data set, such as temperature changes or precipitation changes in the second half of
the twenty-first temperature.

Examples of calibrated parameters in climate models include parameters related
to the behavior of clouds, which involve sub-grid processes that also remain rela-
tively poorly understood physically. Other examples are parameters related to Earth’s
albedo (that is, the reflectivity of the oceans or land surfaces). Cloud parameters are,
for instance, tuned against the top of the atmosphere (TOA) energy balance. As a
consequence of discretization many models do not satisfy the principle of energy
conservation: in control runs simulating preindustrial climate in which atmospheric
constituents are fixed at preindustrial levels models leak energy and have a positive
radiation imbalance. This problem can be addressed by calibrating a cloud homo-
geneity factor to adjust the TOA net shortwave flux, and hence the TOA energy flux
imbalance (Mauritsen et al. 2012).

Cloud parameters are also calibrated to provide a better fit with changes in the
globalmean surface temperature (GMST). For example, the threshold radius atwhich
cloud droplets fall as rain—the so-called auto-conversion threshold radius—can be
calibrated so as to produce abetter fitwith observed changes in theGMST(Golaz et al.
2013, 2010). The threshold radius determines the size of cloudwater droplets atwhich
droplets turn into rain. Increasing the radius delays rainfall, increases cloudiness, and
thereby affects the radiation balance, which in turn affects surface temperatures.

In this example, a model has been explicitly and intentionally calibrated to better
match twentieth-century warming. Some authors worry that climate models may
also be tuned inadvertently to match twentieth-century warming. If we broaden the
notion of calibration to include not only the process of adjusting the value of a free
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parameter in a model but also decisions on whether to include parameterizations
of certain processes in the model and on how to model these processes, then it
is not implausible that tuning to twentieth-century warming occurs unintentionally
during the construction of climate models (Hourdin et al. 2016). Whether this raises
epistemological problems is a question to which I will return below.

Both examples I mentioned can be used to illustrate a potentially problematic
feature of parameter calibration: the fact that calibration sometimes amounts to a
process of trying to find a successful balance among compensating errors. Ocean
and surface sub-models in a coupled climate model often use different grid-sizes.
The energy leakage in global climate models seems to be largely due to the mis-
matching grids between the sub-models (Mauritsen et al. 2012, 8). Calibrating cloud
parameters to adjust the TOAdoes not correct these structural problems of themodel,
but rather compensates for these problems by making adjustments to the model else-
where. As Mauritsen et al. explain: “adjusting cloud parameters involves a process
of error compensation, as it is well appreciated that climate models poorly represent
clouds and convective processes. Tuning aims at balancing the Earth’s energy bud-
get by adjusting a deficient representation of clouds, without necessarily aiming at
improving the latter.” (2012, 2)

That calibration can involve compensating errors is also illustrated by the second
example. Here, the droplet radius that achieves the best fit with observed changes in
the GMST is one that is smaller than appears physically reasonable. Thus, the droplet
radius is tuned to a value that is in tension with our best physical understanding of the
parameterized processes. This apparently incorrect representation of cloud droplets
is justified by the fact that it appears to compensate for unknown other, perhaps
structural problems of the model.

What role does parameter calibration play in verification and validation of simu-
lations? In fact, it can play a dual role: on the one hand, parameter values are picked
with an eye on a model’s verification in order to compensate for errors introduced in
implementing the underlying dynamical equations in a discretized computer simu-
lation. An example of this is the calibration of parameters to compensate for the fact
that amodel’s discretization does not satisfy energy-momentum conservation. On the
other hand, parameter values are chosen with an eye on a model’s empirical fit, for
example, when a simulation is calibratedwith respect to changes in twentieth-century
global temperatures. Now, intuitively calibrating a model to increase its empirical
fit—or, more carefully, choosing a particular model instance over others because of
its superior empirical fit—concerns the model’s validation. Yet there is some dis-
agreement in the literature on whether parameter calibration can in fact be part of
the process of validating a model or not.

Oberkampf and Barone (2006) explicitly distinguish between the task of eval-
uating models with the help of a validation metric and the process of parameter
calibration: “Our emphasis in validation metrics is in blind assessment of the pre-
dictive capability of a computational model (how good is the model?), as opposed
to optimizing the agreement between a given model and experimental measure-
ments.” (10) In fact, Oberkampf andBarone explicitly exclude parameter calibration,
which amounts to adjusting parameter values in the light of known evidence, from
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the process of properly validating a model. Thus, when discussing the interaction
between computer modelers and experimentalists, who supply empirical data, they
say: “What should not be provided to the computationalists [by the experimentalists]
in a rigorous validation activity is the measured SRQ [the system response quantity
measured]. Stated differently, it is our view that a blind computational prediction be
compared with experimental results so that a true measure of predictive capability
can be assessed in the validation metric.” (9) Proper validation requires a “true mea-
sure of the predictive capability” of a simulation, which is only possible through a
“blind” prediction without prior knowledge of what the correct empirical values of
the quantity of interest are.

Oberkampf et al. (2004) explain in more detail why successful prediction as part
of a model’s validation is important. Oberkampf, Trucano, and Hirsch maintain that
our confidence in the accuracy of predictions may be low for predictions that are
far, in some sense, from the validation database. While we infer the accuracy of a
model’s predictions from its performance with respect to the validation database,
the reliability of this inference can be quite weak in the case of complex computer
simulations. For unlike in the case of “traditional scientific theories” computational
simulation “also relies on many additional mathematical issues, e.g., discretization
algorithms and grid quality, and practical implementation issues, e.g., computer hard-
ware, operating-system software, source-code reliability, and analyst skill, that are
not present in classical scientific theories.” (351) All these additional features of
computer simulation serve to reduce the strength of the inference from predictive
accuracy in one domain—the validation base—to that in another: the domain of the
model’s intended application.

Whereas in the case of engineering there is either a complete or at least a partial
overlap between the validation and application domain, they maintain, in the case of
many complex computer simulations there is no overlap between the two domains.
In the latter case, we face an inference problem: how can we justify our belief in
the model’s predictions in the application domain from its success in the validation
domain? And while, in contrast with (Oberkampf and Barone 2006), Oberkampf,
Trucano, and Hirsch allow calibration data to be part of the validation database, they
stress that the inference from successful validation to successful prediction is stronger
for data in the validation database that have not been used in calibration: “The need
to perform this extrapolation reinforces our need for models to be judged on the basis
of achieving the right answers for the right reasons in the validation regime. [… It]
is not convincing that model calibration provides a starting point for the inference
process” from validation to application domain. (Oberkampf et al. 2004, 352) Below
I will propose a Bayesian defense of Oberkampf, Trucano ond Hirsch’s claim.

How are the different domains in question delineated and what determines the
closeness among different domains? What the relevant criteria of similarity and
identity for domains are depends on the details of modeling framework at issue. The
domains of models constructed purely with the help of physical laws or “traditional
scientific theories” will be much larger, due to the laws’ known inductive stability,
than the domains of complex computer simulation models. The identity conditions
for a domain of application depend on the range of invariance of a model across
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changes of initial or boundary conditions. In the case of models built with the help
of physical principles that we know to have a large range of invariance, changes of
initial or boundary conditions within the invariance range will not take us to a new
domain of application. By contrast, in the case of complex simulation models, where
we do not know to what extent the model’s predictions are sensitively dependent
on specific initial or boundary conditions, domains have be distinguished in a much
more fine-grained manner.

41.2.2 Adequacy for Purpose

The features of calibration I surveyed suggest that the aim of calibration cannot
be to arrive at a “true” model in which parameters have their true values. Rather,
calibrations have to satisfy a range of different, sometimes conflicting constraints
on the model and on parameter values. Because these different constraints may be
weighted in different ways, and since different modeling aims may suggest different
weightings, tuning arguably is a skill requiring expert judgment. AsHourdin et al. put
it, tuning is an “art” as much as it is a scientific or “engineering calibration exercise”
(Hourdin et al. 2016, 598).

Some argue that type of expert judgment required in deciding on plausible parame-
terizations for complex simulationmodels and settling on a preferred set of parameter
values introduces a “subjective element” into model calibration (see Hourdin et al.
2016), even when, as in the case of climate models, the models are ultimately based
on well-understood physical principles. Yet it is important not to overemphasize
the subjectivity of calibration and to characterize carefully what the subjective or
pragmatic element introduced by model calibration consists in. The need for expert
judgment in tuning does in no way undermine the basic predictions made with the
help of climate models and does not license a “climate skeptical” conclusion.

At least some of the features of parameterized climatemodels which are discussed
in the literature are features of scientific models much more generally. Still speaking
mainly of climate models, Wendy Parker (Parker 2009) has argued that the aim of
climate modeling cannot be to arrive at a true model of the phenomena but only at
a model that is adequate to some specific purpose. Some models, such as simple
energy balance models of the Earth that treat the Earth as a simple black body, are
obviously highly idealized, abstract away from many messy yet important features
of Earth’s climate, and represent only a few basic physical processes. Yet even highly
complex models, such as general circulation models and Earth System Models con-
tain idealizations and abstraction and arguably also structural errors. These errors
or misrepresentations are partly due to a particular discretization chosen, partly due
to the fact that certain processes are too complex to be included even in ESMs in
complete detail, and partly due to the fact that some of the processes modeled are
still not fully understood. Thus, the aim in climate modeling is not (and arguably
cannot be) to arrive at a true model of the climate system—a representation that is
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correct in all details but is to construct models that capture different aspects of the
climate system in ways that are adequate for different representational purposes.

Different models will be best suited for different purposes and a particular model
may be adequate for some purpose but not for others. Climate scientists speak of the
“skill” of a model and point out that there is no unique overall metric of skill and that
different models can be more or less skillful at different tasks (Gleckler et al. 2008;
Knutti et al. 2008). For example, a particular model might be skillful at adequately
reproducing twentieth century temperature trends in the Northern Hemisphere—that
is, predicted trends might be within what for a given purpose are acceptable margins
of error for measured (and reconstructed) average temperature trends—while the
model might be less skillful at representing precipitation patterns in the Southern
Hemisphere. Or, to take another example, simple energy balance models may be
the models best suited for providing a qualitative understanding of the greenhouse
effect and of temperature trends, since these models make the physical mechanisms
at work perspicuous in ways in which highly complex general circulation models
(GCMs) or Earth system models (ESMs) do not. The latter models, by contrast, are
better suited for quantitative projections. When a climate model is evaluated, we do
not confirm the correctness tout court of the model but rather what Parker has called
its “adequacy-for-purpose” (Parker 2009).

Purposes to which models may be put can be distinguished along different dimen-
sions (Frisch 2015; Baumberger et al. 2017) (see also Ch. 39 by Hirsch Hadorn and
Baumberger in this volume). Differences in purpose do not only concern predictive
skills in different domains, but also whether a model can offer precise quantitative
predictions or merely predicts qualitative trends. Alternatively we may be interested
in an explanation of a certain relationship between climate variables or may be look-
ing to understand the mechanism that is responsible for a certain phenomenon rather
than be looking for a numerical prediction. Different models at different levels in
the modeling hierarchy ranging from simple energy balance models to GCMs and
ESMs may be better suited for different purposes (Held 2005).

While Parker discusses her claim that evaluating models always has to consist
in evaluating a model’s adequacy for some particular purpose only in the context of
climate models, this point arguably applies to models in the sciences muchmore gen-
erally and is a consequence of Nancy Cartwright’s influential argument (Cartwright
1983) for the view that all models in the sciences idealize, contain abstractions, and
hence partly misrepresent their intended targets.1 Parameterizations are often char-
acterized as offering coarse-grained representations of processes at length scales
below the grid scale. But arguably every model of physical processes, except, per-
haps processes at the most fundamental physical level (if there is such a level), is
coarse-grained with respect to levels more fundamental than the level at which the
process is modeled.

Thus, the putatively “subjective element” in calibration is characteristic of all
modeling and better described as a context- or purpose-relativity of scientific mod-
els and as expressing the fact that constructing the right model in a given context

1See also (Box 1979, p. 202): “All models are wrong but some are useful.”
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requires skills that may be difficult to characterize explicitly. What distinguishes
parameterizations from many other aspects of climate models is that the relation-
ships they posit are not based on well-established and robust physical principles.
This is a point that has important consequence for the validation of climate models,
as we will see below. In what follows, I will simply speak of the confirmation or
validation of simulation models, but always intend this to be purpose relative. Which
quantities are relevant to a model’s confirmation or validation and what degree of fit
between a simulation and empirical data is required will be understood as a context-
and purpose-dependent question.

41.3 Predictivism

Does the fact that a model can accommodate observational evidence through cali-
bration or tuning confirm the specific model instance resulting from the calibration
to the same extent as it confirms a model instance that can adequately predict data
not used in calibration? Or does the fact that a model can be calibrated to a given data
set offer less confirmation of the calibrated model instance than if a model instance
had successfully predicted the data? Many climate scientists suggest that data used
in tuning cannot confirm or validate a model instance to the same extent that suc-
cessfully predicted data do. Thus, the Fifth IPCC Assessment Report writes in its
discussion of “Climate Model Development and Tuning”: “Model tuning directly
influences the evaluation of climate models, as the quantities that are tuned cannot
be used in model evaluation. Quantities closely related to those tuned will provide
only weak tests of model performance.” (IPCC 2014 Box 9.1)

41.3.1 The Paradox of Predictivism

The underlying issue—the problem of the epistemic status of a theory’s accommo-
dation of evidence compared to that of successful prediction—has a long history in
the philosophy of science (Glymour 1980; Glymour 2010; Maher 1988; Howson and
Franklin 1991; Eells and Fitelson 2002; Eric C Barnes 2008; Howson 1991). There
are both philosophers defending a privileged status for predictive successes and those
arguing that there is no epistemic difference between accommodation and successful
prediction. And, indeed, there exist seemingly powerful intuitions supporting both
the view that predictive success is more highly confirmatory of a theory than its
ability successfully to accommodate empirical data and the view that predictive and
accommodating successes are equally confirmatory. The philosopher Imre Lakatos
famously distinguished progressive and degenerating theory changes; the former
are characterized by their predictive successes, whereas the latter merely succeed
in accommodating data after they have been collected (Worrall 1980). For Lakatos,
predictive successes are the hallmark of a successful scientific research program.
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Accommodation can seem ad hoc if a theory is modified only for the purposes to fit
a particular type of evidence with which it otherwise would have been in conflict.
An oft-cited example is the defense of phlogiston theory. Phlogiston was believed to
be a substance that is given off during combustion. When it was observed that some
substances gained weight when they were burned, defenders of the theory tried to
save phlogiston theory by postulating that phlogiston had negative weight. Despite
its success in accounting for the evidence, this accommodation strikes many as an
illegitimate ad hoc maneuver to rescue the theory.

Yet, as many have argued in response to Lakatos (see, e.g., Worrall 2014 and
references therein) even if successful prediction makes a difference, the temporal
order between the development of a hypothesis and the discovery of evidence does
not appear to be epistemically relevant. If there is a predictivist effect at all, then this
can at most concern the question whether evidence has been used in the construction
of a theory or not: what matters, it seems, is only whether evidence is accommodated
in the construction of a theory or is what is known as use-novel. A famous example
that is often invoked to support the intuitions that temporal order cannot make a
difference to confirmation is the confirmation of the theory of General Relativity
(GR) by observations of the perihelion ofMercury. Even though the precession of the
perihelion of Mercury had been observed well in advance of Einstein’s development
of GR, the theory is confirmed by these observations, since Einstein apparently did
not use the relevant data in the construction of his theory. Similar intuitions may be
behind the demand in (Oberkampf and Barone 2006) that the computer modeler does
not know what the experimental values of the quantities are she is trying to simulate.

While there are strong intuitions in support of predictivism, at least as far as use-
novel evidence is concerned, there are perhaps equally powerful intuitions suggesting
that a theory’s or model’s historical development should not have any bearing on how
well it is confirmed vis-à-vis the existing evidence. What should matter, one might
think, is only the relation between a model and the relevant data and not how the
model was constructed. Philosophers of science who argue against the epistemic
importance of novelty point to examples like Deborah Mayo’s example of average
scores in the scholastic aptitude test (SAT): If we calculate the average SAT scores
for a groups of students, then our “theory t” may be that the average score Saverage
has a certain value: t says that Saverage � s. But it seems that t is as well confirmed
by the individual scores when we derive t from these scores as when we assume
that the theory has been concocted by some other means (see Barnes 2008). This
suggests that at the very least predictivism cannot be true in general: a hypothesis
is not always better confirmed by evidence successfully predicted than by evidence
successfully accommodated.

Eric Barnes, in his authoritative examination and careful defense of predictivism
(Barnes 2008), calls this conflict of intuitions the paradox of predictivism. But are
there situations in which some version of predictivism is true? As Eric Barnes main-
tains, predictivism is best thought of as a comparative thesis—the thesis that a theory
t is more highly confirmed by the successful prediction of evidence e than by suc-
cessfully accommodating e. Are there conditions under which this thesis is true and,
if yes, does the calibration of complex computer models satisfy these conditions?
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41.3.2 Bayesian Confirmation Theory V and the Problem
of Old Evidence

Many discussions of predictivism take place in the context of formal decision frame-
works, in particular Bayesian decision theory. But while formal accounts of confir-
mation may go some way toward clarifying the conflict of intuitions, they bring with
them their own set of difficulties.

According to the Bayesian framework, a hypothesis h is confirmed by evidence
e just in case its posterior probability p’(h) exceeds its prior probability p(h). The
posterior probability is defined by conditioning h on the evidence e: p’(h) � p(h|e).
Here “p(h|e)” is the conditional probability of h given e. Hence h is confirmed just in
case p(h|e) > p(h). All probabilities here and in what follows have to be understood
as relative to a set of accepted background beliefs b. That is, more explicitly, h is
confirmed by e just in case p(h|e.b) > p(h|b). Now, if the evidence e is already known
then p(e|b)� 1, since e is part of our accepted background beliefs. It then follows from
Bayes’s Theorem that the posterior probability of h is equal to its prior probability:
p(h|e.b) � p(e|h.b)x p(h|b)/ p(e|b) � p(h|b).

This is the Bayesian problem of old evidence, which was first discussed by Clark
Glymour (Glymour 1980). According to the most straightforward application of the
Bayesian framework, known evidence can never confirm a hypothesis. In particular,
for the naïve Bayesian it makes no difference whether evidence is used in the con-
struction of a hypothesis or not. If evidence is known and its probability is equal to
one, conditionalizing h on the evidence cannot affect the probability of h. According
to a straightforward application of Bayesian reasoning, data used in the successful
calibration of a climate model do not confirm the model—but neither do data on the
precession of the perihelion of Mercury confirm Einstein’s theory. Thus, before we
can hope for any insight from Bayesian reasoning into the issue of model tuning, we
need to confront the problem as to how Bayesians may allow for at least some types
of old evidence to have positive evidential impact.

