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Abstract. The current paper presents a new quantum algorithm for
finding multicollisions, often denoted by l-collisions, where an l-collision
for a function is a set of l distinct inputs having the same output value.
Although it is fundamental in cryptography, the problem of finding mul-
ticollisions has not received much attention in a quantum setting. The
tight bound of quantum query complexity for finding 2-collisions of ran-
dom functions has been revealed to be Θ(N1/3), where N is the size of
a codomain. However, neither the lower nor upper bound is known for
l-collisions. The paper first integrates the results from existing research
to derive several new observations, e.g. l-collisions can be generated only
with O(N1/2) quantum queries for a small constant l. Then a new quan-
tum algorithm is proposed, which finds an l-collision of any function that
has a domain size l times larger than the codomain size. A rigorous proof
is given to guarantee that the expected number of quantum queries is

O
(
N (3l−1−1)/(2·3l−1)

)
for a small constant l, which matches the tight

bound of Θ(N1/3) for l = 2 and improves the known bounds, say, the
above simple bound of O(N1/2).

Keywords: Post-quantum cryptography · Multicollision · Quantum
algorithm · Grover · BHT · Rigorous complexity evaluation · State-of-art

1 Introduction

Finding collisions or multicollisions is a fundamental problem in theoretical com-
puter sciences and one of the most critical problems especially in cryptography.
For given finite sets X and Y with |Y | = N , and a function H : X → Y , an
l-collision finding problem is to find a set of l distinct inputs x1, . . . , xl such
that H(x1) = · · · = H(xl). Both upper and lower bounds of query and time
complexity of the l-collision finding problem are fundamental and have several
applications in cryptography.

Applications of Multicollisions. We often use the lower bound of query com-
plexity (or the upper bound of the success probability) to prove the security of
cryptographic schemes. Let us consider a cryptographic scheme based on Pseudo-
Random Functions (PRFs). In the security proof, we replace the PRFs with truly
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random functions (or random oracles) and show the security of the scheme with
the random oracles by information-theoretic arguments. In the latter security
arguments, we often use the lower bound of queries for finding multicollisions
of random functions. For example, Chang and Nandi [CN08] proved the indif-
ferentiability of the chopMD hash function construction; Jaulmes et al. [JJV02]
proved the indistinguishability of RMAC; Hirose et al [HIK+10] proved the indif-
ferentiability of the ISO standard lightweight hash function Lesamnta-LW; Naito
and Ohta [NO14] improved the indifferentiability of PHOTON and Parazoa hash
functions; and Javanovic et al. [JLM14] greatly improved the security lower
bounds of authenticated-encryption mode of KeyedSponge. The upper bound of
the probability to obtain multicollisions after q queries plays an important role
in their proofs.

In addition, studying and improving the upper bound for the l-collision find-
ing problem also help our understanding, which often leads to the complexity
of generic attacks. For example, l-collisions are exploited in the collision attack
on the MDC-2 hash function construction by Knudsen et al [KMRT09], the
preimage attack on the JH hash function by Mendel and Thomsen [MT08], the
internal state recovery attack on HMAC by Naito et al [NSWY13], the key
recovery attack on iterated Even-Mansour by Dinur et al [DDKS14], and the
key recovery attack on LED block cipher by Nikolić et al. [NWW13].

Furthermore, multicollisions also have applications in protocols. An interest-
ing example is a micro-payment scheme, MicroMint [RS96]. Here, a coin is a
bit-string the validity of which can be easily checked but hard to produce. In
MicroMint, coins are 4-collisions of a function. If 4-collisions can be produced
quickly, a malicious user can counterfeit coins.

Existing Results for Multicollisions in Classical Setting. The problem of
finding (multi-)collisions has been extensively discussed in the classical setting.
Suppose that we can access the function H in the classical query; that is, we
can send x ∈ X to the oracle H and obtain y ∈ Y as H(x). For a random
function H, making q queries to H can find the collision of H with probability
at most q2/N . The birthday bound shows when q ≈ N1/2, we obtain a colli-
sion with probability 1/2. This can be extended to the l-collision case. Suzuki
et al. [STKT08] showed that with N (l−1)/l queries the probability of finding an
l-collision is upper bounded by 1/l! and lower bounded by 1/l! − 1/2(l!)2, which
shows that the query complexity can be approximated to N (l−1)/l for a small
constant l. To be more precise, it is shown that O

(
(l!)1/lN (l−1)/l

)
evaluations of

the function H finds an l-collision with probability about 1/2 if H : X → Y is a
random function.

The above argument only focuses on the number of queries. To implement
the l-collision finding algorithm, the computational cost, T , and the memory
amount, S, or their tradeoff should be considered. The simple method needs to
store all the results of the queries. Hence, it requires T = S = N1/2 for collisions
and T = S = O(N (l−1)/l) for l-collisions. The collision finding algorithm can be
made memoryless by using Floyd’s cycle detecting algorithm [Flo67]. However,
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no such memoryless algorithm is known for l-collisions, thus the researcher’s goal
is to achieve better complexity with respect to T × S or to trade T and S for a
given T × S.

An l-collision can be found with T = l · N and S = O(1) by running a
brute-force preimage attack l times for a fixed target. Although this method
achieves better T × S than the simple method, it cannot trade T for S Joux
and Lucks [JL09] discovered the 3-collision finding algorithm with T = N1−α

and S = Nα for α < 1/3 by using the parallel collision search technique. Nikolić
and Sasaki [NS16] achieved the same complexity as Joux and Lucks by using an
unbalanced meet-in-the-middle attack.

1.1 Collisions and Multicollisions in Quantum Setting

Algorithmic speedup using quantum computers has been actively discussed
recently. For example, Grover’s seminal result [Gro96] attracted cryptographers’
attention because of the quantum speedup of database search. Given a function
F : X → {0, 1} such that there exists a unique x0 ∈ X that satisfies F (x0) = 1,
Grover’s algorithm finds x0 in O

(|X|1/2
)

queries.
This paper discusses the complexity of quantum algorithms in the quantum

query model. In this model, a function H is given as a black box, and the com-
plexity of quantum algorithms is measured as the number of quantum queries
to H. A quantum query model is widely adopted, and previous studies on find-
ing collisions in the quantum setting follow this model [BHT97,Amb07,Bel12,
Yue14,Zha15].

Previous research on finding collisions and multicollisions can be classified
with respect to two types of dichotomies.

Domain size and codomain size. The domain size and codomain size of the
function H : X → Y is a sensitive problem for quantum algorithms. Some
quantum algorithms aim to find collisions and multicollisions of H with |X| ≥
|Y |, while others target H with |X| < |Y |. The former algorithms can be
directly applied to find collisions and multicollisions of real hash functions
such as SHA-3. The latter ones mainly target database search rather than
hash functions. The (multi-)collision search on database can still be converted
for hash functions, but it generally requires a huge complexity increase. (On
the other hand, the (multi-)collision search for hash functions with |X| ≥ |Y |
cannot be converted for a database with |X| < |Y |.)
Hereafter, we use “H” and “D” to denote the cases with |X| ≥ |Y | and
|X| < |Y |, respectively. We note that our goal is finding a new multicollision
algorithm that can be applied to real hash functions, namely the H setting.

Random function and any function. Both in classical and quantum set-
tings, existing algorithms often assume randomness: they can find collisions
only on average when H is chosen uniformly at random from Map(X,Y ) :=
{f | f : X → Y }. If an algorithm finds collisions of any function H ∈
Map(X,Y ), it also finds collisions of randomly chosen functions. Hence algo-
rithms applied to any function are stronger than ones only applied to a ran-
dom function. Hereafter, we use “Rnd” and “Arb” to denote the cases in
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which H is chosen uniformly at random and H is chosen arbitrarily, respec-
tively. We note that the Rnd setting is sufficient for our goal and will show
that our new algorithm can be applied to the Arb setting.

In the following, we revisit the existing results of collision and multicollision-
finding algorithms in the quantum setting.

– Brassard et al. [BHT97] proposed a quantum algorithm BHT, which can be
classified as H-Arb for 2-collisions. To be more precise, BHT finds a 2-collision
of any l-to-one function with O(N1/3) quantum queries and a memory amount
of O(N1/3).

– Ambainis [Amb07] studied an element distinctness problem rather than the
collision finding problem, but his algorithm can be directly applied to find
(multi)collisions of functions. The algorithm is for D-Arb for l-collisions with
O(M l/(l+1)) quantum queries, where M is the domain size.

– Belovs [Bel12] improved the complexity of Ambainis’ algorithm [Amb07].
– Zhandry [Zha15] observed that Ambainis’ algorithm [Amb07] can be modi-

fied to H-Rnd for 2-collisions with O(N1/3) quantum queries, when |X| =
Ω(N1/2) and N = |Y |.

– Yuen [Yue14] discussed the application of BHT when |X| = |Y | and the
target function H is weakened to Rnd. The complexity is O(N1/3) quantum
queries. We do not discuss its details because the discussed case in Yuen’s
work [Yue14] is a subset of Zhandry’s extension of Ambainis’ algorithm.

