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Abstract. Functional encryption enables fine-grained access to
encrypted data. In many scenarios, however, it is important to control
not only what users are allowed to read (as provided by traditional func-
tional encryption), but also what users are allowed to send. Recently,
Damgard et al. (TCC 2016) introduced a new cryptographic framework
called access control encryption (ACE) for restricting information flow
within a system in terms of both what users can read as well as what
users can write. While a number of access control encryption schemes
exist, they either rely on strong assumptions such as indistinguishability
obfuscation or are restricted to simple families of access control policies.

In this work, we give the first ACE scheme for arbitrary policies
from standard assumptions. Our construction is generic and can be built
from the combination of a digital signature scheme, a predicate encryp-
tion scheme, and a (single-key) functional encryption scheme that sup-
ports randomized functionalities. All of these primitives can be instan-
tiated from standard assumptions in the plain model and therefore, we
obtain the first ACE scheme capable of supporting general policies from
standard assumptions. One possible instantiation of our construction
relies upon standard number-theoretic assumptions (namely, the DDH
and RSA assumptions) and standard lattice assumptions (namely, LWE).
Finally, we conclude by introducing several extensions to the ACE frame-
work to support dynamic and more fine-grained access control policies.

1 Introduction

In the last ten years, functional encryption [16,44] has emerged as a powerful tool
for enforcing fine-grained access to encrypted data. But in many real-world sce-
narios, system administrators need to restrict not only what users are allowed to
read, but also, what users are allowed to send—for example, users with top-secret
security clearance in a system should not be able to make sensitive information
publicly available. Recently, Damgard, Haagh, and Orlandi [23] introduced the
notion of access control encryption (ACE) to enable cryptographic control of the
information flow within a system.

Access control encryption. An access control encryption scheme [23] pro-
vides a cryptographic mechanism for restricting information flow in a system,
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both in terms of what parties can read, as well as in terms of what parties
can write. Of course, cryptography alone is insufficient here since a malicious
sender can always broadcast sensitive messages in the clear. To address this,
Damgard et al. [23] introduce an additional party called the sanitizer. All com-
munication between senders and receivers is routed through the sanitizer, which
performs some processing on the message before broadcasting it to the receivers.
The goal in access control encryption is to simplify the operation of the sanitizer
so that its function can be outsourced to a party that is only trusted to execute
correctly (in particular, the sanitizer does not need to know either the identity
of the sender or receiver of each message, nor the security policy being enforced).

Concretely, an ACE scheme is defined with respect to a set of senders S,
a set of receivers R, and an access control policy 7: & x R — {0,1}, where
m(S,R) = 1if a receiver R € R is allowed to read messages from sender S € §
(and vice versa). Each sender S has an encryption key eks and each receiver R
has a decryption key dkgr. To send a message m, the sender first encrypts ct «
ACE.Encrypt(eks, m) and sends ct to the sanitizer. The sanitizer performs some
simple processing on ct to obtain a new ciphertext ct’, which it broadcasts to all of
the receivers. The correctness requirement of an ACE scheme is that if 7(S, R) =
1, then ACE.Decrypt(dkg,ct’) = m. Critically, the sanitizer does not know the
identities of the sender or receiver, nor does it know the policy .

The security requirements of an ACE scheme mirror those in the Bell-
LaPadula [7] security model. In particular, the no-read rule requires that any set
of unauthorized receivers {R;} (even in collusion with the sanitizer) cannot learn
any information from a sender S if 7(S, R;) = 0 for all j. The no-write rule says
that no set of (possibly malicious) senders {S;} can transfer any information to
any set of (possibly malicious) receivers {R;} if 7(S;, R;) = 0 for all 7, j.

Existing constructions of ACE. Damgard et al. [23] gave two constructions
of ACE capable of supporting arbitrary policies 7: {0,1}™ x {0,1}" — {0,1}
(here, the senders and receivers are represented as n-bit identities). Their first
construction takes a brute-force approach and is based on standard number-
theoretic assumptions such as the decisional Diffie-Hellman assumption (DDH)
or the decisional composite residuosity assumption (DCR). The limitation, how-
ever, is that ciphertexts in their construction grow exponentially in n, thus ren-
dering the scheme inefficient when the set of identities is large. Their second
construction is more efficient (the ciphertext size is polylogarithmic in n), but
relies on the full power of indistinguishability obfuscation (:0) [6,29].

Subsequently, Fuchsbauer et al. [28] showed how to construct access control
encryption for restricted classes of predicates (i.e., equality, comparisons, and
interval membership) from standard assumptions on bilinear maps—namely,
the symmetric external Diffie-Hellman assumption (SXDH). While their con-
structions are asymptotically efficient (their ciphertexts are linear in n), the
functionalities they can handle are specialized to a restricted class of predicates.

Recently, Tan et al. [57] showed how to instantiate the Damgard et al. brute-
force construction using the learning with errors (LWE) assumption. Since their
construction follows the Damgard et al. approach, ciphertexts in their construc-
tion also grown exponentially in n.
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A natural question is whether it is possible to construct an asymptotically-
efficient ACE scheme for arbitrary functionalities without relying on powerful
assumptions like indistinguishability obfuscation. In this work, we show that
under standard assumptions (for instance, the DDH, RSA, and LWE assumptions
suffice), we obtain an asymptotically-efficient ACE scheme for general policies.

1.1 Owur Contributions

Our main contribution in this work is a new construction of access control encryp-
tion that is asymptotically efficient, supports arbitrary policies, and relies only
on simple, well-studied assumptions. All previous constructions of ACE were
either inefficient, restricted to simple policies, or relied on indistinguishability
obfuscation. We refer to Table 1 for a comparison with the state-of-the-art.

Table 1. Concrete comparison of the ACE construction in this work with previous
ACE constructions [23,28,57] for predicates w: {0,1}" x {0,1}" — {0,1}. For the
predicate class, we write “arbitrary” if the scheme can support arbitrary access control
policies and “restricted” if it can only handle a small set of access control policies (e.g.,
equality, comparisons, interval testing).

Construction Predicate | Ciphertext size | Assumption
Damgard et al. [23, Sect. 3] | arbitrary | O(2") DDH or DCR
Damgard et al. [23, Sect. 4] | arbitrary | poly(n) 10

Fuchsbauer et al. [28] restricted | poly(n) SXDH

Tan et al. [57] arbitrary | O(2") LWE

This work arbitrary | poly(n) DDH, RSA, and LWE

In this work, we give a generic construction of access control encryption from
three main ingredients: a digital signature scheme, a general-purpose predicate
encryption scheme [32], and a (single-key) functional encryption scheme that
supports randomized functionalities [1,33]. We give a high-level overview of our
construction here and provide the formal description in Sect. 3. In Sect. 3.1, we
show how to instantiate the underlying primitives to obtain an ACE scheme from
standard assumptions. Our work thus resolves the main open question posed by
Damgard et al. [23] on constructing asymptotically-efficient ACE schemes for
arbitrary functionalities from standard assumptions.

Starting point: predicate encryption. First, we review the syntax of a predi-
cate encryption scheme. In a predicate encryption scheme [17,36,56], ciphertexts
are associated with a message m in addition to a set of attributes x, and secret
keys are associated with functions f. Decrypting a ciphertext associated with
an attribute-message pair (z,m) using a secret key for a function f outputs m
if and only if f(z) = 1. Moreover, ciphertexts in a predicate encryption scheme
hide both the attribute x as well as the message m from all parties that are not
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able to decrypt the ciphertext.! Not surprisingly, a predicate encryption scheme
that supports general policies can be used to obtain a primitive that resem-
bles an access control encryption scheme. Each sender’s encryption key is just
the public key for the predicate encryption scheme. To encrypt a message m,
the sender encrypts m with its identity as the attribute (i.e., an n-bit string).
The sanitizer would simply forward the ciphertext along. The decryption key for
a receiver R is a predicate encryption key that implements the policy (-, R).
Of course, because the sanitizer simply broadcasts the sender’s message to the
receivers, this basic scheme does not satisfy the no-write rule. A malicious sender
can simply broadcast the message in the clear.

Sanitizing the ciphertext. To provide security against malicious senders, the
sanitizer must perform some kind of re-randomization of the sender’s cipher-
texts. Damgard et al. [23] achieve this by introducing the notion of “sanitizable
functional encryption,” which is a functional encryption scheme that supports
re-randomization of ciphertexts. However, constructing sanitizable functional
encryption seems to require indistinguishability obfuscation. In this work, we
take a different strategy similar in spirit to proxy re-encryption [4]. Specifically,
we view the sanitizer as implementing a “proxy” that takes as input a sender’s
ciphertext (under some encryption scheme) and then re-encrypts that ciphertext
under the predicate encryption scheme (with the attribute set to the sender’s
identity). The guarantee we seek is that the output of the sanitizer is either L
(if the input ciphertext is invalid) or a fresh encryption of the sender’s message
under the predicate encryption scheme. With this guarantee, the no-read and
no-write properties reduce to the security of the predicate encryption scheme.
The problem of building ACE thus reduces to constructing a suitable proxy
re-encryption scheme. Here, we rely on a single-key functional encryption for
randomized functionalities [1,33]. In a standard functional encryption [16,44]
(FE) scheme, secret keys are associated with functions f and ciphertexts are
associated with messages m. The combination of a decryption key for a function
f and a ciphertext for a message m should together reveal f(m) and nothing
more. Recently, Alwen et al. [2] and Goyal et al. [33] extended the notion of
functional encryption to also consider issuing keys for randomized functionalities.
A (general-purpose) FE scheme that supports randomized functionalities
immediately gives a way of implementing the proxy re-encryption functionality
for the sanitizer. First, to encrypt a message m, sender S encrypts the pair (S, m)
under the FE scheme. The sanitizer is given a functional key for the re-encryption
function that takes as input a pair (5, m) and outputs a predicate encryption of
m with attribute S. The receivers’ behavior is unchanged. By appealing to the
correctness and security of the FE scheme, the sanitizer’s output is distributed

! This is in contrast to the weaker notion of attribute-based encryption [12,34,52]
where the attribute is public.
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like a fresh predicate encryption ciphertext.? Importantly for our construction,
the FE scheme only needs to support issuing a single decryption key (for the
sanitizer). This means that it is possible to instantiate the FE scheme from
standard assumptions (i.e., by applying the transformation in [1] to standard
FE constructions such as [30,31,51]). Our construction is conceptually similar
to the approach in [23] based on sanitizable FE. In Remark 3.1, we compare
our approach to the one in [23] and highlight the key differences that allow us
to avoid the need for indistinguishability obfuscation (as seemingly needed for
sanitizable FE), and thus, base our construction on simple assumptions.