One might try to avoid the problem of old evidence by insisting that we should
never set probabilities concerning empirical facts strictly equal to one: only logical
or mathematical truths ought to be assigned probability one. Thus, even for known
evidence p(e|b) < 1. But while this move might solve what has been called the qual-
itative problem of old evidence (since it allows for old evidence to be confirmatory)
it does not solve the quantitative problem—the problem to what degree old evidence
can be evidence for a hypothesis (Barnes 1999). If we assume (as presumably, we
should) that p(e|b) is very close to one for known evidence, then no hypothesis can
ever be more than incrementally confirmed by known evidence.2

2This can be seen as follows. By Bayes’s Theorem p(h|e.b)� p(e|h.b)x p(h|b)/p(e|b). If p(e|b)� 1-ε,
for some small number ε, then p(h|e.b)/p(h|b) ≈ p(e|h.b) x (1 + ε). That is, the posterior probability
p’(h|b) � p(h|e.b) cannot be appreciably larger than p(h|b). A version of the problem also arises if
we replace the Principle of Conditionalization with Jeffrey Conditionalization, which presupposes
that observations result in non-inferential changes in the probability of an evidential statement e.
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There are several different proposals on how best to solve the problem of old
evidence, but there seems to be near consensus that the problem of old evidence
does indeed present a difficult challenge for the Bayesian and that, applied to known
evidence, a straightforward application of the Bayesian machinery often gives the
wrong answer. While a straightforward application of Bayesian reasoning suggests
that evidence used in calibrating amodel does not confirm themodel—thus providing
support for what sometimes is claimed in the climatemodeling literature—we should
not simply accept this conclusion, since the equivalent conclusion in the case of
Einstein’s theory and the perihelion of Mercury is obviously problematic.3

Philosophers have explored several types of response to this problem. One reply
is to give up the assumption of omniscience for a Bayesian agent and argue that
what Einstein learned when he derived the perihelion data from the theory is that
GR implies the data. GR was confirmed when Einstein learned that a certain rela-
tion r holds between the theory and the evidence (Garber 1983; Sprenger 2015).
This relation might be deductive entailment or may be some other, perhaps weaker,
explanatory relationship. That is, a theory or hypothesis is confirmed when we learn
that a certain explanatory relationship r holds between the theory and the previously
known evidence. Then, according to oneway of spelling this out, r confirms h relative
to old evidence e when p(h|e.r) > p(h|e).

A second type of response is to evaluate confirmation in terms of a counterfactual
probability function p{b}\e that is obtained by somehow subtracting the old evidence
e from the set of background beliefs. The challenge for this strategy is to specify
a procedure for subtracting e in a way that is well enough defined to result in a
reasonably definite answer to how well h is confirmed by e. (Howson 1991; Barnes
1999)

One promising idea is to take both strategies on board and argue that the two strate-
gies provide answers to two different problems. (Eells and Fitelson 2000; Sprenger
2015).Whenwe learn of an explanatory or inferential relationship between a hypoth-
esis or model and old evidence, then this confirms the model in the sense that it

As in the traditional formulation, the problem is that the probability of evidential statements does
not change for old evidence.
3Steele andWerndl (2016) are among the very fewdissenters from this consensus and suggest that the
Bayesian formalism can be applied to the case of climate-model calibration directly and without
any modification. Yet curiously they argue that a direct application of the Bayesian formalism
implies that successful calibration against known data can confirm amodel. The argument they give,
however, is mistaken. Their discussion focuses on the case of comparative confirmation. Whether
one hypothesis h1 is confirmed with respect to another hypothesis h2 is given by the following ratio
(where conditionalization on background beliefs is left implicit): p(h1|e)/p(h2 |e) � p(e|h1)/p(e|h2)
x p(h1)/p(h2). Steele andWerndl maintain that this ratio can change as a consequence of calibrating
our models against known evidence and hence that one model can be incrementally confirmed or
disconfirmedwith respect to anothermodel: “For the Bayesian, calibration is not really distinct from
confirmation.” Yet they also (as is standard) assign known evidence probability one: “When new
data are learnt, the relevant evidence proposition is effectively assigned a probability of one.” (Ibid.)
But then in the case of calibration against data e that have been previously known the likelihoods
p(e|h1) and p(e|h2) are both equal to one and hence p(h1|e)/p(h2 |e) � p(h1)/p(h2). Thus, a direct
application of Bayesian reasoning yields exactly the opposite conclusion from the one Steele and
Werndl want us to reach.
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increases our credence in the hypothesis or increases our credence in the adequacy
of the model for the purpose at issue. Thus, this strategy offers an answer to what
Sprenger calls the dynamic problem of old evidence: how can old evidence affect our
degree of belief in a hypothesis h when the explanatory relationship between e and h
has been discovered? The strategy answers this problem by giving up the idealized
assumption that Bayesian agents are logically omniscient.

By contrast, the second strategy is concerned with the evidential relation between
a piece of evidence and a hypothesis or model. Here we engage in counterfactual
reasoning and ask to what extent a certain data set (in light of a specific set of
background assumptions) provides evidence for a model or hypothesis. At issue here
is not our degree of belief in the hypothesis, but an evidentiary relationship between
hypothesis and evidence. The second strategy, thus, may be proposed as an answer
to the static problem of old evidence: the problem as to how old evidence e can
be evidentially relevant to a hypothesis h even after it has been discovered that h
accounts for e (Eells and Fitelson 2000). An advantage of taking the counterfactual
probability functions employed in the second strategy not as expressing confirmation
but as evidentiary relations is that the problem that the counterfactual probabilities
are ill-defined does not arise. If the probabilities express evidentiary relations, we are
not concerned with what the full set of background beliefs of an agent is and how one
might counterfactually subtract a commitment to some piece of evidence from that
set. The probabilities do not express the degrees of belief of an agent with a rich set
of background beliefs. Rather we are interested in relations of evidential support that
can be evaluated in terms of a reasonably precisely delineated set of counterfactual
background assumptions. As Sprenger notes, this type of counterfactual judgment is
a standard component of scientific reasoning.

There are otherBayesian solutions or responses to the problemof old evidence, but
there is no room to discuss these here. However, the very existence of the multitude
of different and often conflicting Bayesian answers to the problem of old evidence
suggests that appeals to Bayes’s theorem, as abstract template for arguments about
evidence and confirmation, cannot alone settle the problem of the epistemic status
of parameter calibration. Indeed, as one commentator has pointed out, all possible
positions with respect to the relation between Bayesianism and predictivism have
their defenders: “philosophers have defended all four possible positions: Bayesian
analysis is (i) valid because it favors novel prediction, (ii) valid because it does not
favor novel predictions, (iii) invalid because it favors novel predictions, and (iv)
invalid because it does not favor novel predictions” (Brush 1994; see also Douglas
and Magnus 2013). No formal Bayesian argument on its own can settle the question
whether old evidence in general and tuning-evidence, in particular, can be used in
theory-evaluation. At best we can hope that there exists a Bayesian formalization
that further illuminates philosophical commitments supported by another route. The
Bayesian logic of confirmation simply does not exist.
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41.3.3 Validation and Confirmation

Just as our intuitive concept of empirical confirmation is ambiguous between the static
concept of evidential support and the dynamic concept of changes in our degree of
belief in a hypothesis, the concept of validation similarly appears to conflate these
two dimensions. Thus, validation is often described as part of a dynamical process
of modeling and simulation, consisting of different temporal phases, which can be
represented in flow charts. This suggests a dynamic understanding of validation: val-
idating a simulation increases our confidence in the simulation, which is then used
to predict novel evidence. Given such a dynamic understanding, a special role for
novel predictions and the demand that experimentalists not share their data with com-
puter modelers may seem plausible. Yet modelers also develop validation metrics
(see, e.g., Oberkampf and Barone 2006) capturing the agreement between computa-
tional results and experiment and experimental uncertainties. Such metrics suggest a
static understanding of validation and a view of validation as being concerned with
evidentiary relations between a simulation and experimental evidence.

41.4 The Problem of Old Evidence and Model Calibration

41.4.1 The Static Problem of Old Evidence

How do the last two Bayesian strategies treat parameter calibration? As far as the
static problem of old evidence and relations of evidential support are concerned, it
would appear that the fact that a climate model is calibrated against a particular data
set does not affect the data set’s evidential status vis a vis the model. If the strength
of evidential support between model and evidence is independent of when the evi-
dence was discovered historically, then it should also be independent of whether the
evidence was used in the construction of the model. What we are assessing, in this
case, is what amounts to a counterfactual probability: the probability of the evidence
given the model and some reasonably clearly delineated set of background assump-
tions concerning the phenomenon of interest. These assumptions need not—and in
general will not—accurately mirror our actual background beliefs.

For example, in the case of climatemodels that are tuned against twentieth-century
warmingwe are interested in howprobable a particularmodel (with calibrated param-
eter. values) is, given the observed warming and relevant background assumptions,
such as the absence of any feedback factors not included in the model. By Bayes’s
theorem, this probability is related to the model’s likelihood, which is the probability
of the observed warming conditional on the model’s adequacy together with the set
of background assumptions. The probabilities in question do not directly represent
credences or our degree of belief in the model’s adequacy but rather evidential rela-
tions between model and data in what amounts to a counterfactual setting—a setting
in which the background assumptions not only do not already contain the evidence
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used to tune themodel but also in other ways are not intended to capture our full set of
beliefs about the world. Background beliefs represent assumptions made in a certain
modeling context. As far then as the static problem of old evidence is concerned,
data used to tune the model provide evidence for the model’s adequacy in the same
way in which fit to new data would. Examples of this are comparisons of climate
models with different forcings to determine which combination provides the best fit
with the observed twentieth century warming. Models that include both natural and
anthropogenic forcings fit the evidence much better than models with natural forc-
ings alone (see, e.g., IPCC 2007 9.4.1.2). That is, when we use observational data
on twentieth century temperature changes to validate climate simulation models, we
find that models that include both natural and anthropogenic forcings score much
higher on any reasonable validation metric than simulations that include only natural
forcings.

41.4.2 The Dynamic Problem of Old Evidence

What the solution to the dynamic problem of old evidence says about calibration
is somewhat more ambiguous. On the one hand, the strategy seems to allow for
an obvious distinction between different uses of old evidence: cases in which the
evidence is used in the construction of a theory and cases in which it is not used. In
the latter case, our credence in the adequacy of a model increases, when we discover
that the model does in fact explain the data. Thus, GR was confirmed when Einstein
succeeded in deriving the perihelion data from the theory. By contrast, if evidence
e is used in the construction of a model, then the fact that the model accounts for e
appears to be built into the model and the model is, thus, not confirmed by deriving e
from it. As Sprenger argues, in this case it is certain, conditional on e, that h explains
e. That is, p(r|e) � 1 and hence p(h|e.r) � p(h|e). Thus, r fails to confirm h.

On the other hand, in the case of complex simulation models modelers arguably
do not know in advance of running a model which parameterization provides the
best fit with the evidence. Due to the models’ complexity, modelers often do not
know how changes in parameter values will affect the models’ performance. Thus,
analogous to the case of Einstein’s derivation do we only find out that a particular
model (with a specific parameterization) is adequate after the model is run. If this is
right, then according to the Bayesian strategy we are currently considering it makes
a difference to confirmation how data are used in the construction of a model. If a
model is constructed using existing evidence so that it could not fail but to account
for the evidence, then the evidence does indeed not confirm the model. Yet if a
model is sufficiently complex, so that we only learn whether a certain choice of
parameterization is successful after we have run the model (or have calculated the
model’s empirical consequences), then p(r|e) < 1 before the model is run and the
parameterized model is confirmed by a successful calibration.

Let us briefly take stock. I distinguished three Bayesian approaches to confirma-
tion with old evidence and discussed how these apply to the calibration of climate
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models. According to a direct application of “the Bayesianmethod”, data used to cal-
ibrate a model do not confirm the model, since the probability of the evidence and the
likelihood are equal to one. This is commonly taken to be a problem for any straight-
forward application of Bayesian reasoning to confirmation. If we apply a counterfac-
tual subtractionmethod and examine relations of evidential support between a theory
or model and evidence, then, in contrast to “straightforward Bayesianism”, old data,
including data used in model calibration, can provide evidential support for a model.
But this relation of support is best thought of not as a dynamic relation of confirming
the model in the sense of raising our degree of belief in the model’s adequacy but
rather as a static relation of evidential support. Validation metrics constitute exam-
ples of how to capture such relations of evidential support. Finally, we can give up
the idealized assumption of omniscience, which is generally made in the Bayesian
framework, and take confirmation by old evidence to consist in the learning of certain
inferential relationships between model and data. On this last account, calibration
data arguably confirm the calibrated model, at least in the case of complex climate
models, since we only learn that a calibration is successful when the model is run.

41.4.3 An Argument for Predictivism

There is one further aspect concerningmodel confirmation I have not discussed so far
and that suggests that data not used in model calibration can play a different role in
model confirmation than data used in calibration.4 Consider John Worrall’s version
of Patrick Maher’s well-known coin toss example (Worrall 2014). Two investigators
I1 and I2 both make a prediction about the 100th toss of a deterministically oper-
ating coin-tossing machine, which produces a sequence of 100 seemingly random
outcomes. I1, the accommodator, announces a hypothesis about the 100th outcome
and the 99 prior outcomes after having observed the first 99 outcomes. I2, the pre-
dictor, formulates a hypothesis about the results of the first 100 tosses before having
observed any outcomes, correctly predicting the outcome of the first 99 tosses. If we
ourselves are ignorant about the mechanism of the coin toss machine, then we should
trust the prediction for 100th toss made by I2 more strongly than the prediction of I1.
For, as Worrall argues, the fact that I2 was able correctly to predict the first 99 tosses
is strong evidence that she has insight into the mechanism of the coin toss machine,
while we have not such evidence in the case of I1.

Predictive success, thus, can play a role in situations involving multiple epistemic
agents in that it can provide reasons for one agent to take another agent to possess a
certain expertise. Predictive success is a means for an agent to certify her epistemic
credentials to another agent: it allows another agent to infer that the successful pre-
dictor possesses a certain kind of knowledge that also renders her further predictions
trustworthy. This does not imply that the predictor is necessarily more credible than
the accommodator. If I1 can convincingly explain to us why she understands the

4The discussion below follows closely my presentation in (Frisch 2015).
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tossing mechanism, then the predictive effect in favor of I2 arguably disappears. Pre-
dictive success, according to the present argument, is not epistemically significant
in itself but is significant only as a symptom of the presence of some other epis-
temically relevant feature–in this case the investigator’s knowledge of the machine’s
mechanism.

Worrall’s thought experiment provides an argument for the claim that predictive
success can be epistemically significant when multiple agents are involved. Yet pre-
dictive success can also be significant in the case of a single agent, since a single
agent can be in a situation vis a vis complex models or theories that is analogous to
that of an agent vis a vis another agent, whose expertise the former needs to judge.
Just as we can use an agent’s earlier predictive successes as a sign that she has certain
qualities thatmake her novel predictions credible, we can use the predictive successes
of a complex simulation model as a sign that the model possesses certain features
that make it predictively successful. As in the case of multiple agents, the model’s
prior predictive successes are a symptom that the model possesses some property
that accounts for its success. And analogous to the case of multiple agents, prediction
is epistemically significant precisely in cases where the good-making properties of
the model are not otherwise accessible to us.

Complex simulations arguably possess this feature. Complex models, such as
complex climate models are to some degree epistemically opaque in that modelers
cannot fully track analytically how the different model components (such as phys-
ical principles, initial and boundary conditions, and parameterizations) interact and
contribute to a model’s success along various performance metrics (Frisch 2015;
Baumberger et al. 2017). While we have great confidence in the fundamental physi-
cal principles that underlie the construction of climate models, it is often not known
how themore principled components of themodel interact with parameterizedmodel
components to result in the model’s outputs for different climate variables. Moreover
it is often difficult to know in advance of running the simulation whether a model
that is skillful at one specific task also is skillful at another task. In particular, one
of the aims of GCMs or ESMs is to provide adequate predictions of how the climate
systemwill evolve in the future. Our only evidence, of course, consists in themodels’
skill with respect to past and present datasets. Thus, climate scientists are faced with
the task of evaluating to what extent a model’s success with respect to some perfor-
mance metric concerning past or present climate should increase our confidence in
the model’s skill with respect to future climate states.

The foregoing discussion, thus, supports the view in (Oberkampf et al. 2004)
discussed above: While calibration data can be part of a model’s validation dataset,
successful calibration does not provide us with strong reasons for trusting a simu-
lation’s predictions in domains far from the calibration and validation domain. Val-
idation that involves successful “blind” predictions (Oberkampf and Barone 2006),
by contrast, can increase our confidence in the inference from successful validation
to a simulation’s successful application in another domain. The reason is that in the
latter case we can have greater confidence that the model’s successful predictions are
not the result of calibrating the simulation to features characteristic of the validation
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context but rather are evidence of the fact that the model successfully represents the
relevant underlying physical mechanisms.

41.4.4 A Novel Bayesian Argument for Predictivism

Predictive success, I have argued, can play an epistemically significant role. As I
want to show now, this view, too,can be supported by a formal Bayesian argument.

We want to compare models that are tuned to account for certain data with models
that successfully predict the data without having been tuned to these data. Let e be
the statement that a modelM is empirically adequate with respect to evidence E. Let
f be the statement that M has a good-making feature F that allows it to be robustly
adequate across different contexts. For example, F might be that M latches on to
underlying physical principles or successfully represents the underlying physical
mechanism. And let t be the statement that M is calibrated against the evidence E.
Now let us make the following assumptions:

(1) p(e|t) � 1.

That is, we are restricting our attention to the set of models that can successfully
account for E, either through tuning or without tuning. This assumption is legitimate
in contexts in which we wish to compare models that predictively can account for E
with ones that do so after being calibrated with respect to E.

(2) p(f |t) � p(f )

According to (2), whether M has the feature F is independent of its being tuned.
This assumption, too, is plausible. We are assuming that we do not know if our
models have the good-making feature F and thus, plausibly, modelers’ decisions to
tune a given model against a specific data set are independent of whether the model
possesses F.

(3) p(e|¬f .¬t) � ∂ < p(e|f .¬t)

According to (3), the probability that a model can account for evidence E, if it is
neither tuned nor possesses the good-making feature F is extremely small and is
smaller than the probability that an untuned model with feature F can account for
the evidence. In effect, I am assuming that there are two independent ways in which
a model might account for E: either by being tuned against E or by possessing F. (3)
states that the probability of a fluke—that is, that M accounts for E through neither
of these two ways—is extremely small.

The three assumptions are jointly sufficient to prove the following theorem:

Theorem: Let e, f , t, be three elements of an algebra A with associated probability
measure p, and let the following three conditions be satisfied:

(1) p(e|t) � 1,
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(2) p(f |t) � p(f ),
(3) p(e|¬f .¬t) � ∂ < p(e|f .¬t)

Then p(f |e.t) < p(f |e.¬t), that is, that M is adequate with respect to E is more
highly confirmatory of M’s possessing F if M is not tuned with respect to E than if
M is tuned with respect to E.

The proof is given in the appendix.
Thus, when we are not certain, whether a model possesses certain good-making

features representing projectable correlations, predictive successes can be more con-
firmatory of the presence of such features than mere accommodation. And arguably
this is the situation we find ourselves in with respect to some of the more detailed
future projections made with the help of complex climate models.

It is instructive to compare the fourth Bayesian argument to the Bayesian answer
to the static problem of old evidence I discussed above. Both strategies focus on
evidential relations between models and data. How can it be, then, that the former
strategy does not recognize a predictive effect while the latter strategy does? There
is no predictive effect, if we already know that the models under considerations
either all possess a feature that makes them potentially inductively reliable or none
possess such a feature. Consider Cavendish’s experiment to determine the value of
the gravitational constant G. We can think of this experiment as type of tuning. The
gravitational law contains a free parameter G, which has to be tuned against existing
data. In this case, there arguably is no predictivist effect: the same data confirm the
gravitational law with the correct value for G equally when the data are used to tune
G or when the data are used to test a correct guess for G’s value. In this example,
however, we are testing different versions of a putatively lawlike relationship.

