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Preface

ASIACRYPT 2017, the 23rd Annual International Conference on Theory and Appli-
cation of Cryptology and Information Security, was held in Hong Kong, SAR China,
during December 3–7, 2017.

The conference focused on all technical aspects of cryptology, and was sponsored
by the International Association for Cryptologic Research (IACR).

ASIACRYPT 2017 received 243 submissions from all over the world. The Program
Committee selected 67 papers (from which two were merged) for publication in the
proceedings of this conference. The review process was made by the usual
double-blind peer review by the Program Committee consisting of 48 leading experts
of the field. Each submission was reviewed by at least three reviewers, and five
reviewers were assigned to submissions co-authored by Program Committee members.
This year, the conference operated a two-round review system with rebuttal phase. In
the first-round review the Program Committee selected the 146 submissions that were
considered of value for proceeding to the second round. In the second-round review the
Program Committee further reviewed the submissions by taking into account their
rebuttal letter from the authors. All the selection process was assisted by 334 external
reviewers. These three-volume proceedings contain the revised versions of the papers
that were selected. The revised versions were not reviewed again and the authors are
responsible for their contents.

The program of ASIACRYPT 2017 featured three excellent invited talks. Dustin
Moody gave a talk entitled “The Ship Has Sailed: The NIST Post-Quantum Cryptog-
raphy ‘Competition’,” Wang Huaxiong spoke on “Combinatorics in Information-
Theoretic Cryptography,” and Pascal Paillier gave a third talk. The conference also
featured a traditional rump session that contained short presentations on the latest
research results of the field. The Program Committee selected the work “Identification
Protocols and Signature Schemes Based on Supersingular Isogeny Problems” by
Steven D. Galbraith, Christophe Petit, and Javier Silva for the Best Paper Award of
ASIACRYPT 2017. Two more papers, “Kummer for Genus One over Prime Order
Fields” by Sabyasachi Karati and Palash Sarkar, and “A Subversion-Resistant SNARK”
by Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, and Michał Zaja ̧c were
solicited to submit the full versions to the Journal of Cryptology. The program chairs
selected Takahiro Matsuda and Bart Mennink for the Best PC Member Award.

Many people have contributed to the success of ASIACRYPT 2017. We would like
to thank the authors for submitting their research results to the conference. We are very
grateful to all of the Program Committee members as well as the external reviewers for
their fruitful comments and discussions on their areas of expertise. We are greatly
indebted to Duncan Wong and Siu Ming Yiu, the general co-chairs, for their efforts and
overall organization. We would also like to thank Allen Au, Catherine Chan,
Sherman S.M. Chow, Lucas Hui, Zoe Jiang, Xuan Wang, and Jun Zhang, the local



Organizing Committee, for their continuous supports. We thank Duncan Wong and Siu
Ming Yiu for expertly organizing and chairing the rump session.

Finally, we thank Shai Halevi for letting us use his nice software for supporting all
the paper submission and review process. We also thank Alfred Hofmann, Anna
Kramer, and their colleagues for handling the editorial process of the proceedings
published at Springer LNCS.

December 2017 Tsuyoshi Takagi
Thomas Peyrin
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The Ship Has Sailed: the NIST Post-quantum
Cryptography “Competition”

Dustin Moody

Computer Security Division, National Institute of Standards and Technology

Abstract. In recent years, there has been a substantial amount of research on
quantum computers – machines that exploit quantum mechanical phenomena to
solve mathematical problems that are difficult or intractable for conventional
computers. If large-scale quantum computers are ever built, they will compro-
mise the security of many commonly used cryptographic algorithms. In par-
ticular, quantum computers would completely break many public-key
cryptosystems, including those standardized by NIST and other standards
organizations.

Due to this concern, many researchers have begun to investigate post-
quantum cryptography (also called quantum-resistant cryptography). The goal
of this research is to develop cryptographic algorithms that would be secure
against both quantum and classical computers, and can interoperate with
existing communications protocols and networks. A significant effort will be
required to develop, standardize, and deploy new post-quantum algorithms. In
addition, this transition needs to take place well before any large-scale quantum
computers are built, so that any information that is later compromised by
quantum cryptanalysis is no longer sensitive when that compromise occurs.

NIST has taken several steps in response to this potential threat. In 2015,
NIST held a public workshop and later published NISTIR 8105, Report on
Post-Quantum Cryptography, which shares NIST’s understanding of the status
of quantum computing and post-quantum cryptography. NIST also decided to
develop additional public-key cryptographic algorithms through a public stan-
dardization process, similar to the development processes for the hash function
SHA-3 and the Advanced Encryption Standard (AES). To begin the process,
NIST issued a detailed set of minimum acceptability requirements, submission
requirements, and evaluation criteria for candidate algorithms, available at http://
www.nist.gov/pqcrypto. The deadline for algorithms to be submitted was
November 30, 2017.

In this talk, I will share the rationale on the major decisions NIST has made,
such as excluding hybrid and (stateful) hash-based signature schemes. I will also
talk about some open research questions and their potential impact on the
standardization effort, in addition to some of the practical issues that arose while
creating the API. Finally, I will give some preliminary information about the
submitted algorithms, and discuss what we’ve learned during the first part of the
standardization process.

http://www.nist.gov/pqcrypto
http://www.nist.gov/pqcrypto


Combinatorics in Information-Theoretic
Cryptography

Huaxiong Wang

School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore

hxwang@ntu.edu.sg

Abstract. Information-theoretic cryptography is an area that studies crypto-
graphic functionalities whose security does not rely on hardness assumptions
from computational intractability of mathematical problems. It covers a wide
range of cryptographic research topics such as one-time pad, authentication
code, secret sharing schemes, secure multiparty computation, private informa-
tion retrieval and post-quantum security etc., just to mention a few. Moreover,
many areas in complexity-based cryptography are well known to benefit or stem
from information-theoretic methods. On the other hand, combinatorics has been
playing an active role in cryptography, for example, the hardness of Hamiltonian
cycle existence in graph theory is used to design zero-knowledge proofs. In this
talk, I will focus on the connections between combinatorics and information-
theoretic cryptography. After a brief (incomplete) overview on their various
connections, I will present a few concrete examples to illustrate how combi-
natorial objects and techniques are applied to the constructions and characteri-
zations of information-theoretic schemes. Specifically, I will show

1. how perfect hash families and cover-free families lead to better performance
in certain secret sharing schemes;

2. how graph colouring from planar graphs is used in constructing secure
multiparty computation protocols over non-abelian groups;

3. how regular intersecting families are applied to the constructions of private
information retrieval schemes.

Part of this research was funded by Singapore Ministry of Education under Research Grant
MOE2016-T2-2-014(S).
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Abstract. We provide a new identification protocol and new signature
schemes based on isogeny problems. Our identification protocol relies on
the hardness of the endomorphism ring computation problem, arguably
the hardest of all problems in this area, whereas the only previous scheme
based on isogenies (due to De Feo, Jao and Plût) relied on potentially
easier problems. The protocol makes novel use of an algorithm of Kohel-
Lauter-Petit-Tignol for the quaternion version of the �-isogeny problem,
for which we provide a more complete description and analysis. Our new
signature schemes are derived from the identification protocols using the
Fiat-Shamir (respectively, Unruh) transforms for classical (respectively,
post-quantum) security. We study their efficiency, highlighting very small
key sizes and reasonably efficient signing and verification algorithms.

1 Introduction

A recent research area is cryptosystems whose security is based on the dif-
ficulty of finding a path in the isogeny graph of supersingular elliptic curves
[6,8,14,21,22]. Unlike other elliptic curve cryptosystems, the only known quan-
tum algorithm for these problems, due to Biasse-Jao-Sankar [4], has exponential
complexity. Hence, additional motivation for the study of these cryptosystems
is that they are possibly suitable for post-quantum cryptography.

A large range of cryptographic primitives can now be based on isogeny
assumptions. The work of Charles-Goren-Lauter [6] gave a collision-resistant
hash function. Jao-De Feo [21] gave a key exchange protocol, De Feo-Jao-
Plût [14] gave a public key encryption scheme and an interactive iden-
tification protocol, Jao-Soukharev [22] gave an undeniable signature, and
Xi-Tian-Wang [41] gave a designated verifier signature. In this paper we focus
on identification protocols and signature schemes.

A first identification protocol based on isogeny problems was proposed by
De Feo-Jao-Plût [14], as an extension of the key exchange protocol of Jao-De
Feo [21]. This scheme has the advantage of being simple to describe and easy to
implement. On the other hand, it inherits the disadvantages of [21], in particular
c© International Association for Cryptologic Research 2017
T. Takagi and T. Peyrin (Eds.): ASIACRYPT 2017, Part I, LNCS 10624, pp. 3–33, 2017.
https://doi.org/10.1007/978-3-319-70694-8_1
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it relies on a non-standard isogeny problem using small isogeny degrees, reveals
auxiliary points, and uses special primes.

The fastest classical attack on this scheme has heuristic running time of
Õ(p1/4) bit operations, and the fastest quantum attack has running time of
Õ(p1/6). Several recent papers [17,19,29,32] have shown that revealing auxiliary
points may be dangerous in certain contexts. It is therefore highly advisable
to build cryptographic schemes on the most general, standard and potentially
hardest isogeny problems.

Our main contribution in this paper is a new identification protocol with
statistical zero-knowledge and computational soundness based on the endomor-
phism ring computation problem. The latter problem has been studied for some
time in computational number theory, and is equivalent to computing an isogeny
between two arbitrary given elliptic curves, without any restriction on the para-
meters and no extra information revealed. In contrast to the problem used in
De Feo-Jao-Plût’s protocol, this problem has heuristic classical complexity of
Õ(p1/2) bit operations, and quantum complexity Õ(p1/4).

Our identification protocol is very similar to the standard sigma protocol for
graph isomorphism.

The public key is a pair of elliptic curves (E0, E1) and the private key is
an isogeny φ : E0 → E1. To interactively prove knowledge of φ one chooses a
random isogeny ψ : E1 → E2 and sends E2 to the verifier. The verifier sends
a bit b. If b = 0 the prover reveals ψ. If b = 1 the prover reveals an isogeny
μ : E0 → E2. In either case, the verifier checks that the response is correct. The
interaction is repeated a number of times until the verifier is convinced that the
prover knows an isogeny from E0 to E1. However, the subtlety is that we cannot
just set μ = ψ ◦ φ, as then E1 would appear on the path in the isogeny graph
from E0 to E2 and so we would have leaked the private key. The crucial idea
is to use the algorithm of Kohel-Lauter-Petit-Tignol [26] to produce an isogeny
μ : E0 → E2 that is completely independent of φ. The mathematics behind
the algorithm of Kohel-Lauter-Petit-Tignol goes beyond what usually arises in
elliptic curve cryptography.

Our second contribution are secure digital signatures based on isogeny prob-
lems, which we construct using generic transforms from identification protocols.
We use the well-known Fiat-Shamir transform [15] to obtain security against
classical adversaries in the random oracle model. This is not known to be secure
against quantum adversaries1 so for post-quantum security we use another trans-
form due to Unruh [33]. We provide a full description of the two resulting signa-
ture schemes. Our signatures have very small key sizes, and reasonably efficient
signing and verification procedures. The full version of the paper also contains
two signature schemes based on the De Feo-Jao-Plût ID-scheme.2

1 To some extent, Fiat-Shamir signatures are in fact not believed to be secure against
quantum adversaries [33], although they can be proven to be secure under certain
conditions [34] which the schemes presented do not verify.

2 These signatures schemes were independently proposed by Yoo et al. [42]; our ver-
sions have smaller signature sizes for the same security guarantees.
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As an additional contribution, we carefully analyse the complexity of the
quaternion isogeny algorithm of Kohel-Lauter-Petit-Tignol [26] for powersmooth
norms, and we highlight a property of its output distribution (under a minor
change) that had remained unnoticed until now. This contribution is of inde-
pendent interest, and it might be useful for other schemes based on similar
isogeny problems.

Outline. The paper is organized as follows. In Sect. 2 we give preliminaries on
isogeny problems and random walks in isogeny graphs, as well as security defi-
nitions for identification protocols. In Sect. 3 we describe our new identification
protocol based on the endomorphism ring computation problem. In Sect. 4 we
present our signature schemes and summarize their main efficiency features. A
full version of this paper is available on the IACR eprint server [18].

2 Preliminaries

2.1 Hard Problem Candidates Related to Isogenies

We summarize the required background on elliptic curves. For a more detailed
exposition of the theory, see [31]. Let E,E′ be two elliptic curves over a finite
field Fq. An isogeny ϕ : E → E′ is a non-constant morphism from E to E′ that
maps the neutral element into the neutral element. The degree of an isogeny ϕ
is the degree of ϕ as a morphism. An isogeny of degree � is called an �-isogeny.
If ϕ is separable, then deg ϕ = #ker ϕ. If there is a separable isogeny between
two curves, we say that they are isogenous. Tate’s theorem is that two curves
E,E′ over Fq are isogenous over Fq if and only if #E(Fq) = #E′(Fq).

A separable isogeny can be identified with its kernel [40]. Given a subgroup G
of E, we can use Vélu’s formulae [39] to explicitly obtain an isogeny ϕ : E → E′

with kernel G and such that E′ ∼= E/G. These formulas involve sums over
points in G, so using them is efficient as long as #G is small. Kohel [25] and
Dewaghe [12] have (independently) given formulae for the Vélu isogeny in terms
of the coefficients of the polynomial defining the kernel, rather than in terms of
the points in the kernel. Given a prime �, the torsion group E[�] contains exactly
� + 1 cyclic subgroups of order �, each one corresponding to a different isogeny.

A composition of n separable isogenies of degrees �i for 1 ≤ i ≤ n gives
an isogeny of degree N =

∏
i �i with kernel a group G of order N . Conversely

any isogeny whose kernel is a group of smooth order can be decomposed as a
sequence of isogenies of small degree, hence can be computed efficiently. For any
permutation σ on {1, . . . , n}, by considering appropriate subgroups of G, one
can write the isogeny as a composition of isogenies of degree �σ(i). Hence, there
is no loss of generality in the protocols in our paper of considering chains of
isogenies of increasing degree.

For each isogeny ϕ : E → E′, there is a unique isogeny ϕ̂ : E′ → E, which
is called the dual isogeny of ϕ, and which satisfies ϕϕ̂ = ϕ̂ϕ = [deg ϕ]. If we
have two isogenies ϕ : E → E′ and ϕ′ : E′ → E such that ϕϕ′ and ϕ′ϕ are
the identity in their respective curves, we say that ϕ,ϕ′ are isomorphisms, and
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that E,E′ are isomorphic. Isomorphism classes of elliptic curves over Fq can be
labeled with their j-invariant [31, III.1.4(b)]. An isogeny ϕ : E → E′ such that
E = E′ is called an endomorphism. The set of endomorphisms of an elliptic
curve, denoted by End(E), has a ring structure with the operations point-wise
addition and function composition.

Elliptic curves can be classified according to their endomorphism ring. Over
the algebraic closure of the field, End(E) is either an order in a quadratic imag-
inary field or a maximal order in a quaternion algebra. In the first case, we say
that the curve is ordinary, whereas in the second case we say that the curve is
supersingular. The endomorphism ring of a supersingular curve over a field of
characteristic p is a maximal order O in the quaternion algebra Bp,∞ ramified
at p and ∞.

In the case of supersingular elliptic curves, there is always a curve in the
isomorphism class defined over Fp2 , and the j-invariant of the class is also an
element of Fp2 . A theorem by Deuring [11] gives an equivalence of categories
between the j-invariants of supersingular elliptic curves over Fp2 up to Galois
conjugacy in Fp2 , and the maximal orders in the quaternion algebra Bp,∞ up to
the equivalence relation given by O ∼ O′ if and only if O = α−1O′α for some α ∈
B∗

p,∞. Specifically, the equivalence of categories associates to every j-invariant a
maximal order that is isomorphic to the endomorphism ring of any curve with
that j-invariant. Furthermore, if E0 is an elliptic curve with End(E0) = O0,
there is a one-to-one correspondence (which we call the Deuring correspondence)
between isogenies ψ : E0 → E and left O0-ideals I. More details on the Deuring
correspondence can be found in Chap. 41 of [37].

We now present some hard problem candidates related to supersingular ellip-
tic curves, and discuss the related algebraic problems in the light of the Deuring
correspondence.

Problem 1. Let p, � be distinct prime numbers. Let E,E′ be two supersingular
elliptic curves over Fp2 with #E(Fp2) = #E′(Fp2) = (p + 1)2, chosen uniformly
at random. Find k ∈ N and an isogeny of degree �k from E to E′.

Problem 2. Let p, � be distinct prime numbers. Let E be a supersingular elliptic
curve over Fp2 , chosen uniformly at random. Find k1, k2 ∈ N, a supersingular
elliptic curve E′ over Fp2 , and two distinct isogenies of degrees �k1 and �k2 ,
respectively, from E to E′.

The hardness assumption of both problems has been used in [6] to prove
preimage and collision-resistance of a proposed hash function. Variants of the
first problem, in which some extra information is provided, were used by De
Feo-Jao-Plût [14] to build an identification scheme, a key exchange protocol and
a public-key encryption scheme. More precisely, the identification scheme in [14]
relies on Problems 3 and 4 below (which De Feo, Jao and Plût call the Compu-
tational Supersingular Isogeny and Decisional Supersingular Product problems).
In order to state them we need to introduce some notation. Let p be a prime of
the form �e1

1 �e2
2 · f ± 1, and let E be a supersingular elliptic curve over Fp2 . Let

{R1, S1} and {R2, S2} be bases for E[�e1
1 ] and E[�e2

2 ], respectively.
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Problem 3 (Computational Supersingular Isogeny). Let φ1 : E → E′ be
an isogeny with kernel 〈[m1]R1 + [n1]S1〉, where m1, n1 are chosen uniformly
at random from Z/�e1

1 Z, and not both divisible by �1. Given E′ and the values
φ1(R2), φ1(S2), find a generator of 〈[m1]R1 + [n1]S1〉.

The fastest known algorithms for this problem use a meet-in-the-middle argu-
ment. The classical and quantum algorithm have heuristic running time respec-
tively of Õ(�e1/2

1 ) and Õ(�e1/3
1 ) bit operations, which is respectively Õ(p1/4) and

Õ(p1/6) in the context of De Feo-Jao-Plût [14].

Problem 4 (Decisional Supersingular Product). Let E,E′ be supersingu-
lar elliptic curves over Fp2 such that there exists an isogeny φ : E → E′ of
degree �e1

1 . Fix generators R2, S2 ∈ E[�e2
2 ] and suppose φ(R2) and φ(S2) are

given. Consider the two distributions of pairs (E2, E
′
2) as follows:

– (E2, E
′
2) such that there is a cyclic group G ⊆ E[�e2

2 ] of order �e2
2 and E2

∼=
E/G and E′

2
∼= E′/φ(G).

– (E2, E
′
2) where E2 is chosen at random among the curves having the same

cardinality as E0, and φ′ : E2 → E′
2 is a random �e1

1 -isogeny.

The problem is, given (E,E′) and the auxiliary points (R2, S2, φ(R2), φ(S2)),
plus a pair (E2, E

′
2), to determine from which distribution the pair is sampled.

We stress that Problems 3 and 4 are potentially easier than Problems 1 and 2
because special primes are used and extra points are revealed. Furthermore, it is
shown in Sect. 4 of [17] that if End(E) is known and one can find any isogeny from
E to E′ then one can compute the specific isogeny of degree �e1

1 . The following
problem, on the other hand, offers better foundations for cryptography based on
supersingular isogeny problems.

Problem 5. Let p be a prime number. Let E be a supersingular elliptic curve
over Fp2 , chosen uniformly at random. Determine the endomorphism ring of E.

Note that it is essential that the curve is chosen randomly in this problem,
as for special curves the endomorphism ring is easy to compute. Essentially,
Problem 5 is the same as explicitly computing the forward direction of Deuring’s
correspondence. This problem was studied by Kohel in [25], in which an algo-
rithm to solve it was obtained, but with expected running time Õ(p). It was later
improved by Galbraith to Õ(p

1
2 ), under heuristic assumptions [16]. Interestingly,

the best quantum algorithm for this problem runs in time Õ(p
1
4 ), only providing

a quadratic speedup over classical algorithms [4]. This has largely motivated the
use of supersingular isogeny problems in cryptography.

Problem 6. Let p be a prime number. Let E,E′ be supersingular elliptic curves
over Fp2 , chosen uniformly at random.3 Find an isogeny E → E′.

3 The special case E′ = E occurs with negligible probability so it can be ignored.
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Heuristically, if we can solve Problem 1 or Problem 6, then we can solve
Problem 5. To compute an endomorphism of E, we take two random walks
φ1 : E → E1 and φ2 : E → E2, and solve Problem 6 on the pair E1, E2, obtaining
an isogeny ψ : E1 → E2. Then the composition φ̂2ψφ1 is an endomorphism of
E. Repeating the process, it is easy to find four endomorphisms that are linearly
independent, thus generating a subring of End(E), and this subring is likely to
be of small index so that the full ring can be recovered.

For the converse, suppose that we can compute the endomorphism rings of
both E and E′. The strategy is to compute a module I that is a left ideal of
End(E) and a right ideal of End(E′) of appropriate norm, and to translate it
back to the geometric setting to obtain an isogeny. This approach motivated
the quaternion �-isogeny algorithm of Kohel-Lauter-Petit-Tignol [26,28], which
solves the following problem:

Problem 7. Let p, � be distinct prime numbers. Let O0,O1 be two maximal
orders in Bp,∞, chosen uniformly at random. Find k ∈ N and an ideal I of
norm �k such that I is a left O0-ideal and its right order is isomorphic to O1.

The algorithm can be adapted to produce ideals of B-powersmooth norm
(meaning the norm is

∏
i �ei

i where the �i are distinct primes and �ei
i ≤ B) for

B ≈ 7
2 log p and using O(log p) different primes, instead of ideals of norm a power

of �. We will use that version in our signature scheme.
For completeness we mention that ordinary curve versions of Problems 1

and 5 are not known to be equivalent, and in fact there is a subexponential
algorithm for computing the endomorphism ring of ordinary curves [5], whereas
the best classical algorithm known for computing isogenies is still exponen-
tial. There is, however, a subexponential quantum algorithm for computing an
isogeny between ordinary curves [7], which is why the main interest in cryptog-
raphy is the supersingular case.

2.2 Random Walks in Isogeny Graphs

Let p ≥ 5 be a prime number. There are Np :=  p
12� + εp supersingular j-

invariants in characteristic p, with εp = 0, 1, 1, 2 when p = 1, 5, 7, 11 mod 12
respectively. For any prime � �= p, one can construct a so-called isogeny graph,
where each vertex is associated to a supersingular j-invariant, and an edge
between two vertices is associated to a degree � isogeny between the correspond-
ing vertices.

Isogeny graphs are regular4 with regularity degree � + 1; they are undirected
since to any isogeny from j1 to j2 corresponds a dual isogeny from j2 to j1.
Isogeny graphs are also very good expander graphs [20]; in fact they are optimal
expander graphs in the following sense:

4 One needs to pay close attention to the cases j = 0 and j = 1728 when counting
isogenies, but this has no effect on our general schemes.
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Definition 1 (Ramanujan graph). Let G be a k-regular graph, and let
k, λ2, · · · , λr be the eigenvalues of the adjacency matrix sorted by decreasing
order of the absolute value. Then G is a Ramanujan graph if

λ2 ≤ 2
√

k − 1.

This is optimal by the Alon-Boppana bound: given a family {GN} of k-regular
graphs as above, and denoting by λ2,N the corresponding second eigenvalue of
each graph GN , we have lim infN→∞ λ2,N ≥ 2

√
k − 1. The Ramanujan property

of isogeny graphs follows from the Weil conjectures proved by Deligne [10,30].
Let p and � be as above, and let j be a supersingular invariant in characteris-

tic p. We define a random step of degree � from j as the process of randomly and
uniformly choosing a neighbour of j in the �-isogeny graph, and returning that
vertex. For a composite degree n =

∏
i �i, we define a random walk of degree n

from j0 as a sequence of j-invariants ji such that ji is a random step of degree
�i from ji−1. We do not require the primes �i to be distinct.

The output of random walks in expander graphs converge quickly to a uni-
form distribution. In our signature scheme we will be using random walks of
B-powersmooth degree n, namely n =

∏
i �ei

i , with all prime powers �ei
i smaller

than some bound B, with B as small as possible. To analyse the ouptut distrib-
ution of these walks we will use the following generalization5 of classical random
walk theorems [20]:

Theorem 1 (Random walk theorem). Let p be a prime number, and let j0
be a supersingular invariant in characteristic p. Let j be the final j-invariant
reached by a random walk of degree n =

∏
i �ei

i from j0. Then for every j-
invariant j̃ we have

∣
∣
∣
∣Pr[j = j̃] − 1

Np

∣
∣
∣
∣ ≤

∏

i

(
2
√

�i

�i + 1

)ei

.

Proof: Let vtj be the probability that the outcome of the first t random steps is
a given vertex j, and let vt = (vtj)j be vectors encoding these probabilities. Let
v0 correspond to an initial state of the walk at j0 (so that v0j0 = 1 and v0j = 0 for
all i �= j0). Let A�i be the adjacency matrix of the �i-isogeny graph. Its largest
eigenvalue is k. By the Ramanujan property the second largest eigenvalue is
smaller than k in absolute value, so the eigenspace associated to λ1 = k is of
dimension 1 and generated by the vector u := (N−1

p )j corresponding to the
uniform distribution. Let λ2i be the second largest eigenvalue of A�i in absolute
value.

If step t is of degree �i we have vt = 1
kA�ivt−1. Moreover we have ||vt −u||2 ≤

1
kλ2i||vt−1 −u||2 since the eigenspace associated to k is of dimension 1. Iterating
on all steps we deduce

||vt − u||2 ≤
∏

i

| 1kλ2i|ei ||v0 − u||2 ≤
∏

i

| 1kλ2i|ei

5 Random walks theorems are usually stated for a single graph whereas our walks will
switch from one graph to another, all with the same vertex set but different edges.



10 S.D. Galbraith et al.

since ||v0 − u||22 = (1 − 1
Np

)2 + Np−1
Np

( 1
Np

)2 ≤ 1 − 2
Np

+ 2
N2

p
< 1. Finally we have

∣
∣
∣
∣Pr[j = j̃] − 1

Np

∣
∣
∣
∣ = ||vt − u||∞ ≤ ||vt − u||2 ≤

∏

i

| 1kλ2i|ei ≤
∏

i

(
2
√

�i

�i + 1

)ei

,

where we have used the Ramanujan property to bound the eigenvalues. �

In our security proof we will want the right-hand term to be smaller than
(p1+ε)−1 for an arbitrary positive constant ε, and at the same time we will want
the powersmooth bound B to be as small as possible. The following lemma shows
that taking B ≈ 2(1 + ε) log p suffices asymptotically.

Lemma 1. Let ε > 0. There is a function cp = c(p) such that limp→∞ cp =
2(1 + ε), and, for each p,

∏

�i prime
ei:=max{e|�ei<cp log p}

(
�i + 1
2
√

�i

)ei

> p1+ε.

Proof: Let B be an integer. We have

∏

�
ei
i <B

�i prime
ei maximal

(
�i + 1
2
√

�i

)ei

>
∏

�i<B
�i prime

(
�i + 1
2
√

�i

)

>
∏

�i<B
�i prime

(√
�i

2

)

.

Taking logarithms, using the prime number theorem and replacing the sum by
an integral we have

log
∏

�i<B
�i prime

(√
�i

2

)
=
∑

�i<B
�i prime

1

2
log �i −

∑

�i<B
�i prime

log 2 ≈ 1

2

∫ B

1

log x
1

log x
dx − B

log B
=

=
1

2
B − B

log B
≈ 1

2
B.

if B is large enough. Taking B = c log(p) where c = 2(1 + ε) gives 1
2B =

(1 + ε) log p = log(p1+ε) which proves the lemma. �

2.3 Identification Schemes

In this section we recall the standard cryptographic notions of identification
schemes. A good general reference is Chap. 8 of Katz [23]. A sigma-protocol
is a three-move proof of knowledge of a relation. The notions of honest veri-
fier zero-knowledge (HVZK) and 2-special soundness are standard and due to
lack of space we do not recall them. In the special case of “hard relations” (see
Definition 3 below), one can interpret a sigma-protocol as a public key identifi-
cation scheme. Good general references are the lecture notes of Damg̊ard [9] and
Venturi [35]. All algorithms below are probabilistic polynomial-time (PPT)
unless otherwise stated.
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An identification scheme is an interactive protocol between two parties (a
Prover and a Verifier), where the Prover aims to convince the Verifier that it
knows some secret key without revealing anything about it. This is achieved
by the Prover first committing to some value, then the Verifier sending a chal-
lenge, and finally the Prover providing some answer in accordance to the com-
mitment, the challenge and the secret. We use the terminology and notation
of Abdalla-An-Bellare-Namprempre [1] (also see Bellare-Poettering-Stebila [3]).
We also introduce a notion of “recoverability” which is implicit in the Schnorr
signature scheme and seems to be folklore in the field.

Definition 2. A canonical identification scheme is ID = (K,P,V, c) where:
K is a PPT algorithm (key generation) that on input a security parameter λ
outputs a pair (pk, sk); P is a PPT algorithm taking input sk and outputting
a message; c ≥ 1 is the (integer) bitlength of the challenge (a function of the
security parameter λ); V is a deterministic polynomial-time verification algo-
rithm that takes as input pk and a transcript and outputs 0 or 1. A transcript
of an honest execution of the scheme ID is the sequence: cmt ← P(pk, sk),
ch ← {0, 1}c, rsp ← P(pk, sk,cmt,ch). On an honest execution we require
that V(pk,cmt,ch,rsp) = 1.

An impersonator for ID is an algorithm I that plays the following game: I
takes as input a public key pk and a set of transcripts of honest executions of the
scheme ID; I outputs cmt, receives ch ← {0, 1}c and outputs rsp. We say that
I wins if V(pk,cmt,ch,rsp) = 1. The advantage of I is |Pr(I wins) − 1

2c |.
We say that ID is secure against impersonation under passive attacks if the
advantage is negligible for all PPT adversaries.

An ID-scheme ID is non-trivial if c ≥ λ.
An ID-scheme is recoverable if there is a deterministic polynomial-time algo-

rithm Rec such that for any transcript (cmt,ch,rsp) of an honest execution we
have

Rec(pk,ch,rsp) = cmt.

One can transform any 2-special sound ID scheme into a non-trivial scheme
by running t sessions in parallel, and this is secure for classical adversaries (see
Sect. 8.3 of [23]). We will not need this result in the quantum case. One first
generates cmti ← P(pk, sk) for 1 ≤ i ≤ t. One then samples ch ← {0, 1}ct

and parses it as chi ∈ {0, 1}c for 1 ≤ i ≤ t. Finally one computes rspi ←
P (pk, sk,cmti,chi). We define

V(pk,cmt1, · · · ,cmtt,ch,rsp1, · · · ,rspt) = 1

if and only if V(pk,cmti,chi,rspi) = 1 for all 1 ≤ i ≤ t. The successful cheating
probability is then improved to 1/2ct, which is non-trivial when t ≥ λ/c.

An ID-scheme is a special case of a sigma-protocol with respect to the relation
defined by the instance generator K as (pk, sk) ← K, where we think of sk as
a witness for pk. More generally, any sigma-protocol for a relation of a certain
type can be turned into an identification scheme.
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Definition 3. (Definition 6 of [35]; Sect. 6 of [9]; Definition 15 of [33], where
it is called “hard instance generator”) A hard relation R on Y ×X is one where
there exists a PPT algorithm K that outputs pairs (y, x) ∈ Y × X such that
R(y, x) = 1, but for all PPT adversaries A

Pr[(y, x) ← K(1λ);x′ ← A(y) : R(y, x′) = 1] ≤ negl(λ).

The following result is essentially due to Feige, Fiat and Shamir [13] and has
become folklore in this generality. For the proof see Theorem 5 of [35].

Theorem 2. Let R be a hard relation with generator K and let (P,V) be the
prover and verifier in a sigma-protocol for R with c-bit challenges for some inte-
ger c ≥ 1. Suppose the sigma-protocol is complete, 2-special sound, and honest
verifier zero-knowledge. Then (K,P,V, c) is a canonical identification scheme
that is secure against impersonation under (classical) passive attacks.

There are standard constructions to construct signature schemes from iden-
tification protocols. Due to lack of space we refer to Abdalla-An-Bellare-
Namprempre [1] (also see Bellare-Poettering-Stebila [3]). As discussed in the
full version of the paper, our ID-schemes are recoverable, and this allows us to
reduce the signature size compared with general constructions.

3 New Identification Protocol Based Endomorphism
Ring Computation

We now present our main result. The main advantage of our identification proto-
col compared with De Feo-Jao-Plût’s one is that security is based on the general
problem of computing the endomorphism ring of a supersingular elliptic curve,
or equivalently on computing an isogeny between two supersingular curves. In
particular, the prime has no special property and no auxiliary points are revealed.

3.1 High Level Description

Our identification protocol is similar to the graph isomorphism zero-knowledge
protocol, in which one reveals one of two graph isomorphisms, but never enough
information to deduce the secret isomorphism.

As recalled in Sect. 2.1, although it is believed that computing endomorphism
rings of supersingular elliptic curves is a hard computational problem in general,
there are some particular curves for which it is easy. The following construction is
explained in Lemma 2 of [26]. We choose E0 : y2 = x3+Ax over a field Fp2 where
p ≡ 3 (mod 4) and #E0(Fp2) = (p + 1)2. We have j(E0) = 1728. When p =
3 mod 4, the quaternion algebra Bp,∞ ramified at p and ∞ can be canonically
represented as Q〈i, j〉 = Q+Qi+Qj+Qk, where i2 = −1, j2 = −p and k := ij =
−ji. The endomorphism ring of E0 is isomorphic to the maximal order O0 with
Z-basis {1, i, 1+k

2 , i+j
2 }. Indeed, there is an isomorphism of quaternion algebras
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θ : Bp,∞ → End(E0) ⊗ Q sending (1, i, j,k) to (1, φ, π, πφ) where π : (x, y) →
(xp, yp) is the Frobenius endomorphism, and φ : (x, y) → (−x, ιy) with ι2 = −1.

To generate the public and private keys, we take a random isogeny (walk
in the graph) ϕ : E0 → E1 and, using this knowledge, compute End(E1). The
public information is E1. The secret is End(E1), or equivalently a path from E0

to E1. Under the assumption that computing the endomorphism ring is hard,
the secret key cannot be computed from the public key only.

Our scheme will require three algorithms, that are explained in detail in later
sections.

Translate isogeny path to ideal: Given E0,O0 = End(E0) and a chain of
isogenies from E0 to E1, to compute O1 = End(E1) and a left O0-ideal I
whose right order is O1.

Find new path: Given a left O0-ideal I corresponding to an isogeny E0 → E2,
to produce a new left O0-ideal J corresponding to an “independent” isogeny
E0 → E2 of powersmooth degree.

Translate ideal to isogeny path: Given E0,O0, E2, I such that I is a left
O0-ideal whose right order is isomorphic to End(E2), to compute a sequence
of prime degree isogenies giving the path from E0 to E2.

Figure 1 gives the interaction between the prover and the verifier. We define
L to be the product of all prime powers �e such that �e ≤ B = 2(1 + ε) log p for
an arbitrary ε > 0. In other words, let �1, . . . , �r be the list of all primes up to
B and let L =

∏r
i=1 �ei

i where �ei
i ≤ B < �ei+1

i . Note that r ≈ B/ log(B) and so
L ≈ p2(1+ε).

One can see that Fig. 1 gives a canonical, recoverable identification protocol,
but it is not non-trivial as the challenge is only one bit.

Fig. 1. New identification scheme
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The isogenies involved in this protocol are summarised in the following
diagram:

E0 E1

E2

ϕ

ψ
η

The two translation algorithms mentioned above in the b = 1 case will be
described in Sect. 3.4. They rely on the fact that End(E0) is known. The algo-
rithms are efficient when the degree of the random walk is powersmooth, and
for this reason all isogenies in our protocols will be of powersmooth degree. The
powersmooth version of the quaternion isogeny algorithm of Kohel-Lauter-Petit-
Tignol will be described and analysed in Sect. 3.3. The random walks are taken of
sufficiently large degree such that their output has close to uniform distribution,
by Theorem 1 and Lemma 1.

We repeat the process to reduce the cheating probability. The computational
hardness of Problem 5 remains essentially the same if the curves are chosen
according to a distribution that is close to uniform. We can then prove:

Theorem 3. Let λ be a security parameter and t ≥ λ. If Problem6 is computa-
tionally hard, then the identification scheme obtained from t parallel executions of
the protocol in Fig. 1 is a non-trivial, recoverable canonical identification scheme
that is secure against impersonation under (classical) passive attacks.

The advantage of this protocol over De Feo-Jao-Plût’s protocol is that it
relies on a more standard and potentially harder computational problem. In the
rest of this section we first give a proof of Theorem 3, then we provide details of
the algorithms involved in our scheme.

3.2 Proof of Theorem3

We shall prove that the sigma protocol in Fig. 1 is complete, 2-special sound
and honest verifier zero-knowledge. It follows that t parallel executions of the
protocol is non-trivial as well as being 2-special sound and HVZK. The theorem
will then follow from Theorem 2 and Problem6 (which implies that the relation
being proved is a hard relation).

Completeness. Let ϕ be an isogeny between E0 and E1 of B-powersmooth
degree, for B = O(log p). If the challenge received is b = 0, it is clear that the
prover knows a valid isogeny ψ : E1 → E2, so the verifier accepts the proof. If
b = 1, the prover follows the procedure described above and the verifier accepts.
In the next subsections we will show that this procedure is polynomial time.
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2-special soundness. Let (E0, E1) be a public key for the scheme. Suppose we
are given transcripts (cmt, {ch1,ch2}, {rsp1,rsp2}) for the single-bit scheme
such that V(pk,cmt,chi,rspi) = 1 for all i ∈ {1, 2}. Let E2 = cmt. Since
ch1 �= ch2 the responses rsp1 and rsp2 therefore give two isogenies ψ : E1 →
E2, η : E0 → E2.

Given these two valid answers an extraction algorithm can compute an
isogeny φ : E0 → E1 as φ = ψ̂ ◦ η, where ψ̂ is the dual isogeny of ψ. The
extractor outputs φ, which is a solution to Problem6. This is summarized in the
following diagram.

E0 E1

E2

ψ
η

Honest verifier zero-knowledge. We shall prove that there exists a proba-
bilistic polynomial time simulator S that outputs transcripts indistinguishable
from transcripts of interactions with an honest verifier, in the sense that the two
distributions are statistically close. Note that O0 = End(E0) is public informa-
tion so is known to the simulator. The simulator starts by taking a random coin
b ← {0, 1}.

– If b = 0, take a random walk from E1 of powersmooth degree L, as in the real
protocol, obtaining a curve E2 and an isogeny ψ : E1 → E2. The simulator
outputs the transcript (E2, 0, ψ).

E0 E1

E2

ψ

In this case, it is clear that the distributions of every element in the transcript
are the same as in the real interaction, as they are generated in the same way.
This is possible because, when b = 0, the secret is not required for the prover
to answer the challenge.

– If b = 1, take a random walk from E0 of powersmooth degree L to obtain a
curve E2 and an isogeny μ : E0 → E2, then proceed as in Step 3 of Fig. 1 to
produce another isogeny η : E0 → E2. The simulator outputs the transcript
(E2, 1, η).
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E0 E1

E2

μ

η

The reason to output η instead of μ is to ensure that the transcript distributions
are indistinguishable from the distributions in the real scheme.

We first study the distribution of E2 up to isomorphism. Let Xr be the output
of the random walk from E1 to produce j(E2) in the real interaction, and let Xs

be the output of the random walk from E0 to produce j(E2) in the simulation.
Let G be the set of all supersingular j-invariants, namely the vertex set of

the isogeny graph. Note that #G = Np ≈ p/12. By Theorem 1 and Lemma 1,
since the isogeny walks have degree L, we have, for any j ∈ G

∣
∣
∣
∣Pr(Xr = j) − 1

Np

∣
∣
∣
∣ ≤ 1

p1+ε
,

∣
∣
∣
∣Pr(Xs = j) − 1

Np

∣
∣
∣
∣ ≤ 1

p1+ε
.

Therefore
∑

j∈G
|Pr(Xr = j) − Pr(Xs = j)| ≤ Np · max

i
|Pr(Xr = j) − Pr(Xs = j)|

≤ Np ·
(

1
p1+ε

+
1

p1+ε

)

≈ 1
6pε

which is a negligible function of λ for any constant ε > 0. In other words,
the statistical distance, between the distribution of j(E2) in the real signing
algorithm and the simulation, is negligible. Now, since η is produced in the same
way from E0 and E2 in the simulation and in the real protocol execution, we have
that the statistical distance between the distributions of η is also negligible. This
follows from Lemma 2 in Sect. 3.3, which states that the output of the quaternion
path algorithm does not depend on the input ideal, only on its ideal class.

3.3 Quaternion Isogeny Path Algorithm

In this section we sketch the quaternion isogeny algorithm from Kohel-Lauter-
Petit-Tignol [26] and we evaluate its complexity when p = 3 mod 4. (The original
paper does not give a precise complecity analysis; it is only claimed that the
algorithm runs in heuristic probabilistic polynomial time.) This is the algorithm
used for the Find new path procedure in the identification scheme.

The algorithm takes as input two maximal orders O,O′ in the quaternion
algebra Bp,∞, and it returns a sequence of left O-ideals I0 = O ⊃ I1 ⊃ . . . ⊃ Ie

such that the right order of Ie is in the same equivalence class as O′. In addition,
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the output is such that the index of Ii+1 in Ii is a small prime for all i. The
paper [26] focusses on the case where the norm of Ie is �e for some integer e, but it
mentions that the algorithm can be extended to the case of powersmooth norms.
We will only describe and use the powersmooth version. In our application there
are some efficiency advantages from using isogenies whose degree is a product of
small powers of distinct primes, rather than a large power of a small prime.

Note that the ideals returned by the quaternion isogeny path algorithm (or
equivalently the right orders of these ideals) correspond to vertices of the path
in the quaternion algebra graph, and to a sequence of j-invariants by Deur-
ing’s correspondence. In the next subsection we will describe how to make this
correspondence explicit; here we focus on the quaternion algorithm itself.

An important feature of the algorithm is that paths between two arbitrary
maximal orders O and O′ are always constructed as a concatenation of two paths
from each maximal order to a special maximal order. As mentioned above, in
our protocol and the discussion below we fix O0 = 〈1, i, 1+k

2 , i+j
2 〉 where i2 = −1

and j2 = −p. General references for maximal orders and ideals in quaternion
algebras are [36,37].

We focus on the case where O = O0, and assume that instead of a second
maximal O′ we are given the corresponding left O0-ideal I as input (the two
variants of the problem are equivalent). This will be sufficient for our use of the
algorithm. We assume that I is given by a Z basis of elements in O0. Denote by
n(α) and n(I) the norm of an element or ideal respectively. The equivalence class
of maximal orders defines an equivalence class of O0-ideals, where two ideals I
and J are in the same class if and only if I = Jq with q ∈ B∗

p,∞. Therefore
our goal is, given a left O0-ideal I, to compute another left O0-ideal J with
powersmooth norm in the same ideal class. Further, in order to be able to later
apply Algorithm2, we require the norm of I to be odd (but the Find new
path algorithm also allows to find even norm ideals if desired). Without loss
of generality we assume there is no integer s > 1 such that I ⊂ sO0, and that
I �= O0. The algorithm proceeds as follows:

1. Compute an element δ ∈ I and an ideal I ′ = Iδ̄/n(I) of prime norm N .
2. Find β ∈ I ′ with norm NS where S is powersmooth and odd.
3. Output J = I ′β̄/N .

Steps 1 and 3 of this algorithm rely on the following simple result [26,
Lemma 5]: if I is a left O-ideal of reduced norm N and α is an element of
I, then Iᾱ/N is a left O-ideal of norm n(α)/N . Clearly, I and J are in the same
equivalence class.

To compute δ in Step 1, first a Minkowski-reduced basis {α1, α2, α3, α4} of I
is computed. To obtain Lemma 2 below we make sure that the Minkowski basis
is uniformly randomly chosen among all such bases6. Then random elements
δ =

∑
i xiαi are generated with integers xi in an interval [−m,m], where m is

determined later, until the norm of δ is equal to n(I) times a prime. A probable
prime suffices in this context (actually Step 1 is not strictly needed but aims

6 In [26] an arbitrary Minkowski basis was chosen.
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to simplify Step 2), so we can use the Miller-Rabin test to discard composite
numbers with a large probability.

Step 2 is the core of the algorithm and actually consists of the following
substeps:

2a. Find α such that I ′ = O0N + O0α.
2b. Find β1 ∈ O0 with odd powersmooth norm NS1.
2c. Find β2 ∈ Zj + Zk such that α = β1β2 mod NO0.
2d. Find β′

2 ∈ O0 with odd powersmooth norm S2 and λ ∈ Z
∗
N such that

β′
2 = λβ2 mod NO0.

2e. Set β = β1β
′
2.

In Step 2a we need α ∈ I ′ such that gcd(n(α), N2) = N . This is easily
achieved by taking α as a random small linear combination of a Minkowski basis,
until the condition is met. Note that if α ∈ I ′ is such that gcd(n(α), N2) = N
then J := O0N + O0α ⊆ I ′ and J �= O0N . Since the norm of O0N is N2 and N
is prime it follows that the norm of J is N and so J = I ′.

In Step 2b the algorithm actually searches for β1 = a + bi+ cj+ dk. A large
enough powersmooth number S1 is fixed a priori, then the algorithm generates
small random values of c, d until the norm equation a2 +b2 = S1 −p(c2 +d2) can
be solved efficiently using Cornacchia’s algorithm (for example, until the right
hand side is a prime equal to 1 modulo 4).

Step 2c is just linear algebra modulo N . As argued in [26] it has a negligible
chance of failure, in which case one can just go back to Step 2b.

In Step 2d the algorithm a priori fixes S2 large enough, then
searches for integers a, b, c, d, λ with λ /∈ NZ such that N2(a2 + b2) +
p

(
(λC + cN)2 + (λD + dN)2

)
= S2 where we have β2 = Cj + Dk. If necessary

S2 is multiplied by a small prime such that p(C2 +D2)S2 is a square modulo N ,
after which the equation is solved modulo N , leading to two solutions for λ. An
arbitrary solution is chosen, and then looking at the equation modulo N2 leads
to a linear space of solutions for (c, d) ∈ ZN . The algorithm chooses random
solutions until the equation

a2 + b2 =
(
S2 − p2

(
(λC + cN)2 + (λD + dN)2

))
/N2

can be efficiently solved with Cornacchia’s algorithm.
The overall algorithm is summarized in Algorithm1. We now prove two lem-

mas on this algorithm. The first lemma shows that the output of this algorithm
only depends on the ideal class of I but not on I itself. This is important in our
identification protocol, as otherwise part of the secret isogeny ϕ could potentially
be recovered from η. The second lemma gives a precise complexity analysis of
the algorithm, where [26] only showed probabilistic polynomial time complexity.
Both lemmas are of independent interest.

Lemma 2. The output distribution of the quaternion isogeny path algorithm
only depends on the equivalence class of its input. (In particular, the output
distribution does not depend on the particular ideal class representative chosen
for this input.)
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Proof: Let I1 and I2 be two left O0-ideals in the same equivalence class, namely
there exists q ∈ B∗

p,∞ such that I2 = I1q. We show that the distribution of the
ideal I ′ computed in Step 1 of the algorithm is identical for I1 and I2. As the
inputs are not used anymore in the remaining of the algorithm this will prove
the lemma.

In the first step the algorithm computes a Minkowski basis of its input, uni-
formly chosen among all possible Minkowski bases. Let B1 = {α11, α12, α13, α14}
be a Minkowski basis of I1. Then by multiplicativity of the norm we have that
B2 = {α11q, α12q, α13q, α14q} is a Minkowski basis of I2. The algorithm then
computes random elements δ =

∑
i xiαi for integers xi in an interval [−m,m].

Clearly, for any element δ1 computed when the input is I1, there corresponds
an element δ2 = δ1q computed when the input is I2. This is repeated until the
norm of δ is a prime times n(I). As n(I2) = n(I1)n(q) the stopping condition is
equivalent for both. Finally, an ideal I of prime norm is computed as Iδ̄/n(I).
Clearly when δ2 = δ1q we have I2δ̄2

n(I2)
= I1qq̄δ̄1

n(q)n(I1)
= I1δ̄1

n(I1)
. This shows that the

prime norm ideal computed in Step 1 only depends on the equivalence class of
the input. �

The expected running time given in the following lemma relies on several
heuristics related to the factorization of numbers generated following certain
distributions. Intuitively all these heuristics say that asymptotically those num-
bers behave in the same way as random numbers of the same size.

Lemma 3. Let X := max |cij | where cij ∈ Z are integers such that ci1 + ci2i +
ci3

1+k
2 + ci4

i+j
2 for 1 ≤ i ≤ 4 forms a Z-basis for I. If log X = O(log p) then

Algorithm1 heuristically runs in time Õ(log3 p), and produces an output of norm
S with log(S) ≈ 7

2 log(p) which is (72 + o(1)) log p-powersmooth.

Proof: The Minkowski basis can be computed in O(log2 X), for example using
the algorithm of [27].

For generic ideals the reduced norms of all Minkowski basis elements7 are in
O(

√
p) (see [26, Sect. 3.1]). In the first loop we initially set m = �log p�. Assuming

heuristically that the numbers N generated behave like random numbers we
expect the box to produce some prime number. The resulting N will be in
Õ(

√
p). For some non generic ideals the Minkowski basis may contain two pairs

of elements with norms respectively significantly smaller or larger than O(
√

p);
in that case we can expect to finish the loop for smaller values of m by setting
x3 = x4 = 0, and to obtain some N of a smaller size.

Rabin’s pseudo-primality test performs a single modular exponentiation
(modulo a number of size Õ(

√
p)), and it is passed by composite numbers with

a probability at most 1/4. The test can be repeated r times to decrease this
probability to 1/4r. Assuming heuristically that the numbers tested behave like
random numbers the test will only be repeated a significant amount of times
7 The reduced norm of an ideal element is the norm of this element divided by the

norm of the ideal.
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Algorithm 1. Find new path algorithm
Input: O0 = 〈1, i, 1+k

2
, i+j

2
〉, I a left O0-ideal. Output: J a left O0-ideal of pow-

ersmooth norm such that I = Jq for some q ∈ Bp,∞.
1: {α1, α2, α3, α4} Minkowski-reduced basis of I.
2: αi ← {±αi} for i = 1, 2, 3, 4.
3: loop
4: {x1, x2, x3, x4} ← [−m, m]4. Start with m = �log p	 and do exhaustive

search in the box, increasing m if necessary.

5: δ :=
∑4

i=1 xiαi

6: if N := n(δ)/n(I) is prime then return N, I ′ := Iδ/n(I)
7: Set an a priori powersmooth bound s = 7

2
log p, and odd integers S1, S2 with

S1 > p log p, S2 > p3 log p and s-powersmooth product S1S2.
8: Choose α ∈ I such that gcd(n(α), N2) = N , so that I ′ = O0N + O0α.
9: while a, b are not found do

10: c, d ← [−m, m]2, for m = 
√NS1/2p�. Increase S1 and s if necessary.
11: a, b ← Solution of a2 + b2 = NS1 − p(c2 + d2) (solve using Cornacchia’s

algorithm).
12: β1 = a + bi + cj + dk
13: Set β2 as a solution of α = β1β2 mod NO0 with β2 ∈ Zj + Zk.
14: Write β2 = Cj + Dk. Try small odd primes r in increasing order until we find one

such that
(

(C2+D2)S2r
N

)
= 1, and set S2 = S2r. Update s accordingly.

15: λ ← Solution of pλ2(C2 + D2) = S2 mod N .
16: while a, b are not found do
17: c, d ← Solution of pλ2(C2 + D2) + 2pλN(Cc + Dd) = S2 mod N2.
18: a, b ← Solution of a2+b2 =

(
S2 − p2

(
(λC + cN)2 + (λD + dN)2

))
/N2

(solve using Cornacchia’s algorithm). Increase S2 and s if necessary.

19: β′
2 = a + bi + cj + dk

20: J = I ′β1β′
2/N

on actual prime numbers, so in total it will be repeated O(log p) times. This
leads to a total complexity of Õ(log3 p) bit operations for the first loop using
fast (quasi-linear) modular multiplication.

The other two loops involve solving equations of the form x2 + y2 = M . For
such an equation to have solutions it is sufficient that M is a prime with M =
1 mod 4, a condition that is heuristically satisfied after 2 log M random trials.
Choosing S1 and S2 as in the algorithm ensures that the right-hand term of the
equation is positive, and (assuming this term behaves like a random number of
the same size) is of the desired form for some choices (c, d), at least heuristically.
Cornacchia’s algorithm runs in time Õ(log2 M), which is also Õ(log2 p) in the
algorithm. The pseudo-primality tests will require Õ(log3 p) operations in total,
and their cost will dominate both loops.

Computing β2 is just linear algebra modulo N ≈ Õ(
√

p) and this cost can
be neglected. The last two steps can similarly be neglected.

As a result, we get an overall cost of Õ(log3 p) bit operations for the whole
algorithm.
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Let s = 7
2 log p. We have n(J) = n(I ′)n(β1)n(β′

2)/N
2 so neglecting log log

factors log n(J) ≈ 1
2 log p+log p+3 log p− log p = 7

2 log p. We make the heuristic
assumption that log n(J) = (72 + o(1)) log p. Moreover heuristically

∏
p
ei
i <s pei

i ≈
(s)s/ log s ≈ p7/2+o(1) so we can expect to find S1S2 that is s-powersmooth and
of the correct size. �

3.4 Step-by-Step Deuring Correspondence

We now discuss algorithms to convert isogeny paths into paths in the quaternion
algebra, and vice versa. This will be necessary in our protocols as we are sending
curves and isogenies, whereas the process uses the quaternion isogeny algorithm.

All the isogeny paths that we will need to translate in our signature scheme
will start from the special j-invariant j0 = 1728. We recall (see beginning of
Sect. 3.1) that this corresponds to the curve E0 with equation y2 = x3 + x
and endomorphism ring End(E0) := 〈1, φ, 1+πφ

2 , π+φ
2 〉. Moreover there is an

isomorphism of quaternion algebras sending (1, i, j,k) to (1, φ, π, πφ).
For any isogeny ϕ : E0 → E1 of degree n, we can associate a left End(E0)-

ideal I = Hom(E1, E0)ϕ of norm n, corresponding to a left O0-ideal with the
same norm in the quaternion algebra Bp,∞. Conversely every left O0-ideal arises
in this way [25, Section 5.3]. In our protocol we will need to make this corre-
spondence explicit, namely we will need to pair up each isogeny from E0 with
the correct O0-ideal. Moreover we need to do this for “large” degree isogenies to
ensure a good distribution via our random walk theorem.

Translating an Ideal to an Isogeny Path. Let E0 and O0 = End(E0) be
given, together with a left O0-ideal I corresponding to an isogeny of degree n.
We assume I is given as a Z-basis {α1, . . . , α4}. The main idea to determine the
corresponding isogeny explicitly is to determine its kernel [40].

Assume for the moment that n is a small prime. One can compute generators
for all cyclic subgroups of E0[n], each one uniquely defining a degree n isogeny
which can be computed with Vélu’s formulae. A generator P then corresponds
to the basis {α1, . . . , α4} if and only if αj(P ) = 0 for all 1 ≤ j ≤ 4. To evaluate
α(P ) with α ∈ I and P ∈ E0[n], we first write α = (u + vi + wj + xk)/2, then
we compute P ′ such that [2]P ′ = P and finally we evaluate [u]P ′ + [v]φ(P ′) +
[w]π(P ′) + [x]π(φ(P ′)).

An alternative to trying all subgroups is to choose a pair {P1, P2} of gen-
erators for E0[n] and, for some α ∈ I, solve the discrete logarithm instance (if
possible) α(P2) = [x]α(P1). It follows that α(P2 − [x]P1) = 0 and so we have
determined a candidate point in the kernel of the isogeny. Both solutions are too
expensive for large n.

When n = �e the degree n isogeny can be decomposed into a composition of
e degree � isogenies. If I is the corresponding left O0-ideal of norm �e, then Ii :=
I mod O0�

i is a left O0-ideal of norm �i corresponding to the first i isogenies. Sim-
ilarly if P is a generator for the kernel of the degree �e isogeny then �e−i+1P is the
kernel of the degree �i isogeny corresponding to the first i steps. One can therefore
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Algorithm 2. Translating ideal to isogeny path
Input: O0 = End(E0) = 〈1, φ, 1+πφ

2
, π+φ

2
〉, I = 〈α1, α2, α3, α4〉, n =

∏r
i=1 �ei

i with
2 � n. Output: the isogeny corresponding to I through Deuring’s correspondence.

for i = 1, . . . , r do
Compute a basis {Pi1, Pi2} for the �ei

i torsion on E0

for j = 1, 2 do
Compute P ′

ij such that Pij = [2]P ′
ij

ϕ0 = [1]E0

for i = 1, . . . , r do
for k = 1, 2, 3, 4 do

αik = αk with its coefficients reduced modulo �ei
i .

Write αik = (uik + viki + wikj + xikk)/2.
for j = 1, 2 do

Pijk = [uik]P ′
ij + [vik]φ(P ′

ij) + [wik]π(P ′
ij) + [xik]π(φ(P ′

ij))
Solve ECDLP to compute Qi of order �ei

i such that αik(Qi) = 0 for all k
Compute φi = isogeny with kernel 〈ϕi−1(Qi)〉 (compute with Vélu’s formulae).
Set ϕi = φiϕi−1

Output ϕ0, φ1, . . . , φr.

perform the matching of ideals with kernels step-by-step with successive approx-
imations of I or P respectively. This algorithm is more efficient than the previous
one, but it still requires to compute �e torsion points, which in general may be
defined over a degree �e extension of Fp2 . To ensure that the �e torsion is defined
over Fp2 one can choose p such that �e | (p± 1) as in the De Feo-Jao-Plût proto-
cols; however for general p this translation algorithm will still be too expensive.

We solve this efficiency issue by using powersmooth degree isogenies in our
protocols. When n =

∏
i �ei

i with distinct primes �i, one reduces to the prime
power case as follows. For simplicity we assume that 2 does not divide n. The
isogeny of degree n can be decomposed into a sequence of prime degree isogenies.
For simplicity we assume the isogeny steps are always performed in increasing
degree order; we can require that this is indeed the case in our protocols. Let
ni :=

∏
j≤i �

ej

j . Using a Chinese Remainder Theorem-like representation, points
in E0[n] can be represented as a sequence of points in E0[�ei

i ]. If I is a left O0-ideal
of norm n and ϕ is the corresponding isogeny, then the kernel of I mod O0�

ei
i is

the �ei
i part of the kernel of ϕ, namely ker(I mod O0�

ei
i ) = [n/�ei

i ] ker ϕ. Given
a left O0-ideal I, Algorithm 2 progressively identifies the corresponding isogeny
sequence.

In our protocols we will have �ei
i = O(log n) = O(log p); moreover we will

be using O(log p) different primes. The complexity of Algorithm2 under these
assumptions is given by the following lemma. Note that almost all primes �i

are such that
√

B < �i ≤ B and so ei = 1, hence we ignore the obvious �-adic
speedups that can be obtained in the rare cases when �i is small.

Lemma 4. Let n =
∏

�ei
i with log n = O(log p) and �ei

i = O(log p). Then
Algorithm2 can be implemented to run in time Õ(log6 p) bit operations for the
first loop, and Õ(log4 p) for the rest of the algorithm.
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Proof: Without any assumption on p the �ei
i torsion points will generally be

defined over �ei
i degree extension fields, hence they will be of O(log2 p) size.

However the isogenies themselves will be rational, i.e. defined over Fp2 . This
means their kernel is defined by a polynomial over Fp2 . Isogenies over Fp2 of
degree d can be evaluated at any point in Fp2 using O(d) field operations in Fp2 .

Let d = �ei
i . To compute a basis of the d-torsion, we first factor the division

polynomial over Fp2 . This polynomial has degree O(d2) = O(log(p)2). Using
the algorithm in [24] this can be done in Õ(log4 p) bit operations. Since the
isogenies are defined over Fp2 , this will give factors of degree at most (d − 1)/2,
each one corresponding to a cyclic subgroup. We then randomly choose some
factor with a probability proportional to its degree, and we factor it over its
splitting field, until we have found a basis of the d-torsion. After O(1) random
choices we will have a basis of the d-torsion. Each factorization costs Õ(log5 p)
using the algorithm in [38], and verifying that two points generate the d-torsion
can be done with O(d) field operations. It then takes O(d) field operations to
compute generators for all kernels. As r = O(log p) we deduce that the first loop
requires Õ(log6 p) bit operations.

Computing Pijk involves Frobenius operations and multiplications by scalars
bounded by d (and so O(log log p) bits). This requires O(log p) field operations,
that is a total of Õ(log3 p) bit operations. Any cyclic subgroup of order �ei

i is
generated by a point Qi = aPi1 + bPi2, and the image of this point by αik is
aPi1k + bPi2k. One can determine the integers a, b by an ECDLP computation
or by testing random choices. There are roughly �ei

i = O(log p) subgroups, and
testing each of them requires at most O(log log p) field operations, so finding Qi

requires Õ(log p) field operations. Evaluating ϕi−1(Qi) requires O(log2 p) field
operations. Computing the isogeny φi can be done in O(log p) field operations
using Vélu’s formulae. As r = O(log p) we deduce that the second loop requires
Õ(log4 p) bit operations. �

We stress that in our signature algorithm, Algorithm2 will be run O(log p)
times. However the torsion points are independent of both the messages and
the keys, so they can be precomputed. Hence the “online” running time of
Algorithm 2 is Õ(log4 p) bit operations per execution.

Translating an Isogeny Path to an Ideal. Let E0, E1, . . . , Er be an isogeny
path and suppose ϕi : E0 → Ei is of degree ni =

∏
j≤i �

ej

j . We define I0 = O0.
Then for i = 1, . . . , r we compute an element αi ∈ Ii−1 and an ideal Ii =
Ii−1�

ei
i + Ii−1αi that corresponds to the isogeny ϕi = φi ◦ . . . ◦ φ1. (We stress

that the definition of Ii here differs from the previous subsection.) At step i, we
use a basis of Ii−1 to compute a quadratic form fi that is the norm form of the
ideal Ii−1. The roots of this quadratic form modulo �ei

i correspond to candidates
for αi and hence Ii. Note that this correspondence is not injective: a priori there
will be O((�ei

i )3) roots but there are only O(�ei
i ) corresponding ideals including

the correct one. Our strategy is to pick random solutions to the quadratic form
until the maps αi and φi have the same kernels.
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Algorithm 3. Translating isogeny path to ideal
Input: E0, E1, . . . , Er isogeny path, φi : Ei−1 → Ei of degree �ei

i . Output: the ideal
path I0, . . . , Ir corresponding to the isogeny path.
1: Let I0 = O0

2: for i = 1, . . . , r do
3: Find Qi of order �ei

i that generates the kernel of φi

4: Compute [β](Qi) for all β ∈ {1, i, i+j
2

, 1+k
2

}
5: Let {β1, β2, β3, β4} a basis of Ii−1

6: Let fi(w, x, y, z) = n(wβ1 + xβ2 + yβ3 + zβ4)
7: repeat
8: Pick a random solution to fi(w, x, y, z) = 0 mod �ei

i

9: Set αi = wβ1 + xβ2 + yβ3 + zβ4

10: until [αi](Qi) = 0
11: Set Ii = Ii−1�

ei
i + Ii−1αi

12: Perform basis reduction on Ii

In our protocols we will have �ei
i = O(log n) = O(log p); moreover we will

be using O(log p) different primes. The complexity of Algorithm3 under these
assumptions is given by the following lemma.

Lemma 5. Let n =
∏r

i=1 �ei
i with log n = O(log p) and �ei

i = O(log p), and
assume all the isogenies are defined over Fp2 . Then Algorithm3 can be imple-
mented to run in expected time Õ(log4 p) and the output is a Z-basis with integers
bounded by X such that log X = O(log p).

Proof: We remind that without any assumption on p the �ei
i torsion points

will generally be defined over �ei
i degree extension fields, hence they will be of

O(log2 p) size. Isogenies of degree d can be evaluated at any point using O(d)
field operations.

When the degree is odd the isogeny φi is naturally given by a polynomial ψi

such that the roots of ψi correspond to the x-coordinates of affine points in kerϕi.
To identify a generator Qi we first factor ψi over Fp2 . Using the algorithm in [38]
this can be done with Õ(log3 p) bit operations. We choose a random irreducible
factor with a probability proportional to its degree, we use this polynomial to
define a field extension of Fp2 , and we check whether the corresponding point
is of order �ei

i . If not we choose another irreducible factor and we repeat. We
expect to only need to repeat this O(1) times, and each step requires Õ(log p)
bit operations. So the total cost for line 3 is Õ(log3 p).

Step 4 requires O(log log p) field operations to compute a point Q′
i such that

[2]Q′
i = Qi. After that it mostly requires O(log p) field operations to compute

the Frobenius map. The total cost of this step is therefore Õ(log3 p).
Basis elements for all the ideals Ii appearing in the algorithm can be reduced

modulo O0n, hence their coefficients are of size log n = O(log p).
To compute a random solution to fi modulo �ei

i , we choose uniformly random
values for w, x, y, and when the resulting quadratic equation in z has solutions
modulo �ei

i we choose a random one. As �ei
i = O(log p) the cost of this step can
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be neglected. Computing [αi](Qi) requires O(log log p) operations over a field
of size O(log2 p). On average we expect to repeat the loop O(�ei

i ) = O(log p)
times, resulting in a total cost of Õ(log3 p). Computing each fi costs Õ(log p)
bit operations.

As r = O(log p) the total cost of the algorithm is Õ(log4 p).
One can check that all integers in the algorithm are bounded in terms of n,

and so coefficients are of size X where log X = O(log n) = O(log p). �

Recall that the condition log X = O(log p) is needed in Lemma 3.

4 Classical and Post-Quantum Signature Schemes

Digital signatures are one of the most fundamental cryptographic primitives.
It is well-known that they can be built from identification protocols using the
Fiat-Shamir transform [15]. The resulting signatures are existentially unforge-
able under adaptive chosen-message attacks (the standard security definition for
signatures) with respect to classical adversaries, in the random oracle model.
The transform is also secure against quantum adversaries under certain condi-
tions [34], however these conditions are met by neither De Feo-Jao-Plût’s pro-
tocol nor ours. In particular, soundness relies on computational assumptions in
both protocols. However, one can replace the Fiat-Shamir transform with an
alternative transform due to Unruh to achieve security against quantum adver-
saries [33].

This section explains the two signature schemes obtained from our new iden-
tification protocol. Due to lack of space we refer to Yoo et al. [42] and the full
version of the paper [18] for the two signature schemes obtained from the De
Feo-Jao-Plût ID-scheme.

4.1 Classical Signature Scheme Based on Endomorphism Ring
Computation

In this section we fully specify the signature scheme resulting from applying a
variant of the Fiat-Shamir transform to our new identification scheme based on
the endomorphism ring computation problem, and we analyse its efficiency.

Key Generation Algorithm: On input a security parameter λ generate a prime p
with 2λ bits, which is congruent to 3 modulo 4. Let E0 : y2 = x3+Ax over Fp be
supersingular, and let O0 = End(E0). Fix B, S1, S2 as small as possible8 such

that Sk :=
∏

i �
ek,i

k,i , �
ek,i

k,i < B, gcd(S1, S2) = 1, and
∏

(
2
√

�k,i

�k,i+1

)ek,i

< (p1+ε)−1.

Perform a random isogeny walk of degree S1 from the curve E0 with j-invariant
j0 = 1728 to a curve E1 with j-invariant j1. Compute O1 = End(E1) and the
ideal I corresponding to this isogeny. Choose a hash function H with t = 2λ bits
of output. The public key is pk = (p, j1,H) and the secret key is sk = O1, or
equivalently I.
8 The exact procedure is irrelevant here.
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Signing Algorithm: On input a message m and keys (pk, sk), recover the para-
meters p and j1. For i = 1, . . . , t, generate a random isogeny walk wi of degree
S2, ending at a j-invariant j2,i. Compute h := H(m, j2,1, . . . , j2,t) and parse the
output as t challenge bits bi. For i = 1, . . . , t, if bi = 1 use wi and Algorithm 3
of Sect. 3.4 to compute the corresponding ideal Ii and hence its right order
O2,i = End(E2,i), then use the algorithm of Sect. 3.3 on input IIi to compute
a “fresh” path between O0 and O2,i, and finally use Algorithm 2 to compute an
isogeny path w′

i from j0 to j2,i. If bi = 0 set zi := wi, otherwise set zi := w′
i.

Return the signature σ = (h, z1, . . . , zt).

Verification Algorithm: On input a message m, a signature σ and a public key pk,
recover the parameters p and j1. For each 1 ≤ i ≤ t one uses zi to compute the
image curve E2,i of the isogeny. Hence the verifier recovers the signature compo-
nents j2,i for 1 ≤ i ≤ t. The verifier then recomputes the hash H(m, j2,1, . . . , j2,t)
and checks that the value is equal to h, accepting the signature if this is the case
and rejecting otherwise.

We now show that this scheme is a secure signature.

Theorem 4. If Problem6 is computationally hard then the signature scheme is
secure in the random oracle model under a chosen message attack.

Proof: As shown in Sect. 3.2, if Problem6 is computationally hard then the
identification scheme (sigma protocol) has 2-special soundness and honest verifier
zero-knowledge. Theorem 2 therefore implies that the identification scheme is
secure against impersonation under passive attacks. It follows from Abdalla et
al. [1] that the signature scheme is secure in the random oracle model. �

Efficiency: As the best classical algorithm for computing the endomorphism ring
of a supersingular elliptic curve runs in time Õ(

√
p) one can take log p = 2λ.

By Theorem 1 and Lemma 1, taking B ≈ 2(1 + ε) log p ensures that the outputs
of random walks are distributed uniformly enough. Random walks then require
2(1 + ε) log p bits to represent, so signatures are

t +
t

2

(

2(1 + ε)�log p� +
7
2
�log p�

)

bits on average, depending on the challenge bits. For λ bits of security, we choose
t = 2λ, so the average signature length is approximately 2λ+(λ)(4(1+ε)λ+7λ) ≈
(11 + 4ε)λ2 ≈ 11λ2.

Private keys are 2(1 + ε) log p ≈ 4λ bits if a canonical representation of the
kernel of the isogeny between E0 and E1 is stored. This can be reduced to 2λ
bits for generic E1: if I is the ideal corresponding to this isogeny, it is sufficient
to store another ideal J in the same class, and for generic E1 there exists one
ideal of norm n ≈ √

p. To represent this ideal in the most efficient way, it is
sufficient to give n and a second integer defining the localization of I at every
prime factor � of n, for canonical embeddings of Bp,∞ into M2(Q�). This reduces
storage costs to roughly 2λ bits. Public keys are 3 log p = 6λ bits. A signature
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mostly requires t calls to the Algorithms of Sects. 3.3 and 3.4, for a total cost of
Õ(λ5). Verification requires to check O(λ) isogeny walks, each one comprising
O(λ) steps with a cost Õ(λ3) each when modular polynomials are precomputed,
hence a total cost of Õ(λ5) bit operations (under the same heuristic assumptions
as in Lemma 3).

Optimization with Non Backtracking Walks: In our description of the signature
scheme we have allowed isogeny paths to “backtrack”. We made this choice
to simplify the convergence analysis of random walks and because it does not
affect the asymptotic complexity of our schemes significantly. However in practice
at any concrete security parameter, it will be better to use non-backtracking
random walks as they will converge more quickly to a uniform distribution [2].

4.2 Post-Quantum Signature Scheme Based on Endomorphism
Ring Computation

We briefly describe the signature scheme arising from applying Unruh’s trans-
form to the identification protocol of Sect. 3.

Key Generation Algorithm: On input a security parameter λ generate a prime
p with 4λ bits, which is congruent to 3 modulo 4. Let E0 : y2 = x3 + Ax over
Fp be supersingular, and let O0 = End(E0). Set t = 3λ. Fix B, S1, S2 as in the
key generation algorithm of Sect. 4.1. Perform a random isogeny walk of degree
S1 from the curve E0 with j-invariant j0 = 1728 to a curve E1 with j-invariant
j1. Compute O1 = End(E1) and the ideal I corresponding to this isogeny.

Choose a hash function H : {0, 1}∗ → {0, 1}t. Let N ≈ 7
2 log p be an upper

bound for the bitlength of the representation of any isogeny path in the algo-
rithm. Let G : {0, 1}N → {0, 1}N be a hash function such that every element
has polynomially many preimages. The public key is pk = (p, j1,H,G) and the
secret key is sk = O1, or equivalently I.

Signing Algorithm: On input a message m and keys (pk, sk), recover the para-
meters p and j1. For i = 1, . . . , t generate a random isogeny walk wi of degree
S2, ending at a j-invariant j2,i.

For i = 1, . . . , t apply Algorithm 3 of Sect. 3.4 to compute the ideal Ii corre-
sponding to the isogeny path wi, then use the algorithm of Sect. 3.3 on input IIi

to compute a “fresh” ideal corresponding to a path between O0 and O2,i, and
finally use Algorithm 2 to compute an isogeny path w′

i from j0 to j2,i.
Compute gi,0 = G(wi) and gi,1 = G(w′

i) for 1 ≤ i ≤ t, where the bitstrings
wi and w′

i are padded with zeroes to become binary strings of length N . Com-
pute h := H(m, j1, j2,1, . . . , j2,t, g1,0, g1,1, . . . , gt,0, gt,1) and parse the output as t
challenge bits hi. For i = 1, . . . , t, if hi = 0 then set rspi = wi and if hi = 1 then
set rspi = w′

i. Return the signature σ = (h,rsp1, . . . ,rspt, g1,1−h1 , . . . , gt,1−ht
).

Verification Algorithm: On input a message m, a signature σ and a public key
pk, recover the parameters p and j1.
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For each 1 ≤ i ≤ t one uses rspi to compute the image curve E2,i of the
isogeny (if hi = 0 then rspi is a path from E1 and if hi = 1 then it is a path
from E0). Hence the verifier recovers the j-invariants j2,i for 1 ≤ i ≤ t.

The verifier then computes gi,hi
= G(rspi) for 1 ≤ i ≤ t (again padding to

N bits using zeros). Finally the verifier computes the hash value

h′ = H(m, j1, j2,1, . . . , j2,t, g1,0, g1,1, . . . , gt,0, gt,1).

If h′ = h then the verifier accepts the signature and otherwise rejects.
We now show that this scheme is a secure signature.

Theorem 5. If Problem6 is computationally hard then the signature scheme is
secure in the quantum random oracle model under a chosen message attack.

Proof: As shown in Sect. 3.2, if Problem6 is computationally hard then the
identification scheme (sigma protocol) has 2-special soundness and honest verifier
zero-knowledge. A result of Unruh [33] then implies that the signature scheme
is secure in the quantum random oracle model. �

Efficiency: For the same reasons as in the application of the Unruh transform
applied to the De Feo-Jao-Plût scheme, this signature scheme is less efficient
than its classical counterpart. Again, we only send half the values gi,j , since the
missing values can be recomputed by the signer.

The average signature size is t+t((log S1+N)/2)+tN , on the basis that half
the responses rspi can be represented using log S1 bits and half of them require
N bits. For λ bits of security, we choose log p = 4λ and t = 3λ, so that N = 14λ
and log S1 = (8 + ε)λ. Then the average signature size is approximately 75λ2.

4.3 Comparison

Tables 1 and 2 summarize the main efficiency features of four signature schemes
based either on De Feo-Jao-Plût or on our new identification scheme, and on Fiat-
Shamir or Unruh transforms. The numbers provided were obtained by optimizing
signature sizes first, then signing and verification time and finally key sizes; other
trade-offs are of course possible. The scheme based on the De Feo-Jao-Plût iden-
tification protocol and Unruh transform was discovered independently in [42];
the version we give incorporates optimizations that reduce the signature sizes
for the same security guarantees9. Signatures based on De Feo-Jao-Plût identi-
fication protocol are simpler and somewhat more efficient than signatures based
on our new identification protocol; however the latter have the advantage to
rely on more standard and potentially harder computational problems. Schemes
based on the Fiat-Shamir transform are more efficient than schemes based on
Unruh’s transform; however the latter provide security guarantees against quan-
tum adversaries.
9 Both signature sizes depend linearly on a parameter t which we fixed in a more

conservative manner than Yoo et al. (see the full version of the paper for a discussion
on this choice). With t = 2λ their signatures are 69λ2 bits and ours are 48λ2 bits,
and with t = 3λ their signatures are �103.5λ2	 bits and ours are 72λ2 bits. Tables 1
and 2 report values for t = 3λ.
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Table 1. Asymptotic efficiency of four signature schemes using De Feo-Jao-Plût and
our identification protocol, and Fiat-Shamir and Unruh transform, as a function of the
security parameter λ. All sizes are in bits and computation costs are in bit operations.

Private key size Public key size Signature size Signing costs Verification
costs

DFJP + FS 2λ 28λ 12λ2 Õ(λ3) Õ(λ3)

Sec 3 + FS 2λ 6λ 11λ2 Õ(λ5) Õ(λ5)

DFJP + U 3λ 42λ 72λ2 Õ(λ3) Õ(λ3)

Sec 3 + U 4λ 12λ 75λ2 Õ(λ5) Õ(λ5)

Table 2. Concrete efficiency of our signature schemes at security levels of 128 and 256
bits. Security level provided are against classical or quantum adversaries for schemes
based on the Fiat-Shamir or Unruh transforms respectively. All sizes are in bits.

128 bit 256 bit

Private key Public key Signature Private key Public key Signature

DFJP + FS 256 3584 196608 512 7168 786432

Sec 3 + FS 256 768 180224 512 1536 720896

DFJP + U 384 5376 1179648 768 10752 4718592

Sec 3 + U 512 1536 1228800 1024 3072 4915200

Table 1 and a quick comparison with RSA signatures suggest that isogeny-
based signatures schemes may be efficiency enough for practical use. Indeed for
RSA signatures, key sizes are cubic in the security parameter, and signing and
verification times are respectively quasi-quadratic and quasi-linear in the key
sizes (the latter assuming a small public key exponent is used), amounting to
Õ(λ3) and Õ(λ6). As for concrete parameters, key sizes are much smaller for
isogeny-based signatures than for RSA signatures and comparable to ECDSA
signatures. Further work in this area should aim at decreasing signature sizes.

5 Conclusion

We provided both a new identification protocol and new signature schemes based
on isogeny problems. While the only previous identification protocol based on
isogeny problems relied on special and potentially easier variants of these prob-
lems [14], our protocol is based on what is arguably the hardest problem in this
area, namely the endomorphism ring computation problem. A crucial ingredi-
ent for our protocol is the quaternion isogeny algorithm of Kohel-Lauter-Petit-
Tignol [26] in the powersmooth case, for which we provide a more complete
description and analysis. The signature schemes are derived using the Fiat-
Shamir and Unruh transforms, respectively for classical and post-quantum secu-
rity. We showed that they can have very small key sizes and reasonably efficient
signing and verification algorithms compared to RSA signatures.
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Isogeny problems are interesting in cryptography for their potential resistance
to quantum algorithms, but they are also rather new in cryptography. Among
all isogeny problems, the problem of computing the endomorphism ring of a
supersingular elliptic curve is the most natural one to consider from an algorith-
mic number theory point of view, and it has in fact been studied since Kohel’s
PhD thesis in 1996. Yet, even this problem is far from having received the same
scrutiny as more established cryptography problems like discrete logarithms or
integer factoring. We hope that this paper will encourage the community to
study its complexity.

Acknowledgement. We thank Dominique Unruh, David Pointcheval and Ali El Kaa-
farani for discussions related to this paper. Research from the second author was sup-
ported by a research grant from the UK government.

A Efficient Representations of Isogeny Paths and Other
Data

Our schemes require representing/transmitting elliptic curves and isogenies. In
this section we briefly explain how to represent certain mathematical objects
appearing in our protocol as bitstrings in a canonical way so that minimal data
needs to be sent and stored.

Let p be a prime number. Every supersingular j-invariant is defined over Fp2 .
A canonical representation of Fp2 -elements is obtained via a canonical choice of
degree 2 irreducible polynomial over Fp. Canonical representations in any other
extension fields are defined in a similar way. Although there are only about p/12
supersingular j-invariants in characteristic p, we are not aware of an efficient
method to encode these invariants into log p bits, so we represent supersingular
j-invariants with the 2 log p bits it takes to represent an arbitrary Fp2 -element.

Elliptic curves are defined by their j-invariant up to isomorphism. Hence,
rather than sending the coefficients of the elliptic curve equation, it suffices
to send the j-invariant. For any invariant j there is a canonical elliptic curve
equation Ej : y2 = x3 + 3j

1728−j x + 2j
1728−j when j �= 0, 1728, y2 = x3 + 1 when

j = 0, and y2 = x3+x when j = 1728. The last one is used in our main signature
scheme.

We now turn to representing chains E0, E1, . . . , En of isogenies φi : Ei−1 →
Ei each of prime degree �i where 1 ≤ i ≤ n. Here �i are always very small
primes. A useful feature of our protocols is that isogeny chains can always be
chosen such that the isogeny degrees are increasing �i ≥ �i−1. First we need to
discuss how to represent the sequence of isogeny degrees. If all degrees are equal
to a fixed constant � (e.g., � = 2) and if the length n is a fixed system parameter,
then there is nothing to send. If the degrees are different then the most compact
representation seems to be to compute and send

N =
n∏

i=1

�i.
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The receiver can recover the sequence of isogeny degrees from N by factoring
using trial division and ordering the primes by size. This representation is pos-
sible due to our convention that the isogeny degrees are increasing and since the
degrees are all small.

To represent the curves themselves in the chain of isogenies the simplest
method is to send all the j-invariants ji = j(Ei) ∈ Fp2 for 0 ≤ i ≤ n. This
requires 2(n+1) log2(p) bits. Note that the verifier is able to check the correctness
of the isogeny chain by checking that Φ�i(ji−1, ji) = 0 for all 1 ≤ i ≤ n, where Φ�i

is the �i-th modular polynomial. The advantage of this method is that verification
is relatively quick (just evaluating a polynomial that can be precomputed and
stored).

The other naive method is to send the x-coordinate of a kernel point Pi ∈ Eji

on the canonical curve. This requires large bandwidth.
A refinement of the second method is used in our signature scheme based on

the De Feo-Jao-Plût identification protocol, where � is fixed and one can publish
a point that defines the kernel of the entire isogeny chain. Precisely a curve E
and points R,S ∈ E[�n] are fixed. Each integer 0 ≤ α < �n defines a subgroup
〈R+[α]S〉 and hence an �n isogeny. It suffices to send α, which requires log2(�n)
bits. In the case � = 2 this is just n bits, which is smaller than all the other
suggestions in this section.

The full version of the paper contains a more thorough discussion of optimi-
sations and also an analysis of the complexity of computing isogeny chains.
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27. Nguyen, P.Q., Stehlé, D.: Low-dimensional lattice basis reduction revisited. ACM

Trans. Algorithms 5(4), 46 (2009)
28. Petit, C.: On the quaternion �-isogeny problem. Presentation slides from a talk at

the University of Neuchâtel, March 2015
29. Petit, C.: Faster algorithms for isogeny problems using torsion point images. In:

ASIACRYPT 2017 (2017, to appear). http://eprint.iacr.org/2017/571
30. Pizer, A.K.: Ramanujan graphs and Hecke operators. Bull. Am. Math. Soc. 23(1),

127–137 (1990)

https://doi.org/10.1007/BF02940746
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-662-53887-6_3
http://eprint.iacr.org/2016/1154
http://eprint.iacr.org/2016/1154
https://doi.org/10.1007/978-3-319-59879-6_6
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-319-11659-4_10
http://eprint.iacr.org/2017/571


Identification Protocols and Signature Schemes 33

31. Silverman, J.H.: The Arithmetic of Elliptic Curves. Springer, Heidelberg (1986)
32. Ti, Y.B.: Fault attack on supersingular isogeny cryptosystems. In: Lange, T.,

Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 107–122. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-59879-6 7

33. Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random ora-
cle model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 755–784. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46803-6 25

34. Unruh, D.: Post-quantum security of Fiat-Shamir. In: ASIACRYPT 2017 (2017,
to appear). https://eprint.iacr.org/2017/398

35. Venturi, D.: Zero-knowledge proofs and applications. University of Rome, Lecture
Notes (2015)
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Abstract. A multivariate quadratic public-key cryptography (MQ-
PKC) is one of the most promising alternatives for classical PKC after
the eventual coming of a quantum computer. We propose a new MQ-
signature scheme, ELSA, based on a hidden layer of quadratic equations
which is an important role in dramatically reducing the secret key size
and computational complexity in signing. We prove existential unforge-
ability of our scheme against an adaptive chosen-message attack under
the hardness of the MQ-problem induced by a public key of ELSA with a
specific parameter set in the random oracle model. We analyze the secu-
rity of ELSA against known attacks and derive a concrete parameter
based on the security analysis. Performance of ELSA on a recent Intel
processor is the fastest among state-of-the-art signature schemes includ-
ing classical ones and Post-Quantum ones. It takes 6.3µs and 13.39µs for
signing and verification, respectively. Compared to Rainbow, the secret
size of the new scheme has reduced by a factor of 88% maintaining the
same public key size.

Keywords: Isomorphism of polynomials problem · Direct attack · Exis-
tential unforgeability · Key recovery attack · Multivariate-quadratic
problem

1 Introduction

Online banking, e-commerce, mobile communication, and cloud computing
depend fundamentally on the security of the underlying cryptographic algo-
rithms. Public-key cryptography (PKC) is particularly crucial since they pro-
vide digital signatures and establish secure communication without requiring
in-person meetings. In 1996, Shor [49] proposed a quantum algorithm that
solves the integer factorization problem and the discrete logarithm problem in
finite fields and on elliptic curves in polynomial time. Thus, the existence of
a sufficiently large quantum computer would be a real-world threat to break
RSA, Diffie-Hellman key exchange, DSA and ECDSA the most widely used
PKC in practice. There are four well-known classes of cryptographic primitives
that are believed to remain secure in the presence of a quantum computer:
c© International Association for Cryptologic Research 2017
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code-based cryptography (McEliece encryption [37]), lattice-based cryptogra-
phy (NTRU [30]), hash-based cryptography (Merkle’s hash-tree signatures [38]),
and multivariate quadratic (MQ) cryptography (HFEv- [40], UOV [33]). These
cryptographic primitives have been resist classical and quantum cryptanalysis
which has inspired widespread confidence in their suitability as a post-quantum
primitive.

MQ-PKC is based on the hardness of solving large systems of multivariate
quadratic equations, called MQ-problem which is known to be NP-complete. To
construct MQ-PKC, it needs a way to hide a trapdoor. In MQ-PKC, a public key
is a system of multivariate quadratic polynomials and a trapdoor is hidden in
secret affine layers using the ASA (affine-substitution-affine) structure. A long-
standing challenge is to design PKC based on symmetric cipher components
which are similar to those used in mainstream block ciphers such as AES. Solving
this appealing but difficult challenge would not only increase the diversity in
PKC, but might also help reducing the considerable performance gap between
PKC and symmetric cryptography. One of the directions was to design public-
key schemes from symmetric components. A typical symmetric cipher is built
from layers of affine transformations (A) and S-boxes (S). This has been the
mainstream of MQ-PKC. The security of the ASA structure relies on the hardness
of the isomorphism-of-polynomials (IP) problem [40].

Several new ideas to build MQ-schemes from symmetric cipher components
were recently introduced by Biryukov et al. [10] at Asiacrypt 2014. They used the
so-called ASASA structure: combining two quadratic mappings S by interleaving
random affine layers A. With quadratic S layers, the overall scheme has degree 4,
so the polynomial description provided by the public key remains of reasonable
size. This is very similar to the 2R scheme by Patarin and Goubin [43], which is
broken by several attacks [8,18], including a powerful decomposition attack [25].
At Crypto 2015 and Asiacrypt 2015, Biryukov et al.’s two public-key encryption
schemes are broken by key recovery attacks [27,39].

Since the first MQ-encryption scheme was proposed by Imai and Matsumoto
[36], a number of MQ-schemes in this MQ + IP paradigm have been proposed,
i.e., these MQ-schemes are not solely based on the MQ-Problem, but also on
some variants of the IP problem. Most of the MQ-schemes have been broken
due to the uncertainty of the IP problem. There are only two exceptions from
the MQ-IP paradigm: HFEv- variants [42,45] and Unbalanced Oil-and-Vinegar
(UOV) variants [16,33] as signature schemes. MQ-schemes require simplicity of
operations (matrices and vectors) and small fields avoid multiple-precision arith-
metic. So, they require only modest computational resources, which makes them
attractive for the use on low cost devices such as smart cards [11,12]. In par-
ticular, MQ-signature schemes in the MQ + IP paradigm are superior to other
competitors in terms of performance and signature size. Despite these advan-
tages, MQ-schemes in the MQ + IP paradigm has two main problems: (i) it
has relatively large key sizes and (ii) all the schemes in the MQ + IP paradigm
have been proposed with actual parameters for practical, but they have no secu-
rity reduction to the hardness of the MQ-problem. The reason for this is that
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they require a hidden structure which relies on the hardness of the IP problem.
Moreover, cryptanalysis results of many MQ-schemes have shown that the IP-
problem relies on the MinRank problem [14,24].

In the last years, a few researchers started designing provably secure MQ-
schemes based on the hardness of random instances of the MQ-problem. At
PKC 2012, Huang et al. [31] proposed a public-key encryption scheme with
a security reduction to the hardness of solving a set of quadratic equations
whose coefficients of highest degree are chosen according to a discrete Gaussian
distributions. The other terms are chosen uniformly at random. Such a problem
is a variant of the classical problem of solving a system of non-linear equations
(PoSSo, PoSSo problem with degree 2 equations is the MQ-problem), which is
known to be hard for random systems. They claimed that their variant is not
easier than solving the PoSSo problem for random instances. At PKC 2014,
Albrecht et al. [2] showed that Huang et al.’s new problem is reduced to an
easy instance of the Learning With Errors problem. They concluded that one
cannot find parameters for a secure and practical scheme: a public-key of at
least 1.03 GB is required to achieve 80-bit security against the simplest of their
attacks.

Another approach is to construction of an MQ-signature scheme from an
identification scheme (IDS) based on the MQ-problem via the Fiat-Shamir trans-
form. The resulting scheme [1] obtained from Sakumoto et al.’s IDS based on the
MQ-problem [47] via the Fiat-Shamir transform is the first provably secure MQ-
signature scheme, which solely relies on the MQ-problem. Recently, Chen et al.
[13] implemented the resulting signature scheme, MQDSS in [1]. MQDSS solves
the problem of large key sizes of MQ-PKC by removing the dependence of the
IP-problem, but loses the most significant advantages of MQ-ones, fast perfor-
mance and short signature size. Like this, the history of the design of public-key
schemes show that the stronger security arguments the larger performance gap.
Therefore, it still remains an open problem to design a practical MQ-signature
scheme with a security reduction to the MQ-problem.

For most practical purposes, one still requires a signature scheme that is
sufficiently fast and has a short signature size. There have been several attempts
to design MQ-signature schemes with higher performance. Gligoroski et al. [28]
proposed an MQ-signature scheme, MQQ-SIG, based on multivariate quadratic
quasigroups (MQQ). MQQ-SIG is the shortest secret key among MQ-ones and
the fastest in signing among known signature schemes, but it requires a huge
public key which is about 5.7 times and 12,336 times larger than that of Rainbow
and ECDSA, respectively. At PKC 2015, Faugère et al. [23] mounted polynomial-
time key-recovery attacks on all known constructions based on MQQ. They broke
an MQQ-SIG instance of an 80-bit security level in less than 2 days. An enhanced
version of the Tame Triangular System scheme (enTTS) [15,52] uses very sparse
polynomials which make enTTS very efficient in terms of secret key size and
signing time, but its public key size is much bigger than other MQ-ones. In this
paper, we provide a solution to the two problems of MQ-schemes in the MQ + IP
paradigm by proposing a existential unforgeable MQ-signature scheme with a
highly optimized practicability for both performance and signature size.
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Our Contributions. We propose a new MQ-signature scheme, ELSA, with
faster performance and shorter secret key.

– A New Signature Scheme. Our signature scheme is based on a hidden
layer of quadratic equations. This method makes it possible to remove the
use of the Gaussian elimination by reducing the complexity of signing from
O(n3) to O(n2). It plays an important role in dramatically reducing the secret
key size and computational cost in signing.

– High Speed for Both Signing and Verification. Our scheme is the fastest
public-key signature scheme for both signing and verification among the state-
of-the-art signature schemes including classical ones and Post-Quantum ones.
We implement our scheme for a secure and optimal parameter at a 128-bit
security level. Signing of ELSA is about 3.2 times and hundreds of times faster
than that of Rainbow and MQDSS, respectively. Also, signing and verification
of ELSA is about 17.2 times and 2.3 times faster than those of BLISS-BI,
respectively, and signature size of BLISS-BI is about 8.9 times larger than
that of ELSA, where BLISS-BI is currently the most efficient lattice-based
signature scheme.

– Shorter Secret Key Size. Compared to Rainbow, the secret key size of
ELSA has reduced by a factor of 88% maintaining the same public key size.
Compared to enTTS, the public key size of ELSA have reduced by a factor
of 40%.

– Existential Unforgeability. We prove existential unforgeability of ELSA
against an adaptive chosen-message attack under the hardness of the MQ-
problem induced by a public key of ELSA with a specific parameter set in
the random oracle model.

Organization. The rest of the paper is organized as follows. In Sect. 2, we
propose a new MQ-signature scheme, ELSA. In Sect. 3, we analyze the security
of our scheme against all known attacks. In Sect. 4, we give a security proof of
ELSA under the hardness of the MQ-problem in the random oracle model. We
evaluate performance of our scheme for a secure and optimal parameter at the
128-bit security level and compare it to the state-of-the-art signature schemes in
Sect. 5. We conclude in Sect. 6.

2 A New MQ-Signature Scheme

Here, we propose a new MQ-signature scheme based on a hidden layer of
quadratic equations.

Let Fq be a finite field with elements q. A multivariate quadratic system
P = (P(1), · · · ,P(m)) of m equations in n variables is defined by

P(k)(x1, · · · , xn) =
n∑

i=1

n∑

j=i

p
(k)
ij xixj +

n∑

i=1

p
(k)
i xi + p

(k)
0 ,

for k = 1, · · · ,m, and p
(k)
ij , p

(k)
i , p

(k)
0 ∈R Fq. The main idea for the construction

of MQ-signature schemes is to choose a system F : Fn
q → F

m
q of m quadratic
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polynomials in n variables which can be easily inverted. We call F a central
map. After that one chooses two affine or linear invertible maps S: Fm

q → F
m
q

and T : Fn
q → F

n
q to hide the structure of the central map F in the public key.

A public key is the composed quadratic map P = S ◦ F ◦ T which is supposed
to be hardly distinguishable from a random system and therefore be difficult to
invert. The secret key consists of (S,F , T ) which allows to invert P.

2.1 Our Construction

To construct a new central map for an MQ-signature scheme, we need to define
the following four index sets as

L = {1, · · · , l}, K = {l + 1, · · · , l + k}, R = {l + k + 1, · · · , l + k + r},

U = {l + k + r + 1, · · · , l + k + r + u},

where |L| = l, |K| = k, |R| = r, and |U | = u. A central map is a multivari-
ate quadratic system F = (F (1), · · · ,F (m)) of m equations and n variables
defined by
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F(1)
(x) = L1(xL+K+R)R11(xL+K) + · · · + Lr(xL+K+R)R1r(xL+K) + Φ1(xL),

.

.

.

F(k)
(x) = L1(xL+K+R)Rk1(xL+K) + · · · + Lr(xL+K+R)Rkr(xL+K) + Φk(xL),

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F(k+1)
(x) = L1(xL+K+R)R

′
11(x) + · · · + Lr(xL+K+R)R

′
1r(x) + Ψ1(xL+K) + L

′
1(xL+K+R),

.

.

.

F(k+u)
(x) = L1(xL+K+R)R

′
u1(x) + · · · + Lr(xL+K+R)R

′
ul(x) + Ψu(xL+K) + L

′
u(xL+K+R),

where xL = (x1, · · · , xl), xL+K = (x1, · · · , xl+k), xL+K+R = (x1, · · · , xl+k+r),
x = (x1, · · · , xn), m = k + u and n = l + r + m. We call F (i) for i = 1, · · · , k
and F (i) for i = k + 1, · · · , k + u polynomials in the first layer and the second
layer, respectively.

How to Define Li, Rij and R′
ij.

– To define Li, it needs to construct a hidden layer L of quadratic equations. Li

is a linear equation in variables (x1, · · · , xl+k+r) for i = 1, · · · , r. We define
a system of r quadratic equations as

L :

⎧
⎪⎪⎨

⎪⎪⎩

L(xL)L1(xL+K+R) = ξ1,

...
L(xL)Lr(xL+K+R) = ξr,

where L is a linear equation in variables (x1, · · · , xl) and ξi ∈ F
∗
q . We choose

random βij for i = 1, · · · , r and j = 1, · · · , l + k + r such that an r × r
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submatrix matrix Λr =

⎛

⎝
β1l+k+1 · · · · · · β1l+k+r

· · · · · · · · · · · ·
βrl+k+1 · · · · · · βrl+k+r

⎞

⎠ of an r × (l + k + r)

matrix Λ is invertible, where

Λ =

⎛

⎜
⎜
⎝

β11 · · · · · · β1l+k+r

β21 · · · · · · β2l+k+r

· · · · · · · · · · · ·
βr1 · · · · · · βrl+k+r

⎞

⎟
⎟
⎠

is a coefficient matrix of (L1, · · · , Lr).
– Φi is a quadratic equation in variables (x1, · · · , xl) for i = 1, · · · , k defined

by Φi =
∑l

j=1

∑l
t=j ϕi

j,txjxt, for ϕi
j,t ∈R Fq.

– Rij is a linear equation in variables (x1, · · · , xl+k) for i = 1, · · · , k and j =

1, · · · , r such that a k × k submatrix matrix Θk =

⎛

⎝
α1l+1 · · · · · · α1l+k

· · · · · · · · · · · ·
αkl+1 · · · · · · αkl+k

⎞

⎠

of a k × (l + k) matrix Θ is invertible, where Θ is a coefficient matrix of
(L(xL) · F (1) − L(xL) · Φ1(xL), · · · , L(xL) · F (k) − L(xL) · Φk(xL)) such that

⎛

⎜
⎜
⎝

L(xL) · F (1) − L(xL) · Φ1(xL)
L(xL) · F (2) − L(xL) · Φ2(xL)

· · ·
L(xL) · F (k) − L(xL) · Φk(xL)

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

ξ1R11(x) + · · · + ξrR1r(xL+K)
ξ1R21(x) + · · · + ξrR2r(xL+K)

· · ·
ξ1Rk1(x) + · · · + ξrRkr(xL+K)

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

α11 · · · · · · α1l+k

α21 · · · · · · α2l+k

· · · · · · · · · · · ·
αk1 · · · · · · αkl+k

⎞

⎟
⎟
⎠ ·

⎛

⎜
⎜
⎝

x1

x2

· · ·
xl+k

⎞

⎟
⎟
⎠ .

– Ψi is a sparse polynomial in variables (x1, · · · , xl+k) for i = k + 1, · · · , k + u
defined by

Ψi =
l+k∑

j=1

ψi,jxjx(i+j−1)(mod l+k)+1

where ψi,j ∈R Fq so that the symmetric matrix of the quadratic part of each
Ψi has rank l + k and any crossterms in Ψi for all i = k + 1, · · · , k + u don’t
overlap.

– L′
i is a linear equation in variables (x1, · · · , xl+k+r) for i = 1, · · · , u defined

by L′
i =

∑l+k+r
j=1 νi

jxj , where νi
j ∈R Fq.

– R′
ij is a linear equation in variables (xl+k+r+1, · · · , xn) for i = 1, · · · , u

and j = 1, · · · , r. We choose R′
ij such that a u × u submatrix Δu =

⎛

⎝
δ1l+k+r+1 · · · δ1n

· · · · · · · · ·
δul+k+r+1 · · · δun

⎞

⎠ of a u × n matrix Δ =

⎛

⎝
δ11 · · · δ1n

· · · · · · · · ·
δu1 · · · δun

⎞

⎠ is invertible,

where Δ is a coefficient matrix of (L(xL) ·F (k+1)−L(xL) ·Ψ1(xL+K)−L(xL) ·
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L′
1(xL+K+R), · · · , L(xL) ·F (k+u) −L(xL) ·Ψu(xL+K)−L(xL) ·L′

u(xL+K+R))
such that

⎛

⎜
⎜
⎝

L(xL) · F (k+1) − L(xL) · Ψ1(xL+K) − L(xL) · L′
1(xL+K+R)

L(xL) · F (k+2) − L(xL) · Ψ2(xL+K) − L(xL) · L′
2(xL+K+R)

· · ·
L(xL) · F (k+u) − L(xL) · Ψu(xL+K) − L(xL) · L′

u(xL+K+R)

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

ξ1R
′
11(x) + · · · + ξrR

′
1r(x)

ξ1R
′
21(x) + · · · + ξrR

′
2r(x)

· · ·
ξ1R

′
u1(x) + · · · + ξrR

′
ur(x)

⎞

⎟
⎟
⎠ =

⎛

⎝
δ11 · · · δ1n

· · · · · · · · ·
δu1 · · · δun

⎞

⎠ ·
⎛

⎝
xl+k+r+1

· · ·
xn

⎞

⎠ .

– From this construction, we store only (L,L′, Φ, ΨS , Θk
−1, Λr

−1,Δu
−1) for F

instead of all the coefficients of F , where L = {L, ξi}r
i=1, L

′ = {L′
i}l+k+r

i=1 ,
Φ = {Φi}k

i=1 and ΨS = {Ψi}u
i=1.

How to Invert the Central Map. Given γ = (γ1, · · · , γm), to compute
F−1(γ) = s, i.e., to find s such that F(x) = γ, do the followings:

– In the first layer, compute L(xL) ·F (i) = L(xL) ·γi for i = 1, · · · , k by getting
a linear system of k equations with l + k variables as

⎧
⎪⎪⎨

⎪⎪⎩

ξ1R11(xL+K) + · · · +ξlR1r(xL+K) = γ1 · L(xL) − Φ1(xL) · L(xL),
...

ξ1Rk1(xL+K) + · · · +ξrRkr(xL+K) = γk · L(xL) − Φk(xL) · L(xL).

• Choose a random Vinegar vector sL = (s1, · · · , sl) ∈ F
l
q. If L(sL) = 0

then choose another random Vinegar vector. Plug sL into the above linear
system by getting a new linear system of k equations with k variables.

• Solve the linear system by computing
⎛

⎜
⎜
⎝

sl+1

sl+2

· · ·
sl+k

⎞

⎟
⎟
⎠ = Θ−1

k ·

⎛

⎜
⎜
⎝

γ1 · L(sL) − Φ1(sL) · L(sL) − c1
γ2 · L(sL) − Φ2(sL) · L(sL) − c2

· · ·
γk · L(sL) − Φk(sL) · L(sL) − ck

⎞

⎟
⎟
⎠ ,

where cj is a constant derived from the linear equation ξ1Rj1(xL+K) +
· · · + ξlRjr(xL+K) for j = 1, · · · , k.

– In the hidden layer, plug sL+K = (s1, . . . , sl+k) into a quadratic system L by
getting a linear system of r equations with r variables as

⎧
⎪⎪⎨

⎪⎪⎩

L1(sL+K, xl+k+1, · · · , xl+k+r) = L(sL)−1 · ξ1,

...

Lr(sL+K, xl+k+1, · · · , xl+k+r) = L(sL)−1 · ξk,
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where L(sL) �= 0. Get a solution (sl+k+1, · · · , sl+k+r) by computing
⎛

⎜
⎜
⎝

sl+k+1

sl+k+2

· · ·
sl+k+k

⎞

⎟
⎟
⎠ = Λ−1

k ·

⎛

⎜
⎜
⎝

L(sL)−1 · ξ1
L(sL)−1 · ξ2

· · ·
L(sL)−1 · ξk

⎞

⎟
⎟
⎠ .

– In the second layer, compute L(xL) · F (i) = L(xL) ·γi for i = k +1, · · · , k +u
getting a linear system of u equations with l + k + r + u variables as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ξ1R′
11(x) + · · ·+ξlR

′
1r(x) = γk+1 · L(xL)− Ψ1(xL) · L(xL)− L′

1(xL+K+R) · L(xL),

ξ1R′
21(x) + · · ·+ξlR

′
2r(x) = γk+2 · L(xL)− Ψ2(xL) · L(xL)− L′

2(xL+K+R) · L(xL),

· · ·
ξ1R′

u1(x) + · · ·+ξlR
′
ur(x) = γk+u · L(xL)− Ψu(xL) · L(xL)− L′

u(xL+K+R) · L(xL),

and plug sL+K+R = (s1, · · · , sl+k+r) into the linear system getting a lin-
ear system of u equations with u variables. Get a solution (sl+k+r+1, · · · ,
sl+k+r+u) by computing

⎛

⎜
⎜
⎝

sl+k+r+1

sl+k+r+2

· · ·
sl+k+r+u

⎞

⎟
⎟
⎠ = Δ−1

u ·

⎛

⎜
⎜
⎝

γk+1 · L(sL) − Ψ1(sL) · L(sL) − c′
1

γk+2 · L(sL) − Ψ2(sL) · L(sL) − c′
2

· · ·
γk+u · L(sL) − Ψu(sL) · L(sL) − c′

u

⎞

⎟
⎟
⎠ ,

where c′
i is a constant of the linear equation ξ1R

′
i1(sL+K,xR) + · · · +

ξrR
′
ir(sL+K,xR) for i = 1, · · · , u.

– Finally, we get a solution (s1, · · · , sn) of F(x) = γ by performing only three
matrix multiplications and computation of quadratic terms without using the
Gaussian elimination.

Now, we construct a new MQ-signature scheme based on this central map.

� ELSA (Efficient Layered Signature Scheme).

• KeyGen(1λ). For a security parameter λ, generate a public/secret key pair
<PK,SK> = <P, (S̃, T̃ ,F = (L,L′, Φ, ΨS , Θ̃r, Λ̃k, Δ̃u))> as
– Choose randomly two affine maps S̃ and T̃ . If neither S̃ nor T̃ is invertible

then choose again, where X̃ = X−1.
– Choose randomly L, Φ, ΨS , Θ̃r, Λ̃r and Δ̃u, where L = {L, ξi}r

i=1, L′ =
{L′

i}u
i=1, Φ = {Φi}k

i=1 and ΨS = {Ψi}u
i=1 satisfy all the conditions

described above. If neither Θ̃r, Λ̃k nor Δ̃u is invertible then choose again.
Compute P from P = S ◦ F ◦ T .

• Sign(SK, m). Given a message m,
– Compute h(m) and S̃(h(m)) = γ, where γ = (γ1, · · · , γm).
– Compute s such that F−1(γ) = s, i.e., F(s) = γ as the above. Then

s = (s1, · · · , sn) is a solution of F (x) = γ.
– Compute T̃ (s) = σ. Then σ is a signature of m.



An Existential Unforgeable Signature Scheme 45

• Verify(PK, m, σ). Given a signature σ on m and a public key P, check P(σ) =
h(m). If it holds, accept σ, otherwise, reject it.

Remark 1. We now explain how the public key and secret key sizes of ELSA

are calculated. The public key requires
m(n + 1)(n + 2)

2
field elements as their

coefficients. The secret maps S and T require m(m + 1) and n(n + 1) field
elements, respectively. It requires (l+r+l+1) field elements for L, u(l+k+r+1)

field elements for L′,
k(l + 1)(l + 2)

2
field elements for Φ, u(l + k) field elements

for ΨS , k2 field elements for Θ̃k, r2 field elements for Λ̃k and u2 field elements

for Δ̃u. Thus, the secret key requires n(n + 1) + m(m + 1) +
k(l + 1)(l + 2)

2
+

u(2l + 2k + r + 1) + (k2 + r2 + u2) + (l + r + 1) field elements.

2. UOV and Rainbow requires the use of Gaussian elimination for solving linear
systems in signing. In these schemes, the majority of computational cost for
signing count for that of the Gaussian elimination. In ELSA, only three matrix
multiplications using Θr

−1, Λk
−1,Δu

−1 are required for solving the resulting
linear systems in signing without using the Gaussian elimination. So, it achieves
O(n2) complexity in signing instead of O(n3).

3 Security Analysis of ELSA

The security of all MQ-schemes in the MQ + IP paradigm is not only based on
the MQ-Problem, but also on some variant of the Isomorphism of Polynomials
(IP) problem. Furthermore, layered MQ-schemes require the hardness of the
MinRank problem. These underlying problems are defined as follows:

• Polynomial System Solving (PoSSo) Problem: Given a system P =
(P(1), · · · ,P(m)) of m nonlinear polynomials defined over Fq with degree of d
in variables (x1, · · · , xn) and y = (y1, · · · , ym) ∈ F

m
q , find x′ = (x′

1, · · · , x′
n) ∈

F
n
q such that P(x′)=y, i.e., P(1)(x′

1, · · · , x′
n)=y1, · · · ,P(m)(x′

1, · · · , x′
n)=ym.

• EIP (Extended Isomorphism of Polynomials) Problem: Given a non-
linear multivariate system P such that P = S ◦F ◦T for linear or affine maps
S and T , and F belonging to a special class of nonlinear polynomial system
C, find a decomposition of P such that P = S′ ◦ F ′ ◦ T ′ for linear or affine
maps S′ and T ′, and F ′ ∈ C.

• MinRank Problem: Let m,n, r, k ∈ N and r,m < n. The MinRank(r) prob-
lem is, given (M1, · · · ,Ml) ∈ F

m×n
q , find a non-zero k-tuple (λ1, · · · , λk) ∈ F

k
q

such that Rank(
∑k

i=1 λiMi) ≤ r.

The PoSSo problem is proven to be NP-complete [26]. For efficiency, MQ-PKC
restrict to quadratic polynomials. The PoSSo problem with all polynomials
(P (1), · · · , P (m)) of degree 2 is called the MQ-Problem for multivariate quadratic.
The IP problem was first described by Patarin at Eurocrypt’96 [40], there is not
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much known about the difficulty of the IP problem in contrast to the MQ-
problem. The problem of finding a low rank linear combination of matrices was
originally introduced in [48] as one of the natural questions in linear algebra,
and the authors proved its NP-completeness.

A feature of MQ-PKC in the MQ + IP paradigm is that there exist a large
number of different secret keys for a given public key [51]. Informally, sup-
pose that <P, (S,F , T )> is a public/secret key pair of an MQ-PKC, we call
(S′,F ′, T ′) is an equivalent key of (S,F , T ) if P = S ◦ F ◦ T = S′ ◦ F ′ ◦ T ′,
where S′ and T ′ are invertible affine maps, and F ′ preserves all zero coefficients
of F . The concept of equivalent keys plays a major role in the cryptanalysis of
MQ-schemes. If an attacker finds any of the equivalent keys then he can forge
a signature. Thus, the attacker wants to find an equivalent key with the sim-
plest structure. Known attacks of MQ-schemes be divided into the following two
classes:

• Direct Attack. Given a public key P and y ∈ F
m
q , find a solution x ∈ F

n
q of

P(x) = y.
• Key Recovery Attack (KRA). Given P = S ◦ F ◦ T , find equivalent keys

of (S,F , T ):
– KRAs using equivalent keys and good keys,
– Rank-based KRAs to find linear combinations associated matrices at some

given rank, to find nontrivial invariant subspaces of linear combinations
associated matrices and so on: MinRank attack, HighRank attack, Kipnis-
Shamir attack.

3.1 Direct Attacks

Direct attacks use equation solvers like XL and Gröbner basis algorithms such
as Buchberger, F4 and F5 for solving the MQ-problem. Complexity of the MQ-
Problem is determined by that of the HybridF5 (HF5) algorithm [7]. The basic
idea is to guess some of the variables to create overdetermined systems before
applying Faugère’s F5 algorithm [22]. When doing so, one has to run the F5
algorithm several times to find a solution of the original system. When guessing
k variables over Fq, this number is given by qk. The complexity of solving a
semi-regular (random) system of m quadratic equations in n variables over Fq

by HF5 can be estimated as

CHF5(q,m, n) = mink≥0 qk · O
((

m ·
(

n − k + dreg − 1
dreg

))ω)

,

where the degree of regularity dreg is the index of the first non-positive coefficient

in the Sm,n =
(1 − z2)m

(1 − z)n
and 2 ≤ ω ≤ 3 is the linear algebra constant of solving

a linear system. The internal equations used by HF5 are very sparse and thus
ω = 2 can be used to obtain a lower bound on the complexity. If we really want
to break a scheme, we either calculate the correct α or use ω = 2.8 as an upper
bound [50].
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Using HF5 algorithm (ω = 2), we summarize the lower bounds of the numbers
of equations (m) for solving determined systems defined over F28 required to
achieve given security levels in Table 1.

Table 1. Lower bounds of the numbers of quadratic equations for determined systems
over F28 at each security level.

λ 80 96 128 192 256

m 26 31 43 68 93

3.2 Replacement Attacks

Our central map has a special feature for inverting: each central polynomial uses
a linear combination of the products of two lines and additional quadratic terms.
This feature and hidden quadratic systems make it possible to remove the use
of the Gaussian elimination resulting in the reduction of signing cost and secret
key size. In particular, Li for i = 1, · · · , r are used in all the central polynomials
F (i) for i = 1, · · · , k + u. Thus, one can replace Li with a new variable via an
appropriate changing of variables. More precisely, one can replace Li(xL+K+R)
with yl+k+i for i = 1, · · · , r and xj with yj for j = 1, · · · , l + k, l + k + r +

1, · · · , l + k + r + u. Then one gets a new central map, F = (F (1)
, · · · ,F (m)

) in
the new variables (y1, · · · , yn) as
⎧
⎪⎪⎨

⎪⎪⎩

F̂ (1)(y) = yl+k+1R11(yL+K) + · · · + yl+k+rR1r(yL+K) + Φ1(yL),
...

F̂ (k)(y) = yl+k+1Rk1(yL+K) + · · · + yl+k+rRkr(yL+K) + Φk(yL),

⎧
⎪⎪⎨

⎪⎪⎩

F̂ (k+1)(y) = yl+k+1R
′
11(y) + · · · + yl+k+rR

′
1r(y) + Ψ1(yL+K) + L1(yL+K+R),

...

F̂ (k+u)(y) = yl+k+1R
′
u1(y) + · · · + yl+k+rR

′
ur(y) + Ψu(yL+K) + Lu(yL+K+R),

where yL =(y1, · · · , yl), yL+K =(y1, · · · , yl+k) and yL+K+R =(y1, · · · , yl+k+r).
Then the public key can be written as

P = S ◦ (F ◦ TR) ◦ (T−1
R ◦ T ) = S ◦ F ◦ T ,

where F = F ◦ TR, T = T−1
R ◦ T and TR is an invertible map defined by

TR(xT) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

IL+K 0 0
0 L1 0
0 L2 0

· · · · · · · · ·
0 Lr 0
0 0 IU

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

·
⎛

⎝
x1

· · ·
xn

⎞

⎠ =

⎛

⎝
y1
· · ·
yn

⎞

⎠ ,
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where IL+K and IU are an (l + k) × (l + k)-identity matrix and a u × u-identity
matrix, respectively. In this case, we can consider the public key P = S ◦ F ◦ T
with the secret key (S,F , T ) since F is still invertible with the same way as in
§2.1. We provide security analysis of ELSA against all attacks with respect to
these two types of secret keys (S,F , T ) and (S,F , T ) for the public key P.

3.3 Key Recovery Attacks

In 2008, Ding et al. [17] presented Rainbow Band Separation (RBS) attacks on
Rainbow. Later, Thomae [50] applied the attacks to other MQ-schemes using
the concept of good keys which is a generalization of the RBS attacks. In this
subsection, we analyze security of ELSA against the key recovery attacks (KRAs)
using equivalent keys and good keys.

Let F (i) (1 ≤ i ≤ m) be symmetric matrices associated to the homogeneous
quadratic part of the i-th component of the central map F . The matrices F (i)

are depicted in Fig. 1, where white parts denote zero entries and gray parts
denote arbitrary entries. The matrices are the same as those of Rainbow [44].
After mounting the replacement attack described in Sect. 3.2, we get symmetric
matrices F

(i)
(1 ≤ i ≤ m) representing the quadratic part of the i-th component

of F (i)
which is depicted in Fig. 2.

Fig. 1. Symmetric matrices for quadratic parts of F .

Fig. 2. Symmetric matrices for quadratic parts of F .

Analogously, we denote P (i) (1 ≤ i ≤ m) be symmetric matrices representing
the quadratic part of the i-th component of the public key P. Due to the structure
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of F , we know that certain coefficients in F (i) are systematically zero. Since
P = S ◦ F ◦ T , we obtain F = S̃ ◦ P ◦ T̃ , where S̃ = S−1 and T̃ = T−1. From
this, we get the following equality:

F (i) = T̃T

⎛

⎝
m∑

j=1

s̃ijP
(j)

⎞

⎠ T̃ , ∀1 ≤ i ≤ m.

The corresponding system of equations is:

f
(i)
βγ =

m∑

x=1

n∑

y=1

n∑

z=1

c(x)yz s̃ixt̃yβ t̃zγ (1)

for some coefficient c
(x)
yz , as we have already known that f

(i)
βγ = 0 for some i, β, γ

by the construction of F . Since the number equations obtained by (1) equals the

number of zeros in all F (k), we get
kr(r + 1) + mu(u + 1)

2
+ ku(n − u) cubic

equations. The number of variables in S̃ and T̃ is n2 + m2. The number of
equations for F is

k(n − l)(n + l + 1) + u(n − r)(n + r + 1)
2

− r[(l + k)k + (n − r)u] − u(l + k).

The complexity of solving such systems using HF5 is very large. To improve
this complexity, we use the concept of equivalent keys [50,51]. Let GLn(Fq) be
a general linear group of degree n over Fq, for an integer n.

Definition 3.1 [Equivalent Key]. Let S, S′ ∈ GLm(Fq) and T, T ′ ∈ GLn(Fq)
and F ,F ′ ∈ Fq[x1, ..., xn]m. We say that (F , S, T ) is equivalent to (F ′, S′, T ′) if
and only if S ◦ F ◦ T = S′ ◦ F ′ ◦ T ′ and F|I = F ′|I , that is, F and F ′ share the
same structure when restricted to a fixed index set I = {I(1), · · · I(m)}.

If S ◦F ◦T = P = S′ ◦F ′ ◦T ′, where F ′ preserves all systematic zero coefficients
of F then we call S′ and T ′ equivalent keys. Thus, an attacker who has any
of equivalent keys can forge signatures on any messages. If we can find simpler
equivalent keys, we can reduce the number of variables in S and T . If there are
two invertible linear maps Σ ∈ GLm(Fq) and Ω ∈ GLn(Fq) such that

P = S ◦ Σ−1 ◦ (Σ ◦ F ◦ Ω) ◦ Ω−1 ◦ T,

and F ′(= Σ ◦ F ◦ Ω) and F have the same structure then (F ′, S′, T ′) is an
equivalent key.

For the original central map F , its equivalent keys are the same as those of
Rainbow since the matrices (F (1), · · · , F (m)) are the same as those of Rainbow
[50]. Thus, the equivalent keys for F are of the form given in Fig. 3, in this case,
F ′(i) also have same form as F ′(i) given in Fig. 1.

Next, we find equivalent keys for the central map F . To preserve the struc-
ture in second layer, we can find Ω and Σ of the form given in Fig. 4, so we
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Fig. 3. Equivalent keys of ELSA w.r.t. F .

Fig. 4. Equivalent keys of ELSA w.r.t. F .

get equivalent keys of the form given in Fig. 4. However, we can find simpler
equivalent keys than ones given in Fig. 4 to improve the complexity significantly
by changing the preservation set, i.e., the set of indices for the quadratic terms
with zero coefficients. For it, we consider the generalized version of F denoted
by F̂ which is depicted in Fig. 5. So, we need to find equivalent keys (F̂ ′, S′, T ′)

such that F̂ ′(i) preserves the generalized version F̂ (i).

Fig. 5. F̂ : Generalized version of F .

Lemma 3.1. For the generalized central map F̂ given in Fig. 5, we can find
equivalent keys S′ and T ′ of the form given in Fig. 6 with high probability,
where gray parts denote arbitrary entries and white parts denote zero entries
and there are ones at the diagonal.

Proof. As in [50], we can find Σ and Ω given in Fig. 6. With high probability,
there exist equivalent keys (S′, T ′) of the form given in Fig. 6. �	
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Fig. 6. Equivalent keys of ELSA w.r.t. F̂ .

After applying the transformations Σ and Ω in Lemma 3.1., we also get
the central map F̂ ′ = Σ ◦ F̂ ◦ Ω as in Fig. 5. From the equivalent key given in

Fig. 6, we get a system of
k(n − l)(n + l + 1)

2
− kr(l + k) cubic equations and

u2(2l + 2k + u + 1)
2

quadratic equations with n(n − u) + k(u − k − r) − l2 − r2

variables. However, the complexity of solving such a system is still large: for
ELSA with (Fq, l, k, r, u) = (F28 , 6, 28, 30, 15), lower bound on the complexity of
solving the system by HF5 is 21696. To further decrease this complexity, we use
the notion of good keys which is a generalization of equivalent keys. Good keys
don’t preserve all the zero coefficients of F , but just some of them. Hence, we
can choose Σ and Ω more widely and further reduce the number of variables.

Definition 3.2 [Good Key]. Let S, S′′ ∈ GLn(Fq) and T, T ′′ ∈ GLm(Fq) and
F ,F ′′ ∈ Fq[x1, ..., xn]m, and J = {J (1), · · · , J (m)} ⊂ I = {I(1), · · · , I(m)} for all
k with at least one J (k) �= φ. We say that (F ′′, S′′, T ′′) is a good key for (F , S, T )
if and only if S ◦ F ◦ T = S′′ ◦ F ′′ ◦ T ′′ and F|J = F ′′|J .

To find good keys, let (F ′, S′, T ′) be an equivalent key for ELSA. If

P = S′ ◦ F ′ ◦ T ′ = (S′ ◦ Σ′−1) ◦ (Σ′ ◦ F ′ ◦ Ω′) ◦ (Ω′−1 ◦ T ′)

for some two linear maps Σ′ ∈ GLm(Fq) and Ω′ ∈ GLn(Fq), and F ′′ = Σ′◦F ′◦Ω′

satisfies the condition in above definition, then

(F ′′, S′′, T ′′) = (Σ′ ◦ F ′ ◦ Ω′, S′ ◦ Σ′−1, Ω′−1 ◦ T ′),

S′′ and T ′′ are good keys. The following proposition shows the existence of good
keys for ELSA.

Lemma 3.2. Let (S′, F̂ ′, T ′) be an equivalent key for ELSA given in Fig. 6.
Then there are good keys (S′′, F̂ ′′, T ′′) of the form given in Fig. 7. Only the last
column of T̃ ′′ contains arbitrary values in the first l+k+r rows, which are equal
to the corresponding values in T̃ ′. Respectively, only u values of the k-th row of
S̃′′ contain arbitrary values, which are equal to the corresponding values in S̃′.

Proof. Using linear algebra, we can obtain unique Σ′ and Ω′ given in Fig. 7. It
shows the existence of a good key (S′′, T ′′) of the form given in Fig. 7. �	
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Fig. 7. Good keys of ELSA.

Fig. 8. Central map F̂ ′′ after applying Σ′ and Ω′ in Lemma 3.2.

Finally, after applying the transformations Σ′ and Ω′, we get the central map
F̂ ′′ = Σ′ ◦ F̂ ′ ◦ Ω′ as given in Fig. 8. Finally, we obtain the following Theorem.

Theorem 3.1. The main complexity of the key recovery attack using good
keys on ELSA is determined by solving n − 1 bihomogeneous equations and
m quadratic equations with n variables.

After obtaining one column of T ′ and one row of S′, all the other parts of T ′

and S′ are revealed by linear equations as in [50]. Consequently, we recover the
equivalent keys T ′ and S′.

We find different equivalent keys for three types of central maps F , F and
F̂ , where F , F and F̂ are the original central map, the resulting central map
after the replacement attack and the general version of F , respectively. The
KRAs using equivalent keys for F̂ are more effective than those for F and F .
However, F , F and F̂ have the same forms of good keys resulting in the same
complexities given in Theorem 3.1. Table 2 shows improvements of lower bound
(α = 2) and upper bound (α = 2.8) on the complexities of solving such a system
by HF5 achieved by the KRAs using equivalent keys and good keys for ELSA
with (Fq, l, k, r, u) = (F28 , 6, 28, 30, 15).

Key Recovery Attacks using Linear Part of the Central Map. It is also
known that some coefficients of linear terms in the central map are zero. This
does not significantly affect the KRAs since the number of quadratic terms with
zero coefficients is much larger than that of linear terms with zero coefficients.
When we reduce the number of variables in good key recovery, we use Ω′ where
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Table 2. Lower-bounds/upper-bounds on the complexities of the KRAs using equiva-

lent keys and good keys for ELSA under different forms of central maps, F , F and F̂
with (F28 , 6, 28, 30, 15)

ELSA # of Equ. # of Vari. dreg Comp. (low./upp.)

KRA (F) 45,060(Cubic) 8,090 1017 29215/212901

KRA (F) 77,197(Cubic) 8,090 727 27263/210169

KRA (F̂) 68,782(Cubic) 8,090 779 27632/210686

KRA Equi. (F) 28,980(Cubic)+ 16,080(Quad.) 2,400 53 2760/21064

KRA Equi. (F) 77,197(Cubic) 5,731 425 24481/26274

KRA Equi. (F̂) 59,332(Cubic)+ 9,450(Quad.) 3,588 135 21696/22375

KRA Good 121(Quad.) 79 16 2131/2183

each coordinate function has at least n − 1 linear terms (See Lemma 3.2). Even
if F ′(k) has only one linear term for each k, F ′(k) ◦ Ω′ has at least n − 1 linear
terms. Nevertheless, if there is no linear term in F , we can get nm linear terms
with zero coefficients of F ′ ◦ Ω′ and n variables in the constant part of T̃ ′′ by
choosing Ω and Ω′ carefully satisfying Lemmas 3.1 and 3.2. Then we can set

Σ′ =
(
S̃′

)−1

= S′ so that the variables in S̃′′ are removed. Finally, we get
a system of m(n + 1) quadratic equations with 2n − u variables. In this case,
for ELSA with (F28 , 6, 28, 30, 15), the complexity of solving this system by HF5
is 271.

3.4 Rank-Based Attacks

• MinRank attack. In MinRank attacks, one tries to find linear combinations
M =

∑m
i=1 μiP

(i) of the matrices P (i), where M has a minimal rank. Under-
lying idea of an algorithm to solve this MinRank problem [48] is to search for
a vector lying in the kernel of the desired linear combination M . Complexity
of the MinRank attack is determined by that of finding the linear combination.
Since the forms of symmetric matrices of ELSA w.r.t. F are the same as those
of Rainbow, we can get that its complexity against the attack is ql+k+1 from
[9,44]. Next, by using similar technique, we investigate the complexity of ELSA
w.r.t. F̂ against the attack in Proposition 3.1.

Proposition 3.1. The complexity of ELSA w.r.t. F̂ against the MinRank
attack is min{ql+2r−k+1, ql+2r+1, q2l+k+1}.

Proof. In MinRank attacks, we must find a vector v ∈ F
n
q such that v ∈ ker P ,

where P is a matrix with the minimal rank in Span{P (i)}. The probability for
finding such a vector is the same as that of finding v′ ∈ F

n
q such that v′ ∈ ker Q,

where Q is a matrix with the minimal rank in Span{F̂ (i)} and F̂ (i) is the matrix

of the quadratic part of F̂ . More precisely, F̂ (i) has of the form

⎛

⎝
∗ 0 ∗
0 0 ∗
∗ ∗ 0

⎞

⎠ in
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the first layer as given in Fig. 2. Then F̂ (i) · (0, ∗, 0)T = (0, 0, ∗)T . Let wi =
F̂ (i) · (0, ∗, 0)T = (0, 0, ∗)T . Then the probability that wi is linearly dependent is

1 −
k−1∏

i=0

(1 − qi

qr
) > 1/qr−k+1.

Note that
∑k

i=1 λiF̂
(i) has a minimal rank. Hence, the probability of v′ ∈

ker(
∑k

i=1 λiF̂
(i)) for a random vector v′ and non-trivial λi is 1/ql+r ·1/qr−k+1 =

1/ql+2r−k+1, where the provability that the vector v′ has of the form (0, ∗, 0) is
1/ql+r. Similarly, the probabilities for F̂ (i)·(∗, 0, 0) and F̂ (i)·(0, 0, ∗) are 1/ql+2r+1

and 1/q2l+k+1, respectively. �	
Finally, the complexity of ELSA against the MinRank attack is min{ql+k+1,
ql+2r−k+1, ql+2r+1, q2l+k+1}.

• HighRank Attack. In HighRank attacks, one tries to identify the vari-
ables appearing the lowest number of times in the central polynomials. The
variables xl+k+r+1, · · · , xn appear only in the quadratic terms of the cen-
tral polynomials (F (k+1), · · · ,F (k+u)) of the second layer of ELSA. Thus, it
is similar to that of Rainbow. As in [44], we get its complexity against the
HighRank attacks is qu · n3

6 .

• Kipnis-Shamir Attack (UOV Attack). Kipnis-Shamir attack [34] was
originally used to break the balanced Oil and Vinegar signature scheme [41].
We consider the generalization to the unbalanced case. We have already
known that the complexity of ELSA w.r.t. F against the Kipnis-Shamir attack
is qn−2u−1 ·u4 as in [44] since the forms of symmetric matrices of ELSA w.r.t.
F are the same as those of Rainbow.

Now, we give security analysis of ELSA with the central map F̂ against the
Kipnis-Shamir attacks. We first define the following four index sets as

D1 = {i|1 ≤ i ≤ l}, D2 = {i|l + 1 ≤ i ≤ l + k},

D3 = {i|l + k + 1 ≤ i ≤ l + k + r}, D4 = {i|l + k + r + 1 ≤ i ≤ n}.

We define five meaningful subspaces of Fn
q for the attacks on ELSA as

V1000 = {(x1, · · · , xn)|xi = 0, i /∈ D1}, V0100 = {(x1, · · · , xn)|xi = 0, i /∈ D2},

V0010 = {(x1, · · · , xn)|xi = 0, i /∈ D3}, V0001 = {(x1, · · · , xn)|xi = 0, i /∈ D4},

V1110 = {(x1, · · · , xn)|xi = 0, i ∈ D4}.

The goal of the attacks is to find the preimage of the above subspaces
under an equivalent key T ′. We use the following property: any linear com-

binations of the matrices F̂ (1), · · · , F̂ (m) is of the form

⎛

⎜
⎜
⎝

∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ ∗
0 0 ∗ 0

⎞

⎟
⎟
⎠ · · · (∗) from

Fig. 2. The following Theorems show why invariant subspaces exist with a certain
probability.
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Lemma 3.3. Let φ : Fn
q → F

n
q be a linear transformation of the form (∗). Then

we get that φ(V0001), φ(V1000), and φ(V0100) are subspaces of V0010, V1110 and
V1110, respectively.

Note that the image of other subspaces except the three subspaces in Lemma
3.3 under the map φ is the full space F

n
q .

Let H =
∑m

i=1 λiF̂
(i) be a linear combination of the matrices F̂ (i). Note that H

has the form of (∗). Then we get the following Theorem as in [34].

Theorem 3.2. Assume that, for some k (1 ≤ k ≤ m), the matrix F̂ (k) is
invertible. Then, the map (F̂ (k))−1 ·H has nontrivial invariant subspace φ(V0001),
φ(V1000) and φ(V0100) with probability not less than q−r+u, q−k−r and q−l−r,
respectively.

Proof. They are obtained from the following fact: [(F̂ (k))−1 · F̂ (i)](V0001) ⊂
(F̂ (k))−1(V0010) and V0001 ⊂ (F̂ (k))−1(V0010), let Φ = (F̂ (k))−1 · F̂ (i), then as in
[33], we have

Pr[Φ(V0001) ⊂ V0010] ≥ q−r+u,

where u = dim(V0001) and r = dim(V0010). Thus, we get a nontrivial invariant
subspace V0001 with probability not less than q−r+u. �	
Theorem 3.3. Let W =

∑m
i=1 λiP

(i) be a linear combination of the matrices
P (i) and let P (k) (for some k, 1 ≤ k ≤ m) be invertible. Then the map (P (k))−1 ·
W has nontrivial invariant subspaces V0010, V1110 and V1110 which are subspaces
of T−1(V0010), T−1(V1000) and T−1(V0100) with probability not less than q−r+u,
q−k−r and q−l−r, respectively.

Proof. They are obtained from the Theorem 3.2 and the following:

(P (k))−1 · W = (P (k))−1 ·
m∑

i=1

λiP
(i) = (TT · F (k) · T )−1 ·

m∑

i=1

λi · (TT · F̂ (i) · T )

= T−1 · (
m∑

i=1

λi(F̂ (k))−1 · F̂ (i)) · T.

(P (k))−1 · W (T−1(V0001)) = (T−1 · (
m∑

i=1

λi(F̂ (k))−1 · F̂ (i)) · T )(T−1(V0001))

= T−1 · (
m∑

i=1

λi(F (k))−1 · F (i))(V0001) ⊂ T−1(V0010).

Thus, we get a nontrivial invariant subspace V0001 with probability not less than
q−r+u. �	
Consequently, the complexity of ELSA against the Kipnis-Shamir attack is
min{qr−u, qk+r, ql+r, qn−2u−1 · u4}.

Based on these security analysis, we can select secure parameter sets (Fq, l, k, r, u)
that achieve given security levels.
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4 Existential Unforgeability of ELSA

Here, we prove existential unforgeability of ELSA against an adaptive chosen-
message attack under the hardness of the MQ-problem induced by a public key
of ELSA.

4.1 Formal Security Model and Complexity Assumption

In this section, we describe formal security models of signature schemes. The
most general security notion of signature schemes is existential unforgeability
against an adaptive chosen-message attack. Its formal security model is defined
as follows:

Existential Unforgeability against Adaptive Chosen-Message
Attacks (EUF-acma). An adversary A’s advantage AdvPKS,A is defined as its
probability of success in the following game between a challenger C and A:

• Setup. The challenger runs Setup algorithm and its resulting system para-
meters are given to A.

• Sign Queries. A issues the following queries: adaptively, A requests a sig-
nature on a message mi, C returns a signature σi.

• Output. Eventually, A outputs σ∗ on a message m∗ and wins the game if
(i) Verify(m∗, σ∗) = 1,
(ii) m∗ has never requested to the Sign oracle.

Definition 4.1. A forger A(t, gH , qS , ε)-breaks a signature scheme if A runs in
time at most t, A makes at most qH queries to the hash oracle, qS queries to the
signing oracle and AdvPKS,A is at least ε. A signature scheme is (t, qE , qS , ε)-
EUF-acma if no forger (t, qH , qS , ε)-breaks it in the above game.

Next, we need to define the following sets as:

– MQELSA(Fq,m, n): a set of all quadratic equations defined over Fq with m
equations and n variables induced by all public keys of ELSA(Fq, l, k, r, u),
where m = k + u and n = l + r + m.

– MQR(Fq,m, n): a set of all random quadratic equations defined over Fq of
m equations and n variables.

Definition 4.2. We say that the MQ-problem in MQX(Fq,m, n) is (t, ε)-hard
if no t-time algorithm has advantage at least ε in solving the MQ-problem in
MQX(Fq,m, n).

To prove existential unforgeability of ELSA against an adaptive chosen-
message attack, we want to find a reduction to the hardness of MQ-problem
in MQELSA(Fq,m, n). The hardness of the MQ-problem for a system of m
quadratic equations with n variables mainly depends on the selection of Fq,
m and n. However, the security of ELSA against the attacks presented in §3
depends on the selection of the specific parameter set (Fq, l, k, r, u) such that
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m = k + u and n = l + r + m. If the parameter set (Fq, l, k, r, u) is chosen be
secure against the MinRank attack, HighRank attack and Kipnis-Shamir attack,
then it remains only two attacks to consider: the direct attack and KRAs with
good keys. In Theorem 3.1, we have shown that the security of KRAs with good
keys for ELSA is still reduced to the intractability of the MQ-problem, i.e., the
complexity of the KRAs using good keys on ELSA is determined by solving n−1
bihomogeneous equations and m quadratic equations with n variables.

4.2 Existential Unforgeability

Now, we prove existential unforgeability of ELSA against an adaptive chosen-
message attack under the hardness of the MQ-problem induced by a public key
of ELSA in the random oracle model.

Theorem 4.1. If the MQ-problem in MQELSA(Fq,m, n) is (t′, ε′)-hard, ELSA
(Fq, l, k, r, u) is (t, qH , qS , ε)-EUF-acma, for any t and ε satisfying

ε ≥ e · (qS + 1) · ε′, t′ ≥ t + qH · cV + qS · cS ,

where e is the base of the natural logarithm, and cS and cV are time for a
signature generation and a signature verification, respectively, where m = k +u,
and n = l+r+m if the parameter set (Fq, l, k, r, u) is chosen to be secure against
the MinRank attack, HighRank attack, Kipnis-Shamir attack and KRAs using
good keys.

Proof. An instance (P, η) of the MQ-problem in MQELSA(Fq,m, n) is given,
where P is a quadratic system of m equations and n variables. Suppose that A
is a forger who breaks ELSA(Fq, l, k, r, u) with the target public key P. We will
construct an algorithm B which outputs a solution x ∈ F

n
q such that P(x) = η by

using A. Algorithm B performs the following simulation by interacting with A.

Setup. Algorithm B sets PK = P, which is a public key of ELSA(Fq, l, k, r, u).
At any time, A can query a random oracle H and Sign oracle. To answer

these queries, B does the following:

H-Queries. For H-queries, B maintains a list of tuples (mi, ci, τi) as explained
below. We call this list H-list. When A queries H at mi ∈ {0, 1}∗,

1. If the query already appears on H-list in a tuple (mi, ci, τi,P(τi)) then B
returns H(mi) = P(τi).

2. Otherwise, B picks a random coin ci ∈ {0, 1} with Pr[ci = 0] = 1
qS+1 .

– If ci = 1 then B chooses a random τi ∈ F
n
q , adds a tuple (mi, ci, τi,P(τi))

to H-list and returns H(mi) = P(τi).
– If ci = 0 then B adds (mi, ci, ∗, η) to H-list from the instance and returns

H(mi) = η.

Sign Queries. When A makes a Sign-query on mi, B finds the corresponding
tuple (mi, ci, τi,P(τi)) from H-list.
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– If ci = 1 then B responds with τi.
– If ci = 0 then B reports failure and terminates.

All responses to Sign queries not aborted are valid. If B doesn’t abort as a
result of A’s Sign query then A’s view in the simulation is identical to its view
in the real attack.

Output. Finally, A produces a signature τ∗ on a message m∗. If it is not valid
then B reports failure and terminates. Otherwise, a query on m∗ already appears
on H-list in a tuple (m∗, c∗, τ∗,P(τ∗)): if c∗ = 1 then reports failure and
terminates. Otherwise, c∗ = 0, i.e., (c∗, m∗, ∗, η), then P(τ∗) = η. Finally, B
outputs τ∗ is a solution of P.

To show that B solves the given instance with probability at least ε′, we
analyze three events needed for B to succeed:

– E1: B doesn’t abort as a result of A’s Sign query.
– E2: A generates a valid and nontrivial signature forgery τi on mi.
– E3: Event E2 occurs, ci = 0 for the tuple containing mi in H-list.

Algorithm B succeeds if all of these events happen. The probability Pr[E1 ∧E3]
is decomposed as

Pr[E1 ∧ E3] = Pr[E1] · Pr[E2 ∧ E1] · Pr[E3|E1 ∧ E2] · · · (∗∗).

The probability that B doesn’t abort as a result of A’s Sign query is at least
(1− 1

qS+1 )qS since A makes at most qS queries to the Sign oracle. Thus, Pr[E1] ≥
(1 − 1

qS+1 )qS . If B doesn’t abort as a result of A’s Sign query then A’s view is
identical to its view in the real attack. Hence, Pr[E1∧E2] ≥ ε. Given that events
E1, E2 and E3 happened, B will abort if A generates a forgery with ci = 1. Thus,
all the remaining ci are independent of A’s view. Since A could not have issued a
signature query for the output we know that c is independent of A’s current view
and therefore Pr[c = 0|E1 ∧ E2] = 1

qS+1 . Then we get Pr[E3|E1 ∧ E2] ≥ 1
qS+1 .

From (∗∗), B produces the correct answer with probability at least

(1 − 1
qS + 1

)qS · ε · 1
qS + 1

≥ 1
e

· ε

(qS + 1)
≥ ε′.

Algorithm B’s running time is the same as A’s running time plus the time
that takes to respond to qH H-queries, and qS Sign-queries. The H- and Sign-
queries require a signature verification and a signature generation, respectively.
We assume that a signature generation and a signature verification take time cS

and cV , respectively. Thus, the total running time is at most t′ ≥ t + qH · cV +
qS · cS . �	

5 Selection of Parameter and Implementation

Here, we evaluate practical feasibility of ELSA targeting a recent Intel processor.
We choose a secure and optimal parameter for ELSA and provide comparisons
between ours, classical ones and Post-Quantum ones in terms of performance,
key sizes and signature sizes.
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5.1 Selection of Secure and Optimal Parameter

We want to select secure parameter set (Fq, l, k, r, u) for ELSA with the optimal
secret key size at a 128-bit security level where m = k + u and n = l + r + m.
Based on our security analysis in Sect. 3, we choose (F28 , 6, 28, 30, 15) at the
128-bit security level. We summarize complexities of our parameter against the
known attacks in Table 3. For computing of complexities against direct attacks
and KRAs using good keys, we use HF5 with ω = 2.

Table 3. Complexities of ELSA(F28 , 6, 28, 30, 15) against all the attacks.

(Fq , l, k, r, u) Direct KRA (Good) Kipnis-Shamir attack MinRank HighRank

(F28 , 6, 28, 30, 15) 2131 2131 2136 2280 2143

Table 4. Performance, key sizes and signature sizes of ours, classical-ones and post-
quantum ones.

Scheme λ Sig. size (bytes) PK (bytes) SK (bytes) Sign (bytes) Verify (bytes) CPU

Classical ones

RSA-3072e 128 361 384 3072 8,802,242 87,360 Intel Core
i5-6600 3.3GHz

ECDSA-256e

128
64 64 96 163,994 310,048 Intel Core

i5-6600 3.3GHz

ed25519e [4]

128

64 32 64 48,976 165,322 Intel Core

i5-6600 3.3GHz

Lattice-based

TESLA-416t

[3] 128
1,280 1,331,200 1,011,744 697,940 250,264 Intel Core i7-

4770K(Haswell)

TESLA-768t

[3] > 128

2,336 4,227,072 3,293,216 2,232,906 863,790 Intel Core i7-

4770K(Haswell)

BLISS-BI
[19,20] 128

700 875 250 358,400 102,000 Intel Core i7
3.4GHz

ntrumls 439xe

[29] 128
988 1,112 1,305 485,580 223,488 Intel Core

i5-6600 3.3GHz

Hash-based

SPHINCS 256s

[5] 256
41,000 1,056 1,088 51,636,372 1,451,004 Intel Xeon

E3-1275
3.5GHz

Code-based

CFS [35] 80 75 20,968,300 4,194,300 4,200,000,000 – Intel Xeon

W3670 3.2GHz

MQ-based

MQDSS-31-64
[13] > 128

40,952 72 64 8,510,616 5,752,616 Intel Core
i7-4770K
3.5GHz

enTTS

(F28 , 15, 60, 88)
[15,52] 128

88 234,960 13,051 – – –

Rainbowo

(F28 , 36, 21, 22)
[6] 128

79 139,320 105,006 64,658 44,397 Intel Core
i5-6600 3.3GHz

ELSA (F28 , 6,
28, 30, 15) 128

79 139,320 12,427 20,880 44,190 Intel Core
i5-6600 3.3GHz

Sig. Size, PK and SK represent signature size, public key and secret key, respectively.
ed25519 is EdDSA signatures using Curve25519.
>128 means that the scheme achieves 2λ security level, where λ > 128.
t The scheme has a tight security reduction to the underlying problem.
s The scheme is provably secure in the standard model.
e The result is given by the eBACS project [6].
o We implement Rainbow based on the code in [6] at the 128-bit security level on Intel Core i5-6600 3.3GHz.
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5.2 Result and Comparison

We implement ELSA(F28 , 6, 28, 30, 15) on an Intel Core i5-6600 3.3 GHz whose
result is an average of 1,000 measurements for each function using the C++
programming language with g++ compiler. We follow the standard practice of
disabling Turbo Boost and hyperthreading. For comparison, we also implement
Rainbow(F28 , 36, 21, 22) on the same platform based on open source codes given
by the eBACS project [6] since there is no record for Rainbow at the 128-bit
security level. Table 4 gives benchmarking results of ELSA and compares the
benchmarks to state-of-the-art results from the literatures or given by the eBACS
project [6].

Our scheme is the fastest signature scheme in both signing and verification
among classical ones and Post-Quantum ones. Compared to Rainbow, the secret
key size of ELSA is reduced by a factor of 88% maintaining the same public key
size. Compared to enTTS, the public key size of ELSA have reduced by a factor
of 40%. Signing of ELSA is about 3.2 times faster than that of Rainbow. Signing
and verification of ELSA is hundreds of times faster than those of MQDSS,
respectively. Signing and verification of ELSA is about 17.2 times and 2.3 times
faster than those of BLISS-BI, respectively. It takes 6µs and 13.3µs for signing
and verification, respectively.

6 Conclusion

We have proposed a new MQ-signature scheme, ELSA, based on a hidden layer
of quadratic equations. Our scheme is the fastest signature scheme in both sign-
ing and verification among classical ones as well as Post-Quantum ones. Com-
pared to Rainbow, the secret key size in ELSA is reduced by a factor of 88%
maintaining the same public key size. Signing of ELSA is about 3.2 times than
that of Rainbow on Intel Core i5-6600. It takes 6.3µs and 13.39µs for signing
and verification, respectively. There is still room for improvements in terms of
performance. We believe that our scheme is a leading candidate for low-cost
constrained devices. We have also shown that ELSA(Fq, l, k, r, u) is existential
unforgeable against an adaptive chosen-message attack under the hardness of
the MQ-problem in MQELSA(Fq,m, n) in the random oracle model. However,
this reduction doesn’t mean the reduction to the MQ-problem in MQR(Fq,m, n)
although it haven’t been proved that the public key of the MQ-schemes could be
distinguished from random one. It still remains an open problem to construct a
high-speed MQ-signature schemes with a security reduction to the hardness of
the MQ-problem in MQR(Fq,m, n).
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Abstract. The Fiat-Shamir construction (Crypto 1986) is an efficient
transformation in the random oracle model for creating non-interactive
proof systems and signatures from sigma-protocols. In classical cryp-
tography, Fiat-Shamir is a zero-knowledge proof of knowledge assuming
that the underlying sigma-protocol has the zero-knowledge and special
soundness properties. Unfortunately, Ambainis, Rosmanis, and Unruh
(FOCS 2014) ruled out non-relativizing proofs under those conditions in
the quantum setting.

In this paper, we show under which strengthened conditions the
Fiat-Shamir proof system is still post-quantum secure. Namely, we
show that if we require the sigma-protocol to have computational
zero-knowledge and statistical soundness, then Fiat-Shamir is a zero-
knowledge simulation-sound proof system (but not a proof of knowl-
edge!). Furthermore, we show that Fiat-Shamir leads to a post-quantum
secure unforgeable signature scheme when additionally assuming a “dual-
mode hard instance generator” for generating key pairs.

Keywords: Post-quantum security · Fiat-Shamir · Non-interactive
proof systems · Signatures

1 Introduction

1.1 Background

Fiat-Shamir signatures. Signatures are (next to encryption) probably one of
the most important constructs in modern cryptography. In search for efficient
signature schemes, Fiat-Shamir [12] gave a construction for transforming many
three-round identification schemes into signatures, using the random oracle. (The
transformation was stated only for a specific case, but the general construction
is an easy generalization. [12] also does not contain a complete security proof,
but a proof was later provided by Pointcheval and Stern [20].) The Fiat-Shamir
transform and variations thereof have since been used in a large number of con-
structions (signatures [21,23], group signatures [7], anonymous credentials [10],
e-voting [1], anonymous attestation [9], etc.) The benefit of the Fiat-Shamir
transform is that it combines efficiency with universality: The underlying iden-
tification scheme can be any so-called sigma-protocol (see below), this allows

c© International Association for Cryptologic Research 2017
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for great flexibility in how public and secret key are related and enables the
construction of more advanced signature schemes and related schemes such as
group signatures, etc.

Non-interactive zero-knowledge proofs. At the first glance unrelated, but
upon closer inspection intimately connected to signatures are non-interactive
zero-knowledge proof of knowledge (NIZKPoK). In fact, Fiat-Shamir can also
be seen as a highly efficient construction for NIZKPoKs in the random oracle
model [11]. Basically, a NIZKPoK allows a prover to show his knowledge of a
witness sk that stands in a given relation to a publicly known statement pk . From
a NIZKPoK, we can derive a signature scheme: To sign a message m, the signer
constructs a proof that he knows the secret key corresponding to the public key
pk . (Of course, the message m needs to be included in the proof as well, we
omit the details for now.) For this construction to work, the NIZKPoK needs to
satisfy certain advanced security notions (“simulation-sound extractability”);1

Fiat-Shamir satisfies this notion in the classical setting [11]. Thus Fiat-Shamir
doubles both as a signature scheme and as a NIZKPoK, leading to simple and
highly efficient constructions of both.

The construction. In order to understand the rest of this introduction more
easily, we sketch the construction of Fiat-Shamir (the precise definition is given
in Definition 11). We will express it as a NIZKPoK since this makes the analysis
more modular. (We study Fiat-Shamir as a signature scheme in Sect. 6.)

A sigma-protocol Σ is a three-message protocol: The prover (given a state-
ment x and a corresponding valid witness w) sends a message com, called
“commitment”, to the verifier. The verifier (who knowns only the statement
x) responds with a uniformly random “challenge” ch. Then the prover answers
with his “response” resp, and the verifier checks whether (com, ch, resp) is a valid
interaction. If so, he accepts the proof of the statement x. In the following, we
will assume that ch has superlogarithmic length, i.e., there are superpolynomi-
ally many different challenges. This can always be achieved by parallel-composing
the sigma-protocol.

Given the sigma-protocol Σ, the Fiat-Shamir transform yields a non-
interactive proof system: The prover PFS internally executes the prover of the
sigma-protocol to get the commitment com. Then he computes the challenge
as ch := H(x‖com) where H is a hash function, modeled as a random oracle.
That is, instead of letting the verifier generate a random challenge, the prover
produces it by hashing. This guarantees, at least on an intuitively level, that
the prover does not have any control over the challenge, it is as if it was chosen
randomly. Then the prover internally produces the response resp corresponding
to com and ch and sends the non-interactive proof com‖resp to the verifier.

The Fiat-Shamir verifier VFS computes ch := H(x‖com) and checks whether
(com, ch, resp) is a valid interaction of the sigma-protocol.

1 We do not know where this was first shown, a proof in the quantum case can be
found in [26].
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Note that numerous variants of the Fiat-Shamir are possible. For example,
one could compute ch := H(com) (omitting x). However, this variant of Fiat-
Shamir is malleable, see [11].

Difficulties with Fiat-Shamir. The Fiat-Shamir transform is a deceptively
simple construction, but proving its security turns out to be more involved that
one would anticipate. To prove security (specifically, the unforgeability prop-
erty in the signature setting, or the extractability in the NIZKPoK setting),
we need simulate the interaction of the adversary with the random oracle, and
then rerun the same interaction with slightly changed random oracle responses
(“rewinding”). The first security proof by Fiat and Shamir [12] overlooked that
issue.2 Bellare and Rogaway [5, Sect. 5.2] also prove the security of the Fiat-
Shamir transform (as a proof system) but simply claim the soundness without
giving a proof (we assume that they also overlooked the difficulties involved).3

The first complete security proof of the Fiat-Shamir as a signature scheme is
by Pointcheval and Stern [20] who introduced the so-called “forking lemma”, a
central tool for analyzing the security of Fiat-Shamir (it allows us to analyze
the rewinding used in the security proof). When considering Fiat-Shamir as a
NIZKPoK, the first proof was given by Faust et al. [11]; they showed that Fiat-
Shamir is zero-knowledge and simulation-sound extractable.4 This short history
of the security proofs indicates that Fiat-Shamir is more complicated than it
may look at the first glance.

Further difficulties were noticed by Shoup and Gennaro [24] who point out
that the fact that the Fiat-Shamir security proof uses rewinding can lead to con-
siderable difficulties in the analysis of more complex security proofs (namely,
it may lead to an exponential blowup in the running time of a simulator;
Pointcheval and Stern [19] experienced similar problems). Fischlin [13] notes
that the rewinding also leads to less tight reductions, which in turn may lead to
longer key sizes etc. for protocols using Fiat-Shamir.

Another example of unexpected behavior: Assume Alice gets a n pairs of
public keys (pk i0, pk i1), and then can ask for one of the secret keys for each
pair (i.e., sk i0 or sk i1 is revealed, never both), and then Alice is supposed to
prove using Fiat-Shamir that he knows both secret keys for one of the pairs.
Intuitively, we expect Alice not to be able to do that (if Fiat-Shamir is indeed

2 The proof of [12, Lemma 6] claims without proof that a successful adversary cannot
find a square root mod n of

∏k
j=1 v

cj

j . In hindsight, this proof step would implic-
itly use the forking lemma [20] that was developed only nine years later. [12] also
mentions a full version of their paper, but to the best of our knowledge no such full
version has ever appeared.

3 A “final paper” is also mentioned, but to the best of our knowledge never appeared.
4 They only sketch the zero-knowledge property, though. Their proof sketch overlooks

one required property of the sigma-protocol: unpredictable commitments (Defini-
tion 6). Without this (easy to achieve) property, at least the simulator constructed
in [11] will not work correctly. Concurrently and independently, [6] also claims the
same security properties, but the theorems are given without any proof or proof
idea.
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a proof of knowledge), but as we show in the full version [27], Fiat-Shamir does
not guarantee that Alice cannot successfully produce a proof in this situation!

To circumvent all those problems, Fischlin [13] gave an alternative construc-
tion of NIZKPoKs and signature schemes in the random oracle model whose
security proof does not use rewinding. However, their construction seems less
efficient in terms of the computation performed by the prover (although this is
not fully obvious if the tightness of the reduction is taken into account), and
their construction requires an additional property (unique responses5) from the
underlying sigma-protocol.

We do not claim that those difficulties in proving and using Fiat-Shamir
necessarily speak against Fiat-Shamir. But they show one needs to carefully
analyze which precise properties Fiat-Shamir provably has, and not rely on what
Fiat-Shamir intuitively achieves.

Post-quantum security. In this paper we are interested in the post-quantum
security of Fiat-Shamir. That is, under what conditions is Fiat-Shamir secure
if the adversary has a quantum computer? In the post-quantum setting, the
random oracle has to be modeled as a random function that can be queried in
superposition6 since a normal hash function can be evaluated in superposition
as well (cf. [8]). Ambainis et al. [2] showed that in this model, Fiat-Shamir is
insecure in general. More precisely, they showed that relative to certain ora-
cles, there are sigma-protocols such that: The sigma-protocol satisfies the usual
security properties. (Such as zero-knowledge and special soundness. These are
sufficient for security in the classical case.) But when applying the Fiat-Shamir
transform to it, the resulting NIZKPoK is not sound (and thus, as a signature,
not unforgeable). Since this negative result is relative to specific oracles, it does
not categorically rule out a security proof. However, it shows that no relativizing
security proof exists, and indicates that it is unlikely that Fiat-Shamir can be
shown post-quantum secure in general. Analogous negative results [2] hold for
Fischlin’s scheme [13].

Unruh [26] gave a construction of a NIZKPoK/signature scheme in the ran-
dom oracle model that is avoids these problems and is post-quantum secure
(simulation-sound extractable zero-knowledge/strongly unforgeable). However,
Unruh’s scheme requires multiple executions of the underlying sigma-protocol,
leading to increased computational and communication complexity in com-
parison with Fiat-Shamir which needs only a single execution.7 Furthermore,

5 Unique responses: It is computationally infeasible to find two valid responses for the
same commitment/challenge pair. See Definition 6 below.

6 E.g., the adversary can produce states such as
∑

x 2−|x|/2|x〉 ⊗ |H(x)〉.
7 This assumes that the underlying sigma-protocol has a large challenge space. If

the underlying sigma-protocol has a small challenge space (e.g., the challenge is a
bit) then for Fiat-Shamir the sigma-protocol needs to be parallel composed first to
increase its challenge space. In this case, the complexity of Fiat-Shamir and Unruh
are more similar. (See, e.g., [14] that compares (optimizations of) Fiat-Shamir and
Unruh for a specific sigma-protocol and concludes that Unruh has an overhead in
communication complexity of merely 60% compared to Fiat-Shamir.).
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Fiat-Shamir is simpler (in terms of the construction, if not the proof), and more
established in the crypto community. In fact, a number of papers have used Fiat-
Shamir to construct post-quantum secure signature schemes (e.g., [3,4,15–18]).
The negative results by Ambainis et al. show that the post-quantum security of
these schemes is hard to justify.8 Thus the post-quantum security of Fiat-Shamir
would be of great interest, both from a practical and theoretical point of view.

Is there a possibility to show the security of Fiat-Shamir notwithstanding the
negative results from [2]? There are two options (besides non-relativizing proofs):
(a) Unruh [25] introduced an additional condition for sigma-protocols, so-called
“perfectly unique responses”.9 Unique responses means that for any commitment
and challenge in a sigma-protocol, there exists at most one valid response. They
showed that a sigma-protocol that additionally has perfect unique responses is
a proof of knowledge while [2] showed that without unique responses, a sigma
protocol will not in general be a proof of knowledge (relative to some oracle).
Similarly, [2] does not exclude that Fiat-Shamir is post-quantum secure when
the underlying sigma-protocol has perfectly unique responses.10 (b) If we do not
require extractability, but only require soundness (i.e., if we only want to prove
that there exists a witness, not that we know it), then [2] does not exclude a
proof that Fiat-Shamir is sound based on a sigma-protocol with perfect spe-
cial soundness (but (computational) special soundness is not sufficient). In this
paper, we mainly follow approach (b), but we also have some results related to
research direction (a).

1.2 Our Contribution

Security of Fiat-Shamir as a proof system. We prove that Fiat-Shamir is
post-quantum secure as a proof system. More precisely, we prove that it is zero-
knowledge (using random-oracle programming techniques from [26]), and that it
is sound (i.e., a proof of knowledge, using a reduction to quantum search). More
precisely:

Theorem 1 (Post-quantum security of Fiat-Shamir – informal).
Assume that Σ has honest-verifier zero-knowledge and statistical soundness.

Then the Fiat-Shamir proof system (PFS , VFS) is zero-knowledge and
sound.11

8 We stress that the classical security of these schemes is not in question. Also, not all
these papers explicitly claim to have post-quantum security. However, they all give
constructions that are based on supposedly quantum hard assumptions. Arguably,
one of the main motivations for using such assumptions is post-quantum security.
Thus the papers do not claim wrong results, but they would be considerably strength-
ened by a proof of the post-quantum security of Fiat-Shamir.

9 It is called “strict soundness” in [25] but we use the term “unique responses” to
match the language used elsewhere in the literature, e.g., [13].

10 Interestingly, computational unique responses as in footnote 5 are shown not to be
sufficient, even when we want only computational extractability/unforgeability.

11 We stress: It is sound in the sense of a proof system, but not known to be a proof
of knowledge.
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The assumptions are the same as in the classical setting, except that instead
of computational special soundness (as in the classical case), we need statisti-
cal soundness.12 This is interesting, because it means that we need one of the
properties of the sigma-protocol to hold unconditionally, even though we only
want computational security in the end. However, [2] shows that this is neces-
sary: when assuming only computational (special) soundness, they construct a
counter-example to the soundness of Fiat-Shamir (relative to some oracle).

Simulation-soundness. In addition to the above, we also show that Fiat-
Shamir has simulation-soundness. Simulation-soundness is a property that guar-
antees non-malleability, i.e., that an adversary cannot take a proof gotten from,
say, an honest participant and transform it into a different proof (potentially for
a different but related statement).13 This is particularly important when using
Fiat-Shamir to construct signatures (see below) because we would not want the
adversary to transform one signature into a different signature. Our result is:

Theorem 2 (Simulation-soundness of Fiat-Shamir – informal). Assume
that Σ has honest-verifier zero-knowledge, statistical soundness, and unique
responses.

Then the Fiat-Shamir proof system (PFS , VFS) has simulation-soundness.

Note that unique responses are needed for this result even in the classical
case. If we only require a slightly weaker form of simulation-soundness (“weak”
simulation-soundness), then we can omit that requirement.

Signatures. Normally, the security of Fiat-Shamir signatures is shown by reduc-
ing it to the simulation-sound extractability of Fiat-Shamir (implicitly or explic-
itly). Unfortunately, we do not know whether Fiat-Shamir is extractable in the
quantum setting. Thus, we need a new proof of the security of Fiat-Shamir sig-
natures that only relies on simulation-soundness. We can do so by making addi-
tional assumptions about the way the key generator works: We call an algorithm
G a “dual-mode hard instance generator” if G outputs a key pair (pk , sk) in such
a way that pk is computationally indistinguishable from an invalid pk (i.e., a pk
that has no corresponding sk). An example of such an instance generator would
be: sk is chosen uniformly at random, and pk := F (sk) for a pseudo-random
generator F . Then we have:

Theorem 3 (Fiat-Shamir signatures – informal). Assume that G is a dual-
mode hard instance generator. Fix a sigma-protocol Σ (for showing that a given
public key has a corresponding secret key). Assume that Σ has honest-verifier
zero-knowledge, statistical soundness.

Then the Fiat-Shamir signature scheme is unforgeable.

Note that classically, we only require that G is a hard instance generator. That
is, given pk , it is hard to find sk . We leave it as an open problem whether this
is sufficient in the post-quantum setting, too.
12 That is, soundness has to hold against computationally unlimited adversaries.
13 Formally, simulation-soundness is defined by requiring that soundness holds even

when the adversary has access to a simulator that produces fake proofs.
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Organization. In Sect. 2, we fix some simple notation. In Sect. 3, we discuss the
(relatively standard) security notions for sigma-protocols used in this paper. In
Sect. 4, we define security notions for non-interactive proof systems in the random
oracle model. In Sect. 5 we give out main results, the security properties of Fiat-
Shamir (zero-knowledge, soundness, simulation-soundness, . . . ). In Sect. 6, we
show how to construct signature schemes from non-interactive zero-knowledge
proof systems, in particular from Fiat-Shamir.

Readers who are interested solely in conditions under which Fiat-Shamir
signatures are post-quantum secure but not in the security proofs may restrict
their attention to Sects. 3 and 6 (in particular Corallary 23).

A full version with additional material on extractability appears online [27].

2 Preliminaries

Fun(n,m) is the set of all functions from {0, 1}n to {0, 1}m. a ⊕ b denotes the
bitwise XOR between bitstrings (of the same length).

If H is a function, we write H(x := y) for the function H ′ with H ′(x) = y
and H ′(x′) = H(x′) for x′ �= x. We call a list ass = (x1 := y1, . . . , xn := yn) an
assignment-list. We then write H(ass) for H(x1 := y1)(x2 := y2) . . . (xn := yn).
(That is, H is updated to return yi on input xi, with assignments occurring later
in ass taking precedence.)

We write x ← A(. . . ) to denote that the result of the algorithm/measurement
A is assigned to x. We write Q ← |Ψ〉 or Q ← ρ to denote that the quantum
register Q is initialized with the quantum state |Ψ〉 or ρ, respectively. We write
x

$← M to denote that x is assigned a uniformly randomly chosen element of the
set M .

If H is a classical function, then AH means that A has oracle access to H in
superposition (i.e., to the unitary |x, y〉 → |x, y ⊕ H(x)〉).
Theorem 4 (Random oracle programming [26]). Let �in, �out ≥ 1 be a
integers, and H

$← Fun(�in
η , �out

η ). Let AC be an algorithm, and A0, A2 be oracles
algorithms, where AH

0 makes at most qA queries to H, AC is classical, and the
output of AC has collision-entropy at least k given AC ’s initial state (which is
classical). A0, AC , A2 may share state. Then

∣
∣
∣ Pr[b = 1 : AH

0 (), xcom ← AC(), ch := H(xcom), b ← AH
2 (ch)]

− Pr[b = 1 : AH
0 (), xcom ← AC(), ch $← {0, 1}m,H(xcom) := ch, b ← AH

2 (ch)]
∣
∣
∣

≤ (4 +
√

2)
√

qA 2−k/4.

Lemma 5 (Hardness of search [27]). Let H : {0, 1}n → {0, 1}m be a uni-
formly random function. For any q-query algorithm A, it holds that Pr[H(x) =
0 : x ← AH()] ≤ 32 · 2−m · (q + 1)2.
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3 Sigma Protocols

In this paper, we will consider only proof systems for fixed-length relations . A
fixed-length relation Rη is a family of relations on bitstrings such that:

For every η, there are values �x
η and �w

η such that (x,w) ∈ Rη implies |x| = �x
η

and |w| = �w
η , and such that �x

η , �w
η can be computed in time polynomial in η.

Given x,w, it can be decided in polynomial-time in η whether (x,w) ∈ Rη.
We now define sigma protocols and related concepts. The notions in this

section are standard in the classical setting, and easy to adapt to the quantum
setting. Note that the definitions are formulated without the random oracle, we
only use the random oracle later for constructing non-interactive proofs out of
sigma protocols.

A sigma protocol for a fixed-length relation Rη is a three-message proof system.
It is described by the lengths �com

η , �ch
η , �resp

η of the “commitments”, “challenges”,
and “responses” (those lengths may depend on η), by a quantum-polynomial-
time14 prover (P 1

Σ , P 2
Σ) and a deterministic polynomial-time verifier VΣ . We will

commonly denote statement and witness with x and w (with (x,w) ∈ R in the hon-
est case). The first message from the prover is com ← P 1

Σ(1η, x, w) and is called the
commitment and satisfies com ∈ {0, 1}�com

, the uniformly random reply from the
verifier is ch $← {0, 1}�ch

(called challenge ), and the prover answers with a message
resp ← P 2

Σ(1η, x, w, ch) (the response ) that satisfies resp ∈ {0, 1}�resp

. We assume
P 1

Σ , P 2
Σ to share classical or quantum state. Finally VΣ(1η, x, com, ch, resp) out-

puts 1 if the verifier accepts, 0 otherwise.

Definition 6 (Properties of sigma protocols). Let (�com
η , �ch

η , �resp
η , P 1

Σ ,
P 2

Σ , VΣ) be a sigma protocol. We define:

– Completeness: For any quantum-polynomial-time algorithm A, there is a
negligible μ such that for all η,

Pr[(x,w) ∈ Rη ∧ VΣ(1η, x, com, ch, resp) = 0 : (x,w) ← A(1η),

com ← P 1
Σ(1η, x, w), ch $← {0, 1}�ch

η , resp ← P 2
Σ(1η, x, w, ch)] ≤ μ(η).

– Statistical soundness: There is a negligible μ such that for any stateful
classical (but not necessarily polynomial-time) algorithm A and all η, we have
that

Pr[ok = 1 ∧ x /∈ LR : (x, com) ← A(1η), ch $← {0, 1}�ch

,

resp ← A(1η, ch), ok ← VΣ(1η, x, com, ch, resp)] ≤ μ(η).

– Honest-verifier zero-knowledge (HVZK): There is a quantum-
polynomial-time algorithm SΣ (the simulator) such that for any stateful

14 Typically, P 1
Σ and P 2

Σ will be classical, but we do not require this since our results also
hold for quantum P 1

Σ , P 2
Σ . But the inputs and outputs of P 1

Σ , P 2
Σ are classical.
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quantum-polynomial-time algorithm A there is a negligible μ such that for
all η and (x,w) ∈ Rη,

∣
∣ Pr[b = 1 : (x,w) ← A(1η), com ← P 1

Σ(1η, x, w), ch $← {0, 1}�ch
η ,

resp ← P 2
Σ(1η, x, w, ch), b ← A(1η, com, ch, resp)]

− Pr[b = 1 : (x,w) ← A(1η), (com, ch, resp) ← S(1η, x),

b ← A(1η, com, ch, resp)]
∣
∣ ≤ μ(η).

– Perfectly unique responses: There exist no values η, x, com, ch, resp, resp′

with resp �= resp′ and VΣ(1η, x, com, ch, resp) = 1 and VΣ(1η, x, com, ch ′,
resp′) = 1.

– Unique responses: For any quantum-polynomial-time A, the following is
negligible:

Pr
[
resp �= resp′∧VΣ(1η, x, com, ch, resp)=1∧VΣ(1η, x, com, ch ′, resp′)=1 :

(x, com, ch, resp, resp′) ← A(1η)
]
.

– Unpredictable commitments: The commitment has superlogarithmic
collision-entropy. In other words, there is a negligible μ such that for all η
and (x,w) ∈ Rη,

Pr[com1 = com2 : com1 ← P 1
Σ(1η, x, w), com2 ← P 1

Σ(1η, x, w)] ≤ μ(η).

Note: the “unpredictable commitments” property is non-standard, but satis-
fied by all sigma-protocols we are aware of. However, any sigma-protocol with-
out unpredictable commitments can be transformed into one with unpredictable
commitments by appending superlogarithmically many random bits to the com-
mitment (that are then ignored by the verifier).

4 Non-interactive Proof Systems (Definitions)

In the following, let H always denote a function {0, 1}�in
η → {0, 1}�out

η where
�in
η , �out

η may depend on the security parameter η. Let Fun(�in
η , �out

η ) denote the
set of all such functions.

A non-interactive proof system (P, V ) for a relation Rη consists of a quantum-
polynomial-time algorithm P and a deterministic polynomial-time algorithm V ,
both taking an oracle H ∈ Fun(�in

η , �out
η ). π ← PH(1η, x, w) is expected to output

a proof π for the statement x using witness w. We require that |π| = �π
η for some

length �π
η . (i.e., the length of a proof π depends only on the security parameter.)

And ok ← V H(1η, x, π) is supposed to return ok = 1 if the proof π is valid for
the statement x. Formally, we define:

Definition 7 (Completeness). (P, V ) has completeness for a fixed-length
relation Rη iff for any polynomial-time oracle algorithm A there is a negligi-
ble μ such that for all η,

Pr[(x,w) ∈ Rη ∧ V H(1η, x, π) = 0 : H
$← Fun(�in

η , �out
η ),

(x,w) ← AH(1η), π ← PH(1η, x, w)] ≤ μ(η).
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For the following definition, a simulator is a classical stateful algorithm S.
Upon invocation, S(1η, x) returns a proof π. Additionally, S may reprogram the
random oracle. That is, S may choose an assignment-list ass, and H will then
be replaced by H(ass).

Definition 8 (Zero-knowledge). Given a simulator S, the oracle S′(x,w)
runs S(1η, x) and returns the latter’s output. Given a prover P , the oracle
P ′(x,w) runs P (1η, x, w) and returns the latter’s output.

A non-interactive proof system (P, V ) is zero-knowledge iff there is a
quantum-polynomial-time simulator S such that for every quantum-polynomial-
time oracle algorithm A there is a negligible μ such that for all η and all nor-
malized density operators ρ,

∣
∣
∣ Pr[b = 1 : H

$← Fun(�in
η , �out

η ), b ← AH,P ′
(1η, ρ)]

− Pr[b = 1 : H
$← Fun(�in

η , �out
η ), b ← AH,S′

(1η, ρ)]
∣
∣
∣ ≤ μ(η). (1)

Here we quantify only over A that never query (x,w) /∈ R from the P ′ or S′-
oracle.

Definition 9 (Soundness). A non-interactive proof system (P, V ) is sound
iff for any quantum-polynomial-time oracle algorithm A, there is a negligible
function μ, such that for all η and all normalized density operators ρ,

Pr[okV = 1 ∧ x /∈ LR : (x, π) ← AH(1η, ρ), okV ← V H(1η, x, π)] ≤ μ(η).

Here LR := {x : ∃w.(x,w) ∈ R}.
In some applications, soundness as defined above is not sufficient. Namely,

consider a security proof that goes along the following lines: We start with a
game in which the adversary interacts with an honest prover. We replace the
honest prover by a simulator. From the zero-knowledge property it follows that
this leads to an indistinguishable game. And then we try to use soundness to
show that the adversary in the new game cannot prove certain statements.

The last proof step will fail: soundness guarantees nothing when the adversary
interacts with a simulator that constructs fake proofs. Namely, it could be that
the adversary can take a fake proof for some statement and changes it into a
fake proof for another statement of its choosing. (Technically, soundness cannot
be used because the simulator programs the random oracle, and Definition 9
provides no guarantees if the random oracle is modified.)

An example where this problem occurs is the proof of Theorem 21 below
(unforgeability of Fiat-Shamir signatures).

To avoid these problems, we adapt the definition of simulation-soundness [22]
to the quantum setting. Roughly speaking, simulation-soundness requires that
the adversary cannot produce wrong proofs π, even if it has access to a simulator
that it can use to produce arbitrary fake proofs. (Of course, it does not count if
the adversary simply outputs one of the fake proofs it got from the simulator.
But we require that the adversary cannot produce any other wrong proofs.)
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Definition 10 (Simulation-soundness). A non-interactive proof system
(P, V ) is simulation-sound with respect to the simulator S iff for any quantum-
polynomial-time oracle algorithm A, there is a negligible function μ, such that
for all η and all normalized density operators ρ,

Pr[okV = 1 ∧ x /∈ LR ∧ (x, π) /∈ S-queries :

(x, π) ← AH,S′′
(1η, ρ), okV ← V Hfinal(1η, x, π)] ≤ μ(η). (2)

Here the oracle S′′(x) invokes S(1η, x). And Hfinal refers to the value of the
random oracle H at the end of the execution (recall that invocations of S may
change H). S-queries is a list containing all queries made to S′′ by A, as pairs
of input/output. (Note that the input and output of S′′ are classical, so such a
list is well-defined.)

We call (P, V ) weakly simulation-sound if the above holds with the following
instead of (2), where S-queries contains only the query inputs to S′′:

Pr[okV = 1 ∧ x /∈ LR ∧ x /∈ S-queries :

(x, π) ← AH,S′′
(1η, ρ), okV ← V Hfinal(1η, x, π)] ≤ μ(η). (3)

When considering simulation-sound zero-knowledge proof systems, we will
always implicitly assume that the same simulator is used for the simulation-
soundness and for the zero-knowledge property.

5 Fiat-Shamir

For the rest of this paper, fix a sigma-protocol Σ = (�com
η , �ch

η , �resp
η , P 1

Σ , P 2
Σ , VΣ)

for a fixed-length relation Rη. Let H : {0, 1}�x
η+�com

η → {0, 1}�ch
η be a random

oracle.

Definition 11. The Fiat-Shamir proof system (PFS , VFS) consists of the algo-
rithms PFS and VFS defined in Fig. 1.

Fig. 1. Prover PFS and verifier VFS of the Fiat-Shamir proof system. SFS is the sim-
ulator constructed in the proof of Theorem14.

In the remainder of this section, we show the following result, which is an
immediate combination of Theorems 14, 16, 17, and Lemma 13 below.
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Theorem 12. If Σ has completeness, unpredictable commitments, honest-
verifier zero-knowledge, statistical soundness, then Fiat-Shamir (PFS , VFS) has
completeness, zero-knowledge, and weak simulation-soundness.

If Σ additionally has unique responses, then Fiat-Shamir has simulation-
soundness.

5.1 Completeness

Lemma 13. If Σ has completeness and unpredictable commitments, then Fiat-
Shamir (PFS , VFS) has completeness.

Interestingly, without unpredictable commitments, the lemma does not hold.
Consider the following example sigma-protocol: Let Rη := {(x,w) : |x| =
|w| = η}, �com := �ch := �resp := η. Let P 1

Σ(1η, x, w) output com := 0η. Let
P 2

Σ(1η, x, w, ch) output resp := ch if ch �= w, and resp := ch else (ch is the bit-
wise negation of ch). Let VΣ(1η, x, com, ch, resp) = 1 iff |x| = η and ch = resp.
This sigma-protocol has all the properties from Definition 6 except unpredictable
commitments. Yet (PFS , VFS) does not have completeness: A can chose x := 0η

and w := H(0η‖0η). For those choices of (x,w), PFS(x,w) will chose com = 0η

and ch = H(x‖com) = w and thus resp = ch and return π = (com, ch). This
proof will be rejected by VFS with probability 1.

Proof of Lemma 13. Fix a polynomial-time oracle algorithm A. We need to show
that Pr[win = 1 : Game 1] is negligible for the following game:

Game 1 (Completeness). H
$← Fun(�in

η , �out
η ), (x,w) ← AH(1η), π ←

PH
FS(1η, x, w), okV ← V H

FS(1η, x, π), win := ((x,w) ∈ Rη ∧ okV = 0).

Let P 1,class
Σ , P 2,class

Σ be classical implementations of P 1
Σ , P 2

Σ . (I.e.,
P 1,class

Σ , P 2,class
Σ have the same output distribution but do not perform quan-

tum computations or keep a quantum state. P 1,class
Σ , P 2,class

Σ might not be
polynomial-time, and the state they keep might not be polynomial space.)

We use Theorem 4 to transform Game 1. For a fixed η, let AH
0 run (x,w) ←

AH(1η) (and return nothing). Let AC() run com ← P 1,class
Σ (1η, x, w) and

return x‖com. Let AH
2 (ch) run resp ← P 2,class

Σ (1η, x, w, ch) and okV ←
VΣ(1η, x, com, ch, resp) and return b := win := ((x,w) ∈ Rη ∧ okV = 0). (Note:
AC and AH

2 are not necessarily polynomial-time, we will only use that AH
0 is

polynomial-time.)
Let p1, p2 denote the first and second probability in Theorem4, respectively.

By construction, p1 = Pr[win = 1 : Game 1].
Furthermore, p2 = Pr[win = 1 : Game 2] for the following game:

Game 2. H
$← Fun(�in

η , �out
η ), (x,w) ← AH(1η), com ← P 1

Σ(1η, x, w), ch $←
{0, 1}�ch

, resp ← P 2
Σ(1η, x, w, ch), okV ← VΣ(1η, x, com, ch, resp), win :=

((x,w) ∈ Rη ∧ okV = 0).



Post-quantum Security of Fiat-Shamir 77

Then Theorem 4 implies that
∣
∣Pr[win =1 : Game 1]−Pr[win =1 : Game 2]

∣
∣= |p1−p2| ≤ (4+

√
2)

√
qA2−k/4 =: μ

(4)
where qA is the number of queries performed by AH

0 , and k the collision-entropy
of x‖com. Since A is polynomial-time, qA is polynomially bounded. And since
Σ has unpredictable commitments, k is superlogarithmic. Thus μ is negligible.

Since Σ has completeness, Pr[win = 1 : Game 2] is negligible. From (4) it
then follows that Pr[win = 1 : Game 1] is negligible. This shows that (PFS , VFS)
has completeness. ��

5.2 Zero-Knowledge

Theorem 14 (Fiat-Shamir is zero-knowledge). Assume that Σ is honest-
verifier zero-knowledge and has completeness and unpredictable commitments.

Then the Fiat-Shamir proof system (PFS , VFS) is zero-knowledge.

Proof. In this proof, we will in many places omit the security parameter η for
readability. (E.g., we write {0, 1}�ch

instead of {0, 1}�ch
η and SΣ(x) instead of

SΣ(1η, x).) It is to be understood that this is merely a syntactic omission, the
variables and algorithms still depend on η.

To show that Fiat-Shamir is zero-knowledge, we first define a simulator SFS ,
see Fig. 1. In the definition of SFS we use the honest-verifier simulator SΣ for Σ
(see Definition 6) which exists since Σ is HVZK by assumption. Fix a quantum-
polynomial-time adversary A, and a quantum state ρ (that may depend on
η). Let qH and qP denote polynomial upper bounds on the number of queries
performed by A to the random oracle H and the prover/simulator, respectively.
We need to show that (1) is negligible (with P := PFS and S := SFS). For this,
we transform the lhs of (1) into the rhs of (1) using a sequences of games.

Game 1 (Real world). b ← AH,PF S (ρ).

Game 2 (Programming H). b ← AH,P ∗
(ρ) with the following oracle P ∗:

P ∗(x,w) runs com ← P 1
Σ(x,w), ch $← {0, 1}�ch

, H(x‖com) := ch, resp ←
P 2

Σ(x,w, ch). Then it returns π := com‖resp.

Notice that P ∗ reprograms the random oracle in a similar way as the simula-
tor does. Thus, P ∗ is not a valid prover any more, but the game is well-defined
nonetheless.

In order to relate Games 1 and 2, we define a hybrid game:

Game 3i (Hybrid). b ← AH,P ′
(ρ) where P ′ behaves as PFS in the first i

invocations, and as P ∗ (see Game 2) in all further invocations.

Fix some i ≥ 0 and some η. We will now bound
∣
∣Pr[b = 1 : Game 3i]−Pr[b =

1 : Game 3i+1]
∣
∣ by applying Theorem4. Let AH

0 () be an algorithm that executes
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AH,P ′
(ρ) until just before the i-th query to P ′.15 Note that at that point, the

query input x,w for the (i + 1)-st P ′-query are fixed. Let P 1,class
Σ , P 2,class

Σ be
classical implementations of P 1

Σ , P 2
Σ . (I.e., P 1,class

Σ , P 2,class
Σ have the same out-

put distribution but do not perform quantum computations or keep a quantum
state. P 1,class

Σ , P 2,class
Σ might not be polynomial-time.) Let AC() compute com ←

P 1,class
Σ (x,w) and return x‖com if (x,w) ∈ R. (If (x,w) /∈ R, AC() instead out-

puts a η uniformly random bits.) Let AH
2 (ch) compute resp ← P 2,class

Σ (x,w, ch),
set π := com‖resp, and then finish the execution of AH using π as the response
of the (i + 1)-st P ′-query. AH

2 outputs the output of AH . Note that in the exe-
cution of AH

2 , P ′ will actually behave like P ∗ and thus reprogram the random
oracle H. AH

2 does not actually reprogram H (it only has readonly access to it),
but instead maintains a list of all changes performed by P ∗ to simulate queries
to H performed by A accordingly.

Since Σ has unpredictable commitments, the output of P 1
Σ has collision-

entropy ≥ k(η) for some superlogarithmic k, assuming (x,w) ∈ R. Hence the
output of AC has collision-entropy ≥ k′ := min{η, k}.

Since A makes at most qH queries to H, and at most qP queries to the prover,
and since PFS and P ∗ make one and zero queries to H, respectively, AH

0 makes
at most qA := qH + qP queries to H.

Let

Plhs := Pr[b = 1 : H
$← Fun(�x + �com, �ch), AH

0 (), x‖com ← AC(),

ch := H(x‖com), b ← AH
2 (ch)],

Prhs := Pr[b = 1 : H
$← Fun(�x + �com, �ch), AH

0 (), x‖com ← AC(),

ch $← {0, 1}�ch

,H(x‖com) := ch, b ← AH
2 (ch)]

Then, by Theorem 4,
∣
∣Plhs − Prhs

∣
∣ ≤ (4 +

√
2)

√
qA2−k/4 =: μ1. (5)

Since k is superlogarithmic, and qA = qH +qP is polynomially bounded, we have
that μ1 is negligible.

With those definitions, we have that

Plhs = Pr[b = 1 : Game 3i+1] (6)

because x‖com ← AC(), ch := H(x‖com) together with the steps resp ←
P 2,class

Σ (x,w, ch) and π := com‖resp executed by AH
2 compute what PFS would

compute,16 hence the (i + 1)-st query is exactly what it would be in Game 3i+1.

15 Note that AH
0 has both ρ and the security parameter η hardcoded. This is no problem

in the present case because Theorem 4 does not need AH
0 , AC , AH

2 to be efficient.
16 The case that AC() outputs η random bits when (x, w) /∈ R does not occur since A

queries the prover only with (x, w) ∈ R by Definition 8, and hence AH
0 only chooses

x, w with (x, w) ∈ R.
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And we have that
Prhs = Pr[b = 1 : Game 3i] (7)

because x‖com ← AC(), ch $← {0, 1}�ch

, H(x‖com) := ch, together with the
steps resp ← P 2,class

Σ (x,w, ch) and π := com‖resp executed by AH
2 compute

what P ∗ would compute, hence the i-st query is exactly what it would be in
Game 3i.

From (5)–(7), we have (for all i and η):
∣
∣Pr[b = 1 : Game 3i+1] − Pr[b = 1 : Game 3i]

∣
∣ ≤ μ1 (8)

Furthermore, we have that

Pr[b = 1 : Game 30] = Pr[b = 1 : Game 2]
and Pr[b = 1 : Game 3qP

] = Pr[b = 1 : Game 1]
(9)

by definition of the involved games. (For the second equality, we use that AH,P ′

makes at most qP queries to P ′.)
Thus we have

∣
∣Pr[b = 1 : Game 1] − Pr[b = 1 : Game 2]

∣
∣

(9)=
∣
∣Pr[b = 1 : Game 3qP

] − Pr[b = 1 : Game 30]
∣
∣

≤
qP −1∑

i=0

∣
∣Pr[b = 1 : Game 3i+1] − Pr[b = 1 : Game 3i]

∣
∣

(8)

≤
qP −1∑

i=0

μ1 = qP μ1 =: μ2. (10)

Since μ1 is negligible and qP is polynomially bounded, μ2 is negligible.

Game 4. b ← AH,P ∗∗
(ρ) with the following oracle P ∗∗:

P ∗∗(x,w) runs: com ← P 1
Σ(x,w), ch $← {0, 1}�ch

, resp ← P 2
Σ(x,w, ch), if

VΣ(x, com, ch, resp) = 1 then H(x‖com) := ch. Then it returns π := com‖resp.

By assumption, Σ has completeness. Furthermore, A never queries
(x,w) /∈ R from P ∗∗ (see Definition 8). Thus with overwhelming probability,
VΣ(x, com, ch, resp) = 1 holds in each query to P ∗∗. Thus with overwhelming
probability, the condition VΣ(x, com, ch, resp) = 1 in the if-statement is satisfied
in each invocation of P ∗∗, and P ∗∗ performs the same steps as P ∗. Thus for some
negligible μ3 we have

∣
∣Pr[b = 1 : Game 2] − Pr[b = 1 : Game 4]

∣
∣ ≤ μ3. (11)

Let SFS be as in Fig. 1.

Game 5. b ← AH,S′
F S . (Here S′

FS(x,w) runs SFS(x), analogous to S′ in
Definition 8.)



80 D. Unruh

By definition, P ∗∗(x,w) performs the following steps:

– com ← P 1
Σ(x,w), ch ← {0, 1}�ch

, resp ← P 2
Σ(x,w, ch), if

VΣ(x, com, ch, resp) = 1 then H(x‖com) := ch.

In constract, S′
FS performs:

– (com, ch, resp) ← SΣ(x), if VΣ(x, com, ch, resp) = 1 then H(x‖com) := ch.

By definition of honest-verifier zero-knowledge, (com, ch, resp) as chosen in the
first item is indistinguishable by a quantum-polynomial-time algorithm from
(com, ch, resp) as chosen second item, assuming (x,w) ∈ R. (And (x,w) ∈ R
is guaranteed since by Definition 8, A only queries (x,w) ∈ R from the
prover/simulator.) A standard hybrid argument then shows that no quantum-
polynomial-time adversary can distinguish oracle access to P ∗∗ from oracle access
to S′

FS . Hence
∣
∣Pr[b = 1 : Game 4] − Pr[b = 1 : Game 5]

∣
∣ ≤ μ4 (12)

for some negligible μ4.
Altogether, we have

∣
∣Pr[b = 1 : Game 1] − Pr[b = 1 : Game 5]

∣
∣
(10)–(12)

≤ μ2 + μ3 + μ4.

Since μ2, μ3, and μ4 are negligible, so is μ2 +μ3 +μ4. Thus (1) from Definition 8
is negligible. This shows that SFS is a simulator as required by Definition 8, thus
Fiat-Shamir is zero-knowledge. ��

5.3 Soundness

Theorem 15. Assume that Σ has statistical soundness. Then the Fiat-Shamir
proof system (PFS , VFS) is sound.

It may seem surprising that we need an information-theoretical property
(statistical soundness of Σ) to get a computational property (soundness of
(PFS , VFS)). Might it not be sufficient to assume that Σ has computational
soundness (or the somewhat stronger, computational special soundness)? Unfor-
tunately, [2] shows that (relative to certain oracles), there is a sigma-protocol
Σ with computational special soundness such that (PFS , VFS) is not sound.
So, we cannot expect Theorem 15 to hold assuming only computational special
soundness, at least not with a relativizing proof.17

The proof is based on the following observation: To produce a fake Fiat-
Shamir proof, the adversary needs to find an input (x, com) to the random
oracle H such that ch := H(x‖com) is a challenge for which there exists a valid

17 [2] leaves the possibility of a relativizing proof that Fiat-Shamir is secure if Σ has per-
fectly unique responses and computational special soundness, though. But then we
have another information-theoretical assumption, namely perfectly unique responses.
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response. We call such a challenge promising. (Additionally, the adversary needs
to also find that response, but we do not make use of that fact.) So, to show that
forging a proof is hard, we need to show that outputs of H that are promising
are hard to find. Since the sigma-protocol has statistical soundness, there can-
not be too many promising challenges (otherwise, an unlimited adversary would
receive a promising challenge with non-negligible probability, compute the cor-
responding response, and break the statistical soundness of the sigma-protocol).
By reduction to existing bounds on the quantum hardness of search in a random
function, we then show that finding a promising challenge in H is hard.

Proof of Theorem15. In this proof, we will in most places omit the security
parameter η for readability. (E.g., we write �ch instead of �ch

η and SΣ(x) instead
of SΣ(η, x).) It is to be understood that this is merely a syntactic omission, the
variables and algorithms still depend on η.

Let x ∈ {0, 1}�x

, com ∈ {0, 1}com . We call a ch ∈ {0, 1}�ch

promising for
(x, com) iff there exists a resp ∈ {0, 1}�resp

such that VΣ(x, com, ch, resp) = 1.

Claim 1. There is a negligible μ such that for any x ∈ {0, 1}�x \ LR and any
com ∈ {0, 1}�com

, there exist at most μ2�ch

promising ch.

Since Σ has statistical soundness, by definition (Definition 6) there exists a
negligible function μ such that for all x /∈ LR, all com ∈ {0, 1}�com

, and all A,
we have:

Pr[VΣ(x, com, ch, resp) = 1 : ch $← {0, 1}�ch

, resp ← A(x, com, ch)] ≤ μ. (13)

Let A be the adversary that, given (x, com, ch) outputs some resp with
VΣ(x, com, ch, resp) = 1 if it exists, and an arbitrary output otherwise.
That is, whenever ch is promising for (x, com), A outputs resp such that
VΣ(x, com, ch, resp) = 1. For any x, com, let promx,com denote the number of
promising ch. Then for all x /∈ LR and all com ∈ {0, 1}�com

, we have

promx,com = 2�ch

Pr[ch is promising for (x, com) : ch $← {0, 1}�ch

]

≤ 2�ch

Pr[VΣ(x, com, ch, resp) = 1 : ch $← {0, 1}�ch

,

resp ← A(x, com, ch)]
(13)

≤ 2�ch

μ.

This shows the claim.
We now define an auxiliary distribution D on functions f : {0, 1}�x+�com →

{0, 1}�ch

as follows: For each x, com, let f(x‖com) be an independently cho-
sen uniformly random promising ch. If no promising ch exists for (x, com),
f(x‖com) := 0�ch

.
Let A be a quantum-polynomial-time adversary that breaks the soundness

of Fiat-Shamir given some initial state ρ. That is, δ is non-negligible where

δ := Pr[okV = 1 ∧ x /∈ LR : (x, com‖resp) ← AH(ρ), okV ← V H
FS(x, com‖resp)].
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By definition of VFS , we have that okV = 1 implies that VΣ(x, com, ch, resp) = 1
where ch := H(x‖com). In particular, ch = H(x‖com) is promising for (x, com).
Thus, if okV = 1∧x /∈ LR then f(x‖com) = H(x‖com) with probability at least
1/(μ2�ch

) for f ← D. Hence for uniformly random H,

Pr[f(x‖com) = H(x‖com) : (x, com‖resp) ← AH(ρ)] ≥ δ

μ2�ch . (14)

Let BH(ρ) perform the following steps: It defines H ′(x‖com) := H(x‖com)⊕
f(x‖com). It invokes (x, com‖resp) ← AH′

(ρ). It returns x‖com.
Let q be a polynomial upper bound for the number of queries performed

by A. Although B may not be quantum-polynomial-time (f may not be effi-
ciently computable), B performs only q queries since each query to H ′ can be
implemented using one query to H.18

If H is uniformly random, then H ′ is uniformly random. Thus by (14),
H ′(x‖com) = f(x‖com) with probability ≥ 2−�ch

δ/μ. Thus H(x‖com) = 0�ch

with probability ≥ 2−�ch

δ/μ. In other words, B finds a zero-preimage of
H with probability ≥ 2−�ch

δ/μ. By Lemma 5, this implies that 2−�ch

δ/μ ≤
32 · 2−�ch · (q +1)2. Hence δ ≤ 32μ · (q +1)2. Since q is polynomially bounded (as
A is quantum-polynomial-time) and μ is negligible, we have that δ is negligible.

Since this holds for all quantum-polynomial-time A, it follows that
(PFS , VFS) is sound. ��

5.4 Simulation-Soundness

We give two theorems on simulation-soundness, depending on whether the sigma-
protocol has unique responses or not.

Theorem 16. (Fiat-Shamir is weakly simulation-sound). Assume that Σ
has statistical soundness.

Then the Fiat-Shamir proof system (PFS , VFS) is weakly simulation-sound
with respect to the simulator SFS from Fig. 1.

Proof. In this proof, we will in most places omit the security parameter η for
readability. (E.g., we write �ch instead of �ch

η and SΣ(x) instead of SΣ(η, x).)
It is to be understood that this is merely a syntactic omission, the variables
and algorithms still depend on η. For brevity, we will also omit the choosing of
the random oracle H from all games. That is, every game implicitly starts with
H

$← Fun(�in, �out).
Fix a quantum-polynomial-time adversary A, and a density operator ρ. Let

qH and qP denote polynomial upper bounds on the number of queries performed
by A to the random oracle H and the prover/simulator, respectively. We need

18 To implement the unitary UH′ : |a‖b〉 �→ |a‖(b ⊕ H ′(a))〉, B first invokes UH :
|a‖b〉 �→ |a‖(b ⊕ H(a))〉 by using the oracle H, and then Uf : |a‖b〉 �→ |a‖(b ⊕ f(a))〉
which B implements on its own.
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to show that (3) holds with V := VFS and S := SFS for some negligible μ. For
this, we transform the game from (3) using a sequence of games until we reach
a game where the adversary has a negligible success probability. The following
game encodes the game from (3): (We write com‖resp instead of π to be able to
explicitly refer to the two components of π.)

Game 1 (Real world). SA ← ρ. x‖com‖resp ← AH,SF S (SA). okV ←
V

Hfinal

FS (x, com‖resp). win :=
(
okV = 1 ∧ x /∈ LR ∧ x /∈ S-queries

)
.

Here we use H to refer to the initial value of the random oracle H, and Hfinal

to the value of H after it has been reprogrammed by SFS . (See Definition 10.)
We now show that in Game 1, we have

V
Hfinal

FS (x, com‖resp) = 1 ∧ x /∈ S-queries =⇒ V H
FS(x, com‖resp) = 1. (15)

Assume for contradiction that (15) does not hold, i.e.,
that V

Hfinal

FS (x, com‖resp) = 1 and x /∈ S-queries, but V H
FS(x, com‖resp) = 0

in some execution of Game 1. Since V H
FS queries H only for input x‖com, this

implies that Hfinal(x‖com) �= H(x‖com). Since H is only reprogrammed by
invocations of SFS , H(x‖com) must have been reprogrammed by SFS . Consider
the last query to SFS that programmed H(x‖com) (in case there are several). By
construction of SFS , that query had input x, in contradiction to x /∈ S-queries.
Thus our assumption that (15) does not hold was false. Thus (15) follows.

We now consider a variant of Game 1 where the verifier in the end gets access
to H instead of Hfinal. (That is, we can think of H being reset to its original
state without the simulator’s changes.)

(In this and the following games, we will not need to refer to com and resp
individually any more, so we just write π instead of com‖resp.)

Game 2 (Unchanged H). SA ← ρ. x‖π ← AH,SF S (SA). okV ← V H
FS(x, π).

win :=
(
okV = 1 ∧ x /∈ LR ∧ x /∈ S-queries

)
.

By (15), we get

Pr[win : Game 2] ≥ Pr[win : Game 1]. (16)

Furthermore, we have

Pr[okV = 1 ∧ x /∈ LR : Game 2] ≥ Pr[win : Game 2].

We define an oracle algorithm B. When invoked as BH(SA), it simulates an
execution of AH,SF S (SA). Note that SFS can program the random oracle H. In
order to simulate this, BH keeps track of the assignments assS made by SFS ,
and then provides A with the oracle H(assS) (i.e., H reprogrammed according
to the assignment-list assS) instead of H. Then BH(SA) will have the same
distribution of outputs as AH,SF S (SA). (But of course, any reprogramming of
H performed by the SFS simulated by B will not have any effect beyond the
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execution of B. That is, the function H before and after the invocation of BH

will be the same.)
By construction of B (and because VFS gets access to H and not Hfinal in

(16)), we then have

Pr[win : Game 3] = Pr[okV = 1 ∧ x /∈ LR : Game 2].

Game 3 (Adversary B). SA ← ρ. x‖π ← BH(SA). okV ← V H
FS(x, π). win :=(

okV = 1 ∧ x /∈ LR

)
.

By Theorem 15, (PFS , VFS) is sound. Furthermore, since A and SFS are
quantum-polynomial-time, B is quantum-polynomial-time. Thus by definition
of soundness (Definition 9), there is a negligible μ such that

Pr[win : Game 3] ≤ μ.

Combining the inequalities from this proof, we get Pr[win : Game 1] ≤ μ + μ′.
And μ + μ′ is negligible. Since Game 1 is the game from the definition of weak
simulation soundness (Definition 10) for (PFS , VFS), and since A was an arbi-
trarily quantum-polynomial-time oracle algorithm, it follows that (PFS , VFS) is
weakly simulation-sound. ��

If we add another assumption about the sigma-protocol, we even can get
(non-weak) simulation-soundness:

Theorem 17 (Fiat-Shamir is simulation-sound). Assume that Σ has sta-
tistical soundness and unique responses.

Then the Fiat-Shamir proof system (PFS , VFS) is simulation-sound with
respect to the simulator SFS from Fig. 1.

Unique responses are necessary in this theorem. As pointed out in [11], if
Σ does not have unique responses, it cannot be simulation-sound, even in the
classical case. Namely, if we do not require unique responses, it could be that
whenever (com, ch, resp‖0) is a valid proof in Σ, so is (com, ch, resp‖1), and
vice versa. Thus any valid Fiat-Shamir proof com‖(resp‖0) could be efficiently
transformed into another valid Fiat-Shamir proof com‖(resp‖1) for the same
statement. This would contradict the simulation-soundness of (PFS , VFS).

Proof. In this proof, we will in most places omit the security parameter η for
readability. (E.g., we write �ch instead of �ch

η and SΣ(x) instead of SΣ(η, x).)
It is to be understood that this is merely a syntactic omission, the variables
and algorithms still depend on η. For brevity, we will also omit the choosing of
the random oracle H from all games. That is, every game implicitly starts with
H

$← Fun(�in, �out).
Fix a quantum-polynomial-time adversary A, and a density operator ρ. Let

qH and qP denote polynomial upper bounds on the number of queries performed
by A to the random oracle H and the prover/simulator, respectively. We need
to show that (2) holds with V := VFS and S := SFS for some negligible μ. For
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this, we transform the game from (2) using a sequence of games until we reach
a game where the adversary has a negligible success probability. The following
game encodes the game from (2): (We write com‖resp instead of π to be able to
explicitly refer to the two components of π.)

Game 4 (Real world). SA ← ρ. x‖com‖resp ← AH,SF S (SA). okV ←
V

Hfinal

FS (x, com‖resp). win :=
(
okV = 1 ∧ x /∈ LR ∧ (x, com‖resp) /∈ S-queries

)
.

Here we use H to refer to the initial value of the random oracle H, and Hfinal

to the value of H after it has been reprogrammed by SFS . (See Definition 10.)
We define a variant of the random variable S-queries. Let S-queries∗ be the list

of all SFS-queries (x′, com ′‖resp′, ch ′) where x′ was the input to SFS , com ′‖resp′

was the response of SFS , and ch ′ was the value of H(x′‖com ′) right after the
query to SFS . (Note that H(x′‖com ′) may change later due to reprogramming.)
Notice that the only difference between S-queries and S-queries∗ is that in the
latter, we additionally track the values ch ′ = H(x′‖com ′).

Let RespConflict denote the event that VΣ(x, com,Hfinal(x‖com), resp) = 1
and that there is a query (x′, com ′‖resp′, ch ′) ∈ S-queries with x′ = x, com ′ =
com, ch ′ = Hfinal(x‖com), and resp′ �= resp and VΣ(x, com, ch ′, resp′) = 1.

Since Σ has unique responses, it follows that

Pr[RespConflict : Game 4] ≤ μ′

for some negligible μ′. (Otherwise, we could construct an adversary that
simulates Game 4, and then searches for (x, com‖resp′, ch) ∈ S-queries with
VΣ(x, com, ch, resp′) = 1 and resp′ �= resp.)

Thus
∣
∣
∣Pr[win : Game 4] − Pr[win ∧ ¬RespConflict : Game 4]

∣
∣
∣ ≤ μ′.

We now show that in Game 4, we have

V
Hfinal

FS (x, com‖resp) = 1 ∧ (x, com‖resp) /∈ S-queries ∧ ¬RespConflict
=⇒ V H

FS(x, com‖resp) = 1. (17)

Assume for contradiction that (17) does not hold, i.e., that V
Hfinal

FS

(x, com‖resp) = 1 and (x, com‖resp) /∈ S-queries and ¬RespConflict, but
V H

FS(x, com‖resp) = 0 in some execution of Game 4. Since V H
FS queries H only

for input x‖com, this implies that Hfinal(x‖com) �= H(x‖com). Since H is only
reprogrammed by invocations of SFS , H(x‖com) must have been reprogrammed
by SFS . Consider the last query to SFS that programmed H(x‖com) (in case
there are several). By construction of SFS , that query had input x, and returns
(com, resp′) for some resp′. In particular, (x, com‖resp′) ∈ S-queries. Let ch be
the challenge chosen by SFS in that query. Then (x, com‖resp′, ch) ∈ S-queries∗.
By construction of SFS , we have VΣ(x, com, ch, resp′) = 1 (else H would not
have been reprogrammed in that query) and Hfinal(x‖com) = ch (because
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we are considering the last SFS-query that programmed H(x‖com)). Since
(x, com‖resp) /∈ S-queries and (x, com‖resp′) ∈ S-queries, we have resp �=
resp′. Since V

Hfinal

FS (x, com‖resp) = 1 and ch = Hfinal(x‖com), we have
that VΣ(x, com, ch, resp) = 1 by definition of VFS . Summarizing, we have
VΣ(x, com, ch, resp) = 1 and ch = Hfinal(x‖com) and VΣ(x, com, ch, resp′) =
1 and (x, com‖resp′, ch) ∈ S-queries∗ and resp �= resp′. By definition of
RespConflict, this contradicts ¬RespConflict. Thus our assumption that (17) does
not hold was false. Thus (17) follows.

We now consider a variant of Game 4 where the verifier in the end gets access
to H instead of Hfinal. (That is, we can think of H being reset to its original
state without the simulator’s changes.)

(In this and the following games, we will not need to refer to com and resp
individually any more, so we just write π instead of com‖resp.)

Game 5 (Unchanged H). SA ← ρ. x‖π ← AH,SF S (SA). okV ← V H
FS(x, π).

win :=
(
okV = 1 ∧ x /∈ LR ∧ (x, π) /∈ S-queries

)
.

By (17), we get

Pr[win : Game 5] ≥ Pr[win ∧ ¬RespConflict : Game 4]. (18)

Furthermore, we have

Pr[okV = 1 ∧ x /∈ LR : Game 5] ≥ Pr[win : Game 5].

We define an oracle algorithm B. When invoked as BH(SA), it simulates an
execution of AH,SF S (SA). Note that SFS can program the random oracle H. In
order to simulate this, BH keeps track of the assignments assS made by SFS ,
and then provides A with the oracle H(assS) (i.e., H reprogrammed according
to the assignment-list assS) instead of H. Then BH(SA) will have the same
distribution of outputs as AH,SF S (SA). (But of course, any reprogramming of
H performed by the SFS simulated by B will not have any effect beyond the
execution of B. That is, the function H before and after the invocation of BH

will be the same.)
By construction of B (and because VFS gets access to H and not Hfinal in

(18)), we then have

Pr[win : Game 6] = Pr[okV = 1 ∧ x /∈ LR : Game 5].

Game 6 (Adversary B). SA ← ρ. x‖π ← BH(SA). okV ← V H
FS(x, π). win :=(

okV = 1 ∧ x /∈ LR

)
.

By Theorem 15, (PFS , VFS) is sound. Furthermore, since A and SFS are
quantum-polynomial-time, B is quantum-polynomial-time. Thus by definition
of soundness (Definition 9), there is a negligible μ such that

Pr[win : Game 6] ≤ μ.

Combining the inequalities from this proof, we get Pr[win : Game 4] ≤ μ + μ′.
And μ + μ′ is negligible. Since Game 4 is the game from Definition 10 for
(PFS , VFS), and since A was an arbitrarily quantum-polynomial-time oracle
algorithm, it follows that (PFS , VFS) is simulation-sound. ��
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6 Signatures

Originally, Fiat-Shamir was constructed as a signature scheme [12]. Only later,
[5] used the same idea to construct a non-interactive zero-knowledge proof. The
fact that Fiat-Shamir gives rise to a secure signature scheme can be seen as a
special case of its properties as a proof system. Namely, any non-interactive zero-
knowledge proof system with simulation-sound extractability can be used as a
signature scheme. In the quantum setting, [26] showed that their construction
of simulation-sound extractable non-interactive proofs gives rise to a signature
scheme in the same way. However, this approach does not show that Fiat-Shamir
gives rise to a secure signature scheme because we are not able to prove that
Fiat-Shamir is extractable. For analyzing Fiat-Shamir, we show under which
conditions a simulation-sound zero-knowledge non-interactive proof system gives
rise to a signature scheme. Combined with our results from Sect. 5, this implies
security for Fiat-Shamir based signatures.

The basic idea of the construction of signatures from non-interactive proof
systems (e.g., Fiat-Shamir) is the following: To sign a message m, one needs to
show the knowledge of one’s secret key. Thus, we need a relation Rη between
public and secret keys, and we need an algorithm G to generate public/secret key
pairs such that it is hard to guess the secret key (a “hard instance generator”).
We formalize the definition below (Definition 20).

An example of a hard instance generator would be: Rη := {(x,w) : |w| =
η ∧ x = f(w)} for some quantum-one-way function f , and G picks w uniformly
from {0, 1}η, sets x := f(w), and returns (x,w).

Now a signature is just a proof of knowledge of the secret key. That is, the
statement is the public key, and the witness is the secret key. However, a signa-
ture should be bound to a particular message. For this, we include the message
m in the statement that is proven. That is, the statement that is proven consists
of a public key and a message, but the message is ignored when determining
whether a given statement has a witness or not. (In the definition below, this is
formalized by considering an extended relation R′.) The simulation-soundness of
the proof system will then guarantee that a proof/signature with respect to one
message cannot be transformed into a proof/signature with respect to another
message because this would mean changing the statement.

A signature scheme consists of three oracle algorithms: Keys are generated
with (pk , sk) ← KeyGenH(1η). The secret key sk is used to sign a message m
using the signing algorithm σ ← SignH(1η, sk ,m) to get a signature σ. And the
signature is considered valid iff VerifyH(1η, pk , σ,m) = 1.

An instance generator for a relation Rη is an algorithm G such that G(1η)
outputs (x,w) ∈ Rη with overwhelming probability.

We now describe how to use a simulation-sound zero-knowledge protocol
(e.g., Fiat-Shamir) to construct a signature scheme:

Definition 18 (Signatures from non-interactive proofs). Let G be an
instance generator for a relation Rη. Fix a length �m

η . Let R′
η := {(x‖m,w) :

|m| = �m
η ∧ (x,w) ∈ Rη}. Let (P, V ) be a non-interactive proof system for
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R′
η (in the random oracle model). Then we construct the signature scheme

(KeyGen,Sign,Verify) with message space {0, 1}�m
η as follows:

– KeyGenH(1η): Pick (x,w) ← G(1η). Let pk := x, sk := (x,w). Return
(pk , sk).

– SignH(1η, sk ,m) with sk = (x,w): Run σ ← PH(1η, x‖m,w). Return σ.
– VerifyH(1η, pk , σ,m) with pk = x: Run ok ← V H(1η, x‖m,σ). Return ok.

Note that we use a proof system for the relation R′
η instead of Rη. However,

in most cases (including Fiat-Shamir) it is trivial to construct a proof system for
R′

η given one for Rη. This is because any sigma-protocol for Rη is also a sigma-
protocol for R′

η.19 The only reason why we need to use R′
η is that we want to

include the message m inside the statement (without logical significance), and
R′

η allows us to do precisely that. (In the case of Fiat-Shamir, the overall effect
will simply be to include m in the hash, see Definition 22.)

The security property we will prove is unforgeability. Unforgeability comes in
two variants: weak unforgeability that ensures that the adversary cannot forge a
signature for a message that has not been signed before, and strong unforgeability
that additionally ensures that the adversary cannot even produce a different
signature for a message that has been signed before. (Weak unforgeability is
often just called unforgeability.) The definitions are standard, we include them
here for completeness:

Definition 19 (Strong/weak unforgeability). A signature scheme
(KeyGen,Sign,Verify) is strongly unforgeable iff for all polynomial-time oracle
algorithms A there exists a negligible μ such that for all η, we have

Pr[ok = 1 ∧ (m∗, σ∗) /∈ Sig-queries :

H ← Fun(�in
η , �out

η ), (pk , sk) ← KeyGenH(1η),

(σ∗,m∗) ← AH,Sig(1η, pk), ok ← VerifyH(1η, pk , σ∗,m∗)] ≤ μ(η). (19)

Here Sig is a classical20 oracle that upon classical input m returns
SignH(1η, sk ,m). (But queries to H are quantum.) And Sig-queries is the list
of all queries made to Sig. (I.e., when Sig is queried with m and σ, (m,σ) is
added to the list Sig-queries.) And �in

η , �out
η denote the input/output length of the

random oracle used by the signature scheme.
We call (KeyGen,Sign,Verify) weakly unforgeable if the above holds with

the following instead of (19), where Sig-queries contains only the query inputs
made to Sig (i.e., m instead of (m,σ)):

Pr[ok = 1 ∧ m∗ /∈ Sig-queries : H ← Fun(�in
η , �out

η ), (pk , sk) ← KeyGenH(1η),

(σ∗,m∗) ← AH,Sig(1η, pk), ok ← VerifyH(1η, pk , σ∗,m∗)] ≤ μ(η).

19 This is made formal by the construction of Σ′ in the proof of Corollary 23.
20 Formally, this means that Sig measures its input at the beginning of the each query.
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In [26], a hard instance generator was defined as an algorithm that outputs
a statement/witness pair such that it is hard on average to find a valid witness
given only the statement. However, since we will do not assume a proof system
with extractability, we need a stronger variant of this definition: A dual-mode
hard instance generator requires more. While a hard instance generator requires
that is it hard to find a witness for x, a dual-mode hard instance generator
requires that it is hard to distinguish whether x even has a witness. In other
words, we should not be able to distinguish x as returned by G from x∗ as
returned by an algorithm G∗ that returns statements that do not have a witness
(except with negligible probability). Formally:

Definition 20 (Dual-mode hard instance generator). We call an algo-
rithm G a dual-mode hard instance generator for a fixed-length relation Rη iff

– G is quantum-polynomial-time, and
– there is a negligible μ such that for every η, Pr[(x,w) ∈ Rη : (x,w) ←

G(1η)] ≥ 1 − μ(η), and
– for all quantum-polynomial-time algorithm A, there is a quantum-polynomial-

time algorithm G∗ and negligible μ1, μ2 such that for all η,

∣
∣
∣Pr[b = 1 : (x,w) ← G(1η), b ← A(1η, x)]

− Pr[b = 1 : x ← G∗(1η), b ← A(1η, x)]
∣
∣
∣ ≤ μ1(η).

and
Pr[x ∈ LR : x ← G∗(1η)] ≤ μ2(η).

Note that we allow G∗ to depend on A. This is a slightly weaker requirement
than requiring a universal G∗. We chose the weaker variant because it is sufficient
for our proof below.

An example of a dual-mode hard instance generator is: Let Rη := {(x,w) :
|w| = η ∧ x = F (w)} for some quantum pseudorandom generator F : {0, 1}η →
{0, 1}2η, and G picks w uniformly from {0, 1}η, sets x := F (w), and returns
(x,w). The conditions from Definition 20 are satisfied for G∗ which returns x

$←
{0, 1}2η.

With this definition, we can state the main results of this section, namely
the strong (weak) unforgeability of signatures constructed from non-interactive
zero-knowledge proof systems that are (weakly) simulation-sound:

Theorem 21 (Unforgeability from simulation-soundness). Fix a rela-
tion Rη. Let R′

η be defined as in Definition 18. If (P, V ) is zero-knowledge and
simulation-sound (weakly simulation-sound) for R′

η, and G is a dual-mode hard
instance generator for Rη, then the signature scheme (KeyGen,Sign,Verify)
from Definition 18 is strongly unforgeable (weakly unforgeable).

The proof is given in Sect. 6.1 below.
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Fiat-Shamir. The two preceding theorems are formulated for generic
simulation-sound zero-knowledge proof systems. By specializing Theorem 21
to the case that (P, V ) is the Fiat-Shamir proof system, we get a signature
scheme based on a dual-mode hard instance generator and a zero-knowledge
sigma-protocol with statistical soundness. The resulting signature scheme is the
following:

Definition 22 (Fiat-Shamir signatures). Let G be an instance generator
for a relation Rη. Fix a length �m

η . Then we construct the signature scheme
(KeyGen,Sign,Verify) with message space {0, 1}�m

η as follows:

– KeyGenH(1η): Pick (x,w) ← G(1η). Let pk := x, sk := (x,w). Return
(pk , sk).

– SignH(1η, sk ,m) with sk = (x,w): com ← P 1
Σ(1η, x, w). resp ←

P 2
Σ(1η, x, w,H(x‖m‖com)). Return σ := com‖resp.

