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Abstract. Non-committing encryption (NCE) was introduced in order
to implement secure channels under adaptive corruptions in situations
when data erasures are not trustworthy. In this paper we are interested
in the rate of NCE, i.e. in how many bits the sender and receiver need
to send per plaintext bit.

In initial constructions the length of both the receiver message,
namely the public key, and the sender message, namely the ciphertext, is
m ·poly(λ) for an m-bit message, where λ is the security parameter. Sub-
sequent work improve efficiency significantly, achieving rate poly log(λ).

We show the first construction of a constant-rate NCE. In fact, our
scheme has rate 1+o(1), which is comparable to the rate of plain seman-
tically secure encryption. Our scheme operates in the common reference
string (CRS) model. Our CRS has size poly(m · λ), but it is reusable for
an arbitrary polynomial number of m-bit messages. In addition, ours is
the first NCE construction with perfect correctness. We assume one way
functions and indistinguishability obfuscation for circuits.
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1 Introduction

Informally, non-committing, or adaptively secure, encryption (NCE) is an encryp-
tion scheme for which it is possible to generate a dummy ciphertext which
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is indistinguishable from a real one, but can later be opened to any message
[CFGN96]. This primitive is a central tool in building adaptively secure proto-
cols: one can take an adaptively secure protocol in secure channels setting and
convert it into adaptively secure protocol in computational setting by encrypt-
ing communications using NCE. In particular, NCE schemes are secure under
selective-opening attacks [DNRS99].

This additional property of being able to open dummy ciphertexts to any
message has its price in efficiency: while for plain semantically secure encryption
we have constructions with O(λ)-size, reusable public and secret keys for security
parameter λ, and m+poly(λ) size ciphertext for m-bit messages, non-committing
encryption has been far from being that efficient. Some justification for this state
of affairs is the lower bound of Nielsen [Nie02], which shows that the secret key of
any NCE has to be at least m where m is the overall number of bits decrypted
with this key. Still, no bound is known on the size of the public key or the
ciphertext.

In this paper we focus on building NCE with better efficiency: specifically,
we optimize the rate of NCE, i.e. the total amount of communication sent per
single bit of a plaintext.

1.1 Prior Work

The first construction of adaptively secure encryption, presented by Beaver and
Haber [BH92], is interactive (3 rounds) and relies on the ability of parties to
reliably erase parts of their internal state. An adaptively secure encryption that
does not rely on secure erasures, or non-committing encryption, is presented in
[CFGN96]. The scheme requires only two messages, just like standard encryp-
tion, and is based on joint-domain trapdoor permutations. It requires both the
sender and the receiver to send Θ(λ2) bits per each bit of a plaintext. Subsequent
work has focused on reducing rate and number of rounds. Beaver [Bea97] and
Damg̊ard and Nielsen [DN00] propose a 3-round NCE protocol from, respec-
tively, DDH and a simulatable PKE (which again can be built from similar
assumptions to those of [CFGN96]) with m · Θ(λ2) bits overall communica-
tion for m bit messages, but only m · Θ(λ) bits from sender to receiver. These
results were improved by Choi et al. [CDMW09] who reduce the number of
rounds to two, which matches optimal number of rounds since non-interactive
NCE is impossible [Nie02]. Also they reduced simulatable PKE assumption to
a weaker trapdoor simulatable PKE assumption; such a primitive can be con-
structed from factoring. A recent work of Hemenway et al. [HOR15] presented
a two-round NCE construction based on the Φ-hiding assumption which has
Θ(m log m) + poly(λ) ciphertext size and m · Θ(λ) communication from receiver
to sender. In a concurrent work, Hemenway et al. [HORR16] show how to build
NCE with rate poly log(λ) under the ring-LWE assumption.

We remark that the recent results on adaptively secure multiparty computa-
tion (MPC) from indistinguishability obfuscation in the common reference string
(CRS) model [CGP15,GP15,DKR15] do not provide an improvement of NCE
rate. Specifically, [CGP15,DKR15] already use NCE as a building block in their
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constructions, and the resulting NCE is as inefficient as underlying NCE. The
scheme by Garg and Polychroniadou [GP15] does not use NCE, but their second
message is of size poly(mλ) due to the statistically sound non-interactive zero
knowledge proof involved.

Another line of work focuses on achieving better parameters for weaker
notions of NCE where the adversary sees the internal state of only one of the
parties (receiver or sender). Jarecki and Lysyanskaya [JL00] propose a scheme
which is non-committing for the receiver only, which has two rounds and cipher-
text expansion factor 3 (i.e., the ciphertext size is 3m + poly(λ)), under DDH
assumption. Furthermore, their public key is also short and thus their scheme
achieves rate 4. Hazay and Patra [HP14] build a constant-rate NCE which is
secure as long as only one party is corrupted, which was later modified by
[HLP15] to obtain a constant-rate NCE in the partial erasure model, meaning
that security would hold even with both parties corrupted, as long as one party
is allowed to erase. Canetti et al. [CHK05] construct a constant-rate NCE with
erasures, meaning that the sender has to erase encryption randomness, and the
receiver has to erase the randomness used for the initial key generation. Their
NCE construction has rate 13.

1.2 Our Results

We present two NCE schemes with constant-rate in the programmable CRS
model. We first present a simpler construction which gives us rate 13, and then,
using more sophisticated techniques, we construct the second scheme with rate
1 + o(1).

Our first construction is given by a rate-preserving transformation from any
NCE with erasures to full NCE, assuming indistinguishability obfuscation (iO)
and one way functions (OWFs). The known construction of constant-rate NCE
with erasures [CHK05] requires decisional composite residuosity assumption and
has rate 13.

Our second construction assumes only iO and OWFs and achieves rate 1 +
o(1). To be more precise, the public key, which is the first protocol message in
our scheme, has the size O(λ). The ciphertext, which is the second message, has
the size O(λ) + |m|. The CRS size is O(poly(mλ)), but the CRS is reusable for
any polynomially-many executions without an a priori bound on the number of
executions. Thus when the length |m| of a plaintext is large, the scheme has
overall rate that approaches 1.

In addition, this NCE scheme is the first to guarantee perfect correctness.
Note that NCE in the plain model cannot be perfectly correct, and therefore
some setup assumption is necessary to achieve this property.

1.3 Construction and Proof Techniques

Definition of NCE. Before describing our construction, we recall what a non-
committing encryption is in more detail. Such a scheme consists of algorithms
(Gen,Enc,Dec,Sim), which satisfy usual correctness and security requirements.
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Additionally, the scheme should remain secure even if the adversary first decides
to see the communications in the protocol and later corrupt the parties. This
means that the simulator should be able to generate a dummy ciphertext cf

(without knowing which message it encrypts). Later, upon corruption of the
parties, the simulator learns a message m, and it should generate internal state
of the parties consistent with m and cf - namely, encryption randomness of the
sender and generation randomness of the receiver.

First attempts and our first construction. Recall that the recent puncturing
technique adds a special trapdoor to a program, which allows to “explain” any
input-output behavior of a program, i.e. to generate randomness consistent with
a given input-output pair [SW14,DKR15]. Given such a technique, we could try
to build NCE as follows. Start from any rate-efficient non-committing encryption
scheme in a model with erasures. Obfuscate key generation algorithm Gen and
put it in the CRS. The protocol then proceeds as follows: the receiver runs Gen,
obtains (pk, sk), sends pk to the sender, gets back c and decrypts it with sk. In
order to allow simulation of the receiver, augment Gen with a trapdoor which
allows a simulator to come up with randomness for Gen consistent with (pk, sk).
However, this approach doesn’t allow to simulate the sender.

One natural way to allow simulation of the sender is to modify Gen:
instead of outputting pk, it should output an obfuscated encryption algorithm
E = iO(Enc[pk]) with the public key hardwired, and the receiver should send
E (instead of pk) to the sender in round 1. In the simulation Enc[pk] can be
augmented with a trapdoor, thus allowing to simulate the sender. The problem
is that this scheme is no longer efficient: in all known constructions the trapdoor
(and therefore the whole program E) has the size of at least λ|m|, meaning that
the rate is at least λ (this is due to the fact that this trapdoor uses a punctured
PRF applied to the message m, and, to the best of our knowledge, in all known
constructions of PPRFs the size of a punctured key is at least λ|m|).