There is equally no predictivist effect in situations involving true randomness.
Consider a version of the coin flip experiment, in which we know that the coin
tossing mechanism is truly random. In this example too, the evidence given by the
first n tosses confirms the predictor’s and the accommodator’s hypotheses equally,
if both hypotheses are correct with respect to the first n tosses. The fit of their
hypotheses with the evidence so far provides no reason to trust their predictions and
assign anything but probability ½ to the two possible outcomes of any future toss.
There is no reason to think of the predictor’s success as anything but a fluke.

Thus, there is a predictivist effect neither in situations inwhichwe strongly believe
to be considering inductively reliable correlations nor in contexts in which we know
there are no projectable correlations. The case of complex computer simulationmod-
els differs from both these situations. Here we believe there to be underlying robust
physical principles governing the climate system, yet due to the complexity of the
system we do not know whether our models adequately latch onto these principles
and whether the correlations exhibited in our models are projectable in the right way.
Recall our discussion above. Even though climate models are built with the help
of well-confirmed physical principles, the tunable parameterized equations are not
derived from physical theory and tuning often seems to have the character of finding
the right balance of compensating errors. Thus, the worry is that some of the corre-
lations that result from tuning our models are highly domain dependent and might,
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for example, hold only for the specific boundary conditions characterizing twentieth
century climate.

In situations such as this—in which it is an open question to what extent the
relationships posited by our models are projectable from one context to another–suc-
cessful prediction makes a difference. Just as the predictive success inWorrall’s coin
toss example, in which we initially do not know if the coin toss mechanism results
in a projectable regularity, provides us with evidence for the existence of such a
mechanism and the predictor’s skill in having understood the mechanism, predictive
successes of a climate model are evidence for the models’ success in representing
the underlying physical mechanism in a projectable manner. Predictive success is
evidence that a model has in fact latched onto the underlying physical mechanism
and successfully represents projectable correlations between variables of interest.

Nevertheless, in all three cases the Bayesian reply to the static problem of old
evidence will posit relations of evidential support between successfully accommo-
dated data and the models or hypotheses in question. Newton’s law of gravity with
successfully tuned gravitational constant is confirmed by the calibration data, as is a
successfully tuned complex climate simulation and even a coin toss hypothesis that
is successfully fitted to past outcomes. Yet in cases where we do not know if the
model is projectable in the right way (or in cases in which we strongly suggest a
hypothesis not to be projectable) a model’s confirmation amounts to mere “content
cutting”. The model is confirmed because it adequately can account for data in its
domain, yet there may be no (or only very little) reason to infer from this that its
predictions with respect to other datasets are reliable.

Distinguishing carefully between confirmation that amounts to mere content cut-
ting and confirmation that increases our confidence in the inductive projectability
of a model can perhaps help explain the ambivalent attitude some computer mod-
elers have toward calibration. On the hand, one may want to allow that calibration
data can be part of the validation database (see, e.g., Oberkampf et al. 2004). On
the other hand, successful calibration may amount to achieving the right answers
for what appear to be the wrong reasons (see, e.g., Oberkampf et al. 2004, 352),
and thus one may be inclined to exclude calibration data from what ought to count
as a model’s proper validation database (see Oberkampf and Barone 2006). As we
have seen, successful calibration can be part of validating a simulation in that it can
show that the simulation successfully accounts for a certain subset of the data in its
validation domain. But unlike successful genuine prediction, successful calibration
does little to increase our confidence in the models success in its intended domain
of application.

41.5 Conclusion

This chapter discussed epistemological problems associated with parameter calibra-
tion focusing on calibration of complex climate models. I examined the question to
what extent calibration data can confirm or validate the calibrated model, in particu-
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lar through the lenses of Bayesian approaches to confirmation theory. I distinguished
four different Bayesian strategies. According to a straightforward application of
the Bayesian formalism, tuning data cannot confirm a model. But straightforward
Bayesianism is faced with the problem of old evidence and, therefore, is of limited
usefulness in discussing the epistemic import of calibration data.

Evidence-deletion strategies offer a solution to the static problem of old evidence
and allow us to capture evidential relations between amodel and data. These relations
are insensitive to whether the evidence in question has been used in the construction
of the model. Calibration data provide evidence for a model in the very same way
in which data successfully predicted by a model do. Evidence-deletion strategies
agree with validation metrics as developed in (Oberkampf and Barone 2006) that
use-novelty is irrelevant to evaluating a simulation.

The third Bayesian strategy focuses on the dynamic problem of old evidence.
According to this strategy, a model can be confirmed by old evidence when we
derive that the model can account for the existing data. This strategy seems to allow
a distinction between use-novel evidence, for which we can learn that it can be
accounted for by the model in question, and evidence used in the construction of
a model, for which this type of confirmation does not seem possible. Yet I argued
that when a model is sufficiently complex—as complex climate simulation models
are—then confirmation can occur even from calibration data used in the construction
of the calibrated model, since we do not know prior to running the model that the
calibrated model is in fact compatible with the data.

Finally, I discussed a sense in which successful tuning nevertheless provides less
evidence for a model than successful prediction. In the case of correlations among
variables that are not known to be robustly inductively projectable to domains beyond
those for which we have data, successful prediction can provide evidence for the fact
that a complexmodel has latched onto an inductively relevant underlyingmechanism.

Appendix

We want to show that p( f |e.t) < p( f |e.¬t). (C)

Proof:

p( f |e.t) �p(e| f.t)p( f |t)/p(e|t) Bayes′s Theorem
�p( f |t) premise (1)

�p( f ) � 1 − p(¬ f ) premise (2)

On the other hand:

p( f |e.¬t) �1 − p(¬ f |e.¬t) � 1 − p(e|¬ f.¬t)p(¬ f |¬t)/p(e|¬t)

�1 − p(e|¬ f.¬t)p(¬ f )/p(e|¬t)

Thus, (C) is equivalent to:
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1 − p(¬ f ) < 1 − p(e|¬ f.¬t)p(¬ f )/p(e|¬t)

or:

p(e|¬t) > p(e|¬ f.¬t) (C’)

But (C’) can be shown to follow from premise (3) as follows:

p(e|¬t) �p( f )p(e| f.¬t) + p(¬ f )p(e|¬ f.¬t)

>p( f )p(e|¬ f.¬t) + p(¬ f )p(e|¬ f.¬t) premise (3)

�p(e|¬ f.¬t).
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Chapter 42
Should Validation and Verification be
Separated Strictly?

Claus Beisbart

Abstract Verification and validation are methods with which computer simulations
are tested. While many practitioners draw a clear line between verification and val-
idation and demand that the former precedes the latter, some philosophers have
suggested that the distinction has been over-exaggerated. This chapter clarifies the
relationship between verification and validation. Regarding the latter, validation of
the conceptual and of the computational model are distinguished. I argue that, as a
method, verification is clearly different from validation of either of the models. How-
ever, the methods are related to each other as follows: If we allow that the validation
of the computational model need not include the comparison between simulation
output and measured data, then the computational model may be validated by val-
idating the conceptual model independently and by verifying the simulation with
respect to it. This is often not realistic, however, because, in most cases, the concep-
tual model cannot be validated independently from the simulation. In such cases, the
computational model is verified with the aim to use it as an appropriate substitute
for the conceptual model. Then simulation output is compared to measured data to
validate both the computational and the conceptual model. I analyze the underlying
inferences and argue that they require some prior confidence (i) in the conceptual
model and (ii) in verification. This suggests that verification precede validation that
proceeds via a comparison between simulation output and measured data. Recent
arguments to the effect that the distinction between verification and validation is not
clear-cut do not refute these results, or so I argue against philosopher E. Winsberg.
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42.1 Introduction

Among simulation scientists frommany fields, the term “V&V” is known to denote
activities of verification and validation. V & V does not only require that researchers
verify their computer simulations (or their software, more generally), i.e., that they
show their simulations to provide approximate solutions to the model chosen. Sci-
entists are also expected to validate their simulations in view of the intended appli-
cations, i.e., to show that the simulation represents the target system with sufficient
accuracy for the chosen range of applications. But how are verification and validation
related to each other? What is the reason to combine both in what is called V & V?
Is there are a neat and tidy separation between verification and validation? And if so,
should verification always precede validation?

The last two questions have recently been amatter of discussion.Many practition-
ers draw a clear distinction between verification and validation. As Murray-Smith
(Chap. 4 in this volume, Sect. 42.4.1) reports, “there is general agreement that the
process of simulation model testing involves two issues one of which concerns the
correctness, or otherwise, of the process of translating the conceptual, mathematical
and logical basis of a model into the description implemented on a computer. The
other issue is concerned with potential errors and uncertainties within the structure
and logic of the underlying model, along with limitations of that description in terms
of accuracy.” It is further often recommended that verification be completed before
validation starts (see e.g., Fig. 3.3 in Chap. 3 by Oberkampf in this volume). Some
philosophers, by contrast, notably Winsberg (2010, pp. 19–25; 2018a, Sect. 4.3 and
2018b, pp. 155–160), have argued that the distinction between verification and vali-
dation is not as clear-cut as some might have thought. In this vein, Lenhard argues in
his Chap. 39 in this volume that “[t]he separation of verification and validation […]
cannot be fully maintained in practice”.

The aim of this chapter is to clarify the relationship between verification and
validation. Our focus is on computer simulation, although most of the points made
carry over to other software that is used to represent real-world systems. The chapter
is written by a philosopher first because it is philosophers who have challenged the
idea that verification and validation are distinct activities, and second, because the
task of the chapter is to clarify concepts and to assess arguments, which is typical of
philosophical inquiry.

The chapter is organized as follows: Sect. 42.2 addresses philosophical prelimi-
naries and explains, for instance, what a clear distinction between verification and
validation would amount to. Section 42.3 turns to the possibility of a conceptual
distinction between verification and validation and to the relationship between both
methods. I argue that verification and a suitable sort of validation can be combined
in interesting ways and analyze the underlying inferences. A critical discussion of
philosophical arguments challenging the distinction can be found in Sect. 42.4. I
drawmy conclusions in Sect. 42.5. I hope to obtain a picture of V&V that integrates
the most important insights about V & V so far.
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42.2 Preliminaries

What would it mean to say that there is (not) a clear distinction between verification
and validation?

42.2.1 Scientific Methods

Validation and verification are scientific methods. Computer simulation or experi-
mentation are other examples of such methods. In general terms, scientific methods
are types of activities that researchers can choose to pursue the aims constitutive of
science, e.g., to gain new knowledge. A specific series of activities carried out by a
researcher can thus be classified as a token of a method, say, verification. One such
token of applying a method often consists of various sub-activities (which are often
called steps). For instance, to verify a simulation, a scientist may first compare the
output of the simulation programwith a known analytical solution and then apply the
method of manufactured solutions (see Chap. 11 by Rider and Chap. 12 by Roache
in this volume).

How are methods identified and individuated? That is, what makes it the case
that a certain series of activities counts as application of one method rather than
another? What is essential for a specific method is often an overarching goal. Con-
sider, for instance, the following statement by Oberkampf, in his Chap. 3 in this
volume (Sect. 3.4.1):

Model validation, as defined here, is focused on the assessment of the error due to the
approximations and assumptionsmade in the formulation of the conceptual andmathematical
models.

It is natural to read this as a claim about the purpose of model validation: Model
validation is aimed at assessing certain errors.

Methods are often too constrained by conditions on what is done during the
application of the method. Frequently, a certain step is demanded for the execution
of the method. In this way, the method of experimentation crucially involves the
observation of the object that is experimented on. And when Oberkampf, later in his
Chap. 3 in this volume (Sect. 3.4.2.1) writes: “Model validation […] is the activity of
quantitatively assessing model accuracy by way of comparison of simulation results
with experimental measurements”, he does not only specify an aim (quantitative
assessment), but further requires that this assessment be done in a particular way,
namely by comparing simulation output with measured data.

Methods can be related to each other in various ways. For instance, two different
methods may be used one after the other to help accomplish the same super-ordinate
goal. Alternatively, one method may be used during the application of another
method, either because this is required or because the former method just proves
suitable in a specific context. It is plausible to think, for instance, that the method
of computer simulation requires validation and verification as necessary steps. If a
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person carries out one method as a way to at least partly apply another method, she
can be described as applying both methods at the same time. Thus, a certain activity
may count both as a step of an experiment and of a simulation. The upshot is that
methods and action types, more generally, are not always exclusive categories (cf.
Anscombe 2000, Sect. 23).

42.2.2 Verification and Validation

Let us now turn to verification and to validation, more specifically. Clearly, whether
there is a sharp distinction between the methods depends on what the methods are.
In the literature, we find various definitions that try to explain what verification and
validation are. In what follows, we will mainly rely upon the definitions provided
by the AIAA guide (AIAA 1998), but we will also explain connections to other
definitions that are quite similar. We will later discuss to what extent our results are
affected when some very different definitions are assumed.

The AIAA guide defines verification as follows:

Verification: the process of determining that a model implementation accurately represents
the developer’s conceptual description of the model and the solution to the model (AIAA
1998, here quoted after Oberkampf and Roy 2010, p. 26).

According to this definition, the proper object of verification is a model imple-
mentation. It is natural to think of the model implementation as a computer code.
The idea that such a code is verified is also implicit in the so-called SCS-definition
of verification (Schlesinger et al. 1979, pp. 103–104).1 This definition takes it that a
computer program is verified, which we take to be the same as a computer code. The
ASMEguide (ASME 2006) seems to suggest a different object of validation, because
a computational model is said to be subject to verification. But for our purposes, the
code does not relevantly differ from the computational model. True, a model is some-
thing different from a code because the former is, e.g., a set of equations, while a
code is a set of instructions. However, in practice, this difference in category between
a code and a model is irrelevant. Each computer simulation code can be said to define
a unique model as follows: Carrying out the instructions from a code yields outputs
that are interpreted as values of characteristics such as air pressure, precipitation,
etc., at various times. The time-ordered series of output numbers can be interpreted
as solutions to equations. Running the computer simulation program solves these
equations exactly. In a source code written in, e.g., C++, the equations can in fact
easily be seen from the program. In a simple example, the equations are difference
equations that arise if the so-called Euler method is used to approximate differential
equations. Now we can say that the equations solved by running the computer sim-
ulation code form the core of a dynamical model; and this model is aptly called the
computational model. For this reason, a model is implicit in the program, and we
can gloss over the difference between the code and the computational model.

1The definition was recommended by the Society forModeling and Simulation International (SCS).
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As far as the code is concerned, we will focus on the machine code, as run on a
particular hardware, when we talk about the computer simulation code. This ensures
that the program and the corresponding computational model imply what is actually
output. By contrast, the instructions of the source code (and a model corresponding
to it) do not yield the output, strictly speaking, because following the instructions
would, e.g., not produce any round-off errors, which typically affect the actual output.
The output may also differ from the one that would arise by strictly carrying out the
instructions from the source code if there is a compiler error.

According to theAIAAdefinition of verification, the implementation of themodel
is supposed to represent the conceptual description of a model. This presupposes a
clear contrast between the computational model, as we have called it, and what is
here named the conceptual description of a model. But what exactly is the latter?
When researchers are asked to describe their simulations, they usually refer to a
model, e.g., a fluid-dynamical model that has the Navier–Stokes equations as its
mathematical core. This model is different from the computational model: Since the
computer cannot solve differential equations such as the Navier–Stokes equations,
the computational model approximates the latter using difference equations.

The model that is used for a natural description of simulation is often called
conceptual model, e.g., by Schlesinger et al. (1979, p. 103), see also Oberkampf
and Roy (2010, p. 38). This model can be characterized as a prior model that is
typically independent of the computer simulation, motivated by the best knowledge
of the system under scrutiny and thus the focus of the primary interest on the part of
researchers. For instance, in fluid dynamics, the Navier–Stokes differential equations
are supposed to express our best physical knowledge about certain types of fluids,
if considered for a certain range of scales.2 It is admittedly sometimes not entirely
clear what the conceptual model is for a given computer simulation, because it is
not unambiguous which model is the locus of primary interest or because different
researchers using the program may differ in their interests. But in what follows we
will assume that the conceptual model has been unambiguously identified.

Following the AIAA definition, the goal of verification then is to show that the
computational model is an appropriate representation of, or substitute for, the con-
ceptual one. In saying this, we assume that models, or representations, are substitutes
for other systems.3 What it heremeans to say that a representation is appropriatemay
be explained in terms of accuracy (cf. Schlesinger et al. 1979, p. 104). The idea here
is that, for a certain range of applications, the computational model represents the
conceptual one appropriately if, and only if, their solutions coincide within certain
bounds, or to a certain accuracy. If the solutions to both models can be expressed in
terms of numbers, then accuracy can easily be measured by taking distances between
solutions to both models. This is sometimes not possible for qualitative (aspects of)
solutions, i.e., that there is a thunderstorm this night. Even in such situations, we can
say that a simulation is more accurate than another if its output agrees more often

2It is, of course, allowed that the conceptual model is in some way simplified, e.g., idealized.Which
simplifications are appropriate depends on the intended uses of the model.
3See e.g., Suárez (2004) and Weisberg (2007) for related views of modeling and representation.
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with what would be expected for the conceptual model (see Chap. 2 by Beisbart in
this volume for more on accuracy).

Verification is often divided into code and solution verification.While the former is
supposed to show that the approximate solutions obtained by the simulation program
converge to some known solutions to the conceptual model, the latter is focused on
determining the uncertainties about errors due to numerical approximation schemes
in a simulation output (see Rider, Chap. 11 in this volume). Code verification is
supposed to include software quality assurance (Oberkampf and Roy 2010, p. 32).

Summarizing we can say that verification is supposed to show that the conceptual
model is appropriately implemented in the computer code. The criterion of appropri-
ateness is accuracy, meaning that the deviations between solutions to the conceptual
and the computational model are small.

Turn now to validation (see Chap. 2 by Beisbart for a comparison between var-
ious definitions of validation). As far as the object of validation is concerned, it is
sometimes said that specific results from a computer simulation need validation (see
Chap. 2 by Beisbart in this volume for evidence and a related discussion). But, dur-
ing validation, it is more interesting (and more challenging) to consider all possible
results that may be obtained using a computer simulation program by varying the
initial conditions and parameter values within some realm of intended applications.
When this plurality of possible results is considered, we are effectively talking about
a model associated with the simulations, or, more precisely, about certain aspects
of this very model, e.g., about its accuracy in predicting, say, precipitation. In what
follows, we will thus take it that the proper object of validation is a whole simulation,
and not just a small set of specific results.

The AIAA guide defines validation of a model as follows:

Val-AIAA The process of determining the degree to which a model is an accurate represen-
tation of the real world from the perspective of the intended uses of the model [here quoted
after Oberkampf and Trucano 2008, p. 719]

The aim of validation thus is to show that a model accurately represents the
real world, or more specifically, the target system, in some respects that depend
on the intended uses. The accuracy of the representation depends on how accurate
relevant predictions of the model are as compared to the truth, i.e., to the true values
that obtain in reality. Here, “prediction” is used as an umbrella term for all sorts
of implications that the model has in terms of its solutions. The accuracy of the
relevant quantitative model predictions can in principle be quantified by taking and
aggregating the distances between model output and corresponding true values in
reality for the relevant characteristics.

It is arguable that validation need not only show that the model predictions are
accurate enough for the intended uses, but also that underlying model assumptions
are correct or accurate (see Chap. 2 by Beisbart in this volume). However, in what
follows, we will focus on the accuracy of the model predictions.