– VerifyH(1η, pk , σ,m) with pk = x and σ = com‖resp: Run ok ←
VΣ(1η, x, com,H(x‖m‖com), resp). Return ok.

Corollary 23 (Fiat-Shamir signatures). Assume that Σ is honest-verifier
zero-knowledge, has completeness, has unpredictable commitments, and has sta-
tistical soundness for Rη, and that �ch

η is superlogarithmic. Assume that G is a
dual-mode hard instance generator for Rη.

Then the signature scheme (KeyGenFS ,SignFS ,VerifyFS) from Defini-
tion 22 is weakly unforgeable.

If Σ additionally has unique responses, the signature scheme is strongly
unforgeable.

Proof. Let Σ′ be the following sigma-protocol for R′: The message lengths
�com
η , �ch

η , �resp
η are the same as for Σ. For x ∈ {0, 1}�x

η , m ∈ {0, 1}�m
η ,

the prover P 1
Σ′(1η, (x‖m), w) runs P 1

Σ(1η, x, w), and P 2
Σ′(1η, (x‖m), w, ch) runs

P 2
Σ(1η, x, w, ch). And VΣ′(1η, x‖m, com, ch, resp) runs VΣ(1η, x, com, ch, resp).

It is easy to check that Σ′ is honest-verifier zero-knowledge, has completeness,
has unpredictable commitments, and has statistical soundness for R′

η. (Using the
fact that Σ has these properties for Rη.) And �ch is superlogarithmic.

We apply the Fiat-Shamir construction (Definition 11) to Σ′. The resulting
proof system (PFS , VFS) is zero-knowledge and weakly simulation-sound for R′

η

by Theorems 14 and 16. Then we apply the construction of signatures (Defini-
tion 18) to (PFS , VFS) and G. By Theorem21, the resulting signature scheme S
is weakly unforgeable.

Finally, notice that this signature scheme S is the signature scheme from
Definition 22. (By explicitly instantiating the constructions from Definition 11
and Definition 18 and the definition of Σ′.)

If Σ additionally has unique responses, then Σ′ also has unique responses.
Thus by Theroem17, (PFS , VFS) is simulation-sound. Hence by Theorem21, S
is strongly unforgeable. ��
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6.1 Security Proof

Proof of Theorem21. We prove the case of strong unforgeability (assuming
simulation-soundness). The case of weak unforgeability is proven almost iden-
tically, we just have to replace all occurrences of (m∗, σ∗) /∈ Sig-queries by
m∗ /∈ Sig-queries and (x∗, π∗) /∈ S-queries by x∗ /∈ S-queries.

In this proof, we will in many places omit the security parameter η for
readability. (E.g., we write �m instead of �m

η and Sign(sk ,m) instead of
Sign(1η, sk ,m).) It is to be understood that this is merely a syntactic omission,
the variables and algorithms still depend on η.

In the following, H will always denote a uniformly random function from
Fun(�in, �out). That is, every game written below implicitly starts with H

$←
Fun(�in, �out).

Fix a polynomial-time oracle algorithm A. By definition of strong unforge-
ability (Definition 19), we need to show

Pr[win = 1 : Game 1] ≤ μ(η)

for some negligible μ and the following game:

Game 1 (Unforgeability). (pk , sk) ← KeyGenH(), (σ∗,m∗) ← AH,Sig(pk),
ok ← VerifyH(pk , σ∗,m∗). win := (ok = 1 ∧ (m∗, σ∗) /∈ Sig-queries).

We will transform this game in several steps. First, we inline the definitions
of Sig (Definition 19) and KeyGen, Sign, and Verify (Definition 18). This leads
to the following game:

Game 2. (x,w) ← G(1η). (x∗, π∗) ← BH,P H

(x,w). ok ← V H(x∗, π∗). win :=
(ok = 1 ∧ (x∗, π∗) /∈ S-queries).

Here B is a polynomial-time oracle algorithm that runs A with input pk := x,
and that, whenever A queries Sig with input m, invokes PH with input (x‖m,w)
instead. And when A returns some (m∗, σ∗), then B returns (x∗, π∗) with x∗ :=
x‖m∗ and π∗ := σ∗. And S-queries is the list of queries made to PH . More
precisely, when PH is invoked with (x′, w′) and responds with π′, then (x′, π′)
is appended to S-queries.

We then have:

Pr[win = 1 : Game 1] = Pr[win = 1 : Game 2]

We now use the zero-knowledge property of (P, V ). Let S be the simulator
whose existence is guaranteed by Definition 8. Let S′ be the oracle that on input
(x,w) ∈ R′ runs S(x) and returns the latter’s output (as in Definition 8).

Then ∣
∣
∣Pr[win = 1 : Game 2] − Pr[win = 1 : Game 3]

∣
∣
∣ ≤ μ1

for some negligible μ1, and with the following game:

Game 3. (x,w) ← G(1η). (x∗, π∗) ← BH,S′H
(x,w). ok ← V Hfinal(x∗, π∗).

win := (ok = 1 ∧ (x∗, π∗) /∈ S-queries).
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Here Hfinal is as in Definition 10, i.e., the value of the random oracle H after it
has been reprogrammed by S.

By x ≤ x∗, we mean that x consists of the first �x bits of x∗. (I.e., x∗ = x‖m
for some m.)

Game 4. (x,w) ← G(1η). (x∗, π∗) ← BH,S′H
(x,w). ok ← V Hfinal(x∗, π∗).

win := (ok = 1 ∧ x ≤ x∗ ∧ (x∗, π∗) /∈ S-queries).

Since B by construction always outputs x∗ = x‖m∗, we have

Pr[win = 1 : Game 3] = Pr[win = 1 : Game 4].

Let CH,SH

(x) be a polynomial-time oracle algorithm that runs A with input
pk := x, and that, whenever A queries Sig with input m, instead invokes SH

with input x‖m. And when A returns some (m∗, σ∗), then C returns (x∗, π∗)
with x∗ := x‖m∗ and π∗ := σ∗.

Note that there are two differences between BH,S′H

and CH,SH

: First, C does
not take w as input. Second, C invokes SH instead of S′H . Since S′(x‖m,w)
invokes S(x‖m) whenever (x‖m,w) ∈ R′, B and C will differ only when
(x‖m,w) /∈ R′. By definition of R′, this happens only when (x,w) /∈ R. And
this, in turn, happens with negligible probability since (x,w) are chosen by G,
and G is a dual-mode hard instance generator. Thus there exists a negligible μ2

such that
∣
∣
∣Pr[win = 1 : Game 4] − Pr[win = 1 : Game 5]

∣
∣
∣ ≤ μ2 with

Game 5. (x,w) ← G(1η). (x∗, π∗) ← CH,SH

(x). ok ← V Hfinal(x∗, π∗). win :=
(ok = 1 ∧ x ≤ x∗ ∧ (x∗, π∗) /∈ S-queries).

Since G is a dual-mode hard instance generator, and since the computation
in Game 5 after (x,w) ← G(1η) is quantum-polynomial-time21 and does not use
w, we have (by Definition 20) that there exists a quantum-polynomial-time G∗

and a negligible μ3 such that:
∣
∣
∣Pr[win = 1 : Game 5] − Pr[win = 1 : Game 6]

∣
∣
∣ ≤ μ3 with

Game 6. x ← G∗(1η). (x∗, π∗) ← CH,SH

(x). ok ← V Hfinal(x∗, π∗). win :=
(ok = 1 ∧ x ≤ x∗ ∧ (x∗, π∗) /∈ S-queries).

Since G∗ was chosen as in Definition 20, we have that x ∈ LR with some
negligible probability μ4 in Game 6. Thus

∣
∣
∣Pr[win = 1 : Game 6] − Pr[win = 1 : Game 7]

∣
∣
∣ ≤ μ4 with

21 Note: to simulate the oracle H (which is a random function and thus has an expo-
nentially large value-table), we use the fact from [28] that a 2q-wise hash function
cannot be distinguished from random by a q-query adversary. This allows us to sim-
ulate H using a 2q-wise hash function for suitable polynomially-bounded q (that
may depend on A).
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Game 7. x ← G∗(1η). (x∗, π∗) ← CH,SH

(x). ok ← V Hfinal(x∗, π∗). win :=
(ok = 1 ∧ x /∈ LR ∧ x ≤ x∗ ∧ (x∗, π∗) /∈ S-queries).

By definition of R′, we have that x /∈ LR ∧ x ≤ x∗ =⇒ x∗ /∈ LR. Thus

Pr[win : Game 7] ≤ Pr[ok = 1 ∧ x∗ /∈ LR ∧ (x∗, π∗) /∈ S-queries : Game 7].

Since (P, V ) is simulation-sound (Definition 10), and “x ← G∗(1η).
(x∗, π∗) ← CH,SH

(x)” can be executed by a quantum-polynomial-time oracle
algorithm with oracle access to H and SH , we have that there is a negligible μ5

such that

Pr[ok = 1 ∧ x∗ /∈ LR ∧ (x∗, π∗) /∈ S-queries : Game 7] ≤ μ5.

Combining all inequalities from this proof, we get that

Pr[win : Game 1] ≤ μ1 + · · · + μ5 =: μ.

The function μ is negligible since μ1, . . . , μ5 are. Since A was arbitrary and
quantum-polynomial-time, and Game 1 is the game from Definition 19, it follows
that (KeyGen,Sign,Verify) is strongly unforgeable. ��
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Abstract. Conditional cube attack is an efficient key-recovery attack on

Keccak keyed modes proposed by Huang et al. at EUROCRYPT 2017.

By assigning bit conditions, the diffusion of a conditional cube variable

is reduced. Then, using a greedy algorithm (Algorithm 4 in Huang et

al.’s paper), Huang et al. find some ordinary cube variables, that do not

multiply together in the 1st round and do not multiply with the con-

ditional cube variable in the 2nd round. Then the key-recovery attack

is launched. The key part of conditional cube attack is to find enough

ordinary cube variables. Note that, the greedy algorithm given by Huang

et al. adds ordinary cube variable without considering its bad effect, i.e.

the new ordinary cube variable may result in that many other variables

could not be selected as ordinary cube variable (they multiply with the

new ordinary cube variable in the first round).

In this paper, we bring out a new MILP model to solve the above prob-

lem. We show how to model the CP-like-kernel and model the way that

the ordinary cube variables do not multiply together in the 1st round

as well as do not multiply with the conditional cube variable in the 2nd

round. Based on these modeling strategies, a series of linear inequalities

are given to restrict the way to add an ordinary cube variable. Then,

by choosing the objective function of the maximal number of ordinary

cube variables, we convert Huang et al.’s greedy algorithm into an MILP

problem and the maximal ordinary cube variables are found.

Using this new MILP tool, we improve Huang et al.’s key-recovery

attacks on reduced-round Keccak-MAC-384 and Keccak-MAC-512 by 1

round, get the first 7-round and 6-round key-recovery attacks, respec-

tively. For Ketje Major, we conclude that when the nonce is no less than

11 lanes, a 7-round key-recovery attack could be achieved. In addition,

for Ketje Minor, we use conditional cube variable with 6-6-6 pattern to

launch 7-round key-recovery attack.
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1 Introduction

Nowadays, the cryptanalysis progress of symmetric-key ciphers heavily depends
on automated evaluation tools. Providing a reliable security evaluation is the
key point for a cipher to be accepted by industry. Recently, cryptographic com-
munities found that many classical cryptanalysis methods could be converted
to mathematical optimization problems which aim to achieve the minimal or
maximal value of an objective function under certain constraints. Mixed-integer
Linear Programming (MILP) is the most widely studied technique to solve these
optimization problems. One of the most successful applications of MILP is to
search differential and linear trails. Mouha et al. [25] and Wu and Wang [30]
first applied MILP method to count active Sboxes of word-based block ciphers.
Then, at Asiacrypt 2014, by deriving some linear inequalities through the H-
Representation of the convex hull of all differential patterns of Sbox, Sun et al.
[29] extended this technique to search differential and linear trails. Another two
important applications are to search integral distinguisher [31] and impossible
differentials [8,27].

Keccak [3], designed by Bertoni et al., has been selected as the new crypto-
graphic hash function standard SHA-3. As one of the most important cryp-
tographic standards, Keccak attracts lots of attention from the world wide
researchers and engineers. Till now, many cryptanalysis results [7,10,11,18,19,
21,24] and evaluation tools [9,14,23] have been proposed, including the recent
impressive collision attacks [26,28]. Since the robust design of Keccak, the crypt-
analysis progress of Keccak is still limited. It must be pointed out that the
automatic evaluation tools for Keccak are still needed to be enriched urgently.

At Eurocrypt 2015, Dinur et al. [12] for the first time considered the security
of the Keccak keyed modes against cube-attack-like cryptanalysis and give some
key recovery attacks on reduced-round Keccak-MAC and Keyak [5]. At CT-
RSA 2015, Dobraunig et al. [15] evaluate the security of Ascon [16] against the
cube-like cryptanalysis. Later, Dong et al. [17] applied the cube-like method
to Ketje Sr [4] which adopts smaller state size of Keccak-p permutation. At
Eurocrypt 2017, Huang et al. [20] introduced a new type of cube-like attack,
called conditional cube attack, which takes advantage of the large state freedom
of Keccak to find a so-called conditional cube variable that do not multiply with
all the other cube variables (called ordinary cube variables) in the first round and
second round of Keccak, meanwhile, all ordinary cube variables do not multiply
with each other in the first round. Thus, the degree of output polynomial of
reduced-round Keccak over the cube variables is reduced by 1 and a conditional
cube tester is constructed. Then Li et al. [22] applied the conditional cube attack
to reduced-round Ascon.



Improved Conditional Cube Attacks on Keccak Keyed Modes 101

1.1 Our Contributions

For conditional cube attack, when the conditional cube variable is determined,
the most important work is to find enough ordinary cube variables to launch
the key recovery attack. In [20], Huang et al. gives the Algorithm 4 to search
the ordinary cube variables. It is a greedy algorithm, it randomly selects a cube
variable and adds to ordinary cube variable set, when the variable does not
multiply with other ordinary cube variables in the set in the first round and does
not multiply with conditional cube variable either in both the first and second
round. The drawback is that it can hardly get the maximum number (optimal)
of ordinary cube variables. Because, when a cube variable is added to ordinary
cube variable set, many more variables which multiply with the new added cube
variable in the first round will be discarded, which means that we add just one
cube variable with the price that many variables lost the chance to be an ordinary
cube variable. Actually, the search problem is an optimization problem. When
the capacity of Keccak is large, the greedy algorithm is enough to find a proper
ordinary cube variable set. However, when the capacity or the state size is small,
the algorithm could hardly find enough ordinary cube variables and invalidate
the conditional cube attack. In fact, for Keccak-MAC-512 and Keccak-MAC-384,
only 5 round and 6 round attacks are achieved by Huang et al.’s algorithm. When
the capacity is large or the internal state of Keccak sponge function is smaller
than 1600-bit, e.g. 800-bit Ketje Minor, the number of ordinary cube variables
is reduced significantly.

In this paper, we present a novel technique to search ordinary cube vari-
ables by using MILP method1. By modeling the relations between ordinary cube
variables and conditional cube variables in the first and second round, modeling
the so-called CP-like-kernel and ordinary cube variables chosen conditions, we
construct a linear inequality system. The target object is the maximum number
of ordinary cube variables. Based on this MILP tool, we improve Huang et al.’s
attacks on Keccak-MAC and give some interesting results on Ketje Major and
Minor, which are summarized in Table 1. In addition, we list our source code of
the new MILP tool2 in a public domain to enrich the automatic evaluation tools
on Keccak and help the academic communities study Keccak much easier. The
following are the main application results of the MILP tool.

1. It should be noted that, when the capacity reaches 768 or 1024, the crypt-
analysis of Keccak becomes very hard. In fact, collision results on round-
reduced Keccak-384 or Keccak-512 that are better than the birthday bound
could respectively reach 4/3-round, while the preimage attacks [19,24] on

1 Note that, in Huang et al.’s paper, a small MILP model is also introduced, however,

it could only find some distinguisher attacks on Keccak hash function.
2 https://github.com/lizhengcn/MILP conditional cube attack.

https://github.com/lizhengcn/MILP_conditional_cube_attack
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the two versions could reach only 4 rounds. Based on our MILP tool, for
Keccak-MAC-384, we find more than 63 ordinary cube variables and improve
Huang et al.’s attack by 1 round, and get the very first 7-round key-recovery
attack. For Keccak-MAC-512, we find more than 31 ordinary cube variables
and improve Huang et al.’s attack by 1 round, and get the first 6-round
key-recovery attack. These are the longest attacks that the cryptanalysis of
Keccak with big capacity (768 or 1024) could reach.

2. For Ketje Major, we conclude that when the nonce is no less than 11 lanes, a
7-round conditional cube attack could work. In addition, we get the borderline
length of the nonce for the 6-round key-recovery attack is 8 lanes.

3. For Ketje Minor, we use a new conditional cube variable and find 124 ordinary
cube variables. Then a new 7-round key-recovery attack is proposed, which
improved the previous best result by a factor of 215.

Table 1. Summary of key recovery attacks on Keccak keyed modes

Variant Capacity Attacked rounds Time Source

Keccak-MAC 768 6 240 [20]

7 275 Sect. 5.1

1024 5 224 [20]

6 258.3 Sect. 5.2

Variant Nonce Attacked rounds Time Source

Ketje Major Full 6 264 [17]

Full 7 296 [17]

≥512 6 241 Sect. 6.1

≥704 7 283 Sect. 6.1

Ketje Minor Full 6 264 [17]

Full 7 296 [17]

Full 6 249 Sect. 6.2

Full 7 281 Sect. 6.2

Full: the attacks use maximum length of nonce.

1.2 Organization of the Paper

Section 2 gives some notations, and brief description on Keccak-permutations,
Keccak-MAC, Ketje. Some related works are introduced in Sect. 3. Section 4
describes the MILP search model for conditional cube attack. Round-reduced
key-recovery attacks on Keccak-MAC-384/512 are introduced in Sect. 5.
Section 6 gives the applications to Ketje. Section 7 concludes this paper.
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2 Preliminaries

2.1 Notations

Si the intermediate state after i-round of Keccak-p, for example S0.5

means the intermediate state before χ in 1st round of Keccak-p,
A used in tables: for Keccak-MAC, the initial state, for Ketje, the state

after π−1 of Keccak-p∗,
A[i][j] the 32/64-bit word indexed by [i, j, ∗] of state A, 0� i�4, 0 � j � 4,
A[i][j][k] the bit indexed by [i, j, k] of state A,
vi the ith cube variable,
K 128-bit key, for Keccak-MAC, K = k0||k1, both k0 and k1 are 64-bit,

for Ketje Major, K = k0||k1||k2, k0 is 56-bit, k1 is 64-bit, k2 is 8-bit,
for Ketje Minor, K = k0||k1||k2||k3||k4, k0 is 24-bit, k1,k2 and k3
are 32-bit, k4 is 8-bit,

ki[j] the jth bit of ki,
capacity in Keccak-MAC, it is the all zero padding bits; in Ketje, it is the

padding of nonce.

2.2 The Keccak-p permutations

The Keccak-p permutations are derived from the Keccak-f permutations [3] and
have a tunable number of rounds. A Keccak-p permutation is defined by its width
b = 25 × 2l, with b ∈ {25, 50, 100, 200, 400, 800, 1600}, and its number of rounds
nr, denoted as Keccak-p[b]. The round function R consists of five operations:

R = ι ◦ χ ◦ π ◦ ρ ◦ θ

Keccak-p[b] works on a state A of size b, which can be represented as 5 × 5
b
25 -bit lanes, as depicted in Fig. 1, A[i][j] with i for the index of column and j

for the index of row. In what follows, indexes of i and j are in set {0, 1, 2, 3, 4}
and they are working in modulo 5 without other specification.

(a) (b)

Fig. 1. (a) The Keccak State [3], (b) state A in 2-dimension
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-1

Fig. 2. π−1

θ:A[x][y] = A[x][y] ⊕ ∑4
j=0 (A[x − 1][j] ⊕ (A[x + 1][j] ≪ 1)).

ρ: A[x][y] = A[x][y] ≪ r[x, y].
π:A[y][2x + 3y] = A[x][y].
χ:A[x][y] = A[x][y] ⊕ ((¬A[x + 1][y]) ∧ A[x + 2][y].
ι:A[0][0] = A[0][0] ⊕ RC.

In Ketje v2, the twisted permutations, Keccak-p∗[b] = π◦ Keccak-p[b] ◦ π−1,
are introduced to effectively re-order the bits in the state. π−1 is the inverse of
π, shown in Fig. 2.

π−1: A[x + 3y][x] = A[x][y].

2.3 Keccak-MAC

A MAC form of Keccak can be obtained by adding key as the prefix of mes-
sage/nonce. As depicted in Fig. 3, the input of Keccak-MAC-n is concatenation
of key and message and n is half of the capacity length.

bitrate

capacity

Keccak internal 
permutation

128-bit tag

128-bit key||message

1600-2n bits

2n bits

Fig. 3. Construction of Keccak-MAC-n

2.4 Ketje

Ketje [4] is a submission by Keccak team. It is a sponge-like construction. In
Ketje v1, two instances are proposed, Ketje Sr and Jr with 400-bit and 200-
bit state sizes, respectively. In the latest Ketje v2, another two instances Ketje
Minor and Major are added to the family, with 800-bit and 1600-bit state sizes,
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Fig. 4. Wrapping a header and a body with MonkeyWrap [4]

respectively. Ketje Sr is the primary recommendation. In the following, we give
a brief overview about the Ketje v2. For a complete description, we refer to the
design document [4].

The structure of Ketje is an authenticated encryption mode MonkeyWrap,
shown Fig. 4, which is based on MonkeyDuplex [6]. It consists of four parts as
follows:

1. The initialization phase: The initialization takes the secret key K, the
public nonce N and some paddings as the initial state. Then nstart = 12
rounds Keccak-p∗ is applied.

2. Processing associated data: ρ-bit blocks associated data are padded to
(ρ + 4)-bit and absorbed by xoring them to the state, then nstep = 1 round
Keccak-p∗ is applied. If associated data is empty, this procedure is still needed
to be applied which means an empty block is padded to (ρ + 4)-bit and then
processed similarly.

3. Processing the plaintext: Plaintext is processed in ρ-bit blocks in a similar
manner, with ciphertext blocks extracted from the state right after adding
the plaintext.

4. Finalization: The finalization with nstride = 6 rounds Keccak-p∗ and a series
of nstep = 1 round Keccak-p∗s are performed to get the required length of
tag T .

In Ketje v2, four concrete instances are proposed, shown in Table 2. nstart =
12,nstep = 1 and nstride = 6. For Ketje Minor and Major, the recommended key
length is 128-bit, so the maximal length of nonce is (800 − 128 − 18=)654 and
(1600 − 128 − 18=)1454 bits. This paper discusses the shortest length of nonce
that a conditional cube attack could be applied.
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Table 2. Four instances in Ketje v2

Name f ρ Main use case

Ketje Jr Keccak-p∗[200] 16 Lightweight

Ketje Sr Keccak-p∗[400] 32 Lightweight

Ketje Minor Keccak-p∗[800] 128 Lightweight

Ketje Major Keccak-p∗[1600] 256 High performance

3 Related Work

3.1 Cube Attack

At EUROCRYPT 2009, Dinur and Shamir introduced the cube attack [13], in
which the output bit of a symmetric cryptographic scheme can be regarded as a
polynomial f(k0, . . . , kn−1, v0, . . . , vm−1) over GF (2), k0, . . . , kn−1 are the secret
variables (the key bits), v0, . . . , vm−1 are the public variables (e.g. IV or nonce
bits).

Theorem 1 [13].

f(k0, . . . , kn−1, v0, . . . , vm−1) = t · P + Q(k0, . . . , kn−1, v0, . . . , vm−1) (1)

t is called maxterm and is a product of certain public variables, for example
(v0, . . . , vs−1), 1 ≤ s ≤ m, denoted as cube Ct. None of the monomials in Q is
divisible by t. P is called superpoly, which does not contain any variables of Ct.
Then the sum of f over all values of the cube Ct (cube sum) is

∑

v′=(v0,...,vs−1)∈Ct

f(k0, . . . , kn−1, v
′, vs, . . . , vm−1) = P (2)

where Ct contains all binary vectors of the length s, vs, . . . , vm−1 are fixed to
constant.

The basic idea is to find enough t whose P is linear and not a constant. This
enables the key recovery through solving a system of linear equations.

3.2 Huang et al.’s Conditional Cube Attack

Conditional cube attack [20] was proposed by Huang et al. to attack Keccak
keyed mode, including Keccak-MAC and Keyak. We quote some definitions and
a theorem here.
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Definition 1 [20]. Cube variables that have propagation controlled in the first
round and are not multiplied with each other after the second round of Keccak
are called conditional cube variables. Cube variables that are not multiplied
with each other after the first round and are not multiplied with any conditional
cube variable after the second round are called ordinary cube variables.

Theorem 2 [20]. For (n+2)-round Keccak sponge function (n > 0), if there are
p(0 ≤ p < 2n + 1) conditional cube variables v0, . . . , vp−1, and q = 2n+1 − 2p + 1
ordinary cube variables, u0, . . . , uq−1 (If q = 0, we set p = 2n + 1), the term
v0v1 . . . vp−1u0 . . . uq−1 will not appear in the output polynomials of (n+2)-round
Keccak sponge function.

Actually, we use the special case of the above theorem when p = 1. We
describe it as a corollary for clearness.

Corollary 1. For (n + 2)-round Keccak sponge function (n > 0), if there is
one conditional cube variable v0, and q = 2n+1 − 1 ordinary cube variables,
u0, . . . , uq−1, the term v0u0 . . . uq−1 will not appear in the output polynomials of
(n + 2)-round Keccak sponge function.

4 Modeling Search Strategy

Define A[x][y][z] = 1 when it is an ordinary cube variable or conditional cube
variable, else A[x][y][z] = 0.

4.1 Modeling CP-like-kernel

In the Keccak submission document [3], the original concept is illustrated as
following: if all columns in a state have even parity, θ is the identity, which
is illustrated. The conditional cube variable used in this is set in CP-kernel to
reach a reduced diffusion. At ASIACRYPT 2016, Guo et al. [19] assign A[1][y],
y = 0, 1, 2, 3, to be variables and A[1][4] =

⊕3
i=0 A[1][y] so that variables in

each column sum to 0. Then θ is the identity. In fact, when the parity of a
column remains constant, the variables in the column do not propagate through
θ operation. We denoted this property as a CP-like-kernel. In order to reduce
the diffusion of ordinary cube variables, we set them as CP-like-kernel.

In CP-like-kernel, if certain column contain ordinary cube variables, then the
number of the variables must be no less than two. If n(n = 2, 3, 4, 5) bits in a
column contain cube variables, we set the n − 1 bits to be independent ordinary
cube variables and 1 bit variable to be the sum of the n−1 bits. So the constraints
in modeling CP-like-kernel have the following two purposes:

1. Avoid the number of bits containing cube variable in each column from being
one;

2. Record which column contains cube variables.
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Given x, z, suppose A[x][y][z], y = 0, 1, 2, 3, 4 possibly contain ordinary cube
variables. If there exists an ordinary cube variable in A[x][y][z] for some y, then
the dummy variable d = 1. Else d = 0. Then we get the following inequalities

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4∑

y=0

A[x][y][z] ≥ 2d

d ≥ A[x][0][z]

d ≥ A[x][1][z]

d ≥ A[x][2][z]

d ≥ A[x][3][z]

d ≥ A[x][4][z]

(3)

For any x, z (x = 0, 1, . . . , 4, z = 0, 1, . . . , 63), denote the corresponding dummy
variable as d[x][z]. d[x][z] records whether the column [x][z] contain cube vari-

ables as illustrated above. The [x][z] column can provide
4∑

y=0
A[x][y][z] − d[x][z]

independent cube variables. The number of independent cube variables that
the whole state can provide is to sum up the ones of all columns with x =
0, 1 . . . 4, z = 0, 1 . . . 63. Correspondingly, the objective function of the MILP
model is set as

∑

x,y,z

A[x][y][z] −
∑

x,z

d[x][z],

i.e. the number of cube variables in the whole state.

4.2 Modeling the First Round

We omit the θ operation in the first round, as it does not influence the distribu-
tion of cube variables according to the property of CP-like-kernel. With the help
of SAGE [1], the Keccak round function can be operated in the form of alge-
braic symbols. So the internal the bits of state S1 are describe as algebraic form
functions about the bits of the initial state S0. Using a easy search program, we
know which two bits in state S0 will be multiplied in S1. Constraints are added
according to the following two conditions:

1. (a) Condition: Any of the ordinary cube variables do not multiply with each
other in the first round.

(b) Constraint: If two bits S0[x1][y1][z1] and S0[x2][y2][z2] multiply, the
constraint

A[x1][y1][z1] + A[x2][y2][z2] ≤ 1

will be added to avoid their simultaneous selection as ordinary cube
variables.
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2. (a) Condition: The conditional cube variable does not multiply with any of
the ordinary cube variables in the first round.

(b) Constraint: If one bit S0[x][y][z] multiplies with the conditional cube
variable, the constraint

A[x][y][z] = 0

will be added to avoid it from being selected as ordinary cube variables.

4.3 Modeling the Second Round

We list Property 1 for the conditions added to control the diffusion of the con-
ditional cube variable v0.

Property 1. In χ operation, denote the input and output state as X and Y

respectively, one bit X[x][y][z] only multiplies with two bits X[x − 1][y][z] + 1
and X[x + 1][y][z].

(1) If only one bit X[x][y][z] contains variable v0, conditions X[x−1][y][z]+1 = 0
and X[x + 1][y][z] = 0 can avoid v0 from diffusing by χ.

(2) If only n bits X[x0][y0][z0],X[x1][y1][z1] . . . X[xn−1][yn−1][zn−1] contain vari-
able v0, 2n conditions

X[x0 − 1][y0][z0] + 1 = 0,X[x0 + 1][y0][z0] = 0,

X[x1 − 1][y1][z1] + 1 = 0,X[x1 + 1][y1][z1] = 0,

. . .

X[xn−1 − 1][yn−1][zn−1] + 1 = 0,X[xn−1 + 1][yn−1][zn−1] = 0

can avoid v0 from diffusing by χ.

1. Condition: Under the above conditions added to the first round, the condi-
tional cube variable does not multiply with any of the ordinary cube variables
in the second round.

2. Constraint: If one bit S0[x][y][z] multiplies with the conditional cube vari-
able, the constraint

A[x][y][z] = 0

will be added to avoid it from being selected as ordinary cube variables.

5 Applications to Round-Reduced Keccak-MAC

5.1 Attack on 7-Round Keccak-MAC-384

For Keccak-MAC-384 with 1600-bit state, rate occupies 832 bits, and capacity
768 bits. As Fig. 5 shows us, 128-bit key (k0, k1) locates at the first two yellow
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lanes, and conditional cube variable v0 is set in CP-like-kernel as S0[2][0][0] =
S0[2][1][0] = v0 in blue, then the white bits represent nonce or message bits,
all of which can be selected as ordinary cube variables, while the grey ones are
initialized with all zero. Note that the lanes, which are possible to be ordinary
cube variables, obey CP-like-kernel. List these lanes in a set V:

V = {[0][1], [0][2], [1][1], [1][2], [2][0], [2][1], [2][2], [3][0], [3][1], [4][0], [4][1]}

Additionally, the subset of V, Vi, i = 0, 1 . . . 4 represents the set of lanes
whose x-index equals 0, 1 . . . 4 respectively.

Fig. 5. The initial state of Keccak-MAC-384 (Color figure online)

According to the modeling search strategy illustrated in Sect. 4, we search
for the maximal number of independent ordinary cube variables. The objective
function is

∑

x,y∈V,z∈{0,1...63}
A[x][y][z] −

∑

x∈{0,1...4},z∈{0,1...63}
d[x][z],

To model the CP-like-kernel, constraints are in the following:
⎧
⎪⎨

⎪⎩

∑

x,y∈Vx,z

A[x][y][z] ≥ 2d[x][z]

d[x][z] ≥ A[x][y][z], y ∈ Vx

for x = 0, 1 . . . 4, z = 0, 1 . . . 63 (4)

The input state is initialized with key k, conditional cube variable v0, possible
ordinary cube variables vi (placed in bit position [xi][yi][zi]) and zero padding.
After ρ, π, χ operation in the first round, the state is in the algebraic symbolic
form of the initial state bits. If any v0vi exists, and the bit corresponding to
i is [xi][yi][zi], constraint A[xi][yi][zi] = 0 is added. If any vivj exists, the bit
corresponding to i, j, constraint A[xi][yi][zi] + A[xj ][yj ][zj ] ≤ 1 is added. The
above constraints are to avoid any multiplication in the first round among cube
variables. Additionally, we add the four bit conditions around conditional cube
variable v0 before the first χ operation to reduce its diffusion. After θ, ρ, π, χ

operation in the second round, similarly, if any v0vi exists, and the bit corre-
sponding to i is [xi][yi][zi], constraint A[xi][yi][zi] = 0 is added to avoid any
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ordinary cube variables from multiplying with v0 in the second second. With
the help of Gurobi [2], the objective function is optimized under all the above
constraints, i.e. with all cube variables obeying CP-like-kernel, the maximum
of cube variables is 65. Actually, 64 cube variables are enough to perform the
7-round attack on Keccak-MAC-384. Both the cube variables and conditions are
listed in Table 3.

In 7-round attack on Keccak-MAC-384, 26 = 64 cube variables are denoted
by v0, v1 . . . v63. Based on Corollary 1, v0 is the conditional cube variable fixed
in the beginning and v1, v2 . . . v63 are ordinary cube variables found by MILP
search strategy. We summarize the requirements as following:

(1) v0, v1 . . . v63 do not multiply with each other in the first round;
(2) Under some conditions on key and nonce, v0 does not multiply with any of

v1, v2 . . . v63 in the second round.

While all the nonce bits are constant, all the bit conditions are satisfied if and
only if all the key bits are guessed correctly. Thus, zero sums over the 128-bit
tag with cube variables set as Table 3 mean a correct key guess.

We analyze the time and data complexity of the attack: with the parameters
set in Table 3, the 8 guessed key bits k0[5] + k1[5], k0[60], k0[35], k0[54], k1[29],
k0[7], k1[45], k0[18] can be recovered. The time complexity of one recovery is
28 ∗ 264. According to the property of permutation, it is totally symmetric in z-
axis. Thus we can obtain corresponding parameters set with any rotation of i-bit
(0 ≤ i < 64) in z-axis. Therefore, the guessed key bits rotated i-bit i.e. k0[i + 5]
+ k1[i+5], k0[i+60], k0[i+35], k0[i+54], k1[i+29], k0[i+7], k1[i+45], k0[i+18]
can be recovered. Through simple count, for 0 ≤ i < 8, 70 independent key bits
out of 128 key bits can be recovered, 8 iterations consumes 8 × 28 × 264 and
the remaining 58 key bits are left to exhaustive search consuming 258. Combine
the two parts, the procedure consumes 8 × 28 × 264 + 258 = 275 computations
of 7-round of Keccak-MAC-384, correspondingly 275 (message, tag) pairs are
needed. After the procedure above, all the 128 bits in k0, k1 can be recovered.
Therefore, both time and data complexity of the attack are 275.

5.2 Attack on 6-Round Keccak-MAC-512

For Keccak-MAC-384 with 1600-bit state, rate occupies 832 bits, and capacity
768 bits. As Fig. 6 shows us, 128-bit key (k0, k1) locates at the first two yellow
lanes, and conditional cube variable v0 is set in CP-like-kernel as S0[2][0][0] =
S0[2][1][0] = v0 in blue, then the white bits represent nonce or message bits,
all of which can be selected as ordinary cube variables, while the grey ones are
initialized with all zero. Note that the lanes, which are possible to be ordinary
cube variables, obey CP-like-kernel. List these lanes in a set V:

V = {[2][0], [2][1], [3][0], [3][1]}
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Table 3. Parameters set for attack on 7-round Keccak-MAC-384

Ordinary Cube Variables

A[2][0][1]=v1,A[2][1][1]=v2,A[2][2][1]=v1 + v2,A[3][0][3]=A[3][1][3]=v3,

A[2][0][5]=A[2][2][5]=v4,A[1][1][7]=A[1][2][7]=v5,A[2][0][8]=A[2][1][8]=v6,

A[3][0][9]=A[3][1][9]=v7,A[4][0][10]=A[4][1][10]=v8,A[2][1][11]=A[2][2][11]=v9,

A[2][0][12]=A[2][1][12]=v10,A[4][0][12]=A[4][1][12]=v11,A[3][0][13]=A[3][1][13]=v12,

A[2][1][14]=A[2][2][14]=v13,A[4][0][14]=A[4][1][14]=v14,A[0][1][15]=A[0][2][15]=v15,

A[1][1][15]=A[1][2][15]=v16,A[2][1][15]=A[2][2][15]=v17,A[2][1][18]=A[2][2][18]=v18,

A[2][1][19]=A[2][2][19]=v19,A[2][0][20]=v20,A[2][1][20]=v21,A[2][2][20]=v20 + v21,

A[3][0][20]=A[3][1][20]=v22,A[2][0][21]=A[2][2][21]=v23,A[0][1][22]=A[0][2][22]=v24,

A[3][0][23]=A[3][1][23]=v25,A[2][1][24]=A[2][2][24]=v26,A[2][0][27]=A[2][2][27]=v27,

A[0][1][28]=A[0][2][28]=v28,A[1][1][30]=A[1][2][30]=v29,A[3][0][30]=A[3][1][30]=v30,

A[0][1][32]=A[0][2][32]=v31,A[0][1][34]=A[0][2][34]=v32,A[1][1][34]=A[1][2][34]=v33,

A[3][0][35]=A[3][1][35]=v34,A[0][1][37]=A[0][2][37]=v35,A[0][1][38]=A[0][2][38]=v36,

A[1][1][38]=A[1][2][38]=v37,A[1][1][39]=A[1][2][39]=v38,A[3][0][39]=A[3][1][39]=v39,

A[1][1][40]=A[1][2][40]=v40,A[3][0][40]=A[3][1][40]=v41,A[2][0][41]=A[2][1][41]=v42,

A[2][0][43]=A[2][1][43]=v43,A[2][0][45]=A[2][1][45]=v44,A[0][1][46]=A[0][2][46]=v45,

A[3][0][46]=A[3][1][46]=v46,A[0][1][47]=A[0][2][47]=v47,A[0][1][49]=A[0][2][49]=v48,

A[1][1][50]=A[1][2][50]=v49,A[2][0][50]=A[2][1][50]=v50,A[1][1][52]=A[1][2][52]=v51,

A[2][1][52]=A[2][2][52]=v52,A[2][0][53]=A[2][1][53]=v53,A[2][1][56]=A[2][2][56]=v54,

A[3][0][56]=A[3][1][56]=v55,A[0][1][58]=A[0][2][58]=v56,A[2][1][58]=A[2][2][58]=v57,

A[0][1][59]=A[0][2][59]=v58,A[0][1][60]=A[0][2][60]=v59,A[2][0][61]=v60,A[2][1][61]=v61,

A[2][2][61]=v60 + v61,A[2][0][62]=v62,A[2][1][62]=v63,

A[2][2][62]=v62 + v63,A[4][0][63]=A[4][1][63]=v64,

Conditional Cube Variable

A[2][0][0]=A[2][1][0]=v0

Bit Conditions

A[4][0][44] = A[4][1][44] + A[2][2][45],

A[2][0][4] = k0[5] + k1[5] + A[0][1][5] + A[2][1][4] + A[0][2][5] + A[2][2][4] + 1,

A[2][0][59] = k0[60] + A[2][1][59] + A[2][2][59] + 1,

A[4][0][6] = A[2][0][7] + A[2][1][7] + A[4][1][6] + A[2][2][7] + A[3][1][7],

A[2][2][23]=A[2][0][23] + A[4][0][22] + A[2][1][23] + A[4][0][22],

A[2][2][46]=A[2][0][46] + A[4][0][45] + A[2][1][46] + A[4][1][45],

A[2][2][36]=A[2][0][36] + A[4][0][35] + A[2][1][36] + A[4][1][35],

A[2][2][63]=A[2][0][63] + A[4][0][62] + A[2][1][63] + A[4][1][62],

A[2][2][42]=A[2][0][42] + A[4][0][41] + A[2][1][42] + A[4][4][41],

A[0][2][35]=k0[35] + A[3][0][36] + A[0][1][35] + A[3][1][36],

A[2][2][53]=k0[54] + A[0][1][54] + A[0][2][54],A[4][1][13]=A[2][0][14] + A[4][0][13],

A[1][2][29]=k1[29] + A[3][0][28] + A[1][1][29] + A[3][1][28],

A[2][2][6]=k0[7] + A[2][0][6] + A[0][1][7] + A[2][1][6] + A[0][2][7],

A[1][2][45]=k1[45] + A[3][0][44] + A[1][1][45] + A[3][1][44],A[4][1][19]=A[4][0][19],

A[2][2][31]=A[2][0][31] + A[4][0][30] + A[2][1][31] + A[4][1][30],

A[2][2][17]=k0[18] + A[2][0][17] + A[0][1][18] + A[2][1][17] + A[0][2][18]

Guessed Key Bits

k0[5] + k1[5], k0[60],k0[35],k0[54], k1[29],k0[7],k1[45],k0[18]
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Fig. 6. The initial state of Keccak-MAC-512 (Color figure online)

Additionally, the subset of V, Vi, i = 2, 3 represents the set of lanes whose x-index
equals 2, 3 respectively. According to the modeling search strategy illustrated in
Sect. 4, we search the controllable bits for the most ordinary cube variables. The
objective function is

∑

x,y∈V,z∈{0,1...63}
A[x][y][z] −

∑

x∈{0,1...4},z∈{0,1...63}
d[x][z],

To model the CP-like-kernel, constraints are in the following according to Eq. 3:
⎧
⎪⎨

⎪⎩

∑

x,y∈Vx,z

A[x][y][z] ≥ 2d[x][z]

d[x][z] ≥ A[x][y][z], y ∈ Vx

for x = 2, 3, z = 0, 1 . . . 63 (5)

The method of adding constraints to avoid multiplication is just the same as
Keccak-MAC-384. With the help of Gurobi [2], the objective function is opti-
mized under all the above constraints. The maximum of cube variables obeying
CP-like-kernel is 26 (including a conditional cube variables). As the number of
cube variables is not enough to perform the 6-round attack on Keccak-MAC-
512, and many nonce bits are not utilized, we continue the search for appropriate
ordinary cube variables among the single bits in lanes [0, 1], [1, 1], [4, 0].

Modeling the single bits
A single bit here means it is the only bit in its column that contains cube

variable, exactly, it is set as a new ordinary cube variable. As the optimization
according to CP-like-kernel above, most cube variables have been settled. Addi-
tionally, the state is so large as 1600-bit. Although a single bit diffuse to 11 bits
after the first θ operation, it may not multiply with all the other cube variables
in the first round, and not multiply with conditional cube variable v0 in the
second round. The objective function is the sum of all possible bits to be ordi-
nary cube variables. Then, constraints are added to avoid the above two kinds
of multiplication in the same way.

Another 6 single bits are found as 6 new ordinary cube variables. Totally, we
find (6 + 26=)32 dimension cube and based on it a 6 round key-recovery attack
on Keccak-MAC-512 is achieved. Both the cube variables and conditions are
listed in Table 4.
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Table 4. Parameters set for attack on 6-round Keccak-MAC-512

Ordinary Cube Variables

A[3][0][56]=A[3][1][56]=v1,A[2][0][1]=A[2][1][1]=v2,A[2][0][8]=A[2][1][8]=v3,

A[2][0][12]=A[2][1][12]=v4,A[2][0][23]=A[2][1][23]=v5,A[2][0][41]=A[2][1][41]=v6,

A[2][0][43]=A[2][1][43]=v7,A[2][0][45]=A[2][1][45]=v8,A[2][0][50]=A[2][1][50]=v9,

A[2][0][53]=A[2][1][53]=v10,A[2][0][62]=A[2][1][62]=v11,A[3][0][3]=A[3][1][3]=v12,

A[3][0][4]=A[3][1][4]=v13,A[3][0][9]=A[3][1][9]=v14,A[3][0][12]=A[3][1][12]=v15,

A[3][0][13]=A[3][1][13]=v16,A[3][0][14]=A[3][1][14]=v17,A[3][0][20]=A[3][1][20]=v18,

A[3][0][23]=A[3][1][23]=v19,A[3][0][27]=A[3][1][27]=v20,A[3][0][33]=A[3][1][33]=v21,

A[3][0][35]=A[3][1][35]=v22,A[3][0][39]=A[3][1][39]=v23,A[3][0][40]=A[3][1][40]=v24,

A[3][1][46]=A[3][0][46]=v25,A[2][1][56]=v26,A[4][0][12]=v27,A[2][0][56]=v28,

A[0][1][33]=v29,A[0][1][57]=v30,A[4][0][60]=v31

Conditional Cube Variable

A[2][0][0]=A[2][1][0]=v0

Bit Conditions

A[4][0][44] = 0,A[2][0][59] = k0[60] + A[2][1][59] + A[0][1][60] + 1,

A[2][0][4] = k0[5] + k1[5] + A[0][1][5] + 1 + A[2][1][4],

A[4][0][6] = A[2][0][7] + A[2][1][7] + A[3][1][7],

A[2][0][46] = A[4][0][45] + A[2][1][46],A[2][0][31] = A[4][0][30] + A[2][1][31],

A[4][0][3] = k0[5] + k1[5] + A[0][1][5] + 1,A[0][1][19] = k0[19],

A[3][1][30] = k0[29] + A[3][0][30] + A[0][1][29],A[0][1][34] = k0[34],

A[3][1][22] = k0[21] + A[3][0][22] + A[0][1][21],A[1][1][28] = k1[28],

A[3][1][36] = k0[35] + A[3][0][36] + A[0][1][35],A[0][1][51] = 0,

A[3][1][49] = k0[48] + A[3][0][49] + A[0][1][48],A[2][0][18] = A[2][1][18] + 1,

A[3][1][41] = k0[40] + A[3][0][41] + A[0][1][40],A[4][0][8] = k0[8] + k1[7] + A[1][1][7],

A[3][0][63] = k0[62] + A[0][1][60] + A[3][1][63],A[4][0][51] = k1[50] + A[1][1][50],

A[2][0][51] = k0[52] + A[0][1][52] + A[2][1][51] + 1,

A[2][0][63] = A[4][0][62] + A[2][1][63] + A[3][1][63],

A[2][1][58] = k0[59] + A[2][0][58] + A[0][1][59],

A[4][0][13] = k0[13] + k1[12] + k1[34] + A[1][1][12] + A[1][1][34] + 1,

A[2][0][26] = A[3][0][26] + A[4][0][25] + A[2][1][26] + 1,

A[3][0][16] = k1[17] + A[1][1][17] + A[3][1][16],

A[1][1][24] = k1[24] + A[4][0][25] + A[0][1][25] + 1,

A[2][0][42] = A[4][0][41] + A[2][1][42] + A[3][1][42] + 1,

A[4][0][40] = 1, A[2][0][17] = k0[18] + A[0][1][18] + A[2][1][17],

A[3][0][15] = k1[16] + A[1][1][16] + A[2][1][16] + A[3][1][15] + 1,

A[3][0][6] = k0[5] + A[0][1][5] + A[3][1][6] + 1,

A[2][0][33] = A[2][1][33], A[0][1][13] = k0[13] + 1,

A[3][0][59] = k0[58] + A[0][1][58] + A[3][1][59] + 1,

A[0][1][32] = k0[32] + A[4][0][30] + A[1][1][32]

Guessed Key Bits

k0[60], k0[5] + k1[5], k0[19], k0[29], k0[34], k0[21], k0[35], k0[48], k0[40],

k0[62], k0[52],k0[59], k0[13] + k1[12] + k1[34],k1[17],k1[28],k1[24],

k0[8] + k1[7], k0[18], k1[16],k0[5], k1[50], k0[13], k0[58], k0[32]
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In 6-round attack on Keccak-MAC-512, 25 = 32 cube variables denoted
by v0, v1 . . . v31. Based on Corollary 1, v0 is the conditional cube variable and
v1, v2 . . . v31 are ordinary cube variables. We summarize the requirements as fol-
lowing:

(1) v0, v1 . . . v31 do not multiply with each other in the first round;
(2) Under some conditions on key and nonce, v0 does not multiply with any of

v1, v2 . . . v31 in the second round.

All the bit conditions are satisfied if and only if all the key bits are guessed
correctly. Thus, zero sums over the 128-bit tag with cube variables set as Table 4
suggest a correct key guess. Furthermore, the similar key recovery can be per-
formed with any offset in z-axis.

We analyze the time and data complexity of the attack: 4 iterations in z-axis
recover 72 key bits, and the remaining 56 key bits are recovered by exhaustive
search, thus the procedure consumes 4 × 224 × 232 + 256 = 258.3 computations of
6-round initialization of Keccak-MAC-512, correspondingly 258.3 (message, tag)
pairs are needed. After the procedure above, all the 128 bits in k0, k1 can be
recovered. Therefore, both time and data complexity of the attack are 258.3.

6 Attacks on Round-Reduced Initialization of Ketje

At 6 March 2017, the Keccak team announces the Ketje cryptanalysis prize to
encourage the cryptanalysis.

6.1 Attacks on Round-Reduced Initialization of Ketje Major

Ketje Major operates on a 1600-bit state, the recommended key length is 128-bit,
which is similar to Keccak-MAC. We focus on the instances with recommended
128-bit key. The number of nonce bits in Ketje Major is variable from 0 to 1454.

To explore the resistance against conditional cube attack of the different
instances, we apply the MILP search strategy to search the possible cube vari-
ables in the instances with different lengths of nonce, and list the corresponding
number of cube variables in Table 5. Similar to attacks on Keccak-MAC described
in Sects. 5.1, 5.2, 32 cube variables are needed to perform 6-round attack, and 64
cube variables are needed to perform 7-round attack. Thus, Table 5 tells us that
when the nonce is no less than 704 bits (11 lanes), cube variables are enough to
perform 7-round attack on Ketje Major and 6-round attack on Ketje Major can
be performed if the nonce is no less than 512 bits (8 lanes).

As instances with more nonce bits can directly use the parameters of instances
with less nonce bits, we list the details of 6-round and 7-round attacks on Ketje
Major with 512-bit and 704-bit nonce.
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Table 5. The number of cube variables in CP-like-kernel in different nonces in Ketje

Major

Nonce: bits(lanes) Number of cube variables

in CP-like-kernel

448(7) 21

512(8) 41

576(9) 50

640(10) 59

704(11) 75

832(13) 81

Table 6. Parameters set for attack on 6-round Ketje Major

Ordinary Cube Variables

A[4][1][2] =A[4][4][2]=v1, A[4][1][4]=A[4][4][4]=v2, A[4][1][10]=A[4][4][10]=v3,

A[4][1][11]=A[4][4][11]=v4,A[3][0][14]=A[3][3][14]=v5,A[3][0][17]=A[3][3][17]=v6,

A[4][1][19]=A[4][4][19]=v7,A[4][1][20]=A[4][4][20]=v8,A[4][1][27]=A[4][4][27]=v9,

A[3][0][28]=A[3][3][28]=v10,A[4][1][28]=A[4][4][28]=v11,A[3][0][33]=A[3][3][33]=v12,

A[3][0][36]=A[3][3][36]=v13,A[3][0][37]=A[3][3][37]=v14,A[4][1][38]=A[4][4][38]=v15,

A[3][0][45]=A[3][3][45]=v16,A[4][1][59]=A[4][4][59]=v17,A[4][1][60]=A[4][4][60]=v18,

A[2][2][18]=A[2][4][18]=v19,A[2][2][19]=A[2][4][19]=v20,A[2][2][51]=A[2][4][51]=v21,

A[2][2][27]=A[2][4][27]=v22,A[2][2][28]=A[2][4][28]=v23,A[2][2][52]=A[2][4][52]=v24,

A[2][2][53]=A[2][4][53]=v25,A[2][2][36]=A[2][4][36]=v26,A[2][2][37]=A[2][4][37]=v27,

A[2][2][39]=A[2][4][39]=v28,A[2][2][55]=A[2][4][55]=v29,A[2][2][60]=A[2][4][60]=v30,

A[2][2][62]=A[2][4][62]=v31

Conditional Cube Variable

A[3][0][0]=A[3][3][0]=v0

Bit Conditions

A[3][3][41]=k1[42] + A[1][0][42] + A[3][0][41] + A[2][2][42] + A[1][3][42] + 1,

A[4][4][7]=A[3][0][7] + A[0][2][6] + A[3][3][7],

A[2][4][31]=k1[31] + A[1][0][31] + A[3][0][30] + A[1][3][31] + A[3][3][30] + 1,

A[3][3][8]=A[3][0][8] + A[4][1][8] + A[0][2][7],

A[4][4][49]=A[2][1][50] + A[4][1][49] + A[2][2][50] + A[3][3][50] + A[2][4][50],

A[2][4][11]=A[2][1][11] + A[3][3][11] + 1,

A[2][4][61]=A[2][1][61] + A[2][2][61] + A[3][3][61],

A[0][2][38]=k0[30] + k1[38] + A[2][1][37] + 1,

A[4][4][12]=A[2][1][13] + A[4][1][12] + A[3][3][13] + A[2][4][13]

Guessed Key Bits

k1[42],k1[31],k0[30] + k1[38]

Attack on 6-Round Initialization of Ketje Major. According to parame-
ters set in Table 6, guess the 3 key bits listed, compute cube sums on variables
v0, . . . , v31, zero cube sums suggest a right key(i.e. 3 guessed key bits in Table 6).
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It consumes 23 × 232 = 235 computations of 6-round initialization of Ketje

Major. According to the property of permutation, it is totally symmetric in
z-axis. Thus we can obtain corresponding parameters set with any rotation of
i-bit (0 ≤ i < 64) in z-axis. Therefore, 128 key bits can be recovered by 64
iterations for 0 ≤ i < 64, so the time complexity is 64 × 23 × 232 = 241.

Attack on 7-Round Initialization of Ketje Major. We use A[1][0][0] =
A[1][3][0] = v0 as condition cube variable. According to parameters set in Table 7,
guess the 16 key bits listed, compute cube sums on variables v0, . . . , v63, zero
cube sums suggest a right key (i.e. 16 guessed key bits in Table 7). It consumes
216 ×264 = 280 computations of 7-round initialization of Ketje Major. Similar
to the case above, 46 key bits can be recovered by 4 iterations for 0 ≤ i < 4,
and the remaining 82 key bits can be recovered by exhaustive search. The time
complexity is 4 × 216 × 264 + 282 = 283.

6.2 Attacks on Round-Reduced Initialization of Ketje Minor

The state of Ketje Minor is 800-bit, which is the half of the state size of Keccak-
MAC (1600-bit). As the upper part of Fig. 7 shows, in Huang et al.’s attack on
Keccak-MAC, one conditional cube variable v0 is chosen, placed in two black
bits of S0. After adding some conditions, the conditional cube variable v0 is
diffused to 22 bits shown in state S1.5, we denote the diffusion pattern as 2-2-22.
For the state of Ketje Minor is much smaller, the conditional cube variable in
2-2-22 pattern diffuses relatively much greater, there are only 26 ordinary cube
variables in CP-like-kernel optimized with MILP search strategy, which is not
enough for 7-round attack.

In order to solve the problem, we find a new conditional cube variable. As
shown in the lower part of Fig. 7, after adding some conditions, the diffusion
pattern is 6-6-6 and only 6 bits in S1.5 contains the conditional cube variable.
At last, we find enough ordinary cube variables with the MILP tool to launch
the key-recovery attacks on 5/6/7-round reduced Ketje Minor.

In details, from S0 to S1, θ, ρ, π, χ, ι are operated in sequence. θ operation
holds the distribution of v0 according to CP-like-kernel. Operations ρ and π only
permute the bit positions, while ι only adds a constant. Thus, we only need to
control the diffusion of χ operation. We denote the state before χ operation in
the first round as S0.5. According to Property 1-(2), 12-bit conditions based on
key and nonce are introduced to keep the 6 bits containing v0 from diffusion.
Then the diffusion of v0 maintains the 6-6-6 pattern.

Attack on 5-Round Initialization of Ketje Minor. In 5-round attack, we
choose 24 = 16 cube variables denoted by v0, v1 . . . v15. Based on Corollary 1,
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Table 7. Parameters set for attack on 7-round Ketje Major

Ordinary Cube Variables

A[3][2][0]=A[3][3][0]=v1,A[1][0][1]=A[1][3][1]=v2,A[4][1][4]=A[4][4][4]=v3,

A[3][0][5]=v4,A[3][2][5]=v5,A[3][3][5]=v4+v5,A[1][0][7]=A[1][3][7]=v6,

A[1][0][9]=A[1][3][9]=v7,A[3][2][9]=A[3][3][9]=v8,A[4][1][9]=A[4][4][9]=v9,

A[3][0][10]=v10,A[3][2][10]=v11,A[3][3][10]=v10+v11,A[4][1][10]=A[4][4][10]=v12,

A[3][2][11]=A[3][3][11]=v13,A[4][1][11]=A[4][4][11]=v14,A[1][0][12]=A[1][3][12]=v15,

A[3][2][15]=A[3][3][15]=v16,A[1][0][17]=A[1][3][17]=v17,A[1][0][19]=A[1][3][19]=v18,

A[4][1][20]=A[4][4][20]=v19,A[4][1][26]=A[4][4][26]=v20,A[3][0][27]=A[3][2][27]=v21,

A[1][0][29]=A[1][3][29]=v22,A[3][2][30]=A[3][3][30]=v23,A[3][2][31]=A[3][3][31]=v24,

A[1][0][32]=A[1][3][32]=v25,A[1][0][33]=A[1][3][33]=v26,A[4][1][33]=A[4][4][33]=v27,

A[3][0][38]=A[3][2][38]=v28,A[1][0][39]=A[1][3][39]=v29,A[3][0][41]=A[3][3][41]=v30,

A[3][0][42]=A[3][2][42]=v31,A[1][0][43]=A[1][3][43]=v32,A[3][0][43]=A[3][3][43]=v33,

A[3][0][45]=A[3][2][45]=v34,A[3][0][46]=v35,A[3][2][46]=v36,A[3][3][46]=v35+v36,

A[3][0][47]=A[3][2][47]=v37,A[3][0][48]=A[3][2][48]=v38,A[3][0][49]=v39,

A[3][2][49]=v40,A[3][3][49]=v39+v40,A[3][2][50]=A[3][3][50]=v41,

A[3][2][51]=A[3][3][51]=v42,A[3][2][52]=A[3][3][52]=v43,A[4][1][52]=A[4][4][52]=v44,

A[3][2][53]=A[3][3][53]=v45,A[3][0][56]=v46,A[3][2][56]=v47,A[3][3][56]=v46+v47,

A[3][2][60]=A[3][3][60]=v48,A[4][1][61]=A[4][4][61]=v49,A[1][0][62]=A[1][3][62]=v50,

A[3][2][63]=A[3][3][63]=v51,A[2][2][20]=A[2][4][20]=v52,A[2][1][26]=A[2][4][26]=v53,

A[1][0][4]=A[1][3][4]=v54,A[2][2][33]=A[2][4][33]=v55,A[2][1][35]=v56,

A[2][2][35]=v57,A[2][4][35]=v56+v57,A[2][1][40]=A[2][2][40]=v58,

A[2][1][44]=A[2][2][44]=v59,A[2][2][45]=A[2][4][45]=v60,A[2][2][54]=A[2][4][54]=v61,

A[2][1][23]=A[2][2][23]=v62,A[1][0][2]=A[1][3][2]=v63

Bit Conditions

A[4][4][42]=k1[41] + A[1][0][41] + A[4][1][42] + A[0][2][42] + A[1][3][41] + 1,

A[2][4][48]=k0[38] + k1[48] + A[1][0][48] + A[1][3][48] + A[0][2][46],

A[4][4][47]=k1[46] + A[1][0][46] + A[4][1][47] + A[1][3][46]+ 1,

A[3][3][58]=k1[59] + A[1][0][59] + A[3][0][58] + A[2][1][59] + A[3][2][58] + A[1][3][59],

A[3][3][17]=k0[8] + A[3][0][17] + A[0][2][16]+ A[3][2][17],

A[3][3][26]=k0[17] + A[3][0][26] + A[0][2][25] + A[3][2][26],

A[3][3][27]=k0[18] + A[0][2][26], A[3][3][47]=k0[38] + A[0][2][46],

A[3][3][7]=k1[8] + A[1][0][8] + A[3][0][7] + A[3][2][7] + A[1][3][8],

A[3][3][48]=k0[39] + A[0][2][47],A[4][4][44]=A[2][1][45] + A[4][1][44] + A[3][3][45],

A[3][3][55]=k0[46] + A[3][0][55] + A[0][2][54] + A[3][2][55],

A[4][4][41]=A[2][0][42] + A[2][1][42] + A[4][1][41] + A[3][3][42] + A[2][4][42],

A[4][4][46]=k1[45] + A[1][0][45] + A[4][1][46]+ A[0][2][46] + A[1][3][45] + 1,

A[2][4][52]=k1[52] + A[1][0][52] + A[3][0][51] + A[1][3][52],

A[0][2][43]=k0[35] + k1[43] + A[2][0][42] + A[2][1][42] + A[2][4][42] + 1,

A[1][3][61]=k1[61] + A[1][0][61] + A[3][0][60] + A[2][1][61],

A[0][2][44]=k1[43] + A[2][1][45] + A[3][3][45] + 1

Guessed Key Bits

k1[41],k0[38] + k1[48],k1[46],k1[59],k0[8],k0[17],k0[18],k0[38],k1[8],k0[39],k0[46],

k1[45],k1[52],k0[35] + k1[43],k1[61],k1[43]
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Fig. 7. Diffusions of the conditional cube variable in 2-2-22 and 6-6-6 Pattern in Ketje

Minor

v0 is the conditional cube variable and v1, v2 . . . v15 are ordinary cube variables.
We summarize the requirements as following:

(1) v0, v1 . . . v15 do not multiply with each other in the first round;
(2) Under some conditions on key and nonce, v0 does not multiply with any of

v1, v2 . . . v15 in the second round.

Under (1), any of cube variables v0, v1 . . . v15 only exists as a one-degree term
in the output of 1-round Ketje Minor, i.e. the degree of any bit in S1 is no more
than one. The degree of one round function is 2. When we say the degree of some
state, we mean the highest degree among the cube variables in all terms of the
state. If conditions in (2) are met, according to Corollary 1, the term v0v1 . . . v15
will not appear in S5, so the degree over cube variables v0, v1 . . . v15 is at most
15. Otherwise, the degree of S5 is 16.

Thus, under given conditions on key and nonce, the cube sums of all bits
in S5 over v0, v1 . . . v15 are zero, otherwise the cube sums are random if those
conditions are not met. Actually, ρ = 128 bits of S5 are known in Ketje Minor.
If the cube sum on each of the 128 bits is zero, we can determine that the
corresponding conditions are satisfied.
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Table 8. Parameters set for attack on the 5-round initialization of Ketje Minor

Conditional Cube Variable

A[0][1][19]=A[0][3][19]=A[1][2][15]=A[1][3][15]=A[3][1][0]=A[3][2][0]=v0

Ordinary Cube Variables

A[2][0][2]=A[2][1][2]=v1,A[2][0][4]=A[2][1][4]=v2,A[2][0][7]=A[2][1][7]=v3,

A[2][0][11]=A[2][1][11]=v4,A[2][0][12]=A[2][1][12]=v5,A[2][0][20]=A[2][1][20]=v6,

A[2][0][23]=A[2][1][23]=v7,A[2][0][29]=A[2][1][29]=v8,A[2][0][30]=A[2][1][30]=v9,

A[3][0][3]=A[3][1][3]=v10,A[3][0][6]=A[3][1][6]=v11,A[3][0][12]=A[3][1][12]=v12,

A[3][0][13]=A[3][1][13]=v13,A[3][0][17]=A[3][1][17]=v14,A[3][0][21]=A[3][1][21]=v15.

Bit Conditions

A[1][0][24]=k1[24] + A[4][0][25] + A[4][1][25] + A[0][2][25] + A[1][2][24]

+ A[4][2][25] + A[1][3][24] + A[4][3][25] + A[1][4][24] + A[4][4][25] + 1

A[1][0][31]=k1[31] + k3[30] + A[3][0][30] + A[3][1][30] + A[1][2][31]

+ A[3][2][30] + A[1][3][31] + A[2][4][31] + A[3][4][30] + 1

A[1][0][19]=k1[19] + k3[18] + A[3][0][18] + A[2][1][19] + A[3][1][18]

+ A[1][2][19] + A[3][2][18] + A[1][3][19] + A[1][4][19] + A[3][4][18] + 1

A[0][1][16]=k0[8] + k3[17] + A[0][2][16] + A[3][2][17] + A[0][3][16]

+ A[4][3][17] + A[0][4][16] + A[3][4][17]

A[0][1][13]=k0[5] + k2[12] + A[0][2][13] + A[1][2][13] + A[0][3][13]

+ A[2][3][12] + A[0][4][13] + A[2][4][12]

A[1][0][20]=k1[20] + A[4][0][21] + A[0][1][21] + A[4][1][21] + A[1][2][20]

+ A[4][2][21] + A[1][3][20] + A[4][3][21] + A[1][4][20] + A[4][4][21] + 1

A[1][0][10]=k1[10] + k3[9] + A[3][0][9] + A[3][1][9] + A[1][2][10] + A[3][2][9]

+ A[1][3][10] + A[2][3][10] + A[1][4][10] + A[3][4][9]

A[0][1][27]=k0[19] + k3[28] + A[3][0][28] + A[4][0][28] + A[3][1][28]

+ A[0][2][27] + A[3][2][28] + A[0][3][27] + A[0][4][27] + A[3][4][28] + 1

A[0][1][15]=k0[7] + k3[16] + A[3][0][16] + A[3][1][16] + A[0][2][15]

+ A[3][2][16] + A[4][2][16] + A[0][3][15] + A[0][4][15] + A[3][4][16]

A[0][1][20]=k0[12] + k3[21] + A[0][2][20] + A[3][2][21] + A[4][2][21]

+ A[0][3][20] + A[0][4][20] + A[3][4][21] + 1

A[0][1][26]=k0[18] + k2[25] + A[2][0][25] + A[2][1][25] + A[0][2][26]

+ A[0][3][26] + A[2][3][25] + A[0][4][26] + A[1][4][26] + A[2][4][25]

A[1][0][25]=k1[25] + k3[24] + A[2][0][25] + A[3][0][24] + A[3][1][24]

+ A[1][2][25] + A[3][2][24] + A[1][3][25] + A[1][4][25] + A[3][4][24] + 1

Guessed Key Bits

k1[24],k1[31] + k3[30],k1[19] + k3[18],k0[8] + k3[17] ,k0[5] + k2[12],

k1[20],k1[10] + k3[9],k0[19] + k3[28],k0[7] + k3[16] ,k0[12] + k3[21],

k0[18] + k2[25],k1[25] + k3[24]

As Table 8 shows, the 12 bit conditions are related to key and nonce bits.
We guess the 12 key bits with all the possible values. While all the nonce
bits are constant, all the bit conditions are satisfied if and only if all the key
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bits are guessed correctly. Thus, zero sums over the 128 known bits of S5

(S5[0][0], S5[1][1], S5[2][2], S5[3][3]3) with cube variables set as Table 8 mean a
correct key guess. We give an example here for intuition, in which key is gener-
ated randomly and all the controllable nonce bits are set as zero.

128-bit key (K = k0||k1||k2||k3||k4):

1010000011010110011101001101110001110010000111011101110010110110

1111110010011101001011000101010100010111101000111100101100000101

The correct value for the guessed key bits in Table 8 is 110111101010.

guessed value: 000000000000,

cube sums: 0xf0217c64, 0x8a61f7e1, 0x67f01330, 0xa9b1c06

...

guessed value: 110111101010,

cube sums: 0x0, 0x0, 0x0, 0x0

...

guessed value: 000011010110,

cube sums: 0xf4c1bc4, 0xea79d2a4, 0xc2880990, 0x8ae4140d

...

guessed value: 111111111111,

cube sums: 0x7b115312, 0xa9156874, 0x9cabc23, 0x6ecd5ef9

Furthermore, we can perform the similar key recovery with any offset
0, 1 . . . 31 in z-axis. We analyze the time and data complexity of the attack: the
procedure consumes 32 × 212 × 216 = 233 computations of 5-round initialization
of Ketje Minor, correspondingly 233 (nonce, plaintext, ciphertext, tag) pairs are
needed. After the procedure above, all the 120 bits in k0, k1, k2, k3 can be recov-
ered, and the remaining 8 bits of k4 can be determined by brute search. There-
fore, time complexity of the attack is 233 computations of 5-round initialization
of Ketje Minor, and data complexity is 233 (nonce, plaintext, ciphertext, tag)
pairs.

Attack on 6-Round Initialization of Ketje Minor. In 6-round attack,
similar to the 5-round attack, we choose 25 = 32 cube variables denoted by
v0, v1 . . . v31. Based on Corollary 1, v0 is the conditional cube variable and
v1, v2 . . . v31 are ordinary cube variables. We summarize the requirements as
following:

(1) v0, v1 . . . v31 do not multiply with each other in the first round;
(2) Under some conditions on key and nonce, v0 does not multiply with any of

v1, v2 . . . v31 in the second round.

The recovery attack can be performed similarly to 5-round attack. While all
the nonce bits are constant, all the bit conditions are satisfied if and only if all

3 These four 32-bit words are the first four words after π which are the output bits of

Keccak-p∗.
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Table 9. Ordinary cube variables and bit conditions for attack on the 6-round initial-

ization of Ketje Minor

Ordinary Cube Variables

A[2][0][2]=A[2][1][2]=v1,A[2][0][4]=A[2][1][4]=v2,A[2][0][7]=A[2][1][7]=v3,

A[2][0][11]=A[2][1][11]=v4,A[2][0][12]=A[2][1][12]=v5,A[2][0][20]=A[2][1][20]=v6,

A[2][0][23]=A[2][1][23]=v7,A[2][0][29]=A[2][1][29]=v8,A[2][0][30]=A[2][1][30]=v9,

A[3][0][3]=A[3][1][3]=v10,A[3][0][6]=A[3][1][6]=v11,A[3][0][12]=A[3][1][12]=v12,

A[3][0][13]=A[3][1][13]=v13,A[3][0][17]=A[3][1][17]=v14,A[3][0][21]=A[3][1][21]=v15,

A[3][0][22]=A[3][1][22]=v16,A[3][0][26]=A[3][1][26]=v17,A[3][0][31]=A[3][1][31]=v18,

A[4][0][0]=A[4][1][0]=v19,A[4][0][5]=A[4][1][5]=v20,A[4][0][8]=A[4][1][8]=v21,

A[4][0][15]=A[4][1][15]=v22,A[4][0][18]=A[4][1][18]=v23,A[4][0][22]=A[4][1][22]=v24,

A[4][0][24]=A[4][1][24]=v25,A[0][2][1]=A[0][3][1]=v26,A[0][2][5]=A[0][3][5]=v27,

A[0][2][10]=A[0][3][10]=v28,A[0][2][15]=A[0][3][15]=v29,A[0][2][31]=A[0][3][31]=v30,

A[1][2][4]=A[1][3][4]=v31.

Bit Conditions

A[1][0][24]=k1[24] + A[4][0][25] + A[4][1][25] + A[0][2][25] + A[1][2][24]

+ A[4][2][25] + A[1][3][24] + A[4][3][25] + A[1][4][24] + A[4][4][25] + 1

A[1][0][31]=k1[31] + k3[30] + A[3][0][30] + A[3][1][30] + A[1][2][31]

+ A[3][2][30] + A[1][3][31] + A[2][4][31] + A[3][4][30] + 1

A[1][0][19]=k1[19] + k3[18] + A[3][0][18] + A[2][1][19] + A[3][1][18]

+ A[1][2][19] + A[3][2][18] + A[1][3][19] + A[1][4][19] + A[3][4][18] + 1

A[0][1][16]=k0[8] + k3[17] + A[0][2][16] + A[3][2][17] + A[0][3][16]

+ A[4][3][17] + A[0][4][16] + A[3][4][17]

A[0][1][13]=k0[5] + k2[12] + A[0][2][13] + A[1][2][13] + A[0][3][13]

+ A[2][3][12] + A[0][4][13] + A[2][4][12]

A[1][0][20]=k1[20] + A[4][0][21] + A[0][1][21] + A[4][1][21] + A[1][2][20]

+ A[4][2][21] + A[1][3][20] + A[4][3][21] + A[1][4][20] + A[4][4][21] + 1

A[1][0][10]=k1[10] + k3[9] + A[3][0][9] + A[3][1][9] + A[1][2][10] + A[3][2][9]

+ A[1][3][10] + A[2][3][10] + A[1][4][10] + A[3][4][9]

A[0][1][27]=k0[19] + k3[28] + A[3][0][28] + A[4][0][28] + A[3][1][28]

+ A[0][2][27] + A[3][2][28] + A[0][3][27] + A[0][4][27] + A[3][4][28] + 1

A[0][1][15]=k0[7] + k3[16] + A[3][0][16] + A[3][1][16] + A[3][2][16]

+ A[4][2][16] + A[0][4][15] + A[3][4][16]

A[0][1][20]=k0[12] + k3[21] + A[0][2][20] + A[3][2][21] + A[4][2][21]

+ A[0][3][20] + A[0][4][20] + A[3][4][21] + 1

A[0][1][26]=k0[18] + k2[25] + A[2][0][25] + A[2][1][25] + A[0][2][26]

+ A[0][3][26] + A[2][3][25] + A[0][4][26] + A[1][4][26] + A[2][4][25]

A[1][0][25]=k1[25] + k3[24] + A[2][0][25] + A[3][0][24] + A[3][1][24]

+ A[1][2][25] + A[3][2][24] + A[1][3][25] + A[1][4][25] + A[3][4][24] + 1

the key bits are guessed correctly. Thus, zero sums over the 128 known bits of S6

(S6[0][0], S6[1][1], S6[2][2], S6[3][3]) with conditional cube variable set as Table 8
and ordinary cube variables set as Table 9 mean a correct key guess. We give
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an example here for intuition, in which key is generated randomly and all the
controllable nonce bits are set as zero.

128-bit key (K = k0||k1||k2||k3||k4):

1001011000001001100010100101011010101110110110011100100111011010

0011111110101101101001110111100101000101101110001110011101101101

The correct value for the guessed key bits in Table 8 is 100001001100.

guessed value: 000000000000,

cube sums: 0x555b48a6, 0xcce8cd70, 0x9e41800d, 0x66b12d4f

...

guessed value: 100001001100,

cube sums: 0x0, 0x0, 0x0, 0x0

...

guessed value: 010101101100,

cube sums: 0xc61fa207, 0x24f02427, 0x3fed45e0, 0x36a8326d

...

guessed value: 111111111111,

cube sums: 0x834061d2, 0x14200817, 0xd56d2379, 0xc93e01f8

We analyze the time and data complexity of the attack: the procedure con-
sumes 32×212×232 = 249 computations of 6-round initialization of Ketje Minor,
correspondingly 249 (nonce, plaintext, ciphertext, tag) pairs are needed. After
the procedure above, all the 120 bits in k0, k1, k2, k3 can be recovered, and the
remaining 8 bits in k4 can be determined by brute search. Therefore, both time
and data complexity of the attack are 249.

Attack on 7-Round Initialization of Ketje Minor. In 7-round attack,
similar to the 5/6-round attack, we choose 26 = 64 cube variables denoted
by v0, v1 . . . v63. Based on Corollary 1, v0 is the conditional cube variable and
v1, v2 . . . v63 are ordinary cube variables. We summarize the requirements as
following:

(1) v0, v1 . . . v63 do not multiply with each other in the first round;
(2) Under some conditions on key and nonce, v0 does not multiply with any of

v1, v2 . . . v63 in the second round.

While all the nonce bits are constant, all the bit conditions are satisfied if and
only if all the key bits are guessed correctly. Thus, zero sums over the 128 known
bits of S7 (S7[0][0], S7[1][1], S7[2][2], S7[3][3]) with conditional cube variable set
as Table 8 and ordinary cube variables set as Table 10 mean a correct key guess.

We analyze the time and data complexity of the attack: the procedure con-
sumes 32×212×264 = 281 computations of 7-round initialization of Ketje Minor,
correspondingly 281 (nonce, plaintext, ciphertext, tag) pairs are needed. After
the procedure above, all the 120 bits in k0, k1, k2, k3 can be recovered, and the
remaining 8 bits in k4 can be determined by brute search. Therefore, both time
and data complexity of the attack are 281.
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Table 10. Ordinary cube variables for attack on the 7-round initialization of Ketje

Minor

Ordinary Cube Variables

A[0][1][0]=v1,A[0][2][0]=v2,A[0][3][0]=v3,A[0][4][0]=v1 + v2 + v3,A[0][2][1]=v4,

A[0][3][1]=v5,A[0][4][1]=v4 + v5,A[0][1][2]=A[0][3][2]=v6,A[0][2][3]=A[0][4][3]=v7,

A[0][1][4]=v8,A[0][3][4]=v9,A[0][4][4]=v8 + v9,A[0][1][5]=v10,A[0][2][5]=v11,

A[0][3][5]=v10 + v11,A[0][1][6]=v12,A[0][2][6]=v13,A[0][4][6]=v12 + v13,

A[0][1][8]=A[0][3][8]=v14,A[0][1][9]=v15,A[0][2][9]=v16,A[0][3][9]=v17,

A[0][4][9]=v15 + v16 + v17,A[0][2][10]=v18,A[0][3][10]=v19,A[0][4][10]=v18 + v19,

A[0][1][13]=v20,A[0][3][13]=v21,A[0][4][13]=v20 + v21,A[0][1][14]=v22,A[0][2][14]=v23,

A[0][4][14]=v22 + v23,A[0][1][15]=v24,A[0][2][15]=v25,A[0][3][15]=v24 + v25,

A[0][1][16]=v26,A[0][2][16]=v27,A[0][4][16]=v26 + v27,A[0][2][17]=A[0][4][17]=v28,

A[0][2][19]=A[0][4][19]=v29,A[0][3][21]=A[0][4][21]=v30,A[0][1][22]=v31,

A[0][2][22]=v32,A[0][3][22]=v33,A[0][4][22]=v31 + v32 + v33,A[0][2][23]=A[0][4][23]=v34,

A[0][1][24]=v35,A[0][3][24]=v36,A[0][4][24]=v35 + v36,A[0][1][25]=v37,A[0][3][25]=v38,

A[0][4][25]=v37 + v38,A[0][1][27]=A[0][4][27]=v39,A[0][1][30]=A[0][2][30]=v40,

A[0][1][31]=v41,A[0][2][31]=v42,A[0][3][31]=v43,A[0][4][31]=v41 + v42 + v43,

A[2][0][1]=A[2][4][1]=v44,A[2][0][2]=v45,A[2][1][2]=v46,A[2][3][2]=v47,

A[2][4][2]=v45 + v46 + v47,A[2][1][3]=v48,A[2][3][3]=v49,A[2][4][3]=v48 + v49,

A[2][0][4]=v50,A[2][1][4]=v51,A[2][3][4]=v50 + v51,A[2][0][5]=A[2][4][5]=v52,

A[2][0][7]=v53,A[2][1][7]=v54,A[2][3][7]=v53 + v54,A[2][0][9]=A[2][3][9]=v55,

A[2][0][10]=A[2][4][10]=v56,A[2][0][11]=v57,A[2][1][11]=v58,A[2][4][11]=v57 + v58,

A[2][0][12]=v59,A[2][1][12]=v60,A[2][4][12]=v59 + v60,A[2][1][13]=v61,A[2][3][13]=v62,

A[2][4][13]=v61 + v62,A[2][1][14]=A[2][4][14]=v63.

7 Conclusion

In this paper, we comprehensively study the conditional cube attack against
Keccak keyed modes. In order to find enough ordinary cube variables in low
degrees of freedom of Keccak keyed modes, we introduce a new MILP model.
We show how to model the CP-like-kernel and model the way that the ordinary
cube variables do not multiply together in the first round as well as do not
multiply with the conditional cube variable in the second round. Then, a series
of linear inequality system are brought out, which accurately restrict the way to
add an ordinary cube variable. Then, by choosing the objective function of the
maximal number of ordinary cube variables, we convert Huang et al.’s greedy
algorithm into an MILP problem and maximal number of ordinary cube variables
is determined. Based on this method, we extend the best previous attacks on
round-reduced Keccak-MAC-384 and Keccak-MAC-512 by 1 round, and achieve
the first 7-round and 6-round key-recovery attacks, respectively. In addition, we
give some results on Ketje Major and Minor and get the best results on these
two ciphers (Tables 7, 10 and 11).

Currently, the cryptanalysis progress of symmetric-key ciphers heavily
depends on automated evaluation tools. For many reasons, the cryptanalysis
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Table 11. Bit conditions for attack on the 7-round initialization of Ketje Minor

Bit Conditions

A[1][0][24]=k1[24] + A[4][0][25] + A[4][1][25] + A[0][2][25] + A[1][2][24]

+ A[4][2][25] + A[1][3][24] + A[4][3][25] + A[1][4][24] + A[4][4][25] + 1

A[1][0][31]=k1[31] + k3[30] + A[3][0][30] + A[3][1][30] + A[1][2][31]

+ A[3][2][30] + A[1][3][31] + A[2][4][31] + A[3][4][30] + 1

A[1][0][19]=k1[19] + k3[18] + A[3][0][18] + A[2][1][19] + A[3][1][18]

+ A[1][2][19] + A[3][2][18] + A[1][3][19] + A[1][4][19] + A[3][4][18] + 1

A[3][0][17]=k0[8] + k3[17] + A[3][1][17] + A[3][2][17] + A[0][3][16]

+ A[4][3][17] + A[3][4][17]

A[1][2][13]=k0[5] + k2[12] + A[0][2][13] + A[2][3][12]

A[1][0][20]=k1[20] + A[4][0][21] + A[0][1][21] + A[4][1][21] + A[1][2][20]

+ A[4][2][21] + A[1][3][20] + A[4][3][21] + A[1][0][4][20] + A[4][4][21] + 1

A[1][0][10]=k1[10] + k3[9] + A[3][0][9] + A[3][1][9] + A[1][2][10] + A[3][2][9]

+ A[1][3][10] + A[2][3][10] + A[1][4][10] + A[3][4][9]

A[3][0][28]=k0[19] + k3[28] + A[4][0][28] + A[3][1][28] + A[0][2][27]

+ A[3][2][28] + A[0][3][27] + A[3][4][28] + 1

A[3][0][16]=k0[7] + k3[16] + A[3][1][16] + A[3][2][16] + A[4][2][16]

+ A[0][4][15] + A[3][4][16]

A[3][0][21]=k0[12] + k3[21] + A[0][1][20] + A[3][1][21] + A[0][2][20]

+ A[3][2][21] + A[4][2][21] + A[0][3][20] + A[0][4][20] + A[3][4][21] + 1

A[1][4][26]=k0[18] + k2[25] + A[2][0][25] + A[0][1][26] + A[2][1][25]

+ A[0][2][26] + A[0][3][26] + A[2][3][25] + A[0][4][26] + A[2][4][25]

A[1][0][25]=k1[25] + k3[24] + A[2][0][25] + A[3][0][24] + A[3][1][24]

+ A[1][2][25] + A[3][2][24] + A[1][3][25] + A[1][4][25] + A[3][4][24] + 1

of the new SHA-3 standard Keccak is very hard and limited, more evaluation
tools on Keccak are urgently needed. The MILP method introduced in this paper
enriches the Keccak tools, and helps academic communities study Keccak much
easier.
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Abstract. Division property is a generalized integral property proposed
by Todo at Eurocrypt 2015. Previous tools for automatic searching are
mainly based on the Mixed Integer Linear Programming (MILP) method
and trace the division property propagation at the bit level. In this paper,
we propose automatic tools to detect ARX ciphers’ division property at
the bit level and some specific ciphers’ division property at the word level.

For ARX ciphers, we construct the automatic searching tool relying
on Boolean Satisfiability Problem (SAT) instead of MILP, since SAT
method is more suitable in the search of ARX ciphers’ differential/linear
characteristics. The propagation of division property is translated into a
system of logical equations in Conjunctive Normal Form (CNF). Some
logical equations can be dynamically adjusted according to different ini-
tial division properties and stopping rule, while the others corresponding
to r-round propagations remain the same. Moreover, our approach can
efficiently identify some optimized distinguishers with lower data com-
plexity. As a result, we obtain a 17-round distinguisher for SHACAL-2,
which gains four more rounds than previous work, and an 8-round dis-
tinguisher for LEA, which covers one more round than the former one.

For word-based division property, we develop the automatic search
based on Satisfiability Modulo Theories (SMT), which is a generaliza-
tion of SAT. We model division property propagations of basic operations
and S-boxes by logical formulas, and turn the searching problem into an
SMT problem. With some available solvers, we achieve some new dis-
tinguishers. For CLEFIA, 10-round distinguishers are obtained, which
cover one more round than the previous work. For the internal block
cipher of Whirlpool, the data complexities of 4/5-round distinguishers
are improved. For Rijndael-192 and Rijndael-256, 6-round distinguishers
are presented, which attain two more rounds than the published ones.
Besides, the integral attacks for CLEFIA are improved by one round
with the newly obtained distinguishers.
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1 Introduction

Automatic tools for cryptanalysis play a more and more important role in
the design and cryptanalysis of symmetric ciphers. One common direction to
construct automatic tools is to transform the searching problems into some
mathematical problems, so that some existing solvers can be invoked. The
involved mathematical problems can be roughly divided into three categories,
which are Boolean Satisfiability Problem (SAT)/Satisfiability Modulo Theories
(SMT) problem [7,16,24,32], Mixed Integer Linear Programming (MILP) prob-
lem [10,25,39,45], and Constraint Programming (CP) problem [12,38]. At the
very start, the researches on automatic search of distinguishers concentrated
on detecting differential and linear characteristics, since differential [4] and lin-
ear [20] cryptanalysis are two of the most powerful techniques in cryptanalysis
of symmetric-key primitives. Recently, with the advent of division property [41],
which is a generalized integral property, some researches about automatic search-
ing for division property arose.

Division property was proposed by Todo [41] at Eurocrypt 2015, which was
originally used to search integral distinguishers of block cipher structures. Due to
the newly identified division property, at Crypto 2015, MISTY1 [21] was broken
by Todo for the first time. Later, Todo and Morii [42] introduced the bit-based
division property at FSE 2016, which propagates each bit independently, and a
14-round integral distinguisher for SIMON32 [3] was detected. Depending on the
partition of the internal state, the methods behind the obtained distinguishers
can be divided into three categories. (1) state-based division property: evaluate
the division properties of some generalized structures. Todo [41] finished the
extensive research for 2-branch Feistel structure and SPN on the whole state.
Related works were provided in [5]. (2) word-based division property: evaluate
the division properties of some specific ciphers at the word level. Todo [41]
implemented the search for a variety of AES-like ciphers with 4-bit S-boxes,
and the 6-round integral distinguisher [40] for MISTY1 was obtained based on
this method. Some works on this topic were introduced in [34,35,46]. (3) bit-
based division property: evaluate the propagation of division property at the bit
level. Note that it is more likely to obtain better distinguishers under a more
subtle partition since more information can be taken into account. All published
automatic tools of integral distinguishers based on division property focused
on the bit level. At Asiacrypt 2016, Xiang et al. [45] applied MILP method to
search integral distinguishers with bit-based division property. Soon after, the
automatic search of integral distinguishers based on MILP method for ARX
ciphers was proposed in [36]. Many other automatic tools relying on MILP and
CP can be found in [37,38,47].

ARX ciphers constitute a broad class of symmetric-key cryptographic algo-
rithms, and are composed of a small set of simple operations such as mod-
ular addition, bit rotation, bit shift and XOR. To claim the security of ARX
ciphers, one way is to prove the security bounds just as Dinu et al. showed in
[9], where a long trail design strategy for ARX ciphers with provable bounds
was proposed. The other is to estimate the maximum number of rounds of the
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detectable distinguishers which heavily relied on automatic tools, and the search-
ing of distinguishers is converted into an SAT/SMT problem or MILP problem.
The results show that SAT/SMT based methods [18,24,32] outperform MILP
based methods [10] in the search of differential/linear characteristics for ARX
ciphers. Hence, for bit-based division property, it is worth exploring whether
automatic tools based on SAT/SMT method can be constructed and provide
better performance for ARX primitives.

Although the search of bit-based division property can take advantage of
more details, it is infeasible to trace the division property propagation at the
bit level for some ciphers with large state and complicated operations, such as
Rijndael [8] with 256-bit block size. In order to get the tradeoff between accuracy
and practicability as we detect the division property, we also consider building
automatic tool to search integral distinguishers on account of word-based division
property.

Our Contributions. For the integral cryptanalysis, we construct automatic
searching tools of bit-based division property for ARX ciphers and word-based
division property for some specific ciphers. The key point is to translate the
propagation of division property into an SAT/SMT problem and control the
function calls. Specifically, the contributions can be summarized as follows:

– For ARX ciphers, we propose automatic tools to search integral distinguish-
ers using bit-based division property. First, we model the division property
propagations of the three basic operations, i.e., Copy, AND, and XOR, and
present formulas in Conjunctive Normal Form (CNF) for them. Then, the
concrete equations for the modular addition operation to depict bit-based
division property propagation can be achieved. The initial division property
and stopping rule are transformed to logical equations, too. At last, the prop-
agation of division property for ARX cipher is described by a system of logical
equations in CNF, where some logical formulas can be dynamically adjusted
according to different initial division properties of the input multi-set and final
division properties of the output multi-set, and the others corresponding to
r-round propagations remain the same.

– For integral cryptanalysis, it is better to adopt distinguishers with less data
requirements, and our approach can efficiently identify some optimal1 distin-
guishers which require less chosen plaintexts among the distinguishers with
the same length. Our searching approach is composed of two algorithms. The
first one restricts the search scope of initial division property and determines
the maximum number of rounds of distinguishers achieved in our model. The
second one optimizes the distinguishers based on the first algorithm’s output.

– For word-based division property, we construct automatic tool based on SMT
method. We first study how to model division property propagations of basic
operations by logical formulas. Moreover, by exclusion method, we construct
formulas to depict the possible propagations calculated by the Substitution

1 The integral distinguishers are optimal under the search strategies defined in this
paper.
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rule. With some available solvers, we can efficiently search integral distin-
guishers by setting initial division property and stopping rule rationally.
Finally, the problem of searching division property can be transformed into
an SMT problem.

– New integral distinguishers are detected for some ARX ciphers, such as
SHACAL-2 [13], LEA [14], and HIGHT [15]. With the two algorithms men-
tioned above, the number of initial division properties required to be evaluated
for SHACAL-2 is reduced from 279.24 to 410, so that we can easily obtain a
17-round integral distinguisher with data complexity 2241 chosen plaintexts,
which achieves four more rounds than previous work. For LEA, an 8-round
distinguisher is identified, which covers one more round than the one found
by MILP method [36]. For HIGHT, although the lengths and data require-
ments of the newly obtained distinguishers are not improved, some of them
have more zero-sum bits than those proposed in [36].

– New word-based division properties are presented for some specific ciphers.
For CLEFIA [31], we discover 10-round distinguishers, which attain one more
round than the one proposed in [19]. With the newly obtained distinguishers
for CLEFIA, we can improve the previous integral attacks by one round. The

Table 1. Summary of integral distinguishers.

Cipher Block
size

Key size Round† Length‡ log2(Data) Balanced
bits

Reference

SHACAL-2 256 128–512 64 12 1 32 [43]

13 32 1 [30]

17 241 7 Section 5.1

LEA 128 128/192/256 24/28/32 6 32 1 [14]

6 32 2 [36]

7 96 1 [36]

8 118 1 Section 5.1

CLEFIA 128 128/192/256 18/22/26 6 32 32 [31]

8 96 32 [31]

9 112 32 [19]

9 105 24 [29]

10 127 64 Section 5.2

Rijndael 192 128/192/256 12/12/14 4 24 160 [23]

4 176 192 [41]

6 160 64 Section 5.2

256 128/192/256 14 4 24 64 [11,23]

4 232 256 [41]

6 160 64 Section 5.2

Whirlpool 512 - 10 4 64 512 [22]

5 488 512 [41]

5 384 512 Section 5.2
†The number of encryption rounds.
‡The number of rounds covered by the distinguisher.
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data requirements of 4/5-round integral distinguishers for the internal block
cipher of Whirlpool [1] are reduced. As to Rijndael-192 and Rijndael-256 [8],
6-round distinguishers are proposed, which cover two more rounds than the
previous work.

Our main results and the comparisons are listed in Tables 1 and 3.
The rest of the paper is organized as follows. In Sect. 2, some notations and

background are introduced. Section 3 focuses on the automatic search of inte-
gral distinguishers with bit-based division property for ARX ciphers. The auto-
matic method relying on SMT to search integral distinguishers in accordance
with word-based division property is provided in Sect. 4. Section 5 presents some
applications of the developed automatic tools. We conclude the paper in Sect. 6.

2 Preliminary

2.1 Notations

For any a ∈ F
n
2 , its i-th element is denoted as a[i], where the bit positions are

labeled in big-endian, and the Hamming weight w(a) is calculated by w(a) =
n−1∑

i=0

a[i]. For any a = (a0, a1, . . . , am−1) ∈ F
�0
2 × F

�1
2 × · · · × F

�m−1
2 , the vectorial

Hamming weight of a is defined as W (a) = (w(a0), w(a1), . . . , w(am−1)) ∈ Z
m.

For any k ∈ Z
m and k′ ∈ Z

m, we define k � k′ if ki ≥ k′
i for all i. Otherwise,

k � k′.
For any set K, |K| denotes the number of elements in K. ∅ stands for an

empty set. Denote Zm the set {0, 1, . . . ,m}.

Definition 1 (Bit Product Function). Assume u ∈ F
n
2 and x ∈ F

n
2 . The Bit

Product Function πu is defined as

πu(x) =
n−1∏

i=0

x[i]u[i].

For u = (u0, u1, . . . , um−1) ∈ F
�0
2 ×F

�1
2 ×· · ·×F

�m−1
2 , let x = (x0, x1, . . . , xm−1) ∈

F
�0
2 × F

�1
2 × · · · × F

�m−1
2 be the input, the Bit Product Function πu is defined as

πu(x) =
m−1∏

i=0

πui
(xi).

2.2 Division Property

The original integral distinguishers mainly focus on the propagation of ALL and
BALANCE properties [17]. While, the division property, proposed by Todo at
Eurocrypt 2015 [41], is a generalized integral property, which traces the implicit
properties between traditional ALL and BALANCE properties. First, a set of
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plaintexts, whose division property follows initial division property, is chosen.
Then, the division property of the set of texts encrypted over one round is
deduced from the propagation rules. And so on, we can exploit the division
property over several rounds, and determine the existence of the integral distin-
guishers. In the following, we briefly recall the definition of division property,
and propagation rules for basic operations involved in the encryption process.

Definition 2 (Division Property [41]). Let X be a multi-set whose elements
take values from F

�0
2 × F

�1
2 × · · · × F

�m−1
2 . When the multi-set X has the division

property D�0,�1,...,�m−1
K

, where K denotes a set of m-dimensional vectors whose
i-th element takes a value between 0 and �i, it fulfills the following conditions:

⊕

x∈X

πu(x) =
{

unknown if there is k ∈ K s.t. W (u) � k,
0 otherwise.

Remark 1. Note that �0, �1, . . ., �m−1 are restricted to 1 when we consider bit-
based division property.

Propagation Rules for Division Property.

Rule 1 (Substitution [41]). Let F be a function that consists of m S-boxes,
where the bit length and the algebraic degree of the i-th S-box is �i and di bits,
respectively. The input and the output take values from F

�0
2 × F

�1
2 × · · · × F

�m−1
2 ,

and X and Y denote the input and output multi-sets, respectively. Assuming that
X has division property D�0,�1,...,�m−1

K
, where K denotes a set of m-dimensional

vectors whose i-th element takes a value between 0 and �i, the division property
of Y is D�0,�1,...,�m−1

K′ , where2

K
′ =

{(⌈
k0
d0

⌉

,

⌈
k1
d1

⌉

, · · · ,

⌈
km−1

dm−1

⌉) ∣
∣
∣
∣k = (k0, k1, . . . , km−1) ∈ K

}

.

Rule 2 (Copy [41]). Let F be a copy function, where the input x takes value
from F

n
2 and the output is calculated as (y0, y1) = (x, x). Let X and Y be the input

and output multi-sets, respectively. Assuming that X has the division property
Dn

{k}, the division property of Y is Dn,n
K′ , where

K
′ = {(k − i, i)|0 � i � k} .

Rule 3 (XOR [41]). Let F be an XOR function, where the input (x0, x1) takes
value from F

n
2 × F

n
2 and the output is calculated as y = x0 ⊕ x1. Let X and Y

be the input and output multi-sets, respectively. Assuming that X has division
property Dn,n

K
, the division property of Y is Dn

{k′}, where

k′ = min {k0 + k1|(k0, k1) ∈ K} .

Here, if k′ is larger than n, the propagation characteristic of division property is
aborted. Namely, a value of

⊕

y∈Y

πv(y) is 0 for all v ∈ F
n
2 .

2 The same vector is not inserted twice, similarly hereinafter.
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Rule 4 (Split [41]). Let F be a split function, where the input x is an element
belonging to F

n
2 and the output is calculated as y0‖y1 = x, where (y0, y1) takes

value from F
n0
2 ×F

n−n0
2 . Let X and Y be the input and output multi-sets, respec-

tively. Assuming that X has the division property Dn
{k}, the division property of

Y is Dn0,n−n0
K′ , where

K
′ = {(k − i, i)|0 � i � k, k − i � n0, i � n − n0} .

Rule 5 (Concatenation [41]). Let F be a concatenation operation, where the
input (x0, x1) takes value from F

n0
2 × F

n1
2 and the output is calculated as y =

x0‖x1. Let X and Y be the input and output multi-sets, respectively. Assuming
that X has the division property Dn0,n1

K
, the division property of Y is Dn0+n1

{k′} ,
where

k′ = min{k0 + k1|(k0, k1) ∈ K}.

The above rules are defined at the word level, while, when it comes to bit-
based division property, Copy and XOR rules can be applied, naturally. Another
important propagation rule under bit-based division property is AND, which is
stated in the following.

Rule 6 (Bit-based AND [42]). Let F be an AND function, where the input
(x0, x1) takes value from F2 × F2, and the output is calculated as y = x0 ∧ x1.
Let X and Y be the input and output multi-sets, respectively. Assuming that X

has division property D1,1
K

, the division property of Y is D1
K′ , where

K
′ =

{⌈
k0 + k1

2

⌉ ∣
∣
∣
∣k = (k0, k1) ∈ K

}

.

Similar to differential/linear characteristic in differential/linear cryptanaly-
sis, the concatenation of r division properties of the internal states constitutes
an r-round division trail, which is formally defined in the following.

Definition 3 (Division Trail [45]). Let f be the round function of an iterated
block cipher. Assume that the input multi-set has division property D�0,�1,··· ,�m−1

{k} ,

and the internal state after i rounds has division property D�0,�1,··· ,�m−1
Ki

. Thus
we have the following chain of division property propagations:

{k} � K0
f−→ K1

f−→ K2
f−→ · · · f−→ Kr.

Moreover, for any vector k∗
i ∈ Ki (i � 1), there must exist a vector k∗

i−1 ∈
Ki−1 such that k∗

i−1 can propagate to k∗
i by propagation rules. Furthermore,

for (k0,k1, . . . ,kr) ∈ K0 × K1 × · · · × Kr, if ki−1 can propagate to ki for all
i ∈ {1, 2, . . . , r}, we call (k0,k1, . . . ,kr) an r-round division trail.

The propagation of division property round by round will eventually lead to
a multi-set without integral property. The following proposition can be used to
detect whether a set has integral property or not, which helps us to decide when
to stop propagating.



Automatic Search of Bit-Based Division Property for ARX Ciphers 135

Proposition 1 (Set without Integral Property [45]). Assume X is a multi-
set satisfying division property D�0,�1,··· ,�m−1

K
, then X does not have integral prop-

erty if and only if K contains all vectors with vectorial Hamming weight 1.

Distinguishing Attacks with Division Property.
Suppose the output division property of an integral distinguisher has balanced
property on b bits. Once the sum for each of the b bits is zero, the distinguisher D
outputs ‘1’; otherwise, outputs ‘0’. The success rate of the distinguishing attack
p is composed of two cases: one is D outputs ‘1’ when the oracle O is a concrete
cipher F actually, the other is D outputs ‘0’ when O is a random permutation
RP. For F , the balanced property holds with probability 1, while for RP is 2−b.
Assuming that the probability of whether the oracle is F or RP is 0.5, it is clear
that p = 0.5 · 1+0.5 · (1− 2−b) = 1− 2−b−1, which is 0.75 for b = 1, and is count
for distinguishing attack.

In order to increase the success rate, we can repeat the distinguishing attack
with different chosen-plaintext structures. For an n-bit cipher, suppose that the
input division property requires that t bits need to be traversed. Then, the
number of times the distinguishers can be replayed is at most 2n−t. The data
complexity of the distinguishing attack need to be discussed accordingly.

2.3 SAT and SMT Problems

In computer science, the Boolean Satisfiability Problem (SAT) [6] is the problem
of determining if there exists an interpretation that satisfies a given Boolean
formula. In other words, it discusses whether the variables involved in a given
Boolean formula can be consistently replaced by the value True or False so
that the formula is evaluated to be True. If this is the case, the formula is called
satisfiable.

The Satisfiability Modulo Theories (SMT) [2] problem is a decision problem
for logical formulas expressed in classical first-order logic with equality. An SMT
instance is a generalization of SAT instance in which various sets of variables
are replaced by predicates from a variety of underlying theories. SMT formulas
provide a much richer modeling language than is possible with SAT formulas.

To solve SAT and SMT problems, there are many openly available solvers,
and we use CryptoMiniSat3 and STP4, respectively. In order to search integral
distinguishers efficiently, we adopt the C++ interface of CryptoMiniSat and the
Python interface of STP.

3 Automatic Search of Bit-Based Division Property
for ARX Ciphers

For ARX ciphers, since SAT/SMT method [18,24,32] is more suitable to search
for differential/linear characteristics than MILP method [10], we construct the
3 https://github.com/msoos/cryptominisat.
4 http://stp.github.io/.

https://github.com/msoos/cryptominisat
http://stp.github.io/
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automatic searching tool relying on SAT instead of MILP. First, we model the
division property propagations of three basic operations, i.e., Copy, AND, and
XOR, and construct formulas in Conjunctive Normal Form (CNF) for them. Then,
the model used to describe bit-based division property propagation for the modu-
lar addition operation is constructed based on the three basic models. By setting
initial division property and stopping rule appropriately, the problem of search-
ing integral distinguishers using bit-based division property for ARX ciphers can
be converted into an SAT problem, and settled efficiently.

3.1 Models of Basic Operations at the Bit Level

We consider the division property propagations of the three basic operations
(Copy, AND and XOR) at the bit level, and the input and output are composed
of bit variables which take a value of 0 or 1. Then the division trails of each
operation correspond to vectors formed by the input and output variables. To
depict the propagations of these operations, we translate the rules in Sect. 2.2
into formulas in CNF, of which the solutions correspond to all the possible
division trails. More specifically, we first determine all the vectors corresponding
to division trails, and then exclude those impossible vector values by logical
formulas. We call this idea the exclusion method. By analyzing all the possible
division trails of bit-based Copy, AND and XOR operations, we construct models
to describe bit-based division property propagations for them.

Model 1 (Bit-based Copy). Denote (a)
Copy−−−→ (b0, b1) a division trail of Copy

operation, the following logical equations are sufficient to depict the propagation
of bit-based division property,

⎧
⎪⎪⎨

⎪⎪⎩

b0 ∨ b1 = 1
a ∨ b0 ∨ b1 = 1
a ∨ b0 ∨ b1 = 1
a ∨ b0 ∨ b1 = 1

.

Proof: Let (a, b0, b1) be the 3-bit vector composed of the input and output
division properties. For an arbitrary 3-bit vector, it has eight possible values,
which are

(0,0,0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1,0,1), (1,1,0), (1, 1, 1).

When restricting to Copy operation, there are three division trails corresponding
to the values in bold above. Thus, (∗, 1, 1), (0, 0, 1), (0, 1, 0), and (1, 0, 0) are
impossible cases required to be excluded, where ∗ can take 0 or 1.

In order to eliminate (∗, 1, 1), we assert b0 ∨ b1 = 1. With this assertion,
(a, b0, b1) cannot take values of the form (∗, 1, 1). Then, after eliminating all
impossible cases in a similar way, we obtain the set of formulas in CNF to
describe bit-based division property propagation of Copy operation. �
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When it comes to bit-based AND operation, similar to the procedure for Copy
operation, we consider all the possible division trails. Denote (a0, a1) the bit
variables representing the input division property of AND operation, and let b
be the bit variable standing for the output division property. Obviously, there
are four division trails for AND operation, which are (0, 0) → (0), (1, 0) → (1),
(0, 1) → (1), and (1, 1) → (1). Therefore, the set of logical equations have four
solutions corresponding to (a0, a1, b), i.e., (0, 0, 0), (0, 1, 1), (1, 0, 1), and (1, 1, 1).
Thus, we need to delete the impossible ones as follows.

Model 2 (Bit-based AND). Denote (a0, a1)
AND−−→ (b) a division trail of AND func-

tion, the following logical equations are sufficient to describe bit-based division
property propagation of AND operation,

⎧
⎨

⎩

a1 ∨ b = 1
a0 ∨ a1 ∨ b = 1
a0 ∨ b = 1

.

For bitwise XOR operation, only three division trails are possible, which are
(0, 0, 0), (0, 1, 1), (1, 0, 1), and the model can be constructed in a similar way.

Model 3 (Bit-based XOR). Denote (a0, a1)
XOR−−→ (b) a division trail of XOR func-

tion, the following logical equations are sufficient to evaluate the bit-based divi-
sion property through XOR operation,

⎧
⎪⎪⎨

⎪⎪⎩

a0 ∨ a1 = 1
a0 ∨ a1 ∨ b = 1
a0 ∨ a1 ∨ b = 1
a0 ∨ a1 ∨ b = 1

.

For specific ciphers, such as HIGHT [15], TEA [44], and XTEA [26], we also
encounter cases where the number of output branches for Copy operation or
the number of input branches for XOR operation is more than 2. The exclusion
method can be generalized accordingly, and we omit it for space limitation.

Let x = (x0, x1, . . . , xn−1), y = (y0, y1, . . . , yn−1), and z = (z0, z1, . . . , zn−1),
which is the modular addition of x and y, be n-bit vectors. Then the Boolean
function of zi can be iteratively expressed as follows5.

zn−1 = xn−1 ⊕ yn−1 ⊕ cn−1, cn−1 = 0,

zi = xi ⊕ yi ⊕ ci, ci = xi+1 · yi+1 ⊕ (xi+1 ⊕ yi+1) · ci+1,

i = n − 2, n − 3, . . . , 0.

(1)

In this way, the modular addition can be decomposed into Copy, AND, and XOR
operations, and the model to depict its propagation is summarized as follows.

5 Note that the bit positions are labeled in big-endian.
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Model 4 (Modular Addition). Let (a0, . . . , an−1, b0, . . . , bn−1, d0, . . . , dn−1)
be a division trail of n-bit modular addition operation, to describe the division
property propagation, the Copy, AND, and XOR models should be applied in the
order specified as follows,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(an−1)
Copy−−−→ (an−1,0, an−1,1)

(bn−1)
Copy−−−→ (bn−1,0, bn−1,1)

(an−1,0, bn−1,0)
XOR−−→ (dn−1)

(an−1,1, bn−1,1)
AND−−→ (v0)

(v0)
Copy−−−→ (g0, r0)

(an−2)
Copy−−−→ (an−2,0, an−2,1, an−2,2)

(bn−2)
Copy−−−→ (bn−2,0, bn−2,1, bn−2,2)

(an−i,0, bn−i,0, gi−2)
XOR−−→ (dn−i)

(an−i,1, bn−i,1)
AND−−→ (vi−1)

(an−i,2, bn−i,2)
XOR−−→ (mi−2)

(mi−2, ri−2)
AND−−→ (qi−2)

(vi−1, qi−2)
XOR−−→ (wi−2)

(wi−2)
Copy−−−→ (gi−1, ri−1)

(an−i−1)
Copy−−−→ (an−i−1,0, an−i−1,1, an−i−1,2)

(bn−i−1)
Copy−−−→ (bn−i−1,0, bn−i−1,1, bn−i−1,2)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

iterated for i = 2, . . . , n − 2,

(a1,0, b1,0, gn−3)
XOR−−→ (d1)

(a1,1, b1,1)
AND−−→ (vn−2)

(a1,2, b1,2)
XOR−−→ (mn−3)

(mn−3, rn−3)
AND−−→ (qn−3)

(vn−2, qn−3)
XOR−−→ (wn−3)

(a0, b0, wn−3)
XOR−−→ (d0)

where ai,j, bi,j, vi, mi, gi, ri, qi, and wi are intermediate variables, and their
usage is illustrated in Table 2. In this model, (12n − 19) intermediate variables
are introduced in total, which include (3n− 4) ai,j’s, (3n− 4) bi,j’s, (n− 1) vi’s,
(n − 2) mi’s, (n − 2) gi’s, (n − 2) ri’s, (n − 2) qi’s, and (n − 2) wi’s.

Model 4 deals with the case where the two input branches of the modular
addition operation are variables. When it comes to the modular addition of
a variable and an unknown constant (subkey), the corresponding propagation
models can be deduced similarly as discussed in [36], and we omit it due to space
limitation.

To sum up, the bit-based division property propagations through all kinds
of basic operations in ARX ciphers are converted into sets of logical equations.
We first construct SAT model which characterizes one round bit-based division
property propagation, then an SAT problem depicting r-round division trails
can be obtained by repeating this procedure for r times.
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Table 2. Illustration of Intermediate Variables for Modular Addition Operation.

Distribution of intermediate variables

zn−1 = xn−1︸ ︷︷ ︸
an−1,0

⊕ yn−1︸ ︷︷ ︸
bn−1,0

zn−2 = xn−2︸ ︷︷ ︸
an−2,0

⊕ yn−2︸ ︷︷ ︸
bn−2,0

⊕ cn−2︸︷︷︸
g0

cn−2︸︷︷︸
v0

= xn−1︸ ︷︷ ︸
an−1,1

yn−1︸ ︷︷ ︸
bn−1,1

zn−3 = xn−3︸ ︷︷ ︸
an−3,0

⊕ yn−3︸ ︷︷ ︸
bn−3,0

⊕ cn−3︸︷︷︸
g1

cn−3︸︷︷︸
w0

=

v1︷ ︸︸ ︷
xn−2︸ ︷︷ ︸
an−2,1

yn−2︸ ︷︷ ︸
bn−2,1

⊕

q0︷ ︸︸ ︷

(

m0︷ ︸︸ ︷
xn−2︸ ︷︷ ︸
an−2,2

⊕ yn−2︸ ︷︷ ︸
bn−2,2

)

r0︷︸︸︷
cn−2

zn−4 = xn−4︸ ︷︷ ︸
an−4,0

⊕ yn−4︸ ︷︷ ︸
bn−4,0

⊕ cn−4︸︷︷︸
g1

cn−4︸︷︷︸
w1

=

v2︷ ︸︸ ︷
xn−3︸ ︷︷ ︸
an−3,1

yn−3︸ ︷︷ ︸
bn−3,1

⊕

q1︷ ︸︸ ︷

(

m1︷ ︸︸ ︷
xn−3︸ ︷︷ ︸
an−3,2

⊕ yn−3︸ ︷︷ ︸
an−3,2

)

r1︷︸︸︷
cn−3

· · · · · ·

z1 = x1︸︷︷︸
a1,0

⊕ y1︸︷︷︸
b1,0

⊕ c1︸︷︷︸
gn−3

c1︸︷︷︸
wn−4

=

vn−3︷ ︸︸ ︷
x2︸︷︷︸
a2,1

y2︸︷︷︸
b2,1

⊕

qn−4︷ ︸︸ ︷

(

mn−4︷ ︸︸ ︷
x2︸︷︷︸
a2,2

⊕ y2︸︷︷︸
b2,2

)

rn−4︷︸︸︷
c2

z0 = x0 ⊕ y0 ⊕ c0 c0︸︷︷︸
wn−3

=

vn−2︷ ︸︸ ︷
x1︸︷︷︸
a1,1

y1︸︷︷︸
b1,1

⊕

qn−3︷ ︸︸ ︷

(

mn−3︷ ︸︸ ︷
x1︸︷︷︸
a1,2

⊕ y1︸︷︷︸
b1,2

)

rn−3︷︸︸︷
c1

3.2 Initial Division Property and Stopping Rule

We propose a ‘dynamic’ searching, which can set the initial division property
and stopping rule more efficiently. In the C++ interface of CryptoMiniSat,
there is a function called solver() , which takes ‘assumptions’ as parame-
ter, so that we can adjust the ‘assumptions’, instead of the original model, and
invoke solver() calls to search for integral distinguishers under different initial
division properties and output division properties automatically. In our model,
‘assumptions’ are composed of two parts of logical equations: one is determined
by the initial division property, and another is deduced from the stopping rule.

Initial Division Property. Denote (a0, a1, . . . , an−1) the variables represent-
ing bit-based division property of the input multi-set. For example, suppose that
the initial division property is k0 = (0, 1, . . . , 1

︸ ︷︷ ︸
n−1

). To evaluate the propagation

under k0, we set the first part of the assumptions by logical equations, i.e.,
a0 = 0, a1 = 1, . . ., an−1 = 1. If we want to test division property under another
initial division property, only logical equations involved in the assumptions need
to be changed.
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Stopping Rule. The stopping rule is formulated according to Proposition 1.
When it comes to the bit-based division property, a multi-set X, whose elements
take values from F

n
2 , does not have integral property if and only if its division

property contains all the n unit vectors. Hence, we need to check all the n
unit vectors one by one. Denote (b0, b1, . . . , bn−1) the variables representing bit-
based division property of the output multi-set after r rounds. For each i ∈
{0, 1, . . . , n− 1}, we set the second part of the assumptions by bi = 1 and bj = 0
(j �= i). Together with the initial division property, the two parts of parameters
are determined for the solver() function, and the searching algorithm can be
transformed into an SAT problem. If it is ‘satisfiable’ for the i-th unit vector, it
means that the output division property contains the i-th unit vector. Once it
is satisfiable for each unit vector, the output division property contains all unit
vectors, and the corresponding multi-set, i.e., the outputs of the r-th round,
does not have any integral property, and the propagation should stop and an
(r−1)-round distinguisher is obtained. Only if there is at least one index j, such
that the problem is not satisfiable for the j-th unit vector, we proceed to the
(r + 1)-th round and evaluate the division property in a similar way.

3.3 Algorithms to Find Optimal Distinguishers

According to the discussion of the above subsections, the propagation of division
property for ARX cipher is depicted by a system of logical equations in CNF.
Some logical formulas can be dynamically adjusted according to different initial
division properties of the input set and final division properties of the output
set, while the others corresponding to r-round propagations remain the same.
To obtain an optimal integral distinguisher, many candidates of initial division
properties need to be tested. However, we could not afford such computations
for too many candidates in practice.

In order to break through the difficulty, we put forward an efficient search-
ing approach, which is composed of two algorithms. The first one restricts the
search scope of initial division property and detects the number of rounds of the
optimal distinguisher achieved under our model. For the instance of SHACAL-
2, the search scope is significantly reduced from 256 bits to 17 bits. The sec-
ond one detects the concrete optimal distinguishers efficiently based on the
first algorithm’s output. With these two algorithms, we drastically reduce the
number of initial division properties required to be evaluated. For example,
for the 17-round distinguisher with data complexity 2241 chosen plaintexts for
SHACAL-2, which is provided in Sect. 5.1, the direct search requires us to test
256−241∑

i=1

(
256
i

)

≈ 279.24 initial division properties. While in our algorithms, only

410 initial division properties are tested, and the distinguisher is identified.
The design of the two algorithms is based on the embedded property below.

For different initial division properties k0 and k1 s.t., k0 � k1, there in no need
to test k1, if the output multi-set under k0 does not have integral property,
likewise, it is not necessary to test k0, if the output multi-set under k1 has
integral property.
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Proposition 2 (Embedded Property). Let Er be an r-round iterated
encryption algorithm, f be the round function, which only composes of Sub-
stitution, Copy, XOR, Split, and Concatenation operations. Suppose that the
input and the output take values from F

n
2 = F

�0
2 × F

�1
2 × · · · × F

�m−1
2 , k0 and k1

are two initial division properties with W (k0) � W (k1). If the output multi-set
under k0 does not have integral property, then the output multi-set under k1 has
no integral property.

Proof: Define

S
n
k = {a = (a0, a1, . . . , am−1)|W (a) � W (k)} ,

and
S

n
K

=
⋃

k∈K

S
n
k.

Suppose that there are two sets K0 and K1 belonging to Z�0 ×Z�1 ×· · ·×Z�m−1 ,

with S
n
K0

⊆ S
n
K1

. Dn
K0

f−→ Dn
K

′
0

and Dn
K1

f−→ Dn
K

′
1

stand for the division property
propagations through one round. By the definition of division property, it is
sufficient to prove that S

n
K

′
0

⊆ S
n
K

′
1
, which can be accomplished by separately

proving for every basic operation. We take the substitution operation as an
example, and the other operations can be proved similarly.

Now, denote Dn
K0

S−→ Dn
K

′
0

and Dn
K1

S−→ Dn
K

′
1

the division property propaga-
tions through substitution layer, where S

n
K0

⊆ S
n
K1

. For every k′
0 ∈ K

′
0, there

exists k0 ∈ K0, such that (k0,k
′
0) constitutes a division trail of the substitution

operation. Since S
n
K0

⊆ S
n
K1

, there will be a k1 ∈ K1 with W (k0) � W (k1). By
Rule 1, we have W (k′

0) � W (k′
1), which implies that S

n
k′
0

⊆ S
n
k′
1
. Thus,

S
n
K

′
0

=
⋃

k′
0∈K

′
0

S
n
k′
0

⊆
⋃

k′
1∈K

′
1

S
n
k′
1

= S
n
K

′
1
.

�
Algorithm 1: Detecting the Maximum Number of Rounds and
Restricting the Search Scope. Denote the n vectors with Hamming
weight n − 1 as ini = (1, . . . , 1

︸ ︷︷ ︸
i

, 0, 1, . . . , 1
︸ ︷︷ ︸
n−i−1

), 0 � i � n − 1. Let outj =

(0, . . . , 0
︸ ︷︷ ︸

j

, 1, 0, . . . , 0
︸ ︷︷ ︸
n−j−1

), 0 � j � n − 1, be the n unit vectors. For 0 � i � n − 1,

we evaluate the bit-based division property propagation under the initial divi-
sion property ini, and check whether the output division property of the r-th
round contains all n unit vectors, i.e., the problem is satisfiable for each outj
(0 � j � n − 1) under the fixed ini. If for all ini (0 � i � n − 1) and outj
(0 � j � n − 1), the problem is satisfiable, we conclude that (r − 1) is the
maximum number of rounds based on our model. Otherwise, we proceed to the
(r + 1)-th round and evaluate the division property in a similar way. When the
maximum number of rounds rm is determined, the index i of the correspond-
ing ini leading to the longest distinguisher is stored in a set S. The output of
Algorithm 1 is the maximum number of round rm and an index set S.
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Algorithm 1. Detecting the Maximum Number of Rounds & Restricting
the Search Scope
Input: Objective algorithm E
Output: The maximum number of rounds rm of integral distinguisher, the

index set S

r = 0, S = ∅, flag = 1, rm = 0;1

while flag==1 do2

r = r + 1;3

flag = 0;4

for i = 0; i < n do5

let the initial division property be ini;6

for j = 0; j < n do7

let the output division property be outj ;8

solve the r-round SAT problem under the assumptions;9

if the problem is not satisfiable then10

flag=1;11

break;12

if flag == 1 then13

break;14

r = r − 1, rm = r;15

if rm == 0 then16

return rm, S;17

for i = 0; i < n do18

let the initial division property be ini;19

evaluate its division property after rm-round propagation;20

if there is zero-sum bit then21

S = S ∪ {i};22

continue;23

return rm, S;24

Although we have detected rm-round distinguishers, the data requirement to
implement the integral cryptanalysis is 2n−1. And the distinguisher with lower
data complexity is more interesting, so we proceed Algorithm2 to optimize the
distinguishers obtained in Algorithm1.

Algorithm 2: Detecting the Optimal Distinguisher. Let the index set
S = {j0, j1, . . . , j|S|−1} be the output of Algorithm1. With Proposition 2, we
claim that the elements in the complementary set S = {0, 1, . . . , n − 1}\S of S

refer to the ‘necessary’ bit indexes to obtain an rm-round integral distinguisher.
In other words, if any bit whose index belongs to S is set to ‘0’ in the initial
division property, the division property after rm-round propagation will have no
integral property. In this sense, we call S the necessary set, whose elements are
called necessary indexes, and the corresponding bit must be fixed to ‘1’, while,
S is called the sufficient set, and the elements in S are called sufficient indexes.
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Algorithm 2. Detecting the Optimal Distinguisher
Input: Objective algorithm E, the maximum number of rounds rm, the

sufficient set S

Output: A list List representing Optimal integral distinguishers
flag = 0, List = ∅, k0 = (0, 0, . . . , 0);1

k0 = 0, k1 = 0, . . ., kn−1 = 0;2

for i = 0; i < n do3

if i /∈ S then4

ki = 1;5

t = 0;6

while flag == 0 do7

for every t-tuple (i0, i1, . . . , it−1) of S do8

for i ∈ S do9

if i ∈ {i0, i1, . . . , it−1} then10

ki = 1;11

else if i ∈ S\{i0, i1, . . . , it−1} then12

ki = 0;13

let the initial division property be k0 = (k0, k1, . . . , kn−1);14

evaluate its bit-based division property after rm-round propagation;15

if there is zero-sum bit then16

flag = 1;17

break;18

t = t + 1;19

t = t − 1;20

for every t-tuple (i0, i1, . . . , it−1) of S do21

InActive = S\{i0, i1, . . . , it−1};22

for i ∈ S do23

if i ∈ {i0, i1, . . . , it−1} then24

ki = 1;25

else if i ∈ S\{i0, i1, . . . , it−1} then26

ki = 0;27

let the initial division property be k0 = (k0, k1, . . . , kn−1);28

evaluate its bit-based division property after rm-round propagation;29

ZeroSum = ∅;30

for i = 0; i < n do31

if the i-th output bit satisfies zero-sum property then32

ZeroSum = ZeroSum ∪ {i};33

if ZeroSum �= ∅ then34

List = List ∪ {InActive, ZeroSum};35

return List;36
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To reduce the data complexity, we need to analyze whether the bits with
sufficient indexes can be set to ‘0’. The possibility of reducing data complexity
lies in the size of S. If |S| = 1, there is no margin to further reduce the data
complexity, and we obtain integral distinguishers with data complexity 2n−1

chosen plaintexts. In case of |S| > 1, we firstly set all bits corresponding to S

in initial division property to ‘1’ while the other bits are set to ‘0’, and check
whether there is zero-sum bit after rm-round propagation. If it is indeed the case,
we get an integral distinguisher with data complexity 2n−|S| chosen plaintexts.
Otherwise, we gradually increase the number of ‘1’s in the positions indicated by
the sufficient indexes, and check whether zero-sum bit exists or not. The concrete
description of this procedure can be found in Algorithm2. After executing this
algorithm, the return value will be the optimal distinguishers under our model.

Remark 2. Note that Step 8 in Algorithm2 requests us to check out |S|!
(|S|−t)!·t!

different initial division properties. When |S| is very large, the time taken to
perform this for loop gradually increases with t growing. But, for all the ciphers
analyzed in this paper, |S| is not very large and the runtime is acceptable.

4 Automatic Search of Word-Based Division Property

When the state of the cipher is very large, such as 256-bit, and the involved
operations are very complicated, it is hard to trace the division property prop-
agation at the bit level. In this section, we concentrate on automatic search of
word-based division property efficiently. First, we study how to model division
property propagations of basic operations by logical formulas at the word level.
Secondly, by exclusion method, we construct formulas to depict the possible
propagations calculated by Substitution rule. By setting initial division prop-
erty and stopping rule rationally, the problem of searching division property can
be transformed into an SMT problem, which is a generalization of SAT and can
be efficiently settled with some openly available solvers.

4.1 Models of Basic Operations at the Word Level

We study the division property propagations of the basic operations at the word
level. Different from Sect. 3, the input and output are variables in F

n
2 , and more

kinds of formulas, such as inequalities, can be handled by SMT, so that the
translation from the rules introduced in Sect. 2.2 to constraints are more flexible.
We just list the models as follows.

Model 5 (Word-based Copy). Denote (a)
Copy−−−→ (b0, b1) a division trail of

an n-bit Copy function, the following constraints are sufficient to describe the
division property propagation of Copy operation,

⎧
⎪⎪⎨

⎪⎪⎩

a � n
b0 � n
b1 � n
a = b0 + b1

.
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Model 6 (Word-based XOR). Denote (a0, a1)
XOR−−→ (b) a division trail of n-

bit XOR operation, the following constraints are sufficient to depict the division
property propagation of XOR operation,

⎧
⎪⎪⎨

⎪⎪⎩

a0 � n
a1 � n
b � n
a0 + a1 = b

.

Model 7 (Split). Let F be the split function in Rule 4. Denote (a) F−→ (b0, b1) a
division trail of F , the following constraints are sufficient to describe the division
property propagation of Split operation,

⎧
⎪⎪⎨

⎪⎪⎩

a � n
b0 � n0

b1 � n − n0

a = b0 + b1

.

Model 8 (Concatenation). Let F be the concatenation function in Rule 5.
Denote (a0, a1)

F−→ (b) a division trail of F , the following constraints are suffi-
cient to depict the division property propagation of Concatenation operation,

⎧
⎪⎪⎨

⎪⎪⎩

a0 � n0

a1 � n1

b � n0 + n1

a0 + a1 = b

.

Many ciphers take Maximum Distance Separable (MDS) matrices over finite
field as linear mappings, such as the MixColumn operation for AES [28]. Todo [41]
proposed a dedicated function called Partition to handle the division property
propagation through MixColumn operation. We generalize it into SMT model in
order to deal with some ciphers involving MDS matrices.

Model 9 (Partition/MixColumn). Let F (x) = M · x, where M is an MDS
matrix over (Fm

2 )s. Denote (a0, a1, . . . , as−1)
F−→ (b0, b1, . . . , bs−1) a division trail,

the following constraints are sufficient to propagate the division property,
⎧
⎨

⎩

ai � m, i = 0, 1, . . . , s − 1
bj � m, j = 0, 1, . . . , s − 1
a0 + a1 + · · · + as−1 = b0 + b1 + · · · + bs−1

.

4.2 Modelling S-Box

Since conventional division property is propagated at the word level, we do not
need to precisely depict S-box, and use Rule 1 instead. By Rule 1, we find that
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the output multi-set follows Dm
� k
d � if the input multi-set satisfies Dm

k for an m-bit
S-box with degree d. Accordingly, we deduce possible propagations for S-box,
which are converted into SMT model by exclusion method mentioned in Sect. 3.

Model 10 (4-bit S-box with Degree 3). Denote (x)
S(4)−−→ (y) a division

trail of 4-bit S-box S(4), whose algebraic degree is 3, where x = (x[0], x[1], x[2])
and y = (y[0], y[1], y[2]) are supposed to be 3-bit vectors. Then, the following
constraints are sufficient to describe the propagation of division property,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x � 4
y � 4
x[0] ∨ y[0] = 1
x[0] ∨ x[1] ∨ x[2] ∨ y[0] = 1
y[1] = 1
x[0] ∨ x[1] ∨ y[0] ∨ y[1] ∨ y[2] = 1
x[0] ∨ x[1] ∨ x[2] ∨ y[0] ∨ y[1] ∨ y[2] = 1
x[0] ∨ x[1] ∨ x[2] ∨ y[0] ∨ y[1] ∨ y[2] = 1

.

Proof: Note that for a 4-bit S-box with algebraic degree 3, the possible propaga-

tions are (0)
S(4)−−→ (0), (1)

S(4)−−→ (1), (2)
S(4)−−→ (1), (3)

S(4)−−→ (1), and (4)
S(4)−−→ (4),

and the natural constraints deduced from Rule 1 are x � 4 and y � 4. After
adding these two natural constraints, the number of possible combinations of
(x[0], x[1], x[2], y[0], y[1], y[2]) reduces to 25, which are

(0,0,0,0,0,0), (0,0,0,0,0,1), (0,0,0,0,1,0), (0,0,0,0,1,1), (0,0,0,1,0,0),
(0,0,1,0,0,0), (0,0,1,0,0,1), (0,0,1,0,1,0), (0,0,1,0,1,1), (0,0,1,1,0,0),
(0,1,0,0,0,0), (0,1,0,0,0,1), (0,1,0,0,1,0), (0,1,0,0,1,1), (0,1,0,1,0,0),
(0,1,1,0,0,0), (0,1,1,0,0,1), (0,1,1,0,1,0), (0,1,1,0,1,1), (0,1,1,1,0,0),
(1,0,0,0,0,0), (1,0,0,0,0,1), (1,0,0,0,1,0), (1,0,0,0,1,1), (1,0,0,1,0,0).

The five vectors in bold are what we expect. After observation, (0, ∗, ∗, 1, ∗, ∗),
(1, 0, 0, 0, ∗, ∗), (∗, ∗, ∗, ∗, 1, ∗), (0, 1, ∗, 0, 0, 0), (0, 0, 1, 0, 0, 0) and (0, 0, 0, 0, 0, 1)
are impossible cases, where ∗ takes 0 or 1.

In order to eliminate (0, ∗, ∗, 1, ∗, ∗), we assert x[0]∨y[0] = 1. With this asser-
tion, (x[0], x[1], x[2], y[0], y[1], y[2]) cannot take values of the form (0, ∗, ∗, 1, ∗, ∗).
After eliminating all impossible cases one by one, we obtain the set of logical
formulas to describe division property propagation of S(4). �

For 8-bit S-box with degree 7, possible propagations are (0) → (0), (1) → (1),
(2) → (1), (3) → (1), (4) → (1), (5) → (1), (6) → (1), (7) → (1), and (8) → (8),
and the model can be constructed in a similar way.

Model 11 (8-bit S-box with Degree 7). Denote (x)
S(8)−−→ (y) a division trail

of 8-bit S-box S(8), whose algebraic degree is 7, where x = (x[0], x[1], x[2], x[3])
and y = (y[0], y[1], y[2], y[3]) are supposed to be 4-bit vectors. Then, the following
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constraints are sufficient to describe the possible propagations,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x � 8
y � 8
x[0] ∨ y[0] = 1
x[0] ∨ y[0] = 1
y[1] = 0
y[2] = 0
x[3] ∨ y[0] ∨ y[1] ∨ y[2] ∨ y[3] = 1
x[2] ∨ y[0] ∨ y[1] ∨ y[2] ∨ y[3] = 1
x[1] ∨ y[0] ∨ y[1] ∨ y[2] ∨ y[3] = 1
x[0] ∨ x[1] ∨ x[2] ∨ x[3] ∨ y[0] ∨ y[1] ∨ y[2] ∨ y[3] = 1

.

For other types of S-boxes, exclusion method can be applied and constraints
to depict division property propagations can be constructed similarly.

4.3 Initial Division Property and Stopping Rule

Just as in Sect. 3, to make the searching algorithm dynamic, the initial division
property and stopping rule are inserted into assumptions. In the Python inter-
face of STP, the function, which accepts ‘assumptions’ as parameter, is called
check() .

Denote (a0, a1, . . . , am−1) the variables representing division property of
the input multi-set. For example, suppose that the initial division property is
k = (k0, k1, . . . , km−1). To propagate division property under k, we set the first
part of the assumptions by logical formulas, i.e., a0 = k0, a1 = k1, . . ., and
am−1 = km−1. Only logical formulas involved in the assumptions are required
to be replaced if we want to test division property under another initial division
property.

Restricted to conventional division property, Proposition 1 claims that a
multi-set X ∈ F

n
2 = F

�0
2 × F

�1
2 × · · · × F

�m−1
2 does not have integral property

if and only if its division property contains all vectors with vectorial Hamming
weight being 1. In order to determine whether r-round integral property exists
or not under a fixed initial division property, we make m check() calls to
test m vectors with vectorial Hamming weight 1. If all the corresponding SMT
problems are satisfiable, the r-round output set has no integral property and an
(r − 1)-round distinguisher is obtained. Otherwise, we go on to the (r + 1)-th
round and evaluate the division property in a similar way.

5 Applications

In this section, we provide some new distinguishers based on the searching meth-
ods proposed in Sects. 3 and 4. We first present results for some ARX ciphers,
whose integral distinguishers are obtained by evaluating bit-based division prop-
erty, and then turn to the word-based division property of some specific ciphers.
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5.1 Bit-Based Division Properties for ARX Ciphers

Application to SHACAL-2. SHACAL-2 [13] is a 256-bit block cipher and
has been selected as one of the four block ciphers by NESSIE. Its round function
is based on the compression function of the hash function SHA-2 [27], and is
iterated for 64 times. SHACAL-2 supports variable key lengths up to 512 bits,
yet it should not be used with a key shorter than 128 bits. An illustration of
the round function can be found in Fig. 1, where Kr and W r are round key and
round constant, Maj, Ch,

∑
0, and

∑
1 are defined as follows,

Maj(X,Y,Z) = (X · Y ) ⊕ (X · Z) ⊕ (Y · Z),
Ch(X,Y,Z) = (X · Y ) ⊕ (X · Z),

∑

0
(X) = (X ≫ 2) ⊕ (X ≫ 13) ⊕ (X ≫ 22),

∑

1
(X) = (X ≫ 6) ⊕ (X ≫ 11) ⊕ (X ≫ 25).

Since the values of Kr and W r do not influence the bit-based division property
propagation, and we will not introduce them here. For more information, please
refer to [13].

Firstly, Algorithm 1 in Sect. 3.3 is implemented and we find that the longest
distinguisher under our model can achieve 17 rounds. At the same time, we
obtain the sufficient set S = {22 − 31, 153 − 159}. Then, for r = 17 and S,
Algorithm 2 is performed. Finally, we obtain a 17-round integral distinguisher
with data complexity 2241 chosen plaintexts, which is

Inactive Bits: {23 − 31, 154 − 159} 17 Rounds−−−−−−→ Zero-sum Bits: {249 − 255},

where the bit indexes for the input and output are labeled as 0, 1, . . ., 255 from
left to right, and the bit indexes are labeled in a similar way in the remaining of
this subsection. In order to identify this distinguisher, we try 256 initial division

properties when implementing Algorithm 1, and 1+
(

17
1

)

+
(

17
2

)

= 154 initial

division properties are evaluated when performing Algorithm2. In total, with
410 tests under different initial division properties, we obtain the optimal dis-

tinguisher, while
256−241∑

i=1

(
256
i

)

≈ 279.24 initial division properties are required

to be tested for the direct search instead of using Algorithms 1 and 2.

0 Maj

rA rB rC rD rE

1 Ch

rF rG rH
rW
rK

1rA 1rB 1rC 1rD 1rE 1rF 1rG 1rH

Fig. 1. The round function of SHACAL-2.
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As far as we know, the best integral distinguisher in the literature is the
13-round one proposed in [30], and the newly obtained one covers four more
rounds.

Applications to Other ARX Ciphers. Besides SHACAL-2, many ARX
ciphers are analyzed, including LEA [14], HIGHT [15], and SPECK family of
block ciphers [3], and we only list the results for space limitation.

For LEA, we obtain an 8-round integral distinguisher with data complexity
2118 chosen plaintexts, which is

Inactive Bits: {27 − 31, 59 − 63} 8 Rounds−−−−−−→ Zero-sum Bits: {36}.

Comparing to the 7-round distinguishers based on MILP method provided in
[36], we gain one more round.

Six integral distinguishers with data complexity 263 chosen plaintexts are
detected for HIGHT, which are

Inactive Bits: {14} 18 Rounds−−−−−−→ Zero-sum Bits: {6, 7},

Inactive Bits: {15} 18 Rounds−−−−−−→ Zero-sum Bits: {6, 7},

Inactive Bits: {31} 18 Rounds−−−−−−→ Zero-sum Bits: {7},

Inactive Bits: {46} 18 Rounds−−−−−−→ Zero-sum Bits: {38, 39},

Inactive Bits: {47} 18 Rounds−−−−−−→ Zero-sum Bits: {38, 39},

Inactive Bits: {63} 18 Rounds−−−−−−→ Zero-sum Bits: {39}.

Note that the third one and the last one are same to the 18-round distinguishers
in [36], which are obtained under MILP method. And the other four distinguish-
ers we identified have more zero-sum bits under the same data requirement.

For all versions of SPECK family of block ciphers, we obtain 6-round integral
distinguishers. The data requirements are 231 for SPECK32, 245 for SPECK48,
261 for SPECK64, 293 for SPECK96, and 2125 for SPECK128.

All of the experiments are conducted on a server, and we use at most four
2.30 GHz Intel� Xeon� CPU E5-2670 v3 processors. All the SAT based experi-
ments are implemented by the C++ interface of CryptoMiniSat5, using at most
4 threads. The runtimes to obtain the optimal distinguishers for SHACAL-2,
LEA, and HIGHT are 6 h, 30 min, and 15 min, respectively, and the runtimes for
all variants of SPECK take less than 6 min.

5.2 Word-Based Division Property for Some Specific Ciphers

Application to CLEFIA. CLEFIA [31] is a 128-bit block cipher supporting
key lengths of 128, 192, and 256 bits, and it has been adopted as one of the
ISO/IEC international standards in lightweight cryptography. The number of
rounds, are 18, 22 and 26 for 128-bit, 192-bit and 256-bit keys, respectively. The
round function follows a 4-branch Type-2 Generalized Feistel Network [48] with
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two parallel F functions (F0, F1). The 128-bit state value can be regarded as
concatenation of four 32-bit words, and the input of the r-th round is denoted
by (Xr[0],Xr[1],Xr[2],Xr[3]). One round of encryption is illustrated in Fig. 2,
where RKr[0] and RKr[1] denote round keys.

Aiming at searching integral distinguishers for CLEFIA as long as possible,
we first evaluate the division property under 16 initial division properties ini, 0 �
i � 15, whose i-th element is set to 7, and the others are set to 8. Then, we obtain
eight 10-round integral distinguishers with data complexity 2127 chosen plain-
texts. We also evaluate the division property under another 16 initial division
properties in′

i, 0 � i � 15, whose i-th element is set to 6, and the others are set to
8. However, there is no integral property after 10-round propagation under in′

i.
Besides, 120 initial division properties with two elements being 7 and the others
being 8 are also considered, and no integral property is detected. Thus, the 10-
round integral distinguishers with data complexity 2127 chosen plaintexts prob-
ably are the best integral distinguishers using word-based division property. The
initial division properties of these 10-round distinguishers are listed as follows.

(7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8), (8, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8),
(8, 8, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8), (8, 8, 8, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8),
(8, 8, 8, 8, 8, 8, 8, 8, 7, 8, 8, 8, 8, 8, 8, 8), (8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 8, 8, 8, 8, 8, 8),
(8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 8, 8, 8, 8, 8), (8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 8, 8, 8, 8).

After 10-round propagation, all the 10-round distinguishers have eight zero-sum
bytes, which are labeled as {4 − 7, 12 − 15}, and the bytes are labeled as 0, 1,
. . ., 15 from left to right.

To our knowledge, the longest integral distinguishers for CLEFIA cover 9
rounds [19,29], and these newly found distinguishers achieve one more round.
With the 10-round distinguishers, we can recover the key of 13-round CLEFIA-
128 with one more round than [19], where the precomputation, partial sum
technique and exhaustive search can be adopted similarly. The data, time and
memory complexities are 2127 chosen plaintexts, 2120 encryptions and 2100 bytes,
respectively. The integral attacks for CLEFIA-192 and CLEFIA-256 can be
improved by one round, too.

S0

S1

S0

S1

M0

[0]rRK

[0]rX [1]rX

S1

S0

S1

S0

M1

[1]rRK

[2]rX [3]rX

1[0]rX 1[1]rX 1[2]rX 1[3]rX

Fig. 2. Round function of CLEFIA.
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Table 3. Data requirements to construct r-round integral distinguishers.

Cipher log2(Data) Reference

r = 3 r = 4 r = 5 r = 6

Rijndael-192 8 24 64 160 Section 5.2

56 176 - - [41]

Rijndael-256 8 16 32 160 Section 5.2

56 232 - - [41]

Whirlpool 8 56 384 - Section 5.2

56 344 488 - [41]

Applications to Other Ciphers. We also implement the method in Sect. 4
to search integral distinguishers for many other ciphers.

For the internal block cipher of Whirlpool [1], comparing to the results given
by Todo [41], we improve the data complexities of integral distinguishers for
different rounds, which can be found in Table 3. For Rijndael-192 and Rijndael-
256 [8], we extend the length of distinguishers comparing to the best results
proposed by Todo [41], and the experimental results can be found in Table 3.
The integral distinguishers for Whirlpool, Rijndael-192, and Rijndael-256 are
provided in AppendixA.

We also implement our automatic tool to search integral distinguishers for
MISTY1, MISTY2 [21], and KASUMI [33]. For MISTY1, we obtain the same
distinguisher found by Todo [40]. As to MISTY2, a 7-round integral distinguisher
with data complexity 232 chosen plaintexts is found, which is same to the best one
proposed in [34]. A 5-round integral distinguisher starting from the second round
with data complexity 248 chosen plaintexts is obtained for KASUMI. Comparing
to the best 5-round one proposed in [35] with data complexity 253 chosen plain-
texts by using division property, our newly found distinguisher requires less data.

All the SMT based tests are implemented in the Python interface of STP2.0,
using single thread. The runtimes for all the ciphers analyzed in this section only
take few minutes.

6 Conclusion

In this paper, we propose the automatic searching tools for the integral distin-
guishers based on bit-based division property for ARX ciphers and word-based
division property. For ARX ciphers, the automatic searching tool relying on SAT
instead of MILP is constructed, since SAT method is more suitable in the search
of ARX ciphers’ differential/linear characteristics. First, the models, which are
composed of logical formulas in CNF, to describe bit-based division property
propagations for three basic operations, i.e., Copy, AND, and XOR, are provided
by exclusion method. Then, we give the model of the modular addition based
on the three basic models. After setting initial division property and stopping
rule appropriately, the problem of searching integral distinguishers using bit-
based division property for ARX ciphers can be converted into an SAT problem.
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Besides, to get the optimal distinguisher, two algorithms are proposed. The first
one restricts the search scope of initial division property and detects the round
of optimal distinguisher achieved under our model. The second one detects the
concrete optimal distinguishers efficiently based on the first algorithm’s output.

We realize the automatic search of word-based division property with SMT
method. We first show how to model division property propagations of basic
operations by logical formulas. Moreover, by exclusion method, we construct
formulas to depict the possible propagations calculated by Substitution rule.
By setting initial division property and stopping rule rationally, the problem of
searching division property can be transformed into an SMT problem, and we
can efficiently search integral distinguishers with some openly available solvers.

As a result, we improve the previous integral distinguishers for SHACAL-
2, LEA, CLEFIA, Rijndael-192, and Rijndael-256 according to the number of
rounds. Moreover, the integral attacks for CLEFIA are improved by one round
with the newly obtained distinguishers.

Discussion on the superiority to MILP method. We think it is hard to
give a comprehensive comparison between MILP and SAT, and try to reflect the
efficiency of SAT for ARX ciphers by recording the time spent on the search
for the same distinguisher with a fixed initial division property under the same
computation resource. The experimental results show that SAT model performs
better than MILP model. As an illustration, for the optimal distinguisher of
SHACAL-2, CryptoMiniSat returns the result after about 24 s, while MILP opti-
mizer (Gurobi 7.0.2) takes about 44000 s, which is almost 1650 times as long as
the SAT solver. Thus, it seems that SAT model is more suitable to search division
properties for ARX ciphers.

Discussion on the optimality and completeness of the search. We con-
firm that the integral distinguishers are optimal under the search strategies
defined in this paper. However, we cannot guarantee the completeness. If a more
dedicated model for the modular addition is proposed, better integral distin-
guishers for ARX ciphers may be detected, which will be a future work.
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gram (No. 2013CB834205), NSFC Projects (No. 61572293), Science and Technology
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MMJJ20170102).

A Integral Distinguishers of Whirlpool and Rijndael

A.1 Integral Distinguishers of Whirlpool

Note the intermediate state of the internal block cipher of Whirlpool can be
represented by an 8 × 8 matrix of bytes, and the indexes of the involved bytes
are illustrated in Fig. 3.
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0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

Fig. 3. Indexes for whirlpool.

0 4 8 12 16 20 24 28

1 5 9 13 17 21 25 29

2 6 10 14 18 22 26 30

3 7 11 15 19 23 27 31

192-bit Block Size
256-bit Block Size

Fig. 4. Indexes for Rijndael-192 and
Rijndael-256.

The integral distinguishers obtained in the paper are illustrated as follows.

Active Bytes: {0} 3 Rounds−−−−−−→ Zero-sum Bytes: {0 − 63},

Active Bytes: {0, 22, 29, 36, 43, 50, 57} 4 Rounds−−−−−−→ Zero-sum Bytes: {0 − 63},

Active Bytes: {0 − 5, 8 − 12, 15 − 19, 22 − 26, 29 − 33,

36 − 40, 43 − 47, 50 − 55, 57 − 62}
5 Rounds−−−−−−→ Zero-sum Bytes: {0 − 63}.

A.2 Integral Distinguishers of Rijndael

For Rijndael family of block ciphers, the internal state can be treated as a 4×Nb

matrix of bytes, where Nb is the number of 32-bit words in the block. The indexes
for the matrix is shown in Fig. 4.

The integral distinguishers for Rijndael-192 mentioned in the paper are listed
as follows:

Active Bytes: {0} 3 Rounds−−−−−−→ Zero-sum Bytes: {0 − 23},

Active Bytes: {0, 5, 10} 4 Rounds−−−−−−→ Zero-sum Bytes: {16 − 23},

Active Bytes: {0, 4, 5, 9, 10, 14, 15, 19} 5 Rounds−−−−−−→ Zero-sum Bytes: {12 − 19},

Active Bytes: {0 − 7, 9 − 12, 14 − 17, 19 − 22}
6 Rounds−−−−−−→ Zero-sum Bytes: {0 − 7}.

And the distinguishers we found for Rijndael-256 are presented below:

Active Bytes: {0} 3 Rounds−−−−−−→ Zero-sum Bytes: {0 − 31},

Active Bytes: {0, 5} 4 Rounds−−−−−−→ Zero-sum Bytes: {8 − 11, 20 − 31},

Active Bytes: {0, 5, 14, 19} 5 Rounds−−−−−−→ Zero-sum Bytes: {8 − 11, 24 − 27},

Active Bytes: {0, 3 − 5, 8, 9, 12 − 14, 16 − 19, 21 − 23, 26, 27, 30, 31}
6 Rounds−−−−−−→ Zero-sum Bytes: {8 − 11, 24 − 27}.
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Abstract. In this paper, we propose an improved cryptanalysis of the
double-branch hash function RIPEMD-160 standardized by ISO/IEC.
Firstly, we show how to theoretically calculate the step differential prob-
ability of RIPEMD-160, which was stated as an open problem by Mendel
et al. at ASIACRYPT 2013. Secondly, based on the method proposed by
Mendel et al. to automatically find a differential path of RIPEMD-160,
we construct a 30-step differential path where the left branch is sparse
and the right branch is controlled as sparse as possible. To ensure the
message modification techniques can be applied to RIPEMD-160, some
extra bit conditions should be pre-deduced and well controlled. These
extra bit conditions are used to ensure that the modular difference can
be correctly propagated. This way, we can find a collision of 30-step
RIPEMD-160 with complexity 267. This is the first collision attack on
round-reduced RIPEMD-160. Moreover, by a different choice of the mes-
sage words to merge two branches and adding some conditions to the
starting point, the semi-free-start collision attack on the first 36-step
RIPEMD-160 from ASIACRYPT 2013 can be improved. However, the
previous way to pre-compute the equation T ≪S0 � C0 = (T � C1)

≪S1

costs too much. To overcome this obstacle, we are inspired by Daum’s
et al. work on MD5 and describe a method to reduce the time complex-
ity and memory complexity to pre-compute that equation. Combining
all these techniques, the time complexity of the semi-free-start collision
attack on the first 36-step RIPEMD-160 can be reduced by a factor of
215.3 to 255.1.

Keywords: RIPEMD-160 · Semi-free-start collision · Collision · Hash
function · Compression function

1 Introduction

A cryptographic hash function is a function which takes arbitrary long messages
as input and output a fixed-length hash value of size n bits. There are three

c© International Association for Cryptologic Research 2017
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basic requirements for a hash function, which are preimage resistance, second-
preimage resistance and collision resistance. Most standardized hash functions
are based on the Merkle-Damg̊ard paradigm [2,12] and iterate a compression
function H with fixed-size input to compress arbitrarily long messages. Therefore,
the compression function itself should satisfy equivalent security requirements
so that the hash function can inherit from it. There are two attack models
on the compression function. One is called free-start collision attack, the other
is semi-free-start collision attack. The free-start collision attack is to find two
different pairs of message and chaining value (CV,M), (CV ′,M ′) which satisfy
H(CV,M) = H(CV ′,M ′). The semi-free-start collision attack works in the same
way apart from an additional condition that CV = CV ′. The last decade has
witnessed the fall of a series of hash functions such as MD4, MD5, SHA-0 and
SHA-1 since many break-through results on hash functions cryptanalysis [15,20–
23] were obtained. All of these hash functions belong to the MD-SHA family,
whose design strategy is based on the utilization of additions, rotations, xor and
boolean functions in an unbalanced Feistel network.

RIPEMD family can be considered as a subfamily of the MD-SHA-family
since RIPEMD-0 [1] is the first representative and consists of two MD4-like
functions computed in parallel with totally 48 steps. The security of RIPEMD-0
was first put into question by Dobbertin [4] and a practical collision attack on it
was proposed by Wang et al. [20]. In order to reinforce the security of RIPEMD-0,
Dobbertin, Bosselaers and Preneel [3] proposed two strengthened versions of
RIPEMD-0 in 1996, which are RIPEMD-128 and RIPEMD-160 with 128/160
bits output and 64/80 steps, respectively. In order to make both computation
branches more distinct from each other, not only different constants, but also
different rotation values, message insertion schedules and boolean functions are
used for RIPEMD-128 and RIPEMD-160 in their both branches.

For RIPEMD-128, there has been a series of analysis on it [5,8,16–18],
threatening its security. As for RIPEMD-160, Mendel et al. [11] proposed an
improved method to automatically find the differential path of RIPEMD-160 at
ASIACRYPT 2013. With their method, they found a 48-step differential path
and a 36-step differential path. Based on the two differential paths, Mendel
et al. [11] mounted a semi-free-start collision attack on 42-step RIPEMD-160
and a semi-free-start collision attack on the first 36-step RIPEMD-160. Addi-
tionally, they also proposed an open problem to theoretically calculate the step
differential probability. Besides, there are also some other analytical results on
RIPEMD-160, such as a preimage attack [13] on 31-step RIPEMD-160, a distin-
guisher on up to 51 steps of the compression function [14], a practical semi-free-
start collision attack on 36 steps of the compression function [9] (not starting
from the first step), and a semi-free-start collision attack on 48-step RIPEMD-
160 [19]. However, RIPEMD-160 is yet unbroken and is widely used in the imple-
mentations of security protocols as a ISO/IEC standard.

In 2005, Daum investigated the probability computation of T-functions (a
function for which the i-th output bit depends only on the i first lower bits of all
input words) in his PhD thesis [6]. More specifically, he proposed a method to
calculate the probability that T satisfies the equation (T �C0)≪S = T≪S �C1
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where C0 and C1 are constants. According to our analysis of the open problem to
calculate the step differential probability of RIPEMD-160, we find that calculat-
ing such a probability is equivalent to calculating the probability that the modu-
lar difference of the internal states is correctly propagated and the bit conditions
on the internal states hold. Although Daum’s work can be used to calculate the
probability that the modular difference is correctly propagated, it can’t solve
the open problem completely since the probability that one bit condition on the
internal state holds is not 1/2 any more. However, by considering the calculation
of the probability that T satisfies the equation (T �C0)≪S = T≪S �C1 from a
different perspective, we can deduce some useful characteristics of T which can
be used to calculate the probability that the bit conditions hold. In this way, we
can solve the open problem completely.

This paper is organized as follows. In Sect. 2, we briefly describe the algo-
rithm of RIPEMD-160. In Sect. 3, we describe our method to calculate the step
differential probability. In Sect. 4, we describe our improved way to pre-compute
the equation T≪S0 � C0 = (T � C1)≪S1 . In Sect. 5, we describe the collision
attack on the first 30-step RIPEMD-160. In Sect. 6, we describe the improved
semi-free-start collision attack on the first 36-step RIPEMD-160. Finally, we
conclude the paper in Sect. 7.

Our Contributions

1. Our method to theoretically calculate the step differential probability consists
of two steps. At first, we consider the probability that the modular difference
of the internal states holds, which will help obtain some characteristics of Qi

(Qi is referred to Sect. 2.2). Then, for each characteristics of Qi, the proba-
bility that the bit conditions on the internal states hold under the condition
that this characteristic of Qi holds can be calculated. In this way, the theoret-
ical calculation of the step differential probability of RIPEMD-160 becomes
feasible.

2. We deduce a useful property from the PhD thesis of Daum [6]. Based on it, we
can convert solving the equation T≪S0 �C0 = (T �C1)≪S1 into solving the
equation T≪S0 � C2 = T≪S1 . By analyzing the expectation of the number
of the solutions to the equation if given many pairs of (C0, C1), we can
claim that our new method to obtain the solutions at the phase of merging
only costs 4 times of checking the equation T≪S0 � C0 = (T � C1)≪S1 on
average, thus having a negligible influence on the efficiency compared with
the previous method [5,11]. Moreover, both the time complexity and memory
complexity of our new method to pre-compute the equation is 232, which is
much smaller than the strategy by constructing a table of size 264 to store
the solutions.

3. By using the technique described in [11] to automatically find a differential
path for RIPEMD-160, we can construct a 30-step differential path where the
left branch is sparse and the right branch is controlled as sparse as possible.
For the left branch, we leave it holding probabilistically. For the right branch,
we apply the message modification techniques [20] to it. However, accord-
ing to our analysis of the open problem to theoretically calculate the step
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differential probability of RIPEMD-160, the differential path of RIPEMD-
160 holds only when both the bit conditions and the modular difference of
the internal states hold. That’s different from MD4 since the differential path
of MD4 holds only when the bit conditions on the internal states hold. Since
the message modification can only be used to ensure the bit conditions hold,
the difficulty is how to have the modular difference of the internal states hold
when applying it to RIPEMD-160. Fortunately, we discover that we can add
some extra bit conditions on the internal states to have the modular differ-
ence hold. Therefore, before applying the message modification, we have to
pre-deduce these extra bit conditions on the internal states by considering the
characteristics of Qi. After obtaining the newly added extra bit conditions,
by adjusting the message modification techniques so that it can be applied
to RIPEMD-160, we can mount a 30-step collision attack on RIPEMD-160
with probability 2−67.

4. Based on the 36-step differential path, by a different choice of message words
to merge both branches, we can improve the time complexity of the merg-
ing phase. Moreover, based on the characteristics of Q15, we can add some
extra bit conditions on Y11 at the phase of finding a starting point to further
improve our attack. The improved semi-free-start collision attack on the first
36-step RIPEMD-160 is 255.1, which is much smaller than the previous best
known result (Table 1).

Table 1. Summary of preimage and collision attack on RIPEMD-160.

Target Attack type Steps Complexity Ref

Comp. function Preimage 31 2148 [13]

Hash function Preimage 31 2155 [13]

Comp. function Semi-free-start collision 36a low [9]

Comp. function Semi-free-start collision 36 270.4 [11]

Comp. function Semi-free-start collision 36 255.1 New

Comp. function Semi-free-start collision 42a 275.5 [11]

Comp. function Semi-free-start collision 48a 276.4 [19]

Hash function Collision 30 267 New
aAn attack starts at an intermediate step.

2 Description of RIPEMD-160

RIPEMD-160 is a 160-bit hash function that uses the Merkle-Damg̊ard con-
struction as domain extension algorithm: the hash function is built by iterating
a 160-bit compression function H which takes as input a 512-bit message block
Mi and a 160-bit chaining variables CVi:

CVi+1 = H(CVi,Mi)

where a message M to hash is padded beforehand to a multiple of 512 bits and
the first chaining variable is set to the predetermined initial value IV , that is
CV0 = IV . We refer to [3] for a detailed description of RIPEMD-160.
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2.1 Notations

For a better understanding of this paper, we introduce the following notations.

1. ≪, ≫, ⊕, ∨, ∧ and ¬ represent respectively the logic operation: rotate left,
rotate right, exclusive or, or, and, negate.

2. � and � represent respectively the modular addition and modular substrac-
tion on 32 bits.

3. M = (m0, m1, . . . , m15) and M ′ = (m′
0, m′

1, . . . , m′
15) represent two 512-bit

message blocks.
4. Δmi = m′

i − mi represents the modular difference between two message
words mi and m′

i.
5. Kl

j and Kr
j represent the constant used at the left and right branch for round

j.
6. Φl

j and Φr
j represent respectively the 32-bit boolean function at the left and

right branch for round j.
7. Xi, Yi represent respectively the 32-bit internal state of the left and right

branch updated during step i for compressing M .
8. X ′

i, Y ′
i represent respectively the 32-bit internal state of the left and right

branch updated during step i for compressing M ′.
9. Xi,j , Yi,j represent respectively the j-th bit of Xi and Yi, where the least

significant bit is the 0th bit and the most significant bit is the 31st bit.
10. Qi represents the 32-bit temporary state of the right branch updated during

step i for compressing M .
11. sl

i and sr
i represent respectively the rotation constant used at the left and

right branch during step i.
12. π1(i) and π2(i) represent the index of the message word used at the left and

right branch during step i.
13. [Z]i represents the i-th bit of the 32-bit Z.
14. [Z]j∼i (0 ≤ i < j ≤ 31) represents the i-th bit to the j-th bit of the 32-bit

word Z.
15. xi[j], xi[−j] (x can be X and Y ) is the resulting value by only changing the

j-th bit of xi. xi[j] is obtained by changing the j-th bit of xi from 0 to 1.
xi[−j] is obtained by changing the j-th bit of xi from 1 to 0.

16. xi[±j1,±j2, . . . ,±jl] (x can be X and Y ) is the value by changing the j1-th,
j2-th, jl-th bit of xi. The “+” sign means the bit is changed from 0 to 1,
and the “−” sign means the bit is changed from 1 to 0.

17. P(A) is the probability of the event A.

2.2 RIPEMD-160 Compression Function

The RIPEMD-160 compression function is a wider version of RIPEMD-128,
which is based on MD4, but with the particularity that it consists of two dif-
ferent and almost independent parallel instances of it. We differentiate the two
computation branches by left and right branch. The compression function con-
sists of 80 steps divided into 5 rounds of 16 steps each in both branches.
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Table 2. Boolean functions and round constants in RIPEMD-160

Round j φl
j φr

j Kl
j Kr

j Function Expression

0 XOR ONX 0x00000000 0x50a28be6 XOR(x, y, z) x ⊕ y ⊕ z

1 IFX IFZ 0x5a827999 0x5c4dd124 IFX(x, y, z) (x ∧ y) ⊕ (¬x ∧ z)

2 ONZ ONZ 0x6ed9eba1 0x6d703ef3 IFZ(x, y, z) (x ∧ z) ⊕ (y ∧ ¬z)

3 IFZ IFX 0x8f1bbcdc 0x7a6d76e9 ONX(x, y, z) x ⊕ (y ∨ ¬z)

4 ONX XOR 0xa953fd4e 0x00000000 ONZ(x, y, z) (x ∨ ¬y) ⊕ z

Initialization. The 160-bit input chaining variable CVi is divided into five
32-bit words hi (i = 0, 1, 2, 3, 4), initializing the left and right branch 160-bit
internal state in the following way:

X−4 = h≫10
0 , X−3 = h≫10

4 , X−2 = h≫10
3 , X−1 = h2, X0 = h1.

Y−4 = h≫10
0 , Y−3 = h≫10

4 , Y−2 = h≫10
3 , Y−1 = h2, Y0 = h1.

Particularly, CV0 corresponds to the following five 32-bit words:

X−4 = Y−4 = 0xc059d148, X−3 = Y−3 = 0x7c30f4b8, X−2 = Y−2 = 0x1d840c95,

X−1 = Y−1 = 0x98badcfe, X0 = Y0 = 0xefcdab89.

The Message Expansion. The 512-bit input message block is divided into 16
message words mi of size 32 bits. Each message word mi will be used once in
every round in a permuted order π for both branches.

The Step Function. At round j, the internal state is updated in the following
way.

Xi = X≪10
i−4 � (X≪10

i−5 � Φl
j(Xi−1,Xi−2,X

≪10
i−3 ) � mπ1(i) � Kl

j)
≪sl

i ,

Yi = Y ≪10
i−4 � (Y ≪10

i−5 � Φr
j(Yi−1, Yi−2, Y

≪10
i−3 ) � mπ2(i) � Kr

j )≪sr
i ,

Qi = Y ≪10
i−5 � Φr

j(Yi−1, Yi−2, Y
≪10
i−3 ) � mπ2(i) � Kr

j ,

where i = (1, 2, 3, . . . , 80) and j = (0, 1, 2, 3, 4). The details of the boolean
functions and round constants for RIPEMD-160 are displayed in Table 2. As for
other parameters, you can refer to [3].

The Finalization. A finalization and a feed-forward is applied when all 80
steps have been computed in both branches. The five 32-bit words h

′
i composing

the output chaining variable are computed in the following way.

h
′
0 = h1 � X79 � Y78)≪10,

h
′
1 = h2 � X≪10

78 � Y ≪10
77 ,

h
′
2 = h3 � X≪10

77 � Y ≪10
76 ,

h
′
3 = h4 � X≪10

76 � Y80,

h
′
4 = h0 � X80 � Y79.
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3 Calculate the Step Differential Probability

In [11], Mendel et al. pointed out that it is not as easy to calculate the differential
probability for each step of a given differential path of RIPEMD-160 as that of
RIPEMD-128. The main reason is that the step function in RIPEMD-160 is
no longer a T-function. Therefore, the accurate calculation of the differential
probability becomes very hard. However, we can divide the calculation of the
step differential probability into two steps. Define as μ the event that all bit
conditions on the internal state hold, as ν the event that the modular difference of
the internal state holds. Although Daum has proposed a method [6] to calculate
P (ν), we will use a different method to calculate it, since our goal is not only to
calculate P (ν) but also to obtain some useful characteristics of Qi. Then, we can
leverage the deduced characteristics and the bit conditions on the internal states
to calculate P (μν). In this way, the step differential probability P (μν) can be
obtained. We use the step function of the right branch as an example and give
its description below. We will show how to deduce the useful characteristics of
Qi and calculate P (μν).

3.1 Description of the Open Problem

Since the step function of RIPEMD-160 at both branches has the same form, we
take the right branch as an example to describe the open problem.

Yi = Y ≪10
i−4 � (Y ≪10

i−5 � Φl
j(Yi−1, Yi−2, Y

≪10
i−3 ) � mπ2(i) � Kr

j )≪sr
i .

To ensure the given differential path holds, we need to impose conditions
on some bits of Yi and control the modular difference of Yi. The open problem
is how to calculate the probability that both the bit conditions on Yi and the
modular difference of Yi are satisfied under the condition that all conditions on
Yi−1, Yi−2, Yi−3, Yi−4, Yi−5 are satisfied. For example, according to the differen-
tial path displayed in Table 16, we know that:

Y ′
15 = Y15[−5,−20,−26], Y ′

14 = Y14[5, 11, 22], Y ′
13 = Y13[−9,−24, 26,−30],

Y ′
12 = Y12[0,−15, 21], Y ′

11 = Y11[1, 10, 12, 15,−16, 24, 26,−28],
Y ′
10 = Y10[−3, 21, 22, 23, 24, 25, 26,−28], Δm3 = 0.

Firstly, we use Y10, Y11, Y12, Y13, Y14, m3 to calculate Y15. Then, we use
Y ′
10, Y ′

11, Y ′
12, Y ′

13, Y ′
14, m′

3 to calculate Y ′
15. Then, the differential probability for

step 15 is equal to the probability that Y ′
15 = Y15 � 25 � 220 � 226 and that all

bit conditions on Y15 are satisfied.

3.2 The Probability of (T � C0)≪S = T≪S � C1

Given two constants C0 and C1, Daum has described a method [6] to calculate
the probability that T satisfies (T �C0)≪S = T≪S �C1 (1 ≤ S ≤ 31). However,
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we consider the problem from a different perspective by considering the char-
acteristics of T which satisfies such an equation. In this way, we can not only
calculate the probability of this equation, but also can obtain the characteristics
of T for further use to theoretically calculate the step differential probability.

Let R0||R1 = T �C0, where R0 is an S-bit variable representing the higher S
bits of T �C0 and R1 is a (32-S)-bit variable representing the lower (32-S) bits of
T � C0. Let R′

1||R′
0 = T≪S � C1, where R′

1 is a (32-S)-bit variable representing
the higher (32-S) bits of T≪S � C1 and R′

0 is an S-bit variable representing the
lower S bits of T≪S � C1. Then, the probability of (T � C0)≪S = T≪S � C1

(1 ≤ S ≤ 31) is equal to P(R0 = R′
0 and R1 = R′

1). Since

R0 ≡ [T ]31∼(32−S) + [C0]31∼(32−S) + carry0 mod (2S),

R′
0 ≡ [T ]31∼(32−S) + [C1](S−1)∼0 mod (2S),

R1 ≡ [T ](31−S)∼0 + [C0](31−S)∼0 mod (232−S),

R′
1 ≡ [T ](31−S)∼0 + [C1]31∼S + carry1 mod (232−S),

where carry0 represents the carry from the (31-S)-th bit to the (32-S)-th when
calculating T � C0, and carry1 represents the carry from the (S-1)-th bit to the
S-th bit when calculating T≪S � C1. For simplicity, we define as κ the event
that carry0 = 0 and as ω the event that carry1 = 0. Therefore,

P (R0 = R′
0) = P (κ and [C0]31∼(32−S) =

[C1](S−1)∼0) + P (κ and [C0]31∼(32−S) + 1 ≡ [C1](S−1)∼0 mod (2S)),
P (R1 = R′

1) = P (ω and [C0](31−S)∼0 =

[C1]31∼S) + P (ω and [C0](31−S)∼0 ≡ [C1]31∼S + 1 mod (232−S)).

We denote the positions of the bits of [C0](31−S)∼0 equal to 1 by k0, k1, . . . , kn

and denote the positions of the bits of [C1](S−1)∼0 equal to 1 by r0, r1, . . . , rm.
Then, the value of P (κ) and P (ω) can be directly deduced as below:

1. If [C0](31−S)∼0 = 0, then P (κ) = 1. Otherwise, P (κ) = 1−∑n
i=0 2−(32−S−ki).

2. If [C1](S−1)∼0 = 0, then P (ω) = 1. Otherwise, P (ω) = 1 − ∑m
i=0 2−(S−ri).

Thus, we can compute P (R0 = R′
0 and R1 = R′

1) in this way:

1. If [C0](31−S)∼0 = [C1]31∼S and [C0]31∼(32−S) = [C1](S−1)∼0, then P (R0 =
R′

0 and R1 = R′
1) = P (κ) × P (ω).

2. If [C0](31−S)∼0 = [C1]31∼S and [C0]31∼(32−S) + 1 ≡ [C1](S−1)∼0 mod (2S),
then P (R0 = R′

0 and R1 = R′
1) = P (κ) × P (ω).

3. If [C0](31−S)∼0 ≡ [C1]31∼S + 1 mod (232−S) and [C0]31∼(32−S) = [C1](S−1)∼0,
then P (R0 = R′

0 and R1 = R′
1) = P (κ) × P (ω).

4. If [C0](31−S)∼0 ≡ [C1]31∼S + 1 mod (232−S)) and [C0]31∼(32−S) + 1 ≡
[C1](S−1)∼0 mod (2S)), then P (R0 = R′

0 and R1 = R′
1) = P (κ) × P (ω).

5. If C0 and C1 doesn’t belong to any of the above four cases, then P (R0 =
R′

0 and R1 = R′
1) = 0.
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According to the above method to calculate P (R0 = R′
0 and R1 = R′

1), the
following property can be directly deduced. (In fact, we can also deduce it by
using the Corollary 4.14 in [6].)

Property 1. Given random constants C0 and C1 of 32 bits each, there exists
a T of 32 bits which satisfies (T � C0)≪S = T≪S � C1 if and only if (C0, C1)
satisfies one of the following equations:

1. C1 = (C0 � 1)≪S , and [C1](S−1)∼0 �= 0.
2. C1 = (C0 � 232−S)≪S , and [C0](31−S)∼0 �= 0.
3. C1 = (C0 � 232−S � 1)≪S , and [C1](S−1)∼0 �= 0, [C0](31−S)∼0 �= 0.

4. C1 = C≪S
0 .

Example. In the following, we give an example how to calculate the probability
of (T� 0x80bfd9ff)≪12 = T≪12� 0xfd9ff80c. To have a better understand-
ing of our method to calculate the probability, we explain it by Table 3.

Table 3. Calculation of the probability

T 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

T

C0 1 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1

R0 R1

T≪12 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24 23 22 21 20

T≪12

C1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 0 0

R′
1 R′

0

According to Table 3, we can find the following relationship between C0

and C1:

[C0]19∼0 = [C1]31∼12, [C0]31∼20 + 1 ≡ [C1]11∼0 mod (212).

Therefore, we can get P ((T� 0x80bfd9ff)≪12 = T≪12� 0xfd9ff80c) =
P (κ) × P (ω). By considering the characteristics of T, P (κ) and P (ω) can be
calculated as below:

P (κ) = P ([T ]19 = 1) + P ([T ]19∼18 = 01) + P ([T ]19∼17 = 001)

+P ([T ]19∼16 = 0001) + P ([T ]19∼15 = 00001) + P ([T ]19∼14 = 000001)

+P ([T ]19∼12 = 00000011) + P ([T ]19∼11 = 000000101)

+P ([T ]19∼8 = 000000100111) + P ([T ]19∼7 = 0000001001101)

+P ([T ]19∼6 = 00000010011001) + P ([T ]19∼5 = 000000100110001)

+P ([T ]19∼4 = 0000001001100001) + P ([T ]19∼3 = 00000010011000001)

+P ([T ]19∼2 = 000000100110000001) + P ([T ]19∼1 = 0000001001100000001)

+P ([T ]19∼0 = 00000010011000000001)

= Σ6
i=12

−i + 2−8 + 2−9 + Σ20
i=122

−i.

P (ω) = 1 − P ([T ]31 = 1) − P ([T ]31−23 = 011111111) − P ([T ]31−22 = 0111111101)

= 1 − (2−1 + 2−9 + 2−10).
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Thus, P ((T� 0x80bfd9ff)≪12 = T≪12� 0xfd9ff80c) ≈ 2−1. In this exam-
ple, we call [T ]19 = 1 one possible characteristic of T , and we call [T ]31 = 1 one
impossible characteristic of T . Totally, there are 17 possible characteristics of T
and 3 impossible characteristics of T .

3.3 Calculating the Step Differential Probability

We use the step function of the right branch to explain our method to calculate
the step differential probability. Let Δ = Y ′

i � Yi, Δi−5 = Y ′≪10
i−5 � Y ≪10

i−5 ,
Δi−4 = Y ′≪10

i−4 � Y ≪10
i−4 , ΔF = Φl

j(Y
′
i−1, Y

′
i−2, Y

′≪10
i−3 ) � Φl

j(Yi−1, Yi−2, Y
≪10
i−3 ),

then P (ν) = P (Δ = Δi−4�(Δi−5�ΔF �Δmπ2(i)�Qi)≪sr
i �Q

≪sr
i

i ). Given the
differential path and the bit conditions to control the differential propagation,
Δ, Δi−5, Δi−4, ΔF and Δmπ2(i) are all fixed. Let C0 = Δi−5 � ΔF � Δmπ2(i)

and C1 = Δ�Δi−4, we can obtain that P (ν) = P ((Qi �C0)≪sr
i = Q

≪sr
i

i �C1),
which can be quickly calculated as described in Sect. 3.2.

Observe that when calculating Yi, there are conditions on some bits of Yi−4

and Yi, i.e., some bits of Yi−4 and Yi are fixed. In addition, in order to make the
modular difference of Yi satisfied, there are some constraints on Qi. By analyzing
the constraints carefully, the characteristics of Qi can be discovered, which will
make the theoretical calculation of P (μν) feasible. By the following example, we
will introduce how to leverage the characteristics of Qi and the bit conditions
on Yi−4 and Yi to calculate P (μν). The general case can be handled in the same
way.

Example. For the given differential path in Table 16, we know that

ΔF = ONX (Y ′
14, Y

′
13, (Y

′
12)

≪10) � ONX (Y14, Y13, Y
≪10
12 ) = 0xbffa20,

Y ′≪10
11 = Y ≪10

11 [−26, 25, 22, 20, 11, −6, 4, 2], Δ11 = Y ′≪10
11 � Y ≪10

11 = 0xfe5007d4,

Y ′≪10
10 = Y ≪10

10 [31, −13, −6, 4, 3, 2, 1, 0], Δ10 = Y ′≪10
10 � Y ≪10

10 = 0x7fffdfdf,

Δ = Y ′
15 − Y15 = 0xfbefffe0, Δm3 = 0.

Therefore, Q15 has to satisfy the equation (Q15� 0x80bfd9ff)≪12 = Q≪12
15 �

0xfd9ff80c. According to the example in Sect. 3.2, the characteristics of Q15

which satisfies such an equation can be deduced and we display it in Table 4.
Let a = Q≪12

15 , b = Y ≪10
11 , d = Y15, since Y15 = Y ≪10

11 � Q≪12
15 , we can

obtain that d = a � b. In addition, we denote by ci the carry from the(i-1)-th
bit to the i-th bit when calculating a � b. Thus,

[d]i = [a]i ⊕ [b]i ⊕ ci, (c0 = 0, 0 ≤ i ≤ 31).

Define as Ai the event that [a]i = 0, as Bi the event that [b]i = 0, as λi

the event that ci = 0, as Di the event that Y15,i = 0, as ν15 the event that
Y ′
15 − Y15 = 0xfbefffe0, as η15 the event that all the 7 conditions on Y15 hold.

For a better understanding of our method, we display the calculation of Y15 in
Table 5. Then, P (η15ν15) can be calculated as follows:
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Table 4. The characteristics of Q15

i χi (Characteristic) Type i χi (Characteristic) Type

1 [Q15]31 = 1 Impossible 11 [Q15]19∼11 = 000000101 Possible

2 [Q15]31∼23 = 011111111 Impossible 12 [Q15]19∼8 = 000000100111 Possible

3 [Q15]31∼22 = 0111111101 Impossible 13 [Q15]19∼7 = 0000001001101 Possible

4 [Q15]19 = 1 Possible 14 [Q15]19∼6 = 00000010011001 Possible

5 [Q15]19∼18 = 01 Possible 15 [Q15]19∼5 = 000000100110001 Possible

6 [Q15]19∼17 = 001 Possible 16 [Q15]19∼4 = 0000001001100001 Possible

7 [Q15]19∼16 = 0001 Possible 17 [Q15]19∼3 = 00000010011000001 Possible

8 [Q15]19∼15 = 00001 Possible 18 [Q15]19∼2 = 000000100110000001 Possible

9 [Q15]19∼14 = 000001 Possible 19 [Q15]19∼1 = 0000001001100000001 Possible

10 [Q15]19∼12 = 00000011 Possible 20 [Q15]19∼0 = 00000010011000000001 Possible

Table 5. Calculation of Y15 = Y ≪10
11 � Q≪12

15

Q≪12
15 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24 23 22 21 20

Y ≪10
11 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24 23 22

Y15 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Q≪12
15 (a)

Y ≪10
11 (b) - 1 - - 1 1 0 - - 0 - 0 - - 1 0 0 0 0 1 0 - 0 - - 1 - 0 1 0 - -

Y15(d) - - - - - 1 - - - 1 - 1 0 - - - - - - - 1 - - - - - 1 - - 1 - -

P (η15ν15) = P (λ12η15ν15) + P (λ12η15ν15),
P (λ12η15ν15) = Σ20

i=4P (D26D22D20D19χi | λ12) × {P (D11D5D2λ12)
−Σ3

i=1[P (D11D5D2λ12 | χi) × P (χi)]},

P (λ12η15ν15) = Σ20
i=4P (D26D22D20D19χi | λ12) × {P (D11D5D2λ12)

−Σ3
i=1[P (D11D5D2λ12 | χi) × P (χi)]}.

However, according to the characteristics of Q15, we know that [Q15]31 is always
0 if Y ′

15 � Y15 = 0xfbefffe0, which implies that P (λ12 | ν15) = 0 and P (λ12 |
ν15) = 1. Therefore, calculating P (λ12η15ν15) is enough. Take the calculation of
P (D11D5D2λ12) − Σ3

i=1[P (D11D5D2λ12 | χi) × P (χi)] as an example. Firstly,
we calculate P (D11D5D2λ12 | χ3). As Table 6 shows, the calculation is detailed
as below.

Table 6. Calculation of P (D11D5D2λ12 | χ3)

Q≪12
15 31 30 29 28 27 26 25 24 23 22 21 20

Y ≪10
11 1 0 31 30 29 28 27 26 25 24 23 22

Y15 11 10 9 8 7 6 5 4 3 2 1 0

Q≪12
15 (a) 0 1 1 1 1 1 1 1 0 1 - -

Y ≪10
11 (b) 0 - 0 - - 1 - 0 1 0 - -

Y15(d) 1 - - - - - 1 - - 1 - -
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P (D11D5D2λ12 | χ3) = P (D11D5D2 | χ3).

P (D11D5D2 | χ3) = P (λ11D5D2 | χ3) = P (B10) × P (D5D2 | χ3) + P (B10) × P (λ10D5D2 | χ3)

=
1

2
× P (D5D2 | χ3) +

1

2
× P (λ10D5D2 | χ3).

P (D5D2 | χ3) = P (B5) × P (λ5D2 | χ3) + P (B5) × P (λ5D2 | χ3)

=
1

2
× P (λ5D2 | χ3) +

1

2
× P (λ5D2 | χ3) =

1

2
× P (D2 | χ3).

P (D2 | χ3) = P (λ2).

P (λ2) = P (A1B1) + [P (A1B1) + P (A1B1)] × P (λ1) =
1

4
+

1

2
× P (λ1).

P (λ1) = P (A1B1) + P (A1B1) + P (A1B1) =
3

4
.

P (λ10D5D2 | χ3) = P (λ9D5D2 | χ3) = P (B8) × P (D5D2 | χ3) + P (B8) × P (λ8D5D2 | χ3)

=
1

2
× P (D5D2 | χ3) +

1

2
× P (λ8D5D2 | χ3).

P (λ8D5D2 | χ3) = P (B7) × P (D5D2 | χ3) + P (B7) × P (λ7D5D2 | χ3)

=
1

2
× P (D5D2 | χ3) +

1

2
× P (λ7D5D2 | χ3).

P (λ7D5D2 | χ3) = P (D5D2 | χ3).

Therefore, P (D11D5D2λ12 | χ3) = 5
16 . In the same way, we can obtain that

P (D11D5D2λ12 | χ2) = 1
4 , P (D11D5D2λ12 | χ1) = 159

1024 and P (D11D5D2λ12) =
P (D11D5D2) = 1

8 . Hence,

P (D11D5D2λ12) − Σ3
i=1[P (D11D5D2λ12 | χi) × P (χi)]

=
1
8

− 1
2

× 159
1024

− 1
29

× 1
4

− 1
210

× 5
16

≈ 1
16

= 2−4.

Since

Σ20
i=4P (D26D22D20D19χi | λ12) = Σ20

i=4[P (D26D22D20D19 | χiλ12) × P (χi | λ12)]

= Σ20
i=4[P (D26D22D20D19 | χiλ12) × P (χi)],

and P (D26D22D20D19 | χiλ12) (4 ≤ i ≤ 20) can be calculated in the same way
as above, the value of Σ20

i=4P (D26D22D20D19χi | λ12) can be obtained. Thus,
the probability of the step function can be calculated.

In summary, in order to theoretically calculate the step differential proba-
bility for step i, we should firstly deduce the characteristics of Qi so that the
modular difference can be correctly propagated. Then, for each characteristics of
Qi, the calculation of the probability that the bit conditions hold is changed to
calculating the probability that A + B = C where only part bits of A and B are
fixed and some bits of C are restricted to fixed values. When all characteristics
of Qi are considered, the step differential probability can be obtained.
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4 Solving the Equation T≪S0 � C0 = (T � C1)
≪S1

When using the method proposed by Landelle and Peyrin to analyze
RIPEMD-128 and RIPEMD-160 [5], an equation like T≪S0 �C0 = (T �C1)≪S1

is always constructed. In order to reduce the time complexity of the merging
phase, pre-computing the equation becomes a feasible way. However, in the pre-
vious analysis [5,11], the method of pre-computing the equation costs too much
time and memory. In this section, we propose a method to reduce the time com-
plexity and memory complexity. Based on Property 1, given a constant C1, if
there exists a solution to the equation (T � C1)≪S1 = T≪S1 � C2, then C2 can
only take the following four possible values:

1. C2 = (C1 � 1)≪S1 , and [C2](S1−1)∼0 �= 0.
2. C2 = (C1 � 232−S1)≪S1 , and [C1](31−S1)∼0 �= 0.
3. C2 = (C1 � 232−S1 � 1)≪S1 , and [C2](S1−1)∼0 �= 0, [C1](31−S1)∼0 �= 0.

4. C2 = C≪S1
1 .

Therefore, given a constant C1, we can compute and store the four possible
values of C2 based on the relationship between C1 and C2 as above. Then, for
each value of C2, we need to solve the equation T≪S0 � C0 = T≪S1 � C2.
Let C3 = C0 � C2, the equation becomes T≪S0 � C3 = T≪S1 . Therefore, we
only need to pre-compute the equation T≪S0 � C3 = T≪S1 . Then, in order
to obtain the solutions to the equation T≪S0 � C0 = (T � C1)≪S1 , we only
need to guess four possible values of C2. For each guessed value of C2, the
solutions to the equation T≪S0 � C3 = T≪S1 can be quickly obtained. For
the obtained solution T , we have to verify whether it satisfies the equation
(T � C1)≪S1 = T≪S1 � C2 since T satisfies it with probability. Pre-computing
the equation T≪S0 � C3 = T≪S1 only costs 232 time and 232 memory, which is
much smaller.

The expectation of the number of the solution to T≪S0 �C0 = (T �C1)≪S1

also has an influence on the time complexity of the merging phase. Since it
is not mentioned in the previous analysis, it is necessary to give a theoretical
value. Consider the equation T≪S0 � C0 = (T � C1)≪S1 . Once we fix one
constant, supposing that is C0, and then exhaust all the 232 possible values of
T , the corresponding C1 can be obtained. Since more than one value of T might
correspond to the same C1, one value of C1 will correspond to more than one
value of T if C0 is fixed. We show it in Table 7.

Table 7. Number of the solutions

T 0 ... i ... j ... 0xffffffff

C1 x ... x ... x ... y

C1 0 ... i ... j ... k ... 0xffffffff

T ... NULL ... Ti2 , Ti3 , Ti4 ... Ti5 , Ti6 , Ti7 , Ti8 ...
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When C0 is fixed and C1 is random, we denote by ε the number of the
solutions, and denote by pi the probability of that there are i solutions to the
equation. In addition, we denote by Ni the number of C1 which corresponds to i
solutions to the equation. Suppose there are at most n solutions to the equation.
Then, we can deduce that

N1 + 2N2 + . . . + nNn = 232,

pi =
Ni

232
,

E(ε) = p1 + 2p2 + . . . + npn =
N1 + 2N2 + . . . + nNn

232
= 1.

Therefore, the number of expected solutions to T≪S0 � C0 = (T � C1)≪S1 is
1. In the same way, we can obtain that the number of expected solutions to
T≪S0 � C3 = T≪S1 is also 1.

In conclusion, given many pairs of (C0, C1), we can calculate the four cor-
responding possible values of C2 at first. Since the number of expected solu-
tions to T≪S0 � C3 = T≪S1 is 1, we will obtain four possible solutions to
T≪S0 � C3 = T≪S1 on average for the four values of C2. However, we need to
further check whether the four solutions T satisfy T≪S0 � C0 = (T � C1)≪S1 .
Since the expectation of the number of the solution to T≪S0�C0 = (T �C1)≪S1

is 1, we will obtain one solution to T≪S0 �C0 = (T �C1)≪S1 on average. There-
fore, when solving the equation T≪S0 � C0 = (T � C1)≪S1 , only four times of
check is enough on average, which is very quick. Therefore, the time complexity
of solving the equation is 22.

5 Collision Attack on the First 30-Step RIPEMD-160

By constructing a 30-step differential path, where the left branch is sparse and
the right branch is controlled as sparse as possible, applying the message mod-
ification techniques proposed by Wang [20] to the right branch while the left
branch remains probabilistic, it is possible to mount a collision attack on 30-
step RIPEMD-160 with probability 2−67. The 30-step differential path is shown
in Table 8. Using the single-step modification and multi-step modification in [20],
the bit conditions on the internal states can be satisfied. As mentioned before,
the differential path holds only when both the modular difference of the internal
states and the bit conditions hold, which is different from MD4. However, the
message modification techniques can’t be directly used to ensure the modular
difference of the internal states holds. Moreover, the probability that the mod-
ular difference of the internal states holds has a great effect on the phase of
the message modification, the reason for this will be discussed later. Therefore,
how to have the modular difference of the internal states hold when using the
message modification becomes an urgent problem to be solved. According to the
previous part to calculate the step differential probability, we can change such a
problem into how to ensure Qi satisfies its corresponding equation so that ΔYi

holds when using the message modification.
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Table 8. 30-step differential path, where m′
15 = m15 � 224, and Δmi = 0 (0 � i � 14).

Note that the symbol n represents that a bit changes to 1 from 0, u represents that a
bit changes to 0 from 1, and - represents that the bit value is free.

Xi π1(i)Yi π2(i)
-4 -------- -------- -------- -------- -4 -------- -------- -------- --------
-3 -------- -------- -------- -------- -3 -------- -------- -------- --------
-2 -------- -------- -------- -------- -2 -------- -------- -------- --------
-1 -------- -------- -------- -------- -1 -------- -------- -------- --------
00 -------- -------- -------- -------- 00 00 -------- -------- -------- -------- 05
01 -------- -------- -------- -------- 01 01 -------- -------- -------- -------- 14
02 -------- -------- -------- -------- 02 02 -------- -------- -------- -------- 07
03 -------- -------- -------- -------- 03 03 -------- -------- -------- -------- 00
04 -------- -------- -------- -------- 04 04 -------- -------- -------- -------- 09
05 -------- -------- -------- -------- 05 05 -------- -------- -------- -------- 02
06 -------- -------- -------- -------- 06 06 -------- -------- -------- -------- 11
07 -------- -------- -------- -------- 07 07 -------- -------- -------- -------- 04
08 -------- -------- -------- -------- 08 08 -------- -------- -------- -------- 13
09 -------- -------- -------- -------- 09 09 -----1-1 -1------ -------- -------- 06
10 -------- -------- -------- -------- 10 10 ----0000 00-1--1- --0000-- 1-001010 15
11 -------- -------- -------- -------- 11 11 -0--0--- 00001101 10010000 000nuuuu 08
12 -------- -------- -------- -------- 12 12 nuuuuuuu uuuuuuuu u0n0n00- ---01100 01
13 -------- -------- -------- -------- 13 13 0unn1uu- 111-1-1- -nuunn11 011011un 10
14 -------- -------- -------- -------- 14 14 -1000011 11----1- 10nu1010 1-nu1-11 03
15 -------- -------- -------- -------- 15 15 00---011 11-0u-u- 101000-u ----0-01 12
16 -------- -------- -------- -------n 07 16 111-n1uu 000n1n-- 0001n--- -nuuuuuu 06
17 -------- -------- -------- -------0 04 17 1u1-1--u n--0111- 00u10unn n-nnn01- 11
18 -------- -------- -----1-- -------1 13 18 01------ 0n-011-- 1n0000-- --0-00-1 03
19 -------- -------- -----0-- -------- 01 19 1u------ 1--100-- 010----- -----1-1 07
20 -------- -------- -----n-- -------- 10 20 -0------ --1----- ----0nu1 1---11-0 00
21 -------- -------- -----0-- -------- 06 21 -1-----1 011----- 11111-10 1------- 13
22 -------- ---1---- -----1-- -------- 15 22 u-----00 1-u----- ------1u ------00 05
23 n------- ---0---- -------- -------- 03 23 1------- -------0 -----01- ------n- 10
24 0------- ---n---- -------- -------- 12 24 1------- -------1 ----0-1- ------00 14
25 1------- ---0---- ------1- -------- 00 25 1----n-- ---0---- ----1--- ------01 15
26 -1------ ---1---- ------0- -------- 09 26 -------- ---0---- ----unn- -------- 08
27 -0------ -------- ------n- -------- 05 27 -u------ -------- -------- -------- 12
28 -n------ -------- ------0- -------- 02 28 -------- -------- -------- -------- 04
29 -0------ ----1--- -------- -------- 14 29 -------- -------- -------- -------- 09
30 -------- -------- -------- -------- 11 30 -------- -------- -------- -------- 01

Other Conditions
Y11,31

∨ ¬Y10,21 = 1, Y11,29
∨ ¬Y10,19 = 1, Y11,28

∨ ¬Y10,18 = 1, Y11,26
∨ ¬Y10,16 = 1, Y11,25

∨ ¬Y10,15 = 1, Y11,24
∨ ¬Y10,14 = 1.

Y14,21 = 1, Y14,20 = 1, Y14,9 = 1 (We use the three conditions); Or Y15,21 = 1, Y14,21 = 0, Y14,20 = 0, Y14,19 = 0.
Y15,6 = 1, Y14,6 = 0, Y15,5 = 1; Or Y14,6 = 1, Y15,5 = 0 (We use the two conditions).
Y15,29 = 0, Y15,28 = 0, Y15,27 = 1.
Y18,28 = Y17,28, Y18,21 = Y17,21, Y18,16 = Y17,16.
Y19,17 = Y18,17, Y19,8 = Y18,8, Y19,1 = Y18,1.
Y20,24 = Y19,24.
Y22,19 = Y21,19, Y22,20 = Y21,20.
Y28,19 = Y27,19, Y28,20 = Y27,20, Y28,21 = Y27,21.
X15,0 = X14,22.
X22,31 = X21,21.

5.1 Deducing Extra Bit Conditions to Control the Characteristics
of Qi

Given a differential path, both the bit conditions on the internal states and
the equations that all Qi have to satisfy are fixed. The differential path holds
only when all these bit conditions hold and all Qi satisfy their corresponding
equations. Although the message modification techniques proposed by Wang
can be used to ensure the bit conditions on the internal states hold, it can’t be
directly used to ensure Qi satisfies its corresponding equation. However, if we
can add some extra bit conditions on Yi and Yi−4 to ensure Qi always satisfies its
corresponding equation, the influence of Qi can be eliminated. Then, the message
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modification ensures that both the bit conditions and the modular differences
of the internal state hold at the same time. Taking Q13 as an example, we show
how to deduce the extra bit conditions on Y13 and Y9.

Based on the 30-step differential path in Table 8, we can obtain that Q13 has
to satisfy the equation (Q13 � 0x6ffba800)≪14 = Q≪14

13 � 0xea001bff so that
the modular difference ΔY13 holds, from which we can deduce the characteristics
of Q13 as described before. We only choose two possible characteristics of Q13,
which are [Q13]31 = 0 and [Q13]17 = 1. By applying the single-step message mod-
ification, all the bit conditions on Y13 and Y9 can be satisfied, which means that
some bits of them are fixed. Considering the relationship between Y13 and Y9:

Q≪14
13 = Y13 � Y ≪10

9 ,

our goal is to ensure the two bit conditions on Q13 are satisfied under the condi-
tion that some bits of Y13 and Y9 are already fixed. We show the calculation of
Q≪14

13 = Y13 � Y ≪10
9 in Table 9, which will help understand how to accurately

deduce the extra bit conditions.

Table 9. The calculation of Q≪14
13 = Y13 � Y ≪10

9

Y13 0 1 0 0 1 u u - 1 1 1 - 1 - 1 - - n u u n n 1 1 0 1 1 0 1 1 u n

Y ≪10
9 1 0 - - - - - - - - - - - - - - - - 1 0 - - - - - - - 1 - 1 - 1

Q≪14
13 1 - - - - - - - - - - - - - - - - - 0 - - - - - - - - - - - - -

If we impose four bit conditions on Y9, which are Y9,2 = 0, Y9,3 = 1, Y9,20 = 0,
Y9,21 = 1, the two bit conditions on Q13 will hold with probability 1. In other
words, if all the bit conditions (including the extra conditions) on Y9 and Y13

hold, the equation (Q13 � 0x6ffba800)≪14 = Q≪14
13 � 0xea001bff will always

hold. Therefore, by adding four extra conditions on Y9, the message modification
can ensure both the bit conditions on Y13 and the modular difference ΔY13 hold.

Sometimes, however, adding many extra conditions costs too much. There-
fore, for some special cases, we use a dynamic way to add fewer conditions to
ensure that Qi satisfies its corresponding equation with probability 1 or close
to 1. For example, in order to ensure that the modular difference ΔY23 holds,
Q23 has to satisfy the equation (Q23 � 0x81000001)≪9 = Q≪9

23 � 0x102, from
which we can deduce the characteristics of Q23. Then, we choose one possible
characteristic, which is [Q23]31 = 1. In this way, Q23 satisfies its correspond-
ing equation with probability 1 − 2−23 ≈ 1. By considering the calculation of
Q≪9

23 = Y23 � Y ≪10
19 as shown in Table 10, we describe how to dynamically

determine the bit conditions on Y23.

Table 10. The calculation of Q≪9
23 = Y23 � Y ≪10

19

Y23 1 - - - - - - - - - - - - - - 0 - - - - - 0 1 - - - - - - - n -

Y ≪10
19 1 u - - - - - - 1 - - 1 0 0 - - 0 1 0 - - - - - - - - - - 1 - 1

Q≪9
23 - - - - - - - - - - - - - - - - - - - - - - - 1 - - - - - - - -
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According to the multi-step message modification [20], we should deal from
lower bits to higher bits to correct Y23. Therefore, we compare [Y23]7∼0 with
[Y ≪10

19 ]7∼0 only when Y23,1 has been corrected. For different relationships
between them, we should determine the bit conditions differently. By dynami-
cally determine the conditions on Y23 in this way, we can ensure Q23 satisfies
its corresponding equation with probability close to 1 by applying the message
modification to correct Y23,8.

1. If [Y23]7∼0 ≥ [Y ≪10
19 ]7∼0, we add a condition Y23,8

⊕
Y19,30 = 1.

2. If [Y23]7∼0 < [Y ≪10
19 ]7∼0, we add a condition Y23,8

⊕
Y19,30 = 0.

As described above, we can deduce many extra bit conditions on the internal
states, and they are displayed in Table 11. Then we can take these newly added
bit conditions into consideration when applying the message modification tech-
niques. In this way, both the bit conditions and the modular difference of the
internal states can be satisfied at the same time.

Table 11. Equations of Qi for the 30-step differential path and extra conditions to
control the equations

Equation: (Qi � in)≪shift = Q≪shift
i � out

i shift in out Extra conditions

11 8 0x1000000 0x1 Y7,24 = 1

12 11 0x15 0xa800 Y8,21 = 0, Y8,19 = 0

13 14 0x6ffba800 0xea001bff Y9,3 = 1, Y9,2 = 0, Y9,21 = 1, Y9,20 = 0

14 14 0x40400001 0x1010 Y10,31 = 0

15 12 0xafffff5f 0xfff5fb00 Y15,9 = 0, Y11,31 = 1

16 6 0x9d020 0x2740800

17 9 0x85f87f2 0xbf0fe410 Y13,20 = 1, Y13,18 = 0, Y17,28 = 0, Y17,26 = 1, Y13,16 = 0

18 7 0x0 0x0

19 15 0xffffd008 0xe8040000 Y15,21 = 0

20 7 0xd75fbffc 0xafdffdec

21 12 0x10200813 0x812102 Y21,6 = 1, Y17,28 = 0, Y21,10 = Y17,0

22 8 0xff7edffe 0x7edffeff Y22,30 = 1, Y18,21 = 1, Y22,2 = Y18,24, Y22,3 = Y18,25,

Y22,4 = Y18,26, Y22,5 = Y18,27, Y22,6 = Y18,28, Y22,7 = Y18,29

23 9 0x81000001 0x102 If [Y23]7∼0 ≥ [Y ≪10
19 ]7∼0, then Y23,8

⊕
Y19,30 = 1

If [Y23]7∼0 < [Y ≪10
19 ]7∼0, then Y23,8

⊕
Y19,30 = 0

24 11 0xffffff00 0xfff80000

25 7 0x80000 0x4000000

26 7 0x1000800 0x80040000

27 12 0x7ffc0000 0xbffff800

28 7 0x0 0x0

29 6 0xc0000000 0xfffffff0

30 15 0x10 0x80000
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5.2 Multi-step Modification for RIPEMD-160

After obtaining the newly added bit conditions, we need to apply the message
modification techniques to correct the bits of the internal states. Since the single-
step modification is relatively simple, we refer the interested readers to [20] for
more details. The following is an example to correct the three bit conditions
on Y1 by single-step modification. For the first round, we can correct the bit
conditions on the internal states in this similar way.

Y1 ←− Y1 ⊕ (Y1,3 ≪ 3) ⊕ (Y1,14 ≪ 14) ⊕ (Y1,29 ≪ 29).
m5 ←− (Y1 � Y ≪10

−3 )≫8 � (Y ≪10
−4 � ONX(Y0, Y−1, Y

≪10
−2 ) � Kr

0).

For the internal states after the first round, the multi-step modification
should be applied. However, the step function of RIPEMD-160 is no longer a
T-function. Therefore, the multi-step modification for RIPEMD-160 is slightly
different from that for MD4 [20]. We take correcting Y17,4, Y17,3 and Y23,16 as
three examples to show three types of multi-step modification for RIPEMD-160.

Table 12. Message modification for correcting Y17,4

Modify m New internal Q
state

Y9 m13 7 m13 ←− m13 � (Q≪7
9 � 227)≫7 � Q9) Y new

9 = Y9[27] Q9 is changed.

Y10 m6 7 m6 ←− (Y10 � Y ≪10
6 )≫7 � Y ≪10

5 � ONX(Y new
9 , Y8, Y

≪10
7 ) � Kr

0 Y10 Q10 stays the same.

Y11 m15 8 m15 ←− (Y11 � Y ≪10
7 )≫8 � Y ≪10

6 � ONX(Y10, Y
new
9 , Y ≪10

8 ) � Kr
0 Y11 Q11 stays the same.

Y12 m8 11 m8 ←− (Y12 � Y ≪10
8 )≫11 � Y ≪10

7 � ONX(Y11, Y10, Y
new≪10
9 ) � Kr

0 Y12 Q12 stays the same.

Y13 m1 14 m1 ←− (Y13 � Y new≪10
9 )≫14 � Y ≪10

8 � ONX(Y12, Y11, Y
≪10
10 ) � Kr

0 Y13 Q13 is changed.

Y14 m10 14 m10 ←− (Y14 � Y ≪10
10 )≫14 � Y new≪10

9 � ONX(Y13, Y12, Y
≪10
11 ) � Kr

0 Y14 Q14 stays the same.

In order to correct Y17,4, we can change the 27th bit of m6. Therefore, we can
change the 27th bit of Y9 by changing the value of m13. Then, modify m6, m15,
m8, m1, m10 to have Yi (10 ≤ i ≤ 14) remaining the same. In this way, Y17,4 can
be corrected. According to Table 12, we can find that Q9 and Q13 are changed
during the phase of message modification. Since there is no constraints on Q9, it
doesn’t matter if Q9 is changed. However, Q13 has to satisfy the equation (Q13�
0x6ffba800)≪14 = Q≪14

13 � 0xea001bff so that the modular difference ΔY13

holds. Thus, we have to consider the influence of its change. As introduced in
the previous part, we have added some extra conditions on Y9 to ensure Q13 will
always satisfy this equation under the condition that all bit conditions on Y9 and
Y13 hold. Although Y9 is changed when correcting Y17,4, it won’t have an influence
on the conditions added to control the characteristics of Q13, which means that
Q13 still satisfies its corresponding equation even though it is changed. The main
reason is that we have controlled the characteristics of Q13 by the newly added
bit conditions and such a Q13 will always satisfy its corresponding equation. If
we don’t pre-deduce the extra bit conditions to control the characteristics of Q13,
the equation (Q13 � 0x6ffba800)≪14 = Q≪14

13 � 0xea001bff may not hold any
more since Q13 has been changed. In other word, Y17,4 may be probabilistically
corrected. And the probability is equal to the probability that the equation
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Table 13. Message modification for correcting Y23,16

Modify m New internal Extra
state Conditions

Y1 m5 8 m5 ←− m5 � 27 Y new
1 = Y1[15] (Q1 � 27)≪8 = Q≪8

1 � 215.

Y2 m14 9 m14 = (Y2 � Y ≪10
−2 )≫9 � Y ≪10

−3 � ONX(Y new
1 , Y0, Y

≪10
−1 ) � Kr

0 Y2

Y3 m7 9 Y3 Y0,5 = 0.

Y4 m0 11 Y4 Y2,25 = 1.

Y5 m9 13 m9 ←− (Y5 � Y new≪10
1 )≫13 � Y ≪10

0 � ONX(Y4, Y3, Y
≪10
2 ) � Kr

0 Y5

Y6 m2 15 m2 ←− (Y6 � Y ≪10
2 )≫15 � Y new≪10

1 � ONX(Y5, Y4, Y
≪10
3 ) � Kr

0 Y6

Table 14. Message modification for correcting Y17,3

Modify m New internal Q
state

Y6 m2 15 Y new
6 ←− [Y10 � (Y ≪10

5 � ONX(Y9, Y8, Y
≪10
7 ) � m6 � 226 � Kr

0 )≪7]≫10 Y new
6 Q6 is changed.

m2 ←− (Y new
6 � Y ≪10

2 )≫15 � Y ≪10
1 � ONX(Y5, Y4, Y

≪10
3 ) � Kr

0

Y7 m11 15 m11 ←− (Y7 � Y ≪10
3 )≫15 � Y ≪10

2 � ONX(Y new
6 , Y5, Y

≪10
4 ) � Kr

0 Y7 Q7 stays the same.

Y8 m4 5 m4 ←− (Y8 � Y ≪10
4 )≫5 � Y ≪10

3 � ONX(Y7, Y
new
6 , Y ≪10

5 ) � Kr
0 Y8 Q8 stays the same.

Y9 m13 7 m13 ←− (Y9 � Y ≪10
5 )≫7 � Y ≪10

4 � ONX(Y8, Y7, Y
new≪10
6 ) � Kr

0 Y9 Q9 stays the same.

Y10 m6 7 m6 ←− m6 � 226 Y10 Q10 is changed.

Y11 m15 8 m15 ←− (Y11 � Y ≪10
7 )≫8 � Y new≪10

6 � ONX(Y10, Y9, Y
≪10
8 ) � Kr

0 Y11 Q11 stays the same.

(Q13 � 0x6ffba800)≪14 = Q≪14
13 � 0xea001bff holds, which is about 2−0.5.

Moreover, if we correct n bits of Y17 by using the strategy as Table 12 displays
and don’t pre-deduce the extra bit conditions, the probability that they are right
corrected is about 2−0.5n, which will have a great effect on the probability to
mount the collision attack on 30-step RIPEMD-160. Therefore, it is significant
to pre-deduce the extra bit conditions to control the characteristics of Qi, which
will improve the time complexity of the message modification.

In order to correct Y23,16, we can change the 7th bit of m5. As displayed in
Table 13, by modifying some message words and adding some extra conditions
on the internal states, Y23,16 can be corrected. For the strategy in Table 13, Y23,16

can be corrected with probability that the equation (Q1 � 27)≪8 = Q≪8
1 � 215

holds, which is 1 − 2−17 ≈ 1. Therefore, we can ignore the influence of this
equation. Sometimes, however, such an equation holds with a low probability,
which is bad for the correcting. In order to eliminate the influence, we can use
the same idea in Sect. 5.1 to pre-deduce some extra bit conditions to control the
characteristics of Qi so that Qi will satisfy such an equation.

In order to correct Y17,3, we can change the 26th bit of m6. Firstly, we
compute a new value of Y6 so that Y10 can stay the same only by adding 226

to m6. Then, a new value of m2 can be obtained. To have Yi (7 ≤ i ≤ 11)
remaining the same, m11, m4, m13, m6, m15 should be accordingly modified. As
for strategy displayed in Table 14, it is because there is no condition on Y6 that
we can choose such a method to correct Y17,3. Since there is no condition on Y3

either, Y18,31 can be corrected by using the similar strategy.
The multi-step message modification is summarized in Table 15. In this table,

we also display some extra bit conditions to control the characteristics of Q1 and
Q4 so that the newly added bit conditions on them for message modification can
be satisfied. Although some of the equations of Q1 and Q4 remain uncontrolled,
they will hold with probability close to 1.
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Table 15. Summarization of the multi-step modification for Yi (17 ≤ i ≤ 23)

Chaining Bits to be corrected (i) Chaining variables used Extra Conditions
variables

Y17 1,2,12,13,14,15,23,24,30,31,21 Y5, Y6, Y7, Y8, Y9, Y10 Y5[i − 19].

Y17 4,5,7,8,9,10,17,18,19,20,26,27,28 Y9, Y10, Y11, Y12, Y13, Y14 Y9[i − 9].

Y17 11,29 Y8, Y9, Y10, Y11, Y12, Y13 Y8[i − 9], Y7,i−19 = 1.

Y17 3 Y6, Y7, Y8, Y9, Y10, Y11

Y18 2,3,5,11,12,13,14,15,18,19,20,28,30 Y2, Y3, Y4, Y5, Y6, Y7 Y2[i − 23].

Y18 0,10,16,21,22,23 Y4, Y5, Y6, Y7, Y8, Y9 Y4[i − 23], Y5,i−13 = 0.

Y18 31 Y3, Y4, Y5, Y6, Y7, Y8

Y19 19 Y15, Y16, Y17, Y18 Y15[16], Y14,6 = 1, Y16,26 = Y17,26.

Y20 0,2,3,7,8,9,10,11,21,24,30 Y1, Y2, Y3, Y4, Y5, Y6 Y1[i − 7], Y0,i−17 = 1.

Y21 7,8,9,13,15,22,23,24,30 Y4, Y5, Y6, Y7, Y8, Y9 Y4[i − 1],
Y4,28 = 1, Y4,27 = 1, Y4,26 = 1, Y0,19 = 0,
Y0,16 = 0,Y4,5 = 1, Y0,28 = 0, Y0,27 = 0.

Y21 6,10,11,12,14,21 Y1, Y2, Y3, Y4, Y5, Y6 Y1[i − 22], Y0,i = 0, Y2,i−12 = 0.

Y22 0,1,2,3,4,5,6,7,8,9, Y8, Y9, Y10, Y11, Y12, Y13 Y8[i − 8], Y7,i−18 = 0.
19,20,21,23,24,25,30,31

Y23 8,9,10,16,31 Y1, Y2, Y3, Y4, Y5, Y6 Y1[i − 1], Y0,i−11 = 0, Y2,i+9 = 1,
Y1,29 = 1, Y−3,20 = 0, Y−3,19 = 0.
Y1,6 = 0, Y−3,29 = 1, Y−3,28 = 1.

Y4,28 = 1, Y4,27 = 1, Y4,26 = 1, Y0,19 = 0, Y0,16 = 0 are used to control: (Q4 � 218)≪11 = Q≪11
4 � 229.

Y4,5 = 1, Y0,28 = 0, Y0,27 = 0 are used to control: (Q4 � 228)≪11 = Q≪11
4 � 27 and (Q4 � 229)≪11 = Q≪11

4 � 28.

Y1,29 = 1, Y−3,20 = 0, Y−3,19 = 0 are used to control: (Q1 � 222)≪8 = Q≪8
1 � 230.

Y1,6 = 0, Y−3,29 = 1, Y−3,28 = 1 are used to control: (Q1 � 231)≪8 = Q≪8
1 � 27.

5.3 Complexity Evaluation

For the left branch, we don’t apply any message modification techniques to it.
By randomly generating message words, we test the probability that the left
branch holds. According to our experiments, the probability is about 2−29.

For the right branch, we can use the message modification techniques to
correct the bits of Yi (17 ≤ i ≤ 23). However, we can’t find a way to correct all
the bits of them, thus leaving 14 bit conditions remaining uncontrolled, i.e., 13
bits of Y19 and 1 bit of Y23. Besides, to ensure Q20 can satisfy its corresponding
equation with probability 1, some extra bit conditions on Y20 and Y16 should
be added. However, it is difficult to have all these newly added bit conditions
hold by using the message modification techniques, which will cause a lower
probability. Therefore, we leave Q20 holding with probability about 2−1. For Qi

(11 ≤ i ≤ 23, i �= 20), by correcting the newly added extra bit conditions, they
will satisfy their corresponding equations with probability 1 or close to 1.

For Yi (24 ≤ i ≤ 30), since it is difficult to correct the 20 bit conditions on
them, we leave them holding probabilistically. In addition, Qi (24 ≤ i ≤ 30)
satisfy their corresponding equations with probability about 2−3. Therefore, the
right branch holds with probability about 2−14−1−20−3 = 2−38.

When applying the message modification techniques, we add 26 bit conditions
on Y0 and 4 bit conditions on Y−3. Therefore, we need to use two message
blocks (M1,M2) to mount the 30-step collision attack. M1 is used to generate
such a hash value that the bit conditions on Y0 and Y−3 have been satisfied
when compressing M2, which costs 226+4 = 230 time. In conclusion, the 30-step
collision attack succeeds with probability of about 2−29−38 = 2−67, and the
time complexity is about 267 + 230 ≈ 267. The implementation of this attack is
available at https://github.com/Crypt-CNS/RIPEMD160-30Step.git.

https://github.com/Crypt-CNS/RIPEMD160-30Step.git
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6 Improved Semi-Free-Start Collision Attack

6.1 36-Step Semi-Free-Start Collision Path

Mendel et al. [11] improved the techniques in [7,10], and used the improved algo-
rithm to find two differential paths of RIPEMD-160. One is a 48-step semi-free-
start collision path, the other is a 36-step semi-free-start collision path. Since we
focus on the semi-free-start collision attack on the first 36-step RIPEMD-160, we
only introduce the 36-step semi-free-start collision path. The differential path is
displayed in Table 16. In order to have a full understanding of our improvement, it
is necessary to briefly introduce the method proposed by Landelle and Peyrin [5].

The main idea of the method can be divided into three steps. Firstly, the
attacker chooses the internal states in both branches and fixes some message
words to ensure the non-linear parts. This step is called find a starting point.

Table 16. 36-step differential path, where m′
7 = m7�24�215�230, and Δmi = 0 (i �=

7, 0 � i � 15). Note that the symbol n represents that a bit changes to 1 from 0, u
represents that a bit changes to 0 from 1, and - represents that the bit value is free.

Xi π1(i)Yi π2(i)
-4 -------- -------- -------- -------- -4 -------- -------- -------- --------
-3 -------- -------- -------- -------- -3 -------- -------- -------- --------
-2 -------- -------- -------- -------- -2 -------- -------- -------- --------
-1 -------- -------- -------- -------- -1 -------- -------- -------- --------
00 -------- -------- -------- -------- 00 00 -------- -------- -------- -------- 05
01 -------- -------- -------- -------- 01 01 --1----- -------- -1------ ----1--- 14
02 -------- -------- -------- -------- 02 02 --0---10 -------- -10----- 0---0--- 07
03 -------- -------- -------- -------- 03 03 ------1n -------- -1n----0 n---0--- 00
04 -------- -------- -------- -------- 04 04 100----n 0-11-n0- -------1 10--n0-- 09
05 -------- -------- -------- -------- 05 05 n1-1---0 0----00n 0-1---00 0---1101 02
06 -------- -------- -------- -------- 06 06 n--10001 11110un- --uuuuuu uu11-1u- 11
07 -------- -------- -------- -------- 07 07 uuu00un- n1u011nn 00000110 1-01-n00 04
08 ------n- uuuuuuuu uuu-nuuu -uuuuuuu 08 08 11u0uu-- 1-u1u0n1 nn-nu-10 0---000u 13
09 --uun-nn -n---nnu nnuu---- ---n--nn 09 09 0-uu011- -01-u000 11000n-n n01--111 06
10 -----n-- unuun-u- u-----nn ----u--- 10 10 --1u1nnn nnn01100 10-0-0-0 0100u1-0 15
11 --n---nu uu--nu-- un-n---- -------- 11 11 0--u-n1n ---1--1u n--n-n-- 100001n- 08
12 -----u-- --n-nnnn nnnnnnnn nnn----- 12 12 10-110-- --n0---0 u1--1--- -0-111-n 01
13 -------- -------- -------- -------- 13 13 1u--0n-u -------- ---1-1u- -10---1- 10
14 -------- -------- -------- -------- 14 14 ----1--- -n-00--0 ----n111 --n1-0-- 03
15 -------- -------- -------- -------- 15 15 -----u-- -1-u0--- ----1--- --u--1-- 12
16 -------- -------- -------- -------- 07 16 -------- -------- -------- ---0---- 06
17 -------- -------- -------- -------- 04 17 -------- -------- -------- ---1---- 11
18 -------- -------- -------- -------- 13 18 -------- -------- -------- -------- 03
19 -------- -------- -------- -------- 01 19 -------- -------- -------- -------- 07
20 -------- -------- -------- -------- 10 20 -------- -------- -------- -------- 00
21 -------- -------- -------- -------- 06 21 -------- -------- -------- -------- 13
22 -------- -------- -------- -------- 15 22 -------- -------- -------- -------- 05
23 -------- -------- -------- -------- 03 23 -------- -------- -------- -------- 10
24 -------- -------- -------- -------- 12 24 -------- -------- -------- -------- 14
25 -------- -------- -------- -------- 00 25 -------- -------- -------- -------- 15
26 -------- -------- -------- -------- 09 26 -------- -------- -------- -------- 08
27 -------- -------- -------- -------- 05 27 -------- -------- -------- -------- 12
28 -------- -------- -------- -------- 02 28 -------- -------- -------- -------- 04
29 -------- -------- -------- -------- 14 29 -------- -------- -------- -------- 09
30 -------- -------- -------- -------- 11 30 -------- -------- -------- -------- 01
31 -------- -------- -------- -------- 08 31 -------- -------- -------- -------- 02
32 -------- -------- -------- -------- 03 32 -------- -------- -------- -------- 15
33 -------- -------- -------- -------- 10 33 -------- -------- -------- -------- 05
34 -------- -------- -------- -------- 14 34 -------- -------- -------- -------- 01
35 -------- -------- -------- -------- 04 35 -------- -------- -------- -------- 03
36 -------- -------- -------- -------- 36 -------- -------- -------- --------
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Secondly, the attacker uses the remaining free message words to merge both
branches to ensure that the chaining variables in both branches are the same by
computing backward from the middle. At last, the rest of the differential path
in both branches are verified probabilistically by computing forward from the
middle.

