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Abstract. Having a knowledge of muscle activity, one can draw conclusions
related to human movement, health condition or even behaviour. Manual
detection of a muscle activity based on the electromyographic (EMG) signals is
a tedious and time-consuming task. Some applications require online indication
what entails the need of automatic estimator. Popular and easily accessible
method of measuring the signal on a skin surface is burdened with relatively
large signal noise. It is only one of the problems that impedes the task of muscle
activity onset detection. Statistically advanced automatic estimators depend on
various parameters, two of which are usually left to be set by the user, what
leaves space for inaccuracy. This paper presents a way of optimizing the results
of onset detection algorithms by selecting the best tuple of parameters using a
Multi Objective Optimization Genetic Algorithm (MOOGA). An exemplary
threshold algorithm presented by Komi, supported by sliding test window
solution and based on the signal variance has been trained and tested on a set of
120 signals recorded on Rectus Abdominis (RA). A well known second version
of Nondominated Sorting Genetic Algorithm (NSGA-II) has been used in order
to improve the quality of onset detection. Assessment criteria are the mean of the
absolute value of error and the number of outliers (Jerror| > 200 ms). The mean
error for automatically adjusted parameters was 15.94 ms, 370,26% lower than
the same algorithm with parameters set manually (W = 100, h = 10).

1 Introduction

Information extracted from EMG signals is useful for the field of automatic affect
analysis. An exemplary use of this technology for that purpose was presented by C.
Rasch et al. in 2015 [1] where facial EMG was used together with eye tracking for
product marketing. The realm of electromyographic (EMG) signal processing gained
popularity thanks to the surface electromyography (SEMG) which allows for the
noninvasive measurements. This technique has been applied to distinct areas like the
remote control of electronic devices, exercise physiology, physical therapy [2], neu-
rophysiological experiments or even athlete’s and musician’s workouts. The possibility
of measuring the signal on a skin surface facilitated and popularized the measuring
procedure but at the same time burdened the signal processing. Many factors including
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the electrical conductivity of skin tissue [3] and fat layer caused the increased values of
signal noise. Information that can be extracted from the signal depends strongly on the
signal to noise ratio which varies dependently on many circumstances. Some of them
are the type of recording device, electrodes used during the experiment, wires or
wireless connectivity, skin preparation and finally, whether the recording was made on
a skin surface or directly in the muscle using an electrode with needle.

For many applications it is necessary to obtain high accuracy of the muscle activity
onset indication. Some of them, at the same time, demand high level of reliability.
Especially those concerning human health or requiring to work in a real time. That
imply the need for more advanced EMG signal processing algorithms. The vast
majority of such solutions depend on several parameters, at least two of which are left
to be adjusted by the end user. In general, that is the window size and some kind of a
threshold value. Since it is too time consuming to manually select the optimal tuple, an
automatic solution must be provided. Even though the authors usually provide some
clues on how to set these parameters and what should be the optimal values, these
propositions are set manually and tested only on their data. It creates space for inac-
curacy and lack of reliability. This paper’s contribution is describing the application of
multi objective optimization genetic algorithm (MOOGA) into the EMG onset detec-
tion field. This way scientists can adjust parameters for their algorithms automatically.
As an added value of MOOGA algorithm we achieve the multi-objectivity. It provides
us with a Pareto front of optimal parameter tuples which can be later picked accord-
ingly to the application area.

Section 2 describes essentials that need to be understood in order to profit from
reading this paper. It explains primary concepts of EMG signal processing and
MOOGA optimization in the context of muscle onset detection.

2 Background

Muscle activity onset detection basing on EMG signals consists in pointing the precise
moment in which the electrical activity starts raising in voltage value. It is related to the
moment of a muscle contraction. Basing on that information we can conclude about
human movements, even their exact type and moment of the event [4].

In order to detect the onset of EMG automatically various algorithms were pro-
posed in the academia. According to Staude et al. [5] there exists four basic ways of
processing the signal: a single observation, a growing test window, a fixed test win-
dows and a sliding test window. Since EMG signals differ in voltage values, shape and
other characteristics automatic estimators require setting the internal parameters. The
common minimal parameter set of onset detection algorithm is a tuple of w and h.
W stands for size of a window frame, that is how many neighboring measurements
shall be included in the calculations of statistical factors. H is a threshold, a value that
once is exceeded the onset of a muscle is reported. It was originally set by Komi et al.
to be 0.03 mV [6] for the single observation.

There exist another approaches to EMG onset detection like sequential analysis,
mathematical signal modelling or adaptive linear detectors [7]. MOOGA optimization
allows to suit not only two parameters, thus some sequential analysis methods [8]
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requiring to set more input parameters might be reconsidered to be applied into the field
of EMG onset detection. However, in this paper we focus on a simple, slightly mod-
ified version of Komi threshold algorithm in order to test the usefulness of automatic
parameter fitting and to be able to track the whole process.