Signatures for policy enforcement. The remaining problem with the above
construction is that the sender has the freedom to choose the identity S at
encryption time. Thus, a malicious sender could choose an arbitrary identity
and trivially break the no-write security property. We address this by requiring
the sender “prove” its identity to the sanitizer when submitting its ciphertext
(but without revealing its identity to the sanitizer in the process). This can be
done using a standard technique described in [23] (and also applied in several
other contexts [10,19]) by giving each sender S a signature og on its identity
(included as part of the sender’s encryption key). Then, to encrypt a message m,
the sender would construct an FE ciphertext for the tuple (S, 0g,m) containing
its identity, the signature on its identity, and the message. The sanitizer’s FE
key then implements a re-encryption function that first checks the validity of
the signature on the identity before outputting a fresh predicate encryption of
the message m (still with attribute S). Thus, a malicious sender is only able to
produce valid ciphertexts associated with identities for which it possesses a valid
signature. With this modification, we can show that the resulting construction
is a secure ACE scheme (Theorems 3.2 and 3.3).

Instantiating our construction. Our construction above gives a generic con-
struction of ACE from digital signatures, predicate encryption, and a single-key
general-purpose functional encryption scheme for randomized functionalities. In
Sect. 3.1, we show that all of the requisite building blocks of our generic con-
struction can be instantiated from standard assumptions. In particular, security
can be reduced to the decisional Diffie-Hellman (DDH) assumption [14], the RSA
assumption [49], and the learning with errors (LWE) assumption [48]. This yields
the first ACE scheme that supports general policies from standard assumptions.

Extending ACE. In Sect. 4, we describe several extensions to the notion of ACE
that naturally follow from our generic construction. We primarily view these exten-
sions as ways of augmenting the schema of access control encryption to provide

2 In the actual construction, satisfying the no-write property requires the stronger
property that decrypting a maliciously-generated ciphertext, say, from a corrupt
sender, also yields a fresh ciphertext under the predicate encryption scheme. This is
the notion of security against malicious encrypters first considered in [33] and subse-
quently extended in [1]. The work of [1] shows how to obtain functional encryption
for randomized functionalities with security against malicious encrypters from any
functional encryption scheme supporting deterministic functionalities in conjunction
with standard number-theoretic assumptions.
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increased flexibility or to support additional functionalities, and not as qualita-
tively new properties specific to our particular construction. Indeed, the iO-based
construction of Damgard et al. [23] can also be extended to achieve these proper-
ties. Our primary contribution is showing that we can achieve these stronger prop-
erties without relying on i. We briefly summarize our main extensions:

— Dynamic policies: In the standard notion of ACE [23], the access control
policy is specified at the time of system setup. In realistic scenarios, senders
and receivers may need to be added to the system, and moreover, access
control policies can evolve over time. In Sect.4.1, we show that our ACE
construction allows us to associate an access control policy specific to each
receiver’s decryption key. Thus, each receiver’s policy can be determined at
the time of receiver key generation rather than system setup, which enables
a dynamic specification of access control policies.

— Fine-grained sender policies: The standard notion of ACE only considers
policies expressible as a function of the sender’s and receiver’s identities. In
many scenarios, we may want to impose additional restrictions on the types
of messages that a sender could send. For instance, a sender could be allowed
to send messages to any receiver with top-secret security clearance, but we
want to ensure that all of the messages they send contains a signature from
both the sender as well as their supervisor (who would certify the contents
of the message). In Sect.4.2, we show that a straightforward extension of
our construction allows us to additionally enforce policies on the types of
messages a user is allowed to send. We also introduce a new security notion
for ACE that captures the property that a sender should only be allowed to
send messages that conform to their encryption policy.

— Beyond all-or-nothing decryption: In a standard ACE scheme, decryption
is “all-or-nothing:” receivers who are authorized to decrypt a particular cipher-
text are able to do so and learn the underlying message, while receivers who are
not authorized to decrypt learn nothing about the message. Just as functional
encryption extends beyond all-or-nothing encryption by enabling decrypters
to learn partial information about an encrypted message, we can consider a
functional encryption analog of access control encryption where receivers are
allowed to learn only partial information about messages in accordance with
the precise access control policies of the underlying scheme. As a concrete
example, an analyst with secret security clearance might only be authorized to
learn the metadata of a particular encrypted communication, while an analyst
with top-secret security clearance might be authorized to recover the complete
contents of the communication. In a “functional ACE” scheme, decryption keys
are associated with functions and the decryption algorithm computes a func-
tion on the underlying message. In the full version [38], we show how our ACE
scheme can be easily extended to obtain a functional ACE scheme.

Concurrent work. Concurrent to this work, Badertscher et al. [5] introduced
several strengthened security notions for access control encryption such as secu-
rity against chosen ciphertext attacks (CCA-security). They then show how to
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extend the ACE scheme (for restricted policies) in [28] to achieve their new
security notions. In contrast, our focus in this work is constructing an ACE
scheme (under the original security notions from [23]) for arbitrary policies from
standard assumptions.

Open problems. We leave as an open problem the construction of an ACE
scheme (for general policies) where the sanitizer key can be public. This is the
case for the ACE construction for restricted policies in [28], but not the case for
our construction or the iO-based construction in [23]. Another open problem is
constructing an ACE scheme that provides full sender anonymity (see Remark 2.6
for more details). Notably, this is possible from ¢O [23], but seems non-trivial
from standard assumptions.

1.2 Additional Related Work

Information flow control is a widely studied topic in computer security (see, for
instance [7,24,25,45,50,53,54] and the references therein). In particular, the “no
read” and “no write” security notions for access control encryption are inspired
by the “no read-up” and “no write-down” security policies first introduced in
the seminal work of Bell and LaPadula [7]. In this work, we focus on designing
cryptographic solutions for information flow control.

Numerous cryptographic primitives, starting with identity-based encryp-
tion [15,22,55], and progressing to attribute-based encryption [12,34,52], pred-
icate encryption [17,36,40,43], and finally, culminating with functional encryp-
tion [16,44,51], have focused on ways of enabling fine-grained access to encrypted
data (i.e., impose policies on the decryption capabilities of users in a system).
Access control encryption seeks to simultaneously enforce policies on both the
encryption capabilities of the sender as well as the decryption capabilities of the
receiver.

A key challenge in access control encryption (and how it differs from tra-
ditional notions of functional encryption) is in preventing corrupt senders from
communicating (covertly or otherwise) with unauthorized recipients. One way
of viewing these goals is as a mechanism for protecting against steganography
techniques [35]. Recent works on cryptographic reverse firewalls [26,42] have
looked at preventing compromised or malicious software from leaking sensitive
information. Raykova et al. [47] studied the problem of access control for out-
sourced data. Their goal was to hide access patterns from the cloud and prevent-
ing corrupt writers from updating files that they are not authorized to update.
Their work considers a covert security model where malicious writers are caught;
in contrast, with ACE, we require the stronger guarantee that communication
between corrupt senders and unauthorized receivers are completely blocked.

Also related to access control encryption is the recent line of work on sani-
tizable signatures [3,20,27]. These works study the case where an intermediate
party can sanitize messages and signatures that are sent over a channel while
learning minimal information about the messages and signatures. The notion of
sanitizable signatures is conceptually different from that of ACE since sanitizable
signatures are not designed to prevent corrupt senders from leaking information
to corrupt receivers.
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2 Preliminaries

For n > 1, we write [n] to denote the set of integers {1, ...,n}. For a distribution
D, we write x <+ D to denote that = is a sampled from D. For a finite set S,
we write z <& S to denote that x is sampled uniformly at random from S.
For a randomized function f, we write f(z;7) to denote an evaluation of f
using randomness 7. Unless otherwise noted, we always write A for the security
parameter. We say a function f(\) is negligible in the security parameter A
(denoted f(A) = negl(A)) if f(A) = o(1/A°) for all ¢ € N. We write f(\) = poly(X)
to denote that f is a (fixed) polynomial in A. An algorithm is efficient if it runs
in polynomial time in the length of its input. For two ensembles of distributions
Dy and D, we write D, ~ D if the two distributions are computationally
indistinguishable (that is, no efficient algorithm can distinguish D; from D,
except with negligible probability).