6.2 Finding a Starting Point

Different from the choice of the message words for merging in [11], we set m3

free at the phase of finding a starting point and use it at the phase of merging.

Table 17. The starting point, where m′
7 = m7�24�215�230,and Δmi = 0.(i �= 7, 0 �

i � 15). Note that the word messages marked in green are all fixed. Those marked in
black are all free while the one marked in red is to be inserted difference in.

Xi π1(i)Yi π2(i)
-4 -------- -------- -------- -------- -4 -------- -------- -------- --------
-3 -------- -------- -------- -------- -3 -------- -------- -------- --------
-2 -------- -------- -------- -------- -2 -------- -------- -------- --------
-1 -------- -------- -------- -------- -1 -------- -------- -------- --------
00 -------- -------- -------- -------- 00 00 -------- -------- -------- -------- 05
01 -------- -------- -------- -------- 01 01 --1----- -------- -1------ ----1--- 14
02 -------- -------- -------- -------- 02 02 10000010 11111100 01000110 00110000 07
03 -------- -------- -------- -------- 03 03 0111101n 11000000 01n10010 n0100001 00
04 -------- -------- -------- -------- 04 04 1001110n 00110n01 01100011 1001n000 09
05 -------- -------- -------- -------- 05 05 n1010110 0111000n 00110000 01111101 02
06 11011100 10101101 01110010 01011001 06 06 n0010001 11110un1 00uuuuuu uu1111u1 11
07 01001101 01110100 11010011 11101011 07 07 uuu00un1 n1u011nn 00000110 11011n00 04
08 001100n0 uuuuuuuu uuu1nuuu 1uuuuuuu 08 08 11u0uu11 10u1u0n1 nn0nu110 0010000u 13
09 00uun0nn 1n110nnu nnuu1011 001n10nn 09 09 01uu0111 0011u000 11000n0n n0100111 06
10 10110n11 unuun0u0 u00100nn 1100u011 10 10 011u1nnn nnn01100 10000000 0100u110 15
11 10n101nu uu11nu10 un1n0100 01011100 11 11 011u1n1n 1011011u n00n1n11 100001n1 08
12 00011u00 11n1nnnn nnnnnnnn nnn01101 12 12 10011010 11n00110 u1011000 0001111n 01
13 11111000 01111111 01000011 00010100 13 13 1u100n0u 11110100 000111u0 01010111 10
14 10010011 00110110 11101010 00010010 14 14 01001000 1n000110 0000n111 11n10000 03
15 -------- -------- -------- -------- 15 15 -----u-- -1-u0--- ----1--- --u--1-- 12
16 -------- -------- -------- -------- 07 16 -------- -------- -------- ---0---- 06
17 -------- -------- -------- -------- 04 17 -------- -------- -------- ---1---- 11
18 -------- -------- -------- -------- 13 18 -------- -------- -------- -------- 03
19 -------- -------- -------- -------- 01 19 -------- -------- -------- -------- 07
20 -------- -------- -------- -------- 10 20 -------- -------- -------- -------- 00
21 -------- -------- -------- -------- 06 21 -------- -------- -------- -------- 13
22 -------- -------- -------- -------- 15 22 -------- -------- -------- -------- 05
23 -------- -------- -------- -------- 03 23 -------- -------- -------- -------- 10
24 -------- -------- -------- -------- 12 24 -------- -------- -------- -------- 14
25 -------- -------- -------- -------- 00 25 -------- -------- -------- -------- 15
26 -------- -------- -------- -------- 09 26 -------- -------- -------- -------- 08
27 -------- -------- -------- -------- 05 27 -------- -------- -------- -------- 12
28 -------- -------- -------- -------- 02 28 -------- -------- -------- -------- 04
29 -------- -------- -------- -------- 14 29 -------- -------- -------- -------- 09
30 -------- -------- -------- -------- 11 30 -------- -------- -------- -------- 01
31 -------- -------- -------- -------- 08 31 -------- -------- -------- -------- 02
32 -------- -------- -------- -------- 03 32 -------- -------- -------- -------- 15
33 -------- -------- -------- -------- 10 33 -------- -------- -------- -------- 05
34 -------- -------- -------- -------- 14 34 -------- -------- -------- -------- 01
35 -------- -------- -------- -------- 04 35 -------- -------- -------- -------- 03
36 -------- -------- -------- -------- 36 -------- -------- -------- --------

Message Words m0 m1 m2 m3 m4 m5 m6 m7
Value * 0x67dbd0a9 * * 0x5cd30b65 * 0x651c397d *

Message Words m8 m9 m10 m11 m12 m13 m14 m15
Value 0x050ff865 * 0xa9f94c09 0x509bf856 0x0588c327 0x86671566 * 0xc3349b51
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In this way, we can improve the successful probability of merging. However, the
right branch is not fully satisfied any more, thus resulting in an uncontrolled
probability in the right branch.

According to the characteristics of Q15 displayed in Table 4, we observe that
[Q15]31 = 0. According to Table 5, we can find that if Y11,0 = 1, Y11,29 = 1,
Y11,30 = 1 are satisfied at the phase of finding a starting point, Y15,11 = 1 will
hold with a much higher probability, thus improving the uncontrolled probability
in the right branch.

By adding three more bit conditions on Y11,0, Y11,29, Y11,30 and setting m3

free, using the technique for finding a starting point in [11], we obtain a new
starting point displayed in Table 17.

6.3 Probability Neglected While Computing Backward

Based on the differential path in Table 16, we know that ΔX5 = 0, ΔX4 = 0,
ΔX3 = 0, ΔY1 = 0, ΔY0 = 0, ΔY−1 = 0, ΔY−2 = 0 while ΔX8 �= 0, ΔX9 �= 0,
ΔY3 �= 0, ΔY4 �= 0, ΔY5 �= 0. At the phase of finding a starting point, ΔX5 =
0 and ΔY1 = 0 have been satisfied. However, for the original algorithm [11]
to merge both branches, the conditions that ΔX4 = 0, ΔX3 = 0, ΔY0 = 0,
ΔY−1 = 0, ΔY−2 = 0 have been neglected. We define the probability of these
conditions as neglected probability.

According to the conditions ΔX4 = 0, ΔX3 = 0, ΔY0 = 0, ΔY−1 = 0 and
ΔY−2 = 0, we can get the following equations:

0 = (X
′
9 � X≪10

5 )≫11 � (X9 � X≪10
5 )≫11 � (XOR(X ′

8,X
′
7,X

′≪10
6 )

�XOR(X8,X7,X
≪10
6 )),

0 = (X
′
8 � X≪10

4 )≫9 � (X8 � X≪10
4 )≫9 � (m′

7 � m7),

0 = (Y
′
5 � Y ≪10

1 )≫13 � (Y5 � Y ≪10
1 )≫13 � (ONX (Y

′
4 , Y

′
3 , Y ≪10

2 )
�ONX (Y4, Y3, Y

≪10
2 )),

0 = (Y
′
4 � Y ≪10

0 )≫11 � (Y4 � Y ≪10
0 )≫11 � (ONX (Y

′
3 , Y2, Y

≪10
1 )

�ONX (Y3, Y2, Y
≪10
1 )),

0 = (Y
′
3 � Y ≪10

−1 )≫9 � (Y3 � Y ≪10
−1 )≫9 � (m′

7 � m7).

Observing the five equations above, it is easy to find that there are some simi-
larities between them. Therefore, we can change the problem of calculating the
probability that the five equations hold into calculating the probability that
T satisfies (T � C0)≫S = T≫S � C1. Let T ′ = T≫S , the equation becomes
T ′≪S � C0 = (T ′ � C1)≪S , whose probability can be calculated as introduced
before.

For equation (X
′
9�X≪10

5 )≫11�(X9�X≪10
5 )≫11�(XOR(X ′

8,X
′
7,X

′≪10
6 )�

XOR(X8,X7,X
≪10
6 )) = 0, X ′

9 � X9 = 0xdb459013, XOR(X ′
8,X

′
7,X

′≪10
6 ) �

XOR(X8,X7,X
≪10
6 ) = 0x25b68b3, C0 = 0xdb459013 � 0 = 0xdb459013,

C1 = 0x25b68b3. Therefore, P (ΔX4 = 0) = P (T≪11 � 0xdb459013 =
(T � 0x25b68b3)≪11) ≈ 2−11.7. In the same way, we can obtain that
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P (ΔX3 = 0) = P (T≪9 � 0x1002081 = (T � 0x40008010)≪9) ≈ 2−8.4,

P (ΔY0 = 0) = P (T≪13 � 0x80010000 = (T � 0xfffc0008)≪13) =≈ 2−1,

P (ΔY−1 = 0) = P (T≪11 � 0x1040008 = (T � 0x1002080)≪11) ≈ 1,

P (ΔY−2 = 0) = P (T≪9 � 0x1002080 = (T � 0x40008010)≪9) ≈ 2−0.4.

Therefore, the negelected probability is 2−11.7−8.4−1−0.4 = 2−21.5. In order to
eliminate the influence of the negelected probability at the phase of merging, for
a given starting point, we can pre-compute the valid m9 that makes ΔX4 = 0 and
ΔX3 = 0 satisfied, which costs 232 time and about 232×P (ΔX4 = 0)×P (ΔX3 =
0) = 232−11.7−8.4 = 212.9 memory. Then, at the phase of merging, given one
valid m9, we can firstly compute and store the valid m2 that makes Y1,3 = 1,
Y1,14 = 1, Y1,29 = 1, ΔY0 = 0 and ΔY−1 = 0 satisfied, which costs 229 time
and about 229 × P (ΔY0 = 0) × P (ΔY1 = 0) = 228 memory. After choosing the
valid m9 and m2, only the condition ΔY−2 = 0 has an influence on the merging,
whose probability is P (ΔY−2 = 0) ≈ 2−0.4.

6.4 Merging both Branches with m0,m2,m3,m5,m7,m9,m14

At the merging phase, our target is to use the remaining free message words to
obtain a perfect match on the values of the five initial chaining variables of both
branches. Our procedure of merging is detailed as below.

Step 1: Choose a valid value of m9, then compute until X4 in the left branch. Fix
Y1,3 = 1, Y1,14 = 1, Y1,29 = 1 and exhaust all the 229 possible values of
Y1. Then compute and store the valid m2 that makes ΔY0 = 0, ΔY1 = 0
satisfied. We denote the valid number of m2 by V NUM and define the
array that stores the valid m2 as V ALIDM2[].

Step 2: Set random values to m7, then compute until X2 in the left branch.
Step 3: Set m2 = V ALIDM2[index] (initialize index as 0), Y1 and Y0 can be

computed based on the following equation. If index becomes V NUM
again, goto Step 2.

Y ≪10
1 = (Y6 � Y ≪10

2 )≫15 � (ONX(Y5, Y4, Y
≪10
3 ) � m2 � Kr

0),
Y ≪10
0 = (Y5 � Y ≪10

1 )≫13 � (XOR(Y4, Y3, Y
≪10
2 ) � m9 � Kr

0).

Step 4: Since X0 = Y0 and we have obtained the value of Y0 at Step 3, we can
compute X0, X1 and m5 as follows. X0 = Y0, X≪10

1 = X5 � (X≪10
0 �

ONX(X4,X3,X
≪10
2 )�m4�Kl

0)
≪5, m5 = (X6�X≪10

2 )≫8�(X≪10
1 �

ONX(X5,X4,X
≪10
3 ) � Kl

0).
Step 5: We can use the conditions X−1 = Y−1 and X−2 = Y−2 to construct an

equation system of m0 and m3. Observe the step functions:

X≪10
−1 = (X4 � X≪10

0 )≫12 � (XOR(X3,X2,X
≪10
1 ) � m3 � Kl

0),

X≪10
−2 = (X3 � X≪10

−1 )≫15 � (XOR(X2,X1,X
≪10
0 ) � m2 � Kl

0),

Y ≪10
−1 = (Y4 � Y ≪10

0 )≫11 � (ONX(Y3, Y2, Y
≪10
1 ) � m0 � Kr

0),

Y ≪10
−2 = (Y3 � Y ≪10

−1 )≫9 � (ONX(Y2, Y1, Y
≪10
0 ) � m7 � Kr

0).
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Let A = (X4 � X≪10
0 )≫12 � (XOR(X3,X2,X

≪10
1 ) � Kl

0), B = (Y4 �
Y ≪10
0 )≫11�(ONX(Y3, Y2, Y

≪10
1 )�Kr

0), C = XOR(X2,X1,X
≪10
0 )�

m2 � Kl
0, D = ONX(Y2, Y1, Y

≪10
0 ) � m7 � Kr

0 , T ′ = X3 � A � m3,
T = T ′≫15, C0 = Y3 � X3, C1 = D � C. According to the condition
X−1 = Y−1, we can obtain one equation: A � m3 = B � m0. According
to the condition X−2 = Y−2, we can obtain another equation: T≪15 �
C0 = (T � C1)≪9. As introduced before, we can obtain its solutions by
22 computations on average. If there is no solution, goto Step 3. It is
essential that all solutions should be taken into consideration since there
may be more than one solution to the equation T≪15�C0 = (T�C1)≪9.

Step 6: Compute X−1 and Y−1 by m3. Since ΔY−2 = 0 holds with probability, we
have to check whether Y−1 satisfies the equation 0 = (Y

′
3 �Y ≪10

−1 )≫9 �
(Y3 � Y ≪10

−1 )≫9 � (m′
7 � m7). If this equation doesn’t hold for all pairs

of (m0, m3), goto Step 3.
Step 7: Compute X−2, Y−2, X−3, Y−3 and m14.
Step 8: This is the uncontrolled part of merging. At this point, all freedom degree

have been used and the last condition X−4 = Y−4 will hold with proba-
bility 2−32.

Verification. We have verified the merging phase by implementation. Based on
the starting point in Table 17, we choose a valid value of m9 = 0x471fba32,
and the number of the corresponding valid m2 is 0xfcf2100. The following is
an instance obtained by carrying out the merging phase.

m0 = 0x678c8c36,m2 = 0x5293b823,m3 = 0xd90c1aa9,m5 = 0x13d3dff6,

m7 = 0x794a60c6,m14 = 0xee8e443e, Y−4 = 0xd055ce6, Y−3 = 0xdf979ac7,

Y−2 = 0xae4836b3, Y−1 = 0x57b6f5fb, Y0 = 0x6b9ec934.

6.5 Uncontrolled Probability

Firstly, we give the theoretical calculation of the uncontrolled probability of the
left branch.

P (ΔX15 = 0) = P (T ≪9 � 0xf0bfff7f = (T � 0x7f785fff)≪9)

= (2−1 + 2−2 + 2−3 + 2−4 + 2−9 + Σ23
i=112

−i) × (1 − 2−1 − Σ9
i=32

−i)

=
0x3ca85f7f

232
≈ 2−2.1,

P (ΔX16 = 0) = P (T ≪8 � 0x40008010 = (T � 0xf400081)≪8)

= 2−4 × (2−2 + 2−17 + 2−24)

=
0x4000810

232
≈ 2−6.

Therefore, the theoretical value of the uncontrolled probability of the left branch
is about 2−2.1−6 = 2−8.1.

Secondly, we use our method to evaluate the uncontrolled probability of the
right branch. Since we add three bit conditions on Y11 at the phase of finding a
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starting point, it is necessary to fix the values of the three bits before calculation.
Then, we obtain that the probability that the modular difference of Y15 and the
seven bit conditions (as showed in Table 16) on Y15 hold is about 2−7.6. The
probability that the modular difference of Y16 and the one bit condition (as
showed in Table 16) on Y16 hold is about 2−2. The probability that the modular
difference of Y17 and the one bit condition (as showed in Table 16) on Y17 hold is
about 2−2. The probability that the modular difference of Y18 holds is about 1.
The probability that the modular difference of Y19 holds is about 2−0.4. Besides,
there are five more bit conditions on Y15, Y16 and Y17, which are Y15,0 = Y16,0,
Y15,15 = Y16,15, Y15,21 = Y16,21, Y16,15 = Y17,15 and Y16,30 = Y17,30. Therefore,
with our method to calculate the step differential probability, the uncontrolled
probability of the right branch is about 2−7.6−2−2−0.4−5 ≈ 2−17.

Then, we consider the uncontrolled probability of both branches for a specific
starting point in Table 17. We can calculate the uncontrolled probability of the
left branch in this way: exhaust all 232 possible values of m14 and count the
number of m14 which makes ΔX15 = 0 and ΔX16 = 0 satisfied. According to
the experiment, the valid number of m14 is 0x1020000 and thus the uncontrolled
probability of the left branch is about 2−8. For the uncontrolled probability of
the right branch, we can exhaust all 232 possible values of m3 and count the
number of m3 which makes the conditions on Y15, Y16, Y17, Y18, Y19 satisfied.
According to the experiment, the valid number of m3 is 0x9f64 and thus the
uncontrolled probability of the right branch is about 2−16.68. We have to stress
this is the uncontrolled probability of both branches for a specific starting point.
Comparing this result with the theoretical value, we observe that they are almost
the same, which implies that our method to theoretically calculate the step
differential probability is reliable.

Moreover, during the merging phase, we can not control the value matching
on the first IV word, and it adds another factor 2−32. Since the expected value
of the number of the solution to T≪S0 �C0 = (T �C1)≪S1 is 1, its influence on
the probability can be ignored. What’s more, Y ′

−2 = Y−2 holds with probability
2−0.4. Therefore, the total uncontrolled probability is 2−32−8.1−17−0.4 = 2−57.5,
which is much higher than the original one 2−72.6. Given a starting point, the
degree of freedom left is 32+28+12=72 since m7, m2, m9 can take 232, 228,
212 possible values respectively. Besides, we can generate many staring points
to mount the semi-free-start collision attack on the first 36-step RIPEMD-160.
Therefore, the degree of freedom is enough.

6.6 Complexity Evaluation

Firstly, we consider the complexity of the merging phase. Based on the fact that
X−4 = Y−4 holds with probability 2−32, Y ′

−2 = Y−2 holds with probability 2−0.4,
and the expectation of the number of the solution to T≪S0 �C0 = (T �C1)≪S1

is 1, we can give an estimation of the running times of each step at the merging
phase. We estimate that Step 7 to Step 8 will run for 232 times, Step 6 will run
for 232+0.4 = 232.4 times, Step 3 to Step 5 will run for 232+0.4 = 232.4 times,
Step 2 will run for 232.4−28 = 24.4 times, Step 1 will run for only one time.
Since Step 2 contains about 2-step computation of the step function, Step 3 to
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Step 5 contains about (8+22=12)-step computation of the step function, Step 6
contains about 2-step computation of the step function, and Step 7-8 contains
5-step computations of the step function, we estimate the complexity of the
merging phase as 24.4 × 2/72 + 232.4 × 12/72 + 232.4 × 2/72 + 232 × 5/72 ≈ 230.
Taking the uncontrolled probability of both branches into consideration, the
complexity becomes 230+17+8.1 = 255.1.

Next, we consider the memory complexity of the merging phase. Given a
valid m9, computing the valid values of m2 and storing the results costs 229 time
and 228 memory. At the pre-computing phase, pre-computing the valid values
of m9 and storing the results costs 232 time and 212.9 memory. In addition, pre-
computing the equation T≪15 � C0 = T≪9 costs 232 time and 232 memory.
Since the probability of the 36-semi-free-start collision attack is 2−57.5, one valid
m9 is enough for the improved attack. Therefore, at the merging phase, the
memory complexity is 232 + 228. Since the time complexity of computing valid
m2, m9 and pre-computing the equation is much smaller than 255.1, it can be
ignored. In summary, the time complexity of the semi-free-start collision attack
on RIPEMD-160 reduced to 36 steps is 255.1 and the memory requirements are
232+228+212.9 ≈ 232. The implementation of this attack is available at https://
github.com/Crypt-CNS/RIPEMD160-36Step.git.

7 Conclusion

In this paper, we propose a feasible method to theoretically calculate the step
differential probability, which was stated as an open problem at ASIACRYPT
2013. Besides, we propose a method to reduce the time complexity and memory
complexity to pre-compute the equation T≪S0 � C0 = (T � C1)≪S1 . Based on
our analysis of the expectation of the number of the solutions to this equation,
we conclude that our new way to obtain the solutions only costs four times of
checking. In addition, we construct a differential path where the left branch is
sparse and the right branch is controlled as sparse as possible. Using the message
modification techniques and deducing some extra bit conditions based on the
equation that Qi has to satisfy, it is possible to mount a 30-step collision attack
on RIPEMD-160 with probability about 2−67. What’s more, based on the 36-step
differential path found by Mendel et al., we take a different strategy to choose
the message words for merging. In this way, we improve the time complexity
of the semi-free-start attack on the first 36-step RIPEMD-160. Compared with
the best analytical result of this attack on RIPEMD-160, we reduce the time
complexity from 270.4 to 255.1. Moreover, our improvement also brings us some
insights into the choice of message words for merging. Therefore, the message
words for merging should be determined with care, which will make a difference.
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Abstract. Linear cryptanalysis of DES, proposed by Matsui in 1993,
has had a seminal impact on symmetric-key cryptography, having seen
massive research efforts over the past two decades. It has spawned many
variants, including multidimensional and zero-correlation linear crypt-
analysis. These variants can claim best attacks on several ciphers, includ-
ing present, Serpent, and CLEFIA. For DES, none of these variants
have improved upon Matsui’s original linear cryptanalysis, which has
been the best known-plaintext key-recovery attack on the cipher ever
since. In a revisit, Junod concluded that when using 243 known plain-
texts, this attack has a complexity of 241 DES evaluations. His analysis
relies on the standard assumptions of right-key equivalence and wrong-
key randomisation.

In this paper, we first investigate the validity of these fundamental
assumptions when applied to DES. For the right key, we observe that
strong linear approximations of DES have more than just one dominant
trail and, thus, that the right keys are in fact inequivalent with respect
to linear correlation. We therefore develop a new right-key model using
Gaussian mixtures for approximations with several dominant trails. For
the wrong key, we observe that the correlation of a strong approxima-
tion after the partial decryption with a wrong key still shows much non-
randomness. To remedy this, we propose a novel wrong-key model that
expresses the wrong-key linear correlation using a version of DES with
more rounds. We extend the two models to the general case of multiple
approximations, propose a likelihood-ratio classifier based on this gener-
alisation, and show that it performs better than the classical Bayesian
classifier.

On the practical side, we find that the distributions of right-key cor-
relations for multiple linear approximations of DES exhibit exploitable
asymmetries. In particular, not all sign combinations in the correlation
values are possible. This results in our improved multiple linear attack on
DES using 4 linear approximations at a time. The lowest computational
complexity of 238.86 DES evaluations is achieved when using 242.78 known
plaintexts. Alternatively, using 241 plaintexts results in a computational
complexity of 249.75 DES evaluations. We perform practical experiments
to confirm our model. To our knowledge, this is the best attack on DES.

Keywords: Linear cryptanalysis · DES · Mixture models · Right-key
equivalence · Wrong-key randomisation · Linear hull · Multiple linear
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1 Introduction

Accepted as a standard in 1976 by the National Bureau of Standards (later
NIST), DES can now celebrate its fortieth birthday. Being a highly influential
cipher, it has inspired much cryptanalysis. Triple-DES is still massively deployed
in conservative industries such as banking. Moreover, it is used to secure about
3% of Internet traffic [1].

The first attack on the full DES came in 1992, where Biham and Shamir
demonstrated that differential cryptanalysis enabled a key recovery using 247

chosen plaintexts in time 237 [2]. The year after, in 1993, Matsui introduced a
new cryptanalytic technique, linear cryptanalysis, which DES proved especially
susceptible to. While the first iteration of the attack required 247 known plain-
texts [21], Matsui soon improved his attack to only require 243 known texts,
taking 243 time to recover the key. This complexity estimate was lowered to 241

by Junod in [17]. In [18], Knudsen and Mathiassen lower the complexity to 242

plaintexts, however this attack uses chosen plaintexts.
In this paper we present the first successful attack on full DES using multiple

linear approximations. By developing new models for the correlation distribu-
tions, and by exploiting asymmetries in the right-key distribution, we obtain an
improved key-recovery attack. Using 242.78 known plaintexts, the attack recovers
the key in time equal to 238.86 DES encryptions.

1.1 Previous Work and Problems

Linear cryptanalysis has proven to be widely applicable, and has spawned many
variants and generalisations. Amongst them are differential-linear cryptanaly-
sis [19], multiple linear cryptanalysis [3,16], multidimensional linear cryptanaly-
sis [14,15], zero-correlation linear cryptanalysis [5,6], multivariate linear crypt-
analysis [8], etc. These techniques have successfully been applied to a wide range
of ciphers, including Serpent [14,23], present [8,9], Camellia and CLEFIA [4],
and CAST-256 [27].

Matsui first introduced the concept of a linear approximation of a block
cipher in [21]. If we denote the encryption of a plaintext P using key K by
C = EK(P), then a linear approximation of this cipher is a pair of masks, (α, β),
which indicate some bits of the plaintext and ciphertext. The idea is to find α
and β such that the sum of plaintext bits indicated by α is strongly correlated to
the sum of ciphertext bits indicated by β. A measure of the strength of a linear
approximation is the linear correlation, defined by

CK(α, β) = 2 · Pr(〈α, x〉 ⊕ 〈β,EK(x)〉 = 0) − 1,

where 〈·, ·〉 is the canonical inner product. Matsui showed how an approximation
with linear correlation that deviates significantly from zero can be used to attack
the cipher, and found such approximations for DES. The attack procedure was
formalised as Algorithm 2, in which an attacker obtains plaintext-ciphertext pairs
over r rounds of a cipher. The attacker then guesses the outer round keys in
order to encrypt/decrypt the outer rounds, and compute the correlation over
r − 2 rounds.
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Standard assumptions for linear cryptanalysis on DES. In [17] Junod
revisited Matsui’s attack, and concluded that Matsui’s original complexity was
slightly overestimated. Junod instead estimated that the attack could be per-
formed in time 241 using the same number of known plaintexts. Central to both
Matui’s and Junod’s analysis are two assumptions.

Assumption A (Right-Key Equivalence). For a linear approximation
(α, β), the magnitude of the correlation, |CK(α, β)|, does not deviate significantly
from its expected value over all keys, that is, |CK(α, β)| = E(|CK(α, β)|).
Problem 1: Insufficient Right-Key Distribution: The assumption of right-key
equivalence is usually the result of assuming that the magnitude of the linear
correlation is determined by a single dominant trail. This further implies that
the linear correlation only takes on two values over the key space. However, in
[24], Nyberg first introduced the concept of a linear hull, i.e. the collection of
all trails of a linear approximation, and showed that AssumptionA is not true
in general. In [7], Bogdanov and Tischhauser gave a refined version of Assump-
tion A, which takes a larger part of the hull into account. However, to the best of
our knowledge, no thorough exploration of the right-key distribution for DES has
been conducted, and it is unclear how accurate AssumptionA is in this context.

Assumption B (Wrong-Key Randomisation). In the context of Algo-
rithm 2, the correlation of a linear approximation (α, β) is equal to 0 for all
wrong guesses of the outer round keys.

Problem 2: Unrealistic Wrong-Key Distribution: The assumption of wrong-key
randomisation implies that if an attacker guesses the wrong outer round keys in
Algorithm 2, the resulting texts pairs behave in a completely random way, i.e.
the linear correlation will be equal to zero. A refined version of this assumption
was given by Bogdanov and Tischhauser in [7], where the wrong-key distribution
was given as the Gaussian distribution N (0, 2−n), where n is the block size. This
distribution matches that of an ideal permutation. Neither of these assumptions
have been verified for DES. Indeed, DES exhibits very strong linear approxima-
tions, and it is not clear if a wrong key guess is sufficient to make the linear
correlation close to that of an ideal permutation.

Linear cryptanalysis of DES with multiple approximations. While sev-
eral models for using multiple approximations for linear cryptanalysis have been
proposed, see e.g. [3,8,14–16,26], the application to DES has been very limited.
In [16], Kaliski and Robshaw specifically note that their approach is limited when
applied to DES. In [26], Semaev presents an alternative approach, but does not
obtain better results than Matsui’s original attack.

The most promising attempt was given in [3] by Biryukov et al. Under
Assumption A, when using M approximations, the key space can be partitioned
into at most 2M key classes based on the signs of the M linear correlations.
This allowed Biyukov et al. to describe the correlation of each key class as an
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M -variate normal distribution NM (μi, 1/N · I), where I is an M × M identity
matrix, and the mean vector is given by

μi = (si,1|CK(T1)|, . . . , si,M |CK(TM )|)�,

where si,j ∈ {−1, 1} describes the sign combination of the i’th key class. Based
on this, they developed a Bayesian classifier, in order to decide between a correct
or incorrect guess of the round keys in Algorithm2.

Problem 3: Applying Multiple Linear Cryptanalysis to DES: While Biryukov et
al. demonstrate that their method of using multiple approximations can poten-
tially reduce the complexity of Matsui’s attack, they also note that the structure
of DES makes it difficult to arbitrarily use a large number of approximations.
As such, they did not present a new attack on DES. Similar observations were
made by Kaliski and Robshaw in [16]. To the best of our knowledge, no other
variants of linear cryptanalysis which uses multiple approximations have been
able to outperform Matsui’s original attack.

1.2 Our Contributions

More Accurate Right-Key Model for DES. In Sect. 3 we consider Problem
1, i.e. the fundamental problem of the DES right-key distribution. We enumer-
ated over 1000 trails for the linear approximation used by Matsui, and calcu-
lated the resulting correlation distribution for 1 million keys. We demonstrate
in Sect. 3.2 that while this distribution does have two modes symmetric around
zero, each mode does not consist of a single value, as predicted by AssumptionA.
Indeed, it is not even the case that each mode takes on a simple Gaussian distri-
bution. As such, one cannot consider different keys to have equivalent behaviour.

We therefore develop a new model for the right-key distribution in Sect. 3.3.
This model is given below, and expresses the distribution as a mixture of
Gaussian components. An example of this model applied to DES is shown in
Fig. 1.

Model A (Right-Key Equivalence for One Approximation). Consider a
linear approximation (α, β) of r rounds of DES. The distribution of the linear
correlation CK(α, β) over the key space is approximately given by a Gaussian
mixture for some weights λi and components N (μi, σ

2
i ), i = 1, . . . , �.

Applying this model to the approximations used by Matsui, we show that it is
able to accurately describe the observed distribution. Moreover, it is interesting
to note that the component associated with the dominant trail only accounts
for 30% of the correlation, contrasting Assumption A. We furthermore apply the
mixture model to describe the full correlation distribution observed during an
attack. We note that when the number of texts used in the attack is small,
the right-key distribution originally given by Matsui is a good approximation.
However, we stress that the cryptanalyst should carefully examine the right-key
distribution when this is not the case.



Linear Cryptanalysis of DES with Asymmetries 191

D
en

si
ty

Linear Correlation

D
en

si
ty

Linear Correlation

Fig. 1. Our new models for the distributions of linear correlation over the key space
for DES. The distributions are expressed as Gaussian mixtures. The model shows
a deviation from the standard assumptions of right-key equivalence and wrong-key
randomisation.

New Wrong-Key Model for DES. In Sect. 4 we consider Problem 2. In order
to obtain a wrong-key model that more accurately describes the case of a wrong
key guess in Algorithm 2, we propose the following new approach.

Model B (Non-random Wrong-Key Distribution). Consider an Algo-
rithm2 style attack on r rounds of DES using a linear approximation (α, β)
over r − 2 rounds. Let RK be the keyed round function of DES, and let E�

K

denote the r-round encryption function. For a wrong guess of the outer round
keys, the correlation will be distributed as for the cipher

E′
K(x) = R−1

Ka
(E�

K(R−1
Kb

(x))), (1)

where Ka and Kb are chosen uniformly at random.

This model accurately matches the situation of guessing the wrong outer
round keys in an Algorithm2 attack. We enumerated over 900 trails for the lin-
ear approximation used by Matsui for the cipher E′, and calculated the resulting
correlation distribution for 1 million keys. The result is shown in Fig. 1. While
the distribution has mean zero, the shape of the distribution does not match
Assumption B, nor that of the revised version by Bogdanov and Tischhauser,
as its variance is much larger than 2−n. As is the case for the right-key dis-
tribution, the wrong-key distribution is also not a simple Gaussian, but rather
some Gaussian mixture. Again, for low data complexities, we demonstrate that
a Gaussian model is sufficient to describe the wrong-key distribution observed
during an attack, but advise caution when the data complexity is close to full
codebook.

Multiple Linear Cryptanalysis with Asymmetries. In Sects. 5 and 6 we
remedy Problem 3. We develop a classifier for M approximations based on the
likelihood-ratio of the right-key and wrong-key distributions developed in Sects. 3
and 4. This classifier is given by
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Fig. 2. An illustration of the difference between a symmetric and an asymmetric joint
distribution of linear correlation for two approximations over the key space. The right-
key distribution is blue, while the wrong-key distribution is red. (Color figure online)

Λ(x) =
∑�

i=1 λiφM (x;μi,Σi + (2−n + 1/N)I)
φM (x;0,ΣW + (2−n + 1/N)I)

,

where φ is the probability density function (PDF) of the Gaussian distribution.
The wrong-key distribution is a simple M -variate Gaussian. The right-key dis-
tribution is a mixture of at most 2M , M -variate components based on the signs
of the M correlations. In contracts to the work in [3], we do not partition the key
space, but express the correlation distribution over the entire key space. Also
in contrast to this work, our classifier directly takes the wrong-key distribution
into account. We demonstrate how this improves the classifier.

We make the interesting observation that if the right-key distribution is asym-
metric, that is, if the number of components is less than 2M , we obtain a stronger
classifier. This situation is demonstrated in Fig. 2. From this example, one can
get an intuitive understanding of how an asymmetric distribution makes it easier
to distinguish between right-key and wrong-key. We therefore propose the term
symmetry factor, namely the ratio between number of components and 2M , and
conjecture that a lower symmetry factor will result in a stronger attack.

First Successful Multiple Linear Cryptanalysis of DES. By using the
asymmetric classifier in Sect. 6, we give the first attack on full DES using multi-
ple linear approximations which improves Matsui’s original attack. We use two
sets of four linear approximations. Using 242.78 known plaintexts, the attack
recovers the key in time equal to 238.86 encryptions, with a success probabil-
ity of 85%. This is 4.4 times faster than Junod’s estimate of Matsui’s attack,
and uses 240.2 fewer texts. We confirm these results by measuring the actual
correlation distributions using this number of texts for 1300 random keys, and
computing the resulting advantage of our classifier. We find that the model fits
our practical results very well. Alternatively, we can lower the data complexity
to 241, and recover the key in time 249.76, with a success probability of 80%. Our
attack is compared to previous attacks on full DES in Table 1.
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Table 1. Comparison of key-recovery attacks on full DES.

Technique Data
complexity

Time
complexity

Success
probability

Attack
scenario

Source

Differential 247.00 237.00 58% Chosen
plaintext

[2]

Linear 243.00 243.00 85% Known
plaintext

[22]

Linear 243.00 241.00 85% Known
plaintext

[17]

Multiple linear 242.78 238.86 85% Known
plaintext

Sect. 6

Multiple linear 241.00 249.76 80% Known
plaintext

Sect. 6

2 Linear Cryptanalysis of DES

In 1993, Matsui introduced the concept of linear cryptanalysis and applied it to
derive a key-recovery attack on the full 16-round DES [21,22]. In this section, we
briefly outline the attack. We then give an overview of the assumptions Matsui
made in his analysis, and show the resulting complexity of the attack. Moreover,
we show a variant of linear cryptanalysis due to Biryukov et al. [3], which will
be important for the remaining part of this work.

2.1 Basics of Linear Cryptanalysis

We consider a block cipher with block length n and key length κ. We denote the
encryption of plaintext P ∈ F

n
2 under key K ∈ F

κ
2 by EK(P). The idea of linear

cryptanalysis is to find a linear approximation (α, β) ∈ F
n
2 × F

n
2 such that the

magnitude of its linear correlation, defined by

CK(α, β) = 2 · Pr(〈α, x〉 ⊕ 〈β,EK(x)〉 = 0) − 1,

is large. Here, 〈·, ·〉 denotes the canonical inner product on F
n
2 . Thus, the corre-

lation is a measure of how often the parity bit 〈α,P〉 of the plaintext is equal to
the parity bit 〈β, C〉 of the ciphertext. We expect a strong cipher to only have
approximations with linear correlation close to 0, and hence a correlation value
that deviates significantly from 0 indicates a weakness of the cipher.

For Feistel ciphers, such as DES, the linear correlation of an approximation
(α, β) can be calculated by considering so called linear trails of the cipher. We
define a single-round linear trail of DES as the triple (u, t, v) ∈ F

n
2 × F

m
2 × F

n
2 ,

where m is the size of a single round key. The linear correlation of this single-
round trail is then defined as

CKr
(u, t, v) = 2 · Pr(〈u, x〉 ⊕ 〈v,RKr

(x)〉 = 〈t,Kr〉) − 1,
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where RKr
is the DES round-function using the r’th round key Kr. We now

define a linear trail T over r rounds as a collection of single-round trails
(ui, ti, ui+1), i = 0, . . . , r − 1, as well as the correlation contribution of the trail
T as [11,12] CK(T ) =

∏r−1
i=0 CKi

(ui, ti, ui+1). We will also make use of the con-
cept of an associated key trail T̄ of a trail T . The key trail is defined as the
concatenation of the ti, i = 0, . . . , r − 1.

Daemen and Rijmen demonstrated that the correlation contribution of a trail
can be written as [11,12]

CK(T ) = (−1)sT ⊕〈T̄ ,K̄〉|CK(T )|, (2)

where sT is a sign bit specific to the trail T , and K̄ denotes the concatenation
of the round keys Ki. Moreover, under the assumption of independent round
keys, |CK(T )| is independent of the key. Thus, the correlation contribution of
a trail T has a fixed magnitude for all keys, but the sign is determined by the
round key bits indicated by the key trail T̄ . Finally, Daemen and Rijmen give
the correlation over all r rounds for some approximation (α, β) as [11,12]

CK(α, β) =
∑

u0=α,ur=β

CK(T ) =
∑

u0=α,ur=β

(−1)sT ⊕〈T̄ ,K̄〉|CK(T )|, (3)

i.e. the sum of the correlation contributions of all trails from α to β.

2.2 Matsui’s Approach

Matsui’s key observation was that DES exhibits linear trails where the corre-
lation contribution deviates significantly from zero. Consider the full 16-round
DES, let P be the plaintext, and let C be the ciphertext. Let [i0, . . . , i�] denote
an element in F

n
2 whose ij ’th components are 1, j = 0, . . . , �, while all other

components are 0. Then, over 14 rounds of DES, the approximations

γ1 = ([7, 18, 24], [7, 18, 24, 29, 47]) and δ3 = ([15, 39, 50, 56, 61], [39, 50, 56]),

both have trails with correlation contribution CK(T ) = ±2−19.75 [22]. From
(2) we can determine one bit of information if we know the sign of CK(T ),
namely the parity 〈T̄ , K̄〉 of the round key bits indicated by the key trail T̄ .
Let kf denote the key-bits of round key K0 required to partially encrypt a
plaintext P one round and calculate 〈α,RK0(P)〉, and let kb denote the key-
bits of round key Kr−1 required to partially decrypt the ciphertext C one round
and calculate 〈β,R−1

Kr−1
(C)〉. Matsui developed the following general approach

in order to determine |kf | + |kb| + 1 key bits, formalised as Algorithm 2.

Algorithm 2

1. Obtain N plaintext-ciphertext pairs.
2. For each guess of the key-bits (kf , kb), partially encrypt/decrypt each

plaintext-ciphertext pair (P, C) and calculate the number of times Li the
input parity 〈α,RR0(P)〉 is equal to the output partiy 〈β,R−1

Rr−1
(C)〉 for the

i’th guess, i = 1, . . . , 2|kf |+|kb|.
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3. For each counter Li, if Li > N/2, guess that the sign bit 〈T̄ , K̄〉 = sT ,
otherwise guess that 〈T̄ , K̄〉 = sT ⊕ 1.

4. For any counter Li with |Ti − N/2| > Γ , for a predetermined value Γ , guess
the remaining κ − (|kf | + |kb| + 1) bits of the master key K, and determine
the correct value of K through trial encryption.

For his attack on DES, Matsui performed Algorithm2 once for γ1 and once
for δ3, determining 26 bits before guessing the remaining 30 bits of K. In his
analysis of the success rate and complexity of the attack, Matsui assumed that
the linear correlation of the approximations γ1 and δ3 were only determined
by a single trail T . The idea is that the correlation contribution of T is much
larger than that of all other trails – a so called dominant trail. We will call the
associated key trail T̄ of such a trail a dominant key trail. In the presence of such
a dominant trail, CK(α, β) only takes on two values over the key space. This can
be seen from Eq. (3), as the case of a dominant trail implies that this sum only
has one term. Under this assumption, Matsui concluded that when using 243

texts, there is an 85% probability of recovering the key at a time complexity of
243 DES encryptions. In a later analysis of Matsui’s attack [17], Junod concluded
that the actual computational complexity is closer to 241 DES encryptions.

2.3 Biryukov et al. – Multiple Approximations

A natural extension of Matsui’s linear cryptanalysis is to attempt to use multi-
ple linear approximations simultaneously. The first attempt at developing such
a framework was by Kaliski and Robshaw in [16]. This work has the limita-
tion that all linear approximations must have the same dominant key trail, and
the approximations were assumed to be statistically independent. Moreover, as
Kaliski and Robshaw note, the application of this method to DES is very limited.

Another approach was undertaken by Biryukov et al. in [3]. Here, the approx-
imations can in principle be picked arbitrarily, but the framework still requires
the assumption of one dominant trail for each approximation, and independence
between approximations. Due to these restrictions, the foundations of multidi-
mensional linear cryptanalysis was developed in e.g. [14,15]. While this approach
has been applied with great success to a large range of ciphers, no results have
been shown on DES. Thus, Matsui’s single linear cryptanalysis still provides the
best results on this cipher.

Let us briefly reconsider the method by Biryukov et al., assuming the use of
M linear approximations. The idea is to partition the key space into at most 2M

classes based on the parity of the 〈T̄i, K̄〉, where T̄i is the dominant key trail of
the i’th approximation. An Algorithm2 type attack is then performed: For each
guess of the key-bits (kf , kb), the vector (Li,1, . . . , Li,M ) is calculated, and the
likelihood of that vector belonging to each of the key classes is computed. The
right guess of (kf , kb) should yield one class with high likelihood, and the class
then indicates at most M parity bits, 〈T̄i, K̄〉. Central to the analysis of [3] are
the following two assumptions:



196 A. Bogdanov and P.S. Vejre

Assumption 1 (Right-Key Equivalence). For a linear approximation
(α, β), the magnitude of the correlation, |CK(α, β)|, does not deviate significantly
from its expected value over all keys, that is, |CK(α, β)| = E(|CK(α, β)|).
Assumption 2 (Wrong-Key Randomisation). For Algorithm2, the corre-
lation of a linear approximation (α, β) is 0 for all wrong guesses of (kf , kb).

The assumption of right-key equivalence implies that the linear approx-
imation has one dominant trail, say T , and consequently the distribution
of the correlation over the key space only takes on two values, namely
±|CK(T )|. Thus, the natural partitioning of the key space for M approxima-
tions is the partitioning induced by the sign of the correlations, i.e. the vector
((−1)〈T̄1,K̄〉, . . . , (−1)〈T̄M ,K̄〉). In practice however, the correlations are calcu-
lated from the counters Li,j . The joint distribution of the resulting measured
correlations, for some specific key class, is given in [3] as an M -variate normal
distribution, described in the following model.

Model 1 (Right-Key Partitioning for Multiple Approximations [3]).
Consider a set of linear approximations (α1, β1), . . . , (αM , βM ) of r rounds of

DES. Then, the key space can be partitioned into at most 2M key classes based
on the signs of the correlations. The undersampled distribution of the linear
correlation vector, using N texts and restricted to the i’th key class, denoted by
CN

i (α,β), is an M -variate normal distribution

CN
i (α,β) ∼ NM (μi, 1/N · I).

The mean vector of the i’th key class is given by μi[j] = si,j |CK(Ti)|, where
si,j ∈ {−1, 1} describes the sign combination of the i’th key class, j = 1, . . . ,M .

Based on this model, a Bayesian classifier is constructed. We refer to Sect. 5
for the details. While the approach presented by Biryukov et al. seems promising,
it has yet to result in an improved attack on DES. To the best of our knowledge,
no other variants of linear cryptanalysis which uses multiple approximations
have been able to outperform Matsui’s original attack. Moreover, while updated
versions of Assumptions 1 and 2 have been applied to other ciphers, no such
work exists for DES. In the following, we address these concerns. We consider
the right-key distribution in Sect. 3, and the wrong-key distribution in Sect. 4.
Using the results obtained in these sections, we develop an improved linear attack
on DES in Sects. 5 and 6.

3 Right-Key Correlation for DES: Key Inequivalence

In this section, we consider the correlation distribution of DES approximations
over the key space. In Sect. 3.1, we consider current models for this distribution,
as well as the undersampled distribution. In Sect. 3.2, we enumerate a large
number of trails for DES, and show that, contrary to Assumption 1, the absolute
value of the correlation does vary significantly as the key changes. In fact, the
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correlation distribution has a complicated structure. In Sect. 3.3, we develop
a new model for this correlation based on Gaussian mixtures, which is able to
accurately describe this structure. Moreover, we extend the model to describe the
full undersampled correlation distribution over keys for multiple approximations.

3.1 The Correlation Distribution of a Single Approximation

As mentioned, most linear cryptanalysis of DES assumes that each linear approx-
imation has one dominant trail, determining the magnitude of the absolute
correlation. This idea is effectively expressed by Assumption 1. Consider, for
example, one of the approximations used by Matsui, γ1. This approximation
has a primary trail TA over 14 rounds of DES with correlation contribution
CK(TA) = ±2−19.75. In [24], Nyberg first introduced the concept of a linear
hull, i.e. the collection of all trails of a linear approximation, and showed that
Assumption 1 is not true in general. For γ1, the trail with second largest correla-
tion contribution, T ′, has contribution CK(T ′) = ±2−25.86. While the contribu-
tion from this trail is not large enough to change the sign of the linear correlation
CK(γ1), or increase/decrease the magnitude of the correlation much, it does not
match the model given in Assumption 1. When including the second trail, the
correlation distribution does not take on only two distinct values, but four.

Signal/noise decomposition. In order to refine Assumption 1, Bogdanov and
Tischhauser considered a signal/noise decomposition of the hull in [7]. Consider
a situation in which d dominant trails of an approximation (α, β) are known.
We call this collection of trails the signal, and define the signal correlation as
the sum of their correlation contributions

C ′
K(α, β) =

d∑

i=1

(−1)sTi
⊕〈T̄i,K̄〉|CK(Ti)|.

The remaining part of the hull is unknown, and is modelled as noise, with the
distribution N (0, 2−n). Then, the refined right-key equivalence assumption of [7]
states that the correlation of (α, β) is given by the sum of the signal correlation
and the noise:

CK(α, β) = C ′
K(α, β) + N (0, 2−n).

Since the approximations we will typically consider in the context of DES have
quite high correlation, the addition of the noise term will not make a significant
difference. However, we include it for completeness.

Undersampling. The cryptanalyst is most often not interested in having to
obtain the full codebook to exactly measure the linear correlation CK(α, β).
Therefore, the undersampled distribution is of great interest. Let

CN
K (α, β) =

2
N

#{xi, i = 1, . . . , N |〈α, xi〉 ⊕ 〈β,EK(xi)〉 = 0} − 1
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be the empirical value of CK(α, β) measured using N text pairs. Here, we assume
that xi is drawn uniformly at random with replacement from F

n
2 . Matsui first con-

sidered the distribution of CN
K (α, β) over the key space under Assumption 1. In

this case, Matsui used the Gaussian distribution CN
K (α, β) ∼ N (CK(α, β), 1/N).

While no proof is given in [21], one can show this result via a Gaussian approx-
imation to the binomial distribution, assuming that |CK(α, β)| is small.

3.2 Exploring the Signal Distribution of DES

On the basis of the signal/noise model, we now turn our attention to the signal
distribution of DES approximations. By computing the signal correlation C ′

K for
a large number of trails, we are able to get a good idea of the actual distribution
of the correlation CK . We first describe how the signal trails were enumerated.

Our trail enumeration algorithm. We implemented a bounded breadth-
first search in order to enumerate trails of DES approximations over 14 rounds.
The algorithm consists of two search phases and a matching phase. Consider an
approximation (α, β). The first search phase searches for trails in the forward
direction, from round one to round seven. The search starts with α as an input
mask to the first round, and then finds t and v such that the single round trails
(α, t, v) has non-zero correlation. This process is then repeated for each trail with
v as input mask to the second round, etc. The second search phase is similar,
but searches backwards from β.

The searches are bounded in two ways. First, we only consider trails that
activate at most three S-Boxes in each round. Second, we limit the number of
trails which are kept in each round. This is done in such a way that only the
trails with largest absolute correlation contribution are kept. This ensures a
locally optimal choice, although no such guarantee can be made globally. The
number of trails kept is determined by the branching factor B, such that in the
i’th round of the search, i · B trails are kept.

After the two search phases, each trail found in the forward direction is
matched to any trail in the backwards direction which shares the same mask
in the middle. In this way, we obtain a number of trails of (α, β) over 14
rounds. Globally optimal trails will have a good chance of being enumerated
if the branching factor B is chosen sufficiently large. In the following, we set
B = 1 million, which means that we can find at most 7 million trails in each
search direction. Note that the number of trails eventually discovered by the
algorithm highly depends on the number of rounds and the approximation under
consideration. We performed the enumeration for the eight approximations given
in Table 2 using 20 Intel Xeon Processor E5-2680 cores. The enumeration took
about 8 CPU hours.

Computing the Signal Distribution. Using the algorithm described above,
we enumerated 1126 trails of the approximation γ1 over 14 rounds, and calculated
the signal correlation
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Fig. 3. The signal distribution of linear correlation for the approximation γ1 over 14
rounds of DES. The signal correlation was calculated using 1126 trails and 1 million
randomly drawn keys. The trails had an absolute correlation contribution between
2−43.61 and 2−19.75. The left plot shows the two main modes, symmetric around zero.
The right plot shows only the positive half of the distribution.

C ′
K(γ1) =

1126∑

i=1

(−1)sTi
⊕〈T̄i,K̄〉|CK(Ti)|,

for 1 million randomly drawn keys. The trails we found have an absolute corre-
lation contribution between 2−43.61 and 2−19.75, and include the dominant trail
used by Matsui in [22]. The resulting distribution can be seen in Fig. 3.

The left part of the figure shows the full distribution over the key space.
At this scale, the distribution resembles the one described in Sect. 2; there are
two very prominent modes symmetric around zero, with peaks around ±2−19.75,
corresponding to the correlation contribution of the dominant trail. However,
the right part of the plot, showing the positive half of the distribution, largely
contradicts Assumption 1 of key equivalence. While the mean of the distribution
is 2−19.75, it also has a non-negligible standard deviation of 2−24.71. Moreover,
the distribution is not Gaussian. The correlations cluster around three values,
namely 2−19.79, 2−19.75, and 2−19.68. Interestingly, the probability density is
larger around the cluster with the lowest correlation value.

Under the signal/noise model, adding the noise distribution N (0, 2−n) gives
us a good estimate of the actual distribution of the correlation CK(γ1). However,
due to the large variance of the signal distribution, the effect of the noise term is
negligible in this case. Thus, the distribution in Fig. 3 should be quite close to the
actual distribution. This poses a fundamental problem, as none of the analysis of
linear cryptanalysis applied to DES accounts for this type of distribution. Indeed,
it is not clear how the distribution of the undersampled correlation, CN

K , looks,
which is essential to know when determining the complexity of linear attacks.

3.3 A New Mixture Model for Single and Multiple Approximations

To relieve the problems discussed in Sect. 3.2, we now propose a model for the
correlation distribution based on Gaussian mixtures. Consider a distribution in
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Fig. 4. A Gaussian mixture fitted to the correlation distribution of the linear approx-
imation γ1 over 14 rounds of DES. The individual components are shown in red, the
mixture density is shown in green, and the measured distribution is shown in blue.
Under this model, only 30% of the distribution is attributed to the Gaussian compo-
nent associated with the dominant trail. (Color figure online)

which each sample is drawn from one of � Gaussian distributions. Each Gaussian
is called a component. The probability of the sample being drawn from the i’th
component is λi, usually called the weights, with

∑
λi = 1. The probability

density function (PDF) of such a distribution is given by

f(x) =
�∑

i=1

λiφ(x;μi, σ
2
i ),

where φ(x;μi, σ
2
i ) is the PDF of the i’th Gaussian distribution, having mean μi

and variance σ2
i [20]. We will denote the distribution itself by M(λi, μi, σ

2
i , �).

We then propose the following model.

Model 2 (Right-Key Inequivalence for One Approximation). Consider
a linear approximation (α, β) of r rounds of DES. The distribution of the linear
correlation CK(α, β) over the key space is approximately given by a Gaussian
mixture for some weights λi and components N (μi, σ

2
i ), i = 1, . . . , �. That is,

CK(α, β) ∼ M(λi, μi, σ
2
i , �).

We note that the signal/noise decomposition easily applies to this model. If we
determine that the signal correlation follows a Gaussian mixture, i.e. C ′

K(α, β) ∼
M(λ′

i, μ
′
i, σ

2′
i , �′) for some appropriate parameters, then we can approximate the

actual correlation distribution by adding the noise distribution:

CK(α, β) ∼ M(λ′
i, μ

′
i, σ

2′
i , �′) + N (0, 2−n).



Linear Cryptanalysis of DES with Asymmetries 201

We apply Model 2 to the distribution obtained in Sect. 3.2. The result of
fitting a Gaussian mixture model with three components to the positive part of
the signal distribution is shown in Fig. 4. We first note that the mixture model
fits the measured signal distribution quite well. The parameters are

λ1 = 0.45, μ1 = 2−19.79, σ2
1 = 2−52.40,

λ2 = 0.30, μ2 = 2−19.75, σ2
2 = 2−52.37,

λ3 = 0.25, μ3 = 2−19.68, σ2
3 = 2−52.68.

The second mixture component has mean equal to the correlation contribution
of the dominant trail, but this component only contributes to 30% of the full
distribution. In fact, the main part of the contribution, 45%, can be attributed
to the first component, which has a slightly lower mean. This demonstrates that
considering only the contribution of the dominant trail can be misleading, even
when the remaining trails have a far lower correlation contribution. In general,
one should consider as large a part of the hull as possible. Nevertheless, for
attacks with relatively low data complexity, the actual distribution can easily be
hidden, as we shall see next.

The undersampled mixture. In Sect. 3.2, we recalled that under the assump-
tion of a dominant trail, the distribution of the undersampled correlation CN

K is
given by the Gaussian N (CK , 1/N). We state the following equivalent result in
the setting of Model 2 and give an outline of the proof.

Theorem 1 (Undersampled distribution). Assuming Model 2, the under-
sampled correlation distribution of an approximation (α, β) obtained using N
random text pairs is given by

CN
K (α, β) ∼ M(λi, μi, σ

2
i , �) + N (0, 1/N).

Proof. For any fixed key k, CN
k is distributed as Bin(N,Ck) over the random

text sample, which can be approximated by N (Ck, 1/N) if Ck is small. That is,
CN

K | K = k ∼ N (Ck, 1/N). The PDF of the compound distribution CN
K , i.e.

without the conditioning on K, is given by

pCN
K

(y) =
∫

φ(y;x, 1/N) ·
�∑

i=1

λiφ(x;μi, σ
2
i )dx,

which can be shown to be equal to

pCN
K

(y) =
�∑

i=1

λiφ(y;μi, σ
2
i + 1/N).

This is a Gaussian mixture where each component can be written as N (μi, σ
2
i )+

N (0, 1/N). But since we add the second distribution with probability one, the
same distribution can be obtained by first drawing from the original mixture,
and then adding the distribution N (0, 1/N), finishing the proof. ��
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Fig. 5. The distribution of the undersampled linear correlation of γ1, C′
K +N (0, 2−n)+

N (0, 1/N), over 14 rounds of DES, with N = 243. C′
K was measured using 1126 trails

over 1 million randomly drawn keys. A Gaussian mixture with two components have
been fitted to the distribution. The components are shown in red, while the full distri-
bution is shown in green. (Color figure online)

If the number of texts N is relatively large, the model can be somewhat
simplified. If we wanted to apply Model 2 and Theorem 1 directly to the case of
γ1, we would model the measured correlation as

CN
K (γ1) = M(λi, μi, σ

2
i , 6) + N (0, 2−n) + N (0, 1/N), (4)

using six components for the Gaussian mixture. However, the details of the
mixture are easily lost at high levels of undersampling, as can be seen in Fig. 5.
Here, we have shown the distribution

C ′
K(γ1) + N (0, 2−n) + N (0, 1/N),

where N = 243. The resulting distribution can be described as a Gaussian mix-
ture with two components, instead of six. Each component has variance roughly
equal to 1/N , and the means are ±2−19.75, i.e. the correlation contribution of the
dominant trail. This agrees with the models used by e.g. Matsui and Biryukov,
et al., but we stress that this is only true when N is relatively small compared
to the linear correlation. In particular, for ciphers with strong dominant trails,
1/N needs to be larger than the variance of the positive/negative part of the
distributions. For values of N close to the full codebook, this is not true (unless
the approximation is extremely weak), and the distribution of CK cannot be
ignored. However, this simplification will help greatly when we consider the joint
distribution of multiple approximations in the next subsection.

The Gaussian mixture of multiple approximations. Model 2 and the
results of Sect. 3.3 can be generalised to consider the case of multiple lin-
ear approximations. Let CK(α,β) denote the vector of correlations of M lin-
ear approximations, (CK(α1, β1), . . . , CK(αM , βM ))�. In the following, we will
restrict ourselves to the case where the signal distributions, C ′

K(αi, βi), each
have two distinct modes: one positive and one negative. This allows us to split
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the joint signal distribution, C ′
K(α,β), into at most 2M components determined

by the signs of C ′
K(α,β). In the case of relatively low values of N , we propose

the following model.

Model 3 (Right-Key Mixture for Multiple Approximations). Consider
a set of linear approximations (α1, β1), . . . , (αM , βM ) of r rounds of DES. The
undersampled distribution of the linear correlation vector over the key space,
CN

K (α,β), is approximately given by an M -variate Gaussian mixture, namely

CN
K (α,β) ∼ MM (1/�,μi,Σi + 1/N · I, �),

where � ≤ 2M . Moreover, the parameters of the mixture components are given by

μi = E(CK(α,β)|si,j · CK(αi, βi) > 0, j = 1, . . . , M),
Σi = Cov(CK(α,β)|si,j · CK(αi, βi) > 0, j = 1, . . . , M),

where si,j ∈ {−1, 1} describes the sign combination of the i’th component.

As for the case of a single approximation, the signal/noise decomposition
applies to this model, resulting in an undersampled distribution of the form

CN
K (α,β) ∼ MM (1/�,μ′

i,Σ
′
i + (2−n + 1/N)I, �).

The signal parameters, μ′
i and Σ′

i, can be estimated by enumerating an appro-
priate number of trails and then calculating C ′

K(α,β) for a large number of
keys.

This model bears some resemblance to the one given by Biryukov et al. in [3].
While both models use the signs of the correlation vector to split the distribution
into several Gaussians, our model captures the entire key space in one distrib-
ution, whereas the model in [3] partitions the key space into at most 2M parts
which are considered separately. Additionally, we do not make any assumption
about the independence of the linear approximations. As such, Σi need not be
diagonal matrices, and not all 2M sign combinations need to be present. While
the possibility of � < 2M is briefly mentioned in [3], all experiments were done
such that � = 2M . As we shall see in Sect. 5, the case of � < 2M allows for
stronger attacks. Moreover, an improved attack on full DES was not presented
in [3]. We apply our model to obtain a key-recovery attack on full DES in Sect. 6.
First, however, we turn our attention to the wrong-key distribution.

4 Wrong-Key Correlation for DES: Non-random
Behaviour

In this section, we consider the correlation distribution of DES approximations
in the case of a wrong key guess in Algorithm 2. This distribution is essential, as
the effectiveness of the algorithm is determined by how different the right-key
and wrong-key distributions are. In Sect. 4.1, we consider the current models for
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the wrong-key distribution. In Sect. 4.2, we develop a new model for the wrong-
key distribution of DES, and show that the distribution obtained under this
model deviates significantly from that considered in Sect. 4.1. Nevertheless, as
for the right-key in Sect. 3, we show that the deviation has little impact when
the number of texts used in the attack is relatively small.

4.1 The Current Ideal Wrong-Key Distribution

The assumption of wrong-key randomisation, Assumption 2, used by Matsui in
[22] and by Biryukov et al. in [3], predicts that a wrong guess of the outer round
keys in Algorithm 2 should result in an approximation with correlation zero. This
is motivated by the idea that if we encrypt/decrypt using the wrong key, we are
doing something equivalent to encrypting two extra rounds. This should result
in a linear correlation much closer to zero, as we are essentially considering the
correlation over r+4 rounds instead of r rounds. However, as shown by Daemen
and Rijmen in [13], even a linear approximation of an ideal permutation will
approximately have the correlation distribution

CK(α, β) ∼ N (0, 2−n),

where n is the blocksize. Since we intuitively cannot do “worse” than an ideal
cipher, the correlation of a wrong guess should follow this distribution. This
consideration led Bogdanov and Tischhauser to present an updated wrong-key
randomisation hypothesis in [7], in which the wrong key correlation follows this
ideal Gaussian distribution. However, if we consider the case of DES where, even
over 14 rounds, strong linear approximations exist, the wrong-key correlation
might not be close to the ideal distribution. We consider this problem next.

4.2 A New Non-random Wrong-Key Distribution

Consider the scenario in which an attacker obtains a plaintext-ciphertext pair
computed over r rounds of a cipher, and attempts to encrypt the plaintext one
round, and decrypt the ciphertext one round, in order to calculate the correlation
of an approximation over r−2 rounds. If the attacker uses the wrong round keys
for the encryption/decryption, she essentially obtains a plaintext/ciphertext pair
of some related cipher with r + 2 rounds. Motivated by this, we propose the
following wrong-key model for linear cryptanalysis on DES.

Model 4 (Non-random Wrong-Key Distribution). Consider an Algo-
rithm 2 style attack on r rounds of DES using a linear approximation (α, β)
over r − 2 rounds. Let RK be the keyed round function of DES, and let E�

K

denote the r-round encryption function. For a wrong guess of the outer round
keys, the correlation will be distributed as for the cipher

E′
K(x) = R−1

Ka
(E�

K(R−1
Kb

(x))), (5)

where Ka and Kb are chosen uniformly at random.
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Fig. 6. The distribution of linear correlation for the approximation γ1 over 18 rounds
of DES with randomly chosen outer round keys. The correlation was calculated using
954 trails and 1 million randomly drawn keys. The distribution is close to zero, but
the variance is 2−56.08. To the right, the distribution is compared to that of an ideal
permutation, i.e. the Gaussian N (0, 2−64).

For DES, where encryption and decryption are similar, this can reasonably be
simplified to E′

K(x) = Er+2
K , where the outer round keys are randomly chosen.

In light of this, we considered the approximation γ1 over 18 rounds of
DES, with randomly chosen outer round keys. Using the algorithm described
in Sect. 3.2, with B = 1 million, we enumerated 954 trails of this approxima-
tion. Using 20 Intel Xeon Processor E5-2680 cores, the enumeration took about
15 CPU hours. We then calculated the resulting signal correlation for 1 million
keys. The trails had an absolute correlation contribution between 2−45.84 and
2−28.75. The distribution is shown in Fig. 6. We note that the result is similar
for the other approximations given in Table 2.

As was the case for the right-key distribution, this wrong-key distribution
appears to be approximately a Gaussian mixture. More importantly, while the
distribution is symmetric around zero, the variance is much larger than that
of an ideal permutation: 2−56.08 compared to 2−64. This shows that, while the
added four rounds make the correlation weaker, the assumption of a resulting
ideal distribution is optimistic. For attacks that use a data complexity close to
the full codebook, this assumption could result in a overestimate of success prob-
ability or an underestimate of attack complexity. Moreover, if the cryptanalyst
only appends/prepends one round to the approximation, this effect could be
significant.

The undersampled distribution. While the distribution in Fig. 6 is far from
ideal, the actual distribution of the correlation matters little if the level of under-
sampling is significant. If we apply signal/noise decomposition and Theorem 1
to our estimate of the wrong-key distribution, with the number of texts N = 243,
we obtain the result shown in Fig. 7. We see here that it is sufficient to use a
single Gaussian distribution to approximate the undersampled wrong-key corre-
lation distribution. If this distribution is similar for other approximations, it will
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Fig. 7. Undersampled right-key (blue) and wrong-key (red) distributions for the
approximation γ1 with N = 243. The signal distributions were measured using 1 million
randomly drawn keys. A Gaussian mixture has been fitted to the right-key distribution
(green), while a single Gaussian distribution was fitted to the wrong-key distribution
(black). (Color figure online)

be sufficient to model the joint wrong-key correlation distribution of M approx-
imations as an M -variate Gaussian distribution. Thus, if ΣW is the covariance
matrix of the signal correlation of the M approximations over E′

K , then the
undersampled wrong-key distribution will approximately be given by

CN
K (α,β) ∼ N (0,ΣW + (2−n + 1/N)I),

if 1/N is sufficiently large.
Using Model 3 for the right-key and Model 4 for the wrong-key distribution,

we develop a classifier that uses both these distributions in the following section.

5 Classifying Keys Using Asymmetric Distributions

In Sect. 3, we developed a model for the linear correlation distribution of a cor-
rect key-guess in Algorithm 2, namely a multivariate Gaussian mixture model.
In Sect. 4, we similarly developed a simple multivariate Gaussian model for the
linear correlation distribution of a wrong key-guess. Using these two distribu-
tions, we now develop a classifier based on the likelihood-ratio, which can be
used in Algorithm 2 to decide between potential right and wrong key guesses.
We first present the classifier given in [3] in Sect. 5.1. We then introduce our new
classifier in Sect. 5.2, and compare the performance of the two in Sect. 5.3.

In the following, we will consider the two sets of four linear approximations
over 14 rounds of DES given in Table 2. While it is difficult to visualise the joint
distribution of more than three approximations, Fig. 8 shows the pairwise joint
distributions of the approximations γ1, γ2, γ3, and γ4, as well as the marginal
distributions, for N = 243. Note that the joint distributions of γ1 and γ3, as well
as that of γ2 and γ4, only have two components. We will explore this phenomenon
in Sect. 5.4, and show that such distributions can improve our classifier.
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Table 2. The top table specifies two sets of four linear approximations over 14 rounds
of DES, and gives the correlation contribution of their dominant trail, as well as the sign
bit of that trail. The bottom table specifies the set of non-zero bits of the associated
dominant key trails, where tji is the j’th bit of ti.

Linear approximation Dominant key trail |CK(T·)| sT·

γ1 = ([7, 18, 24], [7, 18, 24, 29, 47]) T̄A 2−19.75 1
γ2 = ([7, 18, 24], [7, 18, 24, 29, 44, 48]) T̄B 2−20.48 1
γ3 = ([7, 18, 24, 29], [7, 18, 24, 47]) T̄A 2−20.75 0
γ4 = ([7, 18, 24, 29], [7, 18, 24, 44, 48]) T̄B 2−20.07 1

δ1 = ([15, 39, 50, 56], [39, 50, 56, 61]) T̄C 2−20.75 0
δ2 = ([12, 16, 39, 50, 56], [39, 50, 56, 61]) T̄D 2−20.07 1
δ3 = ([15, 39, 50, 56, 61], [39, 50, 56]) T̄C 2−19.75 1
δ4 = ([12, 16, 39, 50, 56, 61], [39, 50, 56]) T̄D 2−20.48 1

Key trail Non-zero key mask bits Key trail Non-zero key mask bits

T̄A {t221 , t442 , t223 , t225 , t446 , t227 , t229 , t4410, t
22
11, t

22
13} T̄B T̄A\t2213 ∪ {t1913, t

23
13}

T̄C {t220 , t222 , t443 , t224 , t226 , t447 , t228 , t2210, t
44
11, t

22
12} T̄D T̄C\t220 ∪ {t190 , t230 }

5.1 The Bayesian Classifier of Biryukov et al.

Consider an Algorithm 2 style attack using M linear approximations. Let KR

denote the space of correct guesses of the key-bits (kf , kb), and let KW denote the
space of wrong guesses. We have to classify each key-guess as either an incorrect
guess or a potential correct guess, based on the measured linear correlation vector
x. Let fR(x) = Pr(x | (kf , kb) ∈ KR) be the PDF of the right-key correlation
distribution. We define the Bayesian classifier, BC, as the following decision rule

BC(x) =
{

If B(x) > Γ , decide that (kf , kb) ∈ KR,
otherwise, decide that (kf , kb) ∈ KW ,

where B(x) = fR(x). Under Model 3, B(x) is given as the Gaussian mixture

B(x) =
�∑

i=1

λiφM (x;μi,Σi + (2−n + 1/N)I).

This exact classifier is not described in [3], but it is essentially identical to the one
developed there. The difference is that in [3], each component of fR is considered
separately, and so � scores are produced for each key guess. The classifier BC
should be functionally equivalent to this approach, but this representation allows
for easy comparison to the likelihood-ratio classifier we propose next.

5.2 Our Likelihood Classifier

We now propose a new classifier based in the likelihood-ratio. As opposed to the
Bayesian classifier, the likelihood classifier directly takes the wrong-key distrib-
ution into account. To this end, let fW (x) = Pr(x | (kf , kb) ∈ KR) be the PDF
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Fig. 8. Histograms and pairwise distributions of the undersampled correlations of
approximations γ1, . . . , γ4 given in Table 2. The right-key distributions are shown in
blue, the wrong-key distributions are shown in red. The number of texts is N = 243.
Note that since γ1 and γ3 have the same dominant key trail, their joint distribution
only has two components. Likewise for γ2 and γ4. (Color figure online)

of the wrong-key correlation distribution. Then the likelihood-ratio is defined as
Λ(x) = fR(x)/fW (x). For the right-key and wrong-key distributions described
in Sects. 3 and 4, this is equal to

Λ(x) =
∑�

i=1 λiφM (x;μi,Σi + (2−n + 1/N)I)
φM (x;0,ΣW + (2−n + 1/N)I)

,

where x is an observed value of correlations for M approximations. A large
value of Λ(x) will then indicate a likely correct key guess, while a low value will
indicate a wrong key guess. Thus, we define the likelihood classifier LC as the
following decision rule

LC(x) =
{

If Λ(x) > Γ,decide that (kf , kb) ∈ KR,
otherwise, decide that (kf , kb) ∈ KW .

In light of this definition, two important concepts are the success probability
and advantage of the classifier. Formally, we define the success probability and
advantage, respectively, as

PS = 1 − Pr(Λ(x) < Γ | (kf , kb) ∈ KR), (6)
a = − log2(Pr(Λ(x) ≥ Γ | (kf , kb) ∈ KW )), (7)

in accordance with the usual definition [25]. We usually choose Γ such that we
achieve a certain success probability. Under our proposed model, the involved
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probabilities cannot be explicitly stated. Thus, we must rely on simulations to
calculate these values. Since simulating values from a Gaussian distribution is
easy, this is not a problem. Using this approach, we now compare the performance
of the likelihood classifier and the Bayesian classifier.

5.3 Decision Boundaries

The likelihood classifier LC divides the M -dimensional cube [−1, 1]M into two
regions separated by the decision boundary, namely where Λ(x) = Γ . On one
side of the decision boundary, observations are classified as belonging to the
right-key distribution, while observations from the other side are classified as
belonging to the wrong-key distribution. By visualising this decision boundary,
we can get a better understanding of the classifier.

In the following, we consider the eight approximations given in Table 2, over
14 rounds of DES. We enumerated between 1100 and 1400 trails for each approx-
imation and calculated the signal correlations for 1 million random keys, in order
to estimate μi and Σi. The same was done over E′

K , where between 950 and 1100
trails were enumerated, in order to estimate ΣW . For each data point, we added
noise drawn from NM (0, (2−n + 1/N)I), according to the signal/noise decom-
position and Theorem 1. This allows us to simulate Λ(x) and B(x) for varying
values of N and calculate the resulting decision boundary and advantage.

Consider the pair of approximations γ1 and δ1 and let N = 243. We simulate
Λ(x) and B(x) for each data point as described above, and then fix a threshold
value for each classifier such that PS = 0.90, cf. Eq. (6). The resulting decision
boundaries, as well as the related probability distributions, are shown in Fig. 9.
In this case, the likelihood classifier obtains an advantage of 5.5 bits, while the
Bayesian classifier only has an advantage of 3.1 bits. By considering the decision
boundary, it is clear why this is the case. Since the Bayesian classifier only
uses information about the right-key distribution, it simply creates a decision
boundary around each component of the mixture which is large enough to obtain
the desired success probability. In view of the information that is available to the
classifier, this makes sense, since observations close to the mean of component
have a larger chance of being a correct key guess. Because of this, the parts of the
right-key distribution which is farthest away from the wrong-key distribution is
also discarded as unlikely candidates. This in turn requires the decision boundary
to be wider than actually needed, and the advantage is therefore quite low due
to an increased number of false positives.

The likelihood classifier on the other hand does use information about the
wrong-key distribution. The decision boundary is created such that there is
a good boundary between each component and the wrong-key distribution.
Any observation that is sufficiently far away from the wrong-key distribution
is deemed a likely correct key guess, no matter how extreme the observation is
in the right-key distribution. Thus, extreme points in the right-key distribution
are not “wasted”, allowing for a tight decision boundary around the wrong-key
distribution, yielding a larger advantage.
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Fig. 9. Left: The joint distribution of CN
K (γ1) and CN

K (δ1), with N = 243, are shown
for both a right key guess (blue) and a wrong key guess (red). The decision boundaries
for a success probability of 90% are drawn for the likelihood-ratio classifier (top) and
the Bayesian classifier (bottom). Right: The corresponding probability distributions
of Λ(x) (top) and B(x) (bottom) as well as the threshold value. The likelihood ratio
classifier obtains an advantage of 5.5 bits, while the Bayesian classifier obtains an
advantage of 3.1 bits. (Color figure online)

For the approximations used here, all sign combinations of the correlation
vector are possible. In terms of the mixture model, the number of components
is � = 2M . We now turn our attention to the case where � < 2M .

5.4 Observations on the Asymmetric Distribution

As shown in Sect. 3.2, the sign of the signal correlation C ′
K(γ1) for a given key

is determined by the parity 〈T̄A, K̄〉, where T̄A is the dominant key trail. Con-
sider the two approximations γ1 and γ3 given in Table 2. Both approximations
have the same dominant key trail, and since their sign bits sT are different, the
sign of their correlation will therefore always be opposite. In the terminology of
Sect. 3.3, the number of components � of the Gaussian mixture is strictly less
than 2M . We will call such a distribution asymmetric. On the other hand, the
two approximations γ1 and δ1 have different dominant key-trails, and therefore
all four sign combinations of their correlations are possible. In this case, � = 2M ,
and we call such a distribution symmetric.

For γ1 and δ1, the decision boundary for the likelihood classifier was shown
in Fig. 9. For γ1 and γ3, the decision boundary is shown in Fig. 10. Here, the
“missing” components in the first and third quadrant are clearly shown, while
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Fig. 10. Left: The joint distribution of CN
K (γ1) and CN

K (γ3), with N = 243, are shown
for a right key guess (blue) and a wrong key guess (red). The decision boundaries for
a success probability of 90% are drawn for the likelihood-ratio classifier. Right: The
probability distributions of Λ(x) as well as the threshold value. The classifier obtains
an advantage of 6.2 bits. (Color figure online)
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Fig. 11. A comparison of the advantage obtained by using the Bayesian classifier and
the likelihood ratio classifier on both symmetric and asymmetric correlation distribu-
tions. The symmetric distribution uses the set of approximations {γ1, γ2, δ1, δ2} while
the asymmetric distribution uses the set {γ1, γ2, γ3, γ4}.

the wrong-key distribution is still symmetric around zero. We note that, all else
being equal, the classifier on the asymmetric distribution achieves an increased
advantage of 0.7 bits. Moreover, the comparison here is fair, since the strength
of δ1 is the same as that of γ3. The reason for this increase is apparent when
we compare the two decision boundaries. For the asymmetric distribution, the
decision boundary is such that even extreme points in the wrong-key distribution
towards the first and third quadrant are easily classified as wrong key guesses.
This decreases the number of false positives, increasing the advantage.

This improvement in the classifier for asymmetric distributions generally
extends to higher dimensions, where the effect can be even more pronounced.
Indeed, for larger M , � can be much smaller than 2M . In the example above, we
had � = 2 while 2M = 4. Consider now the set of approximations {γ1, γ2, γ3, γ4}.
A shown in Table 2, these approximations only have two distinct dominant key
trails, implying that the set has an asymmetric distribution with � = 4 < 2M =
16. Figure 11 compares the advantage of this set of approximations to the set
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{γ1, γ2, δ1, δ2}, which has a symmetric distribution, i.e. � = 2M = 16. In general,
we observe that the classifiers are stronger for the asymmetric distribution, with
an increase in advantage of 1.4 bits for N = 243. Additionally, the better perfor-
mance of the likelihood classifier is quite clear, consistently obtaining a larger
advantage over the Bayesian classifier. For N = 243, the likelihood classifier has
an advantage 4.9 bits higher than the Bayesian classifier on both the symmetric
and asymmetric distribution. Due to these observations, we propose the term
symmetry factor for these types of distributions, defined as �/2M . A distribu-
tion with symmetry factor one is a symmetric distribution, while a symmetry
factor less than one indicates an asymmetric distribution. We conjecture that,
all else being equal, a lower symmetry factor will result in a stronger classifier.

6 Improved Attack on DES

Using the results from the previous sections, we now mount a key-recovery attack
on DES using eight linear approximations. We will use two sets of four linear
approximations, {γ1, γ2, γ3, γ4} and {δ1, δ2, δ3, δ4} over 14 rounds, as given in
Table 2. The attack is mostly identical to Matsui’s Algorithm2. As such, we
obtain N plaintext-ciphertext pairs over 16 rounds, guess the key-bits required
to partially encrypt/decrypt the texts and compute the linear correlations, and
then use the likelihood classifier to categorise each guess as a likely wrong or
right key guess. For each guess, we further gain some parity bits of the key
based on the signs of the correlations.

6.1 Attack Description

Table 3 shows the key- and text-bits relevant to the attack. For both sets of
approximations, we need to know 29 bits of the plaintext/ciphertext, designated
tf,·/tb,·, and we will guess 24 bits of the first/last round key, designated kf,·/kb,·.
Moreover, the signs of CN

K (γ1), CN
K (γ4), CN

K (δ3), and CN
K (δ2), will allow us to

deduce the parity bits pA, pB, pC , and pD. Thus, the attacker will learn a total
of 52 bits of the master key, and will have to guess the remaining 4 bits. In
the following, we assume that the distribution parameters μi,·, Σi,·, and ΣW,·
have been determined before the attack, as described in Sect. 3.3. Moreover, we
assume that λi = 1/� for all i. The attack is then given as follows:

– Distillation
1. Obtain N plaintext-ciphertext pairs.
2. Create two vectors tγ and tδ of size 229 each. tγ [i] (similarly tδ) is equal

to the number of text pairs such that the bits (tf,γ , tb,γ) are equal to i.
– Analysis

1. For each guess of (kf,γ , kb,γ), calculate the vector

cγ = (CN
K (γ1), CN

K (γ2), CN
K (γ3), CN

K (γ4))�,

by partially encrypting/decrypting the data in tγ . Do similarly for the
δ-approximations to calculate cδ.
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Table 3. This table specifies the key/text bits involved in the attack, as well as the
parity key bits derived. Xi denotes the i’th bit of X.

Forward key bits guessed #bits

kf,γ {K18
0 , . . . , K23

0 } kf,δ {K24
0 , . . . , K35

0 , K42
0 , . . . , K47

0 } 6+18

Backward key bits guessed #bits

kb,γ {K24
15 , . . . , K35

15 , K42
15 , . . . , K47

15} kb,δ {K18
15 , . . . , K23

15} 18+6

Plaintext bits stored #bits

tf,γ {P11, . . . , P16, P39, P50, P56} 9
tf,δ {P0, P7, P15, . . . , P24, P27, . . . , P31, P44, P47, P48} 20

Ciphertext bits stored #bits

tb,γ {C0, C7, C15, . . . , C24, C27, . . . , C31, C44, C47, C48} 20
tb,δ {C11, . . . , C16, C39, C50, C56} 9

Parity bits obtained from signs

pA K22
1 ⊕ K44

2 ⊕ K22
3 ⊕ K22

5 ⊕ K44
6 ⊕ K22

7 ⊕ K22
9 ⊕ K44

10 ⊕ K22
11 ⊕ K22

13

pB pA ⊕ K22
13 ⊕ K19

13 ⊕ K23
13

pC K22
0 ⊕ K22

2 ⊕ K44
3 ⊕ K22

4 ⊕ K22
6 ⊕ K44

7 ⊕ K22
8 ⊕ K22

10 ⊕ K44
11 ⊕ K22

12

pD pC ⊕ K22
0 ⊕ K19

0 ⊕ K23
0

2. Calculate

Λ(cγ) =
1
4

∑4
i=1 φM (cγ ;μi,γ ,Σi,γ + (2−n + 1/N)I)
φM (cγ ;0,ΣW,γ + (2−n + 1/N)I)

,

for each guess of (kf,γ , kb,γ). If Λ(cγ) ≤ Γγ , discard the key guess. Like-
wise, calculate Λ(cδ) for each guess of (kf,δ, kb,δ). If Λ(cδ) ≤ Γδ, discard
the key guess.

3. For each surviving key guess, determine the four bits pA, pB , pC , pD

based on the signs of cγ and cδ.
– Search

1. For each remaining guess of (kf,γ , kbγ
, kf,δ, kb,δ), guess the last 4 bits of

the master key, and verify the guess by trial encryption.

6.2 Attack Complexity

In the following, we assume that one computational unit is the time it takes
to perform one round of DES. The computational complexity of the distilla-
tion phase is O(N), while the memory complexity is O(2 · 229). For the analy-
sis phase, each CN

K can be calculated for all key guesses in time O((|kf,·| +
|kb,·|)2|kf,·|+|kb,·|+1.6) using the FFT method presented in [10]. In total, step 1
of the analysis phase can be completed in time O(2 · 4 · 24 · 225.6) ≈ O(233.18).
Step 2 requires the calculation of � + 1 terms for each key-guess of the type
(x − μ)�Σ−1(x − μ), to calculate the normal probabilities. Each term can be
computed in time O(2M3). Thus, step 2 takes a total of O(2 · 224 · 5 · 43) ≈
O(233.32) time. Step 3 takes O(2 · 224−aγ + 2 · 224−aδ ) time, where aγ and
aδ is the advantage of the classifiers in step 2. The analysis step requires
O(224−aγ +224−aδ) memory to store the surviving key guesses. The search phase
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Fig. 12. Top: Combined advantage of the two likelihood classifiers using approxima-
tions in Table 2. The success probabilities include the probability of guessing the four
parity bits correctly. Bottom: The computational complexity of our key-recovery attack
on DES. Each curve has a clear minimum where the trade-off between the data com-
plexity and the strength of the classifiers is optimal.

requires O(16 · 248−(aγ+aδ) · 256−52) = O(16 · 256−(aγ+aδ+4)) time and negligi-
ble memory. Dividing everything by 16 to get the total number of full DES
encryptions, the computational complexity is approximately

O(N · 2−4 + 229.18 + 229.32 + 221−aγ + 221−aδ + 252−(aγ+aδ)).

Thus, the attack complexity depends on the advantage of the two classifiers,
which in turn depends on the choice of Γγ and Γδ. Note that step 3 of the analy-
sis phase is not guaranteed to succeed, so the threshold values must be chosen
such that the overall success probability of the attack is PS . Namely, if Pγ and
Pδ is the success probabilities of the two classifiers, and Qγ and Qδ is the suc-
cess probabilities of determining the parity bits, then we fix Γγ and Γδ such that
Pγ ·Pδ ·Qγ ·Qδ = PS . Using the data obtained in Sect. 5.3, we calculated the total
advantage aγ + aδ + 4 for different N and different values of the success proba-
bility PS . The results are shown in Fig. 12, along with the corresponding attack
complexities. For low data complexities, the search phase is dominant, and so
the 252−(aγ+aδ) term determines the time complexity. For high data complexities,
however, the N · 2−4 term is dominant. This gives each complexity curve a clear
minimum. In a comparison to Matsui’s attack, we see that for PS = 85%, the
minimum is achieved at N = 242.775 where the computational complexity is 238.86

DES encryptions. This is 17.6 times faster than Matsui’s attack estimate (or 4.4
times faster than Junod’s estimate of the attack in [17]) using 240.2 fewer texts.
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6.3 Experimental Verification

While it would be possible to carry out the attack in practice, we would need
to do this for many keys to get an idea of the actual advantage, making the
experiment infeasible. Instead, we measured the actual values of cγ and cδ over 14
and 18 rounds of DES (the right key and wrong key, respectively) with N = 242.78

for randomly chosen keys. This can be done in a bitsliced manner, and is therefore
faster than performing the actual attack, while giving us all the information we
need to verify our model. Using several months of CPU time, we collected 1300
data points for the right key and wrong key distributions. We first note that
the observed distributions closely match those predicted by the model in e.g.
Figure 8. Moreover, we obtain the advantages aγ = 6.72 and aδ = 10.31, which
would give us a complexity of 238.88 – very close to that predicted by our model.
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Abstract. In this paper we present new fundamental properties of
SPNs. These properties turn out to be particularly useful in the adaptive
chosen ciphertext/plaintext setting and we show this by introducing for
the first time key-independent yoyo-distinguishers for 3- to 5-rounds of
AES. All of our distinguishers beat previous records and require respec-
tively 3, 4 and 225.8 data and essentially zero computation except for
observing differences. In addition, we present the first key-independent
distinguisher for 6-rounds AES based on yoyos that preserve impossible
zero differences in plaintexts and ciphertexts. This distinguisher requires
an impractical amount of 2122.83 plaintext/ciphertext pairs and essen-
tially no computation apart from observing the corresponding differ-
ences. We then present a very favorable key-recovery attack on 5-rounds
of AES that requires only 211.3 data complexity and 231 computational
complexity, which as far as we know is also a new record. All our attacks
are in the adaptively chosen plaintext/ciphertext scenario.

Our distinguishers for AES stem from new and fundamental properties
of generic SPNs, including generic SAS and SASAS, that can be used to
preserve zero differences under the action of exchanging values between
existing ciphertext and plaintext pairs. We provide a simple distinguisher
for 2 generic SP-rounds that requires only 4 adaptively chosen cipher-
texts and no computation on the adversaries side. We then describe a
generic and deterministic yoyo-game for 3 generic SP-rounds which pre-
serves zero differences in the middle but which we are not capable of
exploiting in the generic setting.

Keywords: SPN · AES · Zero-Differences · Secret-key distinguisher ·
Impossible Differences · Key-recovery

1 Introduction

Block ciphers are typically designed by iterating an efficiently implementable
round function many times in the hope that the resulting composition behaves
like a randomly drawn permutation. The designer is typically constrained by var-
ious practical criterion, e.g. security target, implementation boundaries, and spe-
cialised applications, that might lead the designer to introduce symmetries and
structures in the round function as a compromise between efficiency and security.
c© International Association for Cryptologic Research 2017
T. Takagi and T. Peyrin (Eds.): ASIACRYPT 2017, Part I, LNCS 10624, pp. 217–243, 2017.
https://doi.org/10.1007/978-3-319-70694-8_8



218 S. Rønjom et al.

In the compromise, a round function is iterated enough times to make sure that
any symmetries and structural properties that might exist in the round function
vanish. Thus, a round function is typically designed to increasingly de-correlate
with structure and symmetries after several rounds.

Yoyo game cryptanalysis was introduced by Biham et al. in [1] for crypt-
analysis of 16 rounds of SKIPJACK. The yoyo game, similarly to Boomerang
attacks [2], is based on adaptively making new pairs of plaintexts and ciphertexts
that preserve a certain property inherited from the original pair. The ciphertext
and/or plaintext space can in this case typically be partitioned into subsets of
plaintexts or pairs of plaintexts closed under exchange operations where all pairs
in a set satisfy the same property. A typical situation is that a pair of plaintexts
and/or ciphertexts satisfy a certain zero difference after a few rounds and where
new pairs of ciphertexts and plaintexts that satisfy the same zero difference can
be formed simply by swapping words or bytes between the corresponding cipher-
texts or plaintexts that preserve the same property. This type of cryptanalysis
is typically structural and has previously been particularly successful on Feistel
designs. Recently, Biryukov et al. [3] used the yoyo game to provide generic dis-
tinguishers against Feistel Networks with secret round functions up to 7 rounds.
Boomerang attacks are quite similar to yoyos and in [4], Biryukov describes 5-
and 6-round Boomerang key-recovery attacks on AES. Other types of struc-
tural attacks relevant in our setting include invariant subspace attacks [5,6] and
subspace trail cryptanalysis [7,8]. Moreover, one may also note the paper by
Ferguson et al. [9] and its implied result on 5-round AES.

Low data- and computational-complexity distinguishers and key-recovery
attacks on round-reduced block ciphers have recently gained renewed interest
in the literature. There are several reasons for this. In one direction cryptanaly-
sis of block ciphers have focused on maximising the number of rounds that can
be broken without exhausting the full codebook and key space. This often leads
to attacks marginally close to that of pure brute force. These are attacks that
typically have been improved over time based on many years of cryptanalysis.
The most successful attacks often become de-facto standard methods of crypt-
analysis for a particular block cipher and might discourage anyone from pursuing
new directions in cryptanalysis that do not reach the same number of rounds.
This in itself might hinder new breakthroughs, thus it can be important to
investigate new promising ideas that might not have reached their full poten-
tial yet. New methods of cryptanalysis that break or distinguish fewer rounds
faster and with lower complexity than established cryptanalysis are therefore
interesting in this process. Many constructions employ reduced round AES as
part of their design. Reduced versions of AES have nice and well-studied prop-
erties that can be favorably as components of larger designs (see for instance
Simpira [10]). The state of the art analysis of low-complexity cryptanalysis of
AES was presented in Bouillaguet et al. [11] and further improved by Derbez et
al. [12] using automatic search tools. When it comes to distinguishers, the best
attacks on 3-round AES are either based on truncated differentials [13] or integral
cryptanalysis [14]. While the integral attack needs 28 chosen plaintexts, a trun-
cated differential needs 24.3 texts at the expense of a little more computation.
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When it comes to 4 rounds of AES, an impossible differential attack requires
216.25 chosen plaintexts and roughly the same amount of computation. Then at
Crypto 2016, Sun et al. [15] presented the first 5-round key-dependent distin-
guisher for AES that was later improved to 298.2 chosen plaintexts with 2107

computations. Later, at Eurocrypt 2017, Grassi et al. [8] proposed a 5-round
key-independent distinguisher for 5-rounds AES that requires 232 chosen texts
and computational cost of 235.6 look-ups into memory of size 236 bytes with a
99% probability success rate.

1.1 Our Contribution

We present for the first time applications of cryptanalysis based on the yoyo
game introduced in [1] to generic Substitution Permutation Networks(SPNs) that
iterate a generic round function A ◦S where S is a non-linear layer consisting of
at least two concatenated s-boxes and A is a generic affine transformation. The
s-boxes and affine layers can be all different. This way it resembles the setting
of SAS and SASAS [16] cryptanalysis.

First we provide a generic framework for the yoyo game on generic SP-
networks. Then we show that distinguishing two generic SP rounds with a yoyo
game requires encryption and decryption of in total one pair of plaintexts and one
pair of ciphertexts respectively and no computational effort on the adversaries
part; the distinguisher is purely structural and immediate. We then provide a
generic framework for analysing 3 rounds generic SPN which seems to be the
maximum possible number of generic rounds achievable with a deterministic
yoyo game and a generic SPN. We then apply our generic results to the most
well-studied block cipher in use today, AES. Since an even number of AES-
rounds can be viewed as a generic SPN with half the number of rounds, our
2- and 3-round generic SPN distinguishers apply directly to 4- and 6-rounds of
AES. We extend the generic distinguishers to cover 3- and 5-rounds AES in a
natural way, including a new secret key recovery for 5 rounds. All of our secret
key distinguishers improve on previously published results both in terms of time
and data complexity.

1.2 Overview of this Paper and Main Results

In Sect. 2 we analyse generic SPNs formed by iterating a round function consist-
ing of concatenated layers of s-boxes and generic affine linear transformations. In
Sect. 2.1 we describe a simple yoyo distinguisher for two non-secret but generic
SPN rounds that is purely structural and requires only one chosen pair of plain-
texts and one (adaptively) chosen pair of ciphertexts. The distinguisher involves
no computation. In Sect. 2.2 we describe generic zero differential properties for
3-round SPN that are preserved in a yoyo game. If the difference of a pair of
plaintexts (or ciphertexts) is zero in particular words in the middle rounds, then
the yoyo game preserves this property and can be used to generate “infinitely”
many new pairs with the exact same zero difference pattern in the middle rounds
with probability 1. The current drawback in the generic setting is that the adver-
sary needs a way to distinguish this condition.
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Table 1. Comparison of key-recovery on 5 rounds of AES

Attack Rounds Data Computation Memory Ref.

MitM 5 8 CP 264 256 [17]

Imp. polyt 5 15 CP 270 241 [18]

Integral 5 211 CP 245.7 small [19]

Imp. diff 5 231.5 CP 233 238 [20]

Boomerang 5 239 ACC 239 233 [4]

Yoyo 5 211.3 ACC 231 small Sect. 3.5

Table 2. Secret-key distinguishers for AES

Property Rounds Data Cost Key-independent Ref.

Trun. Diff 3 24.3 CP 211.5 XOR � [7,21]

Integral 3 28 CP 28 XOR � [14]

Yoyo 3 3 ACC 2 XOR � Sect. 3.1

Imp. Diff 4 216.25 CP 222.3 M � [20]

Integral 4 232 CP 232 XOR � [14]

Yoyo 4 4 ACC 2 XOR � Sect. 3.2

Struct. Diff 5 233 236.6 M � [8]

Imp. Diff 5 298.2 CP 2107 M [7]

Integral 5 2128 CC 2128 XOR [15]

Yoyo 5 225.8 ACC 224.8 XOR � Sect. 3.3

Yoyo 6 2122.83 ACC 2121.83 XOR � Sect. 3.4

In Sect. 3 we apply our generic results to AES. Two rounds of AES, essentially
corresponding to four parallel superboxes and a large linear super-mixlayer, can
essentially be viewed as one generic SP-round and thus our generic method can
be applied directly to it. We begin Sect. 3.1 by presenting a simple distinguisher
for 3 rounds of AES. It requires one chosen pair of plaintexts and one chosen
ciphertext and no computation. Then in Sect. 3.2 we directly apply the generic
yoyo distinguisher presented in Sect. 2.1 to 4 rounds of AES. It requires one
chosen pair of plaintexts and one chosen pair of ciphertexts, and no computation.
In Sect. 3.3 we extend the 4-round yoyo distinguisher to 5 rounds by testing for
pairs derived by the yoyo game that obey unusual byte collisions in the plaintext
(or ciphertext) differences. Then, in Sect. 3.4 we apply the theory on 3 generic
SP-rounds presented in Sect. 2.2 directly to form the first 6-round AES secret
key distinguisher using 2122.83 texts derived from multiple yoyo-games.

The current best key-recovery attacks for 5-rounds of AES are found in
Table 1, while a list of the current best secret-key distinguishers for 3 to 6 rounds
is given in Table 2. We have adopted that the data complexity is measured in min-
imum number of chosen plaintexts/ciphertexts CP/CC or/and adaptive chosen
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plaintexts/ciphertexts ACP/ACC. Time complexity is measured in equivalent
encryptions (E), memory accesses (M) or XOR operations (XOR) - adopting
that 20 M ≈ 1 Round of Encryption.

2 Yoyo Analysis of Generic SPNs

We start off by analysing permutations on F
n
q for q = 2k of the form

F (x) = S ◦ L ◦ S ◦ L ◦ S (1)

where S is a large s-box formed by concatenating n smaller s-boxes s over
Fq and where L is a linear transformation acting on elements of F

n
q . Notice

that our results apply directly to S ◦ A ◦ S ◦ A ◦ S where A are affine trans-
formations, however restricting to linear transformations L slightly simplifies
our presentation. We call an element of Fq a word and a vector of words
α = (α0, α1, . . . , αn−1) ∈ F

n
q is called a state to emphasize that we are thinking

of states in a block cipher. A vector of words in F
n
q can also be viewed as a list of

k-bit vectors of length n. The Hamming weight of a vector x = (x0, x1, . . . , xn−1)
is defined as the number of nonzero components in the vector and is denoted by
wt(x).

We refer to the small s-boxes operating on words in Fq as component s-boxes
to not confuse them with the large s-box S they are part of and that operates
on F

n
q .

Two vectors (or a pair of differences of two vectors) that are different can be
zero in the same positions, and we will be interested in comparing two differences
according to their zero positions so it is useful to define the following.

Definition 1 (The zero difference pattern). Let α ∈ F
n
q and define the zero

difference pattern
ν(α) = (z0, z1, . . . , zn−1)

that returns a binary vector in F
n
2 where zi = 1 indicates that αi is zero or zi = 0

otherwise.

The complement of a zero difference pattern is often called activity pattern in
literature. For a linear transformation L on F

n
q we generally do not have that

the differences α⊕β and L(α)⊕L(β) are zero in the same positions for random
values of α and β. However, permutations S do and the zero difference pattern
is thus an invariant of S.

Lemma 1. For two states α, β ∈ F
n
q , the zero pattern of their difference is

preserved through S, hence

ν(α ⊕ β) = ν(S(α) ⊕ S(β)).

Proof. Since S is a permutation s-box this leads to αi ⊕ βi = 0 if and only if
s(αi)⊕s(βi) = 0, thus the pattern vector of the difference is preserved through S.
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Although this is rather trivial, we leave it as a lemma for later reference. The
following definition is central to the paper.

Definition 2. For a vector v ∈ F
n
2 and a pair of states α, β ∈ F

n
q define a new

state ρv(α, β) ∈ F
n
q such that the i’th component is defined by

ρv(α, β)i = αivi ⊕ βi(vi ⊕ 1).

This is equivalent to

ρv(α, β)i =
{

αi if vi = 1,
βi if vi = 0.

Notice that (α′, β′) = (ρv(α, β), ρv(β, α)) is a new pair of states formed by
swapping individual words between α and β according to the binary coefficients
of v. From the definition it can be seen that

ρv(α, β) ⊕ ρv(β, α) = α ⊕ β. (2)

Let v be the complement of v. Note that ρv(α, β) = ρv(β, α) and therefore
{ρv(α, β), ρv(β, α))} = {ρv(α, β), ρv(β, α))}, implying that v and v result in the
same pair. The maximum number of possible unique pairs (α′, β′) generated
this way is 2n−1 (including the original pair). The maximum is only attainable
if αi �= βi for all 0 ≤ i < n. Assume this is the case. If we restrict v to the
2n−1 binary vectors in F

n
2 with the last coefficient set to 0 we span exactly 2n−1

unique pairs, including (α, β). If v = (0, 0, 0, . . . , 0) is avoided, we generate only
new pairs (ρv(α, β), ρv(β, α)) all unequal to (α, β).

The function ρv has some interesting properties. We leave the following in as
a lemma for further reference.

Lemma 2. Let α, β ∈ F
n
q and v ∈ F

n
2 . Then we have that ρ commutes with the

s-box layer,
ρv(S(α), S(β)) = S(ρv(α, β))

and thus
S(α) ⊕ S(β) = S(ρv(α, β)) ⊕ S(ρv(β, α)).

Proof. S operates independently on individual words and so the result follows
trivially from the definition of ρv.

Lemma 3. For a linear transformation L(x) = L(x0, x1, x2, . . . , xn−1) acting
on n words we have that

L(α) ⊕ L(β) = L(ρv(α, β)) ⊕ L(ρv(β, α))

for any v ∈ F
n
2 .

Proof. Due to the linearity of L it follows that L(x) ⊕ L(y) = L(x ⊕ y). More-
over, due to relation (2), ρv(α, β) ⊕ ρv(β, α) = α ⊕ β and thus L(ρv(α, β)) ⊕
L(ρv(β, α)) = L(α) ⊕ L(β).
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So from Lemma 3 we have that L(α) ⊕ L(β) = L(ρv(α, β)) ⊕ L(ρv(β, α)) and
from Lemma 2 we showed that S(α) ⊕ S(β) = S(ρv(α, β)) ⊕ S(ρv(β, α)). This
implies that

L(S(α)) ⊕ L(S(β)) = L(S(ρv(α, β))) ⊕ L(S(ρv(β, α))) (3)

however it does not generally hold that

S(L(α)) ⊕ S(L(β)) = S(L(ρv(α, β))) ⊕ S(L(ρv(β, α))). (4)

However it is easy to see that the zero difference pattern does not change when
we apply L or S to any pair α′ = ρv(α, β) and β′ = ρv(β, α). As described in
Lemma 3 we clearly have that

ν(L(α) ⊕ L(β)) = ν(L(ρv(α, β)) ⊕ L(ρv(β, α)))

and the differences are zero in exactly the same positions. For the function S we
notice that if the difference between two words αi and βi before a component
s-box is zero, then it is also zero after the component s-box. In other words,

ν(S(α) ⊕ S(β)) =ν(S(ρv(α, β)) ⊕ S(ρv(β, α))).

Thus it follows that, although (4) does not hold, we do have that

ν(S(L(α)) ⊕ S(L(β))) =ν(S(L(ρv(α, β))) ⊕ S(L(ρv(β, α)))) (5)

always holds, i.e. words are zero in exactly the same positions in the difference
for any pair α′ = ρv(α, β) and β′ = ρv(β, α) through L and S.

The yoyo attack is heavily based on the simple result in the lemma below
that summarises the properties above.

Theorem 1. Let α, β ∈ F
n
q and α′ = ρv(α, β), β′ = ρv(β, α) then

ν(S ◦ L ◦ S(α) ⊕ S ◦ L ◦ S(β)) = ν(S ◦ L ◦ S(α′) ⊕ S ◦ L ◦ S(β′))

Proof. The proof follows from the three steps below:

– Lemma 2 implies that S(α) ⊕ S(β) = S(α′) ⊕ S(β′).
– The linearity of L gives L(S(α)) ⊕ L(S(β)) = L(S(α′)) ⊕ L(S(β′)).
– Using Lemma 1 it follows, since S is a permutation and preserves the zero

difference pattern, that
ν(S(L(S(α))) ⊕ S(L(S(β)))) = ν(S(L(S(α′))) ⊕ S(L(S(β′)))).

2.1 Yoyo Distinguisher for Two Generic SP-Rounds

Two full generic rounds are equal to G′
2 = L ◦ S ◦ L ◦ S. However, to simplify

the presentation, we remove the final linear layer and restrict our attention to

G2 =S ◦ L ◦ S. (6)
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We show that G2 can be distinguished, with probability 1, using two plaintexts
and two ciphertexts. The distinguisher is general, in the sense that each of the
S and L transformations can be different and does not require any computation
on the adversaries part.

The idea is simple. If we fix a pair of plaintexts p0, p1 ∈ F
n
q with a particular

zero difference pattern ν(p0 ⊕ p1), then from the corresponding ciphertexts c0 =
G2(p0) and c1 = G2(p1) we can construct a pair of new ciphertexts c′0 and c′1

that decrypt to a pair of new plaintexts p′0, p′1 whose difference has exactly
the same zero difference pattern. Moreover this is deterministic and holds with
probability 1.

Theorem 2. (Generic yoyo game for 2-rounds).
Let p0 ⊕ p1 ∈ F

n
q , c0 = G2(p0) and c1 = G2(p1). Then for any v ∈ F

n
2 let

c′0 = ρv(c0, c1) and let c′1 = ρv(c1, c0). Then

ν(G−1
2 (c′0) ⊕ G−1

2 (c′1)) = ν(p′0 ⊕ p′1)

= ν(p0 ⊕ p1).

Proof. This follows directly from Eq. 3 and we have that

L−1(S−1(c0)) ⊕ L−1(S−1(c1)) = L−1(S−1(ρv(c0, c1))) ⊕ L−1(S−1(ρv(c1, c0))).

Since the differences are equal the r.h.s. difference and the l.h.s. differences are
zero in exactly the same words. Thus we must have that ν(G−1

2 (c′0)⊕G−1
2 (c′1)) =

ν(p0 ⊕ p1).

By symmetry, the exact same property obviously also holds in the decryption
direction.

What Theorem 2 states is that if we pick a pair of plaintexts p0 and p1 with
a zero difference ν(p0 ⊕ p1), we can encrypt the pair to a pair of ciphertexts c0

and c1, construct a new set of ciphertexts c′0 = ρv(c0, c1) and c′1 = ρv(c1, c0)
(simply interchanging words between the original pair) then decrypt to a pair
of new plaintexts with the exact same zero difference pattern. Thus this leaves
us with a straight-forward distinguisher that requires two plaintexts and two
adaptively chosen ciphertexts. There is no need for any computation on the
adversaries part as the result is immediate.

By symmetry we could of course instead have started with a pair of cipher-
texts with a given zero difference pattern and instead adaptively picked a new
pair of plaintexts that would decrypt to a new pair of ciphertexts whose zero
difference pattern corresponds to the first ciphertext pair.

2.2 Analysis of Three Generic SP-Rounds

In this section we show that there is a powerful deterministic difference symmetry
in 3 generic SPN rounds, where we cut away the final linear L-layer, and analyse

G3 =S ◦ L ◦ S ◦ L ◦ S (7)
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where we also omit numbering the transformations to indicate that they can be
all different.

The three round property follows from the two round property. We have
already shown in Theorem 2 that for two states α and β it follows that

ν(G−1
2 (ρv(G2(α), G2(β))) ⊕ G−1

2 (ρv(G2(β), G2(α)))) = ν(α ⊕ β).

Since G2 and G−1
2 have identical forms, it also follows that

ν(G2(ρv(G−1
2 (α), G−1

2 (β))) ⊕ G2(ρv(G−1
2 (β), G−1

2 (α)))) = ν(α ⊕ β)

Also, from Lemma 1 we know that zero difference patterns are preserved
through s-box layers S, that is

ν(α ⊕ β) = ν(S(α) ⊕ S(β)).

Thus, assuming a particular zero difference pattern in front of the middle S-layer
in (7) is equivalent to assuming the same zero difference pattern after it. Hence,
the following Theorem follows straightforwardly.

Theorem 3. (Generic yoyo game for 3-rounds).
Let G3 = S ◦L◦S ◦L◦S. If p0, p1 ∈ F

n
q and c0 = G3(p0) and c1 = G3(p1). Then

ν(G2(ρv1(p0, p1)) ⊕ G2(ρv1(p1, p0))) = ν(G−1
2 (ρv2(c0, c1)) ⊕ G−1

2 (ρv2(c1, c0)))

for any v1, v2 ∈ F
n
2 . Moreover, for any z ∈ F

n
2 , let RP (z) denote the pairs of

plaintexts where ν(G2(p0)⊕G2(p1)) = z and RC(z) the pairs of ciphertexts where
ν(G−1

2 (c0) ⊕ G−1
2 (c1)) = z. Then it follows that

(G3(ρv(p0, p1)), G3(ρv(p1, p0))) ∈ RC(z)

for any (p0, p1) ∈ RP (z) while

(G−1
3 (ρv(c0, c1)), G−1

3 (ρv(c1, c0))) ∈ RP (z)

for any (c0, c1) ∈ RC(z).

Thus, from a single pair of plaintexts p1, p2, we can continuously generate
new elements that with probability 1 belong to RC(z) and RP (z), which contain
exactly the pairs of plaintexts and ciphertexts that have difference pattern z in
the middle.

A distinguisher for this requires first to test a number of pairs until there is
one that has a particular Hamming weight of the zero difference pattern, then
try to distinguish this case when it happens. The probability that a random
pair of plaintexts has a sum with zero difference pattern containing exactly m

zeros (the difference is non-zero in exactly m words) in the middle is
(
n
m

) (q−1)−m

qn

where q = 2k. Thus we need to test approximately the inverse of that number
of pairs to expect to find one correct pair, and thus require that the complexity
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of any distinguisher which succeeds in detecting the right condition times the
number of pairs to be checked is substantially less than brute force.

We leave this case with a small observation. Assume that we have in fact
found a pair of plaintexts that belongs to RP (z) for a particular zero difference
pattern of Hamming weight n − m. In this case we will continuously generate
new pairs that are guaranteed to be contained in RP (z) and RC(z). However we
need a way to distinguish that this is in fact happening. Let A be the affine layer
in an SASAS construction. Assume that S−1(c1) = x ⊕ z while S−1(c2) = y ⊕ z
where A−1(x) and A−1(y) are non-zero only in the positions where z is zero,
while A−1(z) is non-zero only in the positions where z is zero. It follows that x
and y belong to a linear subspace U of dimension m − n while z must belong to
the complementary subspace V of dimension m such that U ⊕V = F

n
q . Hence, a

problem for further study is to investigate whether c1 ⊕ c2 = S(x⊕ z)⊕S(y ⊕ z)
for x, y ∈ U and z ∈ V has particular generic distinguishing properties. A dis-
tinguisher for this would of course apply equally well to the plaintext side, i.e.
p1 ⊕ p2 = S−1(x′ ⊕ z′) ⊕ S−1(y′ ⊕ z′) for x′, y′ ∈ U ′ and z′ ∈ V ′.

3 Applications to AES

The round function in AES [19] is most often presented in terms of operations
on 4 × 4 matrices over Fq where q = 28. One round of AES consists of Sub-
Bytes (SB), ShiftRows (SR), MixColumns (MC) and AddKey (AK). SubBytes
applies a fixed 8-bit s-box to each byte of the state, ShiftRows rotates each row
a number of times, while MixColumns applies a fixed linear transformation to
each column. Four-round AES can be described with the superbox representa-
tion [22–24] operating on four parallel 32-bit words (or elements of F4

28) instead
of bytes where leading and trailing linear layers are omitted for sake of clarity.
A similar description of AES is given in [25]. The superbox representation of
AES now consists of iterating four parallel keyed 32-bit sboxes and a large linear
“super”-layer. Thus while one round is a composition AK ◦ MC ◦ SR ◦ SB, two
rounds of AES is equal to the composition

(AK ◦ MC ◦ SR ◦ SB) ◦ (AK ◦ MC ◦ SR ◦ SB). (8)

Since we are only considering differences, we can leave out AddKey(AK) for
sake of clarity. Now since SR commutes with SB we can rewrite (8) as

R2′ = MC ◦ SR ◦ (SB ◦ MC ◦ SB) ◦ SR. (9)

The initial SR has no effect in our analysis, thus we leave it out and only consider

R2 =MC ◦ SR ◦ (SB ◦ MC ◦ SB) = MC ◦ SR ◦ S

where S = SB ◦ MC ◦ SB constitutes four parallel super-boxes acting inde-
pendently on 32-bits of the state. In terms of the generic SPN-analysis in the
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Fig. 1. Two rounds AES in the super-box representation

previous section, the state of AES consists of four words where each word con-
tains four bytes. This is equivalent to the superbox [23] representation shown in
Fig. 1 where the initial ShiftRows has been omitted. Thus, let S = SB◦MC◦SB
and L = SR ◦ MC ◦ SR. Four rounds of AES can be viewed in a similar way
simply by repeating the composition of (9)

R4′ = MC ◦ SR ◦ S ◦ L ◦ S ◦ SR

and we end up with

R4 = S ◦ L ◦ S (10)

if we omit the linear layers before the first and after the last s-box layer. The
designers of AES used this representation to provide an elegant proof that the
lower bound on the number of active s-boxes over 4 rounds is 5 · 5 = 25. The
number of active super-boxes in Fig. 3 due to the linear layer L is at least 5,
while the minimum number of active s-boxes inside a super-box is also 5 due to
the MixColumns matrix, thus the total number of active s-boxes is at least 25.

Similarly, 6 rounds of AES is equal to

R6′ = MC ◦ SR ◦ S ◦ L ◦ S ◦ L ◦ S ◦ SR (11)

which, when the leading and trailing linear layers are removed, becomes

R6 = S ◦ L ◦ S ◦ L ◦ S. (12)

Thus two rounds of AES can be viewed as one generic SPN-round consisting
of a state-vector of 4 words from F

4
28 consisting of one s-box layer of 4 parallel

concatenated superboxes and one large linear layer. Therefore can any even



228 S. Rønjom et al.

number of rounds be seen as half the number of generic SP rounds. It follows
that our generic analysis presented in the previous section applies directly to 4
and 6 rounds of AES.

Since two rounds of AES correspond to one generic SPN-round, our generic
analysis on SP-rounds does not cover odd rounds of AES. However, we extend
the 2- and 4-round distinguishers by one round in a natural way by exploiting
properties of one AES round. The following observation is used to extend our
distinguishers to 3 and 5 rounds. First, 3 rounds of AES can be written as Q ◦S
where Q = SB◦MC ◦SR by adding a round at the end and 5 rounds of AES can
be written as S ◦L◦S ◦Q′ where Q′ = SR◦MC ◦SB where a round is added at
the beginning of 4 AES rounds. We have again omitted the trailing and leading
linear layers. Both our 3-rounds distinguisher and our 5-round distinguishers
exploit properties of one AES-round, and in particular the effect of MixColumns
in Q and Q′.

Definition 3. Let Q = SB ◦ MC ◦ SR.

For a binary vector z ∈ F
4
2 of weight t let Vz denote the subspace of q4·(4−t)

states x = (x0, x1, x2, x3) formed by setting xi to all possible values of F
4
q if

zi = 0 or to zero otherwise. Then, for any state a = (a0, a1, a2, a3), let

Tz,a = {Q(a ⊕ x) |x ∈ Vz}.

It is important to note that the sets Tz,a in Definition 3 in practice depend
on variable round keys xored in between layers which we assume are implicit
from the context in which we use them.

Let Hi denote the image of the i’th word in SR(a ⊕ x) when x is in Vz.
Observe that |Hi| = q4−t. Then define

T z,a
i = SB ◦ MC(Hi).

Since SB and MC operate on each word individually then Tz,a has T z,a
i as

its i’th word.

Lemma 4. The set Tz,a satisfies

Tz,a = T z,a
0 × T z,a

1 × T z,a
2 × T z,a

3

where |T z,a
i | = q4−wt(z).

Proof. In Fig. 2 it is easy to see that each word contributes one independent
byte to each word after SR. Thus if 4 − t words are nonzero, and each word
contributes a single independent byte to each word after applying SR, it follows
that each word after SR can take on exactly q4−t independent values. Since
Hi denotes the set of q4−t possible values that word i can have after SR and
MC and SB operate independently and in parallel on words, it follows that
T z,a
i = SB ◦ MC(Hi).

It is not hard to see that the inverse of Q′, Q′−1, enjoys the same property.
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Fig. 2. Three rounds SB ◦ MC ◦ SR ◦ S = Q ◦ S

We ask the reader to keep one thing in mind. In our analysis, the last MC◦SR
layers and first SR layers are omitted for simplicity of presentation. Thus, when
we say that we swap ciphertexts c0 and c1 to form c′0 = ρv(c0, c1) and c′1 =
ρv(c1, c0), then for it to work for the real full round AES, we instead apply the
transformation

c′0 = MC ◦ SR(ρv(SR−1 ◦ MC−1(c0), SR−1 ◦ MC−1(c1)))

and
c′1 = MC ◦ SR(ρv(SR−1 ◦ MC−1(c1), SR−1 ◦ MC−1(c0))).

Similarly, when we swap words in the plaintexts we need to account for the extra
SR-layer in the full rounds, i.e.

p′0 = SR−1(ρv(SR(p0), SR(p1)))

and
p′1 = SR−1(ρv(SR(p1), SR(p0))).

All our results, except for the 6-round distinguisher, have been, and are easy,
to verify experimentally on a laptop and require only to implement very simple
operations. In the following sections we present our results on AES.

For the pseudo-codes we use Algorithm 1 to simplify the presentation. If the
input pairs are distinct in at least two words, which happens with probability
(1 − 2−94), then this algorithm always returns a new text. If a pair in fact is
equal in exactly three words, then the pair is simply discarded. Since we use a
simplified swap operation, we have to go a few more rounds back and forth in
the yoyo game to construct pairs, instead of returning all possible swap-pairs at
once for a ciphertext pair or plaintext pair.1

1 C-code for our attacks can be found at https://github.com/sondrer/YoyoTricksAES.

https://github.com/sondrer/YoyoTricksAES
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Algorithm 1. Swaps the first word where texts are different and returns one
text

function SimpleSWAP(x0, x1) //x0 �= x1

x′0 ← x1

for i from 0 to 3 do
if x0

i �= x1
i then

x′0
i ← x0

i

return x′0

end if
end for

end function

3.1 Yoyo Distinguisher for Three Rounds of AES

Two rounds of AES correspond to one generic SPN round and can be distin-
guished trivially. If we consider three full AES rounds minus the linear layer
before the first and after the last s-box layer, we have that

R3 = SB ◦ MC ◦ SR ◦ S

= Q ◦ S

which is depicted in Fig. 2. The basis for our distinguisher is implicit in Lemma 4.
Let p0 and p1 denote two plaintexts with z = ν(p0 ⊕ p1) and wt(z) = t, i.e. the
difference between the plaintexts is zero in t of the words. Due to Lemma 1
we have that ν(S(p0) ⊕ S(p1)) = ν(p0 ⊕ p1) thus the zero difference pattern
is preserved through the superbox layer S. Then, since S(p0) and S(p1) can be
regarded as two states that differ only in 4−t words, it follows from Lemma 4 that
both Q(S(p0)) = c0 and Q(S(p1)) = c1 belong to the same set Tz,a, which are
generally unknown due to the addition of secret keys. However, the ciphertexts
themselves span subsets of Tz,a. Since both c0 and c1 are in the same set Tz,a,
it follows that each word c0i and c1i of c0 = (c00, c

0
1, c

0
2, c

0
3) and c1 = (c10, c

1
1, c

1
2, c

1
3)

are drawn from the same subsets T z,a
i ⊂ F

4
q of size q4−t. In particular, the set

T ′
z,a ={c00, c

1
0} × {c01, c11} × {c02, c12} × {c03, c13}

must be a subset of Tz,a of at most size 24, where {c0i , c
1
i } is a subset of T z,a

i as
shown in Lemma 4. In other words, if we pick any ciphertext c′ �= c0, c1 from
T ′
z,a it follows that ν(Q−1(c′) ⊕ S(p0)) = ν(Q−1(c′) ⊕ S(p1)) = ν(S(p0) ⊕ S(p1))

and in particular, ν(R−3(c′) ⊕ p0) = ν(R−3(c′) ⊕ p1) = ν(p0 ⊕ p1). This implies
a straightforward distinguisher for 3 rounds of AES that requires two chosen
plaintexts and one adaptively chosen ciphertext. To simplify, the adversary picks
two plaintexts p0 and p1 that differ in only one word such that t = wt(ν(p0 ⊕
p1)) = 3. The corresponding ciphertexts c0 and c1 specify a subset T ′

z,a ⊂ Tz,a

of size 24 including the original ciphertexts. Thus if the adversary picks any
ciphertext c′ = ρv(c0, c1) ∈ T ′

z,a not equal to c0 or c1 and asks for the decryption
of it p′, then with probability 1 we have that ν(p′ ⊕p0) = ν(p′ ⊕p1) = ν(p0⊕p1).
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Algorithm 2. Distinguisher for 3 rounds of AES
Input: A pair of plaintext with wt(ν(p0 ⊕ p1)) = 3
Output: 1 for an AES, -1 otherwise.

// r-round AES enc/dec without first SR and last SR ◦ MC
c0 ← enck(p

0, 3), c1 ← enck(p
1, 3) //encrypt pair

c′ ← SimpleSWAP(c0, c1)
p′ ← deck(c

′, 3) //decrypt c′

if ν(p′ ⊕ p1) = ν(p0 ⊕ p1) then
return 1.

else
return −1

end if

Thus the difference of p′ and any of the initial plaintexts pi is zero in exactly
the same words as the initially chosen difference p0 ⊕ p1. This can only happen
at random with probability 2−96.

3.2 Yoyo Distinguisher for Four Rounds of AES

In this section we present a remarkably simple and efficient distinguisher for 4-
rounds AES. For 4 rounds of AES we simply apply the distinguisher for 2 rounds
generic SPN in Sect. 2.1. Four rounds of AES is equal to

R′4 = MC ◦ SR ◦ S ◦ L ◦ S ◦ SR

where S ◦ L ◦ S consists of the “super-layers” in AES. To simplify the notation,
we omit the last layer of MC ◦ SR together with the initial SR-layer and apply
the distinguisher directly to

R4 = S ◦ L ◦ S.

Following Sect. 2.1, the adversary picks a pair of plaintexts p0 and p1 whose
difference is zero in exactly t out of four words. The adversary then asks for the
encryption of the plaintexts and receives the corresponding ciphertexts c0 and c1

and picks a new pair of ciphertexts c′0 = ρv(c0, c1) and c′1 = c′0 ⊕ c0 ⊕ c1 for any
v ∈ F

4
2. That is, he makes a new pair of ciphertexts simply by exchanging any

words between the c0 and c1. The new pair of ciphertexts now decrypts to a pair
of new plaintexts p′0 and p′1 that has exactly the same zero difference pattern
as p0 and p1. By symmetry, the same distinguisher works in the decryption
direction.

3.3 Yoyo Distinguisher for Five Rounds of AES

We can extend the 4-round distinguisher to a 5-round distinguisher by combining
the 4-round yoyo distinguisher together with the observation used in the 3-rounds
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Fig. 3. The structure of S ◦ L ◦ S

Algorithm 3. Distinguisher for 4 rounds of AES
Input: A pair of plaintexts with wt(ν(p0 ⊕ p1)) = 3
Output: 1 for an AES, -1 otherwise.

// r-round AES enc/dec without first SR and last SR ◦ MC
c0 ← enck(p

0, 4), c1 ← enck(p
1, 4) //encrypt pair

c′0 ← SimpleSWAP(c0, c1), c′1 ← SimpleSWAP(c1, c0)
p′0 ← deck(c

′0, 4), p′1 ← deck(c
′1, 4) //decrypt pair

if ν(p′0 ⊕ p′1) = ν(p0 ⊕ p1) then
return 1.

else
return −1

end if

distinguisher and described in Lemma 4. We add a round MC ◦SB, shifting out
the SR-layer in that round, at the beginning of 4 rounds S ◦ L ◦ S ◦ SR and get

R5 = S ◦ L ◦ S ◦ SR ◦ MC ◦ SB

= S ◦ L ◦ S ◦ Q′

= R4 ◦ Q′

as depicted in Fig. 4 where Q′ = SR ◦ MC ◦ SB. Notice that Q′−1 = SB−1 ◦
MC−1 ◦ SR−1 enjoys the same property as Q in Lemma 4, though with inverse
components. The main idea of our distinguisher is that if the difference between
two plaintexts after the first round (essentially after Q′) is zero in t out of 4
words, we apply the yoyo game and return new plaintext pairs that are zero in
exactly the same words after one round. Then, due to Lemma 4, the plaintexts
must reside in the same sets and this is a property we will exploit in our dis-
tinguisher. In particular, assume that we have two plaintexts p0 and p1 where
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Fig. 4. Five Rounds R4 ◦ Q′

Q′(p0) ⊕ Q′(p1) = a0 ⊕ a1 is zero in 3 out of 4 words. Then since each byte of
a word is mapped to distinct words through SR−1, it follows from Lemma 4
that p0 and p1 belongs to the same set Tz,a = T z,a

0 × T z,a
1 × T z,a

2 × T z,a
3 for

wt(z) = 3 and where each set T z,a
i ⊂ F

4
q has size exactly q = q4−wt(z). In other

words, if a pair of plaintexts p0 and p1 encrypt one round (through Q′) to a
pair of intermediate states whose difference is zero in 3 out of 4 words, then p0

and p1 have probability q−1 of having the same value in a particular word. We
do not actually know the sets T z,a

i since they are key-dependent, but we know
their size. However, due to the MixColumns matrix M we can add an even more
fine grained property and we now explain the last property that we use in our
distinguisher. The 4 × 4 MixColumns matrix M satisfy wt(x) + wt(xM) ≥ 5 for
any non-zero x ∈ F

4
28 . In particular, if x has t > 0 non-zero bytes, then x ·M has

at least 5 − t non-zero bytes. In other words, if x has 4 − t zeros, then x · M can
not contain t or more zeros. This follows because the total number of non-zero
bytes before and after M can not be less than 5, and this therefore means that
the total number of zeros before and after M can not be more than 8 − 5 = 3.
The same property holds for the inverse M−1 of M . We add it as a Lemma for
reference.

Lemma 5. Let M denote a 4 × 4 MixColumns matrix and x ∈ F
4
q. If t bytes in

x are zero, then x · M or x · M−1 can not contain 4 − t or more zeros.
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Algorithm 4. Distinguisher for 5 rounds of AES
Output: 1 for an AES, -1 otherwise.

// r-round AES enc/dec without first SR and last SR ◦ MC
cnt1 ← 0
while cnt1 < 213.4 do

cnt1 ← cnt1 + 1
p0, p1 ← generate random pair with wt(ν(p0 ⊕ p1)) = 3
cnt2 ← 0, WrongPair ← False
while cnt2 < 211.4 & WrongPair = False do

cnt2 ← cnt2 + 1
c0 ← enck(p

0, 5), c1 ← enck(p
1, 5)

c′0 ← SimpleSWAP(c0, c1), c′1 ← SimpleSWAP(c1, c0)
p′0 ← deck(c

′0, 5), p′1 ← deck(c
′1, 5)

p ← (p′0 ⊕ p′1)
for i from 0 to 3 do

if wt(ν(pi)) ≥ 2 then
WrongPair ← True

end if
end for
p0 ← SimpleSWAP(p′0, p′1), p1 ← SimpleSWAP(p′1, p′0)

end while
if WrongPair = False then

return 1. //Did not find difference with two or more zeros
end if

end while
return −1.

Proof. Follows directly from the well-known properties of M .

Thus, if a pair of plaintexts encrypt one round to a pair of states Q′(a) and
Q′(b) that has a zero difference pattern of weight t (only 4 − t out of four words
are active), we have the following, where Q′ = SR ◦ MC ◦ SB.

Theorem 4. Let a and b denote two states where the zero difference pattern
ν(Q′(a) ⊕ Q′(b)) has weight t. Then the probability that any 4 − t bytes are
simultaneously zero in a word in the difference a⊕ b is qt−4. When this happens,
all bytes in the difference are zero.

Proof. The proof follows from the explanation above. First of all, it follows from
Lemma 4 that two words in the same position of a and b are drawn from a same
set T z,a

i of size q4−t where wt(z) = t. Thus words in the same positions of a
and b are equal with probability q−(4−t) = qt−4. Since t out of 4 words are zero
in Q′(a) ⊕ Q′(b), we have that t bytes are zero in each word in the difference
SR−1(a) ⊕ SR−1(b) at the input to SB−1 ◦ MC−1. Due to Lemma 5, it follows
that 4− t bytes can not be zero in each word in the difference after MC−1. This
is preserved in the difference through SB−1 and xor with constants.

We now have the machinery to build a distinguisher for 5 rounds of AES.
First the adversary picks enough pairs of plaintexts so that he can expect to
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find one that the difference has exactly t zero words after one round. Let B =
MC ◦ s4 where s4 denotes the concatenation of 4 copies of the AES s-box. Then
Q′ = SR ◦ MC ◦ SB can be seen as four parallel applications of B, one on
each word, composed with ShiftRows. If two words are equal on input to B,
they are equal at the output and thus their difference is zero. So the adversary
picks pairs whose difference is nonzero in exactly one word. Then he tries enough
pairs (p0, p1) until the difference of the output word of the active B contains t
zero bytes. When this difference is passed through the SR-layer, it means that t
words are zero in the state difference Q′(p0) ⊕ Q′(p1). If he then plays the yoyo
game on the next four rounds, the yoyo returns with at most 7 new pairs of
plaintexts (p′0, p′1) that satisfy the exact same zero difference pattern after one
round. Hence, if the initial pair (p0, p1) satisfy z = ν(Q′(p0)⊕Q′(p1)), then each
of the new pairs returned by the yoyo obey the same property. In particular,
each returned pair of plaintexts obey Theorem 4 which can then be used to
distinguish on probability of collisions in bytes of words.

The distinguisher is now straightforward. The probability that a pair p0 and
p1, with zero difference pattern of weight 3, is encrypted through Q′ (essentially
one round) to a pair of states, with zero difference pattern of weight t, can be
well approximated by

pb(t) =
(

4
t

)

q−t

where q = 28. Thus, in a set of pb(t)−1 pairs P we expect to find one satisfying
pair. Now, for each pair in P we need a way to distinguish the case when we hit
a correct pair. For a random pair of plaintexts, the probability that 4 − t bytes
are zero simultaneously in any of the 4 words is roughly

4pb(4 − t) = 4 ·
(

4
t

)

· qt−4

while, for a correct case, it is 4 · qt−4. Hence, for each pair of initial plaintexts
in P, we need to generate roughly pb(4 − t)−1/4 pairs with the yoyo game to
distinguish wrong pairs from the right pair. Thus, in total, the adversary needs
to test a set P containing at least pb(t)−1 pairs, and for each pair he needs to
generate roughly pb(4 − t)−1/4 new plaintext pairs using the yoyo game. Thus,
the total data complexity is

2 · (pb(t)−1 · (4 · pb(4 − t))−1) =
pb(t)−1 · pb(4 − t)−1

2
.

For t ∈ {1, 3} we get a data complexity of 227 while for t = 2 we get away with
roughly 225.8. Since the yoyo returns at most 7 new pairs per plaintext pair, we
have to repeat the yoyo on new received plaintext pairs by applying the swap-
technique in Definition 2 to new plaintexts back and forth over 5 rounds until
enough pairs are gathered. Thus, the adversary can always continue the test a
few times on a right pair to ensure that the condition is met, but this does not
contribute to the overall data complexity (Fig. 5).
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Fig. 5. Six Rounds S ◦ L ◦ S ◦ L ◦ S

3.4 Impossible Differential Yoyo Distinguisher for 6 Rounds

In this section we present for the first time a secret key distinguisher for 6 rounds
of AES that requires 2122.83 adaptively chosen plaintexts and ciphertexts. We
apply the 3-rounds yoyo game described in Sect. 2.2 for generic SPNs directly to
6 rounds of AES in the superbox form R6 = S◦L◦S◦L◦S where S is a superbox
and L = SR ◦ MC ◦ SR is the linear superlayer. In Sect. 2.2, we were unable
to come up with a generic distinguisher for 3 generic SP-rounds. However, for
AES we can exploit impossible zero difference conditions induced by the L layer.
Moreover, we use the fact that the total number of active super-boxes over four
full AES rounds is at least 5 (see for instance [23]). This also means that the
minimal number of active words over the first L◦S layer is 5. Moreover, if we pick
a pair of plaintexts (p0, p1) whose difference is zero in exactly two words after
L◦S, it follows that the plaintexts themselves must differ in at least three words
since the total number of active words is at least 5. In other words, a pair of
plaintexts with a difference containing two zero-words can not partially decrypt
through the inverse of L◦S to a pair whose difference is zero in two or more words
also. Now, if a pair of plaintexts (p0, p1) partially encrypt through L◦S to a pair
of states that are zero in two words with zero difference pattern z, then using
the yoyo game on new ciphertext and plaintext pairs back and forth generates
“infinitely” many pairs that have the exact same zero difference pattern after
L ◦ S. But since ν(L ◦ S(p0) ⊕ L ◦ S(p1)) = ν(S ◦ L ◦ S(p0) ⊕ S ◦ L ◦ S(p1)) = z,
it follows that the difference between pairs of ciphertexts can not contain two
or more zero-words either. Hence, if the adversary has one pair of plaintexts
(p0, p1) that satisfy ν(L ◦ S(p0) ⊕ L ◦ S(p1)) = 2, he can generate as many new
pairs of plaintext and ciphertext pairs as he wants using the yoyo, and all of
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Algorithm 5. Distinguisher for 6 rounds of AES
Input: Set P contains 261.4 plaintext pairs (p0, p1)
Output: 1 for an AES, -1 otherwise.

// r-round AES enc/dec without first SR and last SR ◦ MC
for (p0, p1) ∈ P do

WrongPair ← False, counter ← 0
while counter < 260.4 & WrongPair = False do

if wt(ν(p0 ⊕ p1)) ≥ 2 then
WrongPair ← True //Too many zeros in difference

end if
c0 ← enck(p

0, 6), c1 ← enck(p
1, 6)

if wt(ν(c0 ⊕ c1)) ≥ 2 then
WrongPair ← True //Too many zeros in difference

end if
c′0 ← SimpleSWAP(c0, c1), c′1 ← SimpleSWAP(c1, c0)
p′0 ← deck(c

′0, 6), p′ ← deck(c
′1, 6)

p0 ← SimpleSWAP(p′0, p′1), p1 ← SimpleSWAP(p′1, p′0)
counter ← counter + 1

end while
if WrongPair = False then

return 1.
end if

end for
return −1.

these will have the exact same zero difference in the middle. Moreover, none of
these plaintext and ciphertext pairs can ever collide in two or more words. This
suggests a simple, though impractical, distinguisher for 6 rounds of AES.

First we have that wt(ν(L◦S(p0)⊕L◦S(p1))) = t with a probability
(
4
t

)
(232−

1)4−t/232·4 that can be well approximated by

pw(t) =
(

4
t

)

2−t·32

for a random pair of plaintexts. If the pair is correct, there is generally a

pw(4 − t) =
(

4
4 − t

)

2(4−t)·(−32)

probability of a collision in 4 − t words at the same time in either the cipher-
text or the plaintext. Thus by testing both plaintext and ciphertext pairs, the
probability becomes 2 · pw(4 − t) that the difference of random pairs of plain-
texts or ciphertexts are zero in 4 − t words. But this is impossible in AES for
right pairs, since the total number of zero words in the differences p0 ⊕ p1 and
L◦S(p0)⊕L◦S(p1) can not be more than 3 due to the L-layer. Thus a straight-
forward distinguisher is as follows. We prepare pw(t)−1 pairs in a set P. For each
pair, we run the yoyo game back and forth until we have generated pw(4−t)−1

2
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pairs. If there is a collision in 4−t words we discard the pair from P and continue
with a new pair until there are no such collisions. In that case, we conclude a
success for the distinguisher. The total data complexity of the 6-rounds distin-
guisher is

D(t) = pw(t)−1 · pw(4 − t)−1

where the lowest data-complexity is found by setting t = 2 such that D(t) =
2122.83.

This is as far as we know the first 6-round secret key distinguisher for AES
that does not use the full codebook. Philosophically, one could argue that 2 · r
AES-rounds should exhibit the same properties as r generic SP-round consisting
of four s-boxes and one large linear layer. However, to conclude that 6 rounds
of AES is weaker than the 3 rounds generic SP, requires a deeper study of the
3-rounds yoyo game in Sect. 2.1.

3.5 A 5-Round Key Recovery Yoyo on AES

The 5-round key-recovery is formed by adding a round Q′ = SR ◦ MC ◦ SB in
front of S ◦ L ◦ S, just like in Sect. 3.3, and aim at finding the first round-key
xored in front of R5 = S ◦ L ◦ S ◦ Q. The MixColumns matrix M in AES is
defined by the circular matrix

⎡

⎢
⎢
⎣

α α ⊕ 1 1 1
1 α α ⊕ 1 1
1 1 α α ⊕ 1

α ⊕ 1 1 1 α

⎤

⎥
⎥
⎦ .

The function MC ◦ SB works on each word of the state independently, thus
assume we pick two pairs of plaintexts p0 and p1 where the first words are
given by p00 = (0, i, 0, 0) and p10 = (z, z ⊕ i, 0, 0) where z is a random non-
zero element of Fq. The three other words are equal for the two plaintexts. Let
k0 = (k0,0, k0,1, k0,2, k0,3) denote the key-bytes XORed with the first word of the
plaintext. Then the difference between the first words after the partial encryption
of the two plaintexts through MC ◦ SB ◦ AK becomes

αb0 ⊕ (α ⊕ 1)b1 =y0

b0 ⊕ αb1 =y1

b0 ⊕ b1 =y2

(α ⊕ 1)b0 ⊕ b1 =y3.

where b0 = s(k0,0) ⊕ s(z ⊕ k0,0) and b1 = s(k0,1 ⊕ z ⊕ i) ⊕ s(k0,1 ⊕ i), where s(x)
is the AES-sbox. Since the plaintexts are equal in the last two bytes, this part
cancels out in the difference. In particular, if we look at the third equation,

s(k0,0) ⊕ s(z ⊕ k0,0) ⊕ s(k0,1 ⊕ z ⊕ i) ⊕ s(k0,1 ⊕ i) = y2
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it is not hard to see that it is zero for i ∈ {k0,0 ⊕ k0,1, z ⊕ k0,0 ⊕ k0,1}. Thus, if
we let i run through all values of Fq, we are guaranteed that there are at least
two values for which the third equation is zero.

We prepare a set P of plaintext pairs as follows. For each i, generate a pair
of plaintexts p0 and p1 where the first word of p0 is p00 = (0, i, 0, 0) while the
first word in the second text is p10 = (z, z ⊕ i, 0, 0). Then encrypt this pair
with five rounds to ciphertexts c0 and c1. Then pick 5 new ciphertext pairs
c′0, c′1 = (ρv(c0, c1), ρv(c1, c0)) and return the corresponding plaintexts p′0 and
p′1. If a pair is of the correct form, the first words of p′0 and p′1 will satisfy

M ◦ s4(p′0
0 ⊕ k0) ⊕ M ◦ s4(p′1

0 ⊕ k0) = (z0, z1, 0, z3) (13)

where M is the MC matrix and s4 is the concatenation of 4 parallel s-boxes. The
adversary can now test each of the 224 remaining candidate keys and determines
whether the third coordinate in (13) is zero for all 5 pairs of plaintexts returned
by the yoyo, where we already known that k0,0 ⊕ k0,1 ∈ {i, i ⊕ z} for known
values i and z. This equation holds for all 5 pairs at random with probability
2−8·5 = 2−40 thus a false positive might occur with probability 2−16 when testing
224 keys. In practice, the adversary can always remove uncertainty by generating
a few more pairs when the test succeeds on the first five pairs, since this happens
rarely and does not affect the total data complexity per attack. Thus, the total
number of adaptively chosen plaintexts needed for finding a correct pair is 28 · 5
pairs, which corresponds to

D = 2 · 28 · 5 ≈ 211

ciphertexts and plaintexts.
For the total computational complexity, testing key guesses for one set should

be 224 instead of 2 · 224, because it is sufficient to test k0,1 = k0,0 ⊕ i and there
is no need to test k0,1 = k0,0 ⊕ i ⊕ z, considering i will run over all 28 possible
values and k0,0 also runs over all 28 possible values. This corresponds to 229.3

s-box look-ups because to check that the third component in Eq. (13) is zero for
each key on 5 pairs one needs 2 · 4 s-box look-ups for each of the 5 pairs. This
has to be done 28 times, one run for each pair in P. Thus the total number of
s-box look-ups corresponds to 224 · 2 · 4 · 5 · 28 = 229.3+8 = 237.3. This roughly
corresponds to 231 5-rounds of AES where we assume that one round costs 16
s-box lookups. Notice that when we have found one of the correct subkeys, it is
trivial (and extremely efficient) to determine the rest of the subkeys.

Since the adversary now knows the first subkey k0, he can make a pair of
words a′

0, b
′
0 ∈ F

4
28 that differ only in their first byte. He then makes a new pair

by first applying the inverse MixColumns matrix M−1 and then applying the
inverse s-box to each byte of the pair of words. Finally he XORs the first subkey
k0 to each word which results in a pair of words a0 and b0. He can now make
a pair of full plaintexts p0 = (a0, 0, 0, 0) and p1 = (b0, 0, 0, 0) (they must be
equal in the last three words) whose difference after SR ◦ MC ◦ SB ◦ AK is
guaranteed to be non-zero in only the first word. However, this first initial pair
of plaintexts p0 and p1 is useless for recovering the remaining subkeys since they
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Algorithm 6. Key recovery for 5 rounds of AES
Input: Set P contains 28 plaintext pairs (p0, p1) where p0

0 = (0, i, 0, 0) and p1
0 =

(1, 1 ⊕ i, 0, 0) for i = 0, ..., 28 − 1 (p0
j = p1

j = 0 for j = 1, 2, 3 )
Output: Secret key k0

// r-round AES enc/dec without first SR and last SR ◦ MC
for i from 0 to 28 − 1 do

p0 ← 0, p1 ← 0 //initialize to all zero state
p0
0 ← (0, i, 0, 0), p1

0 ← (1, 1 ⊕ i, 0, 0)
S ← {(p0, p1)}
while len(S) < 5 do //generate 4 new plaintext pairs

c0 ← enck(p
0, 5), c1 ← enck(p

1, 5)
c′0 ← SimpleSWAP(c0, c1), c′1 ← SimpleSWAP(c1, c0)
p′0 ← deck(c

′0, 5), p′1 ← deck(c
′1, 5)

p0 ← SimpleSWAP(p′0, p′1), p1 ← SimpleSWAP(p′1, p′0)
S ← S ∪ {(p0, p1)}

end while
for all 224 remaining key candidates k0 do

for all (p0, p1) ∈ S do
//Check if third equation l3(a ⊕ b) = 0 in (13) holds
if l3(s

4(p0
0 ⊕ k0) ⊕ s4(p1

0 ⊕ k0)) �= 0 then
break and jump to next key

end if
end for
return k0; //Eq. 13 is zero for all values and k0 is correct

end for
end for

are equal in the three last words. But the adversary can now use this initial pair
to generate m new plaintext pairs p′0 and p′1 using the yoyo that are with high
probability different in their three last words and satisfy the same condition after
SR ◦ MC ◦ SB ◦ AK. In particular, MC ◦ SB ◦ AK(p′0) ⊕ MC ◦ SB ◦ AK(p′1)
has exactly one active byte in each word which yields simple relations that can
be used for recovering the remaining subkeys. If we continue with attacking the
second subkey k1, it follows that each of the m pairs returned by the yoyo now
satisfy a relation

M ◦ s4(p′0
1 ⊕ k1) ⊕ M ◦ s4(p′1

1 ⊕ k1) = (0, w, 0, 0) (14)

for an unknown plaintext pair dependent variable w and fixed k1. Since (14)
holds, we must also have that the relation

M−1 · (0, w, 0, 0) = w · (α0, α1, α2, α3) = s4(p′0
1 ⊕ k1) ⊕ s4(p′1

1 ⊕ k1) (15)

holds for an unknown variable w and known values (α0, α1, α2, α3) determined
by the second column in M−1. Thus, when one keybyte of k1 is guessed, the
remaining keybytes are determined by simple relations between byte values in
Eq. 15 and leaves out at most spending 4 · 28 guesses to find the correct key.
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The remaining subkeys are found by solving similar equations determined by
the cyclically equivalent columns of M−1.

The adversary needs at least 2 pairs of plaintexts to recover a unique solution
for one of the remaining subkeys. However, since he is recovering 3 subkeys at
once, and wants all of them to be correct, he should test the solutions against 4
pairs to leave a comfortable margin against false positives in repeated attacks.
Thus, since the first initial pair is useless, the adversary typically uses 5 pairs
to recover the full key with a comfortable margin. However, even if the attacker
brute-forced each 32-bit subkey individually against the relations in (15) above
it would not affect the total complexity. Thus, guessing the remaining subkeys
does not add to the total time and data complexity, and so recovering the full
round key is dominated by guessing the first subkey which costs roughly 231

5-round AES encryptions and 211.32 adaptively chosen ciphertexts and plaintexts
(corresponding to 210.32 pairs).

4 Conclusion

In this paper we describe new and fundamental properties of SPNs. Our new
analysis show that AES is particularly susceptible to adaptive cryptanalysis for
up to 6 rounds. We emphasize this by providing new key-independent secret
key distinguishers for 3- to 5-rounds AES that breaks all previous records in
the literature, in addition to the first key-independent secret-key distinguisher
for 6-rounds AES. In addition, we have described a 5-round secret key recovery
that requires only 211.3 plaintexts/ciphertexts and 231 computations. Our results
apply directly to similar designs and opens up the way for new and interesting
applications in cryptanalysis.

Acknowledgements. We thank the anonymous reviewers for their valuable com-
ments and suggestions. This Research was supported by the Norwegian Research
Council.
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Abstract. We propose new key recovery attacks on the two minimal
two-round n-bit Even-Mansour ciphers that are secure up to 22n/3 queries
against distinguishing attacks proved by Chen et al. Our attacks are
based on the meet-in-the-middle technique which can significantly reduce
the data complexity. In particular, we introduce novel matching tech-
niques which enable us to compute one of the two permutations with-
out knowing a part of the key information. Moreover, we present two
improvements of the proposed attack: one significantly reduces the data
complexity and the other reduces the time complexity. Compared with
the previously known attacks, our attack first breaks the birthday bar-
rier on the data complexity although it requires chosen plaintexts. When
the block size is 64 bits, our attack reduces the required data from 245

known plaintexts to 226 chosen plaintexts with keeping the time com-
plexity required by the previous attacks. Furthermore, by increasing the
time complexity up to 262, the required data is further reduced to 28,
and DT = 270, where DT is the product of data and time complexities.
We show that our low-data attack on the minimal n-bit two-round Even-
Mansour ciphers requires DT = 2n+6 in general cases. Since the proved
lower bound on the required DT for the one-round n-bit Even-Mansour
ciphers is 2n, our results imply that adding one round to the one-round
Even-Mansour ciphers does not sufficiently improve the security against
key recovery attacks.

Keywords: Block cipher · Even-Mansour ciphers · Meet-in-the-middle
attack · Key recovery · Partial invariable pair · Matching with the input-
restricted public permutation

1 Introduction

1.1 Even-Mansour Cipher

The Even-Mansour cipher consisting of two direct key XORs separated by one
public permutation was proposed in 1991 [9,10]. Since then, it has been consid-
ered as one of the simplest block cipher design. Indeed, its description is rather
simple:

EK0,K1(x) = P (x ⊕ K0) ⊕ K1,

c© International Association for Cryptologic Research 2017
T. Takagi and T. Peyrin (Eds.): ASIACRYPT 2017, Part I, LNCS 10624, pp. 244–263, 2017.
https://doi.org/10.1007/978-3-319-70694-8_9



New Key Recovery Attacks on Minimal Two-Round Even-Mansour Ciphers 245

where P is an n-bit fixed and public permutation with two n-bit secret keys K0

and K1.
Bogdanov et al. generalized it as the multiple-round Even-Mansour construc-

tions, and presented the first security bounds against distinguishing attacks for
them [1]. As opposed to the original Even-Mansour cipher, the multiple-round
Even-Mansour construction can comprise t independent public permutations on
n-bit words separated by n-bit independent key additions:

E(t)(x) = EK0,...,Kt
(x) = Pt(· · · (P2(P1(x ⊕ K0) ⊕ K1) ⊕ K2) · · · ) ⊕ Kt.

There has been a series of results towards the provable security of the iterated
Even-Mansour ciphers with independently and randomly drawn permutations
since then. The aforementioned work [1] proves that at least 2

2n
3 queries are

required to distinguish E(t) with t ≥ 2 from a random permutation and conjec-
tures that the bound is roughly 2

t
t+1n. Steinberger [16] improves this result by

proving that the bound of 2
3
4n holds for t ≥ 3. Lampe et al. [14] prove a secu-

rity of 2
t

t+2n for all even values of t, which is slightly lower than conjectured.
Chen and Steinberger [4] have managed to prove the conjectured 2

t
t+1n bound

on the number of queries required for a distinguishing attack, and then Hoang
and Tessaro proved the exact bound of it [12].

1.2 Minimal Construction

The original Even-Mansour cipher, which only consists of a single permutation
surrounded by key XORs, ensures security up to 2n/2 queries of the adver-
sary who has access to the encryption function EK and the internal permuta-
tion P [9,10]. Even and Mansour proved an information-theoretic bound that
any attack on the scheme must satisfy the equation of DT = Ω(2n), where
D and T are the data and time complexities, i.e. the number of queries to
the encryption function EK and the permutation P , respectively. The case of
(D,T ) = (2n/2, 2n/2) satisfies the bound of 2n/2 queries. Shortly after the intro-
duction of the scheme, Daemen [5] presented a key recovery attack matching the
bound DT = O(2n) in the chosen-plaintext model. Dunkelman et al. [8] pro-
posed the slidex attack and its application to close the gap between the upper
and lower bounds on the security of the Even-Mansour scheme for a variety of
tradeoff points. Moreover, they specifically consider the minimalistic single-key
Even-Mansour, with K0 = K1, which provides exactly the same security. As
pointed out by Dunkelman et al. [8], this construction is minimal in the sense
that if one removes any component, i.e. either the addition of one of the keys,
or the permutation P , the construction becomes trivially breakable.

Chen et al. [3] proved that two variants of two-round Even-Mansour ciphers
are secure up to 22n/3 queries against distinguishing attacks, while the one-round
Even-Mansour cipher guarantees security up to birthday bound, namely 2n/2.
One consists of two independent n-bit permutations P1 and P2, and a single
n-bit key K:

(2EM-1) E
(2)
K (x) = P2(P1(x ⊕ K) ⊕ K) ⊕ K.
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The other consists of a single n-bit permutation P , and a single n-bit key K
with a simple key scheduling function π,

(2EM-2) E
′(2)
K (x) = P (P (x ⊕ K) ⊕ π(K)) ⊕ K,

where π is any linear orthomorphism of Fn
2 . Hereafter we refer to E

(2)
K and E

′(2)
K

as 2EM-1 and 2EM-2, respectively. These constructions can be considered as
minimal two-round Even-Mansour ciphers delivering security beyond the birth-
day bound, since they have no redundant component for the security. The proved
lower bounds of 2EM-1 and 2EM-2 for distinguishing attacks by Chen et al. [3]
are captured in Fig. 1. Regarding tightness of their security bounds for distin-
guishing attacks, Gazi proposed a generic distinguishing attack with the time
complexity of 2n−1/2 log2D for any D [11], i.e. DT 2 = 22n. The attack matches
the proved bound only in the specific case (D,T ) = (22n/3, 22n/3).

Along with the distinguishing attacks, several key recovery attacks on 2EM-
1 construction have been presented [7,15]. Unlike the one-round Even-Mansour
construction, for the two-round Even-Mansour ciphers, a dedicated information-
theoretic bound on D and T for any attack including key recovery attacks has
not been known. At least, D and T required for key recovery attacks on the two-
round constructions must satisfy DT = Ω(2n) which is the bound for the one-
round construction. Moreover, since a distinguishing attack is directly derived
from a key recovery attack, D and T for the key recovery attacks must follow
the lower bounds for distinguishing attacks on 2EM-1 and 2EM-2 given by Chen
et al. [3]. For n = 64, Nikolić et al. proposed the first key recovery attacks on
2EM-1 requiring the time complexity of 261 with 259 known plaintexts [15]. Dinur
et al. generalized it and reduced the data requirements to 245, while keeping
the time complexity [7]. Therefore, the published best upper bound on DT is
estimated as 2105 for n = 64. Since it is much larger than the lower bound
for the one-round Even-Mansour (DT = 264), the two-round Even-Mansour
cipher seems more secure against key recovery attacks than the one-round Even-
Mansour cipher. However, due to the gap between the proved lower bound and
the presented upper bound, the accurate security of the two-round construction
is still unknown and it is an important open problem in the field of symmetric
cryptography.

1.3 Our Contributions

In this paper, we propose new key recovery attacks on the two minimal two-round
Even-Mansour ciphers 2EM-1 and 2EM-2. First, we present a basic attack on
2EM-1 by using the advanced meet-in-the-middle technique which potentially
reduces the data complexity. In particular, we introduce novel matching tech-
niques called partial invariable pair and matching with input-restricted public
permutation, which enable us to compute one of the two permutations without
knowing a part of the key information. Then, we improve the basic attack: one
significantly reduces data complexity (low-data attack) and the other reduces
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Table 1. Summary of our results for 2-round Even-Mansour ciphers.

Time T Data D DT Condition of the parameters of a, b, and d

Basic attack (Sect. 3)

2n−a−1 2n−a CP 22(n−a−1) a · 2a − 1 ≤ n − a

Low-data attack (Sect. 4)

2n−a 2n−(a+d) CP 22(n−a)−d a · 2a + d ≤ n − a

Time-optimized attack (Sect. 5)

2n−b †1 2n−a CP 22n−a−b b · 2a + (b − a) ≤ n − b
†1: The attack includes 2n−a memory access. CP: Chosen Plaintext

Fig. 1. Comparison of the previous results and our results when n = 64. The blue solid
line is the lower bound of the one-round Even-Mansour cipher, i.e. DT = Ω(2n) [9,10].
The blue dashed and dot lines are the lower bound for distinguishing attacks on 2EM-1
and 2EM-2 by Chen et al. [3], respectively. The black solid line is the upper bound for
distinguishing attacks on 2EM-1 and 2EM-2 by Gazi [11] (Color figure online).

time complexity (time-optimized attack) by dynamically finding partial invari-
able pairs. Our results are summarized in Table 1. In our attacks, there are some
tradeoff points of data and time complexities by choosing the parameters of a, b
and d under the conditions. We emphasize that all of our attacks do not contain
any operation over 2n, and can be regarded as exponential-advantage attacks as
with the previous attack [7,15].

Figure 1 and Table 2 show the comparative results with the previous attacks
when n = 64. Our attacks can drastically reduce the required data from 245 to
226 with keeping the time complexity of the previous attacks [7,15], although
our attacks require chosen plaintexts. By increasing time complexity up to 262,
the required data is further reduced to 28. Since the previous attacks are based
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Table 2. Comparison of the previous results and our results for key recovery attacks
on 2-round Even-Mansour ciphers when n = 64.

Time T Data D DT Reference

One-round EM: E
(1)
K (x) = P (x ⊕ K) ⊕ K) [9,10]

264−x 2xCP 264 [5]

264−x 2xKP 264 [8]

Two-round EM1: E
(2)
K (x) = P2(P1(x ⊕ K) ⊕ K) ⊕ K

261 259KP 2120 [15]

260.1 245KP 2105.1 [7]

260 226CP 286 Sect. 4

262 28 CP 270 Sect. 4

258 †2 261 CP 2119 Sect. 5

253 †3 262 CP 2115 Sect. 5

Two-round EM2: E
′(2)
K (x) = P (P (x ⊕ K) ⊕ π(K)) ⊕ K

260 226CP 286 Sect. 6

262 28 CP 270 Sect. 6

258 †2 261 CP 2119 Sect. 6

253 †3 262 CP 2115 Sect. 6
†2: The attack includes 261 memory accesses.
†3: The attack includes 262 memory accesses.
KP: Known Plaintext, CP: Chosen Plaintext

on multi collisions of the n-bit state, they cannot break the birthday barrier of
data and time complexity. On the other hand, our attacks essentially exploit
multi collisions of one part of the state, which we call partial invariable pairs in
this paper. The required time and data complexity for finding such invariable
pairs are much less than those required for finding multi collisions of the whole
state. Therefore, our attacks are feasible even if the required data is restricted to
be less than 2n/2. In the time-optimized attacks, we can reduce the computation
cost of the internal permutation to 253, but it requires 262 memory accesses.
Basically, it is hard to fairly compare the costs of one encryption and one mem-
ory access, because these costs strongly depend on the execution environments,
the size of the table, and the underlying permutation. Thus, we do not claim
that our time-optimized attacks sufficiently reduce the time complexity required
for the previously known key recovery attacks. However, obviously the cost of
encryptions is non trivially reduced. We believe that it is an interesting tradeoff
to know the concrete security of the minimal two-round Even-Mansour construc-
tion. Finally, we show that all of our attacks on 2EM-1 can be applied to the
other minimal variant 2EM-2.

The minimum value of DT for n = 64 is estimated as 270, which is close
to the proved lower bound for the single Even-Mansour cipher DT = 264

and Chen et al.’s lower bounds for distinguishing attacks on the two-round
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Even-Mansour ciphers as shown in Fig. 1. Table 1 shows that our low-data
attack requires DT = 22(n−a)−d and DT 2 = 23(n−a)−d for any n as long as
a · 2a + d ≤ n−a. When choosing a = 2, the maximum d is d = n− 10, and thus
DT and DT 2 are estimated as DT = 2n+6 and DT 2 = 22n+4 for any n, respec-
tively. These results reveal that adding one round does not sufficiently improve
the key recovery security with respect to the product of D and T , while there
has not been attacks with time complexity less than the birthday bound unlike
the single Even-Mansour cipher.

1.4 Outline of the Paper

The remainder of the paper is organized as follows. In Sect. 2, we introduce
the specification of Even-Mansour ciphers and review previous work. In Sect. 3,
we explain a basic attack on 2EM-1. Then Sects. 4 and 5 present the improved
attacks on 2EM-1 with respect to data and time complexities, respectively. In
Sect. 6, we show that our attacks on 2EM-1 are applicable to 2EM-2. Section 7
is the conclusion.

2 Even-Mansour Ciphers

In this section, we introduce the two minimal two-round Even-Mansour ciphers
we focus on this paper, and review the previous results on the ciphers.

2.1 Two-Round Even-Mansour Ciphers

Let P1, . . . , Pt: {0, 1}n → {0, 1}n be independent public permutations and let
K0, . . . ,Kt ∈ {0, 1}n be round keys. The t-round Even-Mansour cipher E(t):
{0, 1}n ×{0, 1}n(t+1) → {0, 1}n consists of t public permutations and (t+1) key
injections is defined as follows [1]:

E(t)(x) = EK0,...,Kt
(x) = Pt(· · · (P2(P1(x ⊕ K0) ⊕ K1) ⊕ K2) · · · ) ⊕ Kt,

where x is an n-bit input of E(t).
In this paper, we focus on the following two variants of two-round Even-

Mansour ciphers (t = 2), which are provably secure up to 22n/3 queries of the
encryption function and the internal permutation(s) [3]:

(2EM-1) E
(2)
K (x) = P2(P1(x ⊕ K) ⊕ K) ⊕ K,

(2EM-2) E
′(2)
K (x) = P (P (x ⊕ K) ⊕ π(K)) ⊕ K,

where P1, P2 and P are independent n-bit permutations, K is n-bit key, and π is
any linear orthomorphism of Fn

2 . As examples of orthomorphism, a simple rota-
tion, Feistel-like construction (e.g. π: (x, y) �→ (y, x⊕y)), field multiplication (e.g.
π: (x) �→ (x × c), where c �= 0, 1) are well known. Figure 2 illustrates these con-
structions. These constructions are regarded as minimal Even-Mansour ciphers
delivering security beyond the birthday bound, since removing any component
causes security to drop back to O(2n/2) queries.
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Fig. 2. Minimal two-round Even-Mansour ciphers, 2EM-1 and 2EM-2.

2.2 Previous Key Recovery Attacks on 2EM-1

Along with results on provable security of 2EM-1 [1,3,4,11,14,16], several key
recovery attacks on the construction have been published [7,15].

Nikolić et al. proposed the first key recovery attacks on 2EM-1 [15]. They
considered the graph of the function P ′(x) = x ⊕ P (x) and showed that vertices
with a large in-degree in this graph can be exploited to bypass an additional
round of 2EM-1. Specifically, they define a keyed function inside of E

(2)
K (x) as

Q(K,x) = K ⊕ P (x ⊕ K). Since the same key K is XORed before and after the
first permutation P , the relation of x ⊕ Q(K,x) = (x ⊕ K) ⊕ P (x ⊕ K) holds
for any key K. If some output values of P ′ appear more than the average, then
we can predict the value of Q(K,x) with a higher probability than expected
even when K is unknown. Then, K can be recovered by using the relation of
K = Q(K,x) ⊕ E

(2)
K (x). In this attack, they exploit t-way multi collisions on

the value P ′(x) = x ⊕ P (x), namely x1, x2, . . . , xt such that x1 ⊕ P (x1) =
x2 ⊕ P (x2) =, . . . ,= xt ⊕ P (xt) = v for some value of v. Using it, Q(K,x) can
be guessed with a probability which is t times higher than the expected 2−n

without knowing K. For n = 64, their attack can recover the key of E
(2)
K (x)

with time complexity of 261 and 259 known plaintexts [15]. After that, Dinur et
al. generalized their attack using concepts from graph theory [7]. In particular,
they estimated the highest expected in-degree in the bipartite graph of P ′(x) =
x ⊕ P (x) depending on the number of input size. By considering all the vertices
with an in-degree of at least 8, they reduced the data requirements to 245, while
keeping the time complexity. Therefore, the published upper bound of DT is
estimated as 2105(= 260 ×245) for n = 64. Since it is significantly larger than the
bound of one-round Even-Mansour (DT = 264), two-round Even-Mansour cipher
seems to sufficiently improve the key recovery security of the one-round Even-
Mansour cipher. However, due to the gap between the proved lower bound [3,9,
10] and the presented upper bound [7,15], the accurate security of the two-round
construction is still unknown and it is an important open problem.

3 Basic Attacks on 2EM-1

This section presents a basic attack on 2EM-1, E
(2)
K consisting of two public

permutations P1 and P2 interleaved with three identical key injections by K.
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Our attack is based on the meet-in-the-middle (MitM) framework [2,13], i.e., two
functions f and g from E

(2)
K are independently computable while the previous

attacks [6] use a multi-collision technique.
In our attack, we introduce a novel matching technique called matching with

input-restricted public permutation, which enables us to compute one of two
permutations without knowing a part of the key information. Our new matching
technique is based on partial invariable pairs, which is used for constructing an
input restricted table for any permutation.

3.1 Definitions of Invariable Pair

Let f be an n-bit keyed function using a k-bit key, namely fK : {0, 1}n → {0, 1}n,
where K ∈ {0, 1}k. We use the following two notations for an input-output pair.

Definition 1 (Invariable Pair [13]). If there exists an input-output pair (x, y)
of f such that fK(x) = y for any K, such an input-output pair (x, y) is defined
by an invariable input-output pair of f .

Definition 2 ((Target) Partial Invariable Pair). If there exists a pair of a
fixed input and a b-bit partial output (x, y′) of f such that trb(fK(x)) = y′ for
any K, such a pair (x, y′) is defined by a partial b-bit invariable input-output
pair of f , where y′ ∈ {0, 1}b (b ≤ n) and trb(y) represents a b-bit truncation of
an n-bit output y.

If the value of b bits to be fixed is predetermined, it is called a target partial
b-bit invariable input-output pair.

3.2 How to Find Partial Invariable Pair

Assuming that an a-bit key is involved in f , the procedure for finding a b-bit
partial invariable input-output pair is given as follows:

Step 1: Set an n-bit input x randomly.
Step 2: Compute y1 = fK(x) with a key K from the set of 2a keys.
Step 3: Store b bits of y1 (b ≤ n) as y′(= trb(y1)).
Step 4: Compute y2 = fK′(x) with another key K ′ from the set of 2a keys,

where K ′ �= K.
Step 5: Check whether b bits of y2 are equal to y′ at the same position. If so,

repeat Steps 4 and 5. Then, if all possible K ′ are checked, output (x, y′) as a
b-bit partial invariable input-output pair of f . Otherwise, go back to Step 1
and restart with a different x.

The probability of the matching in Step 5 is 2−b assuming that f is a suffi-
ciently random function. Thus, the complexity of finding a b-bit partial invari-
able pair is estimated as 1/(2−b)2

a−1. If b bits of y1 are predetermined, which is
called target partial b-bit invariable input-output pair, the required complexity
of finding such a pair is estimated as 1/(2−b)2

a

.
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Fig. 3. Attack overview of 2EM-1.

3.3 Attack Overview

As illustrated in Fig. 3, we first divide the n-bit key K into an a-bit k0 and
the remaining (n − a)-bit k1. Then, we introduce a function f that consists of
P1 and two key injections by k0, and a function g that consists of an initial
key injection by k1 and a final key injection by k1. Note that f and g are
independently computed with k0 and k1, respectively. An output of f and an
input of g are represented as (x0|x1) and (y0|y1), also an input and an output
of P2 are denoted as (v0|v1) and (z0|z1), respectively, where x0, v0, k0, z0, y0 ∈
{0, 1}a, x1, v1, k1, z1, y1 ∈ {0, 1}n−a.

At first glance, it seems to be difficult to do the matching between f and
g, because f and g need k1 and k0 to compute the matching state around P2,
respectively. Thus, if the underlying permutation has sufficiently good diffusion
property such as AES-128 with a fixed-key, it seems infeasible to construct the
matching. To overcome this problem, we introduce a novel matching technique
called matching with input-restricted public permutation.

Matching with Input-Restricted Public Permutation. The idea behind
our new technique is to construct the input-restricted table of P2 to find the
corresponding n-bit value (v0|v1) from only an (n − a)-bit value y1(= z1) with-
out knowing k0 while computing g. In a straightforward way, given a value
of y1(= z1), 2a(= 2n/2n−a) candidates of (v0|v1) are found with 2a P2 com-
putations. Since all k0 values are tested in the function g, it totally requires
2n(= 2n−a × 2a) P2 computations. Thus, two functions f and g from E

(2)
K are

not independently computed.
In order to get rid of this problem, b bits of inputs (v0|v1) are fixed, then

the precomputation table of P2, indexed by values of (n − a)-bit y1, is con-
structed with less than 2n P2 computations, namely 2n−b. Given an (n − a)-bit
y1, 2n−b/2n−a = 2a−b candidates of (v0|v1) are found with only one memory
access of the precomputation table without the knowledge of k0. If a = b, it is
expected that one candidate is left. If a ≤ b, it is expected that less than one
candidate is left.

Since a partial invariable pair in function f allows us to fix b bits of inputs
(v0|v1) during the MitM procedure, the combination use of two techniques, the
partial invariable pair and the matching with precomputation, enables us to
mount a MitM attack on 2EM-1.
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In summary, we mount the attack on E
(2)
K by using partial invariable pair to

the permutation P1 in conjunction with the matching with the input-restricted
public permutation technique to the permutation P2.

3.4 Attack Procedure

The attack consists of an offline and an online phase. In the offline phase, a b-bit
partial invariable pair of f is found, then an input-restricted precomputation
table of P2 is constructed. In the online phase, the MitM attack is mounted by
using the precomputation table and querying the encryption oracle E

(2)
K .

In this attack, more than a bits of input of P2 are not fixed by k0, because
an (n − a)-bit k1 is used between f and P2. Thus we consider the case where a
is equal to b, which is optimal with respect to the time complexity.

Offline Phase

Step 1: Find an a-bit partial invariable pair of f , (S, x0) such that
tra(fk0(S)) = x0 for any a-bit k0.

Step 2: For all a-bit k0, compute the remaining data of the invariable pair, and
make a table of (k(i)

0 , x
(i)
1 ) such that f

k
(i)
0

(S) = (x0|x(i)
1 ), where 1 ≤ i ≤ 2a.

Step 3: For all (n − a)-bit v1, compute (n − a)-bit value z1 by P2, then make a
table of (v(j)

1 , z
(j)
1 ), where v0 = x0, P2(v0|v(j)

1 ) = (z(j)
0 |z(j)

1 ) and 1 ≤ j ≤ 2n−a.

Online Phase

Step 1: Guess an (n − a)-bit k1 and compute the corresponding plaintext P
from the start state S and k1.

Step 2: Send P to the encryption oracle E
(2)
K , then obtain the corresponding

ciphertext C.
Step 3: Compute an (n − a)-bit y1 from C and k1.
Step 4: Look for an index d in the table of (v(j)

1 , z
(j)
1 ) such that z

(d)
1 = y1. If

there is no such index, go back to Step 1.
Step 5: Compute x′

1 = v
(d)
1 ⊕ k1, and check if there exists an index e in the

table of (k(i)
0 , x

(i)
1 ) satisfying x′

1 = x
(e)
1 . If there is no such index, go back to

Step 1.
Step 6: Check if P2(v0|v(d)

1 ) = (z′
0|z(d)

1 ) holds, where z′
0 is computed from C

and k
(e)
0 . If so, K ′ = (k(e)

0 |k1) is regarded as the correct key. Otherwise, go
back to Step 1.

3.5 Evaluation

Here, we evaluate the cost required in each phase.

Offline Phase. In Steps 1 and 2, the time complexity required for finding an
a-bit partial invariable pair is (2a)2

a−1 P1 computations and the required
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Table 3. Summary of computational costs for the basic attack on 2EM-1.

Offline Online

Time Memory Time Data Memory

((2a)2
a−1 + 2n−a) P 2a and 2n−a (2n−a) MA 2n−a 2a and 2n−a

n = 32, a = 3 228 enc. 229 229 MA 229 229

n = 64, a = 4 260 enc. 260 260 MA 260 260

n = 128, a = 4 2123 enc. 2124 2124 MA 2124 2124

n = 256, a = 5 2250 enc. 2251 2251 MA 2251 2251

P: Internal permutation call, MA: Memory Access.
enc.: encryption function call (= 2 permutation calls).

memory is 2a blocks. In Step 3, the required time complexity is 2n−a P2 com-
putations and the required memory is 2n−a blocks.

-Time complexity: ((2a)2
a−1 + 2n−a) P computations, where P denotes P1

or P2,
-Memory: 2a and 2n−a blocks.

For simplicity, hereafter computation costs for P1 and P2 are assumed to be the
same and it denotes P computations. In addition, the cost of one encryption call
is approximately estimated as two P computations.

Online Phase. Steps 1 to 4 are performed 2n−a times. These steps include two
XOR operations in Steps 1 and 3 and one memory access in Step 4. Note that, in
Step 4, about one candidate is expected to be found due to the relation of a = b,
if P2 is a sufficiently good permutation. Step 5 is performed 2n−a times with one
XOR operation and one memory access. It is expected that 2a/2n−a = 2−n+2a

candidates will survive in Step 5.
We assume that the cost of one memory access in step 4 is sufficiently larger

than one XOR operation and memory access in step 5, because the size of table in
step 4 for the matching with input-restricted public permutation is much larger
than one in step 5. Then, the time complexity of Steps 1 to 5 is approximately
estimated as (2n−a) memory accesses (MA). Step 6 is mounted only 2−n+2a ×
2n−a = 2a times with P computations. Step 2 requires 2n−a data, since a bits
of state S are fixed when computing the function g with each k1.

-Time complexity: 2a P computations + (2n−a) MA,
-Data complexity: 2n−a chosen plaintexts.

Summary. The computational costs of offline and online phases for the basic
attacks on the 2EM-1 are estimated as Table 3, where we choose a so that time
complexity is minimized. Specifically, we freely choose a as long as it holds
the condition of (2a)2

a−1 ≤ 2n. If (2a)2
a−1 is less than 2n−a, time complexity is

estimated as 2n−a P computations (2n−a−1 encryptions) in the offline phase and
2n−a memory accesses in the online phase. Thus, maximizing a is optimal with



New Key Recovery Attacks on Minimal Two-Round Even-Mansour Ciphers 255

P

CON

k1R

k0

P2

k1

k0

k1

k0
g f g

CP1

v0

v1

z0

z1

y0

y1

x0

x1

S

a

n-a+d

a

n-a

a

n-a
d k1L

s1R

s1L

Fig. 4. Attack overview of low-data attacks on 2EM-1.

respect to time complexity. Assuming the cost of memory access is sufficiently
smaller than that of the encryption1, DT is expressed as DT = 2n−a/2×2n−a =
22(n−a−1) under the condition of (2a)2

a−1 ≤ 2n−a.

4 Low-Data Attacks on 2EM-1

In this section, we introduce low-data attacks on 2EM-1 based on the attack
in Sect. 3. The low-data attacks aim to reduce data requirement (i.e. access to
encryption oracle E

(2)
K ) by fixing parts of plaintexts while keeping lower time

complexity than that of the brute force attack. In our attacks, the (n−a)-bit k1

is further divided into a d-bit k1L and an (n−(a+d))-bit k1R. A start state S and
a plaintext P are represented as S = (s0|s1L|s1R) and P = (p0|p1L|p1R), respec-
tively, where s0, p0 ∈ {0, 1}a, s1L, p1L ∈ {0, 1}d and s1R, p1R ∈ {0, 1}n−(a+d).

The main idea is to control s1L depending on k1L so that the d bits of
(s1L⊕k1L) are always fixed. If s0 is also fixed, (a+d) bits of a plaintext are always
fixed, i.e., the required data is reduced to 2n−(a+d). To be more specific, given a
value k1L, a b-bit target partial invariable pair of f , (S, x0) is dynamically found
in the online phase, where s0 is fixed and s1L is chosen such that (s1L ⊕ k1L) is
fixed (Fig. 4).

4.1 Attack Procedure

In the offline phase, a b-bit input-restricted precomputation table of P2 is con-
structed, where b is assumed to be equal to a. In the online phase, the MitM
attack is mounted by dynamically finding a b-bit target partial invariable pair
of f by the precomputation table.

1 For example, if the underlying permutation is AES-128 with a fixed-key, one P
computation requires about 160 memory accesses to compute 160 S-boxes. However,
since the comparison of these costs heavily depends on the execution environments,
the size of the table, and underlying permutation, we just assume that the cost of
memory access is sufficiently smaller than that of the encryption.
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Offline Phase

Step 1: Fix a-bit v0 and (a + d)-bit of plaintext to p0|p1L.
Step 2: For all (n−a)-bit v1, compute an (n−a)-bit value z1 by P2, then make

a table of (v(j)
1 , z

(j)
1 ), where P2(v0|v(j)

1 ) = (z(j)
0 |z(j)

1 ) and 1 ≤ j ≤ 2n−b.

Online Phase

Step 1: Guess a d-bit k1L, and compute the c-bit s1L as s1L = k1L ⊕ p1L.
Step 2: Find a a-bit target partial invariable pair of f , trb(fk0(S)) = (x0)

where s0 and s1L are fixed. Then make a table of (ki
0, x

i
1) for all a-bit k0,

where 1 ≤ i ≤ 2a.
Step 3: Guess k1R and compute the corresponding plaintext P from the start

state S and k1.
Step 4: Send P to the encryption oracle E2

K , then obtain the corresponding
ciphertext C.

Step 5: Compute (n − a)-bit y1 from k1 and C.
Step 6: Look for an index d in the table of (v(j)

1 , z
(j)
1 ) such that z

(d)
1 = y1. If

there is no such index, go back to Step 3.
Step 7: Compute x′

1 = v
(j)
1 ⊕ k1, and check if there exists an index e in the

table of (k(i)
0 , x

(i)
1 ) satisfying x′

1 = x
(e)
1 . If there is no such index, go back to

Step 3.
Step 8: Check if P2(v0|v(d)

1 ) = (z′
0|z(d)

1 ) holds, where z′
0 is computed from C

and ke
1. If so, K ′ = (k(e)

0 |k1) is regarded as the correct key. Otherwise go back
to Step 3.

Step 9: For all d-bit k1L, repeat Steps 1 to 8.

4.2 Evaluation

This section gives estimations of the cost required for our low-data attacks on
2EM-1.

Offline Phase. Step 2 in the offline phase requires 2n−a P computations and
2n−a blocks memory.

-Time complexity: (2n−a) P computations,
-Memory: 2n−a blocks.

Online Phase. Step 2 requires (2a)2
a P computations to find a-bit target

partial invariable pair of f by changing n − (a + d)-bit s1R. Thus, it should
hold the equation of (2a)2

a

< 2n−(a+d), namely a × 2a < n − (a + d). Step 2 is
performed 2d times with (2a)2

a P computations and 2a memory. Steps 3 to 6
are performed 2n−a times. These steps include two XOR operations in Steps 3
and Step 5, one memory access in Step 6. Note that Step 4 is performed under
the chosen-plaintext setting. Step 7 is performed 2a−a ×2n−a = 2n−a times with
one XOR and one memory access. The required time complexity of Steps 3 to 7
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Table 4. Summary of computational costs for the low-data attack on the 2-round
Even-Mansour cipher.

Offline Online

Time Memory Time Data Memory

(2n−a) P 2a and 2n−a ((2a)2
a · 2d + 2a) P + (2n−a) MA 2n−(a+d) 2n−a

n = 32

a = 3, d = 9 228 enc. 229 230 enc. + 229 MA 220 229

a = 2, d = 22 229 enc. 230 230 enc. + 230 MA 28 230

n = 64

a = 3, d = 35 260 enc. 261 258 enc. + 261 MA 226 261

a = 2, d = 54 261 enc. 262 261 enc. + 262 MA 28 262

n = 128

a = 4, d = 60 2123 enc. 2124 2123 enc. + 2124 MA 264 2124

a = 3, d = 101 2124 enc. 2125 2124 enc. + 2125 MA 224 2125

a = 2, d = 118 2125 enc. 2126 2125 enc. + 2126 MA 28 2126

n = 256

a = 5, d = 160 2250 enc. 2251 2250 enc. + 2251 MA 2160 2251

a = 2, d = 118 2253 enc. 2254 2253 enc. + 2254 MA 28 2254

is approximately estimated as (2n−a) memory accesses because the size of table
in step 6 for the matching with input-restricted public permutation is assumed
to be much larger than one in step 7. Step 8 is mounted only 2−n+2a×2n−a = 2a

times with P computations. The 2n−(a+d) data is required in Step 4.

-Time complexity: ((2a)2
a · 2d + 2a) P computations + (2n−a) MA,

-Memory: 2a blocks,
-Data: 2n−(a+d) chosen plaintexts.

Summary. The computational costs for the low-data attack on 2EM-1 are esti-
mated as Table 4. For n = 64, 128, 256, data complexity is drastically reduced
compared to the basic attack and previous attacks [7,15] while keeping the time
complexity of basic attacks. Moreover, by increasing time complexity, i.e. choos-
ing small a, the required data can be reduced to 28, where it does not include any
2n operations. Assuming the cost of memory access is sufficiently smaller than
that of the encryption, DT is expressed as DT = 2n−a × 2n−(a+d) = 22(n−a)−d

under the condition of (2a)2
a · 2d ≤ 2n−a. Once n and a are determined, the

maximal d is easily obtained from the condition. The minimal value of DT of
n = 64, 128, and 256 are 270(= 262×28), 2134(= 2126×28), and 2262(= 2254×28),
respectively. These are very close to the bound for single Even-Mansour cipher,
i.e. 264, 2128, and 2256.

The bounds by low-data attacks can be generalized for any n as follows: when
choosing a = 2, the maximum d is d = n − a − 8, and then DT is estimated as
DT = 2n+6 for any value of n, respectively.
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Fig. 5. Attack overview of time-optimized attacks on 2EM-1.

5 Time-Optimized Attacks on 2EM-1

In this section, we try to reduce the cost of P computations (i.e. access to
the internal permutation oracle) of the basic attacks presented in Sect. 3. In this
attack, an (n−a)-bit k1 is further divided into a c-bit k1L and an (n−(a+c))-bit
k1R. Similarly, x1 and v1 are represented as x1 = (x1L|x1R) and v1 = (v1L|v1R),
respectively, where x1L, v1L ∈ {0, 1}c and x1R, v1R ∈ {0, 1}n−(a+c) (see Fig. 5).

The cost for P computations is dominated by the cost for constructing an
input-restricted public permutation table in the offline phase, whose cost is esti-
mated as 2n−a P computations and 2n−a memory. If additional c bits of the
input of P2 can also be fixed, it is reduced to 2n−(a+c) P computations and
memory. However, the additional c bits are not fixed in the online phase even if
a c-bit x1L is fixed in f , since such a c-bit input of P depends on k1L between
f and P2, and all values of k1L are tested during the MitM procedure. To solve
this problem, we control x1L depending on k1L so that the c bits of x1L ⊕ k1L

are always fixed in order to reduce the computational cost. In particular, given
a value k1L in the online phase, a b(= a + c)-bit target partial invariable pair of
f is dynamically found.

5.1 Attack Procedure

In the offline phase, a b(= a+ c)-bit input-restricted precomputation table of P2

is constructed. In the online phase, the MitM attack is mounted by dynamically
finding a b-bit target partial invariable pair of f by using the precomputation
table.

Offline Phase

Step 1: Fix an a-bit v0 and a c-bit v1L.
Step 2: For all (n − b)-bit v1R, compute (n − a)-bit values z1 by P2, then make

a table of (v(j)
1R, z

(j)
1 ), where P2(v0|v1L|v(j)

1R) = (z(j)
0 |z(j)

1 ) and 1 ≤ j ≤ 2n−b
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Online Phase

Step 1: Guess a c-bit k1L, and choose a c-bit x1L as x1L = k1L ⊕ v1L.
Step 2: Find a b-bit target partial invariable pair of f , trb(fk0(S)) = (x0|x1L)

where b-bit x0|x1L is fixed as v0|(k1L ⊕ v1L), and make a table of (ki
0, x

i
1R)

for all a-bit k0, where 1 ≤ i ≤ 2a.
Step 3: Guess k1R and compute the corresponding plaintext P from the start

state S and k1.
Step 4: Send P to the encryption oracle E2

K , then obtain the corresponding
ciphertext C.

Step 5: Compute an (n − a)-bit y1 from k1 and C.
Step 6: Look for an index d in the table of (v(j)

1R, z
(j)
1 ) such that z

(d)
1 = y1. If

there is no such index, go back to Step 3.
Step 7: Compute x′

1R = v
(j)
1R ⊕ k1R, and check if there exists an index e in the

table of (k(i)
0 , x

(i)
1R) satisfying x′

1R = x
(e)
1R. If there is no such index, go back to

Step 3.
Step 8: Check if P2(v0|v1L|v(d)

1R ) = (z′
0|z(d)

1 ) holds, where z′
0 is computed from

C and k
(e)
1R . If so, K ′ = (k(e)

0 |k1) is regarded as the correct key. Otherwise go
back to Step 3.

Step 9: For all c-bit k1L, repeat Steps 1 to 8.

5.2 Evaluation

We evaluate each cost of our time-optimized attack on 2EM-1.

Offline Phase. Step 2 requires 2n−b P computations and 2n−b blocks memory.

-Time complexity: (2n−b) P computations,
-Memory: 2n−b blocks.

Online Phase. Step 2 is performed 2c times with (2b)2
a P computations and

2a memory. Steps 3 to 6 are performed 2n−a times. These steps include two
XOR operations in Steps 3 and 5 and one memory access in Step 6. Note that,
in Step 6, it is expected that there exist 2a−b(= 2n−b/2n−a) desired pairs, if P2

is a sufficiently good permutation. Step 7 is performed 2a−b×2n−a = 2n−b times
with one XOR operation and one memory access. The required time complexity
of Steps 3 to 7 is approximately estimated as (2n−a) memory accesses, assuming
2n−a is sufficiently larger than 2n−b. Step 8 is mounted only 2−n+2a ×2n−a = 2a

times with P computations. Step 4 requires 2n−a data, since a bits of state S
are fixed when computing the g function with each k1.

-Time complexity: ((2b)2
a · 2c + 2a) P computations + (2n−a) MA,

-Memory: 2a blocks,
-Data: 2n−a chosen plaintexts.
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Table 5. Summary of computational costs for the time-optimized attack on the
2-round Even-Mansour cipher.

Offline Online

Time Memory Time Data Memory

(2n−b) P 2n−b ((2b)2
a · 2b−a + 2a) P + (2n−a ) MA 2n−a 2n−b

n = 32

a = 2, b = 6 225 enc 226 227 enc. + 230 MA 230 226

n = 64

a = 3, b = 6 257 enc 258 260 enc. + 261 MA 261 258

a = 2, b = 11 252 enc 252 252 enc. + 262 MA 262 253

n = 128

a = 4, b = 7 2120 enc 2121 2115 enc. + 2124 MA 2124 2121

a = 2, b = 20 2107 enc 2103 298 enc. + 2126 MA 2126 2103

n = 256

a = 5, b = 7 2248 enc 2249 2226 enc. + 2251 MA 2251 2249

a = 2, b = 42 2213 enc 2206 2208 enc. + 2254 MA 2254 2205

Summary. The computational costs for the time-optimized attack on the 2EM-
1 are estimated as Table 5. For n = 64, 128, 256, time complexity is reduced
by properly choosing the values of b, although number of memory access is
unchanged. Basically, it is very hard to compare the cost of encryption and
memory access because it strongly depend on the execution environments, the
size of table and the underlying permutation. Thus, we do not claim that time
complexity is sufficiently improved by this algorithm. However, obviously the
cost of encryptions are significantly reduced. We believe that it is an interesting
tradeoff.

6 Application to 2EM-2

Our key recovery attacks on 2EM-1 are applicable to the other minimized con-
struction 2EM-2:

E
′(2)
K (x) = P (P (x ⊕ K) ⊕ π(K)) ⊕ K,

where π is any linear orthomorphism of Fn
2 . In this section, we consider the 2EM-

2 whose π is Feistel-like construction (π: (x, y) �→ (x⊕ y, x)) as an example. The
same idea is naturally applied to another candidate of π.

Recall that the point of our attacks is to find (target) partial invariable
pairs to mount the matching with input-restricted public permutations in the
line of the meet-in-the-middle attack. To take care of the key scheduling func-
tion π, we further divide the (n − a)-bit k1 into an (n/2 − a)-bit k1L and
an (n/2)-bit k1R in the basic attack on 2EM-1. Then, π(K) is expressed
as (k1R ⊕ (k1L||k0))||(k1L||k0), and 2EM-2 is illustrated as shown in Fig. 6.
Here, a-bit k0, which is for partial invariable pairs, is used twice after the first
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CON

k0
k1R

Fig. 6. Application to 2EM-2.

permutation P . Since the bottom a-bit input of the second permutation P is
affected by only the value of k0 after the first permutation, i.e. k1L and k1R

does not affect the a-bit input of the second permutation, we can use partial
invariable pairs of a-bit k0 to fix a bits of inputs of second permutation. Using
it, we can mount basic attacks on 2EM-2 in the same manner of 2EM-1. For
low-data attacks or time-optimized attacks, by dynamically finding invariable
pairs of k0 in the online phase to fix the part of the plaintext or inputs of the
second permutation, we can mount the same attacks of 2EM-1 to 2EM-2.

In the case of different linear orthomorphism functions as a key scheduling
function, our attacks are feasible as long as we can find partial invariable pairs
that fix the part of inputs of the second permutation. In the other examples
such as a simple rotation and a field multiplication (e.g. π: (x) �→ (x × c), where
c �= 0, 1), there exist such invariable pairs of a-bit k0 that is able to fix a-bit of
inputs of the second permutation, because these orthomorphism functions are
not full diffusion function in which an input bit affect any bit of the output.

7 Conclusion

In this paper, we proposed new key recovery attacks on the two minimal two-
round Even-Mansour ciphers. Our attacks are based on the advanced meet-in-
the-middle technique combined with our novel matching approach called partial
invariable pair and the matching with the input-restricted public permutation.
We presented the first attack that the data complexity is less than the birth-
day barrier, i.e. 2n/2, on the minimal two-round n-bit Even-Mansour ciphers,
although in the chosen-plaintext setting. Then, by dynamically finding partial
invariable pairs, the further improvements on the attacks that require the less
data or the less time complexity were shown. We emphasize that our low-data
attack on the two-round 64-bit Even-Mansour ciphers requires only 28 chosen
plaintexts. In this case, the minimum value of the product of time and data
complexity is 270 which is close to the proved lower bound on the product of
time and data complexity for the one-round Even-Mansour ciphers (264). Our
results revealed that adding one round to the one-round Even-Mansour ciphers
does not sufficiently improve the security against the key recovery attacks.
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Abstract. We present a reduction from the module learning with errors
problem (MLWE) in dimension d and with modulus q to the ring learning
with errors problem (RLWE) with modulus qd. Our reduction increases
the LWE error rate α by a quadratic factor in the ring dimension n and
a square root in the module rank d for power-of-two cyclotomics. Since,
on the other hand, MLWE is at least as hard as RLWE, we conclude
that the two problems are polynomial-time equivalent. As a corollary, we
obtain that the RLWE instance described above is equivalent to solving
lattice problems on module lattices. We also present a self reduction
for RLWE in power-of-two cyclotomic rings that halves the dimension
and squares the modulus while increasing the error rate by a similar
factor as our MLWE to RLWE reduction. Our results suggest that when
discussing hardness to drop the RLWE/MLWE distinction in favour of
distinguishing problems by the module rank required to solve them.

Keywords: Security reduction · Learning with errors · Lattice-based
cryptography

1 Introduction

Lattice-based cryptography has emerged as a central area of research in the
pursuit of designing quantum-safe primitives and advanced cryptographic con-
structions. For example, lattice-based schemes have been proposed for public-
key encryption [Reg09,LP11], key exchange protocols [LP11,ADPS16,BCD+16],
digital signatures [BG14,DDLL13], identity-based encryption [GPV08,DLP14]
and fully homomorphic encryption schemes [Gen09,BGV12,GSW13].

A fundamental problem in lattice-based cryptography is the Learning with
Errors problem (LWE) [Reg05]. For a given dimension n, modulus q and error
distribution χ, samples of the LWE distribution in normal-form are constructed
as (a, b = 1

q 〈a, s〉 + e mod 1), where a ∈ Z
n
q is chosen uniformly at random and

all components of the secret s ∈ Z
n
q and e are drawn from the distribution χ.
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Distinguishing the LWE distribution from uniform is known as the decision LWE
problem, whereas finding the secret s is known as the search LWE problem.

The seminal work of Regev [Reg05] establishes reductions from standard
problems such as finding short vectors in general lattices to LWE, suggesting that
LWE is indeed a difficult problem to solve. In particular, the ability to solve LWE
in dimension n implies an efficient algorithm to find somewhat short vectors in
any n-dimensional lattice. The concrete and asymptotic hardness of LWE has
recently been surveyed in [APS15,HKM17]. Although LWE has proven to be a
versatile ingredient for cryptography, it suffers from large key sizes (quadratic in
the dimension) which motivated the development of more efficient LWE variants.

The Ring Learning with Errors problem (RLWE) was introduced in [LPR10].
RLWE can be seen as a specialisation of LWE where n-dimensional vectors are
replaced by polynomials of degree smaller than n. Informally, for RLWE we first
choose a ring R of dimension n, modulus q and error distribution χ over a related
space of dimension n denoted KR. Then, to sample the RLWE distribution, we
sample a ∈ R/qR uniformly, a secret polynomial s in a suitable space and error
e according to χ. We then output (a, b = 1

q a ·s+e mod R∨) as the RLWE sample
where R∨ denotes the dual of the ring R. A complete and more precise definition
is given in Sect. 2.3. Similar to the case of plain LWE, the decision problem is
to distinguish the RLWE distribution from uniform and the search problem is
to find the secret s. As alluded to above, the RLWE problem generally offers an
increase in efficiency over plain LWE. Intuitively, this can be seen by considering
each RLWE sample as a structured set of n LWE samples.

It has been shown that RLWE is at least as hard as standard lattice prob-
lems on ideal lattices [LPR10,PRSD17]. However, these ideal lattice prob-
lems have received much less attention than their analogues on general lat-
tices. Furthermore, some problems that are presumed hard on general lat-
tices such as GapSVP are actually easy on ideal lattices and a recent series
of works [CGS14,CDPR16,CDW17] showed that finding short vectors in ideal
lattices is potentially easier on a quantum computer than in the general case.
More precisely, the length of the short vectors found in quantum polynomial
time are a sub-exponential multiple of the length of the shortest vector in the
lattice. Currently, it is not known how to efficiently find such vectors in general
lattices efficiently. However, the vectors that can be found in quantum polyno-
mial time are mainly of theoretical interest since they are still too long to affect
current RLWE-based cryptography. Another important caveat to note is that if
there was a way to find even shorter vectors in ideal lattices, RLWE could still
prove to be a difficult problem. This is due to the fact that RLWE has not been
proven to be equivalent to finding short vectors in ideal lattices, i.e. the problem
might be strictly harder.

It is worth noting that the reductions from lattice problems to LWE resp.
RLWE [Reg05,LPR10,PRSD17] mentioned above have no dependency on q
apart from the requirement that q must exceed some lower bound that depends
on the dimension and error distribution. In these reductions, the class of lattices
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is simply defined by the dimension in plain LWE and the ring in the case of
RLWE. Similarly, the approximation factors defining the lattice problems are
also independent of q.

This interpretation of known hardness results is inconsistent with the current
state-of-the-art cryptanalytic techniques for solving LWE. The cost of all known
strategies scales with q [HKM17].

Indeed, for LWE it is well-known [BLP+13] that we can trade the size
of the fundamental security parameter n and the modulus q without affect-
ing security, as long as n log q remains constant. Furthermore, in the case
of plain LWE we can choose n freely, reducing our dependence on large q
to increase security. However, in the case of RLWE the analogue reduction
to [BLP+13] is not known and the choice of ring R — and hence the dimen-
sion n — can lead to practical implementation advantages and a simpler inter-
pretation of formally defined RLWE (see Sect. 3.1). Typically, a power-of-two
cyclotomic ring is used, i.e. a ring isomorphic to Z[X]/ 〈Xn + 1〉 with n = 2k.
In addition to its simplicity, this choice also improves performance due to its
amenability to FFT-based algorithms. In fact, power-of-two cyclotomic rings
have proven extremely popular in the literature and dominate the design space,
e.g. [LMPR08,Gen10,BGV12,DDLL13,BCNS15,ADPS16]. However, as stressed
in [LPR13], “powers of two are sparsely distributed, and the desired concrete
security level for an application may call for a ring dimension much smaller than
the next-largest power of two. So restricting to powers of two could lead to key
sizes and runtimes that are at least twice as large as necessary.” Alternatively, if
an implementation wishes to support intermediate field sizes, a new implementa-
tion of multiplication in the intermediate ring is required to achieve comparable
performance.

The Module Learning with Errors problem (MLWE) [BGV12,LS15] was pro-
posed to address shortcomings in both LWE and RLWE by interpolating between
the two. It will be defined formally in Sect. 2. For now, one way to informally
view the MLWE problem is to take the RLWE problem and replace the single
ring elements (a and s) with module elements over the same ring. Using this
intuition, RLWE can be seen as MLWE with module rank 1.

As expected, MLWE comes with hardness guarantees given by lattice prob-
lems based on a certain class of lattices. In this case, the lattices are generated by
modules as opposed to ideals in the RLWE case and in contrast to RLWE, it has
been shown that MLWE is equivalent to natural hard problems over these lat-
tices. Indeed, solving the approximate shortest vector problem on module lattices
for polynomial approximation factors would permit solving MLWE (and thus
RLWE) efficiently. We note that this reduction, too, only has a mild dependency
on q. Furthermore, MLWE has been suggested as an interesting option to hedge
against potential attacks exploiting the algebraic structure of RLWE [CDW17].
Thus, MLWE might be able to offer a better level of security than RLWE, while
still offering performance advantages over plain LWE.

An example illustrating the flexibility of MLWE is given by the CRYSTALS
suite [BDK+17,DLL+17], where MLWE is used to build both key encapsulation
and signature schemes. The advantage of using modules when implementing
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such systems is that the concrete-security/efficiency trade-off is highly tunable.
Remembering that working in power-of-two dimensional rings enables efficient
implementations, we can fix our ring and then change the rank of the module
as desired. For example, suppose we were working in a module over a ring of
dimension n = 256, then we can increase the effective dimension from 1024 to
1280 by simply increasing the rank of the module. This effective dimension would
not be attainable using power-of-two dimensional rings in RLWE. Thus, MLWE
promises to adjust the security level with much greater granularity than efficient
RLWE instantiations and implementations for one security level can easily be
extended to other security levels.

Contributions. After some preliminaries in Sect. 2, our main contribution is a
reduction from MLWE in dimension d over some general ring R/qR to RLWE
in R/qdR. This was posed as an open problem in [LS15]. Our solution is given
in Theorem 1 and Corollary 1. In Sect. 3.1, we carry out a tighter analysis of the
reduction for power-of-two cyclotomic rings. It turns out that for the decision
variants, we cannot obtain satisfactory bounds for our reduction to preserve
non-negligible advantage unless we allow for super polynomial q and absolute
noise in addition to negligible noise rate. We address this problem in Sect. 4 by
considering the search variants. An instantiation of Corollary 3 for power-of-two
cyclotomic rings is the following:

Corollary. There exists an efficient reduction from search MLWE in modulus q,
rank d and error rate α to search RLWE in modulus qd and error rate α · n2

√
d.

In essence, this says that RLWE with modulus qd is at least as hard as MLWE
with modulus q and module rank d in the same ring. More generally, Corollary 3
shows that there is a freedom to trade between the rank of module and the
modulus as long as we hold d log q = d′ log q′ fixed for cyclotomic power-of-two
rings. This means that for any decrease in d, we can always balance this off by
increasing q exponentially without loss of security.

Our reduction is an application of the main result of Brakerski et al.
[BLP+13] in the context of MLWE. In its simplest form, the reduction proceeds
from the observation that for a, s ∈ Z

d
q with s small it holds that

qd−1 · 〈a, s〉 ≈
(

d−1∑

i=0

qi · ai

)

·
(

d−1∑

i=0

qd−i−1 · si

)

mod qd = ã · s̃ mod qd.

It should be noted that we incur an extra factor of n3/2 d1/2 in error rate expan-
sion when comparing our results to those in [BLP+13]. The extra factor of n3/2

arises since we need to drown an (unknown) discrete Gaussian over an (unknown)
lattice determined by the secret of the input MLWE instance. Naturally, the fac-
tor of d accounts for summing Gaussians when compressing the MLWE sample
in rank d into a RLWE sample.

The error distribution of the output in our reduction is an ellipsoidal Gaussian
(with bounded widths) as opposed to a spherical one. This type of error distri-
bution appears in the standard hardness result for RLWE [LPR10] and should
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not be considered unusual. However, we also describe how to perform a reduc-
tion from search MLWE to spherical error search RLWE using Rényi divergence
arguments (see Sect. 4.1). This is a tool that has recently received attention in
lattice-based cryptography because it allows to tighten security reductions for
search (and some decisional) problems [LSS14,BLL+15,BGM+16,LLM+16].

In Sect. 5, we present self-reductions from power-of-two RLWE in dimension
n and modulus q to RLWE in dimension n/2 and modulus q2 following the same
strategy. Here, the error rate typically expands from α to Õ(α · n9/4) if we have
access to O(1) samples and wish to preserve a non-negligible success probability.

Finally, in AppendixA, we show how to achieve the same flexibility as
MLWE-based constructions for public-key encryption by explicitly only consid-
ering RLWE elements but relying on a MLWE/large modulus RLWE assumption
resp. relying on the leftover hash lemma.

Interpretation. Our reduction along with the standard hardness results for
MLWE [LS15] implies that RLWE with modulus qd and error rate α is at least
as hard as solving the approximate lattice problem Module-SIVP over power-of-
two cyclotomic rings. The approximation factor in this case is γ = Õ(n5/2 d1/2).
As there are also converse reductions from RLWE to Module-SIVP e.g. the
dual attack [MR09] which requires finding short vectors in a module lattice,
these observations imply RLWE is equivalent to Module-SIVP. Previous hard-
ness results only stated that RLWE is at least as hard as Ideal-SIVP [LPR10].1

We note, though, that it is not known if Module-SIVP is strictly harder than
Ideal-SIVP.

Our results suggest that the distinction between MLWE and RLWE does not
yield a hardness hierarchy. There are two different interpretations of this impli-
cation. The first and perhaps suspicious conclusion is that MLWE should not
be used to hedge against powerful algorithms solving RLWE for any modulus.
However, such an algorithm would essentially solve RLWE over any power-of-two
cyclotomic field by our reduction in Sect. 5. Furthermore, as already mentioned
in [BLP+13], an adversary solving our output RLWE instance with modulus
qd and any dimension n implies an adversary that can solve the standard LWE
problem in dimension d and modulus q given n samples. While such an adversary
cannot be ruled out in principle, it cannot be enabled by the algebraic structure
of RLWE or ideal lattices. However, we note that this line of argument is less
powerful when restricting to small constant d.

On the other hand, assuming that such a powerful adversary does not exist,
an alternative interpretation is that our results suggest that the difficulty of
solving RLWE increases with the size of the modulus when keeping dimension
n and noise rate α (roughly) constant. This interpretation is consistent with
cryptanalytic results as the best, known algorithms for solving LWE depend on
q [APS15,HKM17] and the analogous result for LWE in [BLP+13]. Indeed, our
output RLWE instance in modulus qd has noise of size at least qd/2. Thus, our

1 Except for RLWE instances with modulus qn which are known to be as hard as LWE
in dimension n and modulus q [BLP+13].
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RLWE output instances cannot be solved by finding short vectors in lattices of
module rank 2 using standard primal or dual attacks in contrast to typical RLWE
instances used in the literature. This augments standard reductions from RLWE
resp. MLWE to Ideal-SIVP resp. Module-SIVP [Reg05,LPR10,LS15] which do
not by themselves suggest that the problem becomes harder with increasing q.

2 Preliminaries

An n-dimensional lattice is a discrete subgroup of Rn. Any lattice Λ can be seen
as the set of all integer linear combinations of a set of basis vectors {b1, . . . ,bj}.

That is, Λ :=
{∑j

i=1 zibi : zi ∈ Z
n for i = 1, . . . , j

}
. The lattices we will be con-

sidering will have full rank i.e. j = n. We use the matrix B = [b1, . . . ,bn]
to denote a basis. B̃ is used to denote the Gram-Schmidt orthogonalisation of
columns in B (from left to right) and ‖B‖ is the length of the longest vector
(in Euclidean norm) of the basis given by B. Additionally, for any x ∈ R

n, we
write ‖x‖ to denote the standard Euclidean norm of x. The dual of a lattice Λ
is defined as Λ∗ = {x ∈ span(Λ) : ∀ y ∈ Λ, 〈x,y〉 ∈ Z} where 〈·, ·〉 is an inner
product.

Given a matrix M ∈ C
m×n, the singular values of M are defined to be the

positive square roots of the eigenvalues of M†M where M† denotes the conjugate
transpose of M. The matrix M†M takes a diagonal form in some orthonormal
basis of R

n since it is self-adjoint. We write σi(M) for the ith singular value
of M where σ1(M) ≥ · · · ≥ σn(M). We also denote the identity matrix in n

dimensions using In. In addition to the conjugate transpose denoted by (·)†, the
transpose of a matrix or vector will be denoted by (·)T . The complex conjugate
of z ∈ C will be written as z̄.

The uniform probability distribution over some finite set S will be denoted
U(S). If s is sampled from a distribution D, we write s ←$ D. Also, we let s =
(s0, . . . , sd−1) ←$ Dd denote the act of sampling each component si according to
D independently. We also write Supp(D) to mean the support of the distribution
D. Note that we use standard big-O notation where Õ hides logarithmic factors.

For any algebraic number field K, an element x ∈ K is said to be integral
if it is a root of some monic polymonial with integer coefficients. The set of all
integral elements forms the ring of integers of K denoted by OK . We also denote
isomorphisms via the symbol �.

2.1 Coefficient Embeddings

Let K := Q(ζ) be an algebraic number field of degree n where ζ ∈ C is an
algebraic number. Then for any s ∈ K, we can write s =

∑n−1
i=0 si · ζi where

si ∈ Q. We can embed this field element into R
n by associating it with its vector

of coefficients svec. Therefore, for any s ∈ K we have svec = (s0, . . . , sn−1)
T .

We can also represent multiplication by s ∈ K in this coefficient embed-
ding using matrices. The appropriate matrix will be denoted by rot(s) ∈ R

n×n.
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In particular, for r, s, t ∈ K with r = st, we have that rvec = rot(s) · tvec. Note
that the matrix rot(s) must be invertible with inverse rot(s−1) for s �= 0. The
explicit form of rot(s) depends on the particular field K. In the case where K
is a cyclotomic power-of-two field, i.e. K = Q[X]/ 〈Xn + 1〉 for power-of-two n,
we have

rot(s) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

s0 −sn−1 −sn−2 · · · · · · −s1

s1 s0 −sn−1

. . .
. . . −s2

...
...

. . .
. . .

. . .
...

...
...

. . .
. . .

. . .
...

sn−1 sn−2 · · · · · · · · · s0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (1)

2.2 Canonical Embeddings

We will often use canonical embeddings to endow field elements with a geometry.
A number field K(ζ) has n = r1 + 2r2 field homomorphisms σi : K → C fixing
each element of Q. Let σ1, . . . , σr1 be the real embeddings and σr1+1, . . . , σr1+2r2

be complex. The complex embeddings come in conjugate pairs, so we have
σi = σi+r2 for i = r1 + 1, . . . , r1 + r2 if we use an appropriate ordering of
the embeddings. Define

H := {x ∈ R
r1 × C

2r2 : xi = xi+r2 , i = r1 + 1, . . . , r1 + r2}.

and let (ei)
n
i=1 be the (orthonormal) basis assumed in the above definition of H.

We can easily change to the basis (hi)
n
i=1 defined by

– hi = ei for i = 1, . . . , r1
– hi = 1√

2
(ei + ei+r2) for i = r1 + 1, . . . , r1 + r2

– hi =
√−1
2 (ei − ei+r2) for i = r1 + r2 + 1, . . . , r1 + 2r2

to see that H � R
n as an inner product space. The canonical embedding is

defined as σC : K → R
r1 × C

2r2 where

σC(x) := (σ1(x), . . . , σn(x)).

The image of any field element under the canonical embedding lies in the space
H, so we can always represent σC(x) via the real vector σH(x) ∈ R

n through the
change of basis described above. So for any x ∈ K, σH(x) = U†

H · σC(x) where
the unitary matrix is given by

UH =

⎡

⎢
⎣

Ir1 0 0
0 1√

2
Ir2

i√
2
Ir2

0 1√
2
Ir2

−i√
2
Ir2

⎤

⎥
⎦ ∈ C

n×n. (2)

Addition and multiplication of field elements is carried out component-wise
in the canonical embedding, i.e. for any x, y ∈ K, σC(xy)i = σC(x)i · σC(y)i

and σC(x + y) = σC(x) + σC(y). Multiplication is not component-wise for σH .
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Specifically, in the basis (ei)
n
i=1, we have that multiplication by x ∈ K can

be written as left multiplication by the matrix Xij = σi(x)δij where δij is the
Kronecker delta. Therefore, in the basis (hi)

n
i=1, the corresponding matrix is

XH = U†
HXUH ∈ R

n×n which is not diagonal in general. However, for any XH ,
we have XH ·XT

H = XH ·X†
H = U†

HXX†UH . Explicitly, (XH · XT
H)ij = |σi(x)|2δij

i.e. XH ·XT
H is a diagonal matrix. Likewise for XT

H ·XH . Therefore, the singular
values of XH are precisely given by |σi(x)| for i = 1, . . . , n.

Remark 1. We use σi(·) to denote both singular values and embeddings of field
elements. If the argument is a matrix, it should be assumed that we are referring
to singular values. Otherwise, σi(·) denotes a field embedding.

For a ring R contained in field K, we define the canonical embedding of
the module Rd into the space Hd in the obvious way, i.e. by embedding each
component of Rd into H separately. Furthermore, if we have a matrix of ring
elements G ∈ Rd′×d for integers d and d′, we denote the action of G on Rd in
canonical space Hd as GH ∈ R

nd′×nd. It is well-known that the dimension of
OK as a Z-module is equal to the degree of K over Q, meaning that the lattice
σH(R) is of full rank.

2.3 Ring-LWE and Module-LWE

Let R be some ring with field of fractions K and dual R∨ := {x ∈ K : Tr(xR) ⊆
Z}. Also let KR = K ⊗Q R and define TR∨ := KR/R∨. Note that distribu-
tions over KR are sampled by choosing an element of the space H (as defined
in Sect. 2.2) according to the distribution and mapping back to KR via the iso-
morphism H � KR. For example, sampling the Gaussian distribution Dα over
KR is done by sampling Dα over H � R

n and then mapping back to KR. In
all definitions below, let Ψ be a family of distributions over KR and D be a
distribution over R∨

q where R∨
q := R∨/(qR∨) and Rq := R/(qR).

Definition 1 (RLWE Distribution). For s ∈ R∨
q and error distribution ψ

over KR, we sample the ring learning with errors (RLWE) distribution A
(R)
q,s,ψ

over Rq × TR∨ by outputting (a, 1
q (a · s) + e mod R∨), where a ←$ U(Rq) and

e ←$ ψ.

Definition 2 (Decision/Search RLWE problem). The decision ring learn-
ing with errors problem RLWE

(R)
m,q,Ψ (D) entails distinguishing m samples of

U(Rq ×TR∨) from A
(R)
q,s,ψ where s ←$ D and ψ is an arbitrary distribution in Ψ .

The search variant s-RLWE
(R)
m,q,Ψ (D) entails obtaining the secret s ←$ D.

Definition 3 (MLWE Distribution). Let M := Rd. For s ∈ (R∨
q )d and an

error distribution ψ over KR, we sample the module learning with error distri-
bution A

(M)
d,q,s,ψ over (Rq)

d × TR∨ by outputting (a, 1
q 〈a, s〉 + e mod R∨) where

a ←$ U((Rq)
d) and e ←$ ψ.
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Definition 4 (Decision/Search MLWE problem). Let M = Rd. The deci-
sion module learning with errors problem MLWE

(M)
m,q,Ψ (D) entails distinguishing

m samples of U((Rq)
d × TR∨) from A

(M)
q,s,ψ where s ←$ Dd and ψ is an arbitrary

distribution in Ψ .
The search variant s-MLWE

(M)
m,q,Ψ (D) entails obtaining the secret element

s ←$ Dd.

When Ψ = {ψ}, we replace Ψ by ψ in all of the definitions above. It can be
shown that the normal form of the above problems where the secret distribution
is a discretized version of the error distribution is at least as hard as the case
where the secret is uniformly distributed. Therefore, it is customary to assume
the normal form when discussing hardness.

2.4 Statistical Distance and Rényi Divergence

Definition 5 (Statistical Distance). Let P and Q be distributions over some
discrete domain X. The statistical distance between P and Q is defined as
Δ(P,Q) :=

∑
i∈X |P (i) − Q(i)|/2. For continuous distributions, replace the sum

by an appropriate integral.

Claim. If P and Q are two probability distributions such that P (i) ≥ (1−ε)Q(i)
for all i, then Δ(P,Q) ≤ ε.

We will also make use of the Rényi divergence as an alternative to the sta-
tistical distance to measure the similarity between two distributions.

Definition 6. (Rényi Divergence) For any distributions P and Q such that
Supp(P ) ⊆ Supp(Q), the Rényi divergence of P and Q of order a ∈ [1,∞]
is given by

Ra (P ||Q) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

exp
(∑

x∈Supp(P ) P (x) log P (x)
Q(x)

)
for a = 1,

(∑
x∈Supp(P )

P (x)a

Q(x)a−1

) 1
a−1

for a ∈ (1,∞),

maxx∈Supp(P )
P (x)
Q(x) for a = ∞.

For the case where P and Q are continuous distributions, we replace the sums
by integrals and let P (x) and Q(x) denote probability densities. We also give a
collection of well-known results on the Rényi divergence (cf. [LSS14]), many of
which can be seen as multiplicative analogues of standard results for statistical
distance. The proof of this lemma is given in [vEH14,LSS14].

Lemma 1 (Useful facts on Rényi divergence). Let a ∈ [1,+∞]. Also let
P and Q be distributions such that Supp(P ) ⊆ Supp(Q). Then we have:

– Increasing Function of the Order: The function a �→ Ra (P ||Q) is non-
decreasing, continuous and tends to R∞ (P ||Q) as a → ∞.

– Log Positivity: Ra (P ||Q) ≥ Ra (P ||P ) = 1.
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– Data Processing Inequality: Ra

(
P f ||Qf

) ≤ Ra (P ||Q) for any function f
where P f and Qf denote the distributions induced by performing the function
f on a sample from P and Q respectively.

– Multiplicativity: Let P and Q be distributions on a pair of random variables
(Y1, Y2). Let P2|1(·|y1) and Q2|1(·|y1) denote the distributions of Y2 under P
and Q respectively given that Y1 = y1. Also, for i ∈ {1, 2} denote the marginal
distribution of Yi under P resp. Q as Pi resp. Qi. Then

• Ra (P ||Q) = Ra (P1||Q1) · Ra (P2||Q2).
• Ra (P ||Q) = R∞ (P1||Q1) · maxy1∈Supp(P1) Ra

(
P2|1(·|y1)||Q2|1(·|y1)

)
.

– Probability Preservation: Let E ⊆ Supp(Q) be an arbitrary event. If a ∈
(1,∞), then Q(E) ≥ P (E)

a
a−1 /Ra (P ||Q). Furthermore, we have Q(E) ≥

P (E)/R∞ (P ||Q).
– Weak Triangle Inequality: Let P1, P2 and P3 be three probability distribu-

tions such that Supp(P1) ⊆ Supp(P2) ⊆ Supp(P3). Then

Ra (P1||P3) ≤
{

Ra (P1||P2) · R∞ (P2||P3) ,

R∞ (P1||P2)
a

a−1 · Ra (P2||P3) if a ∈ (1,+∞).

2.5 Gaussian Measures

Definition 7 (Continuous Gaussian distribution). The Gaussian function
of parameter r and centre c is defined as

ρr,c(x) = exp
(
−π(x − c)2/r2

)

and the Gaussian distribution Dr,c is the probability distribution whose probabil-
ity density function is given by 1

r ρr,c.

Definition 8 (Multivariate Gaussian distribution). Let Σ = ST S for
some rank-n matrix S ∈ R

m×n. The multivariate Gaussian function with covari-
ance matrix Σ centred on c ∈ R

n is defined as

ρS,c(x) = exp
(
−π(x − c)T (ST S)

−1
(x − c)

)

and the corresponding multivariate Gaussian distribution denoted DS,c is defined
by the density function 1√

det(Σ)
ρS,c.

Note that if the centre c is omitted, it should be assumed that c = 0. If
the covariance matrix is diagonal, we describe it using the vector of its diagonal
entries. For example, suppose that (ST S)ij = (si)

2
δij and let s = (s1, . . . sn)T .

Then we would write Ds to denote the centred Gaussian distribution DS .
We are often interested in families of Gaussian distributions. For α > 0, we

write Ψ≤α to denote the set of Gaussian distributions with diagonal covariance
matrix of parameter r satisfying ri ≤ α for all i.

We also have discrete Gaussian distributions i.e. normalised distributions
defined over some discrete set (typically lattices or lattice cosets). The notation
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for a discrete Gaussian over some n-dimensional lattice Λ and coset vector u ∈
R

n with parameter r is DΛ+u,r. This distribution has probability mass function
1

ρr(Λ+u)ρr where ρr(Λ + u) =
∑

x∈Λ+u ρr(x). It was shown in [GPV08] that we
can efficiently sample from a (not too narrow) discrete Gaussian over a lattice to
within negligible statistical distance. It was further shown that we can actually
sample the discrete Gaussian precisely in [BLP+13]. This result is given below
as Lemma 2.

Lemma 2 (Lemma 2.3 in [BLP+13], Sampling discrete Gaussians).
There is a probabilistic polynomial-time algorithm that, given a basis B of an
n-dimensional lattice Λ = L(B), c ∈ R

n and parameter r ≥ ‖B̃‖·√ln(2n + 4)/π
outputs a sample distributed according to DΛ+c,r.

Next we define the smoothing parameter of a lattice followed by a collection
of lemmas that we will make use of.

Definition 9 (Smoothing parameter). For a lattice Λ and any ε > 0, the
smoothing parameter ηε(Λ) is defined as the smallest s>0 s.t. ρ1/s(Λ∗\{0})≤ε.