– Regarding the lower bound, O((N/l)1/3) of BHT to find 2-collisions against
l-to-one function was proved to be tight by several researchers [AS04,Amb05,
Kut05]. Zhandry proved that O(N1/3) for 2-collisions against random func-
tion is tight. That is, any quantum algorithm that finds a 2-collision against
a random function requires Ω(N1/3) quantum queries [Zha15].1 Obviously,
Ω(N1/3) can also be a lower bound for l > 2, but no advanced lower bound
is known for l > 2. Hülsing et al. [HRS16] studied quantum generic security
of hash functions by considering quantum query complexity in the quantum
random-oracle model. They successfully showed the upper and lower bound
of quantum query complexity to solve the one-wayness, second-preimage resis-
tance, extended target-collision resistance, and their variants.2 Unfortunately,
they did not treat collision and multicollision resistances.

The classifications of the existing algorithms are shown in Table 1. As
mentioned earlier, Ambainis’ algorithm [Amb07] and its improvement by
Belovs [Bel12] originally focused on the database search, but they can be con-
verted into the hash function setting with extra complexity. However, all the
other approaches for the hash function setting only analyze 2-collisions. Hence,
we can conclude that no quantum algorithm exists that is optimized to find
l-collisions for hash functions.
1 Zhandry showed that any quantum algorithm with q quantum queries finds a 2-

collision with probability at most O
(
(q + 2)3/N

)
[Zha15].

2 For example, they showed that any quantum algorithm with q quantum queries finds
a preimage with probability at most O

(
(q + 1)2/N

)
[HRS16].
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Table 1. Summary of existing quantum algorithms to find (multi-)collisions.

Random function “Rnd” Arbitrary function “Arb”

Database “D” Zhandry + Ambainis (2-col) Ambainis (l-col)

Belovs (l-col)

Hash “H” Zhandry + Ambainis (2-col) BHT (2-col)

Yuen (2-col) Converted Ambainis (l-col)

Converted Belovs (l-col)

Ours (l-col)

1.2 Our Contributions

In this paper, we study quantum algorithms to find l-collisions against a function
H : X → Y .

First, the problem of finding l-collisions against hash functions has not
received much attention in the literature. Even if the previous work can be
directly applied to l-collisions against hash functions, nobody has considered
this problem and no generic attack is known. This motivates us to provide a
systematization of knowledge about existing quantum algorithms. Namely, we,
for the first time in this field, provide the state of the art of the complexity
of finding l-collisions against hash functions with a direct application, trivial
extension, and simple combination of existing results.

This state of the art sheds light on the problems that require further inves-
tigation. For the second but main contribution of this paper, we present a new
quantum algorithm to find l-collisions against hash functions.

Our contributions in each part are detailed below.

Systematization of Knowledge (combination of Existing Results)

– Our first observation is that, when H is a random function and |X| = l|Y |
for a small constant l, the query complexity of the l-collision finding problem
is lowered to O(N1/2) by simply applying Grover’s algorithm. Hence, any
meaningful generic attack in the quantum setting must achieve the query
complexity below O(N1/2). Intuitively, a preimage of the hash value can be
generated with O(N1/2) queries in the quantum setting and l-collisions are
generated by generating l preimages. This corresponds to the upper bound of
O(N) complexity in the classical setting. (Note that this upper bound is for
the Rnd setting and does not hold for the Arb setting.)

– The above observation is quite straightforward but useful to measure the
effect of other attacks. For example, Ambainis’ l-collision search for database
[Amb07] can be converted for hash functions with O(M l/(l+1)) complexity
where M is the domain size. However, this cannot be below O(N1/2) for any
l. The same applies to the improvement by Belovs [Bel12]. Those converted
algorithms can be meaningful only in the Arb setting.
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– Zhandry [Zha15] discussed the application of Ambainis’ l-collision search in
H-Rnd and D-Rnd only for l = 2, although it can trivially be extended to
l > 2. If it is extended, the complexity for l = 3 reaches O(N1/2). Thus,
Zhandry’s idea only works for l = 2.

– Zhandry [Zha15] considered Ambainis’ l-collision search rather than Belovs’
improvement [Bel12]. If we consider Zhandry + Belovs, the complexity in H-
Rnd for l = 3 becomes O(N10/21), which is faster than the simple application
of Grover’s algorithm. Thus, it is a meaningful generic attack. For l ≥ 4, the
complexity of Zhandry + Belovs reaches O(N1/2).

– In summary, for the Rnd setting, the tight algorithm with O(N1/2) complexity
exists for l = 2. There is a better generic attack than the simple application
of Grover’s algorithm for l = 3, although the lower bound is unknown. For
l ≥ 4, there is no known algorithm better than the application of Grover’s
algorithm, and the lower bound is also unknown. For the Arb setting, direct
application of Belovs’ algorithm is the existing best attack.

New Quantum Multicollision-Finding Algorithm

– Given the above state of the art, our main contribution is a new l-collision
finding algorithm with O

(
N (3l−1−1)/2·3l−1

)
quantum queries against an arbi-

trary function H : X → Y with |X| = l|Y |. By applying this algorithm in the
Rnd setting, we achieve a speedup compared with the simple upper bound of
O(N1/2) for any l. The complexity of our algorithm matches the tight bound
of O(N1/3) for l = 2 and is faster than O(10/21) of Zhandry + Belovs for
l = 3. The complexity of our algorithm for a small constant l is shown in
Table 2. The complexities are compared in Fig. 1.

– Unlike other algorithms for Arb, our algorithm asymptotically approaches to
O(N1/2) as l increases. The previous results by Ambainis [Amb07] asymptot-
ically approaches to O(M), and Belovs [Bel12] asymptotically approaches to
O(M3/4), respectively, where M = |X|. Our algorithm improves these results
for M ≥ l · N . The complexities are compared in Fig. 2 for M = l · N .

– The core idea of our algorithm is a sophisticated combination of the 3-collision
algorithm in the classical setting by Joux and Lucks [JL09] and the general-
ized Grover algorithm for the quantum setting [BBHT98].
In short, we recursively call a collision finding algorithm and Grover’s algo-
rithm. For example, to generate 3-collisions, we first iterate the 2-collision
finding algorithm of O(N1/3) complexity O(N1/9) times. Then, we search
for the preimage of one of O(N1/9) 2-collisions by using Grover’s algorithm,
which runs with O(N4/9) complexity. To generate 4-collisions, we iterate the
3-collision finding algorithm of O(N4/9) complexity O(N1/27) times, then
search for the preimage of one of O(N1/27) 3-collisions with O(N13/27) com-
plexity.
In classical setting, the recursive application of the algorithm of [JL09] has
never been discussed in literature. This is because the resulting complexity
easily exceeds the information theoretically upper bound of O(N (l−1)n/l).
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Table 2. Quantum query complexity of our l-collision finding algorithm. Query denotes
logN (query), which asymptotically approaches 1/2 as l increases.

l 2 3 4 5 6 7 8

Query 1
3

4
9

13
27

40
81

121
243

364
729

1093
2187

Fig. 1. Quantum query complexity needed to find l-collision in H-Rnd setting. Query
denotes logN (query).

Fig. 2. Quantum query complexity for finding an l-collision in H-Arb setting. Query
denotes logN (query).

In contrast, no such upper bounds are known in quantum complexity, thus
we can obtain advantages with the recursive application.

– Finally, we provide a rigorous complexity evaluation of our algorithm, which
is another main focus of this paper. The point of our proof is that lower and
upper bounding the number of collisions of H is necessary for lower bound
success probability. Our evaluation suggests that our algorithm finds a 2-
collision of SHA3-512 with 2179 quantum queries and finds a 3-collision with
2238 quantum queries.
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2 Preliminaries

Notation. We define l-collision as follows.

Definition 2.1 (l-collision). Let l be a positive integer. Let X and Y be finite
spaces. Let H : X → Y be a function from X to Y . Let {x1, x2, . . . , xl} be a subset
of X and let y be an element of Y . We define

({x1, x2, . . . , xl}, y
)
as an l-collision

of H if the pair satisfies xi �= xj for i �= j and y = H(x1) = H(x2) = · · · =
H(xl). Two l-collisions c =

({x1, x2, . . . , xl}, y
)
and c′ =

({x′
1, x

′
2, . . . , x

′
l}, y′)

are said to be equal if and only if {x1, x2, . . . , xl} = {x′
1, x

′
2, . . . , x

′
l} as sets and

y = y′.

If |X| = l · |Y | and a function H : X → Y satisfies |H−1(H(x))| = l for any
x ∈ X, we call H l-to-one function. If l is clear by context, we simply call H
regular function.

Complexity of quantum algorithm. Suppose that we are given a function H
as a black box and can query a quantum state to the function H; that is, we
can send a quantum superposition, say,

∑
x∈X αx |x〉 |b〉 to the oracle H and

obtain
∑

x∈X αx |x〉 |b ⊕ H(x)〉. In the quantum query model, the complexity of
a quantum algorithm is measured by the number of quantum queries to H that
the algorithm makes. Many existing studies on collision problems in quantum
setting follow this model [BHT97,Amb07,Bel12,Zha15], and the quantum query
complexity of collision problems must be understood when we make security
proofs in the quantum random oracle model [BDF+11], which corresponds to
the random oracle model in a classical setting. As for time complexity, we will
discuss it in Sect. 6.

In the rest of the paper, we assume that readers already have sufficient basic
knowledge about the quantum circuit model and omit a detailed explanation
of it.