Another attempt to allow simulation of the sender is to add to the CRS
an obfuscated encryption program E′ = iO(Enc(pk,m, r)), augmented with a
trapdoor in the simulation. Just like in the initial scheme, the receiver should
send pk to the sender; however, instead of computing c directly using pk, the
sender should run obfuscated program E′ on pk,m and r. This scheme allows to
simulate both the sender and the receiver, and at the same time keeps commu-
nication as short as in the original PKE. However, we can only prove selective
security, meaning that the adversary has to commit to the challenge message m
before it sees the CRS. This is a limitation of the puncturing technique being
used: in the security proof the input to the program Enc, including message m,
has to be hardwired into the program.

We get around this issue by using another level of indirection, similar to the
approach taken by [KSW14] to obtain adaptive security. Instead of publishing
E′ = iO(Enc(pk,m, r)) in the CRS, we publish a program GenEnc which gen-
erates E′ and outputs it. The protocol works as follows: the receiver uses Gen
to generate (pk, sk) and sends pk to the sender. The sender runs GenEnc and
obtains E′, and then executes E′(pk,m, r) → c and sends c back to the receiver.
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Note that GenEnc doesn’t take m as input, therefore there is no need to hardwire
m into CRS and in particular there is no need to know m at the CRS generation
step.

When this scheme uses [CHK05] as underlying NCE with erasures, it has
rate 13. The scheme from [CHK05] additionally requires the decisional composite
residuosity assumption.

Our second construction. We give another construction of NCE, which achieves
nearly optimal rate. That is, the amount of bits sent is |m| + poly(λ), and by
setting m to be long enough, we can achieve rate close to 1. The new scheme
assumes only indistinguishability obfuscation and one-way functions; there is no
need for composite residuosity, used in our previous scheme.

Our construction proceeds in two steps. We first construct a primitive which
we call same-public-key non-committing encryption with erasures, or seNCE for
short; essentially this is a non-committing encryption secure with erasures, but
there is an additional technical requirement on public keys. Our seNCE scheme
will have short ciphertexts, i.e. ciphertext size is m+poly(λ). However, the public
keys will still be long, namely poly(mλ).

The second step in our construction is to transform any seNCE into a full
NCE scheme such that the ciphertext size is preserved and the public key size
depends only on security parameter. We achieve this at the cost of adding a
CRS.

Same-public-key NCE with erasures (seNCE). As a first step we con-
struct a special type of non-committing encryption which we can realize in the
standard model (without a CRS). This NCE scheme has the following additional
properties:

– security with erasures: the receiver is allowed to erase its generation random-
ness (but not sk); the sender is allowed to erase its encryption randomness.
(This means that sk is the only information the adversary expects to see upon
corrupting both parties.)

– same public key: the generation and simulation algorithms executed on the
same input r produce the same public keys.

Construction of seNCE. The starting point for our seNCE construction is the
PKE construction from iO by Sahai and Waters [SW14]. Similarly to that app-
roach we set our public key to be an obfuscated program with a key k inside,
which takes as inputs message m and randomness r and outputs a ciphertext
c = (c1, c2) = (prg(r),Fk(prg(r)) ⊕ m), where F is a pseudorandom function
(PRF). However, instead of setting k to be a secret key, we set the secret key to
be an obfuscated program (with k hardwired) which takes an input c = (c1, c2)
and outputs Fk(c1)⊕ c2. Once the encryption and decryption programs are gen-
erated, the key k and the randomness used for the obfuscations are erased, and
the only thing the receiver keeps is its secret key. Note that ciphertexts in the
above scheme have length m + poly(λ).
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To see that this construction is secure with erasures, consider the simula-
tor that sets a dummy ciphertext cf to be a random value. To generate a fake
decryption key skf , which behaves like a real secret key except that it decrypts
cf to a challenge message m, the simulator obfuscates a program (with m, cf , k
hardwired) that takes as input (c1, c2) and does the following: if c1 = cf1 then
the program outputs cf2 ⊕ c2 ⊕ m, otherwise the output is Fk(c1) ⊕ c2. Encryp-
tion randomness of the sender, as well as k and obfuscation randomness of the
receiver, are erased and do not need to be simulated. (Note that the simulated
secret key is larger than the real secret key. So, to make sure that the programs
have the same size, the real secret key has to be padded appropriately.)

Furthermore, the scheme has the same-public-key property: The simulated
encryption key is generated in exactly the same way as the honest encryption
key.

Note that this scheme has perfect correctness.

From seNCE to full NCE. Our first step is to enhance the given seNCE
scheme, such that the scheme remains secure even when the sender is not allowed
to erase its encryption randomness. Specifically, following ideas from the deni-
able encryption of Sahai and Waters [SW14], we add a trapdoor branch to the
encryption program, i.e. the public key. This allows the simulator to create fake
randomness rf,Enc, which activates this trapdoor branch and makes the program
output cf on input m. In order to create such randomness, the simulator gener-
ates rf,Enc as an encryption (using a scheme with pseudorandom ciphertexts1)
of an instruction for the program to output cf . The program will first try to
decrypt rf,Enc and check whether it should output cf via trapdoor branch, or
execute a normal branch instead.

The above construction of enhanced seNCE still has the following shortcom-
ings. First, its public key (recall that it is an encryption program) is long: the
program has to be padded to be at least of size poly(λ) · |m|, since in the proof
the keys for the trapdoor branch are punctured and have an increased size, and
therefore the size of an obfuscated program is poly(mλ).2 Second, the simula-
tor still cannot simulate the randomness which the receiver used to generate its
public key, e.g. keys for the trapdoor branch and randomness for obfuscation.
Third, the scheme is only selectively secure, meaning that the adversary has to
fix the message before it sees a public key. This is due to the fact that our way for
explaining a given output (i.e. trapdoor branch mechanism) requires hardwiring
the message inside the encryption program in the proof.

We resolve these issues by adding another “level of indirection” for the gen-
eration of obfuscated programs. Specifically, we introduce a common reference
string that will contain two obfuscated programs, called GenEnc and GenDec,
which are generated independently of the actual communication of the proto-
col and can be reused for unboundedly many messages. The CRS allows the

1 For this purpose we use a puncturable deterministic encryption scheme (PDE), since
it is iO-friendly and has pseudorandom ciphertexts.

2 To the best of our knowledge, in all known puncturable PRFs the size of a punctured
key applied to m is at least λ|m|.
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sender and the receiver to locally and independently generate their long pub-
lic and private keys for the underlying enhanced seNCE while communicating
only a short token. Furthermore, we will only need to puncture these programs
at points which are unrelated to the actual encrypted and decrypted messages.
The protocol proceeds as follows.

Description of our protocol. The receiver chooses randomness rGenDec and runs a
CRS program GenDec(rGenDec). This program uses rGenDec to sample a short token
t. Next the program uses this token t to internally compute a secret generation
randomness rseNCE, from which it derives (pk, sk) pair for underlying seNCE
scheme. Finally, the program outputs (t, sk). In round 1 the receiver sends the
token t (which therefore is a short public key of the overall NCE scheme) to the
sender.

The sender generates its own randomness rGenEnc and runs a CRS program
GenEnc(t, rGenEnc). GenEnc, in the same manner as GenDec, first uses t to generate
secret rseNCE and sample (the same) key pair (pk, sk) for the seNCE scheme. Fur-
ther, GenEnc generates trapdoor keys and obfuscation randomness, which it uses
to compute a public key program PEnc[pk] of enhanced seNCE, which extends
the underlying seNCE public key with a trapdoor as described above. PEnc[pk]
is the output of GenEnc. After obtaining PEnc, the sender chooses encryption
randomness rEnc and runs c ← PEnc[pk](m, rEnc). In its response message, the
sender sends c to the receiver, who decrypts it using sk.