Talk of an “accurate representation of the real world” presumes that a computer
simulation has a target in the real world. Many simulations do have such a target,
e.g., the climate system of our planet. But this is not always the case; for instance,
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some computer simulations are aimed at tracing the dynamical evolution of merely
imagined systems, e.g., point particles that interact via forces that do not work in
the real world. For such simulations, the question of an accurate representation of
a real-world system does not arise, so validation is not an issue anymore. In what
follows, we will concentrate on simulations for which validation is a concern.4

So far, we have been talking about the validation of models quite generally, as
do many definitions of validation (e.g., AIAA 1998, ASME 2006). However, for
computer simulation, the question arises whether their validation should focus on
the conceptual or the computational model. The SCS-definition of validation takes
a clear stance on this question by defining the validation of a computational model
(Schlesinger et al. 1979, p. 104). The reason is presumably that, during validation,
often output from the computer model is compared to measurements from reality.

But there are also reasons to focus on the conceptual model during validation
of a simulation. First, the conceptual model is at least typically the model that sci-
entists are primarily interested in and that they have chosen on the basis of their
scientific knowledge. The computational model, by contrast, is a crutch that is only
used because the conceptual model cannot be solved exactly. Second, the conceptual
model is typically well-known to scientists and easy to express, e.g., in terms of dif-
ferential equations. Things are different regarding the computational model implicit
in the machine code. The latter is often not inspected. If there is an unknown error,
e.g., in the compilation of the source code, then the computational model implicit
in the machine code is not really known. Also, the computational model implicit in
the source code is often difficult to express, for instance, because it cannot be cast in
terms of differential equations. We will thus leave open whether the proper object of
validating a simulation is a conceptual or a computational model. Instead, we distin-
guish between the validation of the conceptual model and that of the computational
model.5

42.3 The Distinction Between Verification and Validation

After these preliminaries, we can address the questions of whether a clear distinction
between verification and validation can be drawn and whether the former should
always precede the latter.

As methods, verification and validation are clearly different, because they have
different aims. Verification is supposed to show that the computational model is an

4There are interesting boundary cases, e.g., simulations that study a real-world target system under
very counterfactual circumstances. The question to which extent such simulations can be validated
is beyond the scope of this chapter.
5The AIAA definitions of verification and validation each assume that a degree of accuracy be
determined. As it happens, particularly in validation, it is very difficult to prove that a certain extent
of accuracy is present. What is realistic is at most to make it very credible or likely that a certain
accuracy holds (see Chap. 2 by Beisbart in this volume). In what follows, we need not always make
this explicit.
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Fig. 42.1 The Sargent circle
following Schlesinger (1979,
p. 103) adapted for our
purposes

adequate representation of the conceptualmodel, while validation has the objective of
showing that the conceptual or the computationalmodel is an adequate representation
of the target. As it is often put in terms of equations, verification is about “solving the
equations right” (i.e., about really solving the equations from the conceptual model),
while validation is about “solving the right equations” (i.e., solving equations that
provide adequate representations of the target; e.g., Roache 1997, p. 124, who refers
to other authors, however). Accordingly, verification is often said to be a matter of
mere mathematics, while validation is supposed to deal with physics or the sciences
involved (see e.g., Roy 2005, p. 132, who refers to AIAA 1998). It is arguable that
this view is not strictly speaking true (see below for more discussion; see also Chap.
11 by Rider in this volume), but it certainly gives a good sense of how verification
and validation differ. Another way of stressing the difference between the methods
is to say that verification is internal in the sense that it only deals with models and
their implementation, while validation is external because reference to the target
system is made (see e.g., Chap. 4 by Murray-Smith in this volume; see Chap. 15 by
Murray-Smith in this volume for the use of experimental data).

The basic difference between verification and validation is often illustrated using
a viewgraph called the “Sargent circle”, as shown in e.g. Schlesinger et al. (1979,
p. 103; see our Fig. 42.1).6 The circle connects three “nodes”, viz., reality (i.e., the
target system), the conceptual model and the computational model. Model verifica-
tion is said to relate the conceptual and the computational model. Model validation,
by contrast, makes a link to reality, either from the conceptual model or the compu-
tational model. In what follows, it will be useful to have this picture in mind where i.
validation of the conceptual model is represented by the arrow between the concep-
tual model and reality, ii. validation of the computational model is represented by the
arrowbetween the computationalmodel and reality, and iii. verification is represented
by the arrow between the computational model and the conceptual model.

Although verification and validation are clearly different at the general level of
methods (or types of activities), they are closely related to each other. First, both
are species of the same genus in that they can both be considered as evaluations of

6According to Pace (2004, p. 124), the circle goes back to R. Sargent and was popularized by
Schlesinger et al. (1979). See Sargent (1984, p. 116) for a version given by Sargent.
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a representation, accuracy being the main standard.7 As a consequence, the applica-
tions of both methods are often very similar. This can be explained using the notion
of a benchmark (see Chap. 18 by Saam in this volume): During both validation
and verification, the output of computer simulations is compared to benchmarks. If
these are analytical solutions to the equations from the conceptual model, then we are
engaged in verification. By contrast, if empirical data from the target system are used
as benchmarks, we are concerned with validation. The close similarity between ver-
ification and validation may explain why validation and verification are sometimes
confused.

Second, the methods are related to each other because there is an overlap between
the entities considered during verification and validation. Verification and validation
of the conceptual model both involve the conceptual model. In an analogous way,
verification and validation of the computational model both refer to the computa-
tional model. This may explain why validation and verification are taken together in
V & V.

Third, some of the three methods under consideration (verification, validation
of the conceptual model, validation of the computational model) may be used for
the sake of executing another method from the set. This needs a more extensive
discussion.

42.3.1 Verification as a Means of Validation
of the Computational Model?

Consider first the validation of the computational model. The task here is to show that
the results of the computational model agree with the truth to such and such accuracy
(see Chap. 2 by Beisbart in this volume for the notions of truth and accuracy). The
relationships visualized in the Sargent circle allow that this can in principle be done
as follows.

Suppose first that a computational model has been verified with respect to some
conceptual model. That is, researchers have substantiated or shown that the solutions
to the computational model coincide with those of the conceptual model to such and
such accuracy. Assume that the accuracy can be expressed using a distance measure
between the output of the simulation for some characteristic C (e.g., precipitation),
on the one hand, and the output that would be expected for C had the conceptual
model been solved exactly, on the other. We assume that the value of this measure is
Acon,com.

Suppose now that the conceptual model is known to represent the target system
regarding C with a certain accuracy. We measure the degree of accuracy with which

7For a discussion of whether validation should include other standards see Chap. 2 by Beisbart in
this volume. The following argument is easily generalized to other standards if the degree to which
the latter are fulfilled can be measured using a distance between the output of the models involved
and measured data.
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the model agrees with the truth using the same distance measure as before, now
applied to the predictions of the model for some characteristics C and the true values.
Let the degree of accuracy be Acon,real. It follows immediately that the accuracy of
the computational model with respect to characteristic C, call it Acom,real, is no worse
than Acon,com + Acon,real.8 This is a consequence of the so-called triangle inequality
for distance measures.

Altogether, we have an argument to the effect that the computational model is
accurate (with respect to reality) to a certain degree. This amounts to validation of the
computational model. Now the argument is partly based upon successful verification.
We can thus say that verification of a simulation can make a decisive contribution
to validation of the computational model. In the terms suggested in Sect. 42.2.1, we
may say that verification can form an important step in validation (this strategy is
also mentioned by Parker 2008, pp. 170–171).

This discussion assumes that accuracy can bemeasured in a quantitative way. This
assumption is not necessary for the conclusion. For instance, we can also infer that
a simulation is correct in a certain range of qualitative predictions, if the conceptual
model is correct in these predictions, and if the predictions of both models coincide
in this respect.

However, our conclusion that verification can be considered as a step in validation
of the conceptual model does hinge on two crucial assumptions. The first assumption
is that the conceptual model has been validated. This validation has to be independent
of the validation of the computer simulation; otherwise researchers would be allowed
to move in a circle that looks problematic: The computational model is validated,
since, among other things, the conceptual model is validated; and the conceptual
model is validated because, among other things, the computational model has been
validated.9

Now it is very often impossible to validate the conceptual model independently
from computer simulations. A conceptual model may to some extent be justified
because it is built on a theory which is well confirmed with respect to the target. For
instance, scientists have no doubts to apply Newtonian mechanics to a macroscopic
pendulum, if the gravitational fields are weak and relative velocities small. However,
even in such a case, the theory does not imply what the motion of the pendulum is
like because additional information about the initial conditions and the shape of the
pendulum is needed (in the terms of philosophy of science, the so-called auxiliary
hypotheses are required to obtain consequences from the theory). In special cases, we
may have accurate measurements that can be combined with the theory, and it may
be shown that the accuracy of the measurements together with the theory implies a
certain accuracy for the results. However, examples of this type are extremely rare.

8Properly speaking, our measures A are distance measures or measures of the error. Accordingly,
the accuracy is the higher the smaller the value of A is. What we show here is that the error of the
conceptual model is no larger than a certain sum, which is to say that the accuracy is no less than
the accuracy that corresponds to the sum.
9We will later see that the circle just mentioned can in some sense be rendered acceptable, see
Sect. 42.3.2.
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In most applications of computer simulations, it is not, and cannot be, known how
accurately the assumptions of the conceptual model represent reality.

There is a second assumption that is needed for the conclusion that verification
can be a crucial step in the validation of the computational model. This assumption is
about the concept of validation and has it that validation need not compare predictions
of the computational model with measured data. Some definitions of validation deny
this. For instance, in the second characterization of validation quoted above from
Oberkampf (Chap. 3 in this volume), he requires that simulation results be compared
with data from measurements. Oberkampf thus constrains the means that can be
chosen for validation. Due to this restriction, the argument that has been constructed
for the accuracy of the computational model above would not qualify as validation,
since it does not involve a comparison between simulation output andmeasured data.

To summarize then, we have shown that verification is a crucial step in a particular
strategy to validate a computational model, if validation of such a model does not
generally require the comparison between model predictions and measured data.
The strategy presumes that the conceptual model has been validated on independent
grounds. If this strategy is adopted, then verification is done for the sake of validation
of the computational model.

The argument we have suggested for the validation of a computational model
can also be turned around as follows: Suppose that some simulation output and
corresponding true values are found to disagree with each other with some accuracy
on data points about characteristic C (thismay be found on the basis of data, wherewe
assume that there is no evidence that the measured data get it substantially wrong). It
then follows that it cannot be the case that (i) the computational model is sufficiently
verified with respect to C and that (ii) the conceptual model is sufficiently accurate
regarding C. Thus, if verification has been secured with a sufficient accuracy, then
the conceptual model is not sufficiently accurate. This shows that verification can be
crucial for invalidation instead of for validation (see Chap. 6 by Beven in this volume
on invalidation). However, sometimes, researchers may not be sure whether or not
the simulations have been verified properly. If it then turns out that simulation output
andmeasured data do not agree, then theymay not be able to decidewhat the problem
is: Is the conceptual model not sufficiently accurate with respect to reality or is the
computational model not sufficiently accurate with respect to the conceptual model
(or both)? That is, is validation of the conceptual model or verification doomed to
fail? Provided that there is no further background knowledge, researchers face an
underdetermination problem because they cannot decide where the problem is. We
may say that the researchers cannot distinguish between verification and validation
of the conceptual model in some sense because they cannot tell whether verification
or validation of this model would fail. In this sense, the distinction is not transparent
anymore from the viewpoint of researchers. But this does not show that the distinction
does not exist. The underdetermination can be broken if the computer simulation is
further investigated, e.g., if it can be shown that there is a problem in the discretization
of differential equations.
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42.3.2 Verification as Means for Validation of the Conceptual
Model?

Let us know focus on the validation of the conceptualmodel. The relationships shown
in theSargent circle suggest a two-stepmethod for validation of the conceptualmodel.

For suppose that a computational model has been verified with respect to the
conceptual model and that the degree of accuracy that has been determined for some
characteristic C is Acon,com. Assume further that the computational model has been
validated with respect to C and that the accuracy is Acom,real. Then we can conclude
that the accuracy with which the conceptual model represents the target with respect
to characteristics C, Acon,real, is no worse than Acon,com + Acom,real. So the conceptual
model has been validated. In this way, verification can be crucial for validation of
the conceptual model.

Unlike our conclusion in Sect. 42.3.1, this conclusion does not assume that val-
idation can be done without comparing model output with data. If validation of a
model is thought to require that model output be compared to measured data, then we
can argue as follows: The strategy just considered for the validation of a conceptual
model requires validation of the computational model. Provided the assumption that
validation requires an empirical comparison, this validation must involve the com-
parison between the output of the computational model andmeasured data. But given
that the computational model has been verified with respect to the conceptual model,
the comparison between output of the computational model and measured data may
be understood as a comparison between output from the conceptual model and mea-
sured data, where output of the computational model is used as proxy for (typically
unavailable) output of the conceptual model. So the validation of the conceptual
model too is based upon a comparison of model output with measured data.10

However, the research strategy just sketched for obtaining validation of the con-
ceptual model requires that the computational model needs to be validated indepen-
dently from the conceptual model. For, if the computational model was only shown
to be accurate because it is an adequate representation of the conceptual model, then
the validation of the conceptual model would move in a problematic circle. It may
first seem that there is no problem at this point because the comparison between sim-
ulation output and measured results is independent of the conceptual model and does
not presume the validity of the conceptual model. But at closer analysis, things are
more complicated.11 Empirical validation of a computational model, i.e., the com-
parison between simulation output and measured data uses a limited sample of data

10A word of caution about the comparison between simulation output and measured data. This
comparison is only significant for validation, if the measured data reflect the true values. This
condition is often not met, there are errors and uncertainties in the data and significant efforts are
needed to show that the data reflect the true values to some accuracy. To properly take this into
account, we would have to elaborate the Sargent circle. We refrain from doing so and neglect
measurement errors because our focus is on errors that are incurred during modeling and simulating
a target system.
11To simplify the presentation, we will from now on neglect the precise values of the accuracies.
This does not bear on the power of the argument.
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points. From an agreement between simulation output and measured data on these
data points with some accuracy, it is concluded that the agreement holds with this
accuracy more generally (i.e., for other results that may be obtained by running the
simulation). This is an inductive inference, i.e., an inference that adds content to what
is claimed in the premises (which here claim agreement for a limited number sample
of data points). More specifically, we are talking about enumerative induction, in
which a limited number of instances are used to infer a more general claim.

Now it is well-known that enumerative induction is not always legitimate. For
instance, it is not legitimate to conclude from the fact that all children form a certain
grade of school are between 10 and 11, that all school children are between 10 and
11. Nor is it legitimate to infer from the fact that the last few people one has seen
were female that one will next see females too. As Harman (1965) has suggested,
enumerative induction is only justified if the conclusion is part of the best explanation
of why the premises hold. And what one can take to be the best explanation depends
on one’s background knowledge.

The consequence for validation of the computational model is as follows: The
inductive inference implicit in it is only legitimate if the conclusion that the com-
putational model represents the target in a certain respect with sufficient accuracy
is part of the best explanation of why the simulation output and the measured data
agree with some accuracy. Now the natural explanation of this agreement is that the
simulation is built on a conceptual model that is sufficiently accurate in a certain
respect and that the computer simulation is verified with respect to this model. This
explanation would imply that all output from the simulation programmakes accurate
predictions. However, we can barely take this explanation to be best unless we have
some reasons to take the conceptual model to form a sufficiently accurate represen-
tation of the target. Suppose, for instance, that the model has been constructed by
combining some randomly chosen assumptions about the target. Under this assump-
tion, the best explanation of the agreement is more likely that it is due to a fluke.
The consequence is that a comparison between output from the computational model
and measured data only allows for validation of the computational model if there are
some reasons that speak in favor of a sufficient degree of accuracy of the conceptual
model.

It may seem that this leads to a problem for the strategy to validate a conceptual
model by verifying and validating a computational model. The apparent problem
is that the validation of the computational model depends on a sufficient degree
of accuracy established for the conceptual model, but the very task of validating
the conceptual model is to establish this accuracy.12 The threat then is that we are
moving in a vicious circle if we wish to validate a conceptual model in the way under
consideration.

But the threat is not real. There would be vicious circularity if we would have
to know the accuracy of the conceptual model to conclude that the accuracy of this
very model and the successful verification best explain why the simulation output

12The accuracy needed in the explanation is, in fact, higher than the accuracy established during
validation.
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and the measured data agree. But to be able to pick this explanation as the best one,
we need only to have some independent reasons to take the conceptual model to be
accurate and to be properly reflected in the simulations. The idea here is that the
identification of the best explanation requires a comparative assessment of various
candidate explanations. Typically, none of them is known to be true, so the question
is which one is best supported by the available evidence or which one fits best
with our background knowlege. The explanation that assumes (i) that the conceptual
model provides a sufficiently accurate representation of the target and (ii) that the
computational model is a suitable representation of the conceptual model, may turn
out to be best if there are some reasons in favor of it; for instancemore reasons than for
an explanation in terms of a fluke. Now such reasons are available if (a) verification
has made a strong case for (ii) and (b) the assumptions from the conceptual model are
supported by independent evidence. For instance, as indicated before, the model may
be built on assumptions from well-confirmed theory. Further, some of the auxiliary
assumptions needed to construct themodelmaybe justified in termsofmeasureddata,
e.g., about the initial conditions. Thus, if the simulation was verified and if there is
some evidence for the conceptual model, the explanation under consideration should
turn out best. Thus, if a simulation is verified and if there is some evidence in favor
of the accuracy of the conceptual model, then agreement between simulation output
and measured data allows researchers to infer that the agreement extends to other
possible runs of the simulation program. In this way, then, the computational model
inherent in the simulation can be validated.13

Altogether then, our discussion leads to the following “reconstruction” of vali-
dating a simulation using measured data, where both the conceptual and the com-
putational models are validated. 1. The simulation is verified with respect to the
conceptual model regarding characteristic C. 2. Simulation output and measured
data about characteristics C are compared to each other. Suppose that they agree
with some accuracy (or up to some errors). The researchers conclude from this that
simulation output and measured data would agree about C with a certain accuracy
for a larger domain of applications. The researchers are justified to conclude this
because it follows from the best explanation they have for the agreement between
simulation output and measured data, viz., that the conceptual model is sufficiently
accurate with respect to C and that the computational model is properly reflected
in the simulation output, i.e., that it is verified with respect to the conceptual model
in respect C. The researchers are justified in taking this to be the best explanation
because they have some evidence in favor of the accuracy of the conceptual model,
e.g., because it is built on well-confirmed theory, and because they have verified the
simulation or at least taken some steps towards verification such that they can be rea-
sonably confident that the conceptual model is implemented with sufficient accuracy
regarding C. In this way, validation of the computational model is secured in terms
of an inductive inference. 3. The triangle inequality for distance measures is used to

13Note that our argument does not hinge upon Harman’s view about enumerative induction. Our
argument would also go through if we employed the so-called material theory of induction as
defended by Norton (2003).
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show that the validation of the computational model and verification together lead
to a certain degree of accuracy of the conceptual model, which achieves validation
of the conceptual model.14

It may be objected that the first step in this reconstruction is not really necessary
for the second step and thus for the validation of the computational model (it is clear
that it is needed for the third step). The idea might be that some evidence to believe
the accuracy of the conceptual model suffices to argue that the agreement between
simulation output and measured data is best explained in terms of the explanation
mentioned above (i..e, that the conceptual model is sufficiently accurate and that the
simulation, i.e., the computational model, has been verified): If one crucial part of
the explanation (i.e., validation of the conceptual model) has some evidence, then
researchers can take this to be the best explanation and safely infer that the other
part of the explanation (i.e., verification) holds too, or so the idea is. While this
is in principle true, it will most often not help because the available evidence for
the conceptual model is typically not too strong. Further, researchers can certainly
be more confident to have picked the correct explanation if there is some evidence
that the second part of the explanation holds too. And the more confidence there is
to have chosen the correct explanation, the more secure is the inductive inference.
Thus, to make a strong case for the accuracy of the computational model using the
inductive inference in realistic cases, researchers need at least some evidence that
there is verification.