Lemma 3 (Lemma 3.1 in [GPV08], Upper bound on smoothing para-
meter). For any ε > 0 and n-dimensional lattice Λ with basis B,

ηε(Λ) ≤ ‖B̃‖
√

ln(2n(1 + 1/ε))/π.

Lemma 4 (Claim 3.8 in [Reg09], Sums of Gaussians over cosets). For
any n-dimensional lattice Λ, ε > 0, r ≥ ηε(Λ) and c ∈ R

n, we have

ρr(Λ + c) ∈
[
1 − ε

1 + ε
, 1

]

· ρr(Λ).

The claim R∞ (Dt||Y ) ≤ 1+ε
1−ε in the lemma below follows immediately from

the proof given in [LS15].

Lemma 5 (Adapted from Lemma 7 in [LS15], Drowning ellipsoidal dis-
crete Gaussians). Let Λ be an n-dimensional lattice, u ∈ R

n, r ∈ (R+)n,
σ > 0 and ti =

√
r2i + σ2 for all i. Assume that mini riσ/ti ≥ ηε(Λ) for some

ε ∈ (0, 1/2). Consider the continuous distribution Y on R
n obtained by sampling

from DΛ+u,r and then adding a vector from Dσ. Then we have Δ(Y,Dt) ≤ 4ε
and R∞ (Dt||Y ) ≤ 1+ε

1−ε .

In the lemma below, ring elements are sampled in the coefficient embedding.

Lemma 6 (Adapted from Lemma 4.1 in [SS13], Upper bound on least
singular value). Let n be a power of two and R = Z[X]/ 〈Xn + 1〉. Then for
any δ ∈ (0, 1), t ≥ √

2π and σ ≥ t√
2π

· ηδ(Zn), we have

Prb ←$ DZn,σ

[
1

σn(rot(b))
≥ t

√
2

σ
√

n

]

≤ 1 + δ

1 − δ
· n

√
2πe

t
.
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3 Reduction for General Rings

In this section, we show how to reduce an MLWE instance in module rank d and
modulus q to an MLWE instance in rank d′ and modulus q′. The particular case
where d′ = 1 yields a reduction from MLWE to RLWE. We start by describing
the high-level intuition behind the reduction for the case d′ = 1 and where
the modulus goes from q to qd. In this case, our strategy is to map (a, s) ∈
(Rq)

d × (R∨
q )d to (ã, s̃) ∈ Rq × R∨

q′ aiming to satisfy the approximate equation

1
q

〈a, s〉 ≈ 1
qd

(ã · s̃) mod R∨. (3)

We then map from b to b̃ ≈ b mod R∨. For q = Ω(poly(n)), if we take s̃ =
(qd−1, . . . , 1)T · s and ã = (1, . . . , qd−1)T · a, we obtain

1
qd

(ã · s̃) =
1
q

〈a, s〉 +
1
q2

(. . . ) +
1
q3

(. . . ) + . . . mod R

≈ 1
q

〈a, s〉 mod R.

(4)

This mapping satisfies the requirement but leads to a narrow, yet non-standard
error distribution. The reduction in Theorem1 is a generalisation of the above
idea. Specifically, take G ∈ (R)d′×d and s̃ = G · s mod (q′R)d′

. Then we simply
require that

1
q′

d′
∑

i=1

d∑

j=1

ãigijsj ≈ 1
q

d∑

j=1

ajsj mod R∨. (5)

This requirement can be satisfied if we choose ã such that

1
q′

d′
∑

i=1

ãigij ≈ 1
q
aj mod R (6)

for j = 1, . . . , d. To carry out this strategy, we will sample ã over an appropriate
lattice defined by G in the canonical embedding. The main challenge in applying
this strategy is that we want the error in the new MLWE sample to follow a
standard error distribution, i.e. a continuous Gaussian.

Theorem 1. Let R be the ring of integers of some algebraic number field K
of degree n, let d, d′, q, q′ be integers, ε ∈ (0, 1/2), and G ∈ Rd′×d. Also, fix
s = (s1, . . . , sd) ∈ (R∨

q )d. Further, let BΛ be some known basis of the lattice
Λ = 1

q′ G
T
HRd′

+ Rd (in the canonical embedding), BR be some known basis of
R in H and

r ≥ max

⎧
⎪⎨

⎪⎩

‖B̃Λ‖ · √2 ln(2nd(1 + 1/ε))/π
1
q ‖B̃R‖ · √2 ln(2nd(1 + 1/ε))/π
1
q maxi ‖B̃siR‖ · 1

mink |σk(si)| · √2 ln(2n(1 + 1/ε))/π
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where BsiR is a basis of siR in the canonical embedding. There exists an efficient
probabilistic mapping F : (Rq)

d × TR∨ −→ (Rq′)d′ × TR∨ such that:

1. The output distribution given uniform input F(U((Rq)
d × TR∨)) is within

statistical distance 4ε of the uniform distribution over (Rq′)d′ × TR∨ .
2. Let M = Rd, M ′ = Rd′

and define B := maxi,j |σi(sj)|. The distribution of
F(A(M)

q,s,Dα
) is within statistical distance (4d+6)ε of A

(M ′)
q′,Gs,Dα′ where (α′)2i =

α2 + r2(β2 +
∑d

j=1 |σi(sj)|2) and β satisfies β2 ≥ B2d.

Proof. We use the canonical embedding on each component of Rd individually,
e.g. aH = (σH(a1), . . . , σH(ad)) ∈ Hd � R

nd and similarly for other module
elements. We will also refer to the canonical embedding of R as simply R to
ease notation. Suppose we are given (a, b) ∈ (Rq)

d × TR∨ . The mapping F is
performed as follows:

1. Sample f ← DΛ− 1
q aH ,r. Note that the parameter r is large enough so that we

can sample the discrete Gaussian efficiently by Lemma 2.
2. Let v = 1

qaH + f ∈ Λ/Rd and set x ∈ (Rq′)d′
to be a random solution of

1
q′ GT

Hx = v mod Rd. Then set ã ∈ M ′ to be the unique element of M ′ such
that ãH = x.

3. Sample ẽ from the distribution Drβ over KR � H for some β > B
√

d and set
b̃ = b + ẽ.

4. Finally, output (ã, b̃) ∈ (Rq′)d′ × TR∨ .

Distribution of ã. Suppose that a ∈ (Rq)
d was drawn uniformly at random.

Step 2 of the reduction can be performed by adding a random element of the
basis of solutions to 1

q′ GT
Hy = 0 mod Rd to a particular solution of 1

q′ GT
Hx =

v mod Rd. In order to show that ã is nearly uniform random, we will show that
the vector x is nearly uniform random over the set (Rq′)d′

. Note that every
x ∈ (Rq′)d′

is a solution to 1
q′ GT

Hx = v mod Rd for some v and the number of

solutions to this equation in (Rq′)d′
for each v is the same. Thus, proving that

v is almost uniform suffices. Observe that r ≥ ηε(Λ). Therefore, Lemma 4 tells
us that for any particular ā ∈ (Rq)

d and f̄ ∈ Λ − 1
q āH , we have

Pr[a = ā ∧ f = f̄] = q−nd · ρr (̄f)/ρr(Λ − 1
q
āH)

=
q−nd

ρr(Λ)
· ρr(Λ)
ρr(Λ − 1

q āH)
· ρr (̄f)

∈ C ·
[

1,
1 + ε

1 − ε

]

· ρr (̄f)

(7)

where C := q−nd/ρr(Λ) is a constant. By summing this equation over appropri-
ate values of ā and f̄, Lemma 4 tells us that for any coset v̄ ∈ Λ/Rd,
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Pr[v = v̄] ∈ C ·
[

1,
1 + ε

1 − ε

]

· ρr(q−1Rd + v̄)

∈ C · ρr(q−1Rd) ·
[

1,
1 + ε

1 − ε

]

· ρr(q−1Rd + v̄)
ρr(q−1Rd)

∈ C ′ ·
[
1 − ε

1 + ε
,
1 + ε

1 − ε

]

(8)

where C ′ := Cρr(q−1Rd). Note that we may apply Lemma 4 here since we know
that r ≥ ηε((q)

−1
Rd) by Lemma 3. This allows us to conclude that the distribu-

tion of v is within statistical distance 1 − [(1 − ε)/(1 + ε)]2 ≤ 4ε of the uniform
distribution. This means that x is uniformly random over (Rq′)d′

to within sta-
tistical distance 4ε implying that ã is uniform random over (Rq′)d′

to within
statistical distance 4ε. It is also clear that b̃ is exactly uniform random given
that b is uniform random. This proves the first claim (uniform-to-uniform).

Distribution of −f . In our analysis of the resulting error, it will be useful to
understand the distribution of the vector −f for fixed ã (and thus fixed v = v̄).
Note that fixing a value f = f̄ fixes 1

qa = v̄ − f̄ mod Rd. By summing over all
appropriate values of f in Eq. 7, one can show that the distribution of −f for any
fixed ã is within statistical distance 1 − (1 − ε)(1 + ε) ≤ 2ε of D 1

q Rd−v̄,r.

Distribution of the error. Suppose we are given the MLWE sample (a, b =
1
q 〈a, s〉 + e) ∈ (Rq)

d × TR∨ where e ∈ KR is drawn from Dα. We have already

shown that our map outputs ã ∈ (Rq′)d′
that is almost uniformly random. Now

we condition on a fixed ã = ¯̃a and analyse the distribution of

(b̃ − 1
q′

〈¯̃a · s̃〉) mod R∨. (9)

Let fi ∈ R
n be the vector consisting of the ith block of n entries of f ∈ R

nd for i =
1, . . . , d. Using the fact that s̃ = Gs and that R∨ is closed under multiplication
by elements of R, we can rewrite this as

(b̃ − 1
q′

〈¯̃a · s̃〉) =
d∑

i=1

si · σ−1
H (−fi) + ẽ + e mod R∨. (10)

In fact, we want to analyse the RHS of the above equation in canonically embed-
ded space. To do so, define the invertible matrix Si,H := UHSiU

†
H ∈ R

n×n where
UH is given in Eq. (2) and Si is the diagonal matrix with the field embeddings
of si along the diagonal i.e. [Si]jk = σj(si)δjk. Note that Si,H is the matrix rep-
resenting multiplication by s in the basis (hi)

n
i=1 of H. Therefore, in canonical

space, the error is given by

d∑

i=1

Si,H · (−fi) + σH(ẽ) + σH(e) mod R∨ (11)
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where σH(ẽ) and σH(e) are distributed as Drβ and Dα respectively. Also, let-
ting v̄i denote the ith block of n coordinates of v̄, we know that −fi is almost
distributed as D 1

q R−v̄i,r. It then follows that Si,H · (−fi) is close in distribu-
tion to D 1

q Si,H ·R−Si,H ·v̄i,r(Si,H)T i.e. an ellipsoidal discrete Gaussian. In fact the

covariance matrix r2Si,HST
i,H is diagonal with respect to our basis (hi)

n
i=1 of

R
n (see Sect. 2.2) with eigenvalues given by r2|σj(si)|2 for j = 1, . . . , n. Note

that we can conceptualise σH(ẽ) as
∑d

i=1 ẽ(i) where each ẽ(i) is distributed as a
continuous spherical Gaussian in R

n with parameter γi ≥ rB. Recalling that −f
is distributed as D 1

q Rd−v̄,r to within statistical distance 2ε, we can now apply
Lemma 5 d times to conclude that

d∑

i=1

Si,H · (−fi) + σH(ẽ) =
d∑

i=1

Si,H · (−fi) + ẽ(i) (12)

is distributed as the continuous Gaussian with a diagonal covariance matrix to
within statistical distance 2ε + 4dε. In particular, the diagonal entries of the
convariance matrix are given by r2

(
β2 +

∑d
j=1 |σi(sj)|2

)
for i = 1, . . . , n. Con-

sidering the original error term σH(e) that follows the distribution Dα completes
the proof. ��
Remark 2. It is permissible to take B := mini,j |σj(si)| in the above theorem.
However, this will not save us any asymptotic factors in the output error distri-
bution so we use B := maxi,j |σj(si)| to allow for cleaner looking bounds.

The following corollary specialises to a map from MLWE in module rank d
to d/k and from modulus q to qk for general rings. Taking k = d constitutes a
reduction from MLWE to RLWE. Note that the new secret distribution is non-
standard in general, but we can always use the usual re-randomizing process to
obtain a uniform secret. We also highlight the fact that the lower bound on r
is not particularly tight due to a loose upper bound on the quantities ‖B̃siR‖.
This issue is addressed for power-of-two cyclotomics in Sect. 3.1. In fact, for a
general cyclotomic ring R, it holds that ‖BsiR‖ = ‖σH(si)‖.

Corollary 1. Let R be a ring with basis BR in the canonical embedding and χ
be a distribution satisfying

Prs ←$ χ

[
max

i
|σi(s)| > B

]
≤ δ and Prs ←$ χ

[

max
i,j

|σi(s)|
|σj(s)| > B′

]

≤ δ′

for some (B, δ) and (B′, δ′). Also let α > 0 and take any ε ∈ (0, 1/2). For any
k > 1 that divides d and

r ≥ max

{
1
q ‖B̃R‖ · √2 ln(2nd(1 + 1/ε))/π
1
q B′ ‖B̃R‖ · √2 ln(2nd(1 + 1/ε))/π

,
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there is an efficient reduction from MLWE
(Rd)
m,q,Ψ≤α

(χd) to MLWE
(Rd/k)

m,qk,Ψ≤α′

(G · χd) for G = Id/k ⊗ (1, q, . . . , qk−1) ∈ Rd/k×d and

(α′)2 ≥ α2 + 2r2B2d.

Moreover, this reduction reduces the advantage by at most [1 − (1 − δ − δ′)d] +
(4d + 10)εm.

Proof. We run the reduction from Theorem1, taking q′ = qk, β2 ≥ B2d
and G ∈ Rd/k×d as in the corollary statement. First, note that ‖B̃siR‖ ≤
maxj |σj(si)| · ‖B̃R‖ by considering multiplication in the canonical embed-
ding and Lemma 2 from [ABB10]. In the coefficient embedding, we have that
G = Id/k ⊗ (1, q, . . . , qk−1) ⊗ In and the lattice of interest is 1

qk GT
Z

nd/k + Z
nd

with basis B = Id/k ⊗ Q ⊗ In where

Q =

⎡

⎢
⎢
⎣

q−1 q−2 · · · q−k

q−1 · · · q1−k

. . .
...

q−1

⎤

⎥
⎥
⎦ .

To move from the coefficient embedding to the canonical embedding, we simply
multiply by the matrix BRd := Id ⊗BR. Therefore, in the canonical embedding,
the basis is given by BΛ = Id/k ⊗ Q ⊗ BR. Orthogonalising from left to right,
we can see that ‖B̃Λ‖ is precisely 1

q ‖B̃R‖.

Let E be the event that maxi |σi(s)| ≤ B and F be the event maxi,j
|σi(s)|
|σj(s)| ≤

B′ where s ←$ χ. The fact that P (E ∩F ) = P (E)+P (F )−P (E ∪F ) ≥ P (E)+
P (F ) − 1 ≥ 1 − δ − δ′ implies the result. ��

3.1 Power-of-Two Cyclotomic Rings

We now give a more specific account of Theorem 1 in the case where R for
power-of-two is a cyclotomic ring, i.e. R = Z[X]/ 〈Xn + 1〉 for power-of-two
n. We will also be considering discrete Gaussian secret distributions and normal
form MLWE. The corollary given in this section is almost identical to Corollary 1
apart from the definition of the pairs (B, δ) and (B′, δ′). This change makes the
corollary amenable to known results for discrete Gaussian secret distributions.

It can be shown that the map taking the canonical embedding to the coeffi-
cient embedding is a scaled isometry with scaling factor 1/

√
n. In particular, the

canonical to coefficient embedding map sends a spherical Gaussian r to r/
√

n.
Furthermore, the dual ring is given by R∨ := 1

n · R and takes the simple form of
1
nZ

n in the coefficient embedding.
Let τ > 0. We will be considering the case where the secret s is drawn from

DR∨,τ (and then reduced modulo qR∨). In the coefficient embedding, this is
equivalent to drawing the secret from the distribution D 1

nZn,τ/
√

n.
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Let SH be the matrix of multiplication by s in the canonical embedding. For
cyclotomic power-of-two rings, there is a simple relationship between components
of the canonical embedding σi(s) and the singular values of the matrix rot(s).
Let BR =

√
n · U denote the scaled isometry mapping from coefficient space to

canonical space where U is unitary. Then we have SH
T SH = U−1 ·rot(s)T rot(s) ·

U . Since SH
T SH is diagonal with elements given by |σi(s)|2, the eigenvalues of

rot(s)T rot(s) are exactly these diagonal elements. This implies |σi(s)| are exactly
the singular values of rot(s). We will use this fact in the next claim.

Lemma 7. Let R = Z[X]/ 〈Xn + 1〉 for some power-of-two n. Then for any
δ ∈ (0, 1), t ≥ √

2π and τ ≥ t√
2πn

· ηδ(Zn), we have

Prs ←$ DR∨,τ

[
1

mini |σi(s)| ≥ t
√

2
τ

]

≤ 1 + δ

1 − δ
· n

√
2πe

t
.

Proof. Let b = ns. The distribution of b is DZn,τ
√

n. Let σn(rot(b)) denote the
least singular value of rot(b). Now we can write

Prs ←$ DR∨,τ

[
1

mini |σi(s)| ≥ t
√

2
τ

]

= Prs ←$ D 1
n

Zn, τ√
n

[
1

σn(rot(s))
≥ t

√
2

τ

]

= Prb ←$ D
Zn,τ

√
n

[
1

σn(rot(b))
≥ t

√
2

(τ
√

n) · √
n

]

≤ 1 + δ

1 − δ
· n

√
2πe

t

where the inequality comes from Lemma 6. ��
In the proof of the following lemma, we will say that a distribution D over

Z
n is (B, δ)-bounded for real numbers B, δ > 0 if Prx ←$ D [‖x‖ > B ] ≤ δ.

Lemma 8. Let R = Z[X]/ 〈Xn + 1〉 for some power-of-two n. Then for any
δ ∈ (0, 1) and τ ≥ 0,

Prs ←$ DR∨,τ

[
‖σH(s)‖ > Cτ

√
n log(n/δ)

]
≤ δ

for some universal constant C > 0. We also have that

Prs ←$ DR∨,τ

[‖σH(s)‖ > τ
√

n
] ≤ 2−n.

Proof. Take B > 0 and let b = ns. We have

Prs ←$ DR∨,τ
[‖σH(s)‖ > B ] = Prs ←$ D 1

n
Zn, τ√

n

[‖svec‖ > B/
√

n
]

= Prb ←$ D
Zn,τ

√
n

[‖b‖ > B
√

n
]
.

As mentioned in [BLP+13], we know that DZn,r is (Cr
√

n log(n/δ), δ)-bounded
for some universal constant C > 0 by taking a union bound over the n coordi-
nates. Furthermore, an application of Lemma 1.5 in [Ban93] implies that DZn,r

is (r
√

n, 2−n)-bounded. Applying these results completes the proof. ��
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Corollary 2. Let R = Z[X]/ 〈Xn + 1〉 for power-of-two n and χ be a distribu-
tion over R∨ satisfying

Prs ←$ χ [‖σH(s)‖ > B1 ] ≤ δ1 and Prs ←$ χ

[

max
j

1
|σj(s)| ≥ B2

]

≤ δ2

for some (B1, δ1) and (B2, δ2). Also let α > 0 and take any ε ∈ (0, 1/2). For any
k > 1 that divides d,

r ≥
(

max{√n,B1B2}
q

)

·
√

2 ln(2nd(1 + 1/ε))/π,

there is an efficient reduction from MLWE
(Rd)
m,q,Ψ≤α

(χd) to MLWE
(Rd/k)

m,qk,Ψ≤α′ (G ·
χd) for G = Id/k ⊗ (1, q, . . . , qk−1) ∈ Rd/k×d and

(α′)2 ≥ α2 + 2r2B2
1d.

Moreover, this reduction reduces the advantage by at most [1 − (1 − δ1 − δ2)
d] +

(4d + 10)εm.

Proof. We apply Theorem 1 taking β2 ≥ B2
1d. For power-of-two cyclotomic rings,

‖BsiR‖ = ‖σH(s)‖. Furthermore, if B1 ≥ ‖σH(s)‖, then it is guaranteed that
B1 ≥ maxi |σi(s)|. The rest of the proof is the same as in Corollary 1. ��

To put the above corollary into context, we now discuss the pairs (B1, δ1)
and (B2, δ2) when the secret distribution χ is DR∨,τ . From Lemma 8, for any
δ1 ∈ (0, 1), we have B1 = O(τ

√
n log(n/δ1)). Next, for any δ2 ∈ (0, 1), we fix the

parameter δ from Lemma 7 (e.g. δ = 1/2) and take t from Lemma 7 proportional
to n/δ2. Then, as long as τ ≥ O(

√
n log(n)/δ2), we can take B2 = O(n/(τδ2)).

To summarize, we may take:

– B1 = O(τ
√

n log(n/δ1)) for arbitrary τ > 0 and δ1 ∈ (0, 1)

– B2 = Õ
(

n
τδ2

)
for τ ≥ O(

√
n log(n)/δ2) and any δ2 ∈ (0, 1)

– B1B2 = Õ
(

n
√

n log(n/δ1)

δ2

)

for τ ≥ O(
√

n log(n)/δ2) and any δ1, δ2 ∈ (0, 1).

In an ideal setting, we would like to conclude that a probabilistic polynomial-
time (PPT) algorithm that solves RLWE with non-negligible advantage implies
a PPT algorithm capable of solving MLWE with non-negligible advantage. In
order to achieve this, it is necessary that the loss in advantage incurred by any
reduction should be negligible in the security parameter λ. Therefore, we would
require that δ1, δ2 and ε all be negligible in the corollaries above. The requirement
that δ2 be negligible is particularly troublesome since this implies that B1 and
B2 are super-polynomial in λ if we want to use the results above. This would
mean that the resulting error in our reduction would also be super-polynomial.
In particular, the case of normal form MLWE where τ = αq (= poly(n)) is not
covered by the analysis given in the case that δ2 is negligible. This issue will
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be addressed in Sect. 4 where we show that taking δ2 = O(1/d) suffices when
considering search variants.

Yet, the analysis given so far remains relevant for sufficiently good algorithms
for solving RLWE. For example, given access to an algorithm solving decision
RLWE with advantage 1/poly(λ), it would be adequate to consider δ1, δ2 and
ε as 1/poly(λ). These choices lead to a reduction from MLWE to RLWE (with
polynomial noise) with 1/poly(λ) loss in advantage which is acceptable given a
sufficiently effective algorithm for solving RLWE.

4 Search Reductions Using Rényi Divergence

Given our analysis of the reduction explicited in Theorem1, it is fairly straight-
forward to obtain analogous results based on Rényi divergence. We will show
that our reduction can be used to solve search MLWE with non-negligible prob-
ability given an algorithm for solving search RLWE with non-negligible success
probability. Note that this result could potentially be derived from statistical
distance arguments, but we choose to use the Rényi divergence because it later
allows us to reduce to a strictly spherical error distribution while increasing the
width of the resulting error distribution only by small powers of n. In contrast,
statistical distance arguments require the drowning noise to increase by super-
polynomial factors. This is because we require negligible statistical distances to
target distributions whereas we only require that Rényi divergences are O(1) to
obtain meaningful results.

Theorem 2. Let R be the ring of integers of some algebraic number field K
of degree n, d, d′, q, q′ be integers, ε ∈ (0, 1/2), and G ∈ Rd′×d. Also, fix
s = (s1, . . . , sd) ∈ (R∨

q )d. Further, let BΛ be some known basis of the lattice
Λ = 1

q′ G
T
HRd′

+ Rd (in the canonical embedding), BR be some known basis of
R in H and

r ≥ max

⎧
⎪⎨

⎪⎩

‖B̃Λ‖ · √2 ln(2nd(1 + 1/ε))/π
1
q ‖B̃R‖ · √2 ln(2nd(1 + 1/ε))/π
1
q ‖B̃siR‖ · 1

mink |σk(si)| · √2 ln(2n(1 + 1/ε))/π

where BsiR is a basis of siR in the canonical embedding. Let M = Rd, M ′ = Rd′

and define B := maxi,j |σi(sj)|. There exists an efficient probabilistic mapping
F : (Rq)

d × TR∨ −→ (Rq′)d′ × TR∨ such that

R∞
(
A

(M ′)
q′,Gs,Dα′ ||F(A(M)

q,s,Dα
)
)

≤
(

1 + ε

1 − ε

)d+3

where (α′)2i = α2 + r2(β2 +
∑d

j=1 |σi(sj)|2) and β satisfies β2 ≥ B2d.

Proof. We take the mapping F described in the proof of Theorem 1 and adopt the
same notation. Recall that (ã, b̃) denotes the output of F . Denote the distribution
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of interest F(A(M)
q,s,Dα

) as Ã
(M ′)
q′,Gs,D̃

i.e. the distribution of (ã, b̃) given that (a, b)

follows the distribution A
(M)
q,s,Dα

.

Distribution of ã. Let Ksol denote the number of solutions to the equation
1
q′ GT

Hx = v mod Rd and Kv the number of possible vectors v. Recall that Ksol

is constant in v. For any ¯̃a ∈ Rd′
q′ , we have (from Eq. (8)) that

Pr[ã = ¯̃a] =
∑

v̄∈Λ/Znd

Pr[ã = ¯̃a|v = v̄] · Pr[v = v̄]

≥ C ′ ·
(

1 − ε

1 + ε

)
1

Ksol
≥

(
1 − ε

1 + ε

)2

· 1
KsolKv

.

Note that picking ã at random is identical to choosing v at random followed
by picking a uniformly random solution to 1

q′ GT
Hx = v mod Rd. Therefore, the

distribution of ã which we denote by D(ã) satisfies

R∞
(
U(Rd′

q′ )||D(ã)
)

≤
(

1 + ε

1 − ε

)2

. (13)

Distribution of −f . Previously, we concluded that the distribution of −f was
close in statistical distance to D 1

q Rd−v̄,r conditioned on some fixed ã. Once
again, summing over appropriate values of f in Eq. (7) tells us that

Pr[−f = f̄|ã = ¯̃a] ≥ C · ρr (̄f) ≥ 1 − ε

1 + ε
· ρr (̄f)
ρr( 1q Rd − v̄)

.

Therefore, writing D(−f) as the distribution of −f, we see that

R∞
(
D 1

q Rd−v̄,r||D(−f)
)

≤ 1 + ε

1 − ε
.

Distribution of the error term. We now analyse the distribution of the error
term given in Eq. (10). Let fi denote the ith block of n consecutive coordinates
of f ∈ R

nd Once again, we split the RHS of this error term and analyse it
as

∑d
i=1

(
ST

i,H · (−fi) + ẽ(i)
)

+ e where each ẽ(i) is sampled independently from
a continuous Gaussian on R

n with parameter γi ≥ rB. Let D(i) denote the
distribution of

(
ST

i,H · (−fi) + ẽ(i)
)
. We now use the data-processing inequality

with the function (−f, ẽ(1), . . . , ẽ(d)) �−→ (ST
1,H · (−f1) + ẽ(1), . . . , ST

d,H · (−fd) +
ẽ(d)). For i = 1, . . . , d, define Y (i) as the distribution obtained by sampling from
D 1

q Si,HR+Si,H ·v̄i,r(ST
i,H) and then adding a vector sampled from Dγi

. Note that

Y (i) is the distribution of ST
i · (−fi) + ẽ(i) in the case that the distribution of −f

is exactly D 1
q Rd−v̄,r. Let Dγ = Dγ1 × · · · × Dγd

. The data-processing inequality
for Rényi divergence implies that

R∞
(
Y (1) × · · · × Y (d)||D(1) × · · · × D(d)

)
≤ R∞

(
D 1

q
Rd−v̄,r × Dγ ||D(−f) × Dγ

)

≤ 1 + ε

1 − ε
.
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Now we apply Lemma 5 by recalling that the covariance matrix ST
i,HSi,H is

diagonal with elements |σj(si)| for j = 1, . . . n. This allows us to conclude that
for i = 1, . . . , d,

R∞
(
D

(γ2
i +r2ST

i,HSi,H)1/2 ||Y (i)
)

≤ 1 + ε

1 − ε
.

By first applying the data-processing inequality to the function that sums the
samples and then considering the triangle inequality and independence, the
above equation implies that

R∞

(
D

(α2+r2β2+r2∑d
i=1 ST

i,H
Si,H )

1/2 ||D̃
)

≤ 1 + ε

1 − ε
·

d∏

i=1

R∞

(
D

(γ2+r2ST
i,H

Si,H )
1/2 ||Y (i)

)

≤
(

1 + ε

1 − ε

)d+1

(14)

where D̃ is the distribution of the RHS of Eq. (10) (i.e. the sum of the distribu-
tions D(i)).

Distribution of the reduction’s output. We now complete the proof by combining
the results above.

R∞
(
A

(M ′)
q′,Gs,Dα′ ||Ã(M ′)

q′,Gs,D̃

)
≤

(
1 + ε

1 − ε

)2

· R∞
(
Dα′ ||D̃

)

≤
(

1 + ε

1 − ε

)2

·
(

1 + ε

1 − ε

)d+1

where the first inequality comes from the multiplicative property of Rényi diver-
gence along with the inequality in (13) and the second comes from the weak
triangle inequality along with (14). ��
Corollary 3. For power-of-two n, let R = Z[X]/ 〈Xn + 1〉, m be a positive
integer and χ be a distribution over R∨ satisfying

Prs ←$ χ [‖σH(s)‖ > B1 ] ≤ δ1 and Prs ←$ χ

[

max
j

1
|σj(s)| ≥ B2

]

≤ δ2

for some (B1, δ1) and (B2, δ2). Also let α > 0. For any k > 1 that divides d > 1
and

r ≥
(

max{√n,B1B2}
q

)

·
√

2 ln(2nd(1 + m(d + 3)))/π,

there exists an efficient reduction from search MLWE
(Rd)
m,q,Ψ≤α

(χd) to search

MLWE
(Rd/k)

m,qk,Ψ≤α′ (U(R∨
q )) for

(α′)2 ≥ α2 + 2r2B2
1d.
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In particular, if there is an algorithm solving search MLWE
(Rd/k)

m,qk,Ψ≤α′ (U(R∨
q ))

with success probability p, then for search MLWE
(Rd)
m,q,Ψ≤α

(χd) an algorithm

exists which succeeds with probability at least [1 − (δ1 + δ2)]
d · p/8.

Proof. We use the reduction and analysis from Theorem2 with β2 ≥ B2
1d and

G = Id/k ⊗ (1, q, . . . , qk−1) ∈ Rd/k×d followed by a standard re-randomization
of the resulting secret. Since we sample d such ring elements, we are in the
realm of Theorem 2 with probability at least (1 − (δ1 + δ2))

d. Since we have m
samples, we must raise the Rényi divergence in Theorem 2 to the mth power.

Taking ε = 1
m(d+3) ensures that

(
1+ε
1−ε

)(d+3)m

≤ 8. The result now follows from
the probability preservation property of the Rényi divergence and the fact that
we can reverse the mapping between secrets. ��
The results of this section are far more satisfying than the analysis given in
the previous section when analysing a secret distribution of the form DR∨,τ .
Let us assume that the probability of success p of an algorithm for solving
RLWE is non-negligible. Then all we require is that δ1, δ2 = O(1/d) in order
to solve the search MLWE with non-negligible success probability. Therefore,
we may take B1 = Õ(τ

√
n) and B2 = O(dn/τ) for this secret distribution as

long as τ ≥ Õ(d
√

n). In this case, we have α′ = Õ(τn2
√

d/q). This simplifies
to α′ = Õ(αn2

√
d) when considering the normal form of MLWE where τ = αq.

Therefore, we see that even for typical error and secret distributions with polyno-
mial standard deviations, search MLWE is not qualitatively harder than search
RLWE with larger modulus, i.e. an efficient algorithm for the latter implies an
efficient algorithm for the former.

4.1 Strictly Spherical Error Distributions

We will now present a lemma that allows us to reduce from MLWE to RLWE
with a spherical error distribution.

Lemma 9. For integers m, n, let M ∈ R
m×n be a matrix with non-zero singular

values σi for i = 1, . . . , n and take β2 ≥ σ2
1. Then

– R2

(
Drβ ||D

r(β2I+MT M)1/2

)
≤

(
1 + σ4

1
β4

)n/2

,

– R∞
(
Drβ ||D

r(β2I+MT M)1/2

)
≤

(
1 + σ2

1
β2

)n/2

.

We can now extend Theorem 2 to get a spherical output error distribution
by applying the above Lemma to the final result along with the triangle inequal-
ity. In particular, the Rényi divergences given in Theorem2 increase by factors

of
(
1 + d4 maxi,j |σj(si)|4

β4

)n/2

and
(
1 + d2 maxi,j |σj(si)|2

β2

)n/2

for orders 2 and ∞
respectively. Therefore, when applying the theorem to m MLWE samples, we
require that β increase by factors of (mn)1/4 for order 2 and (mn)1/2 for infinite
order to ensure O(1) Rényi divergences. These ideas will be concretised in the
proof of Theorem 3 in the next section.
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5 Reducing RLWE in (n, q) to (n/2, q2)

Throughout this entire section, we assume that n is a power of two. The reduc-
tion strategy is to represent polynomial multiplications in ring dimension n
using n × n matrices by working in the coefficient embedding. The reduction
follows the same blueprint as in Sect. 3 apart from the fact that we are no
longer working exclusively in the canonical embedding. Since we are considering
power-of-two cyclotomic rings, polynomial multiplication is always represented
by a matrix of the form given in Eq. (1). Going from ring dimension n to n/2
just halves the dimension of these matrices. For clarity, we adopt the notation
Rn,q = Zq[X]/ 〈Xn + 1〉 and Rn = Z[X]/ 〈Xn + 1〉.

Our aim is to reduce RLWE in dimension and modulus (n, q) to RLWE in
(n/2, q2) via some mapping: a ∈ Rn,q �−→ ã ∈ Rn/2,q2 , b ∈ TRn

∨ �−→ b̃ ∈ TRn/2
∨ ,

s ∈ Rn,q
∨ �−→ s̃ ∈ Rn/2,q2

∨. We can start by defining a relationship between
rot(s) and rot(s̃). In order to make clear the distinction between the two rings,
we denote n × n matrices associated with multiplications in Rn,q by writing the
subscript n, q. Given G,H ∈ Z

n/2×n, the linear relationship will be defined via
the equation

rot(s̃)n/2,q2 = 2 · H · rot(s)n,q · GT . (15)

Note that the factor of 2 is present to account for the fact that the new secret
should be in the dual ring Rn/2,q2

∨ = 2
nR and the matrix H ensures that we

end up with a square matrix rot(s̃)n/2,q2 . We also need to be careful that G and
H are chosen so the matrix rot(s̃)n/2,q2 has the correct form. Define the map
between b and b̃ (up to some Gaussian error) as

b̃vec ≈ 2H · bvec.

In order for the reduction to work, we require that b̃ ≈ ã · s̃/q2 mod Rn/2
∨ i.e.

2 · H · rot(s)n,q · 1
q
avec ≈ 2 · H · rot(s)n,q · GT · 1

q2
ãvec mod 2/n.

It is easy to see that we can satisfy this requirement by choosing ã such that

1
q
aT

vec =
1
q2

GT · ãT
vec mod 1.

Explicit forms for our choice of G and H are

G = In/2 ⊗ (1, q) ∈ Z
n/2×n, (16)

H = In/2 ⊗ (1, 0) ∈ Z
n/2×n. (17)

Claim. Take G and H as above. Then rot(s̃)n/2,q2 is of the correct form (i.e. rep-
resents multiplication by some polynomial in (Rn/2,q2)).

Proof. We can write simple explicit forms (GT )kl = δk,2l−1 + qδk,2l and (H)ij =
δ2i−1,j . Then the matrix multiplication H · rot(s)n,q ·GT yields (rot(s̃)n/2,q2)

il
=

(rot(s)n,q)2i−1,2l−1 + (qrot(s)n,q)2i−1,2l which is of the correct form. ��
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Note that the mapping between secrets is

s =
n−1∑

i=0

si · Xi �−→ s̃ = (s0 − qsn−1) +
n/2−1∑

i=1

(s2i + qs2i−1) · Xi. (18)

Now the proof of correctness for this reduction is essentially the same as Theo-
rem 2 with a few alterations. One of the more important changes is that we use
Lemma 9 and target a spherical error. We do this to ensure that multiplication
by H leads to a Gaussian with parameters that we can easily bound.

Theorem 3. Let n be a power of two, q be an integer, fix s ∈ Rn,q
∨ and

r ≥ 1
q

· max
{

1,
‖svec‖

σn(rot(s))

}

·
√

2 ln(2n(1 + 1/ε))/π.

Further, let σ1 := σ1(rot(s)) and β ≥ 2σ1
√

n.
For any α > 0, there exists an efficient mapping F : Rn,q × TRn,q

∨ →
Rn/2,q × TRn/2,q2

∨ such that

– R2

(
A

Rn/2

q2,s̃,Dα′ ||F(ARn

q,s,Dα
)
)

≤
(

1+ε
1−ε

)4

·
(
1 + 16n2σ4

1
β4

)n/2

,

– R∞
(
A

Rn/2

q2,s̃,Dα′ ||F(ARn

q,s,Dα
)
)

≤
(

1+ε
1−ε

)4

·
(
1 + 4nσ2

1
β2

)n/2

where s̃ is given in Eq. (18) and (α′)2 = 4α2 + r2β2.

Proof. Suppose we are given (a, b) ∈ Rn,q × TRn,q
∨ and take G,H ∈ Z

n/2×n as
in Eqs. (16) and (17) respectively. The mapping F is performed as follows:

1. Sample f ← DΛ− 1
q avec,r over the lattice Λ = 1

q2 GT
Z

n/2 + Z
n. Note that the

parameter r is large enough so we can sample the discrete Gaussian efficiently
by Lemma 2 since ‖B̃Λ‖ = q−1.

2. Let v = 1
q avec + f ∈ Λ/Zn and set x to be a random solution of 1

q2 GT x = v
mod 1. Then set ã ∈ Rn/2,q2 to be the unique polynomial such that ãvec = x.

3. Sample ẽ from the distribution Drβ over KR � H � R
n/2 and set b̃ =

2H · b + ẽ ∈ TRn/2,q2
∨ .

4. Finally, output (ã, b̃) ∈ (Rn/2,q2) × TRn/2,q2
∨ .

Distribution of ã: We can precisely repeat the argument given in the proof of
Theorem 2 after noting that r ≥ ηε(Λ) and r ≥ ηε(q−1

Z
n). The only conceptual

difference is that we are now working in the coefficient embedding. Denoting the
distribution of ã given uniform a by D(ã), we find that

R∞
(
U(Rn/2,q2)||D(ã)

)
≤

(
1 + ε

1 − ε

)2

. (19)



Large Modulus Ring-LWE ≥ Module-LWE 291

Distribution of the error: We now condition on fixed ã = ¯̃a and set v̄ = GT ¯̃avec.
Denoting the distribution of −f as D(−f) we also have that

R∞
(
D 1

q Z
n−v̄,r||D(−f)

)
≤

(
1 + ε

1 − ε

)

.

All that remains is to analyse the distribution of
(

b̃ − 1
q2

ã · s̃

)

vec

= 2H · rot(s) · (−f) + 2H · evec + ẽvec mod 2/n (20)

= 2H · (rot(s) · (−f) + evec + ẽ∗
vec) mod 2/n (21)

where ẽ∗
vec (resp. evec) is drawn from the spherical distribution Drβ/(2

√
n) (resp.

Dα/
√

n). Note that the
√

n factors take into account that we are working in the
coefficient embedding.

The distribution of rot(s) · D 1
q Z

n−v̄,r is D 1
q rot(s)Z

n−rot(s)v̄,r·rot(s)T . By work-

ing in the orthogonal basis where the covariance matrix rot(s)T rot(s) is diag-
onal, we can apply Lemma 5. We also apply the data-processing inequality on
(−f, ẽ∗

vec) �−→ −rot(s) · f + ẽ∗
vec along with the triangle inequality to obtain

R∞
(
Derr||D(−rot(s)·f+ẽ∗

vec)
)

≤
(

1 + ε

1 − ε

)

·
(

1 + ε

1 − ε

)

, (22)

where Derr is a continuous Gaussian distribution with covariance Σ = r2(β2

4n I+
rot(s)T rot(s)) and D(−rot(s)·f+ẽ∗

vec) is the exact distribution of −rot(s) · f + ẽ∗
vec.

Distance to spherical error: We now apply Lemma 9 to find that

R2

(
Drβ/(2

√
n)||Derr

) ≤
(

1 +
16n2σ4

1

β4

)n/2

,

R∞
(
Drβ/(2

√
n)||Derr

) ≤
(

1 +
4nσ2

1

β2

)n/2

.

Finally, using the weak triangle inequality with intermediate distribution 2H ·
Derr and the data-processing inequality, we obtain

R2

(
2H · D

((rβ)2/(4n)+α2/n)
1/2 ||D(RHS)

)
≤

(
1 + ε

1 − ε

)2

·
(

1 +
16n2σ4

1

β4

)n/2

,

R∞
(
2H · D

((rβ)2/(4n)+α2/n)
1/2 ||D(RHS)

)
≤

(
1 + ε

1 − ε

)2

·
(

1 +
4nσ2

1

β2

)n/2

where D(RHS) is the distribution of the RHS in Eq. (20).
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Distribution of the reduction output: We conclude by combining the above results
in the same way as in the proof of Theorem 2. We must also scale up by a
factor of

√
n to account for the fact that we have been working in the coefficient

embedding. ��
Corollary 4. Let n be a power of two and χ be a distribution over R∨

n satisfying

Prs ←$ χ [‖σH(s)‖ > B1 ] ≤ δ1 and Prs ←$ χ

[

max
j

1
|σj(s)| ≥ B2

]

≤ δ2

for some (B1, δ1) and (B2, δ2). Also, let α > 0 and ε ∈ (0, 1/2). For any

r ≥ 1
q

· max{1, B1B2} ·
√

2 ln(2n(4m + 1))/π,

let (α′
c)

2 = 4α2 +4r2B2
1(mn)2c. Suppose there exists an algorithm solving search

RLWE
(Rn/2)

m,q2,Dα′
c

(U(R∨
n/2,q2)) for c = 1/4 (resp. c = 1/2) with success probability

p1/4 (resp. p1/2). Then there exists algorithms solving RLWE
(Rn)
m,q,Dα

(χ) with

success probabilities at least (1 − (δ1 + δ2))
p2
1/4

8e1/2 and (1 − (δ1 + δ2))
p1/2

8e1/2 .

Proof. We will be applying the reduction in Theorem3 with ε = 1/(4m) along
with a re-randomizing of the secret. We take β = 2B1(mn)c in the theorem.
Recall that for power-of-two cyclotomic rings, we have ‖σH(s)‖ =

√
n‖svec‖,

minj |σj(s)| = σn(rot(s)) and maxj |σj(s)| = σ1(rot(s)). This means that we are
able to apply the reduction and analysis of Theorem3 with probability at least
1 − (δ1 + δ2). Since we have m samples, we need to raise the Rényi divergences
to the mth power. Therefore, in the case that c = 1/4 (resp. c = 1/2), we
have that the Rényi divergence of order 2 (resp. order ∞) is upper bounded by
8 · e1/2. Note that the reduction defines a reversible map between the secrets.
Therefore, the result is obtained by running the reduction, re-randomizing the
secret, solving the resulting search RLWE instance and then mapping back to
the original secret. ��

Typically, we would have access to m = O(1) RLWE samples. Considering
the normal form of RLWE with secret distribution DR∨,αq, we can take the
parameters B1 and B2 to be Õ(αq

√
n) and Õ(n/(αq)) respectively. Therefore,

the above corollary says that if we can solve RLWE in dimension n/2, modulus
q2 and error rate α · n9/4 with non-negligible probability in polynomial time,
then we can also solve RLWE with dimension n, modulus q and error rate α is
polynomial time with non-negligible probability.
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A Design Space for RLWE Public-Key Encryption

Recall the simple public-key encryption scheme from [LPR10] which serves as the
blueprint for many subsequent constructions. The scheme publishes a public-key
(a, b = a · s+ e), where both s and e are small elements from the ring of integers
of a power-of-two cyclotomic field. Encryption of some polynomial m with {0, 1}
coefficients is then performed by sampling short r, e1, e2 and outputting:

(
u, v

)
=

(
a · r + e1, b · r + e2 + �q/2� · m mod q

)
.

The decryption algorithm computes

u · s − v = (a · r + e1) · s − (a · s + e) · r − e2 − �q/2� · m.

Let σ be the norm of s, e, r, e1, e2. Clearly, the final message will have noise of
norm ≥ σ2. Thus to ensure correct decryption, q has a quadratic dependency
on σ. As a consequence, in this construction, increasing σ and q can only reduce
security by increasing the gap between noise and modulus.

However, this issue can be avoided and is avoided in MLWE-based construc-
tions by picking some σ′ < σ at the cost of publishing more samples in the public
key. For example, if d = 2 the public key becomes

((a′, b′), (a′′, b′′)) = ((a′, a′ · s + e′), (a′′, a′′ · s + e′′)) ,

where s, e′e,′′ have norm σ. Encryption of some {0, 1} polynomial m is then
performed by sampling short r′, r′′, e1, e2 with norm σ′ and outputting

(u, v) = (a′ · r′ + a′′ · r′′ + e1, b′ · r′ + b′′ · r′′ + e2 + �q/2� · m mod q) .

The decryption algorithm computes

u ·s−v = (a′ ·r′ +a′′ ·r′′ +e1) ·s− (a′ ·s+e′) ·r′ − (a′′ ·s+e′′) ·r′′ −e2−�q/2� ·m.

The security of the public key reduces to the hardness of RLWE in dimension n
with modulus q and noise size σ as before. The security of encryptions reduces
to the hardness of MLWE in dimension d = 2 over ring dimension n, modulus q
and noise size σ′, i.e. the level of security is maintained for σ′ < σ by increasing
the dimension. While we still require q > σ · σ′, the size of σ′ can be reduced at
the cost of increasing d resp. by relying on RLWE with modulus qd. Finally, note
that we may think of Regev’s original encryption scheme [Reg09] as one extreme
corner of this design space (for LWE) with d = 2n log q, where r′, r′′ are binary
and where e1, e2 = 0, 0. That is, in the construction above, we can replace the
Module-LWE assumption by the leftover hash lemma if d is sufficiently big.
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Abstract. Reducing the Learning with Errors problem (LWE) to the
Unique-SVP problem and then applying lattice reduction is a com-
monly relied-upon strategy for estimating the cost of solving LWE-based
constructions. In the literature, two different conditions are formulated
under which this strategy is successful. One, widely used, going back
to Gama & Nguyen’s work on predicting lattice reduction (Eurocrypt
2008) and the other recently outlined by Alkim et al. (USENIX 2016).
Since these two estimates predict significantly different costs for solv-
ing LWE parameter sets from the literature, we revisit the Unique-SVP
strategy. We present empirical evidence from lattice-reduction experi-
ments exhibiting a behaviour in line with the latter estimate. However,
we also observe that in some situations lattice-reduction behaves some-
what better than expected from Alkim et al.’s work and explain this
behaviour under standard assumptions. Finally, we show that the secu-
rity estimates of some LWE-based constructions from the literature need
to be revised and give refined expected solving costs.

Keywords: Cryptanalysis · Lattice-based cryptography · Learning with
Errors · Lattice reduction

1 Introduction

The Learning with Errors problem (LWE) has attained a central role in cryp-
tography as a key hard problem for building cryptographic constructions,
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e.g. quantum-safe public-key encryption/key exchange and signatures
schemes [Reg09,LP11,ADPS16,BG14a], fully homomorphic encryption [BV11,
GSW13] and obfuscation of some families of circuits [BVWW16].

Informally, LWE asks to recover a secret vector s ∈ Z
n
q , given a matrix

A ∈ Z
m×n
q and a vector c ∈ Z

m
q such that As + e = c mod q for a short

error vector e ∈ Z
m
q sampled coordinate-wise from an error distribution χ. The

decision variant of LWE asks to distinguish between an LWE instance (A, c)
and uniformly random (A, c) ∈ Z

m×n
q × Z

m
q . To assess the security provided by

a given set of parameters n, χ, q, two strategies are typically considered: the dual
strategy finds short vectors in the lattice

qΛ∗ =
{
x ∈ Z

m
q | x · A ≡ 0 mod q

}
,

i.e. it solves the Short Integer Solutions problem (SIS). Given such a short vector
v, we can decide if an instance is LWE by computing 〈v, c〉 = 〈v, e〉 which is
short whenever v and e are sufficiently short [MR09]. This strategy was recently
revisited for small, sparse secret instances of LWE [Alb17]. The primal strat-
egy finds the closest vector to c in the integral span of columns of A mod
q [LP11], i.e. it solves the corresponding Bounded Distance Decoding problem
(BDD) directly. Writing [In|A′] for the reduced row echelon form of AT ∈ Z

n×m
q

(with high probability and after appropriate permutation of columns), this task
can be reformulated as solving the unique Shortest Vector Problem (uSVP) in
the m + 1 dimensional q-ary lattice

Λ = Z
m+1 ·

⎛

⎝
In A′ 0
0 q Im−n 0
cT t

⎞

⎠ (1)

by Kannan’s embedding [Kan87] with embedding factor t.1 Indeed, BDD and
uSVP are polynomial-time equivalent for small approximation factors up to√

n/ log n [LM09]. The lattice Λ has volume t · qm−n and contains a vector
of norm

√‖e‖2 + t2 which is unusually short, i.e. the gap between the first and
second Minkowski minimum λ2(Λ)/λ1(Λ) is large.

Alternatively, if the secret vector s is also short, there is a second established
embedding reducing LWE to uSVP (cf. Eq. (4)). When the LWE instance under
consideration is in normal form, i.e. the secret s follows the noise distribution,
the geometries of the lattices in (1) and (4) are the same, which is why without
loss of generality we only consider (1) in this work save for Sect. 5.

To find short vectors, lattice reduction [LLL82,Sch87,GN08a,HPS11,CN11,
MW16] can be applied. Thus, to establish the cost of solving an LWE instance,
we may consider the cost of lattice reduction for solving uSVP.

Two conflicting estimates for the success of lattice reduction in solving uSVP
are available in the literature. The first is going back to [GN08b] and was devel-
oped in [AFG14,APS15,Gö16,HKM17] for LWE. This estimate is commonly
1 Alternatively, we can perform lattice reduction on the q-ary lattice spanned by AT,

i.e. the lattice spanned by the first m rows of (1), followed by an enumeration to
find the closest (projected) lattice point to (the projection of) c [LP11,LN13].
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relied upon by designers in the literature, e.g. [BG14a,CHK+17,CKLS16a,
CLP17,ABB+17]. The second estimate was recently outlined in [ADPS16] and
is relied upon in [BCD+16,BDK+17]. We will use the shorthand 2008 estimate
for the former and 2016 estimate for the latter. As illustrated in Fig. 1, the pre-
dicted costs under these two estimates differ greatly. For example, considering
n = 1024, q ≈ 215 and χ a discrete Gaussian with standard deviation σ = 3.2,
the former predicts a cost of ≈2355 operations, whereas the latter predicts a cost
of ≈2287 operations in the same cost model for lattice reduction.2

200 300 400 500 600 700 800 900 1,000

500

1,000

n

β

[AFG14]

[ADPS16]

Fig. 1. Required block size β according to the estimates given in [AFG14,ADPS16]
for modulus q = 215, standard deviation σ = 3.2 and increasing n; for [AFG14] we set
τ = 0.3 and t = 1. Lattice-reduction runs in time 2Ω(β).

Our Contribution. Relying on recent progress in publicly available lattice-
reduction libraries [FPL17,FPY17], we revisit the embedding approach for solv-
ing LWE resp. BDD under some reasonable assumptions about the LWE error
distribution. After some preliminaries in Sect. 2, we recall the two competing
estimates from the literature in Sect. 3. Then, in Sect. 4, we expand on the expo-
sition from [ADPS16] followed by presenting the results of running 23,000 core
hours worth of lattice-reduction experiments in medium to larger block sizes β.
Our results confirm that lattice-reduction largely follows the behaviour expected
from the 2016 estimate [ADPS16]. However, we also find that in our exper-
iments the attack behaves somewhat better than expected.3 In Sect. 4.3, we
then explain the observed behaviour of the BKZ algorithm under the Geometric
Series Assumption (GSA, see below) and under the assumption that the unique

2 Assuming that an SVP oracle call in dimension β costs 20.292 β+16.4 [BDGL16,
APS15], where +16.4 takes the place of o(β) from the asymptotic formula and is
based on experiments in [Laa14].

3 We note that this deviation from the expectation has a negligible impact on security
estimates for cryptographic parameters.
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shortest vector is distributed in a random direction relative to the rest of the
basis. Finally, using the 2016 estimate, we show that some proposed parame-
ters from the literature need to be updated to maintain the currently claimed
level of security in Sect. 5. In particular, we give reduced costs for solving the
LWE instances underlying TESLA [ABB+17] and the somewhat homomorphic
encryption scheme in [BCIV17]. We also show that under the revised, corrected
estimate, the primal attack performs about as well on SEAL v2.1 parameter sets
as the dual attack from [Alb17].

2 Preliminaries

We write vectors in lower-case bold, e.g. a, and matrices in upper-case bold, e.g.
A. We write 〈·, ·〉 for the inner products and · for matrix-vector products. By
abuse of notation we consider vectors to be row resp. column vectors depending
on context, such that v ·A and A ·v are meaningful. We write Im for the m×m
identity matrix over whichever base ring is implied from context. We write 0m×n

for the m × n all zero matrix. If the dimensions are clear from the context, we
may omit the subscripts.

2.1 Learning with Errors

The Learning with Errors (LWE) problem is defined as follows.

Definition 1 (LWE [Reg09]). Let n, q be positive integers, χ be a probability
distribution on Z and s be a secret vector in Z

n
q . We denote by Ls,χ the probability

distribution on Z
n
q × Zq obtained by choosing a ∈ Z

n
q uniformly at random,

choosing e ∈ Z according to χ and considering it in Zq, and returning (a, c) =
(a, 〈a, s〉 + e) ∈ Z

n
q × Zq.

Decision-LWE is the problem of deciding whether pairs (a, c) ∈ Z
n
q × Zq are

sampled according to Ls,χ or the uniform distribution on Z
n
q × Zq.

Search-LWE is the problem of recovering s from (a, c) = (a, 〈a, s〉 + e) ∈
Z

n
q × Zq sampled according to Ls,χ.

We may write LWE instances in matrix form (A, c), where rows correspond
to samples (ai, ci). In many instantiations, χ is a discrete Gaussian distribution
with standard deviation σ. Throughout, we denote the number of LWE samples
considered as m. Writing e for the vector of error terms, we expect ‖e‖ ≈ √

mσ.

2.2 Lattices

A lattice is a discrete subgroup of Rd. Throughout, d denotes the dimension of the
lattice under consideration and we only consider full rank lattices, i.e., lattices
Λ ⊂ R

d such that span
R
(Λ) = R

d. A lattice Λ ⊂ R
d can be represented by a basis

B = {b1, . . . ,bk}, i.e., B is linearly independent and Λ = Zb1 + · · · + Zbk. We
write bi for basis vectors and b∗

i for the corresponding Gram-Schmidt vectors.
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We write Λ(B) for the lattice generated by the rows of the matrix B, i.e. all
integer-linear combinations of the rows of B. The volume of a lattice Vol(Λ) is
the absolute value of the determinant of any basis and it holds that Vol(Λ) =
∏d

i=1 ‖b∗
i ‖. We write λi(Λ) for Minkowski’s successive minima, i.e. the radius of

the smallest ball centred around zero containing i linearly independent lattice
vectors. The Gaussian Heuristic predicts

λ1(Λ) ≈
√

d

2πe
Vol(Λ)1/d

.

For a lattice basis B = {b1, . . . ,bd} and for i ∈ {1, . . . , d} let πB,i(v) denote
the orthogonal projection of v onto {b1, . . . ,bi−1}, where πB,1 is the identity.
We extend the notation to sets of vectors in the natural way. Since usually the
basis B is clear from the context, we omit it in the notation and simply write
πi instead of πB,i. Since Sect. 4.3 relies heavily on size reduction, we recall its
definition and reproduce the algorithm in Algorithm1.

Definition 2. Let B be a basis, b∗
i its Gram-Schmidt vectors and

μi,j = 〈bi,b∗
j 〉/〈b∗

j ,b
∗
j 〉,

then B basis is size reduced if |μi,j | ≤ 1/2 for 1 ≤ j ≤ i ≤ n.

Data: lattice basis B
Data: top index i
Data: start index 1 ≤ s < i

1 for j from i − 1 to s do
2 μij ← 〈bi,b

∗
j 〉/〈b∗

j ,b∗
j 〉;

3 bi ← bi − �μij�bj ;

4 end
Algorithm 1: Size reduction

2.3 Lattice Reduction

Informally, lattice reduction is the process of improving the quality of a lattice
basis. To express the output quality of a lattice reduction, we may relate the
shortest vector in the output basis to the volume of the lattice in the Hermite-
factor regime or to the shortest vector in the lattice, in the approximation-factor
regime. Note that any algorithm finding a vector with approximation-factor α
can be used to solve Unique-SVP with a gap λ2(Λ)/λ1(Λ) < α.

The best known theoretical bound for lattice reduction is attained by Slide
reduction [GN08a]. In this work, however, we consider the BKZ algorithm (more
precisely: BKZ 2.0 [Che13], cf. Sect. 4.2) which performs better in practice.
The BKZ-β algorithm repeatedly calls an SVP oracle for finding (approximate)
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shortest vectors in dimension or block size β. It has been shown that after
polynomially many calls to the SVP oracle, the basis does not change much
more [HPS11]. After BKZ-β reduction, we call the basis BKZ-β reduced and in
the Hermite-factor regime assume [Che13] that this basis contains a vector of
length ‖b1‖ = δd

0 · Vol(L)1/d where

δ0 = (((πβ)1/β
β)/(2πe))

1/(2(β−1))
.

Furthermore, we generally assume that for a BKZ-β reduced basis of Λ(B) the
Geometric Series Assumption holds.

Definition 3 (Geometric Series Assumption [Sch03]). The norms of the
Gram-Schmidt vectors after lattice reduction satisfy

‖b∗
i ‖ = αi−1 · ‖b1‖ for some 0 < α < 1.

Combining the GSA with the root-Hermite factor ‖b1‖ = δd
0 · Vol(Λ)1/d and

Vol(Λ) =
∏d

i=1 ‖b∗
i ‖, we get α = δ

−2d/(d−1)
0 ≈ δ−2

0 for the GSA.

3 Estimates

As highlighted above, two competing estimates exist in the literature for when
block-wise lattice reduction will succeed in solving uSVP instances such as (1).

3.1 2008 Estimate

A first systematic experimental investigation into the behavior of lattice reduc-
tion algorithms LLL, DEEP and BKZ was provided in [GN08b]. In particu-
lar, [GN08b] investigates the behavior of these algorithms for solving Hermite-
SVP, Approx-SVP and Unique-SVP for families of lattices used in cryptography.

For Unique-SVP, the authors performed experiments in small block sizes on
two classes of semi-orthogonal lattices and on Lagarias-Odlyzko lattices [LO83],
which permit to estimate the gap λ2(Λ)/λ1(Λ) between the first and second
minimum of the lattice. For all three families, [GN08b] observed that LLL and
BKZ seem to recover a unique shortest vector with high probability whenever
λ2(Λ)/λ1(Λ) ≥ τδd

0 , where τ < 1 is an empirically determined constant that
depends on the lattice family and algorithm used.

In [AFG14] an experimental analysis of solving LWE based on the same
estimate was carried out for lattices of the form (1). As mentioned above, this
lattice contains an unusually short vector v = (e | t) of squared norm λ1(Λ)2 =
‖v‖2 = ‖e‖2 + t2. Thus, when t = ‖e‖ resp. t = 1 this implies λ1(Λ) ≈ √

2mσ
resp. λ1(Λ) ≈ √

mσ, with σ the standard deviation of ei ←$ χ. The second
minimum λ2(Λ) is assumed to correspond to the Gaussian Heuristic for the
lattice. Experiments in [AFG14] using LLL and BKZ (with block sizes 5 and 10)
confirmed the 2008 estimate, providing constant values for τ for lattices of the
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form (1), depending on the chosen algorithm, for a 10% success rate. Overall, τ
was found to lie between 0.3 and 0.4 when using BKZ.

Still focusing on LWE, in [APS15] a closed formula for δ0 is given in func-
tion of n, σ, q, τ, which implicitly assumes t = ‖e‖. In [Gö16] a bound for δ0
in the [GN08b] model for the case of t = 1, which is always used in practice,
is given. In [HKM17], a related closed formula is given, directly expressing the
asymptotic running time for solving LWE using this approach.

3.2 2016 Estimate

In [ADPS16] an alternative estimate is outlined. The estimate predicts that e
can be found if4

√
β/d ‖(e | 1)‖ ≈

√
βσ ≤ δ2β−d

0 Vol(Λ(B))1/d
, (2)

under the assumption that the Geometric Series Assumption holds (until a pro-
jection of the unusually short vector is found). The brief justification for this
estimate given in [ADPS16] notes that this condition ensures that the projec-
tion of e orthogonally to the first d − β (Gram-Schmidt) vectors is shorter than
the expectation for b∗

d−β+1 under the GSA and thus would be found by the SVP
oracle when called on the last block of size β. Hence, for any β satisfying (2),
the actual behaviour would deviate from that predicted by the GSA. Finally,
the argument can be completed by appealing to the intuition that a deviation
from expected behaviour on random instances—such as the GSA—leads to a
revelation of the underlying structural, secret information.5

4 Solving uSVP

Given the significant differences in expected solving time under the two esti-
mates, cf. Fig. 1, and recent progress in publicly available lattice-reduction
libraries enabling experiments in larger block sizes [FPL17,FPY17], we conduct
a more detailed examination of BKZ’s behaviour on uSVP instances. For this, we
first explicate the outline from [ADPS16] to establish the expected behaviour,
which we then experimentally investigate in Sect. 4.2. Overall, our experiments
confirm the expectation. However, the algorithm behaves somewhat better than
expected, which we then explain in Sect. 4.3.

For the rest of this section, let v be a unique shortest vector in some lattice
Λ ⊂ R

d, i.e. in case of (1) we have v = (e | t) where we pick t = 1.

4.1 Prediction

Projected norm. In what follows, we assume the unique shortest vector v is
drawn from a spherical distribution or is at least “not too skewed” with respect
4 [ADPS16] has 2β − d − 1 in the exponent, which seems to be an error.
5 We note that observing such a deviation implies solving Decision-LWE.
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to the current basis. As a consequence, following [ADPS16], we assume that all
orthogonal projections of v onto a k-dimensional subspace of Rd have expected
norm (

√
k/

√
d) ‖v‖. Note that this assumption can be dropped by adapting (2)

to ‖v‖ ≤ δ2β−d
0 Vol(Λ)

1
d since ‖πd−β+1(v)‖ ≤ ‖v‖.

Finding a projection of the short vector. Assume that β is chosen mini-
mally such that (2) holds. When running BKZ the length of the Gram-Schmidt
basis vectors of the current basis converge to the lengths predicted by the GSA.
Therefore, at some point BKZ will find a basis B = {b1, . . . ,bd} of Λ for which
we can assume that the GSA holds with root Hermite factor δ0. Now, consider
the stage of BKZ where the SVP oracle is called on the last full projected block
of size β with respect to B. Note that the projection πd−β+1(v) of the shortest
vector is contained in the lattice

Λd−β+1 := Λ (πd−β+1(bd−β+1), . . . , πd−β+1(bd)),

since

πd−β+1(v) =
d∑

i=d−β+1

νiπd−β+1(bi) ∈ Λd−β+1, where νi ∈ Z with v =
d∑

i=1

νibi.

By (2), the projection πd−β+1(v) is in fact expected to be the shortest non-zero
vector in Λd−β+1, since it is shorter than the GSA’s estimate for λ1(Λd−β+1), i.e.

‖πd−β+1(v)‖ ≈
√

β√
d

‖v‖ ≤ δ
−2(d−β)+d
0 Vol(Λ)

1
d .

Hence the SVP oracle will find ±πd−β+1(v) and BKZ inserts

bnew
d−β+1 = ±

d∑

i=d−β+1

νibi

into the basis B at position d − β + 1, as already outlined in [ADPS16].
In other words, by finding ±πd−β+1(v), BKZ recovers the last β coefficients
νd−β+1, . . . , νd of v with respect to the basis B.

Finding the short vector. The above argument can be extended to an argu-
ment for the full recovery of v. Consider the case that in some tour of BKZ-β,
a projection of v was found at index d − β + 1. Then in the following tour, by
arguments analogous to the ones above, a projection of v will likely be found at
index d − 2β + 2, since now it holds that

πd−2β+2(v) ∈ Λd−2β+2 := Λ
(
πd−2β+2(bd−2β+2), . . . , πd−2β+2(bnew

d−β+1)
)
.

Repeating this argument for smaller indices shows that after a few tours v will
be recovered. Furthermore, noting that BKZ calls LLL which in turn calls size
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reduction, i.e. Babai’s nearest plane [Bab86], at some index i > 1 size reduction
will recover v from πi(v). In particular, it is well-known that size reduction
(Algorithm 1) will succeed in recovering v whenever

v ∈ bnew
d−β+1 +

{
d−β∑

i=1

ci · b∗
i : ci ∈

[

−1
2
,
1
2

]}

. (3)

4.2 Observation

The above discussion naturally suggests a strategy to verify the expected behav-
iour. We have to verify that the projected norms ‖πi(v)‖ = ‖πi(e | 1)‖ do indeed
behave as expected and that πd−β+1(v) is recovered by BKZ-β for the minimal
β ∈ N satisfying (2). Finally, we have to measure when and how v = (e | 1) is
eventually recovered.

Thus, we ran lattice-reduction on many lattices constructed from LWE
instances using Kannan’s embedding. In particular, we picked the entries of
s and A uniformly at random from Zq, the entries of e from a discrete Gaussian
distribution with standard deviation σ = 8/

√
2π, and we constructed our basis as

in (1) with embedding factor t = 1. For parameters (n, q, σ), we then estimated
the minimal pair (in lexicographical order) (β,m) to satisfy (2).

Implementation. To perform our experiments, we used SageMath 7.5.1 [S+17]
in combination with the fplll 5.1.0 [FPL17] and fpylll 0.2.4dev [FPY17]
libraries. All experiments were run on a machine with Intel(R) Xeon(R) CPU
E5-2667 v2 @ 3.30GHz cores (“strombenzin”) resp. Intel(R) Xeon(R) CPU
E5-2690 v4 @ 2.60GHz (“atomkohle”). Each instance was reduced on a single
core, with no parallelisation.

Our BKZ implementation inherits from the implementation in fplll and
fpylll of BKZ 2.0 [Che13] algorithm. As in BKZ 2.0, we restricted the enu-
meration radius to be approximately the size of the Gaussian Heuristic for
the projected sublattice, apply recursive BKZ-β′ preprocessing with a block
size β′ < β, make use of extreme pruning [GNR10] and terminate the algo-
rithm when it stops making significant progress. We give simplified pseudo-
code of our implementation in Algorithm2. We ran BKZ for at most 20 tours
using fplll’s default pruning and preprocessing strategies and, using fplll’s
default auto abort strategy, terminated the algorithm whenever the slope of the
Gram Schmidt vectors did not improve for five consecutive tours. Additionally,
we aborted if a vector of length ≈‖v‖ was found in the basis (in line 15 of
Algorithm 2).

Implementations of block-wise lattice reduction algorithms such as BKZ
make heavy use of LLL [LLL82] and size reduction. This is to remove linear
dependencies introduced during the algorithm, to avoid numerical stability issues
and to improve the performance of the algorithm by moving short vectors to the
front earlier. The main modification in our implementation is that calls to LLL
during preprocessing and postprocessing are restricted to the current block, not
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Data: LLL-reduced lattice basis B
Data: block size β, preprocessing block size β′

1 repeat // tour

2 for κ ← 1 to d do // stepκ

3 size reduction from index 1 to κ (inclusive);
4 � ← ‖b∗

κ‖;
// extreme pruning + recursive preprocessing

5 repeat until termination condition met
6 rerandomise πκ(bκ+1, . . . ,bκ+β−1);
7 LLL on πκ(bκ, . . . ,bκ+β−1);
8 BKZ-β′ on πκ(bκ, . . . ,bκ+β−1);
9 v ← SVP on πκ(bκ, . . . ,bκ+β−1);

10 if v 	= ⊥ then
11 extend B by inserting v into B at index κ + β;
12 LLL on πκ(bκ, . . . ,bκ+β) to remove linear dependencies;
13 drop row with all zero entries;

14 end

15 size reduction from index 1 to κ (inclusive);
16 if � = ‖b∗

κ‖ then
17 yield �;
18 else
19 yield ⊥;
20 end

21 end
22 if � for all κ then
23 return;
24 end

Algorithm 2: Simplified BKZ 2.0 Algorithm

touching any other vector, to aid analysis. That is, in Algorithm2, LLL is called
in lines 7 and 12 and we modified these LLL calls not to touch any row with
index smaller than κ, not even to perform size reduction.

As a consequence, we only make use of vectors with index smaller than κ in
lines 3 and 15. Following the implementations in [FPL17,FPY17], we call size
reduction from index 1 to κ before (line 3) and after (line 15) the innermost loop
with calls to the SVP oracle. These calls do not appear in the original description
of BKZ. However, since the innermost loop re-randomises the basis when using
extreme pruning, the success condition of the original BKZ algorithm needs to
be altered. That is, the algorithm cannot break the outer loop once it makes
no more changes as originally specified. Instead, the algorithm terminates if it
does not find a shorter vector at any index κ. Now, the calls to size reduction
ensure that the comparison at the beginning and end of each step κ is meaningful
even when the Gram-Schmidt vectors are only updated lazily in the underlying
implementation. That is, the call to size reduction triggers an internal update of
the underlying Gram-Schmidt vectors and are hence implementation artefacts.
The reader may think of these size reduction calls as explicating calls otherwise
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hidden behind calls to LLL and we stress that our analysis applies to BKZ as
commonly implemented, our changes merely enable us to more easily predict
and experimentally verify the behaviour.

We note that the break condition for the innermost loop at line 5 depends
on the pruning parameters chosen, which control the success probability of enu-
meration. Since it does not play a material role in our analysis, we simply state
that some condition will lead to a termination of the innermost loop.

Finally, we recorded the following information. At the end of each step κ
during lattice reduction, we recorded the minimal index i such that πi(v) is in
span(b1, . . . ,bi) and whether ±v itself is in the basis. In particular, to find the
index i in the basis B of πi(v) given v, we compute the coefficients of v in basis
B (at the current step) and pick the first index i such that all coefficients with
larger indices are zero. Then, we have πi(bi) = c · πi(v) for some c ∈ R. From
the algorithm, we expect to have found ±πi(bi) = πi(v) and call i the index of
the projection of v.

Results. In Fig. 2, we plot the average norms of πi(v) against the expecta-

tion
√

d − i + 1 σ ≈
√

d−i+1
d

√
m · σ2 + 1, indicating that

√
d − i + 1 σ is a close

approximation of the expected lengths except perhaps for the last few indices.

20 40 60 80 100 120 140 160 180
1

2

3

4

5

index i

lo
g
2
(

π
i
(v

)
)

Observation√
d − i + 1 σ

Fig. 2. Expected and average observed norms ‖πi(v)‖ for 16 bases (LLL-reduced) and
vectors v of dimension d = m+1 and volume qm−n with LWE parameters n = 65, m =
182, q = 521 and standard deviation σ = 8/

√
2π.

Recall that, as illustrated in Fig. 3, we expect to find the projection πd−β+1(v)
when (β, d) satisfy (2), eventually leading to a recovery of v, say, by an extension
of the argument for the recovery of πd−β+1(v). Our experiments, summarised in
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Fig. 3. Expected and observed norms for lattices of dimension d = m + 1 = 183 and
volume qm−n after BKZ-β reduction for LWE parameters n = 65, m = 182, q = 521
and standard deviation σ = 8/

√
2π and β = 56 (minimal (β, m) such that (2) holds).

Average of Gram-Schmidt lengths is taken over 16 BKZ-β reduced bases of random
q-ary lattices, i.e. without an unusually short vector.

Table 1, show a related, albeit not identical behaviour. Defining a cut-off index
c = d − 0.9β + 1 and considering πκ(v) for κ < c, we observe that the BKZ
algorithm typically first recovers πκ(v) which is immediately followed by the
recovery of v in the same step. In more detail, in Fig. 4 we show the measured
probability distribution of the index κ such that v is recovered from πκ(v) in
the same step. Note that the mean of this distribution is smaller than d − β + 1.
We explain this bias in Sect. 4.3.

The recovery of v from πκ(v) can be effected by one of three subroutines:
either by a call to LLL, by a call to size reduction, or by a call to enumeration that
recovers v directly. Since LLL itself contains many calls to size reduction, and
enumeration being lucky is rather unlikely, size reduction is a good place to start
the investigation. Indeed, restricting the LLL calls in Algorithm 2 as outlined in
Sect. 2.3, identifies that size reduction suffices. That is, to measure the success
rate of size reduction recovering v from πκ(v), we observe size reduction acting
on πκ(v). Here, we consider size reduction to fail in recovering v if it does not
recover v given πκ(v) for κ < c with c = d − 0.9β + 1, regardless of whether v
is finally recovered at a later point either by size reduction on a new projection,
or by some other call in the algorithm such as an SVP oracle call at a smaller
index. As shown in Table 1, size reduction’s success rate is close to 1. Note that
the cut-off index c serves to limit underestimating the success rate: intuitively
we do not expect size reduction to succeed when starting from a projection with
larger index, such as πd−γ+1(v) with γ < 10. We discuss this in Sect. 4.3.
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Fig. 4. Probability mass function of the index κ from which size reduction recovers v,
calculated over 10,000 lattice instances with LWE parameters n = 65, m = 182, q = 521
and standard deviation σ = 8/

√
2π, reduced using β = 56. The mean of the distribution

is ≈124.76 while d − β + 1 = 128.

Overall, Table 1 confirms the prediction from [ADPS16]: picking β = β2016

to be the block size predicted by the 2016 estimate leads to a successful recovery
of v with high probability.

4.3 Explaining Observation

As noted above, our experiments indicate that the algorithm behaves better
than expected by (2). Firstly, the BKZ algorithm does not necessarily recover a
projection of v at index d − β + 1. Instead, the index κ at which we recover a
projection πκ(v) follows a distribution with a centre below d − β + 1, cf. Fig. 4.
Secondly, size reduction usually immediately recovers v from πκ(v). This is some-
what unexpected, since we do not have the guarantee that |ci| ≤ 1/2 as required
in the success condition of size reduction given in (3).

Finding the projection. To explain the bias towards a recovery of πκ(v)
for some κ < d − β + 1, note that if (2) holds then for the parameter sets in
our experiments the lines for ‖πi(v)‖ and ‖b∗

i ‖ intersect twice (cf. Fig. 3). Let
d − γ + 1 be the index of the second intersection. Thus, there is a good chance
that ‖πd−γ+1(v)‖ is a shortest vector in the lattice spanned by the last projected
block of some small rank γ and will be placed at index d−γ+1. As a consequence,
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Table 1. Overall success rate (“v”) and success rate of size reduction (“same
step”) for solving LWE instances characterised by n, σ, q with m samples, stan-
dard deviation σ = 8/

√
2π, minimal (β2016, m2016) such that

√
b2016 σ ≤

δ
2β2016−(m2016+1)
0 q(m2016−n)/(m2016+1) with δ0 in function of β2016. The column “β”

gives the actual block size used in experiments. The “same step” rate is calculated over
all successful instances where v is found before the cut-off point c and for the instances
where exactly πd−b+1(v) is found (if no such instance is found, we do not report a
value). In the second case, the sample size is smaller, since not all instances recover
v from exactly κ = d − β + 1. The column “time” lists average solving CPU time
for one instance, in seconds. Note that our changes to the algorithm and our exten-
sive record keeping lead to an increased running time of the BKZ algorithm compared
to [FPL17,FPY17]. Furthermore, the occasional longer running time for smaller block
sizes is explained by the absence of early termination when v is found.

n q β2016 m2016 β # v Same step Time

κ < c κ = d − β + 1

65 521 56 182 56 10000 93.3% 99.7% 99.7% 1, 131.4

51 52.8% 98.8% 97.3% 1, 359.3

46 4.8% 96.4% 85.7% 1, 541.2

80 1031 60 204 60 1000 94.2% 99.6% 100.0% 2, 929.0

55 60.6% 99.3% 96.5% 2, 458.5

50 8.9% 97.6% 100.0% 1, 955.0

45 0.2% 100.0% — 1, 568.1

100 2053 67 243 67 500 88.8% 99.8% 100.0% 28, 803.7

62 39.6% 99.5% 100.0% 19, 341.9

57 5.8% 100.0% 100.0% 7, 882.2

52 0.2% 0.0% — 3, 227.0

108 2053 77 261 77 5 100.0% 100.0% 100.0% 351, 094.2

110 2053 78 272 78 5 100.0% 100.0% 100.0% 1, 012, 634.8

all projections πi(v) with i > d − γ + 1 will be zero and πd−β−γ+1(v) will be
contained in the β-dimensional lattice

Λd−β−γ+1 := Λ (πd−β−γ+1(bd−β−γ+1), . . . , πd−β−γ+1(bd−γ+1)),

enabling it to be recovered by BKZ-β at an index d − β − γ + 1 < d − β + 1.
Thus, BKZ in our experiments behaves better than predicted by (2). We note
that another effect of this second intersection is that, for very few instances, it
directly leads to a recovery of v from πd−β−γ+1(v).

Giving a closed formula incorporating this effect akin to (2) would entail to
predict the index γ and then replace β with β+γ in (2). However, as illustrated in
Fig. 3, neither does the GSA hold for the last 50 or so indices of the basis [Che13]
nor does the prediction

√
d − i + 1 σ for ‖πd−1+1(v)‖.

We stress that while the second intersection often occurs for parameter sets
within reach of practical experiments, it does not always occur for all parameter
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sets. That is, for many large parameter sets (n, α, q), e.g. those in [ADPS16],
a choice of β satisfy (2) does not lead to a predicted second intersection at
some larger index. Thus, this effect may highlight the pitfalls of extrapolating
experimental lattice-reduction data from small instances to large instances.

Finding the short vector. In what follows, we assume that the projected
norm ‖πd−k(v)‖ is indeed equal to this expected norm (cf. Fig. 2). We further
assume that πi(v) is distributed in a random direction with respect to the rest of
the basis. This assumption holds for LWE where the vector e is sampled from a
(near) spherical distribution. We also note that we can rerandomise the basis and
thus the relative directions. Under this assumption, we show that size reduction
recovers the short vector v with high probability. More precisely, we show:

Claim 1. Let v ∈ Λ ⊂ R
d be a unique shortest vector and β ∈ N. Assume

that (2) holds, the current basis is B = {b1, . . . ,bd} such that b∗
κ = πκ(v) for

κ = d − β + 1 and

v = bk +
k−1∑

i=1

νibi

for some νi ∈ Z, and the GSA holds for B until index κ. If the size reduction step
of BKZ-β is called on bκ, it recovers v with high probability over the randomness
of the basis.

Note that if BKZ has just found a projection of v at index κ, the current
basis is as required by Claim 1. Now, let νi ∈ Z denote the coefficients of v with
respect to the basis B, i.e.

v = bd−β+1 +
d−β∑

i=1

νibi.

Let b(d−β+1)
d−β+1 = bd−β+1, where the superscript denotes a step during size reduc-

tion. For i = d − β, d − β − 1, . . . , 1 size-reduction successively finds μi ∈ Z such
that

wi = μiπi(bi) + πi(b
(i+1)
d−β+1) = μib∗

i + πi(b
(i+1)
d−β+1)

is the shortest element in the coset

Li := {μb∗
i + πi(b

(i+1)
d−β+1)|μ ∈ Z}

and sets
b(i)

d−β+1 := μibi + b(i+1)
d−β+1.

Note that if b(i+1)
d−β+1 = bd−β+1 +

∑d−β
j=i+1 νjbj , as in the first step i = d−β, then

we have that
πi(v) = νib∗

i + πi(b
(i+1)
d−β+1) ∈ Li
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is contained in Li and hence

Li = πi(v) + Zb∗
i .

If the projection πi(v) is in fact the shortest element in Li, for the newly defined
vector b(i)

d−β+1 it also holds that

b(i)
d−β+1 = νibi + b(i+1)

d−β+1 = bd−β+1 +
d−β∑

j=i

νjbj .

Hence, if πi(v) is the shortest element in Li for all i, size reduction finds the
shortest vector

v = b(1)
d−β+1

and inserts it into the basis at position d − β + 1, replacing bd−β+1.
It remains to argue that with high probability p for every i we have that

the projection πi(v) is the shortest element in Li. The success probability p is
given by

p =
d−β∏

i=1

pi,

where the probabilities pi are defined as

pi = Pr [πi(v) is the shortest element in πi(v) + Zb∗
i ].

Fig. 5. Illustration of a case such that πi(v) is the shortest element on Li.

For each i the probability pi is equal to the probability that

‖πi(v)‖ < min{‖πi(v) + b∗
i ‖ , ‖πi(v) − b∗

i ‖}
as illustrated in Fig. 5. To approximate the probabilities pi, we model them as
follows. By assumption, we have

ri := ‖πi(v)‖ = (
√

d − i + 1/
√

d) ‖v‖ and Ri := ‖b∗
i ‖ = δ

−2(i−1)+d
0 Vol(Λ)

1
d,
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Fig. 6. Illustration of the success probability pi in R
2. If w is on the thick part of the

circle, step i of size reduction is successful.

and that πi(v) is uniformly distributed with norm ri. We can therefore model
pi as described in the following and illustrated in Fig. 6.

Pick a point w with norm ri uniformly at random. Then the probability pi is
approximately the probability that w is closer to 0 than it is to b∗

i and to −b∗
i ,

i.e.
ri < min{‖w − b∗

i ‖ , ‖w + b∗
i ‖}.

Calculating this probability leads to the following approximation of pi

pi ≈
{

1 − 2Ad−i+1(ri,hi)
Ad−i+1(ri)

if Ri < 2ri

1 if Ri ≥ 2ri

,

where Ad−i+1(ri) is the surface area of the sphere in R
d−i+1 with radius ri

and Ad−i+1(ri, hi) is the surface area of the hyperspherical cap of the sphere
in R

d−i+1 with radius ri of height hi with hi = ri − Ri/2. Using the formulas
provided in [Li11], an easy calculation leads to

pi ≈

⎧
⎪⎨

⎪⎩

1 −
∫ 2

hi
ri

−(hi
ri

)2
0 t((d−i)/2)−1(1−t)−1/2dt

B( d−i
2 , 12 )

if Ri < 2ri

1 if Ri ≥ 2ri

,

where B(·, ·) denotes the Euler beta function. Note that Ri ≥ 2ri corresponds
to (3).

Estimated success probabilities p for different block sizes β are plotted in
Fig. 7. Note that if we assume equality holds in (2), the success probability p only
depends on the block size β and not on the specific lattice dimension, volume of
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the lattice, or the length of the unique short vector, since then the ratios between
the predicted norms ‖πd−β+1−k(v)‖ and

∥
∥
∥b∗

d−β+1−k

∥
∥
∥ only depend on β for all

k = 1, 2, . . ., since

‖πd−β+1−k(v)‖
∥
∥
∥b∗

d−β+1−k

∥
∥
∥

=

√
β

√
β+k√

β
√

d
‖v‖

δ
2(β+k)−d
0 Vol(Λ)

1
d

=

√
β+k√

β
δ2β−d
0 Vol(Λ)

1
d

δ
2(β+k)−d
0 Vol(Λ)

1
d

=
√

β + k√
β

δ−2k
0

and the estimated success probability only depends on these ratios.
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Fig. 7. Estimated success probability p for varying block sizes β, assuming β is chosen
minimal such that (2) holds.

The prediction given in Fig. 7 is in line with the measured probability of
finding v in the same step when its projection πd−β+1(v) is found as reported in
Table 1 for β = β2016 and m = m2016. Finally, note that by the above analysis
we do not expect to recover v from a projection πd−γ+1(v) for some small γ  β
except with small probability.

5 Applications

Section 4 indicates that (2) is a reliable indicator for when lattice-reduction will
succeed in recovering an unusually short vector. Furthermore, as illustrated in
Fig. 1, applying (2) lowers the required block sizes compared to the 2008 model
which is heavily relied upon in the literature. Thus, in this section we evaluate
the impact of applying the revised estimates to various parameter sets from the
literature. Indeed, for many schemes we find that their parameters need to be
adapted to maintain the currently claimed level of security.

Many of the schemes considered below feature an unusually short secret s
where si ←$ {−B, . . . , B} for some small B ∈ Zq. Furthermore, some schemes
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pick the secret to also be sparse such that most components of s are zero.
Thus, before we apply the revised 2016 estimate, we briefly recall the alter-
native embedding due to Bai and Galbraith [BG14b] which takes these small
(and sparse) secrets into account.

5.1 Bai and Galbraith’s Embedding

Consider an LWE instance in matrix form (A, c) ≡ (A,A · s+ e) ∈ Z
m×n
q ×Z

m
q .

By inspection, it can be seen that the vector (ν s | e | 1), for some ν �= 0, is
contained in the lattice Λ

Λ =

{

x ∈ (νZ)n × Z
m+1 | x ·

(
1
ν
A | Im | −c

)�
≡ 0 mod q

}

, (4)

where ν allows to balance the size of the secret and the noise. An (n + m + 1) ×
(n + m + 1) basis M for Λ can be constructed as

M =

⎛

⎝
νIn −A� 0
0 qIm 0
0 c 1

⎞

⎠.

Indeed, M is full rank, det(M) = Vol(Λ), and the integer span of M ⊆ Λ, as we
can see by noting that

⎛

⎝
νIn −A� 0
0 qIm 0
0 c 1

⎞

⎠
(

1
ν
A | Im | −c

)�
= (A − A | qIm | c − c)� ≡ 0 mod q.

Finally, note that (s | ∗ | 1) ·M = (ν s | e | 1) for suitable values of ∗. If s is small
and/or sparse, choosing ν = 1, the vector (s | e | 1) is unbalanced, i.e. ‖s‖√

n


‖e‖√
m

≈ σ, where σ is the standard deviation of the LWE error distribution. We
may then want to rebalance it by choosing an appropriate value of ν such that
‖(ν s | e | 1)‖ ≈ σ

√
n + m. Rebalancing preserves (ν s | e | 1) as the unique

shortest vector in the lattice, while at the same time increasing the volume of
the lattice being reduced, reducing the block size required by (2).

If s $←− {−1, 0, 1}n we expect ‖ν s‖2 ≈ 2
3ν2n. Therefore, we can chose ν =

√
3
2σ to obtain ‖ν s‖ ≈ σ

√
n, so that ‖(s | e | 1)‖ ≈ σ

√
n + m. Similarly, if

w < n entries of s are non-zero from {−1, 1}, we have ‖ν s‖2 = w ν2. Choosing
ν =

√
n
wσ, we obtain a vector ν s of length σ

√
n.

In the case of sparse secrets, combinatorial techniques can also be
applied [HG07,BGPW16,Alb17]. Given a secret s with at most w < n non-zero
entries, we guess k entries of s to be 0, therefore decreasing the dimension of the
lattice to consider. For each guess, we then apply lattice reduction to recover
the remaining components of the vector (s | e | 1). Therefore, when estimating
the overall complexity for solving such instances, we find min

k
{1/pk · C(n − k)}

where C(n) is the cost of running BKZ on a lattice of dimension n and pk is the
probability of guessing correctly.
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5.2 Estimates

In what follows, we assume that the geometry of (4) is sufficiently close to that
of (1) so that we transfer the analysis as is. Furthermore, we will denote apply-
ing (2) from [ADPS16] for Kannan’s embedding as “Kannan” and applying (2)
for Bai and Galbraith’s embedding [BG14b] as “Bai-Gal”. Unless stated other-
wise, we will assume that calling BKZ with block size β in dimension d costs
8 d 20.292 β+16.4 operations [BDGL16,Alb17].

Lizard [CKLS16b,CKLS16a] is a PKE scheme based on the Learning With
Rounding problem, using a small, sparse secret. The authors provide a reduc-
tion to LWE, and security parameters against classic and quantum adversaries,
following their analysis. In particular, they cost BKZ by a single call to siev-
ing on a block of size β. They estimate this call to cost β 2c β operations where
c = 0.292 for classical adversaries, c = 0.265 for quantum ones and c = 0.2075 as
a lower bound for sieving (“paranoid”). Applying the revised 2016 cost estimate
for the primal attack to the parameters suggested in [CKLS16b] (using their
sieving cost model as described above) reduces the expected costs, as shown in
Table 2. We note that in the meantime the authors of Lizard have updated their
parameters in [CKLS16a].

Table 2. Bit complexity estimates λ for solving Lizard PKE [CKLS16b] as given
in [CKLS16b] and using Kannan’s resp. Bai and Galbraith’s embedding under the
2016 estimate. The dimension of the LWE secret is n. In all cases, BKZ-β is estimated
to cost β 2c β operations.

Classical Quantum Paranoid

n, log2 q, σ 386, 11, 2.04 414, 11, 2.09 504, 12, 4.20

Cost β d λ β d λ β d λ

[CKLS16b] 418 — 130.8 456 — 129.7 590 — 131.6

Kannan 372 805 117.2 400 873 114.6 567 1120 126.8

Bai-Gal 270 646 88.5 297 692 86.9 372 833 85.9

HElib [GHS12a,GHS12b] is an FHE library implementing the BGV
scheme [BGH13]. A recent work [Alb17] provides revised security estimates
for HELib by employing a dual attack exploiting the small and sparse secret,
using the same cost estimate for BKZ as given at the beginning of this section.
In Table 3 we provide costs for a primal attack using Kannan’s and Bai and
Galbraith’s embeddings. Primal attacks perform worse than the algorithm
described [Alb17], but, as expected, under the 2016 estimate the gap narrows.
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Table 3. Solving costs for LWE instances underlying HELib as given in [Alb17] and
using Kannan’s resp. Bai and Galbraith’s embedding under the 2016 estimate. The
dimension of the LWE secret is n. In all cases, BKZ-β is estimated to cost 8d 20.292 β+16.4

operations.

80 bit security

n 1024 2048 4096 8192 16384

log2 q, σ 47, 3.2 87, 3.2 167, 3.2 326, 3.2 638, 3.2

Cost β d λ β d λ β d λ β d λ β d λ

[Alb17]
Silkesparse

105 — 61.3 111 — 65.0 112 — 67.0 123 — 70.2 134 — 73.1

Kannan 156 2096 76.0 166 4003 79.8 171 7960 82.3 176 15606 84.7 180 31847 86.9

Bai-Gal 137 1944 70.3 152 3906 75.9 163 7753 79.9 169 16053 82.9 173 32003 85.9

128 bit security

n 1024 2048 4096 8192 16384

log2 q, σ 38, 3.2 70, 3.2 134, 3.2 261, 3.2 511, 3.2

Cost β d λ β d λ β d λ β d λ β d λ

[Alb17]
Silkesparse

138 — 73.2 145 — 77.4 151 — 81.2 163 — 84.0 149 — 86.4

Kannan 225 2076 96.1 238 4050 100.9 245 8011 103.9 250 16017 106.4 257 31635 109.4

Bai-Gal 189 1901 86.6 211 3830 94.4 204 7348 99.3 185 13543 102.8 204 28236 105.9

SEAL [CLP17] is an FHE library by Microsoft, based on the FV scheme [FV12].
Up to date parameters are given in [CLP17], using the same cost model for BKZ
as mentioned at the beginning of this section. In Table 4, we provide complexity
estimates for Kannan’s and Bai and Galbraith’s embeddings under the 2016
estimate. Note that the gap in solving time between the dual and primal attack
reported in [Alb17] is closed for SEAL v2.1 parameters.

Table 4. Solving costs for parameter choices in SEAL v2.1 as given in [CLP17],
using [Alb17] as implemented in the current [APS15] estimator commit 84014b6

(“[Alb17]+”), and using Kannan’s resp. Bai and Galbraith’s embedding under the
2016 estimate. In all cases, BKZ-β is estimated to cost 8d 20.292 β+16.4 operations.

n, log2 q, σ 1024, 35, 3.19 2048, 60, 3.19 4096, 116, 3.19 8192, 226, 3.19 16384, 435, 3.19

Cost β d λ β d λ β d λ β d λ β d λ

[CLP17] 230 — 97.6 282 — 115.1 297 — 119.1 307 — 123.1 329 — 130.5

[Alb17]+ 255 — 104.9 298 — 118.4 304 — 121.2 310 — 124.0 328 — 130.2

Kannan 257 2085 105.5 304 4041 120.2 307 8047 122.0 312 15876 124.5 328 31599 130.1

Bai-Gal 237 1984 99.6 288 4011 115.5 299 8048 119.7 309 15729 123.6 326 31322 129.5

TESLA [BG14a,ABBD15] is a signature scheme based on LWE. Post-quantum
secure parameters in the quantum random oracle model were recently proposed
in [ABB+17]. In Table 5, we show that these parameters need to be increased to
maintain the currently claimed level of security under the 2016 estimate. Note
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that [ABB+17] maintains a gap of ≈ log2 n bits of security between the best
known attack on LWE and claimed security to account for a loss of security in
the reduction.

Table 5. Bit complexity estimates for solving TESLA parameter sets [ABB+17]. The
entry “[ABB+17]+” refers to reproducing the estimates from [ABB+17] using a cur-
rent copy of the estimator from [APS15] which uses t = 1 instead of t = ‖e‖, as a
consequence the values in the respective rows are slightly lower than in [ABB+17].
We compare with Kannan’s embedding under the 2016 estimate. Classically, BKZ-β
is estimated to cost 8d 20.292 β+16.4 operations; quantumly BKZ-β is estimated to cost
8d
√

β0.0225 β · 20.4574 β/2β/4 operations in [ABB+17].

TESLA-0 TESLA-1 TESLA-2

n, log2 q, σ 644, 31, 55 804, 31, 57 1300, 35, 73

Cost β d λ β d λ β d λ

Classical

[ABB+17] — — 110.0 — — 142.0 — — 204.0

[ABB+17]+ 255 — 110.0 358 — 140.4 563 — 200.9

Kannan 248 1514 102.4 339 1954 129.3 525 3014 184.3

Post-Quantum

[ABB+17] — — 71.0 — — 94.0 — — 142.0

[ABB+17]+ 255 — 68.5 358 — 90.7 563 — 136.4

Kannan 248 1415 61.5 339 1954 81.1 525 3014 122.4

BCIV17 [BCIV17] is a somewhat homomorphic encryption scheme obtained
as a simplification of the FV scheme [FV12] and proposed as a candidate for
enabling privacy friendly energy consumption forecast computation in smart
grid settings. The authors propose parameters for obtaining 80 bits of security,
derived using the estimator from [APS15] available at the time of publication.
As a consequence of applying (2), we observe a moderate loss of security, as
reported in Table 6.

Table 6. Solving costs for proposed Ring-LWE parameters in [BCIV17] using Kannan’s
resp. Bai and Galbraith’s embedding under the 2016 estimate. In both cases, BKZ-β
is estimated to cost 8d 20.292 β+16.4 operations.

80 bit security

n = 4096, log2 q = 186, σ = 102

Embedding β d λ Embedding β d λ

Kannan 156 8105 77.9 Bai-Gal 147 7818 75.3
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Abstract. The Learning with Errors problem (LWE) has become a cen-
tral topic in recent cryptographic research. In this paper, we present a
new solving algorithm combining important ideas from previous work
on improving the BKW algorithm and ideas from sieving in lattices.
The new algorithm is analyzed and demonstrates an improved asymp-
totic performance. For Regev parameters q = n2 and noise level σ =
n1.5/(

√
2π log2

2 n), the asymptotic complexity is 20.895n in the standard
setting, improving on the previously best known complexity of roughly
20.930n. Also for concrete parameter instances, improved performance is
indicated.

Keywords: LWE · BKW · Coded-BKW · Lattice codes · Lattice
sieving

1 Introduction

Post-quantum crypto, the area of cryptography in the presence of quantum
computers, is currently a major topic in the cryptographic community. Cryp-
tosystems based on hard problems related to lattices are currently intensively
investigated, due to their possible resistance against quantum computers. The
major problem in this area, upon which cryptographic primitives can be built,
is the Learning with Errors (LWE) problem.

LWE is an important, efficient and versatile problem. Some famous appli-
cations of LWE are to construct Fully Homomorphic encryption schemes [14–
16,21]. A major motivation for using LWE is its connections to lattice problems,
linking the difficulty of solving LWE (on average) to the difficulty of solving
instances of some (worst-case) famous lattice problems. Let us state the LWE
problem.

Definition 1. Let n be a positive integer, q a prime, and let X be an error
distribution selected as the discrete Gaussian distribution on Zq. Fix s to be a
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secret vector in Z
n
q , chosen according to a uniform distribution. Denote by Ls,X

the probability distribution on Z
n
q × Zq obtained by choosing a ∈ Z

n
q uniformly

at random, choosing an error e ∈ Zq according to X and returning

(a, z) = (a, 〈a, s〉 + e)

in Z
n
q × Zq. The (search) LWE problem is to find the secret vector s given a

fixed number of samples from Ls,X .

The definition above gives the search LWE problem, as the problem description
asks for the recovery of the secret vector s. Another variant is the decision LWE
problem. In this case the problem is to distinguish between samples drawn from
Ls,X and a uniform distribution on Z

n
q × Zq. Typically, we are then interested

in distinguishers with non-negligible advantage.
For the analysis of algorithms solving the LWE problem in previous work,

there are essentially two different approaches. One being the approach of calcu-
lating the specific number of operations needed to solve a certain instance for
a particular algorithm, and comparing specific complexity numbers. The other
approach is asymptotic analysis. Solvers for the LWE problem with suitable
parameters are expected to have fully exponential complexity, say bounded by
2cn as n tends to infinity. Comparisons between algorithms are made by deriving
the coefficient c in the asymptotic complexity expression.

1.1 Related Work

We list the three main approaches for solving the LWE problem in what follows.
A good survey with concrete complexity considerations is [6] and for asymptotic
comparisons, see [25].

The first class is the algebraic approach, which was initialized by Arora-
Ge [8]. This work was further improved by Albrecht et al., using Gröbner
bases [2]. Here we point out that this type of attack is mainly, asymptotically, of
interest when the noise is very small. For extremely small noise the complexity
can be polynomial.

The second and most commonly used approach is to rewrite the LWE problem
as a lattice problem, and therefore lattice reduction algorithms [17,43], sieving
and enumeration can be applied. There are several possibilities when it comes
to reducing the LWE problem to some hard lattice problem. One is a direct
approach, writing up a lattice from the samples and then to treat the search
LWE problem as a Bounded Distance Decoding (BDD) problem [34,35]. One
can also reduce the BDD problem to an unique-SVP problem [5]. Another
variant is to consider the distinguishing problem in the dual lattice [37]. Lattice-
based algorithms have the advantage of not using an exponential number of
samples.

The third approach is the BKW-type algorithms.
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BKW Variants. The BKW algorithm was originally proposed by Blum
et al. [12] for solving the Learning Parity with Noise (LPN) problem (LWE
for q = 2). It resembles Wagner’s generalized birthday approach [44].

For the LPN case, there have been a number of improvements to the basic
BKW approach. In [33], transform techniques were introduced to speed up the
search part. Further improvements came in work by Kirchner [28], Bernstein and
Lange [11], Guo et al. [22], Zhang et al. [46], Bogos and Vaudenay [13].

Albrecht et al. were first to apply BKW to the LWE problem [3], which they
followed up with Lazy Modulus Switching (LMS) [4], which was further improved
by Duc et al. in [20]. The basic BKW approach for LWE was improved in [23]
and [29], resulting in an asymptotic improvement. These works improved by
reducing a variable number of positions in each step of the BKW procedure as
well as introducing a coding approach. Although the two algorithms were slightly
different, they perform asymptotically the same and we refer to the approach
as coded-BKW. It was proved in [29] that the asymptotic complexity for Regev
parameters (public-key cryptography parameter) q = n2 and noise level σ =
n1.5/(

√
2π log22 n) is 20.930n, the currently best known asymptotic performance

for such parameters.

Sieving Algorithms. A key part of the algorithm to be proposed is the use
of sieving in lattices. The first sieving algorithm for solving the shortest vector
problem was proposed by Ajtai et al. in [1], showing that SVP can be solved
in time and memory 2Θ(n). Subsequently, we have seen the NV-sieve [40], List-
sieve [38], and provable improvement of the sieving complexity using the birthday
paradox [24,41].

With heuristic analysis, [40] started to derive a complexity of 20.415n, followed
by GaussSieve [38], 2-level sieve [45], 3-level sieve [47] and overlattice-sieve [10].
Laarhoven started to improve the lattice sieving algorithms employing algorith-
mic breakthroughs in solving the nearest neighbor problem, angular LSH [30],
and spherical LSH [32]. The asymptotically most efficient approach when it
comes to time complexity is Locality Sensitive Filtering (LSF) [9] with both a
space and time complexity of 20.292n+o(1)n. Using quantum computers, the com-
plexity can be reduced to 20.265n+o(1)n (see [31]) by applying Grover’s quantum
search algorithm.

1.2 Contributions

We propose a new algorithm for solving the LWE problem combining previous
combinatorial methods with an important algorithmic idea – using a sieving
approach. Whereas BKW combines vectors to reduce positions to zero, the pre-
viously best improvements of BKW, like coded-BKW, reduce more positions
but at the price of leaving a small but in general nonzero value in reduced posi-
tions. These values are considered as additional noise. As these values increase
in magnitude for each step, because we add them together, they have to be very
small in the initial steps. This is the reason why in coded-BKW the number of
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positions reduced in a step is increasing with the step index. We have to start
with a small number of reduced positions, in order to not obtain a noise that is
too large.

The proposed algorithm tries to solve the problem of the growing noise from
the coding part (or LMS) by using a sieving step to make sure that the noise
from treated positions does not grow, but stays approximately of the same size.
The basic form of the new algorithm then contains two parts in each iterative
step. The first part reduces the magnitude of some particular positions by finding
pairs of vectors that can be combined. The second part performs a sieving step
covering all positions from all previous steps, making sure that the magnitude
of the resulting vector components is roughly as in the already size-reduced part
of the incoming vectors.

We analyze the new algorithm from an asymptotic perspective, proving a
new improved asymptotic performance. Again, for asymptotic Regev parameters
q = n2 and noise level σ = n1.5, the result is a time and space complexity
of 20.895n, which is a significant asymptotic improvement. We also get a first
quantum acceleration for Regev’s parameter setting by using the performance
of sieving in the quantum setting. We additionally sketch on an algorithmic
description for concrete instances. Here we can use additional non-asymptotic
improvements and derive approximate actual complexities for specific instances,
demonstrating its improved performance also for concrete instances.

1.3 Organization

The remaining parts of the paper are organized as followed. We start with some
preliminaries in Sect. 2, including more basics on LWE, discrete Guassians and
sieving in lattices. In Sect. 3 we review the details of the BKW algorithm and
some recent improvements. Section 4 just contains a simple reformulation. In
Sect. 5 we give the new algorithm in its basic form and in Sect. 6 we derive the
optimal parameter selection and perform the asymptotic analysis. In Sect. 7 we
briefly overview how the algorithm could be extended in the non-asymptotic case,
including additional non-asymptotic improvements. We compute some rough
estimates on expected number of operations to solve specific instances, indicat-
ing improved performance in comparison with previous complexity results. We
conclude the paper in Sect. 8.

2 Background

2.1 Notations

Throughout the paper, the following notations are used.

– We write log(·) for the base 2 logarithm and ln(·) for the natural logarithm.
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– In an n-dimensional Euclidean space R
n, by the norm of a vector x =

(x1, x2, . . . , xn) we refer to its L2-norm, defined as

||x|| =
√

x2
1 + · · · + x2

n.

We then define the Euclidean distance between two vectors x and y in R
n as

||x − y||.
– For an [N,K] linear code, N denotes the code length and K denotes the

dimension.

2.2 LWE Problem Description

Rather than giving a more formal definition of the decision version of LWE, we
instead reformulate the search LWE problem, because our main purpose is to
investigate its solving complexity. Assume that m samples

(a1, z1), (a2, z2), . . . , (am, zm),

are drawn from the LWE distribution Ls,X , where ai ∈ Z
n
q , zi ∈ Zq. Let z =

(z1, z2, . . . , zm) and y = (y1, y2, . . . , ym) = sA. We can then write

z = sA + e,

where A =
[
aT
1 aT

2 · · · aT
n

]
, zi = yi + ei = 〈s,ai〉 + ei and ei

$← X . Therefore,
we have reformulated the search LWE problem as a decoding problem, in which
the matrix A serves as the generator matrix for a linear code over Zq and z is
the received word. We see that the problem of searching for the secret vector s
is equivalent to that of finding the codeword y = sA such that the Euclidean
distance ||y − z|| is minimal.

The Secret-Noise Transformation. An important transformation [7,28] can
be applied to ensure that the secret vector follows the same distribution X
as the noise. The procedure works as follows. We first write A in systematic
form via Gaussian elimination. Assume that the first n columns are linearly
independent and form the matrix A0. We then define D = A0

−1 and write
ŝ = sD−1−(z1, z2, . . . , zn). Hence, we can derive an equivalent problem described
by Â = (I, âT

n+1, â
T
n+2, · · · , âT

m), where Â = DA. We compute

ẑ = z − (z1, z2, . . . , zn)Â = (0, ẑn+1, ẑn+2, . . . , ẑm).

Using this transformation, one can assume that each entry in the secret vector
is now distributed according to X .

The noise distribution X is usually chosen as the discrete Gaussian distrib-
ution, which will be briefly discussed in Sect. 2.3.
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2.3 Discrete Gaussian Distribution

We start by defining the discrete Gaussian distribution over Z with mean 0
and variance σ2, denoted DZ,σ. That is, the probability distribution obtained by
assigning a probability proportional to exp(−x2/2σ2) to each x ∈ Z. Then the
discrete Gaussian distribution X over Zq with variance σ2 (also denoted Xσ) can
be defined by folding DZ,σ and accumulating the value of the probability mass
function over all integers in each residue class modulo q.

Following the path of previous work [3], we assume that in our discussed
instances, the discrete Gaussian distribution can be approximated by the con-
tinuous counterpart. For instance, if X is drawn from Xσ1 and Y is drawn from
Xσ2 , then X +Y is regarded as being drawn from X√

σ2
1+σ2

2
. This approximation

is widely adopted in literature.

The sample complexity for distinguishing. To estimate the solving com-
plexity, we need to determine the number of required samples to distinguish
between the uniform distribution on Zq and Xσ. Relying on standard theory
from statistics, using either previous work [34] or Bleichenbacher’s definition of
bias [39], we can conclude that the required number of samples is

O
(

e
2π
(

σ
√

2π
q

)2)

.

2.4 Sieving in Lattices

We here give a brief introduction to the sieving idea and its application in lattices
for solving the shortest vector problem (SVP). For an introduction to lattices,
the SVP problem, and sieving algorithms, see e.g. [9].

In sieving, we start with a list L of relatively short lattice vectors. If the
list size is large enough, we will obtain many pairs of v,w ∈ L, such that
||v ± w|| ≤ max{||v||, ||w||}. After reducing the size of these lattice vectors a
polynomial number of times, one can expect to find the shortest vector.

The core of sieving is thus to find a close enough neighbor v ∈ L efficiently, for
a vector w ∈ L, thereby reducing the size by further operations like addition or
subtraction. This is also true for our newly proposed algorithm in a later section,
since by sieving we solely desire to control the size of the added/subtracted vec-
tors. For this specific purpose, many famous probabilistic algorithms have been
proposed, e.g., Locality Sensitive Hashing (LSH) [27], Bucketing coding [19],
May-Ozerov’s algorithm [36] in the Hamming metric with important applica-
tions to decoding binary linear codes.

In the Euclidean metric, the state-of-the-art algorithm in the asymptotic
sense is Locality Sensitive Filtering (LSF) [9], which requires 20.2075n+o(n) sam-
ples. In the classic setting, the time and memory requirements are both in the
order of 20.292n+o(n). The constant hidden in the running time exponent can be
reduced to 0.265 in the scenario of quantum computing. In the remaining part
of the paper, we choose the LSF algorithm for the best asymptotic performance
when we need to instantiate the sieving method.
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3 The BKW Algorithm

The BKW algorithm is the first sub-exponential algorithm for solving the LPN
problem, originally proposed by Blum et al. [12]. It can also be trivially adopted
to the LWE problem, with single-exponential complexity.

3.1 Plain BKW

The algorithm consists of two phases: the reduction phase and the solving phase.
The essential improvement comes from the first phase, whose underlying funda-
mental idea is the same as Wagner’s generalized birthday algorithm [44]. That
is, using an iterative collision procedure on the columns in the matrix A, one can
reduce its row dimension step by step, and finally reach a new LWE instance
with a much smaller dimension. The solving phase can then be applied to recover
the secret vector. We describe the core procedure of the reduction phase, called
a plain BKW step, as follows. Let us start with A0 = A.

Dimension reduction: In the i-th iteration, we look for combinations of two
columns in Ai−1 that add (or subtract) to zero in the last b entries. Suppose
that one finds two columns aT

j1,i−1,a
T
j2,i−1 such that

aj1,i−1 ± aj2,i−1 = [∗ ∗ · · · ∗ 0 0 · · · 0
︸ ︷︷ ︸
b symbols

],

where ∗ means any value. We then generate a new vector aj,i = aj1,i−1 ±
aj2,i−1. We obtain a new generator matrix Ai for the next iteration, with
its dimension reduced by b, if we remove the last b all-zero positions with no
impact on the output of the inner product operation. We also derive a new
“observed symbol” as zj,i = zj1,i−1 ± zj2,i−1.
A trade-off: After one step of this procedure, we can see that the new
noise variable ej,i = ej1,i−1 ± ej2,i−1. If the noise variables ej1,i−1 and ej2,i−1

both follow the Gaussian distribution with variance σ2
i−1, then the new noise

variable ej,i is considered Gaussian distributed with variance σ2
i = 2σ2

i−1.

After t0 iterations, we have reduced the dimension of the problem to n− t0b.
The final noise variable is thus a summation of 2t0 noise variables generated from
the LWE oracle. We therefore know that the noise connected to each column is
of the form

e =
2t0∑

j=1

eij
,

and the total noise is approximately Gaussian with variance 2t0 · σ2.
The remaining solving phase is to solve this transformed LWE instance. This

phase does not affect its asymptotic complexity but has significant impact on its
actual running time for concrete instances.
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Similar to the original proposal [12] for solving LPN, which recovers 1 bit in
the secret vector via majority voting, Albrecht et al. [3] exhaust one secret entry
using a distinguisher. The complexity is further reduced by Duc et al. [20] using
Fast Fourier Transform (FFT) to recover several secret entries simultaneously.

3.2 Coded-BKW

As described above, in each BKW step, we try to collide a large number of
vectors ai in a set of positions denoted by an index set I. We denote this sub-
vector of a vector a as a aI . We set the size of the collision set to be ( qb−1

2 ), a
very important parameter indicating the final complexity of the algorithm.

In this part we describe another idea that, instead of zeroing out the vector
aI by collisions, we try to collide vectors to make aI small. The advantage of
this idea is that one can handle more positions in one step for the same size of
the collision set.

This idea was first formulated by Albrecht et al. in PKC 2014 [4], aiming for
solving the LWE problem with a small secret. They proposed a new technique
called Lazy Modulus Switching (LMS). Then, in CRYPTO 2015, two new algo-
rithms with similar underlying algorithmic ideas were proposed independently
in [23] and [29], highly enhancing the performance in the sense of both asymp-
totic and concrete complexity. Using the secret-noise transformation, these new
algorithms can be used to solve the standard LWE problem.

In this part we use the notation from [23] to describe the BKW variant
called coded-BKW, as it has the best concrete performance, i.e., it can reduce
the magnitude of the noise by a constant factor compared with its counterpart
technique LMS.

The core step – the coded-BKW step – can be described as follows.
Considering step i in the reduction phase, we choose a q-ary [ni, b] linear

code, denoted Ci, that can be employed to construct a lattice code, e.g., using
Construction A (see [18] for details). The sub-vector aI can then be written
in terms of its two constituents, the codeword part cI ∈ Ci and an error part
eI ∈ Z

Ni
q . That is,

aI = cI + eI . (1)

We rewrite the inner product 〈sI ,aI〉 as

〈sI ,aI〉 = 〈sI , cI〉 + 〈sI , eI〉 .

We can cancel out the part 〈sI , cI〉 by subtracting two vectors mapped to the
same codeword, and the remaining difference is the noise. Due to symmetry, the
size of the collision set can be qb−1

2 , as in the plain BKW step.
If we remove ni positions in the i-th step, then we have removed

∑t
i=1 ni

positions (ni ≥ b) in total. Thus, after guessing the remaining secret symbols in
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the solving phase, we need to distinguish between the uniform distribution and
the distribution representing a sum of noise variables, i.e.,

z =
2t

∑

j=1

eij
+

n∑

i=1

si(E
(1)
i + E

(2)
i + · · · + E

(t)
i ), (2)

where E
(h)
i =

∑2t−h+1

j=1 ê
(h)
ij

and ê
(h)
ij

is the noise introduced in the h-th coded-

BKW step. Here at most one error term E
(h)
i is non-zero for one position in the

index set, and the overall noise can be estimated according to Eq. (2).
The remaining problem is to analyze the noise level introduced by coding.

In [23], it is assumed that every E
(h)
i is close to a Gaussian distribution, which is

tested in implementation. Based on known results on lattice codes, the standard
deviation σ introduced by employing a q-ary [N, k] linear code is estimated by

σ ≈ q1−k/N ·
√

G(ΛN,k), (3)

where G(ΛN,k) is a code-related parameter satisfying

1
2πe

< G(ΛN,k) ≤ 1
12

.

In [23], the chosen codes are with varying rates to ensure that the noise
contribution of each position is equal. This is principally similar to the operation
of changing the modulus size in each reduction step in [29].

4 A Reformulation

Let us reformulate the LWE problem and the steps in the different algorithms
in a matrix form. Recall that we have the LWE samples in the form z = sA+e.
We write this as

(s, e)
(

A
I

)

= z. (4)

The entries in the unknown left-hand side vector (s, e) are all i.i.d. The matrix

above is denoted as H0 =
(

A
I

)

and it is a known quantity, as well as z.

By multiplying Eq. (4) from the right with special matrices Pi we are going
to reduce the size of columns in the matrix. Starting with

(s, e)H0 = z,

we find a matrix P0 and form H1 = H0P0, z1 = zP0, resulting in

(s, e)H1 = z1.

Continuing this process for t steps, we have formed Ht = H0P0 · · ·Pt−1, zt =
zP0 · · ·Pt−1.
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Plain BKW can be described as each Pi having columns with only two
nonzero entries, both from the set {−1, 1}. The BKW procedure subsequently

cancels rows in the Hi matrices in a way such that Ht =
(

0
H′

t

)

, where columns

of H′
t have 2t non-zero entries1. The goal is to minimize the magnitude of the

column entries in Ht. The smaller magnitude, the larger advantage in the cor-
responding samples.

The improved techniques like LMS and coded-BKW reduce the Ht similar
to the BKW, but improves by using the fact that the top rows of H′

t do not
have to be canceled to 0. Instead, entries are allowed to be of the same norm as
in the H′

t matrix.

5 A BKW-Sieving Algorithm for the LWE Problem

The algorithm we propose uses a similar structure as the coded-BKW algorithm.
The new idea involves changing the BKW step to also include a sieving step. In
this section we give the algorithm in a simple form, allowing for some asymptotic
analysis. We exclude some steps that give non-asymptotic improvements. These
are considered in a later section. We assume that each entry in the secret vector
s is distributed according to X .

5.1 Initial Guessing Step

We select a few entries of s and guess these values (according to X ). We run
through all likely values and for each of them we do the steps below. Based on
a particular guess, the sample equations need to be rewritten accordingly.

For simplicity, the remaining unknown values are still denoted s after this
guessing step and the length of s is still denoted n.

5.2 Transformation Steps

We start with some simplifying notation. The n positions in columns in A (first n
positions in columns of H) are considered as a concatenation of smaller vectors.
We assume that these vectors have lengths which are n1, n2, n3, . . . , nt, in such
a way that

∑t
i=1 ni = n. Also, let Nj =

∑j
i=1 ni, for j = 1, 2, . . . , t.

Before explaining the algorithmic steps, we introduce two notions that will
be used later.

Notation CodeMap(h, i): We assume, following the idea of Coded-BKW, that
we have fixed a lattice code Ci of length ni. The vector h fed as input to CodeMap
is first considered only restricted to the positions Ni−1 +1 to Ni, i.e., as a vector
of length ni. This vector, denoted h[Ni−1+1,Ni] is then mapped to the closest
codeword in Ci. This closest codeword is denoted CodeMap(h, i).

1 Sometimes we get a little fewer than 2t entries since 1 s can overlap. However, this
probability is low and does not change the analysis.
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The code Ci needs to have an associated procedure of quickly finding the
closest codeword for any given vector. One could then use a simple code or a
more advanced code. From an asymptotic viewpoint, it does not matter, but in
a practical implementation there can be a difference. We are going to select the
parameters in such a way that the distance to the closest codeword is expected
to be no more than

√
ni · B, where B is a constant.

Notation Sieve(LΔ, i,
√

Ni · B): The input LΔ contains a list of vectors. We
are only considering them restricted to the first Ni positions. This procedure will
find all differences between any two vectors such that the norm of the difference
restricted to the first Ni positions is less than

√
Ni · B. All such differences are

put in a list SΔ which is the output of the procedure.
We assume that the vectors in the list LΔ restricted to the first Ni positions,

all have a norm of about
√

Ni · B. Then the problem is solved by algorithms for
sieving in lattices, for example using Locality-Sensitive Hashing/Filtering.

For the description of the main algorithm, recall that

(s, e)H0 = z,

where H0 =
(

A
I

)

. We are going to perform t steps to transform H0 into Ht

such that the columns in Ht are “small”. Again, we look at the first n positions in
a column corresponding to the A matrix. Since we are only adding or subtracting
columns using coefficients in {−1, 1}, the remaining positions in the column are
assumed to contain 2i nonzero positions either containing a −1 or a 1, after i
steps.

5.3 A BKW-Sieving Step

We are now going to fix an average level of “smallness” for a position, which is
a constant denoted B, as above. The idea of the algorithm is to keep the norm
of considered vectors of some length n′ below

√
n′ · B.

A column h ∈ H0 will now be processed by first computing Δ =
CodeMap(h, 1). Then we place h in the list LΔ. After running through all
columns h ∈ H0 they have been sorted into K lists LΔ.

We then run through the lists, each containing roughly m/K columns. We
perform a sieving step, according to SΔ = Sieve(LΔ,

√
N1 · B). The result is a

list of vectors, where the norm of each vector restricted to the first N1 positions
is less than

√
N1 · B. The indices of any two columns, ij , ik are kept in such a

way that we can compute a new received symbol z = zij
− zik

. All vectors in all
lists SΔ are now put as columns in H1. We now have a matrix H1 where the
norm of each column restricted to the first n1 positions is less than

√
N1 · B.

This is the end of the first step.
Next, we repeat roughly the same procedure another t − 1 times. A column

h ∈ Hi−1 will now be processed by first computing Δ = CodeMap(h, i). We
place h in the list LΔ. After running through all columns h ∈ Hi−1 they have
been sorted in K lists LΔ.
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We run through all lists, where each list contains roughly m/K columns. We
perform a sieving step, according to SΔ = Sieve(LΔ, i,

√
Ni · B). The result is a

list of vectors where the norm of each vector restricted to the first Ni positions
is less than

√
Ni · B. A new received symbol is computed. All vectors in all lists

SΔ are now put as columns in Hi. We get a matrix Hi where the norm of each
column restricted to the first Ni positions is less than

√
Ni · B. This is repeated

for i = 2, . . . , t. We assume that the parameters have been chosen in such a way
that each matrix Hi can have m columns.

After performing these t steps we end up with a matrix Ht such that the
norm of columns restricted to the first n positions is bounded by

√
n · B and

the norm of the last m positions is roughly 2t/2. Altogether, this should result
in samples generated as

z = (s, e)Ht.

The values in the z vector are then roughly Gaussian distributed, with variance
σ2 ·(nB2+2t). By running a distinguisher on the created samples z we can verify
whether our initial guess is correct or not. After restoring some secret value, the
whole procedure can be repeated, but for a smaller dimension.

5.4 Algorithm Summary

Algorithm 1. Coded-BKW with Sieving (main steps)

Input: Matrix A with n rows and m columns, received vector z of length m
and algorithm parameters t, ni, 1 ≤ i ≤ t, B

change the distribution of the secret vector (Gaussian elimination)
for i from 1 to t do:

for all columns h ∈ Hi−1 do:
Δ = CodeMap(h, i)
put h in list LΔ

for all lists LΔ do:
SΔ = Sieve(LΔ, i,

√
Ni · B)

put all SΔ as columns in Hi

exhaustively guess the sn entry using hypothesis testing

A summary of coded-BKW with sieving is contained in Algorithm 1.
Note that one may also use some advanced distinguisher, e.g., the FFT dis-

tinguisher, which is important to the concrete complexity but not the asymptotic
performance.

5.5 High-Level Comparison with Previous BKW Versions

A high-level comparison between the behaviors of plain BKW, coded-BKW and
coded-BKW with sieving is shown in Fig. 1.
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Fig. 1. A high level explanation of how the different versions of the BKW algorithm
work.

Initially the average norm of all elements in a sample vector a is around
q/2, represented by the first row in the figure. Plain BKW then gradually works
towards a zero vector by adding/subtracting vectors in each step such that a
fixed number of positions get canceled out to 0.

The idea of coded-BKW is to not cancel out the positions completely, and
thereby allowing for longer steps. The positions that are not canceled out increase
in magnitude by a factor of

√
2 in each step. To end up with an evenly distributed

noise vector in the end we can let the noise in the new almost canceled positions
increase by a factor of

√
2 in each step. Thus we can gradually increase the step

size.
When reducing positions in coded-BKW, the previously reduced positions

increase in magnitude by a factor of
√

2. However, the sieving step in coded-
BKW with sieving makes sure that the previously reduced positions do not
increase in magnitude. Thus, initially, we do not have to reduce the positions as
much as in coded-BKW. However, the sieving process gets more expensive the
more positions we work with, and we must therefore gradually decrease the step
size.

6 Parameter Selection and Asymptotic Analysis

After each step, positions that already have been treated should remain at some
given magnitude B. That is, the average (absolute) value of a treated position
should be very close to B. This property is maintained by the way in which we
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apply the sieving part at each reduction step. After t steps we have therefore
produced vectors of average norm

√
n · B.

Assigning the number of samples to be m = 2k, where 2k is a parameter that
will decide the total complexity of the algorithm, we will end up with roughly
m = 2k samples after t steps. As already stated, these received samples will be
roughly Gaussian with variance σ2 ·(nB2+2t). We assume that the best strategy
is to keep the magnitudes of the two different contributions of the same order,
so we choose nB2 ≈ 2t.

Furthermore, in order to be able to recover a single secret position using m
samples, we need

m = O
(

e
4π2· σ2·(nB2+2t)

q2

)

.

Thus, we have

ln 2 · k = 4π2 · σ2 · (nB2 + 2t)
q2

,

or

B =

√
ln 2
8π2

· k/n · q

σ
. (5)

The expression for t is then

2t =
ln 2
8π2

· k · q2/σ2. (6)

Each of the t steps should deliver m = 2k vectors of the form described
before.

Since we have two parts in each reduction step, we need to analyze these parts
separately. First, consider performing the first part of reduction step number i
using coded-BKW with an [ni, di] linear code, where the parameters ni and di

at each step are chosen for optimal (global) performance. We sort the 2k vectors
into 2di different lists. Here the coded-BKW step guarantees that all the vectors
in a list, restricted to the ni considered positions, have an average norm less
than

√
ni · B if the codeword is subtracted from the vector. So the number of

lists (2di) has to be chosen so that this norm restriction is true. Then, after the
coded-BKW step, the sieving step should leave the average norm over the Ni

positions unchanged, i.e., less than
√

Ni · B.
Since all vectors in a list can be considered to have norm

√
Ni ·B in these Ni

positions, the sieving step needs to find any pair that leaves a difference between
two vectors of norm at most

√
Ni · B. From the theory of sieving in lattices,

we know that heuristics imply that a single list should contain at least 20.208Ni

vectors to be able to produce the same number of vectors. The time and space
complexity is 20.292Ni if LSF is employed.

Let us adopt some further notation. As we expect the number of vectors to be
exponential we write k = c0n for some c0. Also, we adopt q = ncq and σ = ncs .
Then B = C · ncq−cs and t = log2 D + (2(cq − cs) + 1) log2 n, for some constants
C and D.
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6.1 Asymptotics of Coded-BKW with Sieving

We assume exponential overall complexity and write it as 2cn for some coefficient
c to be determined. Each step is additive with respect to complexity, so we
assume that we can use 2cn operations in each step.

In the t steps we are choosing n1, n2, . . . positions for each step.
The number of buckets needed for the first step of coded-BKW is (C ′ ·ncs)n1 ,

where C ′ is another constant. In each bucket the dominant part in the time
complexity is the sieving cost 2λn1 , for a constant λ. The overall complexity, the
product of these expressions, should match the bound 2cn, and thus we choose
n1 such that (C ′ · ncs)n1 ≈ 2cn · 2−λn1 .

Since B = C · ncq−cs we can in the first step use n1 positions in such a way
that (C ′ ·ncs)n1 ≈ 2cn ·2−λn1 , where C ′ is another constant and λ is the constant
hidden in the exponent of the sieving complexity.

Taking the log, cs log n · n1 + log C ′n1 = cn − λn1. Therefore, we obtain

n1 =
cn

cs log n + λ + log C ′ .

To simplify expressions, we use the notation W = cs log n + λ + log C ′.
For the next step, we get W · n2 = cn − λn1, which simplifies in asymptotic

sense to

n2 =
cn

W

(

1 − λ

W

)

.

Continuing in this way, we have W · ni = cn − λ
∑i−1

j=1 nj and we can obtain an
asymptotic expression for ni as

ni =
cn

W

(

1 − λ

W

)i−1

.

After t steps we have
∑t

i=1 ni = n, so we observe that

t∑

i=1

ni =
cn

W

t∑

i=1

(

1 − λ

W

)i−1

,

which simplifies to

n =
t∑

i=1

ni =
cn

λ

(

1 −
(

1 − λ

W

)t
)

.

Now, we know that

c = λ

(

1 −
(

1 − λ

W

)t
)−1

.
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Since t and W are both of order Θ(log n) that tend to infinity as n tends to
infinity, we have that

c = λ

(

1 −
(

1 − λ

W

)W
λ · tλ

W

)−1

→ λ
(
1 − e− tλ

W

)−1

,

when n → ∞.
Since t/W → (1 + 2 (cq − cs)) /cs when n → ∞ this finally gives us

c =
λ

1 − e−λ(1+2(cq−cs))/cs
.

Theorem 1. The time and space complexity of the proposed algorithm is
2(c+o(1))n, where

c =
λ

1 − e−λ(1+2(cq−cs))/cs
,

and λ = 0.292 for classic computers and 0.265 for quantum computers.

Proof. Since c > λ, there are exponential samples left for the distinguishing
process. One can adjust the constants in (5) and (6) to ensure the success prob-
ability of hypothesis testing close to 1. �

6.2 Asymptotics When Using Plain BKW Pre-processing

In this section we show that Theorem 1 can be improved for certain LWE para-
meters. Let t = t0 + t1. We first derive the following lemma.

Lemma 1. It is asymptotically beneficial to perform t0 plain BKW steps, where
t0 is of order (2 (cq − cs) + 1 − cs/λ · ln (cq/cs)) log n, if

cs

λ
ln

cq

cs
< 2 (cq − cs) + 1.

Proof. Suppose in each plain BKW steps, we zero-out b positions. Therefore, we
have that

qb = Õ (2cn) ,

and it follows that asymptotically b is of order cn/(cq log n).
Because the operated positions in each step will decrease using coded-BKW

with sieving, it is beneficial to replace a step of coded-BKW with sieving by a
pre-processing step of plain BKW, if the allowed number of steps is large. We
compute t1 such that for i ≥ t1, ni ≤ b. That is,

cn

W

(

1 − λ

W

)t1−1

=
cn

cq log n
.

Thus, we derive that t1 is of order cs/λ · ln (cq/cs) · log n. �
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If we choose t0 = t−t1 plain BKW steps, where t1 is of order cs/λ · ln (cq/cs) ·
log n as in Lemma 1, then

n − t0b =
t1∑

i=1

ni =
cn

λ

(

1 −
(

1 − λ

W

)t1
)

.

Thus

1 − c

cq

(

2 (cq − cs) + 1 − cs

λ
ln

(
cq

cs

))

=
c

λ

(

1 − cs

cq

)

.

Finally, we have the following theorem for characterizing its asymptotic com-
plexity.

Theorem 2. If c > λ and cs

λ ln cq

cs
< 2 (cq − cs) + 1, then the time and space

complexity of the proposed algorithm with plain BKW pre-processing is 2(c+o(1))n,
where

c =
(

λ−1

(

1 − cs

cq

)

+ c−1
q

(

2 (cq − cs) + 1 − cs

λ
ln

(
cq

cs

)))−1

,

and λ = 0.292 for classic computer and 0.265 for quantum computers.

Proof. The proof is similar to that of Theorem 1. �

6.3 CaseStudy: Asymptotic Complexity of Regev’s Instances

In this part we present a case-study on the asymptotic complexity of Regev’s
parameter sets, a family of LWE instances with significance in public key cryp-
tography.

Regev’s instances: We pick that q ≈ n2 and σ = n1.5/(
√

2π log22 n) as
suggested in [42].

Table 1. Asymptotic complexity of Regev’s LWE parameter setting

Algorithm Complexity exponent (c)

QS-BKW(w/ p) 0.8856

S-BKW(w/ p) 0.8951

S-BKW(w/o p) 0.9054

BKW2 0.9299

ENUM/DUAL 4.6720

DUAL-EXPSamples 1.1680
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The asymptotic complexity of Regev’s LWE instances is shown in Table 1.
For this parameter set, we have cq = 2 and cs = 1.5, and the previously
best algorithms in the asymptotic sense are the coded-BKW variants [23,29]
(denoted BKW2 in this table) with time complexity 20.9299n+o(n). The item
ENUM/DUAL represents the run time exponent of lattice reduction approaches
using polynomial samples and exponential memory, while DUAL-EXPSamples
represents the run time exponent of lattice reduction approaches using expo-
nential samples and memory. Both values are computed according to formulas
from [25], i.e., 2cBKZ · cq/(cq − cs)2 and 2cBKZ · cq/(cq − cs + 1/2)2, respec-
tively. Here cBKZ is chosen to be 0.292, the best constant that can be achieved
heuristically [9].

We see from the table that the newly proposed algorithm coded-BKW with
sieving outperforms the previous best algorithms asymptotically. For instance,
the simplest strategy without plain BKW pre-processing, denoted S-BKW(w/o
p), costs 20.9054n+o(n) operations, with pre-processing, the time complexity,
denoted S-BKW(w/ p) is 20.8951n+o(n). Using quantum computers, the constant
hidden in the exponent can be further reduced to 0.8856, shown in the table
as QS-BKW(w/ p). Note that the exponent of the algebraic approach is much
higher than that of the BKW variants for Regev’s LWE instances.

6.4 A Comparison with the Asymptotic Complexity of Other
Algorithms

A comparison between the asymptotic time complexity of coded-BKW with siev-
ing and the previous best single-exponent algorithms is shown in Fig. 2, similar
to the comparison made in [26]. We use pre-processing with standard BKW
steps (see theorem 2), since that reduces the complexity of the coded-BKW with
sieving algorithm for the entire plotted area.

Use of exponential space is assumed. Access to an exponential number of
samples is also assumed. In the full version of this paper we will add a comparison
between coded-BKW with sieving and the other algorithms, when only having
access to a polynomial number of samples.

First of all we notice that coded-BKW with sieving behaves best for most
of the area where BKW2 used to be the best algorithm. It also outperforms
the dual algorithm with exponential number of samples on some areas where
that algorithm used to be the best. It is also worth mentioning that the Regev
instance is well within the area where coded-BKW with sieving performs best.

The area where BKW2 outperforms coded-BKW with sieving is not that
cryptographically interesting, since cs < 0.5, and thus Regev’s reduction proof
does not apply. By also allowing pre-processing with coded-BKW steps our new
algorithm is guaranteed to be the best BKW algorithm. We will add an asymp-
totic expression for this version of the algorithm and update the plot in the full
version of our paper.

It should be noted that the Arora-Ge algorithm has the best time complexity
of all algorithms for cs < 0.5.
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Fig. 2. A comparison between the asymptotic behavior of the best single-exponent
algorithms for solving the LWE problem for different values of cq and cs. The differ-
ent colored areas correspond to where the corresponding algorithm beats the other
algorithms in that subplot.

7 Instantiations for Better Concrete Complexity

Until now we have described the new algorithm and analyzed its asymptotic
performance. In this section, the practical instantiations for a better concrete
solving complexity will be further discussed. We will include techniques and
heuristics that may be negligible in the asymptotic sense, but has significant
impact in practice.

The instantiation of Algorithm 1 for a good concrete complexity is shown
in Algorithm 2, consisting of four main steps other than the pre-processing of
changing the secret distribution. We include some coded-BKW steps which can
be more efficient than sieving when the dimension of the elimination part of the
vectors is small. Similar to [23], we also change the final step of guessing and
performing hypothesis tests to a step of subspace hypothesis testing using the
Fast Fourier Transformation (FFT). The required number of samples can thus
be estimated as

8 · l · log2 (q) · e
4π2· σ2

final

q2 ,
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Algorithm 2. Concrete instantiation of Algorithm 1

Input: Matrix A with n rows and m columns, received vector z of length m
and parameters t = t0 + t1a + t1b, ni values and B.

change the distribution of the secret vector (Gaussian elimination)
perform t0 plain BKW steps
perform t1a coded-BKW steps
perform t1b steps of coded-BKW with sieving
perform subspace hypothesis testing using FFT

where l is the dimension of the lattice codes employed in the last subspace
hypothesis testing steps, and σ2

final is the variance of final noise variable.
In the computation, we also assume that the complexity for solving the SVP

problem with dimension k using heuristic sieving algorithms is 20.292k+16.4 for
k > 90; otherwise, for a smaller dimension k, the constant hidden in the run
time exponent is chosen to be 0.387. This estimation was used by Albrecht et
al. in their LWE-estimator [6]. They in turn derived the constant 16.4 from the
experimental result in [30].

Table 2. Concrete time complexity for solving Regev’s LWE instances.

n q σ Complexity (log2 #Z2)

This paper †Coded-BKW [23]

256 65,537 25.53 134 149

512 262,147 57.06 252 292
†This estimation is also adopted in Albrecht’s LWE-
estimator [6].

A conservative estimate of the concrete complexity for solving Regev’s LWE
instances with dimension 256 and 512 is shown in Table 2. The complexity num-
bers are much smaller than those in [23], and the improvement is more significant
when n = 512, with a factor of about 240. Therefore, other than its asymptotic
importance, it can be argued that the algorithm coded-BKW with sieving is also
efficient in practice.

We compare with the complexity numbers shown in [23] since their estimation
also excludes the unnatural selection heuristic. Actually, we could have smaller
complexity numbers by taking the influence of this heuristic into consideration,
similar to what was done in the eprint version of [29].

The unnatural selection technique is a very useful heuristic to reduce the
variance of noise in the vectorial part, as reported in the simulation section
of [23]. On the other hand, the analysis of this heuristic is a bit tricky, and
should be treated carefully.
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We have implemented the new algorithm and tested it on small LWE
instances. For ease of implementation, we chose to simulate using the LMS tech-
nique together with Laarhoven’s angular LSH strategy [30]. While the simulation
results bear no implications for the asymptotics, the performance for these small
instances was as expected.

8 Conclusions and Future Work

In the paper we have presented a new BKW-type algorithm for solving the LWE
problem. This algorithm, named coded-BKW with sieving, combines important
ideas from two recent algorithmic improvements in lattice-based cryptography,
i.e., coded-BKW and heuristic sieving for SVP, and outperforms the previously
known approaches for important parameter sets in public-key cryptography.

For instance, considering Regev’s parameter set, we have demonstrated an
exponential asymptotic improvement, reducing the time and space complexity
from 20.930n to 20.895n in the classic setting. We also obtain the first quantum
acceleration for this parameter set, further reducing the complexity to 20.886n if
quantum computers are provided.

This algorithm also has significant non-asymptotic improvements for some
concrete parameters, compared with the previously best BKW variants. But one
should further investigate the analysis when heuristics like unnatural selection
are taken into consideration, in order to fully exploit its power on suggesting
accurate security parameters for real cryptosystems.

The newly proposed algorithm definitely also has importance in solving many
LWE variants with specific structures, e.g., the Binary-LWE problem and the
Ring-LWE problem. An interesting research direction is to search for more
applications, e.g., solving hard lattice problems, as in [29].
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Abstract. The Rényi divergence is a measure of divergence between
distributions. It has recently found several applications in lattice-based
cryptography. The contribution of this paper is twofold.

First, we give theoretic results which renders it more efficient and
easier to use. This is done by providing two lemmas, which give tight
bounds in very common situations – for distributions that are tailcut or
have a bounded relative error. We then connect the Rényi divergence
to the max-log distance. This allows the Rényi divergence to indirectly
benefit from all the advantages of a distance.

Second, we apply our new results to five practical usecases. It allows
us to claim 256 bits of security for a floating-point precision of 53 bits,
in cases that until now either required more than 150 bits of precision or
were limited to 100 bits of security: rejection sampling, trapdoor sam-
pling (61 bits in this case) and a new sampler by Micciancio and Walter.
We also propose a new and compact approach for table-based sampling,
and squeeze the standard deviation of trapdoor samplers by a factor that
provides a gain of 30 bits of security in practice.

Keywords: Rényi divergence · Security proofs · Lattice-based cryptog-
raphy · Gaussian sampling

1 Introduction

An essential tool in cryptography is the use of divergence measures to prove
the security of cryptographic schemes. As an introductory example, we consider
the statistical distance Δ. It verifies a probability preservation property, which
states that for any two distributions P,Q and any measureable event E over the
support of P and Q, we have

Q(E) ≥ P(E) − Δ(P,Q). (1)

In a cryptographic context, a useful abstraction is to modelize a cryptographic
scheme as relying on some ideal distribution Q and the success of an attacker
against this scheme as an event E. If Δ(P,Q) is negligible, the Eq. 1 will allow
to say that a scheme secure with Q will stay secure if one replaces Q by an
“imperfect” distribution P. Many other measures can be used to provide security
arguments in cryptography (see e.g. [Cac97]).
c© International Association for Cryptologic Research 2017
T. Takagi and T. Peyrin (Eds.): ASIACRYPT 2017, Part I, LNCS 10624, pp. 347–374, 2017.
https://doi.org/10.1007/978-3-319-70694-8_13
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The Rényi divergence. In the subfield of lattice-based crytography, the Rényi
divergence [R61] has been used for cryptographic proofs in several recent works.
Noted Ra, it is somewhat trickier to use than the statistical distance. First, it
is parameterized by a value a ∈ [0,+∞], and has different properties depending
on a. It is not a distance, as it is asymmetric and does not verify the triangle
inequality; the lack of these two properties can be problematic in security proofs.
Interestingly, it also verifies a probability preservation property. For any event
E ⊆ Supp(Q) and a ∈ (1,+∞), we have

Q(E) ≥ P(E)a/(a−1)/Ra(P‖Q). (2)

The Eq. 2 is not additive like Eq. 1, but rather multiplicative. We will later
see that in the context of search problems, it allows to give tighter bounds in
practice.

1.1 Floating-Point in Lattice-Based Cryptography

Lattice-based cryptography has proven to be a serious candidate for post-
quantum cryptography. It is efficient and allows to instantiate a wide range of
cryptographic primitives. Some lattice-based schemes [DDLL13,ADPS16] have
even already been deployed in large-scale projects.1

A notable characteristic of lattice-based cryptography is that it often makes
extensive use of floating-point arithmetic, for several reasons.

Gaussians. The first vector for the use of floating-point arithmetic in lattice-
based cryptography is the widespread need to sample from discrete Gaussian dis-
tributions. When done by standard approaches like precomputed tables, [Pei10]
the required precision is rather high and renders the use of these tables cumber-
some if not impractical.

On the other hand, bitwise approaches [DDLL13] have been developed to
circumvent these floating-point issues, but they can be somewhat tricky to
implement.

Rejection sampling. In the early lattice-based signature schemes GGH
[GGH97] and NTRUSign [HHGP+03], there existed a correlation between the
secret key and the distribution of the signatures. This subsequently led to sev-
eral key-recovery attacks [GJSS01,GS02,NR06,Wan10,DN12b] which broke the
signature schemes and their evolutions.

A provably secure countermeasure was introduced by Lyubashevsky [Lyu09].
The idea is to use rejection sampling as a final step, in order to “factor out” the
correlation between the key and the distribution of the signatures.

This paradigm was instantiated in [Lyu12,GLP12,DDLL13,PDG14,POG15].
Now, in the existing implementations [DDLL13], this step is not done in floating-
point. Because of precision concerns, another approach based on combining
Bernoulli samples was chosen. We will see in Sect. 4.3 that this approach also
has several drawbacks.
1 [Str14] and https://www.imperialviolet.org/2016/11/28/cecpq1.html.

https://www.imperialviolet.org/2016/11/28/cecpq1.html
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Trapdoor sampling. In lattice-based cryptography, the tool that makes the
most intensive use of floating-point arithmetic is arguably trapdoor sampling.
Introduced by Gentry et al. [GPV08], it is a cornerstone of lattice-based cryp-
tography, as it has numerous applications such as hash-and-sign and identity-
based encryption in the random oracle model [GPV08], signatures in the stan-
dard model [CHKP10,Boy10], hierarchical IBE [CHKP10,ABB10a,ABB10b],
attribute-based encryption [Boy13,BGG+14], and much more.

The existing algorithms [Kle00,GPV08,Pei10,MP12] heavily rely on floating-
point arithmetic and they perform between O(n log n) and O(n2) floating-point
operations. However, the best available estimations require 150 bits of precision
for a security of 256 bits, which is completely impractical.

As we can see, floating-point arithmetic can be found everywhere in lattice-
based cryptography. However, if often comes with high precision, which makes
it impractical as it stands.

1.2 Our Contributions

Theory. We provide theoretic tools related to the use of the Rényi divergence
in cryptographic proofs. They make it not only simpler to use, but also very
efficient in some easily-identifiable situations.

1. We establish two lemmas that bound the Rényi divergence of related distri-
butions in two very common situations in lattice-based cryptography. The
first lemma concerns tailcut distributions, and for this reason we call it the
tailcut lemma. The second one involves distributions which relative error is
bounded, so we call it the relative error lemma. The second lemma is par-
ticularly powerful in the sense that it often allows to take very aggressive
parameters.

2. We show that taking a = 2λ allows to have tight and efficient Rényi
divergence-based security arguments for cryptographic schemes based on
search problems. We also derive simple and explicit conditions on distrib-
utions that allow to easily replace a distribution by another in this context.

3. A simple and versatile distance of divergence was recently introduced by Mic-
ciancio and Walter [MW17], the max-log distance. We establish a “reverse
Pinsker” inequality between it and the Rényi divergence. An immediate con-
sequence is that we may benefit from the best of both worlds: the versatility
of the max-log distance, and the power of the Rényi divergence.

Practice. Our results are not purely theoretic. In Sect. 4, we present five appli-
cations of them in lattice-based cryptography.

1. We start by the study of a sampler recently introduced by Micciancio and
Walter [MW17]. We show that for this sampler, the security analysis provided
by [MW17] can be improved and we can claim a full security of 256 bits instead
of the 100 bits claimed in [MW17].
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2. We revisit the table-based approach (see e.g. [Pei10]) for sampling distribu-
tions such as discrete Gaussians. By a Rényi divergence-based analysis com-
bined to a little tweak on the precomputed table, we reduce the storage size
by an order of magnitude, both in theory and in practice (where we gain a
factor 9). Our improvement seems highly composable with other techniques
related to precomputed tables.

3. We analyze the rejection sampling step of BLISS [DDLL13]. We show that
it can be done simply and efficiently in floating-point, simultaneously elimi-
nating the issues – code complexity, side-channel attacks, table storage, etc.
– that plagued the only previously existing approach.

4. We then study trapdoor samplers [Kle00,GPV08,Pei10]. We improve the
usual bounds on the standard deviation σ by obtaining a new bound which is
both smaller and essentially independent of the security level λ. In practice,
we gain about 30 bits of security compared to a statistical distance-based
analysis.

5. The last contribution is also related to trapdoor samplers. We show that a
precision of 64 bits allows 256 bits of security, whereas previous estimations
[LP15,Pre15] required a precision of 150 bits.

A word on the security parameter and number of queries. In order to
make our results as simple as possible and to derive explicit bounds, we consider
in this paper that the security level λ and the number of queries qs verify λ ≤ 256
and qs ≤ 264. The first choice is arguably standard.

For the bound on qs, we consider that making more than 264 signature queries
would be extremely costly and, unlike queries to e.g. a hash function, require
the presence of the target to attack. In addition, it would be easily detectable
by the target and so we believe it to be impractical.

Finally, a more pragmatic reason comes from NIST’s current call for proposals
for post-quantum cryptography,2 which explicitly assumes that an attacker can
make no more than 264 signatures queries (resp. decryption queries).

However, if one decides to take qs > 264, our results could be easily adapted,
but their efficiency would be impacted.

1.3 Related Works

In the context of lattice-based cryptography, Stehlé, Steinfeld and their coau-
thors [LSS14,LPSS14,BLL+15] have used the Rényi divergence to derive better
parameters for cryptographic schemes. The Rényi divergence has also been used
by [BGM+16] to improve security proofs, and in [TT15], which aims to improve
the proofs from [BLL+15].

A few papers [PDG14,DLP14] used a third metric, the Kullback-Leibler
divergence – actually the Rényi divergence of order 1 –, but the Rényi diver-
gence has since then given better results [BLL+15, this work].

2 http://csrc.nist.gov/groups/ST/post-quantum-crypto/.

http://csrc.nist.gov/groups/ST/post-quantum-crypto/
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Precision issues have been tackled by [DN12a], which resorted to lazy
Gaussian sampling but still didn’t eliminate high-precision. A precision analy-
sis of trapdoor samplers by Prest [Pre15] gave about 120 bits of precision for
λ = 192 – which we extrapolate to 150 for λ = 256. A recent work by Saari-
nen [Saa15] has also claimed that using p-bit fixed point approximation achieves
2p bits of security, but this was proven to be incorrect by [MW17], which also
introduced the max-log distance.

Finally, recent works [BS16,Mir17] have studied the usefulness of the Rényi
divergence in the context of differential privacy and have independently come
up with results similar to our relative error lemma.

1.4 Roadmap

Section 2 introduces the notations and tools that we will use throughout the
paper, including the Rényi divergence.

Section 3 is dedicated to our theoretic results. We first present the tailcut and
relative error lemmas, as well as typical usecases for their applications. We give
a framework for using them in cryptographic proofs, along with explicit bounds.
Finally, we establish a connection between the Rényi divergence and the max-log
distance.

Section 4 presents five applications of our theoretic results. We first give a
tighter analysis of a sampler from [MW17], then we revisit the standard table-
based approach for sampling Discrete distributions. We then show that rejection
sampling in BLISS can be done simply in floating-point arithmetic. To conclude,
we study trapdoor samplers and provide improved bounds on the standard devi-
ation and precision with which they can be used.

Section 5 concludes this article and presents related open problems.

2 Preliminaries

2.1 Notations

Cryptographic parameters. When clear from context, let λ be the security
level of a scheme and qs the number of public queries that an attacker can make.
In this article, we consider that λ ≤ 256 and qs ≤ 264.

Probabilities. For any distribution D, we denote its support by Supp(D).
We may abbreviate the statistical distance and Kullback-Leibler divergence by
SD and KLD. As a mnemonic device, we will often refer to D as some perfect
distribution, and to Dδ as a distribution close to D in a sense parameterized by δ.

Matrices and vectors. Matrices will usually be in bold uppercase (e.g. B),
vectors in bold lowercase (e.g. v) and scalars in italic (e.g. s). Vectors are repre-
sented as rows. The p-norm of an vector v is denoted by ‖v‖p, and by convention
‖v‖ = ‖v‖2. Let ‖B‖2 = maxx�=0 ‖xB‖2/‖x‖2 be the spectral norm of a matrix,
it is also the maximum of its singular values and is sometimes denoted by s1(B).
For B = (bij)i,j , we define the max norm of B as ‖B‖max = maxi,j |bij |.
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Gram-Schmidt orthogonalization. An important tool in lattice-based cryp-
tography is the Gram-Schmidt orthogonalization of a full-rank matrix B, which
is the unique factorization B = L · B̃ such that L is lower triangular with 1’s
on the diagonal, and B̃ is orthogonal. Noting B̃ = (b̃i)i, it allows to define the
Gram-Schmidt norm, defined as ‖B‖GS = maxi ‖b̃i‖.

Lattices and Gaussians. A lattice will be denoted by Λ. For a matrix B ∈
R

n×m, let Λ(B) be the lattice generated by B: Λ(B) = Z
n · B. We define the

Gaussian function ρσ,c as ρσ,c(x) = exp(−‖x − c‖2/2σ2), and the Gaussian
distribution DΛ,σ,c over a lattice as

DΛ,σ,c(x) =
ρσ,c(x)

∑
z∈Λ ρσ,c(z)

The parameter c may be omitted when it is equal to zero.

Smoothing parameter. For ε > 0, we define the smoothing parameter ηε(Λ) of
a lattice as the smallest value σ > 0 such that ρ1/σ(Λ�\0) ≤ ε. We carefully note
that in the existing literature, some definitions take the smoothing parameter to
be our definition multiplied by a factor

√
2π. A useful bound on the smoothing

parameter is given by [MR07]:

ηε(Zn) ≤ 1
π

√
1
2

log
(

2n

(

1 +
1
ε

))

. (3)

2.2 The Rényi Divergence

We define the Rényi divergence in the same way as [BLL+15].

Definition 1 (Rényi divergence). Let P,Q be two distributions such that
Supp(P) ⊆ Supp(Q). For a ∈ (1,+∞), we define the Rényi divergence of order
a by

Ra(P‖Q) =

⎛

⎝
∑

x∈Supp(P)

P(x)a

Q(x)a−1

⎞

⎠

1
a−1

.

In addition, we define the Rényi divergence of order +∞ by

R∞(P‖Q) = max
x∈Supp(P)

P(x)
Q(x)

.

Again, this definition is slightly different from some other existing definitions,
which take the log of ours. However, it is more convenient for our purposes.
Generic (resp. cryptographic) properties of the Rényi divergence can be found
in [vEH14] (resp. [BLL+15]). We recall the most important ones.



Sharper Bounds in Lattice-Based Cryptography 353

Lemma 1 [BLL+15, Lemma2.9]. For two distributions P,Q and two fam-
ilies of distributions (Pi)i, (Qi)i, the Rényi divergence verifies the following
properties:

– Data processing inequality. For any function f , Ra(Pf‖Qf ) ≤ Ra(P‖Q).
– Multiplicativity. Ra(

∏
i Pi‖

∏
i Qi) =

∏
i Ra(Pi‖Qi).

– Probability preservation. For any event E ⊆ Supp(Q) and a ∈ (1,+∞),

Q(E) ≥ P(E)a/(a−1)/Ra(P‖Q),
Q(E) ≥ P(E)/R∞(P‖Q).

However, we note that the Rényi divergence is not a distance. In Sect. 3.4, we
circumvent this issue by linking the Rényi divergence to the max-log distance.

3 Main Results

In this section, we present our theoretic results: the tailcut lemma and relative
error lemma for bounding the Rényi divergence between distributions, a generic
framework for using these lemmas and a “reverse Pinsker” inequality that con-
nects the Rényi divergence to the max-log distance.

3.1 The Tailcut Lemma

This first lemma may arguably be considered as folklore; it is already briefly
mentioned in e.g. [BLL+15]. Here we make it explicit, as applications of it arise
naturally in lattice-based cryptography, especially whenever Gaussians distrib-
utions are used.

Lemma 2 (Tailcut). Let D,Dδ be two distributions such that:

– ∃δ > 0 such that Dδ

D ≤ 1 + δ over Supp(Dδ)

Then for a ∈ (1,+∞]:
Ra(Dδ‖D) ≤ 1 + δ

Proof. We note S = Supp(Dδ). If a 
= +∞:

Ra(Dδ‖D)a−1 =
∑

x∈S

Dδ(x)a

D(x)a−1
≤ (1 + δ)a−1

∑

x∈S

Dδ(x) ≤ (1 + δ)a−1,

which yields the result. If a = +∞, the result is immediate. �

We may also refer to Lemma 2 as the tailcut lemma. For the rest of the paper,
D will typically refer to a “perfect” distribution, and Dδ to a distribution which
is close to D in a sense parameterized by δ.
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Fig. 1. Typical usecases for the tailcut lemma and the relative error lemma

Usecases. As its name implies, the tailcut lemma is adapted to situations where
Dδ is a “tailcut” of D: we discard a set T ⊆ Supp(D) such that D(T ) ≤ δ. In
order to still have a true measure of probability, the remaining probabilities
are scaled by a factor 1

1−D(T ) ≈ 1 + D(T ) ≤ 1 + δ, and we note Dδ the new
distribution. Lemma2 gives a relation of closeness between D and Dδ in this
case, which is illustrated by the Fig. 1.

3.2 The Relative Error Lemma

In our second lemma, the conditions are slightly stricter than for the tailcut
lemma, but as a compensation the result is a much stronger closeness relation.
It is somewhat similar to the [PDG14, Lemma 2] for the KLD, but allows tighter
security arguments.

Lemma 3 (Relative error). Let D,Dδ be two distributions such that:

– Supp(Dδ) = Supp(D)
– ∃δ > 0 such that 1 − δ ≤ Dδ

D ≤ 1 + δ over Supp(Dδ)

Then, for a ∈ (1,+∞):

Ra(Dδ||D) ≤
(

1 +
a(a − 1)δ2

2(1 − δ)a+1

) 1
a−1

∼
δ→0

1 +
aδ2

2

Proof. Let fa : (x, y) → ya

(x+y)a−1 . We compute values of fa and its derivatives
around (0, y):

fa(x, y) = y for x = 0
∂fa

∂x (x, y) = 1 − a for x = 0
∂2fa

∂x2 (x, y) = a(a − 1)ya(x + y)−a−1

≤ a(a−1)
(1−δ)a+1y for |x| ≤ δ · y

We now use partial Taylor bounds. If |x| ≤ δ · y, then:

fa(x, y) ≤ fa(0, y) +
∂fa

∂x
(0, y) · x +

a(a − 1)δ2

2(1 − δ)a+1
· y
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Let S = Supp(Dδ). Taking y = Dδ(i), x = D(i)−Dδ(i), then summing i all over
S and using the fact that

∑
i∈S Dδ(i) =

∑
i∈S D(i) = 1 yields the result:

Ra(Dδ‖D) =
∑

i∈S

Dδ(i)a

D(i)a−1
≤ 1 +

a(a − 1)δ2

2(1 − δ)a+1

�

We may also refer to Lemma 3 as the relative error lemma.

Usecases. The relative error lemma can be used when the relative error between
Dδ and D is bounded. This may typically happen when the probabilities of D
are stored in floating-point with a precision log2 δ – though we will see that it is
not limited to this situation. Again, this is illustrated by Fig. 1.

3.3 Security Arguments Using the Rényi Divergence

We consider a cryptographic scheme making qs queries to either a perfect dis-
tribution D or an imperfect distribution Dδ. Let E be an event breaking the
scheme by solving a search problem, and ε (resp. εδ) the probability that this
event occurs under the use of D (resp. Dδ). We suppose that εδ ≥ 2−λ. By the
data processing and probability preservation inequalities:

ε ≥ ε
a/(a−1)
δ /Ra(Dqs

δ ‖Dqs)
≥ ε

a/(a−1)
δ /Ra(Dδ‖D)qs

We can choose any value in (1,+∞) for a, but small values for a impact the
tightness of the reduction and large values impact its efficiency. Setting a = 2λ

seems to be a good compromise. Indeed, we then have ε
a/(a−1)
δ ≥ εδ/

√
2, so we

lose at most half a bit of security in the process.
Our goal is now to have Ra(Dδ‖D)qs = Ω(1), so that we have an almost tight

security reduction. In this regard, having Ra(Dδ‖D) ≤ 1 + 1
4qs

is enough, since
it yields Ra(Dδ‖D)qs ≤ e1/4 ≤ √

2 by a classic inequality.3

This yields ε ≥ 2−λ−1. By contraposition, a (λ + 1)-bit secure scheme with
D will be at least λ-bit secure when replacing D by Dδ if the following condition
is met:

Ra(Dδ‖D) ≤ 1 +
1

4qs
for a = 2λ (4)

We make two important remarks: first, this analysis is valid only for crypto-
graphic schemes relying on search problems. This is the case for all the applica-
tions we consider in this paper, but for cryptographic schemes relying on decision
problems, one may rather rely on SD-based, KLD-based analyses, or on specific
Rényi divergence-based analyses as in [BLL+15, Sect. 4].

Second, the savings provided by our analysis heavily rely on the fact that the
number of queries is limited. This was already observed in [BLL+15].
3 (1 + x/n)n ≤ ex for x, n > 0.
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Practical Implications. We consider a cryptographic scheme with λ+1 ≤ 257
bits of security making qs ≤ 264 queries to a distribution D. Replacing D by
another distribution Dδ will make the scheme lose at most one bit of security,
provided that one of these conditions is verified:

Dδ

D ≤ 1 + δ for δ =
1

4qs
(5)

Supp(Dδ) = Supp(D), and 1 − δ ≤ Dδ

D ≤ 1 + δ for
δ2

(1 − δ)d+1
≤ 1

4λqs
(6)

Equation 5 comes from the tailcut lemma with Eq. 4, and Eq. 6 from
the relative error lemma with Eq. 4. For λ ≤ 256 and qs ≤ 264:

– the condition 5 translates to δ ≤ 2−66,
– the condition 6 translates to δ ≤ 2−37.

3.4 Relation to the Max-Log Distance

In [MW17], Micciancio and Walter introduced a new metric, the max-log dis-
tance. They argue that this metric is both easy to use and allows to have sharp
bounds in cryptographic proofs.

In Lemma 4, we show that the log of the Rényi divergence is bounded (up to
a constant) by the square of the max-log distance. It can be seen as a “reverse”
analogue of Pinsker inequality for the SD and KLD, so we call it the reverse
Pinsker inequality.

Definition 2 (max-log distance [MW17]). The max-log distance between two
distributions P and Q over the same support S is

ΔML(P,Q) = max
x∈S

| log P(x) − log Q(x)|

Lemma 4 (Reverse Pinsker inequality). For two distributions P,Q of com-
mon support, we have:

Ra(P||Q) ≤
(

1 +
a(a − 1)(eΔML(P,Q) − 1)2

2(2 − eΔML(P,Q))a+1

) 1
a−1

∼
ΔML→0

1 +
aΔML(P,Q)2

2

Proof. We note ΔML(P,Q) = δ for some δ ≥ 0. We have:

ΔML(P,Q) = δ ⇒ ∀x ∈ S, | log P(x) − log Q(x)| ≤ δ

⇒ ∀x ∈ S, e−δ ≤ P(x)
Q(x) ≤ eδ

⇒ Ra(P||Q) ≤
(
1 + a(a−1)(eδ−1)2

2(2−eδ)a+1

) 1
a−1

The first implication applies the definition of the max-log distance, the
second one passes to the exponential, the third one applies the relative error
lemma. �
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There are two implications from Lemma 4. First, we can add the max-log
distance to our tools. Unlike the Rényi divergence, it is actually a distance,
which is often useful when performing security analyses.

Second, the Lemma 4 provides evidence that the Rényi divergence gives
sharper bounds than the max-log distance, as the log of the former is essen-
tially bounded by the square of the second.

In addition, we point out that the max-log distance is defined only for dis-
tributions with a common support. For example, it cannot be applied to tailcut
distributions. It is nevertheless a useful measure. One may for example use it
if a true distance is needed, and then fall back to the Rényi divergence using
Lemma 4.

4 Applications

In this section we provide five applications of our results. In all the cases studied,
we manage to claim 256 bits of security while lowering the precision requirements
to be less than 53 bits (or 61 bits for the last application). All the concrete bounds
are obtained for λ ≤ 256 and qs ≤ 264.

This bound of 53 bits is important. Floating-point with 53 bits of precision
corresponds to the double precision type in the IEEE 754 standard, and is very
often available in software – see e.g. the type double in C. In many cases, it can
also be simulated using fixed-point numbers of 64 bits of precision, which can
be done easily and efficiently, in particular over 64-bit architectures.

4.1 Tighter Analysis of the Micciancio-Walter Sampler

The first application of our results is also arguably the simplest. A new Gaussian
sampler over Z was recently introduced by Micciancio and Walter [MW17]. They
provide a security analysis using the max-log distance [MW17, Lemma 5.5].

Later, at the end of [MW17, Sect. 5.3], this lemma is used to argue that for
a given set of parameters, if we note Q a perfect Gaussian distribution and P
the output of the new sampler, we have ΔML(P‖Q) ≤ 2−52. This in turn allows
them to claim about 100 bits of security.

A tighter analysis. We now prove that a Rényi divergence-based analysis gives
tighter bounds than the max-log distance-based analysis from [MW17]. This
analysis is done completely in black box, as we do not need to know anything
about the sampler, except the fact that ΔML(P‖Q) ≤ 2−52. Applying the reverse
Pinsker inequality (Lemma 4) yields Ra(P‖Q) ≤ 1 + 2−96 for any a ≤ 512.

Following the security argument of Sect. 3.3 and in particular Eqs. 4 and 6,
this allows us to claim that the use of this sampler is secure for 256 bits of
security and qs = 264 queries. This remains the case even if we ask up to 294

queries, which we believe is more than enough for any practical application.
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4.2 Revisiting the Table Approach

We now study a more generic problem, namely sampling distributions over Z.
We consider situations where the use of precomputed tables is practical: this
includes but is not limited to (pseudo-)Gaussians with parameters known in
advance.

We revisit the table-based approach. First, we show that the standard app-
roach based on the cumulative distribution function (see e.g. [Pei10]) suffers
from precision issues for a large class of distributions: light-tailed distributions.
Informally, these are distributions which tails have a negligible weight (like Gaus-
sians). They also happen to be widespread in lattice-based cryptography.

We then introduce a new approach based on the conditional density function.
We show that for light-tailed distributions, it behaves in a much nicer way.
To conclude, we take a real-life example and show that in terms of space, the
new approach allows to gain an order of magnitude compared to the standard
approach.

Definition 3. For a distribution D over S ⊆ Z, we call cumulative distribution
function of D and note CDFD the function defined over S by

CDFD(z) =
∑

i≤z

D(z)

Classical CDF sampling. To sample from D, a standard approach is to store
a precomputed table of CDFD, draw a uniform deviate u ← [0, 1] and output
z = min{i ∈ S|CDFD(i) ≥ u}. In practice, we will not store the complete
CDF table. If D = DZ,c,σ is a discrete Gaussian, then we store the values for
z ∈ (c− k0σ, c+ k0σ)∩Z with a given precision p0; here, k0 is a “tailcut bound”
which we can fix by either a SD or Rényi divergence argument. We now estimate
the requirements in the context of λ bits of security and m · qs queries.4

SD-based analysis. Using [GPV08, Lemma 4.2], we have k0 =
√

2(λ + log2 m).
Each D(z) = CDFD(z)−CDFD(z−1) should be known with absolute precision
λ + log2 m, so we may take p0 = λ + log2 m.

Rényi divergence-based analysis. From the tailcut lemma (see also Eq. 5), it is
sufficient to take k0 =

√
2 log2(4mqs). From the relative error lemma, each D(z)

should be known with relative precision log2 δ verifying Eq. 6. For our choices of
λ and qs, this yields k0 ≤ √

2(66 + log2 m) and log2 δ ≤ 37 + log2 m.
For λ = 256, we divide the number of precomputed elements by about 1.87.

A naive interpretation of the analyses above may also lead us to divide the
precision p0 by (λ + log2 m)/(37 + log2 m) ≈ 6.9. However, the next paragraph
will expose why we cannot simply do that.

4 The call to a sampler over Z is often done several times per query. In the context of
signatures, we typically have m = the lattice dimension. Here we take m = 210.
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Precision issues in the case of light-tailed distributions. In the previ-
ous paragraph, there is a slight but important difference between the SD and
Rényi divergence analyses. The precision is given absolutely in the first case, and
relatively in the second case. It is actually this relativity that allows us to use
the relative error lemma in the second case, but it comes at a price: it is not
efficient anymore to use the CDF table.

We present here an example explaining why this is the case: let D2 be the
distribution defined over N

∗ by D2(k) = 2−k. One can show that CDFD2(k) =
1 − 2−k, so from a machine perspective, CDFD2(k) will be rounded to 1 as
soon as k > p0. As a consequence, the probability output of the CDF table-
based algorithm will be 0 for any k > p0 + 1 and we will not be able to use
the relative error lemma at all.

This problem is common to light-tailed distributions, including Gaussian-like
distributions. As the CDF converges very fast to 1, we have to store it in high
precision in order for it to be meaningful. This is not satisfactory from a practical
viewpoint.

Conditional density sampling. A simple way around the aforementioned
problem is to use the conditional density function instead of the CDF. First, we
give its definition.

Definition 4. For a distribution D over N, we call conditional density function
of D and note CoDFD the function defined by CoDF(z) = D(z)/(

∑
i≥z D(i)).

In other words, CoDF(z) is the probability that a random variable X of
distribution D takes the value z, conditioned to the fact that X is bigger or
equal to z.5 A way to use the CoDF to sample from D is given by Algorithm 1,
a variation of the CDF sampler.

Algorithm 1. CoDF sampler
Require: A precomputed table of CoDFD
Ensure: z ← D
1: z ← 0
2: u ← [0, 1] uniformly
3: while u ≥ CoDFD(z) do
4: z ← z + 1
5: u ← [0, 1] uniformly
6: Return z

It is easy to show that the expected number of loops in Algorithm 1 is the
mean of D. It outputs z with probability

∏
i<z [1 − CoDFD(i)] · CoDFD(z),

which by a telescopic product is equal to
∑

i>0 D(i)
∑

i≥0 D(i)
×

∑
i>1 D(i)

∑
i≥1 D(i)

× · · · ×
∑

i>z−1 D(i)
∑

i≥z−1 D(i)
× D(z)

∑
i≥z D(i)

= D(z) (7)

5 We note that the support is now S ⊆ N instead of S ⊆ Z, but switching between
the two cases is algorithmically easy.
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and therefore, Algorithm1 is correct. However, in practice Algorithm1 will be
used with precomputed values which are only correct up to a given precision.
Lemma 5 provides an analysis of the algorithm is this case.

Lemma 5. For a distribution D of support S ⊆ N, let f = CoDFD be the
CoDF of D, and fδ be an approximation of f such that, over S:

1 − δ ≤ fδ

f ≤ 1 + δ

1 − δ ≤ 1−fδ

1−f ≤ 1 + δ
(8)

Let Dδ be the output distribution of the Algorithm1 using a precomputed table
of fδ instead of f . Then, for any z ∈ S:

1 − δz ∼
0←δ

(1 − δ)z ≤ Dδ(z)
D(z)

≤ (1 + δ)z ∼
δ→0

1 + δz

Proof. We have

Dδ(z) =
∏

i<z

[1 − fδ(i)] · fδ(z)

⇒ (1 − δ)z
∏

i<z

[1 − f(i)] · f(z) ≤ Dδ(z) ≤ (1 + δ)z
∏

i<z

[1 − f(i)] · f(z)

⇒ (1 − δ)z · D(z) ≤ Dδ(z) ≤ (1 + δ)z · D(z)

The first implication comes from Eq. 8, the second one from Eq. 7. �

Provided that the CoDF is stored with enough precision, Lemma 5 gives us
an inequality that allows to use the relative error lemma. Now, the interesting
part is that for light-tailed distributions, the CoDF does not converge to 1 as fast
as the CDF, which is important if we want the lower part of Eq. 8 to be true. For
example, if D = DZ,1, we have CDFD(z) −CDFD(z − 1) = O(e−z2/2), whereas
1 − CoDFD(z) = O(e−z). This allows to store CoDFD in small precision and
still remain able to use Lemma 5.

Of course, one may argue that z can be arbitrarily big. However, in practice
we will not sample from a distribution D of infinite support directly but rather
from a tailcut distribution of D, in the bounds provided by the tailcut lemma, so
z will not take too large values and we will be able to store CoDFD efficiently.

Solving the precision issues. Going back to the example of the distribution
D2, the Table 1 shows how CDFD2(k) and CoDFD2(k) are stored in machine
precision, and how it impacts the associated sampler.

For the CDF-based sampler, due to precision issues, it samples from a dis-
tribution D′

2 which has a probability 0 for elements in the tail of D2. In contrast,
the CoDF-based sampler approximates D2 correctly even for elements in the
tail of D2.

Application: sampling over D+
Z,σ2

in BLISS. An important step of the sig-
nature scheme BLISS consists of sampling z ← D+

Z,σ2
, where σ2 ≈ 0.85.
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Table 1. Precomputed values of CDF and CoDF of D2 as stored in 53 bits precision.
The stored value of CDFD2(k) quickly becomes 1, leading to the associated algorithm
sampling from some incorrect distribution D′

2 instead of D2.

k 1 2 3 . . . 54 55 . . .

CDFD2(k) 1/2 3/4 7/8 . . . 1 1 . . .

D′
2(k) 1/2 1/4 1/8 . . . 0 0 . . .

CoDFD2(k) 1/2 1/2 1/2 . . . 1/2 1/2 . . .

D2(k) 1/2 1/4 1/8 . . . 2−54 2−55 . . .

In BLISS, this is done in a bitwise rejection sampling fashion [DDLL13,
Algorithm 10], which is very efficient in hardware but not so much in software.
In addition, the structure of the Algorithm 10 from [DDLL13] exposes it to side-
channel attacks in the lines of [EFGT17] (see also Sect. 4.3). Instead, one can
sample efficiently from D+

Z,σ2
using a precomputed table T :

– With a CDF+SD approach, T must have 20 elements of 266 bits each, which
amounts to about 5 300 bits.

– With a CoDF+Rényi divergence approach and using Lemma5, T must have
11 elements of about 53 bits each, which amounts to about 600 bits.6

Here, the CoDF+Rényi divergence approach makes us gain an order of mag-
nitude in storage requirements. Another notable advantage is that it is particu-
larly fit to a fixed-point implementation, which might make it easier to implement
in hardware. In addition, it is generic in the sense that it can be applied to a
large class of distributions over N (or Z).

An open question is how to make Algorithm1 constant-time and protected
against side-channel attacks. The trivial way to make it constant-time is to
always read the whole table, but this may incur a significant overhead.

4.3 Simpler and More Secure Rejection Sampling in BLISS

We recall that the context and motivation of doing rejection sampling in lattice-
based cryptography is exposed in Sect. 1.1. We now focus our attention on the
signature scheme BLISS [DDLL13]. In BLISS, the final step of the signature
consists of this step:

Accept with probability p = 1/

(

M exp(−‖Sc‖2
2σ2

) cosh(
〈z,Sc〉

σ2
)
)

(9)

where S is the secret key, σ,M are public parameters and c, z are part of the
signature. In the original scheme and all the implementations that we are aware

6 Actually, storing the 11 elements as 64-bit integers yields better relative precision
and is easier to handle in practice.



362 T. Prest

of [LD13,Pop14,Str14], this step is implemented by the means of combining
several Bernoulli distributions dependent of the bits of ‖Sc‖2 and 〈z,Sc〉.

There are two drawbacks from this approach. First, the algorithm described
in [DDLL13] for performing this step is rather sophisticated, and as a result it
takes a significant portion of the coding effort in [LD13,Pop14,Str14].

The second drawback is that this algorithm is actually vulnerable to side-
channel attacks: Espitau et al. [EFGT17] have shown that a side-channel analysis
of the signature traces can recover both ‖Sc‖2 and 〈z,Sc〉, and from it the secret
key. Interestingly, it might be possible to extend this attack to a timing attack,
in which case the implementation of Strongswan [Str14], deployed on Windows,
Linux, Mac OS, Android and iOS platforms, could also suffer from it.

Simple Rejection Sampling. We observe that the step 9 doesn’t need to be
made exactly. We can simply compute a value pδ such that 1 − δ ≤ pδ

p ≤ 1 + δ,
sample u ← [0, 1] uniformly and accept if and only if pδ ≥ u. By Eq. 6, it is
sufficient that p is computed with a relative error 2−37. This can be done easily:

1. In software, one may simply resort to a standard implementation of the exp
function, such as the one provided math.h for the C language. As long as the
relative precision provided is more than 37 bits of precision, we can use Eq. 6.
We note that implementations of exp(·) usually provide at least 53 bits of
precision, which is more than enough for our purposes.

2. In hardware, an implementation of the exp function may not always be
available. There are many ways around this issue, we present two of them:

– One may use Padé approximants as an efficient way to compute exp.
Padé approximants are generalizations of Taylor series: they approximate
a function f by a polynomial fraction Pn

Qm
instead of a polynomial Pn.

They usually converge extremely fast, and in the case of the exp function,
the relative error between exp(z) and its Padé approximant is less than
2−37 for an approximation of order 4 and |z| < 1/2.7 A more detailed
analysis is provided in appendix, Sect.A.1.

– Another solution is to precompute the values exp( 2i

2σ2 ) for a small num-
ber of values i ∈ N. This then allows to compute exp( z

2σ2 ) for any
z =

∑
i zi2i, since exp( z

2σ2 ) =
∏

zi=1 exp( 2i

2σ2 ).8 For the parameters given
by [DDLL13], ‖Sc‖2 and 〈z,Sc〉 are integers and are less than 37 bits,
which means that we would need to store at most 37 precomputed values.

For the two proposed solutions, a very pessimistic analysis estimates that
we perform less than 80 elementary floating-point operations to compute p.
While it might seem a lot for 3 exponentials, it is negligible compared to the
total cost of a signature, which is around O(n log n) for n = 512 in the BLISS
scheme. In addition, all the techniques we propose are easy to protect against
side-channel attacks.

7 It is easy reduce any input z to the case |z| < 1/2 by taking z′ ← z mod (ln 2) and
observing that eln 2 = 2. The precision loss is negligible.

8 For negative values, exp may be computed by inversion, or if it is not available, by

also precomputing exp(− 2i

2σ2 ).
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We note that our software solution and our hardware solution based on Padé
approximants do not require to store any precomputed table.

In BLISS, explicitely computing the rejection bound as we did was discarded
because of precision concerns. We note that all the security analysis in BLISS
was performed using the SD, with only subsequent work [PDG14,BLL+15] using
more adequate measures of divergence. Using the SD in our case would have
required us compute transcendental functions with a precision 2λ, which is
impractical. The relative error lemma is the key which allows to argue that
a floating-point approach is secure.

4.4 Squeezing the Standard Deviation of Trapdoor Samplers

Context. The two last sections are related to the most generic and pow-
erful type of Gaussian sampling: trapdoor sampling. Algorithms for perform-
ing trapdoor sampling [Kle00,GPV08,Pei10,MP12] are essentially randomized
variants of Babai’s round-off and nearest plane algorithms [Bab85,Bab86].
For suitable parameters, they are statistically indistinguishable from a perfect
Gaussian DΛ,σ,c.

For a cryptographic use, we want σ to be as small as possible in order to have
the highest security guarantees. However, σ cannot be too small: if it is, then the
trapdoor samplers will not behave anymore like perfect Gaussian oracles.9 At the
extreme case σ = 0, the samplers become deterministic and leak the shape of the
basis used for sampling, exposing the associated schemes to key-recovery attacks
described earlier. To avoid that, samplers usually come with lower bounds on σ
for using it securely (see e.g. Theorem 1 for Klein’s sampler [Kle00,GPV08]).

Roadmap. Before continuing, we establish the roadmap for this section and
the next one. In this section, we show that, if σ is large enough, a Gaussian
sampler with infinite precision is as secure as an ideal Gaussian. In the next one,
we show that a Gaussian sampler with finite precision is as secure as one with
infinite precision. Of course, such analyses are already known. Our contribution
here is to use the Rényi divergence to have more aggressive parameters for σ
and the precision of the sampler (Fig. 2).

Fig. 2. Roadmap for asserting the security of a practical Gaussian sampler

Klein’s sampler. We cannot analyse all the existing samplers in this article,
so we now focus our attention on Klein’s sampler [Kle00,GPV08]. It is described
in Algorithm 2.
9 If they did behave like perfect Gaussians when σ → 0, then they would effectively

solve the closest vector problem, which is a NP-hard problem.
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Algorithm 2. KleinL,σ(t)

Require: σ ≥ ηε(Z
n) · ‖B‖GS, the Gram-Schmidt orthogonalization B = L · B̃ and

the values σj = σ/‖b̃j‖ for j ∈ {1, . . . , n}
Ensure: A vector z such that zB ← DΛ(B),σ,tB

1: for j = n, . . . , 1 do
2: cj ← tj +

∑
i>j(tj − zj)Lij

3: zj ← DZ,σj ,cj

4: return z

An associated lower bound on σ for using Algorithm 2 is given in Theorem 1.

Theorem 1 ([DN12a, Theorem1], concrete version of [GPV08, Theo-
rem4.1]). Let ε = 2−λ. If σ ≥ ηε(Zn) · ‖B‖GS, then the SD between
KleinL,σ(t) · B and the perfect discrete Gaussian DΛ(B),σ,tB is upper bounded
by 2−λ.

Combined to a standard SD-based argument, Theorem 1 establishes that σ
must be proportional to

√
λ in order to claim λ bits of security when using Algo-

rithm 2. A better bound was established in [DLP14] but it remains proportional
to

√
λ. In Lemma 6, we establish a bound that is both (almost) independent of

λ and smaller.

Lemma 6 (Rényi divergence of Klein’s sampler). For any ε ∈ (0, 1/4), if
σ � ηε(Zn) · ‖B‖GS then the Rényi divergence between D = DΛ(B),σ,tB and the
output distribution Dε of KleinL,σ(t) · B verifies

Ra(Dε‖D) ≤
(

1 +
a(a − 1)δ2

2(1 − δ)a+1

) 1
a−1

∼
δ→0

1 +
aδ2

2
,

where δ =
(

1+ε/n
1−ε/n

)n

− 1 ≈ 2ε.

Proof. We note v = zB and c = tB. As detailed in [GPV08], the probability
that KleinL,σ(t) outputs a given z is proportional to

n∏

i=1

1
ρσj ,cj

(Z)
· ρσ,c(v)

for σj = σ/‖cj‖ and some cj ∈ R that depends on t and B. By assumption, σj ≥
ηε(Zn) ≥ ηε/n(Z), therefore ρσj ,cj

(Z) ∈ [1−ε/n
1+ε/n , 1]·ρσj

(Z) by [MR04, Lemma 4.4].
Since D(v) is proportional to ρσ,c(v) and D,Dε both sum up to one, we have

(
1 − ε/n

1 + ε/n

)n

≤ Dε

D ≤
(

1 + ε/n

1 − ε/n

)n

,

from which we may conclude by using the relative error lemma. �
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Plugging this result with the relative error lemma, we may use Klein’s sam-
pler with δ ≈ 2ε verifying Eq. 6, instead of ε ≤ 2−λ with the SD and ε ≤ 2−λ/2

with the KLD [DLP14]. Compared to a SD-based analysis, this allows to squeeze
σ by a factor

√
λ/38 that can be as large as ≈2.60 for λ = 256.

While it might seem a small gain, the security of trapdoor samplers is very
sensitive to standard deviations variations. We estimate that this factor 2.60
allows to gain up to 30 bits of security (this claim is supported by e.g. [Pre15,
Table 6.1]). A similar analysis for Peikert’s sampler [Pei10] yields a similar gain.

4.5 Trapdoor Sampling in Standard Precision

For our last application of the Rényi divergence, we conclude our analysis of
Klein’s sampler (Algorithm 2), by performing its precision analysis. This section
shows that it can be used safely in small precision.

First, we give a lemma that bounds the ratio of two Gaussian sums in Z with
slightly different centers and standard deviations.

Lemma 7 (Ratio of Gaussian Sums in Z). Let two arbitrary centers t, t̄ ∈ R

and standard deviations σ, σ̄ > 0. Let the Gaussian functions ρ(z) = ρσ,t(z),
ρ̄(z) = ρσ̄,t̄(z) and the distributions D(z) = ρ(z)/ρ(Z), D̄(z) = ρ̄(z)/ρ̄(Z). Let

u(z) = (z−t̄)2

2σ̄2 − (z−t)2

2σ2 . Then

e−Ez←D[u] ≤ ρ̄(Z)
ρ(Z)

≤ e−Ez←D̄[u]

Proof. We first prove the left inequality. We have

ρ̄(z) = e−u(z)ρ(z)

⇒ ρ̄(z)
ρ(Z) = e−u(z)D(z)

⇒ ρ̄(Z)
ρ(Z) = Ez←D[e−u(z)]

⇒ ρ̄(Z)
ρ(Z) ≥ e−Ez←D[u(z)]

where the last inequality comes from Jensen’s inequality: since e is convex,
E[e−u] ≥ eE[−u]. Following the same reasoning, one gets

(

D̄(z)eu(z) =
ρ(z)
ρ̄(Z)

)

⇒
(

Ez←D̄[eu] =
ρ(Z)
ρ̄(Z)

)

⇒
(

ρ̄(Z)
ρ(Z)

≤ e−Ez←D̄[u]

)

�

This lemma is useful in the sense that it provides a relative error bound,
which will be used in the next lemma in order use the relative error lemma. We
now give a bound on the required precision for using safely Klein’s sampler.

Lemma 8. Let D (resp. D̄) be the output distribution of Algorithm2 over the
input t (resp. t̄), using precomputed values (L, (σj)j) (resp. (L̄, (σ̄j)j)). Let δ, ε ∈
(0, .01). We note:
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– T = n‖L‖max(1.1 + σ
√

2π · ‖B−1‖2)
– C = 1.3nδ( T

√
2π

ηε(Zn) + 2π + 1)

If we have the following (error) bounds on the input of Algorithm2:

– t ∈ [−.5, .5]n

– ‖t̄ − t‖∞ ≤ δ
– |σ̄j − σj | ≤ δσj for all j
– ‖L̄ − L‖max ≤ δ‖L‖max

Then we have this inequality:

e−C ≤ D̄
D ≤ eC .

The Lemma 8 covers – but is not limited to – the case where L and the (σj)j ’s
are known up to a relative error, and t up to an absolute error. For any z ∈ Z

n,
DZn,σ,z+t = z + DZn,σ,t, so it is perfectly reasonable to suppose t ∈ [-.5, .5]n.

Proof. This proof is rather long, so we explain its outline first. In ①, we establish
a bound A ≤ D(z)

D̄(z)
≤ B, for some expressions A,B. In ②, we establish |A| ≤ C

and ③, we establish |B| ≤ C. We conclude in ④.
① Let z =

∑
j ẑj ∈ Z

n be a possible output of both samplers. We note v = zB
and c = tB. There exist a unique n-tuple (cj)j (resp. (c̄j)j) such that at each
step j, E (resp. Ē) samples a discrete Gaussian in Z around cj (resp. c̄j).

The probability that z is output by E is D(z) =
∏

j Dj(ẑj) =
∏

j
ρj(ẑj)
ρj(Z)

,

where ρj = ρZ,σj ,cj
is uniquely defined by z. Similarly, D̄(z) =

∏
j

ρ̄j(ẑj)
ρ̄j(Z)

, where
ρ̄j = ρZ,σ̄j ,c̄j

. We have

D(z)
D̄(z)

=
∏

j

ρj(ẑj)
ρj(Z)

ρ̄j(Z)
ρ̄j(ẑj)

=
∏

j

ρj(ẑj)
ρ̄j(ẑj)

ρ̄j(Z)
ρj(Z)

For each j, let uj(z) = (z−c̄j)
2

2σ̄2
j

− (z−cj)
2

2σ2
j

. Lemma 7 yields:

e−Ez←Dj
[uj ] ≤ ρ̄j(Z)

ρj(Z)
≤ e

−Ez←D̄j
[uj ]

So that we have:
∑

j

[
uj(ẑj) − Ez←Dj

[uj ]
] ≤ log

(D(z)
D̄(z)

)

≤
∑

j

[
uj(ẑj) − Ez←D̄j

[uj ]
]

(10)

Let A and B be the left and right terms of the Eq. 10. If we can bound A and
B, then we will be able to conclude by the relative error lemma.
② Now, we bound A. We write σ̄j = (1 + δσj

)σj , where each |δσj
| ≤ δ by

hypothesis. Developing uj yields:

uj(zj)=
1

2(1+δσj
)2σ2

j

[
(cj−c̄j)

2+2(cj−c̄j)(zj−cj)−(2δσj
+δ2

σj
)(zj−cj)

2
]

(11)
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In order to bound cj−c̄j , we note that numerically, cj is exactly tj+〈t − z, lj〉,
where lj is the j-th row of (Lt − In). Noting t̄ = t + δt, l̄j = lj + δlj and
L = ‖L‖max, we have:

c̄j = cj + δt,j + 〈δt, lj〉 + 〈t − z, δlj 〉 + 〈δt, δlj 〉

Thus

|c̄j − cj | ≤ δt,j + ‖δt‖‖lj‖ + ‖δlj ‖‖t − z‖ + ‖δt‖‖δlj ‖
≤ δ(nL + 1) + δnLσ

√
2π · ‖B−1‖2 + δ2nL

≤ δ · T
(12)

In Eq. 12, we used the fact that:

– ‖δt‖ ≤ δ
√

n
– ‖δlj ‖ ≤ δ‖lj‖ ≤ δ

√
nL

– ‖t−z‖ ≤ ‖c−v‖·‖B−1‖2 ≤ σ
√

2πn ·‖B−1‖2, with the last inequality coming
from [MR07, Lemma 4.4] (see Lemma 10 in the appendix)

We have:

A =
∑

j
1

2(1+δσj
)2σ2

j

[2(cj−c̄j)(ẑj−cj−Ezj←Dj
[zj−cj ]) −(2δσj

+δ2σj
)[(ẑj−cj)

2−Ezj←Dj
[(zj−cj)

2]]

|A| ≤∑j
1.1
2σ2

j

[2|cj−c̄j |(|ẑj−cj |+√
2πεσj) +2δ[(ẑj−cj)

2+σ2
j +2πεσ2

j ]]

≤ 1.1
σ2

∑
j [δT (‖b̃j‖2·|ẑj−cj |+‖b̃j‖√

2πεσ) +δ[‖b̃j‖2(ẑj−cj)
2+σ2+2πεσ2]]

≤ 1.1δ
σ2 [T maxj ‖b̃j‖(‖v−c‖1+

√
2πεσn) +[‖v−c‖2+nσ2+2πnεσ2]]

≤ 1.1δ [T (n
√

2π+
√
2πεn)/ηε(Z

n) +[2πn+n+2πnε]]

≤ 1.2δn [T
√
2π/ηε(Z

n)+2π+1]

(13)
In Eq. 13, the first line develops the formula for A by using Eq. 11. For the second
line, we use [MR07, Lemma 4.2] (see Lemma 9 in the appendix) to bound the
two expected values and the term 1.1 to absorb parasitic terms in δσj

and ε.
The third line replaces σj by σ/‖b̃j‖ and |cj − c̄j | by the bound δ · T

from Eq. 12. For the fourth line, we notice that
∑

j ‖b̃j‖ · |ẑj − cj | = ‖v − c‖1
and

∑
j ‖b̃j‖2 · (ẑj − cj)2 = ‖v − c‖22 (both equalities follow directly from the

Lemma 4.4 of [GPV08]).
In the fifth line, we use the bounds ‖v−c‖2 ≤ σ

√
2πn, and ‖v−c‖1 ≤ σn

√
2π:

the first one comes from [MR07, Lemma 4.4], and the second one follows from
the fact that there exists a vector u with coefficients being only ±1 such that
‖v−c‖1 = |〈v − c,u〉|. Applying the Cauchy-Schwartz theorem yields the bound.
The last line simplifies as much as possible the expression.

③ We now bound B, the right part of Eq. 10. We can write uj as follows:

uj(zj)=
1

σ̄2
j

[
−(1+δσj

)2(cj−c̄j)
2+2(1+δσj

)2(cj−c̄j)(zj−cj)−(2δσj
+δ2

σj
)(zj−c̄j)

2
]

(14)
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To bound B, we replace the uj in each uj(ẑj) by the expression in Eq. 11, and
the uj in each Ez←D̄j

[uj ] by the expression of Eq. 14. This yields:

|B| ≤ ∑
j

1.1(cj−c̄j)
2

σ̄2
j

+
∑

j
1.1
2σ2

j
[2|cj−c̄j |·|ẑj−cj |+2|δσj

|·|ẑj−cj |2]

+
∑

j
1

2σ̄2
j
[2|cj−c̄j |·|Ez←D̄j

[zj−c̄j ]|+2|δσj
|·Ez←D̄j

[(zj−c̄j)
2]]

≤ 1.1n(δ·T )2

ηε(Zn)2 +1.1nδ[T
√
2π/ηε(Z

n)+2π+1]
+1.1δε[T

√
2π/ηε(Z

n)+2π],

where the bound over |B| is obtained using the same techniques as for |A|.
Overall, we see that |A|, |B| ≤ C.

④ To conclude, we have −C ≤ log(D(z)
D̄(z)

) ≤ C, so e−C ≤ D(z)
D̄(z)

≤ eC . �

Practical implications of Lemma 8. We can now easily – given a few sim-
plifications – apply the relative error lemma. Even though in theory we have
‖M‖2 ≤ n‖M‖GS, this is a worst-case bound [Pei10, Lemma 5.1]. In practice, it
is reasonable to assume ‖B‖2 = O(

√
log n) · ‖B‖GS, with a small constant factor

in the big O [Pre15, Sect. 6.5.2].10

In addition, we make the simplification ‖B−1‖GS ≈ ‖B‖−1
GS,

11 which gives
σ‖B−1‖2 ≈ √

log n · ηε(Zn). It is also easy to make ‖L‖max = 1, so we consider
that this is the case. Removing terms which are clearly negligible, and since
eC ∼

C→0
1 + C, we have

1 − C ′ ≤ D̄
D ≤ 1 + C ′, with C ′ ≈ 8 · n2

√
log n · δ. (15)

For typical values of n (say, n = 1024), we can take δ = 2−37/C ′ ≈ 2−61, which
is secure as per the argument of Sect. 3.3. Therefore, precision 61 is sufficient to
securely use Klein’s sampler.

5 Conclusion and Open Problems

To conclude, we expose a few perspectives and open problems that we have
encountered. Most of them are related to implementing the techniques we have
introduced, but in our opinion extending our techniques to decision problems is
probably the most challenging question.

The revisited table approach. It remains to see how the CoDF-based algo-
rithm we proposed in Sect. 4.2 can be efficiently implemented and protected
against side-channel attacks. Our approach also seems highly composable with
existing techniques, and it would be interesting to find combinations that achieve

10 Or alternatively, ‖B‖2 = O(
√

log q) · ‖B‖GS (see e.g. [Pei10, Lemma 5.2]).
11 As an example, for NTRU matrices, this is true up to a factor 1.172 [DLP14].
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better overall efficiency.12 For example, a natural question would be to see how
to combine it with Knuth-Yao trees (see e.g. [DG14]).

Rejection sampling in practice. The techniques that we described in
Sect. 4.3 remain to be implemented, to assess their efficiency and whether they
can easily be made impervious against side-channel attacks.

Precision analysis of trapdoor samplers. It would be interesting to apply
the precision analysis of Sect. 4.5 to other samplers, such as the one of [Pei10].
A promising candidate would be a randomized variant of Ducas and Prest’s fast
Fourier nearest plane [DP16]. The fast Fourier transform is known to be very
stable numerically, and since this algorithm has the same structure, it seems
likely that it will inherit this stability and require less than 53 bits of precision.

Decision problems. All the applications that we give are in the context of
search problems. We would like to achieve the same efficiency for decision prob-
lems: as of today, one can use decision-to-search tricks in the random oracle
model as in e.g. [DLP14, Sect. 4] or the results from [BLL+15, Sect. 4]. However,
none of these solutions is fully satisfying and having efficient and generic Rényi
security arguments for decision problems remain open.
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A Appendix

A.1 Padé Approximants

In this section, we give a very succinct explanation of Padé approximants in
the context that interests us. A more detailed introduction can be found in
e.g. [Ass06]. Informally, Padé approximants can be described as generalizations
of Taylor series, as the latter approximate (n + 1)-differentiable functions as

f(x) = Pn(x) + O(zn+1),

with Pn a polynomial of degree n, whereas Padé approximants provide an
approximation of the form

Qm(x)f(x) = Pn(x) + O(zn+m+1),

with Pn and Qm being polynomials of degree n and m.
12 In a sense, this is what we did at the end of Sect. 4.2, as the algorithm 10 from

[DDLL13] is meant to be used in conjunction with two other Algorithms (11 and 12).
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While Padé approximants are in general much trickier to compute than their
Taylor series counterparts, such approximants are well known for the exponential
function. Let m = n and

Pn(x) = Qn(−x) =
n∑

k=0

(2n − k)!n!xk

(2n)!(n − k)!k!
. (16)

Then we have [Pad92]:
∣
∣
∣
∣
Pn(x)
Qn(x)

− ex

∣
∣
∣
∣ =

(n!)2x2n+1ex

(2n)!(2n + 1)!
(1 + o(1)) (17)

Since our goal is to have a relative error less than 2−37, taking (m, |x|) ≤
(4, .5) or (m, |x|) ≤ (5, 1) is sufficient.

A.2 Classical Lemmas

Lemma 9 [MR07, Lemma4.2]. Let Λ be a n-dimensional lattice, c ∈ R
n,

u ∈ R
n a vector of norm 1 and reals ε ∈ (0, 1), σ ≥ 2ηε(Λ). The following

inequalities hold:
∣
∣Ex←DΛ,σ,c [〈x − c,u〉]∣∣ ≤

√
2πεσ

1 − ε

∣
∣Ex←DΛ,σ,c [〈x − c,u〉2] − σ2

∣
∣ ≤ 2πεσ2

1 − ε

Lemma 10 [MR07, Lemma4.4]. Let Λ be a n-dimensional lattice, c ∈ R
n,

and reals ε ∈ (0, 1), σ ≥ ηε(Λ). We have:

Px←DΛ,σ,c [‖x − c‖ ≥ σ
√

2πn] ≤ 1 + ε

1 − ε
2−n
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[LSS14] Langlois, A., Stehlé, D., Steinfeld, R.: GGHLite: more efficient multilinear
maps from ideal lattices. In: Nguyen and Oswald [NO14], pp. 239–256

[Lyu09] Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and
factoring-based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009.
LNCS, vol. 5912, pp. 598–616. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-10366-7 35

[Lyu12] Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval
and Johansson [PJ12], pp. 738–755

https://almasty.lip6.fr/~espitau/bin/SCBliss
https://almasty.lip6.fr/~espitau/bin/SCBliss
https://doi.org/10.1007/BFb0052231
https://doi.org/10.1007/BFb0052231
https://doi.org/10.1007/978-3-642-13190-5
https://doi.org/10.1007/3-540-45682-1_1
https://doi.org/10.1007/978-3-642-33027-8_31
https://doi.org/10.1007/3-540-46035-7_20
https://doi.org/10.1007/3-540-46035-7_20
https://doi.org/10.1007/3-540-36563-X_9
http://bliss.di.ens.fr/bliss-06-13-2013.zip
https://doi.org/10.1007/978-3-662-46800-5_30
https://doi.org/10.1007/978-3-662-46800-5_30
https://doi.org/10.1007/978-3-662-44371-2_18
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35


Sharper Bounds in Lattice-Based Cryptography 373

[Mir17] Mironov, I.: Renyi differential privacy. In: Proceedings of 30th IEEE
Computer Security Foundations Symposium (2017). http://arxiv.org/
abs/1702.07476

[MP12] Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster,
smaller. In: Pointcheval and Johansson [PJ12], pp. 700–718

[MR04] Micciancio, D., Regev, O.: Worst-case to average-case reductions based
on Gaussian measures. In: 45th FOCS, Rome, Italy, 17–19 October 2004,
pp. 372–381. IEEE Computer Society Press (2004)

[MR07] Micciancio, D., Regev, O.: Worst-case to average-case reductions based
on Gaussian measures. SIAM J. Comput. 37, 267–302 (2007)

[MW17] Micciancio, D., Walter, M.: Gaussian sampling over the integers: efficient,
generic, constant-time. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10402, pp. 455–485. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-63715-0 16

[NO14] Nguyen, P.Q., Oswald, E. (eds.): EUROCRYPT 2014. LNCS, vol. 8441.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5

[NR06] Nguyen, P.Q., Regev, O.: Learning a parallelepiped: cryptanalysis of GGH
and NTRU signatures. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 271–288. Springer, Heidelberg (2006). https://doi.org/10.
1007/11761679 17
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Abstract. In this paper, we present several methods to improve the
evaluation of homomorphic functions in TFHE, both for fully and for lev-
eled homomorphic encryption. We propose two methods to manipulate
packed data, in order to decrease the ciphertext expansion and optimize
the evaluation of look-up tables and arbitrary functions in RingGSW
based homomorphic schemes. We also extend the automata logic, intro-
duced in [12,19], to the efficient leveled evaluation of weighted automata,
and present a new homomorphic counter called TBSR, that supports all
the elementary operations that occur in a multiplication. These improve-
ments speed-up the evaluation of most arithmetic functions in a packed
leveled mode, with a noise overhead that remains additive. We finally
present a new circuit bootstrapping that converts LWE into low-noise
RingGSW ciphertexts in just 137 ms, which makes the leveled mode of
TFHE composable, and which is fast enough to speed-up arithmetic func-
tions, compared to the gate-by-gate bootstrapping given in [12]. Finally,
we propose concrete parameter sets and timing comparison for all our
constructions.

Keywords: FHE · Leveled · Bootstrapping · LWE · GSW · Packing ·
Weighted automata · Arithmetic

1 Introduction

Fully homomorphic encryption (FHE) allows arbitrary computations over
encrypted data, without decrypting them. The first construction was proposed
in 2009 by Gentry [20], which introduced a new technique called bootstrap-
ping to handle the noise propagation in ciphertexts. Although many efforts have
been done since this first proposal to improve FHE, it remains too slow for
real world applications. The most promising constructions are [5,21,30]. We
focus on constructions based on the LWE problem, introduced by Regev in

c© International Association for Cryptologic Research 2017
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2005 [28], and its ring variants [25]. Some public implementations are available,
namely Helib [22,23], FV-NFlib [24] and SEAL [29], based on BGV [5,18], and
FHEW [17] and TFHE [14], based on GSW [12,17,21].

BGV-based schemes use in general slow operations, but they can treat a
lot of bits at the same time, so they can pack and batch many operations in
a SIMD manner, like in GPUs. Further, the set of operations that are efficient
with BGV are very constrained by the parameter set. Some parameters allow
very fast vectorial sums and products modulo a fixed modulus (as in AES). But
with these parameters, a comparison, a classical addition, extracting one bit or
more complicated bit operations (as in SHA-256) are very slow.

On the other hand, recent developments have shown that GSW operations
can evaluate very fast independent elementary operations on bits, like in a CPU.
In the TFHE scheme (presented in [12] and based on GSW [21] and its ring
variant [17]) the elementary operations are all the binary gates. Therefore, it
is easy to represent any function that has few gates, and the running time is
simply proportional to their number. A few methods have been proposed to
perform multibit or packed/batched operations with GSW-based schemes. For
instance, [4] extends the bootstrapping of FHEW [17] to evaluate non-linear
functions with a few input bits. Unfortunately, the parameter sizes must increase
exponentially with the number of bits in the plaintext space. Until this work,
it was not clear how to perform efficient evaluations on packed data or batch
operations, as it is in BGV-based schemes.

Homomorphic encryption falls in two families: leveved (LHE) and fully (FHE)
homomorphic encryption. Informally, in LHE, for each function, there exist para-
meters that can homomorphically evaluate it1. The structure of the function to
be evaluated (multiplicative depth in BGV or depth of compositions of branching
algorithms for GSW) translates into a noise overhead, and the parameters must
be chosen large enough to support this noise bound. This concept is represented
in the paper by the notion of parameter levels. In FHE, a single parameter set
allows to evaluate any function. This generalized definition implies that FHE is
a particular case of LHE.

In many FHE schemes, the elementary operations consist in leveled gates
with a symmetric noise propagation formula, and where non-linear gates cost
more than linear ones. The papers [3,26] improve the efficiency of fully homo-
morphic implementations by optimizing the placement of bootstrapping between
the gates throughout the circuit. This strategy does not really apply to GSW
schemes that strongly rely on the asymmetric noise propagation formula, in
which all circuits are expressed as deterministic automata or branching algo-
rithms, because the depth of the circuit has a very small impact on the noise.

The TFHE construction of [12] proposes two modes of operations: a FHE
mode composed of bootstrapped binary gates, and a LHE mode which can eval-
uate a deterministic automata or a branching algorithm and which supports

1 To simplify, we include the key size and the noise rate.
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very large depth of transitions.2 Note however that in the LHE mode of [12],
inputs and outputs have different types, which makes it non-composable. In this
paper we optimize both FHE/LHE modes, and we solve the non-composability
constraint.

Our Contribution. In this paper, we improve the TFHE construction of [12] for
both FHE and LHE modes.

We first propose a blind rotation algorithm that we describe in Sect. 2. In
FHE mode, this algorithm contributes to the acceleration of the gate bootstrap-
ping of [12], and its implementation is now included in the core of the TFHE
library [14]. This algorithm is also one of the building block we use to improve
the LHE mode of TFHE.

Because of the asymmetric noise propagation, operating over packed cipher-
texts in GSW-based schemes is harder than in BGV-based schemes. We describe
two different techniques, that we call horizontal packing and vertical packing,
that can be used to improve the evaluation of leveled circuits. An arbitrary
function from {0, 1}n → T

p can be represented as a truth table with p columns
and 2s rows. By packing these coefficients horizontally, the homomorphic eval-
uation of the function can be batched, and the p outputs can be produced in
parallel. This technique is classical, but is only efficient for very large p. We
propose another technique, called vertical packing, which packs the coefficients
column-wise, and which achieves its maximal speed-up also when p is equal to 1.

We also extend the deterministic finite automata framework proposed in [12,
19] by working with deterministic weighted finite automata. For most multibit
arithmetic functions, such as addition, multiplication and maximum value, these
latter allow to compute the whole output in a running time that would have
previously produced only a single bit.

Indeed, when an arithmetic operation is evaluated by a deterministic
automata, the only bit of information that is retained is whether or not the
destination state is accepting, and the rest of the path (that contains a lot of
information on the result) is forgotten. Thus, we need to evaluate one automata
for each bit of the result. Instead, by assigning a vector of weights on each tran-
sition, we are able to retain enough information along the path to get all the
bits of the result at once, in a single pass of the automata. This decreases the
complexity of these operations by at least one order of magnitude. Furthermore,
we propose a new homomorphic counter (called TBSR) that supports homomor-
phically all the basic operations related to the multiplication: incrementation,
division by 2 and extraction of bits. This technique gives another speed-up by a
factor equal to the bit-size of the input. We show how to use it to represent the
O(d2) (with d equal to the size of the input) schoolbook multi-addition or multi-
plication circuits, without increasing the homomorphic depth and with very low
noise overhead.
2 The TFHE construction is implemented and publicly available [14]. The actual run-

ning timings are 13 ms for each bootstrapped binary gate in FHE mode, and 34µs per
transition in LHE mode. The implementation also includes optimizations described
in Sect. 2.
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Our last contribution solves the main problem of the leveled mode of TFHE,
which is the non-composability, due to the fact that inputs and outputs are of
different types. The inputs are in fact RingGSW ciphertexts, while the outputs
are LWE ciphertexts. We introduce a new bootstrapping, called circuit bootstrap-
ping, that allows to transform LWE ciphertexts back to RingGSW ciphertexts
that can be reused as inputs in leveled circuits. The implementation of this cir-
cuit bootstrapping is publicly available [14] and it runs in 137 ms, improving
all previous techniques. The introduction of the circuit bootstrapping closes the
loop and allows all the new techniques previously described to be applied also in
a FHE mode. To show how these techniques improve homomorphic evaluations,
we propose several examples with concrete parameters and running time. For
instance, we show that we can evaluate a 10 bits to 1 bit ({0, 1}10 → {0, 1})
look-up table in 340µs and we can bootstrap the output in just 137 ms.

Paper organization. We first review mathematical definitions for the continuous
LWE and RingGSW encryption over the torus and review the algorithmic pro-
cedures for the homomomorphic evaluation of gates. In particular, we extend
the keyswitching algorithm to evaluate public or private Z-module morphisms,
and explain how it can be used to pack, unpack and move data across slots of
a ciphertext. In Sect. 3, we show various techniques to speed-up operations on
packed data: horizontal and vertical packing, our method to evaluate arithmetic
functions via weighted automata and our TBSR counter technique. In Sect. 4, we
introduce our circuit bootstrapping algorithm which makes it possible to connect
gates of either RingGSW or LWE types and give the practical execution tim-
ings we have obtained. Section 5 depicts all our complexity results for different
parameters set.

2 Preliminaries

This section introduces and revisits some basic concepts to understand the rest
of the paper. The homomorphic constructions we present are based on the LWE
problem, presented by Regev in 2005 [28], and on the GSW construction, pro-
posed by Gentry-Sahai-Waters in 2013 [21]. We use the generalized definitions of
TLWE and TGSW (the T stands for the torus representation) proposed in [12],
and extend some of their results.

2.1 Background on TFHE

We denote by λ the security parameter. The set {0, 1} is written as B. The real
torus R/Z = R mod 1 of real numbers mod 1 is denoted by T. R is the ring
Z[X]/(XN +1) of integer polynomials modulo XN +1, and TN [X] is the module
R[X]/(XN + 1) mod 1 of torus polynomials, where N is a power of 2. BN [X]
denotes the subset of R of polynomials with binary coefficients. Note that T

is a Z-module and that TN [X] is a R-module. The set of vectors of size n in
E is denoted by En, and the set of n × m matrices with entries in E is noted
Mn,m(E). As before, Tn (resp. TN [X]n) and Mn,m(T) (resp. Mn,m(TN [X]))
are Z-modules (resp. R-modules).



Faster Packed Homomorphic Operations and Efficient Circuit Bootstrapping 381

Distance, Lipschitzian functions, Norms. We use the standard �p-distance
over T, and use the (more convenient but improper) ‖x‖p notation to denote the
distance between 0 and x. Note that it satisfies ∀m ∈ Z, ‖m · x‖p ≤ |m| ‖x‖p. For
an integer or torus polynomial a modulo XN + 1, we write ‖a‖p the norm of its
unique representative coefficients of degree ≤ N − 1. The notion of lipschitzian
function always refers to the �∞ distance: a function f is R-lipschitzian iff.
‖f(x) − f(y)‖∞ ≤ R ‖x − y‖∞ for all inputs x, y.

TLWE. TLWE is a generalized and scale invariant version of the LWE problem,
proposed by Regev in 2005 [28], over the Torus T.

Given a small linear lipshtitzian function ϕs from TN [X]k+1 to TN [X] (that
depends on the secret key) and which we’ll call the phase function, the TLWE
encryption of μ ∈ TN [X] simply consists in picking a ciphertext c which is a
Gaussian approximation of a preimage ϕ−1

s (μ). If the Gaussian noise is small
enough, the distribution of ϕs(c) (over the probability space Ω of all possi-
ble choices of Gaussian noise) remains concentrated around the message μ, i.e.
included in a ball of radius < 1

4 around μ. Because this distribution is con-
centrated, it allows to properly define the intuitive notions of expectation and
variance, which would in general not exist over the Torus: in this case, the expec-
tation of ϕs(c) is the original message μ, and its variance is equal to the variance
of the Gaussian noise that was added during encryption. We refer to [12] for a
general definition of Ω-space, concentrated distribution, expectation, variance,
Gaussian and sub-Gaussian distributions over the Torus.

More precisely, a TLWE secret key s ∈ BN [X]k is a vector of k binary poly-
nomials of degree N . We assume that each coefficient of the secret key is chosen
uniformly, so the key has n = kN bits of entropy.

Definition 2.1 (TLWE, phase). TLWE ciphertexts or samples are c = (a, b) ∈
TN [X]k+1 that fall in one of the three cases:

– Noiseless Trivial of μ: a = 0 and b = μ. Note that this sample is independent
of the secret key.

– Fresh TLWE sample of μ of standard deviation α: a is uniformly in TN [X]k

and b follows a continuous Gaussian of standard deviation α centered in
μ + s · a, where the variance is α2. In the following, we will write (a, b) ∈
TLWEs,α(μ).

– Combination of TLWE samples: c =
∑p

j=1 rj · cj is a TLWE sample, where
c1, . . . , cp are TLWE sample under the same key and r1, . . . , rp in Z or R.

The phase of a sample c is defined as ϕs(c) = b − s · a.

Like in [12], we say that a TLWE sample c is valid iff there exists a key
s ∈ BN [X]k such that the distribution of the phase ϕs(c) is concentrated. The
message of a sample c, written msg(c) is defined as the expectation of its phase
over the Ω-probability space. We will write c ∈ TLWEs(μ) iff msg(c) = μ. The
error of a TLWE sample c, Err(c) is then computed as ϕ(c)−msg(c). The variance
of the error will be denoted Var(Err(c)) and its maximal amplitude ‖Err(c)‖∞.
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The message of a fresh sample in TLWEs,α(μ) is μ and its variance is α2. The
message function is linear: msg(

∑p
j=1 rj · cj), where cj ∈ TLWEs(rjμj) is equal

to
∑p

j rjμj provided that the variance Var(Err(c)) ≤ ∑p
j=1 ‖rj‖22 · Var(Err(cj))

and the maximal amplitude ‖Err(c)‖∞ ≤ ∑p
j=1 ‖rj‖1 ·‖Err(cj)‖∞ remains small.

This definition of message has the great advantages to be linear, continuous,
and that it works with infinite precision even over the continuous torus. In the
practical case where the message is known to belong to a discrete subset M
of TN [X] and that the noise amplitude of c is smaller than the packing radius
of M, then the decryption algorithm can retrieve the message in practice by
rounding the phase of the sample to its nearest element in M. For example with
M = {(0, 1/2)}[X], the packing is 1/4 and thus the samples of variance smaller
than (1/210) are decryptable with overwhelming probability.

Distinguishing TLWE encryptions of 0 from random samples in TN [X]k ×
TN [X] is equivalent to the LWE problem initially defined by Regev [28] and its
ring [25] and Scale invariant [6,11,13] variants.

The main parameters of TLWE are the noise rate α and the key entropy
n, and the security parameter is a function of those parameters, as specified
in [12, Sect. 6]. By choosing N = 1 and k large, TLWE-problem is the (Scalar)
binary-TLWE-problem. When N large and k = 1, TLWE is binary-RingLWE.

TGSW. In the same line as TLWE, TGSW generalizes the GSW encryption
scheme, proposed by Gentry, Sahai and Waters in 2013 [21]. The gadget matrix
H is defined with respect to a base Bg ∈ N as the ((k + 1)�) × (k + 1) matrix
with � repeated super-decreasing T-polynomials (1/Bg, . . . , 1/B�

g) as:

H =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/Bg . . . 0
...

. . .
...

1/B�
g . . . 0

...
. . .

...

0 . . . 1/Bg

...
. . .

...

0 . . . 1/B�
g

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ M(k+1)�,k+1(TN [X]). (1)

With this choice of gadget, it is possible to efficiently decompose elements
of TN [X]k+1 as a small linear combination of rows of H. As in [12], we use
approximate decomposition. For a quality parameter β ∈ R>0 and a precision
ε ∈ R>0, we call DecH,β,ε(v) the (possibly randomized) algorithm that outputs
a small vector u ∈ R(k+1)�, such that ‖u‖∞ ≤ β and ‖u · H − v‖∞ ≤ ε. In this
paper we will always use this gadget H with the decomposition in base Bg, so
we have β = Bg/2 and ε = 1/2B�

g.

TGSW samples. Let s ∈ BN [X]k be a TLWE secret key and H ∈ M(k+1)�,k+1

(TN [X]) the gadget previously defined. A TGSW sample C of a message
μ ∈ R is equal to the sum C = Z + μ · H ∈ M(k+1)�,k+1(TN [X]) where
Z ∈ M(k+1)�,k+1(TN [X]) is a matrix such that each line is a random TLWE
sample of 0 under the same key.
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A sample C ∈ M(k+1)�,k+1(TN [X]) is a valid TGSW sample iff there exists a
unique polynomial μ ∈ R/H⊥ and a unique key s such that each row of C−μ•H
is a valid TLWE sample of 0 w.r.t. the key s. We denote msg(C) the message
μ of C. By extension, we can define the phase of a TGSW sample C as the list
of the (k + 1)� TLWE phases of each line of C, and the error as the list of the
(k + 1)� TLWE errors of each line of C.

In addition, if we linearly combine TGSW samples C1, . . . , Cp of messages
μ1, . . . , μp with the same keys and independent errors, s.t. C =

∑
i=1 ei · Ci is a

sample of message
∑p

i=1 ei · μi. The variance Var(C) =
∑p

i=1 ‖ei‖22 ·Var(Ci) and
noise infinity norm ‖Err(C)‖∞ =

∑p
i=1 ‖ei‖1 · ‖Err(C)‖∞. And, the lipschitzian

property of the phase is preserved, i.e. ‖ϕs(A)‖∞ ≤ (Nk + 1) ‖A‖∞.

Homomorphic Properties. As GSW, TGSW inherits homomorphic properties.
We can define the internal product between two TGSW samples and the external
� product already defined and used in [7,12]. The external product is almost
the GSW product [21], except that only one vector needs to be decomposed.

Definition 2.2 (External product). We define the product � as

� : TGSW × TLWE −→ TLWE

(A, b) �−→ A � b = Dech,β,ε(b) · A.

The following theorem on the noise propagation of the external product was
shown in [12, Sect. 3.2]:

Theorem 2.3 (External Product). If A is a valid TGSW sample of message
μA and b is a valid TLWE sample of message μb, then A � b is a TLWE sample
of message μA · μb and ‖Err(A � b)‖∞ ≤ (k + 1)�Nβ ‖Err(A)‖∞ + ‖μA‖1 (1 +
kN)ε + ‖μA‖1 ‖Err(b)‖∞ (worst case), where β and ε are the parameters used
in the decomposition algorithm. If ‖Err(A � b)‖∞ ≤ 1/4 then A � b is a valid
TRLWE sample. And assuming the heuristic 2.4, we have that Var(Err(A�b)) ≤
(k + 1)�Nβ2Var(Err(A)) + (1 + kN) ‖μA‖22 ε2 + ‖μA‖22 Var(Err(b)).

There also exists an internal product between two TGSW samples, already
presented in [1,12,17,19,21], and which consists in (k+1)� independent � prod-
ucts, and maps to the product of integer polynomials on plaintexts, and turns
TGSW encryption into a ring homomorphism. Since we do not use this internal
product in our constructions, so we won’t detail it.