2.1 Grover’s Algorithm and Its Generalization

Grover’s algorithm [Gro96] was proposed for fast database search in a quantum
setting. The problem of database search is modeled as follows:

Problem 2.1 (Quantum Database Search). Suppose that there is a function
F : X → {0, 1} such that there is only one element x0 ∈ X that satisfies
F (x0) = 1. The problem is to find x0 under the condition that we are allowed to
access a quantum oracle of F .

Grover’s algorithm can solve this problem with high probability, making quan-
tum queries to F for roughly

√|X| times. This means that the complexity needed
for an exhaustive search in a quantum setting is the square root of one in the
classical setting. For example, an exhaustive key search against AES-128 will
succeed with approximately 264 quantum queries.

The database search problem described above is naturally extended so that
F has more than one preimage of 1. A formal description is given below.
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Problem 2.2 (Generalized Quantum Database Search). Suppose that there is a
function F : X → {0, 1} and we are allowed to make quantum queries to F .
Then, find x0 that satisfies F (x0) = 1.

Boyer et al. proposed a quantum algorithm solving this problem [BBHT98].
The advantage of their algorithm is that it can be applied without knowing the
number of x ∈ X that satisfies F (x) = 1 in advance.

Theorem 2.1 ([BBHT98] Theorem 3). Let X be a finite set and F : X →
{0, 1} be a function. Let t =

∣
∣{x ∈ X | F (x) = 1}∣∣. If t ≤ 3

4 |X|, there exists
a quantum algorithm BBHT that finds x ∈ X that satisfies F (x) = 1 with an
expected number of quantum queries to F at most 9/2 ·√|X|/t, without knowing
t in advance. When t = 0, this algorithm will never abort.

The above algorithm BBHT is applicable only to the case t ≤ 3
4 |X|, but we

want an algorithm that is also applicable to the case t > 3
4 |X| . Now we consider

the following algorithm A. A runs BBHT, and simultaneously choose random
elements from X independently and uniformly at random, and make queries to
F . A makes exactly one query when BBHT makes one query, and A stops at
once if it finds x ∈ X such that F (x) = 1. This algorithm A is also applicable
to the case t > 3

4 |X|, and it finds x ∈ X such that F (x) = 1 with an expected
number of quantum queries to F at most

max

{

2 · 9
2

√
|X|
t

, 2 · 4
3

}

= 9

√
|X|
t

.

We also call this algorithm BBHT. Now we have the following corollary.

Corollary 2.1. Let X be a finite set and F : X → {0, 1} be a function. Let
t =
∣
∣{x ∈ X | F (x) = 1}∣∣. There exists a quantum algorithm BBHT that finds

x ∈ X that satisfies F (x) = 1 with an expected number of quantum queries to F
at most 9 ·√|X|/t, without knowing t in advance. When t = 0, this algorithm
will never abort.

3 Systematization of Knowledge on Quantum
Multicollision Algorithms

In the classical setting, l-collision on hash functions can be found with
O(N (l−1)/l) queries for a small constant l.

However, the problem has not received much attention in the quantum set-
ting. This section surveys previous work and integrates the findings of different
researchers to make several new observations on this topic.

3.1 Survey of Previous Work

We review the algorithm BHT [BHT97] because our new algorithm explained in
Sect. 4 is an extension of it. We also survey previous studies, classifying them in
two types: element l-distinctness problem (D-Arb), and collision finding problem
on random functions (D-Rnd and H-Rnd).
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BHT: Collision Finding Problem on l-to-one functions. For simplicity,
we describe BHT only for the case l = 2. Let X,Y be sets that satisfy |X| =
2 · |Y |, |Y | = N , and H : X → Y be a 2-to-one function.

The basic idea of BHT is as follows. First, we choose a parameter k (k = N1/3

will turn out to be optimal) and a subset X ′ ⊂ X of cardinality k. We then
make a list L = {(x,H(x))}x∈X′ . Second, we use the BBHT algorithm to find
an element x ∈ X such that there exists x0 ∈ X ′ that satisfies (x0,H(x)) ∈ L
and x �= x0, i.e., we try to find a pair (x0,H(x0)) ∈ L that can be extended to
a collision ({x, x0},H(x0)). The precise description of BHT is as follows.

Definition 3.1 (BHT(H, k))

1. Choose an arbitrary subset X ′ ⊂ X of cardinality k.
2. Make a list L =

{(
x,H(x)

)}
x∈X′ by querying x ∈ X ′ to H.

3. Sort L in accordance with H(x).
4. Check whether L contains a 2-collision, i.e., there exist (x,H(x)), (y,H(y)) ∈

L such that x �= y and H(x) = H(y). If so, output the 2-collision
({x, y},H(x)). Otherwise proceed to the next step.

5. Construct the oracle F : X → {0, 1} by defining F (x) = 1 if and only if there
exists x0 ∈ X ′ such that (x,H(x0)) ∈ L and x �= x0.

6. Run BBHT(F ) to find x̃ ∈ X ′ such that F (x̃) = 1.
7. Find x0 ∈ X ′ that satisfies H(x̃) = H(x0) from the list L. Output the 2-

collision ({x̃, x0},H(x0)).

This algorithm makes k quantum queries in Step 2 and O(
√

N/k) quantum
queries in Step 6 (in fact, in constructing the list L, we need no advantage of
quantum calculation, so queries in Step 2 can also be made classically if we are
allowed to access a classical oracle of H). Thus, the total number of quantum
queries is O(k+

√
N/k), which is minimized when k = N1/3. Brassard et al gave

the following theorem [BHT97].

Theorem 3.1 ([BHT97, Theorem 1]). Suppose that X and Y are finite sets
that satisfy |X| = 2 · |Y |, and H : X → Y is a 2-to-one function. Let N = |Y |
and k be an integer such that 1 ≤ k ≤ N . BHT finds a 2-collision of H with
an expected quantum query complexity O(k +

√
N/k) and memory complexity

O(k). In particular, when k = N1/3, BHT finds a 2-collision of H with expected
quantum query complexity O(N1/3) and memory complexity O(N1/3).

Element l-distinctness problem (l-collisions in D-Arb). Consider the ele-
ment l-distinctness problem, in which we are given access to the oracle H : X ′ →
Y to find whether there exist distinct x1, . . . , xl such that H(x1) = · · · = H(xl),
i.e., there exits an l-collision of H. Note that H obviously has an l-collision if
|X ′| ≥ (l − 1)|Y |, and the element l-distinctness problem considers the collision
detecting problem on the database rather than the hash function.

Ambainis [Amb07] proposed a quantum algorithm based on quantum
walks that solves the element l-distinctness problem. His algorithm finds not
only whether there exists an l-collision but also an actual l-collision value
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({x1, . . . , xl}, y) and can be applied even for finding collisions in |X ′| ≥ (l−1)|Y |.
His algorithm requires O

(|X ′|l/(l+1)
)

quantum queries to H. This algorithm was
later improved by Belovs [Bel12], who developed an algorithm that requires
O
(|X ′|1−2l−2/(2l−1)

)
= o(|X ′|3/4) quantum queries.3

Although the algorithms by Ambainis and Belovs can be applied to find an
l-collision for |X ′| ≥ (l − 1)|Y |, the complexity increases as the domain size |X ′|
increases. These algorithms are inefficient to find collisions of hash functions,
since the domain size of cryptographic hash functions is exponentially larger
than the codomain size, and we often regard the problem size as dependent
on the codomain size |Y | not the domain size |X ′|. Hence we need another
dedicated quantum algorithm to efficiently find collisions of hash functions. The
black circles and rectangles in Fig. 2 correspond to the query complexity for näıve
applications of Ambainis’ algorithm and Belovs’ algorithm for hash functions,
respectively.

Collision Finding Problem on Random Functions (l-collisions in
D-Rnd and H-Rnd). Among variants of the collision problem, the collision
finding problem on random functions is the most significant problem in the con-
text of cryptography. We introduce algorithms for l = 2 in the following.

A modification of BHT. Let us consider a modification of BHT, denoted BHT′,
in which we choose a subset X ′ uniformly at random. This small modification
yields two important improvements of BHT:

– Brassard et al [BHT97] mentioned that if |X| ≥ l|Y |,then BHT′(H,N1/3)
finds a collision with quantum query complexity O(N1/3) with constant prob-
ability.

– Yuen [Yue14] showed that if |X| = |Y | and H is random, then BHT′(H,N1/3)
finds a collision with quantum query complexity O(N1/3) with constant prob-
ability.

Zhandry’s algorithm. Zhandry [Zha15] proposed a quantum algorithm finding a
collision with O(N1/3)-quantum queries even if |X| = Ω(N1/2) and H is random.
This improves the restrictions of BHT and BHT′, |X| ≥ 2|Y | [BHT97], or
|X| = |Y | and H is random [Yue14].

His algorithm is summarized as follows:

1. Choose a random subset X ′ ⊂ X of size N1/2.
2. Invoke Ambainis’ algorithm for H|X′ : X ′ → Y and obtain a collision.

The collision exists if H is random because of the birthday bound and the query
complexity is O

(|X ′|2/3) = O
(
(N1/2)2/3

)
= O(N1/3).