If this is correct, our reconstruction of validation using data (of data-driven val-
idation, for short) shows that verification (at least some effort into verification) is
crucial for the validation of both the computational and the conceptual model using
data. Since verification is needed for the inductive inference implicit in the second
step (validation of the computational model), the reconstruction suggests that verifi-
cation should be done before simulation output and measured data are compared to
each other during validation. Note that an essential part of verification, viz. software
quality assurance, should be done first anyway, because it is needed to ensure that the
program does what scientists intend it to do at a certain coarse level of description.
For instance, scientists want to approximate the conceptual model in a particular
way, and the software quality assurance is needed to show that they do so.

Depending on how exactly we think about data-driven validation, there are two
ways to conceptualize our conclusion. For a first option, wemay think that validation
is data-driven if, and only if, it involves the comparison between computer output
and measured data. We may then say that validation of the computational model
encompasses steps 1 and2 above, and that validation of the conceptualmodel includes
steps 1–3. Thiswouldmean that verification is a necessary step in both the data-driven
validation of the computational and the conceptual model.

For a second option, we may think that data-driven validation has not only to
include a comparison between computer output and measured data. Rather, the idea
is too that the data-driven validation is exhausted by the comparison between simu-

14This reconstruction can also be understood as showing that the circle identified in Sect. 42.3.1
can be rendered unproblematic.
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lation output and measured data and inferences built upon the comparison. Call this
narrow view of data-driven validation. Under this view, verification is a necessary
precondition of data-driven validation.

However, we decide between both options, we obtain a two-step view for data-
driven validation: Researchers first need to verify their simulations before they com-
pare simulation output to measured data. As indicated above, this view is common
among practitioners. For instance, in the viewgraph in Fig. 2.15 in Oberkampf and
Roy (2010, p. 59), most parts of verification (viz. code verification and software
quality assurance) are required very early, e.g., before measurements are done. Only
the so-called solution verification (see Chap. 11 by Rider in this volume) is done a
bit later, but still before the measured data are compared to simulation output.15

Before we conclude this section, an additional remark is in order. It may be
suggested that the relationships within the Sargent circle allow for another method:
We may obtain verification of a simulation by validating the conceptual and the
computationalmodels and putting the results together as follows. If the computational
and the conceptual model both agree with measured data with some accuracy, then
they must agree with each other with some accuracy due to the triangle inequality.

This is true mathematically, but insignificant. First, as argued in Sect. 42.3.1, a
conceptual model can often not be fully validated independently from a simulation.
Second, as argued in Sect. 42.3.2, validation in terms of a comparison between
simulation output and measured data is based upon an inference from a small sample
to a larger set of possible applications of the computational model in some domain.
This inference is only warranted if the agreement between simulation output and
measured data can be explained in terms of an accurate model and verification. This
shows that the strategy cannot produce verification from scratch.

42.4 Arguments Against a Clean Separation Between
Verification and Validation

As indicated in the introduction, some philosophers have argued that the distinction
between verification and validation has been over-exaggerated, to say the least. In par-
ticular, Winsberg has reached something like this conclusion in several of his works
(Winsberg 2010, pp. 19–25; 2018a, Sect. 4.3 and 2018b, pp. 155–160). Lenhard (e.g.,
in his Chap. 39 in this volume) too argues that validation and verification cannot be
kept apart in practice. In what follows, I will discuss what I take to be the strongest
and most interesting points raised by Winsberg and Lenhard.

Winsberg (2010, p. 20; 2018b, pp. 155–156) links the distinction between verifica-
tion and validation with what might be called a linear picture of computer simulation

15The method discussed in Sect. 42.3.1, by contrast, i.e., the validation of a computational model
using verification and validation of the conceptual model, does not assume that verification is done
before validation of the conceptual model. But under the method, validation of the computational
model cannot be achieved unless verification is done.
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(2018b, p. 155).16 This picture assumes that, as a practice, simulation begins with
theory (1), on the basis of which a model is built (2). Consequently, the model is
“treated”, which is to say that parameter values, etc., are fixed (3). The model is
implemented in a solver (4), which yields results (5). Winsberg seems to think that
this picture accords well with the distinction between verification and validation
because validation can be associated with model construction (step 2, maybe also
step 3), while verification is connected to the construction of the solver (step 4).Wins-
berg (2018b, p. 156) claims further that the linear picture leads to two claims, viz.
that verification and validation are strictly separable activities and that they belong
to different disciplines, viz. mathematics (verification), and empirical science (val-
idation). Winsberg argues that both claims are false (Winsberg 2018b, p. 157). He
also rejects the linear model (Winsberg 2018b, p. 158). All this is not meant to deny
that the concepts of verification and validation differ and that some activities carried
out by simulation scientists can be classified as either belonging to verification or to
validation (Winsberg 2018b, p. 157).17

To summarize, Winsberg’s main claims are as follows:
W1 In practice, verification and validation cannot always be separated in a clean

way.
W2 It is false that verification is a mere matter of mathematics and validation a

mere matter of empirical science.
Wewill presently discuss both claims in the next subsections. As a preliminary, we

should note that Winsberg, in his discussion, does not distinguish between the con-
ceptual and the computational model; accordingly, he does not discriminate between
the validation of the conceptual and the computational model. This is problematic
since the difference between both types of model is decisive for the discussion of
V & V. Further, in characterizing the linear picture, Winsberg associates validation
with model construction, and he seems to think that, under the linear picture, the val-
idation of the model has to be independent of the results of the computer simulation
(this is suggested by a remark in Winsberg 2010, p. 20). This is a very strange view
of validation indeed, and Winsberg is right in rejecting it. As we have seen above, at
least some details of the models often lack independent validity, so the only way is
to implement them in simulations and to test the outputs with measured data. This
is a central part of validating a conceptual and a computational model.

16I prefer the name “linear picture” toWinsberg’s “linear model”, because we are already concerned
with a lot of models.
17My account of Winsberg’s view is mainly based upon his 2018b, because this seems the most
mature expression of it. But there is no evidence for any significant shift in his view anyway.
Strictly speaking, the account in Winsberg (2018b) is restricted to climate science, but as the earlier
statements of the view show, the latter is meant to apply more broadly. Note though that Winsberg
(2018b, p. 162) admits that the clear separation between verification and validation may apply in
certain domains of engineering.
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42.4.1 The Separation Between Verification and Validation

Turn now to Winsberg’s first claim. The argument in favor of it is intimately con-
nected with Winsberg’s discussion of the linear picture. Winsberg’s main reason to
reject this picture is that, in disciplines such as climate science, the model and the
computer simulation program are often modified because its results initially do not
match measured data. This leads to what Winsberg calls “life cycle” of a simulation
(Winsberg 2018b, p. 159). The idea is basically to create a loop that moves back
to the model and its construction, once a mismatch between simulation output and
measured data has been obtained.

Winsberg is right to stress that models may be changed when they yield results
that do not match the data. It’s noteworthy, however, that, by moving to the cyclical
picture, Winsberg discusses applications of computer simulations that are quite dif-
ferent from those considered by, e.g., Oberkampf and Roy (2010). Winsberg (2010,
p. 23) is very clear that he is talking about simulations in which the models lack prior
justification; crucial model assumptions have rather the status of educated guesses.
In such examples, it seems apt to say that the scientists are in the business of hypothe-
sizing.We cannot expect to obtain predictions with high accuracy from this business.
Oberkampf and Roy (2010), by contrast, are interested in predictions with high accu-
racy. This explains why Winsberg’s view differs from those held by Oberkampf and
Roy.

The focus ofWinsberg’s discussion is not entirely unproblematic. For if themodel
assumptions behind a computer simulation are to some large extent mere hypotheses,
then we should not say that the simulations have a real-world system and its behavior
as target; rather we should say that they are about hypothetical systems. But then
validation is less of an issue. Of course, the model assumptions may be incrementally
confirmed, when they lead to increasingly more accurate predictions. In this way, we
may say that the final model has been validated to some extent, and this is clearly
what Winsberg hopes for (Winsberg 2018b, p. 158). However, as far as validation is
concerned, it is unclear whether the first iterations of the cycle involve any proper
validation, simply because the model is built on so many hypotheses that it is unclear
whether it has a real target—But this is certainly not a knock-down argument, and,
in what follows, I will not assume that it is successful.

Suppose then that verification and validation are in principle applicable in the
life cycle of simulations. It is not clear what this means for the separation between
verification and validation. In Winsberg’s description of the life cycle (Winsberg
2018a, b, p. 158), there is no mentioning of activities of verification at all. The
question then is whether the separation between verification and validation can be
squared with the cyclical picture.

The answer is obviously yes. Once a conceptual model has been changed, the
simulation can be verified with respect to it, and researchers can try again to validate
the model—and in fact, both things should be done. Therefore, both activities should
be added to the cycle to obtain a more comprehensive picture of simulation (and
verification should be put before the comparison between simulation output and
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measured data). If the modification of the model is very minor, for instance, if no
more than the value of one parameter has been changed, thenmost part of verification
may not be necessary as a matter of fact because the simulation program has been
verifiedmore broadly for awhole range of parameter values before. Consequently, no
new round of verification may be necessary. Likewise, to the extent that validation of
the conceptual model was based upon prior knowledge of some model assumptions
that have not been changed, validation need not be repeated. What is only an issue
in such a case then is the question of whether the new parameter value is consistent
with, or even implied by, measured data and prior knowledge. However, if there are
more significant modifications, then verification and validation are necessary again.

Now the fact that both methods appear in a cycle does not show that they cannot
be separated in practice. If there are no prior reasons to doubt that verification and
validation can be separated, then the cyclical picture does not give us reasons to
worry about the separation. True, in the cyclical picture, in some sense, verification
does not precede the comparison between simulation output and measured data, as
is demanded by the two-step view, because verification of model version M2 comes
after the (in)validation of model version M1 using data. However, at closer analysis,
there is no substantial disagreement with the two-step view, because the latter is
about one single model variant. In fact, Oberkampf and Roy (2010, p. 60), who hold
the two-step view, stress clearly that a realistic exercise in computer simulation may
be iterative. This shows that the cycle as such is a red herring in the discussion. The
real issue is whether verification and validation can be separated within one cycle.

Winsberg suggests that this is not so using the following argument (Winsberg
2018b, pp. 159–160; see also Winsberg 2010, p. 24). Sometimes, when a com-
puter simulation lacks the intended level of accuracy because certain approximation
schemes do not work, scientists change the model assumptions. A famous exam-
ple is the so-called Arakawa trick (see Küppers and Lenhard 2005 for a description
and a philosophical discussion). Very roughly, scientist Arakawa changed the basic
equations to be solved in a simulation about the weather in order to avoid the conse-
quences of numerical instability. In this context, he introduced a certain assumption
of energy conservation, which was supposed to be unrealistic in view of the target
system. But implementing the trick was considered to be a success because the pre-
dictive capacity of the simulation program was enhanced. Winsberg claims that this
practice renders the distinction between validation and verification meaningless.

In his Chap. 39 in this volume, Lenhard argues likewise that computer simulation
scientists often engage in kludging, which is to say that they apply ad hoc fixes to
enhance the accuracy of the output. If kludging is indeed common, as Lenhard thinks
is the case, then the pointmadebyWinsberg generalizes. InLenhard’s terms, the prob-
lem is that kludges obfuscate a classification of the parameters used in a simulation
model. The classification distinguishes between, e.g., parameters that reflect measur-
able properties, parameters that arise in certain approximation schemes, parameters
that are used to characterize uncertainties and so on (see Oberkampf and Roy 2010,
p. 623 for the classification to which Lenhard refers). Lenhard’s point is that it
becomes unclear to which type a parameter belongs if researchers have used kludges
to modify the simulation. Consider the example of the Arakawa trick. It is unclear
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whether a parameter that is introduced in this context has a physical meaning or
whether it is simply a parameter in an approximation scheme. Also, if kludges have
been applied and if parameters in the program are calibrated in order to improve
model accuracy, then the classification of these parameters becomes unclear because
their values have been adjusted in a big network of assumptions some of which have
been introduced ad hoc.

There is, in fact, a problemwith the distinction between verification and validation
in examples such as the Arakawa trick, but the consequences to be drawn from this
are less significant than one might think. The basic problem with the Arakawa trick
and other kludges is as follows: It is unclear what exactly the conceptual and the
computational models are after the trick has been applied. Under one description of
the new simulation, the conceptual model has been changed because a term has been
added to its equations. But this description is problematic because the added term is
not motivated on scientific grounds. Under an alternative description, the conceptual
model is the same as before, and the new term is supposed to be part of a new
approximation scheme used to solve the model equations. So only the computational
model has been changed. But this description seems problematic too because it seems
very natural to say that the basic equations of the model have been changed (e.g.,
that a certain assumption about energy conservation has been changed). Now unless
we settle for a decision on what exactly the new conceptual model is, we cannot
clearly tell what exactly verification and validation of the conceptual model have to
show. For instance, if the idea is that the conceptual model was not changed by the
trick, then verification should show that the trick improves accuracy of the simulation
with respect to the conceptual model. By contrast, if the model was changed, then
this is not an issue. In this sense, the distinction between verification and validation
becomes difficult. But more precisely, we should say that the distinction is relative to
an identification of the conceptual and the computational model. This does not imply
that the distinction is unclear or that verification and validation cannot be separated.

It is further arguable that scientists should at some point settle on what they regard
to be the conceptual and the computational model. Otherwise, one may say, they do
not really have an understanding of what they are doing. To settle this question, it
seems, they should find out whether or not the implementation of the new equations
produces just more accurate solutions to the original equations. If the former is the
case, they should not change their conceptual model, but rather think that it is to some
extent incrementally confirmed by the fact that the simulation output agrees with the
measured data, after the trick has been applied. If the modified simulation program
does not yield more accurate solutions to the original conceptual model, scientists
should become skeptical about their original conceptualmodel and thinkmore closely
about the assumption of energy conservation, for instance. This suggests that a clear
distinction between the conceptual and the computational model is a desideratum of
good scientific practice. This would mean that unclarity about the conceptual model
is an intermediate stage and thus not significant.

Winsberg’s discussion suggests another argument in favor of W1. When a com-
puter simulation yields results that do not match the measured data, this may either
be due to a lack of verification or a lack of validation. That is, the problem may
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either be that the approximation scheme does not work as intended, etc., or that the
model is inappropriate (we have already noted this in Sect. 42.3.1). Conversely, if a
simulation program does yield the desired accuracy, we may count this as (a small)
incremental confirmation of the verification and the validation of the model. This
“degeneracy” suggests that validation and verification are entangled with each other
(see e.g.,Winsberg 2010, p. 24). But the first case (mismatch between simulation out-
put and measured data) does not really show that verification and validation cannot
be separated. It only shows that we can sometimes not discern whether verification
or validation has failed. The second case (sufficient fit between simulation output
and measured data) shows that a certain agreement between simulation output and
measured data can make a contribution to both verification and validation. But this
contribution is small, because the coincidencemay only arise because approximation
and modeling errors cancel each other. It is different (cf. Sect. 42.3), if we have some
prior reasons to think that the simulation can be verified and validated. Further, that
certain coincidences can confirm verification and validation of a model, or contribute
to both, is something that we expect on general action theoretic grounds. As argued
above, methods and action types are not exclusive categories.

All in all, the best arguments that Winsberg and Lenhard give for W1 show only
that the distinction between verification and validation is relative to a distinction
between the conceptual and the computational models. Once the two types of models
are identified, we can separate between verification and validation. Further, a good
understanding of why a simulation program works requires that a conceptual model
be clearly identified.

42.4.2 Verification and Mathematics

Turn now toW2, viz., the claim that a clear assignment of verification tomathematics
and of validation to the empirical sciences is wrong. Our discussion can be very brief.

Winsberg’s main argument in favor of W2 seems to be that the mathematical
means to achieve verification are very weak. For instance, he writes: “When models
are sufficiently complex and nonlinear, it is rarely possible to offer mathematical
arguments that show, with any degree of force, that verification is being achieved”
(Winsberg 2010, p. 23). This suggests that we need to some extent rely on validation
to make sure that the model equations are appropriately solved in the simulations
(Winsberg 2010, pp. 23–24).

Whether this argument is correct turns on what we mean by mathematical meth-
ods or means to verify a simulation. As the last quote from Winsberg shows, he
concentrates on arguments. He contrasts this with methods that use the output from
simulation programs and compare them to benchmarks (Winsberg 2010, p. 22). As
far as this comparison with benchmarks is concerned, Winsberg does not clearly
distinguish between, e.g., analytical solutions to the model equations and empirical
data. But there is a difference, and what is important for verification is a compari-
son between simulation and, e.g., analytical solutions (see e.g., Oberkampf and Roy
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2010, p. 33). The question then is how this method should be classified. Winsberg
seems to think that it is empirical, and thus not mathematical. Now the method is in
some sense empirical, because it relies on simulation output that has been produced
using a device from the empirical world. But it is uncontroversial that verification
is empirical in this sense. For instance, Oberkampf and Roy (2010, p. 33) write:
“Numerical algorithm verification is fundamentally empirical”. Since all parties
agree that verification is empirical in this sense, we can put this sense aside. The
question then is whether verification in the sense of a comparison between simula-
tion output and benchmark solutions can still be called mathematical. This seems
appropriate in view of the fact that the benchmarks are analytical results. As such
they are obtained using mathematics. They are non-empirical because they are not
based on data from the target system.

In sum then,Winsberg is right aboutW2 ifmathematical arguments are understood
in a very narrow sense that excludes the use of any simulation output. Under a broader
reading of “mathematical argumentation” that is quite natural, however, the basic
techniques of verification are mathematical.18

42.5 Conclusions

To summarize our main results: Verification and validation of computer simulations
are clearly two different methods because they have different aims. While verifica-
tion is supposed to show that the computational model implemented in a simulation
program represents the conceptual model in some respects to some accuracy, valida-
tion is supposed to show that a model represents its target system in some respects to
some accuracy. As far as computer simulations are concerned, we need to differen-
tiate between the validation of the conceptual and that of the computational model.
This leads to a picture with a circle and three nodes, viz., the conceptual model, the
computational model, and reality. There are three ways of relating two of the three
nodes to each other, and these correspond to verification (conceptual model vs. com-
putational model), validation of the conceptual model (conceptual model vs. reality)
and validation of the computational model (computational model vs. reality).

As this picture indicates, the methods are closely related. First, if a conceptual
model is validated independently from a simulation and if the computational model
is verified with respect to the conceptual model, then the computational model is
validated in comparison to its target system. We can call this validation of the com-
putational model if we do not require that every type of validation involve the direct
comparison between simulation output and measured data (note that some authors
require this comparison for validation). In practice, however, it is often not possible
to argue for the accuracy of the computational model in this way because the concep-
tual model cannot fully be validated independently from the computer simulation.

18As a side remark, we should note that Winsberg does not discuss a very powerful new method of
verification, viz., the method of manufactured solutions (see Chap. 12 by Roache in this volume).
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In this situation, validation of the computational model and the conceptual model go
often hand-in-hand as follows: Verification ensures that bothmodels can be treated as
roughly equivalent (in some respect; we will drop this qualification in what follows,
although it is meant to apply). Simulation output is compared to measured data from
the target system for a limited set of data points. If they agree to sufficient accuracy,
then we can conclude that 1. The computational model; 2. The conceptual model
represents reality (or the target system, more specifically) with sufficient accuracy,
which is to say that both models have been validated. I have argued that this inference
from a limited set of data points to the accuracy of the models is only legitimate if
there is at least some case that the conceptual model is valid and the computational
model is verified. The first condition is typically justified if the conceptual model is
built on enough prior knowledge about the target system.