We now formally define the tools we need to build our ACE scheme. Due to
space limitations, we defer the standard definitions of a digital signature scheme
and predicate encryption scheme to the full version of this paper [38]. In Sect. 2.1,
we review the notion of functional encryption for randomized functionalities, and
in Sect. 2.2, we introduce the notion of an access control encryption scheme.

2.1 Functional Encryption for Randomized Functionalities

Functional encryption (FE) [16,44,51] is a generalization of predicate encryp-
tion. In an FE scheme, secret keys are associated with functions and ciphertexts
are associated with messages. Given a secret key sk for a (deterministic) func-
tion f and a ciphertext ct, encrypting a value x, the decryption function in an
FE scheme outputs f(z). The security guarantee roughly states that sk; and ct,
together reveal f(z), and nothing more. Alwen et al. [2] and Goyal et al. [33]
extended the notion of functional encryption to include support for random-
ized functionalities (i.e., secret keys are associated with randomized functions).
Subsequently, Komargodski et al. [39], as well as Agrawal and Wu [1] showed
how to generically transform FE schemes that support deterministic functions
into schemes that support randomized functions; the former transformation [39]
applies in the secret-key setting while the latter [1] applies in the public-key
setting.

Syntax. We now give the formal definition of a functional encryption for ran-
domized functionalities in the public-key setting. Our definitions are adapted
from those in [1,33]. A functional encryption for randomized functionalities for
a function family F over a domain X, range ), and randomness space R is
a tuple of algorithms IT,;g = (rFE.Setup, rFE.KeyGen, rFE.Encrypt, rFE.Decrypt)
with the following properties:

~ rFE.Setup(1*) — (pp, msk): On input the security parameter A, the setup
algorithm outputs the public parameters pp and the master secret key msk.
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— rFE.KeyGen(msk, f) — sk;: On input the master secret key msk and the
description of a (possibly randomized) function f: X — ), the key-generation
algorithm outputs a secret key sky.

— rFE.Encrypt(pp, ) — ct,: On input the public parameters pp and a message
r € X, the encryption algorithm outputs a ciphertext ct,.

— rFE.Decrypt(sk, ct) — y: On input a secret key sk, and a ciphertext ct, the
decryption algorithm outputs a value y € Y U {L}.

Correctness. The correctness property for an FE scheme that supports ran-
domized functionalities states that given a secret key sk; for a randomized
function f and a ciphertext ct, encrypting a value z, the decryption function
rFE.Decrypt(sky, ct;) outputs a random draw from the output distribution of
f(x). Moreover, when multiple function keys are applied to multiple ciphertexts,
decryption should output an independent draw from the output distribution for
each ciphertext-key pair. This property should hold even given the public para-
meters as well as the function keys for the function encryption scheme. We give
the formal definition below:

Definition 2.1 (Correctness [1,33, adapted]). A functional encryption
scheme for randomized functionalities IIpg =  (rFE.Setup, rFE.KeyGen,
rFE.Encrypt, rFE.Decrypt) over a message space X for a (randomized) function
family F (operating over a randomness space R) is correct if for every poly-
nomial n = n(\), every collection of functions (f1,...,fn) € F", and every
collection of messages (x1,...,x,) € X", setting (pp, msk) « rFE.Setup(1*),
sk; < rFE.KeyGen(msk, f;), ct; « rFE.Encrypt(pp,z;), and r;; < R for
i,j € [n], the following two distributions are computationally indistinguishable:

(PP {ki} gy - {rFE Decrypt(shi. ct;)} )

and (va {skiticpm > {fi(‘rj;ri;j)}i,je[n]) :

Remark 2.2 (Weaker Correctness Notions). Existing constructions of functional
encryption for randomized functionalities [1,33] consider a weaker correctness
requirement that the joint distribution {rFE.Decrypt(skZ—,ctj)}ije[n] be compu-

tationally indistinguishable from { f;(z;;7; )} In this work, we require the

1,J€[N]"
stronger property that these two distributions iel[rn]ain computationally indistin-
guishable even given the public parameters as well as the (honestly-generated)
decryption keys. It is not difficult to see that existing constructions such as the
Agrawal-Wu generic construction [1] satisfy this stronger correctness require-

ment.3

3 Specifically, the generic construction of functional encryption for randomized func-
tionalities from standard functional encryption in [1] uses a PRF key for deran-
domization. In their construction, they secret share the PRF key across the cipher-
text and the decryption key. By appealing to related-key security of the underlying
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Security. In this work, we use a simulation-based definition of security. Our
access control encryption construction relies critically on our FE scheme provid-
ing robustness against malicious encrypters. This can be viewed as the analog of
CCA-security in the context of public-key encryption [46], and is captured for-
mally in the security game by giving the adversary access to a decryption oracle
(much like in the CCA-security game). We give a simplified variant of the defin-
ition from [1,33] where the adversary is only allowed to issue key-queries before
making challenge queries (i.e., the adversary is restricted to making non-adaptive
key queries). In this non-adaptive setting, Gorbunov et al. [31] showed that secu-
rity against an adversary who makes a single challenge query implies security
against an adversary that makes a polynomial number of challenge queries. This
is the definition we use in this work. Additionally, for the decryption queries, we
also consider the simplified setting of [33] where the adversary can only submit a
single ciphertext on each decryption query.* We now give the formal definition:

Definition 2.3 (¢-NA-SIM Security [1,33, adapted]). Let Il ;g = (rFE.Setup,
rFE.KeyGen, rFE.Encrypt, rFE.Decrypt) be a functional encryption scheme for ran-
domized functionalities over a message space X for a (randomized) function
family F (with randomness space R). We say that Il e is q-NA-SIM-secure
against malicious encrypters if there exists an efficient (stateful) simulator
S = (81,82,85,84) such that for all efficient adversaries A = (A1, As) where
A1 makes at most q key-generation queries, the outputs of the following two
experiments are computationally indistinguishable:

Experiment Realr .. 4(1%): Experiment Ideals . 4.s(1%):
(pp, msk) — rFE.Setup(1*) (pp,st') — S1(1%)

ot A?l(msk,~),Og(msk,~,~)(1)\,pp) st A?l(st 1), Og(st 7',')(1)\’pp)
a<—A?Z(pp")’O3(m5k"")(st) aHA?é(st/")’OB(St/"")(st)
Output ({g},{y}, ) Output ({g'},{y'},q)

where the key-generation, encryption, and decryption oracles are defined as
follows:
Real experiment Realr,. 4(17):

- Key-generation oracle: O1(msk, -) implements rFE.KeyGen(msk, -).

— Encryption oracle: Oy(pp,-) implements rFE.Encrypt(pp, -).

— Decryption oracle: On input (g,ct) where g € F and ct € {0,1}*, the
decryption oracle Oz(msk, -, ) computes sk, < rFE.KeyGen(msk, g) and out-
puts y = rFE.Decrypt(sky,ct). The (ordered) set {g} consists of the set of

PRF [8,9,11,13], the randomness used for function evaluation during decryption is
computationally indistinguishable from a random string. Moreover, this holds even
if one of the key-shares is known (in our setting, this is the key-share embedded
within the decryption key).

* Subsequent work [1] showed how to extend the security definition to also cap-
ture adversaries that can induce correlations across multiple ciphertexts, but this
strengthened definition is not necessary in our setting.
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functions that appear in the decryption queries of A and the (ordered) set {y}
consist of the responses of Os.

Ideal experiment Idealy,, 4.s(1*):

- Key-generation oracle: On input a function f € F, the ideal key-

2.

generation oracle Oy computes (sk's,st') — Sy(st’, f), and returns sk;. The
updated simulator state st’ is carried over to future invocations of the simu-
lator.

Encryption oracle: On input a message v € X, the ideal encryption oracle
05 samples 1, ...,rq < R, and sets y; = fi(x;r;) for i € [q], where f; is the
i key-generation query A, made to the key-generation oracle. The oracle
computes (ct’,st’) < Ss(st’, {yi},c(,) and returns ct’.

Decryption oracle: On input (¢',ct’) where ¢ € F and ct’ € {0,1}*,
the ideal decryption oracle Of invokes the simulator algorithm (x,st’) «—
Sy(st',ct’), where x € X U{L}. If © # L, the oracle samples r < R and
replies with ¢'(x;r). Otherwise, if x = L, the oracle replies with L. The
(ordered) set {g'} denotes the functions in the decryption queries of A and
{y'} denotes the outputs of Of.

2 Access Control Encryption (ACE)

In this section, we review the definition of access control encryption (ACE)
[23,28,57]. An access control encryption scheme over an identity space Z, a
message space M, and a ciphertext space C is defined by a tuple of algo-
rithms ITacg = (ACE.Setup, ACE.EKGen, ACE.DKGen, ACE.Encrypt, ACE.Sanitize,
ACE.Decrypt) with the following properties:

5

ACE.Setup(1*,m) — (sank,msk): On input a security parameter A\ and an
access control policy m: Z x Z — {0,1}, the setup algorithm outputs the
sanitizer key sank and the master secret key msk.

ACE.EKGen(msk, i) — ek;: On input the master secret key msk and a sender
identity ¢ € 7, the encryption key-generation algorithm outputs an encryption
key ek;.

ACE.DKGen(msk, j) — dk;: On input the master secret key msk, and a receiver
identity j € Z, the decryption key-generation algorithm returns a decryption
key dk_]

ACE.Encrypt(ek,m) — ct: On input an encryption key ek, and a message
m € M, the encryption algorithm outputs a ciphertext ct.’
ACE.Sanitize(sank, ct) — ct’: On input the sanitizer key sank and a ciphertext
ct, the sanitize algorithm outputs a ciphertext ct’ € CU {L}.
ACE.Decrypt(dk,ct’) — m': On input a decryption key dk and a ciphertext
ct’ € C, the decryption algorithm outputs a message m’ € MU {L}.