3 For l = 3, there exists a further improvement of time complexity by Belovs
et al. [BCJ+13] and Jeffery [Jef14]. However, the quantum query complexity is still

Õ
(|X ′|1−23−2/(23−1)

)
= Õ(|X ′|5/7).
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3.2 New Observations

This section gives our new observations, which are summarized as:

1. In quantum setting, the trivial upper bound for finding an l-collision of a
random function is O(N1/2).

2. We can find a 3-collision of a random function with quantum query complexity
O(N10/21).

Observation 1 is obtained by applying a generalized Grover algorithm, and
Observation 2 is obtained by combining the idea of Zhandry [Zha15] and the
result of Belovs [Bel12].

Trivial Upper-Bound for Finding l-collisions in quantum setting. In
the classical setting, the trivial upper bound for finding an l-collision is O(N)
because of the following algorithm:

1. Choose an element x1 ∈ X uniformly at random.
2. Operate exhaustive search to find xi for i = 2, . . . , l that satisfies H(xi) =

H(x).
3. Output ({x1, . . . , xl},H(x1)) as an l-collision.

In the quantum setting, we can replace the exhaustive search with BBHT. We
call this algorithm Multi-Grover, described as follows:

Definition 3.2 (Multi-Grover(H))

1. Choose an element x1 ∈ X uniformly at random and set L = {x1}.
2. While |L| < l, do:

(a) Invoke BBHT(F ) to find x ∈ X such that H(x) = H(x1), where we
implement F : X → {0, 1} as F (x) = 1 if and only if H(x) = H(x1).

(b) If x �∈ L, then L ← L ∪ {x}.
3. Output (L,H(x1)) as an l-collision.

Roughly speaking, each step in the loop requires O(N1/2) queries to find xi.
Thus, the total query complexity is O(N1/2) for a small constant l. Therefore,
to achieve a meaningful improvement, we need to find an l-collision with fewer
than O(N1/2) quantum queries.

We note that the lower bound of 2-collisions in [Zha15] also applies to multi-
collisions. Hence, complexity of any multicollision-finding algorithm is between
O(Nn/3) by 2-collisions and O(Nn/2) by the trivial upper bound. This corre-
sponds to between birthday bound and preimage bound in the classical setting.

Extension of Element l-distinctness to l-collision. We observe that algo-
rithms for l-distinctness problem can be used to find l-collisions of a random
function H : X → Y by extending Zhandry’s idea. Let X,Y be finite sets with
|Y | = N and |X| ≥ (l!)1/lN (l−1)/l. Let H : X → Y be a random function.
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1. Choose a random subset X ′ ⊂ X of size (l!)1/lN (l−1)/l

2. Invoke Belovs’ algorithm for H|X′ : X ′ → Y and obtain an l-collision

According to Suzuki et al. [STKT08], H|X′ has an l-collision with probabil-
ity approximately 1/2. Thus, we observe that Belovs’ algorithm can find an l-
collision of H|X′ with quantum query complexity O

(
(N1−2l−2/(2l−1))(l−1)/l

)
.4

This matches the tight bound Θ(N1/3) for l = 2 [Zha15] and gives a new upper
bound O(N10/21) for l = 3, which is crucially lower than the trivial bound
O(N1/2) (see Sect. 3.2). The white rectangles for l = 2, 3 in Fig. 1 correspond to
this algorithm.

Note that for the case of H-Rnd, if l ≥ 4, (N1−2l−2/(2l−1))(l−1)/l becomes
greater than or equal to N1/2, which matches the trivial bound for finding l-
collisions. Therefore, we have to make another quantum algorithm if we want to
find l-collisions for l ≥ 4 with fewer than N1/2 quantum queries.

Our algorithm given in the next section finds an l-collision with the same
query complexity as existing work for l = 2, and less query complexity than
observations above for l ≥ 3.

4 New Quantum Algorithm for Finding Multicollisions

Now we describe our algorithm for finding multicollisions. We begin with intu-
itive arguments about how to come up with an algorithm for finding multicol-
lisions by extending the BHT algorithm and then give a formal description of
our algorithm.

4.1 Intuitive Discussion from 2-Collisions to l-Collisions

First, we intuitively assume that BHT(H, k) can find a collision for a function
H : X → Y if |X| = 2N without any modification, because the expected number
of preimages |H−1(y)| for each y ∈ Y is 2 when H is chosen uniformly at
random from Map(X,Y ). (See Sect. 3.1 and the original paper [BHT97] for this
justification.) Recall that the principle of BHT(H, k) is to make a list L of 1-
collisions the size of which is k and to extend 1-collisions in L to 2-collisions
with the BBHT algorithm. Constructing the list L requires k quantum queries,
and BBHT makes O(

√
N/k) quantum queries, so the total number of quantum

queries is O(k +
√

N/k). The optimal k that minimizes k +
√

N/k satisfies
k =

√
N/k, which is k = N1/3 and then O(k +

√
N/k) = O(N1/3).

Next we consider to find a 3-collision of a function H : X → Y under the
condition |X| = 3N . We take a similar strategy to that of BHT, i.e., we make
4 The approach is not improved by picking a smaller random subset. For example,

consider finding 3-collision of random function H. If we pick a smaller random
subset X ′ of size Nb with b < 2/3,, then the probability that X ′ contains a 3-
collision is roughly N3b/N2. Thus, we need to iterate Belovs’ algorithm N2/N3b

times, where each iteration makes N5b/7 queries. Therefore, the total number of
queries is N (14−16b)/7 > N10/21 for b < 2/3.



192 A. Hosoyamada et al.

a list L of 2-collisions the size of which is k, and extend 2-collisions in L to
3-collisions with the BBHT algorithm. We can find a 2-collision of H with
BHT(H,N1/3), which makes O(N1/3) quantum queries. Constructing the list
L requires k · N1/3 queries, and BBHT makes O(

√
N/k) quantum queries, so

the total number of quantum queries is O(k ·N1/3 +
√

N/k). The optimal k that
minimizes k · N1/3 +

√
N/k satisfies k · N1/3 =

√
N/k. This is k = N1/9 and

then O(k · N1/3 +
√

N/k) = O(N4/9). Hence, our new algorithm improves the
bound O

(
N10/21

)
for l = 3, which we observed in the previous section.

Similarly to above, we can find l-collisions of a function H : X → Y under
the condition |X| = lN , i.e., we construct a list L of (l − 1)-collisions of the size
k, and extend (l − 1)-collisions in L to l-collisions using BBHT. By inductive
argument, we can find that constructing the list L requires k · N (3l−2−1)/(2·3l−2)

queries, and BBHT makes O(
√

N/k) quantum queries, so the total number
of quantum queries is O(k · N (3l−2−1)/(2·3l−2) +

√
N/k). The optimal k that

minimizes k · N (3l−2−1)/(2·3l−2) +
√

N/k satisfies k · N (3l−2−1)/(2·3l−2) =
√

N/k,
which is k = N1/3l−1

, and then

O
(
k · N (3l−2−1)/(2·3l−2) +

√
N/k

)
= O

(
N (3l−1−1)/(2·3l−1)

)

holds. Again, our new algorithm improves the trivial bound N1/2 for l-collisions,
l ≥ 4.

If there exists an algorithm finding l-collisions in the case |X| = lN , then
we can use it to find l-collisions in the case |X| > lN with the same number of
queries and the same memory size, by choosing a subset X ′ ⊂ X of size lN and
by operating the algorithm on H|X′ .

4.2 Formal Description of Our Algorithm

Formalizing the above arguments, we obtain a quantum algorithm that finds
l-collisions of any function H : X → Y with |Y | = N and |X| ≥ lN . As
briefly introduced in Sect. 4.1, our main idea is to construct a recursive algorithm
MColl. The algorithm below focuses on the procedure. Complexity analysis of
MColl will be given in the next section. Although our algorithm is an extension
of BHT, the definition of the function F is slightly modified to simplify the
complexity analysis.

MColl(H, l)

1. If |X| > lN , then choose a subset X ′ ⊂ X such that |X ′| = lN uniformly at
random and operate MColl(H|X′ , l). Otherwise proceed to the next step.

2. If l = 1, then choose x from X uniformly at random and output ({x},H(x)).
Otherwise proceed to the next step.

3. Operate MColl(H, l − 1) repeatedly for N1/3l−1
times and obtain (l − 1)-

collisions c(i) = ({x
(i)
1 , x

(i)
2 , . . . , x

(i)
l−1}, y(i)). Store these (l − 1)-collisions in a

list L.



Quantum Multicollision-Finding Algorithm 193

Fig. 3. Quantum circuit of F . H is the function we want to find collisions, and BL : Y →
{0, 1} is the binary function that is defined by BL(y) = 1 if and only if there exists c(i) =(
{x

(i)
1 , . . . , x

(i)
l−1}, y(i)

)
∈ L such that y = y(i). Here BL corresponds to a quantum

circuit |x〉 |y〉 �→ |x〉 |y ⊕ BL(x)〉.

4. Sort L in accordance with y(i).
5. Check whether L contains duplication, i.e., there exist indices i �= j such that

c(i) = c(j). If it does, then stop and restart from Step 3. Otherwise proceed
to the next step.

6. Check whether L contains an l-collision. If there is an l-collision, then output
it. Otherwise proceed to the next step.

7. Define F : X → {0, 1} by F (x) = 1 if and only if H(x) = y(i) holds for
1 ≤ ∃i ≤ N1/3l−1

(F can be implemented in a quantum circuit by calling H
twice as shown in Fig. 3).