Correctness of this scheme follows from correctness of the seNCE scheme,
since at the end a message is being encrypted and decrypted using the seNCE
scheme. To get some idea of why security holds, note that the seNCE genera-
tion randomness rseNCE is only computed internally by the programs. This value
is never revealed to the adversary, and therefore can be thought of as being
“erased”. In particular, if we had a VBB obfuscation, we could almost immedi-
ately reduce security of our scheme to security of seNCE. Due to the fact that
we only have iO, the actual security proof becomes way more intricate.

To see how we resolved the three issues from above (namely, with the length
of the public key, with simulating the receiver, and with selective security), note:

(a) The only information communicated between sender and receiver is the short
token t which depends only on the security parameter, and the ciphertext c
which has size poly(λ)+ |m|. Thus the total communication is poly(λ)+ |m|.

(b) The simulator will show slightly modified programs with trapdoor branches
inside; they allow the simulator to “explain” the randomness for any desired
output, thus allowing it to simulate internal state of both parties.

(c) We no longer need to hardwire message-dependent values into the programs
in the CRS, which previously made security only selective. Indeed, in a
real world the inputs and outputs of these programs no longer depend on
the message sent. They still do depend on the message in the ideal world
(for instance, the output of GenDec is skm); however, due to the trapdoor
branches in the programs it is possible for the simulator to encode skm into
randomness rGenDec rather than the program GenDec itself. Therefore m can
be chosen adaptively after seeing the CRS (and the public key).
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To give more details about adaptivity issues which come up in the analysis
of the simulator, let us look closely at the following three parts of the proof:

– Starting from a real execution, the first step is to switch real sender genera-
tion randomness rGenEnc to fake randomness rf,GenEnc (which “explains” a real
output PEnc). During this step we need to hardwire PEnc inside GenEnc, which
can be done, since PEnc doesn’t depend on m yet.

– Later in the proof we need to switch real encryption randomness rEnc to fake
randomness rf,Enc. During this step we need to hardwire m into PEnc. However,
at this point PEnc is not hardwired into the program GenEnc; instead it is being
encoded into randomness rGenEnc, and therefore it needs to be generated only
when the sender is corrupted (which means that the simulator learns m and
can create PEnc with m hardwired).

– Eventually we need to switch real seNCE values pk, c, sk to simulated
pk, cf , skf . Before we can do this, we have to hardwire pk into GenEnc. Luck-
ily, in the underlying seNCE game the adversary is allowed to choose m after
it sees pk, and therefore the requirement to hardwire pk into the CRS program
doesn’t violate adaptive security.

In the proof of our NCE we crucially use the same public-key property of
underlying seNCE: Our programs use the master secret key MSK to compute the
generation randomness rseNCE from token t, and then sample seNCE keys (pk, sk)
using this randomness. In the proof we hardwire pk in the CRS, then puncture
MSK and choose rseNCE at random. Next we switch the seNCE values, including
the public key pk, to simulated ones. Then we choose rseNCE as a result of a
PRF, and unhardwire pk. In order to unhardwire (now simulated) pk from the
program and compute (pk, sk) = FMSK(rseNCE) instead, simulated pk generated
from rseNCE should be exactly the same as the real public key pk which the
program normally produces by running seNCE.Gen(rseNCE). This ensures that
the programs with and without pk hardwired have the same functionality, and
thus security holds by iO.

An additional interesting property of this transformation is that it preserves
the correctness of underlying seNCE scheme, meaning that if seNCE is compu-
tationally (statistically, perfectly) correct, then the resulting NCE is also com-
putationally (statistically, perfectly) correct. Therefore, when instantiated with
our perfectly correct seNCE scheme presented earlier, the resulting NCE achieves
perfect correctness. To the best of our knowledge, this is the first NCE scheme
with such property.

Shrinking the secret key. The secret key in the above scheme consists of an obfus-
cated program D, where D is the secret key (i.e. decryption program) for the
seNCE scheme, together with some padding that will leave room to “hardwire”,
in the hybrid distributions in the proof of security, the |m|-bit plaintext m into
D. Overall, the description size of D is |m|+O(λ); when using standard IO, this
means that the obfuscated version of D is of size poly(|m|λ).

Still, using the succinct Turing and RAM machine obfuscation of [KLW15,
CHJV15,BGL+15,CH15] it is possible to obtain program obfuscation where the
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size of the obfuscated program is the size of the original program plus a poly-
nomial in the security parameter. This can be done in a number of ways. One
simple way is to generate the following (short) obfuscated TM machine OU : The
input is expected to contain a description of a program that is one-time-padded,
and then authenticated using a signed accumulator as in [KLW15], all with keys
expanded from an internally known short key. The machine decrypts, authen-
ticates, and then runs the input circuit. Now, to obfuscate a program, simply
one time pad the program, authenticate it, and present it alongside machine OU
with the authentication information and keys hardwired.

Augmented explainability compiler. In order to implement the trapdoor branch
in the proof of our NCE scheme, we use among other things the “hidden sparse
triggers” method of Sahai and Waters [SW14]. This method proved to be useful
in other applications as well, and Dachman-Soled et al. [DKR15] abstracted it
into a primitive called “explainability compiler”. Roughly speaking, explainabil-
ity compiler turns a randomized program into its “trapdoored” version, such that
it becomes possible, for those who know faking keys, to create fake randomness
which is consistent with a given input-output pair.

We use a slightly modified version of this primitive, which we call an aug-
mented explainability compiler. The difference here is that we can use the original
(unmodified) program in the protocol, and only in the proof replace it with its
trapdoor version. This is important for perfect correctness of NCE: none of the
programs GenEnc, GenDec, and Enc in the real world contain trapdoor branches
(indeed, if there was a trapdoor branch in, say, encryption program Enc, it would
be possible that an honest sender accidentally chooses randomness which con-
tains an instruction to output an encryption of 0, making the program output
this encryption of 0 instead of an encryption of m).

Organization. In Sect. 2 we define the different variants of non-committing
encryption, as well as other primitives we use. In Sect. 3 we define and construct
an augmented explainability compiler, used in the construction of our NCE. Our
optimal-rate NCE and a sketch of security proof are described in Sect. 4.

2 Preliminaries

2.1 Non-committing Encryption and Its Variants

Non-committing encryption. Non-committing encryption is an adaptively secure
encryption scheme, i.e., it remains secure even if the adversary decides to see the
ciphertext first and only later corrupt parties. This means that the simulator
should be able to first present a “dummy” ciphertext without knowing what the
real message m is. Later, when parties are corrupted and the simulator learns
m, the simulator should be able to present receiver decryption key (or receiver
randomness) which decrypts dummy c to m and sender randomness under which
m is encrypted to c.
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Definition 1. A non-committing encryption scheme for a message space M =
{0, 1}l is a tuple of algorithms (Gen,Enc,Dec,Sim), such that correctness and
security hold:

– Correctness: For all m ∈ M Pr

⎡
⎣m = m′

∣∣∣∣∣∣
(pk, sk) ← Gen(1λ, rGen);
c ← Enc(m, rEnc);
m′ ← Dec(c)

⎤
⎦ ≥ 1 −

negl(λ).
– Security: An adversary cannot distinguish between real and simulated cipher-

texts and internal state even if it chooses message m adaptively depending on
the public key pk. More concretely, no PPT adversary A can win the following
game with more than negligible advantage:

A challenger chooses random b ∈ {0, 1}. If b = 0, it runs the following experiment
(real):

1. It chooses randomness rGen and creates (pk, sk) ← Gen(1λ, rGen). It shows pk
to the adversary.

2. The adversary chooses message m.
3. The challenger chooses randomness rEnc and creates c ← Enc(pk,m; rEnc). It

shows (c, rEnc, rGen) to the adversary.

If b = 1, the challenger runs the following experiment (simulated):

1. It runs (pks, cs) ← Sim(1λ). It shows pks to the adversary.
2. The adversary chooses message m.
3. The challenger runs (rs

Enc, r
s
Gen) ← Sim(m) and shows (cs, rs

Enc, r
s
Gen) to the

adversary.

The adversary outputs a guess b′ and wins if b = b′.

Note that we allow Sim to be interactive, and in addition we omit its random
coins.