Note that we do not require that ct € C. In particular, the ciphertexts output by the

encryption algorithm can be syntactically different from those output by the sanitize
algorithm. To simplify the notation, we only explicitly model the ciphertexts space
C corresponding to those produced by the ACE.Sanitize algorithm.
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Definition 2.4 (Correctness [23]). An ACE scheme IInce = (ACE.Setup,
ACE.EKGen, ACE.DKGen, ACE.Encrypt, ACE.Sanitize, ACE.Decrypt) over an iden-
tity space T and a message space M is correct if for all messages m € M,
all policies w: T x T — {0,1}, and all identities i,j € T where w(i,j) = 1,
setting (sank,msk) « ACE.Setup(1*,7), ek; < ACE.EKGen(msk,i), dk; «
ACE.DKGen(msk, 7), we have that

Pr[ACE.Decrypt(dk;, ACE.Sanitize(sank, ACE.Encrypt(ek;, m))) = m]=1—negl(\).

Security definitions. Damgard et al. [23] introduced two security notions for
an ACE scheme: the no-read rule and the no-write rule. The no-read rule cap-
tures the property that only the intended recipients of a message (namely, those
authorized to decrypt it) should be able to learn anything about the message.
In particular, a subset of unauthorized receivers should be unable to combine
their respective decryption keys to learn something about a ciphertext they are
not authorized to decrypt. Moreover, this property should hold even if the recip-
ients collude with the sanitizer. The no-write rule captures the property that
a sender can only encrypt messages to receivers that it is authorized to do so.
Specifically, no sender with identity ¢ should be able to form a ciphertext that
can be decrypted by a receiver with identity ;7 where 7 (7,j) = 0. Furthermore,
this property should hold even when multiple senders and receivers collude. We
now review the formal definitions introduced in [23].

Definition 2.5 (No-Read Rule [23)). Let IInce =  (ACE.Setup,
ACE.EKGen, ACE.DKGen, ACE.Encrypt, ACE.Sanitize, ACE.Decrypt) be an ACE
scheme over an identity space T and a message space M. Let A be an effi-
cient adversary and m:Z x T — {0,1} be an access control policy. For a

security parameter X and a bit b € {0,1}, we define the no-read rule experi-

ment Exptgfj;am(/\,b) as follows. The challenger first samples (sank, msk) «—

ACE.Setup(1*, ), and gives the sanitizer key sank to A. Then, A is given access
to the following oracles:

- Encryption oracle. On input a message m € M and a sender
identity ¢« € I, the challenger responds with a ciphertext ct «—
ACE.Encrypt(ACE.EKGen(msk, i), m).

— Encryption key-generation oracle. On input a sender identity i € I, the
challenger responds with an encryption key ek; < ACE.EKGen(msk, 7).

- Decryption key-generation oracle. On input a receiver identity j € T,
the challenger responds with a decryption key dk; < ACE.DKGen(msk, j).

— Challenge oracle. On input a pair of messages (mg,m1) € M x M
and a pair of sender indices (ig,i1) € T X I, the challenger responds with
ACE.Encrypt(ACE.EKGen(msk, i), my).

At the end of the experiment, adversary A outputs a bit b/ € {0,1}, which is
the output of the experiment. An adversary A is admissible for the no-read rule
security game if for all queries j € T that A makes to the receiver key-generation
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oracle, w(ig,j) =0 =mn(i1,j). We say that ITace satisfies the no-read rule if for
all policies m: T x T — {0,1}, and all efficient and admissible adversaries A,

Read Read
[Pr [Bxpt?,  (0,0) = 0] — Pr [Expt{o?), 10, 1) = 1]| = negl(M).

Remark 2.6 (Sender Anonymity). The definition of the no-read rule given in [23]
also imposes the stronger requirement of sender anonymity, which guarantees
the anonymity of the sender even against adversaries that are able to decrypt
the ciphertext. In contrast, our definition only ensures sender anonymity (in
addition to message privacy) against a coalition of receivers that cannot decrypt
the challenge ciphertext. This is akin to the notion of “weak attribute-hiding” in
the context of predicate encryption [40,43], and was also the notion considered
in [28] for building ACE for restricted classes of functionalities.

Definition 2.7 (No-Write Rule [23]). Let IIpnce = (ACE.Setup, ACE.EKGen,
ACE.DKGen, ACE.Encrypt, ACE.Sanitize, ACE.Decrypt) be an ACE scheme over
an identity space T and a message space M. Let A be an efficient adversary,
and let m: T x T — {0,1} be an access control policy. For a security parameter

X and a bit b € {0,1}, we define the no-write rule experiment Exptgzzi:}‘lm(/\, b)
as follows. The challenger begins by sampling (sank, msk) « ACE.Setup(1*, 7).

Then, A is given access to the following oracles:

— Encryption oracle. On input a message m € M and a sender identity
1 € I, the challenger responds by first computing ek; «— ACE.EKGen(msk, 7)
and returning ACE.Sanitize(sank, ACE.Encrypt(ek;, m)).

- Encryption key-generation oracle. On input a sender index i € I, the
challenger responds with an encryption key ek; «— ACE.EKGen(msk, 7).

— Decryption key-generation oracle. On input a receiver index j € I, the
challenger responds with a decryption key dk; «— ACE.DKGen(msk, 7).

— Challenge oracle. On input a ciphertext ct* € {0,1}* and a sender identity
id* € Z, the challenger sets cty = ct*. Then, the challenger samples m’ & M,
computes ct; < ACE.Encrypt(ACE.EKGen(msk,id*), m’), and responds with
ACE.Sanitize(sank, ctp).

At the end of the experiment, adversary A outputs a bit b’ € {0,1}, which is
the output of the experiment. An adversary A is admissible for the no-write rule
security game if the following conditions hold:

~ The adversary A makes at most one query to the challenge oracle.

— For all identities i € T that A submits to the encryption key-generation oracle
prior to its challenge and all identities j € T that A submits to the decryption
key-generation oracle, w(i,j) = 0.

— The adversary A makes an encryption key-generation query on the challenge
identity id* € I prior to making its challenge query.

5 We impose this restriction to simplify the security definition. A standard hybrid
argument shows that security against an adversary that makes a single challenge
query implies security against one that makes multiple challenge queries.



484 S. Kim and D.J. Wu

We say that IIace satisfies the no-write rule if for all policies w: T xZ — {0,1},
and all efficient and admissible adversaries A,

‘Pr [Expt%;i:i‘_’ﬂ()\,O) = 0} —Pr {Exptgg?:j‘lm()\, 1) = 1] ‘ = negl(\).

3 Generic Construction of Access Control Encryption

In this section, we show how to generically construct access control encryption for
general policies from a digital signature scheme, a predicate encryption scheme,
and a general-purpose functional encryption scheme for randomized functionali-
ties. Then, in Sect. 3.1, we describe our concrete instantiation of an ACE scheme
that supports arbitrary policies from standard assumptions.

Construction 3.1 Let I be the identity space and M be the message space.
Our access control encryption for general access policies relies on the following
primatives:

— Let Ilsig = (Sig.Setup, Sig.Sign, Sig.Verify) be a signature scheme with message
space I. Let T denote the space of signatures output by the Sig.Sign algorithm.

— Let Ilpg = (PE.Setup, PE.KeyGen, PE.Encrypt, PE.Decrypt) be a (public-key)
predicate encryption scheme with attribute space I and message space M.
Let C denote the ciphertext space for Ilpg, and let R denote the space for
the encryption randomness for PE.Encrypt (namely, the space of values from
which the randomness used in PE.Encrypt is sampled).

— Let I,;e = (rFE.Setup, rFE.KeyGen, rFE.Encrypt, rFE.Decrypt) be a general-
purpose public-key functional encryption scheme for randomized functional-
ities (with security against malicious encrypters) with domain T x T X M,
range C, and randomness space R.

We construct the ACE scheme IIace = (ACE.Setup, ACE.EKGen, ACE.DKGen,
ACE.Encrypt, ACE.Sanitize, ACE.Decrypt) as follows:

~ ACE.Setup(1*,7): On input the security parameter X\ and a policy © : T x
T — {0,1}, the setup algorithm samples (Sig.vk,Sig.sk) « Sig.Setup(1*),
(PE.pp, PE.msk) « PE.Setup(1*), and (rFE.pp, rFE.msk) « rFE.Setup(1*).
Next, it defines the function Fsigypepp: Z X T x M — C as follows:

Fsig vk, pE.pp(1, 0, M5 1) =
PE.Encrypt(PE.pp,¢,m;r) if Sig.Verify(Sig.vk,i,0) = 1
1 otherwise.
Then, it generates a decryption key rFE.skp <« rFE.KeyGen(rFE.msk,

FSig‘vk,pE,pp). Finally, it outputs the sanitizer key sank = rFE.skp and the
master secret key

msk = (mr, Sig.sk, PE.msk, rFE.pp).
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— ACE.EKGen(msk,): On input the master secret key msk = (m, Sig.sk, PE.msk,
rFE.pp), and an identity i € I, the encryption key-generation algorithm con-
structs a signature o < Sig.Sign(Sig.sk, i) and outputs ek; = (rFE.pp,i,0).