8. Operate BBHT(F ). Let x̃ ∈ X be the obtained answer, which satisfies
F (x̃) = 1.

9. Find i0 that satisfies H(x̃) = y(i0) from the list L. If x̃ ∈
{x

(i0)
1 , x

(i0)
2 , . . . , x

(i0)
l−1}, then stop and restart from Step 3. Otherwise output

an l-collision ({x
(i0)
1 , x

(i0)
2 , . . . , x

(i0)
l−1, x̃}, y(i0)).

5 Complexity Analysis of MColl

In this section we analyze the complexity of MColl. First, we discuss complexity
intuitively in Sect. 5.1 and then give formal arguments and proofs in Sect. 5.2.

5.1 Intuitive Analysis

We intuitively discuss the complexity of our algorithm. In the following, we show
that MColl(H, l) finds that an l-collision with memory complexity is approxi-
mately N1/3 and the expected quantum query complexity is at most approxi-
mately l! · N (3l−1−1)/(2·3l−1).

First, we consider memory complexity. The claim obviously holds for l = 1.
In the case l ≥ 2, the algorithm uses memory only for storing the list L. The
memory size needed for L is N1/3l−1

, which is less than or equal to N1/3. Thus,
the memory complexity is at most N1/3.
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Next, we consider quantum query complexity. We upper bound the expected
number of quantum queries by approximately

Ql := (N/Pl) · l! · N (3l−1−1)/(2·3l−1),

where Pl is the number of the points in Y that have at least l preimages for a
fixed H. Regarding (N/Pl) as constant, we obtain the desired bound.

The claim obviously holds for l = 1. Assume that the claim holds for (l − 1).
Since Step 3 makes N1/3l−1

-times calls of MColl(H, l−1), the number of queries
made in operating Step 3 once is approximately

N1/3l−1 · Ql−1 = N1/3l−1 ·
(
(N/Pl−1) · (l − 1)! · N (3l−2−1)/(2·3l−2)

)

= (N/Pl−1) · (l − 1)! · N (3l−1−1)/(2·3l−1). (1)

Note that BBHT(F ) finds an element x that satisfies F (x) = 1 with approx-
imately

√
1/p queries to F , where p = Prx←X [F (x) = 1]. Since L con-

tains N1/3l−1
elements, here we approximately argue that p ≈ N1/3l−1

/|X| ≈
N (1−3l−1)/3l−1

and thus the number of queries to F is approximately
√

1/p,
which is further approximated to N (3l−1−1)/(2·3l−1). From the construction of F ,
the number of queries to H in Step 8 is twice the number of queries to F (see
Fig. 3), so the number of queries to H is

2 · N (3l−1−1)/(2·3l−1). (2)

Summing up the numbers of queries in Steps 3 and 8 in Eqs. (1) and (2), we
obtain the number of queries to H in the case that MColl(H, l) does not stop
in Steps 5 or 9 as

((N/Pl−1) · (l − 1)! + 2) · N (3l−1−1)/(2·3l−1) ≈ (N/Pl−1) · (l − 1)! · N (3l−1−1)/(2·3l−1).
(3)

Now let q denote the probability that MColl(H, l) outputs without being
terminated at Steps 5 or 9. Then the overall quantum query complexity is approx-
imately (1/q) ·

(
(N/Pl−1) · (l − 1)! · N (3l−1−1)/2·3l−1

)
. We assume that q equals

the probability that an l-collision is outputted in Step 9, since the probability
that Step 5 finds a duplication in L is very small when l is a small constant, and
ignoring Step 6 only decreases q and increases the overall complexity. Intuitively,
we can assume that q equals the product of two probabilities in Step 9:

1. The probability that the (l − 1)-collision {x
(i0)
1 , x

(i0)
2 , . . . , x

(i0)
l−1} can be

extended to an l-collision.
2. The probability that x̃ �∈ {x

(i0)
1 , x

(i0)
2 , . . . , x

(i0)
l−1} holds, under the condition in

which {x
(i0)
1 , x

(i0)
2 , . . . , x

(i0)
l−1} can be extended to an l-collision.
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The probability of 1. is approximately Pl/Pl−1, and the probability of 2. is lower
bounded by 1/l. Thus, we have q ≥ (Pl/Pl−1) · (1/l). Consequently, we have
overall approximated complexity

(1/q) ·
(
(N/Pl−1) · (l − 1)! · N (3l−1−1)/(2·3l−1)

)
,

which is at most

Ql = (N/Pl) · l! · N (3l−1−1)/2·3l−1
.

This validates the claim.

5.2 Precise Analysis

The discussion in the previous section is very informal with many approxima-
tions. This section gives the precise bound and proof. The main theorem in this
section is as follows:

Theorem 5.1. Let X and Y be finite sets with |Y | = N and |X| ≥ l · |Y |. Let
H : X → Y be an arbitrary function. For l ≥ 1, MColl(H, l) finds an l-collision
with expected quantum query complexity at most

(
1 + 18

√
2e
)

·
(

2lN1/3

2lN1/3 − 1

)l−1

· l · l! · N (3l−1−1)/(2·3l−1)

and memory complexity N1/3.

Remark 5.1. Expected time complexity of MColl(H, l) is upper bounded by the
product of expected quantum query complexity and O(TH + lg N), where TH

is the time needed to make a quantum query to H once, using O(N1/3) qubits.
See Sect. 6 for details.

Proof. It suffices to show that the claim holds in the case |X| = l · |Y |. The proof
for memory complexity is the same as that we described in the previous section.
In the following, we consider quantum query complexity.

For l ≥ 1, define Al as

Al := the total number of quantum queries to H that MColl(H, l) makes,

and for l ≥ 2, define Bl, Cl as

Bl := the number of quantum queries to H made in Step 3,

Cl := the number of quantum queries to H made in Step 8.

For l ≥ 2, we consider a modification of MColl(H, l), denoted by
MColl′(H, l), which never restarts from Step 3 once it stops in Steps 5 or 9. Let
Dl be the total number of quantum queries to H that MColl′(H, l) makes. Let
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success denote the event such that MColl′(H, l) outputs an l-collision. Then we
have

E[Dl] = E[Bl] + E[Cl]

and

E[Al] = E[Dl]
Pr[success]

= E[Bl] + E[Cl]
Pr[success]

(4)

for l ≥ 2. In addition, since E[Bl] = N1/3l−1 · E[Al−1] for l ≥ 2, we have

E[Al] =
N1/3l−1 · E[Al−1] + E[Cl]

Pr[success]
. (5)

We will show two lemmas on bounds for E[Cl] and Pr[success] in Sects. 5.3
and 5.4, respectively:

Lemma 5.1. For l ≥ 2, E[Cl] ≤ 18 ·
√

l
l−1 · N

3l−1−1
2·3l−1 holds.

Lemma 5.2. For l ≥ 2, Pr[success] ≥ l−1
l · 1

l ·
(
1 − 1

2l · N
2

3l−1 −1
)
holds.

Putting them in the inequality (5), we obtain

E[Al] ≤
(

N1/3l−1

E[Al−1] + 18

√
l

l − 1
N

3l−1−1
2·3l−1

)

· l2fl

l − 1
, (6)

where
fl =

1

1 − 1
2l · N

2
3l−1 −1

.

Let {gl}1≤l be a sequence of numbers defined by g1 = 1 and

gl =

(

gl−1 +
18
√

l/(l − 1)
(l − 1) · (l − 1)!

)

fl

for l ≥ 2.
We show the following claims:

Claim. For l ≥ 1, E[Al] ≤ gl · l · l! · N
3l−1−1
2·3l−1 holds.

Claim. For l ≥ 1, gl ≤ (1 + 18
√

2e
) ·
(

2lN1/3

2lN1/3−1

)l−1

holds.

Combining them, we obtain for l ≥ 1,

E[Al] ≤
(
1 + 18

√
2e
)

·
(

2lN1/3

2lN1/3 − 1

)l−1

· l · l! · N
3l−1−1
2·3l−1

as we wanted. ��
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Proof (Proof of Claim). We give a proof of this claim by induction on l. Since
E[A1] = 1, the claim holds for l = 1. Now we assume that the claim holds for
(l − 1). By the induction, we have

E[Al] ≤
(

N1/3l−1

E[Al−1] + 18

√
l

l − 1
N

3l−1−1
2·3l−1

)
· l2fl
l − 1

≤
(

N1/3l−1
(

gl−1 · (l − 1) · (l − 1)! · N
3l−2−1
2·3l−2

)
+ 18

√
l

l − 1
N

3l−1−1
2·3l−1

)
· l2fl
l − 1

=

(
gl−1 +

18
√

l/(l − 1)

(l − 1) · (l − 1)!

)
· fl · l · l! · N

3l−1−1
2·3l−1

= gl · l · l! · N
3l−1−1
2·3l−1

and the claim also holds for any l ≥ 1. ��

Proof (Proof of Claim). Finally, we upper bound gl. Letting hl = 18
√

l/(l−1)

(l−1)·(l−1)! , we
have gl = (gl−1 + hl)fl. Since fl ≥ 1 holds for l ≥ 2, we have

gl = (gl−1 + hl) fl = ((gl−2 + hl−1) fl−1 + hl) fl ≤ (gl−2 + hl−1 + hl) fl−1fl.