In this definition we only spell out the case where both parties are corrupted,
and all corruptions happen after the execution and simultaneously. Indeed, if any
of the parties is corrupted before the ciphertext is sent, then the simulator learns
m and can present honest execution of the protocol; therefore we concentrate
on the case where corruptions happen afterwards. Next, m is the only informa-
tion the simulator needs, and after learning it (regardless of which party was
corrupted) the simulator can already simulate both parties; thus we assume that
corruptions of parties happen simultaneously. Finally, without loss of generality
we assume that both parties are corrupted: if only one or no party is corrupted,
then the adversary sees strictly less information in the experiment, and therefore
cannot distinguish between real execution and simulation, as long as the scheme
is secure under our definition.

Note that this definition only allows parties to encrypt a single message
under a given public key. This is due to impossibility result of Nielsen [Nie02],
who showed that a secret key of any NCE can support only bounded number of
ciphertexts. If one needs to send many messages, it can run several instances of
a protocol (each with a fresh pair of keys). Security for this case can be shown
via a simple hybrid argument.
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Non-committing encryption in a programmable common reference string model.
In this work we build NCE in a CRS model, meaning that both parties and the
adversary are given access to a CRS, and the simulator, in addition to simulating
communications and parties’ internal state, also has to simulate the CRS. Before
giving a formal definition, we briefly discuss possible variants of this definition.

Programmable CRS. One option is to consider a global (non-programmable) CRS
model, where the CRS is given to the simulator, or local (programmable) CRS
model, where the simulator is allowed to generate a CRS. The first variant is
stronger and more preferable, but in our construction the simulator needs to
know underlying trapdoors and we therefore focus on a weaker definition.

Reusable CRS. Given the fact that in a non-committing encryption a public
key can be used to send only bounded number of bits, a bounded-use CRS
would force parties to reestablish CRS after sending each block of messages.
Since sampling a CRS is usually an expensive operation, it is good to be able to
generate a CRS which can be reused for any number of times set a priori. It is
even better to have a CRS which can be reused any polynomially many times
without any a priori bound. In our definition we ask a CRS to be reusable in
this stronger sense.

Security of multiple executions. Unlike NCE in the standard model, in the
CRS model single-execution security of NCE does not immediately imply multi-
execution security. Indeed, in a reduction to a single-execution security we would
have to, given a challenge and a CRS, simulate other executions. But we cannot
do this since we didn’t generate this CRS ourselves and do not know trapdoors.
Therefore in our definition we explicitly require that the protocol remains secure
even when the adversary sees many executions with the same CRS.

Definition 2. An NCE scheme for a message space M = {0, 1}l in a com-
mon reference string model is a tuple of algorithms (GenCRS,Gen, Enc,Dec,Sim)
which satisfy correctness and security.

Correctness: For all m ∈ M Pr

⎡
⎢⎢⎣m = m′

∣∣∣∣∣∣∣∣

CRS ← GenCRS(1λ);
(pk, sk) ← Gen(1λ,CRS; rGen);
c ← Enc(m,CRS; rEnc);
m′ ← Dec(CRS, c)

⎤
⎥⎥⎦ ≥

1 − negl(λ).
If this probability is equal to 1, then we say that the scheme is perfectly

correct.3

Security: For any PPT adversary A, advantage of A in distinguishing the fol-
lowing two cases is negligible:

A challenger chooses random b ∈ {0, 1}. If b = 0, it runs the following
experiment (real):

3 Note that this definition implies that there are no decryption errors for any CRS.
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First it generates a CRS as CRS ← GenCRS(1λ, l). CRS is given to the
adversary. Next the challenger does the following, depending on the adversary’s
request:

– On a request to initiate a protocol instance with session ID id, the challenger
chooses randomness rGen,id and creates (pkid, skid) ← Gen(1λ,CRS, rGen,id). It
shows pkid to the adversary.

– On a request to encrypt a message mid in a protocol instance with ses-
sion ID id, the challenger chooses randomness rEnc,id and creates cid ←
Enc(pkid,mid; rEnc,id). It shows cid to the adversary.

– On a request to corrupt the sender of a protocol instance with ID id, the
challenger shows rEnc,id to the adversary.

– On a request to corrupt the receiver of a protocol instance with ID id, the
challenger shows rGen,id to the adversary.

If b = 1, it runs the following experiment (simulated):
First it generates a CRS as CRSs ← Sim(1λ, l). CRSs is given to the

adversary. Next the challenger does the following, depending on the adversary’s
request:

– On a request to initiate a protocol instance with session ID id, the challenger
runs (pks

id, c
s
id) ← Sim(1λ) and shows pks

id to the adversary.
– On a request to encrypt a message mid in a protocol instance with session ID

id, the challenger shows cs
id to the adversary.

– On a request to corrupt the sender of a protocol instance with ID id, the
challenger shows rs

Enc,id ← Sim(mid) to the adversary.
– On a request to corrupt the receiver of a protocol instance with ID id, the

challenger shows rs
Gen,id ← Sim(mid) to the adversary.

The adversary outputs a guess b′ and wins if b = b′.

Constant rate NCE. The rate of an NCE scheme is how many bits the sender and
receiver need to communicate in order to transmit a single bit of a plaintext: NCE
scheme for a message space M = {0, 1}l has rate f(l, λ), if (|pk|+ |c|)/l = f(l, λ).
If f(l, λ) is a constant, the scheme is said to have constant rate.

Same-public-key non-committing encryption with erasures (seNCE). Here we
define a different notion of NCE which we call same-public-key non-committing
encryption with erasures (seNCE). First, such a scheme allows parties to erase
unnecessary information: the sender is allowed to erase its encryption random-
ness, and the receiver is allowed to erase its generation randomness rGen (but not
its public or secret key). Furthermore, this scheme should have “the same public
key” property, which says that both real generation and simulated generation
algorithms should output exactly the same public key pk, if they are executed
with the same random coins.

Definition 3. The same-public-key non-committing encryption with erasures
(seNCE) for a message space M = {0, 1}l is a tuple of algorithms
(Gen,Enc,Dec,Sim), such that correctness, security, and the same-public-key
property hold:
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– Correctness: For all m ∈ M Pr

⎡
⎣m = m′

∣∣∣∣∣∣
(pk, sk) ← Gen(1λ, rGen);
c ← Enc(m, rEnc);
m′ ← Dec(c)

⎤
⎦ ≥ 1−

negl(λ).
– Security with erasures: No PPT adversary A can win the following game

with more than negligible advantage:
A challenger chooses random b ∈ {0, 1}. If b = 0, it runs a real experiment:
1. The challenger chooses randomness rGen and creates (pk, sk) ←

Gen(1λ, rGen). It shows pk to the adversary.
2. The adversary chooses a message m.
3. The challenger chooses randomness rEnc and creates c ← Enc(pk,m; rEnc).

It shows c to the adversary.
4. Upon corruption request, the challenger shows to the adversary the secret

key sk.
If b = 1, the challenger runs a simulated experiment:
1. A challenger generates simulated public key and ciphertext (pks, cs) ←

Sim(1λ)4. It shows pks to the adversary.
2. The adversary chooses a message m.
3. The challenger shows the ciphertext cs to the adversary.
4. Upon corruption request, the challenger runs sks ← Sim(m) and shows to

the adversary simulated secret key sks.
The adversary outputs a guess b′ and wins if b = b′.

– The same public key: For any r if Gen(1λ, r) = (pk, sk);Sim(1λ, r) =
(pkf , cf ), then pk = pkf .

2.2 Puncturable Pseudorandom Functions and Their Variants

Puncturable PRFs. In puncrurable PRFs it is possible to create a key that is
punctured at a set S of polynomial size. A key k punctured at S (denoted k{S})
allows evaluating the PRF at all points not in S. Furthermore, the function
values at points in S remain pseudorandom even given k{S}.

Definition 4. A puncturable pseudorandom function family for input size n(λ)
and output size m(λ) is a tuple of algorithms {Sample,Puncture,Eval} such that
the following properties hold:

– Functionality preserved under puncturing: For any PPT adversary A
which outputs a set S ⊂ {0, 1}n, for any x �∈ S,

Pr[Fk(x) = Fk{S}(x) : k ← Sample(1λ), k{S} ← Puncture(k, S)] = 1.