— ACE.DKGen(msk, j): On input the master secret key msk = (m, Sig.sk, PE.msk,
rFE.pp), and an identity j € Z, the decryption key-generation algorithm gen-
erates a key PE.sk « PE.KeyGen(PE.msk, fr ;) where fr;(i): T — {0,1} is
defined as fr ;(i) = (i, 7), and outputs dk; = PE.sk.

— ACE.Encrypt(ek;, m): On input the encryption key ek; = (rFE.pp,i,0) and a
message m € M, the encryption algorithm outputs rFE.Encrypt(rFE.pp, (i, 0,
m)).

— ACE.Sanitize(sank, ct): On input the sanitizer key sank = rFE.skp and a
ciphertezt ct, the sanitize algorithm outputs rFE.Decrypt(rFE.skg, ct).

— ACE.Decrypt(dk;, ct’): On input a decryption key dk; = PE.sk and a ciphertext
ct/, the decryption algorithm outputs PE.Decrypt(PE.sk,ct’).

We now state that our main correctness and security theorems. Specifically,
we show that assuming correctness and security of the underlying primitive Is;g,
ITpg, and Igg, our access control encryption scheme satisfies correctness (Defini-
tion 2.4), no-read security (Definition 2.5), and no-write security (Definition 2.7).
We give the proof of Theorem 3.1 in the full version [38] and the proofs of Theo-
rems 3.2 and 3.3 in Sects. 3.2 and 3.3, respectively. We conclude this subsection
with a remark comparing our construction to the Damgard et al. [23] construc-
tion of ACE from sanitizable FE.

Theorem 3.1 (Correctness). Suppose Ilsig is a correct signature scheme,
IIpe is a correct predicate encryption scheme, and IIrg is a correct func-
tional encryption scheme for randomized functionalities (Definition 2.1). Then,
the access control encryption scheme from Construction 3.1 is correct (Defini-
tion 2.4).

Theorem 3.2 (No-Read Rule). Suppose Ilsig is perfectly correct, Ilpg is
a secure predicate encryption scheme and Il e is an 1-NA-SIM-secure func-
tional encryption scheme for randomized functionalities (Definition 2.3). Then,
the access control encryption scheme from Construction 3.1 satisfies the no-read
rule (Definition 2.5).

Theorem 3.3 (No-Write Rule). If Il is existentially unforgeable, Ilpg is
a secure predicate encryption scheme, and Il gg is a 1-NA-SIM-secure functional
encryption for randomized functionalities (Definition 2.3). Then, the access con-

trol encryption scheme from Construction 3.1 satisfies the no-write rule (Defin-
ition 2.7).

Remark 3.1 (Comparison with Sanitizable FE). The high-level schema of our
access control encryption scheme bears some similarities to the ACE construc-
tion from sanitizable functional encryption in [23]. Here, we highlight some of
the key differences between our construction and that of [23]. In [23], the san-
itizer key is used only to test whether a particular ciphertext is valid or not.
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After validating the certificate, the sanitizer relies on the algebraic structure
of the sanitizable FE scheme to re-randomize the ciphertext. In contrast, in
our construction, the sanitizer actually performs a re-encryption of the incom-
ing ciphertext under a different (predicate) encryption scheme, and moreover,
the validation procedure (that the ciphertext originated from a valid sender)
is embedded within the re-encryption key possessed by the sanitizer. As such,
our construction only requires us to issue a single functional encryption key to
the sanitizer. This means that we can base our construction on standard cryp-
tographic assumptions. While it may be possible to build sanitizable FE from
an FE scheme that supports randomized functionalities, it seems difficult to
reduce security to standard assumptions (because the existing general-purpose
FE schemes from standard assumptions [30,31,51] remain secure only if we give
out an a priori bounded number of decryption keys). Thus, using re-encryption
rather than re-randomization offers qualitatively better properties that enables
a construction that does not rely on strong assumptions like indistinguishability
obfuscation.

3.1 Concrete Instantiations

In this section, we describe one candidate instantiation of Construction 3.1 that
yields an access control encryption scheme for arbitrary policies from stan-
dard assumptions. All of our primitives can be built from standard assump-
tions, namely the decisional Diffie-Hellman assumption (DDH) [14], the RSA
assumption (RSA) [49], and the learning with errors assumption (LWE) [48].
The DDH and RSA assumptions are needed to leverage the generic construction
of functional encryption for randomized functionalities from standard functional
encryption (for deterministic functionalities) in [1]. The remaining primitives can
be built from LWE. We now describe one possible instantiation of the primitives
in Construction 3.1:

— The signature scheme Ilsj; can be instantiated using the standard-model con-
struction of Cash et al. [21] based on LWE. Note that because our construction
makes non-black-box use of the underlying signature scheme (in particular,
we need to issue an FE key that performs signature verification), we are
unable to instantiate our construction with a signature scheme that relies on
a random oracle.

— The (general-purpose) predicate encryption scheme ITpg can be instantiated
using the construction of Gorbunov et al. [32] based on the LWE assumption.

— The (general-purpose) 1-NA-SIM-secure FE scheme II¢g for randomized func-
tionalities that provides security against malicious encrypters can be instan-
tiated by applying the Agrawal-Wu deterministic-to-randomized transfor-
mation [1] to a 1-NA-SIM-secure FE scheme for deterministic functionali-
ties. The underlying 1-NA-SIM-secure FE scheme can in turn be based on
any public-key encryption [31] or on the LWE assumption [30]. Applying
the deterministic-to-randomized transformation to the former yields an FE
scheme for randomized functionalities from the DDH and RSA assumptions
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(cf. [1, Corollary 5.5]), while applying the transformation to the latter yields
an FE scheme based on the DDH, RSA, and LWE assumptions.

Putting the pieces together, we obtain the following corollary to Theorems 3.2
and 3.3:

Corollary 3.1 Under standard assumptions (namely, the DDH, RSA, and LWE
assumptions), there exists an access control scheme for general policies over
arbitrary identity spaces T = {0,1}"™ where n = poly(X\) that satisfies the no-read
and no-write security properties.

3.2 Proof of Theorem 3.2

Our proof proceeds via a sequence of hybrid experiments between an adversary
A and a challenger. First, fix an access control policy 7: Z xZ — {0,1}. We now
define our sequence of hybrid experiments:

— Hyb,: This is the ACE security experiment EXptS?;;:)Am()‘vo) from Defi-

nition 2.5. Specifically, at the beginning of the game, the challenger sam-
ples keys (Sig.vk, Sig.sk) « Sig.Setup(1*), (PE.pp, PE.msk) « PE.Setup(1*),
and (rFE.pp, rFE.msk) « rFE.Setup(1*). It then generates the sanitizer key
rFE.skp < rFE.KeyGen(rFE.msk, Fsig vk pE.pp) and gives sank = rFE.skp to
the adversary. It sets msk = (m,Sig.sk, PE.msk, rFE.pp). During the query
phase, the challenger answers the adversary’s queries to the encryption and
key-generation oracles by computing the encryption and key-generation algo-
rithms exactly as in the real scheme. When the adversary makes a challenge
oracle query with messages (mg, m1) € M x M and identities (ig,41) € Z X Z,
the challenger responds with ACE.Encrypt(ACE.EKGen(msk, ig), mq).

— Hyb;: Same as Hyb,, except that the challenger uses the simulator S =
(81,82,83,84,) for Il,ee to construct the public parameters, the sanitizer
key sank, and in replying to the adversary’s challenge queries. Specifically, we
make the following changes to the challenger:

e Setup: At the beginning of the game, instead of sampling rFE.pp
using rFE.Setup, the challenger instead runs the simulation algorithm
(rfFE.pp,st’) « Si(1%). For the sanitizer key, the challenger computes
rFE.skp < Sa(st’, Fsig.vk,pE.pp)- It saves rFE.pp as part of the master secret
key and gives sank = (rFE.skr) to the adversary.

e Challenge queries: When the adversary submits a challenge (mg, m1, io,
i1), the challenger first computes ct’ < PE.Encrypt(PE.pp, ig,mg). Then
it replies to the adversary with the simulated ciphertext ct <« Ss(st’, ct’).

The encryption and key-generation queries are handled exactly as in Hyb.

— Hyb,: Same as Hyb,, except when answering challenge queries (mg, m1, g, 1),
the challenger instead computes ct’ « PE.Encrypt(PE.pp,i1,m1) and replies
with the simulated ciphertext ct « Ss(st’,ct’).

— Hybs: Same as Hyb,, except that the challenger constructs the public para-
meters rFE.pp and the sanitizer key sank as described in the real scheme. For
challenge queries (mg,m1,149,41), the challenger replies with the ciphertext
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ACE.Encrypt(ACE.EKGen(msk, i1),m1). This corresponds to the ACE secu-
(Read)

rity experiment Expty;, \ "4 (A, 1) from Definition 2.5.
We now argue that each pair of hybrid experiments are computationally indistin-
guishable. For an adversary A, we write Hyb,(A) to denote the output of Hyb,.
In the following, we implicitly assume that the adversary in each pair of hybrid
arguments is admissible.

Lemma 3.1 If Ils;g is perfectly correct and Ilre is 1-NA-SIM-secure, then for
all efficient adversaries A, |Pr[Hyby(A) = 1] — Pr[Hyb, (A) = 1]| = negl(A).