This reconstruction of validation shows that verification is to some extent needed
for the data-driven validation of the computational model and utterly necessary for
validating a conceptual model using data. This suggests that verification precedes
the comparison between simulation output and measured data. Depending on how
exactly we define validation in detail, we may either say that the verification is a
necessary step within validation or a precondition for validation.

As Winsberg reminds us, verification and validation are often embedded in life
cycles of simulation models. It is also correct that the distinction between verifica-
tion and validation presupposes a clear distinction between the conceptual and the
computational model (although Winsberg himself does not make this distinction).
In practice, this distinction is sometimes unclear, as the example of the Arakawa
trick shows. But a clear identification of the conceptual model seems to be a long-
term desideratum. This is at least so if computer simulation is to be more than mere
data fitting, but rather the attempt to understand a target system with a model that is
based upon prior scientific knowledge about the target system. All in all, Winsberg’s
argument does not show that the distinction has been over-exaggerated.

Acknowledgements I thank David Murray-Smith and Nicole J. Saam for useful comments.
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Chapter 43
The Multidimensional Epistemology
of Computer Simulations: Novel Issues
and the Need to Avoid the Drunkard’s
Search Fallacy

Cyrille Imbert

Abstract Computers have transformed science and help to extend the boundaries of
human knowledge. However, does the validation and diffusion of results of computa-
tional inquiries and computer simulations call for a novel epistemological analysis?
I discuss how the notion of novelty should be cashed out to investigate this issue
meaningfully and argue that a consequentialist framework similar to the one used
by Goldman to develop social epistemology can be helpful at this point. I highlight
computational, mathematical, representational, and social stages on which the valid-
ity of simulation-based belief-generating processes hinges, and emphasize that their
epistemic impact depends on the scientific practices that scientists adopt at these dif-
ferent stages. I further argue that epistemologists cannot ignore these partially novel
issues and conclude that the epistemology of computational inquiries needs to go
beyond that of models and scientific representations and has cognitive, social, and
in the present case computational, dimensions.
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43.1 Introduction: Computer Simulations, a Revolutionary
Epistemology?

The search for innovation and novelty are major goals across social fields. Unsur-
prisingly, when new technologies, artifacts, techniques, methods, practices, perspec-
tives, or issues are developed, bold statements about their potential impacts aremade.
So-called “revolutions” or “turns” are regularly announced across science and it is
legitimate to be methodologically cautious about such claims.

It is hardly controversial that computers have largely transformed science and help
to extend the boundaries of humanknowledge.Yet, itmight be the case that computers
merely bring about more inferential power but that concerning how scientific results
are justified and come to be trusted, science is left unchanged by the computational
revolution.

Philosophers of science have had a long-standing tradition of analyzing experi-
ments, theories, and scientific reasoning. However, specific epistemological analyses
of simulations did not develop until the 1990s with work by philosophers like Paul
Humphreys, Eric Winsberg, or Manfred Stöckler, historians of science like Peter
Galison, scientists interested in philosophical issues like Fritz Rohrlich, or scholars
at the crossroads of several fields like Evelyn Fox Keller. These different authors
mostly agreed that computational methods not only provided a new powerful way
to practice science, but also did not match existing categories and called for specific
and novel analyses, above and beyond those concerning experiments, theories, or
models.

In a thought-provoking and conservative article, Roman Frigg and Julian Reiss
stood against this move and argued that claims about the novelty of computational
science were overblown and ill-grounded and that there was no more to the episte-
mology of simulations than the epistemology of modeling (Frigg and Reiss 2009).
Making final and flawless contributions is difficult for thosewho pioneer in a field and
various aspects of Frigg and Reiss’s jubilant refutation were convincing. The need to
guard against the lure of apparent novelties was later confirmed, for example, by the
criticism by Barberousse and Imbert (2013) of revolutionary claims about cellular
automata based simulations (a case that was recurrently used in favor of novelty
claims) or by the sober and deflationary analysis by Beisbart of the deeply argu-
mentative nature of simulations despite their genuine similarities with experiments
(Beisbart 2018, see also Barberousse et al. 2009). However, Frigg and Reiss were not
content to refute claims about the novelty of specific aspects of simulations. They
extrapolated that simulations “raise few if any new philosophical problems” (593)
and suggested considering the literature on simulations “as contributing to existing
debates about, among others, scientific modeling, idealization or external validity,
rather than as exploring completely new and uncharted territory” (595).

Paul Humphreys quickly responded that this general non-novelty claim was sim-
ply false. In (Humphreys 2009), he highlighted that issues such as the epistemic
opacity of computational processes, the importance of syntax, complexity questions,
or the specific role of time in simulations all make the epistemological and seman-
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tic analysis of computational science novel, beyond genuine overlaps with existing
philosophical analyses of science.

The present chapter focuses specifically on the epistemology of simulations, how
their results are validated, and whether the problems that arise in this context are
novel. Frigg and Reiss’ debunking paper was a sanitizing contribution. Nevertheless,
I will also argue that their main conclusion is false because simulations raise new
epistemological questions or raise traditional questions that require novel or specific
answers for simulations.

I devote Sect. 43.2 to philosophical preliminaries: I first discuss how the notion
of novelty should be cashed out here and argue that using a conceptual framework
similar to the one used by Goldman to develop social epistemology is appropriate
for the investigation of the present question. In Sect. 43.3, I list computational, math-
ematical, representational, and social loci on which the validity of simulation-based
belief-generating processes hinges. Additionally, I emphasize that their epistemic
impact depends on the practices that scientists adopt to face these problems. I further
argue in Sect. 43.4 that epistemologists cannot ignore these issues and conclude in
Sect. 43.5 that this analysis agrees with those which emphasize that the epistemology
of science needs to go beyond that of scientific representations and has cognitive,
social, and here computational, dimensions.

43.2 Methodological and Conceptual Preliminaries

First, the notion of novelty should be clarified if it is to frame the discussion. What is
scientifically novel is contingent upon which claims, theories, or perspectives have
been defended within a field. Thus, the real issue is whether an object of inquiry
should be analyzed along the same lines as other objects. The difference can be
illustrated as follows. In the context of computer simulations, it is blatantly obvious
that complexity and computational resources must be taken into account to analyze
the constraints that frame computational inquiries. Accordingly, focusing on what
is possible in practice (Simon 1957; Humphreys 2004; Wimsatt 2007) and empha-
sizing the importance of the scarcity of resources for agents is appropriate. How-
ever, resource-boundedness is a general constraint that frames both computational
and noncomputational inquiries. Humphreys suggests the general epistemological
principles that “it is the invention and deployment of tractable mathematics that
drives much progress in the physical sciences” and that “most scientific models are
specifically tailored to fit, and hence are constrained by the available mathematics”
(see Humphreys 2004, 55–56 and Barberousse and Imbert 2014 for a detailed dis-
cussion). Still, it so happens that in existing discussions about models, complexity
issues merely arise as a peripheral point to justify the need to make approximations.
In brief, whereas the development of computational science somewhat relaxes com-
putational constraints and resource-boundedness constitutes a much more restrictive
straightjacket for traditional noncomputational inquiries (see again Barberousse and
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Imbert 2014), quite paradoxically, the need to adopt a bounded-resource perspective
is blatant and apparently novel in discussions about computational inquiries.

Also, the notion of the novelty of questions, discussions, or of “uncharted terri-
tory”, partly places novelty in the wrong location. While some aspects of computer
simulations trigger new questions (e.g., concerning code or the epistemic opacity
of computational processes), others raise questions of types that are already ana-
lyzed by epistemologists but need no less epistemologically revolutionary answers.
For example, the role of human faculties in the architecture of human knowledge
is a central issue in mainstream epistemology. This role sometimes changes. Over
the centuries, the development of measurement instruments transformed empiri-
cal science and made it less dependent on our senses. However, till the advent of
computers, methods, languages but also objects of inquiries were adapted to human
reasoning and inferential abilities, the reliability of whichwas crucial to that of scien-
tific results. The development of computer-assisted science keeps transforming this
situation (Humphreys 2009, 616). Computers carry out increasing parts of inferential
processes and scientific inquiries are less adapted to our inferential capacities in their
objects and methods. However, humans remain the architects of these inquiries, the
devisers and warrantors of methods and instruments, and the recipients of scientific
results. In brief, science is no longer human-tailored but remains human-centered
(Imbert 2017, 771), and we are faced with the “anthropocentric predicament, of how
we, as humans, can understand and evaluate computationally based scientific meth-
ods that transcend our abilities” (Humphreys 2009, 617). Overall, the development of
computational science requires reexamining the place of human faculties in knowl-
edge and analyzing the evolving distribution of roles between human capacities and
the epistemic instruments that we use as surrogates.

Second, a conceptual framework is needed to investigate the scope of this episte-
mological inquiry about the epistemological novelty of simulations and their valida-
tion. General epistemology analyzes issues such as the nature, sources, or structure
of knowledge and justified belief. Specific, applied epistemological inquiries can be
pursued about the specific practices or processes through which beliefs are acquired
within fields for which the promotion of epistemic objectives is important, such as
adjudication, library science, journalism, or science. For example, the epistemol-
ogy of science investigates how novel scientific contents are unraveled by processes
such as mental reasoning, calculus, thought-experiments, experiments, or computer
simulations (El Skaf and Imbert 2013).

A consequentialist framework like the one used by Goldman for social episte-
mology (Goldman 1999, 87) provides a useful tool to analyze the various aspects of
such belief-generating processes. The inquiry is pursued relative to some epistemic
states, such as knowledge, error, ignorance, or consensus, which are considered to
have primary or fundamental value. Then, practices can be described as having instru-
mental value depending on how much they promote or impede the development of
such epistemic states. Further, it is useful to adopt a fine-grained description of the
resulting epistemic states. Goldman proposes the notion of “mental infosphere”
at a time t, which consists of the beliefs of all the people inhabiting the globe at t
(Goldman 1999, 161). Then, this conceptual framework is used “to widen epistemol-
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ogy’s vista” (ibidem, preface) and to show how particular communication systems,
adjudication rules, media funding systems, testimonial rules, etc., have a positive or
negative impact on the dissemination of false or true beliefs in the mental infosphere.
Similarly, one can analyze howmuch the practices involved in belief-generating pro-
cesses that comprise computer simulations favor the development of true, error-free,
consensual, reliable, etc., beliefs in the mental infosphere, or in its scientific part.

Belief-generating processes involving computer simulations require the expertise
of specific scientists, organized in specific ways, dedicated to specific practices, and
using specific tools, languages, or types of resource. Thus, trivially, their epistemo-
logical appraisal corresponds to a task in its own right since it requires analyzing
and understanding new types of objects and processes. Further, because inquiries
involving computational methods represent a large part of scientific activities, this
task is an important one in scientific epistemology.

However, the importance and specificity of this task do not imply that, once
epistemologists tackle it, they are always faced with novel problems. Nevertheless,
could it really be the case that the computational, logical, mathematical, cognitive,
and social specificities of computer simulations do not make a single epistemological
difference and that all the epistemological problems that they raise boil down to
problems that epistemologists have already solved in different contexts? If this is
so, applied epistemologists should celebrate this cosmic coincidence and rejoice that
their past works have such unintended scope.

In any case, even if simulations reveal epistemological problems that are similar
or identical to those raised by other scientific activities, they can still be epistemolog-
ically different. Indeed, answering a traditional question about a novel object is not
usually trivial. When one tries to solve equations of a new type, one tackles a novel
problem. Saying that a mathematician who has successfully done so has achieved
nothing new, because this is (once again!) the same old stew or problem of solving
an equation would be mathematically naive. Naturally, it may be that answers to
epistemological questions about simulations are sometimes identical to answers to
similar questions about other activities, but it cannot be assumed that this will be
systematically so. Finally, showing that a problem about some type of object is actu-
ally the same as another problem about another type of object is usually not simple;
and showing that a problem reduces to another, or that the solution of the latter can
be adapted to solve the former, is usually an achievement.

Overall, it is difficult to tell in advance how much the epistemology of computer
simulation shares with that of other activities. Computer simulations have the same
target as other scientific activities, rely partly on the same theoretical material, use
common parts of applied mathematics, and are partly carried out by agents that are
subject to similar cognitive, scientific or social constraints. Like experiments, they can
be part of “big science”, often involve using material and nonmaterial instruments,
massive budgets, various collaborators, and may yield big data. Because all such
features are not epistemologically neutral, the epistemology of computer simulations
cannot be radically new, nor should it be carried out separately from epistemological
inquiries about instruments, mathematics, computer science, statistics, experiments,
and, naturally, scientific representations and models (see also Frigg and Reiss 2009,
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611, Humphreys 2009, 615). In brief, there is no doubt that the epistemology of
simulations has a lot in common with that of other scientific activities. Identifying
genuine overlaps, disentangling and explaining shallow similarities from deep ones,
and determining what is epistemologically specific to computer simulations strictly
speaking and what is a general feature of computational science corresponds to a
research program for applied epistemologists (for a critical overview of the case
of simulations and experiments, see e.g., Imbert 2017, 34.5) In any case, claiming
from the start that nothing novel is to be found in the epistemology of simulations
remains puzzling. It is as if Columbus, after only one month in America, had claimed
that there was nothing specifically new or interesting on this continent because local
indwellers also had two legs and no road panel pointing at hot discoveries was in
sight for newcomers.

For the following discussion, I adopt the following characterization of computer
simulations (see Imbert 2017, 34.2.1 for more details):

A computer simulation corresponds to the actual use of a computer to unfold the behavior of
a physical systemS, by generating a description of a potential trajectory of S in the state space
of a computational model of this system by applying repeatedly an algorithm that computes
the description of the next state of the trajectory from the description of the previous states.

Analyzing how the conclusions that are reached with the help of computer sim-
ulations can be validated requires discussing more than computer simulations per
se. Computer simulations are embedded within larger scientific inquiries aimed to
answer specific questions about certain target systems (El Skaf and Imbert 2013,
3454, Frigg and Reiss 2009, 596). At the end of the day, the key issue is not whether
computer simulations faithfully represent some target systems but whether the data
that they yield can be used to provide target questions with answers that are likely
to be correct. Below, I shall consider that validation describes the process of making
sure that this is the case. Validation in this sense is directed at inquiries and investi-
gates the soundness of the production and use of computational results. As for any
form of reasoning, the value of the final results hinges on both the content of the
material that feeds them (typically premises, theories, or models) and whether the
inferential process (which here includes the running of the simulation) is properly
carried out. As we shall see, the process of validating simulation-based inquiries
goes beyond the adoption of good scientific methods and has a social or communal
dimension.

43.3 Dimensions of Computational Inquiries, or Where
Things Can Go Wrong Epistemically

Belief-generating processes relying on simulation-based inquiries are extremely
complex, from the elaboration and running of computer simulations to the reception
of results in scientific communities and beyond. An important task for epistemolo-
gists is to pin down within these processes the various problems that scientists must
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solve for the final results to be valid, and where detrimental effects can be triggered
and spoil the process.

Philosophers of science do not have a strong tradition of investigating scientific
or epistemic failure. Inquiries about errors and practices are mostly carried out by
sociologists of science (e.g., see the symmetry thesis about the explanation of false
and true results in Bloor 1976), philosophers with specific orientations, such as
naturalists, pragmatists, or advocates of a practice turn (see e.g., Kitcher 1993, Wim-
satt 2007, Woods 2013), or philosophers investigating issues for which the question
of errors can hardly be discarded, such as investigations about ampliative reasoning
or statistics. Still, it is informational to locate within belief-generating processes the
key factors (or “process variables”) that influence the validity of results or on which
the epistemic impact of the results hinges, if only to better control these epistemic
processes. Another task is to analyze specifically the epistemic impact of the adoption
at these hinge points of particular choices, behaviors, practices, or policies. When
the corresponding epistemic effects are specific to the context of computer-based
inquiries, or when such key factors are specific to such inquiries, the validation of
simulation-based inquiries is a novel problem, which calls for specific epistemolog-
ical analyses. I illustrate in the following paragraphs such cases.

43.3.1 The Production of Computational Results: Can We
Control the Beast?

Because computer simulations involve carrying out a wide variety of tasks, they
can fail in many, often specific, ways. Errors may come from the hardware, e.g., if
single-bit alterations are caused by physical interferences. Failures may be rooted
in the types of miscomputations or malfunctions that can affect digital computers
and communication systems (Fresco and Primiero 2013), in particular in the written
code or the software, which do not always do what we believe they do. Problems
may come from the type of algorithms that we use to compute functions, to approx-
imate real functions, or to solve equations, but also from their implementation; from
the discretization of mathematical objects to make them amenable to computable
descriptions; from a mismatch between the algorithms (or the models) and the type
of computational architecture that is used (supercomputers now use parallel archi-
tectures, which require various adaptations), etc.

I do not presume to present here an exhaustive list; quite the contrary. Inventorying
and analyzing specific ways of failing, from the hardware to the inquiry level, and
assessing the factors that favor or neutralize them is a substantial epistemological
task. Potentially, it requires a wealth of distinct expertise concerning various parts
of the process, which clearly makes the situation epistemically uncomfortable for
epistemologists. Still, this is no reason to discard or ignore this task, which is no less
important than the analysis of potential sources of errors in other belief-generating
processes, such as cognitive biases and fallacies of reasoning, logical errors in formal
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inferences, typical ways of failing in thought-experiments, or bandwagon effects and
cascades in belief exchanges within communities. I highlight below aspects of the
production of computational inquiries that make their validation specific.

43.3.1.1 Computational Practices: An Evolving Field with Specific
Epistemic Values

The success of computational science depends first on the ability of scientists
to develop specific technical, mathematical, and human strategies to solve hard-
ware and software problems effectively (for questions pertaining to verification, see
Sect. 43.3.2 below and Chap. 10 of this volume by Rider).

These questions cannot be discarded or identified by an armchair inquiry, since
the issues of where reliability bottlenecks lie, how they are faced, and which ques-
tions are hot concerning computer simulations and their validation keep evolving
with technological and scientific progress. For example, for the first computers, “the
overwhelming problem was to get and keep the machine in working order,” as is
reflected in the names of societies such as the Association for Computing Machinery
(Dijkstra 1972, 860). Also, the existence of single-bit alterations may no longer be a
worry for ordinary simulations, even if it remains an issue for sensitive simulations,
for which error-correcting code memory (ECC memory) devoted to scientific com-
puting needs to be used. Similarly, in the late 1960s, the development of computer
power had triggered needs that could not be answered by programmers’ abilities.
“Programming ha<d> become an equally gigantic problem” (ibidem, 860), and “the
software crisis” had arisen, with the development of low quality, inefficient, or dif-
ficult to maintain software. How scientists have managed this crisis ever since is a
question worth exploring.