– Pseudorandomness at punctured points: For any PPT adversaries
A1, A2, define a set S and state state as (S, state) ← A1(1λ). Then

Pr[A2(state, S, k{S}, Fk(S))] − Pr[A2(state, S, k{S}, U|S|·m(λ))] < negl(λ),

where Fk(S) denotes concatenated PRF values on inputs from S, i.e. Fk(S) =
{Fk(xi) : xi ∈ S}.
The GGM PRF [GGM84] satisfies this definition.

4 We omit the random coins and state of Sim.
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Statistically injective puncturable PRFs. Such PRFs are injective with over-
whelming probability over the choice of a key. Sahai and Waters [SW14] show
that if F is a puncturable PRF where the output length is large enough compared
to the input length, and h is 2-universal hash function, then F′

k,h = Fk(x)⊕h(x)
is a statistically injective puncturable PRF.

Extracting puncturable PRFs. Such PRFs have a property of a strong extractor:
even when a full key is known, the output of the PRF is statistically close to
uniform, as long as there is enough min-entropy in the input. Sahai and Waters
[SW14] showed that if the input length is large enough compared to the output
length, then such PRF can be constructed from any puncturable PRF F as
F′

k,h = h(Fk(x)), where h is 2-universal hash function.

3 Augmented Explainability Compiler

In this section we describe a variant of an explainability compiler of [DKR15].
This compiler is used in our construction of NCE, as discussed in the
introduction.

Roughly speaking, explainability compiler modifies a randomized program
such that it becomes possible, for those who know faking keys, to create fake
randomness rf which is consistent with a given input-output pair. Explainability
techniques were first introduced by Sahai and Waters [SW14] as a method to
obtain deniability for encryption (there they were called “a hidden sparse trigger
meachanism”). Later Dachman-Soled, Katz and Rao [DKR15] generalized these
ideas and introduced a notion of explainability compiler.

We modify this primitive for our construction and call it an “augmented
explainability compiler”. Before giving a formal definition, we briefly describe
it here. Such a compiler Comp takes a randomized algorithm Alg(input;u) with
input input and randomness u and outputs three new algorithms:

– Comp.Rerand(Alg) outputs a new algorithm Alg′(input; r) which is a “reran-
domized” version of Alg. Namely, Alg′ first creates fresh randomness u using
a PRF on input (input, r) and then runs Alg with this fresh randomness u.

– Comp.Trapdoor(Alg) outputs a new algorithm Alg′′(input; r) which is a “trap-
doored” version of Alg′, which allows to create randomness consistent with a
given output: namely, before executing Alg′, Alg′′ interprets its randomness r
as a ciphertext and tries to decrypt it using internal key. If it succeeds and
r encrypts an instruction to output output, then Alg′′ complies. Otherwise it
runs Alg′.

– Comp.Explain(Alg) outputs a new algorithm Explain(input, output) which out-
puts randomness for algorithm Alg′′ consistent with given input and output.
It uses an internal key to encrypt an instruction to output output on an input
input, and outputs the resulting ciphertext.

Definition 5. An augmented explainability compiler Comp is an algorithm
which takes as input algorithm Alg and randomness and outputs programs
PRerand,PTrapdoor,PExplain, such that the following properties hold:
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– Indistinguishability of the source of the output. For any input it holds
that

{(PTrapdoor,PExplain, output) : r ← U, output ← Alg(input; r)}
and

{(PTrapdoor,PExplain, output) : r ← U, output ← PTrapdoor(input; r)}

are indistinguishable.
– Indistinguishability of programs with and without a trapdoor.

PRerand and PTrapdoor are indistinguishable.
– Selective explainability. Any PPT adversary has only negligible advantage

in winning the following game:
1. Adv fixes an input input∗;
2. The challenger runs PRerand,PTrapdoor,PExplain ← Comp(Alg);
3. It chooses random r∗ and computes output∗ ← PTrapdoor(input∗; r∗);
4. It chooses random ρ and computes fake r∗

f ← PExplain(input∗, output∗; ρ)
5. It chooses random bit b. If b = 0, it shows (PTrapdoor,PExplain, output∗, r∗),

else it shows (PTrapdoor,PExplain, output∗, r∗
f )

6. Adv outputs b′ and wins if b = b′.

Differences between [DKR15] compiler and our construction. For the reader
familiar with [SW14,DKR15], we briefly describe the differences.

First, we split compiling procedure into two parts: the first part, rerandom-
ization, adds a PRF to the program Alg, such that the program uses randomness
F(input, r) instead of r. The second part adds a trapdoor branch to rerandomized
program. This is done for a cleaner presentation of the proof.

Second, we slightly change a trapdoor branch activation mechanism: together
with faking keys we hardwire an image S of a pseudorandom generator into the
program. Whenever this program decrypts fake r, it follows instructions inside
r only if these instructions contain a correct preimage of S. This trick allows us
to first change S to random and then to indistinguishably “delete” the whole
trapdoor branch from the program. Thus it becomes possible to use a program
without a trapdoor in the protocol (and only in the proof change it to its trapdoor
version), which is crucial for achieving perfect correctness.

Construction. Our explainability compiler is described in Fig. 1. It takes as
input algorithm Alg and randomness r. It uses r to sample keys Ext (for
an extracting PRF), f (for a special encryption scheme called puncturable
deterministic encryption, or PDE[SW14]), as well as random s, and random-
ness for iO. It sets S = prg(s). Then it obfuscates programs Rerand[Alg,Ext],
Trapdoor[Alg,Ext, f, S], and Explain[f, s]. It outputs these programs.

Theorem 1. Algorithm Comp presented in Fig. 1 is an augmented explainability
compiler.

The proof of security can be found in the full version of the paper.
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Fig. 1. Explainability compiler and programs used.
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4 Optimal-Rate Non-committing Encryption in the
CRS Model

In this section we show how to construct a fully non-committing encryption with
rate 1+o(1). A crucial part of our protocol is the underlying seNCE scheme with
short ciphertexts, which we will transform into a full NCE in Sect. 4.2.

4.1 Same-Public-Key Non-committing Encryption with Erasures

In this section we present our construction of the same-public-key non-
committing encryption with erasures (seNCE for short) (defined in Sect. 2, Def-
inition 3), which is a building block in our construction of a full fledged NCE.

Fig. 2. seNCE protocol

Inspired by Sahai and Waters [SW14] way of converting a secret key encryp-
tion scheme into a public-key encryption, we set our public key to be an obfus-
cated encryption algorithm pk = iO(Enc[k]) (see Fig. 2). To allow the simulator
to generate a fake secret key, we apply the same trick to the secret key: we set
the secret key to be an obfuscated decryption algorithm with hardcoded PRF
key, namely sk = iO(Dec[k]). In other words, the seNCE protocol proceeds as
follows: the receiver generates the obfuscated programs pk, sk and then erases
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generation randomness, including the key k. Then it sends pk to the sender;
the sender encrypts its message m, erases his encryption randomness, and sends
back the resulting ciphertext c, which the receiver decrypts with sk. We present
the detailed description of the seNCE protocol in Fig. 2.

Theorem 2. The scheme given on Fig. 2 is the same-public-key non-committing
encryption scheme with erasures, assuming indistinguishability obfuscation for
circuits and one way functions. In addition, it has ciphertexts (the second mes-
sage in the protocol) of size poly(λ) + |m|.The protocol is also perfectly correct.

Proof. We show that the scheme from Fig. 2. is a seNCE and has short cipher-
texts.

Perfect correctness. The underlying secret key encryption scheme is perfectly
correct, since Dec(Enc(m, r)) = Fk(c1) ⊕ (Fk(c1) ⊕ m) = m. Due to perfect
correctness of iO, our seNCE protocol is also perfectly correct.

Security with erasures: We need to show that real and simulated pk, c, sk are
indistinguishable, even when the adversary can choose m adaptively after seeing
pk.

1. Real experiment. In this experiment PEnc and PDec are generated honestly
using Gen, c∗ is a ciphertext encrypting m∗ with randomness r∗, i.e. c∗

1 =
prg(r∗), c∗

2 = Fk(c∗
1) ⊕ m∗.