Proof Suppose there exists an adversary A that can distinguish between Hyb,
and Hyb,. We use A to construct an algorithm B that can distinguish between
Real .. 4(1) and Idealy, 4,5(1%). Algorithm B works as follows:

1. At the beginning of the game, algorithm B is given the public parameters
rFE.pp. It constructs the other components of the master secret key msk for
the ACE scheme exactly as in Hyb, and Hyb,.

2. Algorithm B makes a key-generation query for the function Fsig k,pe.pp and
receives a key rFE.skp. It sets sank = rFE.skx and gives rFE.skp to A.

3. Algorithm B answers the encryption and key-generation queries exactly as in
Hyb, and Hyb, (this is possible because these queries only rely on rFE.pp).

4. Whenever A makes a challenge query (mg, mq,%9,41), algorithm B computes
a signature o « Sig.Sign(Sig.sk,ip) and queries its encryption oracle on the
value (ig, 0, mg) to obtain a challenge ciphertext ct. It gives ct to the adver-
sary.

5. At the end of the game, algorithm B outputs whatever A outputs.

First, we note that B makes a single non-adaptive key query, so it is a valid
adversary for the 1-NA-SIM security game. By construction, if the public para-
meters, the key-generation oracle and the encryption oracle are implemented
according to Realrr.. 4(1%), then B perfectly simulates Hyb, for A. We claim
that if the public parameters, the key-generation oracle, and the encryption ora-
cle are implemented according to ldealsq. 4.s(1%), then B perfectly simulates
Hyb;. It suffices to check that the challenge queries are correctly simulated.

— In Hyb,, on a challenge query (mg,mq,ig,%1), the challenger responds by
computing Ss(st’, ct’) where ct’ « PE.Encrypt(PE.pp, g, mo).

— In the reduction, if the encryption oracle is implemented according to
Ideal 7. 4.5(1%), then B’s response ct to a challenge query (mq,m1,i,i1)
is the output of Ss(st’,ct’), where ct’ <«  Fsigukpe.pp(io,0,m0) and
o « Sig.Sign(Sig.sk,i). By perfect correctness of IIsi; and definition of
Fsig vk, PE.pp, the output distribution of Fsig vk pe.pp(i0, 0, M) is exactly a fresh
encryption PE.Encrypt(PE.pp, ig, mo).

We conclude that if the oracles are implemented according to Idealr,.. 4.s(1%),
then B perfectly simulates Hyb; for A. The claim then follows by 1-NA-SIM
security of I gg. O
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Lemma 3.2 If IIpg is secure, then for all efficient adversaries A,
|[Pr[Hyb, (A) = 1] — Pr[Hyby(A) = 1]| = negl()).

Proof Suppose there exists an adversary .4 that can distinguish between Hyb,
and Hyb,. We use A to construct an algorithm B that can break the security of
the predicate encryption scheme ITpg. Algorithm B works as follows:

1. At the beginning of the game, B receives PE.pp from the predicate encryption
challenger. It samples the parameters for the signature scheme as well as the
parameters for the functional encryption scheme as described in Hyb; and
Hyb, (in particular, the simulator uses the honest key-generation algorithm to
sample the parameters for Ils;; and uses the simulator S for II,rg to construct
the parameters rFE.pp). Algorithm B constructs the sanitizer key sank as
in Hyb; and Hyb, (using PE.pp), and gives sank to the adversary. It also
defines msk as in the real scheme, with the exception that it leaves PE.msk
unspecified.

2. During the query phase, B answers the encryption and encryption key-
generation queries exactly as in Hyb; and Hyb, (these queries only depend on
quantities known to B). The decryption key-generation and challenge queries
are handled as follows:

— Decryption key-generation oracle: When A queries for a decryp-
tion key for an identity j € Z, algorithm B submits the function
frj: T — {0,1} (where fr;(i) = 7(4,j)) to the key-generation oracle
for the predicate encryption game, and receives the key PE.sky,_ .. It gives
PE.sks, , to A.

— Challenge oracle: When 4 makes its challenge query (mg, m1,i,11),
algorithm B submits the pairs (ig,mo), (i1,m1) as its challenge query to
the predicate encryption challenger and receives a ciphertext ct’. It runs
the simulator ct « Ss(st’,ct’) and returns ct to A.

Since A is admissible for the no-read rule security game, m(ig,j) = 0 = 7(i1,J)
for all identities j that the adversary submits to the decryption key-generation
oracle. This means that each function fr; that B submits to the predicate
encryption challenger satisfies fr ;j(i9) = 0 = fr ;(¢1). Thus, B is admissible
for the predicate encryption security game. By construction, if B is interacting
according to Expt%EBB()\,O), then B perfectly simulates Hyb, for A, and if B
is interacting according to ExptIPYEPE (A, 1), then B perfectly simulates Hyb, for
A. Thus, if A is able to distinguish between Hyb; and Hyb, with non-negligible
advantage, then B is able to break the security of IIpg with the same advantage.

O

Lemma 3.3 If Ils;, is perfectly correct, and IL,rg is 1-NA-SIM-secure, then for
all efficient adversaries A, |Pr[Hyby(A) = 1] — Pr[Hybs(A) = 1]| = negl(X).

Proof Follows by a similar argument as that used in the proof of Lemma3.1. O

Combining Lemmas 3.1 through 3.3, we conclude that the ACE scheme in
Construction 3.1 satisfies the no-read rule. O
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3.3 Proof of Theorem 3.3

Our proof proceeds via a sequence of hybrid experiments between an adversary
A and a challenger.

— Hyb,: This is the ACE security experiment Exptg\:::}‘lm(/\,()) from Defini-
tion 2.7. The challenger begins by sampling (Sig.vk, Sig.sk) « Sig.Setup(1*),
(PE.pp, PE.msk) « PE.Setup(1*), and (rFE.pp,rFE.msk) « rFE.Setup(1*).
Then, it generates the decryption key rFE.skp <« rFE.KeyGen(rFE.msk,
Fsig.vk,PE.pp); and sets sank = rFE.skr and msk = (7, Sig.sk, PE.msk, rFE.pp).
During the query phase, the challenger answers the adversary’s key-generation
and encryption queries exactly as in the real scheme. When the adversary
makes a challenge query on a ciphertext ct* and an identity id* € Z, the
challenger responds with ACE.Sanitize(sank, ct*).

— Hyb;: Same as Hyb, except the challenger responds to the adversary’s encryp-
tion queries with independently-generated predicate encryption ciphertexts.
Specifically, for each encryption query on a message m € M and identity ¢ €
Z, the challenger responds with a fresh encryption PE.Encrypt(PE.pp,i,m).
The rest of the experiment remains unchanged.

— Hyb,: Same as Hyb;, except the challenger constructs the public parame-
ters for the FE scheme, the sanitizer key, and its response to the challenge
query using the simulator § = (81, 82,83,84) for Il e from Definition 2.3.
Specifically, we make the following changes to the challenger:

e Setup: At the beginning of the game, instead of sampling rFE.pp
using rFE.Setup, the challenger instead runs the simulation algorithm
(rFE.pp,st’) « Si(1%). For the sanitizer key, the challenger computes
rFE.skp < Sa(st’, Fsig.vk,PE.pp)- The challenger samples (Sig.vk, Sig.sk) and
(PE.pp, PE.msk) as in the real scheme.

e Challenge query: For the challenge query (ct*,id*), the challenger first
invokes the simulator to obtain y* «— Sy(st/,ct*). If y* # L, it parses
y* = (i*,0%,m*), and checks if Sig.Verify(Sig.vk,i*,c*) L1 so, then
the challenger returns PE.Encrypt(PE.pp,i*, m*). In all other cases, the
challenger outputs L.

The rest of the experiment is identical to Hyb;.

— Hyb;: Same as Hyb,, except the challenger aborts during the challenge phase if
after computing y* «— S, (st’, ct*) and parsing y* = (i*,0*, m*), the following
two conditions hold:

e Adversary A did not previously make an encryption key-generation query
for identity i*.

e Sig.Verify(Sig.vk,i*,0%) = 1.

Otherwise, the challenger proceeds as in Hyb,.

— Hyb,: Same as Hyb;, except the challenger answers the challenge query with
a sanitized encryption of a random message. Specifically, when the challenger
receives a challenge query (ct*,id™), it computes y* «— Sy (st’, ct*) as usual and
returns L if y* = L. Otherwise, it parses y* = (i*,0%,m*) and checks that
Sig.Verify(Sig.vk,i*,0*) = 1 (outputting L if not). The challenger also checks
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the abort condition in Hyb,. If all the checks pass, the challenger samples a
message m’ <~ M and returns PE.Encrypt(PE.pp,id*,m’) to the adversary.
The rest of the experiment is unchanged.

— Hybs: Same as Hyb,, except we remove the abort condition from the chal-
lenger.

— Hybg: Same as Hybs, except the challenger samples the public parameters
for the FE scheme, the sanitizer key, and its response to the challenge query
using the real algorithms II,rg rather than the simulator. In particular, when
responding to the challenge query (ct*,id™), the challenger responds with
rFE.Decrypt(sank, rFE.Encrypt(rFE.pp, (id*, o, m’))) where m’ <~ M and ¢ is
a signature on id* under Sig.vk.

— Hyb,: Same as Hybg, except the challenger responds to the adversary’s encryp-
tion queries honestly as in the real scheme instead of responding with inde-
pendently generated predicate encryption ciphertexts. This corresponds to

the ACE security experiment Exptgxgi)‘lm()\, 1) from Definition 2.7.