Anyhow, beyond discussions about the validity of particular inquiries, the average
validity and global impact of computational inquiries depend on various properties
of hardware and software. How much hardware and software is globally efficient,
easily usable, standardized, maintainable, adaptable for follow-up inquiries, trans-
ferable to other scientific problems, etc., influences how much sound results are
produced. These properties correspond to epistemic values that are specific to com-
putational inquiries, so investigations about their impact are clearly novel. For exam-
ple, a science in which all codes are radically different and all practitioners develop
their specific solutions is unlikely to be efficient and globally reliable. In contrast,
the existence of shared codes of good practices and commonly developed software
tools, or the adoption of common standards (e.g., in terms of hardware, programming
languages, or mathematical tools) is bound to have positive effects. This shows that
the epistemology of computational inquiries, like that of instruments, goes beyond
that of individual practices and overlaps with social epistemology. How much the
above properties need to be traded against one another and where actual computa-
tional practices within empirical science lie on this multidimensional map are other
questions worth investigating.
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43.3.1.2 Applied and Computational Mathematics for Limited Social
Agents: The Case of Random Numbers

To carry out computer simulations, scientists need to find ways of solving vari-
ous mathematical problems. Understanding how they do so requires going beyond
traditional questions in the epistemology of mathematics such as how we interact
with mathematical entities, make reference to them, or access mathematical truths,
since the epistemological issue of how we developmathematical knowledge remains
largely untouched by answers to these foundational questions. By contrast, the epis-
temology of applied mathematics and computational science deals directly with the
issue of how logical and mathematical content is unfolded, knowledge extracted,
and problems solved given our limited wherewithal, the complexity of the task, and
the features of the formal tools that we use (see e.g., Wimsatt 2007, El Skaf and
Imbert 2013, Fillion and Corless 2014, Lenhard and Carrier 2017). Accordingly,
it involves analyzing how heuristics for mathematical problems work and what we
can expect from them; how to describe the quality of approximate solutions, how
to develop mathematical strategies to analyze and control computational errors and,
more generally, which features influence how applied mathematicians crawl their
way through complex problems. While applied mathematics is not limited to its use
in computational science, it is central to this field, and much of it is developed for
the needs of computational inquiries.

For illustrative purposes, I now present the case of the production of random
numbers by simulation practitioners and highlight factors on which the reliability
of this task depends. The production of random numbers is a central problem of
modern science. Randomness is a key concept across various theories, and fields
and scientific arguments involving statements about random properties are frequent.
A specificity of computer simulations is that they often rely on the use of token
numbers that instantiate the property of randomness (versus involve statements that
attribute it). Accordingly, the validity of statements about random properties merely
relies on the semantic relation between the content of these statements and what they
denote. By contrast, that of computer simulations and computational inquiries using
random numbers also relies on our ability to produce such random numbers. Various
epistemological questions arise in this context. How easy is it to produce the random
numbers that our computer simulations need? Which factors have an impact on this
production? Can we expect the random numbers that are usually used in computer
simulations to be good enough for the preservation of the validity of inquiries? I
provide evidence that these questions cannot be ignored and have nontrivial answers
that require going into the details of socio-computational practices, and perhaps the
psychology of practitioners.

Whereas almost all sequences of binary digits are random, producing random
numbers is extremely difficult. The need for scientists to produce many such num-
bers increases the difficulty of the task. Random number generators (hereafter RNG)
must satisfy various requirements such as producing uniformly distributed, repro-
ducible, random numbers, which have periods that are much larger than the samples
used. Jointly fulfilling all these requirements is in general difficult, but even more so
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in the context of parallel computers (Hellekalek 1998). Parallel architectures involv-
ing thousands of processors were developed in the 1990s and supercomputers are
now massively parallel. Then, to the extent that parallelization is possible, parts of
the computational task can be computed synchronically, which speeds up computa-
tion. Typically, replicas for Monte Carlo simulations can be produced independently.
Thus, good random generators should be parallelizable. For parallel RNG (hereafter
PRNG), other requirements are the absence of correlations and, for reasons of effi-
ciency, the need to generate numbers independently (ibidem, 85). After reviewing
existing methods to fulfill these requirements, Hellekalek concluded that it was “not
at all trivial to find high-quality RNGS for parallel machines” (ibidem, 82) and
that some aspects of the problem (e.g., correlations between disjoint substreams of
consecutive numbers) were “dangerous territory” (ibidem, 85). Indeed, his analy-
sis showed that the application of parallelization techniques to standard RNG could
“perform terribly” (ibidem, 86). Thus, his paper was named “Don’t Trust Parallel
Monte Carlo”—arguably a big stone in scientists’ shoes, given the importance of
parallel computers and Monte Carlo methods for computer simulations.

Naturally, things have improved since Hellekalek’s paper, but full optimism may
still be inadequate. Scientists’ needs have also increased massively and access to
supercomputers is difficult. Simulations in nuclear medicine can require as many as
1020 random numbers for computations carried out on thousands of processors. A
fundamental problem is that scientists do not have theorems or techniques to prove
the independence of two parallel random streams (Hill 2015, 68). Further, strong
autocorrelations within pseudorandom numbers can appear far apart and spoil the
application of parallelization techniques (DeMatteis and Pagnutti 1988). In practice,
the testing of PRNG is based on a battery of statistical tests, such as BigCrush
TestU01, which represent the current state of knowledge about random numbers.
and few PRNG satisfactorily pass the test. The epistemological moral is that it can
require pointed expertise to determine whether a (P)RNG is sufficient for a scientific
inquiry.

The next question for epistemologists is to assess whether the (P)RNG that are
actually used in science are in general satisfactory. After all, if scientists always use
the currently best RNG, troubles are unlikely, and epistemologists should not bother.
Evidence can be found that epistemological optimism may be misplaced again. For
a scientist without expertise about RNG, the easiest option is to use the “rand”
functions from standard libraries that are used by her community. The problem is
that “almost all of these generators are badly flawed” (Jones 2010), and the somewhat
inconvenient advice here is to “always use <one’s > own random number generator”
(ibidem). The use of dedicated libraries is no guarantee either. In 2004, Joel Heinrich,
a researcher in high-energy physics, pointed out serious defects in pseudorandom
generators provided by standard libraries such as Linux C and C++ as well as a major
bug in CLHEP (A Class Library for High Energy Physics) class library for random
generators, that is, tools frequently used by physicists (Heinrich 2004). Similarly, 40
out of 58 generators in the GNU scientific library were shown to have defects due to
inadequate initialization schemes (Matsumoto et al. 2007). Indeed, an inadequate use
of a good RNG can also spoil the broth. For example, a simple way to seed an RNG
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is to use the time function existing in most libraries. However, this is not acceptable
if one launches too many jobs because a large number will start at the same time on
different nodes. This leads to a repetition of the same calculations many times and
surreptitiously spoils the statistics (Jones 2010). Unfortunately, this type of problem
can be hard for practitioners and for the external community to detect. Overall, for
randomnumber production, the use of communal scientific resources does not protect
against failure. Thus, because many scientists lack the relevant, evolving expertise
and do not always resort to experts for such local choices, computational results may
often be sullied.

Even then, reliability may be preserved by the transmission of good computing
practices within communities (see e.g.,Wilson et al. 2014). Thus, the average validity
of computer simulations using random numbers depends on whether communities
are organized in a way that favors the adoption of sound practices and indirectly pro-
motes reliability. Social epistemologists of science should then investigate whether
the right information is easily accessible and actors are incented to do the right
thing. Good practice guides like that of Jones (Jones 2010) can help practitioners
adopt appropriate practices or understand that they need assistance. Explicit publica-
tion standards in good journals can also point out sensitive aspects, if, for example,
authors are systematically requested to provide details about the nature, properties,
and implementation of the RNG that they have used. Overall, on this and other issues,
the reliability of computational science is contingent on the adoption of appropriate
practices at the community level and on how individual scientists tend to behave in
this unsafe environment.

43.3.1.3 Changes in Modeling Practices, Justification Strategies,
and Typical Usages

Based on their familiarity with particular types of simulations, some philosophers
have tried to extrapolate and to single out specific features of the epistemology of
simulations. For example, in early writings, cellular automata were seen as typical
illustrations of the epistemological novelties brought about by computer simulations.
More recently, Winsberg has suggested that the knowledge produced by simulations
results from inferences that are downward (from theories to phenomena),motley (the
justification process is a combination of disparate elements), and autonomous (see,
e.g., Winsberg 2010, passim).

Unsurprisingly, such claims are easy to falsify. Simulations are versatile, mostly
neutral inferential tools. Like other general tools, they can be used in various (epis-
temic) contexts and depending on the cases, the appropriateness of their use can be
justified in different ways. In brief, simulations are epistemologically heterogeneous
and the project of finding some general, novel features about how their results are
justified seems doomed to fail. Because models are also versatile tools, their epis-
temological uses are also heterogeneous. At the end of the day, it is no surprise
that epistemological features instantiated by simulation-based inquiries can also be
instantiated by (pen-and-pencil) model-based inquiries. The conclusion should not
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be that the general epistemology of simulations boils down to that of models but
rather that neither (the class of) model-based inquiries nor (the class of) simulation-
based inquiries correspond to epistemological kinds that provide appropriate units
of analysis for general investigations about validation strategies.

To discuss validation strategies and assess the different types of roles that simula-
tions can play within these strategies, inquiries should be described at a fine-grained
level by specifying their goals, what is known about the target systems, what tools
and resources are available, etc. Then, it may be the case that simulations sometimes
open up a space for novel validation strategies or, more frequently, for new versions
of existing strategies. Generic modeling practices such as approximating, idealizing
or abstracting are a way to use models which, though tractable and simple, produce
results that suit the particular goals of inquiries. While these procedures are already
analyzed in the literature on scientificmodels, it remains worth investigating whether
these generic practices have specific versions and require particular epistemological
scrutiny in the context of simulation-based inquiries. Similarly, ensemble forecasting
can be seen as nothing novel since it amounts to combining different incompatible
epistemic sources (here simulations) to make (predictive) judgments. However, it
is usually agreed that this procedure calls for specific analyses in the context of
simulations and climate analysis.

Importantly, the epistemology of science should analyzewhat validation strategies
are used in suitably described contexts, but also how frequently these strategies
are used, and why. Epistemological features like those highlighted by Winsberg,
though not specific to simulations, may correspond to strategies that develop with
computational science. Arguably, because computer simulations are a powerful tool,
they are likely to be used in more complex and uncertain cases, which would not be
investigated otherwise and which constrains the selected strategies. Then, because
of this type of use, computational inquiries may seem, on average, to have specific
features and an epistemology of their own and they may modify how science is
usually practiced. For example, simulations may more often involve approximations
and departures from the truth, epistemologicallymixed or impuremethods, trade-offs
between epistemic goals, etc., even if, when philosophers of science analyze their
aspects individually, the practices that they find are not radically different from those
identified for other types of model-based inquiries (see Imbert 2017 for more details
and similar analyses about unexplanatoriness and simulations). Overall, the failure
to note the difference between analyses in terms of properties of token inquiries and
analyses in terms of frequent features of inquiries may be another cause of dissent
concerning the novelty of the epistemology of simulations.

In any case, computational science may require a specific analysis with respect
to typical modeling or justification practices within communities. For example, the
availability of computational power may change which modeling strategies are most
often used. As noted by Frigg and Hartmann (2017, Sect. 3.1), computational power
may encourage scientists “to swiftly come up with increasingly complex models.”
This may lead in turn to an improvement of the empirical adequacy of predictions,
but not necessarily to a better understanding of underlying mechanisms. In the end,
such changes may modify which goals are valued and which modeling norms are
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dominant within the cultures of communities using simulations. Differences of these
types can hardly be analyzed by scrutinizing exclusively the content of particular
representations.

43.3.1.4 Division of Scientific Labor, Computational Inquiries,
and the Preservation of Validity

Various types of tasks requiring different types of expert knowledge need to be ade-
quately carried out for the production of valid computational results. Because no
single individual can possess all the relevant knowledge, scientists need to divide
the global task into subtasks, and delegate their completion to specific humans or
machines. Then, how much computational science can felicitously “<push> back
the boundaries of what can be known” (Humphreys 2004, 154), depends on how
much safe practices of dividing labor, which does not compromise the validity of the
global inquiry, can be applied. The possibility to divide inquiries into standardized
nontrivial units or modules that can be carried out independently and recombined
together to yield sound results is beneficial, in particular for the validation of simu-
lations. For example, different actors with pointed expertise can be in charge of each
module and produce more reliable collaborative inquiries; some failures can be more
easily localized by means of local tests; other failures may have local impacts, etc.
The advantages of modularity are not specific to computer simulations. However,
how much modularity is possible and beneficial for simulations and their validation
requires a specific investigation. The following argument can be used to clarify the
situation and explain why validating simulations can be difficult.

P1 If, in a perfectly modular structure, each individual module works, so does the whole
structure.

P2 Simulation-based inquiries are perfectly modular.

P3 It is straightforward to check whether the modules of simulation-based inquiries work.

∴ It is straightforward to check whether simulation-based inquiries work

Evidence seems to suggest that conditions P2 and P3 are often false for simula-
tions. For example, while well-designed modularity is desirable, it is often conspic-
uous by its absence from programs: “patches, ad hoc constructions, bandaids and
tourniquets, bells and whistles, glue, spit and polish, signature code, blood-sweat-
and-tears, and, of course, the kitchen sink—the colorful jargon of the practicing
programmer seems to be saying something about the nature of the structures he
works with” (Millo et al. 1979, 277). In various cases, there is uncertainty about
how much modules actually work and whether potential departures from exactness
are a worry. Typically, mathematical functions are often approximately computed
by the versions that libraries provide. If users are not strongly aware of the lim-
its of the specific functions within libraries, the results can be corrupted (see the
case of random numbers described above). Lenhard also supplies the example of the
practice of “kludging”, i.e., using quick-and-dirty and hard to maintain solutions to
make software work (Lenhard, forthcoming, see also Chap. 38 by Lenhard in this
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volume). This implies that knowledge concerning the validity domain of parts of
the software can become lost. Further, in many cases, the fact that black-boxes are
used makes it impossible to check deeper into the modules. Overall, this means that
the global validity of computational inquiries can become corrupted and uncertainty
often remains as to whether this is the case. In practice, modularity may be a solution,
but not always a blissful one.

The various reasons for this corruption of modularity, whether it is inevitable,
and the strategies developed by practitioners to preserve validity when modularity
is eroded, are other questions worthy of study. Answers may differ depending on
the aspects or fields considered. For software architecture, there are clearly “reasons
for degeneration: ongoing evolutionary pressure, piecemeal growth. Even systems
with well-defined architectures are prone to structural erosion” (Foote and Yoder
1999, Chap. 29, quoted by Lenhard). At the same time, “a sustained commitment to
refactoring can keep a system from subsiding into a big ball of mud” (ibidem). How
much safe modularity is preserved depends on which types of tools, practices, and
norms are actually adopted within a scientific community, from the hardware to the
modeling level. This is again a contingent issue, which epistemologists cannot ana-
lyze by armchair analyses. Importantly, different factors pull in different directions.
Modularity brings about epistemic advantages, such as the facilitation of piece-wise
validation and understanding of inquiries and their results. However, preservingmod-
ularity can be extremely costly. Similarly, reusing and adaptingmodules beyond their
initial domain of validity to produce more results quickly is a legitimate concern,
even if this tends to make errors more likely. Describingmore precisely the trade-offs
between these different epistemic goals can help to understand the constrained epis-
temic choices that resource-limited practitioners and communities are faced with,
why some practices are considered as good, acceptable or sloppy, or why some types
of errors or problems can be expected within computational inquiries. Depending on
the orientations that are taken by communities concerning these matters, different
types of computational science are possible.

43.3.1.5 Computer Simulations for All: What Epistemological Effects?

Computational science increasingly benefits from the development of various tools
at the hardware, software, or modeling levels. Individual scientists would not be
able to complete many inquiries without all these computational, mathematical, and
modeling facilities. This situation keeps lowering the epistemic cost of the run-
ning of computer simulations (in terms of what one needs to know). Even scholars
within communities with no strong training in computer science and mathemat-
ics can develop potentially valid simulations. But is this really safe: can individual
scientists really afford epistemic ignorance and still produce sound computational
results, or is this a lure? Actually, the epistemic price to validate results properly
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may remain high.1 Indeed, the question of whether partly reliable tools and facilities
work well usually calls for a context-specific answer, and determining this answer
requires expert knowledge concerning both the tools and the subject matter. Thus,
new tensions arise from these modern facilities, which offer opportunities to produce
a wealth of results across scientific fields but come with new risks of failure. While
this tension exists for other complex activities, it is extremely acute here. How scien-
tists eventually behave, i.e., how much they cope on their own or ask other experts or
collaborators for help hinges on many factors. These include the cost of human and
computational resources, how much failure is risky and acceptable, whether errors
are often detected by peers and tarnish scientific reputation, etc. The productivity
and reliability of computational science can vary significantly depending on what is
the case concerning such factors.

43.3.2 The Reception and Post Hoc Assessment
of Computational Results

A bad result that is used has a detrimental impact. A sound result that is ignored has
no beneficial effect. In both cases, we are epistemically worse off. Accordingly, epis-
temology must also scrutinize how results are publicly validated, accessed, trusted,
and used once they are produced. I highlight below a couple of issues that make this
problem specific for computational inquiries.

43.3.2.1 Epistemic Access

For mind-produced results, inferential processes and their conclusions, qua linguis-
tic entities, are accessible to the authors, who personally carry out these activities.
Publication extends this access to the public. Things are different for computer sim-
ulations. These are carried out by external processes. Thus, the authors no longer
have a privileged epistemic position. Furthermore, even if the content of computer
simulations can be described logically (putting aside issues concerning physical
implementation) and can be made accessible provided that scientists preserve bit-
reproducibility (Demmel and Nguyen 2013), in practice, practitioners usually cannot
access the details of computational processes. In other words, simulations remain
globally epistemically opaque (Humphreys 2009), even when they are locally trans-
parent (Imbert 2017, 726): a human mind can inspect any part of the process though
it cannot inspect all the parts. Things are worse for the more distant scientific audi-
ence. In most cases, the public can access a tiny fraction of the results through tables
or graphs. In some cases, the whole data set and the code are available for inspection,
while in rarer cases, this is true for the whole state-by-state simulation. However, it

1Similarly, knowing the main effects of drugs may give lay people the illusion that they can safely
decide whether they should take them when they are sick.
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is virtually never so for the bitwise computational process. Overall, how much of
the process can be accessed, directly (by human minds) or indirectly (with software
facilities), depends on computational questions, publication policies, issues related
to openness and proprietary use, or the development and maintenance of storage
facilities and exploitation software. (Note that the overlap with similar issues for
experimental science is merely partial). Since public validation and good use are
contingent on the possibility of access, the epistemic impact of simulations clearly
depends on how this problem is socially and technologically treated within scientific
communities.

43.3.2.2 Verification of Program Correctness

Accessing results is one thing, trusting them and using them is another. It does not
matter that some type of process often produces adulterated results if its users can
identify and use sound cases. In brief, whether it is possible to certify the reliability
of simulations is crucial to their felicitous use. Here again, the epistemology of
simulations overlaps with that of other activities but it has its specificities.

At a low level, program verification is a matter of verifying whether token com-
putational runs have the appropriate causal behavior, which is a specific version of
the problem of inductive inference (Fetzer 1988, passim). At a higher level, it can be
seen as that of verifying whether algorithms and their coded counterparts do what
they should. De Millo et al. (1979) argued that program verification does not work
like proof verification. Mathematical proofs are usually sketches of proofs (versus
formal proofs in the logician sense), and their logical validity is publicly discussed
by mathematical communities. Program verification is different, because proofs of
program correctness for real-life systems are long, tedious, and repetitive, and are
not usually published nor publicly discussed (De Millo et al. 1979, 276). Dijkstra (a
defender of program verification) counterargues that proofs of program correctness
can also be the object of lively exchanges between scientists. Further, trivial math-
ematical theories also have simple statements “whose finite proofs are impossibly
long” (Dijkstra 1978). Thus, for both proofs and programs, mathematicians need to
find concise and elegant proofs.