2.1 The Problem of Parameter Selection

A vast majority of EMG onset detection methods has at least two parameters left to be
adjusted by the user manually. Some, statistically advanced, have even more param-
eters [9] which strongly depend on the signal characteristics. In order to provide a
robust solution, it is inevitable to adapt some kind of automatic parameter optimization.
A solution of greedy search space gives the optimal solutions but for a continuous
domain of parameters it has an infinite number of possible solutions to revise what
makes it impossible. Even after restricting considered parameter values to a reasonable,
finite set the execution is too time consuming and is very hard to be applied to this field.
A relatively good idea is to deploy a heuristic solution based on the second version of
Nondominated Sorting Genetic Algorithm (NSGA-II). It proved a satisfying perfor-
mance when applied to the related field of Cortical Visual Neuroprosthesis [10]. As an
output of this algorithm we achieve the Pareto front - a set of parameter tuples giving
the globally best possible solutions [11].

2.2 MOOGA as a Solution for the Problem

The structure of MOOGA reminds of the genetic algorithm since it is built up on it [12]
(Fig. 1). The process begins with the initialization stage in which parameters are set
and population is created. In the evaluation stage all previously generated candidate
solutions are assessed using fitness functions. Then comes the NSGA-II sorting which
finds nondominated solutions. In order to do that the sorting algorithm picks globally
best solutions according to the first criterion. In case of a draw it selects only those
which are not dominated, that is not worse from the others according to the second
criterion. The stopping condition checks if the algorithm came to the end. The process
ends whenever we reach our goal, that is when a solution we found is better than or
equal to the desired one or when it has reached the maximum iteration limit. If at least
one of these conditions is satisfied the algorithm ends it task by outputting the final
results and correlated parameter tuples which lead to them. If not, the algorithm goes to
the stage related to the genetic algorithm. Gene representation of each candidate is
determined and the best ones are selected. It creates a kind of a fusion of these solutions
by going through the crossover stage. During this stage all genes are divided into parts
and new solutions are created by combining them. At the end of this phase a selective
mutation takes place; the algorithm takes a randomly picked cromosoma with a given
probability and changes its value. Mutation stage provides a factor of randomness, in
order to avoid getting stuck in one place of the subspace of possible solutions. After all
these steps the candidates go again through the stage of evaluation using fitness
function. They are sorted and basing on the stopping condition the decision is made
whether to finish the whole process or go back to the cycle.
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Fig. 1. Scheme of MOOGA algorithm adapted to onset detection

3 Case Study

In order to revise the capability of proposed parameter optimization method a basic
muscle activity onset estimator has been prepared. It consists of two basic ideas. It is
built up on a simple threshold algorithm proposed by Komi et al. [6]

emg(i) > h. (1)

which can be enhanced by using a sliding test window, making the solution more
robust for a single voltage peaks.

Var (emg(i — w/2, i + w/2)) > h % iVar , where:
i— index(w/2,5000 — w/2), w — testing window size, iVar — initial variance

(2)

Thus, we decided to enhance it by a sliding test window mechanism and to replace
the mean factor with more appropriate variance. We assumed that the first 100 samples
of a signal do not contain the muscle activity and used it for adjusting to the specific
case of each sequence. The final solution measures the variance of the first 100 sam-
ples, multiplies it by a threshold, which beside the size of a sliding test window is one
of the input parameters, and compares achieved value with the variance of forthcoming
sample windows. If the calculated value exceeds it a muscle activity is reported.
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3.1 EMG Dataset

The electrical activity has been recorded by 6 surface electrodes placed on the Rectus
Abdominis muscle. The exact description of data collection process has been described
in details by Agnieszka Szpala [13] and Mateusz Magda [14]. For the purpose of this
experiment 120 signals were selected. The dataset was divided into two equinumerous
groups. The first has been used for adjusting the parameters and the second one - for
testing. Below you can observe the format of data used in the experiment (Table 1).

Table 1. Testing dataset shape

Electrode 1 |Electrode 2 | ... | Electrode 6 | Onset

Recording 1 | Recording 1| ... | Recording 1 | 1st electrode onset

Recording 2 | Recording 2 | ... | Recording 2 | 2nd electrode onset

Recording 3 | Recording 3 | ... | Recording 3 | 3rd electrode onset

Recording 4 | Recording 4 | ... | Recording 4 | 4th electrode onset
Sth electrode onset
6th electrode onset

3.2 Parameter Fitting

The parameters have been selected automatically, according to the MOOGA NSGA-II
algorithm described in the Sect. 2.2 above. The EMG estimator had to be adjusted in
order to fit to the procedure. We made it by leaving only data, window size and
threshold as an input. The output consists of the mean error and the number of the
outliers. The upper and lower bounds of window size and threshold have been set
respectively to (20-80) and (5-500). In such a form the estimator could be injected into
the MOOGA loop. The whole process was limited in time to one hour of a single
execution and in maximal number of generations which was set to 400. Remaining
parameters relevant to the genetic algorithm were set as follows: population size —80,
mutation factor —0.05, probability distribution - uniform. In the last execution of
MOOGA algorithm the time constraint has been removed.