Lemma 3.4 If Isiz is perfectly correct and Il rg is correct, then for all efficient
adversaries A, we have that |Pr[Hyby(A) = 1] — Pr[Hyb, (A) = 1]| = negl(}).

Proof The only difference between Hyb, and Hyb; is the way the challenger
responds to the adversary’s encryption queries. First, let sank = rFE.skp «—
rFE.KeyGen(rFE.pp, Fsig.vk,pEpp) be the sanitizer key generated by the chal-
lenger at setup. Suppose the adversary makes @ encryption queries on message-
identity pairs (mq,41),...,(mg,ig). In Hyby, the challenger responds to each
query (mg,ix) by first computing the signature oy <« Sig.Sign(Sig.sk, ;) and
the ciphertext cty, < rFE.Decrypt(rFE.skp, rFE.Encrypt(rFE.pp, (i, ok, mi))). By
correctness of II,pg, we have that

(rFE.pp, rFE.skr, {Ctk}ke[Q]) ~ (rFE.pp, rFE.skg, {Fsig4vk,PE4pp(7:k7 Ok, Mk; rk)}kE[Q]) s

where 7, <~ R. Since o}, is a signature on i, by perfect correctness of Isj; and
definition of Fsig.vk,pe.pp, the output distribution of Fsig.vk,pe.pp(ik, Ok, Mk; k) 1S
precisely a fresh encryption PE.Encrypt(PE.pp, ik, my). This is the distribution
in Hyb;. Note that we include the sanitizer key rFE.skr in the joint distributions
above because it is needed to simulate the response to the adversary’s challenge
query in Hyb, and Hyb;. a

Lemma 3.5 If II,gg is 1-NA-SIM-secure, then for all efficient adversaries A,
we have that |Pr[Hyb, (A) = 1] — Pr[Hyb,y(A) = 1]| = negl()).

Proof Suppose there exists an adversary 4 that can distinguish between Hyb,
and Hyb,. We use A to construct an algorithm B that can distinguish between
Realrr,q..4(1) and Idealr, 4.s5(1%). Algorithm B works as follows:

1. At the beginning of the game, algorithm B is given the public parameters
rFE.pp. It constructs the other components of the master secret key msk for
the ACE scheme exactly as in Hyb; and Hyb,.
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2. Algorithm B answers the encryption and key-generation queries exactly as in
Hyb, and Hyb,. These queries only depend on rFE.pp (and not rFE.msk and
sank, both of which are unspecified).

3. When A makes a challenge query (ct*,id*), algorithm B queries its decryption
oracle on the pair (Fsig.vk,pE.pp, Ct*) to obtain a value z*. It gives z* to the
adversary.

4. At the end of the game, algorithm B outputs whatever A outputs.

First, we note that B does not make any key queries or encryption queries, so
it is trivially admissible for the 1-NA-SIM security game. By construction, if
the public parameters, the key-generation oracle, the encryption oracle, and the
decryption oracle are implemented according to Realr,, 4(1%), then B perfectly
simulates Hyb, for A. In particular, we note that the sanitizer key sank is only
needed when responding to the challenge query, and so, the key sampled by the
decryption oracle in Realsr,. 4(1*) plays the role of sank. To conclude the proof,
we show that if the public parameters, the key-generation oracle, the encryption
oracle, and the decryption oracle are implemented according to Ideal ., A,S(lA),
then B perfectly simulates Hyb,. It suffices to check that the challenge query is
correctly simulated.

— In Hyb,, on a challenge query (ct*,id*), the challenger computes y*
Sy(st/,ct*). If y* = L, then the challenger responds with L. Otherwise, it
parses y* = (i*,0*,m*), and checks whether Sig.Verify(Sig.vk,i*,c*) L1
accepts. If so, it returns PE.Encrypt(PE.pp, i*, m*;r) where r < R. Otherwise,
it returns L. This logic precisely corresponds to evaluating Fsig vk,pe.pp(y™; 7).

— In the reduction, if the decryption oracle is implemented according to
Ideal7e.4.5(1%), then the oracle first computes y* « Sy(st’,ct*). If y* = L,
the oracle returns L. Otherwise, it returns Fsig.yk pe.pp(y™; ) where r <& R.
This is precisely the behavior in Hyb,.

We conclude that if the oracles are implemented according to Ideal,. 4,s(1%),
then B perfectly simulates Hyb, for A. The claim then follows by 1-NA-SIM
security of ITrg. a

Lemma 3.6 If Ils;, is existentially unforgeable, then for all efficient adversaries
A, we have that |Pr[Hyby(A) = 1] — Pr[Hybs(A) = 1]| = negl(}).

Proof Hybrids Hyb, and Hyb; are identical except for the extra abort condition
in Hyb;. Suppose there exists an adversary A that can distinguish between Hyb,
and Hyb; with non-negligible advantage . Then, it must be the case that A can
cause Hybs to abort with probability at least e (otherwise, the two experiments
are identical). We use A to construct an algorithm B that breaks the security of
Ilsig. Algorithm B works as follows:

1. At the beginning of the existential unforgeability game, B is given the ver-
ification key Sig.vk. Algorithm B chooses the parameters for the predicate
encryption scheme and the functional encryption scheme as in Hyb, and Hyb,.
It constructs the sanitizer key sank and msk as in Hyb, and Hyb;, except it
leaves Sig.sk unspecified in msk.
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2. During the query phase, B answers the encryption queries and the decryp-
tion key-generation queries exactly as in Hyb, and Hyb, (since none of these
queries depend on knowledge of Sig.sk). Algorithm B answers the encryption
key-generation and challenge queries as follows:

— Encryption key-generation queries: When A queries for an encryp-
tion key for an identity ¢ € Z, algorithm B submits ¢ to its signing oracle
and receives a signature o. It gives (rFE.pp,i,0) to A.

— Challenge queries: When 4 makes its challenge query (ct*,i*), algo-
rithm B runs the simulator y* « Sy(st’,ct*). If y* = L, then B replies
with L. Otherwise, it parses y* = (¢*, 0%, m*), and submits (i*,0*) as its
forgery in the existential unforgeability game.

By construction, B perfectly simulates Hyb, and Hyb for A. Thus, with proba-
bility at least ¢, algorithm A is able to produce a ciphertext ct* that causes Hyb,
to abort. This corresponds to the case where A never makes an encryption key-
generation query for identity ¢*, and yet, o* is a valid signature on #*. Since B
only queries the signing oracle when A makes an encryption key-generation
query, by assumption, B never queries the signing oracle on the message ¢*. In
this case, o* is a valid forgery for the signature scheme, and B is able to break
the security of the signature scheme with non-negligible advantage ¢. O

Lemma 3.7 If Ilpg is secure, then for all efficient adversaries A, we have that
|[Pr[Hybs(A) = 1] — Pr[Hyb,(A) = 1]| = negl(A).

Proof Suppose there exists an adversary A that can distinguish between Hybg
and Hyb,. We use A to construct an algorithm B that can break the security of
the predicate encryption scheme ITpg. Algorithm B works as follows:

1. At the beginning of the game, B receives the public parameters PE.pp from
the predicate encryption challenger. It samples (Sig.vk, Sig.sk), rFE.pp, and
sank exactly as in Hyb; and Hyb,. It constructs msk exactly as in Hyb; and
Hyb,, except it leaves PE.msk unspecified.

2. During the query phase, B answers the encryption queries and the encryption
key-generation queries exactly as in Hyb; and Hyb, (since they do not depend
on PE.msk). The decryption key-generation queries and the challenge queries
are handled as follows:

— Decryption key-generation oracle: When A queries for a decryp-
tion key for an identity 7 € Z, algorithm B submits the function
frj T — {0,1} (where fr ;(i) = m(i,7)) to the key-generation oracle
for the predicate encryption game, and receives the key PE.sky, .. It gives
PE.sks, ; to A.

— Challenge oracle: When A makes its challenge query (ct*,id"), algo-
rithm B first computes y* « Sy(st’, ct*). If y* = L, algorithm B responds
with L. Otherwise, it parses y* = (i*,0*,m*) and checks the abort con-
dition. If B does not abort, then it samples a message m’ <+ M, and
submits the pairs (i*,m*), (id*,m’) as its challenge query for the predi-
cate encryption security game. The predicate encryption challenger replies
with a challenge ciphertext z which 5 sends to A.
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First, we argue that B is admissible for the predicate encryption security game.
Since Hyb; and Hyb, behave identically if B aborts, it suffices to reason about
the case where the experiment does not abort. We analyze each case individually:

— If y* = L or Sig.Verify(Sig.vk,i*,0*) # 1, then the challenger responds with
L in both Hybs; and Hyb, (as does B).

— If Sig.Verify(Sig.vk,i*,0*) = 1, then A must have previously queried the
encryption key-generation oracle on identity ¢* (otherwise, the challenger in
Hybs; and Hyb, would have aborted). Since A is admissible for the no-write
security game, for all identities j € Z that A submits to the decryption key-
generation oracle, it must be the case that w(i*, ) = 0. Similarly, by admissi-
bility of A, it must have submitted its challenge identity id* to the encryption
key-generation oracle prior to making its challenge query. Thus, we also have
that m(id*, j) = 0. This means that each function fr ;, that B submits to the
predicate encryption challenger satisfies fr ;(i*) =0 = f, ;(id™).

We conclude that B is admissible. Moreover, if B is interacting according to
EXptIPYEE’B()\,O), then B perfectly simulates Hybs for A and if B is interacting
according to Expt%'i& (A, 1), then B perfectly simulates Hyb, for A. The lemma
follows. a

Lemma 3.8 If Ils;, is existentially unforgeable, then for all efficient adversaries
A, we have that |Pr[Hyb,(A) = 1] — Pr[Hybs(A) = 1]| = negl(}\).