Independence heuristic. All our average-case bounds on noise variances rely
on the independence heuristic below. They usually corresponds to the square-
root of the worst-case bounds which don’t need this heuristic. As already noticed
in [17], this assumption matches experimental results.

Assumption 2.4 (Independence Heuristic). We assume that all the error
coefficients of TLWE or TGSW samples of the linear combinations we con-
sider are independent and concentrated. In particular, we assume that they are
σ-subgaussian where σ is the square-root of their variance.



384 I. Chillotti et al.

Notations. In the rest of the paper, the notation TLWE is used to denote the
(scalar) binary TLWE problem, while for the ring mode, we use the notation
TRLWE. TGSW is only used in ring mode with notation TRGSW, to keep uni-
formity with the TRLWE notation.

Sum-up of elementary homomorphic operations. Table 1 summarizes the
possible operations on plaintexts that we can perform in LHE mode, and their
correspondence over the ciphertexts. All these operations are expressed on the
continuous message space T for TLWE and TN [X] for TRLWE. As previously
mentionned, all samples contain noise, the user is free to discretize the message
space accordingly to allow practical exact decryption. All these algorithms will
be described in the next sections.

Table 1. TFHE elementary operations - In this table, all μi’s denote plaintexts in
TN [X] and ci the corresponding TRLWE ciphertext. The mi’s are plaintexts in T and
c their TLWE ciphertext. The bi’s are bit messages and Ci their TRGSW ciphertext.
The ϑi’s are the noise variances of the respective ciphertexts. In the translation, w is in
TN [X]. In the rotation, the ui’s are integer coefficients. In the Z[X]-linear combination,
the vi’s are integer polynomials in Z[X].

Operation Plaintext Ciphertext Variance

Translation μ + w c + (0, w) ϑ

Rotation Xui μ Xuic ϑ

Z[X]-linear
∑

viμi
∑

vici
∑ ‖vi‖2

2ϑi

SampleExtract
∑

μiXi → μp SampleExtract (Sect. 2.2) ϑ

Z-linear f(m1, . . . , mp) PubKSKS(f, c1, . . . , cp) (Algorithm1) R2ϑ + n log
(

1
α

)
CstKS

R-lipschitzian PrivKS
KS(f) (c1, . . . , cp) (Algorithm2) R2ϑ + np log

(
1
α

)
CstKS

Ext. product b1 · μ2 C1 � c2 (Theorem2.3) b1ϑ2 + CstTRGSWϑ1

CMux b1?μ2 : μ3 CMux(C1, c2, c3) (Lemma 2.7) max(ϑ2, ϑ3) + CstTRGSWϑ1

T-non-linear X−ϕ(c1)μ2 BlindRotate (Algorithm3) ϑ + nCstTRGSW

Bootstrapping decrypt(c)?m : 0 Gate Bootstrapping (Algorithm4) Cst

2.2 Key Switching Revisited

In the following, we instantiate TRLWE and TRGSW with different parameter
sets and we keep the same name for the variables n,N, α, �, Bg, . . . , but we alter-
nate between bar over and bar under variables to differentiate input and output
parameters. In order to switch between keys in different parameter sets, but also
to switch between the scalar and polynomial message spaces T and TN [X], we
use slightly generalized notions of sample extraction and keyswitching. Namely,
we give to keyswitching algorithms the ability to homomorphically evaluate lin-
ear morphisms f from any Z-module T

p to TN [X]. We define two flavors, one
for a publicly known f , and one for a secret f encoded in the keyswitching key.
In the following, we denote PubKS(f,KS, c) and PrivKS(KS(f), c) the output of
Algorithms 1 and 2 on input the functional keyswitching keys KS and KS(f)

respectively and ciphertext c.
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Algorithm 1. TLWE-to-TRLWE Public Functional Keyswitch
Input: p LWE ciphertexts c(z) = (a(z), b(z)) ∈ TLWEK(μz) for z = 1, . . . , p, a public

R-lipschitzian morphism f from T
p to TN [X], and KSi,j ∈ TRLWEK(Ki

2j ).
Output: A TRLWE sample c ∈ TRLWEK(f(μ1, . . . , μp))
1: for i ∈ [[1, n]] do

2: Let ai = f(a
(1)
i , . . . , a

(p)
i )

3: let ãi be the closest multiple of 1
2t to ai, thus ‖ãi − ai‖∞ < 2−(t+1)

4: Binary decompose each ãi =
∑t

j=1 ãi,j · 2−j where ãi,j ∈ BN [X]
5: end for
6: return (0, f(b(1), . . . , b(p))) −∑n

i=1

∑t
j=1 ãi,j × KSi,j

Theorem 2.5. (Public KeySwitch) Given p LWE ciphertexts c(z) ∈ TLWEK(μz)
and a public R-lipschitzian morphism f of Z-modules, from T

p to TN [X], and
KSi,j ∈ TRLWEK,γ(Ki

2j ) with standard deviation γ, Algorithm1 outputs a TRLWE

sample c ∈ TRLWEK(f(μ1, . . . , μp)) where:

– ‖Err(c)‖∞ ≤ R ‖Err(c)‖∞ + ntNAKS + n2−(t+1) (worst case),
– Var(Err(c)) ≤ R2Var(Err(c))+ntNϑKS +n2−2(t+1) (average case), where AKS

and ϑKS = γ2 are respectively the amplitude and the variance of the error
of KS.

We have a similar result when the function is private. In this algorithm, we
extend the input secret key K by adding a (n + 1)-th coefficient equal to −1,
so that ϕK(c) = −K · c. A detailed proof for both the private and the public
keyswitching is given in the full version.

Theorem 2.6. (Private KeySwitch) Given p TLWE ciphertexts c(z) ∈
TLWEK(μz), KSi,j ∈ TRLWEK,γ(f(0, . . . , Ki

2j , . . . , 0)) where f is a private R-
lipschitzian morphism of Z-modules, from T

p to TN [X], Algorithm2 outputs a
TRLWE sample c ∈ TRLWEK(f(μ1, . . . , μp)) where

– ‖Err(c)‖∞ ≤ R ‖Err(c)‖∞ + (n + 1)R2−(n+1) + p(n + 1)AKS (worst-case),
– Var(Err(c)) ≤ R2Var(Err(c))+(n+1)R22−2(n+1)+p(n+1)ϑKS (average case),

where AKS and ϑKS = γ2 are respectively the amplitude and the variance of
the error of KS.

Algorithm 2. TLWE-to-TRLWE Private Functional Keyswitch
Input: p TLWE ciphertexts c(z) ∈ TLWEK(μz), KSz,i,j ∈ TRLWEK(f(0, . . . , 0, Ki

2j ,

0, . . . , 0)) where f is a secret R-lipschitzian morphism from T
p to TN [X] and Ki

2j is
at position z (also, Kn+1 = −1 by convention).

Output: A TRLWE sample c ∈ TRLWEK(f(μ1, . . . , μp)).
1: for i ∈ [[1, n + 1]], z ∈ [[1, p]] do

2: Let c̃
(z)
i be the closest multiple of 1

2t to c
(z)
i , thus |c̃(z)i − c

(z)
i | < 2−(t+1)

3: Binary decompose each c̃
(z)
i =

∑t
j=1 c̃

(z)
i,j · 2−j where c̃

(z)
i,j ∈ {0, 1}

4: end for
5: return −∑p

z=1

∑n+1
i=1

∑t
j=1 c̃

(z)
i,j · KSz,i,j
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Sample Packing and Sample Extraction. A TRLWE message is a polyno-
mial with N coefficients, which can be viewed as N slots over T. It is easy to
homomorphically extract a coefficient as a scalar TLWE sample. To that end,
we will use the following convention in the rest of the paper: for all n = kN ,
a binary vector K ∈ B

n can be interpreted as a TLWE key, or alternatively as
a TRLWE key K ∈ BN [X]k having the same sequence of coefficients. Namely,
Ki is the polynomial

∑N−1
j=0 KN(i−1)+j+1X

j . In this case, we say that K is the
TRLWE interpretation of K, and K is the TLWE interpretation of K.

Given a TRLWE sample c = (a, b) ∈ TRLWEK(μ) and a position p ∈
[0, N − 1], we call SampleExtractp(c) the TLWE sample (a, b) where b = bp

and aN(i−1)+j+1 is the (p − j)-th coefficient of ai (using the N-antiperiodic
indexes). This extracted sample encodes the p-th coefficient μp with at most
the same noise variance or amplitude as c. In the rest of the paper, we will sim-
ply write SampleExtract(c) when p = 0. In the next Section, we will show how
the KeySwitching and the SampleExtract are used to efficiently pack, unpack and
move data across the slots, and how it differs from usual packing techniques.

2.3 Gate Bootstrapping Overview

This lemma on the evaluation of the CMux-gate extends Theorems 5.1 and 5.2
in [12] from the message space {0, 1/2} to TN [X]:

Lemma 2.7 (CMux Gate). Let d1,d0 be TRLWE samples and let C ∈ TRGSWs

({0, 1}). Then, msg(CMux(C,d1,d0)) = msg(C)?msg(d1):msg(d0). And we have
‖Err(CMux(C,d1,d0))‖∞ ≤ max(‖Err(d0)‖∞ , ‖Err(d1)‖∞)+η(C), where η(C) =
(k + 1)�Nβ ‖Err(C)‖∞ + (kN + 1)ε. Furthermore, under Assumption 2.4, we
have: Var(Err(CMux(C,d1,d0))) ≤ max(Var(Err(d0)),Var(Err(d1)))+ϑ(C), where
ϑ(C) = (k + 1)�Nβ2Var(Err(C)) + (kN + 1)ε2.

The proof is the same as for Theorems 5.1 and 5.2 in [12] because the noise
of the output does not depend on the value of the TRLWE message.

Blind rotate. In the following, we give faster sub-routine for the main loop
of Algorithm 3 in [12]. The improvement consists in a new CMux formula in the
for loop of the Algorithm3 instead of the formula in Algorithm 3 of [12]. The
BlindRotate algorithm multiplies the polynomial encrypted in the input TRLWE
ciphertext by an encrypted power of X. Theorem 2.8 follows from the fact that
Algorithm 3 calls p times the CMux evaluation from Lemma 2.7.

Theorem 2.8. Let H ∈ M(k+1)�,k+1(TN [X]) the gadget matrix and DecH,β,ε its
efficient approximate gadget decomposition algorithm with quality β and preci-
sion ε defining TRLWE and TRGSW parameters. Let α ∈ R≥0 be a standard
deviation, K ∈ B

n be a TLWE secret key and K ∈ BN [X]k be its TRLWE
interpretation. Given one sample c ∈ TRLWEK(v) with v ∈ TN [X], p + 1
integers a1, . . . , ap and b ∈ Z/2NZ, and p TRGSW ciphertexts C1, . . . , Cp,
where each Ci ∈ TRGSWK,α(si) for si ∈ B. Algorithm3 outputs a sample
ACC ∈ TRLWEK(X−ρ · v) where ρ = b − ∑p

i=1 siai such that
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– ‖Err(ACC)‖∞ ≤ ‖Err(c)‖∞ + p(k + 1)�NβAC + p(1 + kN)ε (worst case),
– Var(Err(ACC)) ≤ Var(Err(c))+p(k +1)�Nβ2ϑC +p(1+kN)ε2 (average case),

where ϑC = α2 and AC are the variance and amplitudes of Err(Ci).

Algorithm 3. BlindRotate
Input: A TRLWE sample c of v ∈ TN [X] with key K.
1: p + 1 int. coefficients a1, . . . , ap, b ∈ Z/2NZ

2: p TRGSW samples C1, . . . , Cp of s1, . . . , sp ∈ B with key K
Output: A TRLWE sample of X−ρ.v where ρ = b −∑p

i=1 si.ai mod 2N with key K
3: ACC ← X−b • c
4: for i = 1 to p
5: ACC ← CMux(Ci, X

ai · ACC,ACC)
6: return ACC

We define BlindRotate(c, (a1, . . . , ap, b), C), the procedure described in Algo-
rithm3 that outputs the TLWE sample ACC as in Theorem 2.8.

Algorithm 4. Gate Bootstrapping TLWE-to-TLWE (calling Algorithm 3)
Input: A constant μ1 ∈ T, a TLWE sample c = (a, b) ∈ TLWEK,η(x · 1

2
), with x ∈ B

a bootstrapping key BKK→K̄,ᾱ = (BKi)i∈[[1,n]],
Output: A TLWE sample c̄ = (ā, b̄) ∈ TLWEK̄,η̄(x · μ1)
1: Let μ = 1

2
μ1 ∈ T (Pick one of the two possible values)

2: Let b̃ = �2N̄b� and ãi = �2N̄ai� ∈ Z for each i ∈ [[1, n]]

3: Let v := (1+X+ . . . +XN̄−1) · X
N̄
2 · μ ∈ TN̄ [X]

4: ACC ← BlindRotate((0, v), (a1, . . . , an, b), (BK1, . . . , BKn))
5: Return (0, μ) + SampleExtract(ACC)

Gate Bootstrapping (TLWE-to-TLWE)

Theorem 2.9 (Gate Bootstrapping (TLWE-to-TLWE)). Let H̄ ∈
M(k̄+1)�̄,k̄+1(TN̄ [X]) the gadget matrix and DecH̄,β̄,ε̄ its efficient approximate
gadget decomposition algorithm, with quality β̄ and precision ε̄ defining TRLWE
and TRGSW parameters. Let K ∈ B

n and K̄ ∈ B
n̄ be two TLWE secret keys,

and K̄ ∈ BN̄ [X]k̄ be the TRLWE interpretation of the key K̄, and let ᾱ ∈ R≥0

be a standard deviation. Let BKK→K̄,ᾱ be a bootstrapping key, composed by the
n TRGSW encryptions BKi ∈ TRGSWK̄,ᾱ(Ki) for i ∈ [[1, n]]. Given one con-
stant μ1 ∈ T, and one sample c ∈ T

n+1 whose coefficients are all multiples
of 1

2N̄
, Algorithm4 outputs a TLWE sample c̄ ∈ TLWEK̄(μ) where μ = 0 iff.

|ϕK(c)| < 1
4 , μ = μ1 otherwise and such that:

– ‖Err(c̄)‖∞ ≤ n(k̄ + 1)�̄N̄ β̄ĀBK + n(1 + k̄N̄)ε̄ (worst case),
– Var(Err(c̄)) ≤ n(k̄ + 1)�̄N̄ β̄2ϑ̄BK + n(1 + k̄N̄)ε̄2 (average case),

where ĀBK is the amplitude of BK and ϑ̄BK its variance s.t.
Var(Err(BKK→K̄,ᾱ)) = ᾱ2.
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Sketch of Proof. Algorithm 4 is almost the same as Algorithm 3 in [12] except that
the main loop has been put in a separate algorithm (Algorithm3) at line 2. In
addition, the final KeySwitching has been removed which suppresses two terms
in the norm inequality of the error. Note that the output is encrypted with
the same key as the bootstrapping key. Another syntactic difference is that the
input sample is a multiple of 1/2N (which can be achieved by rounding all its
coefficients). Also, a small difference in the way we associate CMux operations
removes a factor 2 in the noise compared to the previous gate bootstrapping
procedure, and it is also faster.

Homomorphic operations (revisited) via Gate Bootstrapping. The fast
bootstrapping of [17] and improved in [4,12] is presented for Nand gates. They
evaluate a single Nand operation and they refresh the result to make it usable for
the next operations. Other elementary gates are presented: the And, Or, Xor (and
trivially Nor, Xnor, AndNot, etc. since NOT is cheap and noiseless). The term gate
bootstrapping refers to the fact that this fast bootstrapping is performed after
every gate evaluation3.

The ternary Mux gate (Mux(c, d0, d1) = c?d1 : d0 = (c ∧ d1) ⊕ ((1 − c) ∧ d0),
for c, d0, d1 ∈ B) is generally expressed as a combination of 3 binary gates. As
already mentioned in [17], we can improve the Mux evaluation by performing
the middle ⊕ as a regular addition before the final KeySwitching. Indeed, this
xor has at most one operand which is true, and at this location, it only affects
a negligible amount of the final noise, and is compensated by the fact that we
save a factor 2 in the gate bootstrapping in the blind rotation from Algorithm3.
Overall, the ternary Mux gate can be evaluated in FHE mode by evaluating only
two gate bootstrappings and one public keyswitch. We call this procedure native
MUX, which computes:

– c ∧ d1 via a gate bootstrapping (Algorithm4) of (0,− 1
8 ) + c + d1;

– (1 − c) ∧ d0 via a gate bootstrapping (Algorithm4) of (0, 1
8 ) − c + d0;

– a final keyswitch on the sum (Algorithm 1) which dominates the noise.

This native Mux is therefore bootstrappable with the same parameters as
in [12]. More details are given in the full version. In the rest of the paper, when we
compare different homomorphic techniques, we refer to the gate-bootstrapping
mode as the technique consisting in evaluating small circuits expressed with
any binary gates and/or the native Mux, and we use the following experimental
timings (see Sect. 5):

Gate bootstrapping mode

Pre-bootstrap 1 bit tGB = 13ms

Time per any binary gate (And, Or, Xor, ...) tGB = 13ms

Time per MUX 2tGB = 26ms

3 Actually, the gate bootstrapping technique can be used even if we do not need to
evaluate a specific gate, but just to refresh noisy ciphertexts.
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3 Leveled Homomorphic Circuits

Various packing techniques have already been proposed for homomorphic encryp-
tion, for instance the Lagrange embedding in Helib [22,23], the diagonal matrices
encoding in [27] or the CRT encoding in [2]. The message space is often a finite
ring (e.g. Z/pZ), and the packing function is in general chosen as a ring isomor-
phism that preserves the structure of Z/pZN . This way, elementary additions
or products can be performed simultaneously on N independent slots, and thus,
packing is in general associated to the concept of batching a single operation
on multiple datasets. These techniques has some limitations, especially if in the
whole program, each function is only run on a single dataset, and most of the
slots are unused. This is particularly true in the context of GSW evaluations,
where functions are split into many branching algorithms or automata, that are
each executed only once.

In this paper, packing refers to the canonical coefficients embedding func-
tion, that maps N Scalar-TLWE messages μ0, . . . , μN−1 ∈ T into a single TRLWE

message μ(X) =
∑N−1

i=0 μiX
i. This function is a Z-module isomorphism. Mes-

sages can be homomorphically unpacked from any slot using the (noiseless)
SampleExtract procedure. Reciprocally, we can repack, move data across the
slots, or clear some slots by using our public functional key switching from
Algorithm 1 to evaluate respectively the canonical coefficient embedding func-
tion (i.e. the identity), a permutation, or a projection. Since these functions
are 1-lipschitzian, by Theorem 2.5, these keyswitch operations only induce a lin-
ear noise overhead. It is arguably more straightforward than the permutation
network technique used in Helib. But as in [2,10,15], our technique relies on a
circular security assumption, even in the leveled mode since our keyswitching
key encrypts its own key bits4.

We now analyse how packing can speed-up TGSW leveled computations, first
for lookup tables or arbitrary functions, and then for most arithmetic functions.

3.1 Arbitrary Functions and Look-Up Tables

The first class of functions that we analyse are arbitrary functions f : Bd → T
s.

Such functions can be expressed with a Look-Up Table (LUT), containing a list
of 2d input values (each one composed by d bits) and corresponding LUT values
for the s sub-functions (1 element in T per sub-function fj).

In order to compute f(x), where x =
∑d−1

i=0 xi2i is a d-bit integer, the classical
evaluation of such function, as proposed in [8,12] consists in evaluating the s
subfunctions separately, and each of them is a binary decision tree composed
by 2d − 1 CMux gates. The total complexity of the classical evaluation requires
therefore to execute about s · 2d CMux gates. Let’s call oj = fj(x) ∈ T the
j-th output of f(x), for j = 0, . . . , s − 1. Figure 1 summarizes the idea of the
computation of oj .

4 Circular security assumption could still be avoided in leveled mode if we accept to
work with many keys.
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Fig. 1. LUT with CMux tree - Intuitively, the horizontal rectangle encircles the bits
packed in the horizontal packing, while the vertical rectangle encircles the bits packed
in the vertical packing. The dashed square represents the packing in the case where
the two techniques are mixed. The right part of the figure represents the evaluation of
the sub-function fj on x =

∑d−1
i=0 xi2

i via a CMux binary decision tree.

In this section we present two techniques, that we call horizontal and vertical
packing, that can be used to improve the evaluation of a LUT.

Horizontal packing corresponds exactly to batching. In fact, it exploits the
fact that the s subfunctions evaluate the same CMux tree with the same inputs
on different data, which are the s truth tables. For each of the 2d possible input
values, we pack the LUT values of the s sub-functions in the first s slots of a
single TRLWE ciphertext (the remaining N − s are unused). By using a single
2d size CMux tree to select the right ciphertext and obtain the s slots all at once,
which is overall s times faster than the classical evaluation. Our vertical packing
is very different from the batching technique. The basic idea is to pack several
LUT values of a single sub-function in the same ciphertext, and to use both
CMux and blind rotations to extract the desired value. Unlike batching, this can
also speed up functions that have only a single bit of output. In the following
we detail these two techniques.

In order to evaluate f(x), the total amount of homomorphic CMux gates to be
evaluated is s(2d−1). If the function f is public, trivial samples of the LUT values
σj,0, . . . , σj,N−1 are used as inputs in the CMux gates. If f is private, the LUT
values σj,0, . . . , σj,N−1 are given encrypted. An analysis of the noise propagation
in the binary decision CMux tree was already given in [12,19].

Horizontal Packing. The idea of the Horizontal Packing is to evaluate all the
outputs of the function f together, instead of evaluating all the fj separately.
This is possible by using TRLWE samples as the message space is TN [X]. In
fact, we could encrypt up to N LUT values σj,h (for a fixed h ∈ [[0, 2d − 1]]) per
TRLWE sample and evaluate the binary decision tree as described before. The
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number of CMux gates to evaluate is 
 s
N �(2d − 1). This technique is optimal if

the size s of the output is a multiple of N . Unfortunately, s is in general ≤ N ,
the number of gates to evaluate remains 2d − 1, which is only s times smaller
than the non-packed approach, and is not advantageous if s is small. Lemma 3.1
specifies the noise propagation and it follows immediately from Lemma2.7 and
from the construction of the binary decision CMux tree, which has depth d.

Lemma 3.1 (Horizontal Packing). Let d0, . . . ,d2d−1 be TRLWE samples5

such that dh ∈ TRLWEK(
∑s

j=0 σj,hXj) for h ∈ [[0, 2d − 1]]. Here the σj,h are the
LUT values relative to an arbitrary function f : Bd → T

s. Let C0, . . . , Cd−1 be
TRGSW samples, such that Ci ∈ TRGSWK(xi) with xi ∈ B (for i ∈ [[0, d − 1]]),
and x =

∑d−1
i=0 xi2i. Let d be the TRLWE sample output by the f evaluation of

the binary decision CMux tree for the LUT (described in Fig. 1). Then, using the
same notations as in Lemma 2.7 and setting msg(d) = f(x):

– ‖Err(d)‖∞ ≤ ATRLWE + d · ((k + 1)�NβATRGSW + (kN + 1)ε) (worst case),
– Var(Err(d)) ≤ ϑTRLWE +d · ((k +1)�Nβ2ϑTRGSW +(kN +1)ε2) (average case),

where ATRLWE and ATRGSW are upper bounds of the infinite norm of the errors
of the TRLWE samples ant the TRGSW samples respectively and ϑTRLWE and
ϑTRGSW are upper bounds of their variances.

Vertical Packing. In order to improve the evaluation of the LUT, we propose
a second optimization called Vertical Packing. As for the horizontal packing we
use the TRLWE encryption to encode N values at the same time. But now,
instead of packing the LUT values σj,h with respect to a fixed h ∈ [[0, 2d − 1]]
i.e. “horizontally”, we pack N values σj,h “vertically”, with respect to a fixed
j ∈ [[0, s−1]]. Then, instead of just evaluating a full CMux tree, we use a different
approach. If the LUT values are packed in boxes, our technique first uses a packed
CMux tree to select the right box, and then, a blind rotation (Algorithm3) to
find the element inside the box.

We now explain how to evaluate the function f , or just one of its sub-functions
fj , on a fixed input x =

∑d−1
i=0 xi2i. We assume we know the LUT associated

to fj as in Fig. 1. For retrieving the output of fj(x), we just have to return the
LUT value σj,x in position x.

Let δ = log2(N). We analyse the general case where 2d is a multiple of
N = 2δ. The LUT of fj , which is a column of 2d values, is now packed as 2d/N
TRLWE ciphertexts d0, . . . ,d2d−δ−1, where each dk encodes N consecutive LUT
values σj,kN+0, . . . , σj,kN+N−1. To retrieve fj(x), we first need to select the block
that contains σj,x. This block has the index p = �x/N, whose bits are the d− δ
most significant bits of x. Since the TRGSW encryption of these bits are among
our inputs, one can use a CMux tree to select this block dp. Then, σj,x is the
ρ-th coefficient of the message of dp where ρ = x mod N =

∑δ−1
i=0 xi2i. The

5 The TRLWE samples can be trivial samples, in the case where the function f and
its LUT are public.
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Algorithm 5. Vertical Packing LUT of fj : Bd → T (calling Algorithm 3)

Input: A list of 2d

N
TRLWE samples dp ∈ TRLWEK(

∑N−1
i=0 σj,pN+iX

i) for p ∈ [[0, 2d

N
−

1]], a list of d TRGSW samples Ci ∈ TRGSWK(xi), with xi ∈ B and i ∈ [[0, d − 1]],
Output: A TLWE sample c ∈ TLWEK(oj = fj(x)), with x =

∑d−1
i=0 xi2

i

1: Evaluate the binary decision CMux tree of depth d − δ, with TRLWE inputs
d0, . . . , d 2d

N
−1

and TRGSW inputs Cδ, . . . , Cd−1, and output a TRLWE sample d

2: d ← BlindRotate(d, (20, . . . , 2δ−1, 0), (C0, . . . , Cδ−1))
3: Return c = SampleExtract(d)

bits of ρ are the δ least significant bits of x, which are also available as TRGSW
ciphertexts in our inputs. We can therefore use a blind rotation (Algorithm3)
to homomorphically multiply dp by X−ρ, which brings the coefficient σj,x in
position 0, and finally, we extract it with a SampleExtract. Algorithm 5 details
the evaluation of fj(x).

The entire cost of the evaluation of fj(x) with Algorithm 5 consists in 2d

N − 1
CMux gates and a single blind rotation, which corresponds to δ CMux gates. Over-
all, we get a speed-up by a factor N on the evaluation of each partial function,
so a factor N in total.

Lemma 3.2 (Vertical Packing LUT of fj). Let fj : B
d → T be a sub-

function of the arbitrary function f , with LUT values σj,0, . . . , σj,2d−1. Let
d0, . . . ,d 2d

N −1
be TRLWE samples, such that dp ∈ TRLWEK(

∑N−1
i=0 σj,pN+iX

i)

for p ∈ [[0, 2d

N − 1]]6. Let C0, . . . , Cd−1 be TRGSW samples, such that Ci ∈
TRGSWK(xi), with xi ∈ B and i ∈ [[0, d − 1]].

Then Algorithm5 outputs a TLWE sample c such that msg(c) = fj(x) =
oj where x =

∑d−1
i=0 xi2i and using the same notations as in Lemma 2.7 and

Theorem2.8, we have:

– ‖Err(d)‖∞ ≤ ATRLWE + d · ((k + 1)�NβATRGSW + (1 + kN)ε) (worst case),
– Var(Err(d)) ≤ ϑTRLWE +d · ((k +1)�Nβ2ϑTRGSW +(1+kN)ε2) (average case),

where ATRLWE and ATRGSW are upper bounds of the infinite norm of the errors
in the TRLWE samples ant the TRGSW samples respectively, while ϑTRLWE and
ϑTRGSW are upper bounds of the variances.

Proof (Sketch). The proof follows immediately from the results of Lemma2.7
and Theorem 2.8, and from the construction of the binary decision CMux tree. In
particular, the first CMux tree has depth (d − δ) and the blind rotation evaluates
δ CMux gates, which brings a total factor d in the depth. As the CMux depth is
the same as in horizontal packing, the noise propagation matches too.

6 If the sub-function fj and its LUT are public, the LUT values σj,0, . . . , σj,2d−1 can

be given in clear. This means that the TRLWE samples dp, for p ∈ [[0, 2d

N
− 1]] are

given as trivial TRLWE samples dp ← (0,
∑N−1

i=0 σj,pN+iX
i) in input to Algorithm 5.
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Remark 1 As previously mentioned, the horizontal and vertical packing tech-
niques can be mixed together to improve the evaluation of f in the case where
s and d are both small, i.e. the previous two methodology cannot be applied
separately but we have 2d · s > N . In particular, if we pack s = x coefficients
horizontally and y = N/x coefficients vertically, we need 
2d/y� − 1 CMux gates
plus one vertical packing LUT evaluation in order to evaluate f , which is equiv-
alent to log2(y) CMux evaluations. The result is composed of the first x TLWE
samples extracted.

3.2 Arithmetic Operations via Weighted Automata

In [12], the arithmetic operations were evaluated via deterministic finite
automata using CMux gates. It was made possible thanks to the fact that the
messages were binary. In this paper, the samples on which we perform the arith-
metic operations pack several torus values together. A more powerful tool is
thus needed to manage the evaluations in an efficient way. Deteministic weighted
finite automata (det-WFA) are deterministic finite automata where each transi-
tion contains an additional weight information. By reading a word, the outcome
of a det-WFA is the sum of all weights encountered along the path (here, we
work with an additive group), whereas the outcome of a deterministic finite
automata (DFA) is just a boolean that states whether the destination state is
accepting. The weights of a det-WFA can be seen as a memory that stores the
bits of the partial result, all along the evaluation path. Let’s take for example
the evaluation of the MAX circuit, that takes in input two d-bit integers and
returns the maximal value between them. With DFA, to retrieve all the d bits
of the result we need d different automata, for a total of O(d2) transitions. By
introducing the weights, all the bits of the result are given in one pass after only
O(d) transitions. To our knowledge, our paper is the first one introducing this
tool on the FHE context. In this section, we detail the use of det-WFA to evalu-
ate some arithmetic functions largely used in applications, such as addition (and
multi-addition), multiplication, squaring, comparison and max, etc. We refer to
[9,16] for further details on the theory of weighted automata.

Definition 3.3 (Deterministic weighted finite automata (det-WFA)).
A deterministic weighted finite automata (det-WFA) over a group (S,⊕) is a
tuple A = (Q, i,Σ, T , F ), where Q is a finite set of states, i is the initial state,
Σ is the alphabet, T ⊆ Q × Σ × S × Q is the set of transitions and F ⊆ Q is the
set of final states. Every transition itself is a tuple t = q

σ,ν−→ q′ from the state q
to the state q′ by reading the letter σ with weight w(t) equal to ν, and there is at
most one transition per every pair (q, σ).

Let P = (t1, . . . , td) be a path, with tj = qj−1
σj ,νj−→ qj . The word σ =

σ1 . . . σd ∈ Σd induced by P is accepted by the det-WFA A if q0 = i and qd ∈ F .
The weight w(σ) of a word σ is equal to

⊕d
j=1 w(tj), where the w(tj) are all
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the weights of the transitions in P : σ is called the label of P . Note that every
label induces a single path (i.e. there is only one possible path per word).

Remark 2. In our applications, we fix the alphabet Σ = B. Definition 3.3
restraints the WFA to the deterministic (the non-deterministic case is not
supported), complete and universally accepting case (i.e. all the words are
accepted). In the general case, the additive group would be replaced by a semi-
ring (S,⊕,⊗, 0, 1). In the rest of the paper we set (S,⊕) as (TN [X],+).

Theorem 3.4 (Evaluation of det-WFA). Let A = (Q, i,B, T , F ) be a det-
WFA with weights in (TN [X],+), and let |Q| denote the total number of
states. Let C0, . . . , Cd−1 be d valid TRGSWK samples of the bits of a word
σ = σ0 . . . σd−1. By evaluating at most d · |Q| CMux gates, we output a TRLWE
sample d that encrypts the weight w(σ), such that (using the same notations as
in Lemma 2.7)

– ‖Err(d)‖∞ ≤ d · ((k + 1)�NβATRGSW + (kN + 1)ε) (worst case),
– Var(Err(d)) ≤ d · ((k + 1)�Nβ2ϑTRGSW + (kN + 1)ε2) (average case),

where ATRGSW is an upper bound on the infinite norm of the error in the
TRGSW samples and ϑTRGSW is an upper bound of their variance. Moreover,
if all the words connecting the initial state to a fixed state q ∈ Q have the same
length, then the upper bound on the number of CMux to evaluate decreases to
|Q|.

Proof (Sketch). This theorem generalizes Theorem 5.4 of [12] for det-WFA. The
automaton is still evaluated from the last letter σd−1 to the first one σ0, using one
TRLWE ciphertext cj,q per position j ∈ [[0, d−1]] in the word and per state q ∈ Q.
Before reading a letter, all the TRLWE samples cd,q, for q ∈ Q, are initialized

to zero. When processing the j-th letter σj , each pair of transitions q
0,ν0−→ q0

and q
1,ν1−→ q1 is evaluated as cj,q = CMux(Cj , cj+1,q1 + (0, ν1), cj+1,q0 + (0, ν0)).

The final result is c0,i, which encodes w(σ) by induction on the CMux graph.
Since translations are noiseless, the output noise corresponds to a depth-d of
CMux. Like in [12], the last condition implies that only |Q| of the d|Q| CMux are
accessible and need to be evaluated. ��

MAX. In order to evaluate the MAX circuit of two d-bit integers, x =
∑d−1

i=0 xi2i

and y =
∑d−1

i=0 yi2i, we construct a det-WFA that takes in input all the bits
xd−1, . . . , x0 of x and yd−1, . . . , y0 of y, and outputs the maximal value between
them. The idea is to enumerate the xi and yi, starting from the most significant
bits down to the least significant ones. The det-WFA described in Fig. 2 has 3
principal states (A, B, E) and 4 intermediary states ((A), (B), (E, 1), (E, 0)),
which keeps track of which number is the maximum, and in case of equality
what is the last value of xi. A weight + 1

2Xi is added on all the transitions that
reads the digit 1 from the maximum. Overall, the next lemma, which is a direct
consequence of Theorem 3.4, shows that the Max can be computed by evaluating
only 5d CMux gates, instead of Θ(d2) with classical deterministic automata.
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Fig. 2. Max: det-WFA - The states A and (A) mean that y is the maximal value, the
states B and (B) mean that x is the maximal value, and finally, the states E, (E, 1)
and (E, 0) mean that x and y are equals on the most significant bits. If the current
state is A or B, the following state will stay the same. The initial state is E. If the
current state is E, after reading xi there are two possible intermediate states: (E, 1) if
xi = 1 and (E, 0) if xi = 0. After reading the value of yi, the 3 possible states A, B
and E are possible. The det-WFA is repeated as many times as the bit length of the
integers evaluated and the weights are given in clear.

Remark 3. In practice, to evaluate the MAX function, we convert the det-WFA
in a circuit that counts 5d CMux gates. Roughly speaking, we have to read the
automata in the reverse. We initialize 5 states A,B,E0, E1, E as null TRLWE
samples. Then, for i from d − 1 to 0, we update the states as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

E0 := CMux(Cy
i , A + (0, 1

2Xi), E);
E1 := CMux(Cy

i , E,B);
A := CMux(Cy

i , A + (0, 1
2Xi), A);

E := CMux(Cx
i , E1 + (0, 1

2Xi), E0);
B := CMux(Cx

i , B + (0, 1
2Xi), B).

Here the Cx
i and Cy

i are TRGSW encryptions of the bits xi and yi respectively,
and they are the inputs. The output of the evaluation is the TRLWE sample E,
which contains the maximal value.

Lemma 3.5 (Evaluation of Max det-WFA). Let A be the det-WFA of the
Max, described in Fig. 2. Let Cx

0 , . . . , Cx
d−1, C

y
0 , . . . , Cy

d−1 be TRGSWK samples
of the bits of x and y respectively. By evaluating 5d CMux gates (depth 2d), the
Max det-WFA outputs a TRLWE sample d encrypting the maximal value between
x and y and (with same notations as in Lemma 2.7)

– ‖Err(d)‖∞ ≤ 2d · ((k + 1)�NβATRGSW + (kN + 1)ε) (worst case);
– Var(Err(d)) ≤ 2d · ((k + 1)�Nβ2ϑTRGSW + (kN + 1)ε2) (average case).

Here ATRGSW and ϑTRGSW are upper bounds of the amplitude and of the vari-
ance of the errors in the TRGSW samples.

Multiplication. For the multiplication we use the same approach and we con-
struct a det-WFA which maps the schoolbook multiplication. We illustrate the
construction on the example of the multiplication between two 2-bits integers
x = x1x0 and y = y1y0. After an initial step of bit by bit multiplication, a
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multi-addition (shifted of one place on the left for every line) is performed. The
bits of the final result are computed as the sum of each column with carry.

The det-WFA computes the multiplication by keeping track of the partial
sum of each column in the states, and by using the transitions to update these
sums. For the multiplication of 2-bits integers, the automaton (described in
Fig. 3) has 6 main states (i, c0, c10, c11, c20, c21), plus 14 intermediary states
that store the last bit read (noted with capital letters and parenthesis). The value
of the i-th output bit is put in a weight on the last transition of each column.

Fig. 3. Schoolbook 2-bits multiplication and corresponding det-WFA

For the generic multiplication of two d-bits integers, we can upper bound
the number of states by 4d3, instead of Θ(d4) with one classical automata per
output bit. For a more precise number of states we wrote a C++ program to
eliminate unreachable states and refine the leading coefficient. The depth is 2d2

and the noise evaluation can be easily deducted by previous results. The same
principle can be used to construct the multi-addition, and its det-WFA is
slightly simpler (one transition per bit in the sum instead of two).

3.3 TBSR Counter Techniques

We now present another design which is specific to the multi-addition (or its
derivatives), but which is faster than the generic construction with weighted
automata. The idea is to build an homomorphic scheme that can represent small
integers, say between 0 and N = 2p, and which is dedicated to only the three
elementary operations used in the multi addition algorithm, namely:

1. Extract any of the bits of the value as a TLWE sample;
2. Increment the value by 1 and
3. Integer division of the value by 2.
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Fig. 4. TBSR - example of addition +5 and division by 2.

We will now explain the basic idea, and then, we will show how to implement it
efficiently on TRLWE ciphertexts.

For j ∈ [0, p = log2(N)] and k, l ∈ Z, we call B
(l)
j,k the j-th bit of k + l in the

little endian signed binary representation. The latter form very simple binary
sequence: B

(0)
0 = (0, 1, 0, 1, . . .) is 2-periodic, B

(0)
1 = (0, 0, 1, 1, 0, 0, 1, 1 . . .) is

4-periodic, more generally, for all j ∈ [0, p] and l ∈ Z, B
(l)
j is 2j-antiperiodic,

and is the left shift of B
(0)
j by l positions. Therefore, it suffices to have 2j ≤ N

consecutive values of the sequence to (blindly) deduce all the remaining bits.
And most importantly, for each integer k ∈ Z, (B(l)

0,k, B
(l)
1,k, . . . , B

(l)
p,k) is the (little

endian signed) binary representation of l + k mod 2N . We now suppose that
an integer l in [0, N − 1] is represented by its Bit Sequence Representation,
defined as BSR(l) = [B(l)

0 , . . . , B
(l)
p ]. And we see how to compute BSR(l + 1)

and BSR(�l/2) using only copy and negations operations on bits at a fixed
position which does not depend on l (blind computation). Then, we will see how
to represent these operations homomorphically on TRLWE ciphertexts (Fig. 4).

Increment: Let U = [u0, . . . , up] be the BSR of some unknown number l ∈
[0, N − 1]. Our goal is to compute V = [v0, . . . , vp] which is the BSR of l + 1.
Again, we recall that it suffices to define the sequence vi on N consecutive values,
the rest is deduced by periodicity. To map the increment operation, all we need
to do is shifting the sequences by 1 position: vj,k := uj,k+1 for all k ∈ [0, N − 1].
Indeed, this operation transforms each B

(l)
j,k into B

(l)
j,k+1 = B

(l+1)
j,k , and the output

V is the BSR of l + 1.
Integer division by two: Let U = [u0, . . . , up] be the BSR of some unknown

number l ∈ [0, N − 1]. Our goal is to compute V = [v0, . . . , vp] which is the BSR
of � l

2. First, we note that the integer division by 2 corresponds to a right shift
over the bits. Thus for j ∈ [0, p−1] and k ∈ N, we can set vj,k = uj+1,2k. Indeed,
uj+1,2k is the j +1-th bit of l+2k is the j-th bit of its half �l/2+k, which is our
desired vj,k = B

(�l/2	)
j,k . This is unfortunately not enough to reconstruct the last

sequence vp, since we have no information on the p + 1-th bits in U . However,
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in our case, we can reconstruct this last sequence directly. First, the numbers
� l
2 + k for k ∈ [0, N/2 − 1] are all < N , so we can blindly set the corresponding

vp,k = 0. Then, we just need to note that (up,0, . . . , up,N−1) is N − l times 0
followed by l times 1, and our target (vp,N/2, . . . , vp,N−1) must consist N/2 − l
times 0 followed by �l/2 times 1. Therefore, our target can be filled with the
even positions (up,0, up,2, . . . , up,N−2). To summarize, division by 2 corresponds
to the following blind transformation:

⎧
⎨

⎩

vj,k = uj+1,2k for j ∈ [0, p − 1], k ∈ [0, N − 1]
vp,k = 0 for k ∈ [0, N

2 − 1]
vp,N/2+k = up,2k for k ∈ [0, N

2 − 1]

We now explain how we can encode these BSR sequences on TRLWE cipher-
texts, considering that all the coefficients need to be in the torus rather than
in B, and that we need to encode sequences that are either N -periodic or N -
antiperiodic. Furthermore, since the cyclic shift of coefficients is heavily used in
the increment operation, we would like to make it correspond to the multiplica-
tion by X, which has a similar behaviour on coefficients of torus polynomials.
Therefore, this is our basic encoding of the BSR sequences: Let U = [u0, . . . , up]
be the BSR of some unknown number l ∈ [0, N − 1], For j ∈ [0, p − 1], we repre-
sent uj with the polynomial μi =

∑N−1
k=0

1
2uj,kXk, and we represent the last up

with the polynomial μp =
∑N−1

k=0 ( 12up,k − 1
4 )Xk. This simple rescaling between

the bit representation U and the torus representation M = [μ0, . . . , μp] is bijec-
tive. Using this encoding, the integer division transformation presented above
immediately rewrites into this affine function, which transforms the coefficients
(μj,k)j∈[1,p],k∈[0,2,...,2N−2] ∈ T

pN into (μ′
0, . . . , μ

′
p) as follow:

πdiv2 :

⎧
⎪⎪⎨

⎪⎪⎩

μ′
j,k = μj+1,2k for j ∈ [0, p − 2], k ∈ [0, N − 1]

μ′
p−1,k = μp,2k + 1

4 for k ∈ [0, N − 1]
μ′

p,k = − 1
4 for k ∈ [0, N

2 − 1]
μ′

p,N/2+k = μp,2k for k ∈ [0, N
2 − 1]

Finally, we call TBSR ciphertext of an unknown integer l ∈ [0, N −1] a vector
C = [c0, . . . , cp] of TRLWE ciphertexts of message [μ0, . . . , μp].

Definition 3.6 (TBSR encryption).

– Params and keys: TRLWE parameters N with secret key K ∈ BN [X], and a
circular-secure keyswitching key KSK→K,γ from K to itself, noted just KS.

– TBSRSet(l): return a vector of trivial TRLWE ciphertexts encoding the torus
representation of [B(l)

0 , . . . , B
(l)
p ].

– TBSRBitExtractj(C): Return SampleExtract0(cj) when j < p.7

– TBSRIncrement(C): Return X−1.C.

7 For the p-th bit, one would return SampleExtract(cp) + (0, 1
4
), but it is always 0 if

l ∈ [0, N − 1].
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– TBSRDiv2(C): Use KS to evaluate πdiv2 homomorphically on C. Since it
is a 1-lipschitzian affine function, this means: apply the public functional
KeySswitch to KS, the linear part of πdiv2 and C, and then, translate the
result by the constant part of πdiv2.

Theorem 3.7 (TBSR operations). Let N ,K, and KS be TBSR parame-
ters..., and C a TBSR ciphertext of l with noise amplitude η (or noise variance
ϑ). Then for j ∈ [0, p − 1], TBSRBitExtractj(C) is a LWEK ciphertext of the
j-th bit of l, over the message space {0, 1

2}, with noise amplitude (resp. variance)
≤ η (resp. ≤ ϑ). If l ≤ N − 2, TBSRIncrement(C) is a TBSR ciphertext of l + 1
with noise amplitude (resp. variance) ≤ η (resp. ≤ ϑ). C ′ = TBSRDiv2(C) is a
TBSR ciphertext of �l/2 such that:

– ‖Err(C ′)‖∞ ≤ A + N2tAKS + N2−(t+1) (worst-case);

– Var(Err(C ′)) ≤ ϑ + N2tϑKS + N2−2(t+1) (average case).

Proof (sketch). Correctness has already been discussed, the noise corresponds to
the application of a public keyswitch on the same key: with n = N .

Using the TBSR counter for a multi-addition or a multiplication.

The TBSR counter allows to perform a multi-addition or multiplication using the
school-book elementary algorithms. This leads to a leveled multiplication circuit
with KeySwitching which is quadratic instead of cubic with weighted automata.

Lemma 3.8 Let N ,Bg,� and KS be TBSR and TRGSW parameters with the
same key K, We suppose that each TBSR ciphertext has p ≤ 1+log(N) TRLWE
ciphertexts. And let (Ai) and (Bi) for i ∈ [0, d − 1] be TRGSW-encryptions of
the bits of two d-bits integers (little endian), with the same noise amplitude AA

(resp. variance ϑA).
Then, there exists an algorithm (see the full version for more details) that

computes all the bits of the product within 2d2p CMux and (2d − 2)p public
keyswitch, and the output ciphertexts satisfy:

– ‖Err(Out)‖∞ ≤ 2d2((k+1)�NβAA+(kN+1)ε)+(2d−2)(N2tAKS+N2−(t+1));
– Var(Err(Out)) ≤ 2d2((k + 1)�Nβ2ϑA + (kN + 1)ε2) + (2d − 2)(N2tϑKS +

N2−2(t+1)).

4 Combining Leveled with Bootstrapping

In the previous sections, we presented efficient leveled algorithms for some
arithmetic operations, but the input and output have different types (e.g.
TLWE/TRGSW) and we can’t compose these operations, like in a usual algo-
rithm. In fully homomorphic mode, connecting the two becomes possible if we
have an efficient bootstrapping between TLWE and TRGSW ciphertexts. Fast
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bootstrapping procedures have been proposed in [12,17], and the external prod-
uct Theorem 2.3 from [7,12] has contributed to accelerate leveled operations.
Unfortunately, these bootstrapping cannot output GSW ciphertexts. Previous
solutions proposed in [1,19,21] based on the internal product are not practical. In
this section, we propose an efficient technique to convert back TLWE ciphertexts
to TRGSW, that runs in 137 ms. We call it circuit bootstrapping.

Our goal is to convert a TLWE sample with large noise amplitude over some
binary message space (e.g. amplitude 1

4 over {0, 1
2}), into a TRGSW sample with

a low noise amplitude <2−20 over the integer message space {0, 1}.
In all previous constructions, the TLWE decryption consists in a circuit,

which is then evaluated using the internal addition and multiplication laws over
TRGSW ciphertexts. The target TRGSW ciphertext is thus the result of an arith-
metic expression over TRGSW ciphertexts. Instead, we propose a more efficient
technique, which reconstructs the target directly from its very sparse internal
structure. Namely, a TRGSW ciphertext of a message μ ∈ {0, 1} is a vector
of (k + 1)� TRLWE ciphertexts. Each of these TRLWE ciphertexts encrypts the
same message as μhi, where hi is the corresponding line of the gadget matrix H.
Depending on the position of the row (which can be indexed by u ∈ [1, k+1] and
j ∈ [1, �]), this message is μ − Ku · Bg−j where Ku is the u-th polynomial of the
secret key and Kk+1 = −1. So we can use � times the TLWE-to-TLWE bootstrap-
ping of [12] to obtain a TLWE sample of each message in {μBg−1, . . . , μB−�

g }.
Then we use the private key-switching technique to ”multiply” these ciphertexts
by the secret −Ku, to reconstruct the correct message.

4.1 Circuit Bootstrapping (TLWE-to-TRGSW)

Our circuit bootstrapping, detailed in Algorithm6, crosses 3 levels of noise and
encryption (Fig. 5). Each level has its own key and parameters set. In order
to distinguish the different levels, we use an intuitive notation with bars. The
upper bar will be used for level 2 variables, the under bar for the level 0 vari-
ables and level 1 variables will remain without any bar. The main difference
between the three levels of encryption is the amount of noise supported. Indeed,
the higher the level is, the smaller is the noise. Level 0 corresponds to cipher-
texts with very large noise (typically, α ≥ 2−11). Level 0 parameters are very
small, computations are almost instantaneous, but only a very limited amount of
linear operations are tolerated. Level 1 corresponds to medium noise (typically,
α ≥ 2−30). Ciphertexts in level 1 have medium size parameters, which allows
for relatively fast operations, and for instance a leveled homomorphic evalua-
tion of a relatively large automata, with transition timings described in Sect. 5
of [12]. Level 2 corresponds to ciphertexts with small noise (typically, ᾱ ≥ 2−50).
This level corresponds to the limit of what can be mapped over native 64-bit
operations. Practical values and details are given in Sect. 5.

Our circuit bootstrapping consists in three parts:

– TLWE-to-TLWE Pre-keyswitch. The input of the algorithm is a TLWE
sample with a large noise amplitude over the message space {0, 1

2}. With-
out loss of generality, it can be keyswitched to a level 0 TLWE ciphertext
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Fig. 5. The figure represents the three levels of encryption on which our construction
shifts. The arrows show the operations that can be performed inside each level or how
to move from a level to another. In order to distinguish the objects with respect to
their level, we adopted the intuitive notations “superior bar” for level 2, “no bar” for
level 1 and “under bar” for level 0. We highlight in blue the different stages of the
circuit bootstrapping (whose detailed description is given below).

c = (a, b) ∈ TLWEK,η(μ · 1
2 ), of a message μ ∈ B with respect to the small

secret key K ∈ B
n and a large standard deviation η ∈ R (typically, η ≤ 2−5

to guaranty correct decryption with overwhelming probability). This step is
standard.

– TLWE-to-TLWE Bootstrapping (Algorithm 4): Given a level 2 bootstrap-
ping key BKK→K̄,ᾱ = (BKi)i∈[[1,n]] where BKi ∈ TRGSWK̄,ᾱ(Ki)), we use
� times the TLWE-to-TLWE Bootstrapping algorithm (Algorithm4) on c, to
obtain � TLWE ciphertexts c̄(1), . . . , c̄(�) where c̄(w) ∈ TLWEK̄,η̄(μ · 1

B̄g
w ), with

respect to the same level 2 secret key K̄ ∈ B
n̄, and with a fixed noise parame-

ter η̄ ∈ R which does not depend on the input noise. If the bootstrapping key
has a level 2 noise ᾱ, we expect the output noise η̄ to remain smaller than
level 1 value.

– TLWE-to-TRLWE private key-switching (Algorithm 2): Finally, to recon-
struct the final TRGSW ciphertext of μ, we simply need to craft a TRLWE
ciphertext which has the same phase as μ · hi, for each row of the gadget
matrix H. Since hi contains only a single non-zero constant polynomial in
position u ∈ [1, k + 1] whose value is 1

Bw
g

where w ∈ [1, �], the phase of μ · hi

is μKu · 1
Bw

g
where Ku is the u-th term of the key K. If we call fu the (secret)

morphism from T to TN [X] defined by fu(x) = Ku·x, we just need to apply fu

homomorphically to the TLWE sample c̄(w) to get the desired TRLWE sample.
Since fu is 1-lipschitzian (for the infinity norm), this operation be done with
additive noise overhead via the private functional keyswitch (Algorithm2).

Theorem 4.1 (Circuit Bootstrapping Theorem). Let n, α,N, k,Bg, �,H, ε
denote TRLWE/TRGSW level 1 parameters, and the same variables names with
underbars/upperbars for level 0 and 2 parameters. Let K ∈ B

n, K ∈ B
n and K̄ ∈
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Algorithm 6. Circuit Bootstrapping (calling Algorithms 4 and 2)
Input: A level 0 TLWE sample c = (a, b) ∈ TLWEK,η(μ · 1

2
), with μ ∈ B, a boot-

strapping key BKK→K̄,ᾱ = (BKi ∈ TRGSWK̄,ᾱ(Ki))i∈[[1,n]], k + 1 private keyswitch

keys KS
(fu)

K̄→K,γ
corresponding to the functions fu(x) = −Ku · x when u ≤ k, and

fk+1(x) = 1 · x.
Output: A level 1 TRGSW sample C ∈ TRGSWK,η(μ)
1: for w = 1 to �
2: c̄(w) ← BootstrappingBK, 1

Bw
g

(c)

3: for u = 1 to k + 1
4: c(u,w) = PrivKS(KS(fu), c̄(w))
5: Return C = (c(u,w))1≤u≤k+1,1≤w≤�

B
n̄, be a level 0, 1 and 2 TLWE secret keys, and K,K, K̄ their respective TRLWE

interpretation. Let BKK→K̄,ᾱ be a bootstrapping key, composed by the n TRGSW
encryptions BKi ∈ TRGSWK̄,ᾱ(Ki) for i ∈ [[1, n]]. For each u ∈ [[1, k + 1]], let fu

be the morphism from T to TN [X] defined by fu(x) = Ku · x, and KSfu

K̄→K,γ
=

(KS(u)i,j ∈ TRLWEK,γ((K̄iKu ·2−j)))i∈[[1,n̄]],j∈[[1,t]] be the corresponding private-key-
switching key. Given a level 0 TLWE sample c = (a, b) ∈ TLWEK(μ · 1

2 ), with
μ ∈ B, the Algorithm6 outputs a level 1 TRGSW sample C ∈ TRGSWK(μ) such
that

– ‖Err(C)‖∞ ≤ n(k̄ + 1)�̄N̄ β̄ABK + n(1 + k̄N̄)ε̄ + n̄2−(t+1) + n̄tAKS (worst);
– Var(Err(C)) ≤ n(k̄+1)�̄N̄ β̄2ϑ̄BK+n(1+ k̄N̄)ε̄2+ n̄2−2(t+1)+ n̄tϑKS (average).

Here ϑ̄BK = ᾱ2 and ABK is the variance and amplitude of Err(BKK→K̄,ᾱ), and
ϑKS = γ2 and AKS are the variance and amplitude of Err(KSK̄→K,γ).

Proof (sketch). The output TRGSW ciphertext is correct, because by construc-
tion, the i-th TRLWE component c(u,w) has the correct message msg(μ · Hi) =
μKu/Bw

g . c(u,w) is obtained by chaining one TLWE-to-TLWE bootstrapping
(Algorithm 4) with one private key switchings, as in Algorithm 2. The values of
maximal amplitude and variance of Err(C) are directly obtained from the partial
results of Lemma 2.9 and Theorem 2.6. In total, Algorithm 6 performs exactly �
bootstrappings (Algorithm4), and �(k+1) private key switchings (Algorithm 2).

��
Comparison with previous bootstrappings for TGSW. The circuit boot-
strapping we just described evaluates a quasilinear number of level-2 external
products, and a quasilinear number of level 1 products in the private keyswitch-
ings. With the parameters proposed in the next section, it runs in 0.137 s for a
110-bit security parameter, level 2 operations take 70% of the running time, and
the private keyswitch the remaining 30%.

Our circuit bootstrapping is not the first bootstrapping algorithm that out-
puts a TRGSW ciphertext. Many constructions have previously been proposed
and achieve valid asymptotical complexities, but very few concrete parameters
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are proposed. Most of these constructions are recalled in the last section of [19].
In all of them, the bootstrapped ciphertext is obtained as an arithmetic expres-
sion on TRGSW ciphertexts involving linear combinations and internal products.
First, all the schemes based on scalar variants of TRGSW suffer from a slowdown
of a factor at least quadratic in the security parameter, because the products of
small matrices with polynomial coefficients (via FFT) are replaced with large
dense matrix products. Thus, bootstrapping on TGSW variants would require
days of computations, instead of the 0.137 s we propose. Now, assuming that
all the bootstrapping uses (Ring) instantiations of TRGSW, the design in [8]
based on the expansion of the decryption circuit via Barrington theorem, as
well as the expression as a minimal deterministic automata of the same function
in [19] require a quadratic number of internal level 2 TRGSW products, which
is much slower than what we propose. Finally, the CRT variant in [1,19] uses
only a quasi-linear number of products, but since it uses composition between
automata, these products need to run in level 3 instead of level 2, which induces
a huge slowdown (a factor 240 in our benchs), because elements cannot be rep-
resented on 64-bits native numbers.

5 Comparison and Practical Parameters

We now explicit the practical parameters for our scheme, and we give the running
time comparison for the evaluation of the homomorphic circuits described before
in LHE and FHE mode (with or without the new optimization techniques).

In [12] the timing for the gate bootstrapping was 52 ms. We improved it
to 13 ms: a speed up of a factor 2 is due to the dedicated assembly FFT for
XN + 1 in double precision. An additional speed ups (by a factor 1.5) is due
to a new choice of parameters, for the same security level (in particular the �
TRGSW parameter is reduced to 2 instead of 3). Finally, we replaced the core of
the gate bootstrapping with the simpler CMux and blindRotate (Algorithm3)
described in Sect. 2, which gives the last 1.33x speed-up. For the same reason,
the external product is now executed in 34µs. We added these optimizations to
the public repository of the TFHE library [14]. A experimental measurement of
the noise confirmed the average case bounds on the variance, predicted under
the independance assumption.

As a consequence, all binary gates are executed in 13 ms, and the native
bootstrapped MUX (also described in Sect. 2) gate takes 26 ms on a 64-bit single
core (i7-4910MQ) at 2.90 GHz. Starting from all these considerations, we imple-
mented our circuit bootstrapping as a proof of concept. The code is available in
the experimental repository of TFHE [14]. We perform a Circuit Bootstrapping
in 0.137 s. One of the main constraints to obtain this performance is to ensure
that all the computations are feasible and correct under 53 bits of floating point
precision, in order to use the fast FFT. This requires to refine the parameters
of the scheme. We verified the accuracy of the FFT with a slower but exact
Karatsuba implementation of the polynomial product.
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Concrete Parameters. In our three levels, we used the following TRLWE and
TRGSW parameter sets, which have at least 110-bits of security, according to
the security analysis in [12].

Level Minimal noise α n Bg �

0 α = 2−15.33 n = 500 N.A N.A.

1 α = 2−32.33 n = 1024 Bg = 28 � = 2

2 ᾱ = 2−45.33 n̄ = 2048 B̄g = 29 �̄ = 4

Since we assume circular security, we will use only one key per level, and
the following keyswitch parameters (in the leveled setting, the reader is free to
increase the number of keys if he does not wish to assume circularity).

Level t γ Usage

1 → 0 t = 12 γ = 2−14 Circuit Bootstap, Pre-KS

2 → 1 t̄ = 30 γ̄ = 2−31 Circuit Bootstap, Step 4 in Algorithm 6

1 → 1 t = 24 γ = 2−24 TBSR

Thus, we get these noise variances in input or in output

Output TLWE Fresh TRGSW in LHE TRGSW Output of CB Bootst. key

ϑ ≤ 2−10,651 ϑ = 2−60 ϑ ≤ 2−47.03 ϑBK = 2−88

And finally, this table summarizes the timings (Core i7-4910MQ laptop),
noises overhead, and maximal depth of all our primitives.

CPU Time Var Noise add Max depth

Circuit bootstrap tCB = 137 ms N.A N.A

Fresh CMux tXP = 34µs 2−23.99 16384

CB CMux tXP = 34µs 2−20.86 3466

PubKSTBSR tKS = 180 ms 2−23.42 16384

More details on these parameter choices are provided in the full version.

Time Comparison. With these parameters, we analyse the (single-core) exe-
cution timings for the evaluation of the LUT, MAX and Multiplication in LHE
and FHE mode.

In the LHE mode (left hand side of Fig. 6), all inputs are fresh ciphertexts
(either TRLWE or TRGSW) and we compare the previous versions [12] (without
packing/batching or gate bootstapping) with the new optimizations i.e. horizon-
tal/vertical packing; with weighted automata or with TBSR techniques. In the
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Fig. 6. The y coordinate represents the running time in seconds (in logscale), the x
coordinate represents the number of bits in the input (in logscale for c–f).
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FHE mode (right hand side of Fig. 6), all inputs and outputs are TLWE samples
on the {0, 1

2} message space with noise amplitude 1
4 . Each operation starts by

bootstrapping its inputs. We compare the gate-by-gate bootstapping strategy
with the mixed version where we use leveled encryption with circuit bootsrap-
ping. Our goal is to identify which method is better for each of the 6 cases. We
observe that compared to the gate bootstrapping, we obtain a huge speed-up for
the homomorphic evaluation of arbitrary function in both LHE and FHE mode,
in particular, we can evaluate a 8 bits to 1 bit lookup table and bootstrap the
output in just 137 ms, or evaluate an arbitrary 8 bits to 8 bits function in 1.096 s,
and an arbitrary 16 bits to 8 bits function in 2.192 s in FHE mode. For the mul-
tiplication in LHE mode, it is better to use the weighted automata technique
when the number is less than 128 bits, and the TBSR counter after that. In
the FHE mode, the weighted automata becomes faster than gate-bootstrapping
after 4 bits of inputs, then the TBSR optimization becomes faster for >64 bits
inputs.

6 Conclusion

In this paper we improved the efficiency of TFHE, by proposing some new pack-
ing techniques. For the first time we use det-WFA in the context of homomorphic
encryption to optimize the evaluation of arithmetic circuits, and we introduced
the TBSR counter. By combining these optimizations, we obtained a significant
timing speed-up and decrease the ciphertext overhead for TLWE and TRGSW
based encryption. We also solved the problem of non universal composability of
TFHE leveled gates, by proposing the efficient circuit bootstrapping that runs
in 134 ms; we implemented it in the TFHE project [14].

Acknowledgements. This work has been supported in part by the CRYPTOCOMP
project.
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Abstract. We suggest a method to construct a homomorphic encryp-
tion scheme for approximate arithmetic. It supports an approximate
addition and multiplication of encrypted messages, together with a new
rescaling procedure for managing the magnitude of plaintext. This pro-
cedure truncates a ciphertext into a smaller modulus, which leads to
rounding of plaintext. The main idea is to add a noise following sig-
nificant figures which contain a main message. This noise is originally
added to the plaintext for security, but considered to be a part of error
occurring during approximate computations that is reduced along with
plaintext by rescaling. As a result, our decryption structure outputs an
approximate value of plaintext with a predetermined precision.

We also propose a new batching technique for a RLWE-based con-
struction. A plaintext polynomial is an element of a cyclotomic ring of
characteristic zero and it is mapped to a message vector of complex num-
bers via complex canonical embedding map, which is an isometric ring
homomorphism. This transformation does not blow up the size of errors,
therefore enables us to preserve the precision of plaintext after encoding.
In our construction, the bit size of ciphertext modulus grows linearly with
the depth of the circuit being evaluated due to rescaling procedure, while
all the previous works either require an exponentially large size of mod-
ulus or expensive computations such as bootstrapping or bit extraction.
One important feature of our method is that the precision loss during
evaluation is bounded by the depth of a circuit and it exceeds at most
one more bit compared to unencrypted approximate arithmetic such as
floating-point operations. In addition to the basic approximate circuits,
we show that our scheme can be applied to the efficient evaluation of tran-
scendental functions such as multiplicative inverse, exponential function,
logistic function and discrete Fourier transform.

Keywords: Homomorphic encryption · Approximate arithmetic

1 Introduction

Homomorphic encryption (HE) is a cryptographic scheme that enables homo-
morphic operations on encrypted data without decryption. Many of HE schemes
c© International Association for Cryptologic Research 2017
T. Takagi and T. Peyrin (Eds.): ASIACRYPT 2017, Part I, LNCS 10624, pp. 409–437, 2017.
https://doi.org/10.1007/978-3-319-70694-8_15
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Fig. 1. Homomorphic multiplications of BGV-type HE schemes (left) and FV-type HE
schemes (right)

(e.g. [2,4–7,12,13,18,19,21,25,26,33]) have been suggested following Gentry’s
blueprint [23]. HE can be applied to the evaluation of various algorithms on
encrypted financial, medical, or genomic data [11,29,31,36,41].

Most of real-world data contain some errors from their true values. For
instance, a measured value of quantity has an observational error from its true
value and sampling error can be made as only a sample of the whole population is
being observed in statistics. In practice, data should be discretized (quantized) to
an approximate value such as floating-point number, in order to be represented
by a finite number of bits in computer systems. In this case, an approximate value
may substitute the original data and a small rounding error does not have too
much effect on computation result. For the efficiency of approximate arithmetic,
we store a few numbers of significant digits (e.g. most significant bits, MSBs)
and carry out arithmetic operations between them. The resulting value should
be rounded again by removing some inaccurate least significant bits (LSBs) to
maintain the bit size of significant (mantissa).

Unfortunately this rounding operation has been considered difficult to per-
form on HE since it is not simply represented as a small-degree polynomial. Pre-
vious approaches to approximate arithmetic require similar multiplicative depth
and complexity to the case of bootstrapping for extraction of MSBs [1,27]. Other
methods based on exact integer operations [16,20] require an exponentially large
bit size of ciphertext modulus with the depth of the circuit to ensure correctness.

We point out that the decryption structures of existing HE schemes are
not appropriate for arithmetic of indiscreet spaces. For a plaintext modulus t
and a ciphertext modulus q, BGV-type HE schemes [5,19,25,33] have a decryp-
tion structure of the form 〈ci, sk〉 = mi + tei (mod q). Therefore, the MSBs
of m1 + m2 and m1m2 are destroyed by inserted errors ei during homomor-
phic operations. On the other hand, the decryption structure of FV-type HE
schemes [2,4,22] is 〈ci, sk〉 = qIi + (q/t)mi + ei for some Ii and ei. Mul-
tiplication of two ciphertexts satisfies 〈c∗, sk〉 = qI∗ + (q/t)m1m2 + e∗ for
I∗ = tI1I2 + I1m2 + I2m1 and e∗ ≈ t(I1e2 + I2e1), so the MSBs of result-
ing message are also destroyed (see Fig. 1 for an illustration). HE schemes with
matrix ciphertexts [21,26] support homomorphic operations over the integers
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Fig. 2. Homomorphic multiplication and rescaling for approximate arithmetic

(or integral polynomials) but the error growth depends on the size of plaintexts.
As a result, previous HE schemes are required to have an exponentially large
ciphertext modulus with the depth of a circuit for approximate arithmetic.

Homomorphic Encryption for Approximate Arithmetic. The purpose
of this paper is to present a method for efficient approximate computation on
HE. The main idea is to treat an encryption noise as part of error occurring
during approximate computations. That is, an encryption c of message m by
the secret key sk will have a decryption structure of the form 〈c, sk〉 = m + e
(mod q) where e is a small error inserted to guarantee the security of hardness
assumptions such as the learning with errors (LWE), the ring- LWE (RLWE) and
the NTRU problems. If e is small enough compared to the message, this noise is
not likely to destroy the significant figures of m and the whole value m′ = m+ e
can replace the original message in approximate arithmetic. One may multiply
a scale factor to the message before encryption to reduce the precision loss from
encryption noise.

For homomorphic operations, we always maintain our decryption structure
small enough compared to the ciphertext modulus so that computation result is
still smaller than q. However, we still have a problem that the bit size of mes-
sage increases exponentially with the depth of a circuit without rounding. To
address this problem, we suggest a new technique - called rescaling - that manip-
ulates the message of ciphertext. Technically it seems similar to the modulus-
switching method suggested by Brakerski and Vaikuntanatan [6], but it plays a
completely different role in our construction. For an encryption c of m such that
〈c, sk〉 = m + e (mod q), the rescaling procedure outputs a ciphertext

⌊
p−1 · c

⌉

(mod q/p), which is a valid encryption of m/p with noise about e/p. It reduces
the size of ciphertext modulus and consequently removes the error located in the
LSBs of messages, similar to the rounding step of fixed/floating-point arithmetic,
while almost preserving the precision of plaintexts.



412 J.H. Cheon et al.

The composition of homomorphic operation and rescaling mimics the ordi-
nary approximate arithmetic (see Fig. 2). As a result, the bit size of a required
ciphertext modulus grows linearly with the depth of a circuit rather than expo-
nentially. We also prove that this scheme is almost optimal in the sense of pre-
cision: precision loss of a resulting message is at most one bit more compared to
unencrypted floating-point arithmetic.

Encoding Technique for Packing Messages. It is inevitable to encrypt a
vector of multiple plaintexts in a single ciphertext for efficient homomorphic
computation. The plaintext space of previous RLWE-based HE schemes is a
cyclotomic polynomial ring Zt[X]/(ΦM (X)) of a finite characteristic. A plaintext
polynomial could be decoded as a vector of plaintext values into a product of
finite fields by a ring isomorphism [38,39]. An inserted error is placed separately
from the plaintext space so it may be removed by using plaintext characteristic
after carrying out homomorphic operations.

On the other hand, a plaintext of our scheme is an element of a cyclotomic
ring of characteristic zero and it embraces a small error which is inserted from
encryption to ensure the security or occurs during approximate arithmetic. Hence
we adapt an isometric ring homomorphism - the complex canonical embedding
map. It preserves the size of polynomials so that a small error in a plaintext
polynomial is not blow up during encoding/decoding procedures.

Let H = {(zj)j∈Z
∗
M

: z−j = zj ,∀j ∈ Z
∗
M} ⊆ C

Φ(M) and let T be a sub-
group of the multiplicative group Z

∗
M satisfying Z

∗
M/T = {±1}. The native

plaintext space of our scheme is the set of polynomials in the cyclotomic ring
R = Z[X]/(ΦM (X)) with magnitude bounded by ciphertext modulus. The
decoding procedure first transforms a plaintext polynomial m(X) ∈ R into a
complex vector (zj)j∈Z

∗
M

∈ H by the canonical embedding map σ and then
sends it to a vector (zj)j∈T using the natural projection π: H → C

φ(M)/2. The
encoding method is almost the inverse of the decoding procedure, but a round-off
algorithm is required for discretization so that the output becomes an integral
polynomial. In short, our encoding function is given by

C
φ(M)/2 π−1

−−−−→ H
�·�σ(R)−−−−−→ σ(R) σ−1

−−−−→ R
z = (zi)i∈T 	−→ π−1(z) 	−→ ⌊

π−1(z)
⌉

σ(R)
	−→ σ−1

(⌊
π−1(z)

⌉
σ(R)

)

where 
·�σ(R) denotes the rounding to a close element in σ(R).

Homomorphic Evaluation of Approximate Arithmetic. One important
feature of our method is that the precision loss during homomorphic evaluation
is bounded by depth of a circuit and it is at most one more bit compared to
unencrypted approximate arithmetic. Given encryptions of d messages with η
bits of precision, our HE scheme of depth �log d� computes their product with
(η−log d−1) bits of precision in d multiplications while unencrypted approximate
arithmetic such as floating-point multiplication can compute a significant with
(η − log d) bits of precision. On the other hand, the previous methods require
Ω(η2d) homomorphic computations by using bitwise encryption or need a large
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plaintext space of bit size Ω(ηd) unless relying on expensive computations such
as bootstrapping or bit extraction.

In our scheme, the required bit size of the largest ciphertext modulus can be
reduced down to O(η log d) by performing the rescaling procedure after multi-
plication of ciphertexts. The parameters are smaller than for the previous works
and this advantage enables us to efficiently perform the approximate evaluation
of transcendental functions such as the exponential, logarithm and trigonomet-
ric functions by the evaluation of their Taylor series expansion. In particular,
we suggest a specific algorithm for computing the multiplicative inverse with
reduced complexity, which enables the efficient evaluation of rational functions.

We verify our algorithms by implementation on a machine with an Intel
Core i5 running at 2.9 GHz processor using a parameter set with 80-bit security
level. It takes about 0.45 s for multiplicative inverse of ciphertext with 14 bits of
precision, yielding an amortized rate of 0.11 ms per slot. We can also evaluate the
exponential function using its Taylor expansion and it results in an amortized
time per slots of 0.16 ms.

In a cloud-computing environment, a large amount of data is being generated
and one needs to handle these huge data collections. Our scheme could be a prac-
tical solution for data analysis as it allows the encryption of much information in
a single ciphertext so we can parallelize both space and computation together.
For example, we improved the homomorphic evaluation of logistic function using
a batching technique, which can be used in a disease prediction analysis. Our
implementation homomorphically evaluated the degree seven Taylor polynomial
of logistic function in about 0.13 ms per slot (and less than 0.54 s total) compared
to 30 s and 1.8 s of evaluation time of [3,9] without parallelization, respectively.

Another example is evaluating discrete Fourier transform homomorphically
using a fast Fourier transform(FFT) algorithm. We follow the encoding method
of [15] for roots of unity in polynomial ring so that it does not consume ciphertext
level during evaluation. We also apply our rescaling procedure for operations to
Hadamard space and a batching technique, which results in a much smaller
parameter and amortized evaluation time, respectively. We could process the
standard processing (FFT-Hadamard product of two vectors-inverse FFT) of
dimension 213 in 22 min (0.34 s per slot) on a machine with four cores compared
to 17 min of previous work [16] with six processors with no batching technique.
Based on evaluation of discrete Fourier transform, we can securely compute the
exact multiplication of integral polynomials by removing the fractional part of an
approximate result. Likewise, our HE for approximate arithmetic can be applied
to exact computation when the result has a specific format or property.

Follow-up. We provide an open-source implementation of our HE library
(HEAAN) and algorithms in the C++ language. The source code is available at
github [10]. We introduced HEAAN at a workshop for the standardization of HE
hosted by Microsoft Research.1

1 https://www.microsoft.com/en-us/research/event/homomorphic-encryption-standa
rdization-workshop/.

https://www.microsoft.com/en-us/research/event/homomorphic-encryption-standardization-workshop/
https://www.microsoft.com/en-us/research/event/homomorphic-encryption-standardization-workshop/
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There are some follow-up works on application of this paper to a secure con-
trol of cyber-physical system [28] and a gradient descent algorithm for privacy-
preserving logistic regression of biomedical data [30].

Related Works. A substantial number of studies have concerned about the
processing of real numbers over encryption. Jäschke and Armknecht [27] observed
that a rational number can be approximated to an integer by multiplying with
a power of two and rounding. An integer is encoded in a binary fashion, so that
each bit is encrypted separately. The one performing homomorphic multiplica-
tion can bring the product to the required precision by simply discarding the
ciphertexts which corresponds to the last LSBs. However, bitwise encryption
causes a huge number of computation of ciphertexts for a single rounding oper-
ation. The other method is to scale them to integers, but a plaintext modulus is
exponential in the length of message. For example, Arita and Nakasato [1] scale
the fixed point numbers by a power of two and then represent them as scalars in
a polynomial ring with an enlarged plaintext modulus. In order to realize homo-
morphic multiplication of encrypted fixed point numbers, it needs a right shift
by a number equal to the precision. However, it requires a considerable amount
of computations including a bit extraction operation.

On the other hand, Dowlin et al. [20] present an efficient method to represent
fixed-point numbers, which are encoded as integral polynomials with coefficients
in the range (− 1

2B, 1
2B) using its base-B representation for an odd integer B ≥ 3.

Costache et al. [16] analyze the representations of [20] and compute the lower
bound of plaintext modulus. However, exact arithmetic of fixed point numbers
causes required the size of plaintext modulus to grow exponentially with the
depth of a circuit.

Road-map. Section 2 briefly introduces notations and some preliminaries about
algebras and the RLWE problem. Section 3 presents a homomorphic encryption
scheme for approximate arithmetic and analyzes the noise growth during basic
homomorphic operations. In Sect. 4, we suggest some algorithms to homomor-
phically evaluate typical approximate circuits, multiplicative inverse, exponential
function, logistic function and discrete Fourier transform. We also compute the
theoretical precision of the outputs. In Sect. 5, we perform the implementation
of our scheme for the evaluations of circuits described in Sect. 4.

2 Preliminaries

2.1 Basic Notation

All logarithms are base 2 unless otherwise indicated. We denote vectors in bold,
e.g. a, and every vector in this paper will be a column vector. We denote by
〈·, ·〉 the usual dot product of two vectors. For a real number r, 
r� denotes
the nearest integer to r, rounding upwards in case of a tie. For an integer q,
we identify Z ∩ (−q/2, q/2] as a representative of Zq and use [z]q to denote
the reduction of the integer z modulo q into that interval. We use x ← D to
denote the sampling x according to a distribution D. It denotes the sampling
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from the uniform distribution over D when D is a finite set. We let λ denote the
security parameter throughout the paper: all known valid attacks against the
cryptographic scheme under scope should take Ω(2λ) bit operations.

2.2 The Cyclotomic Ring and Canonical Embedding

For a positive integer M , let ΦM (X) be the M -th cyclotomic polynomial of
degree N = φ(M). Let R = Z[X]/(ΦM (X)) be the ring of integers of a number
field Q[X]/(ΦM (X)). We write Rq = R/qR for the residue ring of R modulo an
integer q. An arbitrary element of the cyclotomic ring S = R[X]/(ΦM (X)) of real
polynomials will be represented as a polynomial a(X) =

∑N−1
j=0 ajX

j of degree
less than N and identified with its coefficient vector (a0, . . . , aN−1) ∈ R

N . We
define the relevant norms on the coefficient vector of a such as ‖a‖∞ and ‖a‖1.

We write Z
∗
M = {x ∈ ZM : gcd(x,M) = 1} for the multiplicative group

of units in ZM . Recall that the canonical embedding of a ∈ Q[X]/(ΦM (X))
into C

N is the vector of evaluation values of a at the roots of ΦM (X). We
naturally extend it to the set of real polynomials S so σ(a) will be defined as
(a(ζj

M ))j∈Z
∗
M

∈ C
N for any a ∈ S where ζM = exp(−2πi/M) denotes a primitive

M -th roots of unity. The 
∞-norm of σ(a) is called the canonical embedding norm
of a, denoted by ‖a‖can∞ = ‖σ(a)‖∞. This measurement will be used to analyze
the size of polynomials throughout this paper. The canonical embedding norm
‖·‖can∞ satisfies the following properties:

• For all a, b ∈ S, we have ‖a · b‖can∞ ≤ ‖a‖can∞ · ‖b‖can∞ .
• For all a ∈ S, we have ‖a‖can∞ ≤ ‖a‖1.
• There is a ring constant cM depending only on M such that ‖a‖∞ ≤ cM ·‖a‖can∞

for all a ∈ S.

The ring constant is obtained by cM = ‖CRT−1
M ‖∞ where CRTM is the CRT

matrix for M , i.e., the Vandermonde matrix over the complex primitive M -
th roots of unity, and the norm for a matrix U = (uij)0≤i,j<N is defined by

‖U‖∞ = max0≤i<N

{∑N−1
j=0 |uij |

}
. Refer [17] for a discussion of cM .

2.3 Gaussian Distributions and RLWE Problem

We first define the space

H = {z = (zj)j∈Z
∗
M

∈ C
N : zj = z−j ,∀j ∈ Z

∗
M},

which is isomorphic to R
N as an inner product space via the unitary basis matrix

U =

(
1√
2
I i√

2
J

1√
2
J −i√

2
I

)

where I is the identity matrix of size N/2 and J is its reversal matrix.
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For r > 0, we define the Gaussian function ρr: H → (0, 1] as ρr(z) =
exp(−π‖z‖22/r2). Denote by Γr the continuous Gaussian probability distribution
whose density is given by r−N · ρr(z). Now one can extend this to an elliptical
Gaussian distribution Γr on H as follows: let r = (r1, . . . , rN ) ∈ (R+)N be a vec-
tor of positive real numbers, then a sample from Γr is given by U · z where each
entry of z = (zi) is chosen independently from the (one-dimensional) Gaussian
distribution Γri

on R. This also gives a distribution Ψr on Q[X]/(ΦM (X)) ⊗ R.
That is, CRT−1

M · U · z gives us the coordinates with respect to the polynomial
basis 1,X,X2, . . . , XN−1.

In practice, one can discritize the continuous Gaussian distribution Ψr by
taking a valid rounding 
Ψr�R∨ . Refer [34,35] for explaining the methods in
more details. We use this discrete distribution as the RLWE error distribution.

Here we define the RLWE distribution and decisional problem associated with
it. Let R∨ be the dual fractional ideal of R and write R∨

q = R∨/qR∨. For a
positive integer modulus q ≥ 2, s ∈ R∨

q , r ∈ (R+)N and an error distribution
χ := 
Ψr�R∨ , we define AN,q,χ(s) as the RLWE distribution obtained by sampling
a ← Rq uniformly at random, e ← χ and returning (a, a · s + e) ∈ Rq × R∨

q .
The (decision) ring learning with errors, denoted by RLWEN,q,χ(D), is a prob-

lem to distinguish arbitrarily many independent samples chosen according to
AN,q,χ(s) for a random choice of s sampled from the distribution D over R∨ from
the same number of uniformly random and independent samples from Rq ×R∨

q .

3 Homomorphic Encryption for Approximate Arithmetic

In this section, we describe a method to construct a HE scheme for approximate
arithmetic on encrypted data. Given encryptions of m1 and m2, this scheme
allows us to securely compute encryptions of approximate values of m1 + m2

and m1m2 with a predetermined precision. The main idea of our construction is
to treat an inserted noise of RLWE problem as part of am error occurring dur-
ing approximate computation. The most important feature of our scheme is the
rounding operation of plaintexts. Just like the ordinary approximate computa-
tions using floating-point numbers, the rounding operation removes some LSBs
of message and makes a trade-off between size of numbers and precision loss.

Our concrete construction is based on the BGV scheme [5] with a multipli-
cation method by raising the ciphertext modulus [25], but our methodology can
be applied to most of existing HE schemes. Appendix A shows a description of
LWE-based HE scheme for approximate arithmetic.

3.1 Decryption Structure of Homomorphic Encryption
for Approximate Arithmetic

Most of existing HE schemes perform operations on a modulo space such as Zt

and Zt[X]/(ΦM (X)). In other words, they aim to compute a ciphertext which
encrypts some LSBs of a resulting message after homomorphic computation.
For example, in the case of BGV-type schemes [5,25,33], plaintexts are placed
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in the lowest bits of ciphertext modulus, that is, an encryption c of a message
m with respect to a secret sk has a decryption structure of the form 〈c, sk〉 =
m+ te (mod q). A multiplication of encryptions of m1,m2 preserves some LSBs
of m1m2 (i.e., [m1m2]t), while its MSBs (i.e., 
m1m2/t�) are destroyed by errors.
On the other hand, FV-type schemes [2,4,22] put messages in the left-most bits
of ciphertext modulus, so that their decryption structures satisfy 〈c, sk〉 = 
q/t�·
m + e (mod q). However, the MSBs of the resulting message are also destroyed
during homomorphic multiplication between 〈ci, sk〉 = q · Ii + 
q/t� · mi + ei,
each of which contains an additional error Ii in the left position of message.

Our goal is to carry out approximate arithmetic over encrypted data, or
equivalently, compute the MSBs of a resulting message after homomorphic oper-
ations. The main idea is to add an encryption noise following significant figures
of an input message. More precisely, our scheme has a decryption structure of the
form 〈c, sk〉 = m + e (mod q) for some small error e. We insert this encryption
error to guarantee the security of scheme, but it will be considered as an error
that arises during approximate computations. That is, the output of decryp-
tion algorithm will be treated as an approximate value of the original message
with a high precision. The size of a plaintext will be small enough compared
to the ciphertext modulus for homomorphic operations so that the result of an
arithmetic computation is still smaller than the ciphertext modulus.

There are some issues that we need to consider more carefully. In unencrypted
approximate computations, small errors may blow up when applying operations
in succession, so it is valuable to consider the proximity of a calculated result to
the exact value of an algorithm. Similarly, encrypted plaintexts in our scheme
will contain some errors and they might be increased during homomorphic eval-
uations. Thus we compute an upper bound of errors and predict the precision
of resulting values.

The management of the size of messages is another issue. If we compute
a circuit of multiplicative depth L without rounding of messages, then the bit
size of an output value will exponentially grow with L. This naive method is
inappropriate for practical usage because it causes a huge ciphertext modulus.
To resolve this problem, we suggest a new technique which divides intermediate
values by a base. It allows us to discard some inaccurate LSBs of a message while
an error is still kept relatively small compared to the message. This method leads
to maintain the size of messages almost same and make the required ciphertext
modulus linear in the depth L.

3.2 Plaintext Encoding for Packing

The batching technique in HE system allows us to encrypt multiple messages in a
single ciphertext and enables a parallel processing in SIMD manner. In practice,
we take its advantage to parallelize computations and reduce the memory and
complexity. A ring of finite characteristic has been used as a plaintext space
in the previous RLWE-based HE schemes. A small error, which is located in a
separated place in a ciphertext modulus, is inserted to ensure security and it
may be removed after carrying out homomorphic operations. Then an output
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polynomial is decoded into a message vector with respect to the CRT-based
encoding technique [38,39]. Meanwhile, a plaintext of our scheme is a polynomial
contained in a ring of characteristic zero and it embraces am error for security,
so an inserted error cannot be removed after decryption.

Intuition. A native plaintext space of our RLWE-based construction can be
understood as the set of polynomials m(X) ∈ S such that ‖m‖can∞ � q. The
roots of a cyclotomic polynomial ΦM (X) are the complex primitive roots of
unity in the extension field C. We evaluate a plaintext polynomial at these roots
in order to transform it into a vector of complex numbers, so the (extended)
canonical embedding map σ: S → C

N plays a role of decoding algorithm.
For technical details, we first point out that the image of canonical embedding

map is the subring H = {(zj)j∈Z
∗
M

: zj = z−j} of CN . Let T be a multiplicative
subgroup of Z∗

M satisfying Z
∗
M/T = {±1}. Then H can be identified with C

N/2

via the natural projection π, defined by (zj)j∈Z
∗
M

	→ (zj)j∈T . Then our decoding
algorithm is to transform an arbitrary polynomial m(X) ∈ R into a complex
vector z such that z = π ◦ σ(m) ∈ C

N/2.
The encoding algorithm is defined as the inverse of decoding procedure.

Specifically, it encodes an input vector z = (zi)i∈T in a polynomial m(X) =
σ−1 ◦ π−1(z) where π−1(z)[j] is zj if j ∈ T , and z−j otherwise. Note that
the encoding/decoding algorithms are isometric ring isomorphisms between
(S, ‖·‖can∞ ) and (CN/2, ‖·‖∞), so the size of plaintexts and errors are preserved
via these transformations.

Since π−1(z) might not be contained in the image of canonical embedding
map, we need to discritize π−1(z) to an element of σ(R). Recall that R has a
Z-basis {1,X, . . . ,XN−1} and it yields a rank-N ideal lattice σ(R) having basis
{σ(1), σ(X), . . . , σ(XN−1)}. The goal of rounding process is to find a vector,
denoted by

⌊
π−1(z)

⌉
σ(R)

, with a rounding error ‖π−1(z) − ⌊
π−1(z)

⌉
σ(R)

‖∞.
There are several round-off algorithms including the coordinate-wise randomized
rounding. See [35] for details.

A rounding error may destroy the significant figures of a message during
encoding procedure. Hence we recommend to multiply a scaling factor Δ ≥ 1
to a plaintext before rounding in order to preserve its precision. Our encod-
ing/decoding algorithms are explicitly given as follows:

• Ecd(z;Δ). For a (N/2)-dimensional vector z = (zi)i∈T of complex numbers,
the encoding procedure first expands it into the vector π−1(z) ∈ H and com-
putes its discretization to σ(R) after multiplying a scaling factor Δ. Return
the corresponding integral polynomial m(X) = σ−1(

⌊
Δ · π−1(z)

⌉
σ(R)

) ∈ R.
• Dcd(m;Δ). For an input polynomial m ∈ R, output the vector z = π◦σ(Δ−1 ·

m), i.e., the entry of z of index j ∈ T is zj = Δ−1 · m(ζj
M ).

As a toy example, let M = 8 (i.e., Φ8(X) = X4 + 1) and Δ = 64. Let
T = {ζ8, ζ

3
8} for the root of unity ζ8 = exp(−2πi/8). For a given vector z =

(3+4i, 2− i), the corresponding real polynomial 1
4 (10+4

√
2X +10X2+2

√
2X3)

has evaluation values 3+4i and 2− i at ζ8 and ζ38 , respectively. Then the output
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of encoding algorithm is m(X) = 160+91X+160X2+45X3 ← Ecd(z;Δ), which
is the closest integral polynomial to 64 · 1

4 (10 + 4
√

2X + 10X2 + 2
√

2X3). Note
that 64−1 · (m(ζ8),m(ζ38 )) ≈ (3.0082 + 4.0026i, 1.9918 − 0.9974i) is approximate
to the input vector z with a high precision.

3.3 Leveled Homomorphic Encryption Scheme for Approximate
Arithmetic

The purpose of this subsection is to construct a leveled HE scheme for approx-
imate arithmetic. For convenience, we fix a base p > 0 and a modulus q0, and
let q� = p� · q0 for 0 < 
 ≤ L. The integer p will be used as a base for scaling in
approximate computation. For a security parameter λ, we also choose a parame-
ter M = M(λ, qL) for cyclotomic polynomial. For a level 0 ≤ 
 ≤ L, a ciphertext
of level 
 is a vector in Rk

q�
for a fixed integer k. Our scheme consists of five algo-

rithm (KeyGen,Enc,Dec,Add,Mult) with constants Bclean and Bmult(
) for noise
estimation. For convenience, we will describe a HE scheme over the polynomial
ring R = Z[X]/(ΦM (X)).

• KeyGen(1λ). Generate a secret value sk, a public information pk for encryp-
tion, and a evaluation key evk.

• Encpk(m). For a given polynomial m ∈ R, output a ciphertext c ∈ Rk
qL

. An
encryption c of m will satisfy 〈c, sk〉 = m+e (mod qL) for some small e. The
constant Bclean denotes an encryption bound, i.e., error polynomial of a fresh
ciphertext satisfies ‖e‖can∞ ≤ Bclean with an overwhelming probability.

• Decsk(c). For a ciphertext c at level 
, output a polynomial m′ ← 〈c, sk〉
(mod q�) for the secret key sk.

Unlike the most of existing schemes, our scheme does not have a separate
plaintext space from an inserted error. An output m′ = m + e of decryption
algorithm is slightly different from the original message m, but it can be con-
sidered to be an approximate value for approximate computations when ‖e‖can∞
is small enough compared to ‖m‖can∞ . The intuition of approximate encryption
has been partially used previously, for example, a switching key for homomor-
phic multiplication in [4–6,12] or an evaluation key for the squashed decryption
circuit in [13,18] are encrypted in a similar way.

The algorithms for homomorphic operations are required to satisfy the fol-
lowing properties.

• Add(c1, c2). For given encrypts of m1 and m2, output an encryption of m1 +
m2. An error of output ciphertext is bounded by sum of two errors in input
ciphertexts.

• Multevk(c1, c2). For a pair of ciphertexts (c1, c2), output a ciphertext cmult ∈
Rk

q�
which satisfies 〈cmult, sk〉 = 〈c1, sk〉 · 〈c2, sk〉 + emult (mod q�) for some

polynomial emult ∈ R with ‖emult‖can∞ ≤ Bmult(
).

We may adapt the techniques of existing HE schemes over the ring R to
construct a HE scheme for approximate arithmetic. For example, the ring-based
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BGV scheme [5], its variant with multiplication by raising ciphertext modulus [25]
(k = 2), or the NTRU scheme [33] (k = 1) can be used as a base scheme.
Our scheme has its own distinct and unique characteristic represented by the
following rescaling procedure.

• RS�→�′(c). For a ciphertext c ∈ Rk
q�

at level 
 and a lower level 
′ < 
, output

the ciphertext c′ ←
⌊

q�′
q�

c
⌉

in Rk
q�′ , i.e., c′ is obtained by scaling q�′

q�
to the

entries of c and rounding the coefficients to the closest integers. We will omit
the subscript 
 → 
′ when 
′ = 
 − 1.

For an input ciphertext c of a message m such that 〈c, sk〉 = m+e (mod q�),
the output ciphertext c′ of rescaling procedure satisfies 〈c′, sk〉 = q�′

q�
m+( q�′

q�
e+

escale) (mod q�′). Let τ = q�′
q�

c − c′ and assume that an error polynomial escale =
〈τ , sk〉 is bounded by some constant Bscale. Then the output ciphertext becomes
an encryption of q�′

q�
m with a noise bounded by q�′

q�
‖e‖can∞ + Bscale.

Technically this procedure is similar to the modulus-switching algorithm [5],
but it has a completely different role in our construction. The rescaling algo-
rithm divides a plaintext by an integer to remove some inaccurate LSBs as a
rounding step in usual approximate computations using floating-point numbers
or scientific notation. The magnitude of messages can be maintained almost the
same during homomorphic evaluation, and thus the required size of the largest
ciphertext modulus grows linearly with the depth of the circuit being evaluated.

Tagged Informations. A homomorphic operation has an effect on the size of
plaintext and the growth of message and noise. Each ciphertext will be tagged
with bounds of a message and an error in order to dynamically manage their
magnitudes. Hence, a full ciphertext will be of the form (c, 
, ν, B) for a ciphertext
vector c ∈ Rk

q�
, a level 0 ≤ 
 ≤ L, an upper bound ν ∈ R of message and an

upper bound B ∈ R of noise. Table 1 shows the full description of our scheme
and homomorphic operations for ciphertexts with tagged information.

Table 1. Description of our scheme

Encpk : m 	→ (c, L, ν, Bclean) for some ν ≥ ‖m‖can∞
Decsk : (c, �, ν, B) 	→ (〈c, sk〉 (mod q�), B)

RS�→�′ : (c′, �, ν, B) 	→ (c, �′, p�′−� · ν, p�′−� · B + Bscale)

Add : ((c1, �, ν1, B1), (c2, �, ν2, B2)) 	→ (cadd, �, ν1 + ν2, B1 + B2)

Multevk : ((c1, �, ν1, B1), (c2, �, ν2, B2))

	→ (cmult, �, ν1ν2, ν1B2 + ν2B1 + B1B2 + Bmult)

Homomorphic Operations of Ciphertexts at Different Levels. When
given encryptions c, c′ of m,m′ belong to the different levels 
 and 
′ < 
, we
should bring a ciphertext c at a larger level 
 to the smaller level 
′ before
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homomorphic operation. There are two candidates: simple modular reduction
and the RS procedure. It should be chosen very carefully by considering the scale
of messages because the simple modular reduction c 	→ c (mod q�′) preserves
the plaintext while RS procedure changes the plaintext from m to q�′

q�
m as in

Fig. 3. Throughout this paper, we perform simple modulus reduction to the
smaller modulus before computation on ciphertexts at different levels unless
stated otherwise.

Fig. 3. Rescaling and simple modular reduction

3.4 Concrete Construction of RLWE-based HE Scheme

The performance of our construction and the noise growth depend on the base
HE scheme. Moreover, a more accurate noise estimation can be done if we choose
a specific one. We take the BGV scheme [5] with multiplication method by raising
ciphertext modulus [25] as the underlying scheme of our concrete construction
and implementation. From Costache and Smart’s comparison [14], it seems to
be the most efficient among the existing RLWE-based schemes.

For security and simplicity, we will use power-of-two degree cyclotomic rings.
In this case, the dual ideal R∨ = N−1 · R of R = Z[X]/(XN + 1) is simply a
scaling of the ring. The RLWE problem is informally described by transforming
samples (a, b = a · s′ + e′) ∈ Rq × R∨

q into (a, b = a · s + e) ∈ Rq × Rq where
s = s′ · N ∈ R and e = e′ · N ∈ R, so that the coefficients of e can be sampled
independently from the discrete Gaussian distribution.

We will also choose the ring of Gaussian integers Z[i] as a discrete subspace
of C for implementation. Another advantage of power-of-two degree cyclotomic
rings is the efficient rounding operation 
·�R∨ in dual fractional ideal R∨. Since
the columns of matrix CRTM defined in Sect. 2.2 are mutually orthogonal, the
encoding of plaintext can be efficiently done by rounding coefficients to the
nearest integers after multiplication with the matrix CRT−1

M .
We adopt the notation of some distributions on from [25]. For a real σ > 0,

DG(σ2) samples a vector in Z
N by drawing its coefficient independently from

the discrete Gaussian distribution of variance σ2. For an positive integer h,
HWT (h) is the set of signed binary vectors in {0,±1}N whose Hamming weight
is exactly h. For a real 0 ≤ ρ ≤ 1, the distribution ZO(ρ) draws each entry
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in the vector from {0,±1}N , with probability ρ/2 for each of −1 and +1, and
probability being zero 1 − ρ.

• KeyGen(1λ).
- Given the security parameter λ, choose a power-of-two M = M(λ, qL),

an integer h = h(λ, qL), an integer P = P (λ, qL) and a real value σ =
σ(λ, qL).

- Sample s ← HWT (h), a ← RqL
and e ← DG(σ2). Set the secret key as

sk ← (1, s) and the public key as pk ← (b, a) ∈ R2
qL

where b ← −as + e
(mod qL).

- Sample a′ ← RP ·qL
and e′ ← DG(σ2). Set the evaluation key as evk ←

(b′, a′) ∈ R2
P ·qL

where b′ ← −a′s + e′ + Ps2 (mod P · qL).
• Ecd(z;Δ). For a (N/2)-dimensional vector z = (zj)j∈T ∈ Z[i]N/2 of Gaussian

integers, compute the vector
⌊
Δ · π−1(z)

⌉
σ(R)

. Return its inverse with respect
to canonical embedding map.

• Dcd(m;Δ). For an input polynomial m(X) ∈ R, compute the corresponding
vector π ◦σ(m). Return the closest vector of Gaussian integers z = (zj)j∈T ∈
Z[i]N/2 after scaling, i.e., zj =

⌊
Δ−1 · m(ζj

M )
⌉

for j ∈ T .
• Encpk(m). Sample v ← ZO(0.5) and e0, e1 ← DG(σ2). Output v · pk + (m +

e0, e1) (mod qL).
• Decsk(c). For c = (b, a), output b + a · s (mod q�).
• Add(c1, c2). For c1, c2 ∈ R2

q�
, output cadd ← c1 + c2 (mod q�).

• Multevk(c1, c2). For c1 = (b1, a1), c2 = (b2, a2) ∈ R2
q�

, let (d0, d1, d2) =
(b1b2, a1b2 + a2b1, a1a2) (mod q�). Output cmult ← (d0, d1) +

⌊
P−1 · d2 · evk

⌉

(mod q�).
• RS�→�′(c). For c ∈ R2

q�
, output c′ ←

⌊
q�′
q�

c
⌉

∈ (mod q′
�).

Throughout this paper, we use non-integral polynomial as plaintext for con-
venience of analysis, so that a ciphertext (c ∈ R2

q�
, 
, ν, B) will be called a valid

encryption of m ∈ S if ‖m‖can∞ ≤ ν and 〈c, sk〉 = m + e (mod q�) for some
polynomial e ∈ S with ‖e‖can∞ ≤ B. The following lemmas give upper bounds
on noise growth after encryption, rescaling and homomorphic operations. See
Appendix B for proofs.

Lemma 1 (Encoding and Encryption). Encryption noise is bounded by
Bclean = 8

√
2σN + 6σ

√
N + 16σ

√
hN . If c ← Encpk(m) and m ← Ecd(z;Δ)

for some z ∈ Z[i]N/2 and Δ > N + 2Bclean, then Dcd(Decsk(c)) = z.

Lemma 2 (Rescaling). Let (c, 
, ν, B) be an encryption of m ∈ S. Then
(c′, 
′, p�′−�·ν, p�′−�·B+Bscale) is a valid encryption of p�′−�·m for c′ ← RS�→�′(c)
and Bscale =

√
N/3 · (3 + 8

√
h).

Lemma 3 (Addition/Multiplication). Let (ci, 
, νi, Bi) be encryptions of
mi ∈ S for i = 1, 2, and let cadd ← Add(c1, c2) and cmult ← Multevk(c1, c2).
Then (cadd, 
, ν1+ν2, B1+B2) and (cmult, 
, ν1ν2, ν1B2+ν2B1+B1B2+Bmult(
))
are valid encryptions of m1 +m2 and m1m2, respectively, where Bks = 8σN/

√
3

and Bmult(
) = P−1 · q� · Bks + Bscale.



Homomorphic Encryption for Arithmetic of Approximate Numbers 423

Permutations over the Plaintext Slots. It is known that the Galois
group Gal = Gal(Q(ζM )/Q) consists of the mappings κk: m(X) 	→ m(Xk)
(mod ΦM (X)) for a polynomial m(X) ∈ R and all k co-prime with M , and
that it is isomorphic to Z

∗
M . As describe in [24], applying the transformation κk

to the polynomials is very useful for the permutation on a vector of plaintext
values.

For example, a plaintext polynomial m(X) is decoded into a vector of evalu-
ations at the specific points, i.e., (m(ζj

M ))j∈T for a subgroup T of Z∗
M satisfying

Z
∗
M/T = {±1}. For any i, j ∈ T , there is an element κk ∈ Gal which sends an

element in the slot of index i to an element in the slot of index j. That is, for
a vector of plaintext values z = (zj)j∈T ∈ C

N/2 with the corresponding polyno-
mial m(X) = σ−1 ◦ π−1(z), if k = j−1 · i (mod M) and m′ = κk(m), then we
have z′

j = m′(ζj
M ) = m(ζjk

M ) = m(ζi
M ) = zi. Hence the element in the slot of

index j of m′ is the same as that in the slot of index i of m.
Given an encryption c of a message m ∈ R with a secret key sk = (1, s),

we denote κk(c) the vector obtained by applying κk to the entries of ciphertext
c. It follows from [24] that κk(c) is a valid encryption of κk(m) with respect to
the secret κk(s). In addition, the key-switching technique can be applied to the
ciphertext κk(c) in order to get an encryption of the same message with respect
to the original secret s.

Relative Error. The decryption result of a ciphertext is an approximate value
of plaintext, so the noise growth from homomorphic operations may cause some
negative effect such as loss of significance. Hence it needs to dynamically manage
the bound of noise of ciphertexts for a correct understanding of the outputs.
A full ciphertext (c, 
, ν, B) contains upper bounds of plaintext and noise, but
sometimes it is convenient to consider the relative error defined by β = B/ν.

For example, it is easy to see that the addition of ciphertexts with relative errors
βi = Bi/νi produces a ciphertext with a relative error bounded by maxi{βi}. In
other case, if we multiply two ciphertexts (c1, 
, ν1, B1), (c2, 
, ν2, B2) and scale
down to a lower level 
′ (as floating-point multiplication does), it produces a cipher-
text at level 
′ with a relative error

β′ = β1 + β2 + β1β2 +
Bmult(
) + p�−�′ · Bscale

ν1ν2

from Lemmas 2 and 3. This relative error is very close to β1 + β2 similar to the
case of unencrypted floating-point multiplication under an appropriate choice of
parameter and level.

4 Homomorphic Evaluation of Approximate Arithmetic

In this section, we describe some algorithms for evaluating some circuits com-
monly used in practical applications and analyze error growth of an output
ciphertext based on our concrete construction. We start with the homomorphic
evaluations of typical circuits such as addition and multiplication by constants,
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monomial, and polynomial. These can be extended to approximate series for
analytic functions such as multiplicative inverse and exponential function. The
required parameters and precision of results will be also analyzed together.

For the convenience of analysis, we will assume that the term β1β2 +
(Bmult(
) + p�−�′ · Bscale)/(ν1ν2) is always bounded by a fixed constant β∗, so
the relative error of ciphertext c′ ← RS�→�′(Mult(c1, c2)) satisfies the inequality
β′ ≤ β1 + β2 + β∗. We will discuss about the choice of β∗ and check the validity
of this assumption at the end of Sect. 4.1.

4.1 Polynomial Functions

The goal of this subsection is to suggest an algorithm for evaluating an arbitrary
polynomial, and analyze its complexity and precision of output ciphertext. We
start with the constant addition and multiplication functions f(x) = x + a and
f(x) = ax for a constant a ∈ R.

Lemma 4 (Addition/Multiplication by Constant). Let (c, 
, ν, B) be an
encryption of m ∈ S. For a constant a ∈ R, let ca ← c + (a, 0) (mod q�) and
cm ← a · c (mod q�). Then (ca, 
, ν + ‖a‖can∞ , B) and (cm, 
, ‖a‖can∞ · ν, ‖a‖can∞ · B)
are valid encryptions of m + a and am, respectively.

Proof. There is a polynomial e ∈ R such that 〈c, sk〉 = m + e (mod q�) and
‖e‖can∞ ≤ B. It is obvious that 〈ca, sk〉 = a + 〈c, sk〉 = (a + m) + e (mod q�). We
also have 〈cm, sk〉 = a · (m + e) = am + ae (mod q�) and ‖a · e‖can∞ ≤ ‖a‖can∞ · B.

��
Now we describe an algorithm to evaluate the power polynomial xd for a

power of two integer d. For simplicity, we assume that the bound ν of message
m is equal to the base p.

For an input polynomial m ∈ R of size ‖m‖can∞ ≤ p, Algorithm 1 repeatedly
performs the rescaling procedure after each of squaring step to maintain the
size of message, thus the output of Algorithm 1 is an encryption of the scaled
value p · f(m/p) = md/pd−1. The following lemma explains the correctness of
Algorithm 1 and gives the relative error of the output ciphertext.

Algorithm 1. Power polynomial f(x) = xd of power-of-two degree
1: procedure Power(c ∈ R2

q�
, d = 2r)

2: c0 ← c
3: for j = 1 to r do
4: cj ← RS(Mult(cj−1, cj−1))
5: end for
6: return cr

7: end procedure
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Lemma 5. Let (c, 
, p, β0 · p) be an encryption of m ∈ S and d be a power-of-
two integer. Then Algorithm 1 outputs a valid encryption (cr, 
 − r, p, βd · p) of
md/pd−1 for some real number βd ≤ d · β0 + (d − 1) · β∗.

Proof. We argue by induction on j. It is easy to see that (cj , 
 − j, p, β2j · p) is
an encryption of m2j

/p2
j−1 for some real number β2j ≤ 2 · β2j−1 + β∗. After r

iterations, it produces an encryption (cr, 
 − r, p, β2r · p) of m2r

/p2
r−1 for some

β2r such that β2r ≤ 2r · β0 + (2r − 1) · β∗. ��
Algorithm 1 can be extended to an algorithm which evaluates an arbitrary

polynomial. Similar to the previous case, this extended algorithm outputs an
encryption of the scaled value p · f(m/p) = md/pd−1.

Lemma 6. Let (c, 
, p, B) be an encryption of m ∈ S and let d be a positive
integer. Then one can compute a valid encryption (c′, 
 − �log d�, p, βd · p) of
md/pd−1 for some real number βd ≤ d · β0 + (d − 1) · β∗.

Lemma 7 (Polynomial). Let f(x) =
∑d

j=0 ajx
j be a nonzero polynomial of

coefficients aj in R and of degree d. Let (c, 
, p, β0 · p) be an encryption of mS.
Then one can compute a valid encryption (c′, 
−�log d�,Mf , βd·Mf ) of p·f(m/p)
for Mf = p · ∑d

j=0 ‖aj‖can∞ and for some real number βd ≤ d · β0 + (d − 1) · β∗.

If the relative error of input ciphertext satisfies β0 ≤ β∗, the relative error
of the resulting ciphertext is bounded by βd ≤ d · β0 + (d − 1) · β∗ ≤ 2d · β0.
Hence, the precision loss is bounded by (log d + 1) bits, which is comparable
to loss of significance occurring in unencrypted numerical computations. The
evaluation of polynomial of degree d can be done in d homomorphic multiplica-
tions between ciphertext of depth r = �log d� by computing the encryptions of
m,m2/p, . . . , md/pd−1 simultaneously. We may apply the Paterson-Stockmeyer
algorithm [37] to the evaluation procedure. Then a degree d polynomial can be
evaluated using O(

√
d) multiplications, which gives a similar upper bound on

relative error as the naive approach.
Let us return to the assumption β1β2 +(Bmult(
)+p�−�′ ·Bscale)/(ν1ν2) ≤ β∗.

We will choose β∗ as an upper bound of relative errors of fresh ciphertexts in
our scheme. After evaluation of circuits of depth less than (L − 1), the resulting
ciphertext will have a relative error less than 2L ·β∗. It means that the first term
β1β2 will be bounded by 2L+1 ·β2

∗ after evaluation. The condition 2L+1 ·β2
∗ ≤ 1

2β∗,
or equivalently β∗ ≤ 2−L−2, seems to be natural; otherwise the relative error
becomes 2L+1 · β∗ ≥ 2−1 after evaluation, so the decryption result will have
almost no information. Thus we have β1 + β2 ≤ 1

2β∗. The second term is equal
to (p�′−� · Bmult(
) + Bscale)/ν′ where ν′ = p�′−� · ν1ν2 is the message bound
of new ciphertext obtained by rescaling after multiplication. The numerator is
asymptotically bounded by p�′−� ·Bmult(
)+Bscale = O(N). If the message bound
always satisfies ν′ ≥ p as in our algorithms, the second term is (Bmult(
)+ p�−�′ ·
Bscale)/(ν1ν2) = O(p−1 ·N) which is smaller than a half of relative error of fresh
ciphertext because β∗ ≥ p−1 · Bclean = Ω(p−1 · σN).
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4.2 Approximate Polynomials and Multiplicative Inverse

We now homomorphically evaluate complex analytic functions f(x) using their
Taylor decomposition f(x) = Td(x) + Rd(x) for Td(x) =

∑d
j=0

f(j)(0)
j! xj and

Rd(x) = f(x) − Td(x). Lemma 7 can be utilized to evaluate the rounded poly-
nomial of scaled Taylor expansion 
pu · Td� (x) of f(x) for some non-negative
integers u and d, which outputs an approximate value of pu+1 · f(m/p). The
bound of error is obtained by aggregating the error occurring during evalua-
tion, the rounding error and the error of the remainder term pu+1 · Rd(m/p).
In the case of RLWE-based constructions, we should consider the corresponding
plaintext vector π ◦ σ(m) = (zj)j∈T and convergence of series in each slot.

As an example, the exponential function f(x) = exp(x) has the Taylor poly-
nomial Td(x) =

∑d
j=0

1
j!x

j and the remaining term is bounded by |Rd(x)| ≤
e

(d+1)! when |x| ≤ 1. Assume that we are given an encryption (c, 
, p, β0 ·p) of m.
With the input ciphertext c and the polynomial 
pu · Td� (x), one can compute
an encryption of pu+1 ·Td(m/p). We see that an error of the resulting ciphertext
is bounded by

dp + pu+1 ·
d∑

j=1

1
j!

(j · β0 + (j − 1)β∗) ≤ dp + pu+1 · (eβ0 + β∗).

If we write exp(m/p) := σ−1◦π−1((exp(zj/p))j∈T ), the output ciphertext can be
also viewed as an encryption of pu+1 ·exp(m/p) of the form (c′, 
−�log d�, ν′, B′)
for ν′ = pu+1 · e and B′ = dp + pu+1 · (eβ0 + β∗ + e

(d+1)! ), and its relative error
is bounded by β′ ≤ (β0 + β∗ · e−1) + (p−u · d · e−1 + 1

(d+1)! ). If β0 ≥ β∗, then we
may take integers d and u satisfying (d + 1)! ≥ 4β−1

0 and pu ≥ 2β−1
0 · d to make

the relative error less than 2β0. In this case, the precision loss during evaluation
of exponential function is less than one bit.

In the case of multiplicative inverse, we adopt an algorithm described in [8] to
get a better complexity. Assuming that a complex number x satisfies |x̂| ≤ 1/2
for x̂ = 1 − x, we get

x(1 + x̂)(1 + x̂2)(1 + x̂22) · · · (1 + x̂2r−1
) = 1 − x̂2r

. (1)

Note that |x̂2r | ≤ 2−2r

, and it converges to one as r goes to infinity. Hence,
∏r−1

j=0(1+x̂2j

) = x−1(1−x̂2r

) can be considered as an approximate multiplicative
inverse of x with 2r bits of precision.

For homomorphic evaluation, we change a scale and assume that a complex
number zj satisfies |ẑj | ≤ p/2 for ẑj = p − zj . The standard approach starts by
normalizing those numbers to be in the unit interval by setting x = zj/p. Since
we cannot multiply fractions over encrypted data, the precision point should
move to the left for each term of (1). That is, we multiply both sides of the
Eq. (1) by p2

r

and then it yields

zj(p + ẑj)(p2
1

+ ẑj
21)(p2

2
+ ẑj

22) · · · (p2r−1
+ ẑj

2r−1
) = p2

r − ẑj
2r

.
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Therefore, the product p−2r · ∏r−1
i=0 (p2

i

+ ẑj
2i

) can be seen as the approximate
inverse of zj with 2r bits of precision. Let ẑ = (ẑj)j∈T and z−1 = (z−1

j )j∈T .
Algorithm 2 takes an encryption of m̂ = σ−1◦π−1(ẑ) as an input and outputs an
encryption of its scaled multiplicative inverse p2 · (σ−1 ◦π−1(z−1)) by evaluating
the polynomial

∏r−1
j=0(p

2j

+ m̂2j

). The precision of the resulting ciphertext and
the optimal iterations number r will be analyzed in the following lemma.

Algorithm 2. Inverse function f(x) = x−1

1: procedure Inverse(c ∈ R2
q�

, r)
2: p ← (p, 0)
3: c0 ← c
4: v1 ← p + c0 (mod q�−1)
5: for j = 1 to r − 1 do
6: cj ← RS(Mult(cj−1, cj−1))
7: vj+1 ← RS(Mult(vj ,p + cj))
8: end for
9: return vr

10: end procedure

Lemma 8 (Multiplicative Inverse). Let (c, 
, p/2, B0 = β0 · p/2) be an
encryption of m̂ ∈ S and let m = p−m̂. Then Algorithm 2 outputs a valid encryp-
tion (vr, 
 − r, 2p, β · 2p) of m′ = p · ∏r−1

i=0 (1 + (m̂/p)2
i

) for some β ≤ β0 + rβ∗.

Proof. From Lemma 4, (v1, 
−1, 3p/2, B0) is a valid encryption of p+m̂ and its
relative error is β′

1 = β0/3. It also follows from Lemma 5 that (cj , 
−j, 2−2j ·p, βj ·
2−2j ·p) is a valid encryption of m̂2j

/p2
j−1 for some real number βj ≤ 2j ·(β0+β∗),

and so (p+cj , 
−j, (1+2−2j

)p, βj ·2−2j ·p) is a valid encryption of p+m̂2j

/p2
j−1 =

(p2
j

+m̂2j

)/p2
j−1 with a relative error β′

j ≤ βj/(22
j

+1) ≤ 2j ·(β0+β∗)/(22
j

+1),
respectively.

Using the induction on j, we can show that
(

vj , 
 − j, p ·
j−1∏

i=0

(1 + 2−2i

), β′′
j · p ·

j−1∏

i=0

(1 + 2−2i

)

)

is a valid encryption of
∏j−1

i=0 (p2
i

+ m̂2i

)/p2
j−2 = p · ∏j−1

i=0 (1 + (m̂/p)2
i

) with a
relative error β′′

j ≤ ∑j−1
i=0 β′

i + (j − 1) · β∗. Note that the message is bounded by
p · ∏j−1

i=0 (1 + 2−2i

) = (2p) · (1 − 2−2j

) < 2p and the relative error satisfies

β′′
j ≤

(
j−1∑

i=0

2i

22i + 1

)

· (β0 + β∗) + (j − 1) · β∗ ≤ β0 + j · β∗
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from the fact that
∑∞

i=0
2i

22i+1
= 1. Therefore, the output vr of Algorithm 2

represents a valid encryption (vr, 
 − r, 2p, β · 2p) of m′ = p · ∏r−1
i=0 (1 + (m̂/p)2

i

)
for some β ≤ β0 + r · β∗. ��

Let m−1(X) := σ−1 ◦ π−1(z−1) be the polynomial in S corresponding to
z−1. The output ciphertext (vr, 
 − r, 2p, β · 2p) of the previous lemma can
be also viewed as an encryption of p2 · m−1. The error bound is increased by
the convergence error ‖p2 · m−1 − m′‖can∞ = ‖p2 · m−1 · (m̂/p)2

r‖can∞ ≤ 2−2r · 2p.
Therefore, the ciphertext (vr, 
 − r, 2p, (β + 2−2r

) · 2p) is a valid encryption of
m′ and its relative error is β +2−2r ≤ β0 + rβ∗ +2−2r

, which is minimized when
rβ∗ ≈ 2−2r

. Namely, r = �log log β−1
∗ � yields the inequality β0 + rβ∗ + 2−2r ≤

β0 +2rβ∗ = β0 +2�log log β−1
∗ � ·β∗. Thus the precision loss during evaluation of

multiplicative inverse is less than one bit if 2�log log β−1
∗ � · β∗ ≤ β0.

The optimal iterations number r can be changed upon more/less information
about the magnitude of m̂. Assume that we have an encryption of message
m̂ whose size is bounded by ‖m̂‖can∞ ≤ εp for some 0 < ε < 1. By applying
Lemma 8, we can compute an encryption of p ·∏r−1

i=0 (1+ (m̂/p)2
i

) = (p2 ·m−1) ·
(1 − (m̂/p)2

r

) with a relative error β ≤ β0 + rβ∗, which is an approximate
value of p2 · m−1 with an error bounded by ε2

r · 2p. Then the optimal iterations
number is r ≈ log log β−1

∗ − log log ε−1 and the relative error becomes β ≤
β0 + 2�(log log β−1

∗ − log log ε−1)� · β∗ when r = �(log log β−1
∗ − log log ε−1)�.

4.3 Fast Fourier Transform

Let d be a power of two integer and consider the complex primitive d-th root
of unity ζd = exp(2πi/d). For a complex vector u = (u0, . . . , ud−1), its discrete
Fourier transform (DFT) is defined by the vector v = (v0, . . . , vd−1) ← DFT(u)
where vk =

∑d−1
j=0 ζjk

d · uj for k = 0, . . . , d − 1. The DFT has a numerous appli-
cations in mathematics and engineering such as signal processing technology.
The basic idea is to send the data to Fourier space, carry out Hadamard opera-
tions and bring back the computation result to a original domain via the inverse
DFT. We denote by Wd(z) = (zj·k)0≤j,k<d the Vandermonde matrix generated
by {zk: 0 ≤ k < d}. The DFT of u can be evaluated by the matrix multiplica-
tion DFT(u) = Wd(ζd) · u, but the complexity of DFT can be reduced down
to O(d log d) using FFT algorithm by representing the DFT matrix Wd(ζd) as a
product of sparse matrices.

Recently, Costache et al. [15] suggested an encoding method which sends the
complex d-th root of unity to the monomial Y = XM/d over cyclotomic ring
R = Z[X]/(ΦM (X)) for cryptosystem. Then homomorphic evaluation of DFT
is simply represented as a multiplication of the matrix Wd(Y ) to a vector of
ciphertexts over polynomial ring.

On the other hand, our RLWE-based HE scheme can take advantage of
batch technique as described in Sect. 3.2. In the slot of index k ∈ T , the
monomial Y = XM/d and matrix Wd(Y ) are converted into ζk

d and the DFT
matrix Wd(ζk

d ), respectively, depending on primitive root of unity ζk
d . However,
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our batching scheme is still meaningful because the evaluation result of whole
pipeline consisting of DFT, Hadamard operations, and inverse DFT is indepen-
dent of index k, even though Wd(Y ) corresponds to the DFT matrices generated
by different primitive d-th roots of unity.

It follows from the property of ordinary FFT algorithm that if (ci, 
, ν, B)
is an encryption of ui for i = 0, . . . , d − 1 and v = (v0, . . . , vd−1) ← Wd(Y ) ·
u, then the output of FFT algorithm using XM/d instead of ζd forms valid
encryptions (c′

i, 
,
√

d · ν,
√

d · B). Note that the precision of input ciphertexts is
preserved as B/ν. Our FFT algorithm takes a similar time with [15] in the same
parameter setting, but the amortized time is much smaller thanks to our own
plaintext packing technique. In the evaluation of whole pipeline DFT-Hadamard
multiplication-inverse DFT, one may scale down the transformed ciphertexts
by

√
d before Hadamard operations to maintain the magnitude of messages and

reduce the required levels for whole pipeline.
The fast polynomial multiplication using the FFT algorithm is a typical

example that computes the exact value using approximate arithmetic. In partic-
ular for the case of integral polynomials, the exact multiplication can be recov-
ered from its approximate value since we know that their multiplication is also
an integral polynomial. Likewise, when the output of a circuit has a specific
format or property, it is possible to get the exact computation result from its
sufficiently close approximation.

5 Implementation Results

In this section we describe how to select parameters for evaluating arithmetic cir-
cuits described in Sect. 4. We also provide implementation results with concrete
parameters. Our implementation is based on the NTL C++ library running over
GMP. Every experimentation was performed on a machine with an Intel Core
i5 running at 2.9 GHz processor using a parameter set with 80-bit security level.

We need to set the ring dimension N that satisfies the security condition
N ≥ λ+110

7.2 log(P · qL) to get λ-bit security level. [25,32] We note that P · qL

is the largest modulus to generate evaluation key and it suffices to assume that
P is approximately equal to qL. In our implementation, we used the Gaussian
distribution of standard deviation σ = 3.2 to sample error polynomials, and set
h = 64 as the number of nonzero coefficients in a secret key s(X).

Evaluation of Typical Circuits. In Table 2, we present the parameter setting
and performance results for computing a power of a ciphertext, the multiplicative
inverse of a ciphertext and exponential function. The average running times are
only for ciphertext operations, excluding encryption and decryption procedures.
As described in Sect. 3.4, each ciphertext can hold N/2 plaintext slots and one
can perform the computation in parallel in each slot. Here the amortized running
time means a relative time per slot.

The homomorphic evaluation of the circuit x1024 with an input of 36-bit pre-
cision is hard to be implemented in practice over previous methods. Meanwhile,
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our scheme can compute this circuit simultaneously over 214 slots in about 7.46 s,
yielding an amortized rate of 0.43 ms per slot. Computation of the multiplica-
tive inverse is done by evaluating the polynomial up to degree 8 as described in
Algorithm 2. It gives an amortized time per slots of about 0.11 ms. In the case
of exponential function, we used terms in its Taylor expansion up to degree 8
and it results in an amortized time per slots of 0.16 ms.

Table 2. Implementation results for homomorphic evaluation of typical circuits

Function N log q log p Consumed
levels

Input
precision

Total
time

Amortized
time

x16 213 155 30 4 14 bits 0.31 s 0.07 ms
x−1 0.45 s 0.11 ms
exp(x) 0.65 s 0.16 ms
x1024 215 620 56 10 36 bits 7.46 s 0.43 ms

Significance Loss. In Sect. 4, we analyzed the theoretical upper bounds on the
growth of relative errors during evaluations. We can see from experimental result
that initial precision is about 4 bits greater than theoretic bound of precision
since we multiply 16 to the variance of encryption error to get a high probability
bound. In Fig. 4, we depict bit precisions of output ciphertexts during the eval-
uation of homomorphic multiplications (e.g. x16 for the left figure and x1024 for
the right figure). We can actually check that both theoretic bound and experi-
mental result of precision loss during homomorphic multiplications is less than
4.1 (or resp. 10.1) when the depth of the circuit is 4 (or resp. 10).

Logistic Function. Let us consider the logistic function f(x) = (1 +
exp(−x))−1, which is widely used in statistics, neural networks and machine

Fig. 4. The variation of bit precision of ciphertexts when (f(x), N, log p, log q) =
(x16, 213, 30, 155) and (x1024, 215, 56, 620)
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learning as a probability function. For example, logistic regression is used for a
prediction of the likelihood to have a heart attack in an unspecified period for
men, as indicated in [3]. It was also used as a predictive equation to screen for
diabetes, as described in [40]. This function can be approximated by its Taylor
series

f(x) =
1
2

+
1
4
x − 1

48
x3 +

1
480

x5 − 17
80640

x7 +
31

1451520
x9 + O(x11).

In [3,9], every real number is scaled by a predetermined factor to transform it as
a binary polynomial before computation. The plaintext modulus t should be set
large enough so that no reduction modulo t occurs in the plaintext space. The
required bit size of plaintext modulus exponentially increases on the depth of the
circuit, which strictly limits the performance of evaluation. On the other hand,
the rescaling procedure in our scheme has the advantage that it significantly
reduces the size of parameters (e.g. (log p, log q) = (30, 155)).

The parallelized computation for logistic function is especially important in
real world applications such as statistic analysis using multiple data. In previous
approaches, each slot of plaintext space should represent a larger degree than
encoded polynomials so they could support only a few numbers of slots. On the
other hand, we provide a parallelization method with an amortization amount
independent from target circuit and get a better amortized time of evaluation
(Table 3).

Table 3. Comparison of implementation results for homomorphic evaluation of logistic
function

Method N log q Polynomial
degree

Amortization
amount

Total
time

Amortized
time

[3] 214 512 7 - >30 s -
[9] 17430 370 7 - 1.8 s -
Ours 213 155 7 212 0.54 s 0.13 ms

214 185 9 213 0.78 s 0.09 ms

Discrete Fourier Transform. With the parameters (N, log p) = (213, 50), we
encrypt coefficients of polynomials and homomorphically evaluate the standard
processing (FFT-Hadamard product of two vectors-inverse FFT) in 73 min
(amortized 1.06 s per slot) when d = 213. We could reduce down the evalua-
tion time to 22 min (amortized 0.34 s per slot) by adapting the multi-threading
method on a machine with four cores, compared to 17 min of the previous
work [15] on six cores. Since the rescaling procedure of transformed ciphertexts
enables us to efficiently carry out higher degree Hadamard operations in Fourier
space, the gap of parameter and running time between our scheme and pre-
vious methods grows very quickly as degree N and the depth of Hadamard
operation increase. For instance, we also homomorphically evaluate the product
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of 8 polynomials, using pipeline consisting of FFT-Hadamard product of eight
vectors-inverse FFT with parameters (N, log q) = (214, 250) in amortized time
of 1.76 s (Table 4).

Table 4. Comparison of implementation results for homomorphic evaluation of a full
image processing pipeline

Method d N log q Degree of
Hadamard
operation

Amortization
amount

Total
time

Amortized
time

[15]a 24 213 150 2 - 0.46 s -
213 214 192 2 - 17 min -

Oursb 24 213 120 2 212 0.88 s 0.21 ms
213 213 130 2 212 22 min 0.34 s
213 214 250 8 213 4 h 1.76 s

aThis experiment was done on a machine with six Intel Xeon E5 2.7 GHz
processors with 64 GB RAM.
bThis experiment was done on a machine with four Intel Core i7 2.9 GHz
processors with 16 GB RAM.

6 Conclusion

In this work, we presented a homomorphic encryption scheme which supports
an approximate arithmetic over encryption. We also introduced a new batch-
ing technique for packing much information in a single ciphertext, so we could
achieve practical performance advantage by parallelism. Another benefit of our
scheme is the rescaling procedure, which enables us to preserve the precision of
the message after approximate computation. Furthermore, it leads to reduce the
size of ciphertext significantly so the scheme can be a reasonable solution for
computation over large integers.

The primary open problem is finding way to convert our scheme to a fully
homomorphic scheme using bootstrapping. The modulus of ciphertext decreases
with homomorphic operations and our scheme can no longer support homo-
morphic computation at the lowest level. To overcome this problem, we aim to
transform an input ciphertext into an encryption of almost the same plaintext
with a much larger modulus.

Further improvement of our implementations are possible by other optimiza-
tions. We would like to enhance them to take advantage of Number Theoretical
Transform (NTT) for fast polynomial multiplication.
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A LWE-based Construction

We start by adapting some notations from [5] to our context. Let n and
q be positive integers. For a vector x ∈ Z

N
q , its bit decomposition and

power of two are defined by BD(x) = (u0, . . . ,ulog q�−1) ∈ {0, 1}Nlog q�

with x =
∑log q�−1

i=0 2iui, and P2(x) = (x, . . . , 2log q�−1x). Then we can see
that 〈BD(x),P2(y)〉 = 〈x,y〉. We also recall the definition of tensor product
u⊗v = (u1v1, u1v2, . . . , u1vm, . . . , unv1, . . . , unvm) on the vector space Rn×R

m,
and its relation with the inner product 〈u ⊗ v,u′ ⊗ v′〉 = 〈u,u′〉 · 〈v,v′〉.

• KeyGen(1λ)
- Take an integer p and q0. Let q� = p� · q0 for 
 = 1, . . . , L. Choose the para-

meters N = N(λ, qL) and an error distribution χ = χ(λ, qL) appropri-
ately for LWE problem of parameter (N, qL, χ). Let τ = 2(N +1)�log qL�.
Output the parameters params = (n, qL, χ, τ).

- Sample s ← HWT (h) and set the secret key as sk ← (1, s) ∈ Z
N+1
qL

. For
1 ≤ i ≤ τ , sample A ← Z

τ×N
qL

, e ← χτ and let b ← −As + e (mod qL).

Set the public key as pk ← (b, A) ∈ Z
τ×(N+1)
qL .

- Let s′ ← P2(s ⊗ s). Sample A′ ← Z
N2log qL�×N
qL and e′ ← χN2log qL�,

and let b′ ← −A′s′ + e′. Set the evaluation key as evk ← (b′, A′) ∈
Z

N2log qL�×(N+1)
qL .

• Enc(m). For an integer m ∈ Z, sample a vector r ← {0, 1}τ . Output c ←
(m,0) + pkT · r ∈ Z

N+1
qL

.
• Add(c1, c2). For c1, c2 ∈ Z

N+1
q�

, output cadd ← c1 + c2 (mod q�).
• Mult(c1, c2). For c1, c2 ∈ Z

N+1
q�

, let c′ ← BD(c1⊗c2). Output cmult ← evkT ·c′

(mod q�).
• RS�→�′(c). For a ciphertext c ∈ Z

N+1
q�

at level 
, output the ciphertext c′ ←
⌊

q�′
q�

c
⌉

∈ Z
N+1
q�′ .

B Noise Estimations

We follow the heuristic approach in [14,25]. Assume that a polynomial a(X) ∈
R = Z[X]/(ΦM (X)) is sampled from one of above distributions, so its nonzero
entries are independently and identically distributed. Since a(ζM ) is the inner
product of coefficient vector of a and the fixed vector (1, ζM , . . . , ζN−1

M ) of
Euclidean norm

√
N , the random variable a(ζM ) has variance V = σ2N , where

σ2 is the variance of each coefficient of a. Hence a(ζM ) has the variances
VU = q2N/12, VG = σ2N and VZ = ρN , when a is sampled from U(Rq),
DG(σ2) and ZO(ρ), respectively. In particular, a(ζM ) has the variance VH = h
when a(X) is chosen from HWT (h). Moreover, we can assume that a(ζM ) is dis-
tributed similarly to a Gaussian random variable over complex plane since it is
a sum of many independent and identically distributed random variables. Every
evaluations at root of unity ζj

M share the same variance. Hence, we will use 6σ
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as a high-probability bound on the canonical embedding norm of a when each
coefficient has a variance σ2. For a multiplication of two independent random
variables close to Gaussian distributions with variances σ2

1 and σ2
2 , we will use

a high-probability bound 16σ1σ2.

Proof of Lemma 1.

Proof. We choose v ← ZO(0.5)2 and e0, e1 ← DG(σ2), then set c ← v · pk +
(m + e0, e1). The bound Bclean of encryption noise is computed by the following
inequality:

‖〈c, sk〉 − m (mod qL)‖can∞ = ‖v · e + e0 + e1 · s‖can∞
≤ ‖v · e‖can∞ + ‖e0‖can∞ + ‖e1 · s‖can∞
≤ 8

√
2 · σN + 6σ

√
N + 16σ

√
hN.

For a vector z ∈ Z[i]N/2, an encryption of m = Ecd(z;Δ) is also a valid encryp-
tion of Δ · σ−1 ◦ π−1(z) with an increased error bound B′ = Bclean + N/2. If
Δ−1 ·B′ < 1/2, then this error polynomial is removed by the rounding operation
in decoding algorithm. ��

Proof of Lemma 2.

Proof. It is satisfied that 〈c, sk〉 = m + e (mod q�) for some polynomial e ∈ S
such that ‖e‖can∞ ≤ B. The output ciphertext c′ ←

⌊
q�′
q�

c
⌉

satisfies 〈c′, sk〉 =
q�′
q�

(m+e)+escale (mod q�′) for the rounding error vector τ = (τ0, τ1) = c′ − q�′
q�

c

and the error polynomial escale = 〈τ , sk〉 = τ0 + τ1 · s.
We may assume that each coefficient of τ0 and τ1 in the rounding error vector

is computationally indistinguishable from the random variable in the interval
q�′
q�
Zq�/q�′ with variance ≈ 1/12. Hence, the magnitude of scale error polynomial

is bounded by ‖escale‖can∞ ≤ ‖τ0‖can∞ + ‖τ1 · s‖can∞ ≤ 6
√

N/12 + 16
√

hN/12, as
desired. ��

Proof of Lemma 3.

Proof. Let ci = (bi, ai) for i = 1, 2. Then 〈ci, sk〉 = mi + ei (mod q�) for some
polynomials ei ∈ S such that ‖ei‖can∞ ≤ Bi. Let (d0, d1, d2) = (b1b2, a1b2 +
a2b1, a1a2). This vector can be viewed as a level-
 encryption of m1m2 with an
error m1e2+m2e1+e1e2 with respect to the secret vector (1, s, s2). It follows from
Lemma 2 that the ciphertext cmult ← (d0, d1) +

⌊
P−1 · (d2 · evk (mod Pq�))

⌉

contains an additional error e′′ = P−1 · d2e
′ and a rounding error bounded by

Bscale. We may assume that d2 behaves as a uniform random variable on Rq�
, so

P‖e′′‖can∞ is bounded by 16
√

Nq2� /12
√

Nσ2 = 8Nσq�/
√

3 = Bks · q�. Therefore,
cmult is an encryption of m1m2 with an error bounded by

‖m1e2 + m2e1 + e1e2 + e′′‖can∞ +Bscale ≤ ν1B2+ν2B1+B1B2+P−1·q�·Bks+Bscale,

as desired. ��
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Abstract. Fully-homomorphic encryption (FHE) enables computation
on encrypted data while maintaining secrecy. Recent research has shown
that such schemes exist even for quantum computation. Given the numer-
ous applications of classical FHE (zero-knowledge proofs, secure two-
party computation, obfuscation, etc.) it is reasonable to hope that quan-
tum FHE (or QFHE) will lead to many new results in the quantum
setting. However, a crucial ingredient in almost all applications of FHE
is circuit verification. Classically, verification is performed by checking a
transcript of the homomorphic computation. Quantumly, this strategy is
impossible due to no-cloning. This leads to an important open question:
can quantum computations be delegated and verified in a non-interactive
manner?

In this work, we answer this question in the affirmative, by construct-
ing a scheme for QFHE with verification (vQFHE). Our scheme provides
authenticated encryption, and enables arbitrary polynomial-time quan-
tum computations without the need of interaction between client and
server. Verification is almost entirely classical; for computations that
start and end with classical states, it is completely classical. As a first
application, we show how to construct quantum one-time programs from
classical one-time programs and vQFHE.

1 Introduction

The 2009 discovery of fully-homomorphic encryption (FHE) in classical cryptog-
raphy is widely considered to be one of the major breakthroughs of the field. Unlike
standard encryption, FHE enables non-interactive computation on encrypted data
even by parties that do not hold the decryption key. Crucially, the input, output,
and all intermediate states of the computation remain encrypted, and thus hidden
from the computing party. While FHE has some obvious applications (e.g., cloud
computing), its importance in cryptography stems from its wide-ranging applica-
tions to other cryptographic scenarios. For instance, FHE can be used to construct

c© International Association for Cryptologic Research 2017
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secure two-party computation, efficient zero-knowledge proofs for NP, and indis-
tinguishability obfuscation [4,14]. In fact, the breadth of its usefulness has led some
to dub FHE “the swiss army knife of cryptography” [4].

Recent progress on constructing quantum computers has led to theoretical
research on “cloud-based” quantum computing. In such a setting, it is natural
to ask whether users can keep their data secret from the server that performs
the quantum computation. A recently-constructed quantum fully-homomorphic
encryption (QFHE) scheme shows that this can be done in a single round of
interaction [12]. This discovery raises an important question: do the numerous
classical applications of FHE have suitable quantum analogues? As it turns out,
most of the classical applications require an additional property which is simple
classically, but non-trivial quantumly. That property is verification: the ability
of the user to check that the final ciphertext produced by the server is indeed
the result of a particular computation, homomorphically applied to the initial
user-generated ciphertext. In the classical case, this is a simple matter: the server
makes a copy of each intermediate computation step, and provides the user with
all these copies. In the quantum case, such a “transcript” would appear to violate
no-cloning. The user simply checks a transcript generated by the server. In the
quantum case, this would violate no-cloning. In fact, one might suspect that the
no-cloning theorem prevents non-interactive quantum verification in principle.

In this work, we show that verification of homomorphic quantum compu-
tations is in fact possible. We construct a new QFHE scheme which allows the
server to generate a “computation log” which can certify to the user that a partic-
ular homomorphic quantum computation was performed on the ciphertext. The
computation log itself is purely classical, and most (in some cases, all) of the veri-
fication can be performed on a classical computer. Unlike in all previous quantum
homomorphic schemes, the underlying encryption is now authenticated.

Verification immediately yields new applications of QFHE, e.g., allowing
users of a “quantum cloud service” to certify the server’s computations. Verified
QFHE (or vQFHE) also leads to a simple construction of quantum one-time pro-
grams (qOTPs) [9]. In this construction, the qOTP for a functionality Φ consists
of an evaluation key and a classical OTP which performs vQFHE verification for
Φ only. Finding other applications of vQFHE (including appropriate analogues
of all classical applications) is the subject of ongoing work.

Related Work. Classical FHE was first constructed by Gentry in 2009 [15]. For
us, the scheme of Brakerski and Vaikuntanathan [5] is of note: it has decryption in
NC1 and is believed to be quantum-secure. Quantumly, partially-homomorphic
(or partially-compact) schemes were proposed by Broadbent and Jeffery [6]. The
first fully-homomorphic (leveled) scheme was constructed by Dulek, Schaffner
and Speelman [12]. Recently, Mahadev proposed a scheme, based on classical
indistinguishability obfuscation, in which the user is completely classical [17]. A
parallel line of work has attempted to produce QFHE with information-theoretic
security [18,19,21,23]. There has also been significant research on delegating
quantum computation interactively (see, e.g., [1,8,11]). Another notable inter-
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active approach is quantum computation on authenticated data (QCAD), which
was used to construct quantum one-time programs from classical one-time pro-
grams [9] and zero-knowledge proofs for QMA [10].

Summary of Results. Our results concern a new primitive: verified QFHE.
A standard QFHE scheme consists of four algorithms: KeyGen, Enc, Eval and
Dec [6,12]. We define vQFHE similarly, with two changes: (i) Eval provides an
extra classical “computation log” output; (ii) decryption is now called VerDec,
and accepts a ciphertext, a circuit description C, and a computation log. Infor-
mally, correctness then demands that, for all keys k and circuits C acting on
plaintexts,

VerDecC
k ◦ EvalCevk ◦ Enck = ΦC . (1)

A crucial parameter is the relative difficulty of performing C and VerDecC
k . In

a nontrivial scheme, the latter must be simpler. In our case, C is an arbitrary
poly-size quantum circuit and VerDecC

k is almost entirely classical.

Security of verified QFHE. Informally, security should require that, if a server
deviates significantly from the map EvalCk in (1), then VerDecC

k will reject.

1. Semantic security (SEM-VER). Consider a QPT adversary A which
manipulates a ciphertext (and side info) and declares a circuit, as in Fig. 1
(top). This defines a channel ΦA := VerDec ◦ A ◦ Enc. A simulator S does
not receive or output a ciphertext, but does declare a circuit; this defines a
channel ΦS which first runs S and then runs a circuit on the plaintext based
on the outputs of S. We say that a vQFHE scheme is semantically secure
(SEM-VER) if for all adversaries A there exists a simulator S such that the
channels ΦA and ΦS are computationally indistinguishable.

2. Indistinguishability (IND-VER). Consider the following security game.
Based on a hidden coin flip b, A participates in one of two protocols. For
b = 0, this is normal vQFHE. For b = 1, this is a modified execution, where
we secretly swap out the plaintext ρA to a private register (replacing it with
a fixed state), apply the desired circuit to ρA, and then swap ρA back in; we
then discard this plaintext if VerDec rejects the outputs of A. Upon receiving
the final plaintext of the protocol, A must guess the bit b. A vQFHE scheme
is IND-VER if, for all A, the success probability is at most 1/2 + negl(n).

3. New relations between security definitions. If we restrict SEM-VER to
empty circuit case, we recover (the computational version of) the definition
of quantum authentication [7,13]. SEM-VER (resp., IND-VER) generalizes
computational semantic security SEM (resp., indistinguishability IND) for
quantum encryption [2,6]. We generalize SEM ⇔ IND [2] as follows.

Theorem 1. A vQFHE scheme satisfies SEM-VER iff it satisfies IND-VER.

A scheme for vQFHE for poly-size quantum circuits. Our main result is a
vQFHE scheme which admits verification of arbitrary polynomial-size quantum
circuits. The verification in our scheme is almost entirely classical. In fact, we
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can verify classical input/output computations using purely classical verification.
The main technical ingredients are (i) classical FHE with NC1 decryption [5],
(ii) the trap code for computing on authenticated quantum data [7,9,20], and
(iii) the “garden-hose gadgets” from the first QFHE scheme [12]. The scheme is
called TrapTP; a brief sketch is as follows.

1. Key Generation (KeyGen). We generate keys for the classical FHE scheme,
as well as some encrypted auxiliary states (see evaluation below). This proce-
dure requires the generation of single-qubit and two-qubit states from a small
fixed set, performing Bell measurements and Pauli gates, and executing the
encoding procedure of a quantum error-correcting code on which the trap
code is based.

2. Encryption (Enc). We encrypt each qubit of the plaintext using the trap
code, and encrypt the trap code keys using the FHE scheme. This again
requires the ability to perform Paulis, execute an error-correcting encoding,
and the generation of basic single-qubit states.

3. Evaluation (Eval). Paulis and CNOT are evaluated as in the trap code;
keys are updated via FHE evaluation. To measure a qubit, we measure all
ciphertext qubits and place the outcomes in the log. To apply P or H, we use
encrypted magic states (from the eval key) plus the aforementioned gates.
Applying T requires a magic state and an encrypted “garden-hose gadget”
(because the T-gate magic state circuit applies a P-gate conditioned on a
measurement outcome). In addition to all of the measurement outcomes, the
log also contains a transcript of all the classical FHE computations.

4. Verified decryption (VerDec). We check the correctness and consistency
of the classical FHE transcript, the measurement outcomes, and the claimed
circuit. The result of this computation is a set of keys for the trap code, which
are correct provided that Eval was performed honestly. We decrypt using these
keys and output either a plaintext or reject. In terms of quantum capabilities,
decryption requires executing the decoding procedure of the error-correcting
code, computational-basis and Hadamard-basis measurements, and Paulis.

Our scheme is compact : the number of elementary quantum operations per-
formed by VerDec scales only with the size of the plaintext, and not with the
size of the circuit performed via Eval. We do require that VerDec performs a clas-
sical computation which can scale with the size of the circuit; this is reasonable
since VerDec must receive the circuit as input. Like the other currently-known
schemes for QFHE, our scheme is leveled, in the sense that pre-generated aux-
iliary magic states are needed to perform the evaluation procedure.

Theorem 2 (Main result, informal). Let TrapTP be the scheme outlined
above, and let VerDec≡ be VerDec for the case of verifying the empty circuit.

1. The vQFHE scheme TrapTP satisfies IND-VER security.
2. The scheme (KeyGen,Enc,VerDec≡) is authenticating [13] and IND-CPA [6].
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Application: quantum one-time programs. A one-time program (or OTP) is a
device which implements a circuit, but self-destructs after the first use. OTPs
are impossible without hardware assumptions, even with quantum states; OTPs
that implement quantum circuits (qOTP) can be built from classical OTPs
(cOTP) [9]. As a first application of vQFHE, we give another simple construc-
tion of qOTPs. Our construction is weaker, since it requires a computational
assumption. On the other hand, it is conceptually very simple and serves to
demonstrates the power of verification. In our construction, the qOTP for a
quantum circuit C is simply a (vQFHE) encryption of C together with a cOTP
for verifying the universal circuit. To use the resulting qOTP, the user attaches
their desired input, homomorphically evaluates the universal circuit, and then
plugs their computation log into the cOTP to retrieve the final decryption keys.

Preliminaries. Our exposition assumes a working knowledge of basic quan-
tum information and the associated notation. As for the particular notation
of quantum gates, the gates (H,P,CNOT) generate the so-called Clifford group
(which can also be defined as the normalizer of the Pauli group); it includes
the Pauli gates X and Z. In order to implement arbitrary unitary operators, it
is sufficient to add the T gate (also known as the π/8 gate). Finally, we can
reach universal quantum computation by adding single-qubit measurements in
the computational basis.

We will frequently make use of several standard cryptographic ingredients,
as follows. The quantum one-time pad (QOTP) will be used for information-
theoretically secret one-time encryption. In its encryption phase, two bits a, b ∈
{0, 1} are selected at random, and the map XaZb is applied to the input, project-
ing it to the maximally-mixed state. We will also need the computational security
notions for quantum secrecy, including indistinguishability (IND, IND-CPA) [6]
and semantic security (SEM) [2]. For quantum authentication, we will refer to
the security definition of Dupuis, Nielsen and Salvail [13]. We will also make fre-
quent use of the trap code for quantum authentication, described below in Sect. 3.
For a security proof and methods for interactive computation on this code,
see [9]. Finally, we will also use classical fully-homomorphic encryption (FHE). In
brief, an FHE scheme consists of classical algorithms (KeyGen,Enc,Eval,Dec) for
(respectively) generating keys, encrypting plaintexts, homomorphically evaluat-
ing circuits on ciphertexts, and decrypting ciphertexts. We will use FHE schemes
which are quantum-secure and whose Dec circuits are in NC1 (see, e.g., [5]).

2 A New Primitive: Verifiable QFHE

We now define verified quantum fully-homomorphic encryption (or vQFHE), in
the symmetric-key setting. The public-key case is a straightforward modification.

BasicDefinition. The definition has two parameters: the class C of circuits which
the user can verify, and the class V of circuits which the user needs to perform in
order to verify. We are interested in cases where C is stronger than V.
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Definition 1 (vQFHE). Let C and V be (possibly infinite) collections of quan-
tum circuits. A (C,V)-vQFHE scheme is a set of four QPT algorithms:

– KeyGen : {1}κ → K × D(HE) (security parameter → private key, eval key);
– Enc : K × D(HX) → D(HC) (key, ptext → ctext);
– Eval : C × D(HCE) → L × D(HC) (circuit, eval key, ctext → log, ctext);
– VerDec : K × C × L × D(HC) → D(HX) × {acc, rej}
such that (i) the circuits of VerDec belong to the class V, and (ii) for all
(sk, ρevk) ← KeyGen, all circuits c ∈ C, and all ρ ∈ D(HXR),

∥
∥VerDecsk(c,Eval(c,Enck(ρ), ρevk)) − Φc(ρ) ⊗ |acc〉〈acc|)∥∥

1
≤ negl(κ),

where R is a reference and the maps implicitly act on appropriate spaces.

We will refer to condition (ii) as correctness. It is implicit in the definition
that the classical registers K,L and the quantum registers E,X,C are really
infinite families of registers, each consisting of poly(κ)-many (qu)bits. In some
later definitions, it will be convenient to use a version of VerDec which also
outputs a copy of the (classical) description of the circuit c.

Compactness. We note that there are trivial vQFHE schemes for some choices
of (C,V) (e.g., if C ⊂ V, then the user can simply authenticate the ciphertext
and then perform the computation during decryption). Earlier work on quantum
and classical homomorphic encryption required compactness, meaning that the
size of the decrypt circuit should not scale with the size of the homomorphic
circuit.

Definition 2 (Compactness of QFHE). A QFHE scheme S is compact
if there exists a polynomial p(κ) such that for any circuit C with nout output
qubits, and for any input ρX , the complexity of applying S.Dec to S.EvalC

(S.Encsk(ρX), ρevk) is at most p(nout, κ).

When considering QFHE with verification, however, some tension arises. On
one hand, trivial schemes like the above still need to be excluded. On the other
hand, verifying that a circuit C has been applied requires reading a description
of C, which violates Definition 2. We thus require a more careful consideration
of the relationship between the desired circuit C ∈ C and the verification circuit
V ∈ V. In our work, we will allow the number of classical gates in V to scale
with the size of C. We propose a new definition of compactness in this context.

Definition 3 (Compactness of vQFHE (informal)). A vQFHE scheme S
is compact if S.VerDec is divisible into a classical verification procedure S.Ver
(outputting only an accept/reject flag), followed by a quantum decryption proce-
dure S.Dec. The running time of S.Ver is allowed to depend on the circuit size,
but the running time of S.Dec is not.
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The procedure S.Dec is not allowed to receive and use any other information
from S.Ver than whether or not it accepts or rejects. This prevents the classical
procedure S.Ver from de facto performing part of the decryption work (e.g., by
computing classical decryption keys). In Sect. 3, we will see a scheme that does
not fulfill compactness for this reason.

Definition 4 (Compactness of vQFHE (formal)). A vQFHE scheme S
is compact if there exists a polynomial p such that S.VerDec can be written
as S.Dec ◦ S.Ver, and the output ciphertext space D(HC) can be written as a
classical-quantum state space A × D(HB), where (i.) S.Ver : K × C × L × A →
{acc, rej} is a classical polynomial-time algorithm, and (ii.) S.Dec : {acc, rej} ×
K × D(HC) → D(HX) × {acc, rej} is a quantum algorithm such that for any
circuit C with nout output qubits and for any input ρX , S.Dec runs in time
p(nout, κ) on the output of S.EvalC(S.Enc(ρX), ρevk).

Note that in the above definition, the classical registers K and A are copied and
fed to both S.Dec and S.Ver.

For privacy, we say that a vQFHE scheme is private if its ciphertexts are
indistinguishable under chosen plaintext attack (IND-CPA) [6,12].

Secure Verifiability. In this section, we formalize the concept of verifiability.
Informally, one would like the scheme to be such that whenever VerDec accepts,
the output can be trusted to be close to the desired output. We will consider
two formalizations of this idea: a semantic one, and an indistinguishability-based
one.

Our semantic definition will state that every adversary with access to the
ciphertext can be simulated by a simulator that only has access to an ideal
functionality that simply applies the claimed circuit. It is inspired by quantum
authentication [7,13] and semantic secrecy [2].

The real-world scenario (Fig. 1, top) begins with a state ρXR1R2 prepared
by a QPT (“message generator”) M. The register X (plaintext) is subsequently
encrypted and sent to the adversary A. The registers R1 and R2 contain side
information. The adversary acts on the ciphertext and R1, producing some out-
put ciphertext CX′ , a circuit description c, and a computation log log. These
outputs are then sent to the verified decryption function. The output, along with
R2, is sent to a distinguisher D, who produces a bit 0 or 1.

In the ideal-world scenario (Fig. 1, bottom), the plaintext X is not encrypted
or sent to the simulator S. The simulator outputs a circuit c and chooses whether
to accept or reject. The channel Φc implemented by c is applied to the input
register X directly. If reject is chosen, the output register X ′ is traced out and
replaced by the fixed state Ω; this controlled-channel is denoted ctrl-�.

Definition 5 (κ-SEM-VER). A vQFHE scheme (KeyGen,Enc,Eval,VerDec)
is semantically κ-verifiable if for any QPT adversary A, there exists a QPT S
such that for all QPTs M and D,
∣
∣
∣
∣ Pr

[
D

(
RealAsk(M(ρevk))

)
= 1

]
− Pr

[
D

(
IdealSsk(M(ρevk))

)
= 1

]∣∣
∣
∣ ≤ negl(κ),
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Fig. 1. The real-world (top) and ideal-world (bottom) for SEM-VER.

where RealAsk = VerDecsk ◦ A ◦ Encsk and IdealSsk = ctrl- � ◦Φc ◦ Ssk, and the
probability is taken over (ρevk, sk) ← KeyGen(1κ) and all QPTs above.

Note that the simulator (in the ideal world) gets the secret key sk. We believe
that this is necessary, because the actions of an adversary may depend on super-
ficial properties of the ciphertext. In order to successfully simulate this, the
simulator needs to be able to generate (authenticated) ciphertexts. He cannot
do so with a fresh secret key, because the input plaintext may depend on the
correlated evaluation key ρevk. Fortunately, the simulator does not become too
powerful when in possession of the secret key, because he does not receive any
relevant plaintexts or ciphertexts to encrypt or decrypt: the input register X is
untouchable for the simulator.

Next, we present an alternative definition of verifiability, based on a security
game motivated by indistinguishability.

Game 1. For an adversary A = (A1,A2,A3), a scheme S, and a security para-
meter κ, the VerGameA,S(κ) game proceeds as depicted in Fig. 2.

The game is played in several rounds. Based on the evaluation key, the adversary
first chooses an input (and some side information in R). Based on a random bit
b this input is either encrypted and sent to A2 (if b = 0), or swapped out and
replaced by a dummy input |0n〉〈0n| (if b = 1). If b = 1, the ideal channel Φc

is applied by the challenger, and the result is swapped back in right before the
adversary (in the form of A3) has to decide on its output bit b′. If A2 causes a
reject, the real result is also erased by the channel �. We say that the adversary
wins (expressed as VerGameA,S(κ) = 1) whenever b′ = b.

Definition 6. (κ-IND-VER). A vQFHE scheme S has κ-indistinguishable
verification if for any QPT adversary A, Pr[VerGameA,S(κ) = 1] ≤ 1

2 + negl(κ).
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Fig. 2. The indistinguishability game VerGameA,S(κ), as used in the definition of
κ-IND-VER.

Theorem 3. A vQFHE scheme is κ-IND-VER iff it is κ-SEM-VER.

Proof (sketch). The forward direction is shown by contraposition. Given an
adversary A, define a simulator S that encrypts a dummy 0-state, then runs
A, and then VerDec. For this simulator, there exist M and D such that the
difference in acceptance probability between the real and the ideal scenario is
nonnegligible. The triple (M,A,D) forms an adversary for the VER indistin-
guishability game.

For the reverse direction, we use the following approach. From an arbitrary
adversary A for the IND-VER indistinguishability game, we define a semantic
adversary, message generator, and distinguisher, that together simulate the game
for A. The fact that S is κ-SEM-VER allows us to limit the advantage of the seman-
tic adversary over any simulator, and thereby the winning probability of A.

For a detailed proof, see the full version [3]. �

3 TC: A partially-homomorphic scheme with verification

We now present a partially-homomorphic scheme with verification, which will
serve as a building block for the fully-homomorphic scheme in Sect. 4. It is called
TC (for “trap code”), and is homomorphic only for CNOT, (classically controlled)
Paulis, and measurement in the computational and Hadamard basis. It does not
satisfy compactness: as such, it performs worse than the trivial scheme where the
client performs the circuit at decryption time. However, TC lays the groundwork
for the vQFHE scheme we present in Sect. 4, and as such is important to under-
stand in detail. It is a variant of the trap-code scheme presented in [9] (which
requires classical interaction for T gates), adapted to our vQFHE framework. A
variation also appears in [10], and implicitly in [20].

Setup and Encryption. Let CSS be a (public) self-dual [[m, 1, d]] CSS code, so
that H and CNOT are transversal. CSS can correct dc errors, where d = 2dc + 1.
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We choose m = poly(d) and large enough that dc = κ where κ is the security
parameter. The concatenated Steane code satisfies all these requirements.

We generate the keys as follows. Choose a random permutation π ∈R S3m

of 3m letters. Let n be the number of qubits that will be encrypted. For each
i ∈ {1, . . . , n}, pick bit strings x[i] ∈R {0, 1}3m and z[i] ∈R {0, 1}3m. The secret
key sk is the tuple (π, x[1], z[1], . . . , x[n], z[n]), and ρevk is left empty.

Encryption is per qubit: (i) the state σ is encoded using CSS, (ii) m compu-
tational and m Hadamard ‘traps’ (|0〉 and |+〉 states, see [9]) are added, (iii) the
resulting 3m qubits are permuted by π, and (iv) the overall state is encrypted
with a quantum one-time pad (QOTP) as dictated by x = x[i] and z = z[i] for
the ith qubit. We denote the ciphertext by σ̃.

Evaluation. First, consider Pauli gates. By the properties of CSS, applying
a logical Pauli is done by applying the same Pauli to all physical qubits. The
application of Pauli gates (X and/or Z) to a state encrypted with a quantum one-
time pad can be achieved without touching the actual state, by updating the keys
to QOTP in the appropriate way. This is a classical task, so we can postpone
the application of the Pauli to VerDec (recall it gets the circuit description)
without giving up compactness for TC. So, formally, the evaluation procedure
for Pauli gates is the identity map. Paulis conditioned on a classical bit b which
will be known to VerDec at execution time (e.g., a measurement outcome) can
be applied in the same manner.

Next, we consider CNOT. To apply a CNOT to encrypted qubits σi and σj ,
we apply CNOT transversally between the 3m qubits of σ̃i and the 3m qubits
of σ̃j . Ignoring the QOTP for the moment, the effect is a transversal applica-
tion of CNOT on the pysical data qubits (which, by CSS properties, amounts
to logical CNOT on σi ⊗ σj), and an application of CNOT between the 2m
pairs of trap qubits. Since CNOT|00〉 = |00〉 and CNOT|++〉 = |++〉, the
traps are unchanged. Note that CNOT commutes with the Paulis that form the
QOTP. In particular, for all a, b, c, d ∈ {0, 1}, CNOT(Xa

1Z
b
1 ⊗Xc

2Z
d
2) = (Xa

1Z
b⊕d
1 ⊗

Xa⊕c
2 Zd

2)CNOT. Thus, updating the secret-key bits (a, b, c, d) to (a, b⊕d, a⊕c, d)
finishes the job. The required key update happens in TC.VerDec (see below).

Next, consider computational-basis measurements. For CSS, logical measure-
ment is performed by measurement of all physical qubits, followed by a classi-
cal decoding procedure [9]. In TC.Eval, we measure all 3m ciphertext qubits.
During TC.VerDec, the contents of the measured qubits (now a classical string
a ∈ {0, 1}3m) will be interpreted into a logical measurement outcome.

Finally, we handle Hadamard-basis measurements. A transversal application
of H to all 3m relevant physical qubits precedes the evaluation procedure for the
computational basis measurement. Since CSS is self-dual, this applies a logical
H. Since H|0〉 = |+〉 and H|+〉 = |0〉, all computational traps are swapped with
the Hadamard traps. This is reflected in the way TC.VerDec checks the traps
(see the full version [3] for details). Note that this is a classical procedure (and
thus its accept/reject output flag is classical).
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Verification and Decryption. If a qubit is unmeasured after evaluation (as
stated in the circuit), TC.VerDecQubit is applied. This removes the QOTP,
undoes the permutation, checks all traps, and decodes the qubit. See the full
version [3] for a specification of this algorithm.

If a qubit is measured during evaluation, TC.VerDec receives a list w̃ of 3m
physical measurement outcomes for that qubit. These outcomes are classically
processed (removing the QOTP by flipping bits, undoing π, and decoding CSS)
to produce the plaintext measurement outcome. Note that we only check the |0〉
traps in this case. Intuitively, this should not affect security, since any attack that
affects only |+〉 but not |0〉 will be canceled by computational basis measurement.

The complete procedure TC.VerDec updates the QOTP keys according to the
gates in the circuit description, and then decrypts all qubits and measurement
results as described above (see the full version [3] for details).

Correctness, Compactness, and Privacy. For honest evaluation, TC.VerDec
accepts with probability 1. Correctness is straightforward to check by following
the description in Sect. 3. For privacy, note that the final step in the encryption
procedure is the application of a (information-theoretically secure) QOTP with
fresh, independent keys. If IND-CPA security is desired, one could easily extend
TC by using a pseudorandom function for the QOTP, as in [2].

TC is not compact in the sense of Definition 4, however. In order to compute
the final decryption keys, the whole gate-by-gate key update procedure needs to
be executed, aided by the computation log and information about the circuit.
Thus, we cannot break TC.VerDec up into two separate functionalities, Ver and
Dec, where Dec can successfully retrieve the keys and decrypt the state, based
on only the output ciphertext and the secret key.

Security of Verification. The trap code is proven secure in its application
to one-time programs [9]. Broadbent and Wainewright proved authentication
security (with an explicit, efficient simulator) [7]. One can use similar strategies
to prove κ-IND-VER for TC. In fact, TC satisfies a stronger notion of verifiability,
where the adversary is allowed to submit plaintexts in multiple rounds (letting
the choice of the next plaintext depend on the previous ciphertext), which are
either all encrypted or all swapped out. Two rounds (κ-IND-VER-2) are sufficient
for us; the definitions and proof (see the full version [3]) extend straightforwardly
to the general case κ-IND-VER-i for i ∈ N+.

Theorem 4. TC is κ-IND-VER-2 for the above circuit class.

4 TrapTP: Quantum FHE With Verification

In this section, we introduce our candidate scheme for verifiable quantum fully
homomorphic encryption (vQFHE). In this section, we will define the scheme
prove correctness, compactness, and privacy. We will show verifiability in Sect. 5.
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Let κ ∈ N be a security parameter, and let t, p, h ∈ N be an upper bound on
the number of T, P, and H gates (respectively) that will be in the circuit which
is to be homomorphically evaluated. As in Sect. 3, we fix a self-dual [[m, 1, d]]
CSS code CSS which has m = poly(d) and can correct dc := κ errors (e.g., the
concatenated Steane code). We also fix a classical fully homomorphic public-key
encryption scheme HE with decryption in LOGSPACE (see, e.g., [5]). Finally, fix
a message authentication code MAC = (Tag,Ver) that is existentially unforge-
able under adaptive chosen message attacks (EUF-CMA [16]) from a quantum
adversary; for example, one may take the standard pseudorandom-function con-
struction with a post-quantum PRF. This defines an authentication procedure
MAC.Signk : m �→ (m,MAC.Tagk(m)).

Key Generation and Encryption. The evaluation key will require a number
of auxiliary states, which makes the key generation algorithm TrapTP.KeyGen
somewhat involved (see Algorithms 1 and 2). Note that non-evaluation keys are
generated first, and then used to encrypt auxiliary states which are included in
the evaluation key (see TrapTP.Enc below). Most states are encrypted using the
same ‘global’ permutation π, but all qubits in the error-correction gadget (except
first and last) are encrypted using independent permutations πi (see line 15).
The T-gate gadgets are prepared by Algorithm 2, making use of garden-hose
gadgets from [12].

Algorithm 1. TrapTP.KeyGen(1κ, 1t, 1p, 1h)

1: k ← MAC.KeyGen(1κ)
2: π ←R S3m � S3m is the permutation group on 3m elements
3: for i = 0, ..., t do
4: (ski, pki, evki) ← HE.KeyGen(1κ)

5: sk ← (π, k, sk0, ..., skt, pk0)
6: for i = 1, ..., p do � Magic-state generation for P
7: μP

i ← TrapTP.Enc(sk,P|+〉) � See Algorithm 3 for TrapTP.Enc

8: for i = 1, ..., t do � Magic-state generation for T
9: μT

i ← TrapTP.Enc(sk,T|+〉)
10: for i = 1, ..., h do � Magic-state generation for H
11: μH

i ← TrapTP.Enc(sk, 1√
2
(H ⊗ I)(|00〉 + |11〉))

12: for i = 1, ..., t do � Gadget generation for T
13: πi ←R S3m

14: (gi, γ
in
i , γmid

i , γout
i ) ← TrapTP.GadgetGen(ski−1) � See Algorithm 2

15: Γi ← MAC.Sign(HE.Encpki(gi, πi))⊗TrapTP.Enc((πi, k, sk0, ..., skt, pki), γ
mid
i )⊗

TrapTP.Enc(sk, γ in
i , γout

i )

16: keys ← MAC.Sign(evk0, ..., evkt, pk0, ..., pkt,HE.Encpk0(π))
17: ρevk ← (keys, μP

0 , ..., μP
p, μT

0 , ..., μT
t , μH

0 , ..., μH
h, Γ1, ..., Γt)

18: return (sk, ρevk)
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Algorithm 2. TrapTP.GadgetGen(ski)

1: gi ← g(ski) � classical description of the garden-hose gadget, see [12], p. 13
2: (γ in, γmid, γout) ← generate |Φ+〉 states and arrange them as described by gi. Call

the first qubit γ in
i and the last qubit γout

i . The rest forms the state γmid
i .

3: return (gi, γ
in
i , γmid

i , γout
i )

The encryption of a quantum state is similar to TC.Enc, only the keys to
the QOTP are now chosen during encryption (rather than during key genera-
tion) and appended in encrypted and authenticated form to the ciphertext (see
Algorithm 3). Note that the classical secret keys sk0 through skt are not used.

Algorithm 3. TrapTP.Enc((π, k, sk0, ..., skt, pk), σ)

1: σ̃ ←
∑

x,z∈{0,1}3m

(
TC.Enc((π, x, z), σ) ⊗ MAC.Signk(HE.Encpk(x, z))

)
�

Algorithm 13
2: return σ̃

Evaluation. Evaluation of gates is analogous to the interactive evaluation
scheme using the trap code [9], except the interactions are replaced by clas-
sical homomorphic evaluation. Evaluation of a circuit c is done gate-by-gate, as
follows.

In general, we will use the notation ·̃ to denote encryptions of classical and
quantum states. For example, in the algorithms below, σ̃ is the encrypted input
qubit for a gate and x̃ and z̃ are classical encryptions of the associated QOTP
keys. We will assume throughout that HE.Enc and HE.Eval produce, apart from
their actual output, a complete computation log describing all randomness used,
all computation steps, and all intermediate results.

Measurements. Computational basis measurement is described in Algorithm 4.
Recall that TC.VerDecMeasurement is a completely classical procedure that
decodes the list of 3m measurement outcomes into the logical outcome and
checks the relevant traps. Hadamard-basis measurement is performed similarly,
except the qubits of σ̃ are measured in the Hadamard basis and HE.Encpk(×) is
given as the last argument for the evaluation of TC.VerDecMeasurement.

Algorithm 4. TrapTP.EvalMeasure(σ̃, x̃, z̃, π̃, pk, evk)

1: a = (a1, ..., a3m) ← measure qubits of σ̃ in the computational basis
2: (ã, log1) ← HE.Encpk(a)

3: (̃b, fl̃ag , log2) ← HE.EvalTC.VerDecMeasurement
evk ((π̃, x̃, z̃), ã,HE.Encpk(+))

4: return (̃b, fl̃ag , log1, log2) � b ∈ {0, 1} represents the output of the measurement
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Pauli gates. A logical Pauli-X is performed by (homomorphically) flipping the
X-key bits of the QOTP (see Algorithm 5). Since this is a classical operation,
the functionality extends straightforwardly to a classically controlled Pauli-X (by
specifying an additional bit b encrypted into b̃ that indicates whether or not X
should be applied; see Algorithm 6). The (classically controlled) evaluation of a
Pauli-Z works the same way, only the relevant bits in z̃ are flipped.

Algorithm 5. TrapTP.EvalX(σ̃, x̃, π̃, pk, evk)

1: (x̃, log1) ← HE.Evalunpermute
evk (π̃, x̃)

2: (x̃, log2) ← HE.Eval⊕evk(x̃,HE.Encpk(1m02m)) � this flips the first m bits
3: (x̃, log3) ← HE.Evalpermute

evk (π̃, x̃)
4: return (σ̃, x̃, log1, log2, log3)

Algorithm 6. TrapTP.EvalCondX(̃b, σ̃, x̃, z̃, π̃, pk, evk)

1: (x̃, log1) ← HE.Evalunpermute
evk (π̃, x̃)

2: s̃ ← HE.Evaly �→ym02m

evk (̃b)
3: (x̃, log2) ← HE.Eval⊕evk(x̃, s̃) � this conditionally flips the first m bits
4: (x̃, log3) ← HE.Evalpermute

evk (π̃, x̃)
5: return (σ̃, x̃, z̃, log1, log2, log3)

CNOT gates. The evaluation of CNOT in TrapTP is analogous to TC, only the key
updates are performed homomorphically during evaluation (see Algorithm 7).

Algorithm 7. TrapTP.EvalCNOT(σ̃1, σ̃2, x̃1, x̃2, z̃1, z̃2, π̃, pk, evk)

1: (σ̃1, σ̃2) ← apply CNOT on all physical qubit pairs of σ̃1, σ̃2

2: (x̃1, x̃2, z̃1, z̃2, log1) ← HE.EvalCNOT−key−update
evk (x̃1, x̃2, z̃1, z̃2) � for commutation

rules, see Sect. 3
3: return (σ̃1, σ̃2, x̃1, x̃2, z̃1, z̃2, log1, log2)

Phase gates. Performing a P gate requires homomorphic evaluation of all the
above gates: (classically controlled) Paulis, CNOTs, and measurements. We also
consume the state μP

i (an encryption of the state P|+〉) for the ith phase gate
in the circuit. The circuit below applies P to the data qubit (see, e.g., [9]).

ρ

P|+〉〈+|P† • XZ PρP†

We define TrapTP.EvalP to be the concatenation of the corresponding gate eval-
uations. The overall computation log is just a concatenation of the logs.



452 G. Alagic et al.

Hadamard gate. The Hadamard gate can be performed using the same ingredi-
ents as the phase gate [9]. The ith gate consumes μH

i , an encryption of (H⊗I)|Φ+〉.

ρ

(H ⊗ I)|Φ+〉〈Φ+|(H ⊗ I)†
{

•

H

ZX HρH†

The T gate. A magic-state computation of T uses a similar circuit to that for P,
using μT

i (an encryption of T|+〉) as a resource for the ith T gate:

ρ

T|+〉〈+|T† • PX TρT†

The evaluation of this circuit is much more complicated, since it requires the
application of a classically-controlled phase correction P. We will accomplish
this using the error-correction gadget Γi.

First, we remark on some subtleties regarding the encrypted classical infor-
mation surrounding the gadget. Since the structure of Γi depends on the classical
secret key ski−1, the classical information about Γi is encrypted under the (inde-
pendent) public key pki (see Algorithm 1). This observation will play a crucial
role in our proof that TrapTP satisfies IND-VER, in Sect. 5.

The usage of two different key sets also means that, at some point during the
evaluation of a T gate, all classically encrypted information needs to be recrypted
from the (i−1)st into the ith key set. This can be done because s̃ki−1 is included
in the classical information gi in Γi. The recryption is performed right before
the classically-controlled phase gate is applied (see Algorithm 8).

Algorithm 8. TrapTP.EvalT(σ̃, x̃, z̃, π̃, μT
i , Γi, pki−1, evki−1, pki, evki)

1: (σ̃1, σ̃2, x̃1, z̃1, x̃2, z̃2, log1) ← TrapTP.EvalCNOT(μT
i , σ̃, x̃, z̃, π̃, pki−1, evki−1)

2: (̃b, log2) ← TrapTP.EvalMeasure(σ̃2, x̃2, z̃2, π̃, pki−1, evki−1)

3: log3 ← recrypt all classically encrypted information (except b̃) from key set i − 1
into key set i.

4: (σ̃, log4) ← TrapTP.EvalCondP(̃b, σ̃1, x̃1, z̃1, Γi, π̃, pki, evki)
5: return (σ̃, log1, log2, log3, log4)

Algorithm 9 shows how to use Γi to apply logical P on an encrypted quantum
state σ̃, conditioned on a classical bit b for which only the encryption b̃ is avail-
able. When TrapTP.EvalCondP is called, b is encrypted under the (i−1)st classical
HE-key, while all other classical information (QOTP keys x and z, permuta-
tions π and πi, classical gadget description gi) is encrypted under the ith key.
Note that we can evaluate Bell measurements using only evaluation of CNOT,
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computational-basis measurements, and H-basis measurements. In particular, no
magic states are needed to perform a Bell measurement. After this procedure,
the data is in qubit γ̃out

i . The outcomes a1, a2, a of the Bell measurements deter-
mine how the keys to the QOTP must be updated.

Algorithm 9. TrapTP.EvalCondP(̃b, σ̃, x̃, z̃, Γi = (g̃i, π̃i, γ̃ in
i , γ̃mid

i , γ̃out
i ), π̃, pki, evki)

1: (ã1, ã2, log1) ← evaluate Bell measurement between σ̃ and γ̃ in
i � a1, a2 ∈ {0, 1}

2: (ã, log2) ← evaluate Bell measurements in γ̃mid
i as dictated by the ciphertext b̃ and

the garden-hose protocol for HE.Dec
3: (x̃, z̃, log3) ← HE.EvalT−key−update

evki
(x̃, z̃, ã1, ã2, ã, g̃i)

4: return (γ̃out
i , x̃, z̃, log1, log2, log3)

Verified Decryption. The decryption procedure (Algorithm 10) consists of two
parts. First, we perform several classical checks. This includes MAC-verification
of all classically authenticated messages, and checking that the gates listed
in the log match the circuit description. We also check the portions of the
log which specify the (purely classical, FHE) steps taken during HE.Enc and
HE.Eval; this is the standard transcript-checking procedure for FHE, which we
call TrapTP.CheckLog. Secondly, we check all unmeasured traps and decode the
remaining qubits. We reject if TrapTP.CheckLog rejects, or if the traps have been
triggered.

Algorithm 10. TrapTP.VerDec(sk, σ̃, (x̃[i])i, (z̃[i])i, log, c)

1: Verify classically authenticated messages (in log) using k (contained in sk). If one
of these verifications rejects, reject.

2: Check whether all claimed gates in log match the structure of c. If not, return
(Ω, |rej〉). � Recall that Ω is a dummy state.

3: flag ← TrapTP.CheckLog(log) If flag = rej, return (Ω, |rej〉).
4: Check whether the claimed final QOTP keys in the log match x̃ and z̃. If not,

return (Ω, |rej〉).
5: for all gates G of c do
6: if G is a measurement then
7: x̃′, z̃′ ← encrypted QOTP keys right before measurement (listed in log)
8: w̃ ← encrypted measurement outcomes (listed in log)
9: x′, z′, w ← HE.Decskt(x̃

′, z̃′, w̃)
10: Execute TC.VerDecMeasurement((π, x′, z′), w, basis), where basis is the

appropriate basis for the measurement, and store the (classical) outcome.
11: if a trap is triggered then
12: return (Ω, |rej〉).
13: for all unmeasured qubits σ̃i in σ̃ do

14: x[i], z[i] ← HE.Decskt(x̃[i], z̃[i])
15: σi ← TC.VerDec(π,x[i],z[i])(σ̃i). If TC.VerDec rejects, return (Ω, |rej〉).
16: σ ← the list of decrypted qubits (and measurement outcomes) that are part of the

output of c
17: return (σ, |acc〉)
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4.1 Correctness, Compactness, and Privacy

If all classical computation was unencrypted, checking correctness of TrapTP can
be done by inspecting the evaluation procedure for the different types of gates,
and comparing them to the trap code construction in [9]. This suffices, since HE
and the MAC authentication both satisfy correctness.

Compactness as defined in Definition 4 is also satisfied: verifying the compu-
tation log and checking all intermediate measurements (up until line 12 in Algo-
rithm 10) is a completely classical procedure and runs in polynomial time in its
input. The rest of TrapTP.VerDec (starting from line 13) only uses the secret key
and the ciphertext (σ̃, x̃, z̃) as input, not the log or the circuit description. Thus,
we can separate TrapTP.VerDec into two algorithms Ver and Dec as described in
Definition 4, by letting the second part (Dec, lines 13 to 17) reject whenever the
first part (Ver, lines 1 to 12) does. It is worth noting that, because the key-update
steps are performed homomorphically during the evaluation phase, skipping the
classical verification step yields a QFHE scheme without verification that satis-
fies Definition 2 (and is authenticating). This is not the case for the scheme TC,
where the classical computation is necessary for the correct decryption of the
output state.

In terms of privacy, TrapTP satisfies IND-CPA (see Sect. 2). This is shown
by reduction to IND-CPA of HE. This is non-trivial since the structure of the
error-correction gadgets depends on the classical secret key. The reduction is
done in steps, where first the security of the encryptions under pkt is applied
(no gadget depends on skt), after which the quantum part of the gadget Γt

(which depends on skt−1) looks completely mixed from the point of view of the
adversary. We then apply indistinguishability of the classical encryptions under
pkt−1, and repeat the process. After all classical encryptions of the quantum
one-time pad keys are removed, the encryption of a state appears fully mixed.
Full details of this proof can be found in Lemma 1 of [12], where IND-CPA
security of an encryption function very similar to TrapTP.Enc is proven.

5 Proof of Verifiability for TrapTP

In this section, we will prove that TrapTP is κ-IND-VER. By Theorem 3, it
then follows that TrapTP is also verifiable in the semantic sense. We will define a
slight variation on the VER indistinguishability game, followed by several hybrid
schemes (variations of the TrapTP scheme) that fit into this new game. We will
argue that for any adversary, changing the game or scheme does not significantly
affect the winning probability. After polynomially-many such steps, we will have
reduced the adversary to an adversary for the somewhat homomorphic scheme
TC, which we already know to be IND-VER. This will complete the argument
that TrapTP is IND-VER. The IND-VER game is adjusted as follows.

Definition 7 (Hybrid game HybA,S(κ)). For an adversary A = (A1,A2,A3),
a scheme S, and security parameter κ, HybA,S(κ) is the game in Fig. 3.
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Fig. 3. The hybrid indistinguishability game HybA,S(κ), which is a slight variation on
VerGameA,S(κ) from Fig. 2.

Comparing to Definition 1, we see that three new wires are added: a classical
wire from S.Enc to S.VerDec, and a classical and quantum wire from S.KeyGen to
S.VerDec. We will later adjust TrapTP to use these wires to bypass the adversary;
TrapTP as defined in the previous section does not use them. Therefore, for any
adversary, Pr[VerGameA,TrapTP(κ) = 1] = Pr[HybA,TrapTP(κ) = 1].

Hybrid 1: Removing Classical MAC. In TrapTP, the initial keys to the
QOTP can only become known to VerDec through the adversary. We thus use
MAC to make sure these keys cannot be altered. Without this authentication,
the adversary could, e.g., homomorphically use π̃ to flip only those bits in x̃
that correspond to non-trap qubits, thus applying X to the plaintext. In fact, all
classical information in the evaluation key must be authenticated.

In the first hybrid, we argue that the winning probability of a QPT A
in HybA,TrapTP(κ) is at most negligibly higher than in HybA,TrapTP′(κ), where
TrapTP′ is a modified version of TrapTP where the initial keys are sent directly
from KeyGen and Enc to VerDec (via the extra wires above). More pre-
cisely, in TrapTP′.KeyGen and TrapTP′.Enc, whenever MAC.Sign(HE.Enc(x)) or
MAC.Sign(x) is called, the message x is also sent directly to TrapTP′.VerDec.
Moreover, instead of decrypting the classically authenticated messages sent by
the adversary, TrapTP′.VerDec uses the information it received directly from
TrapTP′.KeyGen and TrapTP′.Enc. It still check whether the computation log
provided by the adversary contains these values at the appropriate locations
and whether the MAC signature is correct. The following fact is then a straight-
forward consequence of the EUF-CMA property of MAC.
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Recall that all adversaries are QPTs, i.e., quantum polynomial-time uniform
algorithms. Given two hybrid games H1,H2, and a QPT adversary A, define

AdvHybH2
H1

(A, κ) :=
∣
∣Pr[HybA,H1

(κ) = 1] − Pr[HybA,H2
(κ) = 1]

∣
∣.

Lemma 1. For any QPT A, AdvHybTrapTP
′

TrapTP (A, κ) ≤ negl(κ).

Hybrid 2: Removing Computation Log. In TrapTP and TrapTP′, the adver-
sary (homomorphically) keeps track of the keys to the QOTP and stores encryp-
tions of all intermediate values in the computation log. Whenever VerDec needs
to know the value of a key (for example to check a trap or to decrypt the final
output state), the relevant entry in the computation log is decrypted.

In TrapTP′, however, the plaintext initial values to the computation log are
available to VerDec, as they are sent through the classical side channels. This
means that whenever VerDec needs to know the value of a key, instead of decrypt-
ing an entry to the computation log, it can be computed by “shadowing” the
computation log in the clear.

For example, suppose the log contains the encryptions b̃1, b̃2 of two initial
bits, and specifies the homomorphic evaluation of XOR, resulting in b̃ where
b = b1 ⊕ b2. If one knows the plaintext values b1 and b2, then one can compute
b1 ⊕ b2 directly, instead of decrypting the entry b̃ from the computation log.

We now define a second hybrid, TrapTP′′, which differs from TrapTP′ exactly
like this: VerDec still verifies the authenticated parts of the log, checks whether
the computation log matches the structure of c, and checks whether it is syntac-
tically correct. However, instead of decrypting values from the log (as it does in
TrapTP.VerDec, Algorithm 10, on lines 9 and 14), it computes those values from
the plaintext initial values, by following the computation steps that are claimed
in the log. By correctness of classical FHE, we then have the following.

Lemma 2. For any QPT A, AdvHybTrapTP
′′

TrapTP′ (A, κ) ≤ negl(κ).

Proof. Let s be the (plaintext) classical information that forms the input to the
classical computations performed by the adversary: initial QOTP keys, secret
keys and permutations, measurement results, etc. Let f be the function that
the adversary computes on it in order to arrive at the final keys and logical
measurement results. By correctness of HE, we have that

Pr[HE.Decskt
(HE.Evalfevk0,...,evkt

(HE.Encpk0(s))) �= f(s)] ≤ negl(κ).

In the above expression, we slightly abuse notation and write HE.Evalevk0,...,evkt

to include the t recryption steps that are performed during TrapTP.Eval. As long
as the number of T gates, and thus the number of recryptions, is polynomial in
κ, the expression holds.

Thus, the probability that TrapTP′.VerDec and TrapTP′′.VerDec use different
classical values (decrypting from the log vs. computing from the initial values) is
negligible. Since this is the only place where the two schemes differ, the output
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of the two VerDec functions will be identical, except with negligible probability.
Thus A will either win in both HybA,TrapTP′(κ) and HybA,TrapTP′′(κ), or lose in
both, again except with negligible probability. �

More Hybrids: Removing Gadgets. We continue by defining a sequence of
hybrid schemes based on TrapTP′′. In 4t steps, we will move all error-correction
functionality from the gadgets to VerDec. This will imply that the adversary has
no information about the classical secret keys (which are involved in constructing
these gadgets). This will allow us to eventually reduce the security of TrapTP to
that of TC.

We remove the gadgets back-to-front, starting with the final gadget. Every
gadget is removed in four steps. For all 1 ≤ 
 ≤ t, define the hybrids TrapTP

(�)
1 ,

TrapTP
(�)
2 , TrapTP(�)

3 , and TrapTP
(�)
4 (with TrapTP

(t+1)
4 := TrapTP′′) as follows:

1. TrapTP
(�)
1 is the same as TrapTP

(�+1)
4 (or, in the case that 
 = t, the

same as TrapTP′′), except for the generation of the state Γ� (see Algorithm 1,
line 15). In TrapTP

(�)
1 , all classical information encrypted under pk� is replaced

with encryptions of zeros. In particular, for i ≥ 
, line 15 is adapted to

Γi ←MAC.Sign(HE.Encpki
(00 · · · 0))

⊗ TrapTP′′.Enc′(sk′, γmid
i ) ⊗ TrapTP.Enc(sk, γ in

i ⊗ γout
i )

where TrapTP′′.Enc′ also appends a signed encryption of zeros, effectively replac-
ing line 1 in Algorithm 3 with

σ̃ ←
∑

x,z∈{0,1}3m

(
TC.Enc((π, x, z), σ) ⊗ MAC.Signk(HE.Encpk(00 · · · 0))

)

It is important to note that in both KeyGen and Enc′, the information that is sent
to VerDec through the classical side channel is not replaced with zeros. Hence, the
structural and encryption information about Γ� is kept from the adversary, and
instead is directly sent (only) to the verification procedure. Whenever VerDec
needs this information, it is taken directly from this trusted source, and the
all-zero string sent by the adversary will be ignored.

2. TrapTP(�)
2 is the same as TrapTP

(�)
1 , except that for the 
th gadget, the

procedure TrapTP.PostGadgetGen is called instead of TrapTP.GadgetGen:

Algorithm 11. TrapTP.PostGadgetGen(ski)

1: gi ← 0|g(ski)|

2: (γ in, γmid, γout) ← halves of EPR pairs (send other halves to VerDec)
3: return (gi, γ

in
i , γmid

i , γout
i )

This algorithm produces a ‘gadget’ in which all qubits are replaced with
halves of EPR pairs. These still get encrypted in line 15 of Algorithm 1. All
other halves of these EPR pairs are sent to VerDec through the provided quan-
tum channel. TrapTP(�)

2 .VerDec has access to the structural information g� (as
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this is sent via the classical side information channel from KeyGen to VerDec) and
performs the necessary Bell measurements to recreate γ in

� , γmid
� and γout

� after the
adversary has interacted with the EPR pair halves. Effectively, this postpones
the generation of the gadget structure to decryption time. Of course, the mea-
surement outcomes are taken into account by VerDec when calculating updates
to the quantum one-time pad. As can be seen from the description of TrapTP(�)

4 ,
all corrections that follow the 
th one are unaffected by the fact that the server
cannot hold the correct information about these postponed measurements, not
even in encrypted form.

3.TrapTP(�)
3 is the same as TrapTP

(�)
2 , except that gadget genera-

tion for the 
th gadget is handled by TrapTP.FakeGadgetGen instead of
TrapTP.PostGadgetGen.

Algorithm 12. TrapTP.FakeGadgetGen(ski)

1: gi ← 0|g(ski)|

2: (γ in, γmid, γout) ← halves of EPR pairs (send other halves to VerDec)
3: Send γmid to VerDec as well
4: return (gi, γ

in
i , |00 · · · 0〉, γout

i )

This algorithm prepares, instead of halves of EPR pairs, |0〉-states of the
appropriate dimension for γmid

� . (Note that this dimension does not depend on
sk�−1). For γ in

� and γout
� , halves of EPR pairs are still generated, as in TrapTP

(�)
2 .

Via the side channel, the full EPR pairs for γmid
� are sent to VerDec. As in the

previous hybrids, the returned gadget is encrypted in TrapTP.KeyGen.
TrapTP

(�)
3 .VerDec verifies that the adversary performed the correct Bell mea-

surements on the fake 
th gadget by calling TC.VerDec. If this procedure accepts,
TrapTP

(�)
3 .VerDec performs the verified Bell measurements on the halves of the

EPR pairs received from TrapTP
(�)
3 .KeyGen (and subsequently performs the Bell

measurements that depend on g� on the other halves, as in TrapTP
(�)
2 ). Effec-

tively, TrapTP(�)
3 .VerDec thereby performs a protocol for HE.Dec, removing the

phase error in the process.
4. TrapTP(�)

4 is the same as TrapTP
(�)
3 , except that VerDec (instead of per-

forming the Bell measurements of the gadget protocol) uses its knowledge of
the initial QOTP keys and all intermediate measurement outcomes to com-
pute whether or not a phase correction is necessary after the 
th T gate.
TrapTP

(�)
4 .VerDec then performs this phase correction on the EPR half entangled

with γ in
� , followed by a Bell measurement with the EPR half entangled with γout

� .
The first 
 − 1 gadgets in TrapTP

(�)
1 through TrapTP

(�)
4 are always functional

gadgets, as in TrapTP. The last t − 
 gadgets are all completely replaced by
dummy states, and their functionality is completely outsourced to VerDec. In
four steps described above, the functionality of the 
th gadget is also transferred
to VerDec. It is important to replace only one gadget at a time, because replac-
ing a real gadget with a fake one breaks the functionality of the gadgets that
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occur later in the evaluation: the encrypted classical information held by the
server does not correspond to the question of whether or not a phase correction
is needed. By completely outsourcing the phase correction to VerDec, as is done
for all gadgets after the 
th one in all TrapTP(�)

i schemes, we ensure that this
incorrect classical information does not influence the outcome of the computa-
tion. Hence, correctness is maintained throughout the hybrid transformations.
We now show that these transformations of the scheme do not significantly affect
the adversary’s winning probability in the hybrid indistinguishability game.

Lemma 3. For any QPT A, there exists a negligible function negl such that for

all 1 ≤ 
 ≤ t, AdvHybTrapTP
(�+1)
4

TrapTP
(�)
1

(A, κ) ≤ negl(κ).

Proof (sketch). In TrapTP
(�+1)
4 , no information about sk(�) is sent to the adver-

sary. In the original TrapTP scheme, the structure of the quantum state Γ�+1

depended on it, but this structure has been replaced with dummy states in sev-
eral steps in TrapTP�+1

2 through TrapTP�+1
4 .

This is fortunate, since if absolutely no secret-key information is present,
we are able to bound the difference in winning probability between
HybA,TrapTP

(�+1)
4

(κ) and HybA,TrapTP�
1
(κ) by reducing it to the IND-CPA secu-

rity against quantum adversaries [6] of the classical homomorphic encryption
scheme HE.

The proof is closely analogous to the proof of Lemma 1 in [12], and on a high
level it works as follows. Let A = (A1,A2,A3) be a QPT adversary for the game
HybA,TrapTP

(�)
1

(κ) or HybA,TrapTP
(�+1)
4

(κ) (we do not need to specify for which one,
since they both require the same input/output interface). A new quantum adver-
sary A′ for the classical IND-CPA indistinguishability game is defined by having
the adversary taking the role of challenger in either the game HybA,TrapTP

(�)
1

(κ)
or the game HybA,TrapTP

(�+1)
4

(κ). Which game is simulated depends on the coin
flip of the challenger for the IND-CPA indistinguishability game, and is unknown
to A′. This situation is achieved by having A′ send any classical plaintext that
should be encrypted under pk� to the challenger, so that either that plaintext is
encrypted or a string of zeros is.

Based on the guess of the simulated A, which A′ can verify to be correct
or incorrect in his role of challenger, A′ will guess which of the two games was
just simulated. By IND-CPA security of the classical scheme against quantum
adversaries, A′ cannot succeed in this guessing game with nonnegligible advan-
tage over random guessing. This means that the winning probability of A in
both games cannot differ by a lot. For details, we refer the reader the proof of
Lemma 5, in which a very similar approach is taken.

Technically, the success probability of A′, and thus the function negl, may
depend on 
. A standard randomizing argument, as found in e.g. the discussion
of hybrid arguments in [16], allows us to get rid of this dependence by defining
another adversary A′′ that selects a random value of j, and then bounding the
advantage of A′′ by a negligible function that is independent of j. �
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Lemma 4. For 1 ≤ 
 ≤ t and any QPT A, AdvHybTrapTP
(�)
2

TrapTP
(�)
1

(A, κ) = 0.

Proof. In TrapTP
(�)
1 , the 
th error-correction gadget consists of a number of EPR

pairs arranged in a certain order, as described by the garden-hose protocol for
HE.Dec. For example, this protocol may dictate that the ith and jth qubit of the
gadget must form an EPR pair |Φ+〉 together. This can alternatively be achieved
by creating two EPR pairs, placing half of each pair in the ith and jth position
of the gadget state, and performing a Bell measurement on the other two halves.
This creates a Bell pair XaZb|Φ+〉 in positions i and j, where a, b ∈ {0, 1} describe
the outcome of the Bell measurement.

From the point of view of the adversary, it does not matter whether these
Bell measurements are performed during KeyGen, or whether the halves of EPR
pairs are sent to VerDec for measurement – because the key to the quantum
one-time pad of the 
th gadget is not sent to the adversary at all, the same
state is created with a completely random Pauli in either case. Of course, the
teleportation correction Paulis of the form XaZb need to be taken into account
when updating the keys to the quantum one-time pad on the data qubits after
the gadget is used. VerDec has all the necessary information to do this, because
it observes the measurement outcomes, and computes the key updates itself
(instead of decrypting the final keys from the computation log).

Thus, with the extra key update steps in TrapTP
(�)
2 .VerDec, the inputs to the

adversary are exactly the same in the games of TrapTP(�)
1 and TrapTP

(�)
2 . �

Lemma 5. For any QPT A, there exists a negligible function negl such that for

all 1 ≤ 
 ≤ t, AdvHybTrapTP
(�)
3

TrapTP
(�)
2

(A, κ) ≤ negl(κ).

Proof. We show this by reducing the difference in winning probabilities in the
statement of the lemma to the IND-VER security of the somewhat homomor-
phic scheme TC. Intuitively, because TC is IND-VER, if TrapTP(�)

2 accepts the
adversary’s claimed circuit of Bell measurements on the EPR pair halves, the
effective map on those EPR pairs is the claimed circuit. Therefore, we might just
as well ask VerDec to apply this map, as we do in TrapTP

(�)
3 , to get the same

output state. If TrapTP(�)
2 rejects the adversary’s claimed circuit on those EPR

pair halves, then TrapTP
(�)
3 should reject too. This is why we let the adversary

act on an encrypted dummy state of |0〉s.
Let A = (A1,A2,A3) be a set of QPT algorithms on the appropriate regis-

ters, so that we can consider it as an adversary for the hybrid indistinguishability
game for either TrapTP(�)

2 or TrapTP(�)
3 (see Definition 7). Note the input/output

wires to the adversary in both these games are identical, so we can evaluate
Pr[HybA,TrapTP

(�)
2

(κ) = 1] and Pr[HybA,TrapTP
(�)
3

(κ) = 1] for the same A.
Now define an adversary A′ = (A′

1,A′
2,A′

3) for the IND-VER game against
TC, VerGameA′,TC(κ), as follows:

1. A′
1: Run TrapTP

(�)
2 .KeyGen until the start of line 15 in the 
th iteration of

that loop. Up to this point, TrapTP(�)
2 .KeyGen is identical to TrapTP

(�)
3 .KeyGen.
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It has generated real gadgets Γ1 through Γ�−1, and halves of EPR pairs for γ in
� ,

γmid
� and γout

� . Note furthermore that the permutation π� is used nowhere. Now
send γmid

� to the challenger via the register X, and everything else (including sk)
to A′

2 via the side register R.
2. A′

2: Continue TrapTP
(�)
2 .KeyGen using the response from the challenger

instead of TrapTP.Enc′(sk′, γmid
� ) on line 15 in the 
th iteration. Call the result

ρevk. Again, this part of the key generation procedure is identical for TrapTP
(�)
2

and TrapTP
(�)
3 . Start playing the hybrid indistinguishability game with A:

– Flip a bit r ∈ {0, 1}.
– Send ρevk to A1. If r = 0, encrypt the response of A1 using the secret key sk

generated by A′
1. Note that for this, the permutation π� is also not needed.

If r = 1, encrypt a |0〉 state of appropriate dimension instead.
– Send the resulting encryption, along with the side info from A1, to A2.
– On the output of A2, start running TrapTP

(�)
2 .VerDec until the actions on

the 
th gadget need to be verified. Since the permutation on the state γmid
� is

unknown to A′
2 (it was sent to the challenger for encryption), it cannot verify

this part of the computation.
– Instead, send the relevant part of the computation log to the challenger for

verification, along with the relevant part of the claimed circuit (the Bell mea-
surements on the gadget state), and the relevant qubits, all received from A2,
to the challenger for verification and decryption.

– In the meantime, send the rest of the working memory to A′
3 via register R′.

3. A′
3: Continue the simulation of the hybrid game with A:

– If the challenger rejects, reject and replace the entire quantum state by the
fixed dummy state Ω.

– If the challenger accepts, then we know that the challenger applies the claimed
subcircuit to the quantum state it did not encrypt (either |0〉 or γmid

� ), depend-
ing on the bit the challenger flipped), and possibly swaps this state back in
(again depending on which bit it flipped). Continue the TrapTP

(�)
2 .VerDec

computation for the rest of the computation log.
– Send the result (the output quantum state, the claimed circuit, and the

accept/reject flag) to A3, and call its output bit r′.

Output 0 if r = r′, and 1 otherwise. (i.e., output NEQ(r, r′))
Recall from Definition 7 that the challenger flips a coin (let us call the out-

come s ∈ {0, 1}) to decide whether to encrypt the quantum state provided by
A′, or to swap in an all-zero dummy state before encrypting. Keeping this in
mind while inspecting the definition of A′, one can see that whenever s = 0, A′

takes the role of challenger in the game HybA,TrapTP
(�)
2

(κ) with A, and whenever
s = 1, they play HybA,TrapTP

(�)
3

(κ). Now let us consider when the newly defined
adversary A′ wins the VER indistinguishability game for TC. If s = 0, A′ needs
to output a bit s′ = 0 to win. This happens, by definition of A′, if and only if
A wins the game HybA,TrapTP

(�)
2

(κ) (i.e. r = r′). On the other hand, if s = 1, A′
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needs to output a bit s′ = 1 to win. This happens, by definition of A′, if and only
if A loses the game HybA,TrapTP

(�)
3

(κ) (i.e. r �= r′). Thus the winning probability
of A′ is:

Pr[VerGameA′,TC(κ) = 1]
= Pr[s = 0] · Pr[HybA,TrapTP

(�)
2

(κ) = 1] + Pr[s = 1] · Pr[HybA,TrapTP
(�)
3

(κ) = 0]

=
1
2

Pr[HybA,TrapTP
(�)
2

(κ) = 1] +
1
2

(
1 − Pr[HybA,TrapTP

(�)
3

(κ) = 1]
)

=
1
2

+
1
2

(
Pr[HybA,TrapTP

(�)
2

(κ) = 1] − Pr[HybA,TrapTP
(�)
3

(κ) = 1]
)

From the IND-VER property of TC (see Theorem 4) we know that the above is at
most 1

2 +negl(κ). From this (and a randomizing argument similar to Lemma 3),
the statement of the lemma follows directly. �
Lemma 6. For any QPT A, there exists a negligible function negl such that for

all 1 ≤ 
 ≤ t, AdvHybTrapTP
(�)
4

TrapTP
(�)
3

(A, κ) ≤ negl(κ).

Proof. Let f(s) be the bit that, after the 
th T gate, determines whether or not a
phase correction is necessary. Here, s is all the relevant starting information (such
as quantum one-time pad keys, gadget structure, permutations, and applied
circuit), and f is some function that determines the X key on the relevant qubit
right before application of the T gate.

In TrapTP
(�)
3 , a phase correction after the 
th T gate is applied conditioned

on the outcome of

HE.Decsk�−1(HE.Evalfevk0,...,evk�−1
(HE.Encpk0(s))),

because the garden-hose computation in the gadget computes the classical
decryption. In the above expression, we again slightly abuse notation, as in the
proof of Lemma 2, and include recryption steps in HE.Evalevk0,...,evk�−1 . As long
as t is polynomial in κ, we have, by correctness of HE,

Pr[HE.Decsk�−1(HE.Evalfevk0,...,evk�−1
(HE.Encpk0(s))) �= f(s)] ≤ negl(κ).

In TrapTP
(�)
4 , the only difference from TrapTP

(�)
3 is that, instead of performing the

garden-hose computation on the result of the classical homomorphic evaluation
procedure, the phase correction is applied directly by VerDec, conditioned on
f(s). The probability that in TrapTP

(�)
4 , a phase is applied (or not) when in

TrapTP
(�)
3 it is not (or is), is negligible. The claim follows directly. �

Final Hybrid: Removing All Classical FHE. In TrapTP
(1)
4 , all of the error-

correction gadgets have been removed from the evaluation key, and the error-
correction functionality has been redirected to VerDec completely. Effectively,
TrapTP

(1)
4 .KeyGen samples a permutation π, generates a lot of magic states (for
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P, H and T) and encrypts them using TC.Encπ, after which the keys to the
quantum one-time pad used in that encryption are homomorphically encrypted
under pk0. The adversary is allowed to act on those encryptions, but while its
homomorphic computations are syntactically checked in the log, VerDec does
not decrypt and use the resulting values. This allows us to link TrapTP

(1)
4 to

a final hybrid, TrapTPf , where all classical information is replaced with zeros
before encrypting.

The proof of the following lemma is analogous to that of Lemma 3, and
reduces to the IND-CPA security of the classical scheme HE:

Lemma 7. For any QPT A, AdvHybTrapTP
f

TrapTP
(1)
4

(A, κ) ≤ negl(κ).

Proof of Main Theorem. Considering TrapTPf in more detail, we can see that
it is actually very similar to TC. This allows us to prove the following lemma,
which is the last ingredient for the proof of verifiability of TrapTP.

Lemma 8. For any QPT A, Pr[HybA,TrapTPf (κ) = 1] ≤ 1
2 + negl(κ).

Proof. To see the similarity with TC, consider the four algorithms of TrapTPf .
In TrapTPf .KeyGen, a permutation π is sampled, and magic states for P, H

and T are generated, along with some EPR pair halves (to replace ini and outi).
For all generated quantum states, random keys for QOTPs are sampled, and the
states are encrypted using TC.Enc with these keys as secret keys. No classical
FHE is present anymore. Thus, TrapTPf .KeyGen can be viewed as TC.KeyGen,
followed by TC.Enc on the magic states and EPR pair halves.

TrapTPf .Enc is identical to TC.Enc, only the keys to the quantum one-time
pad are sampled on the fly and sent to TrapTPf .VerDec via a classical side-
channel, whereas TC.VerDec receives them as part of the secret key. Since the
keys are used exactly once and not used anywhere else besides in Enc and VerDec,
this difference does not affect the outcome of the game.

TrapTPf .Eval only requires CNOT, classically controlled Paulis, and compu-
tational/Hadamar basis measurements. For the execution of any other gate, it
suffices to apply a circuit of those gates to the encrypted data, encrypted magic
states and/or encrypted EPR halves.

TrapTPf .VerDec does two things: (i) it syntactically checks the provided com-
putation log, and (ii) it runs TC.VerDec to verify that the evaluation procedure
correctly applied the circuit of CNOTs and measurements.

An execution of HybA,TrapTPf (κ) for any A corresponds to the two-round
VER indistinguishability game for TC as follows. Let A = (A1,A2,A3) be a
polynomial-time adversary for the game HybA,TrapTPf (κ). Define an additional
QPT A0 that produces magic states and EPR pair halves to the register X1.
The other halves of the EPR pairs are sent through R, and untouches by A1 and
A2. The above analysis shows that the adversary A′ = (A0,A1,A2,A3) can be
viewed as an adversary for the VER-2 indistinguishability game VerGame2A′,TC(κ)
and wins whenever HybA,TrapTPf (κ) = 1. The other direction does not hold: A
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loses the hybrid indistinguishability game if TrapTPf .VerDec rejects check (i),
but accepts check (ii) (see above). In this case, A′ would still win the VER-2
indistinguishability game. Hence,

Pr[HybA,TrapTPf (κ) = 1] ≤ Pr[VerGame2A′,TC(κ) = 1].

Theorem 4 yields Pr[VerGame2A′,TC(κ) = 1] ≤ 1
2 + negl(κ), and the result

follows. �
Theorem 5. The vQFHE scheme TrapTP satisfies κ-SEM-VER.

Proof. From Lemmas 1, 2, 3, 4, 5, 6, and 7, we may conclude that if t (the
number of T gates in the circuit) is polynomial in κ (the security parameter),
then for any polynomial-time adversary A,

Pr[VerGameA,TrapTP(κ) = 1] − Pr[HybA,TrapTPf (κ) = 1] ≤ negl(κ),

since the sum poly-many negligible terms is negligible (it is important to note
that there is only a constant number of different negligible terms involved).
By Lemma 8, which reduces verifiability of TrapTPf to verifiability of TC,
Pr[HybA,TrapTPf (κ) = 1] ≤ 1/2+negl(κ). It follows that Pr[VerGameA,TrapTP(κ) =
1] ≤ 1/2 + negl(κ), i.e., that TrapTP is κ-IND-VER. By Theorem 3, TrapTP is
also κ-SEM-VER. �

6 Application to Quantum One-Time Programs

One-Time Programs. We now briefly sketch an application of the vQFHE
scheme to one-time programs. A classical one-time program (or cOTP) is an
idealized object which can be used to execute a function once, but then self-
destructs. In the case of a quantum OTP (or qOTP), the program executes a
quantum channel Φ. In the usual formalization, Φ has two inputs and is public.
One party (the sender) creates the qOTP by fixing one input, and the qOTP
is executed by a receiver who selects the other input. To recover the intuitive
notion of OTP, choose Φ to be a universal circuit. We will work in the universally-
composable (UC) framework, following the approach of [9]. We thus first define
the ideal functionality of a qOTP.

Definition 8 (Functionality 3 in [9]). The ideal functionality FOTP
Φ for a

channel ΦXY →Z is the following:

1. Create: given register X from sender, store X and send create to receiver.
2. Execute: given register Y from receiver, send Φ applied to XY to receiver.

Delete any trace of this instance.

A qOTP is then a real functionality which “UC-emulates” the ideal function-
ality [22]. As in [9], we only allow corrupting receivers; unlike [9], we consider
computational (rather than statistical) UC security. The achieved result is there-
fore slightly weaker. The construction within our vQFHE framework is however
much simpler, and shows the relative ease with which applications of vQFHE
can be constructed.
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The Construction. Choose a vQFHE scheme Π = (KeyGen,Enc,Eval,VerDec)
satisfying SEM-VER. For simplicity, we first describe the classical input/output
case, i.e., the circuit begins and ends with full measurement of all qubits. Let C
be such a circuit, for the map ΦXY →Z . On Create, the sender generates keys
(k, ρevk) ← KeyGen and encrypts their input register X using k. The sender also
generates a classical OTP for the public, classical function VerDec, choosing the
circuit and key inputs to be C and k; the computation log is left open for the
receiver to select. The qOTP is then the triple

ΞX
C := (ρevk,Enck(ρX),OTPVerDec(C, k)) .

On Execute, the receiver computes as follows. The receiver’s (classical) input Y
together with the (public) circuit C defines a homomorphic computation on the
ciphertext Enck(ρX), which the receiver can perform using Eval and ρevk. Since
C has only classical outputs, the receiver measures the final state completely. At
the end of that computation, the receiver holds the (completely classical) output
of the computation log from Eval. The receiver plugs the log into OTPVerDec(C, k),
which produces the decrypted output.

We handle the case of arbitrary circuits C (with quantum input and output)
as follows. Following the ideas of [9], we augment the above quantum OTP
with two auxiliary quantum states: an “encrypt-through-teleport” gadget σin

and a “decrypt-through-teleport” gadget σout. These are maximally entangled
states with the appropriate map (encrypt or decrypt) applied to one half. The
receiver uses teleportation on σin

Y1W1
to encrypt their input register Y before

evaluating, and places the teleportation measurements into the computation log.
After evalution, the receiver uses σout

W2Y2
to teleport the plaintext out, combining

the teleportation measurements with the output of OTPVerDec(C, k) to compute
the final QOTP decryption keys.

Security Proof Sketch. Starting with a QPT adversary A which attacks the
real functionality, we construct a QPT simulator S which attacks the ideal func-
tionality (with similar success probability). We split A into A1 (receive input,
output the OTP query and side information) and A2 (receive result of OTP
query and side information, produce final output). The simulator S will gener-
ate its own keys, provide fake gadgets that will trick A into teleporting its input
to S, who will then use that input on the ideal functionality. Details follow.

The simulator first generates (k, ρevk) ← KeyGen and encrypts the input X
via Enck. Instead of the encrypt gadget σin

Y1W1
, S provides half of a maximally

entangled state in register Y and likewise in register W . The other halves Y ′
1

and W ′
1 of these entangled states are kept by S. The same is done in place of the

decrypt gadget σout
W2Y2

, with S keeping Y ′
2 and W ′

2. Then S runs A1 with input
ρevk,Enck(ρX) and registers Y and W . It then executes VerDeck on the output
(i.e., the query) of A1 to see if A1 correctly followed the Eval protocol. If it did
not, then S aborts; otherwise, S plugs register Y ′

1 into the ideal functionality, and
then teleports the output into register W ′

2. Before responding to A2, it corrects
the one-time pad keys appropriately using its teleportation measurements.
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7 Conclusion

In this work, we devised a new quantum-cryptographic primitive: quantum fully-
homomorphic encryption with verification (vQFHE). Using the trap code for
quantum authentication [9] and the garden-hose gadgets of [12], we constructed
a vQFHE scheme TrapTP which satisfies (i) correctness, (ii) compactness, (iii)
security of verification, (iv) IND-CPA secrecy, and (v) authentication. We also
outlined a first application of vQFHE, to quantum one-time programs.

We leave open several interesting directions for future research. Foremost is
finding more applications of vQFHE. Another interesting question is whether
vQFHE schemes exist where verification can be done publicly (i.e., without the
decryption key), as is possible classically. Finally, it is unknown whether vQFHE
(or even QFHE) schemes exist with evaluation key that does not scale with the
size of the circuit at all.
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Abstract. Functional encryption enables fine-grained access to
encrypted data. In many scenarios, however, it is important to control
not only what users are allowed to read (as provided by traditional func-
tional encryption), but also what users are allowed to send. Recently,
Damg̊ard et al. (TCC 2016) introduced a new cryptographic framework
called access control encryption (ACE) for restricting information flow
within a system in terms of both what users can read as well as what
users can write. While a number of access control encryption schemes
exist, they either rely on strong assumptions such as indistinguishability
obfuscation or are restricted to simple families of access control policies.

In this work, we give the first ACE scheme for arbitrary policies
from standard assumptions. Our construction is generic and can be built
from the combination of a digital signature scheme, a predicate encryp-
tion scheme, and a (single-key) functional encryption scheme that sup-
ports randomized functionalities. All of these primitives can be instan-
tiated from standard assumptions in the plain model and therefore, we
obtain the first ACE scheme capable of supporting general policies from
standard assumptions. One possible instantiation of our construction
relies upon standard number-theoretic assumptions (namely, the DDH
and RSA assumptions) and standard lattice assumptions (namely, LWE).
Finally, we conclude by introducing several extensions to the ACE frame-
work to support dynamic and more fine-grained access control policies.

1 Introduction

In the last ten years, functional encryption [16,44] has emerged as a powerful tool
for enforcing fine-grained access to encrypted data. But in many real-world sce-
narios, system administrators need to restrict not only what users are allowed to
read, but also, what users are allowed to send—for example, users with top-secret
security clearance in a system should not be able to make sensitive information
publicly available. Recently, Damg̊ard, Haagh, and Orlandi [23] introduced the
notion of access control encryption (ACE) to enable cryptographic control of the
information flow within a system.

Access control encryption. An access control encryption scheme [23] pro-
vides a cryptographic mechanism for restricting information flow in a system,

The full version of this paper is available at https://eprint.iacr.org/2017/467.pdf.
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both in terms of what parties can read, as well as in terms of what parties
can write. Of course, cryptography alone is insufficient here since a malicious
sender can always broadcast sensitive messages in the clear. To address this,
Damg̊ard et al. [23] introduce an additional party called the sanitizer. All com-
munication between senders and receivers is routed through the sanitizer, which
performs some processing on the message before broadcasting it to the receivers.
The goal in access control encryption is to simplify the operation of the sanitizer
so that its function can be outsourced to a party that is only trusted to execute
correctly (in particular, the sanitizer does not need to know either the identity
of the sender or receiver of each message, nor the security policy being enforced).

Concretely, an ACE scheme is defined with respect to a set of senders S,
a set of receivers R, and an access control policy π : S × R → {0, 1}, where
π(S,R) = 1 if a receiver R ∈ R is allowed to read messages from sender S ∈ S
(and vice versa). Each sender S has an encryption key ekS and each receiver R
has a decryption key dkR. To send a message m, the sender first encrypts ct ←
ACE.Encrypt(ekS ,m) and sends ct to the sanitizer. The sanitizer performs some
simple processing on ct to obtain a new ciphertext ct′, which it broadcasts to all of
the receivers. The correctness requirement of an ACE scheme is that if π(S,R) =
1, then ACE.Decrypt(dkR, ct′) = m. Critically, the sanitizer does not know the
identities of the sender or receiver, nor does it know the policy π.

The security requirements of an ACE scheme mirror those in the Bell-
LaPadula [7] security model. In particular, the no-read rule requires that any set
of unauthorized receivers {Rj} (even in collusion with the sanitizer) cannot learn
any information from a sender S if π(S,Rj) = 0 for all j. The no-write rule says
that no set of (possibly malicious) senders {Si} can transfer any information to
any set of (possibly malicious) receivers {Rj} if π(Si, Rj) = 0 for all i, j.

Existing constructions of ACE. Damg̊ard et al. [23] gave two constructions
of ACE capable of supporting arbitrary policies π : {0, 1}n × {0, 1}n → {0, 1}
(here, the senders and receivers are represented as n-bit identities). Their first
construction takes a brute-force approach and is based on standard number-
theoretic assumptions such as the decisional Diffie-Hellman assumption (DDH)
or the decisional composite residuosity assumption (DCR). The limitation, how-
ever, is that ciphertexts in their construction grow exponentially in n, thus ren-
dering the scheme inefficient when the set of identities is large. Their second
construction is more efficient (the ciphertext size is polylogarithmic in n), but
relies on the full power of indistinguishability obfuscation (iO) [6,29].

Subsequently, Fuchsbauer et al. [28] showed how to construct access control
encryption for restricted classes of predicates (i.e., equality, comparisons, and
interval membership) from standard assumptions on bilinear maps—namely,
the symmetric external Diffie-Hellman assumption (SXDH). While their con-
structions are asymptotically efficient (their ciphertexts are linear in n), the
functionalities they can handle are specialized to a restricted class of predicates.

Recently, Tan et al. [57] showed how to instantiate the Damg̊ard et al. brute-
force construction using the learning with errors (LWE) assumption. Since their
construction follows the Damg̊ard et al. approach, ciphertexts in their construc-
tion also grown exponentially in n.
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A natural question is whether it is possible to construct an asymptotically-
efficient ACE scheme for arbitrary functionalities without relying on powerful
assumptions like indistinguishability obfuscation. In this work, we show that
under standard assumptions (for instance, the DDH, RSA, and LWE assumptions
suffice), we obtain an asymptotically-efficient ACE scheme for general policies.

1.1 Our Contributions

Our main contribution in this work is a new construction of access control encryp-
tion that is asymptotically efficient, supports arbitrary policies, and relies only
on simple, well-studied assumptions. All previous constructions of ACE were
either inefficient, restricted to simple policies, or relied on indistinguishability
obfuscation. We refer to Table 1 for a comparison with the state-of-the-art.

Table 1. Concrete comparison of the ACE construction in this work with previous
ACE constructions [23,28,57] for predicates π : {0, 1}n × {0, 1}n → {0, 1}. For the
predicate class, we write “arbitrary” if the scheme can support arbitrary access control
policies and “restricted” if it can only handle a small set of access control policies (e.g.,
equality, comparisons, interval testing).