2. Hybrid 1. In this experiment c∗
1 is generated at random instead of prg(r∗).

Indistinguishability from the previous hybrid follows by security of the PRG.
3. Hybrid 2. In this experiment we puncture key k in both programs Enc and

Dec, more specifically, we obfuscate programs PEnc = iO(Enc:1[k{c∗
1}]),

PDec = iO(SimDec[k{c∗
1}, c∗,m∗]). We claim that functionality of these pro-

grams is the same as that of Enc and Dec:
Indeed, in Enc:1 (defined in Fig. 4), c∗

1 is random and thus with high proba-
bility it is outside the image of the PRG; therefore no input r results in eval-
uating F at the punctured point c∗

1, and we can puncture safely. In SimDec
(defined in Fig. 3), if c1 �= c∗

1, then the program behaves exactly like the
original one (i.e. computes Fk(c1) ⊕ c2); if c1 = c∗

1, then SimDec outputs
c∗
2 ⊕ c2 ⊕m = (Fk(c∗

1)⊕m)⊕ c2 ⊕m = Fk(c∗
1)⊕ c2, which is exactly what Dec

outputs when c1 = c∗
1. Note that c∗

1 is random (and thus independent of m),
therefore pk = Enc:1[k{c∗

1}] can be generated before the message m∗ is fixed.
Indistinguishability from the previous hybrid follows by the security of iO.

4. Hybrid 3. In this hybrid we switch c∗
2 from Fk(c∗

1) ⊕ m∗ to random. This
hybrid relies on the indistinguishability between punctured value Fk(c∗

1) and
a truly random value, even given a punctured key k{c∗

1}.
Indeed, to reconstruct this hybrid, first choose random c∗

1 and get k{c∗
1}

and val∗ (which is either random or Fk(c∗
1)) from the PPRF challenger.

Show obfuscated Enc : 1[k{c∗
1}] as a public key. When the adversary fixes

message m∗, set c∗
2 = val∗ ⊕ m∗ and upon corruption show obfuscated
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SimDec[k{c∗
1}, c∗,m∗]. If val∗ is truly random, then c∗

2 = val∗ ⊕m∗ is distrib-
uted uniformly and thus we are in hybrid 3. If val∗ is the actual PRF value,
then c∗

2 = Fk(c∗
1) ⊕ m∗ and we are in hybrid 2.

Indistinguishability holds by security of a punctured PRF.
5. Hybrid 4 (Simulation). In this hybrid we unpuncture the key k in both

programs and show PEnc ← iO(Enc[k]), PDec ← iO(SimDec[k, c∗,m∗]).
This is without changing the functionality of the programs: Indeed, in Enc no
random input r results in prg(r) = c∗

1, thus we can remove the puncturing. In
Dec:1 due to preceding “if” no input c causes evaluation of Fk{c∗

1}, thus we
can unpuncture it as well.
The indistinguishability from the previous hybrid follows by the security if
the iO.

We observe that the last hybrid is indeed the simulation experiment described
in Fig. 3: c∗ is a simulated ciphertext since c∗

1 is random, c∗
2 = Fk(c∗

1), PEnc is
honestly generated, and PDec is a simulated key SimDec[k, c∗,m∗], which decrypts
c∗ to m∗. Thus, we have shown that this scheme is non-committing with erasures.

The same public key. Both real generation algorithm Gen and the simulator
on randomness rGen = (r1, r2, r3) produce exactly the same public key pk =
iO(Enc[r1]; r2).

Fig. 3. seNCE simulator.

Fig. 4. Program Enc:1 used in the proof.
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Efficiency: Our PRG should be length-doubling to ensure that its image is
sparse. Thus |c1| = 2λ, and |c2| = |m|. Thus the size of our ciphertext is 2λ+|m|.

4.2 From seNCE to Full NCE

In this section we show how to transform any seNCE (for instance, seNCE con-
structed in Sect. 4.1) into full non-committing encryption in the CRS model. We
start with a brief overview of the construction:

Construction. Our CRS contains algorithms Comp.Rerand(GenEnc) and
Comp.Rerand (GenDec) which share master secret key MSK. Both programs can
internally generate the parameters for the underlying seNCE scheme using their
MSK and then output an encryption program or a decryption key. More specif-
ically, GenDec takes a random input, produces generation token t and then uses
this token and MSK to generate randomness rNCE for seNCE.Gen. Then the pro-
gram samples seNCE keys pk, sk from rNCE. It outputs the token t and the gen-
erated decryption key sk for a seNCE scheme. The receiver keeps sk for itself
and sends the token t to the sender.

GenEnc, given a token t, can produce (the same) pair (pk, sk) and outputs an
algorithm Comp.Rerand(Encpk), which has pk hardwired. This algorithm takes
a message m and outputs its encryption c, which the sender sends back to the
receiver. Then receiver decrypts it using sk.

We present our full NCE protocol and its building block functions GenEnc,
GenDec, Enc in Fig. 5.

Theorem 3. Assuming Comp is a secure explainability compiler, seNCE is a
secure same-public-key NCE with erasures with a ciphertext size O(poly(λ)) +
m, and assuming one-way functions, the described construction is a constant-
rate non-committing public key encryption scheme in a common reference string
model. Assuming perfect correctness of underlying seNCE and Comp, our NCE
scheme is also perfectly correct.

4.3 Proof of the Theorem3

Proof. We first show correctness of the scheme. Next we present a simulator and
argue that the scheme is secure. Finally we argue that the scheme is constant-
rate.

Correctness. The presented scheme is perfectly correct, as long as the underly-
ing seNCE and Comp are perfectly correct: First, due to perfect correctness of
Comp, using compiled versions Comp.Rerand(GenEnc), Comp.Rerand(GenDec),
Comp.Rerand(Enc) is as good as the using original programs. Next, both the
sender and receiver generate public and secret seNCE keys as (pk, sk) ←
seNCE.Gen(FMSK(t)). The sender also generates c, which is an encryption of
m under pk, which is decrypted under sk by receiver. Thus the scheme is as
correct as the underlying seNCE scheme is.
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Fig. 5. The NCE protocol.

Since the protocol for seNCE which we give in Sect. 4.1 has perfect correct-
ness, the overall NCE scheme, when instantiated with our seNCE protocol from
Sect. 4.1, also achieves perfect correctness.

Description of the Simulator. In this subsection we first explain which vari-
ables the adversary sees and then describe our simulator.

The view of the adversary. The view of the adversary consists of the CRS (pro-
grams P∗

GenEnc,P
∗
GenDec), as well as the communication and the internal states of

several protocol instances. Namely, for each protocol instance the adversary sees
the following variables:
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1. The first protocol message t∗, after which the adversary assigns an input m
for this protocol instance;

2. The second protocol message c∗;
3. The sender internal state r∗

Enc, r
∗
GenEnc;

4. The receiver internal states r∗
GenDec.

Other values, such as P∗
Enc and sk∗, can be obtained by the adversary

by running programs in the CRS: P∗
Enc ← P∗

GenEnc(t
∗, r∗

GenEnc), (sk∗, t∗) ←
P∗
GenDec(r

∗
GenDec).

Simulation. The simulator runs the compiler Comp on programs Enc,GenEnc,
GenDec and sets a simulated CRS to be a description of programs
Comp.Trapdoor(GenEnc), Comp.Trapdoor(GenDec). The difference from the real-
world CRS is that these simulated programs have a trapdoor branch inside them,
which allows the simulator to produce randomness such that a program outputs
a desired output on this randomness.

The simulator keeps programs ExplEnc = Comp.Explain(Enc),
ExplGenEnc = Comp.Explain(GenEnc),ExplGenDec = Comp.Explain(GenDec) for
later use.

– CRS generation. The simulator sets the CRS to be a descrip-
tion of programs P∗

GenEnc = Comp.Trapdoor(GenEnc), P∗
GenDec =

Comp.Trapdoor(GenDec).
Next the simulator responds to requests of the adversary. The adversary can
interactively ask to setup a new execution of the protocol (where the input
m can be chosen based on what the adversary has already learn from other
executions), or ask to deliver messages or corrupt parties in protocols which
are already being executed. Below we describe what our simulator does in
each case:

– Simulation of the first message. If the receiver is already corrupted, then
the simulator generates the first message by choosing random r∗

GenDec and
running (t∗, sk∗) ← P∗

GenDec(r
∗
GenDec). Otherwise the simulator chooses random

t∗ as the first message.
– Simulation of the second message. If either the sender or the receiver

is already corrupted, then the simulator learns m and therefore can gener-
ate the second message honestly. If neither the sender nor the receiver in
this execution are corrupted by this moment, the simulator runs (pk∗

f , c∗
f ) ←

seNCE.Sim(FMSK(t∗)) and gives c∗
f to the adversary as the second message.