4 Results

Calculating the optimal parameter tuple as described in the above section we achieved
the following results. Below we present visualized the space of revised parameter
tuples, their results, Pareto front of solutions taken from the last population and the
histogram of final errors. At the end of this section we include a Table 2 presenting its
results. The process of browsing through all possible parameter tuples was supported
by MOOGA algorithm using NSGAII as a sorting method and was executed on the
learning part of the dataset. The revision of those parameters, i.e. the part related with
final results has been conducted using the third point of the Pareto front and was
executed on the testing part of the dataset. The middle point of the Pareto front meets
the requirements for both criteria. It provides us with a solution which is both accurate
and reliable, giving a considerably small number of outliers.
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Table 2. Results

Mean error | [Mean error| | % of outliers
3rd tuple of Pareto | 15.94 ms | 86.79 ms 3,57%

Figures 2 and 3 are enclosed for the illustration purpose and show the work of
MOOGA algorithm. They both show data taken from randomly chosen, same popu-
lation. Figure 2 shows the distribution of tested parameter tuples taken from the
selected population. It represents one stage of browsing the space of possible solutions.
We can observe that the space of solutions was browsed uniformly in a randomized
way, without leaving unrevised territories. It is crucial to ensure the proper search space
exploration, especially if it is considerably large. Leaving unrevised space exposes the
risk of not finding the global optimum. Below we present the results for all individuals
found in the previous stage. All candidates were evaluated and their values of fitness
function are presented in Fig. 3. Each individual is represented with a mean error and
the number of outliers. We can observe an initial stage of Pareto front created by the
four bottom points of the figure. As it is the middle stage of MOOGA algorithm the
population of solutions is spread all over the figure. In the final stages all solutions
converge to the Pareto front.
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Fig. 2. Browsed set of parameters (one population)

The above Fig. 4 shows the final output of MOOGA algorithm, a Pareto front, i.e.
the set of results for optimal parameter tuples. This figure shows the relation between
the absolute value of mean error measured in milliseconds and the number of outliers.
We can observe the necessity of a tradeoff between the accuracy and reliability that has
to be made. The lower the mean error the higher the number of outliers. Some
applications have a demand on a robust solution because false indications can cause
hazardous situation like in case of artificial limbs or almost every real-time system. On
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Fig. 4. Pareto front for threshold algorithm

the other side some may accept outliers in return for the highest possible accuracy as it
is in case of physiological experiments in which every suspicious assessment can be
revised by a specialist.

Histogram shown in the above Fig. 5 shows the final results, i.e. the error values
achieved using parameters selected by MOOGA. This is the illustration of how the
algorithm with automatically selected parameters performs on the testing part of the
dataset. Looking at the histogram we can see that a vast majority of errors are con-
strained within the range of (=200 ms, 200 ms) what classifies them as non-outliers.
The results are grouped around the value of O ms. There appear only 2 outliers which is
less than 3,6% of the whole population.
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Fig. 5. Histogram of errors for testing sequence (automatic selection)

Table 2 shows the final results in a form of a summary. Results presented in it are
the outcome of testing the prepared estimator, described more in details at the begin-
ning of Sect. 3 Case Study, using the third point (parameter tuple) of the Pareto front.
The algorithm was executed on the testing part of the dataset. The first column show
the mean value of error. The mean error made by the estimator using automatically
adjusted parameters was 15.94 ms, which is almost 4 times (370,26%) lower than
74.96 ms achieved by the same algorithm with parameters being set manually
(W =100, h = 10). In the second column we can observe an absolute value of the same
error. In the third column appear the percentage of the outliers in the population of final
results.

5 Conclusion

In this paper we presented an automatic solution of parameter fitting for the area of
muscle onset detection based on EMG signals. We can clearly state that the automatic
selection of parameters is essential for this field. EMG signals are burdened with
relatively large signal noise what impedes the task of onset detection and advanced
solutions must be provided in order to automatically detect the real onset of a muscle.
MOOGA is a perfect solution for adjusting parameters of the onset detection algo-
rithms. In order to test the proposed solution we chose the middle point of the Pareto
front. However, we would like to point out, that accordingly to the needs, one may
want to select different point from the Pareto front to meet the needs of particular
application area. In this study case it revealed 4 times higher accuracy than the manual
selection. Slow SNR (signal to noise) ratio is not the only obstacle in the process of
extracting information from the signal. Depending on the place of the electrode
placement crosstalks from surrounding muscles can also be the issue [15, 16]. It is
extremely important to take it into account while measuring signal in the aggregation of
various muscles, e.g. the forearm. Additionally, in case of trunk muscles cardiac
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crosstalks may appear in the recorded signal [17]. One must be aware of the above
hindrances while processing the EMG signals.

For future improvement one can consider optimization by the recursive calculation

of variance or appropriate statistical factor. Since MOOGA needs to evaluate the fitness
thousands of times, it is inevitable to optimize the calculations within tested algorithm.
Even though this solution proves good performance encountering global optima it is
worth considering to allude the local optima like in two stage estimator [18].
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