Construction Predicate Ciphertext size Assumption

Damg̊ard et al. [23, Sect. 3] arbitrary O(2n) DDH or DCR

Damg̊ard et al. [23, Sect. 4] arbitrary poly(n) iO
Fuchsbauer et al. [28] restricted poly(n) SXDH

Tan et al. [57] arbitrary O(2n) LWE

This work arbitrary poly(n) DDH, RSA, and LWE

In this work, we give a generic construction of access control encryption from
three main ingredients: a digital signature scheme, a general-purpose predicate
encryption scheme [32], and a (single-key) functional encryption scheme that
supports randomized functionalities [1,33]. We give a high-level overview of our
construction here and provide the formal description in Sect. 3. In Sect. 3.1, we
show how to instantiate the underlying primitives to obtain an ACE scheme from
standard assumptions. Our work thus resolves the main open question posed by
Damg̊ard et al. [23] on constructing asymptotically-efficient ACE schemes for
arbitrary functionalities from standard assumptions.

Starting point: predicate encryption. First, we review the syntax of a predi-
cate encryption scheme. In a predicate encryption scheme [17,36,56], ciphertexts
are associated with a message m in addition to a set of attributes x, and secret
keys are associated with functions f . Decrypting a ciphertext associated with
an attribute-message pair (x,m) using a secret key for a function f outputs m
if and only if f(x) = 1. Moreover, ciphertexts in a predicate encryption scheme
hide both the attribute x as well as the message m from all parties that are not
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able to decrypt the ciphertext.1 Not surprisingly, a predicate encryption scheme
that supports general policies can be used to obtain a primitive that resem-
bles an access control encryption scheme. Each sender’s encryption key is just
the public key for the predicate encryption scheme. To encrypt a message m,
the sender encrypts m with its identity as the attribute (i.e., an n-bit string).
The sanitizer would simply forward the ciphertext along. The decryption key for
a receiver R is a predicate encryption key that implements the policy π(·, R).
Of course, because the sanitizer simply broadcasts the sender’s message to the
receivers, this basic scheme does not satisfy the no-write rule. A malicious sender
can simply broadcast the message in the clear.

Sanitizing the ciphertext. To provide security against malicious senders, the
sanitizer must perform some kind of re-randomization of the sender’s cipher-
texts. Damg̊ard et al. [23] achieve this by introducing the notion of “sanitizable
functional encryption,” which is a functional encryption scheme that supports
re-randomization of ciphertexts. However, constructing sanitizable functional
encryption seems to require indistinguishability obfuscation. In this work, we
take a different strategy similar in spirit to proxy re-encryption [4]. Specifically,
we view the sanitizer as implementing a “proxy” that takes as input a sender’s
ciphertext (under some encryption scheme) and then re-encrypts that ciphertext
under the predicate encryption scheme (with the attribute set to the sender’s
identity). The guarantee we seek is that the output of the sanitizer is either ⊥
(if the input ciphertext is invalid) or a fresh encryption of the sender’s message
under the predicate encryption scheme. With this guarantee, the no-read and
no-write properties reduce to the security of the predicate encryption scheme.

The problem of building ACE thus reduces to constructing a suitable proxy
re-encryption scheme. Here, we rely on a single-key functional encryption for
randomized functionalities [1,33]. In a standard functional encryption [16,44]
(FE) scheme, secret keys are associated with functions f and ciphertexts are
associated with messages m. The combination of a decryption key for a function
f and a ciphertext for a message m should together reveal f(m) and nothing
more. Recently, Alwen et al. [2] and Goyal et al. [33] extended the notion of
functional encryption to also consider issuing keys for randomized functionalities.

A (general-purpose) FE scheme that supports randomized functionalities
immediately gives a way of implementing the proxy re-encryption functionality
for the sanitizer. First, to encrypt a message m, sender S encrypts the pair (S,m)
under the FE scheme. The sanitizer is given a functional key for the re-encryption
function that takes as input a pair (S,m) and outputs a predicate encryption of
m with attribute S. The receivers’ behavior is unchanged. By appealing to the
correctness and security of the FE scheme, the sanitizer’s output is distributed

1 This is in contrast to the weaker notion of attribute-based encryption [12,34,52]
where the attribute is public.
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like a fresh predicate encryption ciphertext.2 Importantly for our construction,
the FE scheme only needs to support issuing a single decryption key (for the
sanitizer). This means that it is possible to instantiate the FE scheme from
standard assumptions (i.e., by applying the transformation in [1] to standard
FE constructions such as [30,31,51]). Our construction is conceptually similar
to the approach in [23] based on sanitizable FE. In Remark 3.1, we compare
our approach to the one in [23] and highlight the key differences that allow us
to avoid the need for indistinguishability obfuscation (as seemingly needed for
sanitizable FE), and thus, base our construction on simple assumptions.

Signatures for policy enforcement. The remaining problem with the above
construction is that the sender has the freedom to choose the identity S at
encryption time. Thus, a malicious sender could choose an arbitrary identity
and trivially break the no-write security property. We address this by requiring
the sender “prove” its identity to the sanitizer when submitting its ciphertext
(but without revealing its identity to the sanitizer in the process). This can be
done using a standard technique described in [23] (and also applied in several
other contexts [10,19]) by giving each sender S a signature σS on its identity
(included as part of the sender’s encryption key). Then, to encrypt a message m,
the sender would construct an FE ciphertext for the tuple (S, σS ,m) containing
its identity, the signature on its identity, and the message. The sanitizer’s FE
key then implements a re-encryption function that first checks the validity of
the signature on the identity before outputting a fresh predicate encryption of
the message m (still with attribute S). Thus, a malicious sender is only able to
produce valid ciphertexts associated with identities for which it possesses a valid
signature. With this modification, we can show that the resulting construction
is a secure ACE scheme (Theorems 3.2 and 3.3).

Instantiating our construction. Our construction above gives a generic con-
struction of ACE from digital signatures, predicate encryption, and a single-key
general-purpose functional encryption scheme for randomized functionalities. In
Sect. 3.1, we show that all of the requisite building blocks of our generic con-
struction can be instantiated from standard assumptions. In particular, security
can be reduced to the decisional Diffie-Hellman (DDH) assumption [14], the RSA
assumption [49], and the learning with errors (LWE) assumption [48]. This yields
the first ACE scheme that supports general policies from standard assumptions.

Extending ACE. In Sect. 4, we describe several extensions to the notion of ACE
that naturally follow fromour generic construction.Weprimarily view these exten-
sions as ways of augmenting the schema of access control encryption to provide
2 In the actual construction, satisfying the no-write property requires the stronger

property that decrypting a maliciously-generated ciphertext, say, from a corrupt
sender, also yields a fresh ciphertext under the predicate encryption scheme. This is
the notion of security against malicious encrypters first considered in [33] and subse-
quently extended in [1]. The work of [1] shows how to obtain functional encryption
for randomized functionalities with security against malicious encrypters from any
functional encryption scheme supporting deterministic functionalities in conjunction
with standard number-theoretic assumptions.
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increased flexibility or to support additional functionalities, and not as qualita-
tively new properties specific to our particular construction. Indeed, the iO-based
construction of Damg̊ard et al. [23] can also be extended to achieve these proper-
ties. Our primary contribution is showing that we can achieve these stronger prop-
erties without relying on iO. We briefly summarize our main extensions:

– Dynamic policies: In the standard notion of ACE [23], the access control
policy is specified at the time of system setup. In realistic scenarios, senders
and receivers may need to be added to the system, and moreover, access
control policies can evolve over time. In Sect. 4.1, we show that our ACE
construction allows us to associate an access control policy specific to each
receiver’s decryption key. Thus, each receiver’s policy can be determined at
the time of receiver key generation rather than system setup, which enables
a dynamic specification of access control policies.

– Fine-grained sender policies: The standard notion of ACE only considers
policies expressible as a function of the sender’s and receiver’s identities. In
many scenarios, we may want to impose additional restrictions on the types
of messages that a sender could send. For instance, a sender could be allowed
to send messages to any receiver with top-secret security clearance, but we
want to ensure that all of the messages they send contains a signature from
both the sender as well as their supervisor (who would certify the contents
of the message). In Sect. 4.2, we show that a straightforward extension of
our construction allows us to additionally enforce policies on the types of
messages a user is allowed to send. We also introduce a new security notion
for ACE that captures the property that a sender should only be allowed to
send messages that conform to their encryption policy.

– Beyond all-or-nothing decryption: In a standard ACE scheme, decryption
is “all-or-nothing:” receivers who are authorized to decrypt a particular cipher-
text are able to do so and learn the underlying message, while receivers who are
not authorized to decrypt learn nothing about the message. Just as functional
encryption extends beyond all-or-nothing encryption by enabling decrypters
to learn partial information about an encrypted message, we can consider a
functional encryption analog of access control encryption where receivers are
allowed to learn only partial information about messages in accordance with
the precise access control policies of the underlying scheme. As a concrete
example, an analyst with secret security clearance might only be authorized to
learn the metadata of a particular encrypted communication, while an analyst
with top-secret security clearance might be authorized to recover the complete
contents of the communication. In a “functional ACE” scheme, decryption keys
are associated with functions and the decryption algorithm computes a func-
tion on the underlying message. In the full version [38], we show how our ACE
scheme can be easily extended to obtain a functional ACE scheme.

Concurrent work. Concurrent to this work, Badertscher et al. [5] introduced
several strengthened security notions for access control encryption such as secu-
rity against chosen ciphertext attacks (CCA-security). They then show how to
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extend the ACE scheme (for restricted policies) in [28] to achieve their new
security notions. In contrast, our focus in this work is constructing an ACE
scheme (under the original security notions from [23]) for arbitrary policies from
standard assumptions.

Open problems. We leave as an open problem the construction of an ACE
scheme (for general policies) where the sanitizer key can be public. This is the
case for the ACE construction for restricted policies in [28], but not the case for
our construction or the iO-based construction in [23]. Another open problem is
constructing an ACE scheme that provides full sender anonymity (see Remark 2.6
for more details). Notably, this is possible from iO [23], but seems non-trivial
from standard assumptions.

1.2 Additional Related Work

Information flow control is a widely studied topic in computer security (see, for
instance [7,24,25,45,50,53,54] and the references therein). In particular, the “no
read” and “no write” security notions for access control encryption are inspired
by the “no read-up” and “no write-down” security policies first introduced in
the seminal work of Bell and LaPadula [7]. In this work, we focus on designing
cryptographic solutions for information flow control.

Numerous cryptographic primitives, starting with identity-based encryp-
tion [15,22,55], and progressing to attribute-based encryption [12,34,52], pred-
icate encryption [17,36,40,43], and finally, culminating with functional encryp-
tion [16,44,51], have focused on ways of enabling fine-grained access to encrypted
data (i.e., impose policies on the decryption capabilities of users in a system).
Access control encryption seeks to simultaneously enforce policies on both the
encryption capabilities of the sender as well as the decryption capabilities of the
receiver.

A key challenge in access control encryption (and how it differs from tra-
ditional notions of functional encryption) is in preventing corrupt senders from
communicating (covertly or otherwise) with unauthorized recipients. One way
of viewing these goals is as a mechanism for protecting against steganography
techniques [35]. Recent works on cryptographic reverse firewalls [26,42] have
looked at preventing compromised or malicious software from leaking sensitive
information. Raykova et al. [47] studied the problem of access control for out-
sourced data. Their goal was to hide access patterns from the cloud and prevent-
ing corrupt writers from updating files that they are not authorized to update.
Their work considers a covert security model where malicious writers are caught;
in contrast, with ACE, we require the stronger guarantee that communication
between corrupt senders and unauthorized receivers are completely blocked.

Also related to access control encryption is the recent line of work on sani-
tizable signatures [3,20,27]. These works study the case where an intermediate
party can sanitize messages and signatures that are sent over a channel while
learning minimal information about the messages and signatures. The notion of
sanitizable signatures is conceptually different from that of ACE since sanitizable
signatures are not designed to prevent corrupt senders from leaking information
to corrupt receivers.
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2 Preliminaries

For n ≥ 1, we write [n] to denote the set of integers {1, . . . , n}. For a distribution
D, we write x ← D to denote that x is a sampled from D. For a finite set S,
we write x ←R S to denote that x is sampled uniformly at random from S.
For a randomized function f , we write f(x; r) to denote an evaluation of f
using randomness r. Unless otherwise noted, we always write λ for the security
parameter. We say a function f(λ) is negligible in the security parameter λ
(denoted f(λ) = negl(λ)) if f(λ) = o(1/λc) for all c ∈ N. We write f(λ) = poly(λ)
to denote that f is a (fixed) polynomial in λ. An algorithm is efficient if it runs
in polynomial time in the length of its input. For two ensembles of distributions
D1 and D2, we write D1

c≈ D2 if the two distributions are computationally
indistinguishable (that is, no efficient algorithm can distinguish D1 from D2

except with negligible probability).
We now formally define the tools we need to build our ACE scheme. Due to

space limitations, we defer the standard definitions of a digital signature scheme
and predicate encryption scheme to the full version of this paper [38]. In Sect. 2.1,
we review the notion of functional encryption for randomized functionalities, and
in Sect. 2.2, we introduce the notion of an access control encryption scheme.

2.1 Functional Encryption for Randomized Functionalities

Functional encryption (FE) [16,44,51] is a generalization of predicate encryp-
tion. In an FE scheme, secret keys are associated with functions and ciphertexts
are associated with messages. Given a secret key skf for a (deterministic) func-
tion f and a ciphertext ctx encrypting a value x, the decryption function in an
FE scheme outputs f(x). The security guarantee roughly states that skf and ctx
together reveal f(x), and nothing more. Alwen et al. [2] and Goyal et al. [33]
extended the notion of functional encryption to include support for random-
ized functionalities (i.e., secret keys are associated with randomized functions).
Subsequently, Komargodski et al. [39], as well as Agrawal and Wu [1] showed
how to generically transform FE schemes that support deterministic functions
into schemes that support randomized functions; the former transformation [39]
applies in the secret-key setting while the latter [1] applies in the public-key
setting.

Syntax. We now give the formal definition of a functional encryption for ran-
domized functionalities in the public-key setting. Our definitions are adapted
from those in [1,33]. A functional encryption for randomized functionalities for
a function family F over a domain X , range Y, and randomness space R is
a tuple of algorithms ΠrFE = (rFE.Setup, rFE.KeyGen, rFE.Encrypt, rFE.Decrypt)
with the following properties:

– rFE.Setup(1λ) → (pp,msk): On input the security parameter λ, the setup
algorithm outputs the public parameters pp and the master secret key msk.
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– rFE.KeyGen(msk, f) → skf : On input the master secret key msk and the
description of a (possibly randomized) function f : X → Y, the key-generation
algorithm outputs a secret key skf .

– rFE.Encrypt(pp, x) → ctx: On input the public parameters pp and a message
x ∈ X , the encryption algorithm outputs a ciphertext ctx.

– rFE.Decrypt(sk, ct) → y: On input a secret key sk, and a ciphertext ct, the
decryption algorithm outputs a value y ∈ Y ∪ {⊥}.

Correctness. The correctness property for an FE scheme that supports ran-
domized functionalities states that given a secret key skf for a randomized
function f and a ciphertext ctx encrypting a value x, the decryption function
rFE.Decrypt(skf , ctx) outputs a random draw from the output distribution of
f(x). Moreover, when multiple function keys are applied to multiple ciphertexts,
decryption should output an independent draw from the output distribution for
each ciphertext-key pair. This property should hold even given the public para-
meters as well as the function keys for the function encryption scheme. We give
the formal definition below:

Definition 2.1 (Correctness [1,33, adapted]). A functional encryption
scheme for randomized functionalities ΠrFE = (rFE.Setup, rFE.KeyGen,
rFE.Encrypt, rFE.Decrypt) over a message space X for a (randomized) function
family F (operating over a randomness space R) is correct if for every poly-
nomial n = n(λ), every collection of functions (f1, . . . , fn) ∈ Fn, and every
collection of messages (x1, . . . , xn) ∈ X n, setting (pp,msk) ← rFE.Setup(1λ),
ski ← rFE.KeyGen(msk, fi), ctj ← rFE.Encrypt(pp, xj), and ri,j ←R R for
i, j ∈ [n], the following two distributions are computationally indistinguishable:

(
pp, {ski}i∈[n] , {rFE.Decrypt(ski, ctj)}i,j∈[n]

)

and
(
pp, {ski}i∈[n] , {fi(xj ; ri,j)}i,j∈[n]

)
.

Remark 2.2 (Weaker Correctness Notions). Existing constructions of functional
encryption for randomized functionalities [1,33] consider a weaker correctness
requirement that the joint distribution {rFE.Decrypt(ski, ctj)}i,j∈[n] be compu-
tationally indistinguishable from {fi(xj ; ri,j)}i,j∈[n]. In this work, we require the
stronger property that these two distributions remain computationally indistin-
guishable even given the public parameters as well as the (honestly-generated)
decryption keys. It is not difficult to see that existing constructions such as the
Agrawal-Wu generic construction [1] satisfy this stronger correctness require-
ment.3

3 Specifically, the generic construction of functional encryption for randomized func-
tionalities from standard functional encryption in [1] uses a PRF key for deran-
domization. In their construction, they secret share the PRF key across the cipher-
text and the decryption key. By appealing to related-key security of the underlying
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Security. In this work, we use a simulation-based definition of security. Our
access control encryption construction relies critically on our FE scheme provid-
ing robustness against malicious encrypters. This can be viewed as the analog of
CCA-security in the context of public-key encryption [46], and is captured for-
mally in the security game by giving the adversary access to a decryption oracle
(much like in the CCA-security game). We give a simplified variant of the defin-
ition from [1,33] where the adversary is only allowed to issue key-queries before
making challenge queries (i.e., the adversary is restricted to making non-adaptive
key queries). In this non-adaptive setting, Gorbunov et al. [31] showed that secu-
rity against an adversary who makes a single challenge query implies security
against an adversary that makes a polynomial number of challenge queries. This
is the definition we use in this work. Additionally, for the decryption queries, we
also consider the simplified setting of [33] where the adversary can only submit a
single ciphertext on each decryption query.4 We now give the formal definition:

Definition 2.3 (q-NA-SIM Security [1,33, adapted]). Let ΠrFE = (rFE.Setup,
rFE.KeyGen, rFE.Encrypt, rFE.Decrypt) be a functional encryption scheme for ran-
domized functionalities over a message space X for a (randomized) function
family F (with randomness space R). We say that ΠrFE is q-NA-SIM-secure
against malicious encrypters if there exists an efficient (stateful) simulator
S = (S1,S2,S3,S4) such that for all efficient adversaries A = (A1,A2) where
A1 makes at most q key-generation queries, the outputs of the following two
experiments are computationally indistinguishable:

Experiment RealΠrFE,A(1λ):
(pp,msk) ← rFE.Setup(1λ)
st ← AO1(msk,·), O3(msk,·,·)

1 (1λ, pp)
α ← AO2(pp,·), O3(msk,·,·)

2 (st)
Output ({g} , {y} , α)

Experiment IdealΠrFE,A,S(1λ):
(pp, st′) ← S1(1λ)
st ← AO′

1(st
′,·), O′

3(st
′,·,·)

1 (1λ, pp)
α ← AO′

2(st
′,·), O3(st

′,·,·)
2 (st)

Output ({g′} , {y′} , α)

where the key-generation, encryption, and decryption oracles are defined as
follows:
Real experiment RealΠrFE,A(1λ):

– Key-generation oracle: O1(msk, ·) implements rFE.KeyGen(msk, ·).
– Encryption oracle: O2(pp, ·) implements rFE.Encrypt(pp, ·).
– Decryption oracle: On input (g, ct) where g ∈ F and ct ∈ {0, 1}∗, the

decryption oracle O3(msk, ·, ·) computes skg ← rFE.KeyGen(msk, g) and out-
puts y = rFE.Decrypt(skg, ct). The (ordered) set {g} consists of the set of

PRF [8,9,11,13], the randomness used for function evaluation during decryption is
computationally indistinguishable from a random string. Moreover, this holds even
if one of the key-shares is known (in our setting, this is the key-share embedded
within the decryption key).

4 Subsequent work [1] showed how to extend the security definition to also cap-
ture adversaries that can induce correlations across multiple ciphertexts, but this
strengthened definition is not necessary in our setting.
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functions that appear in the decryption queries of A and the (ordered) set {y}
consist of the responses of O3.

Ideal experiment IdealΠrFE,A,S(1λ):

– Key-generation oracle: On input a function f ∈ F , the ideal key-
generation oracle O′

1 computes (sk′
f , st′) ← S2(st′, f), and returns sk′

f . The
updated simulator state st′ is carried over to future invocations of the simu-
lator.

– Encryption oracle: On input a message x ∈ X , the ideal encryption oracle
O′

2 samples r1, . . . , rq ←R R, and sets yi = fi(x; ri) for i ∈ [q], where fi is the
ith key-generation query A1 made to the key-generation oracle. The oracle
computes (ct′, st′) ← S3(st′, {yi}i∈[q]) and returns ct′.

– Decryption oracle: On input (g′, ct′) where g′ ∈ F and ct′ ∈ {0, 1}∗,
the ideal decryption oracle O′

3 invokes the simulator algorithm (x, st′) ←
S4(st′, ct′), where x ∈ X ∪ {⊥}. If x 	= ⊥, the oracle samples r ←R R and
replies with g′(x; r). Otherwise, if x = ⊥, the oracle replies with ⊥. The
(ordered) set {g′} denotes the functions in the decryption queries of A and
{y′} denotes the outputs of O′

3.

2.2 Access Control Encryption (ACE)

In this section, we review the definition of access control encryption (ACE)
[23,28,57]. An access control encryption scheme over an identity space I, a
message space M, and a ciphertext space C is defined by a tuple of algo-
rithms ΠACE = (ACE.Setup,ACE.EKGen,ACE.DKGen,ACE.Encrypt,ACE.Sanitize,
ACE.Decrypt) with the following properties:

– ACE.Setup(1λ, π) → (sank,msk): On input a security parameter λ and an
access control policy π : I × I → {0, 1}, the setup algorithm outputs the
sanitizer key sank and the master secret key msk.

– ACE.EKGen(msk, i) → eki: On input the master secret key msk and a sender
identity i ∈ I, the encryption key-generation algorithm outputs an encryption
key eki.

– ACE.DKGen(msk, j) → dkj : On input the master secret key msk, and a receiver
identity j ∈ I, the decryption key-generation algorithm returns a decryption
key dkj .

– ACE.Encrypt(ek,m) → ct: On input an encryption key ek, and a message
m ∈ M, the encryption algorithm outputs a ciphertext ct.5

– ACE.Sanitize(sank, ct) → ct′: On input the sanitizer key sank and a ciphertext
ct, the sanitize algorithm outputs a ciphertext ct′ ∈ C ∪ {⊥}.

– ACE.Decrypt(dk, ct′) → m′: On input a decryption key dk and a ciphertext
ct′ ∈ C, the decryption algorithm outputs a message m′ ∈ M ∪ {⊥}.

5 Note that we do not require that ct ∈ C. In particular, the ciphertexts output by the
encryption algorithm can be syntactically different from those output by the sanitize
algorithm. To simplify the notation, we only explicitly model the ciphertexts space
C corresponding to those produced by the ACE.Sanitize algorithm.
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Definition 2.4 (Correctness [23]). An ACE scheme ΠACE = (ACE.Setup,
ACE.EKGen,ACE.DKGen,ACE.Encrypt,ACE.Sanitize,ACE.Decrypt) over an iden-
tity space I and a message space M is correct if for all messages m ∈ M,
all policies π : I × I → {0, 1}, and all identities i, j ∈ I where π(i, j) = 1,
setting (sank,msk) ← ACE.Setup(1λ, π), eki ← ACE.EKGen(msk, i), dkj ←
ACE.DKGen(msk, j), we have that

Pr[ACE.Decrypt(dkj ,ACE.Sanitize(sank,ACE.Encrypt(eki,m))) = m]=1−negl(λ).

Security definitions. Damg̊ard et al. [23] introduced two security notions for
an ACE scheme: the no-read rule and the no-write rule. The no-read rule cap-
tures the property that only the intended recipients of a message (namely, those
authorized to decrypt it) should be able to learn anything about the message.
In particular, a subset of unauthorized receivers should be unable to combine
their respective decryption keys to learn something about a ciphertext they are
not authorized to decrypt. Moreover, this property should hold even if the recip-
ients collude with the sanitizer. The no-write rule captures the property that
a sender can only encrypt messages to receivers that it is authorized to do so.
Specifically, no sender with identity i should be able to form a ciphertext that
can be decrypted by a receiver with identity j where π(i, j) = 0. Furthermore,
this property should hold even when multiple senders and receivers collude. We
now review the formal definitions introduced in [23].

Definition 2.5 (No-Read Rule [23]). Let ΠACE = (ACE.Setup,
ACE.EKGen,ACE.DKGen,ACE.Encrypt,ACE.Sanitize,ACE.Decrypt) be an ACE
scheme over an identity space I and a message space M. Let A be an effi-
cient adversary and π : I × I → {0, 1} be an access control policy. For a
security parameter λ and a bit b ∈ {0, 1}, we define the no-read rule experi-
ment Expt

(Read)
ΠACE,A,π(λ, b) as follows. The challenger first samples (sank,msk) ←

ACE.Setup(1λ, π), and gives the sanitizer key sank to A. Then, A is given access
to the following oracles:

– Encryption oracle. On input a message m ∈ M and a sender
identity i ∈ I, the challenger responds with a ciphertext ct ←
ACE.Encrypt(ACE.EKGen(msk, i),m).

– Encryption key-generation oracle. On input a sender identity i ∈ I, the
challenger responds with an encryption key eki ← ACE.EKGen(msk, i).

– Decryption key-generation oracle. On input a receiver identity j ∈ I,
the challenger responds with a decryption key dkj ← ACE.DKGen(msk, j).

– Challenge oracle. On input a pair of messages (m0,m1) ∈ M × M
and a pair of sender indices (i0, i1) ∈ I × I, the challenger responds with
ACE.Encrypt(ACE.EKGen(msk, ib),mb).

At the end of the experiment, adversary A outputs a bit b′ ∈ {0, 1}, which is
the output of the experiment. An adversary A is admissible for the no-read rule
security game if for all queries j ∈ I that A makes to the receiver key-generation
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oracle, π(i0, j) = 0 = π(i1, j). We say that ΠACE satisfies the no-read rule if for
all policies π : I × I → {0, 1}, and all efficient and admissible adversaries A,

∣
∣
∣Pr

[
Expt

(Read)
ΠACE,A,π(λ, 0) = 0

]
− Pr

[
Expt

(Read)
ΠACE,A,π](λ, 1) = 1

]∣
∣
∣ = negl(λ).

Remark 2.6 (Sender Anonymity). The definition of the no-read rule given in [23]
also imposes the stronger requirement of sender anonymity, which guarantees
the anonymity of the sender even against adversaries that are able to decrypt
the ciphertext. In contrast, our definition only ensures sender anonymity (in
addition to message privacy) against a coalition of receivers that cannot decrypt
the challenge ciphertext. This is akin to the notion of “weak attribute-hiding” in
the context of predicate encryption [40,43], and was also the notion considered
in [28] for building ACE for restricted classes of functionalities.

Definition 2.7 (No-Write Rule [23]). Let ΠACE = (ACE.Setup,ACE.EKGen,
ACE.DKGen,ACE.Encrypt,ACE.Sanitize,ACE.Decrypt) be an ACE scheme over
an identity space I and a message space M. Let A be an efficient adversary,
and let π : I × I → {0, 1} be an access control policy. For a security parameter
λ and a bit b ∈ {0, 1}, we define the no-write rule experiment Expt(Write)

ΠACE,A,π(λ, b)
as follows. The challenger begins by sampling (sank,msk) ← ACE.Setup(1λ, π).
Then, A is given access to the following oracles:

– Encryption oracle. On input a message m ∈ M and a sender identity
i ∈ I, the challenger responds by first computing eki ← ACE.EKGen(msk, i)
and returning ACE.Sanitize(sank,ACE.Encrypt(eki,m)).

– Encryption key-generation oracle. On input a sender index i ∈ I, the
challenger responds with an encryption key eki ← ACE.EKGen(msk, i).

– Decryption key-generation oracle. On input a receiver index j ∈ I, the
challenger responds with a decryption key dkj ← ACE.DKGen(msk, j).

– Challenge oracle. On input a ciphertext ct∗ ∈ {0, 1}∗ and a sender identity
id∗ ∈ I, the challenger sets ct0 = ct∗. Then, the challenger samples m′ ←R M,
computes ct1 ← ACE.Encrypt(ACE.EKGen(msk, id∗),m′), and responds with
ACE.Sanitize(sank, ctb).

At the end of the experiment, adversary A outputs a bit b′ ∈ {0, 1}, which is
the output of the experiment. An adversary A is admissible for the no-write rule
security game if the following conditions hold:

– The adversary A makes at most one query to the challenge oracle.6

– For all identities i ∈ I that A submits to the encryption key-generation oracle
prior to its challenge and all identities j ∈ I that A submits to the decryption
key-generation oracle, π(i, j) = 0.

– The adversary A makes an encryption key-generation query on the challenge
identity id∗ ∈ I prior to making its challenge query.

6 We impose this restriction to simplify the security definition. A standard hybrid
argument shows that security against an adversary that makes a single challenge
query implies security against one that makes multiple challenge queries.
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We say that ΠACE satisfies the no-write rule if for all policies π : I ×I → {0, 1},
and all efficient and admissible adversaries A,

∣
∣
∣Pr

[
Expt

(Write)
ΠACE,A,π(λ, 0) = 0

]
− Pr

[
Expt

(Write)
ΠACE,A,π(λ, 1) = 1

]∣
∣
∣ = negl(λ).

3 Generic Construction of Access Control Encryption

In this section, we show how to generically construct access control encryption for
general policies from a digital signature scheme, a predicate encryption scheme,
and a general-purpose functional encryption scheme for randomized functionali-
ties. Then, in Sect. 3.1, we describe our concrete instantiation of an ACE scheme
that supports arbitrary policies from standard assumptions.

Construction 3.1 Let I be the identity space and M be the message space.
Our access control encryption for general access policies relies on the following
primitives:

– Let ΠSig = (Sig.Setup,Sig.Sign,Sig.Verify) be a signature scheme with message
space I. Let T denote the space of signatures output by the Sig.Sign algorithm.

– Let ΠPE = (PE.Setup,PE.KeyGen,PE.Encrypt,PE.Decrypt) be a (public-key)
predicate encryption scheme with attribute space I and message space M.
Let C denote the ciphertext space for ΠPE, and let R denote the space for
the encryption randomness for PE.Encrypt (namely, the space of values from
which the randomness used in PE.Encrypt is sampled).

– Let ΠrFE = (rFE.Setup, rFE.KeyGen, rFE.Encrypt, rFE.Decrypt) be a general-
purpose public-key functional encryption scheme for randomized functional-
ities (with security against malicious encrypters) with domain I × T × M,
range C, and randomness space R.

We construct the ACE scheme ΠACE = (ACE.Setup,ACE.EKGen,ACE.DKGen,
ACE.Encrypt,ACE.Sanitize,ACE.Decrypt) as follows:

– ACE.Setup(1λ, π): On input the security parameter λ and a policy π : I ×
I → {0, 1}, the setup algorithm samples (Sig.vk,Sig.sk) ← Sig.Setup(1λ),
(PE.pp,PE.msk) ← PE.Setup(1λ), and (rFE.pp, rFE.msk) ← rFE.Setup(1λ).
Next, it defines the function FSig.vk,PE.pp : I × T × M → C as follows:

FSig.vk,PE.pp(i, σ,m; r) =
{
PE.Encrypt(PE.pp, i,m; r) if Sig.Verify(Sig.vk, i, σ) = 1
⊥ otherwise.

Then, it generates a decryption key rFE.skF ← rFE.KeyGen(rFE.msk,
FSig.vk,PE.pp). Finally, it outputs the sanitizer key sank = rFE.skF and the
master secret key

msk = (π,Sig.sk,PE.msk, rFE.pp).
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– ACE.EKGen(msk, i): On input the master secret key msk = (π,Sig.sk,PE.msk,
rFE.pp), and an identity i ∈ I, the encryption key-generation algorithm con-
structs a signature σ ← Sig.Sign(Sig.sk, i) and outputs eki = (rFE.pp, i, σ).

– ACE.DKGen(msk, j): On input the master secret key msk = (π,Sig.sk,PE.msk,
rFE.pp), and an identity j ∈ I, the decryption key-generation algorithm gen-
erates a key PE.sk ← PE.KeyGen(PE.msk, fπ,j) where fπ,j(i) : I → {0, 1} is
defined as fπ,j(i) = π(i, j), and outputs dkj = PE.sk.

– ACE.Encrypt(eki,m): On input the encryption key eki = (rFE.pp, i, σ) and a
message m ∈ M, the encryption algorithm outputs rFE.Encrypt(rFE.pp, (i, σ,
m)).

– ACE.Sanitize(sank, ct): On input the sanitizer key sank = rFE.skF and a
ciphertext ct, the sanitize algorithm outputs rFE.Decrypt(rFE.skF , ct).

– ACE.Decrypt(dkj , ct
′): On input a decryption key dkj = PE.sk and a ciphertext

ct′, the decryption algorithm outputs PE.Decrypt(PE.sk, ct′).

We now state that our main correctness and security theorems. Specifically,
we show that assuming correctness and security of the underlying primitive ΠSig,
ΠPE, and ΠFE, our access control encryption scheme satisfies correctness (Defini-
tion 2.4), no-read security (Definition 2.5), and no-write security (Definition 2.7).
We give the proof of Theorem 3.1 in the full version [38] and the proofs of Theo-
rems 3.2 and 3.3 in Sects. 3.2 and 3.3, respectively. We conclude this subsection
with a remark comparing our construction to the Damg̊ard et al. [23] construc-
tion of ACE from sanitizable FE.

Theorem 3.1 (Correctness). Suppose ΠSig is a correct signature scheme,
ΠPE is a correct predicate encryption scheme, and ΠFE is a correct func-
tional encryption scheme for randomized functionalities (Definition 2.1). Then,
the access control encryption scheme from Construction 3.1 is correct (Defini-
tion 2.4).

Theorem 3.2 (No-Read Rule). Suppose ΠSig is perfectly correct, ΠPE is
a secure predicate encryption scheme and ΠrFE is an 1-NA-SIM-secure func-
tional encryption scheme for randomized functionalities (Definition 2.3). Then,
the access control encryption scheme from Construction 3.1 satisfies the no-read
rule (Definition 2.5).

Theorem 3.3 (No-Write Rule). If ΠSig is existentially unforgeable, ΠPE is
a secure predicate encryption scheme, and ΠrFE is a 1-NA-SIM-secure functional
encryption for randomized functionalities (Definition 2.3). Then, the access con-
trol encryption scheme from Construction 3.1 satisfies the no-write rule (Defin-
ition 2.7).

Remark 3.1 (Comparison with Sanitizable FE). The high-level schema of our
access control encryption scheme bears some similarities to the ACE construc-
tion from sanitizable functional encryption in [23]. Here, we highlight some of
the key differences between our construction and that of [23]. In [23], the san-
itizer key is used only to test whether a particular ciphertext is valid or not.
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After validating the certificate, the sanitizer relies on the algebraic structure
of the sanitizable FE scheme to re-randomize the ciphertext. In contrast, in
our construction, the sanitizer actually performs a re-encryption of the incom-
ing ciphertext under a different (predicate) encryption scheme, and moreover,
the validation procedure (that the ciphertext originated from a valid sender)
is embedded within the re-encryption key possessed by the sanitizer. As such,
our construction only requires us to issue a single functional encryption key to
the sanitizer. This means that we can base our construction on standard cryp-
tographic assumptions. While it may be possible to build sanitizable FE from
an FE scheme that supports randomized functionalities, it seems difficult to
reduce security to standard assumptions (because the existing general-purpose
FE schemes from standard assumptions [30,31,51] remain secure only if we give
out an a priori bounded number of decryption keys). Thus, using re-encryption
rather than re-randomization offers qualitatively better properties that enables
a construction that does not rely on strong assumptions like indistinguishability
obfuscation.

3.1 Concrete Instantiations

In this section, we describe one candidate instantiation of Construction 3.1 that
yields an access control encryption scheme for arbitrary policies from stan-
dard assumptions. All of our primitives can be built from standard assump-
tions, namely the decisional Diffie-Hellman assumption (DDH) [14], the RSA
assumption (RSA) [49], and the learning with errors assumption (LWE) [48].
The DDH and RSA assumptions are needed to leverage the generic construction
of functional encryption for randomized functionalities from standard functional
encryption (for deterministic functionalities) in [1]. The remaining primitives can
be built from LWE. We now describe one possible instantiation of the primitives
in Construction 3.1:

– The signature scheme ΠSig can be instantiated using the standard-model con-
struction of Cash et al. [21] based on LWE. Note that because our construction
makes non-black-box use of the underlying signature scheme (in particular,
we need to issue an FE key that performs signature verification), we are
unable to instantiate our construction with a signature scheme that relies on
a random oracle.

– The (general-purpose) predicate encryption scheme ΠPE can be instantiated
using the construction of Gorbunov et al. [32] based on the LWE assumption.

– The (general-purpose) 1-NA-SIM-secure FE scheme ΠrFE for randomized func-
tionalities that provides security against malicious encrypters can be instan-
tiated by applying the Agrawal-Wu deterministic-to-randomized transfor-
mation [1] to a 1-NA-SIM-secure FE scheme for deterministic functionali-
ties. The underlying 1-NA-SIM-secure FE scheme can in turn be based on
any public-key encryption [31] or on the LWE assumption [30]. Applying
the deterministic-to-randomized transformation to the former yields an FE
scheme for randomized functionalities from the DDH and RSA assumptions
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(cf. [1, Corollary 5.5]), while applying the transformation to the latter yields
an FE scheme based on the DDH, RSA, and LWE assumptions.

Putting the pieces together, we obtain the following corollary to Theorems 3.2
and 3.3:

Corollary 3.1 Under standard assumptions (namely, the DDH, RSA, and LWE
assumptions), there exists an access control scheme for general policies over
arbitrary identity spaces I = {0, 1}n where n = poly(λ) that satisfies the no-read
and no-write security properties.

3.2 Proof of Theorem3.2

Our proof proceeds via a sequence of hybrid experiments between an adversary
A and a challenger. First, fix an access control policy π : I ×I → {0, 1}. We now
define our sequence of hybrid experiments:

– Hyb0: This is the ACE security experiment Expt
(Read)
ΠACE,A,π(λ, 0) from Defi-

nition 2.5. Specifically, at the beginning of the game, the challenger sam-
ples keys (Sig.vk,Sig.sk) ← Sig.Setup(1λ), (PE.pp,PE.msk) ← PE.Setup(1λ),
and (rFE.pp, rFE.msk) ← rFE.Setup(1λ). It then generates the sanitizer key
rFE.skF ← rFE.KeyGen(rFE.msk, FSig.vk,PE.pp) and gives sank = rFE.skF to
the adversary. It sets msk = (π,Sig.sk,PE.msk, rFE.pp). During the query
phase, the challenger answers the adversary’s queries to the encryption and
key-generation oracles by computing the encryption and key-generation algo-
rithms exactly as in the real scheme. When the adversary makes a challenge
oracle query with messages (m0,m1) ∈ M×M and identities (i0, i1) ∈ I ×I,
the challenger responds with ACE.Encrypt(ACE.EKGen(msk, i0),m0).

– Hyb1: Same as Hyb0, except that the challenger uses the simulator S =
(S1,S2,S3,S4, ) for ΠrFE to construct the public parameters, the sanitizer
key sank, and in replying to the adversary’s challenge queries. Specifically, we
make the following changes to the challenger:

• Setup: At the beginning of the game, instead of sampling rFE.pp
using rFE.Setup, the challenger instead runs the simulation algorithm
(rFE.pp, st′) ← S1(1λ). For the sanitizer key, the challenger computes
rFE.skF ← S2(st′, FSig.vk,PE.pp). It saves rFE.pp as part of the master secret
key and gives sank = (rFE.skF ) to the adversary.

• Challenge queries: When the adversary submits a challenge (m0,m1, i0,
i1), the challenger first computes ct′ ← PE.Encrypt(PE.pp, i0,m0). Then
it replies to the adversary with the simulated ciphertext ct ← S3(st′, ct′).

The encryption and key-generation queries are handled exactly as in Hyb0.
– Hyb2: Same as Hyb1, except when answering challenge queries (m0,m1, i0, i1),

the challenger instead computes ct′ ← PE.Encrypt(PE.pp, i1,m1) and replies
with the simulated ciphertext ct ← S3(st′, ct′).

– Hyb3: Same as Hyb2, except that the challenger constructs the public para-
meters rFE.pp and the sanitizer key sank as described in the real scheme. For
challenge queries (m0,m1, i0, i1), the challenger replies with the ciphertext
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ACE.Encrypt(ACE.EKGen(msk, i1),m1). This corresponds to the ACE secu-
rity experiment Expt

(Read)
ΠACE,A,π(λ, 1) from Definition 2.5.

We now argue that each pair of hybrid experiments are computationally indistin-
guishable. For an adversary A, we write Hybi(A) to denote the output of Hybi.
In the following, we implicitly assume that the adversary in each pair of hybrid
arguments is admissible.

Lemma 3.1 If ΠSig is perfectly correct and ΠrFE is 1-NA-SIM-secure, then for
all efficient adversaries A, |Pr[Hyb0(A) = 1] − Pr[Hyb1(A) = 1]| = negl(λ).

Proof Suppose there exists an adversary A that can distinguish between Hyb0
and Hyb1. We use A to construct an algorithm B that can distinguish between
RealΠrFE,A(1λ) and IdealΠrFE,A,S(1λ). Algorithm B works as follows:

1. At the beginning of the game, algorithm B is given the public parameters
rFE.pp. It constructs the other components of the master secret key msk for
the ACE scheme exactly as in Hyb0 and Hyb1.

2. Algorithm B makes a key-generation query for the function FSig.vk,PE.pp and
receives a key rFE.skF . It sets sank = rFE.skF and gives rFE.skF to A.

3. Algorithm B answers the encryption and key-generation queries exactly as in
Hyb0 and Hyb1 (this is possible because these queries only rely on rFE.pp).

4. Whenever A makes a challenge query (m0,m1, i0, i1), algorithm B computes
a signature σ ← Sig.Sign(Sig.sk, i0) and queries its encryption oracle on the
value (i0, σ,m0) to obtain a challenge ciphertext ct. It gives ct to the adver-
sary.

5. At the end of the game, algorithm B outputs whatever A outputs.

First, we note that B makes a single non-adaptive key query, so it is a valid
adversary for the 1-NA-SIM security game. By construction, if the public para-
meters, the key-generation oracle and the encryption oracle are implemented
according to RealΠrFE,A(1λ), then B perfectly simulates Hyb0 for A. We claim
that if the public parameters, the key-generation oracle, and the encryption ora-
cle are implemented according to IdealΠrFE,A,S(1λ), then B perfectly simulates
Hyb1. It suffices to check that the challenge queries are correctly simulated.

– In Hyb1, on a challenge query (m0,m1, i0, i1), the challenger responds by
computing S3(st′, ct′) where ct′ ← PE.Encrypt(PE.pp, i0,m0).

– In the reduction, if the encryption oracle is implemented according to
IdealΠrFE,A,S(1λ), then B’s response ct to a challenge query (m0,m1, i0, i1)
is the output of S3(st′, ct′), where ct′ ← FSig.vk,PE.pp(i0, σ,m0) and
σ ← Sig.Sign(Sig.sk, i0). By perfect correctness of ΠSig and definition of
FSig.vk,PE.pp, the output distribution of FSig.vk,PE.pp(i0, σ,m0) is exactly a fresh
encryption PE.Encrypt(PE.pp, i0,m0).

We conclude that if the oracles are implemented according to IdealΠrFE,A,S(1λ),
then B perfectly simulates Hyb1 for A. The claim then follows by 1-NA-SIM
security of ΠrFE. 
�
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Lemma 3.2 If ΠPE is secure, then for all efficient adversaries A,

|Pr[Hyb1(A) = 1] − Pr[Hyb2(A) = 1]| = negl(λ).

Proof Suppose there exists an adversary A that can distinguish between Hyb1
and Hyb2. We use A to construct an algorithm B that can break the security of
the predicate encryption scheme ΠPE. Algorithm B works as follows:

1. At the beginning of the game, B receives PE.pp from the predicate encryption
challenger. It samples the parameters for the signature scheme as well as the
parameters for the functional encryption scheme as described in Hyb1 and
Hyb2 (in particular, the simulator uses the honest key-generation algorithm to
sample the parameters for ΠSig and uses the simulator S for ΠrFE to construct
the parameters rFE.pp). Algorithm B constructs the sanitizer key sank as
in Hyb1 and Hyb2 (using PE.pp), and gives sank to the adversary. It also
defines msk as in the real scheme, with the exception that it leaves PE.msk
unspecified.

2. During the query phase, B answers the encryption and encryption key-
generation queries exactly as in Hyb1 and Hyb2 (these queries only depend on
quantities known to B). The decryption key-generation and challenge queries
are handled as follows:

– Decryption key-generation oracle: When A queries for a decryp-
tion key for an identity j ∈ I, algorithm B submits the function
fπ,j : I → {0, 1} (where fπ,j(i) = π(i, j)) to the key-generation oracle
for the predicate encryption game, and receives the key PE.skfπ,j

. It gives
PE.skfπ,j

to A.
– Challenge oracle: When A makes its challenge query (m0,m1, i0, i1),

algorithm B submits the pairs (i0,m0), (i1,m1) as its challenge query to
the predicate encryption challenger and receives a ciphertext ct′. It runs
the simulator ct ← S3(st′, ct′) and returns ct to A.

Since A is admissible for the no-read rule security game, π(i0, j) = 0 = π(i1, j)
for all identities j that the adversary submits to the decryption key-generation
oracle. This means that each function fπ,j that B submits to the predicate
encryption challenger satisfies fπ,j(i0) = 0 = fπ,j(i1). Thus, B is admissible
for the predicate encryption security game. By construction, if B is interacting
according to ExptPEΠPE,B(λ, 0), then B perfectly simulates Hyb1 for A, and if B
is interacting according to ExptPEΠPE,B(λ, 1), then B perfectly simulates Hyb2 for
A. Thus, if A is able to distinguish between Hyb1 and Hyb2 with non-negligible
advantage, then B is able to break the security of ΠPE with the same advantage.


�
Lemma 3.3 If ΠSig is perfectly correct, and ΠrFE is 1-NA-SIM-secure, then for
all efficient adversaries A, |Pr[Hyb2(A) = 1] − Pr[Hyb3(A) = 1]| = negl(λ).

Proof Follows by a similar argument as that used in the proof of Lemma3.1. 
�
Combining Lemmas 3.1 through 3.3, we conclude that the ACE scheme in

Construction 3.1 satisfies the no-read rule. 
�
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3.3 Proof of Theorem3.3

Our proof proceeds via a sequence of hybrid experiments between an adversary
A and a challenger.

– Hyb0: This is the ACE security experiment Expt
(Write)
ΠACE,A,π(λ, 0) from Defini-

tion 2.7. The challenger begins by sampling (Sig.vk,Sig.sk) ← Sig.Setup(1λ),
(PE.pp,PE.msk) ← PE.Setup(1λ), and (rFE.pp, rFE.msk) ← rFE.Setup(1λ).
Then, it generates the decryption key rFE.skF ← rFE.KeyGen(rFE.msk,
FSig.vk,PE.pp), and sets sank = rFE.skF and msk = (π,Sig.sk,PE.msk, rFE.pp).
During the query phase, the challenger answers the adversary’s key-generation
and encryption queries exactly as in the real scheme. When the adversary
makes a challenge query on a ciphertext ct∗ and an identity id∗ ∈ I, the
challenger responds with ACE.Sanitize(sank, ct∗).

– Hyb1: Same as Hyb0, except the challenger responds to the adversary’s encryp-
tion queries with independently-generated predicate encryption ciphertexts.
Specifically, for each encryption query on a message m ∈ M and identity i ∈
I, the challenger responds with a fresh encryption PE.Encrypt(PE.pp, i,m).
The rest of the experiment remains unchanged.

– Hyb2: Same as Hyb1, except the challenger constructs the public parame-
ters for the FE scheme, the sanitizer key, and its response to the challenge
query using the simulator S = (S1,S2,S3,S4) for ΠrFE from Definition 2.3.
Specifically, we make the following changes to the challenger:

• Setup: At the beginning of the game, instead of sampling rFE.pp
using rFE.Setup, the challenger instead runs the simulation algorithm
(rFE.pp, st′) ← S1(1λ). For the sanitizer key, the challenger computes
rFE.skF ← S2(st′, FSig.vk,PE.pp). The challenger samples (Sig.vk,Sig.sk) and
(PE.pp,PE.msk) as in the real scheme.

• Challenge query: For the challenge query (ct∗, id∗), the challenger first
invokes the simulator to obtain y∗ ← S4(st′, ct∗). If y∗ 	= ⊥, it parses
y∗ = (i∗, σ∗,m∗), and checks if Sig.Verify(Sig.vk, i∗, σ∗) ?= 1. If so, then
the challenger returns PE.Encrypt(PE.pp, i∗,m∗). In all other cases, the
challenger outputs ⊥.

The rest of the experiment is identical to Hyb1.
– Hyb3: Same as Hyb2, except the challenger aborts during the challenge phase if

after computing y∗ ← S4(st′, ct∗) and parsing y∗ = (i∗, σ∗,m∗), the following
two conditions hold:

• Adversary A did not previously make an encryption key-generation query
for identity i∗.

• Sig.Verify(Sig.vk, i∗, σ∗) = 1.
Otherwise, the challenger proceeds as in Hyb2.

– Hyb4: Same as Hyb3, except the challenger answers the challenge query with
a sanitized encryption of a random message. Specifically, when the challenger
receives a challenge query (ct∗, id∗), it computes y∗ ← S4(st′, ct∗) as usual and
returns ⊥ if y∗ = ⊥. Otherwise, it parses y∗ = (i∗, σ∗,m∗) and checks that
Sig.Verify(Sig.vk, i∗, σ∗) = 1 (outputting ⊥ if not). The challenger also checks
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the abort condition in Hyb3. If all the checks pass, the challenger samples a
message m′ ←R M and returns PE.Encrypt(PE.pp, id∗,m′) to the adversary.
The rest of the experiment is unchanged.

– Hyb5: Same as Hyb4, except we remove the abort condition from the chal-
lenger.

– Hyb6: Same as Hyb5, except the challenger samples the public parameters
for the FE scheme, the sanitizer key, and its response to the challenge query
using the real algorithms ΠrFE rather than the simulator. In particular, when
responding to the challenge query (ct∗, id∗), the challenger responds with
rFE.Decrypt(sank, rFE.Encrypt(rFE.pp, (id∗, σ,m′))) where m′ ←R M and σ is
a signature on id∗ under Sig.vk.

– Hyb7: Same as Hyb6, except the challenger responds to the adversary’s encryp-
tion queries honestly as in the real scheme instead of responding with inde-
pendently generated predicate encryption ciphertexts. This corresponds to
the ACE security experiment Expt

(Write)
ΠACE,A,π(λ, 1) from Definition 2.7.

Lemma 3.4 If ΠSig is perfectly correct and ΠrFE is correct, then for all efficient
adversaries A, we have that |Pr[Hyb0(A) = 1] − Pr[Hyb1(A) = 1]| = negl(λ).

Proof The only difference between Hyb0 and Hyb1 is the way the challenger
responds to the adversary’s encryption queries. First, let sank = rFE.skF ←
rFE.KeyGen(rFE.pp, FSig.vk,PE.pp) be the sanitizer key generated by the chal-
lenger at setup. Suppose the adversary makes Q encryption queries on message-
identity pairs (m1, i1), . . . , (mQ, iQ). In Hyb0, the challenger responds to each
query (mk, ik) by first computing the signature σk ← Sig.Sign(Sig.sk, ik) and
the ciphertext ctk ← rFE.Decrypt(rFE.skF , rFE.Encrypt(rFE.pp, (ik, σk,mk))). By
correctness of ΠrFE, we have that
(
rFE.pp, rFE.skF , {ctk}k∈[Q]

)
c≈
(
rFE.pp, rFE.skF , {FSig.vk,PE.pp(ik, σk, mk; rk)}k∈[Q]

)
,

where rk ←R R. Since σk is a signature on ik, by perfect correctness of ΠSig and
definition of FSig.vk,PE.pp, the output distribution of FSig.vk,PE.pp(ik, σk,mk; rk) is
precisely a fresh encryption PE.Encrypt(PE.pp, ik,mk). This is the distribution
in Hyb1. Note that we include the sanitizer key rFE.skF in the joint distributions
above because it is needed to simulate the response to the adversary’s challenge
query in Hyb0 and Hyb1. 
�
Lemma 3.5 If ΠrFE is 1-NA-SIM-secure, then for all efficient adversaries A,
we have that |Pr[Hyb1(A) = 1] − Pr[Hyb2(A) = 1]| = negl(λ).

Proof Suppose there exists an adversary A that can distinguish between Hyb1
and Hyb2. We use A to construct an algorithm B that can distinguish between
RealΠrFE,A(1λ) and IdealΠrFE,A,S(1λ). Algorithm B works as follows:

1. At the beginning of the game, algorithm B is given the public parameters
rFE.pp. It constructs the other components of the master secret key msk for
the ACE scheme exactly as in Hyb1 and Hyb2.
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2. Algorithm B answers the encryption and key-generation queries exactly as in
Hyb1 and Hyb2. These queries only depend on rFE.pp (and not rFE.msk and
sank, both of which are unspecified).

3. When A makes a challenge query (ct∗, id∗), algorithm B queries its decryption
oracle on the pair (FSig.vk,PE.pp, ct

∗) to obtain a value z∗. It gives z∗ to the
adversary.

4. At the end of the game, algorithm B outputs whatever A outputs.

First, we note that B does not make any key queries or encryption queries, so
it is trivially admissible for the 1-NA-SIM security game. By construction, if
the public parameters, the key-generation oracle, the encryption oracle, and the
decryption oracle are implemented according to RealΠrFE,A(1λ), then B perfectly
simulates Hyb1 for A. In particular, we note that the sanitizer key sank is only
needed when responding to the challenge query, and so, the key sampled by the
decryption oracle in RealΠrFE,A(1λ) plays the role of sank. To conclude the proof,
we show that if the public parameters, the key-generation oracle, the encryption
oracle, and the decryption oracle are implemented according to IdealΠrFE,A,S(1λ),
then B perfectly simulates Hyb2. It suffices to check that the challenge query is
correctly simulated.

– In Hyb2, on a challenge query (ct∗, id∗), the challenger computes y∗ ←
S4(st′, ct∗). If y∗ = ⊥, then the challenger responds with ⊥. Otherwise, it
parses y∗ = (i∗, σ∗,m∗), and checks whether Sig.Verify(Sig.vk, i∗, σ∗) ?= 1
accepts. If so, it returns PE.Encrypt(PE.pp, i∗,m∗; r) where r ←R R. Otherwise,
it returns ⊥. This logic precisely corresponds to evaluating FSig.vk,PE.pp(y∗; r).

– In the reduction, if the decryption oracle is implemented according to
IdealΠrFE,A,S(1λ), then the oracle first computes y∗ ← S4(st′, ct∗). If y∗ = ⊥,
the oracle returns ⊥. Otherwise, it returns FSig.vk,PE.pp(y∗; r) where r ←R R.
This is precisely the behavior in Hyb2.

We conclude that if the oracles are implemented according to IdealΠrFE,A,S(1λ),
then B perfectly simulates Hyb2 for A. The claim then follows by 1-NA-SIM
security of ΠrFE. 
�
Lemma 3.6 If ΠSig is existentially unforgeable, then for all efficient adversaries
A, we have that |Pr[Hyb2(A) = 1] − Pr[Hyb3(A) = 1]| = negl(λ).

Proof Hybrids Hyb2 and Hyb3 are identical except for the extra abort condition
in Hyb3. Suppose there exists an adversary A that can distinguish between Hyb2
and Hyb3 with non-negligible advantage ε. Then, it must be the case that A can
cause Hyb3 to abort with probability at least ε (otherwise, the two experiments
are identical). We use A to construct an algorithm B that breaks the security of
ΠSig. Algorithm B works as follows:

1. At the beginning of the existential unforgeability game, B is given the ver-
ification key Sig.vk. Algorithm B chooses the parameters for the predicate
encryption scheme and the functional encryption scheme as in Hyb2 and Hyb3.
It constructs the sanitizer key sank and msk as in Hyb2 and Hyb3, except it
leaves Sig.sk unspecified in msk.
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2. During the query phase, B answers the encryption queries and the decryp-
tion key-generation queries exactly as in Hyb2 and Hyb3 (since none of these
queries depend on knowledge of Sig.sk). Algorithm B answers the encryption
key-generation and challenge queries as follows:

– Encryption key-generation queries: When A queries for an encryp-
tion key for an identity i ∈ I, algorithm B submits i to its signing oracle
and receives a signature σ. It gives (rFE.pp, i, σ) to A.

– Challenge queries: When A makes its challenge query (ct∗, i∗), algo-
rithm B runs the simulator y∗ ← S4(st′, ct∗). If y∗ = ⊥, then B replies
with ⊥. Otherwise, it parses y∗ = (i∗, σ∗,m∗), and submits (i∗, σ∗) as its
forgery in the existential unforgeability game.

By construction, B perfectly simulates Hyb2 and Hyb3 for A. Thus, with proba-
bility at least ε, algorithm A is able to produce a ciphertext ct∗ that causes Hyb3
to abort. This corresponds to the case where A never makes an encryption key-
generation query for identity i∗, and yet, σ∗ is a valid signature on i∗. Since B
only queries the signing oracle when A makes an encryption key-generation
query, by assumption, B never queries the signing oracle on the message i∗. In
this case, σ∗ is a valid forgery for the signature scheme, and B is able to break
the security of the signature scheme with non-negligible advantage ε. 
�
Lemma 3.7 If ΠPE is secure, then for all efficient adversaries A, we have that
|Pr[Hyb3(A) = 1] − Pr[Hyb4(A) = 1]| = negl(λ).

Proof Suppose there exists an adversary A that can distinguish between Hyb3
and Hyb4. We use A to construct an algorithm B that can break the security of
the predicate encryption scheme ΠPE. Algorithm B works as follows:

1. At the beginning of the game, B receives the public parameters PE.pp from
the predicate encryption challenger. It samples (Sig.vk,Sig.sk), rFE.pp, and
sank exactly as in Hyb3 and Hyb4. It constructs msk exactly as in Hyb3 and
Hyb4, except it leaves PE.msk unspecified.

2. During the query phase, B answers the encryption queries and the encryption
key-generation queries exactly as in Hyb3 and Hyb4 (since they do not depend
on PE.msk). The decryption key-generation queries and the challenge queries
are handled as follows:

– Decryption key-generation oracle: When A queries for a decryp-
tion key for an identity j ∈ I, algorithm B submits the function
fπ,j : I → {0, 1} (where fπ,j(i) = π(i, j)) to the key-generation oracle
for the predicate encryption game, and receives the key PE.skfπ,j

. It gives
PE.skfπ,j

to A.
– Challenge oracle: When A makes its challenge query (ct∗, id∗), algo-

rithm B first computes y∗ ← S4(st′, ct∗). If y∗ = ⊥, algorithm B responds
with ⊥. Otherwise, it parses y∗ = (i∗, σ∗,m∗) and checks the abort con-
dition. If B does not abort, then it samples a message m′ ←R M, and
submits the pairs (i∗,m∗), (id∗,m′) as its challenge query for the predi-
cate encryption security game. The predicate encryption challenger replies
with a challenge ciphertext z which B sends to A.
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First, we argue that B is admissible for the predicate encryption security game.
Since Hyb3 and Hyb4 behave identically if B aborts, it suffices to reason about
the case where the experiment does not abort. We analyze each case individually:

– If y∗ = ⊥ or Sig.Verify(Sig.vk, i∗, σ∗) 	= 1, then the challenger responds with
⊥ in both Hyb3 and Hyb4 (as does B).

– If Sig.Verify(Sig.vk, i∗, σ∗) = 1, then A must have previously queried the
encryption key-generation oracle on identity i∗ (otherwise, the challenger in
Hyb3 and Hyb4 would have aborted). Since A is admissible for the no-write
security game, for all identities j ∈ I that A submits to the decryption key-
generation oracle, it must be the case that π(i∗, j) = 0. Similarly, by admissi-
bility of A, it must have submitted its challenge identity id∗ to the encryption
key-generation oracle prior to making its challenge query. Thus, we also have
that π(id∗, j) = 0. This means that each function fπ,j , that B submits to the
predicate encryption challenger satisfies fπ,j(i∗) = 0 = fπ,j(id∗).

We conclude that B is admissible. Moreover, if B is interacting according to
ExptPEΠPE,B(λ, 0), then B perfectly simulates Hyb3 for A and if B is interacting
according to ExptPEΠPE,B(λ, 1), then B perfectly simulates Hyb4 for A. The lemma
follows. 
�
Lemma 3.8 If ΠSig is existentially unforgeable, then for all efficient adversaries
A, we have that |Pr[Hyb4(A) = 1] − Pr[Hyb5(A) = 1]| = negl(λ).

Proof Follows by a similar argument as that used in the proof of Lemma3.6. 
�
Lemma 3.9 If ΠrFE is 1-NA-SIM-secure, then for all efficient adversaries A,
we have that |Pr[Hyb5(A) = 1] − Pr[Hyb6(A) = 1]| = negl(λ).

Proof Follows by a similar argument as that used in the proof of Lemma3.5. 
�
Lemma 3.10 If ΠSig is perfectly correct and ΠrFE is correct, then for all efficient
adversaries A, |Pr[Hyb6(A) = 1] − Pr[Hyb7(A) = 1]| = negl(λ).

Proof Follows by a similar argument as that used in the proof of Lemma3.4. 
�
Combining Lemmas 3.4 through 3.10, we conclude that the ACE scheme in

Construction 3.1 satisfies the no-write rule. 
�

4 Extensions

In this section, we describe several extensions to access control encryption that
follow immediately from our generic ACE construction in Sect. 3. We present
these extensions primarily as ways of extending the schema of access control
encryption to provide increased flexibility, rather than as conceptually new prop-
erties achieved by our specific construction. Indeed, it is not too difficult to
modify the iO-based ACE construction from Damg̊ard et al. [23] to also provide
these properties.
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4.1 Dynamic Policies

The access control encryption schema in Sect. 2.2 required that the access con-
trol policies be specified at setup time. In this section, we show how to modify
Construction 3.1 so that policies can be associated with individual decryption
keys rather than globally. This means that the access control policy no longer
has to be fixed at the time of system setup, and moreover, different access con-
trol policies can be implemented for each receiver. Thus, the system can support
new policies as new receivers are added to the system, and in addition, receivers
can update their keys (i.e., obtain new keys from the key distributor) when
the access control policies change. Notably, with this extension, changes to the
access control policy do not require updating or re-issuing the sender keys. More
formally, we would make the following two modifications to the schema of ACE
scheme from Sect. 2.2:

– ACE.Setup(1λ) → (sank,msk): On input the security parameter λ, the setup
algorithm outputs the sanitizer key sank and the master secret key msk.
Notably, the setup algorithm does not take the access control policy π as
input.

– ACE.DKGen(msk, j, πj) → dkj,πj
: On input the master secret key msk, the

receiver identity j ∈ I, and an access control policy πj : I → {0, 1} (the
access control policy takes in a sender identity i ∈ I and outputs a bit), the
decryption key-generation algorithm outputs a decryption key dkj,π.

The usual notion of access control encryption from Sect. 2.2 just corresponds to
the special case where the receiver-specific policy πj is simply the global access
control policy π (specialized to the particular receiver identity j). The correctness
and security notions generalize accordingly.

Supporting dynamic policies. It is easy to modify Construction 3.1 to sup-
port dynamic policies according to the above schema. In fact, policy enforcement
in Construction 3.1 is already handled by embedding the access control policy
within the receiver’s decryption keys. Thus, supporting receiver-specific policies
πj : I → {0, 1} in ACE.DKGen can be implemented by simply generating the
decryption key as dkj,πj

← PE.KeyGen(PE.msk, πj). The correctness and secu-
rity analysis remain unchanged.

4.2 Fine-Grained Sender Policies

As noted in Sect. 1.1, it is often desirable to support fine-grained sender policies
that depend not only on the sender’s identity, but also on the contents of the
sender’s message. In this section, we describe how to extend Construction 3.1
to support fine-grained sender policies. We also give a new security definition
(Definition 4.1) to capture the property that a sender should only be able produce
encryptions of messages that conform to its particular policy.

Schema changes. In the context of access control encryption, fine-grained
sender policies can be captured by modifying the schema for the encryption
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key-generation algorithm to additionally take in a sender policy (which can be
represented as a predicate on the message space of the encryption scheme). For-
mally, we write

– ACE.EKGen(msk, i, τ) → eki,τ : On input the master secret key msk, a sender
identity i ∈ I, and a sender policy τ : M → {0, 1}, the encryption key-
generation algorithm outputs an encryption key eki,τ .

To support fine-grained sender policies, we first relax the correctness definition
(Definition 2.4) by requiring that correctness only holds for messages m ∈ M
that satisfy the sender’s encryption policy. The no-read and no-write rules remain
largely unchanged (they are defined with respect to the “always-accept” sender
policy). To capture the property that a sender should only be able to encrypt
messages for which it is authorized, we introduce a new “soundness” requirement
that effectively states that a sender with encryption keys for some collection of
policies τ1, . . . , τQ cannot produce a new ciphertext ct that encrypts a message
m (with respect to some decryption key dk) where τk(m) = 0 for all k ∈ [Q].
More formally, we define the following soundness property:

Definition 4.1 (Soundness). Let ΠACE = (ACE.Setup,ACE.EKGen,
ACE.DKGen,ACE.Encrypt,ACE.Sanitize,ACE.Decrypt) be an ACE scheme over
an identity space I and a message space M. Let A be an efficient adversary
and π : I × I → {0, 1} be an access control policy. For a security parameter λ,
we define the soundness experiment Expt

(Sound)
ΠACE,A,π(λ) as follows. The challenger

begins by sampling (sank,msk) ← ACE.Setup(1λ, π). The adversary A is then
given access to the following oracles:

– Encryption oracle. On input a message m ∈ M, and a sender identity
i ∈ I, the challenger first generates a sender key eki ← ACE.EKGen(msk, i, τ),
where τ(m) = 1 for all m ∈ M. The challenger responds with the ciphertext
ct ← ACE.Sanitize(sank,ACE.Encrypt(eki,m)).

– Encryption key-generation oracle. On input a sender identity i ∈ I and
a sender policy τ : M → {0, 1}, the challenger responds with an encryption
key eki,τ ← ACE.EKGen(msk, i, τ).

– Decryption key-generation oracle. On input a receiver identity j ∈ I,
the challenger responds with a decryption key dkj ← ACE.DKGen(msk, j).

At the end of the experiment, adversary A outputs a ciphertext ct∗ ∈ {0, 1}∗,
and a receiver identity j∗ ∈ I. The output of the experiment is 1 if and only if
the following conditions hold:

– ACE.Decrypt(ACE.DKGen(msk, j∗),ACE.Sanitize(sank, ct∗)) = m∗ for some
m∗ ∈ M.

– Let {(ik, τk)}k∈[Q] be the queries A makes to the sender key-generation oracle.
For all k ∈ [Q] where π(ik, j∗) = 1, τk(m∗) = 0, where m∗ is the decrypted
message defined above.
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We say that ΠACE is sound if for all policies π : I × I → {0, 1}, and all efficient
adversaries A,

Pr
[
Expt

(Sound)
ΠACE,A,π(λ) = 1

]
= negl(λ).

Supporting sender policies. It is straightforward to extend Construction 3.1
to support arbitrary sender policies with little additional overhead. Concretely,
we make the following changes to Construction 3.1:

– Instead of a signature on the identity i, the encryption key for an identity
i ∈ I and sender policy τ : M → {0, 1} contains a signature on the tuple
(i, τ), as well as a description of the policy. Namely, eki = (rFE.pp, i, τ, σ)
where σ ← Sig.Sign(Sig.sk, (i, τ)).

– An encryption of a message m ∈ M under the encryption key eki =
(rFE.pp, i, τ, σ) is an encryption of the tuple (i, τ, σ,m) using ΠrFE.

– The (randomized) sanitizer function FSig.vk,PE.pp now takes as input the tuple
(i, τ, σ,m) and outputs PE.Encrypt(PE.pp, i,m) if Sig.Verify(Sig.vk, (i, τ), σ) =
1 and τ(m) = 1. Otherwise, FSig.vk,PE.pp outputs ⊥. The sanitizer key sank is
then a decryption key rFE.skF for the modified sanitizer function: rFE.skF ←
rFE.KeyGen(msk, FSig.vk,PE.pp).

At a high level, the sanitizer key implicitly checks that a sender’s message is com-
pliant with the associated policy, and outputs a ciphertext that can be decrypted
only if this is the case. Here, the signature is essential in ensuring that the sender
is only able to send messages that comply with one of its sending policies. In
particular, we show the following theorem. We give the proof in the full version
of this paper [38].

Theorem 4.1 Suppose ΠSig is existentially unforgeable and ΠrFE is a 1-NA-
SIM-secure functional encryption scheme for randomized functionalities (Defini-
tion 2.3). Then the access control encryption scheme from Construction 3.1 with
the above modifications satisfies soundness (Definition 4.1).

Relation to constrained PRFs and constrained signatures. This notion
of constraining the encryption key to only produce valid encryptions on messages
that satisfy the predicate is very similar to the concept of constrained pseudo-
random functions (PRF) [18,19,37] and constrained signatures [10,19,41]. Con-
strained PRFs (resp., constrained signatures) allow the holder of the secret key
to issue a constrained key for a predicate that only allows PRF evaluation on
inputs (resp., signing messages) that satisfy the predicate. When extending ACE
to support fine-grained sender policies, the encryption key-generation algorithm
can be viewed as giving out a constrained version of the corresponding sender
key. Our technique for constraining the encryption key by including a signature
of the predicate and having the encrypter “prove possession” of the signature
is conceptually similar to the technique used in [19] to construct functional sig-
natures and in [10] to construct policy-based signatures. In [10,19], this proof
of possession is implemented by having the user provide a non-interactive zero-
knowledge proof of knowledge of the signature, while in our setting, it is handled
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by having the user encrypt the signature under an FE scheme and giving out an
FE key (to the sanitizer) that performs the signature verification.

Acknowledgments. We thank Shashank Agrawal and the anonymous reviewers for
helpful comments. This work was funded by NSF, DARPA, a grant from ONR, and the
Simons Foundation. Opinions, findings and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect the views of
DARPA.

References

1. Agrawal, S., Wu, D.J.: Functional encryption: deterministic to randomized func-
tions from simple assumptions. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017. LNCS, vol. 10211, pp. 30–61. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-56614-6 2

2. Alwen, J., Barbosa, M., Farshim, P., Gennaro, R., Gordon, S.D., Tessaro, S., Wil-
son, D.A.: On the relationship between functional encryption, obfuscation, and
fully homomorphic encryption. In: Cryptography and Coding (2013)

3. Ateniese, G., Chou, D.H., Medeiros, B., Tsudik, G.: Sanitizable signatures.
In: Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS 2005. LNCS,
vol. 3679, pp. 159–177. Springer, Heidelberg (2005). https://doi.org/10.1007/
11555827 10

4. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. In: NDSS (2005)

5. Badertscher, C., Matt, C., Maurer, U.: Strengthening access control encryption
(2017)

6. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang,
K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO
2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44647-8 1

7. Bell, D.E., LaPadula, L.J.: Secure computer systems: mathematical foundations.
Technical report, DTIC Document (1973)

8. Bellare, M., Cash, D.: Pseudorandom functions and permutations provably
secure against related-key attacks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 666–684. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-14623-7 36

9. Bellare, M., Cash, D., Miller, R.: Cryptography secure against related-key attacks
and tampering. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS,
vol. 7073, pp. 486–503. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-25385-0 26

10. Bellare, M., Fuchsbauer, G.: Policy-based signatures. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 520–537. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54631-0 30

11. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-
PRPs, RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003.
LNCS, vol. 2656, pp. 491–506. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-39200-9 31

12. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE S&P (2007)

https://doi.org/10.1007/978-3-319-56614-6_2
https://doi.org/10.1007/978-3-319-56614-6_2
https://doi.org/10.1007/11555827_10
https://doi.org/10.1007/11555827_10
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-642-14623-7_36
https://doi.org/10.1007/978-3-642-14623-7_36
https://doi.org/10.1007/978-3-642-25385-0_26
https://doi.org/10.1007/978-3-642-25385-0_26
https://doi.org/10.1007/978-3-642-54631-0_30
https://doi.org/10.1007/978-3-642-54631-0_30
https://doi.org/10.1007/3-540-39200-9_31
https://doi.org/10.1007/3-540-39200-9_31


Access Control Encryption for General Policies from Standard Assumptions 499

13. Biham, E.: New types of cryptanalytic attacks using related keys. In: Helleseth,
T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 398–409. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-48285-7 34

14. Boneh, D.: The decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) ANTS 1998.
LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0054851

15. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 13

16. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

17. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-70936-7 29

18. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 280–
300. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0 15

19. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0 29

20. Brzuska, C., Fischlin, M., Freudenreich, T., Lehmann, A., Page, M., Schelbert, J.,
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Abstract. Access control encryption (ACE) was proposed by Damg̊ard
et al. to enable the control of information flow between several par-
ties according to a given policy specifying which parties are, or are not,
allowed to communicate. By involving a special party, called the sani-
tizer, policy-compliant communication is enabled while policy-violating
communication is prevented, even if sender and receiver are dishon-
est. To allow outsourcing of the sanitizer, the secrecy of the message
contents and the anonymity of the involved communication partners is
guaranteed.

This paper shows that in order to be resilient against realistic attacks,
the security definition of ACE must be considerably strengthened in sev-
eral ways. A new, substantially stronger security definition is proposed,
and an ACE scheme is constructed which provably satisfies the strong
definition under standard assumptions.

Three aspects in which the security of ACE is strengthened are as
follows. First, CCA security (rather than only CPA security) is guaran-
teed, which is important since senders can be dishonest in the considered
setting. Second, the revealing of an (unsanitized) ciphertext (e.g., by a
faulty sanitizer) cannot be exploited to communicate more in a policy-
violating manner than the information contained in the ciphertext. We
illustrate that this is not only a definitional subtlety by showing how in
known ACE schemes, a single leaked unsanitized ciphertext allows for an
arbitrary amount of policy-violating communication. Third, it is enforced
that parties specified to receive a message according to the policy cannot
be excluded from receiving it, even by a dishonest sender.

Keywords: Access control encryption · Information flow control ·
Chosen-ciphertext attacks

1 Introduction

1.1 Access Control Encryption—Model and Security Requirements

The concept of access control encryption (ACE) was proposed by Damg̊ard
et al. [6] in order to enforce information flow using cryptographic tools rather
than a standard access control mechanism (e.g., a reference monitor) within an

The full version of this paper is available at https://eprint.iacr.org/2017/429.
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information system. If the encryption scheme provides certain operations (e.g.,
ciphertext sanitization) and satisfies an adequate security definition, then the
reference monitor can be outsourced, as a component called the sanitizer, to
an only partially trusted service provider. The goal of ACE is that the sani-
tizer learns nothing not intrinsically necessary. Security must also be guaranteed
against dishonest users, whether senders or receivers of information, and against
certain types of sanitizer misbehavior.

The information flow problem addressed by ACE is defined in a context with
a set R of roles corresponding, for example, to different security clearances.
Each user in a system can be assigned several roles. For example the users are
employees of a company collaborating on a sensitive project, and they need to
collaborate and exchange information by sending messages. Since the informa-
tion is sensitive, which information a party can see must be restricted (hence
the term access control), even if some parties are dishonest. In the most general
form, the specification of which role may send to which other role corresponds to
a relation (a subset of R×R) or, equivalently, to a predicate P : R×R → {0, 1},
where s ∈ R is allowed to communicate to r ∈ R if and only if P (s, r) = 1. The
predicate P is called the (security) policy. Typical examples of such policies arise
from the Bell-LaPadula [2] model where roles are (partially) ordered, and the
so-called “no-write-down” rule specifies that it is forbidden for a user to send
information to another user with a lower role. Note that for this specific example,
the relation is transitive, but ACE also allows to capture non-transitive security
policies.

ACE was designed to work in the following setting. Users can communi-
cate anonymously with a sanitizer. If a user wants to send a message, it is
encrypted under a key corresponding to the sender’s role. Then the ciphertext is
sent (anonymously) to the sanitizer who applies a certain sanitization operation
and writes the sanitized ciphertext on a publicly readable bulletin board provid-
ing anonymous read-access to the users (receivers). Users who are supposed to
receive the message according to the policy (and only those users) can decrypt
the sanitized ciphertext.

To ensure security in the described setting, the ACE scheme must at least
provide the following guarantees:

1. The encryption must assure privacy and anonymity against dishonest
receivers as well as the sanitizer, i.e., neither the sanitizer nor dishonest
receivers without access allowed by the policy should be able to obtain infor-
mation about messages or the sender’s role.

2. A dishonest sender must be unable to communicate with a (potentially dis-
honest) receiver, unless this is allowed according to the policy. In other words,
the system must not provide covert channels allowing for policy-violating
communication.

As usual in a context with dishonest senders, the first goal requires secu-
rity against chosen-ciphertext attacks (CCA) because dishonest users can send
a ciphertext for which they do not know the contained message and by observing
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the effects the received message has on the environment, potentially obtain infor-
mation about the message. This corresponds to the availability of a decryption
oracle, as in the CCA-security definition.

Note that the second goal is only achievable if users cannot directly write to
the repository or communicate by other means bypassing the sanitizer, and if
the sanitizer is not actively dishonest because a dishonest sanitizer can directly
write any information received from a dishonest sender to the repository. The
assumption that a user cannot bypass the sanitizer and communicate to another
party outside of the system can for example be justified by assuming that users,
even if dishonest, want to avoid being caught communicating illegitimately, or if
only a user’s system (not the user) is corrupted, and the system can technically
only send message to the sanitizer.

Since the sanitizer is not fully trusted in our setting, one should consider the
possibility that an unsanitized ciphertext is leaked (intentionally or unintention-
ally) to a dishonest party. This scenario can be called (unsanitized) ciphertext-
revealing attack. Obviously, all information contained in this ciphertext gets
leaked to that party. While this cannot be avoided, such an attack should not
enable dishonest parties to violate the security requirements beyond that.

We point out that previously proposed encryption techniques (before ACE),
such as attribute-based encryption [11,17] and functional encryption [4], enable
the design of schemes where a sender can encrypt messages such that only des-
ignated receivers (who possess the required key) can read the message. This
captures the access control aspects of read permissions, but it does not allow
to capture the control of write/send permissions. In other words, such schemes
only achieve the first goal listed above, not the second one.

1.2 Contributions of this Paper

While the proposal of the ACE-concept and of efficient ACE-schemes were
important first steps toward outsourcing access control, the existing security
definition turns out to be insufficient for several realistic attack scenarios. The
main contributions of this paper consist of uncovering issues with existing defi-
nitions and schemes, fixing these issues by proposing stronger security notions,
and constructing a scheme satisfying our stronger notions.

Issues with existing definitions and schemes. As argued above, chosen-
ciphertext attacks should be considered since the use case for ACE includes
dishonest senders. Existing definitions, however, do not take this into account,
i.e., the adversary does not have access to a decryption oracle in the security
games.

Furthermore, existing notions do not consider ciphertext-revealing attacks.
Technically speaking, the security game that is supposed to prevent dishonest
senders from transmitting information to dishonest receivers (called no-write
game), gives the adversary only access to an encryption oracle that sanitizes
ciphertexts before returning them. This means that the adversary has no access
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to unsanitized ciphertexts. This is not only a definitional subtlety, but can com-
pletely break down any security guarantees. We demonstrate that existing ACE
schemes allow the following attack: Assume there are three users A, M , and E
in the system, where A is honest and by the policy allowed to send informa-
tion to E, and M and E are dishonest and not allowed to communicate. If A
sends an (innocent) message to E and the corresponding unsanitized ciphertext
is leaked to M , malleability of the ciphertext can be exploited by M to subse-
quently communicate an arbitrary number of arbitrary messages chosen by M
to E. Note that while this attack crucially exploits malleability of ciphertexts,
it is not excluded by CCA security for two reasons: first, CCA security does not
prevent an adversary from producing valid ciphertexts for unrelated messages,
and second, the integrity should still hold if the adversary has the decryption
key (but not the encryption key).

Finally, existing security definitions focus on preventing dishonest parties
from communicating if disallowed by the policy, but they do not enforce infor-
mation flow. For example, if user A only has a role such that according to the
policy, users B and C can read what A sends, existing schemes do not prevent A
from sending a message that can be read by B but not by C, or sending a mes-
sage such that B and C receive different messages. This is not as problematic as
the two issues above, and one can argue that A could anyway achieve something
similar by additionally encrypting the message with another encryption scheme.
Nevertheless, for some use cases, actually precisely enforcing the policy can be
required (consider, e.g., a logging system), and one might intuitively expect that
ACE schemes achieve this.

New security definitions. We propose new, stronger security definitions for
ACE that exclude all issues mentioned above. First, we give the adversary access
to a decryption oracle. More precisely, the oracle first sanitizes the given cipher-
text and then decrypts it, since this is what happens in the application if a
dishonest party sends a ciphertext to the sanitizer. Second, we incorporate
ciphertext-revealing attacks by giving the adversary access to an encryption
oracle that returns unsanitized ciphertexts for arbitrary roles. Finally, we intro-
duce a new security game in which an adversary can obtain encryption keys and
decryption keys from an oracle and has to output a ciphertext such that one of
the following events occur: either the set of roles that can successfully decrypt
the ciphertext (to an arbitrary message) is inconsistent with the policy for all
sender roles for which the adversary has an encryption key (in this case, we
say the adversary is not role-respecting); or the ciphertext can be successfully
decrypted with two keys such that two different messages are obtained (in this
case, we say the uniform-decryption property is violated).

Construction of an ACE scheme for our stronger notions. Our con-
struction proceeds in three steps and follows the general structure of the generic
construction by Fuchsbauer et al. [9]. Since we require much stronger security
notions in all three steps, our constructions and proofs are consequently more
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involved than existing ones. First, we construct a scheme for a primitive we call
enhanced sanitizable public-key encryption (sPKE). Second, we use an sPKE
scheme to construct an ACE scheme satisfying our strong security notion for
the equality policy, i.e., for the policy that allows s to send to r if and only
if r = s. Third, we show how to lift an ACE scheme for the equality policy
to an ACE scheme for the disjunction of equalities policy. This policy encodes
roles as vectors x = (x1, . . . , x�) and allows role x to send to role y if and
only if x1 = y1 ∨ . . . ∨ x� = y�. As shown by Fuchsbauer et al. [9], useful policies
including the inequality predicate corresponding to the Bell-LaPadula model can
efficiently be implemented using this policy by encoding the roles appropriately.

Enhanced sanitizable PKE. An sPKE scheme resembles publicy-key encryp-
tion with an additional setup algorithm that outputs sanitizer parameters and a
master secret key. The master secret key is needed to generate a public/private
key pair and the sanitizer parameters can be used to sanitize a ciphertext.
A sanitized ciphertext cannot be linked to the original ciphertext without the
decryption key. We require the scheme to be CCA secure (with respect to a
sanitize-then-decrypt oracle) and anonymous. Sanitization resembles rerandom-
ization [12,15], also called universal re-encryption [10], but we allow sanitized
ciphertexts to be syntactically different from unsanitized ciphertexts. This allows
us to achieve full CCA security, which is needed for our ACE construction and
unachievable for rerandomizable encryption.

Our scheme is based on ElGamal encryption [7], which can easily be reran-
domized and is anonymous. We obtain CCA security using the technique of Naor
and Yung [14], i.e., encrypting the message under two independent keys and prov-
ing in zero-knowledge that the ciphertexts are encryptions of the same message,
which was shown by Sahai to achieve full CCA security if the zero-knowledge
proof is simulation-sound [16]. A technical issue is that if the verification of the
NIZK proof was done by the decrypt algorithm, the sanitization would also need
to sanitize the proof. Instead, we let the sanitizer perform the verification. Since
we want to preserve anonymity, this needs to be done without knowing under
which public keys the message was encrypted. Therefore, the public keys are
part of the witness in the NIZK proof. Now the adversary could encrypt the
same message under two different public keys that were not produced together
by the key-generation, which would break the reduction. To prevent this, the
pair of public keys output by the key-generation is signed using a signature key
that is contained in the master secret key and the corresponding verification key
is contained in the sanitizer parameters.

ACE for equality. The basic idea of our ACE scheme for the equality policy
is to use for each role, encryption and decryption keys of an sPKE scheme as
the encryption and decryption keys of the ACE scheme, respectively. Since we
need to prevent dishonest senders without an encryption key for some role from
producing valid ciphertexts for that role even after seeing encryptions of other
messages for this role and obtaining encryption keys for other roles, we add a
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signature key to the encryption key, sign this pair using a separate signing key,
where the corresponding verification key is part of the sanitizer parameters, and
let senders sign their ciphertexts. To preserve anonymity, this signature cannot
be part of the ciphertext. Instead, senders prove in zero-knowledge that they
know such a signature and that the encryption was performed properly.

ACE for disjunction of equalities. The first step of our lifting is identical
to the lifting described by Fuchsbauer et al. [9]: for each component of the role-
vector, the encryption and decryption keys contain corresponding keys of an ACE
scheme for the equality policy. To encrypt a message, this message is encrypted
under each of the key-components. In a second step, we enforce role-respecting
security with the same trick we used in our ACE scheme for equality; that is,
we sign encryption key-vectors together with a signing key for that role, and
senders prove in zero-knowledge that they have used a valid key combination to
encrypt and that they know a signature of the ciphertext vector.

1.3 Related Work

The concept of access control encryption has been introduced by Damg̊ard
et al. [6]. They provided the original security definitions and first schemes. Sub-
sequent work by Fuchsbauer et al. [9], by Tan et al. [18], and by Kim and Wu [13]
focused on new schemes that are more efficient, based on different assumptions,
or support more fine grained access control policies. In contrast to our work,
they did not attempt to strengthen the security guarantees provided by ACE.

2 Preliminaries

2.1 Notation

We write x ← y for assigning the value y to the variable x. For a finite set X,
x � X denotes assigning to x a uniformly random value in X. For n ∈ N, we
use the convention

[n] := {1, . . . , n}.

By Zn we denote the ring of integers modulo n, and by Z∗
n its multiplicative

group of units. The probability of an event A in an experiment E is denoted by
PrE [A], e.g., Prx�{0,1}[x = 0] = 1

2 . If the experiment is clear from the context,
we omit the superscript. The conditional probability of A given B is denoted
by Pr[A | B] and the complement of A is denoted by ¬A. For a probabilistic
algorithm A and r ∈ {0, 1}∗, we denote by A(x; r) the execution of A on input
x with randomness r. For algorithms A and O, AO(·)(x) denotes the execution
of A on input x, where A has oracle access to O.
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2.2 Security Definitions, Advantages, Efficiency, and Negligibility

We define the security of a scheme via a random experiment (or game) involving
an adversary algorithm A. For a given scheme E and adversary A, we define
the advantage of A, which is a function of the security parameter κ. To simplify
the notation, we omit the security parameter when writing the advantage, e.g.,
we write AdvSig-EUF-CMA

E,A instead of AdvSig-EUF-CMA
E,A (κ) for the advantage of A in

the existential unforgeability game for the signature scheme E . Such a scheme is
considered secure if AdvSig-EUF-CMA

E,A is negligible for all efficient A. An algorithm A
is efficient if it runs in probabilistic polynomial time (PPT), i.e., A has access
to random bits and there is a polynomial p such that A(x) terminates after at
most p(|x|) steps (on some computational model, e.g., Turing machines) for all
inputs x, where |x| denotes the bit-length of x. A function f is negligible if for
every polynomial p, there exists n0 ∈ N such that f(n) < 1/p(n) for all n ≥ n0.
While these asymptotic definitions yield concise statements, we will in all proofs
derive precise bounds on the advantages, following a concrete security approach.

2.3 Access Control Encryption

We recall the definition of access control encryption by Damg̊ard et al. [6]. Fol-
lowing Fuchsbauer et al. [9], we do not have sanitizer keys and require Gen to
be deterministic. The set of roles is assumed to be R = [n].

Definition 1. An access control encryption (ACE) scheme E consists of the
following five PPT algorithms:

Setup: The algorithm Setup on input a security parameter 1κ and a policy
P : [n]× [n] → {0, 1}, outputs a master secret key msk and sanitizer parame-
ters sp. We implicitly assume that all keys include the finite message space M
and the ciphertext spaces C, C′.

Key generation: The algorithm Gen is deterministic and on input a master
secret key msk, a role i ∈ [n], and the type sen, outputs an encryption key ek i;
on input msk, j ∈ [n], and the type rec, outputs a decryption key dk j.

Encryption: The algorithm Enc on input an encryption key ek i and a mes-
sage m ∈ M, outputs a ciphertext c ∈ C.

Sanitization: The algorithm San on input sanitizer parameters sp and a cipher-
text c ∈ C, outputs a sanitized ciphertext c′ ∈ C′ ∪ {⊥}.

Decryption: The algorithm Dec on input a decryption key dk j and a sanitized
ciphertext c′ ∈ C′, outputs a message m ∈ M ∪ {⊥}; on input dk j and ⊥, it
outputs ⊥.

For a probabilistic algorithm A, consider the experiment ExpACE-CORR
E,A that

given a security parameter 1κ and a policy P , executes (sp,msk) ←
Setup(1κ, P ), (m, i, j) ← AGen(msk ,·,·)(sp), ek i ← Gen(msk , i, sen), and dk j ←
Gen(msk , j, rec). We define the correctness advantage of A (for security para-
meter κ and policy P ) as

AdvACE-CORR
E,A := Pr

[
P (i, j) = 1 ∧ Dec

(
dk j ,San(sp,Enc(ek i,m))

) 
= m
]
,
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where the probability is over the randomness in ExpACE-CORR
E,A and the random

coins of Enc, San, and Dec. The scheme E is called correct if AdvACE-CORR
E,A is

negligible for all efficient A, and perfectly correct if AdvACE-CORR
E,A = 0 for all A.

Remark 1. Correctness of an encryption scheme is typically not defined via a
game with an adversary, but by requiring that decryption of an encryption of
m yields m with probability 1. This perfect correctness requirement is difficult
to achieve for ACE schemes and not necessary for applications because it is
sufficient if a decryption error only occurs with negligible probability in any
execution of the scheme. Damg̊ard et al. [6] define correctness by requiring that
for all m, i, and j with P (i, j) = 1, the probability that a decryption fails is
negligible, where the probability is over setup, key generation, encrypt, sanitize,
and decrypt. While this definition is simpler than ours, it does not guarantee that
decryption errors only occur with negligible probability in any execution of the
scheme. For example, a scheme could on setup choose a random message m and
embed it into all keys such that decryption always fails for encryptions of this
particular message. This does not violate the definition by Damg̊ard et al. since
for any fixed message, the probability that this message is sampled during setup
is negligible (if the message space is large). Nevertheless, an adversary can always
provoke a decryption error by sending that particular message m, which is not
desirable. The above example might at first sight seem somewhat artificial, and
typically, schemes do not have such a structure. However, capturing correctness
via an experiment is important when thinking of composition, since we expect
that the correctness guarantee still holds when the ACE scheme is run as part
of a larger system. In order to meet this expectation, and to exclude the above
issue, we formalize correctness via an experiment.

Additionally, Fuchsbauer et al. have defined detectability, which guarantees
that decrypting with a wrong key yields ⊥ with high probability [9]. This allows
receivers to detect whether a message was sent to them. As for correctness, we
define it via an experiment. The notion is related to robustness for public-key
encryption [1]. We additionally define strong detectability, in which the random-
ness for the encryption is adversarially chosen.

Definition 2. Let E = (Setup,Gen,Enc,San,Dec) be an ACE scheme and let A
be a probabilistic algorithm. Consider the experiment ExpACE-DTCT

E,A that given a
security parameter 1κ and a policy P , executes (sp) ← Setup(1κ, P ), (m, i, j) ←
AGen(msk ,·,·)(sp,msk), ek i ← Gen(msk , i, sen), and dk j ← Gen(msk , j, rec). We
define the detectability advantage of A as

AdvACE-DTCT
E,A := Pr

[
P (i, j) = 0 ∧ Dec

(
dk j ,San(sp,Enc(ek i,m))

) 
= ⊥]
,

where the probability is over the randomness in ExpACE-DTCT
E,A and the random

coins of Enc, San, and Dec. The scheme E is called detectable if AdvACE-DTCT
E,A

is negligible for all efficient A. The experiment ExpACE-sDTCT
E,A is identical to
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ExpACE-DTCT
E,A except that A returns (m, r, i, j). The strong detectability advan-

tage of A is defined as

AdvACE-sDTCT
E,A := Pr

[
P (i, j) = 0 ∧ Dec

(
dk j ,San(sp,Enc(ek i,m; r))

) 
= ⊥]
,

where the probability is over the randomness in ExpACE-sDTCT
E,A and the random

coins of San and Dec. The scheme E is called strongly detectable if AdvACE-sDTCT
E,A

is negligible for all efficient A.

2.4 Existing Security Definitions

Existing notions for ACE specify two core properties: the so-called no-read
rule and the no-write rule. The no-read rule formalizes privacy and anonymity:
roughly, an honestly generated ciphertext should not leak anything about the
message, except possibly its length, or about the role of the sender. The security
game allows an adversary to interact with a key-generation oracle (to obtain
encryption and decryption keys for selected roles), and an encryption oracle to
obtain encryptions of chosen messages for roles for which the adversary does
not possess the encryption key. This attack model reflects that an adversary
cannot obtain useful information by observing the ciphertexts that are sent to
the sanitizer. To exclude trivial attacks, it is not considered a privacy breach
if the adversary knows a decryption key that allows to decrypt the challenge
ciphertext according to the policy. Similarly, it is not considered an anonymity
breach if the encrypted messages are different. We next state the definition of
the no-read rule.1

Definition 3. Let E = (Setup,Gen,Enc,San,Dec) be an ACE scheme and let
A = (A1,A2) be a pair of probabilistic algorithms. Consider the experiment
ExpACE-no-readE,A in Fig. 1 and let J be the set of all j such that A1 or A2 issued
the query (j, rec) to the oracle OG. The payload-privacy advantage and the
sender-anonymity advantage of A are defined as

AdvACE-no-read,priv
E,A := 2 · Pr

[
b′ = b ∧ |m0| = |m1|

∧ ∀j ∈ J P (i0, j) = P (i1, j) = 0
] − 1,

AdvACE-no-read,anon
E,A := 2 · Pr

[
b′ = b ∧ m0 = m1

∧ ∀j ∈ J P (i0, j) = P (i1, j)
] − 1,

respectively, where the probabilities are over the randomness of all algorithms
in ExpACE-no-readE,A . The scheme E satisfies the payload-privacy no-read rule and
the sender-anonymity no-read rule if AdvACE-no-read,priv

E,A and AdvACE-no-read,anon
E,A are

negligible for all efficient A, respectively. If it satisfies both, it is said to satisfy
the no-read rule.

1 For anonymity, we adopt here the definition of [6], which is stronger than the one
used by Fuchsbauer et al. [9] since there, anonymity is not guaranteed against parties
who can decrypt.
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Fig. 1. The no-read and no-write experiments for an ACE scheme E and an adver-
sary A = (A1,A2). The oracles are defined as OG(·, ·) := Gen(msk , ·, ·), OE(·, ·) :=
Enc(Gen(msk , ·, sen), ·), and OES(·, ·) := San(sp,Enc(Gen(msk , ·, sen), ·)).

The no-write rule of ACE is the core property to capture access control. In a
nutshell, if the adversary only possesses encryption keys for roles i and decryption
keys for roles j with P (i, j) = 0, then he should not be able to create a ciphertext
from which, after being sanitized, he can retrieve any information. Technically, in
the corresponding security game, the adversary is given a key-generation oracle
as above, and in addition an oracle to obtain sanitized ciphertexts for selected
messages and roles. This attack model corresponds to a setting where an adver-
sary only sees the outputs of a sanitizer, but not its inputs, and in particular
no unsanitized ciphertexts generated for roles for which he does not possess the
encryption key. The adversary wins if he manages to distinguish the sanitized
version of a ciphertext of his choice from a sanitized version of a freshly gener-
ated encryption of a random message, and if he does not obtain the encryption
key for any role i and the decryption key of any role j for which P (i, j) = 1, as
this would trivially allow him to distinguish.

Definition 4. Let E = (Setup,Gen,Enc,San,Dec) be an ACE scheme and let
A = (A1,A2) be a pair of probabilistic algorithms. Consider the experiment
ExpACE-no-writeE,A in Fig. 1, let I1 be the set of all i such that A1 issued the query
(i, sen) to OG, and let J be the set of all j such that A1 or A2 issued the query
(j, rec) to OG. We define the no-write advantage of A as

AdvACE-no-writeE,A := 2 · Pr
[
b′ = b ∧ i′ ∈ I1 ∧ ∀i ∈ I1 ∀j ∈ J P (i, j) = 0

∧ San(sp, c0) 
= ⊥] − 1,

where the probability is over the randomness of all algorithms in ExpACE-no-writeE,A .
The scheme E satisfies the no-write rule if AdvACE-no-writeE,A is negligible for all
efficient A.

Remark 2. Our definition follows the one by Fuchsbauer et al. [9] by requiring
San(sp, c0) 
= ⊥ in the winning condition for the no-write rule, which was not
required in the original definition by Damg̊ard et al. [6]. Schemes can be made
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secure with respect to the original definition by letting the algorithm San create
a fresh ciphertext for a random message when given an invalid ciphertext.

The condition i′ ∈ I1 together with ∀i ∈ I1 ∀j ∈ J P (i, j) = 0 ensures that
A does not have a key to decrypt c1, which would trivially allow to distinguish.
Requiring that A obtains a key for i′ however excludes adversaries that obtain
no key at all. The original definitions [6] therefore include a special role 0 with
P (0, j) = 0 for all j. One can then assume without loss of generality that anyone
obtains a key for this role. Since assuming the existence of such a role appears
to be a technicality that is only needed for the no-write rule, we do not make
this assumption and present new security definitions in Sect. 4.2 that do not rely
on such a role.

3 Ciphertext-Revealing Attacks Against Existing
Schemes

3.1 Generic Description of Attack

We describe a fundamental practical issue of schemes which meet the above
no-read and no-write definitions and show why the guarantees expected from
an ACE scheme need to be strengthened. We show that schemes fulfilling the
definition can suffer from what we call a malleability attack, which effectively
bypasses the given policy and allows communication that is forbidden by the
policy. The attack does not abuse any peculiarities of existing models and in fact
only requires that the semi-honest sanitizer shares its inputs and outputs with
colluding parties, which is arguably possible when the sanitizer is outsourced. In
particular, security against such a sanitizer is desirable from a practical point of
view.

We first give a high-level explanation of the attack, formalize it as a second
step, and finally show that the “linear” scheme by Damg̊ard et al. [6] based on
ElGamal is vulnerable. In the full version, we also show this for the ElGamal-
based scheme by Fuchsbauer et al. [9].

Assume there are three parties, Alice, Bob, and Charlie, each having a differ-
ent role assigned. We denote by A, B, and C the associated roles. In our example,
Alice and Charlie are always honest. Alice is allowed to communicate with Bob
and Charlie. Bob is dishonest and forbidden to send messages to Charlie (and
to Alice). The attack now proceeds as follows: When Alice sends her first mes-
sage, Bob requests the corresponding ciphertext and the sanitized ciphertext
from the semi-honest sanitizer. He then decrypts the sanitized ciphertext and
thus receives the message Alice has sent. With the knowledge of this message, as
we show below, he is able to create a valid ciphertext for a chosen message m′,
which will be correctly sanitized and later decrypted by Charlie, hence allowing
unrestricted communication from Bob to Charlie. Details follow.

Consider the policy defined by

P (i, j) :=

{
1, i = A,

0, otherwise.
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For the sake of presentation, we assume that the ACE scheme E under con-
sideration enjoys perfect correctness. Also, we assume that the setup-phase has
completed and the three parties thus possess the encryption and decryption
keys, ek i and dk i, respectively. Now, imagine that the ACE scheme admits an
efficient function maulE with the following property (later we show how to imple-
ment such a function for some existing schemes): For all messages m and m′,
any role i, and sanitizer parameters sp in the range of Setup, and for any fixed
randomness r,

maulE
(
Enc(ek i,m; r), sp,m,m′)

)
= Enc(ek i,m

′; r). (1)

If such a malleability function exists, the communication policy can be bypassed
as follows:

1. Alice encrypts a message c ← Enc(ekA,m) and the sanitizer computes c′ ←
San(sp, c) and gives c and c′ to Bob.

2. Bob computes m ← Dec(dkB, c′) and ĉ ← maulE(c, sp,m,m′) and sends ĉ to
the sanitizer.

3. The ciphertext is sanitized ĉ′ ← San(sp, ĉ) and subsequently sent to Charlie.
By the (perfect) correctness of the assumed ACE scheme and by our assump-
tion on maulE , ĉ′ is a valid ciphertext (under the encryption key of Alice)
and Charlie is able to decrypt m′ ← Dec(dkC, ĉ′), effectively receiving Bob’s
message m′.

3.2 DHO Scheme Based on ElGamal

We briefly recall the ElGamal based ACE scheme for a single identity. The
sanitizer parameters of the scheme contain the description of a finite cyclic group
G = 〈g〉 and its group order q, and additionally an element h = gx for a uniform
random x ∈ Zq. The encryption key for A is a random value ek ∈ Zq, and the
decryption key is −x. The algorithm Enc on input an encryption key ek i and
a message m ∈ M, samples r1, r2 ∈ Zq uniformly at random and outputs the
ciphertext

c = (c0, c1, c2, c3) := (gr1 , hr1geki , gr2 ,m · hr2).

We can define the function maulDHO as

maulDHO

(
(c0, c1, c2, c3), sp,m,m′) :=

(
c0, c1, c2,m

′ · m−1 · c3
)
.

Since the group order q is part of sp, this function is efficiently computable. For
c3 = m · hr2 , we thus get a new fourth component c′

3 = m′ · hr2 and Eq. (1) is
satisfied.

The malleability for more than one identity (and in particular in our scenario
described above) follows since the scheme for several identities is composed of
independent instances of the basic single-identity scheme.
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4 A Stronger Notion of ACE

In this section, we introduce our new security definitions, which exclude the
issues we have discovered. In the full version, we also show in which sense they
imply the original notions.

4.1 ACE with Modification Detection

To be resilient against the ciphertext-revealing attacks described in Sect. 3, the
sanitizer should ideally only sanitize fresh encryptions and block ciphertexts that
are either replays or obtained by modifying previous ciphertexts. Therefore, we
introduce an additional algorithm for detecting modified ciphertexts. If the san-
itizer receives a ciphertext that is detected to be a modification of a previously
received one, this ciphertext is blocked. Since such ciphertexts will not be stored
in the repository and consequently not be decrypted, we define chosen-ciphertext
security with respect to a decryption oracle that does not return a decryption if
the received ciphertext is detected to be a modification of the challenge cipher-
text. Our definitions can therefore be seen as a variant of publicly-detectable
replayable-CCA security, which was introduced by Canetti et al. [5] for pub-
lic key encryption. Before defining the security, we define the syntax of ACE
schemes with this additional algorithm.

Definition 5. An access control encryption with modification detection scheme
is an ACE scheme E together with a PPT algorithm DMod that on input sanitizer
parameters sp and two ciphertexts c, c̃ ∈ C, outputs a bit b (where b = 1 means
that c̃ was obtained via modifying c).

From now on, we will only consider ACE schemes with modification detection
and thus often refer to them simply as ACE schemes.

The algorithm DMod should output 1 if c̃ is an adversarial modification of c,
and 0 otherwise. We have the following intuitive requirements on DMod:

1. All ciphertexts c̃ an adversary can produce given ciphertexts c1, . . . , cl

and no encryption key, are either invalid (i.e., sanitize to ⊥) or we have
DMod(sp, ci, c̃) = 1 for some i ∈ {1, . . . , n}.

2. Given encryption and decryption keys, an adversary is unable to produce a
ciphertext c such that a ciphertext produced by Enc for a message of the
adversary’s choice is detected to be a modification of c. In particular, inde-
pendent encryptions of messages collide only with negligible probability.

The first requirement is captured by role-respecting security as defined in
Definition 9, the second one by non-detection of fresh encryptions defined in
Definition 8.

Remark 3. Canetti et al. (translated to our setting) additionally require that
if DMod(sp, c, c̃) = 1, then c and c̃ decrypt to the same message [5]. For our
purpose, this is not needed. This means that we do not want to detect replays
in the sense that the same message is replayed, but more generally, whether the
given ciphertext was obtain via some modification of another ciphertext.
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4.2 New Security Definitions

We formalize chosen-ciphertext attacks by giving the adversary access to an ora-
cle OSD that first sanitizes a given ciphertext and then decrypts the result. One
could also consider chosen-sanitized-ciphertext attacks by providing the adver-
sary access to an oracle OD that only decrypts. This is potentially stronger since
the adversary can emulate the oracle OSD by first sanitizing the ciphertexts and
then giving the result to OD, but given OSD, it is not necessarily possible to
emulate OD. Since in the application, users can only send ciphertexts to the
sanitizer but not directly write ciphertexts to the repository such that they are
decrypted without being sanitized, the weaker notion is sufficient.

In principle, the adversary has in all definitions access to OSD, as well as
to an encryption oracle and a key-generation oracle. To simplify the defini-
tions, we omit the encryption or decryption oracles if the winning condition
places no restriction on the encryption or decryption keys obtained from the
key-generation oracle, respectively.

Privacy and anonymity. We first give definitions for (payload) privacy and
sender-anonymity. The former guarantees that encryptions of different messages
under the same encryption key cannot be distinguished as long as the adversary
has no decryption key that allows to decrypt. We also require this for messages
of different length, i.e., schemes satisfying our definition do not leak the length of
the encrypted message, which means that the message space has to be bounded.
Anonymity guarantees that encryptions of the same message under different
keys cannot be distinguished. We distinguish a weak and a strong variant of
anonymity, where the weak one provides no guarantees if the adversary can
decrypt the ciphertext, and the strong one guarantees that even if the adversary
has decryption keys, nothing is leaked about the sender role beyond which of
the adversary’s decryption keys can be used to decrypt.

Definition 6. Let E = (Setup,Gen,Enc,San,Dec,DMod), be an ACE with mod-
ification detection scheme and let A = (A1,A2) be a pair of probabilistic algo-
rithms. Consider the experiment ExpACE-PRV-ANON-CCA

E,A in Fig. 2 and let J be the
set of all j such that A1 or A2 issued the query (j, rec) to the oracle OG. We
define the privacy under chosen-ciphertext attacks advantage and the sender-
anonymity under chosen-ciphertext attacks advantages of A as

AdvACE-PRV-CCAE,A := 2 · Pr
[
b′ = b ∧ i0 = i1 ∧ ∀j ∈ J P (i0, j) = 0

] − 1,

AdvACE-wANON-CCA
E,A := 2 · Pr

[
b′ = b ∧ m0 = m1

∧ ∀j ∈ J P (i0, j) = P (i1, j) = 0
] − 1,

AdvACE-sANON-CCA
E,A := 2 · Pr

[
b′ = b ∧ m0 = m1

∧ ∀j ∈ J P (i0, j) = P (i1, j)
] − 1,

respectively, where all probabilities are in ExpACE-PRV-ANON-CCA
E,A . The scheme E

is called private under chosen-ciphertext attacks (PRV-CCA secure), weakly
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sender-anonymous under chosen-ciphertext attacks (wANON-CCA secure),
and strongly sender-anonymous under chosen-ciphertext attacks (sANON-CCA
secure) if AdvACE-PRV-CCAE,A , AdvACE-wANON-CCA

E,A , and AdvACE-sANON-CCA
E,A are negligi-

ble for all efficient A, respectively.

Fig. 2. Security experiments for an ACE with modification detection scheme E and an
adversary A, where A = (A1,A2) in the first two experiments.

Remark 4. Weak anonymity corresponds to the anonymity notion considered by
Fuchsbauer et al. [9] and strong anonymity to the one considered by Damg̊ard
et al. [6]. We state both definitions because weak anonymity is easier to achieve
but strong anonymity might be required by some applications. If anonymity is
only required against the sanitizer or if all messages are anyway signed by the
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sender, weak anonymity is sufficient. Strong anonymity is required in settings
where senders also want to retain as much anonymity as possible against legiti-
mate receivers.

Sanitization security. We next define sanitization security, which excludes
that dishonest parties can communicate via the ciphertexts. We formalize this
by requiring that the output of the sanitizer for two different ciphertexts cannot
be distinguished, as long as both sanitized ciphertexts are not ⊥ and the adver-
sary has no decryption key that decrypts one of the ciphertexts. This provides no
security guarantees if the adversary can decrypt the ciphertexts, which does not
seem to be an issue since in this case, the parties can anyway directly commu-
nicate via the messages. However, we additionally consider a stronger variant,
where the adversary is allowed to possess a decryption key that decrypts the
ciphertexts, as long as they both decrypt to the same message. This stronger
variant excludes subliminal channels, i.e., even if the involved parties are allowed
to communicated by the policy, they cannot exchange information via cipher-
texts beyond the encrypted message.

Since the adversary provides the two ciphertexts that are sanitized, we do
not know to which roles they correspond; they could even be particularly crafted
without belonging to an existing role. Hence, we cannot state the requirement
(in the weak variant) that the adversary should not be able to decrypt by only
considering the policy and the obtained decryption keys, as in the no-write rule
in Definition 4. Instead, we require that the decryption algorithm returns ⊥ for
all decryption keys the adversary possesses. For this to provide the intended
security, we need that the decrypt algorithm returns ⊥ whenever the receiver
role corresponding to the used key is not supposed to read the message. This is
guaranteed by role-respecting security which is defined later.

Definition 7. Let E = (Setup,Gen,Enc,San,Dec,DMod) be an ACE with mod-
ification detection scheme and let A = (A1,A2) be a pair of probabilistic algo-
rithms. Consider the experiment ExpACE-SAN-CCA

E,A in Fig. 2 and let J be the set of
all j such that A1 or A2 issued the query (j, rec) to the oracle OG. We define
the sanitization under chosen-ciphertext attacks advantage and the strong san-
itization under chosen-ciphertext attacks advantage of A as

AdvACE-SAN-CCA
E,A := 2 · Pr

[
b′ = b ∧ c′

0 
= ⊥ 
= c′
1

∧ ∀j ∈ J m0,j = m1,j = ⊥] − 1,

AdvACE-sSAN-CCA
E,A := 2 · Pr

[
b′ = b ∧ c′

0 
= ⊥ 
= c′
1 ∧ ∀j ∈ J m0,j = m1,j

] − 1,

respectively, where the probability is over the randomness in ExpACE-SAN-CCA
E,A . The

scheme E is called sanitization under chosen-ciphertext attacks secure (SAN-
CCA secure) and strongly sanitization under chosen-ciphertext attacks secure
(sSAN-CCA secure) if AdvACE-SAN-CCA

E,A and AdvACE-sSAN-CCA
E,A are negligible for all

efficient A, respectively.
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Non-detection of fresh encryptions. In the intended way of using a scheme
satisfying our notions, the sanitizer only adds sanitized ciphertexts to the repos-
itory if the given ciphertext is not detected to be a modification of a previously
received ciphertext. This means that if an adversary can find a ciphertext c such
that another ciphertext c∗ that is later honestly generated is detected as a mod-
ification of c, the delivery of the message at that later point can be prevented by
sending the ciphertext c to the sanitizer earlier. We exclude this by the following
definition, which can be seen as an extended correctness requirement.

Definition 8. Let E = (Setup,Gen,Enc,San,Dec,DMod) be an ACE with mod-
ification detection scheme and let A be a probabilistic algorithm. Consider the
experiment ExpACE-NDTCT-FENC

E,A in Fig. 2. We define the non-detection of fresh
encryptions advantage of A as

AdvACE-NDTCT-FENC
E,A := Pr

[
b = 1

]
,

where the probability is over the randomness in ExpACE-NDTCT-FENC
E,A . The scheme E

has non-detecting fresh encryptions (NDTCT-FENC) if AdvACE-NDTCT-FENC
E,A is

negligible for all efficient A.

Role-respecting and uniform-decryption security. We finally define role-
respecting and uniform-decryption security. The former means that an adversary
cannot produce a ciphertext for which the pattern of roles that can decrypt does
not correspond to a role for which the adversary has an encryption key. For
example, if the adversary has only an encryption key for the role i such that
roles j0 and j1 are the only roles j with P (i, j) = 1, all ciphertexts produced by
the adversary are either invalid (i.e., sanitized to ⊥ or detected as a modification)
or decrypt to a message different from ⊥ precisely under the decryption keys for
j0 and j1. On the one hand, this means that receivers who are not allowed to
receive the message get ⊥ and hence know that the message is not for them.2 On
the other hand, it also guarantees that the adversary cannot prevent receivers
with role j1 from receiving a message that is sent to receivers with role j0.
Furthermore, uniform decryption guarantees for all ciphertexts c output by an
adversary that if c decrypts to a message different from ⊥ for different decryption
keys, it always decrypts to the same message. In the example above, this means
that j0 and j1 not only both receive some message, but they both receive the
same one.

Definition 9. Let E = (Setup,Gen,Enc,San,Dec,DMod) be an ACE with mod-
ification detection scheme and let A be a probabilistic algorithm. Consider the
2 Detectability (Definition 2) provides this guarantee for honest encryptions, role-
respecting security extends this to maliciously generated ciphertexts. Note, how-
ever, that detectability is not implied by role-respecting security: If an adversary
has encryption keys for two roles i and i′, role-respecting security does not exclude
that encrypting some message (depending on i′) with the key for role i can be
decrypted with keys for roles that are allowed to receive from i′.
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experiment ExpACE-URRE,A in Fig. 2 and let I and J be the sets of all i and j such
that A issued the query (i, sen) and (j, rec) to the oracle OG, respectively. We
define the role-respecting advantage and the uniform-decryption advantage of
A as

AdvACE-RRE,A := Pr
[
c′ 
= ⊥ ∧ dct = false

∧ ¬(∃i ∈ I ∀j ∈ J (mj 
= ⊥ ↔ P (i, j) = 1)
)]

,

AdvACE-UDEC
E,A := Pr

[∃j, j′ ∈ J mj 
= ⊥ 
= mj′ ∧ mj 
= mj′
]
,

respectively, where the probabilities are over the randomness in ExpACE-URRE,A . The
scheme E is role-respecting (RR secure) and uniform-decryption (UDEC) secure
if AdvACE-RRE,A and AdvACE-UDEC

E,A are negligible for all efficient A, respectively.

Remark 5. Note that in Definition 9, we only check the decryptions for receiver
roles for which A has requested the corresponding decryption key. This means
that an adversary in addition to producing a ciphertext that causes an inconsis-
tency, also has to find a receiver role for which this inconsistency manifests. If
the total number of roles n is small (say polynomial in the security parameter),
A can simply query OG on all receiver keys, but for large n this condition is non-
trivial. For example, we consider a scheme secure if an adversary can efficiently
produce a ciphertext such that there is a receiver role that can decrypt it even
though the policy does not allow it, as long as this receiver role is hard to find.
The rationale is that in this case, the inconsistency cannot be exploited and will
only be observed with negligible probability in an execution of the protocol.

5 Enhanced Sanitizable Public-Key Encryption

5.1 Definitions

As a stepping stone toward ACE schemes satisfying our new security definitions,
we introduce enhanced sanitizable public-key encryption. Sanitizable public-key
encryption has been considered by Damg̊ard et al. [6] and Fuchsbauer et al. [9]
as a relaxation of universal re-encryption [10] and rerandomizable encryption
[12,15]. It allows to sanitize a ciphertext to obtain a sanitized ciphertext that
cannot be linked to the original ciphertext except that it decrypts to the cor-
rect message. In contrast to rerandomizable encryption, sanitized ciphertexts
can have a different syntax than ciphertexts, i.e., it is not required that a san-
itized ciphertext is indistinguishable from a fresh encryption. We introduce an
enhanced variant with a different syntax and stronger security guarantees.

Definition 10. An enhanced sanitizable public-key encryption (sPKE) scheme
consists of the following five PPT algorithms:

Setup: The algorithm Setup on input a security parameter 1κ, outputs sanitizer
parameters sp, and a master secret key msk. We implicitly assume that all
parameters and keys include the finite message space M and the ciphertext
spaces C, C′.
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Key generation: The algorithm Gen on input a master secret key msk, outputs
an encryption key ek and a decryption key dk.

Encryption: The algorithm Enc on input an encryption key ek and a mes-
sage m ∈ M, outputs a ciphertext c ∈ C.

Sanitization: The algorithm San on input sanitizer parameters sp and a cipher-
text c ∈ C, outputs a sanitized ciphertext c′ ∈ C′ ∪ {⊥}.

Decryption: The algorithm Dec on input a decryption key dk and a sanitized
ciphertext c′ ∈ C′, outputs a message m ∈ M ∪ {⊥}; on input dk and ⊥, it
outputs ⊥.

For correctness, we require for all (sp,msk) in the range of Setup, all (ek , dk)
in the range of Gen(msk), and all m ∈ M that

Dec
(
dk ,San

(
sp,Enc(ek ,m)

))
= m

with probability 1.

We require robustness in the sense that no ciphertext decrypts to a mes-
sage different from ⊥ for two different decryption keys (except with negligible
probability). This is similar to detectability for ACE schemes, but we allow the
adversary to directly output a ciphertext, instead of a message, which is then
honestly encrypted. Our notion therefore closely resembles unrestricted strong
robustness (USROB), introduced by Farshim et al. [8] for public-key encryption,
which also allows the adversary to choose a ciphertext and, in contrast to strong
robustness by Abdalla et al. [1], gives the adversary access to decryption keys.

Definition 11. Let E = (Setup,Gen,Enc,San,Dec) be an sPKE scheme. For a
probabilistic algorithm A, we define the experiment ExpsPKE-USROB

E,A that executes
(sp,msk) ← Setup(1κ) and (c, i0, i1) ← AOG(·)(sp), where the oracle OG on
input getNew, outputs a fresh key pair (ek , dk) ← Gen(msk). Let q be the number
of oracle queries and let for i ∈ {1, . . . , q}, (ek i, dk i) be the i-th answer from OG.
We define the (unrestricted strong) robustness advantage of A as

AdvsPKE-USROB
E,A := Pr

[
1 ≤ i0, i1 ≤ q ∧ i0 
= i1

∧ Dec
(
dk i0 ,San(sp, c)

) 
= ⊥ 
= Dec
(
dk i1 ,San(sp, c)

)]
,

where the probability is over the randomness in ExpsPKE-USROB
E,A and the random

coins of San and Dec (both executed independently twice). The scheme E is (unre-
stricted strongly) robust (USROB secure) if AdvsPKE-USROB

E,A is negligible for all
efficient A.

We next define IND-CCA security analogously to the definition for ordinary
public-key encryption. In contrast to the usual definition, we do not require the
adversary to output two messages of equal length, which implies that schemes
satisfying our definition do not leak the length of the encrypted message.

Definition 12. Let E = (Setup,Gen,Enc,San,Dec) be an sPKE scheme and let
A = (A1,A2) be a pair of probabilistic algorithms. Consider the experiment
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ExpsPKE-IND-CCA
E,A in Fig. 3 and let CA2 be the set of all ciphertexts that A2 queried

to the oracle OSD. We define the ciphertext indistinguishability under chosen-
ciphertext attacks advantage of A as

AdvsPKE-IND-CCA
E,A := 2 · Pr

[
b′ = b ∧ c∗ /∈ CA2

] − 1,

where the probability is over the randomness in ExpsPKE-IND-CCA
E,A . The scheme E

has indistinguishable ciphertexts under chosen-ciphertext attacks (is IND-CCA
secure) if AdvsPKE-IND-CCA

E,A is negligible for all efficient A.

Fig. 3. Security experiments for an sPKE scheme E and an adversary A, where
A = (A1,A2) in the experiments ExpsPKE-IND-CCA

E,A , ExpsPKE-IK-CCAE,A , and ExpsPKE-SAN-CCA
E,A .

The oracle OSD is defined as OSD(c) = Dec(dk , San(sp, c)) and the oracle OSDj as
OSDj (c) = Dec(dk j , San(sp, c)). Moreover, the oracle OG on input getNew, outputs a
fresh key pair (ek , dk) ← Gen(msk).

We also need that it is hard to predict a ciphertext generated by Enc from
a message of the adversary’s choice given encryption and decryption keys. Note
that this is not implied by IND-CCA security since the adversary here obtains
the decryption key.
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Definition 13. Let E = (Setup,Gen,Enc,San,Dec) be an sPKE scheme and
let A be a probabilistic algorithm. Consider the experiment ExpsPKE-UPD-CTXT

E,A in
Fig. 3. We define the ciphertext unpredictability advantage of A as

AdvsPKE-UPD-CTXT
E,A := Pr

[
c = c∗],

where the probability is over the randomness in ExpsPKE-UPD-CTXT
E,A . The scheme E

has unpredictable ciphertexts (is UPD-CTXT secure) if AdvsPKE-UPD-CTXT
E,A is

negligible for all efficient A.

We further define anonymity or indistinguishability of keys following Bellare
et al. [3].

Definition 14. Let E = (Setup,Gen,Enc,San,Dec) be an sPKE scheme and let
A = (A1,A2) be a pair of probabilistic algorithms. Consider the experiment
ExpsPKE-IK-CCAE,A in Fig. 3 and let CA2 be the set of all ciphertexts that A2 queried
to the oracle OSD0 or OSD1 . We define the indistinguishability of keys under
chosen-ciphertext attacks advantage of A as

AdvsPKE-IK-CCAE,A := 2 · Pr
[
b′ = b ∧ c∗ /∈ CA2

] − 1,

where the probability is over the randomness in ExpsPKE-IK-CCAE,A . The scheme E
has indistinguishable keys under chosen-ciphertext attacks (is IK-CCA secure)
if AdvsPKE-IK-CCAE,A is negligible for all efficient A.

Sanitization security formalizes that given certain public keys and a sanitized
ciphertext, it is hard to tell which of two adversarially chosen ciphertexts was
actually sanitized. To exclude trivial attacks, we require that both ciphertexts
are encryptions relative to the two challenge public keys ek0 and ek1. Otherwise,
the adversary could use the oracle OG to obtain a fresh key-pair (ek , dk) and
encrypt two different messages under ek . It could then decrypt the challenge
ciphertext using dk and win the game.

Definition 15. Let E = (Setup,Gen,Enc,San,Dec) be an sPKE scheme and let
A = (A1,A2) be a pair of probabilistic algorithms. Consider the experiment
ExpsPKE-SAN-CCA

E,A in Fig. 3. We define the sanitization under chosen-ciphertext
attacks advantage of A as

AdvsPKE-SAN-CCA
E,A := 2 · Pr

[
b′ = b ∧ ∃j, j′ ∈ {0, 1} m0,j 
= ⊥ 
= m1,j′

] − 1,

where the probability is over the randomness in ExpsPKE-IK-CCAE,A . We say the
scheme E is sanitization under chosen-ciphertext attacks (SAN-CCA) secure
if AdvsPKE-SAN-CCA

E,A is negligible for all efficient A.

We finally define the probability that two independent executions of the key-
generation algorithm produce the same encryption key. This probability has to
be small for all IND-CCA-secure schemes because an attacker can otherwise
obtain a new key pair from OG and if the obtained encryption key matches the
one with which the challenge ciphertext is generated, the attacker can decrypt
and win the IND-CCA game. We anyway explicitly define this probability to
simplify our reductions later.
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Definition 16. Let E = (Setup,Gen,Enc,San,Dec) be an sPKE scheme. We
define the encryption-key collision probability ColekE as

ColekE := Pr(sp,msk)←Setup(1κ); (ek0,dk0)←Gen(msk); (ek1,dk1)←Gen(msk)[ek0 = ek1].

5.2 Constructing an sPKE Scheme

We next construct an sPKE scheme satisfying our security definitions. Our con-
struction resembles the weakly sanitizable PKE scheme by Fuchsbauer et al. [9].
We use a variant of ElGamal encryption and obtain security against chosen-
ciphertext attacks using the technique of Naor and Yung [14], i.e., encrypting
the message under two independent keys and proving in zero-knowledge that the
ciphertexts are encryptions of the same message, which was shown to achieve
full IND-CCA security if the zero-knowledge proof is one-time simulation sound
by Sahai [16].

Let PKE be a (IND-CPA secure) public-key encryption scheme, let Sig be a
(EUF-CMA-secure) signature scheme, and let NIZK be a (one-time simulation
sound) NIZK proof system for the language L := {x | ∃w (x,w) ∈ R}, where
the relation R is defined as follows: for x =

(
g, ekPKE, vkSig, c1, c2, cσ

)
and w =

(m, ga, gb, r1, s1, r2, s2, σ, r), we have (x,w) ∈ R if and only if

c1 =(gr1 , ga·r1 , gs1 , ga·s1 · m) ∧ c2 = (gr2 , gb·r2 , gs2 , gb·s2 · m)

∧ Sig.Ver
(
vkSig, (ga, gb), σ

)
= 1 ∧ cσ = PKE.Enc

(
ekPKE, (ga, gb, σ); r

)
.

We define an sPKE scheme as follows:

Setup: The setup algorithm sPKE.Setup first generates
(
ekPKE, dkPKE

) ← PKE.Gen(1κ),
(
vkSig, skSig

) ← Sig.Gen(1κ),
crs ← NIZK.Gen(1κ).

Let G = 〈g〉 be a cyclic group with prime order p generated by g, with p ≥ 2κ,
and let M ⊆ G such that |M|/p ≤ 2−κ. The sanitizer parameters spsPKE

contain ekPKE, vkSig, crs, and a description of G, including g and p. The
master secret key msk sPKE consists of ekPKE, vkSig, skSig, crs, and a description
of G, including g and p.

Key generation: The algorithm sPKE.Gen on input msk sPKE, samples two ele-
ments dk1, dk2 � Z∗

p and computes ek1 ← gdk1 , ek2 ← gdk2 , as well as
σ ← Sig.Sign

(
skSig, (ek1, ek2)

)
. Finally, it outputs ek sPKE :=

(
g, p, crs, ekPKE,

vkSig, ek1, ek2, σ
)

and dk sPKE := (dk1, dk2).
Encryption: The algorithm sPKE.Enc on input an encryption key ek sPKE =(

g, p, crs, ekPKE, vkSig, ek1, ek2, σ
)

and a message m ∈ M, samples random-
ness r, chooses r1, s1, r2, s2 � Z∗

p uniformly at random, and computes
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c1 ← (
gr1 , ekr1

1 , gs1 , eks1
1 · m

)
,

c2 ← (
gr2 , ekr2

2 , gs2 , eks2
2 · m

)
,

cσ ← PKE.Enc
(
ekPKE, (ek1, ek2, σ); r

)
.

It then generates π ← NIZK.Prove
(
crs, x := (g, ekPKE, vkSig, c1, c2, cσ), w :=

(m, ek1, ek2, r1, s1, r2, s2, σ, r)
)
, and outputs the ciphertext c := (c1, c2, cσ, π).

Sanitization: The algorithm sPKE.San on input sanitizer parameters spsPKE

and a ciphertext c = (c1, c2, cσ, π), first verifies the NIZK proof by evaluat-
ing NIZK.Ver

(
crs, x := (g, ekPKE, vkSig, c1, c2, cσ), π

)
. It then parses the first

ciphertext component as (c1,1, c1,2, c1,3, c1,4) ← c1. If the verification suc-
ceeds and c1,1 
= 1 
= c1,2, then it chooses a random t � Z∗

p and outputs the
sanitized ciphertext

c′ :=
(
(c1,1)t · c1,3, (c1,2)t · c1,4

)
.

If the verification fails or if c1,1 = 1 or c1,2 = 1, it outputs ⊥.
Decryption: The algorithm sPKE.Dec on input a decryption key dk sPKE =

(dk1, dk2) and a sanitized ciphertext c′ = (c′
1, c

′
2), computes the message m ←

c′
2 ·((c′

1)
dk1

)−1. It outputs m if m ∈ M, and otherwise it outputs ⊥. On input
dk sPKE and ⊥, it outputs ⊥.

The following proposition and theorem summarize the correctness and secu-
rity properties of our scheme and are proven in the full version of this paper.

Proposition 1. If Sig is correct and NIZK has perfect completeness, the scheme
sPKE from above is correct, robust, has unpredictable ciphertexts, and negligible
encryption-key collision probability.

Theorem 1. If the DDH assumption holds in the group G, PKE is IND-CPA
secure, Sig is EUF-CMA secure, and if NIZK is zero-knowledge, computationally
sound, and one-time simulation sound, then the scheme sPKE from above is
IND-CCA secure, IK-CCA secure, and SAN-CCA secure.

On a high level, our proof proceeds as follows. It is rather straightforward
to show that our variant of ElGamal encryption satisfies the CPA versions of
the three properties. The proof of CCA security follows the proof by Sahai for
public-key encryption [16]: Since the NIZK ensures that both ciphertext com-
ponents are encryptions of the same message, it does not matter which compo-
nent is decrypted. In a reduction, where we assume an adversary A against the
CCA variants of the desired properties, and we want to break the corresponding
CPA variants, we only get one public key and no decryption oracle from the
challenger. In order to emulate the view toward A, the reduction chooses an
additional public key and a CRS for the NIZK scheme. Since the reduction thus
knows one of the secret keys, it can emulate a decryption oracle. To generate
a challenge ciphertext, the reduction obtains one challenge ciphertexts from its
CPA challenger, and encrypts another, arbitrary message to get a second cipher-
text. The reduction uses the NIZK simulator to obtain an accepting proof that
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is indistinguishable from a “real proof”, even if the underlying statement is not
true. A crucial point here is that the NIZK scheme has to be one-time simulation
sound. This ensures that even if the adversary sees one simulated (accepting)
proof of a wrong statement, it is not capable of producing accepting proofs of
wrong statements, except by reproducing the exact proof obtained within the
challenge, but which A is not allowed to ask to the decryption oracle by the
CCA definition. The fundamental result of Sahai [16] is that the above strategy
successfully simulates a complete CCA attack toward A.

An additional obstacle we have is that to preserve anonymity, the NIZK needs
to be verified without knowing which encryption keys were used. On the other
hand, the reduction only works if the two used keys “match”, since otherwise,
the emulated decryption oracle would use an incorrect key to decrypt. To prevent
an adversary from mixing different key pairs for encryptions, the key-generation
process signs valid key pairs, and the NIZK ensures that a signed pair was used.
Due to anonymity, this signature cannot be directly contained in the ciphertexts.
Instead, it is part of the witness. To prove that if a ciphertext is accepted, the
used key pair was indeed signed by the key-generation process, we show that if A
manages to produce a ciphertext that is accepted but the keys were not signed,
we can break EUF-CMA security of the signature scheme. In this reduction, we
have to provide a forgery. Hence, the reduction needs to extract the signature
and the used encryption keys from the ciphertext. This could be achieved by
assuming that the NIZK is extractable. Extractability and simulation-soundness
at the same time is, however, a quite strong assumption. Instead, we add an
encryption of the signature and the key pair under a separate PKE scheme to
the ciphertexts. The reduction can then generate the keys for this PKE scheme
itself and perform extraction by decrypting that ciphertext.

6 Construction of an ACE Scheme

6.1 Construction for Equality

Following Fuchsbauer et al. [9], we first construct an ACE scheme for the equal-
ity policy, i.e., P (i, j) = 1 ⇔ i = j, and then use such a scheme in another
construction for richer policies. We base our construction on an sPKE scheme,
which already has many important properties needed for a secure ACE scheme.
A syntactical difference between sPKE and ACE schemes is that the key genera-
tion of the former on every invocation produces a fresh key pair, while the latter
schemes allow the generation of keys for a given role. To bind key pairs to some
role i ∈ [n], we use the output of a pseudorandom function on input i as the
randomness for the sPKE key generation. For role-respecting security, we have
to ensure that an adversary can only produce ciphertexts for keys obtained from
the key generation oracle. This is achieved by signing all keys with a signing
key generated at setup. To prevent malleability attacks as the ones described in
Sect. 3, the encryption algorithm additionally signs all ciphertexts with a sep-
arate signing key that is tied to the encryption key. To maintain anonymity,
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the signatures are not part of the ciphertext but the encrypters prove in zero-
knowledge that they know such signatures. Finally, the modification detection
simply checks whether the ciphertexts (without the NIZK proofs) are equal.
Intuitively, this is sufficient since we assume the underlying sPKE scheme to
be CCA secure, which implies that it is not possible to meaningfully modify a
given ciphertext. Hence, a ciphertext is either equal to an existing one (and thus
detected by the algorithm) or a fresh encryption.

Our construction. Let sPKE be a sanitizable public-key encryption scheme,
let Sig be a signature scheme, and let F be a PRF. Further let NIZK be a
NIZK proof of knowledge system for the language L := {x | ∃w (x,w) ∈ R},
where the relation R is defined as follows: for x =

(
vkSig, c̃

)
and w =

(
ek sPKE

i ,m, r, vkSig
i , σSig

i , σSig
c

)
, (x,w) ∈ R if and only if

c̃ = sPKE.Enc
(
ek sPKE

i ,m; r
) ∧ Sig.Ver

(
vkSig,

[
ek sPKE

i , vkSig
i

]
, σSig

i

)
= 1

∧ Sig.Ver
(
vkSig

i , c̃, σSig
c

)
= 1.

We define an ACE with modification detection scheme ACE as follows:

Setup: On input a security parameter 1κ and a policy P : [n]× [n] → {0, 1} with
P (i, j) = 1 ⇔ i = j, the algorithm ACE.Setup picks a random PRF key K for
a PRF F , and runs

(
spsPKE,msk sPKE

) ← sPKE.Setup(1κ),
(
vkSig, skSig

) ← Sig.Gen(1κ),

crsNIZK ← NIZK.Gen(1κ).

It outputs the master secret key mskACE :=
(
K,msk sPKE, vkSig, skSig, crsNIZK

)

and the sanitizer parameters spACE :=
(
spsPKE, vkSig, crsNIZK

)
.

Key generation: On input a master secret key mskACE =
(
K,msk sPKE, vkSig,

skSig, crsNIZK
)
, a role i ∈ [n], and a type t ∈ {sen, rec}, ACE.Gen computes

(
ek sPKE

i , dk sPKE
i

) ← sPKE.Gen
(
msk sPKE;FK([i, 0])

)
.

If t = sen, it further computes
(
vkSig

i , skSig
i

) ← Sig.Gen
(
1κ;FK([i, 1])

)
,

σSig
i ← Sig.Sign

(
skSig,

[
ek sPKE

i , vkSig
i

]
;FK([i, 2])

)
.

If t = sen, it outputs the encryption key ekACE
i :=

(
vkSig, ek sPKE

i , vkSig
i , skSig

i ,

σSig
i , crsNIZK

)
; if t = rec, it outputs the decryption key dkACE

i := dk sPKE
i .
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Encryption: On input an encryption key ekACE
i =

(
vkSig, ek sPKE

i , vkSig
i , skSig

i ,

σSig
i , crsNIZK

)
and a message m ∈ MACE, the algorithm ACE.Enc samples

randomness r and computes

c̃ ← sPKE.Enc
(
ek sPKE

i ,m; r
)
,

σSig
c ← Sig.Sign

(
skSig

i , c̃
)
,

πNIZK ← NIZK.Prove
(
crsNIZK, x :=

(
vkSig, c̃

)
,

w :=
(
ek sPKE

i ,m, r, vkSig
i , σSig

i , σSig
c

))
.

It outputs the ciphertext c :=
(
c̃, πNIZK

)
.

Sanitization: On input sanitizer parameters spACE =
(
spsPKE, vkSig, crsNIZK

)

and a ciphertext c =
(
c̃, πNIZK

)
, ACE.San outputs the sanitized ciphertext

c′ ← sPKE.San
(
spsPKE, c̃

)
if NIZK.Ver

(
crsNIZK, x :=

(
vkSig, c̃,

)
, πNIZK

)
= 1;

otherwise, it outputs ⊥.
Decryption: The algorithm ACE.Dec on input a decryption key dkACE

j and a
sanitized ciphertext c′, outputs the message m ← sPKE.Dec(dkACE

j , c′).
Modification detection: The algorithm ACE.DMod on input spACE, c1 =(

c̃1, π
NIZK
1

)
, and c2 =

(
c̃2, π

NIZK
2

)
, outputs 1 if c̃1 = c̃2, and 0 otherwise.

The following proposition states that our scheme is correct and strongly
detectable, and is proven in the full version of the paper.

Proposition 2. Let ACE be the scheme from above. Then, ACE is perfectly cor-
rect, i.e., AdvACE-CORR

ACE,A = 0 for all A. Moreover, if F is pseudorandom and sPKE
is unrestricted strongly robust, then ACE is strongly detectable.

The security of our scheme is summarized by the theorem below, which we
prove in the full version.

Theorem 2. If F is pseudorandom, NIZK is zero-knowledge and extractable, Sig
is EUF-CMA secure, and sPKE is IND-CCA, IK-CCA, SAN-CCA, USROB, and
UPD-CTXT secure and has negligible encryption-key collision probability, then
the scheme ACE from above is PRV-CCA, sANON-CCA, SAN-CCA, UDEC,
and RR secure, and has NDTCT-FENC.

6.2 Lifting Equality to Disjunction of Equalities

We finally show how an ACE scheme for equality, as the one from Sect. 6.1, can
be used to construct a scheme for the policy PDEq : D� × D� → {0, 1} with

PDEq

(
x = (x1, . . . , x�),y = (y1, . . . , y�)

)
= 1 :⇐⇒

�∨

i=1

xi = yi,
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where D is some finite set and � ∈ N.3 This policy can for example be used to
implement the no read-up and now write-down principle (P (i, j) = 1 ⇔ i ≤ j)
from the Bell-LaPadula model [2] via an appropriate encoding of the roles [9].

The intuition of our construction is as follows. A key for a role x =
(x1, . . . , x�) contains one key of the ACE scheme for equality for each com-
ponent xi of the role vector. To encrypt a message, this message is encrypted
with each of these keys. To decrypt, one tries to decrypt each ciphertext com-
ponent with the corresponding key. If at least one component of the sender and
receiver roles match (i.e., if the policy is satisfied), one of the decryptions is suc-
cessful. So far, the construction is identical to the one by Fuchsbauer et al. [9].
That construction is, however, not role-respecting, since a dishonest sender with
keys for more than one role can arbitrarily mix the components of the keys for
the encryption. Moreover, the construction does not guarantee uniform decryp-
tion, because different messages can be encrypted in different components. We
fix these issues using the same techniques we used in our construction of the
scheme for equality, i.e., we add a signature of the key vector to the encryp-
tion keys, sign the ciphertexts, and require a zero-knowledge proof of knowledge
that a valid key combination was used to encrypt the same message for each
component and that all signatures are valid.

Our construction. Let ACE= be an ACE with modification detection scheme
for the equality predicate on D × [�], let Sig be a signature scheme, let F be
a PRF, and let NIZK be a NIZK proof of knowledge system for the language
L := {x | ∃w (x,w) ∈ R}, where the relation R is defined as follows: for x =(
vkSig, c1, . . . , c�

)
and w =

(
ekACE=

(x1,1), . . . , ek
ACE=
(x�,�),m, r1, . . . , r�, vkSig

x , σSig
x , σSig

c

)
,

(x,w) ∈ R if and only if

�∧

i=1

ci =ACE=.Enc
(
ekACE=

(xi,i)
,m; ri

) ∧ Sig.Ver
(
vkSig

x , [c1, . . . , c�], σSig
c

)
= 1

∧ Sig.Ver
(
vkSig,

[
ekACE=

(x1,1), . . . , ek
ACE=
(x�,�), vk

Sig
x

]
, σSig

x

)
= 1.

We define an ACE scheme ACEDEq as follows:

Setup: On input a security parameter 1κ and the policy PDEq, ACEDEq.Setup
picks a random key K for F and runs

(
mskACE= , spACE=

) ← ACE=.Setup(1κ),
(
vkSig, skSig

) ← Sig.Gen(1κ),

crsNIZK ← NIZK.Gen(1κ).

3 In this section, we denote roles by x and y instead of i and j. To be compatible
with our definitions that consider policies [n] × [n] → {0, 1}, one needs to identify
elements of D� with numbers in [n]. We will ignore this technicality to simplify the
presentation.
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It outputs the master secret key mskACEDEq :=
(
K,mskACE= , vkSig, skSig,

crsNIZK
)

and the sanitizer parameters spACEDEq :=
(
spACE= , vkSig, crsNIZK

)
.

Key generation: The algorithm ACEDEq.Gen on input a master secret key
mskACEDEq =

(
K,mskACE= , vkSig, skSig, crsNIZK

)
, a role x ∈ D�, and type sen,

generates

ekACE=
(xi,i)

← ACE=.Gen
(
mskACE= , (xi, i), sen

)
(for i ∈ [�]),

(
vkSig

x , skSig
x

) ← Sig.Gen(1κ;FK([x, 0])),

σSig
x ← Sig.Sign

(
skSig,

[
ekACE=

(x1,1), . . . , ek
ACE=
(x�,�), vk

Sig
x

]
;FK([x, 1])

)
,

and outputs the encryption key ekACEDEq
x :=

(
vkSig, ekACE=

(x1,1), . . . , ek
ACE=
(x�,�), vk

Sig
x ,

skSig
x , σSig

x , crsNIZK
)
; on input mskACEDEq , a role y ∈ D�, and the type rec, it

generates for i ∈ [�],

dkACE=
(yi,i)

← ACE=.Gen
(
mskACE= , (yi, i), rec

)
,

and outputs the decryption key dkACEDEq
y :=

(
dkACE=

(y1,1), . . . , dk
ACE=
(y�,�)

)
.

Encryption: On input an encryption key ekACEDEq
x =

(
vkSig, ekACE=

(x1,1), . . . , ek
ACE=
(x�,�),

vkSig
x , skSig

x , σSig
x , crsNIZK

)
and a message m ∈ MACEDEq , ACEDEq.Enc samples

randomness r1, . . . , r� and computes

ci ← ACE=.Enc
(
ekACE=

(xi,i)
,m; ri

)
(for i ∈ [�]),

σSig
c ← Sig.Sign

(
skSig

x , [c1, . . . , c�]
)
,

πNIZK ← NIZK.Prove
(
crsNIZK, x :=

(
vkSig, c1, . . . , c�

)
,

w :=
(
ekACE=

(x1,1), . . . , ek
ACE=
(x�,�),m, r1, . . . , r�, vkSig

x , σSig
x , σSig

c

))
.

It outputs the ciphertext c :=
(
c1, . . . , c�, π

NIZK
)
.

Sanitization: On input sanitizer parameters spACEDEq =
(
spACE= , vkSig, crsNIZK

)

and a ciphertext c =
(
c1, . . . , c�, π

NIZK
)
, the algorithm ACEDEq.San checks

whether NIZK.Ver
(
crsNIZK, x :=

(
vkSig, c1, . . . , c�

)
, πNIZK

)
= 1. If this is the

case, it runs c′
i ← ACE=.San

(
ci

)
for i ∈ [�]. If c′

i 
= ⊥ for all i ∈ [�], it outputs
the sanitized ciphertext c′ :=

(
c′
1, . . . , c

′
�

)
. If the verification fails or any of

the sanitized ciphertexts is ⊥, it outputs ⊥.
Decryption: On input a decryption key dkACEDEq

y =
(
dkACE=

(y1,1), . . . , dk
ACE=
(y�,�)

)
and

a sanitized ciphertext c′ :=
(
c′
1, . . . , c

′
�

)
, the algorithm ACEDEq.Dec computes

for i ∈ [�] the message mi ← ACE=.Dec
(
dkACE=

(yi,i)
, c′

i

)
. If mi 
= ⊥ for some

i ∈ [�], ACEDEq.Dec outputs the first such mi; otherwise it outputs ⊥.
Modification detection: On input sanitizer parameters spACEDEq :=

(
spACE= ,

vkSig, crsNIZK
)

and two ciphertexts c =
(
c1, . . . , c�, π

NIZK
)

and c̃ :=
(
c̃1, . . . , c̃�,

π̃NIZK
)
, ACEDEq.DMod checks for i ∈ [�] if ACE=.DMod

(
spACE= , ci, c̃i

)
= 1. If

this is the case for some i ∈ [�], it outputs 1; otherwise, it outputs 0.
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Weak and strong anonymity. As we show below, our scheme enjoys weak
anonymity. It is easy to see that it does not have strong anonymity: Given a
decryption key for the role (1, 2), one can decrypt ciphertexts encrypted under a
key for the roles (1, 1) and (2, 2). One does, however, also learn which of the two
components decrypted successfully. If it is the first one, the sender role must be
(1, 1), if it is the second one, the sender role must be (2, 2). For similar reasons,
we do not achieve strong sanitization security.

A similar construction can be used to achieve strong anonymity for less
expressive policies: If a sender role still corresponds to a vector (x1, . . . , x�) ∈ D�

but a receiver role only to one component (j, y) ∈ [�] × D, one can consider the
policy that allows to receive if xj = y. Now, we do not need several components
for the decryption key and the problem sketched above disappears.

Proposition 3. If ACE= is correct and detectable, then the scheme ACEDEq from
above is correct and detectable. If ACE= is strongly detectable, then ACEDEq is
also strongly detectable. More precisely, for all probabilistic algorithms A, there
exist probabilistic algorithms Acorr, Adtct, A′

dtct, and Asdtct such that

AdvACE-CORR
ACEDEq,A ≤ AdvACE-CORR

ACE=,Acorr
+ (� − 1) · AdvACE-DTCT

ACE=,Adtct
,

AdvACE-DTCT
ACEDEq,A ≤ � · AdvACE-DTCT

ACE=,A′
dtct

,

AdvACE-sDTCT
ACEDEq,A ≤ � · AdvACE-sDTCT

ACE=,Asdtct
.

See the full version of this paper for proofs of this proposition and the fol-
lowing theorem, which summarizes the security properties of our scheme.

Theorem 3. If F is pseudorandom, NIZK is zero-knowledge and extractable,
Sig is EUF-CMA secure, and ACE= is perfectly correct, strongly detectable, has
NDTCT-FENC, and is PRV-CCA, wANON-CCA, SAN-CCA, RR, and UDEC
secure, then the scheme ACEDEq from above has NDTCT-FENC and is PRV-
CCA, wANON-CCA, SAN-CCA, RR, and UDEC secure.

7 Conclusion and Directions for Future Work

In this paper, we have critically revisited existing notions for access control
encryption, proposed stronger security definitions, and presented a new scheme
that provably achieves our strong requirements. The need for stronger notions
is not only a theoretical one as we have shown: In particular, we have described
a practical attack based on the observation that a semi-honest sanitizer might
leak an unsanitized ciphertext to a dishonest party.

An important question is whether all realistic attacks are excluded by our
definitions. Furthermore, we would like to understand the fundamental limits of
ACE. This includes investigating in which scenarios it can or cannot be used.
To settle these questions, the authors are currently working on a theoretical
model to capture the use case of ACE in a simulation-based framework. Another
interesting research direction is to find more efficient schemes for useful policies.
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Abstract. Adaptive oblivious transfer (OT) is a protocol where a sender
initially commits to a database {Mi}N

i=1. Then, a receiver can query the
sender up to k times with private indexes ρ1, . . . , ρk so as to obtain
Mρ1 , . . . , Mρk and nothing else. Moreover, for each i ∈ [k], the receiver’s
choice ρi may depend on previously obtained messages {Mρj }j<i. Obliv-
ious transfer with access control (OT-AC) is a flavor of adaptive OT
where database records are protected by distinct access control poli-
cies that specify which credentials a receiver should obtain in order to
access each Mi. So far, all known OT-AC protocols only support access
policies made of conjunctions or rely on ad hoc assumptions in pairing-
friendly groups (or both). In this paper, we provide an OT-AC protocol
where access policies may consist of any branching program of polyno-
mial length, which is sufficient to realize any access policy in NC1. The
security of our protocol is proved under the Learning-with-Errors (LWE)
and Short-Integer-Solution (SIS) assumptions. As a result of indepen-
dent interest, we provide protocols for proving the correct evaluation of
a committed branching program on a committed input.

Keywords: Lattice assumptions · Standard assumptions · Zero-
knowledge arguments · Adaptive oblivious transfer

1 Introduction

Oblivious transfer (OT) is a central cryptographic primitive coined by Rabin [45]
and extended by Even et al. [20]. It involves a sender S with a database of mes-
sages M1, . . . ,MN and a receiver R with an index ρ ∈ {1, . . . , N}. The protocol
allows R to retrieve the ρ-th entry Mρ from S without letting S infer anything
on R’s choice ρ. Moreover, R only obtains Mρ learns nothing about {Mi}i�=ρ.

In its adaptive flavor [40], OT allows the receiver to interact k times with
S to retrieve Mρ1 , . . . ,Mρk

in such a way that, for each i ∈ {2, . . . , k}, the i-th
index ρi may depend on the messages Mρ1 , . . . ,Mρi−1 previously obtained by R.
c© International Association for Cryptologic Research 2017
T. Takagi and T. Peyrin (Eds.): ASIACRYPT 2017, Part I, LNCS 10624, pp. 533–563, 2017.
https://doi.org/10.1007/978-3-319-70694-8_19
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OT is known to be a complete building block for cryptography (see, e.g., [24])
in that, if it can be realized, then any secure multiparty computation can be.
In its adaptive variant, OT is motivated by applications in privacy-preserving
access to sensitive databases (e.g., medical records or financial data) stored in
encrypted form on remote servers, oblivious searches or location-based services.

As far as efficiency goes, adaptive OT protocols should be designed in such
a way that, after an inevitable initialization phase with linear communication
complexity in N and the security parameter λ, the complexity of each transfer
is at most poly-logarithmic in N . At the same time, this asymptotic efficiency
should not come at the expense of sacrificing ideal security properties. The most
efficient adaptive OT protocols that satisfy the latter criterion stem from the
work of Camenisch et al. [13] and its follow-ups [26–28].

In its basic form, (adaptive) OT does not restrict in any way the population
of users who can obtain specific records. In many sensitive databases (e.g., DNA
databases or patients’ medical history), however, not all users should be able to
download all records: it is vital access to certain entries be conditioned on the
receiver holding suitable credentials delivered by authorities. At the same time,
privacy protection mandates that authorized users be able to query database
records while leaking as little as possible about their interests or activities. In
medical datasets, for example, the specific entries retrieved by a given doctor
could reveal which disease his patients are suffering from. In financial or patent
datasets, the access pattern of a company could betray its investment strategy
or the invention it is developing. In order to combine user-privacy and fine-
grained database security, it is thus desirable to enrich adaptive OT protocols
with refined access control mechanisms in many of their natural use cases.

This motivated Camenisch et al. [11] to introduce a variant named oblivi-
ous transfer with access control (OT-AC), where each database record is pro-
tected by a different access control policy P : {0, 1}∗ → {0, 1}. Based on their
attributes, users can obtain credentials generated by pre-determined authorities,
which entitle them to anonymously retrieve database records of which the access
policy accepts their certified attributes: in other words, the user can only down-
load the records for which he has a valid credential Credx for an attribute string
x ∈ {0, 1}∗ such that P (x) = 1. During the transfer phase, the user demonstrates
possession of a pair (Credx, x) and simultaneously convinces the sender that he
is querying some record Mρ associated with a policy P such that P (x) = 1. The
only information that the database holder eventually learns is that some user
retrieved some record which he was authorized to obtain.

Camenisch et al. formalized the OT-AC primitive and provided a construc-
tion in groups with a bilinear map [11]. While efficient, their solution “only”
supports access policies consisting of conjunctions: each policy P is specified
by a list of attributes that a given user should obtain a credential for in order
to complete the transfer. Several subsequent works [10,12,50] considered more
expressive access policies while even hiding the access policies in some cases
[10,12]. Unfortunately, all of them rely on non-standard assumptions (known
as “q-type assumptions”) in groups with a bilinear maps. For the sake of not
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putting all one’s eggs in the same basket, a primitive as powerful as OT-AC
ought to have alternative realizations based on firmer foundations.

In this paper, we propose a solution based on lattice assumptions where access
policies consist of any branching program of width 5, which is known [6] to suffice
for the realization of any access policy in NC1. As a result of independent interest,
we provide protocols for proving the correct evaluation of a committed branching
program. More precisely, we give zero-knowledge arguments for demonstrating
possession of a secret input x ∈ {0, 1}κ and a secret (and possibly certified)
branching program BP such that BP(x) = 1.

Related Work. Oblivious transfer with adaptive queries dates back to the work
of Naor and Pinkas [40], which requires O(log N) interaction rounds per transfer.
Naor and Pinkas [42] also gave generic constructions of (adaptive) k-out-of-N
OT from private information retrieval (PIR) [16]. The constructions of [40,42],
however, are only secure in the half-simulation model, where simulation-based
security is only considered for one of the two parties (receiver security being
formalized in terms of a game-based definition). Moreover, the constructions of
Adaptive OT from PIR [42] require a complexity O(N1/2) at each transfer where
Adaptive OT allows for O(log N) cost. Before 2007, many OT protocols (e.g.,
[3,41,49]) were analyzed in terms of half-simulation.

While several efficient fully simulatable protocols appeared the last 15 years
(e.g., [37,44] and references therein), full simulatability remained elusive in the
adaptive k-out-of-N setting [40] until the work [13] of Camenisch, Neven and she-
lat, who introduced the “assisted decryption” paradigm. The latter consists in
having the sender obliviously decrypt a re-randomized version of one of the orig-
inal ciphertexts contained in the database. This technique served as a blueprint
for many subsequent protocols [26–28,31], including those with access control
[1,10–12] and those presented in this paper. In the adaptive k-out-of-N setting
(which we denote as OT N

k×1), the difficulty is to achieve full simulatability with-
out having to transmit a O(N) bits at each transfer. To our knowledge, except
the oblivious-PRF-based approach of Jarecki and Liu [31], all known fully sim-
ulatable OT N

k×1 protocols rely on bilinear maps.1

A number of works introduced various forms of access control in OT. Priced
OT [3] assigns variable prices to all database records. In conditional OT [18],
access to a record is made contingent on the user’s secret satisfying some pred-
icate. Restricted OT [29] explicitly protects each record with an independent
access policy. Still, none of these OT flavors aims at protecting the anonymity
of users. The model of Coull et al. [17] does consider user anonymity via state-
ful credentials. For the applications of OT-AC, it would nevertheless require
re-issuing user credentials at each transfer.

While efficient, the initial OT-AC protocol of Camenisch et al. [11] relies on
non-standard assumptions in groups with a bilinear map and only realizes access
policies made of conjunctions. Abe et al. [1] gave a different protocol which they

1 Several pairing-free candidates were suggested in [33] but, as pointed out in [28],
they cannot achieve full simulatability in the sense of [13]. In particular, the sender
can detect if the receiver fetches the same record in two distinct transfers.
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proved secure under more standard assumptions in the universal composabil-
ity framework [14]. Their policies, however, remain limited to conjunctions. It
was mentioned in [1,11] that disjunctions and DNF formulas can be handled
by duplicating database entries. Unfortunately, this approach rapidly becomes
prohibitively expensive in the case of (t, n)-threshold policies with t ≈ n/2. More-
over, securing the protocol against malicious senders requires them to prove that
all duplicates encrypt the same message. More expressive policies were considered
by Zhang et al. [50] who gave a construction based on attribute-based encryption
[47] that extends to access policies expressed by any Boolean formulas (and thus
NC1 circuits). Camenisch et al. [12] generalized the OT-AC functionality so as
to hide the access policies. In [10], Camenisch et al. gave a more efficient con-
struction with hidden policies based on the attribute-based encryption scheme
of [43]. At the expense of a proof in the generic group model, [10] improves
upon the expressiveness of [12] in that its policies extend into CNF formulas.
While the solutions of [10,12] both hide the access policies to users (and the
successful termination of transfers to the database), their policies can only live
in a proper subset of NC1. As of now, threshold policies can only be efficiently
handled by the ABE-based construction of Zhang et al. [50], which requires ad
hoc assumptions in groups with a bilinear map.

Our Results and Techniques. We describe the first OT-AC protocol based on
lattice assumptions. Our construction supports access policies consisting of any
branching program of width 5 and polynomial length – which suffices to realize
any NC1 circuit – and prove it secure under the SIS and LWE assumptions.
We thus achieve the same level of expressiveness as [50] with the benefit of
relying on well-studied assumptions. In its initial version, our protocol requires
the database holder to communicate Θ(N) bits to each receiver so as to prove
that the database is properly encrypted. In the random oracle model, we can
eliminate this burden via the Fiat-Shamir heuristic and make the initialization
cost linear in the database size N , regardless of the number of users.

As a first step, we build an ordinary OT N
k×1 protocol (i.e., without access con-

trol) via the “assisted decryption” approach of [13]. In short, the sender encrypts
all database entries using a semantically secure cryptosystem. At each transfer,
the receiver gets the sender to obliviously decrypt one of the initial ciphertexts
without learning which one. Security against malicious adversaries is achieved by
adding zero-knowledge (ZK) or witness indistinguishable (WI) arguments that
the protocol is being followed. The desired ZK or WI arguments are obtained
using the techniques of [34] and we prove that this basic protocol satisfies the
full imulatability definitions of [13] under the SIS and LWE assumptions. To
our knowledge, this protocol is also the first OT N

k×1 realization to achieve the
standard simulation-based security requirements under lattice assumptions.

So far, all known “beyond-conjunctions” OT-AC protocols [10,50] rely on
ciphertext-policy attribute-based encryption (CP-ABE) and proceed by attach-
ing each database record to a CP-ABE ciphertext. Our construction departs
from the latter approach for two reasons. First, the only known LWE-based CP-
ABE schemes are obtained by applying a universal circuit to a key-policy system,
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making them very inefficient. Second, the ABE-based approach requires a fully
secure ABE (i.e., selective security and semi-adaptive security are insufficient)
since the access policies are dictated by the environment after the generation of
the issuer’s public key, which contains the public parameters of the underlying
ABE in [10,50]. Even with the best known LWE-based ABE candidates [25], a
direct adaptation of the techniques in [10,50] would incur to rely on a complex-
ity leveraging argument [8] and a universal circuit. Instead, we take a different
approach and directly prove in a zero-knowledge manner the correct evaluation
of a committed branching program for a hidden input.

At a high level, our OT-AC protocol works as follows. For each i ∈ [N ],
the database entry Mi ∈ {0, 1}t is associated with branching program BPi. In
the initialization step, the database holder generates a Regev ciphertext (ai,bi)
of Mi, and issues a certificate for the pair

(
(ai,bi),BPi

)
, using the signature

scheme from [34]. At each transfer, the user U who wishes to get a record ρ ∈ [N ]
must obtain a credential Credx for an attribute string x ∈ {0, 1}κ such that
BPρ(x) = 1. Then, U modifies (aρ,bρ) into an encryption of Mρ ⊕ μ ∈ {0, 1}t,
for some random string μ ∈ {0, 1}t, and re-randomizes the resulting ciphertext
into a fresh encryption (c0, c1) of Mρ ⊕ μ. At this point, U proves that (c0, c1)
was obtained by transforming one of the original ciphertexts {(ai,bi)}N

i=1 by
arguing possession of a valid certificate for

(
(aρ,bρ),BPρ

)
and knowledge of all

randomness used in the transformation that yields (c0, c1). At the same time,
U proves possession of Credx for a string x which is accepted by the committed
BPρ. To demonstrate these statements in zero-knowledge, we develop recent
techniques [34,36,39] for lattice-based analogues [32,38] of Stern’s protocol [48].

As a crucial component of our OT-AC protocol, we need to prove knowledge
of an input x = (x0, . . . , xκ−1)� ∈ {0, 1}κ satisfying a hidden BP of length L,
where L and κ are polynomials in the security parameter. For each θ ∈ [L], we
need to prove that the computation of the θ-th state

ηθ = πθ,0(ηθ−1) · (1 − xvar(θ)) + πθ,1(ηθ−1) · xvar(θ), (1)

is done correctly, for permutations πθ,0, πθ,1 : [0, 4] → [0, 4] and for integer
var(θ) ∈ [0, κ − 1] specified by BP. To date, equations of the form (1) have
not been addressed in the context of zero-knowledge proofs for lattice-based
cryptography. In this work, we are not only able to handle L such equations, but
also manage to do so with a reasonable asymptotic cost.

In order to compute ηθ as in (1), we have to fetch the value xvar(θ) in the input
(x0, . . . , xκ−1)� and provide evidence that the searching process is conducted
honestly. If we perform a naive left-to-right search in the array x0, . . . , xκ−1, the
expected complexity is O(κ) for each step, and the total complexity amounts to
O(L · κ). If we instead perform a dichotomic search over x0, . . . , xκ−1, we can
decrease the complexity at each step down to O(log κ). However, in this case, we
need to prove in zero-knowledge a statement “I obtained xvar(θ) by conducting
a correct dichotomic search in my secret array.”

We solve this problem as follows. For each i ∈ [0, κ−1], we employ a SIS-based
commitment scheme [32] to commit to xi as comi, and prove that the committed
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bits are consistent with the ones involved in the credential Credx mentioned
above. Then we build a SIS-based Merkle hash tree [36] of depth δκ = �log κ� on
top of the commitments com0, . . . , comκ−1. Now, for each θ ∈ [L], we consider
the binary representation dθ,1, . . . , dθ,δκ

of var(θ). We then prove knowledge of
a bit yθ such that these conditions hold: “If one starts at the root of the tree
and follows the path determined by the bits dθ,1, . . . , dθ,δκ

, then one will reach
the leaf associated with the commitment opened to yθ.” The idea is that, if
the Merkle tree and the commitment scheme are both secure, then it should be
true that yθ = xvar(θ). In other words, this enables us to provably perform a
“binary search” for xvar(θ) = yθ. Furthermore, this process can be done in zero-
knowledge, by adapting the recent techniques from [36]. As a result, we obtain
a protocol with communication cost just O(L · log κ + κ).

2 Background and Definitions

Vectors are denoted in bold lower-case letters and bold upper-case letters will
denote matrices. The Euclidean and infinity norm of any vector b ∈ R

n will
be denoted by ‖b‖ and ‖b‖∞, respectively. The Euclidean norm of matrix B ∈
R

m×n with columns (bi)i≤n is ‖B‖ = maxi≤n ‖bi‖. When B has full column-
rank, we let B̃ denote its Gram-Schmidt orthogonalization.

When S is a finite set, we denote by U(S) the uniform distribution over S,
and by x ←↩ U(S) the action of sampling x according to this distribution. Finally
for any integers A,B,N , we let [N ] and [A,B] denote the sets {1, . . . , N} and
{A,A + 1, . . . , B}, respectively.

2.1 Lattices

A lattice L is the set of integer linear combinations of linearly independent basis
vectors (bi)i≤n living in R

m. We work with q-ary lattices, for some prime q.

Definition 1. Let m ≥ n ≥ 1, a prime q ≥ 2 and A ∈ Z
n×m
q and u ∈ Z

n
q ,

define Λq(A) := {e ∈ Z
m | ∃s ∈ Z

n
q s.t. AT · s = e mod q} as well as

Λ⊥
q (A) := {e ∈ Z

m | A · e = 0n mod q}, Λu
q (A) := {e ∈ Z

m | A · e = u mod q}.

For a lattice L, let ρσ,c(x) = exp(−π‖x − c‖2/σ2) for a vector c ∈ R
m and a

real σ > 0. The discrete Gaussian of support L, center c and parameter σ is
DL,σ,c(y) = ρσ,c(y)/ρσ,c(L) for any y ∈ L, where ρσ,c(L) =

∑
x∈L ρσ,c(x). The

distribution centered in c = 0 is denoted by DL,σ(y).
It is well known that one can efficiently sample from a Gaussian distribution

with lattice support given a sufficiently short basis of the lattice.

Lemma 1 [9, Lemma 2.3]. There exists a PPT algorithm GPVSample that takes
as inputs a basis B of a lattice L ⊆ Z

n and a rational σ ≥ ‖B̃‖ · Ω(
√

log n), and
outputs vectors b ∈ L with distribution DL,σ.
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We also rely on the trapdoor generation algorithm of Alwen and Peikert [4],
which refines the technique of Gentry et al. [22].

Lemma 2 [4, Theorem 3.2]. There is a PPT algorithm TrapGen that takes
as inputs 1n, 1m and an integer q ≥ 2 with m ≥ Ω(n log q), and outputs a
matrix A ∈ Z

n×m
q and a basis TA of Λ⊥

q (A) such that A is within statistical
distance 2−Ω(n) to U(Zn×m

q ), and ‖T̃A‖ ≤ O(
√

n log q).

We use the basis delegation algorithm [15] that inputs a trapdoor for A ∈ Z
n×m
q

and produces a trapdoor for any B ∈ Z
n×m′
q containing A as a submatrix.

A technique from Agrawal et al. [2] is sometimes used in our proofs.

Lemma 3 [15, Lemma 3.2]. There is a PPT algorithm ExtBasis that inputs B ∈
Z

n×m′
q whose first m columns span Z

n
q , and a basis TA of Λ⊥

q (A) where A ∈
Z

n×m
q is a submatrix of B, and outputs a basis TB of Λ⊥

q (B) with ‖T̃B‖ ≤ ‖T̃A‖.
Lemma 4 [2, Theorem 19]. There is a PPT algorithm SampleRight that inputs
A,C ∈ Z

n×m
q , a small-norm R ∈ Z

m×m, a short basis TC ∈ Z
m×m of Λ⊥

q (C), a
vector u ∈ Z

n
q and a rational σ such that σ ≥ ‖T̃C‖·Ω(

√
log n), and outputs b ∈

Z
2m such that

[
A A · R + C

] ·b = u mod q and with distribution statistically
close to DL,σ where L = {x ∈ Z

2m :
[
A A · R + C

] · x = u mod q}.

2.2 Hardness Assumptions

Definition 2. Let n,m, q, β be functions of λ ∈ N. The Short Integer Solution
problem SISn,m,q,β is, given A ←↩ U(Zn×m

q ), find x ∈ Λ⊥
q (A) with 0 < ‖x‖ ≤ β.

If q ≥ √
nβ and m,β ≤ poly(n), then standard worst-case lattice problems with

approximation factors γ = Õ(β
√

n) reduce to SISn,m,q,β (see, e.g., [22, Sect. 9]).

Definition 3. Let n,m ≥ 1, q ≥ 2, and let χ be a probability distribution on Z.
For s ∈ Z

n
q , let As,χ be the distribution obtained by sampling a ←↩ U(Zn

q ) and
e ←↩ χ, and outputting (a,aT · s + e) ∈ Z

n
q × Zq. The Learning With Errors

problem LWEn,q,χ asks to distinguish m samples chosen according to As,χ (for
s ←↩ U(Zn

q )) and m samples chosen according to U(Zn
q × Zq).

If q is a prime power, B ≥ √
nω(log n), γ = Õ(nq/B), then there exists

an efficient sampleable B-bounded distribution χ (i.e., χ outputs samples with
norm at most B with overwhelming probability) such that LWEn,q,χ is as least
as hard as SIVPγ (see, e.g., [9,46]).

2.3 Adaptive Oblivious Transfer

In the syntax of [13], an adaptive k-out-of-N OT scheme OT N
k is a tuple of

stateful PPT algorithms (SI,RI,ST,RT). The sender S = (SI,ST) consists of two
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interactive algorithms SI and ST and the receiver has a similar representation as
algorithms RI and RT. In the initialization phase, the sender and the receiver run
interactive algorithms SI and RI, respectively, where SI takes as input messages
M1, . . . ,MN while RI has no input. This phase ends with the two algorithms SI
and RI outputting their state information S0 and R0 respectively.

During the i-th transfer, 1 ≤ i ≤ k, both parties run an interactive protocol
via the RT and ST algorithms. The sender starts runs ST(Si−1) to obtain its
updated state information Si while the receiver runs RT(Ri−1, ρi) on input of its
previous state Ri−1 and the index ρi ∈ {1, . . . , N} of the message it wishes to
retrieve. At the end, RT outputs an updated state Ri and a message M ′

ρi
.

Correctness mandates that, for all M1, . . . ,MN , for all ρ1, . . . , ρk ∈ [N ] and
all coin tosses � of the (honestly run) algorithms, we have M ′

ρi
= Mρi

for all i.
We consider protocols that are secure (against static corruptions) in the

sense of simulation-based definitions. The security properties against a cheating
sender and a cheating receiver are formalized via the “real-world/ideal-world”
paradigm. The security definitions of [13] are recalled in the full paper.

2.4 Adaptive Oblivious Transfer with Access Control

Camenisch et al. [11] define oblivious transfer with access control (OT-AC) as a
tuple of PPT algorithms/protocols (ISetup, Issue,DBSetup,Transfer) such that:

ISetup: takes as inputs public parameters pp specifying a set P of access policies
and generates a key pair (PKI , SKI) for the issuer.

Issue: is an interactive protocol between the issuer I and a stateful user U under
common input (pp, x), where x is an attribute string. The issuer I takes as
inputs its key pair (PKI , SKI) and a user pseudonym PU. The user takes as
inputs its state information stU. The user U outputs either an error symbol
⊥ or a credential CredU, and an updated state st′U.

DBSetup: is an algorithm that takes as input the issuer’s public key PKI , a data-
base DB = (Mi,APi)

N
i=1 containing records Mi whose access is restricted by

an access policy APi and outputs a database public key PKDB, an encryption
of the records (ERi)N

i=1 and a database secret key SKDB.
Transfer: is a protocol between the database DB and a user U with common inputs

(PKI , PKDB). DB inputs SKDB and U inputs (ρ, stU, ERρ,APρ), where ρ ∈
[N ] is a record index to which U is requesting access. The interaction ends
with U outputting ⊥ or a string Mρ′ and an updated state st′U.

We assume private communication links, so that communications between a
user and the issuer are authenticated, and those between a user and the database
are anonymized: otherwise, anonymizing the Transfer protocol is impossible.

The security definitions formalize two properties called user anonymity and
database security. The former captures that the database should be unable to tell
which honest user is making a query and neither can tell which records are being
accessed. This should remain true even if the database colludes with corrupted
users and the issuer. As for database security, the intuition is that a cheating
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user cannot access a record for which it does not have the required credentials,
even when colluding with other dishonest users. In case the issuer is colluding
with these cheating users, they cannot obtain more records from the database
than they retrieve. Precise security definitions [11] are recalled in the full version
of the paper.

2.5 Vector Decompositions

We will employ the decomposition technique from [34,38], which allows trans-
forming vectors with infinity norm larger than 1 into vectors with infinity norm 1.

For any B ∈ Z+, define the number δB := �log2 B� + 1 = �log2(B + 1)� and
the sequence B1, . . . , BδB

, where Bj = �B+2j−1

2j �, ∀j ∈ [1, δB ]. This sequence
satisfies

∑δB

j=1 Bj = B and any integer v ∈ [0, B] can be decomposed to

idecB(v) = (v(1), . . . , v(δB))� ∈ {0, 1}δB such that
∑δB

j=1 Bj · vj = v. We describe
this decomposition procedure in a deterministic manner as follows:

1. Set v′ := v; For j = 1 to δB do:
If v′ ≥ Bj then v(j) := 1, else v(j) := 0; v′ := v′ − Bj · v(j).

2. Output idecB(v) = (v(1), . . . , v(δB))�.

For any positive integers m, B, we define Hm,B := Im ⊗ [B1| . . . |BδB
] ∈ Z

m×mδB

and the following injective functions:

(i) vdecm,B : [0, B]m → {0, 1}mδB that maps vector v = (v1, . . . , vm) to vector
(
idecB(v1)�‖ . . . ‖idecB(vm)�)�. Note that Hm,B · vdecm,B(v) = v.

(ii) vdec′
m,B : [−B,B]m → {−1, 0, 1}mδB that maps vector w = (w1, . . . , wm)

to vector
(
σ(w1) · idecB(|w1|)�‖ . . . ‖σ(wm) · idecB(|wm|)�)�, where for each

i = 1, . . . ,m: σ(wi) = 0 if wi = 0; σ(wi) = −1 if wi < 0; σ(wi) = 1 if wi > 0.
Note that Hm,B · vdec′

m,B(w) = w.

3 Building Blocks

We will use two distinct signature schemes because one of them only needs to
be secure in the sense of a weaker security notion and can be more efficient.
This weaker notion is sufficient to sign the database entries and allows a better
efficiency in the scheme of Sect. 4.

3.1 Signatures Supporting Efficient Zero-Knowledge Proofs

We use a signature scheme proposed by Libert et al. [34] who extended the Böhl
et al. signature [7] in order to sign messages comprised of multiple blocks while
keeping the scheme compatible with zero-knowledge proofs.

Keygen(1λ, 1Nb): Given a security parameter λ > 0 and the number of blocks
Nb = poly(λ), choose n = O(λ), a prime modulus q = Õ(N · n4), a
dimension m = 2n�log q�; an integer � = poly(n) and Gaussian parameters
σ = Ω(

√
n log q log n). Define the message space as M = ({0, 1}mI )Nb .
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1. Run TrapGen(1n, 1m, q) to get A ∈ Z
n×m
q and a short basis TA of Λ⊥

q (A).
This basis allows computing short vectors in Λ⊥

q (A) with a Gaussian
parameter σ. Next, choose � + 1 random A0,A1, . . . ,A� ←↩ U(Zn×m

q ).

2. Choose random matrices D ←↩ U(Zn×m/2
q ), D0 ←↩ U(Zn×m

q ),Dj ←↩
U(Zn×mI

q ) for j = 1, . . . , Nb, as well as a random vector u ←↩ U(Zn
q ).

The private signing key consists of SK := TA while the public key is com-
prised of PK :=

(
A, {Aj}�

j=0,D, {Dk}Nb

k=0,u
)
.

Sign
(
SK,Msg

)
: To sign an Nb-block Msg = (m1, . . . ,mNb

) ∈ ({0, 1}mI )Nb ,
1. Choose τ ←↩ U({0, 1}�). Using SK := TA, compute a short basis Tτ ∈

Z
2m×2m for Λ⊥

q (Aτ ), where Aτ = [A | A0 +
∑�

j=1 τ [j]Aj ] ∈ Z
n×2m
q .

2. Sample r ←↩ DZm,σ. Compute the vector cM ∈ Z
n
q as a chameleon hash

of (m1, . . . ,mNb
). Namely, compute cM = D0 · r +

∑Nb

k=1 Dk · mk ∈ Z
n
q ,

which is used to define uM = u + D · vdecn,q−1(cM ) ∈ Z
n
q . Using the

delegated basis Tτ ∈ Z
2m×2m, sample a vector v ∈ Z

2m in DΛ
uM
q (Aτ ),σ

.
Output the signature sig = (τ,v, r) ∈ {0, 1}� × Z

2m × Z
m.

Verify
(
PK,Msg, sig

)
: Given Msg = (m1, . . . ,mNb

) ∈ ({0, 1}mI )Nb and sig =
(τ,v, r) ∈ {0, 1}� × Z

2m × Z
m, return 1 if ‖v‖ < σ

√
2m, ‖r‖ < σ

√
m and

Aτ · v = u + D · vdecn,q−1(D0 · r +
Nb∑

k=1

Dk · mk) mod q. (2)

3.2 A Simpler Variant with Bounded-Message Security and
Security Against Non-Adaptive Chosen-Message Attacks

We consider a stateful variant of the scheme in Sect. 3.1 where a bound Q ∈
poly(n) on the number of signed messages is fixed at key generation time. In the
context of OT N

k×1, this is sufficient and leads to efficiency improvements. In the
modified scheme hereunder, the string τ ∈ {0, 1}� is an �-bit counter maintained
by the signer to keep track of the number of previously signed messages. This
simplified variant resembles the SIS-based signature scheme of Böhl et al. [7].

In this version, the message space is {0, 1}n�log q� so that vectors of Zn
q can

be signed by first decomposing them using vdecn,q−1(.).

Keygen(1λ, 1Q): Given λ > 0 and the maximal number Q ∈ poly(λ) of signa-
tures, choose n = O(λ), a prime q = Õ(Q · n4), m = 2n�log q�, an integer
� = �log Q� and Gaussian parameters σ = Ω(

√
n log q log n). The message

space is {0, 1}md , for some md ∈ poly(λ) with md ≥ m.
1. Run TrapGen(1n, 1m, q) to get A ∈ Z

n×m
q and a short basis TA of Λ⊥

q (A),
which allows sampling short vectors in Λ⊥

q (A) with a Gaussian parameter
σ. Next, choose � + 1 random A0,A1, . . . ,A� ←↩ U(Zn×m

q ).
2. Choose D ←↩ U(Zn×md

q ) as well as a random vector u ←↩ U(Zn
q ).

The counter τ is initialized to τ = 0. The private key consists of SK := TA

and the public key is PK :=
(
A, {Aj}�

j=0, D, u
)
.
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Sign
(
SK, τ,m

)
: To sign a message m ∈ {0, 1}md ,

1. Increment the counter by setting τ := τ + 1 and interpret it as a string
τ ∈ {0, 1}�. Then, using SK := TA, compute a short delegated basis
Tτ ∈ Z

2m×2m for the matrix Aτ = [A | A0 +
∑�

j=1 τ [j]Aj ] ∈ Z
n×2m
q .

2. Compute the vector uM = u + D · m ∈ Z
n
q . Then, using the delegated

basis Tτ ∈ Z
2m×2m, sample a short vector v ∈ Z

2m in DΛ
uM
q (Aτ ),σ

.
Output the signature sig = (τ,v) ∈ {0, 1}� × Z

2m.
Verify

(
PK,m, sig

)
: Given PK, m ∈ {0, 1}md and a signature sig = (τ,v) ∈

{0, 1}� × Z
2m, return 1 if ‖v‖ < σ

√
2m and Aτ · v = u + D · m mod q.

For our purposes, the scheme only needs to satisfy a notion of bounded-
message security under non-adaptive chosen-message attack.

Theorem 1. The scheme is bounded message secure under non-adaptive
chosen-message attacks if the SIS assumption holds. (The proof is given in the
full version of the paper.)

4 A Fully Simulatable Adaptive OT Protocol

Our basic OT N
k×1 protocol builds on the “assisted decryption” technique [13].

The databases holder encrypts all entries using a multi-bit variant [44] of Regev’s
cryptosystem [46] and proves the well-formedness of its public key and all cipher-
texts. In addition, all ciphertexts are signed using a signature scheme. At each
transfer, the receiver statistically re-randomizes a blinded version of the desired
ciphertext, where the blinding is done via the additive homomorphism of Regev.
Then, the receiver provides a witness indistinguishable (WI) argument that the
modified ciphertext (which is submitted for oblivious decryption) is a transfor-
mation of one of the original ciphertexts by arguing knowledge of a signature on
this hidden ciphertext. In response, the sender obliviously decrypts the modified
ciphertext and argues in zero-knowledge that the response is correct.

Adapting the technique of [13] to the lattice setting requires the following
building blocks: (i) A signature scheme allowing to sign ciphertexts while remain-
ing compatible with ZK proofs; (ii) A ZK protocol allowing to prove knowledge
of a signature on some hidden ciphertext which belongs to a public set and
was transformed into a given ciphertext; (iii) A protocol for proving the cor-
rect decryption of a ciphertext; (iv) A method of statistically re-randomizing an
LWE-encrypted ciphertext in a way that enables oblivious decryption. The first
three ingredients can be obtained from [34]. Since component (i) only needs to
be secure against random-message attacks as long as the adversary obtains at
most N signatures, we use the simplified SIS-based signature scheme of Sect. 3.2.
The statistical re-randomization of Regev ciphertexts is handled via the noise
flooding technique [5], which consists in drowning the initial noise with a super-
polynomially larger noise. While recent results [19] provide potentially more
efficient alternatives, we chose the flooding technique for simplicity because it
does not require the use of FHE (and also because the known multi-bit version
[30] of the GSW FHE [23] incurs an ad hoc circular security assumption).
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Our scheme works with security parameter λ, modulus q, lattice dimensions
n = O(λ) and m = 2n�log q�. Let Bχ = Õ(

√
n), and let χ be a Bχ-bounded

distribution. We also define an integer B as a randomization parameter such
that B = nω(1) · (m + 1)Bχ and B + (m + 1)Bχ ≤ q/5 (to ensure decryption
correctness). Our basic OT N

k×1 protocol goes as follows.

Initialization
(
SI(1λ,DB),RI(1λ)

)
: In this protocol, the sender SI has a database

DB = (M1, . . . ,MN ) of N messages, where Mi ∈ {0, 1}t for each i ∈ [N ], for
some t ∈ poly(λ). It interacts with the receiver RI as follows.
1. Generate a key pair for the signature scheme of Sect. 3.2 in order to sign

Q = N messages of length md = (n + t) · �log q� each. This key pair
consists of SKsig = TA ∈ Z

m×m and PKsig :=
(
A, {Aj}�

j=0,D,u
)
,

where � = log N and A,A0, . . . ,A� ∈ U(Zn×m
q ), D ∈ U(Zn×md

q ). The
counter is initialized to τ = 0.

2. Choose S ←↩ χn×t that will serve as a secret key for an LWE-based encryp-
tion scheme. Then, sample F ←↩ U(Zn×m

q ), E ←↩ χm×t and compute

P = [p1| . . . |pt] = F� · S + E ∈ Z
m×t
q , (3)

so that (F,P) ∈ Z
n×m
q × Z

m×t
q forms a public key for a t-bit variant of

Regev’s encryption scheme [46].
3. Sample vectors a1, . . . ,aN ←↩ U(Zn

q ) and x1, . . . ,xN ←↩ χt to compute

(ai,bi) =
(
ai, S� · ai + xi + Mi · �q/2�) ∈ Z

n
q × Z

t
q ∀i ∈ [N ]. (4)

4. For each i ∈ [N ], generate a signature (τi,vi) ← Sign(SKsig, τ,mi) on the
decomposition mi = vdecn+t,q−1(a�

i |b�
i )� ∈ {0, 1}md .

5. SI sends R0 =
(
PKsig, (F,P), {(ai,bi), (τi,vi)}N

i=1

)
to RI and inter-

actively proves knowledge of small-norm S ∈ Z
n×t, E ∈ Z

m×t, short
vectors {xi}N

i=1 and t-bit messages {Mi}N
i=1, for which (3) and (4) hold.

To this end, SI plays the role of the prover in the ZK argument system
described in Sect. 6.3. If the argument of knowledge does not verify or
if there exists i ∈ [N ] such that (τi,vi) is an invalid signature on the
message mi = vdecn+t,q−1(a�

i |b�
i )� w.r.t. PKsig, then RI aborts.

6. Finally SI defines S0 =
(
(S,E), (F,P), PKsig

)
, which it keeps to itself.

Transfer
(
ST(Si−1),RT(Ri−1, ρi)

)
: At the i-th transfer, the receiver RT has state

Ri−1 and an index ρi ∈ [1, N ]. It interacts as follows with the sender ST that
has state Si−1 in order to obtain Mρi

from DB.
1. RT samples vectors e ←↩ U({−1, 0, 1}m), μ ←↩ U({0, 1}t) and a random

ν ←↩ U([−B,B]t) to compute

(c0, c1) =
(
aρi

+ F · e, bρi
+ P� · e + μ · �q/2� + ν

) ∈ Z
n
q × Z

t
q, (5)

which is a re-randomization of (aρi
,bρi

+μ·�q/2�). The ciphertext (c0, c1)
is sent to ST. In addition, RT provides an interactive WI argument that
(c0, c1) is indeed a transformation of (aρi

,bρi
) for some ρi ∈ [N ], and RT

knows a signature on m = vdecn+1,q−1(a�
ρi

|b�
ρi

)� ∈ {0, 1}md . To this end,
RT runs the prover in the ZK argument system in Sect. 6.5.
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2. If the argument of step 1 verifies, ST uses S to decrypt (c0, c1) ∈ Z
n
q ×Z

t
q

and obtain M ′ = �(c1 − S� · c0)/(q/2)� ∈ {0, 1}t, which is sent back to
RT. In addition, ST provides a zero-knowledge argument of knowledge of
vector y = c1 − S� · c0 − M ′ · �q/2� ∈ Z

t of norm ‖y‖∞ ≤ q/5 and
small-norm matrices E ∈ Z

m×t, S ∈ Z
n×t satisfying (modulo q)

P = F� · S + E, c�
0 · S + y� = c�

1 − M ′� · �q/2�. (6)

To this end, ST runs the prover in the ZK argument system in Sect. 6.4.
3. If the ZK argument produced by ST does not properly verify at step 2, RT

halts and outputs ⊥. Otherwise, RT recalls the random string μ ∈ {0, 1}t

that was chosen at step 1 and computes Mρi
= M ′ ⊕μ. The transfer ends

with ST and RT outputting Si = Si−1 and Ri = Ri−1, respectively.

In the initialization phase, the sender has to repeat step 5 with each receiver
to prove that {(ai,bi)}N

i=1 are well-formed. Using the Fiat-Shamir heuristic [21],
we can decrease this initialization cost from O(N · U) to O(N) (regardless of
the number of users U) by making the proof non-interactive. This modification
also reduces each transfer to 5 communication rounds since, even in the transfer
phase, the sender’s ZK arguments can be non-interactive and the receiver’s argu-
ments only need to be WI, which is preserved when the basic ZK protocol (which
has a ternary challenge space) is repeated ω(log n) times in parallel. Details are
given in the full version of the paper.

The security of the above OT N
k×1 protocol against static corruptions is proved

in the full version of the paper under the SIS and LWE assumptions.

5 OT with Access Control for Branching Programs

In this section, we extend our protocol of Sect. 4 into a protocol where data-
base entries can be protected by access control policies consisting of branching
programs. In a nutshell, the construction goes as follows.

When the database is set up, the sender signs (a binary representation of)
each database entry (ai,bi) together with a hash value hBP,i ∈ Z

n
q of the corre-

sponding branching program. For each possessed attribute x ∈ {0, 1}κ, the user
U obtains a credential CredU,x from the issuer.

If U has a credential CredU,x for an attribute x satisfying the ρ-th branch-
ing program, U can re-randomize (aρ,bρ) into (c0, c1), which is given to the
sender, while proving that: (i) He knows a signature (τ,v) on some message
(aρ,bρ,hBP,ρ) such that (c0, c1) is a re-randomization of (aρ,bρ); (ii) The cor-
responding hBP,ρ is the hash value of (the binary representation of) a branching
program BPρ that accepts an attribute x ∈ {0, 1}κ for which he has a valid
credential CredU,x (i.e., BPρ(x) = 1).

While statement (i) can be proved as in Sect. 4, handling (ii) requires a
method of proving the possession of a (committed) branching program BP and
a (committed) input x ∈ {0, 1}κ such that BP(x) = 1 while demonstrating
possession of a credential for x.
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Recall that a branching program BP of length L, input space {0, 1}κ and
width 5 is specified by L tuples of the form (var(θ), πθ,0, πθ,1) where

- var : [L] → [0, κ − 1] is a function that associates the θ-th tuple with the
coordinate xvar(θ) ∈ {0, 1} of the input x = (x0, . . . , xκ−1)�.

- πθ,0, πθ,1 : {0, 1, 2, 3, 4} → {0, 1, 2, 3, 4} are permutations that determine the
θ-th step of the evaluation.

On input x = (x0, . . . , xκ−1)�, BP computes its output as follows. For each bit
b ∈ {0, 1}, let b̄ denote the bit 1 − b. Let ηθ denote the state of computation at
step θ. The initial state is η0 = 0 and, for θ ∈ [1, L], the state ηθ is computed as

ηθ = πθ,xvar(θ)(ηθ−1) = πθ,0(ηθ−1) · x̄var(θ) + πθ,1(ηθ−1) · xvar(θ).

Finally, the output of evaluation is BP(x) = 1 if ηL = 0, otherwise BP(x) = 0.
We now let δκ = �log2 κ� and note that each integer in [0, κ − 1] can be

determined by δκ bits. In particular, for each θ ∈ [L], let dθ,1, . . . , dθ,δκ
be the

bits representing var(θ). Then, we consider the following representation of BP:

zBP =
(
d1,1, . . . , d1,δκ

, . . . , dL,1, . . . , dL,δκ
, π1,0(0), . . . , π1,0(4), π1,1(0), . . . ,

π1,1(4), . . . , πL,0(0), . . . , πL,0(4), πL,1(0), . . . , πL,1(4)
)� ∈ [0, 4]ζ , (7)

where ζ = L(δκ + 10).

5.1 The OT-AC Protocol

We assume public parameters pp consisting of a modulus q, integers n, m such
that m = 2n�log q�, a public matrix Ā ∈ Z

n×m
q , the maximal length L ∈ poly(n)

of branching programs and their desired input length κ ∈ poly(n).

ISetup
(
pp
)
: Given public parameters pp = {q, n,m, Ā, L, κ}, generate a key pair

(PKI , SKI) ← Keygen(pp, 1) for the signature scheme in Sect. 3.1 in order to
sign single-block messages (i.e., Nb = 1) of length mI = n ·�log q�+κ. Letting
�I = O(n), this key pair contains SKI = TAI

∈ Z
m×m and

PKI :=
(
AI , {AI,j}�I

j=0, DI , {DI,0,DI,1}, uI

)
.

Issue
(
I(pp, SKI , PKI , PU,x) ↔ U(pp,x, stU)

)
: On common input x ∈ {0, 1}κ,

the issuer I and the user U interact in the following way:
1. If stU = ∅, U creates a pseudonym PU = Ā · eU ∈ Z

n
q , for a randomly

chosen eU ←↩ U({0, 1}m), which is sent to I. It sets stU = (eU, PU, 0, ∅, ∅).
Otherwise, U parses its state stU as (eU, PU, fDB , CU,CredU).

2. The issuer I defines the message mU,x = (vdecn,q−1(PU)�|x�)� ∈
{0, 1}mI . Then, it runs the signing algorithm of Sect. 3.1 to obtain and
return certU,x =

(
τU,vU, rU

) ← Sign(SKI ,mU,x) ∈ {0, 1}�I × Z
2m × Z

m,
which binds U’s pseudonym PU to the attribute string x ∈ {0, 1}κ.
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3. U checks that certU,x satisfies (2) and that ‖vU‖ ≤ σ
√

2m, rU ≤ σ
√

m. If
so, U sets CU := CU ∪ {x}, CredU := CredU ∪ {certU,x} and updates its
state stU = (eU, PU, fDB , CU,CredU). If certU,x does not properly verify,
U aborts the interaction and leaves stU unchanged.

DBSetup
(
PKI ,DB = {(Mi,BPi)}N

i=1

)
: The sender DB has DB =

{(Mi,BPi)}N
i=1 which is a database of N pairs made of a message Mi ∈

{0, 1}t and a policy realized by a length-L branching program BPi =
{vari(θ), πi,θ,0, πi,θ,1}L

θ=1.
1. Choose a random matrix AHBP ←↩ U

(
Z

n×ζ
q

)
which will be used to hash

the description of branching programs.
2. Generate a key pair for the signature scheme of Sect. 3.2 in order to sign

Q = N messages of length md = (2n + t) · �log q� each. This key pair
consists of SKsig = TA ∈ Z

m×m and PKsig :=
(
A, {Aj}�

j=0,D,u
)
,

where � = �log N� and A,A0, . . . ,A� ∈ U(Zn×m
q ), D ∈ U(Zn×md

q ) with
m = 2n�log q�, md = (2n + t)�log q�. The counter is initialized to τ = 0.

3. Sample S ←↩ χn×t which will serve as a secret key for an LWE-based
encryption scheme. Then, sample F ←↩ U(Zn×m

q ), E ←↩ χm×t to compute

P = [p1| . . . |pt] = F� · S + E ∈ Z
m×t
q (8)

so that (F,P) forms a public key for a t-bit variant of Regev’s system.
4. Sample vectors a1, . . . ,aN ←↩ U(Zn

q ) and x1, . . . ,xN ←↩ χt to compute

(ai,bi) =
(
ai, a�

i · S + xi + Mi · �q/2�) ∈ Z
n
q × Z

t
q ∀i ∈ [N ] (9)

5. For each i = 1 to N , (ai,bi) is bound to BPi as follows.
a. Let zBP,i ∈ [0, 4]ζ be the binary representation of the branching pro-

gram. Compute its digest hBP,i = AHBP · zBP,i ∈ Z
n
q .

b. Using SKsig, generate a signature (τi,vi) ← Sign(SKsig, τ,mi) on
the message mi = vdec2n+t,q−1(ai|bi|hBP,i) ∈ {0, 1}md obtained by
decomposing (a�

i |b�
i |h�

BP,i)
� ∈ Z

2n+t
q .

6. The database’s public key is defined as PKDB =
(
PKsig, (F,P), AHBP

)

while the encrypted database is {ERi =
(
ai,bi, (τi,vi)

)
,BPi}N

i=1.

The sender DB outputs
(
PKDB, {ERi,BPi}N

i=1

)
and keeps SKDB =(

SKsig,S
)
.

Transfer
(
DB(SKDB, PKDB, PKI),U(ρ, stU, PKI , PKDB, ERρ,BPρ)

)
: Given an

index ρ ∈ [N ], a record ERρ =
(
aρ,bρ, (τρ,vρ)

)
and a policy BPρ, the user U

parses stU as (eU, PU, fDB , CU,CredU). If CU does not contain any x ∈ {0, 1}κ

s.t. BPρ(x) = 1 and CredU contains the corresponding certU,x, U outputs ⊥.
Otherwise, he selects such a pair (x, certU,x) and interacts with DB:
1. If fDB = 0, U interacts with DB for the first time and requires DB to

prove knowledge of small-norm S ∈ Z
n×t, E ∈ Z

m×t, {xi}N
i=1 and t-bit

messages {Mi}N
i=1 satisfying (8)–(9). To do this, DB uses the ZK argument

in Sect. 6.3. If there exists i ∈ [N ] such that (τi,vi) is an invalid signature
on vdec2n+t,q−1(a�

i |b�
i |h�

BP,i)
� or if the ZK argument does not verify, U

aborts. Otherwise, U updates stU and sets fDB = 1.
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2. U re-randomizes the pair (aρ,bρ) contained in ERρ. It samples vectors
e ←↩ U({−1, 0, 1}m), μ ←↩ U({0, 1}t) and ν ←↩ U([−B,B]t) to compute

(c0, c1) =
(
aρ + F · e, bρ + P� · e + μ · �q/2� + ν

) ∈ Z
n
q × Z

t
q, (10)

which is sent to DB as a re-randomization of (aρ,bρ +μ · �q/2�). Then, U
provides an interactive WI argument that (c0, c1) is a re-randomization
of some (aρ,bρ) associated with a policy BPρ for which U has a cre-
dential certU,x for some x ∈ {0, 1}κ such that BPρ(x) = 1. In addi-
tion, U demonstrates possession of: (i) a preimage zBP,ρ ∈ [0, 4]ζ of
hBP,ρ = AHBP ·zBP,ρ ∈ Z

n
q ; (ii) a credential CredU,x for the corresponding

x ∈ {0, 1}κ and the private key eU ∈ {0, 1}m for the pseudonym PU to
which x is bound; (iii) the coins leading to the randomization of some
(aρ,bρ). Then entire step is conducted by arguing knowledge of
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

eU ∈ {0, 1}m,mU,x ∈ {0, 1}mI , x ∈ {0, 1}κ, m̂U,x ∈ {0, 1}m/2

τU ∈ {0, 1}�I , vU = (v�
U,1|v�

U,2)
� ∈ [−β, β]2m, rU ∈ [−β, β]m

// signature onmU,x = (vdecn,q−1(PU)�|x�)�

zBP,ρ ∈ [0, 4]ζ // representation ofBPρ

m ∈ {0, 1}md , τ ∈ {0, 1}�, v = (v�
1 |v�

2 )� ∈ Z
2m

// signature onm = vdec2n+t,q−1(a�
i |b�

i |h�
BP,ρ)

�

e ∈ {−1, 0, 1}t, μ ∈ {0, 1}t, ν ∈ [−B,B]t,
// coins allowing the re-randomization of (aρ,bρ)

satisfying the relations (modulo q)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H2n+t,q−1 · m +

⎡

⎢
⎣

F

P� It · �q/2� It

−AHBP

⎤

⎥
⎦ ·

⎡

⎢
⎢
⎢
⎣

e
μ

ν

zBP,ρ

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎣

c0
c1
0n

⎤

⎥
⎦

// (recall that (a�
ρ |b�

ρ |h�
BP,ρ)

� = H2n+t,q−1 · m)
A · v1 + A0 · v2 +

∑�
j=1 Aj · (τ [j] · v2) − D · m = u

AI · vU,1 + AI,0 · vU,2 +
∑�I

j=1 AI,j · (τU[j] · vU,2) − DI · m̂U,x = uI

DI,0 · rU + DI,1 · mU,x − Hn,q−1 · m̂U,x = 0[
Hn,q−1 0

0 Iκ

]

· mU,x +

[
−Ā
0

]

· eU +

[
0

−Iκ

]

· x = 0

(11)

and such that zBP,ρ ∈ [0, 4]ζ encodes BPρ such that BPρ(x) = 1. This is
done by running the argument system described in Sect. 6.6.

3. If the ZK argument of step 2 verifies, DB decrypts (c0, c1) ∈ Z
n
q × Z

t
q

to obtain M ′ = �(c1 − S� · c0)/(q/2)� ∈ {0, 1}t, which is returned to U.
Then, DB argues knowledge of y = c1 −S� ·c0 −M ′ · �q/2� ∈ Z

t of norm
‖y‖∞ ≤ q/5 and small-norm E ∈ Z

m×t, S ∈ Z
n×t satisfying (modulo q)

P = F� · S + E, c�
0 · S + y� = c�

1 − M ′� · �q/2�.
To this end, DB uses the ZK argument system of Sect. 6.4.
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4. If the ZK argument produced by DB does not verify, U outputs ⊥. Oth-
erwise, U recalls the string μ ∈ {0, 1}t and outputs Mρi

= M ′ ⊕ μ.

Like our construction of Sect. 4, the above protocol requires the DB to repeat
a ZK proof of communication complexity Ω(N) with each user U during the
initialization phase. By applying the Fiat-Shamir heuristic as shown in the full
version of the paper, the cost of the initialization phase can be made independent
of the number of users: the sender can publicize

(
PKDB, {ERi,BPi}N

i=1

)
along

with a with a universally verifiable non-interactive proof of well-formedness.
The security of the above protocol against static corruptions is proved in the

full version of the paper, under the SIS and LWE assumptions.

6 Our Zero-Knowledge Arguments of Knowledge

This section provides all the zero-knowledge arguments of knowledge (ZKAoK)
used as building blocks in our two adaptive OT schemes. Our argument systems
operate in the framework of Stern’s protocol [48], which was originally introduced
in the context of code-based cryptography but has been developed [34–36,38,39].

In Sect. 6.1, we first recall Stern’s protocol in a generalized, abstract man-
ner suggested in [34]. Then, using various transformations, we will demonstrate
that all the required ZKAoKs can be obtained from this abstract protocol. Our
basic strategy and techniques are summarized in Sect. 6.2, while the details of
the protocols are given in the next subsections. In particular, our treatment of
hidden branching programs in Sect. 6.6 is rather sophisticated as it requires to
handle a number of secret objects nested together via branching programs, com-
mitments, encryptions, signatures and Merkle trees. This protocol introduces
new techniques and insights of which we provide the intuition hereafter.

6.1 Abstracting Stern’s Protocol

Let K, D, q be positive integers with D ≥ K and q ≥ 2, and let VALID be a subset
of ZD. Suppose that S is a finite set such that every φ ∈ S can be associated
with a permutation Γφ of D elements satisfying the following conditions:
{

w ∈ VALID ⇐⇒ Γφ(w) ∈ VALID,

If w ∈ VALID and φ is uniform in S, then Γφ(w) is uniform in VALID.
(12)

We aim to construct a statistical ZKAoK for the following abstract relation:

Rabstract =
{(

(M,v),w
) ∈ Z

K×D
q × Z

D
q × VALID : M · w = v mod q.

}

Stern’s original protocol corresponds to the case VALID = {w ∈ {0, 1}D :
wt(w) = k}, where wt(·) denotes the Hamming weight and k < D is a given
integer, S = SD is the set of all permutations of D elements and Γφ(w) = φ(w).

The conditions in (12) play a crucial role in proving in ZK that w ∈ VALID.
To this end, the prover samples a random φ ←↩ U(S) and lets the verifier check
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that Γφ(w) ∈ VALID without learning any additional information about w due to
the randomness of φ. Furthermore, to prove in a zero-knowledge manner that the
linear equation is satisfied, the prover samples a masking vector rw ←↩ U(ZD

q ),
and convinces the verifier instead that M · (w + rw) = M · rw + v mod q.

The interaction between prover P and verifier V is described in Fig. 1. The
protocol uses a statistically hiding and computationally binding string commit-
ment scheme COM (e.g., the SIS-based scheme from [32]).

Fig. 1. Stern-like ZKAoK for the relation Rabstract.

Theorem 2. The protocol in Fig. 1 is a statistical ZKAoK with perfect com-
pleteness, soundness error 2/3, and communication cost O(D log q). Namely:

– There exists a polynomial-time simulator that, on input (M,v), outputs an
accepted transcript statistically close to that produced by the real prover.

– There exists a polynomial-time knowledge extractor that, on input a commit-
ment CMT and 3 valid responses (RSP1,RSP2,RSP3) to all 3 possible values
of the challenge Ch, outputs w′ ∈ VALID such that M · w′ = v mod q.

The proof of the theorem relies on standard simulation and extraction techniques
for Stern-like protocols [32,34,38]. It is given in the full version of the paper.

6.2 Our Strategy and Basic Techniques, in a Nutshell

Before going into the details of our protocols, we first summarize our governing
strategy and the techniques that will be used in the next subsections.
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In each protocol, we prove knowledge of (possibly one-dimensional) integer
vectors {wi}i that have various constraints (e.g., smallness, special arrangements
of coordinates, or correlation with one another) and satisfy a system

{∑

i

Mi,j · wi = vj

}

j
, (13)

where {Mi,j}i,j , {vj}j are public matrices (which are possibly zero or identity
matrices) and vectors. Our strategy consists in transforming this entire system
into one equivalent equation M·w = v, where matrix M and vector v are public,
while the constraints of the secret vector w capture those of witnesses {wi}i and
they are provable in zero-knowledge via random permutations. For this purpose,
the Stern-like protocol from Sect. 6.1 comes in handy.

A typical transformation step is of the form wi → w̄i, where there exists
public matrix Pi,j such that Pi,j · w̄i = wi. This subsumes the decomposition
and extension mechanisms which first appeared in [38].

– Decomposition: Used when wi has infinity norm bound larger than 1 and
we want to work more conveniently with w̄i whose norm bound is exactly 1.
In this case, Pi,j is a decomposition matrix (see Sect. 2.5).

– Extension: Used when we insert “dummy” coordinates to wi to obtain w̄i

whose coordinates are somewhat balanced. In this case, Pi,j is a {0, 1}-matrix
with zero-columns corresponding to positions of insertions.

Such a step transforms the term Mi,j ·wi into Mi,j ·w̄i, where Mi,j = Mi,j ·Pi,j

is a public matrix. Also, using the commutativity property of addition, we often
group together secret vectors having the same constraints.

After a number of transformations, we will reach a system equivalent to (13):
⎧
⎪⎪⎨

⎪⎪⎩

M′
1,1 · w′

1 + M′
1,2 · w′

2 + · · · + M′
1,k · w′

k = v1,
...

M′
t,1 · w′

1 + M′
t,2 · w′

2 + · · · + M′
t,k · w′

k = vt,

(14)

where integers t, k and matrices M′
i,j are public. Defining

M =

⎛

⎜
⎜
⎝

M′
1,1 M′

1,2 · · · M′
1,k

...
...

. . .
...

M′
t,1 M′

t,2 · · · M′
t,k

⎞

⎟
⎟
⎠ ; w =

⎛

⎜
⎜
⎝

w′
1

...
w′

k

⎞

⎟
⎟
⎠ ; v =

⎛

⎜
⎜
⎝

v1

...
vt

⎞

⎟
⎟
⎠ ,

we obtain the unified equation M · w = v mod q. At this stage, we will use a
properly defined composition of random permutations to prove the constraints
of w. We remark that the crucial aspect of the above process is in fact the manip-
ulation of witness vectors, while the transformations of public matrices/vectors
just follow accordingly. To ease the presentation of the next subsections, we will
thus only focus on the secret vectors.
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In the process, we will employ various extending and permuting techniques
which require introducing some notations. The most frequently used ones are
given in Table 1. Some of these techniques appeared (in slightly different forms)
in previous works [34–36,38,39]. The last three parts of the table summa-
rizes newly-introduced techniques that will enable the treatment of secret-and-
correlated objects involved in the evaluation of hidden branching programs.

In particular, the technique of the last row will be used for proving knowledge
of an integer z = x · y for some (x, y) ∈ [0, 4] × {0, 1} satisfying other relations.

6.3 Protocol 1

Let n,m, q,N, t, Bχ be the parameters defined in Sect. 4. The protocol allows the
prover to prove knowledge of LWE secrets and the well-formedness of ciphertexts.
It is summarized as follows.

Common input: F ∈ Z
n×m
q , P ∈ Z

m×t
q ; {ai ∈ Z

n
q , bi ∈ Z

t
q}N

i=1.
Prover’s goal is to prove knowledge of S ∈ [−Bχ, Bχ]n×t, E ∈ [−Bχ, Bχ]m×t,

{xi ∈ [−Bχ, Bχ]t,Mi ∈ {0, 1}t}N
i=1 such that the following equations hold:

{
F� · S + E = P mod q

∀i ∈ [N ] : S� · ai + xi + �q/2� · Mi = bi mod q.
(15)

For each j ∈ [t], let pj , sj , ej be the j-th column of matrices P,S,E, respectively.
For each (i, j) ∈ [N ] × [t], let bi[j],xi[j],Mi[j] denote the j-th coordinate of
vectors bi,xi,Mi, respectively. Then, observe that (15) can be rewritten as:

{
∀j ∈ [t] : F� · sj + Im · ej = pj mod q

∀(i, j) ∈ [N ] × [t] : a�
i · sj + 1 · xi[j] + �q/2� · Mi[j] = bi[j] mod q.

(16)

Then, we form the following vectors:

w1 =
(
s�
1 | . . . | s�

t | e�
1 | . . . | e�

t | (x1[1], . . . ,xN [t])
)� ∈ [−Bχ, Bχ](n+m+N)t;

w2 = (M1[1], . . . , MN [t])� ∈ {0, 1}Nt.

Next, we run vdec′
(n+m+N)t,Bχ

to decompose w1 into w̄1 and then extend
w̄1 to w∗

1 ∈ B3
(n+m+N)tδBχ

. We also extend w2 into w∗
2 ∈ B2

Nt and we then form

w = ((w∗
1)

� | (w∗
2)

�)� ∈ {−1, 0, 1}D, where D = 3(n + m + N)tδBχ
+ 2Nt.

Observe that relations (16) can be transformed into one equivalent equation
of the form M ·w = v mod q, where M and v are built from the common input.

Having performed the above unification, we now define VALID as the set of all
vectors t = (t�

1 | t�
2 )� ∈ {−1, 0, 1}D, where t1 ∈ B3

(n+m+N)tδBχ
and t2 ∈ B2

Nt.
Clearly, our vector w belongs to the set VALID.

Next, we specify the set S and permutations of D elements {Γφ : φ ∈ S}, for
which the conditions in (12) hold.
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– S := S3(n+m+N)tδBχ
× S2Nt.

– For φ = (φ1, φ2) ∈ S and for t = (t�
1 | t�

2 )� ∈ Z
D, where t1 ∈ Z

3(n+m+N)tδBχ

and t2 ∈ Z
2Nt, we define Γφ(t) = (φ1(t1)� | φ2(t2)�)�.

By inspection, it can be seen that the desired properties in (12) are satisfied.
As a result, we can obtain the required ZKAoK by running the protocol from
Sect. 6.1 with common input (M,v) and prover’s input w. The protocol has
communication cost O(D log q) = Õ(λ) · O(Nt) bits.

While this protocol has linear complexity in N , it is only used in the initial-
ization phase, where Ω(N) bits inevitably have to be transmitted anyway.

6.4 Protocol 2

Let n,m, q,N, t, B be system parameters. The protocol allows the prover to prove
knowledge of LWE secrets and the correctness of decryption.

Common input: F ∈ Z
n×m
q , P ∈ Z

m×t
q ; c0 ∈ Z

n
q , c1 ∈ Z

t
q, M ′ ∈ {0, 1}t.

Prover’s goal is to prove knowledge of S ∈ [−Bχ, Bχ]n×t, E ∈ [−Bχ, Bχ]m×t

and y ∈ [−q/5, q/5]t such that the following equations hold:

F� · S + E = P mod q; c�
0 · S + y� = c�

1 − M ′� · �q/2� mod q. (17)

For each j ∈ [t], let pj , sj , ej be the j-th column of matrices P,S,E, respectively;
and let y[j], c1[j],M ′[j] be the j-th entry of vectors y, c1,M ′, respectively. Then,
observe that (17) can be re-written as:

∀j ∈ [t] :

{
F� · sj + Im · ej = pj mod q

c�
0 · sj + 1 · y[j] = c1[j] − M ′[j] · �q/2� mod q.

(18)

Next, we form vector w1 = (s�
1 | . . . | s�

t | e�
1 | . . . | e�

t )� ∈ [−Bχ, Bχ](n+m)t,
then decompose it to w̄1 ∈ {−1, 0, 1}(n+m)tδBχ , and extend w̄1 to w∗

1 ∈
B3
(n+m)tδBχ

.

At the same time, we decompose vector y = (y[1], . . . ,y[t])� ∈ [−q/5, q/5]t

to ȳ ∈ {−1, 0, 1}tδq/5 , and then extend ȳ to y∗ ∈ B3
tδq/5

.
Defining the ternary vector w = ((w∗

1)
� | (y∗)�)� ∈ {−1, 0, 1}D of dimen-

sion D = 3(n+m)tδBχ
+3tδq/5, we finally obtain the equation M ·w = v mod q,

for public matrix M and public vector v. Using similar arguments as in Sect. 6.3,
we can obtain the desired zero-knowledge argument system. The protocol has
communication cost O(D log q) = Õ(λ) · O(t) bits.

6.5 Protocol 3

Let n,m,md, q, t, �, B be the parameters defined in Sect. 4. The protocol allows
the prover to argue that a given ciphertext is a correct randomization of some
hidden ciphertext and that he knows a valid signature on that ciphertext. Let β
be the infinity norm bound of these valid signatures.
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Table 1. Basic notations and extending/permuting techniques used in our protocols.

Notation Meaning/Property/Usage/Technique

B2
m – The set of vectors in {0, 1}2m with Hamming weight m

– ∀φ ∈ S2m,x′ ∈ Z
2m : x′ ∈ B2

m ⇔ φ(x′) ∈ B2
m

– To prove x ∈ {0, 1}m: Extend x to x′ ∈ B2
m, then permute x′

B3
m – The set of vectors in {−1, 0, 1}3m that have exactly m coordinates equal

to j, for every j ∈ {−1, 0, 1}
– ∀φ ∈ S3m,x′ ∈ Z

3m : x′ ∈ B3
m ⇔ φ(x′) ∈ B3

m

– To prove x ∈ {−1, 0, 1}m: Extend x to x′ ∈ B3
m, then permute x′

ext2(·) and

T2[·](·)
– For c ∈ {0, 1} : ext2(c) = (c̄, c)� ∈ {0, 1}2

– For b ∈ {0, 1} and x = (x0, x1)
� ∈ Z

2: T2[b](x) = (xb, xb̄)
�

– Property: x = ext2(c) ⇔ T2[b](x) = ext2(c ⊕ b)

– To prove c ∈ {0, 1} simultaneously satisfies many relations: Extend it to

x = ext2(c), then permute and use the same b at all appearances

expand·, · and

Texp[·, ·](·)
– For c ∈ {0, 1} and x ∈ Z

m: expand(c,x) = (c̄ · x� | c · x�)� ∈ Z
2m

– For b ∈ {0, 1}, φ ∈ Sm, v =

(
v0

v1

)

∈ Z
2m: Texp[b, φ](v) =

(
φ(vb)

φ(vb̄)

)

– Property: v = expand(c,x) ⇔ Texp[b, φ](v) = expand(c ⊕ b, φ(x))

[·]5 For k ∈ Z: [k]5 denotes the integer t ∈ {0, 1, 2, 3, 4}, s.t. t = k mod 5

ext5(·) and

T5[·](·)
– For x ∈ [0, 4] : ext5(x) = ([x + 4]5, [x + 3]5, [x + 2]5, [x + 1]5, x)� ∈ [0, 4]5

– For c ∈ [0, 4] and v = (v0, v1, v2, v3, v4)
� ∈ Z

5:

T5[c](v) =
(
v[−c]5 , v[−c+1]5 , v[−c+2]5 , v[−c+3]5 , v[−c+4]5

)�

– Property: v = ext5(x) ⇔ T5[c](v) = ext5(x + c mod 5)

–To prove x ∈ [0, 4] simultaneously satisfies many relations: Extend it to

v = ext5(x), then permute and use the same c at all appearances

unitx – ∀x ∈ [0, 4]: unitx is the 5-dim unit vector (v0, . . . , v4)
� with vx = 1

– For c ∈ [0, 4],v ∈ Z
5: v = unitx ⇔ T5[c](v) = unitx+c mod 5

→ Allow proving v = unitx for some x ∈ [0, 4] satisfying other relations

ext5×2(·, ·) and

T5×2[·, ·](·)
– For x ∈ [0, 4] and y ∈ {0, 1}:
ext5×2(x, y) = ([x + 4]5 · ȳ, [x + 4]5 · y, [x + 3]5 · ȳ, [x + 3]5 · y, [x + 2]5 · ȳ,

[x + 2]5 · y, [x + 1]5 · ȳ, [x + 1]5 · y, x · ȳ, x · y)� ∈ [0, 4]10

For (c, b) ∈ [0, 4] × {0, 1} and v = (v0,0, v0,1, . . . , v4,0, v4,1)
� ∈ Z

10:

T5×2[c, b](v) =
(
v[−c]5,b, v[−c]5,b, v[−c+1]5,b, v[−c+1]5,b, v[−c+2]5,b,

v[−c+2]5,b, v[−c+3]5,b, v[−c+3]5,b, v[−c+4]5,b, v[−c+4]5,b

)�

– Property: v = ext5×2(x, y) ⇔ T5×2[c, b](v) = ext5×2(x + c mod 5, y ⊕ b)

→ Allow proving z = x · y for some (x, y) ∈ [0, 4] × {0, 1} satisfying other

relations: Extend z to v = ext5×2(x, y), then permute and use the same

c, b at all appearances of x, y, respectively

Common input: It consists of matrices F ∈ Z
n×m
q , P ∈ Z

m×t
q , A,A0,A1,

. . . ,A� ∈ Z
n×m
q , D ∈ Z

n×md
q and vectors c0 ∈ Z

n
q , c1 ∈ Z

t
q,u ∈ Z

n
q .

Prover’s goal is to prove knowledge of m ∈ {0, 1}md , μ ∈ {0, 1}t, e ∈
{−1, 0, 1}t, ν ∈ [−B,B]t, τ = (τ [1], . . . , τ [�])� ∈ {0, 1}�, v1,v2 ∈ [−β, β]m

such that the following equations hold:
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⎧
⎪⎨

⎪⎩

A · v1 + A0 · v2 +
∑�

j=1 Aj · (τ [j] · v2) − D · m = u mod q;

Hn+t,q−1·m +

(
F
P�

)

·e +

(
0n×t

� q
2�·It

)

·μ +

(
0n×t

It

)

·ν =

(
c0
c1

)

mod q.
(19)

For this purpose, we perform the following transformations on the witnesses.