– Simulation of the sender internal state. If either the sender or the
receiver had been corrupted before the second message was sent, then the
simulator has generated the second message honestly and can thus show true
sender randomness.
Otherwise it first generates a program P∗

Enc = Comp.Trapdoor(Enc[pk∗
f ]) with

simulated pk∗
f hardwired inside. Next it encodes m∗, c∗

f into sender encryp-
tion randomness, i.e. sets r∗

f,Enc ← ExplEnc(m∗, c∗
f ; ρ3) for random ρ3; so that

P ∗
Enc on input (m∗, r∗

f,Enc) outputs c∗
f .
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Fig. 6. Simulation.

Finally, it encodes P∗
Enc into r∗

f,GenEnc, i.e. sets the sender’s generation ran-
domness r∗

f,GenEnc ← ExplGenEnc(t∗,P∗
Enc; ρ2) for random ρ2, so that P∗

GenEnc

outputs P∗
Enc on input (t∗, r∗

f,GenEnc).
The pair (r∗

f,GenEnc, r
∗
f,Enc) is set to be the sender internal state.

– Simulation of the receiver internal state. If the corruption happens
before the first message is sent, then the simulator has generated the first
message honestly and thus can show true receiver internal state.
If corruption happens after the first message, but before the second, then the
first message t∗ was generated at random. In this case the simulator computes
sk∗ ← seNCE.Gen(FMSK(t∗)). It encodes (t∗, sk∗) into receiver randomness,
i.e. sets r∗

f,GenDec ← ExplGenDec(t∗, sk∗; ρ1) for random ρ1, so that P ∗
GenDec on

input r∗
f,GenDec outputs (t∗, sk∗).

If corruption happens after the second message, then the simulator runs
seNCE simulator and gets fake secret key sk∗

f which decrypts dummy c∗
f to

m∗, chosen by the adversary. Next it encodes (t∗, sk∗
f ) into receiver random-

ness, i.e. sets r∗
f,GenDec ← ExplGenDec(t∗, sk∗

f ; ρ1) for random ρ1, so that P ∗
GenDec

on input r∗
f,GenDec outputs (t∗, sk∗

f ).

Note that simulation of each protocol instance is independent of simulation
of other protocol instances (except for the fact that they share the same CRS).
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Therefore in order to keep the description of the simulator simple enough, in
Fig. 6 we present a detailed description of the simulator for a single execution
only; it can be trivially generalized to a multiple-execution case according to
what is written above. In addition, the simulator is presented for a difficult case,
i.e. when nobody is corrupted by the time the ciphertext is sent, and therefore
the simulator has to present a dummy c and later open it to a correct m.

Next we outline the intuition for the security proof and after that provide
the detailed description of the hybrids.

Overview of the Analysis of the Simulator. Before presenting hybrids, let
us give a roadmap of the proof: Starting from the real execution, we first switch
the programs in the CRS: instead of compiling them with Comp.Rerand, we com-
pile them using Comp.Trapdoor; in other words, we add trapdoor branches to the
programs in the CRS, in order to allow creating fake randomness which explains
a given output. Next we change what the simulator shows as internal states of
the parties: instead of showing their real randomness, the simulator shows fake
randomness (which explains outputs of programs from a real execution, i.e. this
randomness explains honestly generated sk∗, c∗, and P ∗

Enc). Our next step is
to puncture the key MSK{t∗} in both CRS programs. This allows us to switch
seNCE generation randomness r∗

NCE from FMSK(t∗) to a random value; this means
that seNCE parameters (pk∗, sk∗) are now freshly generated and do not depend
on the rest of an experiment anymore. Therefore we can use security of seNCE
and switch seNCE values (pk∗, c∗, sk∗) from real to simulated (in particular,
the simulator hardwires these simulated c∗

f , sk∗
f into fake randomness, instead of

hardwiring real-execution c∗, sk∗). Next we undo previous hybrids: we set r∗
NCE

as the result of FMSK(t∗), and then unpuncture MSK{t∗} in both CRS programs.
In security proof we will be using the following properties of explainability

compiler Comp for any algorithm Alg:

1. Indistinguishability of programs with and without trapdoor branch;
Comp.Rerand(Alg) ≈ Comp.Trapdoor(Alg).

2. Indistinguishability of explanations:
given programs P(x; r) = Comp.Trapdoor(Alg) and Expl = Comp.Explain(Alg),
it is impossible to distinguish between real randomness and input (x, r) and
fake randomness (x, rf ← Comp.Expl(x,P(x, r)). In particular, evaluating
P(x; rf ) results in P(x, r), with the only difference that the computation
P(x; rf ) uses the trapdoor branch, which is however undetectable.

3. Indistinguishability of source of the output:
given programs P(x; r) = Comp.Trapdoor(Alg) and Expl = Comp.Explain(Alg),
it is infeasible to tell whether a given output y was obtained by running
original program Alg or its compiled version Comp.Trapdoor(Alg).

We omit proofs of these statements, since they generally follow the proofs of
explainability compiler in previous works [DKR15], with some adaptations for
our scenario (such as added indistinguishablity of programs with and without a
trapdoor). Formal proofs appear in the full version of our paper.
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We now briefly describe each hybrid. The full description with detailed secu-
rity reductions is given in the full version of the paper.

– Hybrid 0. We start with a real execution of the protocol.
– Hybrids 1a–1b. We change how we generate the CRS programs: instead of

obtaining them as Comp.Rerand(GenEnc) and Comp.Rerand(GenDec), we gen-
erate them as Comp.Trapdoor(GenEnc) and Comp.Trapdoor(GenDec). Security
holds by indistinguishability of programs with and without trapdoor branch.
Next for every execution i, in which the receiver is corrupted
between the first and the second messages, we run hybrids 2i − 3i.

• Hybrid 2i. Instead of showing the real randomness r∗
GenDec, the simulator

shows fake r∗
f,GenDec, which encodes t∗, sk∗. These experiments are indis-

tinguishable because of the indistinguishability of explanation: indeed,
P∗
GenDec on both inputs r∗

GenDec and r∗
f,GenDec outputs t∗, sk∗, therefore true

randomness r∗
GenDec is indistinguishable from randomness r∗

f,GenDec, which
explains the output t∗, sk∗.
Note that since there is no non-random input to our program PGenDec, it
is enough to use the selective indistinguishability of explanation.

• Hybrid 3i. We set t∗ = prg(w∗) for random w∗ and then compute sk∗ as
(pk∗, sk∗) ← seNCE.Gen(FMSK(t∗)). In other words, we compute (t∗, sk∗)
as the result of running GenDec instead of Comp.Trapdoor(GenDec). Indis-
tinguishability holds by indistinguishability of the source of the output
for the compiler Comp and program GenDec.

• Hybrid 4i. Finally we set t∗ to be randomly chosen instead of being the
result of prg(w∗). Security follows from security of the prg.
This is the simulation for the case when the receiver is corrupted between
the first and the second message.

For every execution i, in which both corruptions happen after the
second message is sent, we run hybrids 2i − 5hi.

– Hybrid 2i. Instead of showing the real randomness r∗
GenEnc, the simulator

shows fake r∗
f,GenEnc, which encodes t∗,P∗

Enc. These experiments are indistin-
guishable because of the indistinguishability of explanation: indeed, P∗

GenEnc

on both inputs t∗, r∗
GenEnc and t∗, r∗

f,GenEnc outputs P ∗
Enc, and by the theorem

true randomness r∗
GenEnc is indistinguishable from fake randomness r∗

f,GenEnc

which explains P ∗
Enc on input t∗. Note that non-random input to our program

PGenEnc is t∗, obtained by running t∗ ← P ∗
GenDec(r

∗
GenDec) for random r∗

GenDec,
i.e., it can be generated before a CRS is shown to the adversary. Thus it is
enough to use the selective indistinguishability of explanation.