Continuing calculations, we obtain gl ≤
(
1 +
∑l

i=2 hi

)
·∏l

i=2 fi. Thus, we have

gl ≤
(

1 +
l∑

i=2

hi

)

·
l∏

i=2

fi

=

(

1 +
l∑

i=2

18
√

i/(i − 1)
(i − 1) · (i − 1)!

)
l∏

i=2

1

1 − 1
2l · N

2
3i−1 −1

≤
(

1 +
l∑

i=2

18
√

2
(i − 1)!

)
l∏

i=2

1
1 − 1

2l · N−1/3

≤
(

1 + 18
√

2

(
l∑

i=2

1
(i − 1)!

))
l∏

i=2

2lN1/3

2lN1/3 − 1

≤
(

1+18
√

2

( ∞∑

i=0

1
i!

))(
2lN1/3

2lN1/3 − 1

)l−1

=
(
1 + 18

√
2e
)( 2lN1/3

2lN1/3 − 1

)l−1

,

as we wanted. ��

5.3 Proof of Lemma 5.1

Note that
E[Cl] ≤ E[Cl | Step 8 is operated]
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holds, and we upper bound the conditional expectation E[Cl | Step 8 is operated].
When the algorithm operates in Step 8, it has already passed Steps 5 and 6. Thus,
L has neither duplication nor l-collision. In particular, we can assume that L is a
list of completely distinct (l − 1) collisions of H, i.e., y(i1) = y(i2) holds if and only
if i1 = i2. Thus, we have

∣
∣F−1(1)

∣
∣ =

∣
∣
∣
∣
∣
∣

N1/3l−1

⋃

i=1

H−1(y(i))

∣
∣
∣
∣
∣
∣
=

N1/3l−1

∑

i=1

∣
∣H−1(y(i))

∣
∣ ≥ (l − 1) · N1/3l−1

and ∣
∣F−1(1)

∣
∣

|X| ≥ (l − 1) · N1/3l−1

l · N
.

Since MColl makes two quantum queries to H while making one query to F
(See Fig. 3), we have

E[Cl | Step 8 is operated] ≤ 2 · 9 ·
√

l · N

(l − 1) · N1/3l−1 = 18 ·
√

l

l − 1
· N

3l−1−1
2·3l−1

by Corollary 2.1 as we wanted.

5.4 Proof of Lemma 5.2

Next, we lower bound Pr[success]. Note that

Pr[success] = Pr
[
c(i) �= c(j) for i �= j

]
· Pr
[
success

∣
∣
∣c(i) �= c(j) for i �= j

]

holds.
We need two lemmas. For the proof of Lemma 5.3, we refer readers to Shoup’s

textbook [Sho08]. The proof of Lemma 5.4 is given in Appendix A.

Lemma 5.3 ([Sho08, Theorem 8.26]). Let [d] be the set of integers
{1, 2, . . . , d}, and [d]×n be the n-array Cartesian power set of [d] for positive
integers d, n. If s = (s1, s2, . . . , sn) is chosen uniformly at random from [d]×n,
then the probability that si �= sj holds for all i �= j is lower bounded by 1−n2/(2d).

Lemma 5.4. Let X and Y be finite sets with |Y | = N and |X| = lN . Let H be
a function from X to Y . Then the number of l-collisions and (l − 1)-collisions
of H are greater than or equal to N and lN , respectively.

First, we lower bound Pr
[
c(i) �= c(j) for i �= j

]
. From the construction of MColl,

we can assume that MColl(H, l − 1) outputs an (l − 1)-collision of H uniformly
at random. Thus, we can assume that elements c(i) ∈ L are chosen independently
and uniformly at random from the set of (l − 1)-collisions of H. By Lemma 5.4,
the number of (l − 1)-collisions of H is at least l · N . Moreover, if n is fixed,
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1−n2/2d is a monotonically increasing function on d. Therefore, by Lemma 5.3,
we have

Pr
[
c(i) �= c(j) for i �= j

]
≥ 1 − (N1/3l−1

)2

2lN
= 1 − 1

2l
· N

2
3l−1 −1. (7)

Second, we lower bound Pr
[
success

∣
∣c(i) �= c(j) for i �= j

]
. Note that the event

success occurs if and only if

y(i) = y(j) for some i �= j, (8)

or

c(i0) can be extended to an l-collision, and x̃ �∈
{

x
(i0)
1 , x

(i0)
2 , . . . , x

(i0)
l−1

}
. (9)

occurs. Recall that x̃ is the output of Step 8 and i0 is an index satisfying H(x̃) =
y(i0). The event (8) corresponds to the event in which MColl finds an l-collision
in Step 6, and the event (9) corresponds to the event in which MColl finds an
l-collision in Step 9.

Now, let L be all the possible lists L that satisfy c(i) �= c(j) for i �= j. Let
L1 ⊂ L denote the set of lists in which there exists l-collisions, i.e., there are
two indices i �= j such that y(i) = y(j), and L2 ⊂ L denotes the set of lists
in which there is no l-collision, i.e., y(i) �= y(j) holds for i �= j. Then we have
L = L1

∐L2. MColl finds an l-collision in Step 6 if and only if L ∈ L1. In the
following, we ignore Step 4 and consider that L is not sorted for simplicity.

For a fixed L ∈ L, let AL and BL denote the sets of elements in L that can
and cannot be extended to l-collisions, respectively. We have that L = AL

∐
BL,∣

∣AL
∣
∣ equals the number of y(i) such that

∣
∣H−1(y(i))

∣
∣ ≥ l, and

∣
∣BL
∣
∣ equals the

number of y(i) such that
∣
∣H−1(y(i))

∣
∣ = l − 1. Define 〈AL〉, 〈BL〉 by

〈AL〉 :=

∣
∣
∣
∣
∣
∣

⋃

c(i)=(...,y(i))∈AL

H−1(y(i))

∣
∣
∣
∣
∣
∣

and 〈BL〉 :=

∣
∣
∣
∣
∣
∣

⋃

c(i)=(...,y(i))∈BL

H−1(y(i))

∣
∣
∣
∣
∣
∣
,

which are the numbers of preimages of y(i)’s in AL and BL, respectively. Note
that

Pr[success | c(i) �= c(j) for i �= j] =
∑

L∈L
Pr[success | L] Pr[L].

holds.
If L ∈ L2, then success occurs if and only if the event (9) occurs, that is, x̃

can be used to construct an l-collision with an (l − 1)-collision in L. Note that
x̃ is chosen uniformly at random from the set

⎛

⎝
⋃

c(i)=(...,y(i))∈AL

H−1(y(i))

⎞

⎠
⋃
⎛

⎝
⋃

c(i)=(...,y(i))∈BL

H−1(y(i))

⎞

⎠ ,
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and the event (9) occurs if and only if

x̃ ∈
⋃

c(i)=(...,y(i))∈AL

H−1(y(i)) ∧ x̃ �= x
(i)
j for all i and j

holds. Now we have

Pr

⎡

⎣x̃ ∈
⋃

c(i)∈AL

H−1(y(i))

∣
∣
∣
∣
∣
∣
L

⎤

⎦ =

〈
AL
〉

〈
AL
〉

+
〈
BL
〉 ,

and

Pr

⎡

⎣x̃ �= x
(i)
j for all i and j

∣
∣
∣
∣
∣
∣
L, x̃ ∈

⋃

c(i)∈AL

H−1(y(i))

⎤

⎦ ≥ 1
l
,

which suggests that

Pr[success | L] = Pr

⎡

⎣x̃ ∈
⋃

c(i)∈AL

H−1(y(i)) ∧ x̃ �= x
(i)
j for all i and j

∣
∣
∣
∣
∣
∣
L

⎤

⎦

= Pr

⎡

⎣x̃ ∈
⋃

c(i)∈AL

H−1(y(i))

∣
∣
∣
∣
∣
∣
L

⎤

⎦

· Pr

⎡

⎣x̃ �= x
(i)
j for all i and j

∣
∣
∣
∣
∣
∣
L, x̃ ∈

⋃

c(i)∈AL

H−1(y(i))

⎤

⎦

≥
〈
AL
〉

〈
AL
〉

+
〈
BL
〉 · 1

l
.

In addition, we have
〈
AL
〉 ≥ l · |AL| since y(i) �= y(j) holds for i �= j if L ∈ L2.

Thus, we have
〈
AL
〉 ≥ l · ∣∣AL

∣
∣ ≥ (l − 1) · ∣∣AL

∣
∣ and

〈
BL
〉

= (l − 1) · ∣∣BL
∣
∣. This

yields that
〈
AL
〉

〈
AL
〉

+
〈
BL
〉 =

1

1 +
〈

BL
〉

〈
AL
〉

≥ 1

1 +
(l−1)

∣
∣BL

∣
∣

(l−1)
∣
∣AL

∣
∣

=

∣
∣AL
∣
∣

∣
∣AL
∣
∣+
∣
∣BL
∣
∣ .

Thus, we have

Pr[success | L] ≥
∣
∣AL
∣
∣

∣
∣AL
∣
∣+
∣
∣BL
∣
∣ · 1

l
(10)

for L ∈ L2. Moreover, since Pr[success | L] = 1 for L ∈ L1, the inequality (10)
also holds for L ∈ L1. Therefore, we have

Pr
[
success

∣
∣
∣ c(i) �= c(j) for i �= j

]
=
∑

L∈L
Pr[success | L] Pr[L]

≥ 1
l

∑

L∈L

∣
∣AL
∣
∣

∣
∣AL
∣
∣+
∣
∣BL
∣
∣ · Pr[L].
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Now we use the following lemmas the proofs of which are given in Appendices B
and C, respectively.