Decompositions. Decompose vectors v1,v2, ν to vectors v̄1 ∈ {−1, 0, 1}mδβ ,
v̄2 ∈ {−1, 0, 1}mδβ , ν̄ ∈ {−1, 0, 1}tδB , respectively.

Extensions/Combinations.

– Let w1 = (m� | μ�)� ∈ {0, 1}md+t and extend it into w∗
1 ∈ B2

md+t.
– Let w2 = (v̄�

1 | ν̄� | e�)� ∈ {−1, 0, 1}mδβ+tδB+t and extend it into the vector
w∗

2 ∈ B3
mδβ+tδB+t.

– Extend v̄2 into s0 ∈ B3
mδβ

. Then, for each j ∈ [�], define sj = expand(τ [j], s0).
(We refer to Table 1 for details about expand(·, ·).)

Now, we form vector w =
(
w∗

1
� | w∗

2
� | s�

0 | s�
1 | . . . | s�

�

)� ∈ {−1, 0, 1}D,
where D = (2� + 2)3mδβ + 3tδB + 3t + 2(md + t). At this point, we observe that
the equations in (19) can be equivalently transformed into M · w = v mod q,
where the matrix M and the vector v are built from the public input.

Having performed the above transformations, we now define VALID as the
set of all vectors t = (t�

1 | t�
2 | t�

3,0 | t�
3,1 | . . . | t�

3,�)
� ∈ {−1, 0, 1}D for which

there exists τ = (τ [1], . . . , τ [�])� ∈ {0, 1}� such that:

t1 ∈ B2
md+t; t2 ∈ B3

mδβ+tδB+t; t3,0 ∈ B3
mδβ

; ∀j ∈ [�] : t3,j = expand(τ [j], t3,0).

It can be seen that w belongs to this tailored set. Now, let us specify the set S
and permutations of D elements {Γφ : φ ∈ S} satisfying the conditions in (12).

– S := S2(md+t) × S3(mδβ+tδB+t) × S3mδβ
× {0, 1}�.

– For φ =
(
φ1, φ2, φ3, (b[1], . . . , b[�])�) ∈ S, we define the permutation Γφ that

transforms vector t = (t�
1 | t�

2 | t�
3,0 | tT

3,1 | . . . | t�
3,�)

� ∈ Z
D as follows:

Γφ(t) =
(
φ1(t1)� | φ2(t2)� | φ3(t3,0)� |

Texp[b[1], φ3](t3,1)� | . . . | Texp[b[�], φ3](t3,�)�)�.

By inspection, it can be seen that the properties in (12) are indeed satisfied.
As a result, we can obtain the required argument of knowledge by running the
protocol from Sect. 6.1 with common input (M,v) and prover’s input w. The
protocol has communication cost O(D log q) = Õ(λ) · O(log N + t) bits.
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6.6 Protocol 4: A Treatment of Hidden Branching Programs

We now present the proof system run by the user in the OT-AC system of
Sect. 5. It allows arguing knowledge of an input x = (x0, . . . , xκ−1)� ∈ {0, 1}κ

satisfying a hidden branching program BP = {(var(θ), πθ,0, πθ,1)}L
θ=1 of length

for L ∈ poly(λ). The prover should additionally demonstrate that: (i) He has a
valid credential for x; (ii) The hashed encoding of BP is associated with some
hidden ciphertext of the database (and he knows a signature guaranteeing this
link); (iii) A given ciphertext is a re-randomization of that hidden ciphertext.

Recall that, at each step θ ∈ [L] of the evaluation of BP(x), we have to look
up the value xvar(θ) in x = (x0, . . . , xκ−1)� to compute the θ-th state ηθ as per

ηθ = πθ,xvar(θ)(ηθ−1) = πθ,0(ηθ−1) · x̄var(θ) + πθ,1(ηθ−1) · xvar(θ). (20)

To prove that each step is done correctly, it is necessary to provide evidence
that the corresponding search is honestly carried out without revealing xvar(θ),
var(θ) nor {πθ,b}1b=0. To this end, a first idea is to perform a simple left-to-
right search on (x0, . . . , xκ−1): namely, (20) is expressed in terms of a matrix-
vector relation where ηθ is encoded as a unit vector of dimension 5; {πθ,b}1b=0

are represented as permutation matrices; and xvar(θ) = Mvar(θ) · x is computed
using a matrix Mvar(θ) ∈ {0, 1}κ×κ containing exactly one 1 per row. While
this approach can be handled using proofs for matrix-vector relations using the
techniques of [35], the expected complexity is O(κ) for each step, so that the total
complexity becomes O(Lκ). Fortunately, a better complexity can be achieved.

If we instead perform a dichotomic search on x = (x0, . . . , xκ−1)�, we can
reduce the complexity of each step to O(log κ). To this end, we need to prove a
statement “I performed a correct dichotomic search on my secret array x”.

In order to solve this problem, we will employ two existing lattice-based tools:

(i) A variant of the SIS-based computationally binding and statistically hiding
commitment scheme from [32], which allows to commit to one-bit messages;

(ii) The SIS-based Merkle hash tree proposed in [36].

Let Ā ←↩ U(Zn×m
q ) and acom ←↩ U(Zn

q ). For each i ∈ [0, κ − 1], we let the
receiver commit to xi ∈ {0, 1} as comi = acom · xi + Ā · rcom,i, with rcom,i ←↩
U({0, 1}m), and reveal com1, . . . , comκ−1 to the sender. We build a Merkle tree
of depth δκ = �log κ� on top of the leaves com0, . . . , comκ−1 using the SIS-based
hash function hĀ : {0, 1}n�log q� × {0, 1}n�log q� → {0, 1}n�log q� of [36]. Our use
of Merkle trees is reminiscent of [36] in that the content of the leaves is public.
The Merkle tree will actually serve as a “bridge” ensuring that: (i) The same
string x is used in all steps while enabling dichotomic searches; (ii) At each step,
the prover indeed uses some coordinate of x (without revealing which one), the
choice of which is dictated by a path in the tree determined by var(θ).

Since {comi}κ−1
i=0 are public, both parties can deterministically compute the

root utree of the Merkle tree. For each θ ∈ [L], we consider the binary repre-
sentation dθ,1, . . . , dθ,δκ

of var(θ), which is part of the encoding of BP defined
in (7). We then prove knowledge of a bit yθ satisfying the statement “From
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the root utree ∈ {0, 1}n�log q� of the tree, the path determined by the bits
dθ,1, . . . , dθ,δκ

leads to the leaf associated with the commitment opened to yθ.” If
the Merkle tree and the commitment scheme are both secure, it should hold that
yθ = xvar(θ). Said otherwise, we can provably perform a “dichotomic search” for
xvar(θ) = yθ. Moreover, the techniques from [36] can be adapted to do this in
zero-knowledge manner, i.e., without revealing the path nor the reached leaf.

Now, our task can be divided into 3 steps: (i) Proving that the searches on
Merkle tree yield y1, . . . , yL; (ii) Proving that the branching program evaluates
to BP(x) = 1 if y1, . . . , yL are used in the evaluation; (iii) Proving all the other
relations mentioned above, as well as the consistency of {comi}κ−1

i=0 and the fact
that they open to a certified x ∈ {0, 1}κ.

Thanks to dichotomic searches, the communication cost drops to O(Lδκ+κ).
These steps can be treated as explained below.

The Merkle Tree Step. At each step θ ∈ [L], the prover proves knowl-
edge of a path made of δκ nodes gθ,1, . . . ,gθ,δκ

∈ {0, 1}n�log q� determined by
dθ,1, . . . , dθ,δκ

, as well as their siblings tθ,1, . . . , tθ,δκ
∈ {0, 1}n�log q�. Also, the

prover argues knowledge of an opening (yθ, rθ) ∈ {0, 1} × {0, 1}m for the com-
mitment of which gθ,δκ

is a binary decomposition. As shown in [36] (and recalled
in the full paper), it suffices to prove the following relations (mod q):

∀θ ∈ [L]

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ā · expand(dθ,1,gθ,1) + Ā · expand(d̄θ,1, tθ,1) = Hn,q−1·utree,

Ā · expand(dθ,2,gθ,2) + Ā · expand(d̄θ,2, tθ,2)
−Hn,q−1 · gθ,1 = 0,

...
Ā · expand(dθ,δκ

,gθ,δκ
) + Ā · expand(d̄θ,κ, tθ,κ)

−Hn,q−1 · gθ,δκ−1 = 0,

acom · yθ + Ā · rθ − Hn,q−1 · gθ,δκ
= 0,

(21)

where expand(·, ·) is defined in Table 1.

Extending.

– For each (θ, i) ∈ [L] × [δκ]: Extend gθ,i, tθ,i ∈ {0, 1}m/2 to g̃θ,i, t̃θ,i ∈ B2
m/2,

respectively. Then, let ĝθ,i = expand(dθ,i, g̃θ,i) and t̂θ,i = expand(d̄θ,i, t̃θ,i).
– For each θ ∈ [L], extend the bit yθ into the vector yθ = ext2(yθ) ∈ {0, 1}2.
– Let r̃ = (r�

1 | . . . | r�
L )� ∈ {0, 1}mL, then extend it into the vector r̂ ∈ B2

mL.

Combining. Next, we let Dtree = 5mLδκ + 2L + 2mL and define

wtree =
(
g̃�
1,1 | ĝ�

1,1 | t̂�
1,1 | . . . | g̃�

1,δκ
| ĝ�

1,δκ
| t̂�

1,δκ
| . . . | g̃�

L,1 | ĝ�
L,1 | t̂�

L,1

| . . . | g̃�
L,δκ

| ĝ�
L,δκ

| t̂�
L,δκ

| y�
1 | . . . | y�

L | r̂�)� ∈ {0, 1}Dtree . (22)

Then, observe that, the above L(δκ + 1) equations can be combined into one:
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Mtree · wtree = vtree mod q, (23)

where matrix Mtree and vector vtree are built from the public input.

The Branching Program Step. The last three parts of Table 1 describe the
vector transformations that will be used to handle the secret vectors appearing in
the evaluation of BP. The following equations emulate the evaluation process. In
particular, for each θ ∈ [2, L], we introduce an extra vector eθ = (cθ,0, . . . , cθ,4) ∈
{0, 1}5 to enable the extraction of the values πθ,0(ηθ−1), and πθ,1(ηθ−1).
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π1,0(0) · ȳ1 + π1,1(0) · y1 − η1 = 0, // computing η1 with η0 = 0
e2 −∑4

i=0 uniti · c2,i = (0, 0, 0, 0, 0)�, // we will also prove e2 = unitη1

f2,0 −∑4
i=0 π2,0(i) · c2,i = 0, // meaning: f2,0 = π2,0(η1)

f2,1 −∑4
i=0 π2,1(i) · c2,i = 0, // meaning: f2,1 = π2,1(η1)

f2,0 · ȳ2 + f2,1 · y2 − η2 = 0, // computing η2
...

eL −∑4
i=0 uniti · cL,i = (0, 0, 0, 0, 0)�, // we will also prove eL = unitηL−1

fL,0 −∑4
i=0 πL,0(i) · cL,i = 0, // meaning: fL,0 = πL,0(ηL−1)

fL,1 −∑4
i=0 πL,1(i) · cL,i = 0, // meaning: fL,1 = πL,1(ηL−1)

fL,0 · ȳL + fL,1 · yL = 0. // final stateηL = 0

(24)

Extending.

– For each θ ∈ [L − 1], extend ηθ ∈ [0, 4] to 5-dimensional vector sθ = ext5(ηθ).
– For each (θ, j) ∈ [2, L] × {0, 1}, extend fθ,j ∈ [0, 4] to fθ,j = ext5(fθ,j).
– For each (θ, i) ∈ [2, L] × [0, 4], extend cθ,i ∈ {0, 1} to cθ,i = ext2(cθ,i).
– Extend the products π1,0(0) · ȳ1 and π1,1(0) · y1 into 10-dimensional vectors

h1,0 = ext5×2(π1,0(0), ȳ1) and h1,1 = ext5×2(π1,1(0), y1), respectively.
– For each θ ∈ [2, L], extend the products fθ,0·ȳθ and fθ,1·yθ into 10-dimensional

vectors hθ,0 = ext5×2(fθ,0, ȳθ) and hθ,1 = ext5×2(fθ,1, yθ).
– For (θ, i) ∈ [2, L]× [0, 4], extend the products πθ,0(i) ·cθ,i and πθ,1(i) ·cθ,i into

zθ,0,i = ext5×2(πθ,0(i), cθ,i) and zθ,1,i = ext5×2(πθ,1(i), cθ,i), respectively.

Combining. Let DBP = 150L − 130, and form wBP ∈ [0, 4]DBP of the form:
(
s�
1 | . . . | s�

L−1 | e�
2 | . . . | e�

L | c�
2,0 | . . . | c�

L,4 | z�
2,0,0 | . . . | z�

L,1,4 |
f�
2,0 | . . . | f�

L,1 | h�
1,0 | h�

1,1 | h�
2,0 | h�

2,1 | . . . | h�
L,0 | h�

L,1

)�
. (25)

Then, observe that the vector wBP of (25) satisfies one equation of the form:

MBP · wBP = vBP, (26)

where matrix MBP and vector vBP are obtained from the common input. Note
that we work with integers in [0, 4], which are much smaller than q. As a result,

MBP · wBP = vBP mod q. (27)
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Conversely, if we can prove that (27) holds for a well-formed vector wBP, then
that vector should also satisfy (26).

The Third Step. In the third layer, we have to prove knowledge of:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d1,1, . . . , dL,δκ
∈ {0, 1}, π1,0(0), . . . , πL,1(4) ∈ [0, 4], m ∈ {0, 1}md ,

x = (x0, . . . , xκ−1)� ∈ {0, 1}κ, mU,x ∈ {0, 1}m
2 +κ, m̂U,x ∈ {0, 1}m

2 ,

eU ∈ {0, 1}m, rcom,0, . . . , rcom,κ−1 ∈ {0, 1}m, μ ∈ {0, 1}t, τ ∈ {0, 1}�,

τU ∈ {0, 1}�I ,v1,v2,vU,1,vU,2,rU ∈ [−β, β]m,e∈ {−1, 0, 1}t,ν ∈ [−B,B]t,

(28)

which satisfy the equations of (11) for zBP,ρ = (d1,1, . . . , dL,δκ
, π1,0(0),

. . . , πL,1(4))� and, ∀i ∈ [0, κ − 1], the bit xi is committed in comi with ran-
domness rcom,i:

⎡

⎢
⎣

acom

. . .
acom

⎤

⎥
⎦ · x +

⎡

⎢
⎣

Ā
. . .

Ā

⎤

⎥
⎦ ·

⎛

⎜
⎝

rcom,0

...
rcom,κ−1

⎞

⎟
⎠ =

⎛

⎜
⎝

com0

...
comκ−1

⎞

⎟
⎠ mod q.

Decomposing. We use vdec′
m,β(·) to decompose v1,v2,vU,1,vU,2, rU ∈ [−β, β]m

into v̄1, v̄2, v̄U,1, v̄U,2, r̄U ∈ {−1, 0, 1}mδβ , respectively. Similarly, we decompose
vector ν ∈ [−B,B]t into vector ν̄ = vdec′

t,B(ν) ∈ {−1, 0, 1}tδB .

Extending and Combining. Next, we perform the following steps:

– For each (θ, i) ∈ [L] × [δκ], extend dθ,i to dθ,i = ext2(dθ,i).
– For each (θ, j, i) ∈ [L] × {0, 1} × [0, 4], extend πθ,j(i) to Πθ,j,i = ext5(πθ,j(i)).
– Let w3,1 =

(
x�|r�

com,0| . . . |r�
com,κ−1|m�

U,x|m̂�
U,x|m� | e�

U |μ�)� ∈ {0, 1}D3,1 ,
where D3,1 = κ(m + 2) + 2m + md + t. Then extend w3,1 to w3,1 ∈ B2

D3,1
.

– Define the vector w3,2 = (v̄�
1 |v̄�

U,1|r̄�
U |ν̄�|e�)� ∈ {−1, 0, 1}D3,2 of dimension

D3,2 = 3mδβ + t(δB + 1) and extend it into w3,2 ∈ B3
D3,2

.
– Extend v̄2 to s0 ∈ B3

mδβ
. Then for j ∈ [�], form vector sj = expand

(
τ [j], s0

)
.

– Extend v̄U,2 to sU,0 ∈ B3
mδβ

. Then for j ∈ [�I ], form sU,j = expand
(
τU[j], sU,0

)
.

Given the above transformations, let D3 = 2L(δκ + 25) + 2D3,1 + 3D3,2 +
3mδβ(2� + 1) + 3mδβ(2�I + 1) and construct vector w3 ∈ [−1, 4]D3 of the form:
(
d�
1,1 | . . . | d�

L,δκ
| Π�

1,0,0 | . . . | Π�
L,1,4 | w�

3,1 | w�
3,2 |

s�
0 | s�

1 | . . . | s�
� | s�

U,0 | s�
U,1 | . . . | s�

U,�I
| )�. (29)

Observe that the given five equations can be combined into one of the form:

M3 · w3 = v3 mod q, (30)

where matrix M3 and vector v3 can be built from the public input.
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Putting Pieces Altogether. At the final stage of the process, we connect
the three aforementioned steps. Indeed, all the equations involved in our process
are captured by (23), (27), and (30) - which in turn can be combined into:

M · w = v mod q, (31)

where w = (w�
tree | w�

BP | w�
3 )� ∈ [−1, 4]D, for

D = Dtree + DBP + D3 = Õ(λ) · (L · log κ + κ) + Õ(λ) · (log N + λ) + Õ(1) · t.

The components of w all have constraints listed in Table 1. By construction,
these blocks either belong to the special sets B2

m, B3
m or they have the special

forms expand(·, ·), ext2(·), ext5(·), ext5×2(·, ·), which are invariant under the per-
mutations defined in Table 1. As a result, we can specify suitable sets VALID, S
and permutations of D elements {Γφ : φ ∈ S}, for which the conditions of (12)
are satisfied. The description of VALID, S and Γφ is detailed in the full paper.

Our desired argument system then works as follows. At the beginning of the
interaction, the prover computes commitments com0, . . . , comκ−1 ∈ Z

n
q and send

them once to the verifier. Both parties construct matrix M and vector v based on
the public input as well as com0, . . . , comκ−1, while the prover prepares vector w,
as described. Finally, they run the protocol of Sect. 6.1, which has communication
cost O(D log q) = O(L · log κ + κ).
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hardness of learning with errors. In: STOC (2013)

10. Camenisch, J., Dubovitskaya, M., Enderlein, R.R., Neven, G.: Oblivious transfer
with hidden access control from attribute-based encryption. In: Visconti, I., Prisco,
R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 559–579. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32928-9 31

11. Camenisch, J., Dubovitskaya, M., Neven, G.: Oblivious transfer with access control.
In: ACM-CCS 2009 (2009)

12. Camenisch, J., Dubovitskaya, M., Neven, G., Zaverucha, G.M.: Oblivious trans-
fer with hidden access control policies. In: Catalano, D., Fazio, N., Gennaro, R.,
Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 192–209. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19379-8 12

13. Camenisch, J., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer. In:
Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-72540-4 33

14. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS 2001 (2001)

15. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–
552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 27

16. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
In: FOCS 1995 (1995)

17. Coull, S., Green, M., Hohenberger, S.: Controlling access to an oblivious database
using stateful anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009.
LNCS, vol. 5443, pp. 501–520. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-00468-1 28

18. Crescenzo, G., Ostrovsky, R., Rajagopalan, S.: Conditional oblivious transfer and
timed-release encryption. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592,
pp. 74–89. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 6
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Abstract. Oblivious Parallel RAM (OPRAM), first proposed by Boyle,
Chung, and Pass, is the natural parallel extension of Oblivious RAM
(ORAM). OPRAM provides a powerful cryptographic building block for
hiding the access patterns of programs to sensitive data, while preserv-
ing the paralellism inherent in the original program. All prior OPRAM
schemes adopt a single metric of “simulation overhead” that character-
izes the blowup in parallel runtime, assuming that oblivious simulation
is constrained to using the same number of CPUs as the original PRAM.

In this paper, we ask whether oblivious simulation of PRAM pro-
grams can be further sped up if the OPRAM is allowed to have more
CPUs than the original PRAM. We thus initiate a study to understand
the true depth of OPRAM schemes (i.e., when the OPRAM may have
access to unbounded number of CPUs). On the upper bound front, we
construct a new OPRAM scheme that gains a logarithmic factor in depth
and without incurring extra blowup in total work in comparison with the
state-of-the-art OPRAM scheme. On the lower bound side, we demon-
strate fundamental limits on the depth any OPRAM scheme—even when
the OPRAM is allowed to have an unbounded number of CPUs and blow
up total work arbitrarily. We further show that our upper bound result
is optimal in depth for a reasonably large parameter regime that is of
particular interest in practice.

Keywords: Oblivious parallel RAM · Oblivious RAM · Depth
complexity

1 Introduction

Oblivious RAM (ORAM), originally proposed in the seminal works of Goldreich
and Ostrovsky [8,9], is a powerful cryptographic building block that allows a pro-
gram to hide access patterns to sensitive data. Since Goldreich and Ostrovsky’s
ground-breaking results, numerous subsequent works showed improved ORAM
constructions [10,13,18,20,21] with better asymptotics and/or practical perfor-
mance. ORAM has also been used in various practical and theoretical applica-
tions such as multi-party computation [11,22], secure processor design [14,17],
and secure storage outsourcing [19,23].

The full version of this paper is available online [3].
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Since most modern computing architectures inherently support parallelism
(e.g., cloud compute clusters and modern CPU designs), a natural problem is
how to hide sensitive access patterns in such a parallel computing environment.
In a recent seminal work, Boyle et al. [1] first propose the notion of Oblivious
Parallel RAM (OPRAM), which is a natural extension of ORAM to the parallel
setting. Since then, several subsequent works have constructed efficient OPRAM
schemes [5,6,15]. One central question in this line of research is whether there is
an OPRAM scheme whose simulation overhead matches that of the best known
ORAM scheme. Specifically, an OPRAM scheme with simulation overhead X
means that if the original PRAM consumes m CPUs and runs in parallel time
T , then we can obliviously simulate this PRAM also with m CPUs, and in par-
allel runtime X · T . In a recent companion paper called Circuit OPRAM [5],
we answered this question in the affirmative. In particular, if N is the num-
ber of distinct blocks that the CPUs can request, then Circuit OPRAM pro-
posed a unifying framework where we can obtain statistically secure OPRAMs
with O(log2 N) simulation overhead, and computationally secure OPRAMs with
(log2 N/ log log N) simulation overhead—thus matching the best known ORAM
schemes in both settings [13,21].

All previous OPRAM schemes consider a single performance metric referred
to as simulation overhead as mentioned above. It is immediate that an OPRAM
scheme with X simulation overhead also immediately implies an ORAM con-
struction with X simulation overhead. Thus, the recent Circuit OPRAM [5]
also suggests that we have hit some road-block for constructing more efficient
OPRAM schemes—unless we knew how to asymptotically improve the efficiency
of sequential ORAM. Note also that in the regime of sufficiently large block sizes,
Circuit OPRAM achieves O(α log N) simulation overhead for any super-constant
function α, and this is (almost) tight in light of Goldreich and Ostrovsky’s log-
arithmic ORAM lower bound [8,9].

1.1 Our Results and Contributions

In this paper, we rethink the performance metrics for an OPRAM scheme. We
argue that while adopting a single simulation overhead metric is intuitive, this
single metric fails to capture the true “work-depth” of the oblivious simulation.
In particular, we ask the questions:

1. If the OPRAM is allowed to access more CPUs than the original PRAM,
can we have oblivious simulations with smaller parallel runtime blowup than
existing OPRAM schemes?

2. Are there any fundamental limits to an OPRAM’s work-depth, assuming that
the OPRAM can have access to an unbounded number of CPUs?

To answer the above questions, we turn to the parallel algorithms literature,
and adopt two classical metrics, that is, total work and parallel runtime in the
study of OPRAMs. Like the parallel algorithms literature, we also refer to a(n)
PRAM/OPRAM’s parallel runtime as its work-depth (or depth). The depth met-
ric represents the runtime of a PRAM when given ample CPUs—thus the depth
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is the inherently sequential part of a PRAM that cannot be further parallelized
even with an arbitrarily large number of CPUs. The depth metric is commonly
used in conjunction with total work—since we would like to design low-depth
parallel algorithms that do not blow up total work by too much in comparison
with the sequential setting (e.g., by repeating computations too many times).
Using these classical metrics from the parallel algorithms literature, we can re-
interpret the single “simulation overhead” metric adopted by previous OPRAM
works as follows: an OPRAM with simulation overhead X has both total work
blowup and parallel runtime blowup X in comparison with the original PRAM.

Note that when the OPRAM is constrained to using the same number of
CPUs as the original PRAM, its parallel runtime blowup must be at least as large
as the total work blowup. In this paper, however, we show that this need not
be the case when the OPRAM can access more CPUs than the original PRAM.
We design a new OPRAM scheme that gains a logarithmic factor in speed (i.e.,
depth) in comparison with the state-of-the-art [5] when given logarithmically
many more CPUs than the original PRAM. In some sense, our new OPRAM
scheme shows that the blowup in total work incurred due to obliviousness can
be parallelized further (albeit through non-trivial techniques). Additionally, we
prove new lower bounds that shed light on the inherent limits on any OPRAM
scheme’s depth. In light of our lower bounds, our new OPRAM scheme is optimal
in depth for a wide range of parameters. We now present an informal overview
of our results and contributions.

Upper Bounds. First, we show that for any PRAM running in time T and
consuming W amount of total work, there exists a statistically secure oblivi-
ous simulation that consumes logarithmically many more CPUs than the orig-
inal PRAM, and runs in parallel runtime O(T log N log log N) and total work
O(W log2 N).

In comparison, the best known (statistically secure) OPRAM scheme incurs
both O(log2 N) blowup in both total work and parallel runtime (i.e., O(log2 N)
simulation overhead). In this sense, while preserving the total work blowup, we
improve existing OPRAMs’ depth by a logarithmic factor.

We then extend our construction to the computationally secure setting by
adapting an elegant trick originally proposed by Fletcher et al. [7], and show
how to shave another log log N factor off both the total work and parallel run-
time, assuming that one-way functions exist. Our results are summarized in the
following informal theorem.

Theorem 1 (Small-depth OPRAMs: Informal). The following results are
possible for small-depth OPRAMs where N denotes the original PRAM’s total
memory size, m denotes the original PRAM’s number of CPUs, and the security
failure must be negligible in N .

– Statistically secure, general block size. There exists a statistically secure
OPRAM that achieves O(log2 N) blowup in total work and O(log N log log N)
blowup in parallel runtime for general block sizes of Ω(log N) bits.
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– Computationally secure, general block size. Assume the existence of
one-way functions, then there exists a computationally secure OPRAM that
achieves O( log2 N

log log N ) total work blowup and O(log N) parallel runtime blowup
for general block sizes of Ω(log N) bits.

– Statistically secure, large block size. For any super-constant func-
tion α(N) = ω(1), for any constant ε > 0, there exists a statistically
secure OPRAM that achieves O(α log N log log N) total work blowup and
O(log m + log log N) parallel runtime blowup for blocks of N ε bits or larger.

Lower Bounds. Next, we consider if there are any fundamental limits to an
OPRAM scheme’s work-depth. We prove a non-trivial lower bound showing that
any online OPRAM scheme (i.e., with no a-priori knowledge of future requests)
that does not perform encoding of data blocks and does not duplicate data blocks
too extensively must suffer from at least Ω(log m) depth blowup where m is the
number of CPUs—and this lower bound holds even when the OPRAM scheme
may access arbitrarily many CPUs and have arbitrarily large total work blowup.
We stress that our lower bound employs techniques that are different in nature
from those of Goldreich and Ostrovsky’s classical ORAM lower bound [8,9]—in
particular, theirs bounds total work rather than depth. Furthermore, our lower
bound holds even for computational security.

Theorem 2 (Lower bound for an OPRAM’s depth). Any computation-
ally or statistically secure online OPRAM scheme must incur at least Ω(log m)
blowup in parallel runtime, as long as the OPRAM (1) does not perform encod-
ing of data blocks (i.e., in the “balls-and-bins” model); and (2) does not make
more than m0.1 copies of each data block.

We note that the conditions our lower bound assumes (online, balls-and-bins,
and bounded duplication) hold for all ORAM and OPRAM constructions.

On the Tightness of Our Upper and Lower Bounds. In light of our lower
bound, our OPRAM constructions are optimal in depth in a reasonably large
parameter regime. Specifically, our (computationally secure) OPRAM scheme
is depth-optimal when m = N ε for any constant ε > 0 for general block sizes.
For larger block sizes, our OPRAM scheme is depth-optimal for a larger range
of m—in particular, when the block size is sufficiently large, our (statistically
secure) OPRAM scheme is tight for m as small as m = poly log N .

Technical Highlights. Both our lower bounds and upper bounds introduce
non-trivial new techniques. Since our lower bound studies the depth of paral-
lel algorithms, it is of a very different nature than Goldreich and Ostrovsky’s
ORAM lower bounds for total work [8,9]. To prove the depth lower bound, we
also depart significantly in technique from Goldreich and Ostrovsky [8,9]. In par-
ticular, our lower bound is of an online nature and considers the possible batches
of requests that a low-depth access pattern can support in a single PRAM step;
whereas in comparison, Goldreich and Ostrovksy’s lower bound applies even to
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offline ORAM/OPRAM algorithms, and they perform a counting argument over
many steps of the ORAM/OPRAM. The most difficult challenge in proving our
lower bound is how to offset the large number of possibilities introduced by
“preprocessing”, i.e., the number of possible memory configurations before the
PRAM step of concern starts. To deal with this challenge, our core idea is to
devise a new method of counting that is agnostic to preprocessing.

For our new small-depth OPRAM, the main challenge we cope with is of
a very different nature from known ORAM and OPRAM works. In particular,
all previous ORAMs and OPRAMs that follow the tree-based paradigm [18]
adopt a standard recursion technique such that the CPU need not store a large
amount of metadata (referred to as the position map). Known schemes treat this
recursion as a blackbox technique. Unfortunately, in our work, it turns out that
this recursion becomes the main limiting factor to an OPRAM’s depth. Thus,
we open up the recursion, and our core technique for achieving small-depth
OPRAM is to devise a novel offline/online paradigm, such that the online phase
that is inherently sequential across recursion levels has small (i.e., O(log log N))
depth per recursion level; whereas all work that incurs logarithmic depth is
performed in an offline phase in parallel across all recursion levels. Designing
such an offline/online algorithm incurs several challenges which we explain in
Sect. 5.2. We hope that these new techniques can also lend to the design of
oblivious parallel algorithms in general.

Another way to view our small-depth OPRAM’s contributions is the fol-
lowing. In our setting, we must address two challenges: (1) concurrency, i.e.,
how to coordinate a batch of m requests such that they can be served simulta-
neously without causing write conflicts; and (2) parallelism, i.e., how to make
each request parallel by using more CPUs. Note that the concurrency aspect is
applicable only to OPRAMs where multiple concurrent requests are involved,
whereas the parallelism aspect is applicable even for parallelizing the operations
of a sequential ORAM. Previous OPRAM constructions [1,6] are concerned only
about the former concurrency aspect, but we need to take both into account—
in this sense, we are in fact the first to investigate the “parallelism” aspect of
ORAMs/OPRAMs.1 In particular, in our fetch phase algorithm, the two aspects
are intertwined for the case of general m, in the sense that we cannot separate
our techniques into two phases involving one “concurrent compilation” and one
“parallel compilation”—such intertwining allows us to construct more efficient
algorithms. In the maintain phase, our divide-and-conquer strategy for eviction
indeed can be used to parallelize a sequential ORAM.

Related work. Boyle, Chung, and Pass recently initiated the study of Oblivi-
ous Parallel RAM (OPRAM) [1]. They were also the first to phrase the sim-
ulation overhead metric for OPRAMs, i.e., the parallel runtime blowup of the
OPRAM in comparison with the original PRAM, assuming that the OPRAM
consumes the same number of CPUs as the original PRAM. Several subsequent

1 We gratefully acknowledge the Asiacrypt reviewers for pointing out this aspect of
our contribution.
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works [1,5,6,15] have improved Boyle et al. [1]’s OPRAM construction. Most
recently, Chan and Shi [5] show that we can construct statistically secure and
computationally secure OPRAMs whose asymptotical performance match the
best known sequential ORAM; and their approach is based on the tree-based
paradigm [18]. A similar asymptotical result (but for the computationally secure
setting only) was also shown by Chan et al. [4] using the hierarchical frame-
work originally proposed by Goldreich and Ostrovsky [8,9]. In the OPRAM
context, Goldreich and Ostrovsky’s logarithmic lower bound [8,9] immediately
implies that any OPRAM with constant blocks of CPU cache must suffer from at
least logarithmic total work blowup. Thus far there is no other known OPRAM
lower bound (and our depth lower bound departs significantly in techniques from
Goldreich and Ostrovksy’s lower bound).

In the interest of space, we refer the reader to our online full version [3] for
additional discussions about the related work.

2 Definitions

2.1 Parallel Random-Access Machines

A parallel random-access machine (PRAM) consists of a set of CPUs and a
shared memory denoted mem indexed by the address space [N ] := {1, 2, . . . , N}.
In this paper, we refer to each memory word also as a block, and we use B to
denote the bit-length of each block.

We use m to denote the number of CPUs. In each step t, each CPU executes
a next instruction circuit denoted Π, updates its CPU state; and further, CPUs
interact with memory through request instructions I (t) := (I(t)i : i ∈ [m]). Specif-
ically, at time step t, CPU i’s instruction is of the form I

(t)
i := (op, addr, data),

where the operation is op ∈ {read, write} performed on the virtual memory
block with address addr and block value data ∈ {0, 1}B ∪ {⊥}. If op = read,
then we have data = ⊥ and the CPU issuing the instruction should receive the
content of block mem[addr] at the initial state of step t. If op = write, then we
have data �= ⊥; in this case, the CPU still receives the initial state of mem[addr]
in this step, and at the end of step t, the content of virtual memory mem[addr]
should be updated to data.

Write conflict resolution. By definition, multiple read operations can be exe-
cuted concurrently with other operations even if they visit the same address.
However, if multiple concurrent write operations visit the same address, a con-
flict resolution rule will be necessary for our PRAM be well-defined. In this
paper, we assume the following:

– The original PRAM supports concurrent reads and concurrent writes
(CRCW) with an arbitary, parametrizable rule for write conflict resolution.
In other words, there exists some priority rule to determine which write
operation takes effect if there are multiple concurrent writes in some time
step t.
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– The compiled, oblivious PRAM (defined below) is a “concurrent read, exclu-
sive write” PRAM (CREW). In other words, the design of our OPRAM con-
struction must ensure that there are no concurrent writes at any time.

We note that a CRCW-PRAM with a parametrizable conflict resolution rule
is among the most powerful CRCW-PRAM model, whereas CREW is a much
weaker model. Our results are stronger if we allow the underlying PRAM to be
more powerful but the compiled OPRAM uses a weaker PRAM model. For a
detailed explanation on how stronger PRAM models can emulate weaker ones,
we refer the reader to the work by Hagerup [12].

CPU-to-CPU communication. In the remainder of the paper, we sometimes
describe our algorithms using CPU-to-CPU communication. For our OPRAM
algorithm to be oblivious, the inter-CPU communication pattern must be obliv-
ious too. We stress that such inter-CPU communication can be emulated using
shared memory reads and writes. Therefore, when we express our performance
metrics, we assume that all inter-CPU communication is implemented with
shared memory reads and writes. In this sense, our performance metrics already
account for any inter-CPU communication, and there is no need to have separate
metrics that characterize inter-CPU communication. In contrast, Chen et al. [6]
defines separate metrics for inter-CPU communication.

Additional assumptions and notations. Henceforth, we assume that each CPU
can only store O(1) memory blocks. Further, we assume for simplicity that the
runtime of the PRAM is fixed a priori and publicly known. Therefore, we can
consider a PRAM to be a tuple

PRAM := (Π,N,m, T ),

where Π denotes the next instruction circuit, N denotes the total memory size
(in terms of number of blocks), m denotes the number of CPUs, and T denotes
the PRAM’s parallel time steps. Without loss of generality, we assume that
N ≥ m. We stress that henceforth in the paper, the notations N and m denote
the number of memory blocks and the number of CPUs for the original PRAM—
our OPRAM construction will consume O(1) factor more memory and possibly
more than m CPUs.

2.2 Oblivious Parallel Random-Access Machines

Randomized PRAM. A randomized PRAM is a special PRAM where the CPUs
are allowed to generate private, random numbers. For simplicity, we assume that
a randomized PRAM has a priori known, deterministic runtime.

Oblivious PRAM (OPRAM). A randomized PRAM parametrized with total
memory size N is said to be statistically oblivious, iff there exists a negligible
function ε(·) such that for any inputs x0, x1 ∈ {0, 1}∗,

Addresses(PRAM, x0)
ε(N)≡ Addresses(PRAM, x1),
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where Addresses(PRAM, x) denotes the joint distribution of memory accesses

made by PRAM upon input x and the notation
ε(N)≡ means the statistical dis-

tance is bounded by ε(N). More specifically, for each time step t ∈ [T ],
Addresses(PRAM, x) includes the memory addresses requested by the CPUs in
time step t, as well as whether each memory request is a read or write operation.
Henceforth we often use the notation OPRAM to denote a PRAM that satisfies
statistical obliviousness.

Similarly, a randomized PRAM parametrized with total memory size N is
said to be computationally oblivious, iff there exists a negligible function ε(·)
such that for any inputs x0, x1 ∈ {0, 1}∗,

Addresses(PRAM, x0)
ε(N)≡c Addresses(PRAM, x1)

Note the only difference from statistical security is that here the access pat-
terns only need to be indistinguishable to computationally bounded adversaries,

denoted by the notaiton
ε(N)≡c .

Following the convention of most existing ORAM and OPRAM works [8,9,
13,20,21], we will require that the security failure probability to be negligible in
the N , i.e., the PRAM’s total memory size.

Oblivious simulation. We say that a given OPRAM simulates a PRAM if for
every input x ∈ {0, 1}∗, Pr[OPRAM(x) = PRAM(x)] = 1 − μ(N) where the
completeness error μ is a negligible function and the probability is taken over
the randomness consumed by the OPRAM—in other words, we require that the
OPRAM and PRAM output the same outcome on any input x.

Online OPRAM. In this paper we focus on online OPRAM that simulates a
PRAM by processing memory request of each PRAM step in an online fashion.
Namely, each PRAM memory request is processed by the OPRAM without know-
ing the future requests. Note that all known ORAM and OPRAM constructions
satisfy the online property.

Performance measures. For an online OPRAM simulates a certain PRAM, we
measure its performance by its work-depth and total work overhead. The work-
depth overhead is defined to be the number of time steps d for OPRAM to
simulate each PRAM step. Let W denote the total number of blocks accessed
by OPRAM to simulate a PRAM step. The total work overhead is defined to be
W/m, which captures the overhead to simulate a batch of memory request in a
PRAM step. Note that both d and W are random variables.

3 Lower Bound on Work-Depth

We show a lower bound on the work-depth in terms of the number m of CPUs. We
establish a Ω(log m) depth lower bound for OPRAMs satisfying the following
properties. We remark that our construction in Sect. 5 as well as all existing
ORAM and OPRAM constructions satisfy these properties.
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1. Balls-and-bins storage. As coined in the ORAM lower bound of Goldreich
and Ostrovsky [2], data blocks are modeled as “balls,” while shared memory
locations and CPU registers are modeled as “bins”. In particular, this means
that every memory location stores at most one data block and the content
of the data block can be retrieved from that location independent of other
storage.

2. Online OPRAM. As defined in Sect. 2.2, we consider online OPRAM that
only learns the logic memory request at the beginning of a PRAM step.

3. s-bounded duplication. We also need a technical condition on the bound
of data duplication. Namely, there is a bound s such that every data block
has at most s copies stored on the memory. All known ORAM and OPRAM
constructions do not store duplications on the memory2, i.e., s = 1.

It is worth comparing our depth lower bound for OPRAM with the ORAM
lower bound of [2]. Both lower bounds assume the balls-and-bins model, but
establish lower bound for different metrics and rely on very different arguments
(in particular, as we discussed below, counting arguments do not work in our
setting). We additionally require online and bounded duplication properties,
which are not needed in [2]. On the other hand, our lower bound holds even for
OPRAM with computational security. In contrast, the lower bound of [2] only
holds for statistical security.

The setting for the lower bound. For simplicity, we consider the following setting
for establishing the lower bound. First, we consider OPRAM with initialization,
where n logical data blocks of the original PRAM are initialized with certain
distinct content. This is not essential as we can view the initialization as the
first n steps of the PRAM program. We also assume that the logical data size
n is sufficiently larger than the total CPUs register size. Specifically, let α be
a constant in (0, 1/3) and r be the register size of a CPU. We assume n ≥
Ω(r ·m1+(α/4)). For any OPRAM satisfying the above three properties with s ≤
m(1/3)−α, we show that the work-depth is at least (α/3) · log m with probability
at least 1−m−α/4 for every PRAM step. In particular, the expected work-depth
per step is at least Ω(log m) as long as s ≤ m1/3−Ω(1).

Theorem 3 (Lower Bound on Work-Depth). Let Π be a computationally-
secure online OPRAM that satisfies the balls-and-bins model with s-bounded
duplication for s < m(1/3)−α for constant α ∈ (0, 1/3), where the number N
of blocks is at least m. Let r be the register size of each CPU. Assume that
n ≥ 4r · m1+(α/4) and Π has correctness error μ ≤ m−α/4/4. Then for each
PRAM step t, let depth(Π, t) denote the work-depth of Π for PRAM step t,

Pr[depth(Π, t) ≤ (α/3) · log m] ≤ m−α/4,

where the probability is over the randomness of the OPRAM compiler Π.
2 In some hierarchical ORAMs [10,13], there might be several copies of the same block

on the server, but only one copy is regarded as fresh, while other copies are stale
and may contain old contents.
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Before proving Theorem 3, we first discuss the intuition behind the lower
bound proof in Sect. 3.1, where under simplifying assumptions, we reduce the
OPRAM lower bound to solving a “user-movie problem” that captures the main
argument of our lower bound proof. We discuss how to remove the simplifying
assumptions in the end of the section. We then present the formal proof of
Theorem 3 in Sect. 3.2

3.1 Intuition: A User-Movie Problem

As a warmup, we first present an intuitive proof making a few simplifying
assumptions: (1) the OPRAM compiler must be perfectly correct and perfectly
secure; and (2) there is no data block duplication in memory. Later in our formal
proofs in Sect. 3.2, these assumptions will be relaxed.

Let us consider how to prove the depth lower bound for a PRAM step t
for an OPRAM. Recall that we consider online OPRAM that learn the logical
memory requests at the beginning of the step. We can view what happened
before the step t as a preprocessing phase that stores the logical memory blocks
in different memory locations, and the step t corresponds to an online phase
where the CPUs fetch the requested memory blocks with certain observed access
pattern. Since the access pattern should hide the logical memory request, any
fixed access pattern should allow the CPUs to complete any possible batch of
m requests (assuming perfect correctness and perfect security). We say that an
access pattern can support a batch of m requests, if there exists a pre-processing
(i.e., packing of data blocks into memory), such that each CPU can “reach” its
desired data block through this access pattern. Our goal is to show that if the
access pattern is low depth, then it is impossible to satisfy every batch of m
requests—even when one is allowed to enumerate all possible pre-processings to
identify one that best matches the requests (given the fixed access pattern). To
show this, our argument involves two main steps.

1. First, we show that for any access pattern of low depth, say, d, each CPU can
reach at most 2d memory locations.

2. Second, we show that if an access pattern can satisfy all possible batches of m
requests (with possibly different pre-processing), then it must be that some
CPU can reach many physical locations in memory.

The former is relatively easy to show. Informally speaking, consider the balls-
and-bins model as mentioned earlier: in every PRAM step, each CPU can only
access a single memory location (although each memory location can be accessed
by many CPUs). This means that at the end of the PRAM step, the block held
by each CPU can only be one of two choices: (1) the block previously held by
the CPU; or (2) the block in the memory location the CPU just accessed. This
means that the access pattern graph must have a small fan-in of 2 (although
the fan-out may be unbounded). It is not difficult to formalize this intuition,
and show that given any depth-d access pattern, only 2d memory locations can
“flow into” any given CPU. Henceforth, we focus on arguing why the latter is
also true—and this requires a much more involved argument.
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For ease of understanding, henceforth we shall refer to CPUs as users, and
refer to data blocks in physical memory as movies. There are n distinct movies
stored in a database of size N (without duplications) and m users. Each user
wants to watch a movie and can access to certain 2d locations in the database,
but the locations the users access to cannot depend on the movies they want to
watch. On the other hand, we can decide which location to store each movie to
help the users to fetch their movies from the locations they access to. In other
words, we first decide which 2d locations each user access to, then learn which
movie each user wants to watch. Then we decide the location to store each movie
to help the users to fetch their movies. Is it possible to find a strategy to satisfy
all possible movie requests?

We now discuss how to prove the impossibility for the user-movie problem.
We first note that a simple counting argument does not work, since there are nm

possible movie requests but roughly Nn 	 nm possible ways to store the movies
in physical memory. To prove the impossibility, we first observe that since we
do not allow duplications, when two users request the same movie, they must
have access to the same location that stores the movie. Thus, any pair of users
must be able to reach a common movie location—henceforth we say that the two
users “share” a movie location. This observation alone is not enough, since the
users may all share some (dummy) location. If, however, two sets of users request
two different movies, then not only must each set share a movie location, the
two sets must share two distinct locations. More generally, the m users’ movie
requests induce a partition among users where all users requesting the same
movie are in the same part (i.e., equivalence class), and users in two different
parts request different movies. This observation together with carefully chosen
partitions allow us to show the existence of a user that needs to access to a large
number of locations, which implies an impossibility for the user-movie problem
for sufficiently small depth d. We stress that this idea of “partitioning” captures
the essence of what pre-processing cannot help with, and this explains why our
proof works even when there are a large number of possible pre-processings.

Specifically, let k = m/2 and label the m users with the set M := [2] × [k].
We consider the following k partitions that partition the users into k pairs. For
each i ∈ [k], we define partition Pi = {{(1, a), (2, a + i)} : a ∈ [k]}, where the
addition is performed modulo k. Note that all k2 pairs in the k partitions are
distinct. By the above observation, for each partition Pi, there are k distinct
locations �i,1, . . . , �i,k ∈ [N ] such that for each pair {(1, a), (2, a + i)} for a ∈ [k],
both users (1, a), (2, a + i) access to the location �i,a. Now, for each location
� ∈ [N ], let w� denote the number of �i,a = � and d� denote the number of users
access to the location �. Note that w� ≤ k since user pairs in a partition access
to distinct locations (i.e., �i,a �= �i,a′ for every i ∈ [k] and a �= a′ ∈ [k]). Also
note that d� ≥ √

2w� since there are only
(
d�

2

)
distinct pairs of users access to

the location �.
To summarize, we have (i)

∑
� w� = k2, (ii) w� ≤ k for all � ∈ [N ], and (iii)

d� ≥ √
2w� for all � ∈ [N ], which implies

∑
� d� ≥ k ·√2k =

√
k/2·m. Recall that

d� denote the number of users access to the location � and there are m users.
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By averaging, there must exist a user who needs to access to at least
√

k/2
locations. Therefore, the user-movie problem is impossible for d ≤ 0.5 · log m−2.
Note that the distinctness of the �i,a’s induced by the partitions plays a crucial
role to drive a non-trivial lower bound on the summation

∑
� d�.

Removing the simplifying assumptions. In above intuitive proof we make several
simplyfing assumptions such as perfect security and perfect correctness. We now
briefly discuss how to remove these assumptions. The main non-trivial step is to
handle computational security, which requires two additional observations. Fol-
lowing the above argument, let us say that an access pattern is compatible with a
CPU/user partition if it can support a logic memory request with corresponding
induces CPU/user partition.

– First, the above impossibility argument for the user-movie problem can be
refined to show that if an access pattern has depth d, then it can be compatible
with at most 22(d+1) partitions in P1, . . . , Pk defined above.

– Second, whether an access pattern is compatible with a partition can be
verified in polynomial time.

Based on these two observations, we show that if d ≤ 0.5 · log m−4 (with notice-
able probability), then we can identify two efficiently distinguishable CPU par-
titions, which implies a depth lower bound for computationally-secure OPRAM.
First, we consider the access pattern of partition P1. Since d ≤ 0.5 · log m − 4,
it can only be compatible with at most k/2 partitions. By an averaging argu-
ment, there exists some partition Pi such that Pi is not compatible with the
access pattern of P1 with probability at least 1/2. On the other hand, by perfect
correctness, the access pattern of Pi is always compatible with Pi. Therefore,
the access patterns of P1 and Pi are efficiently distinguishable by an efficient
distinguisher D that simply verifies if the access pattern is compatible with Pi.

We now briefly discuss how to remove the remaining assumptions. First, it is
not hard to see that the above argument does not require perfect correctness and
can tolerate a small correctness error. Second, we make an implicit assumption
that the requested data blocks are not stored in the CPU registers so that the
CPUs must fetch the requested data blocks from physical locations on the server.
This can be handled by considering logic access requests with random logical
address and assuming that the logic memory size n is sufficiently larger than the
total CPU register size (as in the theorem statement).

We also implicitly assume that we can observe the beginning and end of the
access pattern of a PRAM step t. For this, we note that by the online property,
we can without loss of generality consider t as the last step so that we know the
end of the access pattern for free. Furthermore, we observe that we do not need
to know the beginning of the access pattern since the compatibility property is
monotone in the following sense. If a partition Pi is compatible with the access
pattern of the last d accesses, it is also compatible with the access pattern of
the last d + 1 accesses. Thus, we can consider the access pattern of the last d
accesses for certain appropriately chosen d.
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Finally, to handle s-bounded duplication with s > 1, we consider CPU par-
titions where each part is a set of size s+1, instead of a pair. By the pigeonhole
principle, each part can still certify a pair of CPUs with a shared memory loca-
tion. However, some extra care is needed for defining the partitions to make sure
that different partitions do not certify the same pair of CPUs, and the depth
lower bound degrades when s increases. Nevertheless, the lower bound remains
Ω(log m) for s ≤ m1/3−Ω(1).

3.2 Proof of Theorem 3

We now proceed with a formal proof. We first note that for proving lower bound
of the PRAM step t, we can consider PRAM programs where t is the last step,
since the behavior of an online OPRAM does not depend on the future PRAM
steps. Thus, we can focus on proving lower bound of the last PRAM step. We
prove the theorem by contradiction. Suppose that

Pr[depth(Π, t) ≤ (α/3) · log m] > m−α/4, (1)

we show two PRAM programs P1,P2 with identical first t−1 steps and different
logic access request at step t such that the access pattern of Π(P1) and Π(P2),
which denote the OPRAM simulation of P1,P2 respectively, are efficiently dis-
tinguishable. Towards this, we define the CPU partition of a memory request.

Definition 1 (CPU Partition). Let addr = (addr1, . . . , addrm) ∈ [n]m be a
memory request. addr induces a partition P on the CPUs, where two CPUs
c1, c2 are in the same part iff they request for the same logical address addrc1 =
addrc2 . In other words, P partitions the CPUs according to the requested logical
addresses.

Recall that s is the bound on the number of duplication. We assume m =
(s+1) ·k for some prime k. This is without loss of generality, because any integer
has a prime number that is within a multiplicative factor of 2. We label the m
CPUs with the set M := [s + 1] × [k]. We consider the following set of partitions
P1, . . . , Pk: For i ∈ [k], the partition Pi := {Si(a) : a ∈ [k]} is defined such that
each part has the form Si(a) := {(b, a + bi) : b ∈ [s + 1]}, where addition is
performed modulo k. In other words, the parts in the partitions can be viewed
as all possible distinct line segments in the Z

2
k plane.

We will show two programs where their last memory requests have induced
partitions P1 and Pi for some i ∈ [k] such that their compiled access patterns
are efficiently distinguishable. To show this, we model the view of the adversary
with an access pattern graph and consider a compatiability property between an
access pattern graph and a CPU partition, defined as follows.

Access pattern graphs and compatibility. Given the access pattern of Π(P) for
a PRAM program P and a depth parameter d ∈ N, we define an access pattern
graph G as follows.
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(a) Nodes. The nodes are partitioned into d + 1 layers. In layer 0, each node
represents a physical location in the memory at the beginning of the last
d-th time step of Π(P).
For 1 ≤ i ≤ d, each node in layer i represents a physical location in the
memory or a CPU at the end of the last (d − i + 1)-st time step.
Hence, we represent each node with (i, u), where i is the layer number and
u is either a CPU or a memory location.

(b) Edges. Each edge is directed and points from a node in layer i − 1 to one
in layer i for some i ≥ 1. For each CPU or a memory location, there is a
directed edge from its copy in layer i − 1 to one in layer i.
If a CPU c reads from some physical location � in the last (d−i)-th time step,
then there is a directed edge from (i−1, �) to (i, c). Since we allow concurrent
read, the out-degree of a node corresponding to a physical location can be
unbounded.
If a CPU c writes to some physical location � in the last (d− i)-th time step,
then there is a directed edge from (i − 1, c) to (i, �).
Observe that since we consider OPRAM with exclusive write, the in-degree
of a node (either corresponding to a CPU or a memory location) is at most
2. In fact, the degree 2 bound holds even with concurrent write models as
long as the write conflict resolution can be determined only by the access
pattern.

The access pattern graph G captures the potential data flow of the last d
time steps of the data access. Specifically, a path from (0, �) to (d, c) means
CPU c may learn the content of the memory location � at the last d time step.
If there is no such path, then CPU c cannot learn the content. This motivates
the definition of compatible partitions.

Definition 2 (Compatible Partition). Let G be an access pattern graph and
P1, . . . , Pk be the partitions defined above. We say Pi = {Si(a) : a ∈ [k]} is
compatible with G if there exist k distinct physical locations �i,1, . . . , �i,k on the
server such that for each a ∈ [k], there are at least two CPUs c1 and c2 in Si(a)
such that both nodes (d, c1) and (d, c2) are reachable from (0, �i,a) in G.

Intuitively, compatibility is a necessary condition for the last d time steps of
data access to “serve” an access request with induced partition Pi, assuming the
requested data blocks are not stored in the CPU registers at the last d-th time
step. Recall that each data block has at most s copies in the server, and each
part Si(a) has size s + 1. By the Pigeonhole principle, for each part Si(a) in the
induced partition, there must be at least two CPUs c1, c2 ∈ Si(a) obtaining the
logical block from the same physical location �a on the server, which means the
nodes (d, c1) and (d, c2) are reachable from (0, �a) in G. We note that verifying
compatibility can be done in polynomial time.

Lemma 1 (Verifying Compatibility Takes Polynomial Time). Given a
CPU partition P and an access pattern graph G, it takes polynomial time to
verity whether P is compatible with G.



On the Depth of Oblivious Parallel RAM 581

Proof. Given P and G as in the hypothesis of the lemma, we construct a bipartite
graph H as follows. Each vertex in L is labeled with a memory location �, and
each vertex in R is labeled with a part S in P . There is an edge connecting a
vertex � in L to a vertex S in R iff there are at least two CPUs c1 and c2 in S
such that both (d, c1) and (d, c2) are reachable from (0, �) in G. This bipartite
graph can be constructed in polynomial time.

Observe that P is compatible with G iff there is a matching in H such that
all vertices’s in R are matched. Hence, a maximum matching algorithm can be
applied to H to decide if P is compatible with G.

Now, the following key lemma states that an access pattern graph G with
small depth d cannot be compatible with too many partitions. We will use the
lemma to show two programs with efficiently distinguishable access patterns.

Lemma 2. Let G be an access pattern graph with the depth parameter d, and
P1, . . . , Pk be the partitions defined above. Among P1, . . . , Pk, there are at most
((s + 1) · 2d)2 partitions that are compatible with G.

Proof. Recall that the in-degree of each node is at most 2. Thus, for each node
(d, c) in layer d, there are at most 2d nodes (0, �) in layer 0 that can reach the
node (d, c). For the sake of contradiction, we show that if G is compatible with
u > ((s + 1) · 2d)2 partitions, then there exists a node (d, c) that is reachable by
more that 2d nodes in layer 0.

For convenience, we define a bipartite graph H = (L,R,E) from G as follows.
Each vertex in L is labeled with a CPU c, and each vertex in R is labeled with
a physical location � of the memory. There is an edge (c, �) in H iff (0, �) reaches
(d, c) in G. Our goal can be restated as showing that if G is compatible with
u > ((s + 1) · 2d)2 partitions, then there exists c ∈ L with degree deg(c) > 2d.
We do so by lower bounding the number of edges |E| > m · 2d.

By definition, if Pi is compatible with G, then there exist k distinct physical
locations �i,1, . . . , �i,k on the server such that for each a ∈ [k], there are at least
two CPUs ci,a, c′

i,a ∈ Si(a) such that (d, ci,a) and (d, c′
i,a) are reachable from

(0, �i,a) in G, which means there are edges (ci,a, �i,a) and (c′
i,a, �i,a) in H. Thus,

a compatible partition certifies 2k edges in H, although two different partitions
may certify the same edges.

Let Pi1 , . . . , Piu
be the set of compatible partitions. While they may certify

the same edges, the set of CPU pairs {(cij ,a, c′
ij ,a) : j ∈ [u], a ∈ [k]} are distinct

for the following reason: Recall that the parts in partitions correspond to differ-
ent line segments in Z

2
k. Since two points define a line, the fact that the parts

correspond to different lines implies that all CPU pairs are distinct.
For each memory location �, let w� denote the number of �ij ,a = �. It means

that � is connected to w� distinct pairs of CPUs in H, which implies that deg(�) ≥√
2w� since there must be at least

√
2w� distinct CPUs. Also, note that

∑
� w� =

u · k and w� ≤ u for every � since � can appear in each partition at most
once. It is not hard to see that the above conditions imply a lower bound on
|E| =

∑
� deg(�) ≥ k · √

2u > m · 2d. This in turn implies the existence of c ∈ L
with degree deg(c) > 2d, a contradiction.
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Let us now consider a PRAM program P1 that performs dummy access in
the first t − 1 steps and a random access request at the t step with induced
partition P1. Specifically, in the first t − 1 steps, all CPUs read the first logic
data block. For the t-th step, let (b1, . . . , bk) be uniformly random k distinct
logic data blocks. For a ∈ [k], the CPUs in part S1(a) of P1 read the block ba at
the t-th step. Let d = (α/3) · log m and G(Π(P1), d) denote the access pattern
graph of Π(P1) with depth parameter d. The following lemma follows directly
by Lemma 2 and an averaging argument.

Lemma 3. There exists i∗ ∈ [k] such that

Pr[Pi∗ is compatible with G(Π(P1), d)] ≤ ((s + 1) · 2d)2/k ≤ m−α/3,

where the randomness is over Π and P1.

Now, consider a PRAM program P2 that is identical to P1, except that the
access request at the t-th step has induced partition Pi∗ instead of P1. Namely,
for a ∈ [k], the CPUs in part Si∗(a) of Pi∗ read the block ba at the t-th step,
where (b1, . . . , bk) are uniformly random k distinct logic data blocks.

Lemma 4. Suppose that Π satisfies Eq. (1), then

Pr[Pi∗ is compatible with G(Π(P2), d)] > m−α/4/4,

where the randomness is over Π and P2.

Proof. First note that since each CPU request a random data block at the t-th
PRAM step, the probability that the requested data block is stored in the CPU
register is at most r/n. By a union bound, with probability at least 1−m·(r/m) ≥
1 − m−α/4/4, all data blocks requested at the t-th PRAM step are not in the
corresponding CPU registers. In this case, the CPUs need to obtain the data
blocks from the server. Furthermore, if the work-depth of the t-th PRAM step
is ≤d, then the CPUs need to obtain the data blocks in the last d time steps of
data access, which as argued above, implies compatibility. Therefore,

Pr[Pi∗ is compatible with G(Π(P2), d)] > m−α/4 − m−α/4/4 − εc > m−α/4/4.

Recall by Lemma 1 that compatibility can be checked in polynomial time. The
above two lemmas imply that assuming Eq. (1), Π(P1) and Π(P2) are efficiently
distinguishable by a distinguisher D who checks the compatibility of Pi∗ and
the access pattern graph with depth parameter d = (α/3) · log m. This is a
contradiction and completes the proof of Theorem3.

4 Background on Circuit OPRAM and Building Blocks

4.1 Preliminaries: Circuit OPRAM

As a warmup, we first briefly review the recent Circuit OPRAM algorithm [5]
that we build on top of. For clarity, we make a few simplifying assumptions in
this overview:
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– We explain the non-recursive version of the algorithm where we assume that
the CPU can store a position map for free that tracks the rough physical
location of every block: this CPU-side position map is later removed using a
standard recursion technique in Circuit OPRAM [5]—however, as we point
out later, to obtain a small depth OPRAM in our paper, we must implement
the recursion differently and thus in our paper we can no longer treat the
recursion as blackbox technique.

– We assume that m is not too small and is at least polylogarithmic in N ; and
– A standard conflict resolution procedure proposed by Boyle et al. [1] has

been executed such that the incoming batch of m requests are for distinct
real blocks (or dummy requests).

Core data structure: a pool and 2m subtrees. Circuit ORAM partitions the
ORAM data structure in memory into 2m disjoint subtrees. Given a batch of
m memory requests (from m CPUs), each request will be served from a ran-
dom subtree. On average, each subtree must serve O(1) requests in a batch;
and due to a simple balls and bins argument, except with negligible probability,
even the worst-case subtree serves only O(α log N) incoming requests for any
super-constant function α.

In addition to the 2m subtree, Circuit OPRAM also maintains an overflow
pool that stores overflowing data blocks that fail to be evicted back into the 2m
subtrees at the end of each batch of m requests.

It will help the reader to equivalently think of the 2m subtrees and the pool in
the following manner: First, think of a single big Circuit ORAM [21] tree (similar
to other tree-based ORAMs [18]). Next, identify a height with 2m buckets, which
naturally gives us 2m disjoint subtrees. All buckets from smaller heights as well
as the Circuit ORAM’s stash form the pool. As proven in the earlier work [5], at
any time, the pool contains at most O(m + α log N) blocks.

Fetch. Given a batch of m memory requests, henceforth without loss of general-
ity, we assume that the m requests are for distinct addresses. This is because we
can adopt the conflict resolution algorithm by Boyle et al. [1] to suppress dupli-
cates, and after data has been fetched, rely on oblivious routing to send fetched
data to all request CPUs. Now, look up the requested blocks in two places, both
the pool and the subtrees:

– Subtree lookup: For a batch of m requests, each request comes with a position
label—and all m position labels define m random paths in the 2m subtrees.
We can now fetch from the m path in parallel. Since each path is O(log N)
in length, each fetch can be completed in O(log log N) parallel steps with the
help of log N CPUs.
All fetched blocks are merged into the pool. Notice that at this moment, the
pool size has grown by a constant factor, but later in a cleanup step, we will
compress the pool back to its original size. Also, at this moment, we have
not removed the requested blocks from the subtrees yet, and we will remove
them later in the maintain phase.
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– Pool lookup: At this moment, all requested blocks must be in the pool. Assum-
ing that m is not too small, we can now rely on oblivious routing to route
blocks back to each requesting CPU—and this can be completed in O(log m)
parallel steps with m CPUs.

Maintain. In the maintain phase, perform the following: (1) remove all blocks
fetched from the paths read; and (2) perform eviction on each subtree.

– Efficient simultaneous removals. After reading each subtree, we need to
remove up to μ := O(α log N) blocks that are fetched. Such removal opera-
tions can lead to write contention when done in parallel: since the paths read
by different CPUs overlap, up to μ := O(α log N) CPUs may try to write to
the same location in the subtree. Circuit OPRAM employs a novel simultane-
ous removal algorithm to perform such removal in O(log N) parallel time with
m CPUs. We refer the reader to the Circuit OPRAM paper for an exposi-
tion of the simultaneous removal algorithm. As noted in the Circuit OPRAM
paper [5], simulatenous removal from m fetch paths can be accomplished in
O(log m + log log N) parallel steps with O(m · log N) total work.

– Selection of eviction candidates and pool-to-subtree routing. At this moment,
we will select exactly one eviction candidate from the pool for each subtree.
If there exists one or more blocks in the pool to be evicted to a certain sub-
tree, then the deepest block (where deepest is precisely defined in Circuit
ORAM [21]) with respect to the current eviction path will be chosen. Other-
wise, a dummy block will be chosen for this subtree. Roughly speaking, using
the above criterion as a preference rule, we can rely on oblivious routing to
route the selected eviction candidate from the pool to each subtree. This can
be accomplished in O(log m) parallel steps with m CPUs assuming that m is
not too small.

– Eviction. Now, each subtree performs exactly 1 eviction. This can be accom-
plished in O(log N) runtime using the sequential procedure described in the
original Circuit ORAM paper [21]. At the end of this step, each subtree will
output an eviction leftover block: the leftover block is dummy if the chosen
eviction candidate was successfully evicted into the subtree (or if the evic-
tion candidate was dummy to start with); otherwise the leftover block is the
orginal eviction candidate. All these eviction leftovers will be merged back
into the central pool.

– Pool cleanup. Notice that in the process of serving a batch of requests, the
pool size has grown—however, blocks that have entered the pool may be
dummy. In particular, we shall prove that the pool’s occupancy will never
exceed c · m + α log N for an appropriate constant c except with negl(N)
probability. Therefore, at the end of the maintain phase, we must compress
the pool back to c · m + α log N . Such compression can easily be achieved
through oblivious sorting in O(log m) parallel steps with m CPUs, assuming
that m is not too small.

Recursion. Thus far, we have assumed that the position map is stored on the
CPU-side, such that the CPU knows where every block is in physical memory.
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To get rid of the position map, Circuit OPRAM employs a standard recursion
technique that comes with the tree-based ORAM/OPRAM framework [18]. At a
high level, the idea of the recursion framework is very simple: instead of storing
the position map on the CPU side, we recurse and store the position map in
a smaller OPRAM in physical memory; and then we recurse again and store
the position map of this smaller OPRAM in a yet smaller OPRAM in physical
memory, and so on. If each block can store γ > 1 number of position labels, then
every time we recurse, the OPRAM’s size reduces by a factor of γ. Thus in at
most log N recursion levels, the metadata size becomes at most O(1) blocks—and
at this moment, the CPU can store all the metadata locally in cache.

Although most prior tree-based ORAM/OPRAM papers typically treat this
recursion as a standard, blackbox technique, in this paper we cannot—on the
contrary, it turns out that the recursion becomes the most non-trivial part of our
low-depth OPRAM algorithm. Thus, henceforth the reader will need to think
of the recursion in an expanded form—we now explain what exactly happens in
the recursion in an expanded form. Imagine that one of the memory requests
among the batch of m requests asks for the logical address (0101100)2 in binary
format, and suppose that each block can store 2 position labels. Henceforth we
focus on what happens for fetching this logical address (0101100)2—but please
keep in mind that there are m such addresses and thus the following process is
repeated m times in parallel.

– First, the 0th recursion level (of constant size) will tell the 1st recursion level
the position label for the address (0∗)2.

– Next, the 1st recursion level fetch the metadata block at level-1 address (0∗)2
and this fetched block contains the position labels for (00∗)2 and (01∗)2.

– Now, level-1 informs level-2 of the position label for (01∗)2; at this moment,
level-2 fetches the metadata block for the level-2 address (01∗)2 and this
fetched block contains the position labels for the addresses (010∗)2 and
(011∗)2; and so on.

– This continues until the D-th recursion level (i.e., the final recursion level)—
this final recursion level stores actual data blocks rather than metadata, and
thus the desired data block will be fetched at the end.

As mentioned, the above steps are in fact replicated m times in parallel since
there are m requests in a batch. This introduces a couple additional subtleties:

– First, notice that for obliviousness, conflict resolution must be performed
upfront for each recursion level before the above procedure starts—this step
can be parallelized across all recursion levels.

– Second, how do the m fetch CPUs at one recursion level obliviously route the
fetched position labels to the m fetch CPUs waiting in the next recursion
level? Circuit OPRAM relies on a standard oblivious routing procedure (ini-
tially described by Boyle et al. [1]) for this purpose, thus completely hiding
which CPUs route to which.
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Important observation. At this moment, we make an important observation.
In the Circuit OPRAM algorithm, the fetch phase operations are inherently
sequential across all recursion levels, and the maintain phase operations can
be parallelized across all recursion levels. In particular, during the fetch phase,
the m fetch CPUs at recursion level d must block waiting for recursion level
d − 1 to pass down the fetched position labels before its own operations can
begin. Due to the sequential nature of the fetch phase, Circuit OPRAM incurs
at least (log m + log log N) log N depth, where the log m stems from level-to-
level oblivious routing, log log N stems the depth needed to parallel-fetch from
a path of length log N (and other operations), and the log N factor is due to the
number of recursion levels. In comparison, the depth of the maintain phase is
not the limiting factor due to the ability to perform the operations in parallel
across recursion levels.

4.2 Other Important Building Blocks

Permutation-related building blocks. We will rely on the following building blocks
related to generating and applying permutations. In the interest of this space, we
describe the abstractions of the building blocks but defer their full specification
to our online full version [3].

1. Apply a pre-determined permutation to an array. It is not difficult to
see that we can in parallel apply a pre-determined permutation to an array in
a single parallel step (see our online full version [3] for the detailed algorithm).

2. Permute an array by a secret random permutation. One can generate
a secret random permutation and apply it to an array obliviously, without
revealing any information about the permutation—and this can be accom-
plished in O(log n) depth and O(n log n) work for an array of size n. The
formal specification and proofs are deferred to the online full version [3].

3. Obliviously construct a routing permutation that permutes a source
to a destination array. In our online full version [3] we show how to accom-
plish the following task: given a source array snd of length k containing dis-
tinct real elements and dummies (where each dummy element contains unique
identifying information as well), and a destination array rcv also of length k
containing distinct real elements and dummies, with the guarantee that the
set of real elements in snd are the same as the set of real elements in rcv. Now,
construct a routing permutation π : [k] → [k] (in an oblivious manner) such
that for all i ∈ [k], if snd[i] contains a real element, then rcv[π[i]] = snd[i].
This can be accomplished in O(n log n) work and O(log n) depth by calling
oblivious sort O(1) number of times.

Oblivious bin-packing. Oblivious bin-packing is the following primitive.

– Inputs: Let B denote the number of bins, and let Z denote the target bin
capacity. We are given an input array denoted In, where each element is either
a dummy denoted ⊥ or a real element that is tagged with a bin number
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g ∈ [B]. It is guaranteed that there are at most Z elements destined for
each bin.

– Outputs: An array Out[1 : BZ] of length B · Z containing real and dummy
elements, such that Out[(g − 1)B + 1 : gB] denotes contents of the g-th bin
for g ∈ [B]. The output array Out must guarantee that the g-th bin contains
all elements in the input array In tagged with the bin number g; and that
all real elements in bin g must appear in the input array In and are tagged
with g.

There is an oblivious parallel algorithm that accomplishes oblivious bin
packing in total work O(ñ log ñ) and parallel runtime O(log ñ) where ñ =
max(|In|, B · Z). The algorithm works as follows:

1. For each group g ∈ [B], append Z filler elements of the form (filler, g) to
the resulting array—these filler elements ensure that every group will receive
at least Z elements after the next step.

2. Obliviously sort the resulting array by the group number, placing all dummies
at the end. When elements have the same group number, place filler elements
after real elements.

3. By invoking an instance of the oblivious aggregation algorithm [1,16] (see
full version [3] for the definition of oblivious aggretation), each element in
the array finds the leftmost element in its own group. Now for each element
in the array, if its offset within its own group is greater than Z, replace the
element with a dummy ⊥.

4. Oblivious sort the resulting array placing all dummies at the end. Truncate
the resulting array and preserve only first B · Z blocks.

5. For every filler element in the resulting array, replace it with a dummy.

5 A Small-Depth OPRAM: Level-to-Level Routing
Algorithm

5.1 Overview of Our OPRAM

We now show how we can improve the depth of OPRAM schemes [1] by a
logarithmic factor, through employing the help of more CPUs; and importantly,
we achieve this without incurring extra total work in comparison with the best
known OPRAM scheme [5].

Challenges. As argued earlier in Sect. 4.1, for the case of general block sizes, the
most sequential part of the Circuit OPRAM algorithm stems from the (up to)
log N recursion levels. More specifically, (apart from the final data level), each
recursion level’s job is to fetch the metadata (referred to as position labels)
necessary, and route this information to the next recursion level. In this way,
the next recursion level will know where in physical memory to look for the
metadata needed by its next recursion level, and so on (we refer the reader to
Sect. 4.1 for a more detailed exposition of the recursion).
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Thus, the fetch phase operations of Circuit OPRAM are inherently sequen-
tial among the D recursion levels, incurring (D(log m + log log N)) in depth,
where the log m term stems from the level-to-level oblivious routing of fetched
metadata, and the log log N term stems from fetching metadata blocks from a
path of length log N . Igoring the log log N term, our goal therefore is to get rid
of the log m depth that stems from level-to-level oblivious routing.

Our result. Our main contribution is to devise a low-depth algorithm to perform
level-to-level routing of metadata. At first sight, this task seems unlikely to be
successful—since each recursion level must obliviously route its metadata to the
next level, it would seem like we are inherently subject to the depth necessary
for an oblivious routing algorithm [1]. Since oblivious routing in some sense
implies oblivious sorting, it would seem like we have to devise an oblivious sorting
algorithm of less than logarthmic depth to succeed in our goal.

Perhaps somewhat surprisingly, we show that this need not be the case. In
particular, we show that by (1) allowing a negligible statistical failure probability;
(2) exploiting special structures of our routing problem; and (3) introducing an
offline/online paradigm for designing parallel oblivious algorithms, we can devise
a special-purpose level-to-level oblivious routing algorithm such that

1. all work that is inherently log m in depth is pushed to an offline phase that
can be parallelized across all recursion levels; and

2. during the online phase that is inherently sequential among all log N recursion
levels, we can limit the work-depth of each recursion level to only log log N
rather than log m—note that for most interesting parameter regimes that we
care about, log m 	 log log N .

We defer the detailed introduction of this algorithm and its proofs to Sect. 5.2.
As a result, we obtain a new, statistically secure OPRAM algorithm (for general
block sizes) that achieves O(log N log log N) depth blowup and O(log2 N) total
work blowup. In comparison, under our new performance metrics, the best known
OPRAM algorithm [5] achieves O(log2 N) total work blowup and O(log2 N)
depth blowup. Thus we achieve a logarithmic factor improvement in terms of
depth.

Extensions. We consider several extensions. First, using a standard technique
described by Fletcher et al. [7] and extended to the OPRAM setting by Chan and
Shi [5], we show how to obtain a computationally secure OPRAM scheme with
O(log2 N/ log log N) total work blowup and O(log N) depth blowup, and sup-
porting general block sizes. In light of our aforementioned OPRAM depth lower
bound (which also applies to computationally secure OPRAMs), our OPRAM
scheme is optimal for m = N ε where ε > 0 is an arbitrarily small constant.

Finally, we consider a setting with sufficiently large blocks, say, the block size
is N ε for any constant ε > 0—in this case, the recursion depth becomes O(1).
In this case, the limiting factor to an OPRAM’s work depth now is the evic-
tion algorithm (rather than the level-to-level routing). We show how to leverage
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a non-trivial devise and conquer technique to devise a new, small-depth evic-
tion algorithm, allowing us to perform eviction along a path of length log N in
log log N depth rather than log N—however, this is achieved at the cost of a small
log log N blowup in total work. As a result, we show that for sufficiently large
blocks, there is an OPRAM scheme with depth as small as O(log log N + log m)
where the log log N part arises from our low-depth eviction algorithm (and other
operations), and the log m part arises from the conflict resolution and oblivious
routing of fetched data back to requesting CPUs—thus tightly matching our
depth lower bound as long as m is at least logarithmic in N .

5.2 Small-Depth Routing of Position Identifiers: Intuition

Problem statement. As we explained earlier, in each recursion level, m fetch
CPUs fetch the metadata (i.e., position labels) required for the next recursion
level. The next recursion level contains m fetch CPUs waiting to receive these
position labels, before its own operations can begin. Circuit OPRAM performs
such level-to-level routing using a standard oblivious routing building block, thus
incurring at least D log m depth where D is the number of recursion levels which
can be as large as log N , and log m is the depth of standard oblivious routing.
How can we reduce the depth necessary for level-to-level routing?

We will first clarify some details of the problem setup. Recall that in each
PRAM step, we receive a batch of m memory requests, i.e., m logical addresses.
Given these m logical addresses, we immediately know which level-d addresses to
fetch for each recursion level d (see Sect. 4.1 for details). We assume that conflict
resolution has been performed for each recursion level d on all of the m level-
d addresses, and thus, every real (i.e., non-dummy) level-d address is distinct.
Now, note that from all these level-d addresses (and even without fetching the
actual metadata in each recursion level), we can already determine the routing
topology from level to level: as an example, a level-2 CPU that needs to fetch
the level-2 address (010∗) would like to receive position labels from the level-1
fetch CPU with the address (01∗).

Our goal here is to improve the OPRAM’s depth to O(log N log log N) for
general (worst-case) block sizes. We use the parameter Γ to denote the number
of position labels that a block can store; we let γ := min{Γ,m} be an upper
bound on the number of position labels in a block that is “useful” for the next
recursion level. To achieve this, in the part of the algorithm that is sequential
among all recursion levels (henceforth also referred to as the online part), we
can only afford O(log log N) depth rather than the log m necessary for oblivious
routing. Indeed, for a general oblivious routing problem consisting of m senders
and m receivers, it appears the best one can do is to rely on an oblivious routing
network [1,6] that has log m depth—so how can we do better here? We rely on
two crucial insights:

1. First, we observe that our routing problem has small fan-in and fan-out: each
sender has at most γ recipients; and each recipient wants to receive from at
most 1 sender. This is because that each fetched metadata block contains at



590 T.-H.H. Chan et al.

most γ position labels, and obviously each fetch CPU in the next level only
needs one position label to proceed.

2. Second, we will rely on an offline-online paradigm—in the offline phase, we are
allowed to perform preparation work that indeed costs log m depth; however,
in the online phase, the depth is kept to be small. Later when we employ this
offline/online oblivious routing building block in our full OPRAM algorithm,
we will show that the offline phase does not depend on any fetched data, and
thus can be paralellized across all recursion levels, whereas the online phase
must still be sequential—but recall that the online phase has much smaller
depth.

First insight: localized routing. Our first idea is to rely on this observation to
restrict oblivious routing to happen only within small groups—as we shall explain
later, for this idea to work, it is essential that our routing problem has small
fan-in and fan-out. More specifically, we would like that each small group of
senders talk to a corresponding small group of receivers, say, sender group Si

talks only to receiver group Ri, where both Si and Ri are μ := αγ2 log N in size,
where the choice of μ is due to Lemma 5. If we do this, then oblivious routing
within each small group costs only log μ depth.

How can we arrange senders and receivers into such small groups? For cor-
rectness we must guarantee that for every i, each receiver in Ri will be able to
obtain its desired item from some sender in Si.

To achieve this, we rely on a randomized load balancing approach. The idea
is very simple. First, we pad the sender array with dummy senders to a size of
2m—recall that there are at most m real senders. Similarly, we pad the receiver
array to a size of 2m as well. Henceforth if a receiver wants an item from a
sender, we say that the sender and receiver are connected. Every dummy sender
is obviously connected to 0 receivers.

Now, if we pick a random sender from the sender array, in expectation this
sender will be connected to 0.5 receivers. Thus a random subset of μ senders
will in expectation is connected to 0.5µ receivers—using measure concentration
techniques, it is not difficult to show that a random subset of μ senders is con-
nected to μ receivers except with negligible probability—note that this measure
concentration result holds only when our routing problem has small fan-in and
fan-out (see Lemma 5 for details).

Our idea is to randomly permute the source array, and have the first μ sender
be group 1, the second μ senders be group 2, and so on. By relying on O(1)
number of oblivious sorts, we can now arrange the receiver array to be “loosely
aligned” with the sender array, i.e., all receivers connected to sender group 1 are
in the first size-μ bucket of the receiver array, all receivers connected to sender
group 2 are in the second size-μ bucket of the receiver array, and so on.

Using the above idea, the good news is that oblivious routing is now con-
strained to μ-sized groups (each containing γ addresses), thus costing only log μ
depth. However, our above algorithm still involves randomly permuting the
sender array and oblivious routing to loosely align the receiver array with the
sender array—these steps cost log m depth. Thus our idea is to perform these
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steps in an offline phase that can be parallelized across all recursion levels, and
thus the depth does not blow up by the number of recursion levels. Nonetheless
how to instantiate this offline/online idea is non-trivial as we explain below.

Second insight: online/offline paradigm. One challenge that arises is how to coor-
dinate among all recursion levels. To help the reader understand the problem,
let us first describe what would have happened if everything were performed
online, sequentially level by level:

Imagine that each recursion has 2m fetch CPUs (among which at most m
are real) first acting as receivers. Once these receivers have received the position
labels, they will fetch data from the OPRAM’s tree data structure. At this point,
they hold the position labels desired by the next recursion level, and thus the
receivers now switch roles and become senders with resepct to the next recursion
level. Before the receivers become senders, it is important that they be randomly
permuted for our earlier load balancing technique to work. Now, we can go ahead
and prepare the next recursion level’s receivers to be loosely aligned with the
permuted senders, and proceed with the localized oblivious routing.

Now let us consider how to divide this algorithm into a parallel offline phase
and a subsequent low-depth online phase. Clearly, the oblivious routing necessary
for loosely aligning each recursion level’s receivers with the last level’s senders
must be performed in the offline phase—and we must paralellize this step among
all recursion levels. Thus, our idea is the following:

– First, for each recursion level d in parallel, we randomly permutate level d’s
fetch CPUs in an oblivious fashion (using a building block called oblivious
random permutation), at the end of which we have specified the configuration
of level d’s sender array (that is, after level d’s fetch CPUs switch roles and
become senders).

– At this point, each recursion level d can prepare its receiver array based on
the configuration of level (d − 1)’s sender array. This can be done in parallel
too.

– During the online phase, after fetching metadata from the OPRAM tree, the
receivers must permute themselves to switch role to senders—since the offline
stage has already dictated the sender array’s configuration, this permutation
step must respect the offline stage’s decision.
To achieve this in small online depth, our idea is that during the offline phase,
each recursion level relies on an instance of oblivious routing to figure out
exactly what permutation to apply (henceforth called the “routing permuta-
tion”) to switch the receiver array to the sender array’s configuration—and
this can be done in parallel among all recursion levels once a level’s receiver
and sender arrays have both been determined. Once the offline stage has
written down this routing permutation, in the online stage, the receivers can
simply apply the permutation, i.e., each receiver writes itself to some array
location as specified by the permutation that offline stage has written down.
Applying the permutation online takes a single parallel step.
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One observation is that during the online stage, the routing permutation is
revealed in the clear. To see why this does not leak information, it suffices to see
that the result of this routing permutation, i.e., the sender array, was obliviously
randomly permuted to start with (using a building block called oblivious random
permutation). Thus, even conditioned on having observed the oblivious random
permutation’s access patterns, each permutation is still equally likely—and thus
the routing permutation that is revealed is indistinguishable from a random
permutation (even when conditioned on having observed the oblivious random
permutation’s access patterns).

5.3 Core Subroutine: Localized Routing

Notations and informal explanation. In the OPRAM’s execution, the instruc-
tions waiting to receive position labels at a recursion level d is denoted Instr〈d〉.
Instr〈d〉 has been obliviously and randomly permuted in the offline phase. When
these incomplete instructions have received position labels, they become com-
plete and are now called CInstr〈d〉 where CInstr〈d〉 and Instr〈d〉 are arranged in the
same order. When data blocks are fetched in recursion level d, they are called
Fetched〈d〉, and Fetched〈d〉 has the same order as CInstr〈d〉. In the offline phase,
Instr〈d〉 is obliviously sorted to be loosely aligned with Fetched〈d−1〉 resulting in
Instr

〈d〉
, such that Instr

〈d〉
can receive position labels from Fetched〈d−1〉 through

localized oblivious routing. The offline phase also prepares a routing permutation
πd→d+1, that will permute Instr

〈d〉
(after having received position labels) back

to CInstr〈d〉—and the online phase will apply this routing permutation πd→d+1

in a single parallel step. We now describe our algorithms more formally.
We consider the following problem where there is a source array and a desti-

nation array, and the destination array wants to receive position identifiers from
the source. Specifically, the source array is a set of fetched blocks in randomly
permuted order, where each block may contain up to γ position labels corre-
sponding to γ addresses in the next recursion level. The destination array is
an incomplete instruction array where each element contains the address of the
block to be read at the next recursion level—and each address must receive its
corresponding position label before the fetch operations at the next recursion
level can be invoked.

– Inputs: The inputs contain a randomly permuted source array Fetched〈d〉 that
represent the fetched position identifier blocks at recursion level d, and a ran-
domly permuted destination array Instr〈d+1〉 which represents the incomplete
instruction array at recursion level d + 1.

• The source array Fetched〈d〉 contains 2m blocks, each of which contains
up to γ (logical) pairs of the form (addr, pos) that are needed in the
next recursion level. All the γ addresses in the same block comes from Γ
contiguous addresses, and thus in reality the address storage is actually
compressed—however, we think of each block in Fetched〈d〉 as logically
containing pairs of the form (addr, pos).
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• The destination array Instr〈d+1〉 contains m elements each of which is
of the form (addr, ), where “ ” denotes a placeholder for receiving the
position identifier for addr later. This array Instr〈d+1〉 is also referred to
as the incomplete instruction array.

• We assume that
(1) all addresses in the destination array must occur in the source array;
(2) the γ addresses contained in the same block come from Γ contiguous

addresses; and
(3) both the source array Fetched〈d〉 and the destination array Instr〈d+1〉

have been randomly permuted.
– Outputs: A complete instruction array denoted CInstr of length 2m where
CInstr〈d+1〉[i] is of the form (addri, posi) such that

• Instr〈d+1〉[i] = (addri, ), i.e., the sequence of addresses contained in the
output CInstr〈d+1〉 agree with those contained in the input Instr〈d+1〉; and

• The tuple (addri, posi) exists in some block in Fetched〈d〉, i.e., the position
identifier addri receives is correct (as defined by Fetched〈d〉).

Offline phase. The inputs are the same as the above. In the offline phase, we
aim to output the following arrays:

(a) A permuted destination array Instr
〈d+1〉

that is a permutation of Instr〈d+1〉

such that it is somewhat aligned with the source Fetched〈d〉, where somewhat
aligned means the following:
[Somewhat aligned:] Fix α := ω(1) to be any super-constant function.

For each consecutive μ := αγ2 log N contiguous source blocks denoted
Fetched〈d〉[kμ + 1 : (k + 1)μ], there is a segment of μ contiguous destina-
tion blocks Instr

〈d+1〉
[kμ+1 : (k+1)μ] such that all addresses in Instr〈d+1〉

that are contained in Fetched〈d〉[kμ + 1 : (k + 1)μ] appear in the range
Instr

〈d+1〉
[kμ + 1 : (k + 1)μ].

(b) A routing permutation πd→d+1 : [2m] → [2m].

In other words, the goal of the offline phase is to prepare the source and
the destination arrays such that in the online phase, we only perform oblivious
routing from every μ := αγ2 log N blocks (each containing at most γ labels) in
the source to every μ tuples in the destination where α = ω(1) is any super-
constant function. This way, the online phase has O(log μ) parallel runtime.

Before explaining how to accomplish the above, we first prove that if the
source array, i.e., Fetched〈d〉 has been randomly permuted, then every μ contigu-
ous blocks contain at most μ position identifiers needed by the destination.

Lemma 5. Let arr denote an array of 2m randomly permuted blocks, each of
which contains γ items such that out of the 2m ·γ items, at most m are real and
the rest are dummy.

Then, for any consecutive n blocks in arr, with probability at least 1 −
exp(− n

2γ2 ), the number of real items contained in them is at most n.



594 T.-H.H. Chan et al.

The proof of Lemma 5 follows by a standard concentration argument and is
to the online full version [3].

We now explain the offline algorithm, i.e., permute the destination array to
be somewhat aligned with the source array such that localized oblivious routing
will be sufficient. We describe a parallel oblivious algorithm that completes in
O(m log m) total work and O(log m) parallel runtime.

1. For each block in Fetched〈d〉, write down a tuple (minaddr,maxaddr, i) where
minaddr is the minimum address contained in the block, maxaddr is the max-
imum address contained in the block, and i is the offset of the block within
the Fetched〈d〉 array.
Henceforth we refer to the resulting array as SrcMeta.

2. Imagine that the resulting array SrcMeta and the destination array Instr〈d+1〉

are concatenated. Now, oblivious sort this concatenated array such that each
metadata tuple (minaddr,maxaddr, i) ∈ SrcMeta is immediately followed by
all tuples from Instr〈d+1〉 whose addresses are contained within the range
[minaddr,maxaddr].

3. Relying on a parallel oblivious aggregate operation [1,16] (see full version [3]
for the definition), each element in the array (resulting from the above step)
learns the first metadata tuple (minaddr,maxaddr, i) to its left. In this way,
each address will learn which block (i.e., i) within Fetched〈d〉 it will receive
its position identifier from.
The result of this step is an array such that each metadata tuple of the
(minaddr,maxaddr, i) is replaced with a dummy entry ⊥, and each address
addr is replaced with (addr, i), denoting that the address addr will receive its
position identifier from the i-th block of Fetched〈d〉.

4. For each non-dummy entry in the above array, tag the entry with a group
number  i

μ�. For each dummy entry, tag it with ⊥.
5. Invoke an instance of the oblivious bin packing algorithm and pack the result-

ing array into � 2m
μ � bins of capacity μ each. We refer to the resulting array

as Instr
〈d+1〉

.
6. Obliviously compute the routing permutation πd→d+1 that maps Instr

〈d+1〉

to Instr〈d+1〉.
7. Output Instr

〈d+1〉
and πd→d+1.

Online phase. The online phase consists of the following steps:

1. For every k, fork an instance of the oblivious routing algorithm such
that Instr

〈d+1〉
[kμ + 1 : (k + 1)μ] will receive its position identifiers from

Fetched〈d〉[kμ + 1 : (k + 1)μ].
This completes in O(m log μ) total work and O(log μ) parallel runtime.

2. Apply the routing permutation πd→d+1 to Instr
〈d+1〉

, and output the result
as CInstr〈d+1〉.
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5.4 Level-to-Level Routing

Given our core localized routing building block, the full level-to-level position
identifier routing algorithm is straightforward to state.

Offline phase. Upon receiving a batch of m memory requests, for each recursion
level d in parallel:

– Truncate the addresses to the first d bits and perform conflict resolution. The
result is an array of length m containing distinct addresses and dummies to
read from recursion level d.

– Randomly permute the resulting array, and obtain an incomplete instruction
array Instr〈d〉. It is important for security that the random permutation is
performed obliviously such that no information is leaked to the adversary
about the permutation.
For d = 0, additionally fill in the position map identifiers and complete the
instruction array to obtain CInstr〈0〉.

– From the Instr〈d〉 array, construct a corresponding incomplete Fetched〈d〉

array where all position identifier fields are left blank as “ ”. The blocks
in Fetched〈d〉 are ordered in the same way as Instr〈d〉.

– If d is not the data level, fork an instance of the localized routing algorithm
with input arrays Fetched〈d〉 and Instr〈d+1〉, and output a permuted version
of Instr〈d+1〉 denoted Instr

〈d+1〉
a routing permutation πd→d+1.

Online phase. From each recursion level d = 0, 1, . . . D sequentially where D =
O( log N

log Γ ) is the total number of recursion levels:

– Based on the completed instruction CInstr〈d〉, allocate an appropriate number
of processors for each completed instruction and perform the fetch phase of
the OPRAM algorithm. The result is a fetched array Fetched〈d〉.

– Execute the online phase of the localized routing algorithm for recursion level
d with the inputs Fetched〈d〉, Instr

〈d+1〉
, and πd→d+1. The result is a completed

instruction array CInstr〈d+1〉 for the next recursion level.

5.5 Main Upper Bound Theorems

In the interest of space, we defer the full details of our OPRAM construction
and proofs to the online full version [3]. Our main theorem is the following:

Theorem 4 (Statistically secure, small-depth OPRAM). There exists a
statistically secure OPRAM scheme (for general block sizes) with O(log2 N) total
work blowup, and O(log N log log N) parallel runtime blowup, where the OPRAM
consumes only O(1) blocks of CPU private cache.

Using a standard PRF-and-counter compression trick first proposed by
Fletcher et al. [7] and later improved and extended to the parallel setting by
Chan and Shi [5], we obtain the following computationally secure variant.
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Corollary 1 (Computationally secure, small-depth OPRAM). Assume
that one-way functions exist. Then, there exists a computationally secure
OPRAM scheme (for general block sizes) with O(log2 N/ log log N) total work
blowup and O(log N) parallel runtime blowup, where the OPRAM consumes only
O(1) blocks of CPU private cache.

Finally, in our online full version [3], we include additional algorithmic results
that specifically optimize our OPRAM’s depth for sufficiently large block sizes.
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Abstract. In this work, we present two new universally composable,
actively secure, constant round multi-party protocols for generating
BMR garbled circuits with free-XOR and reduced costs.
1. Our first protocol takes a generic approach using any secret-sharing

based MPC protocol for binary circuits, and a correlated oblivious
transfer functionality.

2. Our specialized protocol uses secret-sharing based MPC with
information-theoretic MACs. This approach is less general, but
requires no additional correlated OTs to compute the garbled
circuit.

In both approaches, the underlying secret-sharing based protocol is only
used for one secure F2 multiplication per AND gate. An interesting conse-
quence of this is that, with current techniques, constant round MPC for
binary circuits is not much more expensive than practical, non-constant
round protocols.

We demonstrate the practicality of our second protocol with an imple-
mentation, and perform experiments with up to 9 parties securely com-
puting the AES and SHA-256 circuits. Our running times improve upon
the best possible performance with previous BMR-based protocols by 60
times.

1 Introduction

Secure multi-party computation (MPC) protocols allow a group of n parties
to compute some function f on the parties’ private inputs, while preserving a
number of security properties such as privacy and correctness. The former prop-
erty implies data confidentiality, namely, nothing leaks from the protocol execu-
tion but the computed output. The latter requirement implies that the protocol
enforces the integrity of the computations made by the parties, namely, honest
parties learn the correct output. Modern, practical MPC protocols typically fall
into two main categories: those based on secret-sharing [5,13,15,18,22,35], and
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those based on garbled circuits [2,11,25–28,32,39]. When it comes to choosing
a protocol, many different factors need to be taken into account, such as the
function being evaluated, the latency and bandwidth of the network and the
adversary model.

Secret-sharing based protocols such as [5,15,18] tend to have lower communi-
cation requirements in terms of bandwidth, but require a large number of rounds
of communication, which increases with the complexity of the function. In this
approach the parties first secret-share their inputs and then evaluate the circuit
gate by gate while preserving privacy and correctness. In low-latency networks,
they can have an extremely fast online evaluation stage, but the round complex-
ity makes them much less suited to high-latency networks, when the parties may
be far apart.

Garbled circuits, introduced in Yao’s protocol [39], are the core behind all
practical, constant round protocols for secure computation. In the two-party
setting, one of the parties “encrypts” the circuit being evaluated, whereas the
other party privately evaluates it. Garbled circuit-based protocols have recently
become much more efficient, and currently give the most practical approach for
actively secure computation of binary circuits [34,37]. With more than two par-
ties, the situation is more complex, as the garbled circuit must be computed
by all parties in a distributed manner using another (non-constant-round) MPC
protocol, as in the BMR protocol from [2]. This still leads to a low depth cir-
cuit, hence a constant round protocol overall, because all gates can be garbled
in parallel. We note that this paradigm has received very little attention, com-
pared with two-party protocols. The original BMR construction uses generic
zero-knowledge techniques for proving correct computation of PRG values, so
is impractical. A different protocol, but only for three parties, was designed by
Choi et al. [11] in the dishonest majority setting. More practical, actively secure
protocols for any number of parties are the recent works of Lindell et al. [29,31],
which use somewhat homomorphic encryption (SHE) or generic MPC to garble
a circuit. Ben-Efraim et al. [4] recently presented and implemented an efficient
multi-party garbling protocol based on oblivious transfer, but with only semi-
honest security. Very recently, Katz et al. introduced in [23] protocols based
on authenticated garbling, with a preprocessing phase that can be instantiated
based on TinyOT [33].

1.1 Our Contributions

In this work, we present a practical, actively secure, constant round multi-party
protocol for generating BMR garbled circuits with free-XOR in the presence
of up to n − 1 out of n corruptions. As in prior constructions, our approach
has two phases: a preprocessing phase where the garbled circuit is mutually
generated by all parties, and an online phase where the parties obtain the output
of the computation. While the online phase is typically efficient and incurs no
cost to achieve active security, the focus of recent works was on optimizing the
preprocessing complexity, where the main bottleneck is with respect to garbling
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AND gates. In that context, we present two new constant-round protocols for
securely generating the garbled circuit:

1. A generic approach using any secret-sharing based MPC protocol for binary
circuits, and a correlated oblivious transfer functionality.

2. A specialized protocol which uses secret-sharing based MPC with
information-theoretic MACs, such as TinyOT [17,33]. This approach is less
general, but requires no additional correlated OTs to compute the garbled
circuit.

In both approaches, the underlying secret-sharing based protocol is only used
for one secure F2 multiplication per AND gate.

In the first, more general method, every pair of parties needs to run one corre-
lated OT per AND gate, which costs O(κ) communication for security parameter
κ. Combining this with the overhead induced by the correlated OTs in our proto-
col, we obtain total complexity O(|C|κn2), assuming only symmetric primitives
and O(κ) seed OTs between every pair of parties. This gives an overall commu-
nication cost of O(M + |C|κn2) to evaluate a circuit C, where M is the cost
of evaluating |C| AND gates in the secret-sharing based protocol, Π. To realize
Π, we can define a functionality with multiplication depth 1 that computes all
the AND gates in parallel (these multiplications can be computed in parallel
as they are independent of the parties’ inputs). Furthermore, the [21] compiler
can be instantiated with semi-honest [18] as the inner protocol and [12] as the
outer protocol. By Theorem 2, Sect. 5 from [21], for some constant number of
parties m ≥ 2, the functionality can be computed with communication complex-
ity O(|C|) plus low order terms that depend on a statistical parameter s, the
circuit’s depth and log |C|. As in [21], this extends to the case of a non-constant
number of parties n, in which case the communication complexity grows by an
additional factor of |C|poly(n).

Another interesting candidate for instantiating Π would be to use an MPC
protocol optimized for SIMD binary circuits such as MiniMAC [16]. This is
because in our construction, all the AND gates can be computed in parallel.
Currently, the only known preprocessing methods [17] for MiniMAC are not
practical, but this seems to be an interesting future direction to explore.

TinyOT is currently the most practical approach to secret-sharing based
MPC on binary circuits, so the second method leads to a highly practical pro-
tocol for constant-round secure computation. The complexity is essentially the
same as TinyOT, as here we do not require any additional OTs. However, the
protocol is less general and has worse asymptotic communication complexity,
since TinyOT costs either O(|C|Bκn2) (with 2 parties or the recent protocol
of [38]), or O(|C|B2κn2) (with [17]), where B = O(1 + s/ log |C|) (and in prac-
tice is between 3–5), and s is the statistical security parameter.

Our constructions employ several very appealing features. For a start, we
embed into the modeling of the preprocessing functionality, which computes the
garbled circuit, an additive error introduced into the garbling by the adversary.
Concretely, we extend the functionality from [29] so that it obtains a vector of
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additive errors from the adversary to be applied to each garbled gate, which cap-
tures the fact that the adversary may submit inconsistent keys and pseudoran-
dom function (PRF) values. We further strengthen this by allowing the adversary
to pick the error adaptively after seeing the garbled circuit (in prior constructions
this error is independent of the garbling) and allowing corrupt parties to choose
their own PRF keys, possibly not at random. This requires a new analysis and
proof of the online phase.

Secondly, we devise a new consistency check to enforce correctness of inputs
to correlated OT, which is based on very efficient linear operations similar to
recent advances in homomorphic commitments [9]. This check, combined with
our improved error analysis for the online phase, allows the garbled circuit to
be created without authenticating any of the parties’ keys or PRF values, which
removes a significant cost from previous works (saving a factor of Ω(n)).

Implementation. We demonstrate the practicality of our TinyOT-based protocol
with an implementation, and perform experiments with up to 9 parties securely
computing the AES and SHA-256 circuits. In a 1 Gbps LAN setting, we can
securely compute the AES circuit with 9 parties in just 620 ms. This improves
upon the best possible performance that would be attainable using [29] by around
60 times. The details of our implementation can be found in Sect. 6.

Comparison with Other Approaches. Table 1 shows how the communica-
tion complexity of our work compares with other actively secure, constant-round
protocols. As mentioned earlier, most previous constructions express the garbling
function as an arithmetic circuit over a large finite field. In these protocols, gar-
bling even a single AND gate requires computing O(n) multiplications over a
large field with SHE or MPC. This means they scale at least cubically in the
number of parties. In constrast, our protocol only requires one F2 multiplica-
tion per AND gate, so scales with O(n2). Previous SHE-based protocols also
require zero-knowledge proofs of plaintext knowledge of SHE ciphertexts, which
in practice are very costly. Note that the recent MASCOT protocol [24] for secure
computation of arithmetic circuits could also be used in [29], instead of SHE, but
this still has very high communication costs. We denote by MASCOT-BMR-FX
an optimized variant of [29], modified to use free-XOR as in our protocol, with
multiplications in F2κ done using MASCOT. Finally, the recent concurrent work
by Katz et al. [23] is based on an optimized variant of TinyOT, with comparable
performance to our approach.

None of these previous works have reported implementations at the time of
writing, but our implementation of the TinyOT-based protocol improves upon
the best times that would be achievable with SPDZ-BMR and MASCOT by
up to 60x. This is because our protocol has lower communication costs than [29]
(by at least 2 orders of magnitude) and the main computational costs are from
standard symmetric primitives, so far cheaper than using SHE.

Overall, our protocols significantly narrow the gap between the cost of
constant-round and many-round MPC protocols for binary circuits. More specif-
ically, this implies that, with current techniques, constant round MPC for binary
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circuits is not much more expensive than practical, non-constant round proto-
cols. Additionally, both of our protocols have potential for future improvement
by optimizing existing non-constant round protocols: a practical implementation
of MiniMAC [16] would lead to a very efficient approach with our generic proto-
col, whilst any future improvements to multi-party TinyOT would directly give
a similar improvement to our second protocol.

Table 1. Comparison of actively secure, constant round MPC protocols. B = O(1 +
s/ log |C|) is a cut-and-choose parameter, which in practice is between 3–5. Our second
protocol can also be based upon optimized TinyOT to obtain the same complexity as
[23].

Protocol Based on Free XOR Comms. per
garbled gate

SPDZ-BMR [29] SHE + ZKPoPK ✗ O(n4κ)

SHE-BMR [31] SHE (depth 4) + ZKPoPK ✗ O(n3κ)

MASCOT-BMR-FX OT ✓ O(n3κ2)

This work Sect. 3 OT + [21] ✓ O(n2κ +
poly(n))

This work Sect. 4 TinyOT ✓ O(n2B2κ)

[23] (concurrent) Optimized TinyOT ✓ O(n2Bκ)

1.2 Technical Overview

Our protocol is based on the recent free-XOR variant of BMR garbling used for
semi-honest MPC in [4]. In that scheme, a garbling of the g-th AND gate with
input wires u, v and output wire w, consists of the 4n values (where n is the
number of parties):

g̃j
a,b =

(
n⊕

i=1

Fki
u,a,ki

v,b
(g‖j)

)

⊕ kj
w,0 (1)

⊕ (
Rj((λu ⊕ a)(λv ⊕ b) ⊕ λw)

)
, (a, b) ∈ {0, 1}2, j ∈ [n]

Here, F is a double-key PRF, Rj ∈ {0, 1}κ is a fixed correlation string for
free-XOR known to party Pj , and the keys kj

u,a, kj
v,b ∈ {0, 1}κ are also known

to Pj . Furthermore, the wire masks λu, λv, λw ∈ {0, 1} are random, additively
secret-shared bits known by no single party.

The main idea behind BMR is to compute the garbling, except for the PRF
values, with a general MPC protocol. The analysis of [29] showed that it is not
necessary to prove in zero-knowledge that every party inputs the correct PRF
values to the MPC protocol that computes the garbling. This is because when
evaluating the garbled circuit, each party Pj can check that the decryption of
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the j-th entry in every garbled gate gives one of the keys kj
w,b, and this check

would overwhelmingly fail if any PRF value was incorrect. It further implies that
the adversary cannot flip the value transmitted through some wire as that would
require from it to guess a key.

Our garbling protocol proceeds by computing a random, unauthenticated,
additive secret sharing of the garbled circuit. This differs from previous works [29,
31], which obtain authenticated (with MACs, or SHE ciphertexts) sharings of
the entire garbled circuit. Our protocol greatly reduces this complexity, since the
PRF values and keys (on the first line of Eq. (1)) do not need to be authenticated.
The main challenge, therefore, is to compute shares of the products on the second
line of (1). Similarly to [4], a key observation that allows efficiency is the fact
that these multiplications are either between two secret-shared bits, or a secret-
shared bit and a fixed, secret string. So, we do not need the full power of an
MPC protocol for arithmetic circuit evaluation over F2κ or Fp (for large p), as
used in previous works.

To compute the bit product λu·λv, we can use any actively secure GMW-style
MPC protocol for binary circuits. This protocol is only needed for computing
one secure AND per garbled AND gate, since all bit products in g̃j

a,b can be
computed as linear combinations of λu ·λv, λu and λv. We then need to multiply
the resulting secret-shared bits by the string Rj , known to Pj . We give two
variants for computing this product, the first one being more general and the
second more concretely efficient. In more details,

1. The first solution performs the multiplication by running actively secure cor-
related OT between Pj and every other party, where Pj inputs Rj as the fixed
OT correlation. The parties then run a consistency check by applying a uni-
versal linear hash function to the outputs and sacrificing a few OTs, ensuring
the correct inputs were provided to the OT. This protocol is presented in
Sect. 3.

2. The second method requires using a ‘TinyOT’-style protocol [6,17] based on
information-theoretic MACs, and allows us to compute the bit/string prod-
ucts directly from the MACs, provided each party’s MAC key is chosen to be
the same string Ri used in the garbling. This saves interaction since we do
not need any additional OTs. This protocol is presented in Sect. 4.

After creating shares of all these products, the parties can compute shares
of the whole garbled circuit. These shares must then be rerandomized, before
they can be broadcast. Opening the garbled circuit in this way allows a corrupt
party to introduce further errors into the garbling by changing their share, even
after learning the correct garbled circuit, since we may have a rushing adversary.
Nevertheless, we prove that the BMR online phase remains secure when this
type of error is allowed, as it would only lead to an abort. This significantly
strengthens the result from [29], which only allowed corrupt parties to provide
incorrect PRF values, and is an important factor that allows our preprocessing
protocol to be so efficient.



604 C. Hazay et al.

Concurrent Work. Two recent works by Katz, Ranellucci and Wang intro-
duced constant round, two-party [38] and multi-party [23] protocols based on
authenticated garbling, with a preprocessing phase that can be instantiated based
on TinyOT. At the time of writing, their two-party paper also reports on an
implementation, but the multi-party version does not. Our work is conceptually
quite similar, since both involve generating a garbled circuit in a distributed
manner using TinyOT. The main difference seems to be that our protocol is
symmetric, since all parties evaluate the same garbled circuit. With authenti-
cated garbling, the garbled circuit is only evaluated by one party. This makes
the garbled circuit slightly smaller, since there are n − 1 sets of keys instead of
n, but the online phase requires at least one more round of interaction (if all
parties learn the output). The works of Katz et al. also contain concrete and
asymptotic improvements to the two-party and multi-party TinyOT protocols,
which improves upon the TinyOT protocol we give in the full version of this
paper [20] by a factor of O(s/ log |C|), where s is a statistical parameter. These
improvements can be directly plugged into our second garbling protocol. We
remark that the two-party protocol in [38] inspired our use of TinyOT MACs to
perform the bit/string multiplications in our protocol from Sect. 4. The rest of
our work is independent.

Another difference is that our protocol from Sect. 3 is more generic, since
FBitMPC can be implemented with any secret-sharing based bit-MPC protocol,
rather than just TinyOT. This can be instantiated with [21] to obtain a constant-
round protocol with complexity O(|C|(κn2 + poly(n))) in the OT-hybrid model.
The multi-party paper [23] does not have an analogous generic result.

2 Preliminaries

We denote the security parameter by κ. We say that a function μ : N → N

is negligible if for every positive polynomial p(·) and all sufficiently large κ it
holds that μ(κ) < 1

p(κ) . We use the abbreviation PPT to denote probabilistic
polynomial-time. We further denote by a ← A the uniform sampling of a from
a set A, and by [d] the set of elements (1, . . . , d). We often view bit-strings in
{0, 1}k as vectors in F

k
2 , depending on the context, and denote exclusive-or by

“⊕” or “+”. If a, b ∈ F2 then a ·b denotes multiplication (or AND), and if c ∈ F
κ
2

then a · c ∈ F
κ
2 denotes the product of a with every component of c.

For vectors x = (x1, . . . , xn) ∈ F
n
2 and y ∈ F

m
2 , the tensor product (or outer

product) x⊗y is defined as the n×m matrix over F2 where the i-th row is xi ·y.
We use the following property.

Fact 21. If x ∈ F
n
2 ,y ∈ F

m
2 and M ∈ F

m×n
2 then

M · (x ⊗ y) = (M · x) ⊗ y.

Universal composability. We prove security of our protocols in the universal
composability (UC) framework [7] (see also [8] for a simplified version of UC).
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Communication model. We assume all parties are connected via authenticated
communication channels, as well as secure point-to-point channels and a broad-
cast channel. The default method of communication in our protocols is authen-
ticated channels, unless otherwise specified. Note that in practice, these can all
be implemented with standard techniques (in particular, for broadcast a simple
2-round protocol suffices, since we allow abort [19]).

Adversary model. The adversary model we consider is a static, active adversary
who corrupts up to n − 1 out of n parties. This means that the identities of
the corrupted parties are fixed at the beginning of the protocol, and they may
deviate arbitrarily from the protocol.

2.1 Circular 2-Correlation Robust PRF

The BMR garbling technique from [29] is proven secure based on a pseudorandom
function (PRF) with multiple keys. However, since our scheme supports free-
XOR, we need to adapt the definition of correlation robustness with circularity
from [10] given for hash functions to double-key PRFs. This definition captures
the related key and circularity requirements induced by supporting the free-XOR
technique. Formally, fix some function F : {0, 1}n × {0, 1}κ × {0, 1}κ 	→ {0, 1}κ.
We define an oracle CircR as follows:

– CircR(k1, k2, g, j, b1, b2, b3) outputs Fk1⊕b1R,k2⊕b2R(g‖j) ⊕ b3R.

The outcome of oracle Circ is compared with the a random string of the same
length computed by an oracle Rand:

– Rand(k1, k2, g, j, b1, b2, b3): if this input was queried before then return the
answer given previously. Otherwise choose u ← {0, 1}κ and return u.

Definition 21 (Circular 2-correlation robust PRF). A PRF F is circu-
lar 2-correlation robust if for any non-uniform polynomial-time distinguisher D
making legal queries to its oracle, there exists a negligible function negl such that:

∣
∣ Pr[R ← {0, 1}κ;DCircR(·)(1κ) = 1] − Pr[DRand(·)(1κ) = 1]

∣
∣ ≤ negl(κ).

As in [10], some trivial queries must be ruled out. Specifically, the distin-
guisher is restricted as follows: (1) it is not allowed to make any query of
the form O(k1, k2, g, j, 0, 0, b3) (since it can compute Fk1,k2(g‖j) on its own)
and (2) it is not allowed to query both tuples O(k1, k2, g, j, b1, b2, 0) and
O(k1, k2, g, j, b1, b2, 1) for any values k1, k2, g, j, b1, b2 (since that would allow it to
trivially recover the global difference). We say that any distinguisher respecting
these restrictions makes legal queries.
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2.2 Almost-1-Universal Linear Hashing

We use a family of almost-1-universal linear hash functions over F2, defined by:

Definition 22 (Almost-1-Universal Linear Hashing). We say that a fam-
ily H of linear functions F

m
2 → F

s
2 is ε-almost 1-universal, if it holds that for

every non-zero x ∈ F
m
2 and for every y ∈ F

s
2:

Pr
H←H

[H(x) = y] ≤ ε

where H is chosen uniformly at random from the family H. We will identify
functions H ∈ H with their s×m transformation matrix, and write H(x) = H·x.

This definition is slightly stronger than a family of almost-universal linear
hash functions (where the above need only hold for y = 0, as in [9]). However,
this is still much weaker than 2-universality (or pairwise independence), which
a linear family of hash functions cannot achieve, because H(0) = 0 always.
The two main properties affecting the efficiency of a family of hash functions
are the seed size, which refers to the length of the description of a random
function H ← H, and the computational complexity of evaluating the function.
The simplest family of almost-1-universal hash functions is the set of all s × m
matrices; however, this is not efficient as the seed size and complexity are both
O(m · s). Recently, in [9], it was shown how to construct a family with seed size
O(s) and complexity O(m), which is asymptotically optimal. A more practical
construction is a polynomial hash based on GMAC (used also in [34]), described
as follows (here we assume that s divides m, for simplicity):

– Sample a random seed α ← F2s

– Define Hα to be the function:

Hα : Fm/s
2s → F2s , Hα(x1, . . . , xm/s) = α · x1 + α2 · x2 + · · · + αm/s · xm/s

Note that by viewing elements of F2s as vectors in F
s
2, multiplication by a

fixed field element αi ∈ F2s is linear over F2. Therefore, Hα can be seen as
an F2-linear map, represented by a unique matrix in F

s×m
2 .

Here, the seed is short, but the computational complexity is O(m·s). However,
in practice when s = 128 the finite field multiplications can be performed very
efficiently in hardware on modern CPUs. Note that this gives a 1-universal family
with ε = m

s · 2−s. This can be improved to 2−s (i.e. perfect), at the cost of a
larger seed, by using m/s distinct elements αi, instead of powers of α.

2.3 Commitment Functionality

We require a UC commitment functionality FCommit (Fig. 1). This can easily be
implemented in the random oracle model by defining Commit(x, Pi) = H(x, i, r),
where H is a random oracle and r ← {0, 1}κ.
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Fig. 1. Ideal commitments

Fig. 2. Coin-tossing functionality

2.4 Coin-Tossing Functionality

We use a standard coin-tossing functionality, FRand (Fig. 2), which can be imple-
mented with UC commitments to random values.

2.5 Correlated Oblivious Transfer

In this work we use an actively secure protocol for oblivious transfer (OT) on
correlated pairs of strings of the form (ai, ai ⊕ Δ), where Δ is fixed for every
OT. The TinyOT protocol [33] for secure two-party computation constructs
such a protocol, and a significantly optimized version of this is given in [34].
The communication cost is roughly κ + s bits per OT. The ideal functionality is
shown in Fig. 3.

Fig. 3. Fixed correlation oblivious transfer functionality
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2.6 Functionality for Secret-Sharing-Based MPC

We make use of a general, actively secure protocol for secret-sharing-based MPC
for binary circuits, which is modeled by the functionality FBitMPC in Fig. 4. This
functionality allows parties to provide private inputs, which are then stored and
can be added or multiplied internally by FBitMPC, and revealed if desired. Note
that we also need the Multiply command to output a random additive secret-
sharing of the product to all parties; this essentially assumes that the underlying
protocol is based on secret-sharing.

We use the notation 〈x〉 to represent a secret-shared value x that is stored
internally by FBitMPC, and define xi to be party Pi’s additive share of x (if it is
known). We also define the + and · operators on two shared values 〈x〉, 〈y〉 to
call the Add and Multiply commands of FBitMPC, respectively, and return the
identifier associated with the result.

Fig. 4. Functionality for GMW-style MPC for binary circuits

2.7 BMR Garbling

The [2] garbling technique by Beaver, Micali and Rogaway involves garbling
each gate separately using pseudorandom generators while ensuring consistency
between the wires. This method was recently improved in a sequence of works
[4,29,31], where the latter work further supports the free XOR property. The
main task of generating the garbled circuit while supporting this property is to
compute, for each AND gate g with input wires u, v and output wire w, the 4n
values:
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g̃j
a,b =

(
n⊕

i=1

Fki
u,a,ki

v,b
(g‖j)

)

⊕ kj
w,0 (2)

⊕ (
Rj · ((λu ⊕ a) · (λv ⊕ b) ⊕ λw)

)
, (a, b) ∈ {0, 1}2, j ∈ [n]

where the wire masks λu, λv, λw ∈ {0, 1} are secret-shared between all parties,
while the PRF keys kj

u,a, kj
v,b and the global difference string Rj are known only

to party Pj .

3 Generic Protocol for Multi-party Garbling

We now describe our generic method for creating the garbled circuit using any
secret-sharing based MPC protocol (modeled by FBitMPC) and the correlated
OT functionality FCOT. We first describe the functionality in Sect. 3.1 and the
protocol in Sect. 3.2, and then analyse its security in Sect. 3.4.

3.1 The Preprocessing Functionality

The preprocessing functionality, formalized in Fig. 5, captures the generation of
the garbled circuit as well as an error introduced by the adversary. The adversary
is allowed to submit an additive error, chosen adaptively after seeing the garbled
circuit, that is added by the functionality to each entry when the garbled circuit
is opened.

3.2 Protocol Overview

The garbling protocol, shown in Fig. 6, proceeds in three main stages. Firstly, the
parties locally sample all of their keys and shares of wire masks for the garbled
circuit. Secondly, the parties compute shares of the products of the wire masks
and each party’s global difference string; these are then used by each party to
locally obtain a share of the entire garbled circuit. Finally, the bit masks for
the output wires are opened to all parties. The opening of the garbled circuit is
shown in Fig. 7.

Concretely, each party Pi starts by sampling a global difference string Ri ←
{0, 1}κ, and for each wire w which is an output wire of an AND gate, or an input
wire, Pi also samples the keys ki

w,0, ki
w,1 = ki

w,0 ⊕ Ri and an additive share of
the wire mask, λi

w ← F2. As in [4], we let Pi input the actual wire mask (instead
of a share) for every input wire associated with Pi’s input.

In step 3, the parties compute additive shares of the bit products λuv =
λu · λv ∈ F2, and then, for each j ∈ [n], shares of:

λu · Rj , λv · Rj , λuvw · Rj ∈ F
κ
2 (3)

where λuvw := λuv ⊕ λw, and u, v and w are the input and output wires of
AND gate g. We note that (as observed in [4]) only one bit/bit product and 3n
bit/string products are necessary, even though each gate has 4n entries, due to
correlations between the entries, as can be seen below.
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Fig. 5. The preprocessing functionality FPrepocessing
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Fig. 6. The preprocessing protocol that realizes FPrepocessing in the
{FCOT,FBitMPC,FRand FCommit}-hybrid model.
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Fig. 7. Open garbling stage of the preprocessing protocol.

We compute the bit multiplications using the FBitMPC functionality on the
bits that are already stored by FBitMPC. To compute the bit/string multiplica-
tions in (3), we use correlated OT, followed by a consistency check to verify that
the parties provided the correct shares of λw and correlation Ri to each FCOT

instance; see Sect. 3.3 for details.
Using shares of the bit/string products, the parties can locally compute an

unauthenticated additive share of the entire garbled circuit (steps 3d–4). First,
for each of the four values (a, b) ∈ {0, 1}2, each party Pi, i = j computes the
share

ρi
j,a,b =

{
a · (λv · Rj)i ⊕ b · (λu · Rj)i ⊕ (λuvw · Rj)i if i = j

a · (λv · Rj)i ⊕ b · (λu · Rj)i ⊕ (λuvw · Rj)i ⊕ a · b · Rj if i = j

These define additive shares of the values

ρj,a,b = Rj · (a · λv ⊕ b · λu ⊕ λuvw ⊕ a · b)

= Rj · ((λu ⊕ a) · (λv ⊕ b) ⊕ λw)

Each party’s share of the garbled circuit is then obtained by adding the
appropriate PRF values and keys to the shares of each ρj,a,b. To conclude the
Garbling stage, the parties reveal the masks for all output wires using FBitMPC,
so that the outputs can be obtained in the online phase.

Before opening the garbled circuit, the parties must rerandomize their shares
by distributing a fresh, random secret-sharing of each share to the other parties,
via private channels. This is needed so that the shares do not leak any informa-
tion on the PRF values, so we can prove security. This may seem unnecessary,
since the inclusion of the PRF values in the shares should randomize them suf-
ficiently. However, we cannot prove this intuition, as the same PRF values are
used to compute the garbled circuit that is output by the protocol, so they
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cannot also be used as a one-time pad.1 In steps 1 to 2 of Fig. 7, we show how
to perform this extra rerandomization step with O(n2 · κ) communication.

Finally, to reconstruct the garbled circuit, the parties sum up and broadcast
the rerandomized shares and add them together to get g̃j

a,b.

3.3 Bit/String Multiplications

Our method for this is in the subrotocol ΠBit×String (Fig. 8). It proceeds in
two stages: first the Multiply step creates the shared products, and then the
Consistency Check verifies that the correct inputs were used to create the
products.

Recall that the task is for the parties to obtain an additive sharing of the
products, for each j ∈ [n] and (a, b) ∈ {0, 1}2:

Rj · ((λu ⊕ a) · (λv ⊕ b) ⊕ λw) (4)

where the string Rj is known only to Pj , and fixed for every gate. Denote by
x one of the additively shared λ(·) bits used in a single bit/string product and
stored by FBitMPC. We obtain shares of x · Rj using actively secure correlated
OT (cf. Fig. 3), as follows:

1. For each i = j, parties Pi and Pj run a correlated OT, with choice bit xi and
correlation Rj . Pi obtains Ti,j and Pj obtains Qi,j such that:

Ti,j = Qi,j + xi · Rj .

2. Each Pi, for i = j, defines the share Zi = Ti,j , and Pj defines Zj =∑
i�=j Qi,j + xj · Rj . Now we have:

n∑

i=1

Zi =
∑

i�=j

Ti,j +
∑

i�=j

Qi,j + xj · Rj =
∑

i�=j

(Ti,j + Qi,j) + xj · Rj = x · Rj

as required.

The above method is performed 3|G| times and for each Pj , to produce the
shared bit/string products x · Rj , for x ∈ {λu, λv, λuv}.

3.4 Consistency Check

We now show how the parties verify that the correct shares of x and correlations
Rj were used in the correlated OTs, and analyse the security of this check.
The parties first create m + s bit/string products, where m is the number of
products needed and s is a statistical security parameter, and then open random
1 Furthermore, the environment sees all of the PRF keys of the honest parties, since

these are outputs of the protocol, which seems to rule out any kind of computational
reduction in the security proof.
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Fig. 8. Subprotocol for bit/string multiplication and checking consistency
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linear combinations (over F2) of all the products and check correctness of the
opened results. This is possible because the products are just a linear function
of the fixed string Rj . In more detail, the parties first sample a random ε-almost
1-universal hash function H ← F

m×s
2 , and then open

cx = H · x + x̂

using FBitMPC. Here, x is the vector of all m wire masks to be multiplied, whilst
x̂ ∈ F

s
2 are the additional, random masking bits, used as a one-time pad to

ensure that cx does not leak information on x.
To verify that a single shared matrix Zj is equal to x⊗Rj (as in Fig. 8), each

party Pi, for i = j, then commits to H·Zi
j , whilst Pj commits to H·Zi

j +cx⊗Rj .
The parties then open all commitments and check that these sum to zero, which
should happen if the products were correct.

The intuition behind the check is that any errors present in the original
bit/string products will remain when multiplied by H, except with probability
ε, by the almost-1-universal property (Definition 22). Furthermore, it turns out
that cancelling out any non-zero errors in the check requires either guessing an
honest party’s global difference Rj , or guessing the secret masking bits x̂.

We formalize this, by first considering the exact deviations that are possible
by a corrupt Pj in ΠBit×String. These are:

1. Provide inconsistent inputs Rj when acting as sender in the Initialize com-
mand of the FCOT instances with two different honest parties.

2. Input an incorrect share xj when acting as receiver in the Extend command
of FCOT.

Note that in both of these cases, we are only concerned when the other party
in the FCOT execution is honest, as if both parties are corrupt then FCOT does
not need to be simulated in the security proof.

We model these two attacks by defining Rj,i and xj,i to be the actual inputs
used by a corrupt Pj in the above two cases, and then define the errors (for j ∈ I
and i /∈ I):

Δj,i = Rj,i + Rj

δj,i
� = xj,i

� + xj
� , � ∈ [3|G|].

Note that Δj,i is fixed in the initialization of FCOT, whilst δj,i
� may be differ-

ent for every OT. Whenever Pi and Pj are both corrupt, or both honest, for
convenience we define Δj,i = 0 and δj,i = 0.

This means that the outputs of FCOT with (Pi, Pj) then satisfy (omitting �
subscripts):

ti,j = qi,j + xi · Rj + δi,j · Rj + Δj,i · xi

where δi,j = 0 if Pi cheated, and Δj,i = 0 if Pj cheated.
Now, as in step 1 of the first stage of ΠBit×String, we can put the FCOT

outputs for each party into the rows of a matrix, and express the above as:

Ti,j = Qi,j + xi ⊗ Rj + δi,j ⊗ Rj + Δj,i ⊗ xi
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where δj,i = (δj,i
1 , . . . , δj,i

3|G|), and the tensor product notation is defined in Sect. 2.
Accounting for these errors in the outputs of the Multiply step in

ΠBit×String, we get:

Zj =
n∑

i=1

Zi
j = x ⊗ Rj + Rj ·

∑

i∈I

δi,j

︸ ︷︷ ︸
=δj

+
∑

i/∈I

xi · Δj,i. (5)

The following lemma shows if a party cheated, then to pass the check they
must either guess all of the shares x̂i ∈ F

s
2 for some honest Pi, or guess Pi’s

global difference Ri (except with negligible probability over the choice of the
ε-almost 1-universal hash function, H).

Lemma 31. If the check in ΠBit×String passes, then except with probability
max(2−s, ε + 2−κ), all of the errors δj ,Δi,j are zero.

The proof can be found in the full version of the paper [20].
We now give some intuition behind the security of the whole protocol. In the

proof, the strategy of the simulator is to run an internal copy of the protocol,
using dummy, random values for the honest parties’ keys and wire mask shares.
All communication with the adversary is simulated by computing the correct
messages according to the protocol and the dummy honest shares, until the final
output stage. In the output stage, we switch to fresh, random honest parties’
shares, consistent with the garbled circuit received from FPrepocessing and the
corrupt parties’ shares.

Firstly, by Lemma 31, it holds that in the real execution, if the adversary
introduced any non-zero errors then the consistency check fails with overwhelm-
ing probability. The same is true in the ideal execution; note that the errors are
still well-defined in this case because the simulator can compute them by com-
paring all inputs received to FCOT with the inputs the adversary should have
used, based on its random tape. This implies that the probability of passing the
check is the same in both worlds. Also, if the check fails then both executions
abort, and it is straightforward to see that the two views are indistinguishable
because no outputs are sent to honest parties (hence, also the environment).

It remains to show that the two views are indistinguishable when the consis-
tency check passes, and the environment sees the outputs of all honest parties, as
well as the view of the adversary during the protocol. The main point of interest
here is the output stage. We observe that, without the final rerandomization
step, the honest parties’ shares of the garbled circuit would not be uniformly
random. Specifically, consider an honest Pi’s share, (g̃j

a,b)
i, where Pj is corrupt.

This is computed by adding some PRF value, v, to the FCOT outputs where
Pi was receiver and Pj was sender (step 2 of ΠBit×String). Since Pj knows both
strings in each OT, there are only two possibilities for Pi’s output (depending
on the choice bit), so this is not uniformly random. It might be tempting to
argue that v is a random PRF output, so serves as a one-time pad, but this
proof attempt fails because v is also used to compute the final garbled circuit.
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In fact, it seems difficult to rely on any reduction to the PRF, since all the PRF
keys are included in the output to the environment. To avoid this issue, we need
the rerandomization step using a PRG, and the additional assumption of secure
point-to-point channels.

Theorem 31. Protocol ΠPreprocessing from Fig. 6 UC-securely computes
FPrepocessing from Fig. 5 in the presence of a static, active adversary corrupt-
ing up to n − 1 parties in the {FCOT,FBitMPC,FRand,FCommit}-hybrid model.

The proof can be found in the full version of the paper [20].

4 More Efficient Garbling with Multi-party TinyOT

We now describe a less general, but concretely more efficient, variant of the pro-
tocol in the previous section. We replace the generic FBitMPC functionality with
a more specialized one based on ‘TinyOT’-style information-theoretic MACs.
This is asymptotically worse, but more practical, than using [21] for FBitMPC.
It also allows us to completely remove the bit/string multiplications and consis-
tency checks in ΠBit×String, since we show that these can be obtained directly
from the TinyOT MACs. This means the only cost in the protocol, apart from
opening and evaluating the garbled circuit, is the single bit multiplication per
AND gate in the underlying TinyOT-based protocol.

In the full version of this paper [20], we present a complete description of a
suitable TinyOT-based protocol. This is done by combining the multiplication
triple generation protocol (over F2) from [17] with a consistency check to enforce
correct shared random bits, which is similar to the more general check from the
previous section.

4.1 Secret-Shared MAC Representation

For x ∈ {0, 1} held by Pi, define the following two-party MAC representation,
as used in 2-party TinyOT [33]:

[x]i,j = (x,M i
j ,K

j
i ), M i

j = Kj
i + x · Rj

where Pi holds x and a MAC M i
j , and Pj holds a local MAC key Kj

i , as well as
the fixed, global MAC key Rj .

Similarly, we define the n-party representation of an additively shared value
x = x1 + · · · + xn:

[x] = (xi, {M i
j ,K

i
j}j �=i)i∈[n], M i

j = Kj
i + xi · Rj

where each party Pi holds the n − 1 MACs M i
j on xi, as well as the keys Ki

j on
each xj , for j = i, and a global key Ri. Note that this is equivalent to every pair
(Pi, Pj) holding a representation [xi]i,j .

The key observation for this section, is that a sharing [x] can be used to
directly compute shares of all the products x · Rj , as in the following claim.
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Claim 41. Given a representation [x], the parties can locally compute additive
shares of x · Rj, for each j ∈ [n].

Proof. Write [x] = (xi, {M i
j ,K

i
j}j �=i)i∈[n]. Each party Pi defines the n shares:

Zi
i = xi · Ri +

∑

j �=i

Ki
j and Zi

j = M i
j , for each j = i

We then have, for each j ∈ [n]:

n∑

i=1

Zi
j = Zj

j +
∑

i�=j

Zi
j = (xj · Rj +

∑

i�=j

Kj
i ) +

∑

i�=j

M i
j

= xj · Rj +
∑

i�=j

(M i
j + Kj

i ) = xj · Rj +
∑

i�=j

(xi · Rj) = x · Rj .

We define addition of two shared values [x], [y], to be straightforward addition
of the components. We define addition of [x] with a public constant c ∈ F2 by:

– P1 stores: (x1 + c, {M1
j ,K1

j }j �=1)
– Pi stores: (xi, (M i

1,K
i
1 + c · Ri), {M i

j ,K
i
j}j∈[n]\{1,i})), for i = 1

This results in a correct sharing of [x + c].
We can create a sharing of the product of two shared values using a random

multiplication triple ([x], [y], [z]) such that z = x · y with Beaver’s technique [1].

4.2 MAC-Based MPC Functionality

The functionality Fn-TinyOT, which we use in place of FBitMPC for the optimized
preprocessing, is shown in the full version [20]. It produces authenticated sharings
of random bits and multiplication triples. For both of these, Fn-TinyOT first
receives corrupted parties’ shares, MAC values and keys from the adversary, and
then randomly samples consistent sharings and MACs for the honest parties.

Another important aspect of the functionality is the Key Queries command,
which allows the adversary to try to guess the MAC key Ri of any party, and
will be informed if the guess is correct. This is needed to allow the security proof
to go through; we explain this in more detail in the full version. In that section
we also present a complete description of a variant on the multi-party TinyOT
protocol, which can be used to implement this functionality.

4.3 Garbling with Fn-TinyOT

Following from the observation in Claim41, if each party Pj chooses the global
difference string in ΠPreprocessing to be the same Rj as in the MAC representation,
then given [λ], additive shares of the products λ ·Rj can be obtained at no extra
cost. Moreover, the shares are guaranteed to be correct, and the honest party’s
shares will be random (subject to the constraint that they sum to the correct



Low Cost Constant Round MPC Combining BMR and Oblivious Transfer 619

value), since they come directly from the Fn-TinyOT functionality. This means
there is no need to perform the consistency check, which greatly simplifies the
protocol.

The rest of the protocol is mostly the same as ΠPreprocessing in Fig. 6, using
Fn-TinyOT with [·]-sharings instead of FBitMPC with 〈·〉-sharings. One other small
difference is that because Fn-TinyOT does not have a private input command, we
instead sample [λw] shares for input wires using random bits, and later use
a private output protocol to open the relevant input wire masks to Pi. This
change is not strictly necessary, but simplifies the protocol for implementing
Fn-TinyOT—if Fn-TinyOT also had an Input command for sharing private inputs
based on n-Bracket, it would be much more complex to implement with the
correct distribution of shares and MACs.

In more detail, the Garbling phase proceeds as follows.

1. Each party obtains a random key offset Ri by calling the Initialize command
of Fn-TinyOT.

2. For every wire w which is an input wire, or the output wire of an AND gate,
the parties obtain a shared mask [λw] using the Bit command of Fn-TinyOT.

3. All the wire keys ki
w,0, k

i
w,1 = ki

w,0 ⊕ Ri are defined by Pi the same way as in
ΠPreprocessing.

4. For XOR gates, the output wire mask is computed as [λw] = [λu] + [λv].
5. For each AND gate, the parties compute [λuv] = [λu · λv].
6. The parties then obtain shares of the garbled circuit as follows:

– For each AND gate g ∈ G with wires (u, v, w), the parties use Claim 41
with the shared values [λu], [λv], [λuv + λw], to define, for each j ∈ [n],
shares of the bit/string products:

λu · Rj , λv · Rj , (λuv + λw) · Rj

– These are then used to define shares of ρj,a,b and the garbled circuit, as
in the original protocol.

7. For every circuit-output-wire w, the parties run ΠOpen to reveal λw to all the
parties.

8. For every circuit input wire w corresponding to party Pi’s input, the parties
run Πi

Open to open λw to Pi.

The only interaction introduced in the new protocol is in the multiply and
opening protocols, which were abstracted away by FBitMPC in the previous pro-
tocol. Simulating and proving security of these techniques is straightforward,
due to the correctness and randomness of the multiplication triples and MACs
produced by Fn-TinyOT. One important detail is the Key Queries command of
the Fn-TinyOT functionality, which allows the adversary to try to guess an hon-
est party’s global MAC key share, Ri, and learn if the guess is correct. To allow
the proof to go through, we modify FPrepocessing to also have a Key Queries
command, so that the simulator can use this to respond to any key queries from
the adversary. We denote this modified functionality by FKQ

Prepocessing.
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The following theorem can be proven, similarly to the proof of Theorem31
where we modify the preprocessing functionality to support key queries, and
adjust the simulation as described above.

Theorem 41. The modified protocol described above UC-securely computes
FKQ

Prepocessing from Fig. 5 in the presence of a static, active adversary corrupt-
ing up to n − 1 parties in the Fn-TinyOT-hybrid model.

5 The Online Phase

Our final protocol, presented in Fig. 9, implements the online phase where the
parties reveal the garbled circuit’s shares and evaluate it. Our protocol is pre-
sented in the FPrepocessing-hybrid model. Upon reconstructing the garbled circuit
and obtaining all input keys, the process of evaluation is similar to that of [39],
except here all parties run the evaluation algorithm, which involves each party
computing n2 PRF values per gate. During evaluation, the parties only see the
randomly masked wire values and cannot determine the actual wire values. Upon
completion, the parties compute the actual output using the output wire masks
revealed from FPrepocessing. We conclude with the following theorem.

Theorem 51. Let f be an n-party functionality {0, 1}nκ 	→ {0, 1}κ and assume
that F is a PRF. Then Protocol ΠMPC from Fig. 9, UC-securely computes f in
the presence of a static, active adversary corrupting up to n − 1 parties in the
FPrepocessing-hybrid.

Proof overview. Our proof follows by first demonstrating that the adversary’s
view is computationally indistinguishable in both real and simulated executions.
To be concrete, we consider an event for which the adversary successfully causes
the bit transferred through some wire to be flipped and prove that this event
can only occur with negligible probability (our proof is different to the proof in
[29] as in our case the adversary may choose its additive error as a function of
the garbled circuit). Then, conditioned on the event flip not occurring, we prove
that the two executions are computationally indistinguishable via a reduction to
the correlation robust PRF, inducing a garbled circuit that is indistinguishable.
The complete proof can be found in the full version of the paper [20].

6 Performance

In this section we present implementation results for our protocol from Sect. 4 for
up to 9 parties. We also analyse the concrete communication complexity of the
protocol and compare this with previous, state-of-the-art protocols in a similar
setting.

We have made a couple of tweaks to our protocol to simplify the implementa-
tion. We moved the Open Garbling stage to the preprocessing phase, instead
of the online phase. This optimizes the online phase so that the amount of com-
munication is independent of the size of the circuit. This change means that
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Fig. 9. The MPC protocol - ΠMPC

our standard model security proof would no longer apply, but we could prove
it secure using a random oracle instead of the circular-correlation robust PRF,
similarly to [3,30]. Secondly, when not working in a modular fashion with a sep-
arate preprocessing functionality, the share rerandomization step in the output
stage is not necessary to prove security of the entire protocol, so we omit this.

6.1 Implementation

We implemented our variant of the multi-party TinyOT protocol (given in the
full version) using the libOTe library [36] for the fixed-correlation OTs and tested
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it for between 3 and 9 parties. We benchmarked the protocol over a 1 Gbps LAN
on 5 servers with 2.3 GHz Intel Xeon CPUs with 20 cores. For the experiments
with more than 5 parties, we had to run more than one party per machine; this
should not make much difference in a LAN, as the number of threads being used
was still fewer than the number of cores. As benchmarks, we measured the time
for securely computing the circuits for AES (6800 AND gates) and SHA-256
(90825 AND gates).

For the TinyOT bit and triple generation, every pair of parties needs two
correlated OT instances running between them (one in each direction). We ran
each OT instance in a separate thread with libOTe, so that each party uses
2(n − 1) OT threads. This gave a small improvement (≈6%) compared with
running n − 1 threads. We also considered a multiple execution setting, where
many (possibly different) secure computations are evaluated. Provided the total
number of AND gates in the circuits being evaluated is at least 220, this allows
us to generate the TinyOT triples for all executions at once using a bucket size
of B = 3, compared with B = 5 for one execution of AES or B = 4 for one
execution of SHA-256. Since the protocol scales with B2, this has a big impact
on performance. The results for 9 parties, for the different choices of B, are
shown in Table 2.

Table 2. Runtimes in ms for AES and SHA-256 evalution with 9 parties

AES
(B = 5)

AES
(B = 3)

SHA-256
(B = 5)

SHA-256
(B = 3)

Prep. 1329 586.9 10443 6652

Online 35.34 33.30 260.58 252.8
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Fig. 10. AES performance (6800 AND
gates).
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Fig. 11. SHA-256 performance (90825
AND gates).
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Figures 10 and 11 show how the performance of AES and SHA-256 scales with
different numbers of parties, in the amortized setting. Although the asymptotic
complexity is quadratic, the runtimes grow relatively slowly as the number of
parties increases. This is because in the preprocessing phase, the amount of data
sent per party is actually linear. However, the super-linear trend is probably due
to the limitations of the total network capacity, and the computational costs.

Comparison with other works. We calculated the cost of computing the SPDZ-
BMR protocol [29] using [24] to derive estimates for creating the SPDZ triples
(the main cost). Using MASCOT over F2κ with free-XOR, SPDZ-BMR requires
3n + 1 multiplications per garbled AND gate. This gives an estimated cost of at
least 14 s to evaluate AES, which is over 20x slower than our protocol.

The only other implementation of actively secure, constant-round, dishonest
majority MPC is the concurrent work of [23], which presents implementation
figures for up to 256 parties running on Amazon servers. Their runtimes with 9
parties in a LAN setting are around 200 ms for AES and 2200 ms for SHA-256,
which is around 3 times faster than our results. However, their LAN setup has
10Gbps bandwidth, whereas we only tested on machines with 1Gbps bandwidth.
Since the bottleneck in our implementation is mostly communication, it seems
that our implementation could perform similar to or even faster than theirs in the
same environment, despite our higher communication costs. However, it is not
possible to make an accurate comparison without testing both implementations
in the same environment.

Compared with protocols based solely on secret-sharing, such as SPDZ and
TinyOT, the advantage of our protocol is the low round complexity. We have
not yet managed to benchmark our protocol in a WAN setting, but since our
total round complexity is less than 20, it should perform reasonably fast. With
secret-sharing, using e.g. TinyOT, evaluating the AES circuit requires at least
40 rounds in just the online phase (it can be done with 10 rounds [14], but this
uses a special representation of the AES function, rather than a general circuit),
whilst computing the SHA-256 circuit requires 4000 rounds. In a network with
100 ms delay between parties, the AES online time alone would be at least 4 s,
whilst SHA-256 would take over 10 min to securely compute in that setting. If
our protocol is run in this setting, we should be able to compute both AES and
SHA-256 in just a few seconds (assuming that latency rather than bandwidth is
the bottleneck).

6.2 Communication Complexity Analysis

We now focus on analysing the concrete communication complexity of the opti-
mized variant of our protocol and compare it with the state of the art in constant-
round two-party and multi-party computation protocols. We have not imple-
mented our protocol, but since the underlying computational primitives are very
simple, the communication cost will be the overall bottleneck. As a benchmark,
we estimate the cost of securely computing the AES circuit (6800 AND gates,
25124 XOR gates), where we assume that one party provides a 128-bit plaintext
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or ciphertext and the rest of them have an XOR sharing of a 128-bit AES key.
This implies we have 128 ·n input wires and an additional layer of XOR gates in
the circuit to add the key shares together. We consider a single set of 128 output
wires, containing the final encrypted or decrypted message.

Table 3. Communication estimates for secure AES evaluation with our protocol and
previous works in the two-party setting. Cost is the maximum amount of data sent by
any one party, per execution.

Protocol # Executions Function-indep. prep. Function-dep. prep. Online

[37] 32 – 3.75 MB 25.76 kB

128 – 2.5 MB 21.31 kB

1024 – 1.56 MB 16.95 kB

[34] 1 14.94 MB 227 kB 16.13 kB

32 8.74 MB 227 kB 16.13 kB

128 7.22 MB 227 kB 16.13 kB

1024 6.42 MB 227 kB 16.13 kB

[38] 1 2.86 MB 570 kB 4.86 kB

32 2.64 MB 570 kB 4.86 kB

128 2.0 MB 570 kB 4.86 kB

1024 2.0 MB 570 kB 4.86 kB

Ours + [38] 1 2.86 MB 872 kB 4.22 kB

32 2.64 MB 872 kB 4.22 kB

128 2.0 MB 872 kB 4.22 kB

1024 2.0 MB 872 kB 4.22 kB

Two Parties. In Table 3 we compare the cost of our protocol in the two-party
case, with state-of-the-art secure two-party computation protocols. We instan-
tiate our TinyOT-based preprocessing method with the optimized, two-party
TinyOT protocol from [38], lowering the previous costs further. For consistency
with the other two-party protocols, we divide the protocol costs into three phases:
function-independent preprocessing, which only depends on the size of the cir-
cuit; function-dependent preprocessing, which depends on the exact structure
of the circuit; and the online phase, which depends on the parties’ inputs. As
with the implementation, we move the garbled circuit opening to the function-
dependent preprocessing, to simplify the online phase.

The online phase of the modified protocol is just two rounds of interaction,
and has the lowest online cost of any actively secure two-party protocol.2 The
2 If counting the total amount of data sent, in both directions, our online cost would

be larger than [38], which is highly asymmetric. In practice, however, the latency
depends on the largest amount of communication from any one party, which is why
we measure in this way.
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main cost of the function-dependent preprocessing is opening the garbled circuit,
which requires each party to send 8κ bits per AND gate. This is slightly larger
than the best Yao-based protocols, due to the need for a set of keys for every
party in BMR.

In the batch setting, where many executions of the same circuit are needed,
protocols such as [37] clearly still perform the best. However, if many circuits
are required, but they may be different, or not known in advance, then our
multi-party protocol is highly competitive with two-party protocols.

Comparison with Multi-party Protocols. In Table 4 we compare our work
with previous constant-round protocols suitable for any number of parties, again
for evaluating the AES circuit. We do not present the communication complexity
of the online phase as we expect it to be very similar in all of the protocols. We
denote by MASCOT-BMR-FX an optimized variant of [29], modified to use free-
XOR as in our protocol, with multiplications done using the OT-based MASCOT
protocol [24].

Table 4. Comparison of the cost of our protocol with previous constant-round MPC
protocols in a range of security models, for secure AES evaluation. Costs are the amount
of data sent over the network per party.

Protocol Security Function-indep. prep. Function-dep. prep.

n = 3 n = 10 n = 3 n = 10

SPDZ-BMR Active 25.77 GB 328.94 GB 61.57 MB 846.73 MB

SPDZ-BMR Covert, pr. 1
5

7.91 GB 100.98 GB 61.57 MB 846.73 MB

MASCOT-BMR-FX Active 3.83 GB 54.37 GB 12.19 MB 178.25 MB

[23] Active 4.8 MB 20.4 MB 1.3 MB 4.4 MB

Ours Active 14.01 MB 63.22 MB 1.31 MB 4.37 MB

As in the previous section, we move the cost of opening the garbled circuit
to the preprocessing phase for all of the presented protocols (again relying on
random oracles). By applying this technique the online phase of our work is just
two rounds, and has exactly the same complexity as the current most efficient
semi-honest constant-round MPC protocol for any number of parties [4], except
we achieve active security. We see that with respect to other actively secure
protocols, we improve the communication cost of the preprocessing by around
2–4 orders of magnitude. Moreover, our protocol scales much better with n, since
the complexity is O(n2) instead of O(n3). The concurrent work of Katz et al. [23]
requires around 3 times less communication than our protocol, which is due to
their optimized version of the multi-party TinyOT protocol.

Acknowledgements. We are grateful to Moriya Farbstein and Lior Koskas for their
valuable assistance with implementation and experiments. We also thank Yehuda Lin-
dell for helpful feedback.



626 C. Hazay et al.

The first author was supported by the European Research Council under the ERC
consolidators grant agreement No. 615172 (HIPS), and by the BIU Center for Research
in Applied Cryptography and Cyber Security in conjunction with the Israel National
Cyber Bureau in the Prime Minister’s Office. The second author was supported by
the Defense Advanced Research Projects Agency (DARPA) and Space and Naval War-
fare Systems Center, Pacific (SSC Pacific) under contract No. N66001-15-C-4070, and
by the Danish Independent Research Council, Grant-ID DFF-6108-00169. The third
author was supported by the European Union’s Horizon 2020 research and innovation
programme under the Marie Sk�lodowska-Curie grant agreement No. 643161.

References

1. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

2. Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols
(extended abstract). In: 22nd ACM STOC, pp. 503–513. ACM Press, May 1990

3. Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. In: Yu, T.,
Danezis, G., Gligor, V.D. (eds.) ACM CCS 12, pp. 784–796. ACM Press, October
2012

4. Ben-Efraim, A., Lindell, Y., Omri, E.: Optimizing semi-honest secure multiparty
computation for the internet. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C.,
Myers, A.C., Halevi, S. (eds.) ACM CCS 16, pp. 578–590. ACM Press, October
2016

5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: 20th
ACM STOC, pp. 1–10. ACM Press, May 1988

6. Burra, S.S., Larraia, E., Nielsen, J.B., Nordholt, P.S., Orlandi, C., Orsini, E.,
Scholl, P., Smart, N.P.: High performance multi-party computation for binary cir-
cuits based on oblivious transfer. Cryptology ePrint Archive, Report 2015/472
(2015). http://eprint.iacr.org/2015/472

7. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

8. Canetti, R., Cohen, A., Lindell, Y.: A simpler variant of universally composable
security for standard multiparty computation. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 3–22. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48000-7 1

9. Cascudo, I., Damg̊ard, I., David, B., Döttling, N., Nielsen, J.B.: Rate-1, linear
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Abstract. In this work we consider the problem of oblivious linear func-
tion evaluation (OLE). OLE is a special case of oblivious polynomial eval-
uation (OPE) and deals with the oblivious evaluation of a linear function
f(x) = ax + b. This problem is non-trivial in the sense that the sender
chooses a, b and the receiver x, but the receiver may only learn f(x). We
present a highly efficient and UC-secure construction of OLE in the OT-
hybrid model that requires only O(1) OTs per OLE. The construction is
based on noisy encodings introduced by Naor and Pinkas (STOC’99) and
used for passive secure OLEs by Ishai, Prabhakaran and Sahai (TCC’09).
A result asymptotically similar to ours is known by applying the IPS
compiler to the mentioned passive secure OLE protocol, but our pro-
tocol provides better constants and would be considerably simpler to
implement. Concretely we use only 16 OTs to generate one active secure
OLE, and our protocol achieves active security by adding fairly simple
checks to the passive secure protocol. We therefore believe our protocol
takes an important step towards basing practical active-secure arithmetic
computations on OLEs. Our result requires novel techniques that might
be of independent interest. As an application we present the currently
most efficient OPE construction.

1 Introduction

The oblivious evaluation of functions is an essential building block in crypto-
graphic protocols. The first and arguably most famous result in the area is
oblivious transfer (OT), which was introduced in the seminal work of Rabin [31].
Here, a sender can specify two bits s0, s1, and a receiver can learn one of the bits
sc depending on his choice bit c. It is guaranteed that the sender does not learn
c, while the receiver learns nothing about s1−c. Kilian [27] subsequently showed
that OT allows the (oblivious) evaluation of any function.

While there has been tremendous progress in the area of generic MPC over
the last three decades, there are certain classes of functions that can be eval-
uated more efficiently by direct constructions instead of taking the detour via
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MPC. In this context, Naor and Pinkas [29] introduced oblivious polynomial
evaluation (OPE) as an useful primitive. OPE deals with the problem of eval-
uating a polynomial P on an input α obliviously, i.e., in such a way that the
sender specifies the polynomial P but does not learn α, while the receiver learns
P (α) but nothing else about P . OPE has many applications, ranging from
secure set intersection [18,30] over RSA key generation [16] to oblivious key-
word search [13]. Due to its versatility, OPE has received considerable attention
in recent years [7,14,18,19,26,28,33,34].

A special case of OPE, called oblivious linear function evaluation (OLE,
sometimes also referred to as OLFE, or OAFE) has more recently been intro-
duced as an essential building block in (the preprocessing of) MPC protocols for
arithmetic circuits [8] or garbled arithmetic circuits [1]. Instead of evaluating an
arbitrary polynomial P , the receiver wants to evaluate a linear or affine function
f(x) = ax + b. Ishai et al. [22] propose a passively secure protocol for oblivious
multiplication which uses a similar approach as [29], and can be easily modi-
fied to give a passively secure OLE. Their approach to achieve active security
is to apply a compiler like [21] to the passive protocol. Another approach was
taken by [10], who built an unconditionally UC-secure protocol for OLE based
on tamper-proof hardware [23] as a setup assumption.

Currently, all of the above mentioned actively secure realizations of OPE
or OLE require rather expensive computations or strong setup assumptions.
In contrast, the most efficient passively secure constructions built from noisy
encodings and OT require only simple field operations. However, to date a direct
construction of a maliciously secure protocol in this setting has been elusive.
While passive-to-active compilers such as [21] yield actively secure protocols
with a constant overhead, such a transformation typically incurs a prohibitively
large constant, resulting in efficiency only in an asymptotic sense.1 Thus, the
most efficient realizations currently follow from applying the techniques used for
the precomputation of multiplied values in arithmetic MPC protocols such as
SPDZ [8] or more recently MASCOT [25].

1.1 Our Contribution

We present a UC-secure protocol for oblivious linear function evaluation in the
OT-hybrid model based on noisy encodings. The protocol is based on the semi-
honest secure implementation of OLE by Ishai et al. [22], which is the most
efficient protocol for passively secure OLE that we are aware of. Our actively
secure protocol only has a constant overhead of 2 compared to the passively
secure original construction. In numbers, this means:

– We need 16 OTs per OLE, compared to 8 for the semi-honest protocol [22].
– We communicate 16 · (2 + cOT) · n + 8 field elements for n multiplications,

compared to 8 · (2 + cOT) · n in [22], where cOT is the cost for one OT.
– The computational overhead is twice that of the semi-honest case.

1 We will compare in more detail to protocols obtained via [21] after comparing to
known direct constructions.
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One nice property of [22] and the main reason for its efficiency is that it directly
allows to multiply a batch of values. This property is preserved in our construc-
tion, i.e., we can simultaneously evaluate several linear functions.

In order to achieve our result we solve the long standing open problem of
finding an actively secure OLE/OPE protocol which can directly be reduced to
the security of noisy encodings (and OT). This problem was not solved in [29]
and has only been touched upon in follow-up work [22,26]. The key technical
contribution of the paper is a reduction which shows that noisy encodings are
robust against leakage in a strong sense, which allows their application in a
malicious setting. As a matter of fact, our robustness results are more general
and extend to all noisy encodings.

An immediate application of our UC-secure batch-OLE construction is a UC-
secure OPE construction. The construction is very simple and has basically no
overhead over the OLE construction. We follow the approach taken in [30], i.e.,
we use the fact that a polynomial of degree d can be decomposed into d linear
functions. Such a decomposed polynomial is evaluated with the batch-OLE and
then reconstructed. UC-security against the sender directly follows from the
UC-security of the batch-OLE. In order to make the protocol secure against a
cheating receiver, we only have to add one additional check that ensures that
the receiver chooses the same input for each linear function. Table 1 compares
the efficiency of our result with existing solutions in the literature.

Table 1. Overview of OPE realizations, where d is the degree of the polynomial,
k is a computational security parameter and s a statistial security parameter ([19]
propose s ≈ 160). We compare the number of OTs and exponentiations in the respective
protocols.

Assumption OTs Expon. Security

[7] OT O(dκ) 0 Passive

[30] OT and Noisy encodings O(dκ log κ) 0 Passive

[22] OT and Noisy encodings O(d) 0 Passive

[19] CRS and DCRP 0 O(ds) UC

[18] DDH 0 O(d)∗ Active

This work OT and Noisy encodings O(d) 0 UC

We point out that [18] only realizes OPE in the exponent, which is still
sufficient for many applications, but requires additional work to yield a full
fledged OPE. In particular, this might entail additional expensive operations.
Another important factor regarding the efficiency of OT-based protocols is the
cheap extendability of OT [20,24] which shows that the asymptotic price of OT
is only small constant number of applications of a symmetric primitive like for
instance AES. Therefore, the concrete cost of the OTs is much less than the price
of exponentiations if d is sufficiently large, or if several OPEs have to be carried
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out. In such a scenario, we get significant improvements over previous (actively
secure) solutions, which always require expensive operations in the degree of the
polynomial.

Comparing to IPS. In [22], which provides the passive secure OLE protocol
from which we depart, the authors propose to get active security using the IPS
compiler [21]. Our protocol is inspired by this approach but we have spared a
lot of the generic mechanism of the IPS compiler and obtained a protocol which
both in terms of number of OTs and implementation is considerable simpler.

In the IPS-compiler one needs to specify an outer protocol for n servers which
should be active secure against a constant fraction of corruptions. Since our goal
here is to generate active secure OLEs, we will need an outer protocol computing
OLEs and therefore an arithmetic protocol is natural. One should also specify
an inner protocol, which is a passive secure two-party computation protocol
allowing to emulate the individual parties in the outer protocol. This protocol
should be based on passive secure OLEs, as this is our underlying primitive.

For the outer protocol it seems as a good choice to use a variant of [2].
The protocol has perfect active security and therefore fits the [22] framework
and avoids complications with coinflipping into the well. Since the IPS compiler
does not need error recovery, but only error detection, the entire dispute-control
mechanism of [2] can be skipped, yielding a very simple protocol. By setting the
number n of servers very high, the number of corrupted servers that the outer
protocol should tolerate can become an arbitrarily small constant ε. In that case
one could probably get a packed version of [2], where one computes the same
circuit on (n − 3ε)/2 different values in parallel. This means that each secure
multiplication done by the outer protocol will involve just more than 2 local
multiplications of the servers. For simplicity we ignore all other costs than these
two multiplications.

Using the natural inner protocol based on the passive secure OLE from [22],
each of the two emulated multiplications will consume 2 passive secure OLEs.
Each passive secure OLE consumes 8 OTs, for a total cost of 32 OTs per active
secure OLE generated. Our protocol uses 16 OTs per OLE.

Putting the inner and outer protocols together in the IPS framework involves
considerably additional complications like setting up watch-lists and encrypting
and sending all internal messages of emulated servers on these watch-list chan-
nels. In comparison our protocol has almost no additional mechanisms extra to
the underlying passive secure protocol. Our overhead on local computation of
the parties compared to the passive secure OLE protocol is 2. It seems unlikely
that the IPS compiler would have an overhead even close to just 2.

In summary, our protocol saves a factor of 2 in consumptions of OTs and
is much simpler and therefore easier to implement and has considerable lower
computational cost.
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1.2 Technical Overview

At the heart of our constructions are noisy encodings. These were introduced by
Naor and Pinkas [29] in their paper on OPE and provide a very efficient means to
obliviously compute multiplications. A noisy encoding is basically an encoding
of a message via a linear code that is mixed with random values in such a way
that the resulting vector hides which elements belong to the codeword and which
elements are random, thereby hiding the initial message. In a little more detail,
the input x ∈ F

t is used as t sampling points on locations αi of an otherwise
random polynomial P of some degree d > t. Then the polynomial is evaluated
at e.g., 4d positions βi, and half of these positions are replaced by uniformly
random values, resulting in the encoding v. It is assumed that this encoding is
indistinguishable from a uniformly random vector.2

Robustness of noisy encodings. The main problem of using noisy encodings in
maliciously secure protocols is that the encoding is typically used in a non-
black-box way. On one hand this allows for very efficient protocols, but on the
other hand a malicious party obtains knowledge that renders the assumption
that is made on the indistinguishability of noisy encodings useless. In a little
more detail, consider a situation where the adversary obtains the encoding and
manipulates it in a way that is not specified by the protocol. The honest party
only obtains part of the encoding (this is usually necessary even in the passively
secure case). In order to achieve active security, a check is performed which is
supposed to catch a deviating adversary. But since the check is dependent on
which part of the encoding the honest party learned, this check actually leaks
some non-trivial information to the adversary, typically noisy positions of the
codeword.

We show that noisy encodings as defined by [22,30] are very robust with
respect to leakage. In particular, we show the following theorem that is basically
a stronger version of a result previously obtained by Kiayias and Yung [26].

Theorem (informal). For appropriate choices of parameters, noisy encodings
are resilient against non-adaptive leakage of O(log κ) noisy positions.

In a little more detail, we show that a noisy encoding generated as described
above remains indistinguishable from a random vector of field elements, even for
an adversary that is allowed to fix the position of f noisy positions. Fixing f
positions is of course stronger than being able to leak f positions. The security
loss incurred by the fixing of f positions is 3f .

We then show that an adversary which is given a noisy encoding cannot
identify a super-logarithmic sized set consisting of only noisy positions.

Theorem (informal). For appropriate choices of parameters, an adversary can-
not identify more than O(log κ) noisy positions in a noisy encoding.

2 The problem is related to efficient polynomial reconstruction, i.e., decoding Reed-
Solomon codes, and as such well researched. The parameters have to be chosen in
such a way that all known decoding algorithms fail.
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These theorems together show that we can tolerate the leakage of any number
of noisy positions that might be guessed. This is the basis for the security of our
protocol. Note that tolerance to leakage of a set of noisy positions that might
be guessed is not trivial, as we are working with an indistinguishability notion.
Hence leakage of a single bit might a priori break the assumption.

We describe the main idea behind our reduction proving the first theorem.
Assume that there are a total of ρ noisy positions. Consider an adversary that is
allowed to submit a set F . Then we generate a noisy encoding as above, except
that all positions i ∈ F are fixed to be noisy. The remaining ρ−|F | noisy positions
are picked at random. Denote the distribution by vρ,F . Let vρ = vρ,∅. Let v$

denote a vector with all positions being uniformly random. We start from the
assumption that vρ ≈ v$. Let n be the total number of positions. Then clearly
vn,F = v$ for all F .

We want to prove that vρ,F ≈ v$ for small F . Let F be a set of size f .
Assume that we managed to prove that vρ,F ′ ≈ v$ for all sets F ′ of size f − 1.
Assume also that we have managed to prove that vρ+1,F ≈ v$.

For a set F let i be the smallest index in F and let F = F ′∪· {i}. Consider the
reduction which is given v from vρ,F ′

or v$ and which adds noise to position i in
v and outputs the result v ′. If v ∼ v$, then v ′ ∼ v$. If v ∼ vρ,F ′

, then v ′ ∼ α
vρ+1,F + (1 − α)vρ,F , where α is the probability that i is not already a noisy
position. Putting these together we get that vρ,F ′ ≈ v$ implies that αvρ+1,F +
(1−α)vρ,F ≈ v$. We then use that vρ+1,F ≈ v$ to get that αv$+(1−α)vρ,F ≈
v$, which implies that vρ,F ≈ v$, when α is not too large.

We are then left with proving that vρ,F ′ ≈ v$ and vρ+1,F ≈ v$. These
are proven by induction. The basis for vρ,F ′ ≈ v$ is vρ,∅ ≈ v$. The basis for
vρ+1,F ≈ v$ is vn,F = v$. Controlling the security loss in these polynomially
deep and nested inductions is tricky. We give the full details later.

We now give the intuition behind the proof of the second theorem. Assume
that some adversary can guess a set S of s noisy positions with polynomial
probability p1 given an encoding vρ ≈ v$ and assume that s is super-logarithmic
and that ρ/n is a non-zero constant. We prove the theorem for noise level ρ but
have to start with the assumption that vρ−cκ ≈ v$ for an appropriate constant
c ∈ (0, 1) and where κ is the security parameter.

Consider the reduction which is given a sample v from vρ−cκ or v$. It starts
by adding κ random positions R to v to get v ′. Then it feeds v ′ to A to get
a set S. Then it uses its knowledge of R to sample the size of the intersection
between S and the noisy positions in v ′. If it is “large” we guess that v ∼ vρ−cκ.
Otherwise we guess that v ∼ v$. We pick c such that the total number of random
positions in v ′ is ρ with polynomial probability when v ∼ vρ−cκ, in which case
S is a subset of the noisy positions with probability p1, which will give a large
intersection. If v ∼ v$, then R is uniformly hidden to the adversary, and the
expected size of the intersection will be smaller by a constant factor depending
on ρ and c. The calibration of c and “small” is done as to allow a formal proof
using a Chernoff bound. The details are given in the following.
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Efficient OLE from noisy encodings. We build a UC-secure OLE protocol
inspired by the passively secure multiplication protocol of Ishai et al. [22]. Let
us briefly recall their construction on an intuitive level. One party, let us call it
the sender, has as input t values a1, . . . , at ∈ F, while the receiver has an input
b1, . . . , bt ∈ F. A set of distinct points α1, . . . , αn/4 is fixed. The high-level idea
is as follows: both sender and receiver interpolate a degree n/4 − 1 polynomial
through the points (αi, ai) and (αi, bi) (picking ai, bi for i > t randomly), to
obtain A(x) and B(x), respectively. They also agree on n points β1, . . . , βn. Now
the receiver replaces half of the points B(βi) with uniformly random values (he
creates a noisy encoding) and sends these n values B̄(βi) to the sender. He keeps
track of the noiseless positions using an index set L. The sender draws an addi-
tional random polynomial R of degree 2(n/4 − 1) to mask the output. He then
computes Y (βi) = A(βi) · B̄(βi) + R(βi) and uses these points as input into a
n/2 − 1-out-of-n OT, from which the receiver chooses the n/2 − 1 values in L.
He can then interpolate the obtained points of Y (βi) to reconstruct Y and learn
ai · bi + ri in the positions αi. This also directly yields an OLE: the polyno-
mial R is simply used as another input of the sender, since it can be generated
identically to A.

The passive security for the sender follows from the fact that the receiver
obtains only n/2 − 1 values and thus R completely masks the inputs a1, . . . , at.
Passive security of the receiver follows from the noisy encoding, i.e., the sender
cannot learn B from the noisy encoding.

In order to achieve actively secure OLE from the above protocol, we have to
ensure several things: first of all, we need to use an actively secure k-out-of-n
OT. But instead of using a black-box realization, which incurs an overhead of
n log n on the number of OTs, we use n 1-out-of-2 OTs and ensure that the
right number of messages was picked via a secret sharing, which the receiver
has to reconstruct. This protocol first appeared in [32]. It does not have active
security against the sender, who can guess some choice bits. A less efficient but
active secure version was later given in [9], using verifiable secret sharing. We
can, however, use the more efficient but less secure original variant as we can
tolerate leakage of a few choice bits in the overall protocol.

Secondly, we also need to make sure that the parties used the right inputs
in the computation, i.e., valid polynomials A,B and R. In order to catch devia-
tions, we add two checks—one in each direction. The check is fairly simple: one
party selects a random point z and the other party sends a pair A(z), R(z), or
B(z), Y (z) respectively. Each party can now locally verify that the values satisfy
the equation A(z) · B(z) + R(z) = Y (z).

As it turns out, both of these additions to the protocol, while ensuring pro-
tocol compliance w.r.t. the inputs, are dependent on the encoding. But this also
means that a malicious sender can do selective failure attacks, e.g., it inputs
incorrect shares for the secret sharing, and gets some leakage on the “secret
key” of the encoding. This problem does not occur when considering semi-honest
security.
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2 Preliminaries

We use the standard notions of probabilistic polynomial time (PPT) algorithms,
negligible and overwhelming functions. Further, we denote by x ∈ F

n a vector
of length n, xi as the ith element of x and x|I all xi for i ∈ I. Unless noted
otherwise, P (x) denotes a polynomial in F[X], and X denotes a distribution.

We will typically denote a value x̂ chosen or extracted by the simulator, while
x∗ is chosen by the adversary A.

2.1 Universal Composability Framework

We state and prove our results in the Universal Composability (UC) framework
of Canetti [5]. Security is defined via the comparison of an ideal model and a
real model. In the real model, a protocol Π between the protocol participants
is executed, while in the ideal model the parties only communicate with an
ideal functionality F that is supposed to model the ideal security guarantees
of the protocol. For an adversary A in the real protocol who coordinates the
behavior of all malicious parties, there has to exist a simulator S for A in the
ideal protocol. An environment Z, which is plugged to both the real and the
ideal protocol, provides the inputs to the parties and can read the outputs. The
simulator S has to ensure that Z is not able to distinguish these models. Thus,
even with concurrently executed protocols (running in the environment) the
security holds. Usually, we assume that A is a dummy adversary controlled by
Z, which means that Z can adaptively choose its inputs depending on protocol
messages it received and send messages on behalf of a (corrupted) protocol party.

More formally, let RealAΠ(Z) denote the random variable describing the out-
put of Z when interacting with the real model, and let IdealSF (Z) denote the
random variable describing the output of Z when interacting with the ideal
model. A protocol Π is said to UC-realize a functionality F if for any (PPT)
adversary A, there exists a PPT simulator S such that for any (PPT) environ-
ment Z, RealAΠ(Z) ≈ IdealSF (Z).

For our constructions we assume active adversaries and static corruption. We
prove security in the hybrid model access to oblivious transfer (OT).

2.2 Commitment Scheme

A commitment scheme COM consists of two algorithms (COM.Commit,COM.
Open). It is a two party protocol between a sender and a receiver. In the commit
phase of the protocol, when the sender wants to commit to some secret value m,
it runs COM.Commit(m) and gets back two values (com, unv). It sends com to the
receiver. Later on in the unveil phase, the sender sends the unveil information
unv to the receiver, who can use COM.Open to verify that the commitment com
contains the actual secret m.

A commitment scheme must satisfy two security properties; (1) Hiding : The
receiver cannot learn any information about the committed secret before the
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unveil phase, and (2) Binding : The sender must not be able to change the com-
mitted secret after the commit phase. For our purpose we need efficient UC-
secure commitment schemes that can be realized in FOT-hybrid model and in
FOLE-hybrid model.

In [6] the authors proposed an UC-secure commitment scheme in the FOT-
hybrid model. Their protocol gives the first UC commitment scheme with “opti-
mal properties” of rate approaching 1 and linear time complexity, in a “amortized
sense”. In our UC-secure OLE protocol also we need to commit to many values
at a time, so we can use their UC commitment scheme in our protocol.

3 Noisy Encodings

The security of our protocols is based on a noisy encoding assumption. Very
briefly, a noisy encoding is an encoding of a message, e.g., via a linear code, that
is mixed with random field elements. It is assumed that such a codeword, and
in particular the encoded message, cannot be recovered. This assumption seems
reasonable due to its close relationship to decoding random linear codes or the
efficient decoding of Reed-Solomon codes with a large fraction of random noise.

Noisy encodings were first introduced by Naor and Pinkas [29], specifically
for the purpose of realizing OPE. Their encoding algorithm basically generates a
random polynomial P of degree k−1 with P (0) = x. The polynomial is evaluated
at n > k locations, and then n − k positions are randomized. Generalizing the
approach of [30], Ishai et al. [22] proposed a more efficient encoding procedure
that allows to encode several field elements at once instead of a single element,
using techniques of [12]. Basically, they use Reed-Solomon codes and then arti-
ficially blind the codeword with random errors in order to mask the location of
the codeword elements in the resulting string.

The encoding procedure depicted in Fig. 1 is nearly identical to the procedure
given in [22], apart from the fact that we do not fix the signal-to-noise ratio
(because this will be dependent on the protocol). We also allow to pass a set of
points P as an argument to Encode to simplify the description of our protocol
later on. This change has no impact on the assumption, since these points are
made public anyway via G.

[29] propose two different encodings and related assumptions, tailored to
their protocols. One of these assumptions was later broken by [3,4], and a fixed
version was presented in [30]. We are only interested in the unbroken assumption.
The same assumption was used by [22] and we will adopt their notation in the
following.

Assumption 1. Let κ be a security parameter and n, ρ ∈ poly(κ). Further let
x, y ∈ F

t(κ). Then the ensembles {Encoden,ρ(x)}κ and {Encoden,ρ(y)}κ are com-
putationally indistinguishable, for t ≤ �

4 .

As it is, our security reductions do not hold with respect to Assumption 1,
but rather a variant of Assumption 1 which was already discussed in [29]. Instead
of requiring indistinguishability of two encodings, we require that an encoding is
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Fig. 1. Encoding procedure for noisy encodings.

pseudorandom. In order for these assumption to hold, [22] propose n = 4κ, ρ =
2κ + 1 as parameters, or n = 8κ, ρ = 6κ + 1 on the conservative side.

Assumption 2. Let κ be a security parameter and n, ρ ∈ poly(κ). Further let
x ∈ F

t(κ). Then the ensembles {Encoden,ρ(x)}κ and {G ← G(n, ρ), v ← F
n}κ are

computationally indistinguishable, for t ≤ �
4 .

Clearly, Assumption 2 implies Assumption 1, while the other direction is
unclear. Apart from being a very natural assumption, Kiayias and Yung [26]
provide additional evidence that Assumption 2 is valid. They show that if an
adversary cannot decide for a random position i of the encoding whether it is
part of the codeword or not, then the noisy codeword is indeed pseudorandom.

4 Noisy Encodings Are Robust Against Leakage

In this section we show that a large class of computational assumptions can be
extended to allow some leakage without loss of asymptotic security. This is one
of the main technical contributions of the paper and we deem the reductions to
be of independent interest. We first define the class of assumptions we consider.

Definition 1. Let a finite field F be given. For a positive integer n we use Un

to denote the uniform distribution on F
n. Let n be the length of a codeword, ρ

the number of randomised positions, G a generator for the encoding and F some
fixed random positions with |F | ≤ ρ. The distribution Yn,ρ,G,F is sampled as
follows.
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1. Sample (x1, . . . , xn) ← G(1κ), where κ is the security parameter.
2. Sample uniform R ⊆ [n] under the restriction |R| = ρ and F ⊆ R.
3. Sample uniform (e1, . . . , en) ← Un under the restriction ei = 0 for i 	∈ R.
4. Output y = x + e.

Clearly it holds that the above defined Encode generalises Definition 1, i.e.,
all of the following results hold for noisy encodings as well.

We will mostly consider the case that n = Θ(κ) and ρ = Θ(κ). Typically n
and G are fixed, in which case we denote the distribution of y by Yρ,F . Note
that Yn,F = Un.

We are going to assume that for sufficiently large ρ it holds that Yρ ≈ Yn,
where ≈ means the distributions are computationally indistinguishable. For
example, this is given by Assumption 2 for noisy encodings with appropriate
parameters. We will use this to prove that the same result holds given limited
leakage on R and that it is hard to compute a lot of elements of R given only y.

When we prove the first result, we are going to do an argument with two
nested recursive reductions. To make it easier to track the security loss, we are
going to shift to a concrete security notation for a while and then switch back
to asymptotic security when we have control over the security loss.

Given two distributions A0 and A1 and a distinguisher D let AdvD(A0, A1) =
Pr[A1 = 1] − Pr[A0 = 0]. We use A0 ≈t

ε A1 to denote that it holds for all
distinguishers computable in time t that AdvD(A0, A1) ≤ ε.

Given two distributions A0 and A1 and 0 ≤ α0 ≤ 1 and α1 = 1 − α0 we
use B = α0A0 + α1A1 to denote the distribution generated by the following
procedure. Sample c ∈ {0, 1} with Pr[c = i] = αi. Then sample b ← Ac and
output b.

We will use the following simple facts in our proofs.

Lemma 1. Let A0, A1 and Z be distributions.

A0 ≈t
ε A1 ⇒ α0A0 + α1Z ≈t

α0ε α0A1 + α1Z.

α0A0 + α1Z ≈t
ε α0A1 + α1Z ⇒ A0 ≈t

α−1
0 ε

A1.

Proof. Let Bi = α0A0 + α1Z. We first prove the first implication. Consider a
distinguisher D for B0 and B1. Then

AdvD(B0, B1) = Pr[D(B1) = 1] − Pr[D(B0) = 1]

=
∑

i

αi Pr[D(B1) = 1 | c = i] −
∑

i

αi Pr[D(B0) = 1 | c = i]

= α0 Pr[D(B1) = 1 | c = 0] − α0 Pr[D(B0) = 1 | c = 0]
= α0 Pr[D(A1) = 1] − α0 Pr[D(A0) = 1]
= α0 Pr[D(A1) = 1] − α0 Pr[D(A0) = 1],

from which it follows that

AdvD(B0, B1) = α0AdvD(A0, A1). (1)
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From (1) it follows that AdvD(B0, B1) ≤ α0ε for all D, which proves the claim
in the lemma. Consider a distinguisher D for A0 and A1. It can also act as
distinguisher for B0 and B1, so from (1) we have that

AdvD(A0, A1) = α−1
0 AdvD(B0, B1).

From this the second claim follows. ��
In the following we will show that if Yρ ≈t+t′

ε Yn and F is not too large, then
Yρ,F ≈t

ε′ Yn,F for ε′ polynomially related to ε and t′ a small fixed polynomial.
Since the reduction will be recursive and will modify ε multiplicatively, we will
keep explicit track of ε to ensure the security loss is not too large. As for t, each
reduction will only add a small t′ to t, namely the time to sample a distribution.
The time will therefore clearly grow by at most a polynomial term. We therefore
do not keep track of t, for notational convenience.

Lemma 2. If ρ − |F | ≥ 2n/3 and Yj ≈ε Yn for all j ≥ ρ, then Yρ,F ≈σρ
Yn,F

for σρ = 3|F |ε.

Proof. We prove the claim by induction in the size of F . If |F | = 0 it follows
by assumption. Consider then the following randomised function f with inputs
(y1, . . . , yn) and F . Let i be the largest element in F and let F ′ = F \ {i}.
Sample uniformly random y′

i ∈ F. For j 	= i, let y′
j = yj . Output y′. Consider

the distribution Yρ,F ′
. Let R denote the randomised positions. If i ∈ R, then

f(Yρ,F ′
) = Yρ,F . If i 	∈ R, then f(Yρ,F ′

) = Yρ+1,F , as we added one more noisy
point. The point i is a fixed point not in F ′. There are n − |F | + 1 points not
in F ′. There are ρ randomised points, i.e., |R| = ρ. Exactly |F | − 1 of these
points are the points of F ′. The other points are uniform outside F ′. So there
are ρ − |F | + 1 such points. Therefore the probability that i ∈ R is p = ρ−|F |+1

n−|F |+1 .
It follows that

f(Yn,F ′
) = Yn,F , f(Yρ,F ′

) = pYρ,F + (1 − p)Yρ+1,F .

It then follows from Yn,F ′ ≈ε′ Yρ,F ′
(where ε′ = 3|F ′|ε) that

Yn,F ≈ε′ pYρ,F + (1 − p)Yρ+1,F .

We now claim that Yρ,F ≈3ε′ Yn,F . The claim is trivially true for ρ = n, so
we can assume that ρ < n and assume the claim is true for all ρ′ > ρ. Using
Lemma 1 and the induction hypothesis we get that

pYρ,F + (1 − p)Yρ+1,F ≈(1−p)3ε′ pYρ,F + (1 − p)Yn,F .

Clearly
Yn,F ≈0 pYn,F + (1 − p)Yn,F .

Putting these together we get that

pYn,F + (1 − p)Yn,F ≈ε′+(1−p)3ε′ pYρ,F + (1 − p)Yn,F .
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Using Lemma 1 we get that Yn,F ≈p−1(ε′+(1−p)3ε′) Y
ρ,F . We have that p ≥ 2/3

so
p−1(ε′ + (1 − p)3ε′) ≤ 3

2
(ε′ +

1
3
3ε′) = 3ε′ = 3|F |ε.

��
In the rest of the section, assume that n and ρ are functions of a security

parameter κ and that n, ρ = Θ(κ). Also assume that ρ ≥ 2n/3 and that n − ρ =
Θ(κ). We say that Yρ ≈ Yn if Yρ′ ≈q(κ)

1/p(κ) Y
n(κ) for all polynomials p and q and

all sufficiently large κ and all ρ′ ≥ ρ.
From 3O(log κ) being a polynomial in κ we get that

Corollary 1. If Yρ ≈ Yn and F ⊆ [n] has size O(log κ), then Yρ,F ≈ Yn.

Now assume that Yρ ≈ Yn. Let Yρ,F,¬ be defined as Yρ,F except that R is
sampled according to the restriction that F 	⊆ R, i.e., F has at least one element
outside R. Let p(F ) be the probability that F ⊆ R for a uniform R. Then by
definition and the law of total probability Yρ = pYρ,F + (1 − p)Yρ,F,¬. We have
that Yρ ≈ Yn and that Yρ,F ≈3|F | Yn,F = Yn. Putting these together we have
that Yn ≈p3|F | pYn + (1 − p)Yρ,F,¬. We then get that Yn ≈3|F | Yρ,F,¬.

Corollary 2. If Yρ ≈ Yn and F ⊆ [n] has size O(log κ), then Yρ,F,¬ ≈ Yn.

We now prove that given one small query on R does not break the security.

Definition 2. Let A be a PPT algorithm and Y as defined in Definition 1. The
game Gleak is defined as follows.

1. Run A to get a subset Q ⊆ [n].
2. Sample a uniformly random bit c.

– If c = 0, then sample y ← Yρ and let R be the subset used in the sampling
– If c = 1, then sample y ← Yn and let R ⊆ [n] be a uniformly random

subset of size ρ.
3. Let r ∈ {0, 1} be 1 iff Q ⊆ R and input (r,y) to A.
4. Run A to get a guess g ∈ {0, 1}.
The advantage of A is AdvA = Pr[g = 1 | c = 1] − Pr[g = 1 | c = 0].

Theorem 1. Assume that n, ρ = Θ(κ) and ρ ≥ 2
3n. If Yρ ≈ Yn, then AdvA ≈ 0.

Proof. Let p be the probability that Q ⊆ R. If p is negligible, then in item 3
of the game we could send the constant r = 0 to A and it would only change
the advantage by a negligible amount. But in the thus modified game AdvA ≈ 0
because Yn ≈ Yρ. So assume that p is a polynomial.3 Let Y0 be the distribution

3 Formally we should consider the case where it is a polynomial for infinitely many κ,
but the following argument generalises easily to this case.
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of (r, y) when c = 0. Let Y1 be the distribution of (r,y) when c = 1. If c = 0,
then (r,y) is distributed as follows

Y0 = p · (1,Yρ,Q) + (1 − p) · (0,Yρ,Q,¬).

When p is polynomial, then |F | = O(log κ) as n − ρ = Θ(κ). From this we get

Y0 ≈ p · (1,Yn) + (1 − p) · (0,Yn) = Y1,

using the above asymptotic corollaries. ��
We will then prove that it is hard to compute a lot of elements of R.

Definition 3. Let A be a PPT algorithm and Y as defined in Definition 1. The
game Gident is defined as follows.

1. Sample y ← Yρ and let R denote the randomized positions.
2. Input y to A.
3. Run A and denote the output by Q ⊆ [n]. We require that |Q| = s.
4. Let r ∈ {0, 1} be 1 iff Q ⊆ R.
5. Output r.

The advantage of A is Advρ,s
A = Pr[r = 1].

Theorem 2. Let n = Θ(κ) and assume that Yσ ≈ Yn. Then Advρ,s
A ≈ 0 is true

in both of these cases:

1. Let σ = n ρ−κ
n−κ and s = κ.

2. Let σ = nκ
n−ρ−κ and s ∈ ω(log κ).

Proof. Let A be an adversary such that when Q ← A(Yρ), then Q ⊆ R with
non-negligible probability p. The argumentation is similar for both cases. For
the first part of the theorem, consider the following adversary B(y) receiving
y ∈ F

n. It samples a uniform X ⊂ [n] of size κ. For i ∈ X let y′
i be uniformly

random. For i 	∈ X let y′
i = yi. Compute Q ← A(y). If |Q ∩ X| ≥ κ2

ρ , then
output 1. Otherwise output 0.

We now prove that Pr[B(Yn) = 1] ≈ 0 and that Pr[B(Yσ) = 1] is non-
negligible, which proves the first statement of the theorem.

Let R be the positions that were randomised in y. Let R′ = R ∪ X. Note
that if y ← Yσ, then

E[|R′|] = κ + σ − E[|X ∩ R|] = κ + σ − κ
σ

n
= ρ.

It is straight forward to verify that Pr[|R′| = ρ] = 1/O(κ), which implies that
Pr[Q ⊆ R] = p/O(κ), which is non-negligible when p is non-negligible. Let E
denote the event that Q ⊆ R. By a simple application of linearity of expectation
we have that

E[|Q ∩ X| |E] =
κ2

ρ
,
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as X is a uniformly random subset X ⊆ R given the view of A. From this it
follows that Pr[B(Yσ) = 1] is non-negligible.

Then consider B(Yn). Note that now R = [n] and again X is a uniformly
random subset of R independent of the view of A. Therefore

E[|Q ∩ X|] =
κ2

n
=: μ.

Then

Pr[|Q ∩ X| ≥ s(ρ − κ)
ρ

] = Pr[|Q ∩ X| ≥ n

ρ
μ] = Pr[|Q ∩ X| ≥ (1 + δ)μ]

for δ ∈ (0, 1). It follows that

Pr[|Q ∩ X| ≥ κ2

ρ
] ≤ e− μδ2

3 = e−Θ(μ) = e−Θ(κ) = negl(κ).

To see this let X = {x1, . . . , xκ} and let Xi be the indicator variable for the
event that the i’the element of X ends up in Q. Then Pr[Xi = 1] = κ

n and
|X ∩ Q| =

∑
i Xi. Consider then the modified experiment called Independent

Sampling, where we sample the κ elements for X uniformly at random from [n]
and independently, i.e., it may happen that two of them are identical. In that
case the inequality is a simple Chernoff bound. It is easy to see that when we go
back to Dependent Sampling, where we sample xi uniformly at random except
that they must be different from x1, . . . , xi−1, then we only lower the variance of
the sum

∑
i Xi compared to Independent Sampling, so Pr[|Q∩X| ≥ (1+δ)μ] will

drop. Too see this, consider the sequence x,x1 +x2, . . . ,
∑

i xi as a random walk.
In the Dependent Sampling case, when

∑
i xi is larger than the expectation, then

xi+1 is less likely to be in Q compared to the Independent Sampling case, as an
above expectation number of slots in Q is already taken. Similarly, when

∑
i xi

is smaller than the expectation, then xi+1 is more likely to be in Q compared to
the Independent Sampling case, as a below expectation number of slots in Q is
already taken. Therefore the random walk in the Dependent Sampling case will
always tend closer to average compared to the Independent Sampling random
walk.

The second statement of Theorem 2 follows by setting X to be a uniform
subset of size ρ − κ. As above, if A outputs Q such that |Q ∩ X| ≥ s(ρ−κ)

ρ , then
B(y) outputs 1. Otherwise it outputs 0. Let again R be the positions that were
randomised in y. Let R′ = R ∪ X. If y ← Yσ, then

E[|R′|] = ρ − κ + σ − E[|X ∩ R|] = ρ − κ + σ − (ρ − κ)
σ

n
= ρ.

Let E denote the event that Q ⊆ R. Following the above argumentation,

E[|Q ∩ X| |E] =
s(ρ − κ)

ρ
.
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From this it follows that Pr[B(Yσ) = 1] is non-negligible. Then consider B(Yn).
Note that now R = [n] and again X is a uniformly random subset of R indepen-
dent of the view of A. Therefore

E[|Q ∩ X|] =
s(ρ − κ)

n
=: μ.

It follows that

Pr[|Q ∩ X| ≥ s(ρ − κ)
ρ

] ≤ e− μδ2

3 = e−Θ(μ) = e−ω(log κ) = negl(κ).

��

5 Constant Overhead Oblivious Linear Function
Evaluation

Oblivious linear function evaluation (OLE) is the task of computing a linear
function f(x) = ax + b in the following setting. One party, lets call it the sender
S, provides the function, namely the values a and b. The other party, the receiver
R, wants to evaluate this function on his input x. This task becomes non-trivial
if the parties want to evaluate the function in such a way that the sender learns
nothing about x, while the receiver learns only f(x), but not a and b. OLE can
be seen as a special case of oblivious polynomial evaluation (OPE) as proposed
by Naor and Pinkas [29], where instead of a linear function f , the sender provides
a polynomial p.

5.1 Ideal Functionality

The efficiency of our protocol follows in part from the fact that we can directly
perform a batch of multiplications. This is reflected in the ideal UC-functionality
for F t

OLE (cf. Fig. 2), which allows both sender and receiver to input vectors of
size t.

Functionality F t
OLE

1. Upon receiving a message (inputS, a,b) from S with a,b ∈ F
t
, verify that there

is no stored tuple, else ignore that message. Store a and b and send a message
(input) to A.

2. Upon receiving a message (inputR,x) from R with x ∈ F
t
, verify that there is no

stored tuple, else ignore that message. Store x and send a message (input) to A.
3. Upon receiving a message (deliver, S) from A, check if both a,b and x are

stored, else ignore that message. Send (delivered) to S.
4. Upon receiving a message (deliver,R) from A, check if both a,b and x are

stored, else ignore that message. Set yi = ai ·xi+bi for i ∈ [t] and send (output,y)
to R.

Fig. 2. Ideal functionality for an oblivious linear function evaluation.
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5.2 Our Protocol

Our starting point is the protocol of Ishai et al. [22] for passively secure batch
multiplication. Their protocol is based on noisy encodings, similar to our con-
struction. We will now briefly sketch their construction (with minor modifica-
tions) and then present the high-level ideas that are necessary to make the
construction actively secure.

In their protocol, the receiver first creates a noisy encoding (G,H,L,v) ←
Encode(x) (as described in Sect. 3, Fig. 1) and sends (G,v) to the sender. At
this point, the locations i ∈ L of v hide a degree �−1

2 polynomial over the points
β1, . . . , βn which evaluates to the input x = x1, . . . , xt in the positions α1, . . . , αt.
The sender picks two random polynomials A and B with the restriction that
A(αi) = ai and B(αi) = bi for i ∈ [t]. The degree of A is �−1

2 , and the degree of
B is � − 1.4 This means that B completely hides A and therefore the inputs of
the sender. Now the sender simply computes wi = A(βi) ·vi +B(βi). Sender and
receiver engage in an �-out-of-n OTs, and the receiver picks the � positions in
L. He applies H to the obtained values and interpolates a polynomial Y which
evaluates in position αi to ai · xi + bi.

We keep the generic structure of the protocol of [22] in our protocol. In order
to ensure correct and consistent inputs, we have to add additional checks. The
complete description is given in Fig. 3, and we give a high-level description of
the ideas in the following paragraph.

First, we need to ensure that the receiver can only learn � values, otherwise
he could potentially reconstruct part of the input. Instead of using an expensive
�-out-of-n OT, we let the sender create a (ρ, n)-secret sharing (remember that
ρ + � = n) of a random value e and the share si in the i’th OT, letting tge
other message offered be a random value ti. Depending on his set L, the receiver
chooses ti or the share si. Then he uses the shares to reconstruct e and sends it
to the sender. This in turn might leak some information on L to the sender, if he
can provide an inconsistent secret sharing. We thus force the sender to commit to
e and later provide an unveil. Here the sender can learn some information on L, if
he cheats but is not caught, but we can use our results from the previous section
to show that this leakage is tolerable. The receiver can proceed and provide the
encoding v, which allows the sender to compute w.

Second, we have to make sure that the sender computes the correct output.
In order to catch a cheating sender, we add a check to the end of the protocol.
Recall that the receiver knows the output Y . He can compute another polynomial
X of his input and then pick a uniformly random challenge zR. He sends it to
the sender, who has to answer with A(zR), B(zR). Now the receiver can verify
that Y (zR) = A(zR)X(zR)+B(zR), i.e., the sender did not cheat in the noiseless
positions. Again this leaks some information to the sender, but with the correct
choice of parameters this leakage is inconsequential.

4 The value � is fixed by the encoding, but we require that � is uneven due to the fact
that we have to reconstruct a polynomial of even degree �−1

2
+ �−1

2
= � − 1, which

requires � values.
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Security against a malicious receiver basically follows from the passively
secure protocol. We only have to make sure that the extraction of his input
is correct and that no information about the sender’s inputs is leaked if e is
incorrect. We thus mask the wi by a one-time-pad and add the following check.
This time the sender chooses zS and the receiver has to answer with X(zS), Y (zS),
which enforces correct extraction.

Protocol ΠOLE

Let P = {α1, . . . , α �+1
2

, β1, . . . , βn} be a set of publicly known distinct points in F.

Further, let SS be a (ρ, n) secret sharing and COM be an OT-based commitment
scheme. Set ρ = 3

4
n, n = 8k and � = n − ρ.

1. Sender (Input a,b ∈ F
t
):

– Draw a random polynomial A of degree �−1
2

with A(αi) = ai and a random
polynomial B of degree � − 1 with B(αi) = bi ∀i ∈ {1, . . . , t}.

– Draw a uniformly random vector t ∈ F
n
.

– Draw a random value e ∈ F and compute s ← SS.Share(e). Further compute
(com, unv) ← COM.Commit(e).

– Send com to the receiver and engage in n OT instances with input (ti, si) for
instance i.

2. Receiver (Input x ∈ F
t
):

– Start the encode procedure Encoden,ρ(x, P) and obtain (G, H, L,v). Inter-
polate a polynomial X through the points (βi, vi) for i ∈ L.

– For each OT instance i, if i ∈ L, set choicei = 0, otherwise set choicei = 1.
– Obtain � values ti and ρ values s̃i. Compute ẽ = SS.Reconstruct(s̃|¬L).
– Send ẽ to the sender.

3. Sender: Check if ẽ = e, if not abort. Send unv to the receiver.
4. Receiver: Check if COM.Open(com, unv, ẽ) = 1, abort if not. Send (G,v) to the

sender.
5. Sender: Compute w̃i = A(βi) · vi + B(βi) + ti for i ∈ {1, . . . , n}. Send w̃ =

(w̃1, . . . , w̃n) to the receiver.
6. Receiver: Set wi = w̃i − ti for i ∈ L and interpolate the degree � − 1 polynomial

Y through the points (βi, wi) for i ∈ L. Draw zR ∈ F \ P uniformly at random
and send zR to the sender.

7. Sender: Draw zS ∈ F \P uniformly at random and send A(zR), B(zR), zS
)

to the
receiver.

8. Receiver:
– Check if A(zR) · X(zR) + B(zR) = Y (zR) and abort if not.
– Send (X(zS), Y (zS)) to the sender and output y = Hw|L.

9. Sender: Check if A(zS) · X(zS) + B(zS) = Y (zS) and abort if not.

Fig. 3. Actively secure realization of FOLE in the OT-hybrid model.

Theorem 3. The protocol ΠOLE UC-realizes FOLE in the OT-hybrid model with
computational security.
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Proof. Corrupted sender: In the following we present a simulator SS which
provides a computationally indistinguishable simulation of ΠOLE to a malicious
sender AS (cf. Fig. 4).

Simulator SS

1. Let com
∗

be the message from AS. Upon receiving input from F t
OLE, select a

random value x̂ ∈ F
t
and compute (Ĝ, Ĥ, L̂, v̂) ← Encode(x̂). Further interpolate

a polynomial X̂ such that X̂(βi) = v̂i for i ∈ L̂.
2. Learn all of AS’s inputs (t

∗
1, . . . , t

∗
n) and s

∗
= (s

∗
1, . . . , s

∗
n) sent to the n OT

instances.
– Compute ê ← SS.Reconstruct(s

∗
|¬L̂).

– Send ê to AS.
3. Upon receiving unv

∗
, check if COM.Open(com

∗
, unv

∗
, ê) = 1, if not abort. Send

(Ĝ, v̂) to AS.
4. Upon receiving w̃

∗
, do the following:

– Compute ŵi = w̃
∗
i − ti for all i ∈ [n].

– Interpolate the degree � − 1 polynomial Ŷ such that Ŷ (βi) = ŵi for i ∈ L̂.
– Draw a random ẑR ∈ F \ P and send it to AS.

5. Upon receiving (A(ẑR)
∗
, B(ẑR)

∗
, z

∗
S ), check if A(ẑR)

∗ · X̂(ẑR) + B(ẑR)
∗

= Ŷ (ẑR)
and abort if not. Proceed as follows:
– For all i /∈ L̂, set āi =

Ŷ (βi)−ŵi

X̂(βi)−v̂i
.

– Interpret the ρ points āi as a Reed-Solomon encoded codeword. Decode
(ā1, . . . , āρ) into (ã1, . . . , ãρ) and abort if the codeword (ā1, . . . , āρ) contains

more than κ errors. Interpolate a polynomial Â such that Â(βi) = ãi. Obtain
â1, . . . , ât by evaluating Â in α1, . . . , αt.

– Compute b̂i = Ŷ (βi) − X̂(βi)Â(βi) for i ∈ L̂. Interpolate a polynomial B̂
such that B̂(βi) = b̂i. Obtain b̂1, . . . , b̂t by evaluating B̂ in α1, . . . , αt.

6. Set â = (â1, . . . , ât) and b̂ = (b̂1, . . . , b̂t). Send (inptS, â, b̂) to F t
OLE. Proceed

with the simulation according to protocol.

Fig. 4. Simulator against a corrupted sender in ΠOLE.

The main idea behind the extraction is the following. Since SS learns all
inputs into the OTs, it can use the now available noisy elements v̂i with i /∈ L
to learn the input a. The noiseless v̂i, i ∈ L can be extrapolated to the noisy
positions via a polynomial Ŷ (ŵi values imply a degree � − 1 polynomial for
i ∈ L, and the receiver always learns � values).

Ignoring for the moment that AS might provide inconsistent inputs, the sim-
ulator now knows two values for each position βi, i /∈ L: ŵi = ai · v̂i + bi and
Ŷ (βi). Therefore, assuming that AS is honest, by computing ŵi − Ŷ (βi) the sim-
ulator gets ai · v̂i + bi − ai · x̂i + bi = ai(v̂i − x̂i), where x̂i is the value that his
input x̂ ∈ F

t would imply according to the encoding v̂|L on position βi. Since
the simulator knows v̂i and x̂i, it can simply compute ai. From �−1

2 + 1 of these
points it can then compute the degree- �−1

2 polynomial A. From Y = AZ + B, it
can then compute B and therefore the bis. For this to work we only need �−1

2 +1
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points. Therefore, if the corrupted sender sends incorrect values in at most κ
positions i 	∈ L and �−1

2 + 2κ < n there are still enough points to at least define
a correct A and therefore also a correct B = Y − AX.

We now show that for every PPT environment Z, the two distributions
RealAS

ΠOLE
(Z) and IdealSS

FOLE
(Z) are indistinguishable. Consider the following

series of hybrid experiments.

Hybrid 0: This is the real protocol.
Hybrid 1: Identical to Hybrid 0, except that S1 extracts all inputs (si, ti) input

into the OT’s by AS.
Hybrid 2: Identical to Hybrid 1, except that S2 extracts the values ā as shown

in Fig. 4 and aborts if the check in Step 8 is passed, but ā1, . . . , āρ has more
than κ errors.

Hybrid 3: Identical to Hybrid 2, except that S3 encodes a random value x̂ as
its input.

The indistinguishability of Hybrids 0 and 1 is immediate. We show that
Hybrid 1 and Hybrid 2 are computationally indistinguishable in Lemma1, and
then we prove indistinguishability of Hybrid 2 and Hybrid 3 in Lemma2.

Lemma 1. Hybrids 1 and 2 are computationally indistinguishable from Z’s view
given that Assumption 2 holds.

Proof. In order to prove the lemma, we have to show the following two
statements.

1. S2 correctly extracts the input â, b̂, if there are less than κ errors in noisy
positions.

2. The probability that S2 aborts due to more than κ errors in noisy positions
is negligible in κ.

There are two ways in which AS can cheat and prevent the correct extraction:
(1) it uses an inconsistent input for a noiseless value v̂i, i ∈ L which leads to a
wrong polynomial Ŷ (and also an incorrect āi); (2) it uses an inconsistent input
for a noisy value v̂i, i /∈ L, which leads to incorrectly extracted values āi.

In case (1), the honest party will abort due to the check in Step 8 with
overwhelming probability. It has to hold that A(z)∗ · X̂(z) + B(z)∗ = Ŷ (z) for
a uniformly chosen z. From Assumption 2 it follows that X̂ (and thus Ŷ ) are
unknown to Z, as they would be unconditionally hidden by a completely random
vector. By the fundamental theorem of algebra there are at most deg(Ŷ ) = �−1
possible values z for which A(z)∗·X̂(z)+B(z)∗ = Ŷ (z) for incorrect A(z)∗, B(z)∗.
Since zR is chosen uniformly at random from F, the probability that the check
succeeds with incorrect A(z)∗, B(z)∗ is thus upper bounded by �−1

|F| , which is
negligible in the security parameter. This means that the check in Step 8 ensures
that all the values ŵi for i ∈ L are correct.

For case (2), we first argue that the extraction also succeeds if AS adds
less than κ errors in noisy positions (the simulator will abort if more than κ
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errors occur). By the choice of parameters it holds that ρ > 3κ = 6�, and
the simulator learns ρ values ai that are supposed to represent a degree �−1

2
polynomial. Applying a standard Reed-Solomon decoder then yields the correct
values ai, i.e., if less than κ errors occur, SS extracts the correct a ∈ F

t (and
thus also the correct b ∈ F

t).
This shows that as long as there are less than κ errors in noisy positions, the

extracted values are correct.
We claim that a Z that places more than κ errors in noisy positions

breaks Assumption 2. The scenario of Z in the simulation is identical to the
game Gident: Z gets an encoding v ← Encoden,ρ(x) with ρ noisy positions and
has to output a set of positions Q ⊆ [n] such that Q ⊆ R and |Q| ≥ κ.

As discussed in Sect. 3, we can assume that Encoden,n/2 yields encodings
that are indistinguishable from Encoden,n, i.e., truly random strings. In order to
meet the requirements of Theorem 2, it therefore has to hold that σ = n ρ−κ

n−κ ≥ n
2 .

Thus, we get that ρ has to be larger than n+κ
2 , which by our choice of parameters

is the case. Thus the claim directly follows from Theorem 2. ��
Lemma 2. Hybrids 2 and 3 are computationally indistinguishable from Z’s view
given that Assumption 2 holds and COM is a UC commitment scheme.

Proof. Assume that there exists a PPT Z that distinguishes Hybrids 2 and 3
with non-negligible probability ε. We will show that Z breaks Assumption 2 with
non-negligible probability.

We have to consider all the messages that AS receives during a protocol run.
First note that SS (resp. R) outputs either e or aborts in Step 4. Assume for the
sake of contradiction that AS manages to create two secret sharings s1,1, . . . , s1,n

and s2,1, . . . , s2,n for values e, e′ such that R outputs both of e or e′ with non-
negligible probability ε without aborting depending on the set L and L′, respec-
tively. Then we create an adversary B from Z that breaks the binding property of
COM. B simulates the protocol and learns all values s∗

i , then draws two uniformly
random sets L,L′. B samples via L and L′ two subsets of secret sharings that
reconstruct to e and e′, respectively, with non-negligible probability. It must hold
for both values that COM.Open(com, unv, e) = COM.Open(com, unv, e′) = 1, oth-
erwise B aborts as the real R would. Since AS achieves that R outputs e or e′ with
non-negligible probability, B outputs com, e, e′ with non-negligible probability to
the binding experiment and thereby breaks the binding property of COM.

The next message he receives is the encoding. Recall that the choice bits
into the OTs are derived from the set L of the encoding, i.e., a cheating AS

might try to use inconsistent inputs (e.g., incorrect si values in positions that
are supposedly not in L) in the OT such that R aborts depending on the set L.
However, AS has to cheat before knowing the encoding v and as shown above
always learns the same e, thus he can obtain at most 1 bit of leakage, namely
whether the cheating was detected or not. We will now show that the leakage in
Step 4 does not help Z to distinguish. The situation for a malicious Z is identical
to game Gleak. First, AS has to decide on a set of values which he believes are
not in L. Then he is informed (via a successful check) that his guess was correct,
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and given the encoding. Now he has to decide whether he is given a random
encoding or not. We can directly apply Theorem1, given that ρ ≥ 2

3n, and get
that Z’s distinguishing advantage is negligible.

After learning v, AS has to compute the values w, which are checked in
Step 8. By cheating in noisy positions, Step 8 will succeed, but AS learns some
noisy positions by learning the bit whether the check succeeded. This case is
more involved than the above step, since now AS can decide on the set Q after
seeing the encoding v. We argue that the distinguishing advantage of Z remains
negligible. It is obvious that AS can always find O(log κ) noisy positions with
polynomial probability simply by guessing. However, Theorem2 guarantees that
in this scenario AS cannot find more than O(log κ) noisy positions, if Yσ ≈ Yn

for σ = nκ
n−ρ−κ . From Theorem 1 we know that if Q = O(log κ) and σ > 2

3n,
then Yσ ≈ Yn. Combined, we have that for ρ = n− κ

2 , AS cannot find more than
O(log n) noisy positions and the distinguishing advantage of Z is negligible. This
concludes the proof. ��

Corrupted receiver. In the following we present a simulator SR which provides
a statistically indistinguishable simulation of ΠOLE to a malicious receiver AR

(cf. Fig. 5). Conceptually the simulation is straight forward. The simulator learns
all choice bits and thus can reconstruct the set L, which is sufficient to decode the
codeword v. Knowing X, SR can easily derive consistent inputs A,B. Care has to
be taken since AR obtains one additional pair of values related to the polynomials
A and B, thus he can tamper with the extraction. In a little more detail, he
obtains one more value than necessary to reconstruct Y and can therefore play
both with the degree of his input as well as with the correctness of L and v. We
describe and analyze a subtle attack in Lemma 4, which makes the analysis a bit
more complex.

We now show the indistinguishability of the simulation in a series of hybrid
experiments. For every PPT environment Z, the two distributions RealAS

ΠOLE
(Z)

and IdealSS

FOLE
(Z) are indistinguishable.

Hybrid 0: This is the real protocol.
Hybrid 1: Identical to Hybrid 0, except that S1 extracts all inputs choicei

input into OT by AR.
Hybrid 2: Identical to Hybrid 1, except that S2 aborts if AR passes the check

in Step 3, although he selects less than ρ values si.
Hybrid 3: Identical to Hybrid 2, except that S3 reconstructs X̂ as shown

in Fig. 5 and aborts if Ŷ (ẑS) 	= Y ∗(ẑS), X̂(ẑS) 	= X∗(ẑS) or Ŷ = R.

Indistinguishability of Hybrids 0 and 1 is trivial. We show the indistinguisha-
bility of Hybrids 1 and 2 in Lemma3, based on the privacy of the secret sharing
and the hiding property of the commitment. In Lemma4 we show that we can
always extract the correct input of AR and thus Hybrid 2 and Hybrid 3 are
statistically indistinguishable.
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Simulator SR

1. Upon receiving a message input from F t
OLE, simulate the first part of ΠOLE with

random inputs.
– Draw a uniformly random vector t̂ ∈ F

n
and a random value ê ∈ F.

– Compute ŝ ← SS.Share(ê) and (ĉom, ûnv) ← COM.Commit(ê).
– Send ˆcom to AR and engage in n OT instances with input (t̂i, ŝi) in OT i.

2. Learn all choice bits (choice
∗
1, . . . , choice

∗
n) of AR from the n OT instances.

Reconstruct L̂ as follows: for each i ∈ [n], if choice
∗
i = 0 then i ∈ L̂.

3. Upon receiving e
∗
, check if ê = e

∗
, otherwise abort. Send ˆunv to AR.

4. Upon receiving (G
∗
,v

∗
) from AR, proceed as follows.

(a) Let deg(PL̂) denote the degree of the polynomial defined by v|L̂.

– If |L̂| = � − 1, interpolate the polynomial PL̂ defined over v|L̂. If

deg(PL̂) ≤ �−1
2

, set X̂ = PL̂.

– If |L̂| = �, interpolate the polynomial PL̂ defined over v|L̂. If deg(PL̂) ≤
�−1
2

, set X̂ = PL̂. If deg(PL̂) > �+1
2

, try for all î ∈ L̂ if it holds that for

L̂
′
= L̂ \ î, deg(P

L̂
′) ≤ �−1

2
. If such an î exists, set X̂ = P

L̂
′ and L̂ = L̂

′
.

(b) Compute x̂i = X̂(αi), i ∈ [t] and send (inputR, x̂) to F t
OLE. Let (output, ŷ)

be the result. Pick a random polynomial Ŷ such that deg(Ŷ ) = deg(X̂)+ �−1
2

and Ŷ (αi) = ŷi, i ∈ [t]. If no X̂ was extracted in Step 4a, set Ŷ to be a random
degree � − 1 polynomial R.

(c) For i ∈ L̂, set ŵi = Ŷ (βi) + ti, otherwise pick a uniform ŵi and send ŵ to
AR.

5. Upon receiving z
∗
R, draw ẑS ∈ F and proceed as follows:

– If Ŷ �= R, compute X̂(z
∗
R), Ŷ (z

∗
R) and sample a random b̂ ∈ F. Set â =

Ŷ (z
∗
R )−b̂

X̂(z
∗
R )

and send (â, b̂, ẑS) to AR.
– If Ŷ = R, pick random â, b̂ ∈ F and send (â, b̂, ẑS) to AR.

6. Upon receiving (X
∗
(ẑS), Y

∗
(ẑS)), proceed as follows:

– If Ŷ �= R, check if Y
∗
(zS) = Ŷ (zS) and X

∗
(zS) = X̂(zS) and abort if not.

– If Ŷ = R, abort.

Fig. 5. Simulator against a corrupted receiver in ΠOLE.

Lemma 3. Hybrids 1 and 2 are statistically indistinguishable from Z’s view
given that SS is a perfectly private secret sharing and COM is a statistically
hiding commitment scheme.

Proof. Assume for the sake of contradiction that there exists an environment Z
that distinguishes the hybrids, i.e., Z has to make S2 abort with non-negligible
probability ε. We will construct from Z an adversary B that breaks the hid-
ing property of COM with non-negligible probability. B simulates the protocol
exactly like S2, but creates a secret sharing of a random r and picks two random
e, e′, which he sends to the hiding experiment. The hiding experiment returns
a commitment com on one of these values. Then B integrates the commitment
and secret sharing into the simulation and checks whether Z inputs less than ρ
values choicei = 1 into OT, otherwise B aborts. Since SS is a perfectly private
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secret sharing and Z obtains less than ρ values si, these values leak nothing
about r and the simulation of B is indistinguishable from S2’s simulation. Let
now e∗ be Z’s answer in the simulated protocol. B simply forwards e∗ to the
hiding experiment. Since it has to hold that e∗ = e or e∗ = e′ with non-negligible
probability ε (otherwise the check in Step 3 fails), B breaks the hiding property
of COM with the same probability. From this contradiction it follows that AR

learns at most � values ti through OT. ��
Lemma 4. Hybrids 2 and 3 are statistically indistinguishable from Z’s view.

Proof. In order to distinguish Hybrids 2 and 3, Z must pass the check in Step 9,
even though it holds that S3 picked a random polynomial R (allowing to distin-
guish the simulation from the real protocol). First note that the result w always
defines a polynomial of degree � − 1 if AR’s input polynomial has degree less
than �−1

2 . As we know from Lemma 3, AR learns at most � values through the
OTs and then one additional pair (a, b) via the check in Step 9.

Before we look at the details of the extraction, let us first describe an generic
adversarial strategy that we have to cover. The adversary gets 1 free query and
might try to use this query to prevent extraction. Say he picks a polynomial of
degree �−1

2 , but only uses � − 1 values of L. In the choice phase, he selects a
random index i∗ /∈ L and sets choicei∗ = 0, i.e., S3 will assume this index is
also in L. Towards the same goal, AR can simply set the value vi for a random
index i to a random value. S will then extract a wrong polynomial (with degree
greater than �+1

2 ), while AR can still reconstruct Y via the additional values.
However, since AR can only add exactly 1 random element, S3 can identify the
index by trying for each i ∈ L whether the set L′ = L \ i defines a polynomial of
degree �−1

2 over the vi. Here it is essential that there are no two sets L1, L2 with
|L1| = � − 1, |L2| = � such that L1 ⊂ L2 and deg(PL1) = �−1

2 ,deg(PL2) = �+1
2 ,

i.e., there is only one possible index i that can be removed. This follows from
the fact that the polynomial P = PL2 − PL1 has only �+1

2 roots, but L1 and L2

have to agree on � − 1 positions. If that scenario were possible, S3 would not be
able to distinguish these cases.

Let in the following deg(PL̂) denote the degree of the polynomial that is
defined by the points vi for i ∈ L̂.

– |L̂| ≤ � − 2: AR obtains at most � − 2 + 1 points, but Y is of degree � − 1
and thus underspecified. Clearly AR’s probability of answering the check in
Step 9 with a correct X∗(zS), Y ∗(zS) is negligible in F. Since S3 aborts as
well, Hybrids 2 and 3 are indistinguishable in this case.

– |L̂| = � − 1: In this case it holds that Ŷ = R only if deg(PL̂) ≥ �+1
2 .

• deg(PL̂) = �−1
2 : In this case AR can reconstruct Y and pass the check in

Step 9, but S3 extracts the correct X̂. From the argument above, there
cannot exist another polynomial X ′ that fits with the set L̂ and thus
Hybrids 2 and 3 are indistinguishable.

• deg(PL̂) = �+1
2 : In this case AR obtains �−1+1 points, but the resulting

Y is of degree �−1
2 + �+1

2 = �, i.e., AR needs �+1 points to reconstruct Y .
By the same argument as above, Hybrids 2 and 3 are indistinguishable.
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• deg(PL̂) > �+1
2 : In this case AR can behave as described above, i.e., add

a random i to the set L̂ and thereby artificially increase deg(PL̂). But
since |L̂| = � − 1, removing an additional value from L̂ leads to the case
|L̂| ≤ � − 2 and thus indistinguishability of Hybrids 2 and 3.

– |L̂| = �: In this case it holds that Ŷ = R only if deg(PL̂) > �+1
2 and no index

i can be identified to reduce deg(PL̂) to �−1
2 .

• deg(PL̂) = �−1
2 : In this case AR can reconstruct Y and pass the check in

Step 9, but S3 extracts the correct X̂.
• deg(PL̂) = �+1

2 : In this case AR obtains � + 1 points, and the resulting
Y is of degree �−1

2 + �+1
2 = �. Thus AR can reconstruct Y and pass the

check, but S3 extracts the correct X̂.
• deg(PL̂) > �+1

2 : In this case AR can behave as described above, i.e., add a
random i to the set L̂ and thereby artificially increase deg(PL̂). Removing
an additional value from L̂ leads to the case |L̂| = � − 1, i.e., S3 will
simulate correctly. Otherwise, S3 will abort, but AR cannot reconstruct
Y and thus fails the check in Step 9.

– |L̂| > �: S3 aborts, and from Lemma 3 it follows that Hybrids 2 and 3 are
indistinguishable.

The correctness of the simulation follows from the fact that either S3 extracts
the correct input X̂, or the check in Step 9 fails with overwhelming probability,
in which case X̂ = R. Thus, the event that Z can provoke an abort is negligible,
i.e., Hybrids 2 and 3 are indistinguishable. ��

This concludes the proof. ��

6 Efficient Oblivious Polynomial Evaluation

The ideal functionality FOPE for OPE is depicted in Fig. 6. It allows the sender
S to input a polynomial P and the receiver R to input α ∈ F. In the remainder
of this section we will establish the following theorem.

Functionality FOPE

1. Upon receiving a message (inputS, P ) from S where P ∈ F[X], verify that there
is no stored tuple, else ignore that message. Store P and send a message (input)
to A.

2. Upon receiving a message (inputR, α) from R with α ∈ F, verify that there is no
stored tuple, else ignore that message. Store α and send a message (input) to A.

3. Upon receiving a message (deliver, S) from A, check if both P and α are stored,
else ignore that message. Send (delivered) to S.

4. Upon receiving a message (deliver,R) from A, check if both P and α are stored,
else ignore that message. Send (output, P (α)) to R.

Fig. 6. Ideal functionality for an oblivious polynomial evaluation.
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Theorem 4. There exists a (constant-round) protocol ΠOPE that UC-realizes
FOPE with unconditional security in the F t

OLE-hybrid model. In particular, for
a polynomial P of degree d, t = d + 2.

Our roadmap is as follows. We first show how to reduce FOPE to an inter-
mediate OLE-based functionality F t,1

OLE. After establishing this we present an
efficient reduction of F t,1

OLE to F t
OLE (or FOLE).

We follow the generic idea of Naor and Pinkas [30] of using the linearization
technique from [17] to construct an oblivious polynomial evaluation protocol.
They decompose a polynomial P of degree d into d linear functions. These
functions can then be evaluated using our OLE with input α for each of the
functions, and the receiver can reconstruct the value P (α). We state the lemma
here, a proof can be found in [30] and the full version of this paper [15].