– Hybrid 3i. In the next step instead of showing the real r∗
GenDec, the simulator

shows fake r∗
f,GenDec, which encodes t∗, sk∗. These experiments are indistin-

guishable because of the indistinguishability of explanation: indeed, P∗
GenDec

on both inputs r∗
GenDec and r∗

f,GenDec outputs t∗, sk∗, therefore true random-
ness r∗

GenDec is indistinguishable from randomness r∗
f,GenDec, which explains

the output t∗, sk∗ on empty non-random input.
Note that since there is no non-random input to our program PGenDec, it is
enough to use the selective indistinguishability of explanation.
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– Step 4i. Next global step is to switch random r∗
Enc to fake r∗

f,Enc which encodes
(m∗, c∗). We do this in several steps:

• Hybrid 4ai. We obtain t∗, sk∗ by running GenDec on random w∗ instead
of running P∗

GenDec = Comp.Trapdoor(GenDec) on r∗
GenDec. Indistinguisha-

bility holds by indistinguishability of a source of the output for programs
GenDec and Comp. Trapdoor(GenDec).

• Hybrid 4bi. We choose t∗ at random instead of choosing it as prg(w∗)
for random w∗. (pk∗, sk∗) are then obtained from r∗

NCE = FMSK(t∗). Indis-
tinguishability holds by security of a prg.

• Hybrid 4ci. We generate P∗
Enc by running GenEnc on t∗ and random

e∗, instead of running P∗
GenEnc = Comp.Trapdoor(GenEnc) on (t∗, r∗

GenEnc).
Security holds by indistinguishability of source of the output for programs
GenEnc and Comp.Trapdoor(GenEnc).

• Hybrid 4di. We generate the program P∗
Enc ← Comp.Trapdoor(Enc[pk∗])

instead of Comp.Rerand(Enc[pk∗]). Security holds by indistinguishability
of programs with and without trapdoor branch for program Enc.

• Hybrid 4ei. In this step we finally change r∗
Enc to r∗

f,Enc as follows:
we first create a CRS and give it to the adversary. Then we gener-
ate random t∗ and show t∗ to the adversary as the first message in
the protocol. Next the adversary fixes an input m∗. Then we gener-
ate pk∗, sk∗ as seNCE.Gen(FMSK(t∗)) and give Enc() = seNCE.Encpk∗()
to the explainability challenger as the underlying program. The chal-
lenger chooses random e∗, runs Comp(Enc; e∗) and gives us either
(r∗

Enc,m
∗, c∗,P∗

Enc) or (r∗
f,Enc,m

∗, c∗,P∗
Enc), where r∗

Enc is random, P∗
Enc =

Comp.Trapdoor(Enc; e∗), c∗ = P∗
Enc(m

∗; r∗
Enc), and r∗

f,Enc encodes m∗, c∗.
We show the given c∗ as the second message in the protocol. Once asked
to open the internal state, we present the given r∗

Enc or r∗
f,Enc, generate

r∗
GenEnc explaining the given P∗

Enc, and generate r∗
GenDec explaining (t∗, sk∗).

We can rely on the selective indistinguishability of explanation for pro-
gram Comp.Trapdoor(Enc) since at the moment when we need to see the
challenge in explanation game (i.e., when we need to show c∗ to the adver-
sary), P∗

Enc’s input m∗ is already fixed.
– Step 5i. Our next global step is to change the underlying seNCE values to

simulated. We proceed in several steps:
• Hybrids 5ai–5bi. We puncture MSK at t∗. In P∗

GenDec we can puncture
immediately, since due to the sparseness of the length-doubling prg, t∗

lies outside of the prg image and therefore FMSK is never called at t∗. In
P∗
GenEnc we hardwire pk∗ and use it whenever t = t∗; otherwise, we use

the punctured key MSK{t∗} to generate rNCE and then sample pk.
• Hybrid 5ci. Once MSK{t∗} is punctured, we can choose the generation

randomness for underlying seNCE scheme r∗
NCE at random.

• Hybrids 5di. We generate c∗ as a result of running Enc on m∗ and
random u∗ instead of running P∗

Enc = Comp.Trapdoor(Enc) on (m∗; r∗
Enc).

We rely on indistinguishability of the source of the output for program
Enc.
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• Hybrid 5ei. Next we switch the seNCE values from real to simulated:
namely, c∗

f is now simulated and sk∗
f is now a simulated key decrypting c∗

f

to m∗. We rely on the security of the underlying seNCE. Here we crucially
use the fact that in the underlying NCE scheme pk∗ is shown before the
adversary chooses a message, since we hardwire this pk∗ into the CRS (in
P∗
GenEnc).

• Hybrid 5fi. We switch back r∗
NCE to be the result of FMSK(t∗).

• Hybrid 5gi-5hi. We unpuncture MSK{t∗} in P∗
GenEnc and P∗

GenDec and
remove the hardwired pk∗ from P∗

GenEnc. To remove hardwired pk∗, we
crucially use the fact that pk∗, although simulated, is the same as real
pk∗, generated from randomness FMSK(t∗), which is guaranteed by the
same-public-key property of seNCE.

This concludes the overview of hybrids. For the detailed description of the
hybrids with security reductions, see the full version of the paper.

Sizes in Our Construction. Our construction has a lot of size dependencies.
We present a size diagram on Fig. 7, assuming our implementation of explain-
ability compiler based on iO and puncturable deterministic encryption (PDE).
There all sizes are grouped in “complexity classes”. Here we outline several main
dependencies:

– if a fake randomness has values encoded, it should be longer than these values,
but not much longer. Namely, if underlying encoded message has size l, then
the size of the plaintext for PDE (which consists of encoded message, secret s
and prg(ρ)) is l+3λ, and the size of PDE ciphertext should be at least 4 times
bigger (the latter is because explainability compiler uses statistically injective
PRF). Therefore randomness and encoded value are in the same “complexity
class”.

– if a key is punctured on some input, its size is at least λ|input|.
– size of an obfuscated program is significantly larger than the size of the orig-

inal program (polynomial in original size s and security parameter λ).

Note that all dependencies in the graph are due to the “hardwired values”, i.e.
due to the fact that some values should be hardcoded into programs, or messages
should be encrypted into ciphertexts. In particular, the same length restrictions
remain even when succinct iO for TM or RAM [CHJV15,CH15,KLW15] is used.

Note that the dependency graph is acyclic, and variables which we actually
send over the channel - t and c - are in the very top of the graph. This means that
we can set length of t and m to be a security parameter, and then set lengths of
other variables as large as needed by following edges in dependency graph.

Acknowledgements. We thank anonymous ASIACRYPT reviewers for pointing out
that explainability compiler can be used in a black box manner, which greatly simplified
the presentation of the results.
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poly(λ)

iO(λ * iO(λ m)) 

iO(iO(λ m)) 

iO(λ m) 

m + poly(λ)

λ m 

λ * iO(λ m) 

λ*iO(iO(λ m)) 

iO(λ*iO(iO(λ m)))

t

PGenEnc
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c

fEnc{m, c}

seNCE.Enc

pkseNCE
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PEnc
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fGenEnc{t PEnc} ExtGenEnc{t,  PEnc, rGenEnc}

GenEnc
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seNCE.Dec

skseNCE

fGenDec{t, sk} ExtGenDec{t, rGenDec}

GenDec
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m

ExtEnc{m,  rEnc}

CRS

Fig. 7. Size dependency graph between different variables, when underlying seNCE is
instantiated with our construction from Sect. 4.1. Notation: iO(s) for size s means the
resulting size of an obfuscated program of the initial approximate size s. Dependencies
due to obfuscation are drawn as fat blue arrows. Green boxes mark CRS, yellow boxes
mark randomness used for extracting PRF, and blue denotes variables which are sent in
the protocol. Arrows for t are shown dashed for easier tracking. Red dashed rectangles
with size in the top right corner denote a “size group”, e.g. any variable inside iO(λm)
box is as large as an obfuscated program of initial size λm. (Color figure online)
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