Lemma 5.5. Let X,Y be finite sets such that |X| = l · |Y |, and H be a function
from X to Y . Let A,B denote the sets of (l − 1)-collisions of H that can and
cannot be extended to l-collisions, respectively. Then we have

|A|
|A| + |B| ≥ l − 1

l
.

Lemma 5.6. Let X,Y be finite sets such that |X| = l · |Y |, and H be a function
from X to Y . Let A,B denote the sets of (l − 1)-collisions of H that can and
cannot be extended to l-collisions, respectively. Then we have

∑

L∈L

∣
∣AL
∣
∣

∣
∣AL
∣
∣+
∣
∣BL
∣
∣ · Pr[L] =

|A|
|A| + |B| .

By the above lemmas, we have

Pr
[
success

∣
∣
∣c(i) �= c(j) for i �= j

]
≥ l − 1

l
· 1

l
.

Consequently, Pr[success] is lower bounded as Pr[success] ≥ l−1
l · 1

l ·(
1 − 1

2l · N
2

3l−1 −1
)
, that completes the proof.

6 Discussions on Time Complexity

The previous section only focused on quantum query complexity. This section
discusses time complexity of MColl. We measure the unit of time complexity
by the number of executions of quantum gates, which operate primary binary
calculations on lg N -bit strings such as NOT,AND,OR, and XOR. For a function
F : X → {0, 1}, BBHT finds an x0 such that F (x0) = 1 in time O(

√|X|/t ·T ′),
where t = |{x ∈ X | F (x) = 1}| and T ′ is the time for evaluating F once.

To begin with, we show the following theorem.

Theorem 6.1. Let X,Y be finite sets with |Y | = N and |X| ≥ l · |Y |. For any
function H : X → Y , MColl(H, l) runs in expected time

C ·
(

2lN1/3

2lN1/3 − 1

)l−1

· l · l! · N (3l−1−1)/2·3l−1 · (TH + lg N)

for some constant C, using O(N1/3) qubits, where TH denotes the time needed
to make a quantum query to H.

Proof. Let A′
l be the running time of MColl(H, l) for l ≥ 1. For l ≥ 2, let

B′
l, G

′
l, C

′
l ,K

′
l be the running time of Steps 3, 4, 8, and 9, respectively. Similarly

to the inequality 4, we have

E[A′
l] = E[B′

l] + E[G′
l] + E[C ′

l ] + E[K ′
l ]

Pr[success]
(11)
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for l ≥ 2. We have

E[B′
l] = N1/3l−1 · E[A′

l−1],

E[G′
l] = O

(
N1/3l−1

lg N1/3l−1
)

= O
(
N1/3l−1

lg N
)

,

E[K ′
l ] = O

(
lg N1/3l−1

)
= O (lg N) ,

since Steps 4 and 9 can be done classically. In addition, we have that

E[C ′
l ] = E[Cl] ·

(
TH + O

(
lg N1/3l−1

))
= O

(
E[Cl] ·

(
TH + lg N1/3l−1

))

= O

(√
l

l − 1
· N

3l−1−1
2·3l−1 · (TH + lg N)

)

,

which follows from the construction of the quantum circuit of F (See Fig. 3) and
the claim below. See Appendix D for details of this claim.

Claim. The quantum circuit BL can be constructed so that it runs in time
O(lg N1/3l−1

) using O(N1/3l−1
) qubits.

Eventually, we have

E[A
′
l] = O

⎛
⎜⎜⎝

N1/3l−1 · E[A′
l−1] +N1/3l−1

lgN +
√

l
l−1

· N
3l−1−1
2·3l−1 · (TH + lgN) + lgN

Pr[success]

⎞
⎟⎟⎠

≤ O

⎛
⎜⎜⎝

N1/3l−1 · E[A′
l−1] +

√
l

l−1
· N

3l−1−1
2·3l−1

Pr[success]
· (TH + lgN)

⎞
⎟⎟⎠

= O

((
N1/3l−1

E[A
′
l−1] +

√
l

l − 1
N

3l−1−1
2·3l−1

)
· l2fl

l − 1
· (TH + lgN)

)
.

The above equation yields the claim of Theorem 6.1 due to the same argument
as that in the proof of Theorem 5.1.

Remark 6.1. From the viewpoint of time complexity, there are a few criticisms of
existing quantum 2-collision finding algorithms [GR03,Ber09]. They are based
on the observation that memory size is essentially the same as machine size
for quantum machines, since we have to embed data that we use in a quantum
algorithm into the quantum circuit of the algorithm.

Note that these criticisms only focus on collisions of random functions and
thus are invalid when we consider finding collisions of any function. Further-
more, the target of these criticisms is time complexity, and our main result
(Theorem 5.1), which focuses on quantum query complexity, is out of the scope
of these criticisms.
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7 Conclusion

Finding multicollisions is one of the most important problems in cryptology, both
for attack and provable security. In the post-quantum era, this problem needs
to be studied in a quantum setting to realize quantum-secure cryptographic
schemes. This paper systematized knowledge on the multicollision-finding prob-
lem in a quantum setting and proposed a new quantum multicollision-finding
algorithm. Our algorithm finds an l-collision of any function H : X → Y , where
|X| ≥ l · |Y |, with expected quantum query complexity O(N (3l−1−1)/2·3l−1

) =
o(N1/2) and memory complexity O(N1/3) for a small constant l. If our algo-
rithm is applied to the random function, the complexity matches the known
tight bound for l = 2, improves the simple combination of Zhandry and Belovs’
results for l = 3, and for the first time improves the simple bound of O(N1/2)
for l ≥ 4. Getting rid of the condition |X| ≥ l · |Y | and proving a lower bound
to find an l-collision are left for future work.

The quantum stuff in this paper is encapsulated in Grover’s algorithm, and
the results can equally well be understood as query complexity given a “Grover
black-box” without assuming any knowledge of quantum theory on the reader.
We hope this paper encourages researchers in classical setting to actively discuss
quantum algorithms.

A Proof of Lemma 5.4

Define sequence of functions {Hi : X → Y }i≥0 as follows. First, define H0 by
H0 = H. For each i ≥ 0, if

∣
∣H−1

i (y)
∣
∣ = l holds for all y ∈ Y (i.e. Hi is a

regular function), then define Hi+1 by Hi+1 = Hi. Otherwise, choose x1 ∈ X
that satisfies

∣
∣H−1

i (Hi(x1))
∣
∣ > l and y2 ∈ Y that satisfies

∣
∣H−1

i (y2)
∣
∣ < l and

define Hi+1 by

Hi+1(x) =

{
Hi(x) (x �= x1),
y2 (x = x1).

Note that there exists an index i0 such that Hi0 = Hi0+j holds for all j ≥ 0
since |X|, |Y | < ∞, and |X| = l · |Y |.

Let ai be the number of l-collisions of Hi and ki be
∣
∣H−1

i (Hi(x1))
∣
∣. When i

is incremented, then the number of the preimages of y2 is incremented, and the
number of l-collisions is increased at most 1 accordingly. On the other hand, the
number of the preimages of Hi(x1) is decremented, and the number of l-collisions
is decreased by

(
ki

l

)− (ki−1
l

)
accordingly. Therefore, we have

ai+1 ≤ ai −
((

ki

l

)
−
(

ki − 1
l

))
+ 1.

Since ki =
∣
∣H−1

i (Hi(x1))
∣
∣ > l,

(
ki

l

)
−
(

ki − 1
l

)
=
(

ki − 1
l

)
+
(

ki − 1
l − 1

)
−
(

ki − 1
l − 1

)
=
(

ki − 1
l − 1

)
≥ 1
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holds, and thus we have ai ≥ ai+1 for i ≥ 0. By constructing the sequence
{Hi}i≥0, there exists an integer i0 such that Hi0 = Hi0+j holds for all j ≥ 0.
Since Hi0 satisfies

∣
∣H−1

i0
(y)
∣
∣ = l for all y ∈ Y , we have ai0 = N . Therefore,

a0 ≥ a1 ≥ · · · ≥ ai0 = N holds, which completes the proof for l-collisions.
Next, let bi denote the number of (l − 1)-collisions of Hi. Similarly, for the

proof for l-collisions, we have

bi+1 ≤ bi −
((

ki

l − 1

)
−
(

ki − 1
l − 1

))
+ (l − 1).

Since ki =
∣
∣H−1

i (Hi(x1))
∣
∣ > l,

( ki

l − 1

)
−
(ki − 1

l − 1

)
=
(ki − 1

l − 1

)
+
(ki − 1

l − 2

)
−
(ki − 1

l − 2

)
=
(ki − 1

l − 2

)
≥
(l − 1

l − 2

)
= l − 1

holds, and thus we have bi ≥ bi+1 for i ≥ 0. Since Hi0 satisfies |H−1
i0

(y)| = l for
all y ∈ Y , we have bi0 = l ·N . Therefore, b0 ≥ b1 ≥ · · · ≥ bi0 = l ·N holds, which
completes the proof.