Proof Follows by a similar argument as that used in the proof of Lemma3.6. O

Lemma 3.9 If II,rg is 1-NA-SIM-secure, then for all efficient adversaries A,
we have that |Pr[Hybs(A) = 1] — Pr[Hybg(A) = 1]| = negl()).

Proof Follows by a similar argument as that used in the proof of Lemma3.5. O

Lemma 3.10 If Ilsig is perfectly correct and IL,rg is correct, then for all efficient
adversaries A, |Pr[Hybg(A) = 1] — Pr[Hyb,(A) = 1]| = negl(}\).

Proof Follows by a similar argument as that used in the proof of Lemma3.4. O

Combining Lemmas 3.4 through 3.10, we conclude that the ACE scheme in
Construction 3.1 satisfies the no-write rule. O

4 Extensions

In this section, we describe several extensions to access control encryption that
follow immediately from our generic ACE construction in Sect.3. We present
these extensions primarily as ways of extending the schema of access control
encryption to provide increased flexibility, rather than as conceptually new prop-
erties achieved by our specific construction. Indeed, it is not too difficult to
modify the iO-based ACE construction from Damgard et al. [23] to also provide
these properties.
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4.1 Dynamic Policies

The access control encryption schema in Sect. 2.2 required that the access con-
trol policies be specified at setup time. In this section, we show how to modify
Construction 3.1 so that policies can be associated with individual decryption
keys rather than globally. This means that the access control policy no longer
has to be fixed at the time of system setup, and moreover, different access con-
trol policies can be implemented for each receiver. Thus, the system can support
new policies as new receivers are added to the system, and in addition, receivers
can update their keys (i.e., obtain new keys from the key distributor) when
the access control policies change. Notably, with this extension, changes to the
access control policy do not require updating or re-issuing the sender keys. More
formally, we would make the following two modifications to the schema of ACE
scheme from Sect. 2.2:

— ACE.Setup(1*) — (sank, msk): On input the security parameter \, the setup
algorithm outputs the sanitizer key sank and the master secret key msk.
Notably, the setup algorithm does not take the access control policy 7 as
input.

— ACE.DKGen(msk, j,m;) — dkj,,: On input the master secret key msk, the
receiver identity j € Z, and an access control policy m;: Z — {0,1} (the
access control policy takes in a sender identity ¢ € 7 and outputs a bit), the
decryption key-generation algorithm outputs a decryption key dk; .

The usual notion of access control encryption from Sect. 2.2 just corresponds to
the special case where the receiver-specific policy 7; is simply the global access
control policy 7 (specialized to the particular receiver identity j). The correctness
and security notions generalize accordingly.

Supporting dynamic policies. It is easy to modify Construction 3.1 to sup-
port dynamic policies according to the above schema. In fact, policy enforcement
in Construction 3.1 is already handled by embedding the access control policy
within the receiver’s decryption keys. Thus, supporting receiver-specific policies
mi: I — {0,1} in ACE.DKGen can be implemented by simply generating the
decryption key as dk; r, « PE.KeyGen(PE.msk,7;). The correctness and secu-
rity analysis remain unchanged.

4.2 Fine-Grained Sender Policies

As noted in Sect. 1.1, it is often desirable to support fine-grained sender policies
that depend not only on the sender’s identity, but also on the contents of the
sender’s message. In this section, we describe how to extend Construction 3.1
to support fine-grained sender policies. We also give a new security definition
(Definition 4.1) to capture the property that a sender should only be able produce
encryptions of messages that conform to its particular policy.

Schema changes. In the context of access control encryption, fine-grained
sender policies can be captured by modifying the schema for the encryption
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key-generation algorithm to additionally take in a sender policy (which can be
represented as a predicate on the message space of the encryption scheme). For-
mally, we write

— ACE.EKGen(msk, i,7) — ek; r: On input the master secret key msk, a sender
identity ¢ € Z, and a sender policy 7: M — {0,1}, the encryption key-
generation algorithm outputs an encryption key ek; ..

To support fine-grained sender policies, we first relax the correctness definition
(Definition 2.4) by requiring that correctness only holds for messages m € M
that satisfy the sender’s encryption policy. The no-read and no-write rules remain
largely unchanged (they are defined with respect to the “always-accept” sender
policy). To capture the property that a sender should only be able to encrypt
messages for which it is authorized, we introduce a new “soundness” requirement
that effectively states that a sender with encryption keys for some collection of
policies 71, ...,Tg cannot produce a new ciphertext ct that encrypts a message
m (with respect to some decryption key dk) where 7;,(m) = 0 for all k € [Q)].
More formally, we define the following soundness property:

Definition 4.1 (Soundness). Let IIace = (ACE.Setup, ACE.EKGen,
ACE.DKGen, ACE.Encrypt, ACE.Sanitize, ACE.Decrypt) be an ACE scheme over
an identity space T and a message space M. Let A be an efficient adversary

and m: I x T — {0,1} be an access control policy. For a security parameter \,

we define the soundness experiment Exptg:;nﬂﬂ()\) as follows. The challenger

begins by sampling (sank, msk) «— ACE.Setup(1*,7). The adversary A is then
given access to the following oracles:

- Encryption oracle. On input a message m € M, and a sender identity
1 € Z, the challenger first generates a sender key ek; «— ACE.EKGen(msk, ¢, 7),
where T(m) = 1 for all m € M. The challenger responds with the ciphertext
ct < ACE.Sanitize(sank, ACE.Encrypt(ek;, m)).

- Encryption key-generation oracle. On input a sender identity i € Z and
a sender policy 7: M — {0,1}, the challenger responds with an encryption
key ek; r «— ACE.EKGen(msk, i, 7).

— Decryption key-generation oracle. On input a receiver identity j € I,
the challenger responds with a decryption key dk; < ACE.DKGen(msk, j).

At the end of the experiment, adversary A outputs a ciphertext ct* € {0,1}*,
and a receiver identity 7* € . The output of the experiment is 1 if and only if
the following conditions hold:

— ACE.Decrypt(ACE.DKGen(msk, j*), ACE.Sanitize(sank, ct*)) = m* for some
m* € M.

= Let {(ik, i) } e |q) be the queries A makes to the sender key-generation oracle.
For all k € [Q] where 7(ix, j*) = 1, 7x(m™) = 0, where m™ is the decrypted
message defined above.
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We say that IIace is sound if for all policies w: T x T — {0,1}, and all efficient
adversaries A,

Pr Exptgfcugiﬂm()\) = 1} = negl(\).

Supporting sender policies. It is straightforward to extend Construction 3.1
to support arbitrary sender policies with little additional overhead. Concretely,
we make the following changes to Construction 3.1:

— Instead of a signature on the identity i, the encryption key for an identity
i € T and sender policy 7: M — {0,1} contains a signature on the tuple
(i,7), as well as a description of the policy. Namely, ek; = (rFE.pp,i,7,0)
where o < Sig.Sign(Sig.sk, (¢, 7)).

— An encryption of a message m € M under the encryption key ek; =
(rFE.pp, i, T,0) is an encryption of the tuple (i, 7,0, m) using IT,rg.

— The (randomized) sanitizer function Fsig .k pe.pp NOW takes as input the tuple
(i,7,0,m) and outputs PE.Encrypt(PE.pp, i, m) if Sig.Verify(Sig.vk, (i,7),0) =
1 and 7(m) = 1. Otherwise, Fsig.k,pe.pp Outputs L. The sanitizer key sank is
then a decryption key rFE.skg for the modified sanitizer function: rFE.skp «—
rFE.KeyGen(msk, Fsig vk, PE.pp)-

At a high level, the sanitizer key implicitly checks that a sender’s message is com-
pliant with the associated policy, and outputs a ciphertext that can be decrypted
only if this is the case. Here, the signature is essential in ensuring that the sender
is only able to send messages that comply with one of its sending policies. In
particular, we show the following theorem. We give the proof in the full version
of this paper [38].

Theorem 4.1 Suppose Ilsig is existentially unforgeable and Il e is a 1-NA-
SIM-secure functional encryption scheme for randomized functionalities (Defini-
tion 2.3). Then the access control encryption scheme from Construction 3.1 with
the above modifications satisfies soundness (Definition 4.1).

Relation to constrained PRFs and constrained signatures. This notion
of constraining the encryption key to only produce valid encryptions on messages
that satisfy the predicate is very similar to the concept of constrained pseudo-
random functions (PRF) [18,19,37] and constrained signatures [10,19,41]. Con-
strained PRFs (resp., constrained signatures) allow the holder of the secret key
to issue a constrained key for a predicate that only allows PRF evaluation on
inputs (resp., signing messages) that satisfy the predicate. When extending ACE
to support fine-grained sender policies, the encryption key-generation algorithm
can be viewed as giving out a constrained version of the corresponding sender
key. Our technique for constraining the encryption key by including a signature
of the predicate and having the encrypter “prove possession” of the signature
is conceptually similar to the technique used in [19] to construct functional sig-
natures and in [10] to construct policy-based signatures. In [10,19], this proof
of possession is implemented by having the user provide a non-interactive zero-
knowledge proof of knowledge of the signature, while in our setting, it is handled
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by having the user encrypt the signature under an FE scheme and giving out an
FE key (to the sanitizer) that performs the signature verification.
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