Fortunately, for the purposes of this chapter, there is no need to endorse a position
about the nature and ideals of program verification. Epistemology deals with what we
can do in practice and what we actually do, given our epistemic, computational, and
cognitive wherewithal and the incentives within our epistemic communities. Simi-
larly, Wikipedia may change nothing of the nature of knowledge, justification, and
science, but it changes how agents with limited resources and cognitive biases access
knowledge. Thus, its existence modifies our epistemological situation and changes
which beliefs propagate throughout human societies. Here, even if proofs of program
correctness and mathematical proofs share the same nature and ideals, in practice,
strong epistemological differences between them remain. If proofs of program cor-
rectness are usually not published, are less valued as scientific achievements, less
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scrutinized, much longer and extremely repetitive, then, from an epistemological
point of view, program verification works differently.

Further, verification of programs is de facto a partly specific problem for scientific
activities outside mathematics and computer science. Millions of lines of code are
regularly written for the purpose of scientific activities. The more software facilities
develop, the more scientists with no specific background in computer science write
code, which is neither verified by formal methods nor undergo the interested scrutiny
of computer scientists or mathematicians. This raises the question of how these codes
are actually tested and how reliable related procedures are. In the absence of a grand
theory of testing, “programmers are probably better off using the tools and insights
they have in great abundance. Instead of guessing at deeply rooted sources of error,
they should use their specialized knowledge about the most likely sources of error”
(DeMillo 1978, 41) and rely on their “intuition and problem-dependent knowledge in
a disciplined manner to test for a variety of specified error types” (Shapiro 1997, 31).
Further, program correctness merely guarantees that the implementation matches the
specifications; but these can themselves beflawed (Shapiro 1997, 32), andunexpected
physical, mathematical or computational conditions or situations can bring about
failure. In brief, testing often relies on amessy combination of formal and nonformal,
subject-specific, andpartly dirty strategies. Thus,while the epistemologyof computer
simulations and software engineering is at the crossroads of other disciplines and
overlaps with them, it does not reduce to them and requires a specific scrutiny from
philosophers of the empirical science, even if they still lack the corresponding culture.

43.3.2.3 Verification of Mathematical Correctness

Even if computer simulations work properly at the hardware and software level, they
may be unsatisfactory because they compute solutions that are not close enough to
the unknown solutions of the target models or equations. In the frequent absence of
mathematical theorems to guarantee that this is so, assessing whether this is the case
is difficult. I will not develop this point here, as it has already been discussed in the
literature (see e.g., Winsberg 2010, Chap. 2, Frigg and Reiss 2009, 603).

43.3.2.4 Reproducibility

Scientists can be willing to replicate or reproduce simulations and their results.
Replication is costly and not all scientific results or simulations are replicated. Nev-
ertheless, the possibility of replication is a cornerstone of science and the validation
of scientific results. In principle, it is possible for entities that can be defined or pre-
sented unambiguously by linguistic means. By contrast, replicating experiments or
thought-experiments can be controversial, whichmay feed epistemological problems
like that of the experimenter’s regress (Collins 1985).

Over the past decade, there has been a growing awareness that present scientific
practices and publication rules often do not match replicability standards (Baker
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2016). This is referred to as the replication, replicability, or reproducibility crisis in
science. Until recently, it was seen as touching almost exclusively experimental sci-
ence.As it turns out, computational activities are also concerned. Failure to reproduce
computational results or to replicate a computation can stem from various sources:
the authors may not share their code; the representation of real numbers may vary;
the order of associative operations such as addition and multiplication may make
a difference in floating point representations; programming languages, compilers,
operating systems, and finally computational architectures may make a difference
(Hill 2015), etc. How serious is the problem for computer science and computer sim-
ulations in particular? Some researchers like Claerbout have struggled over the years
to create a reproducible research environment and have reported how difficult this
has been (Fomel and Claerbout 2009). More recently, Collberg and Proebsting tried
to replicate computer science research presented in 601 papers from the respectable
Association forMachinery conferences and journals (Collberg and Proebsting 2016).
They defined different degrees of repeatability based on how difficult they found it
to repeat the research. In spite of their efforts, 47% of the 601 target papers turned
out to present non-repeatable research. It is unlikely that computer scientists are
more careless concerning reproducibility than researchers who simply use computer
simulations for their research. Accordingly, epistemologists should not indulge in
wishful thinking concerning the replicability of computer simulations, and, arguably,
computer simulations also raise a specific reproducibility problem.

43.3.2.5 Trust

Overall, the impact of computational results depends on how much and when the
results of computer simulations are trusted, andwhether this trust is misplaced or not.
If one takes a general, abstract, bird’s eye view of this problem, it looks familiar and
seems to boil down to the issue of how andwhen scientists accept being epistemically
dependent on their peers and using their results (Hardwig 1985). The answer can
be described in terms of networks of trust or trust indicators such as the scientific
reputation of journals, scientists, or institutions. However, at a more fine-grained
level, how much trust toward computational results is distributed and how these
trust indicators are fed depends on the details of practices across fields. Here again,
computer simulations may require specific scrutiny.

43.3.2.6 Publication Procedures and the Setting of Appropriate
Standards

Publication procedures contribute to the production, assessment, and diffusion of
good results. Tuning them appropriately for computational inquiries can be specif-
ically beneficial with respect to some of the problems described above. I shall give
brief examples here.
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Because access to relevant information is crucial for replication or validation by
peers, but also for novel inquiries that use existing data (e.g., those generated by big
simulations such as the Millenium Run), editorial rules, or requests concerning what
information authors must provide, as well as openness and proprietary issues, can
influence the epistemic impact of computer simulations.

Editorial rules can also be used to keep “educating” members of scientific com-
munities about what can spoil simulations (e.g., if authors are requested to provide
detailed information about the (P)RNG they use). This is particularly true since
computational science evolves at a brisk pace and communal practices need to keep
adapting to guide individuals.

Beneficial results can also be achieved through appropriate authorship practices.
Collaborative science is now widespread, which may undermine epistemic account-
ability and feed adecrease of reliability (Andersen2014, Imbert 2014). In this context,
major journals, like Nature or JAMA, have started adopting policies to make authors
list their respective contributions, and what they endorse responsibility for (Rennie
2001), as well as who the guarantors are (Rennie 1997). In the context of computer
simulations, adapted versions of these policies may be adapted to indicate the crucial
scientific roles that must be endorsed to carry out and validate simulations properly.
This may put virtuous pressure on practitioners, e.g., concerning the interpretation
of agent-based models by computer scientists with no object-specific expertise, or
the internal validity of simulations carried out by researchers with little expertise in
computational methods.

43.4 Should Epistemologists of Science Bother, After All?

As seen above, belief-generating processes involving computer simulations can fail
in various places, spoiling their epistemic impact. Can epistemologists ignore these
issues? Epistemologists of science have a strong tradition of focusing on scientific
representations. So far, the issue of the validation of simulations has mostly been
tackled through the lens of the epistemology of models and question such as whether
partial misrepresentations (e.g., due to idealizations, approximations or abstractions)
threaten the conclusions that can be drawn frommodels (Frigg andHartmann 2017). I
nowprovide general arguments to the effect that an adequate epistemological analysis
of computer simulations should extend beyond these questions.

43.4.1 Target Models, Actually Investigated Models,
and Failure

When a simulation is carried out, a computational model is always exactly explored,
even if it differs from the model targeted for investigation. So the validity of a
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simulation always boils down to that of this computedmodel. Therefore, why extend-
ing investigations beyond those of models?

Unfortunately, such a position begs the question. First, the model that is actually
computed can be unknown, e.g., because unnoted errors spoil the investigation, so
the above position makes scientific failure more difficult to analyze. Second, the
exact description of these actually computed models should include hosts of gory
mathematical and computational details as well as information about the software
and hardware, i.e., much more than philosophers analyzing models usually discuss.
Thus, at the very least, one must distinguish between the target models that one
would like to investigate and those that are actually investigated, knowingly or not.
Third, focusing on the content of target models also remains unsatisfactory. From
an epistemological point of view, what matters is less the potential of target models
than what is actually extracted from them by practitioners. Typically, if some Monte
Carlo practitioners use low-quality random numbers, their results may be incorrect,
whether or not the target average quantity in the model represents the target system
property correctly. Overall, analyses about models and mathematical–computational
practices are complementary. Just as investigations about the death toll on roads
cannot be reduced to analyses of the driving code and road maps, discussions about
the epistemology of models and scientific representations cannot save us the effort
of epistemological investigations about mathematical–computational practices.

43.4.2 The Valuable Redundancy Argument

Let us assume for the sake of the argument that the epistemological analysis of
computational models could exhaust that of computer simulations. Even so, much
independent epistemological work would be needed to describe how other aspects
of simulations, such as coding, mathematical practices, verification procedures, etc.,
favor the production of reliable results. This can be understood with an analogy
to classical mechanics. Even if one knows exactly the trajectory of a deterministic
system, there remain hosts of regularities to be discovered between other variables
describing the system. These regularities are somewhat redundant, since anything
about the system’s behavior can be derived from the knowledge of its trajectory.
Nevertheless, discovering such regularities remains epistemically valuable. Simi-
larly, investigations into the reliability of computational practices and their epistemic
impact are valuable, even if the validity of computer simulations is determined by
the very content of the models that are investigated.

43.4.3 The Procrustean Objection

Finally, one might argue that many of the questions described above are novel
but belong to formal or empirical science. As such, they might be discarded from
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epistemology, leaving nothing substantially novel in the epistemology of simulations.
For example, Frigg and Reiss emphasize that questions, e.g., about the relationships
between numerical and actual solutions or the impact of truncation errors are “purely
mathematical problems” (Frigg and Reiss 2009, 592, 602).

This type of answer is perplexing. Once one has provided clear-cut and consensual
notions of what counts as logical, mathematical, epistemological, etc., inquiries, one
can analyze which questions fall within the scope of these inquiries. This is what
I have done above with the consequentialist epistemological framework used by
Goldman for social epistemology. In this perspective, nothing precludes that some
problems or sub-problems belong to several disciplines—or one should explain why,
whereas disciplines are historical and partly conventional constructs, there cannot
be a partial overlap between them. The sub-problems that need to be tackled to
pursue epistemological inquiries can also be considered to be epistemological ones,
although perhaps derivatively. It would be implausible to claim that (the solutions of)
philosophical or epistemological questions cannot involve (those of) mathematical
or scientific questions.

Let us take an example. Suppose that one pursues epistemological investigations
about journalistic practices and how much they promote the diffusion of true beliefs
(see e.g., Goldman 1999, Chap. 6). Then, the solutions of various cognitive, techno-
logical, sociological, or economical questions about journalism and communication
systems are relevant to these investigations and overlap with them. Further, these
investigations coincide with those pursued by “theoretical journalists”, who search
for demonstrably reliable journalistic practices. However, epistemologists of journal-
ism do not assess either the reliability of particular pieces of information or whether
journalistic rules are applied correctly.

The case of science is analogous. Scientists try to develop safe practices to extend
scientific knowledge. Thus, proving results about the reliability of particularmethods,
applying sound practices, and assessing the validity of particular inquiries is directly
their task, even if it may provide indirectly relevant information for epistemological
inquiries. Epistemologists analyze science and the reliability of its practices in order
to present a faithful picture of science, given the epistemic, technological, sociolog-
ical, etc., conditions in which it is practiced. Then, the assessment of the general
reliability of scientific practices or possibility or impossibility results about these
practices is common concerns for both inquiries. Emphasizing this overlap does not
amount to confusing the goals and tasks of scientists with those of epistemologists.

Overall, if it deals with the epistemic analysis of natural belief-generating pro-
cesses, epistemology inevitably intersects the fields that investigate specifically these
processes, what they are and what they can be like. Accordingly, impossibility and
complexity results in mathematics, logic, and computer science, results in cognitive
and social psychology about reasoning and biases, results about the aggregation of
individual judgments and preferences, or sociological analyses of how scientific com-
munities work intersect epistemological inquiries. In the present case, mathematical
questions about the complexity of verifying programs or psychological and socio-
logical questions about how computational communities are organized epistemically
and how scientists behave within them overlap with epistemological inquiries about
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the validation of computer simulations. Discarding the epistemological dimension
of these intersectional questions for the purpose of a non-novelty argument amounts
to elaborating an inadequate Procrustean version of epistemology.

43.4.4 The Absence of Data Argument and the Ostrich
Strategy

Pointing at problems that can spoil the validity of computational inquiries is one
thing, nevertheless, some may be already solved or may have a minor impact. Thus,
one would need to know which of these problems frequently generate errors that
threaten the validity of simulations, and which can be idealized away.

Unfortunately, it is extremely difficult to provide data about how often and why
computer simulations fail since correct results are usually unknown and cannot be
used as an external standard. However, the absence of accessible evidence about
something in no way disproves its existence. There are many reasons why failures
of computer simulations are not likely to be detected or publicized when they occur.
First, simulations are not self-certifying activities in the sense that simulating a
system does not produce direct evidence by itself that the simulation is successful.
By contrast, juggling is self-certifying: when one juggles correctly, one immediately
knows about it. Second, when computational inquiries unknowingly fail, usually
some data are still produced. Once criteria of syntactic correctness are met, computer
simulations always yield numbers, and practitioners need to deploy specific vigilance
to track potential troubles. Third, not all robustness tests (e.g., by using different
computational architectures, codes, libraries, etc.) can be carried out. Fourth, external
detection of failure is often difficult because the details of computational activities
are usually not public, replication is difficult, and incentives for replications are
low. Fifth, because problems can be potentially ascribed to various tasks in the
process, localizing failures means facing a specific version of the Duhem–Quine
problem (Winsberg 2010, 24, Frigg and Reiss 2009, 604). This undermines scientific
accountability and may encourage sloppier practices. Finally, even when failures are
detected or suspected, nothing may happen, unless something major is at stake.
Scientific life is short, resources are scarce, publicly localizing others’ errors is time-
consuming, and pay-offs for doing so are usually low. Accordingly, scientists may
simply do nothing and let the results that seem fishy feed the gray zone of science.
Overall, it is difficult to assess computational failure satisfactorily. Direct methods,
e.g., by counting public detections of errors or retractions, are likely to grossly
underestimate it and computational science runs the risk of the invisibleness of its
failures.

It is often sound policy to leave aside issues that one cannot treat correctly. Never-
theless, the difficulty of directly observing some phenomena and the unavailability of
objective standards for evaluation purposes are frequent in science, and they do not
discourage scientists. The epistemological analysis of adjudication systems raises
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similar problems, because one never knows what the right verdict should be (Gold-
man 1999). Yet indirect ways out of the deadlock can be found out. For example,
when a lay jury and a jury involving judges, or a real jury and a mock one give
different verdicts, the two cannot be correct. This was used to investigate the effects
of jury size and decision rules (Kalven and Zeisel 1966, Hastie et al. 1983). Here,
the inability to replicate computer simulation results may, for example, be used as
a general indicator of their invalidity. If some authors do not manage to replicate
some computational results, this could mean that these results are sensitive to the
method used, and their supposed scope is usurped. Alternatively, the method could
have been badly implemented, or there may be some initial vagueness concerning the
target model, which often surfaces when codes need to be effectively written. Over-
all, dropping the case of the epistemological assessment of computational practices
on the ground of armchair arguments or, because it is difficult, would be tantamount
to behaving like ostriches, which according to rumor bury their heads in the sand in
the face of danger. Further, given the evidence that computational practices can fail in
various specific ways, the burden of proof lies on the shoulders of the epistemologists
of science who claim that sources of failure for simulations can be idealized away or
ignored, except when it comes to their pet research topic (typically misrepresentation
for philosophers of scientific models).

At the end of the day, I have no optimistic or pessimistic general conclusion to
make about the present validity of computational inquiries. The point is rather that,
given the type of activity that they are, and all the factors that can spoil them, it is not
difficult to figure out states or domains of science in which simulations are sloppy or
unreliable methods. Thus, it is worth investigating what is the case, why, and whether
things can be improved epistemically.

43.5 Conclusion and Moral

Computer simulations have changed science. Over the past decades, it has been
claimed that they also needed a novel, if not revolutionary, epistemology. Some such
claims were over-stretched and the criticisms they raised were legitimate. However,
one should be careful not to throw away the baby with the bathtub water. I have
tried to present a sober version of the thesis of the epistemological novelty of simu-
lations. I have adopted for clarification purposes a conceptual framework borrowed
fromAlvin Goldman and used it to emphasize that the computational, mathematical,
representational, social, and potentially psychological dimensions of computational
inquiries and their reception within scientific communities require specific epistemo-
logical investigations if one is to understand their validity and their epistemic impact.
These investigations often raise novel questions, especially with respect to objects
of novel types, like hardware and software, or call for novel and context-specific
answers to traditional questions. I have not discussed the cognitive dimension of
inquiries based on computer simulations, even if it is potentially an important one.
For example, how we cognitively handle code or complex computational models,
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control computational activities, interact with computers, analyze and grasp compu-
tational data, which specific skills are required for these activities, and which type of
biases are more frequent in this context are questions worth investigating. I have not
discussed either how much the epistemology of activities like theorizing, predicting,
evaluating, corroborating, explaining, or understanding, is altered when it is carried
out by means of computer simulations (see Imbert 2017 for the last two questions).

Are these conclusions about the epistemological specificity of simulations so
surprising? Over the past three decades, epistemologists and philosophers of sci-
ence have provided analyses that Kitcher characterizes as belonging to the return
of naturalists (Kitcher 1992). Against epistemological investigations that are almost
exclusively centered on the content of representations, such approaches emphasize
the epistemological importance of studying the various aspects of belief-generating
processes, in particular, their psychological and social dimension (see Kitcher 1993,
Solomon 1994, Goldman 1999, and Kitcher 2002 for an insightful overview). The
above analyses fit within this naturalistic perspective and show the need to include
a computational dimension, broadly construed, to epistemological analyses when
computers are part and parcel of scientific belief-generating processes, which is an
increasing majority of cases.

Overall, such a naturalistic epistemology is bound to be demanding for students of
science. Philosophers of empirical science usually have a cognitively costly educa-
tion, both in philosophy and empirical science. This makes the study of scientific rep-
resentations a natural level of inquiry and an ecological niche for them, after decades
of logic-oriented analyses of science. However, if the epistemology of science and
computer simulations, in particular, requires delving deep into psychological, social,
or computational aspects of scientific processes, an unfortunate combination of dif-
ferent types of expertise is needed to develop it. Furthermore, one cannot expect these
epistemological questions about the uses of computers in the empirical science to be
disciplinary central for philosophers of mathematics and computer science, sociol-
ogists, or psychologists. Naturally, analytically minded epistemologists should hail
results showing that aspects or dimensions of computer-based belief-generating pro-
cesses can be ignored or treated independently. Also, searching where it is easier can
be methodologically sound and rational up to a certain point. Nevertheless, episte-
mologists should guard against the streetlight effect and unjustified simplifications
for fear of producing an incomplete and distorted picture of the epistemology of
computer simulations.

Attempts to refute extreme or early versions of claims do not provide solid evi-
dence for considering that their moderate versions are totally false. Using such refu-
tations to discard incipient and burgeoning analyses about a novel issue looks like
falling prey to confirmation bias. Frigg and Reiss, after rejecting the idea that aspects
of the epistemology of simulations are novel, defend a conservative normative stance
about which scientific orientations should be adopted. They recommend considering
analyses about simulations as merely feeding existing debates, in particular, those
about scientificmodels. Although synergies are needed and overlaps are worth inves-
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tigating, such a perspective is unduly narrow. Its blind adoption as a communal view
may have a chilling effect and distract from important questions that deserve atten-
tion, at least if one wants to understand how scientific knowledge is developing at
the current time.
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