B Proof of Lemma 5.5

First, we have |B| ≤ N − 1, since it contradicts the condition |X| = l · |Y | if we
assume |B| ≥ N . Since |A| + |B| ≥ l · N holds by Lemma 5.4, we have

|A|
|A| + |B| = 1 − |B|

|A| + |B| ≥ 1 − N − 1
l · N

=
l − 1 + 1

N

l
≥ l − 1

l
,

which completes the proof.

C Proof of Lemma 5.6

Let S be the direct union set of A and B, that is, S := A
∐

B. Consider a trial
T(a, b; k) in which we choose k elements independently and uniformly at random
from S, and make an list of chosen elements (here we consider k-permutations
of |S|, rather than a combination), where a = |A| and b = |B|.

Since L is an element of L, which is the set of all the possible lists L that
satisfy c(i) �= c(j) for i �= j, L can be regarded as the list made by operating this
trial with k = N1/3l−1

. The sets AL and BL correspond to the sets of elements
in the list L chosen from A and B, respectively.

We consider trial T(a, b; k) for non-negative integers a, b, k such that a ≥ 1
or b ≥ 1, and 1 ≤ k ≤ a + b. In considering the trial T(a, b; k), we focus on
cardinality of sets a = |A| and b = |B|, rather than sets A,B themselves. We
show the following claim:
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Claim. For non-negative integers a, b, k such that a ≥ 1 or b ≥ 1, and 1 ≤ k ≤
a + b,

E
a,b,k

[|AL|] =
ka

a + b

holds, where Ea,b,k denotes the expected value corresponding to the trial
T(a, b; k).

If the above claim holds, then we can finish the proof of our lemma, because
the statement of our lemma corresponds to the trial T(|A|, |B|;N1/3l−1

) and we
have

∑
L∈L

∣∣AL
∣∣∣∣AL

∣∣+ ∣∣BL
∣∣ · Pr[L] = E

|A|,|B|,N1/3l−1

[ ∣∣AL
∣∣∣∣AL

∣∣+ ∣∣BL
∣∣
]

= E
|A|,|B|,N1/3l−1

[ ∣∣AL
∣∣

N1/3l−1

]

=
1

N1/3l−1 · N1/3l−1 |A|
|A| + |B| =

|A|
|A| + |B| .

Now, we prove the claim by induction on |S| = |A|+ |B| = a+ b. If a+ b = 1,
then it is obvious. Assume that the claim holds for a + b − 1. For each element
s ∈ S, let Ls ⊂ L denote the set of lists the first element of which is s. Then,
since L =

∐
s∈S Ls, we have

E
k,a,b

[|AL|] =
∑

s∈S

E
k,a,b

[|AL|∣∣L ∈ Ls

] · Pr[L ∈ Ls]

=
∑

s∈A

E
k,a,b

[|AL|∣∣L ∈ Ls

] · Pr[L ∈ Ls]

+
∑

s∈B

E
k,a,b

[|AL|∣∣L ∈ Ls

] · Pr[L ∈ Ls].

Note that

E
k,a,b

[|AL| − 1
∣
∣L ∈ Ls

]
= E

k−1,a−1,b

[|AL|] for s ∈ A,

E
k,a,b

[|AL|∣∣L ∈ Ls

]
= E

k−1,a,b−1

[|AL|] for s ∈ B,

holds, and by assumption we have

E
k−1,a−1,b

[|AL|] =
(k − 1)(a − 1)

a + b − 1
and E

k−1,a,b−1

[|AL|] =
(k − 1)a
a + b − 1

.
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Therefore, we have

E
k,a,b

[
|AL|
]

=
∑
s∈A

(
(k − 1)(a − 1)

a + b − 1
+ 1

)
· Pr[L ∈ Ls] +

∑
s∈B

(
(k − 1)a

a + b − 1

)
· Pr[L ∈ Ls]

= a ·
(

(k − 1)(a − 1)

a + b − 1
+ 1

)
· 1

a + b
+ b · (k − 1)a

a + b − 1
· 1

a + b

=
a(k − 1)(a − 1) + a(a + b − 1)

(a + b − 1)(a + b)
+

ab(k − 1)

(a + b − 1)(a + b)

=
a(k − 1) ((a − 1) + b) + a(a + b − 1)

(a + b − 1)(a + b)

=
(a(k − 1) + a) (a + b − 1)

(a + b − 1)(a + b)
=

ka

a + b
,

which completes the proof.

D Constructing Quantum Circuit of BL

This section shows that the quantum circuit BL can be constructed so that it
runs in time O(lg N1/3l−1

), using O(N1/3l−1
) qubits. We regard that primary

operations on lg2 N -bit strings such as NOT,AND,OR, and XOR take unit time.
In the following, we regard that a function f corresponds to a quantum circuit
that calculates |x〉 |y〉 �→ |x〉 |y ⊕ f(x)〉.

The quantum circuit BL is constructed as illustrated in Fig. 4, and con-
sists of three kinds of gates: Expand, J , and ORall (See Fig. 5). Expand : Y →
Y ×N1/3l−1

is the iteration function Expand : y �→ (y, . . . , y), and J : Y ×N1/3l−1 →
{0, 1}×N1/3l−1

is defined by

J :
(
y1, · · · , y

N1/3l−1

) �→ (
J1(y1), . . . , JN1/3l−1 (y

N1/3l−1 )
)
,

where Ji : Y → {0, 1} is the function defined by Ji(y) = 1 if and only if y =

y(i). The binary function ORall : {0, 1}×N1/3l−1 → {0, 1} calculates the OR of all
N1/3l−1

input bits.
The circuit of BL illustrated in Fig. 5 runs as follows. The input string y is

first sent to the gate Expand, which expands y to (y, . . . , y) and the output is
sent to J . Recall that y(i) is in the list of collisions c(i) = ({x1, . . . , xl−1}, y(i))
that is made by MColl. The gate J runs gates Ji in parallel, each of which can
access the data y(i) and checks whether y equals y(i), and sends outputs to ORall.
The output of J is sent to ORall, which calculates b1 ∨ · · · ∨ b

N1/3l−1 , here each
bi corresponds to the output of Ji. Consequently, ORall outputs 1 if and only if
there exists an index i such that y = y(i), which is the value BL(y). The last
two gates, J and Expand, are used to reset ancilla qubits.

Next, we prove that Expand, J , and ORall run in O(lg N1/3l−1
) time, using

O(N1/3l−1
) qubits. Note that if a function can be classically calculated by a

boolean circuit that has a binary tree structure of depth D and width W , then
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Fig. 4. Quantum circuit of BL.

Fig. 5. Quantum circuits of ORall, Expand, and J .

it can be implemented as a quantum circuit that runs in time O(D), using O(W )
qubits. This quantum circuit runs primary gates such as NOT, AND, OR, and
XOR up to O(W ) in parallel and operates O(D) steps.

The function ORall can be classically calculated by a boolean circuit that
has a binary tree structure, which has leaves corresponding to inputs and a root
corresponding to output, with depth O(lg N1/3l−1

) and width O(N1/3l−1
). Thus,

ORall can be constructed as a quantum circuit that runs in time O(lg N1/3l−1
),

using O(N1/3l−1
) qubits. As for J , it calculates all Ji at the same time in parallel.

Since each Ji can be classically calculated in time O(1) using O(1) primary
operations, the quantum circuit of Ji can be constructed so that it runs in
time O(1), using O(1) qubits. Therefore, J runs in time O(1), using O(N1/3l−1

)
qubits. The function Expand can also be classically calculated using a binary tree
structure, which has a root corresponding to the input and leaves corresponding
to the output, with depth O(lg N1/3l−1

) and width O(N1/3l−1
). We first copy

the input y to obtain (y, y), and then copy (y, y) to obtain (y, y, y, y). Repeating
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the copy procedure for O(lg N) times, we can obtain the output of Expand. ,
the quantum circuit Expand can also be constructed so that it runs in time
O(lg N1/3l−1

), using O(N1/3l−1
) qubits. Note that, in quantum circuits, this

copy procedure is realized as XOR gate XOR : |y〉 |0〉 �→ |y〉 |y〉, and does not
contradict the no-cloning theorem.

References

[Amb05] Ambainis, A.: Polynomial degree and lower bounds in quantum complexity:
collision and element distinctness with small range. Theory Comput. 1, 37–
46 (2005). https://arxiv.org/abs/quant-ph/0305179v3

[Amb07] Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM
J. Comput. 37(1), 210–239 (2007). The preliminary version appeared in
FOCS 2004. See https://arxiv.org/abs/quant-ph/0311001

[AS04] Aaronson, S., Shi, Y.: Quantum lower bounds for the collision and the
element distinctness problems. J. ACM 51(4), 595–605 (2004)

[BBHT98] Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds
on quantum searching. Fortsch. Phys. 46(4–5), 493–505 (1998).
https://arxiv.org/abs/quant-ph/9605034

[BCJ+13] Belovs, A., Childs, A.M., Jeffery, S., Kothari, R., Magniez, F.: Time-
efficient quantum walks for 3-distinctness. In: Fomin, F.V., Freivalds,
R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol.
7965, pp. 105–122. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-39206-1 10. See http://arxiv.org/abs/1302.3143 and http://
arxiv.org/abs/1302.7316
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