Lemma 3 [17]. For every polynomial P of degree d, there exist d linear polyno-
mials P1, . . . , Pd, such that an OPE of P can be reduced to a parallel execution
of an OLE of each of P1, . . . , Pd, where all the linear polynomials are evaluated
at the same point.

In the semi-honest case, this approach directly works with the F t
OLE for t = d.

But unlike the construction of [30], our batch-OLE does not enforce the receiver
to use the same input α in all of the OLEs. Therefore we cannot use the reduction
of [30] that shows malicious security against a receiver. In particular, a malicious
receiver might learn some non-trivial linear combinations of the coefficients of P .

Functionality F t,1
OLE

1. Upon receiving a message (inputS, a,b) from S with a,b ∈ F
t
, verify that there

is no stored tuple, else ignore that message. Store a and b and send a message
(input) to A.

2. Upon receiving a message (inputR, x) from R with x ∈ F, verify that there is no
stored tuple, else ignore that message. Store x and send a message (input) to A.

3. Upon receiving a message (deliver, S) from A, check if both a,b and x are
stored, else ignore that message. Send (delivered) to S.

4. Upon receiving a message (deliver,R) from A, check if both a,b and x are
stored, else ignore that message. Set yi = ai ·x+bi for i ∈ [t] and send (output,y)
to R.

Fig. 7. Ideal functionality for a (t, 1)-oblivious linear function evaluation.

Reducing FOPE to F t,1
OLE. As a first step we reduce OPE to a variant of OLE

where the receiver has only one input x ∈ F, while the sender inputs two vectors
a,b. This is depicted in Fig. 7.

The reduction of FOPE to F t,1
OLE is straightforward, given Lemma 3. The

sender decomposes his polynomial P into d linear functions f1, . . . , fd with coef-
ficients (ai, bi) and inputs these into Fd,1

OLE. The receiver chooses his input α



Maliciously Secure Oblivious Linear Function Evaluation 655

and obtains d linear evaluations, from which he can reconstruct P (α). The num-
ber of OLEs required is only dependent on the realization of Fd,1

OLE. A formal
description of the protocol is given in Fig. 8.

Lemma 4. The protocol ΠOPE UC-realizes FOPE in the Fd,1
OLE-hybrid model

with unconditional security.

Proof. The security of ΠOPE is immediate: the simulator simulates Fd,1
OLE and

learns all inputs, which it simply forwards to FOPE (and reconstructs if neces-
sary). The correctness of the decomposition of P follows from Lemma 3. ��

Note that by taking our approach, we also remove the need for the stronger
assumption of [30], while having a comparable efficiency in the resulting protocol.

Protocol ΠOPE

1. Sender (Input P ∈ F[X] of degree d):
– Generate d linear polynomials of the form fi(x) = aix + bi, ∀i ∈ [d], where

ai, bi ∈ F according to Lemma 3.
– Construct a,b ∈ F

d
, such that a = {a1, . . . , ad} and b = {b1, . . . , bd}.

– Send (inputS, (a,b)) to Fd,1
OLE.

2. Receiver (Input α ∈ F):
– Send (inputR, α) into Fd,1

OLE.
– Obtain (output,y) from Fd,1

OLE.
– Compute P (α) from y = f1(α), . . . , fd(α). Output P (α).

Fig. 8. Reduction of FOPE to Fd,1
OLE.

Reducing F t,1
OLE to F t+2

OLE. As a second step, we need to realize F t,1
OLE from F t

OLE.
Döttling et al. [11] describe a black-box protocol that realizes F t,1

OLE from FOLE

(or our batch variant) with unconditional UC-security. The protocol has a con-
stant multiplicative overhead of 2 + ε in the number of OLEs, and works for
any field F. While this protocol basically solves our problem, we propose a more
efficient variant that makes essential use of the fact that we only consider a
large field F. Our new approach requires only two additional OLEs and thus has
overhead 1 + ε.

Our solution for F t,1
OLE is as follows. Let a,b ∈ F

t be given as input to the
sender. It now needs to choose one additional pair of inputs (at+1, bt+1) such that
∑t+1

i=1 ai = 0 and bt+1 is uniformly random in F. The sender inputs a′,b′ ∈ F
t+1

into F t+1
OLE, while the receiver inputs x′ = (x, . . . , x) ∈ F

t+1. Now the receiver
locally computes c =

∑t+1
i=1 yi =

∑t+1
i=1 aix +

∑t+1
i=1 bi =

∑t+1
i=1 bi and sends a

commitment to c to the sender. This commitment can also be based on OLE,
even in such a way that we can use F t+2

OLE by precomputing the commitment (a
detailed description is given in the full version [15]). The sender answers with
c′ =

∑t+1
i=1 bi, which the receiver can verify. This makes sure that the sender chose

a′ correctly, while c′ itself does not give the receiver any new information. Now
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the receiver unveils, which shows the sender whether the receiver used the same
x in each invocation. There is one small problem left: if the receiver cheated,
he will be caught, be he might still learn some information about the sender’s
inputs that cannot be simulated. In order to solve this issue, we let a′ and b′

be uniformly random and then replace these with the inputs after the check
succeeded. A detailed description of the protocol is given in Fig. 9.

Protocol Π
t,1
OLE

Let COM be an OLE-based commitment.

1. Sender (Input a,b ∈ F
t
): Choose u,v ∈ F

t+2
uniformly random such that∑t+1

i=1 ui = 0 and sends (inputS, (u,v)) to F t+2
OLE. Store (ut+2, vt+2) as the auxil-

iary receiver inputs for COM.
2. Receiver (Input x ∈ F):

– Set x = (x, . . . , x, w) ∈ F
t+2

with w random and send (inputR,x) into F t+2
OLE.

– Obtain (output, z) from F t+2
OLE. Let z̄ = (z1, . . . , zt).

– Let (w, zt+2) be the auxiliary sender input for COM. Compute c =
∑t+1

i=1 zi,
(com, unv) ← COM.Commit(c) and send com to the sender.

3. Sender: Send c
′
=

∑t+1
i=1 vi to the receiver.

4. Receiver: Check if c
′
= c and abort if not. Send unv to the sender.

5. Sender: Check if COM.Open(com, unv, c
′
) = 1 and abort if not. Send u

′
= a − ū

and v
′
= b − v̄ to the receiver, where ¯ u, ¯v contain the first t values of u,v.

6. Receiver: Compute y = u
′
x + v

′
+ z̄ = ax + b and output y.

Fig. 9. Reduction of F t,1
OLE to F t+2

OLE.

Lemma 5. The protocol Πt,1
OLE UC-realizes F t,1

OLE in the F t+2
OLE-hybrid model with

unconditional security.

Proof. Corrupted sender: The simulator SS simulates F t+2
OLE for the corrupted

sender AS. It extracts all the inputs, namely û and v̂. We do not need to extract
the commitment, which also uses F t+2

OLE. SS sends a commitment to ĉ =
∑t+1

i=1 v̂i

to the receiver. If it holds that
∑t+1

i=1 ui 	= 0, but the check in Step 4 succeeds,
SS aborts. Otherwise, it computes â = û′∗ + û and b̂ = v̂′∗ + v̂ and inputs the
first t elements of each into F t,1

OLE.
First note that if

∑t+1
i=1 ui 	= 0, the commitment ˆcom contains an incorrect

value. As long as the receiver always aborts in this case, the hiding property of
COM guarantees indistinguishability of the simulation. So the only way that a
malicious environment Z can distinguish the simulation from the real protocol
is by forcing an abort. Note that if

∑t+1
i=1 ui = e 	= 0, then c depends on x and is

thus uniformly distributed, since

c =
t+1∑

i=1

zi =
t+1∑

i=1

uix +
t+1∑

i=1

vi = ex + c′.

Thus, the probability that c′ = c is negligible.
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Corrupted receiver. The simulator SR against the corrupted receiver AR simu-
lates F t+2

OLE and learns x̂. It chooses û, v̂ ∈ F
t+2 according to Πt,1

OLE, and computes
ẑ ∈ F

t+2, where ẑi = ûix̂i + v̂i ∀i ∈ [1, t + 2]. SR sends ẑ to AR. After receiving
the commitment, SR sends ĉ′ =

∑t+1
i=1 ẑi. It aborts if the commitment unveils

correctly, even though xi 	= xj for some i, j ∈ [t + 1]. If that is not the case, it
inputs x̂ into F t,1

OLE and obtains y. SR picks v̂′ ∈ F
t uniformly at random, sets

û′
i = yi−ẑi−v̂′

i

x ∀i ∈ [t]. It sends û′, v̂′ to AR.
For an honest receiver, the check in Step 5 always succeeds. A malicious Z

can only distinguish between the simulation and the real protocol by producing
a correct commitment on c, even though xi 	= xj for some i, j ∈ [t + 1]. Since
the commitment is binding, AR must commit to some value c before seeing c′.
Let w.l.o.g. xj = (x + e) 	= x for some j. Then we have

c =
t+1∑

i=1

zi =
t+1∑

i=1
i�=j

uix + uj(x + e) +
t+1∑

i=1

vi =
t+1∑

i=1

uix + uje +
t+1∑

i=1

vi = c′ + uje.

But this means that c′ is uniformly distributed from AR’s point of view, because
uj is chosen uniformly and unknown to AR. As a consequence, the probability
that Z can distinguish the simulation from the real protocol is negligible. ��

Combining the results from this section we get that FOPE for a polynomial
P of degree d requires Fd,1

OLE, which in turn can be based on Fd+2
OLE. This estab-

lishes Theorem 4.

Remark 1. It is possible to evaluate several polynomials in parallel with the
batch-OLE functionality, given that t is chosen of appropriate size. Then, for
each polynomial the above described protocol is carried out (including making
sure that the receiver uses the same α in all OLEs relevant to the respective
polynomial).
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Abstract. Oblivious RAM (ORAM) is a powerful cryptographic build-
ing block that allows a program to provably hide its access patterns
to sensitive data. Since the original proposal of ORAM by Goldre-
ich and Ostrovsky, numerous improvements have been made. To date,
the best asymptotic overhead achievable for general block sizes is
O(log2 N/ log log N), due to an elegant scheme by Kushilevitz et al.,
which in turn relies on the oblivious Cuckoo hashing scheme by Goodrich
and Mitzenmacher.

In this paper, we make the following contributions: we first revisit the
prior O(log2 N/ log log N)-overhead ORAM result. We demonstrate the
somewhat incompleteness of this prior result, due to the subtle incom-
pleteness of a core building block, namely, Goodrich and Mitzenmacher’s
oblivious Cuckoo hashing scheme.

Even though we do show how to patch the prior result such that
we can fully realize Goodrich and Mitzenmacher’s elegant blueprint
for oblivious Cuckoo hashing, it is clear that the extreme complex-
ity of oblivious Cuckoo hashing has made understanding, implementa-
tion, and proofs difficult. We show that there is a conceptually sim-
ple O(log2 N/ log log N)-overhead ORAM that dispenses with oblivious
Cuckoo hashing entirely.

We show that such a conceptually simple scheme lends to further
extensions. Specifically, we obtain the first O(log2 N/ log log N) Oblivi-
ous Parallel RAM (OPRAM) scheme, thus not only matching the per-
formance of the best known sequential ORAM, but also achieving super-
logarithmic improvements in comparison with known OPRAM schemes.

Keywords: Oblivious RAM · Oblivious PRAM

1 Introduction

Oblivious RAM [19,20,37], originally proposed in the seminal work by Gol-
dreich and Ostrovsky [19,20], is a powerful cryptographic primitive that prov-
ably obfuscates a program’s access patterns to sensitive data. Since Goldreich
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and Ostrovsky’s original work [19,20], numerous subsequent works have pro-
posed improved constructions, and demonstrated a variety of ORAM applica-
tions in both theoretical contexts (e.g., multiparty computation [23,27], Garbled
RAMs [18,28]) as well as in secure hardware and software systems (e.g., secure
processors [15,16,29,36], and cloud outsourcing [22,35,38,39,43]). To hide access
patterns, an ORAM scheme typically involves reading, writing, or shuffling multi-
ple blocks for every data request. Suppose that on average, for each data request,
an ORAM scheme must read/write X blocks. In this paper, we refer to X as
the overhead (or the total work blowup) of the ORAM scheme.

Goldreich and Ostrovsky [19,20] showed that, roughly speaking, any “nat-
ural” ORAM scheme that treats each block as an “opaque ball” must necessarily
suffer from at least logarithmic overhead. The recent Circuit ORAM [41] work
demonstrated an almost matching upper bound for large enough blocks. Let N
denote the total memory size. Circuit ORAM showed the existence of a statisti-
cally secure ORAM scheme that achieves O(α log N) overhead for N ε-bit blocks
for any constant ε > 0 and any super-constant function α = ω(1). To date,
the existence of an almost logarithmic ORAM scheme is only known for large
blocks. For general block sizes, the state of affairs is different: the best known
construction (asymptotically speaking) is a computationally secure scheme by
Kushilevitz et al. [26], which achieves O( log2 N

log log N ) overhead assuming block sizes
of Ω(log N)1. We note that all known ORAM schemes assume that a memory
block is at least large enough to store its own address, i.e., at least Ω(log N) bits
long. Therefore, henceforth in this paper, we use the term “general block size”
to refer to a block size of Ω(log N).

Although most practical ORAM implementations (in the contexts of secure
multi-party computation, secure processors, and storage outsourcing) opted for
tree-based ORAM constructions [37,40,41] due to tighter practical constants,
we note that hierarchical ORAMs are nonetheless of much theoretical interest:
for example, when the CPU has O(

√
N) private cache, hierarchical ORAMs can

achieve O(log N) simulation overhead while a comparable result is not known in
the tree-based framework. Recent works [3,8] have also shown how hierarchical
ORAMs can achieve asymptotically better locality and IO performance than
known tree-based approaches.

Our contributions. In this paper, we make the following contributions:

– Revisit O(log2 N/ log log N) ORAMs. We revisit how to construct a com-
putationally secure ORAM with O( log2 N

log log N ) overhead for general block sizes.
First, we show why earlier results along this front [22,26] are somewhat incom-
plete due to the incompleteness of a core building block, oblivious Cuckoo
hashing, that is proposed and described by Goodrich and Mitzenmacher [22].
Next, besides fixing and restating the earlier results regarding the existence

1 This O( log2 N
log logN

) result for computational security was later matched in the tree-
based ORAM framework [9,14] although tree-based ORAMs were initially investi-
gated for the case of statistical security.
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of an O(log2 N/ log log N) ORAM, perhaps more compellingly, we show how
to obtain an ORAM with the same asymptotic overhead, but in a conceptu-
ally much simpler manner, completely obviating the need to perform oblivious
Cuckoo hashing [22] which is the center of complexity in the earlier result [26].

– New results on efficient OPRAMs. Building on our new ORAM scheme,
we next present the first Oblivious Parallel RAM (OPRAM) construction
that achieves O( log2 N

log log N ) simulation overhead. To the best of our knowledge,
our OPRAM scheme is the first one to asymptotically match the best known
sequential ORAM scheme for general block sizes. Moreover, we achieve a super-
logarithmic factor improvement over earlier works [5,10] and over the concur-
rent work by Nayak and Katz [31] (see further clarifications in Sect. 1.3).

We stress that our conceptual simplicity and modular approach can open
the door for possible improvements. For example, our OPRAM results clearly
demonstrate the benefits of having a conceptually clean hierarchical ORAM
framework: had we tried to make (a corrected variant of) Kushilevitz et al. [26]
into an OPRAM, it is not clear whether we could have obtained the same
performance. In particular, achieving O(log2 N/ log log N) worst-case simulation
overhead requires deamortizing a parallel version of their oblivious cuckoo hash
rebuilding algorithm, and moreover, work and depth have to be deamortized at
the same time—and we are not aware of a way to do this especially due to the
complexity of their algorithm.

1.1 Background on Oblivious Hashing and Hierarchical ORAMs

In this paper, we consider the hierarchical framework, originally proposed by
Goldreich and Ostrovsky [19,20], for constructing ORAM schemes. At a high
level, this framework constructs an ORAM scheme by having exponentially grow-
ing levels of capacity 1, 2, 4, . . . , N respectively, where each smaller level can be
regarded as a “stash” for larger levels. Each level in the hierarchy is realized
through a core abstraction henceforth called oblivious hashing in the remainder
of this paper. Since oblivious hashing is the core abstraction we care about, we
begin by explicitly formulating oblivious hashing as the following problem:

– Functional abstraction. Given an array containing n possibly dummy elements
where each non-dummy element is a (key, value) pair, design an efficient
algorithm that builds a hash table data structure, such that after the building
phase, each element can be looked up by its key consuming a small amount
of time and work. In this paper, we will assume that all non-dummy elements
in the input array have distinct keys.

– Obliviousness. The memory access patterns of both the building and lookup
phases do not leak any information (to a computationally bounded adversary)
about the initial array or the sequence of lookup queries Q—as long as all
non-dummy queries in Q are distinct. In particular, obliviousness must hold
even when Q may contain queries for elements not contained in the array in
which case the query should return the result ⊥. The correct answer to a
dummy query is also ⊥ by convention.



Oblivious Hashing Revisited, and Applications 663

Not surprisingly, the performance of a hierarchical ORAM crucially depends
on the core building block, oblivious hashing. Here is the extent of our knowledge
about oblivious hashing so far:

– Goldreich and Ostrovsky [19,20] show an oblivious variant of normal balls-
and-bins hashing that randomly throws n elements into n bins. They
show that obliviously building a hash table containing n elements costs
O(αn log n log λ) work, and each query costs O(α log λ) work. If α is any
super-constant function, we can attain a failure probability negl(λ). This leads
to an O(α log3 N)-overhead ORAM scheme, where N is the total memory
size2.

– Subsequently, Goodrich and Mitzenmacher [22] show that the Cuckoo hashing
algorithm can be made oblivious, incurring O(n log n) total work for building
a hash table containing n elements, and only O(1) query cost (later we will
argue why their oblivious hashing scheme is somewhat incomplete). This leads
to an ORAM scheme with O(log2 N)-overhead.

– Kushilevitz et al. [26] in turn showed an elegant reparametrization trick
atop the Goodrich and Mitzenmacher ORAM, thus improving the over-
head to O( log2 N

log log N ). Since Kushilevitz et al. [26] crucially rely on Goodrich
and Mitzenmacher’s oblivious Cuckoo hashing scheme, incompleteness of the
hashing result in some sense carries over to their O( log2 N

log log N ) overhead ORAM
construction.

1.2 Technical Roadmap

Revisit oblivious Cuckoo hashing. Goodrich and Mitzenmacher [22]’s blue-
print for obliviously building a Cuckoo hash table is insightful and elegant. They
express the task of Cuckoo hash table rebuilding as a MapReduce task (with cer-
tain nice properties), and they show that any such MapReduce algorithm has
an efficient oblivious instantiation.

Fundamentally, their construction boils down using a sequence of oblivious
sorts over arrays of (roughly) exponentially decreasing lengths. To achieve full
privacy, it is necessary to hide the true lengths of these arrays during the course
of the algorithm. Here, Goodrich and Mitzenmacher’s scheme description and
their proof appear inconsistent: their scheme seems to suggest padding each
array to the maximum possible length for security—however, this would make
their scheme O(log3 N) overhead rather than the claimed O(log2 N). On the
other hand, their proof appears only to be applicable, if the algorithm reveals
the true lengths of the arrays—however, as we argue in detail in the online full
version [7], the array lengths in the cuckoo hash rebuilding algorithm contain
information about the size of each connected component in the cuckoo graph.
2 Henceforth in this paper, we use n to denote the size of a hash table and λ to denote

its security parameter. For our ORAM construction, we use N to denote both the
logical memory size as well as the ORAM’s security parameter. This distinction is
necessary since the ORAM will employ hash tables of varying n.



664 T.-H.H. Chan et al.

Thus leaking array lengths can lead to an explicit attack that succeeds with non-
negligible probability: at a high level, this attack tries to distinguish two request
sequences, one repeatedly requesting the same block whereas the other requests
disctinct blocks. The latter request sequence will cause the cuckoo graph in the
access phase to resemble the cuckoo graph in the rebuild phase, whereas the
former request sequence results in a fresh random cuckoo hash graph for the
access phase (whose connected component sizes are different than the rebuild
phase with relatively high probability).

As metioned earlier, the incompleteness of oblivious Cuckoo hashing also
makes the existence proof of an O(log2 N/ log log N)-overhead ORAM somewhat
incomplete.

Is oblivious Cuckoo hashing necessary for efficient hierarchical
ORAM? Goodrich and Mitzenmacher’s oblivious Cuckoo hashing scheme is
extremely complicated. Although we do show in our online full version [7] that
the incompleteness of Goodrich and Mitzemacher’s construction and proofs can
be patched, thus correctly and fully realizing the elegant blueprint they had in
mind—the resulting scheme nonetheless suffers from large constant factors, and
is unsuitable for practical implementation. Therefore, a natural question is, can
we build efficient hierarchical ORAMs without oblivious Cuckoo hashing?

Our first insight is that perhaps oblivious Cuckoo hashing scheme is an
overkill for constructing efficient hierarchical ORAMs after all. As initial evi-
dence, we now present an almost trivial modification of the original Goldreich
and Ostrovsky oblivious balls-and-bins hashing scheme such that we can achieve
an O(αlog2 N)-overhead ORAM for any super-constant function α.

Recall that Goldreich and Ostrovsky [19,20] perform hashing by hashing
n elements into n bins, each of O(α log λ) capacity, where λ is the security
parameter. A simple observation is the following: instead of having n bins, we
can have n

α log λ bins—it is not hard to show that each bin’s occupancy will still
be upper bounded by O(α log λ) except with negl(λ) probability. In this way, we
reduce the size of the hash table by a log λ factor, and thus the hash table can be
obliviously rebuilt in logarithmically less time. Plugging in this new hash table
into Goldreich and Ostrovsky’s ORAM construction [19,20], we immediately
obtain an ORAM scheme with O(α log2 N) overhead.

This shows that through a very simple construction we can almost match
Goodrich and Mitzenmacher’s ORAM result [22]. This simple scheme does not
quite get us to where we aimed to be, but we will next show that oblivious Cuckoo
hashing is likewise an overkill for constructing ( log2 N

log log N )-overhead ORAMs.

Conceptually simple ( log2 N
log log N )-overhead ORAM. Recall that a hierarchi-

cal ORAM’s overhead is impacted by two cost metrics of the underlying obliv-
ious hashing scheme, i.e., the cost of building the hash-table, and the cost of
each lookup query. Goodrich and Mitzenmacher’s oblivious Cuckoo hashing
scheme [22] minimizes the lookup cost to O(1), but this complicates the building
of the hash-table.
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Our key insight is that in all known hashing-based hierarchical ORAM con-
structions [19,20,22,26], the resulting ORAM’s cost is dominated by the hash-
table rebuilding phase, and thus it may be okay if the underlying hashing scheme
is more expensive in lookup. More specifically, to obtain an O( log2 N

log log N ) ORAM,
we would like to apply Kushilevitz et al. [26]’s reparametrized version of the
hierarchical ORAM. Kushilevitz et al. [26] showed that their reparametriza-
tion technique works when applied over an oblivious Cuckoo hashing scheme.
We observe that in fact, Kushilevitz et al. [26]’s reparametrization technique is
applicable for a much broader parameter range, and concretely for any oblivious
hashing scheme with the following characteristics:

– It takes O(n log n) total work to build a hash table of n elements—in other
words, the per-element building cost is O(log n).

– The lookup cost is asymptotically smaller than the per-element building
cost—specifically, O(logε λ) lookup cost suffices where ε ∈ (0.5, 1) is a suitable
constant.

This key observation allows us to relax the lookup time on the underlying
oblivious hashing scheme. We thus propose a suitable oblivious hashing scheme
that is conceptually simple. More specifically, our starting point is a (variant of a)
two-tier hashing scheme first described in the elegant work by Adler et al. [1]. In
a two-tier hashing scheme, there are two hash tables denoted H1 and H2 respec-
tively, each with n

logε λ bins of O(logε λ) capacity, where ε ∈ (0.5, 1) is a suitable
constant. To hash n elements (non-obliviously), we first throw each element into
a random bin in H1. For all the elements that overflow its bin capacity, we throw
them again into the second hash table H2. Stochastic bounds show that the sec-
ond hash table H2 does not overflow except with negl(λ) probability. Clearly, the
lookup cost is O(logε λ); and we will show that the hash table building algorithm
can be made oblivious through O(1) number of oblivious sorts.

New results on oblivious parallel RAM. The conceptual simplicity of our
ORAM scheme not only makes it easier to understand and implement, but also
lends to further extensions. In particular, we construct a computationally secure
OPRAMscheme that hasO(log2 N/ log log N) overhead—to the best of our knowl-
edge, this is the first OPRAM scheme that matches the best known sequential
ORAM in performance for general block sizes. Concretely, the hierarchical lookup
phase can be parallelized using the standard conflict resolution (proposed by Boyle
et al. [5]) as this phase is read-only. In the rebuild phase, our two-tier oblivious
hashing takes only O(1) number of oblivious sort and linear scan that marks excess
elements, which can be parallelized with known algorithms, i.e. range prefix sum.

As mentioned earlier, our modular approach and conceptual simplicity turned
out to be a crucial reason why we could turn our ORAM scheme into an
OPRAM—it is not clear whether (a corrected version of) Kushilevitz et al. [26]
is amenable to the same kind of transformation achieving the same overhead due
to complications in deamortizing their cuckoo hash rebuilding algorithm. Thus
we argue that our conceptually simple framework can potentially lend to other
possible applications and improvements.
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1.3 Related Work

ORAMs. ORAM was first proposed in a seminal work by Goldreich and Ostro-
vsky [19,20] who showed a computationally secure scheme with O(α log3 N) over-
head for general block sizes and for any super-constant function α = ω(1). Sub-
sequent works improve the hierarchical ORAM [22,26] and show that O( log2 N

log log N )
overhead can be attained under computational security—our paper points out
several subtleties and the incompleteness of the prior results; additionally, we
show that it is possible to obtain such an O( log2 N

log log N ) overhead in a conceptually
much simpler manner.

Besides the hierarchical framework, Shi et al. [37] propose a tree-based para-
digm for constructing ORAMs. Numerous subsequent works [11,40,41] improved
tree-based constructions. With the exception of a few works [14], the tree-based
framework was primarily considered for the construction of statistically secure
ORAMs. The performance of tree-based ORAMs depend on the block size, since
with a larger block size we can reduce the number of recursion levels in these
constructions. The recent Circuit ORAM work [41] shows that under block sizes
as large as N ε for any arbitrarily small constant ε, we can achieve α log N band-
width overhead for an arbitrary super-constant function α = ω(1)—this also
shows the (near) tightness of the Goldreich-Ostrovsky lower bound [19,20] show-
ing that any ORAM scheme must necessarily incur logarithmic overhead. Note
that under block sizes of at least log1+ε N for an arbitrarily small constant ε, Cir-
cuit ORAM [41] can also attain O( log2 N

log log N ) overhead and it additionally achieves
statistical security rather than computational.

OPRAMs. Since modern computing architectures such as cloud platforms
and multi-core architectures exhibit a high degree of parallelism, it makes
sense to consider the parallel counterpart of ORAM. Oblivious Parallel ORAM
(OPRAM) was first proposed by Boyle et al. [5], who showed a construction with
O(α log4 N) overhead for any super-constant function α. Boyle et al.’s result was
later improved by Chen et al. [10], who showed how to achieve O(α log3 N) over-
head with poly-logarithmic CPU private cache—their result also easily implies
an O(α log3 N log log N) overhead OPRAM with O(1) CPU private cache, the
setting that we focus on in this paper for generality.

A concurrent and independent manuscript by Nayak et al. [31] fur-
ther improves the CPU-memory communication by extending Chen et al.’s
OPRAM [10]. However, their scheme still requires O(α log3 N log log N) CPU-
CPU communication which was the dominant part of the overhead in Chen et
al. [10]. Therefore, under a general notion of overhead that includes both CPU-
CPU communication and CPU-memory communication, Nayak et al.’s scheme
still has the same asymptotic overhead3 as Chen et al. [10] which is more than
a logarithmic factor more expensive in comparison with our new OPRAM con-
struction.

3 The title of their paper [31] suggests O(log2 N) overhead, since they did not account
for the cost of CPU-CPU communication when describing the overhead.
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In a companion paper, Chan et al. [9] showed how to obtain statistically
secure and computationally secure OPRAMs in the tree-based ORAM frame-
work. Specifically, they showed that for general block sizes, we can achieve statis-
tically secure OPRAM with O(log2 N) simulation overhead and computationally
secure OPRAM with O(log2 N/ log log N) simulation overhead. For the compu-
tationally secure setting, Chan et al. [9] achieves the same asymptotical overhead
as this paper, but the two constructions follow different paradigms so we believe
that they are both of value. In another recent work, Chan et al. [6] proposed
a new notion of depth for OPRAMs where the OPRAM is allowed to have
more CPUs than the original PRAM to further parallelize the computation. In
this paper, an OPRAM’s simulation overhead is defined as its runtime blowup
assuming that the OPRAM consumes the same number of CPUs as the PRAM.

Non-oblivious techniques for hashing. Many hashing schemes [4,12,17,25,
30] were considered in the (parallel) algorithms literature. Unfortunately, most
of them are not good candidates for constructing efficient ORAM and OPRAM
schemes since there is no known efficient and oblivious counterpart for the algo-
rithm. We defer detailed discussions of these related works to our online full
version [7].

2 Definitions and Building Blocks

2.1 Parallel Random Access Machines

We define a Parallel Random Access Machine (PRAM) and an Oblivious Parallel
Random Access Machine (OPRAM) in a similar fashion as Boyle et al. [5] as
well as Chan and Shi [9]. Some of the definitions in this section are borrowed
verbatim from Boyle et al. [5] or Chan and Shi [9].

Although we give definitions only for the parallel case, we point out that
this is without loss of generality, since a sequential RAM can be thought of as a
special-case PRAM.

Parallel Random Access Machine (PRAM). A parallel random-access
machine (PRAM) consists of a set of CPUs and a shared memory denoted mem
indexed by the address space [N ] := {1, 2, . . . , N}. In this paper, we refer to
each memory word also as a block, and we use D to denote the bit-length of each
block.

We support a more general PRAM model where the number of CPUs in
each time step may vary. Specifically, in each step t ∈ [T ], we use mt to
denote the number of CPUs. In each step, each CPU executes a next instruc-
tion circuit denoted Π, updates its CPU state; and further, CPUs interact
with memory through request instructions I(t) := (I(t)i : i ∈ [mt]). Specifi-
cally, at time step t, CPU i’s instruction is of the form I

(t)
i := (read, addr),

or I
(t)
i := (write, addr, data) where the operation is performed on the memory

block with address addr and the block content data ∈ {0, 1}D ∪ {⊥}.
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If I
(t)
i = (read, addr) then the CPU i should receive the contents of mem[addr]

at the beginning of time step t. Else if I
(t)
i = (write, addr, data), CPU i should

still receive the contents of mem[addr] at the beginning of time step t; further,
at the end of step t, the contents of mem[addr] should be updated to data.

Write conflict resolution. By definition, multiple read operations can be
executed concurrently with other operations even if they visit the same address.
However, if multiple concurrent write operations visit the same address, a con-
flict resolution rule will be necessary for our PRAM be well-defined. In this
paper, we assume the following:

– The original PRAM supports concurrent reads and concurrent writes
(CRCW) with an arbitary, parametrizable rule for write conflict resolution.
In other words, there exists some priority rule to determine which write
operation takes effect if there are multiple concurrent writes in some time
step t.

– Our compiled, oblivious PRAM (defined below) is a “concurrent read, exclu-
sive write” PRAM (CREW). In other words, our OPRAM algorithm must
ensure that there are no concurrent writes at any time.

We note that a CRCW-PRAM with a parametrizable conflict resolution rule
is among the most powerful CRCW-PRAM model, whereas CREW is a much
weaker model. Our results are stronger if we allow the underlying PRAM to be
more powerful but the our compiled OPRAM uses a weaker PRAM model. For
a detailed explanation on how stronger PRAM models can emulate weaker ones,
we refer the reader to the work by Hagerup [24].

CPU-to-CPU communication. In the remainder of the paper, we sometimes
describe our algorithms using CPU-to-CPU communication. For our OPRAM
algorithm to be oblivious, the inter-CPU communication pattern must be obliv-
ious too. We stress that such inter-CPU communication can be emulated using
shared memory reads and writes. Therefore, when we express our performance
metrics, we assume that all inter-CPU communication is implemented with
shared memory reads and writes. In this sense, our performance metrics already
account for any inter-CPU communication, and there is no need to have separate
metrics that characterize inter-CPU communication. In contrast, some earlier
works [10] adopt separate metrics for inter-CPU communication.

Additional assumptions and notations. Henceforth, we assume that each
CPU can only store O(1) memory blocks. Further, we assume for simplicity that
the runtime of the PRAM, the number of CPUs activited in each time step and
which CPUs are activited in each time step are fixed a priori and publicly known
parameters. Therefore, we can consider a PRAM to be a tuple

PRAM := (Π,N, T, (Pt : t ∈ [T ])),

where Π denotes the next instruction circuit, N denotes the total memory size (in
terms of number of blocks), T denotes the PRAM’s total runtime, and Pt denotes
the set of CPUs to be activated in each time step t ∈ [T ], where mt := |Pt|.
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Finally, in this paper, we consider PRAMs that are stateful and can evaluate
a sequence of inputs, carrying state across in between. Without loss of generality,
we assume each input can be stored in a single memory block.

2.2 Oblivious Parallel Random-Access Machines

Randomized PRAM. A randomized PRAM is a special PRAM where the
CPUs are allowed to generate private random numbers. For simplicity, we assume
that a randomized PRAM has a priori known, deterministic runtime, and that
the CPU activation pattern in each time step is also fixed a priori and publicly
known.

Memory access patterns. Given a PRAM program denoted PRAM and a
sequence of inputs (inp1, . . . , inpd), we define the notation Addresses[PRAM]
(inp1, . . . , inpd) as follows:

– Let T be the total number of parallel steps that PRAM takes to evaluate
inputs (inp1, . . . , inpd).

– Let At :=
{
(cput

1, addr
t
1), (cpu

t
2, addr

t
2) . . . , (cput

mt
, addrtmt

)
}

be the list of
(CPU id, address) pairs such that cput

i accessed memory address addrti in
time step t.

– We define Addresses[PRAM](inp1, . . . , inpd) to be the random variable
[At]t∈[T ].

Oblivious PRAM (OPRAM). A randomized PRAM is said to be computa-
tionally oblivious, iff there exists a p.p.t. simulator Sim, and a negligible function
ε(·) such that for any input sequence (inp1, . . . , inpd) where inpi ∈ {0, 1}D for
i ∈ [d],

Addresses[PRAM](inp1, . . . , inpd)
ε(N)≈ Sim(1N , d, T, (Pt : t ∈ [T ]))

where
ε(N)≈ means that no p.p.t. adversary can distinguish the two probability

ensembles except with ε(N) probability.
In other words, obliviousness requires that there is a polynomial-time simula-

tor Sim that can simulate the memory access patterns knowing only the memory
size N , the number of inputs d, the parallel runtime T for evaluating the inputs,
as well as the a-priori fixed CPU activation pattern (Pt : t ∈ [T ]). In particular,
the simulator Sim does not know anything about the sequence of inputs.

Oblivious simulation and simulation overhead. We say that a oblivious
PRAM, denoted as OPRAM, simulates a PRAM if for every input sequence
(inp1, . . . , inpd), OPRAM(inp1, . . . , inpd) = PRAM(inp1, . . . , inpd), i.e., OPRAM
and PRAM output the same outcomes on any input sequence. In addition, an
OPRAM scheme is a randomized PRAM algorithm such that, given any PRAM,
the scheme compiles PRAM into an oblivious PRAM, OPRAM, that simulates
PRAM.
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For convenience, we often adopt two intermediate metrics in our descriptions,
namely, total work blowup and parallel runtime blowup. We say that an OPRAM
scheme has a total work blowup of x and a parallel runtime blowup of y, iff for
every PRAM step t in which the PRAM consumes mt CPUs, the OPRAM can
complete this step with x · mt total work and in y parallel steps—if the OPRAM
is allowed to consume any number of CPUs (possibly greater than mt).

Fact 1. If there exists an OPRAM with x total work blowup and y parallel
runtime blowup such that x ≥ y, then there exists an OPRAM that has O(x)
simulation overhead when consuming the same number of CPUs as the orginal
PRAM for simulating at PRAM step.

In the interest of space, we defer the proof of this simple fact to the online
full version [7].

2.3 Oblivious Hashing Scheme

Without loss of generality, we define only the parallel version, since the sequential
version can be thought of the parallel version subject to executing on a single
CPU.

A parallel oblivious hashing scheme contains the following two parallel, pos-
sibly randomized algorithms to be executed on a Concurrent Read, Exclusive
Write PRAM:

– T ← Build(1λ, {(ki, vi) | dummy}i∈[n]): given a security parameter 1λ, and a
set of n elements, where each element is either a dummy denoted dummy or
a (key, value) pair denoted (ki, vi), the Build algorithm outputs a memory
data structure denoted T that will later facilitate query. For an input array
S := {(ki, vi) | dummy}i∈[n] to be valid, we require that any two non-dummy
elements in S must have distinct keys.

– v ← Lookup(T, k): takes in the data structure T and a (possibly dummy)
query k, outputs a value v.

Correctness. Correctness is defined in a natural manner: given a valid initial
set S := {(ki, vi) | dummy}i∈[n] and a query k, we say that v is the correct answer
for k with respect to S, iff

– If k = dummy (i.e., if k is a dummy query) or if k /∈ S, then v = ⊥.
– Else, it must hold that (k, v) ∈ S.

More informally, the answer to any dummy query must be ⊥; if a query searches
for an element non-existent in S, then the answer must be ⊥. Otherwise, the
answer returned must be consistent with the initial set S.

We say that a parallel oblivious hashing scheme is correct, if for any valid
initial set S, for any query k, and for all λ, it holds that

Pr
[
T ← Build(1λ, S), v ← Lookup(T, k) : v is correct for k w.r.t. S

]
= 1
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where the probability space is taken over the random coins chosen by the Build
and Lookup algorithms.

Obliviousness. A query sequence k = (k1, . . . , kj) is said to be non-recurrent,
if all non-dummy queries in k are distinct.

A parallel hashing scheme denoted (Build, Lookup) is said to be oblivious,
if there exists a polynomial-time simulator Sim, such that for any security
parameter λ, for any valid initial set S, for any non-recurrent query sequence
k := (k1, . . . , kj) of polynomial length, it holds that

Addresses[Build, Lookup](1λ, S,k)
c≡ Sim(1λ, |S|, |k|)

where
c≡ denotes computationally indistinguishability, i.e., a computationally

bounded adversary can distinguish between the two distributions with an advan-
tage at most negl(λ). Intuitively, this security definition says that a simulator,
knowing only the length of the input set and the number of queries, can simulate
the memory access patterns.

Definition 1 ((Wbuild, Tbuild,Wlookup, Tlookup)-parallel oblivious hashing
scheme). Let Wbuild(·, ·), Wlookup(·, ·), Tbuild(·, ·), and Tlookup(·, ·) be functions
in n and λ. We say that (Build, Lookup) is a (Wbuild, Tbuild,Wlookup, Tlookup)-
parallel oblivious hashing scheme, iff (Build, Lookup) satisfies correctness and
obliviousness as defined above; and moreover, the scheme achieves the following
performance:

– Building a hash table with n elements takes n · Wbuild(n, λ) total work and
Tbuild(n, λ) time with all but negl(λ) probability. Note that Wbuild(n, λ) is the
per-element amount of work required for preprocessing.

– A lookup query takes Wlookup(n, λ) total work and Tlookup(n, λ) time.

As a special case, we say that (Build, Lookup) is a (Wbuild,Wlookup)-oblivious
hashing scheme, if it is a (Wbuild, ,Wlookup, )-parallel oblivious hashing scheme
for any choice of the wildcard field “ ”—in other words, in the sequential case,
we do not care about the scheme’s parallel runtime, and the scheme’s total work
is equivalent to the runtime when running on a single CPU.

[Read-only lookup assumption.] When used in ORAM, observe that ele-
ments are inserted in a hash table in a batch only in the Build algorithm. More-
over, we will assume that the Lookup algorithm is read-only, i.e., it does not
update the hash table data structure T, and no state is carried across between
multiple invocations of Lookup.

A note on the security parameter. Since later in our application, we will
need to apply oblivious hashing to different choices of n (including possibly
small choices of n), throughout the description of the oblivious hashing scheme,
we distinguish the security parameter denoted λ and the size of the set to be
hashed denoted n.
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2.4 Building Blocks

Duplicate suppression. Informally, duplicate suppression is the following
building block: given an input array X of length n consisting of (key, value)
pairs and possibly dummy elements where each key can have multiple occur-
rences, and additionally, given an upper bound n′ on the number of distinct keys
in X, the algorithm outputs a duplicate-suppressed array of length n′ where only
one occurrence of each key is preserved, and a preference function priority is used
to choose which one.

Earlier works have [5,19,20] proposed an algorithm that relies on oblivious
sorting to achieve duplicate suppression in O(n log n) work and O(log n) parallel
runtime where n := |X|.
Oblivious select. Select(X, k, priority) takes in an array X where each element
is either of the form (k, v) or a dummy denoted ⊥, a query k, and a priority
function priority which defines a total ordering on all elements with the same
key; and outputs a value v such that (k, v) ∈ X and moreover there exists no
(k, v′) ∈ X such that v′ is preferred over v for the key k by the priority function
priority.

Oblivious select can be accomplished using a simple tree-based algorithm [9]
in O(log n) parallel runtime and O(n) total work where n = |X|.
Oblivious multicast. Oblivious multicast is the following building block. Given
the following inputs:

– a source array X := {(ki, vi) | dummy}i∈[n] where each element is either of
the form (k, v) or a dummy denoted dummy, and further all real elements
must have a distinct k; and

– a destination array Y := {k′
i}i∈[n] where each element is a query k′ (possibly

having duplicates).

the oblivious multicast algorithm outputs an array ans := {vi}i∈[n] such that if
k′

i /∈ X then vi := ⊥; else it must hold that (k′
i, vi) ∈ X.

Boyle et al. [5] propose an algorithm based on O(1) oblivious sorts that
achieves oblivious multicast in O(log n) parallel runtime and O(n log n) total
work.

Range prefix sum. We will rely on a parallel range prefix sum algorithm
which offers the following abstraction: given an input array X = (x1, . . . , xn) of
length n where each element of X is of the form xi := (ki, vi), output an array
Y = (y1, . . . , yn) where each yi is defined as follows:

– Let i′ ≤ i be the smallest index such that ki′ = ki′+1 = . . . = ki;
– yi :=

∑i
j=i′ vj .

In the GraphSC work, Nayak et al. [32] provide an oblivious algorithm that
computes the range prefix sum in O(log n) parallel runtime and O(n log n) total
work—in particular [32] defines a building block called “longest prefix sum”
which is a slight variation of the range prefix sum abstraction we need. It is easy
to see that Nayak et al.’s algorithm for longest prefix sum can be modified in a
straightforward manner to compute our notion of range prefix sum.
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3 Oblivious Two-Tier Hashing Scheme

In this section, we present a simple oblivious two-tier hashing scheme. Before
we describe our scheme, we make a couple important remarks that the reader
should keep in mind:

– Note that our security definition implies that the adversary can only observe
the memory access patterns, and we require simulatability of the memory
access patterns. Therefore our scheme description does not explicitly encrypt
data. When actually deploying an ORAM scheme, all data must be encrypted
if the adversary can also observe the contents of memory.

– In our oblivious hashing scheme, we use λ to denote the security parameter,
and use n to denote the hash table’s size. Our ORAM application will employ
hash tables of varying sizes, so n can be small. Observe that an instance of
hash table building can fail with negl(λ) probability; when this happens in
the context of ORAM, the hash table building is restarted. This ensures that
the ORAM is always correct, and the security parameter is related to the
running time of the ORAM.

– For small values of n, we need special treatment to obtain negl(λ) security fail-
ure probability—specifically, we simply employ normal balls-and-bins hashing
for small values of n. Instead of having the ORAM algorithm deal with this
issue, we wrap this part inside the oblivious hashing scheme, i.e., the oblivious
hashing scheme will automatically decide whether to employ normal hashing
or two-tier hashing depending on n and λ.
This modular approach makes our ORAM and OPRAM algorithms concep-
tually simple and crystallizes the security argument as well.

The goal of this section is to give an oblivious hashing scheme with the
following guarantee.

Theorem 1 (Parallel oblivious hashing). For any constant ε > 0.5, for any
α(λ) := ω(1), there exists a (Wbuild, Tbuild,Wlookup, Tlookup)-parallel oblivious
hashing scheme where

Wbuild = O(log n), Tbuild = O(log n),

Wlookup =

{
O(α log λ) if n < e3 logε λ

O(logε λ) if n ≥ e3 logε λ
, Tlookup = O(log log λ)

3.1 Construction: Non-oblivious and Sequential Version

For simplicity, we first present a non-oblivious and sequential version of the
hashing algorithm, and we can use this version of the algorithm for the purpose
of our stochastic analysis. Later in Sect. 3.2, we will show how to make the
algorithm both oblivious and parallel. Henceforth, we fix some ε ∈ (0.5, 1).

Case 1: n < e3 logε λ. When n is sufficiently small relative to the security para-
meter λ, we simply apply normal hashing (i.e., balls and bins) in the following
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manner. Let each bin’s capacity Z(λ) = α log λ, for any α = ω(1) superconstant
function in λ.

For building a hash table, first, generate a secret PRF key denoted
sk

$←{0, 1}λ. Then, store the n elements in B := �5n/Z� bins each of capac-
ity Z, where each element (k, ) is assigned to a pseudorandom bin computed as
follows:

bin number := PRFsk(k).

Due to a simple application of the Chernoff bound, the probability that any bin
overflows is negligible in λ as long as Z is superlogarithmic in λ.

To look up an element with the key k, compute the bin number as above and
read the entire bin.

Case 2: n ≥ e3 logε λ. This is the more interesting case, and we describe our
two-tier hashing algorithm below.

– Parameters and data structure. Suppose that our memory is organized
into two hash tables named H1 and H2 respectively, where each hash table
has B := � n

logε λ� bins, and each bin can store at most Z := 5 logε λ blocks.
– Build(1λ, {(ki, vi) | dummy}i∈[n]):

a) Generate a PRF key sk
$←{0, 1}λ.

b) For each element (ki, vi) ∈ S, try to place the element into the bin num-
bered PRFsk(1||ki) in the first-tier hash table H1. In case the bin is full,
instead place the element in the overflow pile henceforth denoted Buf.

c) For each element (k, v) in the overflow pile Buf, place the element into
the bin numbered PRFsk(2||k) in the second-tier hash table H2.

d) Output T := (H1,H2, sk).
– Lookup(T, k): Parse T := (H1,H2, sk) and perform the following.

a) If k = ⊥, i.e., this is a dummy query, return ⊥.
b) Let i1 := PRFsk(1||k). If an element of the form (k, v) is found in H1[i1],

return v. Else, let i2 := PRFsk(2||k), look for an element of the form (k, v)
in H2[i2] and return v if found.

c) If still not found, return ⊥.

Overflow event. If in the above algorithm, an element happens to choose a
bin in the second-tier hash table H2 that is full, we say that a bad event called
overflow has happened. When a hash building is called in the execution of an
ORAM, recall that if an overflow occurs, we simply discard all work thus far and
restart the build algorithm from the beginning.

In Sect. 3.4, we will prove that indeed, overflow events occur with negligible
probability. Therefore, henceforth in our ORAM presentation, we will simply
pretend that overflow events never happen during hash table building.

Remark 1. Since the oblivious hashing scheme is assumed to retry from scratch
upon overflows, we guarantee perfect correctness and computational security
failure (due to the use of a PRF). Similarly, our resulting ORAM and OPRAM
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schemes will also have perfect correctness and computational security. Obviously,
the algorithms may execute longer if overflows and retries take place—henceforth
in the paper, whenever we say that an algorithm’s total work or runtime is
bounded by x, we mean that it is bounded by x except with negligible probability
over the randomized execution.

3.2 Construction: Making It Oblivious

Oblivious Building. To make the building phase oblivious, it suffices to have
the following Placement building block.

Let B denote the number of bins, let Z denote each bin’s capacity, and let
R denote the maximum capacity of the overflow pile. Placement is the following
building block. Given an array Arr = {(elemi, posi) | dummy}i∈[n] containing n
possibly dummy elements, where each non-dummy element elemi is tagged with
a pseudo-random bin number posi ∈ [B], output B arrays {Bini}i∈[B] each of size
exactly Z and an overflow pile denoted Buf of size exactly R. The placement
algorithm must output a valid assignment if one exists. Otherwise if no valid
assignment exists, the algorithm should abort outputting hash-failure.

We say that an assignment is valid if the following constraints are respected:

(i) Every non-dummy (elemi, posi) ∈ Arr exists either in some bin or in the
overflow pile Buf.

(ii) For every Bini, every non-dummy element in Bini is of the form ( , i). In
other words, non-dummy elements can only reside in their targeted bin or
the overflow pile Buf.

(iii) For every Bini, if there exists a dummy element in Bini, then no element of
the form ( , i) appears in Buf. In other words, no elements from each bin
should overflow to Buf unless the bin is full.

[Special case]. A special case of the placement algorithm is when the overflow
pile’s targeted capacity R = 0. This special case will be used when we create the
second-tier hash table.

Below, we show that using standard oblivious sorting techniques [2],
Placement can be achieved in O(n log n) total work:

1. For each i ∈ [B], add Z copies of filler elements (, i) where  denotes that
this is a filler element. These filler elements are there to make sure that each
bin is assigned at least Z elements. Note that filler elements and dummy
elements are treated differently.

2. Oblivious sort all elements by their bin number. For elements with the same
bin number, break ties by placing real elements to the left of filler elements.

3. In a single linear scan, for each element that is not among the first Z elements
of its bin, tag the element with the label “excess”.

4. Oblivious sort all elements by the following ordering function:
– All dummy elements must appear at the very end;
– All non-excess elements appear before excess elements;
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– For two non-excess elements, the one with the smaller bin number appears
first (breaking ties arbitrarily).

– For excess elements, place real elements to the left of filler elements.

Oblivious lookups. It remains to show how to make lookup queries oblivious.
To achieve this, we can adopt the following simple algorithm:

– If the query k �= ⊥: compute the first-tier bin number as i1 := PRFsk(1||k).
Read the entire bin numbered i1 in the first-tier hash table H1. If found, read
an entire random bin in H2; else compute i2 := PRFsk(2||k) and read the
entire bin numbered i2 in the second-tier hash table H2. Finally, return the
element found or ⊥ if not found.

– If the query k = ⊥, read an entire random bin in H1, and an entire random bin
in H2. Both bin numbers are selected freshly and independently at random.
Finally, return ⊥.

3.3 Construction: Making It Parallel

To make the aforementioned algorithm parallel, it suffices to make the following
observations:

(i) Oblivious sorting of n elements can be accomplished using a sorting cir-
cuit [2] that involves O(n log n) total work and O(log n) parallel runtime.

(ii) Step 3 of the oblivious building algorithm involves a linear scan of the array
marking each excessive element that exceeds its bin’s capacity.
This linear scan can be implemented in parallel using the oblivious “range
prefix sum” algorithm in O(n log n) total work and O(log n) parallel run-
time. We refer the reader to Sect. 2.4 for a definition of the range prefix sum
algorithm.

(iii) Finally, observe that the oblivious lookup algorithm involves searching in
entire bin for the desired block. This can be accomplished obliviously and
in parallel through our “oblivious select” building block defined in Sect. 2.4.
Since each bin’s capacity is O(logε n), the oblivious select algorithm can be
completed in O(log log n) parallel runtime and tight total work.

Remark 2 (The case of small n). So far, we have focused our attention on the
(more interesting) case when n ≥ e3 logε λ. When n < e3 logε λ, we rely on normal
hashing, i.e., balls and bins. In this case, hash table building can be achieved
through a similar parallel oblivious algorithm that completes in O(n log n) total
work and O(log n) parallel runtime; further, each lookup query completes obliv-
iously in O(α log λ) total work and O(log log λ) parallel runtime.

Performance of our oblivious hashing scheme. In summary, the resulting
algorithm achieves the following performance:

– Building a hash table with n elements takes O(n log n) total work and O(log n)
parallel runtime with all but negl(λ) probability, regardless of how large n is.
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– Each lookup query takes O(logε λ) total work when n ≥ e3 logε λ and
O(α log λ) total work when n < e3 logε λ where α(λ) = ω(1) can be any super-
constant function. Further, regardless of how large n is, each lookup query
can be accomplished in O(log log λ) parallel runtime.

3.4 Overflow Analysis

We give the overflow analysis of the two-tier construction in Sect. 3.1. We use
the following variant of Chernoff Bound.

Fact 2 (Chernoff Bound for Binomial Distribution). Let X be a random
variable sampled from a binomial distribution (with any parameters). Then, for
any k ≥ 2E[X], Pr[X ≥ k] ≤ e− k

6 .

Utilization of first-tier hash. Recall that the number of bins is B :=
⌈

n
logε λ

⌉
.

For i ∈ [B], let Xi denote the number of items that are sent to bin i in the
first-tier hash. Observe that the expectation E[Xi] = n

B ≥ logε λ.

Overflow from first-tier hash. For i ∈ [B], let X̂i be the number of items
that are sent to bin i in the first-tier but have to be sent to the overflow pile
because bin i is full. Recall that the capacity of a bin is Z := 5 logε λ. Then, it
follows that X̂i equals Xi − Z if Xi > Z, and 0 otherwise.

Tail bound for overflow pile. We next use the standard technique of moment
generating function to give a tail inequality for the number

∑
i X̂i of items in

the overflow pile. For sufficiently small t > 0, we have
E[etX̂i ] ≤ 1 +

∑
k≥1 Pr[Xi = Z + k] · etk ≤ 1 +

∑
k≥1 Pr[Xi ≥ Z + k] ·

etk ≤ 1 + exp(− Z
6 )

e
1
6 −t−1

, where the last inequality follows from Fact 2 and a standard

computation of a geometric series. For the special case t = 1
12 , we have E[e

X̂i
12 ] ≤

1 + 12 exp(−Z
6 ).

Lemma 1 (Tail Inequality for Overflow Pile). For k ≥ 288Be− Z
6 ,

Pr[
∑

i∈[B] X̂i ≥ k] ≤ e− k
24 .

Proof. Fix t := 1
12 . Then, we have Pr[

∑
i∈[B] X̂i ≥ k] = Pr[t

∑
i∈[B] X̂i ≥

tk] ≤ e−tk · E[et
∑

i∈[B] X̂i ], where the last inequality follows from the Markov’s
inequality.

As argued in [13], when n balls are thrown independently into n bins uni-
formly at random, then the numbers Xi’s of balls received in the bins are
negatively associated. Since X̂i is a monotone function of Xi, it follows that
the X̂i’s are also negatively associated. Hence, it follows that E[et

∑
i∈[B] X̂i ] ≤

∏
i∈[B] E[etX̂i ] ≤ exp(12Be− Z

6 ).

Finally, observing that k ≥ 288Be− Z
6 , we have Pr[

∑
i∈[B] X̂i ≥ k] ≤

exp(12Be− Z
6 − k

12 ) ≤ e− k
24 , as required.
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In view of Lemma 1, we consider N := 288Be− Z
6 as an upper bound on the

number of items in the overflow pile. The following lemma gives an upper bound
on the probability that a particular bin overflows in the second-tier hash.

Lemma 2 (Overflow Probability in the Second-Tier Hash). Suppose the
number of items in the overflow pile is at most N := 288Be− Z

6 , and we fix some
bin in the second-tier hash. Then, the probability that this bin receives more than
Z items in the second tier hash is at most e− Z2

6 .

Proof. Observe that the number of items that a particular bin receives is stochas-
tically dominated by a binomial distribution with N items and probability 1

B .
Hence, the probability that it is at least Z is at most

(
N
Z

)·( 1
B )Z ≤ (Ne

Z )Z ·( 1
B )Z ≤

e− Z2
6 , as required.

Corollary 1 (Negligible Overflow Probability). Suppose the number n of
items is chosen such that both Be− Z

6 and Z2 are ω(log λ), where B :=
⌈

n
logε λ

⌉

and Z := �5 logε λ�. Then, the probability that the overflow event happens in the
second-tier hash is negligible in λ.

Proof. Recall that B = � n
logε λ�, where n ≥ e3 logε λ in Theorem 1. By choosing

N = 288Be− Z
6 , from Lemma 1, the probability that there are more than N items

in the overflow pile is exp(−Θ(N)), which is negligible in λ.
Given that the number of items in the overflow pile is at most N , according

to Lemma 2, the probability that there exists some bin that overflows in the
second-tier hash is at most Be− Z2

6 by union bound, which is also negligible in
λ, because we assume B ≤ poly(λ).

3.5 Obliviousness

If there is no overflow, for any valid input, Build accesses fixed addresses.
Also, Lookup fetches a fresh pseudorandom bin for each dummy or non-dummy
request. Hence, the simulator is just running Build and Lookup with all dummy
requests. See the online full version [7] for the formal proof.

4 Modular Framework for Hierarchical ORAM

4.1 Preliminary: Hierarchical ORAM from Oblivious Hashing

Goldreich and Ostrovsky [19,20] were the first to define Oblivious RAM (ORAM)
and they provide an elegant solution to the problem which was since referred to
as the “hierarchical ORAM”. Goldreich and Ostrovsky [19,20] describe a special-
case instantiation of a hierarchical ORAM where they adopt an oblivious variant
of näıve hashing. Their scheme was later extended and improved by several
subsequent works [22,26,42].
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In this section, we will present a generalized version of Goldreich and
Ostrovsky’s hierarchical ORAM framework. Specifically, we will show that
Goldreich and Ostrovsky’s core idea can be interpreted as the following: take
any oblivious hashing scheme satisfying the abstraction defined in Sect. 2.3, we
can construct a corresponding ORAM scheme that makes blackbox usage of the
oblivious hashing scheme.

From our exposition, it will be clear why such a modular approach is com-
pelling: it makes both the construction and the security proof simple. In compar-
ison, earlier hierarchical ORAM works do not adopt this modular approach, and
their conceptual complexity could sometimes confound the security proof [34].

Data structure. There are log N + 1 levels numbered 0, 1, . . . , L respectively,
where L := �log2 N� is the maximum level. Each level is a hash table denoted
T0,T1, . . . ,TL where Ti has capacity 2i. At any time, each table Ti can be in
two possible states, available or full. Available means that this level is currently
empty and does not contain any blocks, and thus one can rebuild into this level.
Full means that this level currently contains blocks, and therefore an attempt
to rebuild into this level will effectively cause a cascading merge.

ORAM operations. Upon any memory access request (read, addr) or
(write, addr, data), perform the following procedure. For simplicity, we omit
writing the security parameter of the algorithms, i.e., let Build(·) := Build(1N , ·),
and let Lookup(·) := Lookup(1N , ·).

1. found := false.
2. For each 	 = 0, 1, . . . L in increasing order,

– If not found, fetched := Lookup(T�, addr): if fetched �= ⊥, let found :=
true, data∗ := fetched.

– Else Lookup(T�,⊥).
3. Let T∅ := {(addr, data∗)} if this is a read operation; else let T∅ :=

{(addr, data)}. Now perform the following hash table rebuilding:
– Let 	 be the smallest level index such that T� is marked available. If all

levels are marked full, then 	 := L. In other words, 	 is the target level to
be rebuilt.

– Let S := T∅ ∪ T0 ∪ T1 ∪ . . . ∪ T�−1; if all levels are marked full, then
additionally let S := S ∪TL. Further, tag each non-dummy element in S
with its level number, i.e., if a non-dummy element in S comes from Ti,
tag it with the level number i.

– T� := Build(SuppressDuplicate(S, 2�, pref)), and mark T� as full. Further,
let T0 = T1 = . . . = T�−1 := ∅ and their status bits set to available. Here
we adopt the following priority function pref:

• When two or more real blocks with the same address (i.e., key) exist,
the one with the smaller level number is preferred (and the algorithm
maintains the invariant that no two blocks with the same address and
the same level number should exist).

4. Return data∗.
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Deamortization. In the context of hierarchical ORAM, a hash table of capac-
ity n is rebuilt every n memory requests, and we typically describe the ORAM’s
overhead in terms of the amortized cost per memory request. As one may observe,
every now and then, the algorithm needs to rebuild a hash table of size N , and
thus a small number of memory requests may incur super-linear cost to complete.

A standard deamortization technique was described by Ostrovsky and
Shoup [33] to evenly spread the cost of hash table rebuilding over time, and this
deamortization framework only blows up the total work of the ORAM scheme
by a small constant factor; the details are in the online full version [7]. In the
rest of the paper, we assume that every instance of hash table used in an ORAM
scheme is rebuilt in the background using this deamortization technique without
explicitly mentioning so. Further, the stated costs in the theorems are applicable
to worst-case performance (not just amortized).

Obliviousness. To show obliviousness of the above construction, we make the
following observations.

Fact 3 (Non-recurrent queries imply obliviousness). In the aforemen-
tioned ORAM construction, as long as lookup queries to every instance of hash
table satisfies the non-recurrent condition specified in Sect. 2.3, the resulting
ORAM scheme satisfies obliviousness.

The proof of this fact is deferred to our online full version [7].

Fact 4 (Non-recurrence condition is preserved). In the above ORAM con-
struction, it holds that for every hash table instance, all lookup queries it receives
satisfy the non-recurrence condition.

Proof. Due to our ORAM algorithm, every 2� operations, the old instance of
hash table T� is destroyed and a new hash table instance is created for T�. It
suffices to prove the non-recurrence condition in between every two rebuilds for
T�. Suppose that after T� is rebuilt in some step, now we focus on the time
steps going forward until the next rebuild. Consider when a block block∗ is first
found in T� where 	 ∈ [L], block∗ is entered into T∅. Due to the definition of the
ORAM algorithm, until the next time T� is rebuilt, block∗ exists in some T�′

where 	′ < 	. Due to the way the ORAM performs lookups—in particular, we
would look up a dummy element in T� if block∗ is found in a smaller level—we
conclude that until T� is rebuilt, no lookup query will ever be issued again for
block∗ to T�.

Lemma 3 (Obliviousness). Suppose that the underlying hashing scheme sat-
isfies correctness and obliviousness as defined in Sect. 2.3, then it holds that the
above ORAM scheme satisfies obliviousness as defined in Sect. 2.2.

Proof. Straightforward from Facts 3 and 4.

Theorem 2 (Hierarchical ORAM from oblivious hashing). Assume the
existence of one-way functions and a (Wbuild,Wlookup)-oblivious hashing scheme.
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Then, there exists an ORAM scheme that achieves the following blowup for block
sizes of Ω(log N) bits:

ORAM’s blowup := max

(
log N∑

�=0

Wbuild(2�, N),
log N∑

�=0

Wlookup(2�, N)

)

+O(log2 N)

This theorem is essentially proved by Goldreich and Ostrovsky [19,20]—however,
they proved it only for a special case. We generalize their hierarchical ORAM
construction and express it modularly to work with any oblivious hashing scheme
as defined in Sect. 2.3.

Remark 3. We point out that due to the way we define our oblivious hashing
abstraction, each instance of oblivious hash table will independently generate a
fresh PRF key during Build, and this PRF key is stored alongside the resulting
hash table data structure in memory. Throughout this paper, we assume that
each PRF operation can be evaluated in O(1) runtime on top of our RAM.
We stress that this implicit assumption (or equivalent) was made by all earlier
ORAM works [19,20,22,26] that rely on a PRF for security.

4.2 Preliminary: Improving Hierarchical ORAM by Balancing
Reads and Writes

Subsequent to Goldreich and Ostrovsky’s ground-breaking result [19,20],
Kushilevitz et al. [26] propose an elegant optimization for the hierarchical ORAM
framework such that under some special conditions to be specified later, they
can shave a (multiplicative) log log N factor off the total work for a hierarchical
ORAM scheme. Similarly, Kushilevitz et al. [26] describe a special-case instantia-
tion of an ORAM scheme based on oblivious Cuckoo hashing which was proposed
by Goodrich and Mitzenmacher [22].

In this section, we observe that the Kushilevitz et al.’s idea can be generalized.
For the sake of exposition, we will first ignore the smaller ORAM levels that
employ normal hashing in the following discussion, i.e., we assume that the
smaller levels that employ normal hashing will not be a dominating factor in
the cost. Now, imagine that there is an oblivious hashing scheme such that for
sufficiently large n, the per-element cost for preprocessing is more expensive than
the cost of a lookup by a logδ n factor for some constant δ > 0. In other words,
imagine that there exists a constant δ > 0 such that the following condition is
met for sufficiently large n:

Wbuild(n, λ)
Wlookup(n, λ)

≥ logδ n.

If the underlying oblivious hashing scheme satisfies the above condition,
then Kushilevitz et al. [26] observes that Goldreich and Ostrovsky’s hierarchical
ORAM construction is suboptimal in the sense that the cost of fetch phase is
asymptotically smaller than the cost of the rebuild phase. Hence, the resulting
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ORAM’s total work will be dominated by the rebuild phase, which is then deter-
mined by the building cost of the underlying hashing scheme, i.e., Wbuild(n, λ).

Having observed this, Kushilevitz et al. [26] propose the following modifica-
tion to Goldreich and Ostrovsky’s hierarchical ORAM [19,20]. In Goldreich and
Ostrovsky’s ORAM, each level is a factor of 2 larger than the previous level—
henceforth the parameter 2 is referred to the branching factor. Kushilevitz et
al. [26] proposes to adopt a branching factor of μ := log N instead of 2, and this
would reduce the number of levels to O(log N/ log log N)—in this paper, we will
adopt a more general choice of μ := logφ N for a suitable positive constant φ. To
make this idea work, they allow up to μ − 1 simultaneous hash table instances
for any ORAM level. If for all levels below 	, all instances of hash tables are
full, then all levels below 	 will be merged into a new hash table residing at level
	 + 1. The core idea here is to balance the cost of the fetch phase and the rebuild
phase by having a larger branching factor; and as an end result, we could shave
a log log N factor from the ORAM’s total work.

We now elaborate on this idea more formally.

Data structure. Let μ := logφ N for a suitable positive constant φ to be deter-
mined later. There are O(log N/ log log N) levels numbered 0, 1, . . . , L respec-
tively, where L = �logμ N� denotes the maximum level. Except for level L, for
every other 	 ∈ {0, 1, . . . , L − 1}: the 	-th level contains up to μ − 1 hash tables
each of capacity μ�. Henceforth we use the notation T� to denote level 	, and Ti

�

to denote the i-th hash table within level 	. The largest level L contains a single
hash table of capacity N denoted T0

L. Finally, every level 	 ∈ {0, 1, . . . , L} has a
counter c� initialized to 0. Effectively, for every level 	 �= L, if c� = μ − 1, then
the level is considered full; else the level is considered available.

ORAM operations. Upon any memory access query (read, addr) or
(write, addr, data), perform the following procedure.

1. found := false.
2. For each 	 = 0, 1, . . . L in increasing order, for τ = c� − 1, c� − 2 . . . 0 in

decreasing order:
If not found: fetched := Lookup(Tτ

� , addr); if fetched �= ⊥, let found :=
true, data∗ := fetched. Else Lookup(Tτ

� ,⊥).
3. Let T∅ := {(addr, data∗)} if this is a read operation; else let T∅ :=

{(addr, data)}. Now, perform the following hash table rebuilding.
– Let 	 be the smallest level index such that its counter c� < μ − 1. If no

such level index exists, then let 	 := L. In other words, we plan to rebuild
a hash table in level 	.

– Let S := T∅ ∪ T0 ∪ T1 ∪ . . . ,∪T�−1; and if 	 = L, additionally, let S :=
S ∪ T0

L and let cL = 0. Further, in the process, tag each non-dummy
element in S with its level number and its hash table number within the
level. For example, if a non-dummy element in S comes from Tτ

i , i.e., the
τ -th table in the i-th level, tag it with (i, τ).

– Let Tc�

� := Build(SuppressDuplicate(S, μ�, pref)), and let c� := c� + 1.
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Here we adopt the following priority function pref: when two or more
blocks with the same address (i.e., key) exist, the one with the smaller
level number is preferred; if there is a tie in level number, the one with
the larger hash table number is preferred.

– Let T0 = T1 = . . . = T�−1 := ∅ and set c0 = c1 = . . . = c�−1 := 0.
4. Return data∗.

Goldreich and Ostrovsky’s ORAM scheme [19,20] is a special case of the
above for μ = 2.

Deamortization. The deamortization technique of Ostrovsky and Shoup [33]
(described in the online full version [7]) applies in general to hierarchical ORAM
schemes for which each level is some data structure that is rebuilt regularly.
Therefore, it can be applied to our scheme as well, and thus the work of rebuilding
hash tables is spread evenly across memory requests.

Obliviousness. The obliviousness proof is basically identical to that presented
in Sect. 4.1, since the only change here from Sect. 4.1 is that the parameters are
chosen differently due to Kushilevitz et al.’s elegant idea [26].

Theorem 3 (Hierarchical ORAM variant.). Assume the existence of one-
way functions and a (Wbuild,Wlookup)-oblivious hashing scheme. Then, there
exists an ORAM scheme that achieves the following blowup for block sizes of
Ω(log N) bits where L = O(log N/ log log N):

ORAM’s blowup := max

(
L∑

�=0

Wbuild(μ�, N), logφ N ·
L∑

�=0

Wlookup(μ�, N)

)

+O(L log N)

We note that Kushilevitz et al. [26] proved a special case of the above the-
orem, we now generalize their technique and describe it in the most general
form.

4.3 Conceptually Simpler ORAM for Small Blocks

In the previous section, we presented a hierarchical ORAM scheme, reparame-
trized using Kushilevitz et al. [26]’s technique, consuming any oblivious hashing
scheme with suitable performance characteristics as a blackbox.

To obtain a conceptually simple ORAM scheme with O(log2 N/ log log N)
overhead, it suffices to plug in the oblivious two-tier hashing scheme described
earlier in Sect. 3.

Corollary 2 (Conceptually simpler ORAM for small blocks). There
exists an ORAM scheme with O(log2 N/ log log N) runtime blowup for block sizes
of Ω(log N) bits.

Proof. Using the simple oblivious two-tier hashing scheme in Sect. 3 with ε = 3
4 ,

we can set φ = 1
4 in Theorem 3 to obtain the result.
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4.4 IO Efficiency and the Case of Large CPU Cache

Besides the ORAM’s runtime, we often care about its IO performance as well,
where IO-cost is defined as the number of cache misses as in the standard
external-memory algorithms literature. When the CPU has a large amount of
private cache, e.g., N ε blocks where ε > 0 is an arbitrarily small constant, several
works have shown that oblivious sorting n ≤ N elements can be accomplished
with O(n) IO operations [8,21,22]. Thus, a direct corollary is that for the case
of N ε CPU cache, we can construct a computationally secure ORAM scheme
with O(log N) IO-cost (by using the basic hierarchical ORAM construction with
O(log N) levels with an IO-efficient oblivious sort).

5 Asymptotically Efficient OPRAM

In this section, we show how to construct an O( log2 N
log log N ) OPRAM scheme. To

do this, we will show how to parallelize our new O( log2 N
log log N )-overhead ORAM

scheme. Here we benefit tremendously from the conceptual simplicity of our new
ORAM scheme. In particular, as mentioned earlier, our oblivious two-tier hash-
ing (Build, Lookup) algorithms have efficient parallel realizations. We will now
present our OPRAM scheme. For simplicity, we first present a scheme assuming
that the number of CPUs in each step of the computation is fixed and does not
change over time. In this case, we show that parallelizing our earlier ORAM
construction boils down to parallelizing the (Build and Lookup) algorithms of
the oblivious hashing scheme. We then extend our construction to support the
case when the number of CPUs varies over time.

5.1 Intuition

Warmup: uniform number of CPUs. We first describe the easier case of
uniform m, i.e., the number of CPUs in the PRAM does not vary over time.
Further, we will consider the simpler case when the branching factor μ := 2.

– Data structure. Recall that our earlier ORAM scheme builds an exponentially
growing hierarchy of oblivious hash tables, of capacities 1, 2, 4, . . . , N each.
Here, we can do the same, but we can start the level of hierarchy at capacity
m = 2i (i.e., skip the smaller levels).

– OPRAM operations. Given a batch of m simultaneous memory requests, sup-
pose that all addresses requested are distinct—if not, we can run a stan-
dard conflict resolution procedure as described by Boyle et al. [5] incurring
only O(log m) parallel steps consuming m CPUs. We now need to serve these
requests in parallel. In our earlier ORAM scheme, each request has two stages:
(1) reading one block from each level of the exponentially growing hierarchy;
and (2) perform necessary rebuilding of the levels. It is not hard to see that
the fetch phase can be parallelized easily—particularly, observe that the fetch
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phase is read-only, and thus having m CPUs performing the reads in parallel
will not lead to any write conflicts.
It remains to show how to parallelize the rebuild phase. Recall that in our ear-
lier ORAM scheme, each level has a status bit whose value is either available
or full. Whenever we access a single block, we find the available (i.e., empty)
level 	 and merge all smaller levels as well as the updated block into level 	. If
no such level 	 exists, we simply merge all levels as well as the updated block
into the largest level.
Here in our OPRAM construction, since the smallest level is of size m, we
can do something similar. We find the smallest available (i.e., empty) level 	,
and merge all smaller levels as well as the possibly updated values of the m
fetched blocks into level 	. If no such level 	 exists, we simply merge all levels
as well as possibly updated values of the m fetched blocks into the largest
level. Rebuilding a level in parallel effectively boils down to rebuilding a hash
table in parallel (which boils down to performing O(1) number of oblivious
sorts in parallel)—which we have shown to be possible earlier in Sect. 3.

Varying number of CPUs. Our definitions of PRAM and OPRAMs allow
the number of CPUs to vary over time. In this case, oblivious simulation of a
PRAM is more sophisticated. First, instead of truncating the smaller levels whose
size are less than m, here we have to preserve all levels—henceforth we assume
that we have an exponentially growing hierarchy with capacities 1, 2, 4, . . . , N
respectively. The fetch phase is simple to parallelize as before, since the fetch
phase does not make modifications to the data structure. We now describe a
modified rebuild phase when serving a batch of m = 2γ requests: note that in
the following, γ is a level that matches the current batch size, i.e., the number
of CPUs in the present PRAM step of interest:

(a) Suppose level γ is marked available. Then, find the first available (i.e., empty)
level 	 greater than γ. Merge all levels below γ and the updated values of
the newly fetched m blocks into level 	.
If no such level 	 exists, then merge all blocks and the updated values of the
newly fetched m blocks into the largest level L.

(b) Suppose level γ is marked as full. Then, find the first available (i.e., empty)
level 	 greater than γ. Merge all levels below or equal to γ (but not the
updated values of the m fetched blocks) into level 	; rebuild level γ to contain
the updated values of the m fetched blocks.
Similarly, if no such level 	 exists, then merge all blocks and the updated
values of the newly fetched m blocks into the largest level L.

One way to view the above algorithm is as follows: let us view the concate-
nation of all levels’ status bits as a binary counter (where full denotes 1 and
available denotes 0). If a single block is accessed like in the ORAM case, the
counter is incremented, and if a level flips from 0 to 1, this level will be rebuilt.
Further, if there would be a carry-over to the (L + 1)-st level, then the largest
level L is rebuilt. However, now m blocks may be requested in a single batch—in
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this case, the above procedure for rebuilding effectively can be regarded as incre-
menting the counter by some value v where v ≤ 2m—in particular, the value v
is chosen such that only O(1) levels must be rebuilt by the above rule.

We now embark on describing the full algorithm—specifically, we will
describe for a general choice of the branching factor μ that is not necessarily
2. Further, our description supports the case of varying number of CPUs.

5.2 Detailed Algorithm

Data structure. Same as in Sect. 4.2. Specifically, there are O(log N/ log log N)
levels numbered 0, 1, . . . , L respectively, where L = �logμ N� denotes the max-
imum level. Except for level L, for every other 	 ∈ {0, 1, . . . , L − 1}: the 	-th
level contains up to μ − 1 hash tables each of capacity μ�. Henceforth, we use
the notation T� to denote level 	. Moreover, for 0 ≤ i < μ − 1, we use Ti

� to
denote the i-th hash table within level 	. The largest level L contains a single
hash table of capacity N denoted T0

L. Finally, every level 	 ∈ {0, 1, . . . , L} has a
counter c� initialized to 0.

We say that a level 	 < L is available if its counter c� < μ − 1; otherwise,
c� = μ− 1, and we say that the level 	 < L is full. For the largest level L, we say
that it is available if cL = 0; else we say that it is full. Note that for the case of
general μ > 2, available does not necessarily mean that the level’s empty.

OPRAM operations. Upon a batch of m memory access requests Q :=
{opp}p∈[m] where each opp is of the form (read, addrp) or (write, addrp, datap),
perform the following procedure. Henceforth we assume that m = 2γ where γ
denotes the level whose capacity matches the present batch size.

1. Conflict resolution. Q′ := SuppressDuplicate(Q,m,PRAM.priority), i.e., per-
form conflict resolution on the batch of memory requests Q, and obtain
a batch Q′ of the same size but where each distinct address appears only
once—suppressing duplicates using the PRAM’s priority function priority, and
padding the resulting set with dummies to length m.

2. Fetch phase. For each opi ∈ Q′ in parallel where i ∈ [m], parse opi = ⊥ or
opi = (read, addri) or opi = (write, addri, datai):
(a) If opi = ⊥, let found := true; else let found := false.
(b) For each 	 = 0, 1, . . . L in increasing order, for τ = c� − 1, c� − 2 . . . 0 in

decreasing order:
– If not found: fetched := Lookup(Tτ

� , addri); if fetched �= ⊥, let found :=
true, data∗

i := fetched.
– Else, Lookup(Tτ

� ,⊥).
3. Rebuild phase. For each opi ∈ Q′ in parallel where i ∈ [m]: if opi is a

read operation add (addri, data∗
i ) to T∅; else if opi is a write operation, add

(addri, datai) to T∅; else add ⊥ to T∅.
Perform the following hash table rebuilding—recall that γ is the level whose
capacity matches the present batch size:
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(a) If level γ is full, then skip this step; else, perform the following:
Let S := T0 ∪ T1 ∪ . . . ∪ Tγ−1, and T

cγ
γ := Build

(SuppressDuplicate(S, μγ , pref)) where pref prefers a block from a smaller
level (i.e., the fresher copy) if multiple blocks of the same address exists.
Let cγ := cγ + 1, and for every j < γ, let cj := 0.

(b) At this moment, if level γ is still available, then let Tcγ
γ := Build(T∅), and

cγ := cγ + 1.
Else, if level γ is full, perform the following:
Find the first available level 	 > γ greater than γ that is available; if no
such level 	 exists, let 	 := L and let cL := 0.
Let S := T∅ ∪T0 ∪ . . . ∪T�−1; if 	 = L, additionally include S := S ∪TL.
Let Tc�

� := Build(SuppressDuplicate(S, μ�, pref)), and let c� := c� + 1. For
every j < 	, reset cj := 0.

Deamortization. The deamortization technique (described in the online full
version [7]) of Ostrovsky and Shoup [33] applies here as well, and thus the work
of rebuilding hash tables are spread evenly across memory requests.

Obliviousness. The obliviousness proof is basically identical to that presented
in Sect. 4.1. Since we explicitly resolve conflict before serving a batch of m
requests, we preserve the non-recurrence condition. The only remaining differ-
ences here in comparison with Sect. 4.1 is that (1) here we use a general branching
factor of μ rather than 2 (as in Sect. 4.1); and (2) here we consider the parallel
setting. It is clear that neither of these matter to the obliviousness proof.

Theorem 4 (OPRAM from oblivious parallel hashing). Assume the exis-
tence of one-way functions and a (Wbuild, Tbuild,Wlookup, Tlookup)-oblivious hash-
ing scheme. Then, there exists an ORAM scheme that achieves the following
performance for block sizes of Ω(log N) bits where L = O( log N

log log N ):

total work blowup := max

(
L∑

�=0

Wbuild(μ�, N), logφ N ·
L∑

�=0

Wlookup(μ�, N)

)

+O(L log N),

and para. runtime blowup :=

max

(

{Tbuild(μ�, N)}�∈[L], logφ N ·
L∑

�=0

Tlookup(μ�, N)

)

+ O(L).

Proof. Basically, the proof is our explicit OPRAM construction from any parallel
oblivious hashing scheme described earlier in this section. For total work and
parallel runtime blowup, we basically take the maximum of the ORAM’s fetch
phase and rebuild phase. The additive term O(L log N) in the total work stems
from additional building blocks such as parallel duplicate suppression and other
steps in our OPRAM scheme; and same for the additive term O(L) in the parallel
runtime blowup.
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Using the simple oblivious hashing scheme in Sect. 3 with ε = 3
4 , we can set

φ = 1
4 to obtain the following corollary.

Corollary 3 (Asympototically efficient OPRAM for small blocks).
Assume that one-way functions exist. Then, there exists a computationally secure
OPRAM scheme that achieves O(log2 N/ log log N) simulation overhead when
the block size is at least Ω(log N) bits.
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Abstract. Authenticated encryption schemes in practice have to be
robust against adversaries that have access to various types of leakage,
for instance decryption leakage on invalid ciphertexts (protocol leakage),
or leakage on the underlying primitives (side channel leakage). This work
includes several novel contributions: we augment the notion of nonce-base
authenticated encryption with the notion of continuous leakage and we
prove composition results in the face of protocol and side channel leak-
age. Moreover, we show how to achieve authenticated encryption that
is simultaneously both misuse resistant and leakage resilient, based on
a sufficiently leakage resilient PRF, and finally we propose a concrete,
pairing-based instantiation of the latter.

Keywords: Provable security · Authenticated encryption · Generic
composition · Leakage resilience · Robustness

1 Introduction

Authenticated Encryption (AE) has arisen out of (practical) necessity: his-
toric modes-of-operation for symmetric encryption [33] implicitly target con-
fidentiality against passive adversaries, but most realistic threat models also
demand security against active adversaries. Thwarting adversaries trying to
modify ciphertexts is best captured by requiring ciphertext integrity; encryption
schemes that offer both this and a suitable passive indistinguishability notion are
said to provide authenticated encryption. Today, authenticated encryption has
become the primitive of choice to enable secure communication. AE schemes can
be constructed from components that individually provide either confidentiality
or authenticity, both in a traditional probabilistic setting [6] and a more modern
nonce-based one [32]. As a result, there exist several black-box constructions of
authenticated encryption schemes based on simpler, keyed primitives such as
pseudorandom functions or permutations, including MACs and blockciphers.
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Unfortunately, in practice neither the composition nor the underlying com-
ponents behave as black-boxes: side-channel attacks often leak additional infor-
mation to an adversary, leading to real-life breaks (e.g. [47]). Invariably, these
attacks are possible by exploiting a discrepancy between the capabilities of a
theoretical adversary and an actual, real-life one. Thus, these attacks neither
violate the security assumptions on the primitive nor do they invalidate the
security claims: rather, they render these claims insufficient and the existing
security models as inadequate.

In response, a number of works have tried to capture more closely how proto-
cols behave when implemented [10,16,19]. We are particularly interested in sub-
tle authenticated encryption [4] which augments the authenticated encryption
security game with an implementation-dependent leakage oracle that provides
an adversary deterministic decryption leakage on invalid ciphertexts only. Subtle
authenticated encryption encompasses earlier notions such as multiple decryp-
tion errors [9] and the release of unverified plaintexts [2]; it can be regarded as
protocol leakage.

Orthogonally, primitives can leak. Kocher (et al.) [24,25] showed how both
timing and power measurements lead to a side-channel, enabling the extraction
of secret data out of cryptographic devices. Primitives believed to be secure, such
as AES, were broken without actually violating the assumption that AES is a
secure pseudorandom permutation. Such attacks are captured in the framework
of leakage resilient cryptography. Here an adversary can adaptively choose a
leakage function that is restricted in scope as only computation is assumed to
leak information [31], and in size. The latter is captured by leaking only a certain
number of bits per call. If the overall leakage remains unbounded the model is
referred to as continuous leakage. For a variety of schemes and security notions,
resilience against certain classes of leakage can be proven [12,23,46], but dealing
with adaptivity that allows leakage after an adversary has received a challenge
is often problematic.

The current theory of authenticated encryption is not suited to take this
additional leakage resource into account. In this work we provide a framework
for dealing with AE in the presence of leakage, which then allows us to determine
the constraints on primitives and constructions alike to yield AE secure against
classes of leakage functions. Moreover, we propose a concrete instantiation of
a leakage-resilient pseudorandom function suitable to be used to form the first
leakage-resilient, nonce-based authenticated encryption scheme.

1.1 Our Contributions

Augmenting nonce-base authenticated encryption with leakage. We
start by augmenting the nonce-based authenticated encryption security notion
(Sect. 2.1) with leakage (Sect. 3). This new notion, which we will refer to as
LAE, can be regarded as a generalization of the SAE framework by Barwell
et al. [4], yet it also captures leakage-resilience as introduced by Dziembowski
and Pietrzak [14]. We provide corresponding leakage notions for the primitives
used by the composition results by Namprempre et al. [32] (henceforth NRS),
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namely nonce- or iv-based encryption, pseudorandom functions, and message
authentication codes.

For the traditional AE notion by Rogaway and Shrimpton [42], an adver-
sary has to distinguish between a world with a real encryption and decryption
oracle on the one hand, and a world with a random ciphertext generator and a
rejection oracle on the other. In the LAE game the number of oracles available
to the adversary increased from two to four: both worlds are augmented with
true encryption and decryption oracles and we will allow (only) these additional
oracles to leak.

For the leakage mechanism, we adopt the approach originally suggested by
Micali and Reyzin [31] and later adapted for leakage resilience [14] where an
adversary can provide a leakage function to be evaluated on the internal vari-
ables of the oracle, with the leakage output to be returned to the adversary
alongside the normal output. The model is very powerful, allowing the adver-
sary to adaptively choose which leakage function they would like evaluated on a
query by query basis.

To avoid trivial wins, the leakage functions that are allowed need to be
restricted to prevent, for instance, leaking the entire key in one go. We model
this by explicitly defining security relative to a class of leakage functions (as is
common for instance in the contexts for related-key or key-dependent message
attacks). By appropriately setting the class of leakage functions, we show that
our notion generalises previous strengthened AE security notions, including SAE,
RUP and distinguishable decryption errors [2,4,9], and previous leakage notions,
including the simulatable leakage, auxiliary input and probing models [12,20,46].

Generic composition with leakage. Our second contribution (Sect. 5) is an
investigation on how to perform generic composition in the presence of leakage
by extending the results of NRS [32]. We establish that schemes susceptible
to release of unverified plaintext are unsuitable even for much more modest
types of leakage and we confirm modern folklore that this affects all schemes
that are roughly of the type Encrypt-and-MAC or MAC-then-Encrypt (cf. [2]).
Conversely, we show that Encrypt-then-MAC style schemes are secure against a
large class of leakage functions, where we express this class in terms of the leakage
classes against which the underlying primitives are secure. For this composition
of leakage from different primitives, we effectively just concatenate the leakage
of the constituent parts, which implicitly assumes that only computation leaks
(cf. [31]).

In particular, we show security of the N2 and A5 constructions of NRS against
nonce-respecting adversaries (Theorem 1 and Corollary 1), and of A6 against
adversaries who never repeat a nonce and associated-data pair (Corollary 2).

The above result imply that none of the NRS schemes achieve misuse resis-
tant LAE security (mrLAE), hence we propose a novel generic construction
that does meet this strongest definition of security, albeit at the cost of fur-
ther ciphertext expansion (Theorem 3). Our result gives ciphertexts that are
two blocks longer than the messages (rather than the single block expansion of
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an NRS scheme): we leave open whether mrLAE security can be achieved with
less ciphertext expansion.

Moreover, we show that instantiating CFB mode with a pseudorandom func-
tion yields a secure iv-based encryption scheme even under leakage (Theorem 4).
This allows us to apply our generic composition results to construct the first AE
scheme secure against continuous leakage based on a pseudorandom function
actively secure against continuous leakage and a MAC scheme secure against
continuous leakage of both tagging and verification.

Instantiation using a new leakage resilient PRF. Our final contribution
(in the full version [3]) is the construction of these latter two primitives. To this
end, we extend the MAC of Martin et al. [30] in two directions. First, we show
how it can be adapted such that it may leak under verification answering an open
question from their work. Then, we show how to implement the tagging function
such that it is a PRF in the face of leakage. While the previous implementation of
the MAC is a pseudorandom function when no leakage is present, already small
amounts of leakage are disastrous for the pseudorandomness property. It turns
out that the underlying key update mechanism due to Kiltz and Pietrzak [23] is
intrinsically unsuitable to create an actively secure pseudorandom function: the
mechanism shares a key out in two which allows a form of leak-in-the-middle
attack. The solution we propose is to use three shares instead and we prove that
the resulting construction is indeed a pseudorandom function that is leakage-
resilient even against adaptive adversaries.

1.2 Related Work

Authenticated encryption. One of the earliest symmetric works on concrete secu-
rity of AE was by Bellare and Namprempre [6]. Working within the probabilistic
model, they formalised what it meant to be both confidential and authentic, and
investigated how one could achieve this through generic composition, combin-
ing two schemes (one with each security property) such that their composition
achieved both. Yet, modern authenticated encryption is a stateless and deter-
ministic notion, taking in any randomness or state as an extra parameter termed
the nonce. It was formalised across a number of papers, culminating in Rogaway
and Shrimpton’s 2006 work on DAE [42] and only recently a comprehensive
study of all the ways one could combine a PRF with an encryption scheme was
completed in the nonce-based setting [32].

The CAESAR competition [7] has driven further research into AE, and par-
ticularly into the concept of robustness, namely the idea that a scheme should
be more resistant to common problems faced in the real-world. One branch of
this research has been into designing schemes that are resistant to certain forms
of leakage. Prior to the competition, Boldyreva et al. [9] had investigated how to
model a scheme from which decryption failures are not identical, such as under
a timing attack. Andreeva et al. [2] (RUP) considered the release of unverified
plaintexts, where the decryption oracle releases candidate plaintexts even if they
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fail verification. The robust authenticated encryption notion of Hoang et al. [19]
also implies security against the leakage of these candidate plaintexts, among
other goals. Barwell et al. [4] defined the SAE framework as a generalisation
of these notions, and used it to compare the three previous works. However, in
each of these cases the adversary only receives leakage from decryption, and this
leakage is modelled as a fixed, deterministic function, rather than a more general
set of functions available to an adaptive side-channel attacker.

Leakage resilient constructions. Within the leakage resilient literature, there are
several works towards providing leakage resilient encryption, but most of them
have been in the bounded leakage model [18,37]. In the bounded retrieval model,
Bellare et al. [5] proved the security of a symmetric encryption scheme that
provides authenticated encryption in the leak free case, and indistinguishability
when leakage is involved. Pereira et al. [34] proposed what is, to our knowledge,
the first and only leakage resilient encryption scheme in the simulatable leakage
model. However, the construction requires a leak free component and in practice
relies on the existence of efficient simulators of the leakage from (e.g.) AES,
simulators that Longo et al. [27] demonstrate are unlikely to exist.

Following on from Pereira et al. [34], the recent work by Berti et al. [8] also
attempts to construct leakage resilient misuse-resistant authenticated encryp-
tion, albeit from a very different direction. In some respects, our work is “top-
down”, setting a clear objective and evaluating what this demands of the under-
lying primitives, while theirs is “bottom-up”, beginning with well understood
primitives and asking what can be constructed. Motivated by this, the two papers
adopt very different leakage models: we work in full generality, whereas differ-
ent sections of Berti follow different leakage models. More generally, their work
assumes a single (completely) leak free component, whereas ours allows any of
the components to leak as long as the overall leakage is not too great. They
hypothesis that (without many leak-free components) leakage resilient misuse
resistant authenticated encryption is impossible, while we show that this can be
achieved. Furthermore, their work does not consider associated data.

Another manner to ensure that the adversary cannot progressively leak the
key material is to update the keys themselves (instead of their representation).
Previous leakage resilient works in this direction include the MAC of Schipper
[44], or the DH-ratcheting concept [11,35]. However, these tend to require that
all parties to the communication hold modifiable state and remain perfectly in
sync, a demand we are able to avoid.

Each of the models above severely restricts the information or computations
that an adversary may be able to perform, thereby limiting their utility for
modelling active side-channel attacks. The continuous leakage model mitigates
these problems, which is why we focus on that when instantiating our AE scheme.
To the best of our knowledge, ours is the first leakage resilient encryption scheme
in the continuous leakage model.

Our generic composition results allow us to combine leakage resilient com-
ponents, for which we provide candidates built around a PRF secure against
leakage. Currently there are two leakage resilient PRGs, due to Pietrzak (and
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Dziembowski) [14,36], from which it may be possible to build a leakage resilient
stream cipher, although issues arise with restarting using the same key. Works
of Dodis and Pietrzak [13], and Faust et al. [15] describe two PRFs secure under
non-adaptive leakage: each requires that the leakage (functions) are fixed at the
start of the game, while the latter also requires the inputs to be fixed. For a
PRF to be used within a composition theorem, adaptive security is required.
Finally, Martin et al. [30] provide a MAC which is secure against leakage on the
tagging function only. We will use this as the basis of our instantiations, and
extend it to achieve security against leakage on verification queries, resolving an
open question from their work.

2 Preliminaries

General notation. For assignment of a value U to the variable T we will write
T ← U , where U may also be the outcome of some computation. If the variable
is a set, we use the shorthand S ←∪ U for S ←S ∪{U}. To assign a value drawn
uniformly at random from some finite set B to variable A, we write A ←$ B. By
convention, arrays and lists are initialised empty. We use = for equality testing.
We write A → b, to denote that adversary A outputs some value b. To define
notions etc. we will write X : = Y to say that X is defined as some expression
Y . The distinguished symbol E denotes an invalid query. The symbol || denotes
an unambiguous encoding, meaning if Z ←X||Y it must be possible given Z to
uniquely recover X and Y , notated X||Y ← Z, no matter what types X,Y may
take. The length |A| is the length of A when expressed as a string of elements
of some underlying alphabet Σ (usually Σ = {0, 1}).

Whenever a function is described with a subscript, this will define the first
parameter, meaning fk(·, ·) = f(k, ·, ·). For consistency and clarity of notation,
we refer to security definitions in capitals (e.g. IND–CPA) and typeset functions
in calligraphic (E), spaces in sans serif (K), “secret” elements in lower case (k),
known elements in upper case (M), and adversaries in blackboard bold (A).
When we introduce implementations, these will be denoted in bold (E).

Adversarial advantages. We will define our security notions through indistin-
guishability games where an adversary is given access to one of two collections
of oracles. The adversary A may make queries to these oracles, and eventually
outputs a bit. Instead of writing the games in code, we adopt shorthand nota-
tion [2] so that the distinguishing advantage of A between two collections of n
oracles (O1, . . . ,On) and (P1, . . . ,Pn) is defined as

Δ
A

(O1, . . . ,OnP1, . . . ,Pn

)
: =

∣
∣Pr

[
A

O1,...,On → 1
] − Pr

[
A

P1,...,Pn → 1
]∣
∣ ,

where the probabilities are taken over the randomness of the oracles, and key
k ←$ K (note that multiple oracles will often use the same key). We may refer
to the oracles by their numerical position: the ith oracle implements either Oi

or Pi depending which collection the adversary is interacting with.
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A scheme is considered secure with respect to a particular security goal if the
relevant adversarial advantage is small for all adversaries running within reason-
able resources. We do not draw judgement as to what “small” may mean, nor
what constitutes “reasonable resources”, since these depend heavily on context.

2.1 Authenticated Encryption

Core definitions. Early works to formalize symmetric encryption (cf. [21])
closely followed the precedent for public key encryption. Over the years under-
standing of what should be expected of symmetric encryption evolved consider-
ably, both in terms of syntax and security. The basis for our work will be the
widely accepted nonce-based model using indistinguishability from random bits
for confidentiality [39–41]. After introducing this model, we will briefly refer back
to an older, non-authenticated version of encryption as it is one of the building
blocks later on.

Syntax. An authenticated encryption scheme consists of a pair of deterministic
functions Enc and Dec, called encryption and decryption, respectively. Encryp-
tion Enc takes four inputs, resulting in a single ciphertext C ∈ C. Besides the
key k ∈ K and the message M ∈ M, the inputs are some associated data A ∈ A
that will be authenticated but not encrypted, and finally a nonce N ∈ N used to
ensure that repeat encryptions will not result in repeat ciphertexts. Decryption
Dec takes as input again the key, the nonce, and the associated data, in addition
to the ciphertext. It outputs a purported message or an error message ⊥�∈ M.

This syntax can be summarized as

Enc : K × N × A × M → C

Dec : K × N × A × C → M ∪ {⊥}.

In practice, the key space K, nonce space N, associated data A, message space M,
and ciphertext space C are generally bitstrings of various lengths. It is common
to have A = M = C = {0, 1}∗, and K = N = {0, 1}n for some security parameter
n. That said, our implementation, given in the full version [3] instantiates the
various spaces with more general groups (linked to pairings).

We require that an authenticated encryption scheme is both correct and tidy.
These two properties are satisfied iff, for all k,N,A,M,C in the appropriate
spaces:

Correctness: Deck(N,A,Enck, (N,A,M)) = M
Tidiness: if Deck(N,A,C) �=⊥ then Enck(N,A,Deck(N,A,C)) = C

Together, tidiness and correctness imply that decryption is wholly specified by
the encryption routine.

Additionally, we require encryption to be length regular, which is satisfied
if there exists some stretch function τ : N → N such that for all inputs the
ciphertext length |Enck(N,A,M)| = |M | + τ(|M |).
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Security notions. Ever since Rogaway and Shrimpton’s treatment of determin-
istic authenticated encryption, it is customary to capture both confidentiality
and integrity requirements in a single game. Here the adversary gets oracle
access either to the “real” world or to the “ideal” world and needs to distinguish
between these two worlds. In the real world, oracle access consists of the encryp-
tion and decryption functionalities Enck and Deck, using a randomly drawn and
secret key k. In the ideal world, the encryption oracle is replaced with an oracle
$ that generates randomly drawn ciphertexts and the decryption oracle with an
oracle ⊥ that rejects all ciphertexts. Irrespective of which world the adversary
is in, we will refer to the Enck vs. $ oracle as the challenge encryption oracle or
as the first oracle (based on the oracle ordering) and to the Deck vs. ⊥ oracle as
the challenge decryption (or second) oracle.

We will use a slightly different, but equivalent, formulation where an adver-
sary additionally has access to the true encryption and decryption oracles in both
worlds. Thus the adversary will have access to four oracles in each world: the
challenge encryption oracle, the challenge decryption oracle, the true encryption
oracle, and finally the true decryption oracle. Having these extra oracles will help
us later on to add leakage, which will only ever be on the true oracles and never
on one of the challenge oracles. One could even argue that the additional ora-
cles provide a more representative and expressive framework: the honest oracles
describe how an adversary may “learn” about a system, while the challenge ones
allow them to “prove” they have done so (cf. a similar, more detailed argument
for subtle authenticated encryption [4]).

As our reference point we will use the oracles defined in Fig. 1, with all
probabilities taken over randomness of the key and sampling within the oracle.

function $F (X)
C0 ← F (X)
C1 ←$ Σ|C0|

return C1

function ⊥G(X)
return ⊥

Fig. 1. The generic oracles $F and ⊥G idealise the output of F as random elements
of Σ, and of G as always rejecting. They are used to define the reference world in our
security definitions, for various choices of (F, G), which will be omitted whenever clear.
Usually Σ = {0, 1}, with |C0| the length of C0 as a bitstring.

Queries. Already in the leak-free setting, certain combinations of queries will
easily distinguish the two worlds. To avoid these trivial wins, we will therefore
prohibit certain queries—or in some cases simply assume adversaries refrain from
making prohibited queries. For example, if an adversary can send a challenge
encryption to decryption they can trivially win. As a general rule, we prohibit
the same query being made to oracles which take the same inputs (such as
the honest and challenge encryption oracles), and also prohibit performing the
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inverse of previous queries. For example, the ciphertext output from the challenge
encryption oracle cannot be passed into the decryption oracle.

If an adversary has made a query (N,A,M) to an encryption oracles (either
challenge or true) receiving output C, then making the same query again to one
of the encryption oracles or making the query (N,A,C) to one of the decryption
oracles (either challenge or true) the original and the new queries are deemed
equivalent. For any query, we refer to the process of later making an equivalent
query as forwarding the query, i.e. to make a second query whose inputs were
inputs or outputs from the first query. A special case of forwarding a query
is repeating the query, namely making the same query again to the same ora-
cle. Forwarding queries from challenge to true oracles (or vice versa) or from
challenge encryption to challenge decryption oracles (or vice versa) will lead to
trivial wins unless oracle behaviour is adapted. Without loss of generality, we
will restrict the adversary from making problematic queries instead.

Nonce selection requirements. Our security games will be agnostic over how the
nonce is selected, with this property enforced by restricting the adversary. An
adversary against an (authenticated) encryption scheme is called nonce respect-
ing if whenever making a new query they do not use a nonce more than once to
any oracle matching the syntax of Enck or Ek. They are random-iv respecting, or
simply iv respecting, if for any new query with these oracles their nonce N (which
we term an IV and will generally write as I instead) is sampled uniformly from
N immediately prior to querying the oracle (and thus not involved in the logic
used to select other elements of the query). These requirements do not apply
when interacting with oracles matching the syntax of Deck or Dk. A scheme
is called (nonce) misuse resistant if the adversary does not have to be nonce
respecting, providing that the adversary does not make multiple queries using
the same (N,A,M) triple.

Definition 1. Let Enc be an authenticated encryption scheme, A an adversary
who does forward queries to or from his first or second oracle (and thus does not
repeat first oracle queries). Then, the nAE advantage of an adversary A against
Enc is

AdvAE
Enc(A) := Δ

A

(
Enck,Deck,Enck,Deck

$ , ⊥ ,Enck,Deck

)
.

Following our earlier convention, we will refer to a secure nAE scheme (or
simply nAE) if this nAE advantage is small for all nonce-respecting adversaries
running within reasonable resources, and mrAE if it is small for all adversaries
running within reasonable resources that might repeat nonces.

Building blocks: Encryption, MACs and PRFs. An authenticated encryp-
tion scheme is often constructed out of simpler components, with authenticated
encryption security derived from that of its constituent parts. The most com-
mon of these are “simple” symmetric encryption (ivE), MACs and PRFs. Here
we omit the relevant syntax and security notions of these notions, though in
the full version [3] we provide a treatment analogous to that for authenticated
encryption above.
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Generic composition for nAE. NRS [32] investigated how to construct an
nAE scheme by composing two PRFs with an ivE scheme. The IV of the ivE
scheme is derived from the nAE’s inputs using the first PRF call; the optional
second PRF call may be used to create an authentication tag. Different schemes
emerge by changing which variables are provided to each of the components.
NRS identify eight schemes, dubbed A1–A8, with strong security bounds. For a
further four schemes (A9–A12) neither strong security bounds nor insecurity was
established. Additionally, NRS investigated mechanisms for combining a PRF
with an nE scheme. Three schemes (N1–N3) were found secure, with that of a
fourth (N4) remaining unresolved.

N M A

EkE

TkM

C T

N M A

FkF
ivEkE

TkM

C T

I

N M

FkF
ivEkE

C

I

Fig. 2. Graphical representations of the encryption directions of generic composition
mechanisms. On the left, N2 converts a nonce-based encryption algorithm E and MAC
scheme (T , V) into an nAE scheme. On the right, iv2n converts an iv-based encryption
scheme ivE and a PRF into a nonce-based encryption algorithm. Composing these
yields A5, shown in the middle ignoring the dotted input, while A6 includes the dotted
input. Overall decryption of A5,A6, and N2 will recompute and verify the tag first,
only proceeding with further decryption of C if this verification is successful.

Figure 2’s middle panel shows the schemes A5 and A6. For these two schemes,
as well as for N2 (on the left), the ciphertext is input to the second PRF, which
means they classify as Encrypt-then-MAC (EtM). The schemes A4, A7–A12, as
well as N3 and N4 only use a single PRF and release the IV as tag; for that reason
we refer to them as MAC-then-Encrypt (MtE). Finally, the schemes A1–A3 and
N1 use two PRFs that can be called in parallel, leading to their classification as
Encrypt-and-MAC (E&M). We refer to NRS for full descriptions and graphical
illustrations of all schemes mentioned above.

3 Security Notions Involving Leakage

Authenticated encryption, as defined above, is deterministic. In a leakage-free
setting, this provides a stronger notion than the older probabilistic notion of
encryption (as implicitly still used for ivE). When introducing leakage, determin-
istic schemes are problematic both from a practical and a theoretical perspective.
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On the one hand, a practical side-channel attack such as differential power
analysis can effectively recover keys from unprotected blockciphers and their AE
modes with near certainty. Randomized masking based on secret sharing is one
of the main countermeasures against these attacks.

On the other hand, theoretical leakage is often modelled as a function on the
inputs of the computation, which will include the key. If with each invocation of
the scheme an adversary can let the scheme leak a different key bit of its choice,
the full key is easily recovered. To prevent such devastating yet simple leakage,
a typical design strategy is to split the key in two shares and update the shares
on-the-fly using fresh randomness, mimicking the practical approach.

3.1 Implementations versus Functions

In both the practical and the theoretical approaches mentioned above, a deter-
ministic scheme is implemented in a randomized fashion in order to provide
resistance against leakage. Therefore, when arguing about leakage, we will need
to make a distinction between the scheme (a collection of deterministic func-
tions) and its probabilistic implementation.

For our definition of the implementations of a function we take our cue from
the secret-sharing approach, where a redundant representation of the key is used
and this representation is rerandomized as part of the implementation. To enable
this rerandomization, we provide the implementation of a function with explicit
randomness in Definition 2 below, where we use a bold font to denote either
the implementation of a function or the representation of a key used by the
implementation.

Definition 2. An implementation of a function f : K×X → Y is a deterministic
function f : K × X × R → K × Y along with a probabilistic key initialisation
function ι : K → K such that ι(k) = ι(l) ⇒ k = l. We define the inverse of ι as
the function ι−1 : K → K ∪ {⊥} such that ι−1(k) = k if ι(k) could have resulted
in k, and ⊥ if no such k exists.

The implementation is correct iff for all k ∈ K,X ∈ X, and r ∈ R, setting
k← ι(k) and (k′, Y )←f(k,X; r) guarantees both Y = f(k,X) and ι−1(k′) = k.

The initial representation of the key is generated using the function ι, which
maps a key k ∈ K to a suitable representation k ∈ K for the implementation. We
assume that ι is performed only once, and in a leak-free manner, during setup
(straight after key generation). Moreover, its inverse ι−1 induces an equivalence
relation on the space K; in other words, the implementation keys k can be
thought of as alternative representations of the key. During evaluation of f the
auxiliary input r ∈ R is used to refresh the representation; typically this requires
a good randomness source to draw r from.

Discussion. Correctness implies that an implementation is identical to the
original function when restricted to the second output and that the new key
representation k′ is equivalent to the initial one k. We make no demands of
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k or k′ beyond these, so it is permissible to set k = k′ = k and thus recover the
traditional syntax. Our security definitions will be such that for correct schemes
and assuming “trivial” leakage, the corresponding leak-free security notions from
the preceding section will emerge.

Definition 2 can be linked to practice in a straightforward manner. Recall
that practical implementations of blockciphers often use masking based on secret
sharing schemes. In this case, the implementation of the blockcipher describes
how to evaluate the blockcipher based on the shares of the key as well as how the
sharing is refreshed using external randomness r (which need not be leak-free).
Furthermore, ι is exactly the function that creates the initial secret sharing of
the key.

Syntactically the implementation f may appear stateful: after all they take
in some k and output an updated k′ for the next invocation. However, since the
implementation is of a stateless function f , there is no need to synchronize state
between communication parties. Instead, each party can use its own, independent
representation of the key.

Implementation of an nAE scheme. For concreteness, we now explicitly
define the implementation of an nAE scheme. We assume that Enc and Dec
syntactically use the same representations K (and key initialisation function ι),
which we later use for expressing our security notions.

By correctness of the implementation, one can see that the ciphertext output
by Enc (resp. message by Dec) will always be independent of the randomness r,
since they are equal to the corresponding output of Enc (resp. Dec). Definitions
for the implementations of other security primitives are written accordingly.

Definition 3. Let (Enc,Dec) be an authenticated encryption scheme. An AE
implementation is a pair of deterministic functions

Enc : K × N × A × M × R → K × C

Dec : K × N × A × C × R → K × (M ∪ {⊥})

along with ι : K → K satisfying ι(k) = ι(l) ⇒ k = l and ι−1 : K → K ∪ {⊥}
such that ι−1(k) = k if ι(k) could have resulted in k, and ⊥ if no such k exists.
The implementation is correct iff for any k,N,A,M,C, r from the appropriate
spaces and k ←$ ι(k), setting

(k′, C ′)←Enc(k, N,A,M ; r) and (k′′,M ′)←Dec(k, N,A,C; r),

(k′, C ′)←Enc(k, N,A,M ; r) and (k′′,M ′)←Dec(k, N,A,C; r), the following
properties hold:

k = ι−1(k) = ι−1(k′) = ι−1(k′′)
C ′ = Enck(N,A,M) and M ′ = Deck(N,A,C).
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3.2 What Constitutes Leakage

Following Micali and Reyzin’s approach, we will model leakage by allowing an
adversary to specify a leakage function in conjunction with an oracle query. The
input signature of the leakage function matches that of the implementation f it
relates to, allowing it to wholly simulate the implementation. A leakage set is a
collection of leakage functions for an implementation.

Definition 4. A leakage function of an implementation f : K×X×R → K×Y
is a function L : K × X × R → L for some output leakage space L. A leakage set
of an implementation f is a set of leakage functions.

The choice of leakage set should contain all plausible (functions of) inputs to
the implementation that an adversary can compute, and may be probabilistic.
This might include functions of any intermediate variables, since these are com-
putable from the inputs simply by simulating the construction. Broadly speaking,
the larger the leakage set the more powerful the adversary is likely to be. The
leakage set ∅ allows us to model the leak-free case. Technically we define it to be
the set containing just the null function, meaning the adversary can always select
a leakage function, thus maintaining the correct syntax for our security games.

3.3 Security Notions Incorporating Leakage

We are now in a position to define the security of an implementation in the
presence of leakage. We do so by reframing the classical notions given to work
on the implementation of a function, and by extending the notions such that
the honest oracles are allowed to leak. The adversary wins the game if they
can distinguish whether their leak-free challenge oracles implement the scheme
honestly or are idealised. We differentiate our notions from the classic variant
by prefixing an “L”, for leakage.

In the classical setting, each oracle simply evaluates the appropriate func-
tion with the game’s secret key. For an implementation, a similar, but slightly
more complicated, approach is required. The oracle must draw randomness, and
provide this to the implementation to update the key representation. This same
randomness, along with all other inputs, must be provided to the leakage func-
tion. The new representation must then be stored, and the two outputs returned
to the adversary. For any implementation f , the corresponding leakage oracle is
denoted �[f ]k, when initialised with representation k = ι(k). Code-based descrip-
tions for certain leaky implementations related to authenticated encryption are
given in Fig. 3. If an adversary has access to multiple oracles based on the same
key, say Enck and Deck, then we will assume that their respective implemen-
tation oracles (so �[Enc]k and �[Dec]k) will operate on the same representation
k, which hence will be initialized only once. Such a shared representation cor-
responds to a setting where both Enc and Dec are implemented on the same
device. Needless to say, our security definitions below can be strengthened by
allowing an adversary to interact with multiple implementations each using their
own representation of the same key.



706 G. Barwell et al.

function �[E]k(M ; L)
r ←$ R
Λ ← L(k, M ; r)
C,k←E(k, M ; r)
return (C, Λ)

function �[D]k(C; L)
r ←$ R
Λ ← L(k, C; r)
M,k←D(k, C; r)
return (⊥, Λ)

function �[Enc]k(N, A, M ; L)
r ←$ R
Λ ← L(k, N, A, M ; r)
C,k←Enc(k, N, A, M ; r)
return (C, Λ)

function �[Dec]k(N, A, C; L)
r ←$ R
Λ ← L(k, N, A, C; r)
M,k←Dec(k, N, A, C; r)
return (M,Λ)

Fig. 3. Honest leakage oracles an adversary may use to help them distinguish. All
inputs are taken from the appropriate spaces, with leakage functions chosen from the
relevant leakage set. For LE-IND–CPLA, the adversary has access to �[E ]k, and for
the augmented notion (LE, LD)-IND-aCPLA they are also given very limited access to
�[D]k. LAE security, (LEnc, LDec)-LAE provides access to (�[Enc]k, �[Dec]k).

As in the leakage free definitions, security is taken over the randomness of
the initial keys, and of the oracles. Notice that this choice includes the sampling
from R. We assume the adversary only ever makes queries for which his inputs
are selected from the appropriate spaces. For leakage, this means some leakage
set that will be specified in the security notion.

For the purposes of defining forwarding of queries, we will ignore the addi-
tional input associated to the leakage. For instance, after a query (N,A,M)
to the challenge encryption oracle, the query (N,A,M,L) to the true encryp-
tion oracle will be considered equivalent—and would constitute forwarding—
irrespective of L.

Definition 5. Let (Enc,Dec) be an implementation of an authenticated encryp-
tion scheme Enc,Dec, and A an adversary who does not forward queries to or
from his first or second oracles (and thus does not repeat such queries). Then,
the (LEnc,LDec)–LAE advantage of an adversary A against (Enc,Dec) under
leakage (LEnc,LDec) is

AdvLAE
Enc,Dec;LEnc,LDec

(A) := Δ
A

(
Enck,Deck, �[Enc]k, �[Dec]k

$ , ⊥ , �[Enc]k, �[Dec]k

)

.

Definition 6. Let E be an implementation of an encryption scheme E, and A

an adversary who never forwards queries to or from his first oracle (and thus
does not repeat first oracle queries). The LE-IND–CPLA advantage (named for
chosen-plaintext-with-leakage-attack) of A against E is

AdvIND−CPLA
E;LE

(A) := Δ
A

(Ek, �[E ]k
$ , �[E ]k

)

.

We next provide an additional encryption notion, IND–aCPLA, that will
be required for our composition results later. It describes a modified version of
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the IND–CPLA game in which the adversary is also allowed leakage from the
decryption implementation �[D]k (see Fig. 3), but only on ciphertexts they have
previously received from �[E ]k. At first glance, this appears to be more similar
to an IND–CCA style notion, but we emphasise this is not the case since the
possible decryption queries are heavily restricted. Thus it should be thought of
as IND–CPA under the most general form of leakage. Indeed, when the leakage
sets are empty, the resulting security notion is equivalent to IND–CPA.

Definition 7. Let (E,D) be an implementation of an encryption scheme, A an
adversary who does not forward queries to or from his first oracle, and only
makes queries to their third oracle that were forwarded from the second. Then
the (LE,LD)-IND–aCPLA advantage of A against E is

AdvIND−aCPLA
E,D;LE,LD

(A) := Δ
A

(Ek, �[E ]k, �[D]k
$ , �[E ]k, �[D]k

)

.

The IND–aCPLA notion is required for the general composition, where the
goal is to construct an LAE scheme from an ivLE scheme (and other compo-
nents). However, for decryption of the LAE scheme to leak (as we want the
leakage to be as powerful as possible), the decryption of ivLE scheme would
have to leak. The IND–CPLA security notion does not capture this. Consider an
IND–CPA scheme where encryption does not leak, but the leakage from decrypt-
ing the zero string returns the key. Clearly the scheme is also IND–CPLA but
will trivially break when the adversary is given decryption leakage. The IND–
aCPLA notion is trying to capture that decryption “does not leak too much
information”, so that limited decryption queries made by the LAE scheme will
be able to leak.

Against many natural choices of leakage sets, (LE,LD)-IND–aCPLA and LE-
IND–CPLA are equivalent, since the encryption oracle often suffices to simulate
any leakage from decryption. In the nonce-abusing setting (where the adver-
sary is free to select nonces however they wish) there is an obvious mechanism
for proving the equivalence, using repeat encryption queries to simulate leak-
ing decryption queries, but even this requires rather strong assumptions on the
leakage sets.

In the nonce respecting or iv respecting scenarios such a general reduction
is not possible, because there is no way to allow the adversary to use the same
nonce multiple times, something a decryption oracle would allow. If the leakage
is independent of the nonce (for example) similar results can be recovered, but
these are much more restrictive scenarios. It is an interesting open problem to
describe sets LED that are in some sense “minimal” for various pairs of leakage
sets (LE,LD) taken from some general function classes.

LMAC and LPRF. Here we give the PRF and MAC notions a similar treat-
ment to the encryption definitions by enhancing the standard definitions to incor-
porate leakage.



708 G. Barwell et al.

The LPRF definition below strengthens earlier definitions by Dodis and
Pietrzak [13], and by Faust et al. [15]. In our definition (Fig. 4) both the leakage
functions and the inputs can be chosen adaptively based on outputs already seen
by the adversary.

function �[ ]k(M ; L)
r ←$ R
Λ ← L(k, M ; r)
T,k← (k, M ; r)
return (T, Λ)

function �[V ]k(M, T ; L)
r ←$ R
Λ ←L(k, M, T ; r)
V,k←V(k, M, T ; r)
return (V,Λ)

Fig. 4. Honest leakage oracles an adversary may use to help them distinguish. All
inputs are taken from the appropriate spaces, with leakage functions chosen from the
relevant leakage set. (LT, LV)-LMAC security gives access to (�[T ]k, �[V ]k). Since PRFs
and the tagging function of a MAC have the same syntax, the LPRF game provides
access to �[F ]k, which is identical to �[T ]k.

Definition 8. Let F be an implementation of a function F , and A an adver-
sary who never forwards or repeats queries. Then the LF-PRLF advantage of A
against F under leakage LF is

AdvPRLF
F ;LF

(A) := Δ
A

(Fk,�[F ]k
$ ,�[F ]k

)

.

Our notion of strong existential unforgeability under chosen message with
leakage (below) strengthens both the classical definition, and the leakage def-
inition of Martin et al. [30] (they only allow tagging to leak; setting LV = ∅
recovers their definition). Allowing meaningful leakage on T hampers direct use
of a secure LPRF as a MAC as typically during verification the “correct” tag
would be recomputed as output of the PRF and could consequently be leaked
upon (effectively yielding a surreptitious tagging algorithm).

Definition 9. Let (T ,V) be an implementation of a MAC (T ,V), and A an
adversary who does not forward queries from his second oracle to the first. Then
the (LT,LV)-sEUF-CMLA advantage of A against (T ,V) under leakage (LT,LV)
is

AdvsEUF−CMLA
T ,V;LT,LV

(A) := Δ
A

(Vk, �[T ]k, �[V ]k⊥ , �[T ]k, �[V ]k

)

.

Note that we cast unforgeability as a distinguishing game, rather than as
a more usual computational game (“adversary must forge a tag”), but it is
straightforward to show equivalence (even in the face of leakage).
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4 Applying LAE to Attacks in Theory and Practice

A security framework is not much use if it does not highlight the difference
between schemes for which strong security results are known, and those against
which efficient attacks exist. In this section we discuss the types of leakage nor-
mally considered within the literature. We show how previous leakage models
can be captured by our leakage set style notion. In the literature there is focus
on two types of leakage; protocol leakage (by the AE literature) and side channel
leakage (by the leakage resilient literature). We believe that these two notions
are highly related and thus we discuss how to capture both. For example, termi-
nation of an algorithm at different points (distinguishable decryption failures) is
normally detected by a side-channel; timing can be used to capture this if the
failures terminate the algorithm at different points in time and power can be
used to detect if conditional branches were taken.

Below we recast existing leakage resilience work within our general frame-
work. For completeness, in the full version [3] we describe an existing attack
(against GCM) within our setting.

4.1 Theoretical Leakage Models

We observe that our model is in many ways the most general possible, and that
many previous leakage notions can be captured as version of the (LE,LD)-LAE
security game for suitable choice of leakage sets (LE,LD). Reassuringly, by setting
(LE,LD) = (∅, ∅) we recover the traditional leakage-free security notions, with
(∅, ∅)-nLAE equivalent to nAE, and both ∅-IND–CPLA and (∅, ∅)-IND–aCPLA
equivalent to IND–CPA, meaning a secure nE scheme is ∅-nLE secure.

The deterministic decryption leakage notions from the AE literature can be
recovered by choosing the appropriate leakage set. The SAE framework gener-
alises both the RUP model, and (nonce-based analogues of) the Distinguishable
Decryption Failure notions of Boldyreva et al. [2,4,9]. The security notions are
parametrised by a deterministic decryption leakage function Λ, corresponding to
security under the leakage sets (LE,LD) = (∅, {Λ}). Thus the strongest notions
available in these settings are equivalent to (∅, {Λ})–LAE. Several of their weaker
notions translate to the corresponding weakening of this, including authenticity
under deterministic leakage, (known variously as CTI–sCPA, INT–RUP or an
extended form of INT–CTXT), which translates to a variant of (∅, {Λ})–LAE
in which the adversary cannot query the encryption challenge oracle (and thus
does not interact with either Ek or $).

In the simulatable leakage model (e.g. [46]), the adversary receives leakage
in addition to their query, but is restricted to leakage functions that can be
simulated without the key. The simulatable model considered by Standaert et al.
(for example) can be captured by our model by having set of leakage functions
contain the single function which provides the power trace to the adversary. The
auxiliary input model [12] gives the adversary the output of a hard to invert
function applied to the key, alongside the normal security notion interactions.
The only computation leaks model [31] (discussed in more detail in Sect. 5.1)
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restricts the adversary to leakage functions that can be locally computed: any
step of the algorithm can only leak on variables being used at that point. In
the following sections we show how this leakage set can be defined for our given
constructions.

In the probing model [20] the adversary can gain access to the values of t of
the internal wires from the computation. A scheme is secure if an adversary with
the knowledge of t internal wires can do no better than if they had access to the
function in a black box manner. If there are n internal wires, this leakage can
be captured by our set notation by constructing a set with n choose t leakage
functions, each giving the complete value of the relevant wires.

Our leakage sets incorporate the bounded leakage model (e.g. [18,22,26]) by
restricting the set of allowable adversaries to those who only make sufficiently
few queries to the leakage oracles.

One mechanism that need not rely on randomness is to instead use a leak-free
component [48]. Although instantiating such components in practice is between
hard and impossible [29], our framework nonetheless supports it (by suitable
choice of leakage set).

Another idea to provide security is frequent rekeying. However, such a solu-
tion relies on synchronized states between encryption and decryption which can
be difficult to maintain, thereby restricting applicability of this approach. How-
ever, in specific contexts such as secure channels, synchronization might not be
too onerous.

5 Generic Composition for LAE

5.1 Modelling Composed Leakage

Our challenge is to establish to what extent the NRS schemes remain secure when
taking leakage into account. Ideally, we would like to claim that if both the ivE
and the PRFs are secure in the presence of leakage, then so will the composed
nAE be. To make such a statement precise, the leakage classes involved need to
be specified. We opt for an approach where the leakage classes for the components
are given (and can be arbitrary) and then derive a leakage class for the resulting
nAE for which we can prove security.

Encryption leakage. In a nutshell, we define the leakage of the composition as
the composition of the leakage. As an example, consider an implementation of A5
(Fig. 2). When encrypting, the leakage may come from any of the components:
the PRF F may leak some information LF (kF , N ; rF ); the IV-encryption routine
ivE might leak some information LE(kE , I,M ; rE); the Tag function T may
leak some information LT (kM , N,A,Ce; rM ). To ease notation, we will use the
shorthand LF (�), LE(�), and LT (�) respectively for these leakages. In that case,
we say that the leakage on the authenticated encryption operation as a whole
consists of the triple (LF (�), LE(�), LT (�)). Under the hood, this implies some
parsing and forwarding of the AE’s key (kF ,kE ,kM ), randomness (rF , rE , rM )
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and inputs N,A,M , including the calculated values I and Ce, to the component
leakage functions LF , LE , and LT .

Expanding the above to classes of functions is as follows. Let LF,LE, and LT

be the respective leakage classes for F , ivE, and T . Then the leakage class LEnc

for the resulting authenticated encryption scheme is defined as

{(LF , LE , LT )|LF ∈ LF, LE ∈ LE, LT ∈ LT}.

Since an adversary has to select a leakage function in LEnc the moment it queries
the encryption oracle, it will not be possible to adaptively select for instance the
leakage function LT based on the leakage received from LE of that encryption
query.

Decryption leakage. In order to describe leakage from decryption, we take a
closer look at the role of the two PRFs in the generic constructions. The first
one, F , computes the initial vector which is needed both for encryption and
decryption. This makes it inevitable that during decryption F is again computed
as a PRF, presumably using the same implementation F . On the other hand, the
second PRF, T , is used to create a tag T during encryption. Normally during
decryption one would recompute the tag (again using T ) and check whether
the recomputed tag T ′ equals the received tag T . Yet, in the leakage setting
this approach is problematic: T ′ is the correct tag and its recomputation might
well leak it, even when used (repeatedly) to check an incorrect and completely
unrelated T . Hence, during decryption we will not use a recompute-and-check
model, but rather refer directly to a tag-verification implementation V (that
hopefully leaks less).

When considering the decryption leakage of A5, we will assume that, on
invalid ciphertexts, the computation terminates as soon as the verification algo-
rithm returns ⊥. This implies that for invalid ciphertexts only leakage on V will
be available, whereas for valid ciphertexts all three components (V ,F , and ivE)
might leak.

Overview and interpretation. Recall that we divided the NRS schemes in
three categories: MtE, M&E, and EtM. Figure 5 shows how the composed leakage
will leak for each of these schemes. For completeness, we also listed the leakage
for the EtM scheme (such as A5) in case full decryption will always take place,
even for invalid ciphertexts (where one could have aborted early).

Our choice to model the leakage from the authenticated encryption scheme as
completely separate components from the three underlying primitives is rooted
in the assumption that only computation leaks. This assumption was first for-
malized by Micali and Reyzin [31] and, although there are counterexamples to
the assumption at for instance the gate level [38], we believe that implementa-
tions of the three primitives result in large enough physical components, which
can be suitably segregated to avoid cross-leakage.

Leakage on the wire (for instance of the initial vector I) can be captured
as leakage of the PRF computing the I or alternatively as that of the ivE. In
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Structure Leakage Inverse Inverse Leakage
MtE LT (�), LF (�), LE(�) DtV LF (�), LD(�), LV (�)M&E LT (�), LF (�), LE(�)

D&V LF (�), LD(�), LV (�)

EtM LF (�), LE(�), LT (�) VtD

{
LV (�) if V(�) = ⊥
LV (�), LF (�), LD(�) if V(�) = 


Fig. 5. The structure of a leakage function from a composition scheme based on the
order of its primitives. The exact input parameters to the leakage function vary per
scheme, so have been replaced with �: the different � variables are not the same. On
the left are the encryption structures MtE, M&E and EtM, along with the associated
leakage function. The right gives the associated inverse: DtV (Decrypt then Verify)
is the only way of inverting MtE or M&E schemes. EtM schemes can be inverted
in any order, as DtV, D&V (Decrypt and Verify) or VtD (Verify then Decrypt). All
constructions have the same encryption leakage, and most have the same decryption
leakage. The only one that is different is an EtM–VtD scheme, where the decryption
leakage format depends on the validity of the ciphertext.

particular, by letting the decryption of the ivE component leak its full output
(while not allowing any further leakage), we capture the release of unverified
plaintext. Furthermore, distinguishable decryption failures on MtE and M&E
schemes invariably arise from verification, which might incorporate a padding
check as well. This is modelled by allowing V to leak, but not any of the other
components.

5.2 MAC-and/then-Encrypt are Brittle Under Leakage

For schemes where the plaintext is input to the MAC (i.e. MtE and M&E
schemes), decryption is inevitably of the form DtV. Consequently, during decryp-
tion a purported message M is computed before the tag can be verified. Leaking
this message M corresponds to the release of unverified plaintext [2], but even
more modest leakage, such as the first bit of the candidate message, can be
insecure as we show by the following example.

Let us assume for a moment that the encryption routine ivE is online, so
that reencrypting a slightly modified plaintext using the same I will only affect a
change in the ciphertext after the modification in the plaintext. CBC and CFB
modes are well-known examples of online ivE schemes. Additionally, assume
that ivE’s decryption routine indeed leaks the first bit of the message. Then the
authenticated encryption scheme is not secure in the presence of leakage (for the
leakage class derived according to the principles outlined previously), which an
attack demonstrates.

The adversary first submits a message M to its challenge encryption ora-
cle, receiving a ciphertext C which either is an encryption Ek(M ||T ) or, in the
ideal world, a uniformly random string. The adversary subsequently queries its
decryption-with-leakage oracle on C with its final bit flipped. In the real world,
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where C = Ek(M ||T ), the leakage will then equal the first bit of M with proba-
bility 1. Yet in the ideal world, C is independent of M , so the leakage will equal
the first bit of M with probability half. Thus, testing whether the decryption
leakage equals the first bit of M leads to a distinguisher with a significant advan-
tage. However, this does not invalidate IND–aCPLA security of ivE as in that
game decryption only leaks on valid ciphertexts with known plaintexts.

The above observation implies that for schemes where decryption follows a
DtV or D&V structure proving generic composition secure in the presence of
leakage is impossible. This affects the NRS compositions A1–A4, A7–A12, N1,
N3 and N4; none of which can be regarded as generically secure under leakage
and all are insecure when using online ivE and releasing unverified plaintext.

Less general composition results might still be possible, for instance by
restricting the leakage classes of the primitives. After all, in the trivial case
that the leakage classes are all ∅, the original NRS results hold directly. We
leave open whether significantly larger realistic leakage classes exist leading to
secure MtE constructions.

Alternatively, stronger assumptions on E could help. For instance, if E ’s
security matches that of a tweakable (variable input length) cipher, the MAC-
then-Encrypt constructions become a sort of encode-then-encipher. The latter
is secure against release of unverified plaintext [19]. We leave open the iden-
tification of sufficient conditions on E for a generic composition result in the
presence of leakage to pull through for EtM or E&M; relatedly, we leave open
the extension of our work to the encode-then-encipher setting.

5.3 Encrypt-then-MAC is Secure Under Leakage

The iv-based schemes A5 and A6, as well as the nonce-based N2, all fall under
the EtM design. The inverse of an EtM scheme can be D&V or VtD, but as
just discussed for the D&V variant no meaningful generic security is possible;
henceforth we restrict attention to the VtD variant only. These schemes, along
with the iv2n mechanism for building a nonce-based encryption scheme out of
an iv-based one, are all represented in Fig. 2. Before proving their security, we
begin with some observations about EtM–VtD designs in the face of leakage.

Initial observations. Since the final ciphertext will be formed from an encryp-
tion ciphertext and a tag, if the overall output is to be indistinguishable from
random bits, then so must the tag. Thus we require both that (T ,V) is a
secure (LT,LV)-LMAC, and that T is a secure LT-LPRF. Shrimpton and
Terashima [45] defined a (weaker) authenticated encryption notion where the
“recovery information” does not need to be random—only the ciphertext—in
which case one may drop the second requirement.

In the traditional case, it is possible to build secure EtM schemes from an
encryption scheme that is IND–CPA secure. After all, by assumption on the
security of the MAC, the only output the adversary can ever receive from the
internal decryption function D is a plaintext corresponding to a previous E query.
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However, when leakage is involved, this previously harmless decryption query
suddenly allows the adversary to evaluate a leakage function L ∈ LD, albeit on a
(N,C) pair for which they already know the corresponding plaintext. If LD con-
tained functions revealing sufficient information about the key, this would render
the composed scheme completely broken, notwithstanding any IND–CPLA secu-
rity. Luckily, the augmented IND–aCPLA game in which the adversary is allowed
to leak on select decryption queries, is sufficiently nuanced to capture relevant
weaknesses in the decryption’s implementation.

Security of EtM composition schemes. We now describe the security of the
composition schemes A5, A6 and N2, and the iv2n construction. Working under
the assumption of OCLI-style leakage, as described in Sect. 5.1, we will reduce
the security of the composition to the security of its components. Technically
the bound includes a term quantifying any additional weaknesses due to the
composition scheme, but in all cases this term is zero. The proofs can be found
in the full version [3]. We begin with N2, and show it is essentially as secure as
the weakest of its components, by constructing explicit adversaries against each.

Theorem 1. Let (LE,LD,LT,LV) be leakage sets for the appropriate primi-
tives, and define (LEnc,LDec) as in Sect. 5.1. Let A be an adversary against
the (LEnc,LDec)-nLAE security of N2[E,D;T ,V ]. Then, there exist adversaries
ACPA, APRF and AMAC against the (LE,LD)-nLE security of (E,D), the LT-
LPRF security of T and the (LT,LV)-LMAC security of (T ,V) such that:

AdvnLAE
N2;LEnc,LDec

(A) ≤
AdvIND−aCPLA

E,D;LE,LD
(ACPA) + AdvLPRF

T ;LT
(APRF) + 2 · AdvsEUF−CMLA

T ,V;LT,LV
(AMAC).

As the following result shows, the intuitive mechanism for building a nLE
scheme from a secure ivLE scheme and a secure LPRF is itself secure. While
unsurprising, this will allow us to instantiate the N2 construction with the more
common object of an ivLE scheme.

Theorem 2. Let (LivE,LivD,LF) be leakage sets for the appropriate primitives,
and define (LE,LD) as in Sect. 5.1. Let A be an adversary against the (LE,LD)-
nLE security of iv2n[ivE, ivD;F ]. Then, there exist ACPA, APRF against the
(LivE,LivD)-ivLE security of (ivE, ivD), and the LF-LPRF security of F respec-
tively, such that:

AdvIND−aCPLA
iv2n;LE,LD

(A) ≤ AdvLPRF
F ;LF

(APRF) + AdvIND−aCPLA
ivE,ivD;LivE,LivD

(ACPA).

Pulling these two results together and taking the maximum over the similar
adversaries, we are able to prove the security of the A5 construction. The security
of A6 against adversaries who never repeat the pair (N,A) can be easily recovered
from this by considering it as an equivalent representation of the A5 scheme
acting on nonce space N′ = N × A but with no associated data.
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Corollary 1 (nLAE from ivLE and LPRF via A5 composition). Let
(LivE,LivD,LT,LV,LF) be leakage sets for the appropriate primitives, and define
(LEnc,LDec) as in Sect. 5.1. Let A be an adversary against the (LEnc,LDec)-nLAE
security of A5[ivE, ivD;F ;T ,V ]. Then, there exist adversaries ACPA, APRF,
A

′
PRF, and AMAC against the (LivE,LivD)-ivLE security of (ivE, ivD), the LF-

LPRF security of F , the LT-LPRF security of T and the (LT,LV)-LMAC secu-
rity of (T ,V) such that

AdvnLAE
A5;LEnc,LDec

(A) ≤ AdvIND−aCPLA
E,D;LivE,LivD

(ACPA) + AdvLPRF
F ;LF

(APRF)

+ AdvLPRF
T ;LT

(A′
PRF) + 2 · AdvEUF−CMLA

T ,V;LT,LV
(AMAC).

Corollary 2 (nLAE from ivLE and LPRF via A6 composition). Let
(LivE,LivD,LT,LV,LF) be leakage sets for the appropriate primitives, and define
(LEnc,LDec) as in Sect. 5.1. Let A be an adversary against the (LEnc,LDec)-LAE
security of A6[ivE, ivD;F ;T ,V ] who does not make two encryption queries with
the same (N,A) pair. Then, there exist explicit adversaries ACPA, APRF, A′

PRF,
and AMAC against the (LivE,LivD)-ivLE security of (ivE, ivD), the LF-LPRF
security of F , the LT-LPRF security of T and the (LT,LV)-LMAC security of
(T ,V) such that

AdvnLAE
A6;LEnc,LDec

(A) ≤ AdvIND−aCPLA
E,D;LivE,LivD

(ACPA) + AdvLPRF
F ;LF

(APRF)

+ AdvLPRF
T ;LT

(A′
PRF) + 2 · AdvsEUF−CMLA

T ,V;LT,LV
(AMAC).

5.4 Achieving Misuse Resistant LAE Security

In Sect. 5.2 we discussed why no composition scheme can be (generically) secure
against leakage if its decryption begins by calculating a candidate plaintext. This
meant ruling out every NRS construction secure in the nonce misuse model, an
important feature for a modern robust AE schemes [7,19,42]. Roughly speaking,
for MRAE security a scheme must be MtE (to ensure maximum diffusion) yet
for leakage resilience it must be EtM (to ensure minimal leakage).

The Synthetic IV and Tag (SIVAT) scheme, defined in Fig. 6, addresses the
combined mrLAE goal, by essentially using an MtEtM approach. It can be seen
as composing the SIV construction [42] (referred to as A4 in NRS) with a secure
MAC, or alternatively as the natural strengthening of A6 towards nonce misuse
security, by adding the message to the IV calculation and making the appropriate
modifications to enable decryption.

Our additional feature does come at a cost. While schemes in the tradi-
tional setting achieve misuse resistance for the same ciphertext expansion as
non-resistant schemes, the SIVAT scheme requires essentially twice the expan-
sion. It also has a large number of internal wires, with each function taking in
a large number of inputs, although removing any one leads to incorrectness or
insecurity. For encryption calls, all inputs must go into the LPRF (for misuse
resistance) and for decryption they must go into verification (to prevent RUP
attacks).
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The proof (in the full version) is very similar to that for A5 or A6 (Corollaries 1
and 2), since the additional element of a SIVAT ciphertext (I) is present in those
settings, and might already be available to the adversary through leakage.

N M A

FkF

ivEkE

kM

I C T

N M A

kF
F

ivDkE

VkM

I C T

Fig. 6. The Synthetic-IV-and-Tag (SIVAT) scheme. On the left, the encryption routine
runs from top to bottom, outputting a ciphertext I||C||T . Decryption (on the right)
runs from bottom to top. If during decryption verification fails, and Vkm returns ⊥,
no further computations are performed. In the decryption direction, the PRF F is not
required.

Theorem 3. Let (LivE,LivD,LT,LV,LF) be leakage sets for the appropriate
primitives, and define (LEnc,LDec) as in Sect. 5.1. Let A be an adversary against
the (LEnc,LDec)-mrLAE security of SIVAT[ivE, ivD;F ;T ,V ]. Then, there exist
explicit adversaries ACPA, APRF, A′

PRF, and AMAC against the (LivE,LivD)-ivLE
security of (ivE, ivD), the LF-LPRF security of F , the LT-LPRF security of T
and the (LT,LV)-LMAC security of (T ,V) such that

AdvnLAE
SIVAT;LEnc,LDec

(A) ≤ AdvIND−aCPLA
E,D;LivE,LivD

(ACPA) + AdvLPRF
F ;LF

(APRF)

+ AdvLPRF
T ;LT

(A′
PRF) + 2 · AdvsEUF−CMLA

T ,V;LT,LV
(AMAC).

5.5 A Leakage Resilient IV-Based Encryption Scheme

A crucial component required for our composition is an encryption scheme
ivE , whose implementation (ivE, ivD) is IND-aCPLA secure against a rich class
(LivE,LivD) of leakage functions. As generic composition relies on a secure PRLF
implementation F anyway, we will investigate to what extent this PRLF can
be used to bootstrap some ivE implementation as well. Here we turn to the
classical mode of operation CFB (Fig. 7), which has the advantage that only the
forward direction of the underlying primitive F is required, even for decryption
(relevant if one would instantiate with a blockcipher). When we move from
the standard CFB[F ] to its implementation CFB[F ] (by replacing F with its



Authenticated Encryption in the Face of Protocol and Side Channel Leakage 717

I M1 M2 M3 M4

Fk Fk Fk Fk

C1 C2 C3 C4

Fig. 7. CFB Mode of Operation based on F : K×X → X. The message M is parsed into
blocks or elements M1|| . . . ||Mm, and fed through to output ciphertext C1|| . . . ||Cm.
The operation ⊕ can be any group operation on X.

implementation F), processing multi-block plaintexts (or ciphertexts) will result
in multiple refreshes of the key’s representation k (one for each call to F). We
will show that CFB is secure against leakage when instantiated with a PRLF,
using an adaptation of the classical proof for CFB security [1].

Our first task is to express the leakage sets (LivE,LivD) for scheme ivE in
terms of that of the PRF F , namely LF. When tracing through the operation
of CFB-encryption, we will make two assumptions. Firstly, that leakage for each
of the F calls is local (cf. OCLI), which in particular means leakage will be
restricted to the representation of k specific for the F call at hand (and k is
expected to be refreshed during a single ivE call). Secondly, that all visible wires
in Fig. 7, corresponding to the ivE’s public inputs and outputs, will leak. Note
that longer messages will lead to more leakage for an adversary, which matches
practice (where the size of the power trace might be linear in the size of the
message).

Decryption closely matches encryption and, under the same assumptions as
above, leakage on decryption of a ciphertext can be expressed instead as leakage
on the encryption of the corresponding plaintext. Hence we refer to decryption
leakage as LivE

′ (where the prime connotes the syntactical malarkey to deal with
the different input spaces for encryption and decryption).

Concluding, we define the leakage set LivE to be the collection of all functions
LCFB : K × N × M × R → {0, 1}∗ that are of the form

LCFB(k, I,M ; r) = (M,C,Li(ki, Ci; ri)i∈{0..n−1})

with Li ∈ LT (for i ∈ {0 . . . n − 1}) and where M is an n-block message, C =
ivEk(I,M) is an (n+1)-block ciphertext constituted of blocks Ci (i ∈ {0, . . . n}),
r is the concatenation of the random values ri passed to the ith F -call (i ∈
{1 . . . n}), and ki−1 is the key representation for the ith F -call (i ∈ {1 . . . n}).

Theorem 4. Let F : T∗ → T be a PRF with leakage class LF and let (ivE, ivD)
be the symmetric encryption scheme CFB[F ] with derived leakage (LivE,LivE

′).
Let A be an iv-respecting adversary against the (LivE,LivE

′)-IND–aCPLA security
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of (ivE, ivD). Then there exists an adversary APRF of similar complexity to A

against the LF-PRLF security of F such that

AdvIND−aCPLA
ivE,ivD;LivE,LivE

′(A) ≤ 2 · AdvPRLF
F ;LF

(APRF) +
3
4

· σ2

|T| ,

where σ is the total number of blocks encrypted, and the blocksize is |T|.
The proof can be found in the full version [3].

6 mrLAE Security by Instantiating the PRF and MAC

The A5 and SIVAT composition mechanisms can be instantiated with any suit-
ably secure primitives to yield secure nLAE or mrLAE schemes. Together with
using CFB[F ] as underlying ivE, these allow us to construct a secure mrLAE
scheme through any PRF F with a secure implementation F and a secure MAC
implementation (T ,V). The remaining questions therefore are what can be said
about securely implementing these primitives and what conclusions for the over-
all scheme can subsequently be drawn. We will answer these questions from two
perspectives: a practical side-channel one (for those favouring masked AES) and
a more theoretical, yet eminently implementable one in the continuous leakage
model.

A side-channel perspective. Our result provides a roadmap for obtaining a
side-channel misuse-resistant AE scheme by selecting reasonable practical prim-
itives (and implementations) for the PRF and the MAC (say a suitably masked
AES, respectively KMAC) and subsequently gauging to what extent actual leak-
age on the primitive implementations can be used to break the relevant PRLF
or EUF–CLMA notions as well as whether leakage on the full implementation is
cleanly segregated or whether undesired correlation indicates bleeding of leakage
from the values or variables from one component into say part of the power trace
associated with another component.

The result above no longer explicitly takes into account leakage classes; these
have effectively become implicit artefacts of the attack. We assume that a suc-
cessful attack on the full scheme will be recognized as such: our result essentially
says that if such an attack is found then either the leakage is not cleanly sepa-
rated or one of the primitive implementations is already insecure (or both).

A leakage resilience perspective. A complementary approach to the prac-
tical one above is to design the primitives and their implementations with a
provable level of resistance against leakage functions from a specific class. As
already explained in the introduction, a multitude of models exist depending
on the class of functions under consideration. One of the stronger models is
that of continuous leakage: here the leakage functions can be arbitrary, subject
to the constraint that their range is bounded. A usual refinement is to use a
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split-state model, where the key’s representation k is operated upon in two (or
more) tranches and each tranche can only leak on that part of k in scope for the
operation at hand (assuming only computation leaks, as usual).

While there are PRFs that have been proven secure in the continuous leakage
model, as far as we can tell this has always come at the price of adaptivity. In
order for our constructions to be implemented a new PRF is called for, with an
implementation secure in the stronger, adaptive continuous leakage model. In
the full version [3] we provide such a function and implementation, and prove
the latter secure in the generic group model (against adaptive continous leakage
in a split-state setting). Additionally, we show how to create a related MAC such
that leaking on the verification’s implementation is ok.

Our construction is an evolution of the MAC of Martin et al. [30], itself
inspired by a scheme by Kiltz and Pietrzak [23]. The key enabling novelty is the
use of three shares instead of the customary two. A thorough discussion of the
design choices, specifications, and security justification can be found in the full
version [3] but for completeness we provide the final theorem statement below.

Theorem 5. Let SIVAT be the SIVAT mechanism instantiated with the imple-
mentations described in the full version [3] over a generic group of p elements,
and assume that each share of the internal PRF leaks at most λ per call follow-
ing the associated leakage functions, as described by leakage sets (LEnc,LDec). Let
A be an adversary making at most g direct queries to the generic group oracle
(including the complexity of all chosen leakage queries) and making q construc-
tion queries totalling σ blocks. Then,

AdvLAE
SIVAT;LEnc,LDec

(A) ≤ 7
p

(
24λ · σ2 · (g + 9q + 5σ)2 + 8(g + 9q + 5σ)2

)
.

To get a feel for the practical security level, let’s look at parameters if the
schemes are instantiated over a 512 bit elliptic curves, and we want the keep
the attack success probability below 2−60 (a common limit in the real world,
e.g. [28]). Let’s assume that each internal leakage function leaks at most λ = 85
bits, which is approximately a sixth of a group element. Then the scheme would
remain secure until the adversary has encrypted or decrypted around 225 blocks,
and made a similar number of queries to the generic group.

This result comes with a few caveats, covered in more detail by the full ver-
sion [3]. For instance, to ensure security against the leakage of arbitrary functions
of the key, to process q queries of total σ blocks the construction must sample
4q + σ random group elements in a leakage-resilient manner, which can be com-
plicated [30]. Nonetheless, our construction is proof positive of the existence of
leakage resilient authenticated encryption in a very strong sense.

7 Conclusions and Open Problems

We introduced notions for strengthened AE when considering leakage, discussed
generic composition under leakage, and showed the EtM type constructions can
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be proven secure in this context. We give a new scheme, SIVAT, that achieves
misuse resistance and leakage resilience simultaneously, and show how this can
be bootstrapped from a PRF secure against leakage. Finally, we give a concrete
instantiation for the SIVAT mechanism. Our research unveils several interesting
open problems, which we summarise subsequently.

IND–aCPLA. If one allows nonce-reuse, then for any leakage set LE security
against LE-IND–CPLA adversary implies (LE,LE

′)-IND–aCPLA security, where
LE

′ is the essentially the same set as LE with some minor bookkeeping to ensure
correct syntax. The implication is trivial as the leakage on any valid D-query
can be perfectly simulated by repeating the corresponding E-query instead. In
the the nonce or iv respecting cases the implication remains open (as repeat-
ing encryption queries including nonce is no longer allowed). Nonetheless, we
conjecture that even in these two settings for many reasonable leakage sets LE,
LE-IND–CPLA does imply (LE,LE

′)-IND–aCPLA. We leave it as an interesting
question to formalise this or find a counter-example. More generally, is there
some way of defining LED as a function of some general sets LE,LD such that
LED-IND–CPLA =⇒ (LE,LD)-IND–aCPLA?

MtE with restricted leakage sets. The insecurity of the majority of the MtE
schemes when considering leakage comes from a generic attack against any
schemes whose inverse follows the decrypt-then-verify or decrypt-and-verify
structure. We leave it as an interesting open question to investigate the leak-
age security under other more restricted leakage sets.

Misuse resistance with minimal message expansion. We demonstrate that misuse
resistance can be achieved through generic composition, at the cost of additional
message expansion, using a MAC-then-Encrypt-then-MAC structure (leading to
SIVAT). We believe that dedicated constructions are likely to exist that can
achieve mrLAE security with minimal expansion, or more generally LAE without
requiring independent keys.
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Abstract. Masking schemes are a prominent countermeasure to defeat
power analysis attacks. One of their core ingredients is the encoding func-
tion. Due to its simplicity and comparably low complexity overheads,
many masking schemes are based on a Boolean encoding. Yet, several
recent works have proposed masking schemes that are based on alterna-
tive encoding functions. One such example is the inner product mask-
ing scheme that has been brought towards practice by recent research.
In this work, we improve the practicality of the inner product mask-
ing scheme on multiple frontiers. On the conceptual level, we propose
new algorithms that are significantly more efficient and have reduced
randomness requirements, but remain secure in the t-probing model of
Ishai, Sahai and Wagner (CRYPTO 2003). On the practical level, we
provide new implementation results. By exploiting several engineering
tricks and combining them with our more efficient algorithms, we are
able to reduce execution time by nearly 60% compared to earlier works.
We complete our study by providing novel insights into the strength of
the inner product masking using both the information theoretic evalu-
ation framework of Standaert, Malkin and Yung (EUROCRYPT 2009)
and experimental analyses with an ARM microcontroller.

1 Introduction

Physical side-channel attacks where the adversary exploits, e.g., the power con-
sumption [34] or the running time [33] of a cryptographic device are one of the
most powerful cyberattacks. Researchers have shown that they can extract secret
keys from small embedded devices such as smart cards [22,34], and recent reports
illustrate that also larger devices such as smart phones and computers can be
attacked [4,24]. Given the great threat potential of side-channel attacks there
has naturally been a large body of work proposing countermeasures to defeat
them [35]. One of the most well-studied countermeasures against side-channel
attacks – and in particular, against power analysis – are masking schemes [12,29].
c© International Association for Cryptologic Research 2017
T. Takagi and T. Peyrin (Eds.): ASIACRYPT 2017, Part I, LNCS 10624, pp. 724–754, 2017.
https://doi.org/10.1007/978-3-319-70694-8_25
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The basic idea of a masking scheme is simple. Since side-channel attacks attempt
to learn information about the intermediate values that are produced by a cryp-
tographic algorithm during its evaluation, a masking scheme conceals these val-
ues by hiding them with randomness.

Masking schemes have two important ingredients: a randomized encoding
function and a method to securely compute with these encodings without reveal-
ing sensitive information. The most common masking scheme is Boolean mask-
ing [12,32], which uses a very simple additive n-out-of-n secret sharing as its
encoding function. More concretely, to encode a bit b we sample uniformly at
random bits (b1, . . . , bn) such that

∑
i bi = b (where the sum is in the binary

field). The basic security property that is guaranteed by the encoding function
is that if the adversary only learns up to n − 1 of the shares then nothing is
revealed about the secret b. The main challenge in developing secure masking
schemes has been in lifting the security properties guaranteed by the encoding
function to the level of the entire masked computation. To this end, we usually
define masked operations for field addition and field multiplication, and show
ways to compose them securely.

The most standard security property that we want from a masking scheme
is to resist t-probing attacks. To analyze whether a masking scheme is secure
against t-probing attacks we can carry out a security analysis in the so-called
t-probing model – introduced in the seminal work of Ishai et al. [32]. In the t-
probing model the adversary is allowed to learn up to t intermediate values of the
computation, which shall not reveal anything about the sensitive information,
and in particular nothing about the secret key used by a masked cryptographic
algorithm. In the last years, there has been a flourishing literature surrounding
the topic of designing better masking schemes, including many exciting works
on efficiency improvements [11,14,16,37,42], stronger security guarantees [18,
21,39,41] and even fully automated verification of masking schemes [5,6] – to
just name a few.

As mentioned previously, the core ingredient of any masking scheme is its
encoding function. We can only hope to design secure masking schemes if we start
with a strong encoding function at first place. Hence, it is natural to ask what secu-
rity guarantees can be offered by our encoding functions and to what extent these
security properties can be lifted to the level of the masked computation. Besides
the Boolean masking which is secure in the t-probing model, several other encod-
ing functions which can be used for masking schemes have been introduced in the
past. This includes the affine masking [23], the polynomial masking [28,40] and
the inner product masking [1,2,20]. Each of these masking functions offers differ-
ent trade-offs in terms of efficiency and what security guarantees it can offer.

The goal of this work, is to provide novel insights into the inner product mask-
ing scheme originally introduced by Dziembowski and Faust [20] and Goldwasser
and Rothblum [25], and later studied in practice by Balasch et al. [1,2]. Our main
contribution is to consolidate the work on inner product masking thereby improv-
ing the existing works of Balasch et al. [1,2] on multiple frontiers and providing
several novel insights. Our contributions can be summarized as follows.
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New algorithms with t–SNI security property. On a conceptual level we pro-
pose simplified algorithms for the multiplication operation protected with inner
product masking. In contrast to the schemes from [1,2] they are resembling the
schemes originally proposed by Ishai et al. [32] (and hence more efficient and
easier to implement than the schemes in [1]), but work with the inner product
encoding function. We prove that our new algorithms satisfy the property of
t-strong non-interference (t–SNI) introduced by Barthe et al. [5,6], and hence
can safely be used for larger composed computation. An additional contribution
is that we provide a new secure multiplication algorithm – we call it IPMult

(2)
L

shown in Algorithm 7 – that can result in better efficiency when composed with
certain other masked operations. Concretely, when we want to compose a linear
function g() with a multiplication, then either we can use IPMult

(1)
L and require

an additional refreshing operation at the output of g(), or we use our new algo-
rithm IPMult

(2)
L that eliminates the need for the additional refreshing. This can

save at least O(n2) in randomness.

New implementation results. We leverage on the proposed algorithms for the
multiplication operation to build new software implementations of AES-128 for
embedded AVR architectures. Compared to earlier works [1], we are able to
reduce the execution times by nearly a factor 60% (for 2 shares) and 55% (for
3 shares). The improvements stem not only from a decrease in complexity of
the new algorithms, but also from an observation that enables the tabulation of
the AES affine transformation. We additionally provide various flavors of AES-
128 implementations protected with Boolean masking, using different addition
chains that have been proposed to compute the field inversion. Our performance
evaluation allow us to quantify the current gap between Boolean and IP masking
schemes in terms of execution time as well as non-volatile storage.

Information theoretic evaluation. We continue our investigations with a com-
prehensive information theoretic evaluation of the inner product encoding. Com-
pared to the previous works of Balasch et al., we consider the mutual information
between a sensitive variable and the leakage of its inner product shares for an
extended range of noises, for linear and non-linear leakage functions and for
different values of the public vector of the encoding. Thanks to these evalua-
tions, we refine the understanding of the theoretical pros and cons of such mask-
ing schemes compared to the mainstream Boolean masking. In particular, we
put forward interesting properties of inner product masking regarding “security
order amplification” in the spirit of [9,10,31] and security against transition-
based leakages [3,15]. We also highlight that these interesting properties are
quite highly implementation-dependent.

Experimental evaluation. Eventually, we confront our new algorithms and their
theoretical analyses with practice. In particular, we apply leakage detection
techniques on measurements collected from protected AES-128 routines run-
ning on an ARM Cortex-M4 processor. Our results reveal the unequivocal pres-
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ence of leakage (univariate, first-order) in the first-order Boolean masked imple-
mentation. In contrast the first-order inner product masked implementation
shows significantly less evidence of leakage (with the same number of measure-
ments). Combined with the previous proofs and performance evaluations, these
results therefore establish inner product masking as an interesting alternative
to Boolean masking, with good properties for composability, slight performance
overheads and significantly less evidence of leakage.

2 Notation

In the following we denote by K a field of characteristic 2. We denote with upper-
case letters the elements of the field K and with bold notation that one in the
K-vector spaces. The field multiplication is represented by the dot · while the
standard inner product over K is denoted as 〈X,Y 〉 =

∑
i Xi ·Yi, where Xi and

Yi are the components of the vectors X and Y .
The symbol δij corresponds to the element 0 when i = j and 1 otherwise.

3 New Algorithm

Our new multiplication scheme is based on the inner product construction of
Dziembowski and Faust [20] and constitutes an improvement to the works [1,
2]. The encoding of a variable S ∈ K consists of a vector S ∈ Kn such that
S = 〈L,S〉, where L is a freely chosen, public non-zero parameter with first
component L1 = 1.

The algorithms for initialization and masking are depicted in the IPSetup
and IPMask procedures. The subroutine rand(K) samples an element uniformly
at random from the field K. The algorithms for addition and refreshing are kept

Algorithm 1. Setup the masking scheme: L ← IPSetupn(K)
Input: field description K
Output: random vector L

L1 = 1;
for i = 2 to n do

Li ← rand(K \ {0});
end for

the same as in [1], while a new multiplication scheme IPMult(1) is proposed in
Algorithm 3. The schemes achieves security order t = n − 1 in the t-probing
model.

Our starting point for the Algorithm 3 is the multiplication scheme from [32].
We reuse the idea of summing the matrix of the inner products of the inputs
with a symmetric matrix of random elements, in order to compute the shares of
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Algorithm 2. Masking a variable: S ← IPMaskL(S)
Input: variable S ∈ K
Output: vector S such that S = 〈L,S〉

for i = 2 to n do
Si ← rand(K);

end for
S1 = S +

∑n
i=2 Li · Si;

the output in a secure way. In particular we design these two matrices (T and
U ′ in the algorithm) to be consistent with our different masking model.

Algorithm 3. Multiply masked values: C ← IPMult
(1)
L (A,B)

Input: vectors A and B of length n
Output: vector C such that 〈L,C〉 = 〈L,A〉 · 〈L,B〉

� Computation of the matrix T
for i = 1 to n do

for j = 1 to n do
Ti,j = Ai · Bj · Lj ;

end for
end for
� Computation of the matrices U and U ′

for i = 1 to n do
for j = 1 to n do

if i < j then
U ′

ij ← rand(K);
end if
if i > j then

U ′
i,j = −U ′

j,i;
end if
Ui,j = U ′

i,j · δijL
−1
i ;

end for
end for
� Computation of the matrix V
V = T + U ;
� Computation of the output vector C
for i = 1 to n do

Ci =
∑

j Vi,j ;
end for

The correctness of the scheme is proved in the following lemma.

Lemma 1. For any L,A,B ∈ Kn and C = IPMult
(1)
L (A,B), we have

〈L,C〉 = 〈L,A〉 · 〈L,B〉.



Consolidating Inner Product Masking 729

Proof. For all i �= j it holds:

〈L,C〉 =
∑

i

Li · Ci =
∑

i

Li

∑

j

Vi,j =
∑

i

Li

∑

j

(Tij + Uij)

=
∑

i

Li

∑

j

(AiBjLj + U ′
ijL

−1
i ) =

∑

i

Li

∑

j

AiBjLj +
∑

ij

U ′
ij

=
∑

i

LiAi

∑

j

BjLj = 〈L,A〉〈L,B〉

��

3.1 Security Proof

We analyze the security of our new multiplication scheme in the t-probing model,
introduced in the seminal work of Ishai et al. [32], in which the adversary is
allowed to learn up to t intermediate values that are produced during the com-
putation. In particular we prove our algorithm to be secure also when composed
with other gadgets in more complex circuits, by proving the stronger property of
t− Strong Non-Interference (t–SNI) defined by Barthe et al. in [5] and recalled
in the following.

Definition 1 (t− Strong Non-Interferent). An algorithm A is t− Strong
Non-Interferent (t–SNI) if and only if for any set of t1 probes on intermediate
variables and every set of t2 probes on output shares such that t1 + t2 ≤ t, the
totality of the probes can be simulated by only t1 shares of each input.

In a few words the property requires not only that an adversary can simulate
d < t probes with d inputs, like in the classical t-probing model, but also that
the number of input shares needed in the simulation are independent from the
number of probes on the output shares.

The following lemma shows the t–SNI security of IPMult(1)L .

Lemma 2. The algorithm IPMult
(1)
L is t–SNI with t = n − 1.

Proof. Let Ω = (I,O) be a set of t observations respectively on the internal and
on the output wires, where |I| = t1 and in particular t1 + |O| ≤ t. We construct
a perfect simulator of the adversary’s probes, which makes use of at most t1
shares of the secrets A and B.

Let w1, . . . , wt be the probed wires. We classify the internal wires in the
following groups:

(1) Ai, Bi,
(2) Ui,j , U

′
i,j ,

(3) Ai · Bj , Ti,j , Vi,j ,
(4) Ci,j , which represents the value of Ci at iteration i, j of the last for loop.
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We define two sets of indices I and J such that |I| ≤ t1, |J | ≤ t1 and the values
of the wires wh with h = 1, . . . , t can be perfectly simulated given only the
knowledge of (Ai)i∈I and (Bi)i∈J . The sets are constructed as follows.

– Initially I and J are empty.
– For every wire as in the groups (1), (2) and (4), add i to I and to J .
– For every wire as in the group (3) if i /∈ I add i to I and if j /∈ J add j to J .

Since the adversary is allowed to make at most t1 internal probes, we have
|I| ≤ t1 and |J | ≤ t1.

We now show how the simulator behaves, by starting to consider the internal
observed wires.

1. For each observation as in the group (1), by definition of I and J the simulator
has access to Ai, Bi and then the values are perfectly simulated.

2. For each observation as in the group (2), we distinguish two possible cases:
– If i ∈ I, J and j /∈ J , the simulator assigns a random and independent

value to U ′
i,j : if i < j this is what would happen in the real algorithm, oth-

erwise since j /∈ J the element U ′
ij will never enter into the computation

of any wh (otherwise j would be in J).
– If i ∈ I, J and j ∈ J , the values U ′

i,j and U ′
j,i can be computed as in

the actual circuit: one of them (say U ′
j,i) is assigned to a random and

independent value and the other U ′
i,j to −U ′

i,j .
The value Ui,j is computed using the simulated U ′

i,j and the public value Li.
3. For each observation as in the group (3), by definition of the sets I and J

and for the previous points, the simulator has access to Ai, Aj , Bi, Bj , to the
public value Lj and Ui,j , U

′
i,j can be simulated. Therefore Ai ·Bj , Ti,j and Vi,j

can be computed as in the real algorithm.
4. For each observation as in the group (4), by definition i ∈ I, J . At first we

assign a random value to every summand Vik, with k ≤ j and k /∈ J , entering
in the computation of any observed Cij . Then if one of the addends Vik with
k ≤ j composing Cij has been probed, since by definition k ∈ J , we can
simulate it as in Step 3. Otherwise Vik has been previously assigned at the
beginning of the current Step 4.

We now simulate the output wires Ci. We have to take into account the following
cases.

1. If the attacker has already observed some intermediate values of the output
share Ci, we note that each Ci depends on the random values in the ith row of
the matrix U ′, i.e. U ′

il for l < i and U ′
li for l > i. In particular each of the U ′

il

appears a second time in one of the remaining C1, · · · , Ci−1, Ci+1, · · · , Cn, as
shown in the following matrix.
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0 U ′
1,2 U ′

1,3 . . . U ′
1,n

−U ′
1,2 0 U ′

2,3 . . . U ′
2,n

−U ′
1,3 −U ′

2,3 0 . . . U ′
3,n

...
...

...
. . .

...

−U ′
1,n −U ′

2,n −U ′
3,n . . . 0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

C1

C2

Cn

Since each Ci depends on n − 1 random values and the adversary may have
probed at most n−2 of that, then independently of the intermediate elements
probed, at least one of the U ′

il doesn’t enter into the computation of Ci,j and
so Ci can be simulated as a random value.

2. If all the partial sums have been observed, we can use the values previously
simulated and add them according to the algorithm. Finally it remains to
simulate a Ci when no partial sum Cij has been observed. By definition, at
least one of the U ′

il involved in the computation of Ci is not used in any other
observed wire. Therefore we can assign a random value to Ci.

��

4 Application to AES Sbox

Since IPMult
(1)
L is proved to be t–SNI, it can be securely composed with other

t–SNI or affine gadgets. In the following we analyze more in detail the algo-
rithm for the exponentiation to the power 254 in GF(28), which constitutes
the non-linear part of the AES Sbox. We consider Rivain and Prouff’s algo-
rithm from [17,42]. We recall the squaring routine IPSquareL and the refreshing
scheme from [1]. We give in particular a t–SNI refreshing SecIPRefreshL, which
essentially consists in the execution of IPRefreshL n times. In [1] the authors
already remarked that such a scheme ensures security even if composed with
other gadgets, but no formal proof was provided. In the following we formally
analyze the security of the algorithm, by giving the proof of t–SNI.

Algorithm 4. Square masked variable: Y ← IPSquareL(X)
Input: vector X
Output: vector Y such that 〈L,Y 〉 = 〈L,X〉 · 〈L,X〉

for i = 1 to n do
Yi ← (Xi)

2 · Li;
end for
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Algorithm 5. Refresh vector: X ′ ← IPRefreshL(X)
Input: vector X
Output: vector X ′ such that 〈L,X〉 = 〈L,X ′〉

(A2, · · · An) ← rand(Kn−1)
A1 ←∑n

i=2 Ai · Li;
X ′ = X + A;

Algorithm 6. Refresh vector: Y ← SecIPRefreshL(X)
Input: vector X
Output: vector Y such that 〈L,X〉 = 〈L,Y 〉

Y0 = X ;
for i = 1 to n do

Yi = IPRefreshL(Yi−1);
end for
Y = Yn;

Lemma 3. The algorithm SecIPRefreshL is t–SNI with t = n − 1.

Proof. Let Ω = (I,O) be a set of t observations respectively on the internal and
on the output wires, where |I| = t1 and in particular t1 + |O| ≤ t. We point out
the existence of a perfect simulator of the adversary’s probes, which makes use
of at most t1 shares of the secret X.

The internal wires wh are classified as follows:

(1) Xi

(2) Ai,j , which is the component i of the vector A in the jth IPRefreshL
(3) Yi,j = Xi+

∑j
k=1 Ai,k, which is the component i of Y in the jth IPRefreshL

We define a set of indices I such that |I| ≤ t1 as follows: for every observation
as in the group (1), (2) or (3) add i to I.

Now we construct a simulator that makes use only of (Xi)i∈I .

– For each observation as in the group (1), i ∈ I and then by definition of I
the simulator has access to the value of Xi.

– For each observation as in the group (2), Ai,j can be sample uniformly at
random. Indeed, this is what happens in the real execution of the algorithm
for the shares Ai,j with i = 2, . . . , n. Otherwise, since we have at most n − 1
probes, the adversary’s view of A1,j is also uniformly random.

– For each observation as in the group (3), Xi can be perfectly simulated, Ai,j

can be sampled as in the real execution of the algorithm, and then all the
partial sums Yi,j can be computed.

As for the output wires, we distinguish two cases. If some partial sum has already
been observed, we remark that each output share Yi,n involves the computation
of n − 1 random bits Ai,1, . . . , Ai,n−1. The situation can be better understood
from the following matrix, which shows the use of the random bits for each
output share.
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A1,1 A1,2 . . . A1,n−1

(∑n−1
k=1 A1,kLi

)
L−1

n

A2,1 A2,2 . . . A2,n−1

(∑n−1
k=1 A1,kLi

)
L−1

n

...
...

...
...

An,1 An,2 . . . An,n−1

(∑n−1
k=1 A1,kLi

)
L−1

n

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

Y1,n

Y2,n

Yn,n

Now, since the adversary can have just other n − 2 observations, there exists
at least one non-observed random bit and we can simulate Yi,n as a uniform
and independent random value. Moreover, if all the partial sums have been
observed, we can use the values previously simulated and add them according to
the algorithm. Otherwise, if no partial sum has been probed, since the random
values involved in the computation of Y1,n, . . . , Yi−1,n, Yi+1,n, . . . , Yn,n are picked
at random independently from that one of Yi,n, we can again simulate Yi,n as a
uniform and independent random value, completing the proof. ��

Now, considering that the multiplication gadget IPMult
(1)
L and the refreshing

SecIPRefreshL are both t–SNI and since the exponentiations .2, .4 and .16 are
linear functions in GF(28), we can claim that the entire algorithm for the com-
putation of .254 is t–SNI, according to the arguments in [5].

4.1 A More Efficient Scheme

We underline that for achieving (n − 1)th-order security the masked inputs A

and B of IPMult
(1)
L must be mutually independent. If this is not the case, a

refreshing of one of the factors is needed before processing the multiplication.
In this section we present an extended multiplication scheme IPMult(2)L , illus-

trated in Algorithm 7, which can securely receive in input two values of the form
A and g(A), where g is a linear function. Thanks to this property, in case of
mutual dependence of the inputs the refreshing is no longer needed and we can
save on the number of random bits. The main idea of the new algorithm is to
introduce a vector u sampled at random at the beginning of the execution and
used to internally refresh the shares of the secrets.

The correctness of IPMult
(2)
L is again quite simple and we leave it to the

reader.

Lemma 4. For any L,A ∈ Kn and C = IPMult
(2)
L (A, g(A)), we have

〈L,C〉 = 〈L,A〉 · 〈L, g(A)〉.

Lemma 5 provides the security analysis of IPMult(2)L .

Lemma 5. Let g be a linear function over K. The algorithm IPMult
(2)
L (A, g(A))

is t–SNI, with t = n − 1.



734 J. Balasch et al.

Algorithm 7. Multiply dependent masked values: C ← IPMult
(2)
L (A, g(A))

Input: vector A of length n
Output: vector C satisfying 〈L,C〉 = 〈L,A〉 · 〈L, g(A)〉, for g linear func-
tion

� Sampling at random of the vector u
for i = 1 to n do

ui ← rand(K);
end for
� Computation of the matrix A′

for i = 1 to n do
for j = 1 to n do

A′
i,j = Ai + δijuj ;

end for
end for
� Computation of the vector B′

for i = 1 to n do
B′

i = g(Ai) · ui · Li;
end for
� Computation of the matrix T
for i = 1 to n do

for j = 1 to n do
Ti,j = A′

i,j · g(Aj) · Lj ;
end for

end for
� Computation of the matrices U and U ′

for i = 1 to n do
for j = 1 to n do

if i < j then
U ′

ij ← rand(K);
end if
if i > j then

U ′
ij = −U ′

ji;
end if
Ui,j = U ′

i,j · δijL
−1
i ;

end for
end for
� Computation of the matrix V
for i = 1 to n do

for j = 1 to n do
Vi,j = (Ti,j + Ui,j) − δijB

′
j ;

end for
end for
� Computation of the output vector C
for i = 1 to n do

Ci =
∑

j Vi,j ;
end for
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Proof. Let Ω = (I,O) be a set of t observations respectively on the internal and
on the output wires, where |I| = t1 and in particular t1 + |O| ≤ t. We point out
the existence of a perfect simulator of the adversary’s probes, which makes use
of at most t1 shares of the secret A.

Let w1, . . . , wt be the probed wires. We classify the internal wires in the
following groups:

(1) Ai, g(Ai), g(Ai) · ui, B
′
i, ui

(2) Ui,j , U
′
i,j

(3) A′
i,j , A

′
i,j · g(Aj), Ti,j , Ti,j + Ui,j , Vi,j

(4) Ci,j , which represents the value of Ci at iteration i, j of the last for

We now define the set of indices I with |I| ≤ t1 such that the wires wh can
be perfectly simulated given only the knowledge of (Ai)i∈I . The procedure for
constructing the set is the following:

– Initially I is empty.
– For every wire as in the groups (1), (2) and (4), add i to I.
– For every wire as in the group (3), if i /∈ I add i to I and if i ∈ I add j to I.

Since the adversary is allowed to make at most t1 internal probes, we have
that |I| ≤ t1.

In the simulation phase, at first we assign a random value to every ui entering
in the computation of any observed wh. Then the simulation for any internal
wires wh proceeds as follows.

1. For each observation in category (1), then i ∈ I and by definition we can
directly compute from Ai, ui and the public value Li.

2. For each observation in category (2), then i ∈ I and we distinguish two
possible cases:

– If j /∈ I, then we can assign a random and independent value to U ′
i,j .

Indeed if i < j this is what would happen in the real execution of the
algorithm and if i > j, since j /∈ I, U ′

i,j will never be used in the com-
putation of other observed values. We compute Ui,j using U ′

i,j and the
public value Li.

– If j ∈ I, the values U ′
i,j and U ′

j,i can be computed as in the actual circuit:
we assign one of them (say U ′

j,i) to a random and independent value
and the other U ′

i,j to −U ′
i,j . We compute Ui,j using U ′

i,j and the public
value Li.

3. For each observation in category (3), then i ∈ I and we distinguish two
possible cases:

– If j /∈ I, then we can assign a random and independent value to wh.
Indeed, since j /∈ I, one of the values composing wh has not been observed
(otherwise by construction j would be in I) and for the same reason also
any of the wh does not enter in the expression of any other observed wire.

– If j ∈ I, the value wh can be perfectly simulated by using the accessible
values Ai, g(Aj), ui, uj , Li, Lj and the values Ui,j , U

′
i,j assigned in Step 2.
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4. For each observation as in the group (4), by definition i ∈ I. At first we assign
a random value to every summand Vik, with k ≤ j and k /∈ I, entering in the
computation of any observed Cij . Then if one of the addends Vik with k ≤ j
composing Cij has been probed, since by definition k ∈ I, we can simulate it
as in Step 3. Otherwise Vik has been previously assigned at the beginning of
the current Step 4.

As for the probed output wires, we distinguish the following cases.

1. If the attacker has already observed some intermediate values of Ci, using a
similar argument to the one in the proof of Lemma 2, we point out that Ci

can be simulated as a random value.
2. If all the partial sums have been observed, we can use the values previously

simulated and add them according to the algorithm. Finally, when no partial
sum Cij has been observed, again as before, by definition at least one of the
U ′

il involved in the computation of Ci is not used in any other observed wire
and then we can assign to Ci a random value.

��
We can now exploit this new scheme in the .254 algorithm, by eliminating
the first two refreshing and substituting the first two multiplications with our
IPMult

(2)
L (·, ·2) and IPMult

(2)
L (·, ·4), while using in the rest the IPMult

(1)
L . In

particular, according to the squaring routine in Algorithm 4, we point out that
in IPMult

(2)
L (·, ·2) the shares g(Ai) correspond to the products A2

i · Li and in
IPMult

(2)
L (·, ·4) the shares g(Ai) correspond to the products A4

i · Li · Li · Li. The
implementation of the gadget .254 is depicted in Fig. 1 and in Lemma 6 we prove
that it is t–SNI, using the techniques presented in [5].

Fig. 1. Gadget .254 which makes use of IPMult
(1)
L and IPMult

(2)
L

Lemma 6. Gadget .254, shown in Fig. 1, is t–SNI.

Proof. Let Ω = (
⋃7

i=1 Ii,O) a set of t observations respectively on the internal
and output wires. In particular Ii are the observations on the gadget Gi and
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∑7
i=1 |Ii| + |O| ≤ t. In the following we construct a simulator which makes use

of at most
∑7

i=1 |Ii| shares of the secret, by simulating each gadget in turn.
Gadget G1 Since IPMult

(1)
L is t–SNI and |I1 ∪ O| ≤ t, then there exist two

sets of indices S1
1 ,S1

2 such that |S1
1 | ≤ |I1|, |S1

2 | ≤ |I1| and the gadget can
be perfectly simulated from its input shares corresponding to the indices in S1

1

and S1
2 .

Gadget G2 Since IPMult
(1)
L is t–SNI and |I2 ∪ S1

2 | ≤ |I1| + |I2| ≤ t, then
there exist two sets of indices S2

1 ,S2
2 such that |S2

1 | ≤ |I2|, |S2
2 | ≤ |I2| and the

gadget can be perfectly simulated from its input shares corresponding to the
indices in S2

1 and S2
2 .

Gadget G3 Since .16 is affine, there exists a set of indices S3 such that
|S3| ≤ |I3| + |S2

2 | and the gadget can be perfectly simulated from its input
shares corresponding to the indices in S3.

Gadget G4 Since .4 is affine, there exists a set of indices S4 such that |S4| ≤
|I4| + |S2

1 | and the gadget can be perfectly simulated from its input shares
corresponding to the indices in S4.

Gadget G5 Since IPMult
(2)
L is t–SNI and |I5 ∪ S3| ≤ |I5| + |I3| + |I2| ≤ t,

then there exists a set of indices S5 such that |S5| ≤ |I5| and the gadget can be
perfectly simulated from its input shares corresponding to the indices in S5.

Gadget G6 Since IPMult
(2)
L is t–SNI and |I6 ∪ S5| ≤ |I6| + |I5| ≤ t, then

there exists a set of indices S6 such that |S6| ≤ |I6| and the gadget can be
perfectly simulated from its input shares corresponding to the indices in S6.

Gadget G7 Since .2 is affine, there exists a set of indices S7 such that |S7| ≤
|I7|+ |S1

1 | ≤ |I7|+ |I1| and the gadget can be perfectly simulated from its input
shares corresponding to the indices in S7.

Each of the previous steps guarantee the existence of a simulator for the
respective gadgets. The composition of them allows us to construct a simulator
of the entire circuit which uses S6 ∪ S7 shares of the input. Since |S6 ∪ S7| ≤
|I7| + |I1| + |I6| ≤ ∑7

i=1 |Ii| we can conclude that the gadget .254 is t–SNI. ��
The advantage of the use of IPMult

(2)
L mostly consists in amortizing the ran-

domness complexity. Indeed the new scheme requires only n (for the vector
u) plus n(n−1)

2 (for the matrix U) random bits, while the previous one uses a
larger amount of randomness, corresponding to n2 (for the SecIPRefreshL) plus
n(n−1)

2 (for the IPMult
(1)
L ) bits. We summarize in Table 1 the complexities of the

two schemes. The issue of providing a secure multiplication of two dependent
operands was first addressed by Coron et al. in [17]. In their work the authors
proposed a new algorithm which requires n(n−1) random bits and that has later
been proved to be t–SNI in [5]. By analyzing the amount of random generations
and comparing with IPMult

(2)
L , we can see that our scheme is more efficient

whenever n > 3, while it requires the same amount of randomness for n = 3
and more random bits for n < 3. On the other hand, from a complexity point
of view the scheme in [17] is better optimized in terms of field multiplications
since it makes use of look-up tables.

A more detailed performance analysis is provided in the next section.
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Table 1. Complexity of IPMult
(1)
L and IPMult

(2)
L and comparison with the multiplica-

tion algorithms of [8,17]

#Additions # Multiplications #Random bits

IPMult
(1)
L 2n2 3n2 n(n−1)

2

IPMult
(2)
L 4n2 3n2 + 2n n(n+1)

2

SecIPRefreshL 2n2 − n 2n n2

IPMult
(1)
L

and SecIPRefreshL

4n2 − n 3n2 + 2n n(3n−1)
2

Algorithm 5 in [17] 4n(n − 1) − n(n − 1)

Algorithm 3 in [8] 4n(n − 1) 1
4
(n − 1)(7n + 3) (n odd)

1
4
n(7n − 6) (n even)

n(n − 1)

5 Performance Evaluations

In this section we analyze the performance of our improved IP masking construc-
tion. Following the lines in [1,2], we opt to protect a software implementation
of AES-128 encryption for AVR architectures. We develop protected implemen-
tations using either our new multiplication algorithm IPMult

(1)
L alone, or in

combination with IPMult
(2)
L . In order to compare performances, we also develop

protected instances of AES-128 with Boolean masking. All our implementations
have a constant-flow of operations and share the same underlying blocks. In
particular, we use log-alog tables for field multiplication and look-up tables to
implement raisings to a power. The most challenging operation to protect is the
nonlinear SubBytes transformation, which is also the bottleneck of our imple-
mentations. Similar to earlier work, we take advantage of the algebraic structure
of the AES and compute SubBytes as the composition of a power function x254

and an affine transformation. The remaining operations are straightforward to
protect and are thus omitted in what follows. Our codes can be downloaded from
http://homes.esat.kuleuven.be/∼jbalasch.

Implementation of the power function. Rivain and Prouff proposed in [42]
an algorithm to compute the inversion in F

8
2 as x254 using an addition chain

with only 4 multiplications. We select this algorithm for our implementations
protected with IP masking. Recall that to ensure t–SNI it is necessary to exe-
cute the SecIPRefreshL algorithm when using only IPMult

(1)
L , but this can be

omitted when using also IPMult
(2)
L as depicted in Fig. 1.

The same technique is used in our Boolean masking implementations, only in
this case we employ the mask refreshing algorithm proposed by Duc et al. [18].
Additionally, we provide a faster implementation using the addition chain pro-
posed by Grosso et al. [30], which leverages on the algorithm introduced by Coron
et al. [17] to securely evaluate functions of the form x · g(x), where g is a linear
function. This approach demands only 1 multiplication and 3 secure evaluations,

http://homes.esat.kuleuven.be/~jbalasch
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and thus achieves significant performance gains. Note that further optimizations
are possible by combining [30] with recent techniques, e.g. the common shares
approach proposed by Coron et al. [16] or the multiplication gadget put forward
by Beläıd et al. [8]. We expect however the gains to be relatively small (see results
in [16]), and therefore have a limited impact for the purposes of comparison.

Implementation of the affine transformation. Securing the affine transfor-
mation using Boolean masking can be done in a highly efficient way by applying it
to every input share separately, that is, by computing Ax1+. . .+Axn+b. Hence,
each share xi of x is only involved in one matrix-vector multiplication, which
in practice can be tabulated. Unfortunately, such an approach is not directly
applicable to IP masking, since the sharing of x consists of two vectors L and R
with each n elements in F

8
2. The affine transformation can be computed through

a polynomial evaluation over F8
2, which is known to perform rather poorly when

compared to Boolean masking (see [1,2]).
In this work we note that since L is fixed it is possible to change the represen-

tation of A depending on the values Li. More precisely, we define n matrices Ai

and compute the affine transformation as A1x1 + . . . +Anxn + b. The matrices
Ai need only to be pre-computed once, at initialization time. Given Li ∈ F

8
2 we

first construct an 8 × 8 matrix Mi over Z2. Notice that Li is represented by a
polynomial a0+a1 ·x+ . . .+a7 ·x7, where {1, x, . . . , x7} form the basis of F8

2. The
j-th column of Mi corresponds to the coefficients of the polynomial Li × xj−1.
Given the matrix Mi as described above, we can then compute Ai = A × Mi

by simple matrix multiplication, and take advantage of tabulation in the imple-
mentation. In contrast to Boolean masking, the memory requirements of this
tabulation increase linearly with the number of shares. However, the overheads
remain reasonable for practical values of n.

Implementation results. We have developed assembly implementations for
n = 2, 3 shares tailored to the target AVR architecture and optimized for speed.
Results are summarized in Table 2. The implementation protected by IP masking
using only IPMult

(1)
L requires roughly 157 k cycles and 372 k cycles for security

levels n = 2 and n = 3, respectively. This represents a significant improvement
over earlier work [1] which demanded 375 k and 815 k cycles to protect instances
of AES-128 for the same security levels. The implementation protected by IP
masking using IPMult

(2)
L in conjunction with IPMult

(1)
L performs slightly poorer

in terms of cycles but, as mentioned earlier, has the advantage of demanding
less randomness. The results for Boolean masking with the same number of
secret shares are 110 k and 230 k, respectively. The timing gap with respect to
IP masking stems exclusively from the computation of x254, as the rest of AES
operations execute in a similar number of cycles. The reason why IP masking
is slower is mainly due to the extra operations in the multiplication gadgets.
Note that since L is fixed, it is possible to tabulate the field multiplications
with elements Li and L−1

i , given that the number of shares n is small. We
have performed this optimization which allows to reduce the cycle count at the
cost of more non-volatile storage. Thanks to this, we are able to decrease the gap
between Boolean and IP masking implementations to slightly more than a factor
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2 when compared to the implementation using the addition chain from [30]. We
leave as open work whether a similar algorithm as in [17] to efficiently evaluate
functions of the form x · g(x) can be devised for IP masking.

Table 2. Performance evaluation of protected AES-128 implementations on AVR archi-
tectures (optimized in assembly code). Timings in clock cycles, memory and random-
ness requirements in bytes.

Masking Timings Memory Randomness

x254 AES-128

IP masking n =2 709 157 196 2 816 1 632

(only IPMult
(1)
L ) n =3 1 752 372 225 3 328 4 864

IP masking n =2 763 167 996 2 816 1 632

( IPMult
(1)
L & IPMult

(2)
L ) n =3 1 766 375 025 3 328 3 664

Boolean masking n =2 459 110 569 2 048 1 232

(addition chain [42]) n =3 1 043 230 221 2 048 3 664

Boolean masking n =2 275 73 769 1 792 1 432

(addition chain [30]) n =3 676 160 357 1 792 4 264

Lastly, we illustrate in Fig. 2 the performance trend of our implementations
for larger values of n. Cycle counts correspond in this case to a single SBox
operation. Note that the results for n = 2, 3 are significantly higher than those
provided in Table 2, the reason being that the implementations are now written
in C language (and are thus less optimized than their assembly counterparts).
Note also that the gap between Boolean and IP masking protected versions
increases almost to a factor 4. This is because we do not take advantage of
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Fig. 2. Performance evaluation of protected AES Sbox implementations on AVR archi-
tectures (in C code) for increasing number of shares.
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the tabulation of the field multiplications with elements Li and L−1
i , since the

memory requirements would grow considerably for non-small values of n. In spite
of this, we observe that the performance ratio between Boolean and IP masking
protected implementations remains constant as the number of shares increases.

6 Information Theoretic Evaluation

As a complement to the previous proofs and performance evaluations, we now
provide results regarding the information theoretic analysis of inner product
masking. As first motivated in [44], the mutual information between a secret
variable and its corresponding leakages can serve as a figure of merit for side-
channel security, since it is proportional to the success rate of a (worst-case)
Bayesian adversary exploiting these leakages (see [19] for a recent discussion).
Such a metric has been used already for the evaluation of Boolean masking [45],
affine masking [23], polynomial masking [28,40] and inner product masking [1,
2]. In this respect, and despite the encoding of our consolidated inner product
masking schemes has not changed compared to the latter two references, we aim
to improve their results in three important directions:

– Extended noise range. In [1,2], the mutual information of the inner product
encoding was evaluated for a Hamming weight leakage function and noise
variances up to 4. While this is sufficient to discuss the positive impact of the
increased algebraic complexity of inner product masking for low noise levels, it
is not sufficient to exhibit the security order (which corresponds to the lowest
key-dependent statistical moment of the leakage distribution minus one [7],
and is reflected by the slope of the information theoretic curves for high
noise levels). Therefore, we generalize the improved numerical integration
techniques from [19] to inner product encodings and compute the mutual
information metric for noise variances up to 1000 (which allows us to exhibit
and discuss security orders).

– Other (public) L values. In [1,2], the inner product encoding was evaluated
based on a single value of the public L. However, it was recently shown
in [46] that for linear leakage functions (such as the Hamming weight leakage
function), an appropriate choice of L may improve the security order of an
implementation. In other words, it was shown that security in the bounded
moment model (as recently formalized in [7]) can be higher than the probing
security order in this case. Therefore, we evaluate the mutual information for
different L vectors for our 8-bit targets (rather than 4-bit S-boxes in [46],
which is again made possible by our exploitation of improved numerical inte-
gration techniques).

– Non-linear leakage functions. Since the previous security order amplification
is highly dependent on the fact that the leakage function is linear, we finally
complement our results by evaluating the information leakage of the inner
product encoding for non-linear leakage functions.

Building on our experimental observations, we also highlight other interesting
implementation properties of the inner product encoding (regarding the risk of
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transition-based leakages [3,15]) in Sect. 6.3. And we conclude the section by dis-
cussing general (theoretical) limitations of both the security order amplification
and these implementation properties.

6.1 Linear (e.g., Hamming Weight) Leakages

We first analyze the information leakage of the inner product encoding of Algo-
rithm 2 for n = 2 shares and a Hamming weight leakage function. More precisely,
we consider a target intermediate secret variable A ∈ GF(28) that is encoded
as A = A1 + L2 · A2 such that A = [A1, A2]. The adversary is given the leak-
age (next denoted with the variable O for observation, to avoid confusion with
the L values) corresponding to these two shares. That is, O = [O1, O2] with
O1 = HW(A1) � N1, O2 = HW(A2) � N2, HW the Hamming weight function,
N1, N2 two normally distributed (independent) noise random variables and �
the addition in the reals (in contrast with the group addition +). The mutual
information between A and the observation O is expressed as:

MI(A;O) = H[A] �
∑

a∈A
Pr[a] ×

∑

a2∈A
Pr[a2] ×

∑

o∈O2

f[o|a] × log2 Pr[a|o], (1)

where f[o|a] is the conditional Probability Density Function (PDF) of the
observation o given the secret a, which is computed as a sum of normal
PDFs (denoted as N) evaluated for all the (unknown) random shares: f[o|a] =∑

a2∈A N[o|a, a2] · Pr[a2]. The conditional probability Pr[a|o] is obtained via
Bayes’ law: Pr[a|o] = f[o|a]∑

a∗∈A f[o|a∗] where the a∗ notation is used for the secret

a candidates.1

The result of our information theoretic analysis for Hamming weight leak-
ages, for vectors L2 = 17, 5, 7 and noise variances between 10−2 and 103 is given
in Fig. 3, where we additionally report the leakage of an unprotected A (i.e., for
which the adversary can observe O = HW(A) � N) and of a Boolan encoding
(which is a special case of inner product encoding such that L1 = L2 = 1)
for illustration. For low noise levels, we reach the same conclusions as previous
works [1,2]. Namely, the increased algebraic complexity of inner product mask-
ing allows significantly lower leakages than Boolean masking. Intuitively, this is
simply explained by the fact that knowing one bit of each share directly leads
to one bit of secret in Boolean masking, while it only leads to a (smaller) bias
on the secret variable distribution in inner product masking.

For large noise levels, and as expected, we now clearly observe the security
order (in the bounded moment model) of the masking schemes based on the slope
of the information theoretic curves, which moves from −1 for an unprotected
implementation to −2 for Boolean masking (the latter therefore corresponds to
a security order 1 in the bounded moment model). Interestingly, our results also
1 Note that despite our simulated leakages are coming from a continuous distribution,

we estimate the mutual information by sampling (following the open source code
of [19]), which explains why Eq. (1) uses sums rather than integrals.
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Fig. 3. Information theoretic evaluation of an inner product encoding.

show that by tuning the public L2 value of the inner product encoding, we can
reach much better results. Namely, the slope of the information theoretic curves
can be reduced to −3 (which corresponds to a security order 2 in the bounded
moment model) and even −4 (which corresponds to a security order 3 in the
bounded moment model), despite the first-order security of this encoding in the
probing model (proved in Sect. 3.1) has not changed.

The reason for this phenomenon has been given in a recent CARDIS 2016
paper [46] and is simply summarized by observing that the multiplication in
GF(28) that is performed by the inner product encoding can be represented as
a multiplication with an 8×8 matrix in GF(2). Roughly, depending on the num-
ber of linearly independent lines in this matrix, and assuming that the leakage
function will only mix the bits of the encoding linearly (which is the case for
the Hamming weight leakage function), the multiplication will XOR more shares
together, implying a higher security order in the bounded moment model. And
this “security order amplification” is limited to a slope of −4 (which corresponds
to the attack exploiting the multiplication of the squares of all the shares).

6.2 Non-linear (e.g., Random) Leakages

In view of the previous positive observations obtained for the inner product
encoding in the context of linear (e.g., Hamming weight) leakages, a natural
next step is to investigate the consequences of a deviation from this assumption.
For this purpose, we study an alternative scenario where the Hamming weight
leakages are replaced by a random leakage function G with similar output range
{0, 1, . . . , 8}, such that the adversary now observes O1 = G(A1) � N1 and O2 =
G(A2) � N2. Note that the choice of an output range similar to the Hamming
weight function allows the two types of leakages to provide signals of similar
amplitude to the adversary (which makes them directly comparable).



744 J. Balasch et al.

The result of our information theoretic analysis for random leakages, vectors
L2 = 17, 5, 7 and noise variances between 10−2 and 103 is given in Fig. 4, where
we again report the leakage of an unprotected A and a Boolean encoding. Our
observations are twofold. First, for large noise levels the security order amplifi-
cation vanishes and all the information theoretic curves corresponding to d = 2
shares have slope −2, as predicted by the proofs in the probing model. This is
expected in view of the explanation based on the 8 × 8 matrix in GF(2) given in
the previous section and actually corresponds to conclusions made in [31] for low
entropy masking schemes. That is, because of the non-linear leakage function,
the GF(2) shares that are mixed thanks to the inner product encoding are actu-
ally recombined which reduces the security order. So as in this previous work,
the reduction of the security order actually depends on the degree of the leakage
function. But in contrast with low entropy masking schemes, the security cannot
collapse below what is guaranteed by the security order in the probing model.
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Fig. 4. Information theoretic evaluation of an inner product encoding.

Second and more surprisingly, we see that a non-linear leakage function also
has a negative impact for the interest of the inner product encoding in the low
noise region. This is explained by the fact that by making the leakage function
non-linear, we compensate the low algebraic complexity of the Boolean encoding
(so the distance between Boolean and inner product encodings vanishes).

From these experiments, we conclude that the security order amplification
of inner product masking is highly implementation-dependent. We will further
discuss the impact of this observation and the general limitations of the security
order amplification in Sects. 6.4 and 7, but start by exhibiting another interesting
property of the inner product encoding.
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6.3 Transition-Based Leakages

In general, any masking scheme provides security guarantees under the condi-
tion that the leakages of each share are sufficiently noisy and independent. Yet,
ensuring the independence condition usually turns out to be very challenging
both in hardware and software implementations. In particular in the latter case,
so-called transition-based leakages can be devastating. For illustration, let us
consider a Boolean encoding such that A = A1 + A2. In case of transition-based
leakages, the adversary will not only receive noisy versions of A1 and A2 but
also of their distance. For example, in the quite standard case of Hamming dis-
tance leakages, the adversary will receive HW([A1] + [A2]) � N = HW(A) � N ,
which annihilates the impact of the secret sharing. Such transition-based leak-
ages frequently happen in microcontrollers when the same register is used to
consecutively store two shares of the same sensitive variable (which typically
causes a reduction of the security order by a factor 2 [3]).

Interestingly, we can easily show that inner product masking provides
improved tolerance against transition-based leakages. Taking again the exam-
ple of an encoding A = A1 + L2 · A2, the Hamming distance between the two
shares A1 and A2 (where A1 = A + L2 · A2) equals HW([A + L2 · A2] + [A2]).
Since for uniformly distributed A2 and any L2 �= 1, we have that A2 + A2 · L2 is
also uniformly distributed, this distance does not leak any information on A. Of
course, and as in the previous section, this nice property only holds for certain
combinations of shares (such as the group operation + in our example).

6.4 Limitations: A Negative Result

The previous sections showed that the inner product encodings offer interesting
features for security order amplification and security against transition-based
leakages in case the physical leakages are “kind” (e.g., linear functions, transi-
tions based on a group operation). Independent of whether this condition holds
in practice, which we discuss in the next section, one may first wonder whether
these properties are maintained beyond the inner product encoding. Unfortu-
nately, we answer to this question negatively. More precisely, we show that when-
ever non-linear operations are performed (such as multiplications), the security
order of the inner product encoding gets back to the one of Boolean masking
(and therefore is also divided by two in case transitions are observed).

Concretely, and assuming we want to multiply two shared secrets A =
A1 + L2 · A2 and B = B1 + L2 · B2, a minimum requirement is to com-
pute the cross products Ai · Bj . So for example, an adversary can observe
the pair of leakages (A1, A2 · B2) which depends on A. Defining a function
FB2(A2) = A2 · B2, and assuming a (linear) Hamming weight leakage function
HW, we see that the adversary obtains two leakage samples O1 = HW(A1) � N1

and O2 = HW(FB2(A2)) � N2. In other words, it is in fact the composition
of the functions FB2 and HW that is subject to noise, the latter being non-
linear and informative (because of the standard “zero issue” in multiplicative
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masking [26]). So whenever the implementation has to perform secure multi-
plications with inner product masking, we are in fact in a situation similar to
the non-linear leakages of Sect. 6.2. A similar observation holds for the result of
Sect. 6.3 regarding transition-based leakages. Taking exactly the previous exam-
ple, observing the Hamming distance between A1 and FB2(A2) directly halves
the security order, just as for the Boolean encodings in [3].

One natural scope for further research is to look for new solutions in order
to maintain the security order guarantees even for non-linear operations (e.g.,
thanks to a different sequence of operations or additional refreshings). Never-
theless, even with the current algorithm and non perfectly linear leakages, inner
product masking should reduce the number and informativeness of the key-
dependent tuples of leakage samples in a protected implementation, which is not
captured by the notion of (probing or bounded moment) security order. So over-
all, the improved theoretical understanding allowed by our investigations calls
for a the concrete evaluation of an inner product masked AES. The next section
makes a step in this direction, and discusses how these potential advantages
translate into practice for a 32-bit ARM microcontroller.

7 Empirical Side-Channel Leakage Evaluation

In order to further complement the analysis we provide concrete results of empir-
ical side-channel leakage evaluations for both Boolean masking with two shares
and IP masking with n = 2 (L1 = 1, L2 = 7). Security proofs are valid only
for the assumed and possibly idealized (e.g. simplified) leakage model, but real
device leakage behaviour can be complex and hard to model. For instance, tran-
sition leakages are known to be difficult to deal with when moving from theory
to practice. Similarly, the information theoretic analysis based on simulations is
of course valid only for the simulated leakage behavior, and its results strongly
vary for different leakage behaviours as we have shown, and it is limited to the
encoding function.

We therefore assess and compare the leakage behavior of our implementations
in practice with real measurements of our code running on a physical platform
to round off our analysis. This evaluation allows us to reason about the leakage
under typical conditions and without making modeling assumptions. Note also
that this practical evaluation covers both the encoding as well as computation
in the masked domain.

We use generic code that follows the guidelines of the masking algorithms pro-
vided in this paper but leave freedom to the compiler to perform register/memory
allocations, optimizations, etc. The implementations are hence neither hand-
optimized for the target platform nor adapted to its specific leakage behavior.
The security of the implementations therefore depends in part on the compiler
tool-chain.

Our target platform is an STM32 Nucleo board equipped with an ARM
Cortex-M4 processor core. The processor runs at 168 MHz and features a built-
in RNG capable of generating 32-bit random numbers every 40 clock cycles. The
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presence of the RNG is the main motivation for using this platform rather than
an AVR. We have ported our generic (coded in C language) protected imple-
mentations of AES-128 using the addition chain from [42] to this platform using
arm-none-eabi-gcc (v4.8.4) and verified that they run in constant time inde-
pendent of the input values. Power measurements are obtained in a contactless
fashion by placing a Langer RF-B 3-2 h-field (magnetic field) probe over a decou-
pling capacitor near the chip package, similar to [4]. The antenna output signal
is amplified with a Langer PA-303 30 dB amplifier before we sample it with a
Tektronix DPO 7254c oscilloscope and transfer it to a computer for analysis.
We use a trigger signal generated from within the Nucleo board prior to each
encryption routine to synchronize the power measurements.

Each power measurement comprises 500 000 samples that cover a time win-
dow of 4 ms. During this time the Boolean masked implementation executes
slightly more than eight rounds of AES while the IP masking protected imple-
mentation executes about 2.5 rounds of AES. The timing difference of roughly
a factor of four is in line with the data shown in Fig. 2. The time period covered
by the measurements is a tradeoff between the amount of measurement data we
need to handle on the one hand (shorter measurements give less data) and the
complexity of the executed code on the other hand (we do not want to use a too
simple toy example; two rounds of AES give full diffusion).

We use state-of-the-art leakage assessment techniques [13,27,36] to evalu-
ate the leakage behavior of our masked implementations. Note that such an
evaluation is independent of any adversarial strategy and hence it is not a secu-
rity evaluation, i.e. it is not about testing resistance to certain attacks. Leak-
age assessment is a convenient tool to assess leakage regardless whether it is
exploitable by a certain adversary.

In practice the most widely used methodology in the literature is Test Vector
Leakage Assessment, first introduced in [27], and in particular the non-specific
fixed versus random test. See for instance [43] for details. In brief, this particular
test checks if the distribution of the measured side-channel leakage depends on
the data processed by the device. If not, we can strongly ascertain that no
adversary will be able to exploit the measurements to recover secret data.

To perform the test we collect two sets of measurements. For the first set we
used a fixed input plaintext and we denote this set Sfixed. For the second set the
input plaintexts are drawn at random from uniform. We denote this set Srandom.
Note that we obtain the measurements for both sets randomly interleaved (by
flipping a coin before each measurement) to avoid time-dependent external and
internal influences on the test result. The AES encryption key is fixed for all
measurements.

We then compute Welch’s (two-tailed) t-test:

t =
μ(Sfixed) − μ(Srandom)

√
σ2(Sfixed)
#Sfixed

+ σ2(Srandom)
#Srandom

, (2)

(where μ is the sample mean, σ2 is the sample variance and # denotes the
sample size) to determine if the samples in both sets were drawn from the same
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population (or from populations with the same mean). The null hypothesis is that
the samples in both sets were drawn from populations with the same mean. In
our context, this means that the masking is effective. The alternative hypothesis
is that the samples in both sets were drawn from populations with different
means. In our context, this means that the masking is not effective. A threshold
for the t-score of ±4.5 is typically applied in the literature (corresponding roughly
to a 99.999% confidence) to determine if the null hypothesis is rejected and the
implementation is considered to leak. However, our primary intention is a relative
comparison of the leakage of the different masked implementations.

7.1 RNG Deactivated

We first evaluate both implementations with the RNG deactivated (all random
numbers are zero).

Fig. 5. t-test results for Boolean masking (top) and IP masking (bottom) with RNG
deactivated; each based on 10 000 measurements. The red lines mark the ±4.5 thresh-
old. (Color figure online)

In this scenario we expect both implementations to leak and we can use it
to verify our measurement setup, analysis scripts, etc. We take 10 000 measure-
ments from each implementation. Figure 5 shows plots of the t-scores for Boolean
masking (top) and IP masking (bottom) in gray. The red lines mark the ±4.5
threshold.

As expected both implementations leak significantly. The repetitive patterns
in the plots of the t-scores allow to recognize the rounds of AES as areas with
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high t-scores, interleaved by the key scheduling which does not leak in this test
because the key is fixed. However, already in this scenario with deactivated RNG
we can observe that the implementation protected with IP masking shows less
evidence of leakage (lower t-scores).

7.2 RNG Activated

Next we repeat the evaluation with activated RNG.

Fig. 6. t-test results for Boolean masking (top) and IP masking (bottom) with RNG
activated; each based on 1 million measurements. The red lines mark the ±4.5 thresh-
old. (Color figure online)

In this scenario we expect both implementations to leak less and we take
more measurements (1 million from each implementation). Figure 6 shows the
results for Boolean masking (top) and IP masking (bottom).

In this scenario we can observe a striking difference between the test results.
The implementation protected with Boolean masking leaks. The t-scores are even
higher than in the scenario with deactivated RNG, but this is due to the much
larger number of measurements, which appears as sample size in the denominator
of Eq. 2. The IP masking protected implementation on the other hand shows
significantly less evidence of leakage than the implementation protected with
Boolean masking, and is not deemed to leak for this number of measurements
(a few t-scores slightly exceed the threshold but this is expected given that we
have 500 000 t-scores and 99.999% confidence).
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So based on these experiments and results, we can conclude that as expected
from our theoretical investigations, IP masking allows reducing both the number
of leaking samples in the implementation (which is assumably due to the better
resistance to transition-based leakages) and the informativeness of these leaking
samples (which is assumably due to the quite linear nature of our target leakage
function). We insist that we make no claims on the fact that our IP masking
implementation is first-order secure. We only conclude that it shows significantly
less evidence of leakage than our Boolean masking implementation. Admittedly,
first-order information could theoretically appear with larger number of measure-
ments. For example, transition-based leakages implying a non-linear operation
could lead to a flaw, which we did not observe. This could be because our specific
code does not contain such a combination, or because it will only appear with
more measurements. But our results anyway show that the more complex alge-
braic structure of the inner product encoding brings an interesting alternative
(tradeoff) to Boolean masking with slight performance overheads compensated
by less evidence of leakage in practice. We leave the careful investigation of the
concrete leakages of the IP masking with advanced statistical tools (e.g., higher-
order and multivariate attacks) as an interesting scope for further research.

8 Conclusions

Overall, the results in this paper complete the theoretical and practical under-
standing of inner product masking. First, we proposed new (simplified) mul-
tiplication algorithms that are conceptually close to the standard proposal of
Ishai et al. [32], and have good properties for composability. Second we showed
that these simplified algorithms allow better performance than reported in the
previous works on inner product masking of the AES [1,2]. Third, we extended
previous information theoretic evaluations in order to discuss the pros and cons
of inner product masking in idealized implementations, and confronted these
evaluations with first empirical experiments.
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Abstract. Hardware Trojans have gained high attention in academia,
industry and by government agencies. The effective detection mecha-
nisms and countermeasures against such malicious designs are only pos-
sible when there is a deep understanding of how hardware Trojans can
be built in practice. In this work, we present a mechanism which shows
how easily a stealthy hardware Trojan can be inserted in a provably-
secure side-channel analysis protected implementation. Once the Trojan
is triggered, the malicious design exhibits exploitable side-channel leak-
age leading to successful key recovery attacks. Such a Trojan does not
add or remove any logic (even a single gate) to the design which makes
it very hard to detect. In ASIC platforms, it is indeed inserted by sub-
tle manipulations at the sub-transistor level to modify the parameters
of a few transistors. The same is applicable on FPGA applications by
changing the routing of particular signals, leading to null resource uti-
lization overhead. The underlying concept is based on a secure masked
hardware implementation which does not exhibit any detectable leakage.
However, by running the device at a particular clock frequency one of the
requirements of the underlying masking scheme is not fulfilled anymore,
i.e., the Trojan is triggered, and the device’s side-channel leakage can be
exploited.

Although as a case study we show an application of our designed
Trojan on an FPGA-based threshold implementation of the PRESENT
cipher, our methodology is a general approach and can be applied on
any similar circuit.

1 Introduction

Cryptographic devices are those pieces of (usually) hardware that implement
cryptographic algorithm(s) providing different aspects of security. Since such
devices often deal with secret information and/or privacy of the users, hardware
Trojans have gained high attention in academia and industry as well as gov-
ernment agencies, and can leak the secrets in a particular fashion without the
notice of the end users. Indeed, both bodies of research concerning the Trojan
design and Trojan detection are large and active. Nevertheless, these two topics
c© International Association for Cryptologic Research 2017
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are closely related. The effective detection mechanisms and countermeasures are
only possible when there is an understanding of how hardware Trojans can be
built.

Amongst several different ways to insert a Trojan into an IC, we can refer to
those conducted (i) by an untrusted semiconductor foundry during manufactur-
ing, (ii) by the original hardware designer who is pressured by the government
bodies, and (iii) in the third-party IP cores. Most of the hardware Trojans are
inserted by modifying a few gates (can be done at different abstraction levels).
In short, one of the main goals of the Trojans is to be designed/implemented
in such a way that the chance of detection becomes very low. Our focus in this
article is those Trojans which leak out the secrets through a side channel. The
first such a Trojan has been introduced in [35,36] which stealthily leaks out the
cryptographic key using leakages through power consumption side channel. The
underlying scheme is independent of the cryptographic algorithm and deals only
with the secret key. This Trojan, made by a moderately large circuit including an
LFSR and leaking circuit, is inserted at the netlist or HDL level. Therefore, it is
likely detected by a Trojan inspector. Further, the designs in these works [35,36]
are not parametric Trojans, i.e., they always leak through a side channel, which
might be exploited by anybody not only the Trojan attacker.

On the other hand, the cryptographic devices – if pervasive and/or ubiquitous
– are in danger of side-channel analysis (SCA) attacks. After around two decades
since introduction of such physical attacks [32,33], integration of dedicated SCA
countermeasures is a must for devices which deal with security. Therefore, if the
design is not protected against SCA threats, any SCA adversary would be able
to reveal the secrets independent of the existence of such a Trojan [36].

In a follow-up work [30], the authors expressed a relatively similar concept
on an SCA-protected implementation. Their technique is based on inserting a
logical circuit forming an LFRS-based Trojan leaking the internal state of the
PRNG. As a side note, random number generators are necessary modules for
those SCA-protected implementations which are based on masking [38]. Hence,
the Trojan adversary would detect the internal state of the PRNG by means of
SCA leakages and can conduct DPA attacks knowing the masks. It should be
noted that those products which need to be protected against physical attacks
are usually evaluated by a third-party certification body, e.g., through a common
criteria evaluation lab. Therefore, due to its relatively large circuit, such a Trojan
is very likely detected by an inspector.

As another work in this domain, we should refer to [2], where the Trojan is
inserted by changing the dopant polarity of a few transistors in a circuit realized
by the DPA-resistant logic style iMDPL [47]. However, none of such logic styles
can perfectly provide security, and the leakage of an iMDPL circuit can still be
exploited by ordinary SCA adversaries [40].

Our Contribution. In short, integrating an SCA Trojan into an SCA-protected
design is challenging, if the device is supposed to be evaluated by a third-party
certification body. It is because the device should provide the desired SCA pro-
tection under a white-box scenario, i.e., all design details including the netlist
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are known to the evaluation lab. In this work, we present a mechanism to design
a provably- and practically-secure SCA-protected implementation which can be
turned into an unprotected implementation by a Trojan adversary. Our Trojan
does not add any logic (even a single gate) to the design, making it very hard
to detect. In case of ASIC platforms, it is done by slightly changing the char-
acteristic of a few transistors, and for FPGA platforms by changing the routing
of particular signals. Most notably, our technique is not based on the leakage of
the PRNG, and it does not affect the provable-security feature of the underly-
ing design unless the Trojan is triggered. More precisely, our technique leads to
inserting a parametric Trojan, i.e., under normal condition the device does not
exhibit any SCA leakage to be detected by an evaluation lab. By increasing the
clock frequency of the malicious device (or by decreasing its supply voltage) the
Trojan is triggered and exhibits exploitable leakage. Note that such a high clock
frequency is beyond the maximum frequency that the device can correctly oper-
ate. Hence, the device is not expected to be evaluated under such a condition
by evaluation labs. As we show in the following sections, there is a gap between
the maximum clock frequency of the device and the clock frequency where the
Trojan is triggered. In other words, by increasing the clock frequency (violating
its critical path delay) the device starts to operate faulty; by even more increas-
ing the clock frequency the device operates again correctly while exhibiting SCA
leakage (i.e., our inserted Trojan becomes active).

Outline. Section 2 deals with necessary background and definitions in the areas
of hardware Trojan and threshold implementation as an SCA countermeasure.
Afterwards, in Sect. 3 we express our core idea how to insert our Trojan into
a secure threshold implementation. In Sect. 4 we give details on how to apply
such a technique on a threshold implementation of the PRESENT cipher, and in
Sect. 5 the corresponding result of FPGA-based SCA evaluations are exhibited.

2 Background

2.1 Hardware Trojan

Malicious and intentional modification of integrated circuit (IC) during manufac-
turing in untrusted foundry is an emerging security concern. This problem exists
because the majority of ICs are fabricated abroad, and a government agency can
force a foundry to manipulate the design maliciously. Also, an IC designer can
be pressured by her own country government to modify the ICs maliciously, e.g.,
those ICs that are used in overseas products. Another possible insertion point
are 3rd party IP cores. In general, a hardware Trojan is a back-door that can be
inserted into an integrated circuit as an undesired and malicious modification,
which makes the behavior of the IC incorrect.

There are many ways to categorize Trojans such as categorizing based
on physical characteristics, design phase, abstraction level, location, triggering
mechanism, and functionality. But a common Trojan categorization is based on
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the activation mechanism (Trojan trigger) and the effect on the circuit func-
tionality (Trojan payload). A set of conditions that cause a Trojan to be acti-
vated is called trigger. Trojans can combinationally or sequentially be triggered.
An attacker chooses a rare trigger condition so that the Trojan would not be
triggered during conventional design-time verification and manufacturing test.
Sequentially-triggered Trojans (time bombs) are activated by the occurrence of
a sequence of rare events, or after a period of continuous operation [18].

The goal of the Trojan can be achieved by payload which can change the
circuit functionally or leak its secret information. In [27] a categorization method
according to how the payload of a Trojan works has been defined; some Trojans
after triggering, propagate internal signals to output ports which can reveal
secret information to the attackers (explicit payload). Other Trojans may make
the circuit malfunction or destroy the whole chip (implicit payload). Another
categorization for actions of hardware Trojans has been presented in [59], in
which the actions can be categorized into classes of modify functionality, modify
specification, leak information, and denial of service.

The work in [29] introduced a manipulation which makes an error detection
module to work incorrectly and accept inputs that should be rejected. They
showed how a Trojan could be used to change the instruction order in which
CPU executes them, leak data by side-channel analysis, and change the content
of programmable read only memory. The work in [31] presented how a hardware
Trojan, which is inserted into a CPU by adding extra logic into its HDL code,
can give an attacker unlimited access to the CPU.

Threats posed by hardware Trojans and the methods of deterring them have
been analyzed in [18]. For example a bridging fault by insertion of a resistor and
by increasing a net delay by enlarging its capacitance load has been introduced
in this work. The works in [19,53] discussed about efficient generation of test
patterns for hardware Trojans triggered by rare input signals. Hardware Trojans
in wireless cryptographic ICs have been discussed in [28]. The goal is to design
Trojans to leak secret information through the wireless channel. Detection chal-
lenges of such Trojans were discussed in this work and some improvements were
proposed based on side-channel signals analysis. The work in [36] proposed a
hardware Trojan that leaks the cryptographic key through side channel analysis
attack. Similar to the hardware Trojans that were designed as part of a stu-
dent hardware Trojan challenge at [51], this hardware Trojan was inserted at
the netlist or HDL level. The work in [2] presented building stealthy Trojans at
the layout-level. A hardware Trojan was inserted into a cryptographically-secure
PRNG and into a side-channel resistant Sbox by manipulating the dopant polar-
ity of a few registers. Building hardware Trojans that are triggered by aging was
presented in [57]. These Trojans only become active after the IC has been work-
ing for a long time.

A class of hardware Trojans – Malicious Off-chip Leakage Enabled by Side-
channels (MOLES) – has been presented in [35], which can retrieve secret infor-
mation through side channels. They formulated the mechanism and detection
methods of MOLES in theory and provided a verification process for multi-bit
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key extractions. A parametric Trojan has been introduced in [34] which trig-
gers with a probability increasing under reduced supply voltage. In [21] a design
methodology for building stealthy parametric hardware Trojans and its applica-
tion to Bug Attacks [4,5] has been proposed. The Trojans are based on increasing
delay of gates of a very rare-sensitized path in a combinatorial circuit, such as
an arithmetic multiplier circuit. The Trojans are stealthy and have rare trigger
conditions, so that the faulty behavior of the circuit under attack only occurs
for very few combinations of the input vectors. Also an attack on the ECDH key
agreement protocol by this Trojan has been presented in this work.

2.2 Threshold Implementation

It can be definitely said that masking is the most-studied countermeasure against
SCA attacks. It is based on the concept of secret sharing, where a secret x
(e.g., intermediate values of a cipher execution) is represented by a couple of
shares (x1, . . . ,xn). In case of an (n, n)-threshold secret sharing scheme, having
access to t < n does not reveal any information about x. Amongst those is
Boolean secret sharing, known as Boolean masking in the context of SCA, where

x =
n⊕

i=1

xi. Hence, if the entire computation of a cipher is conduced on such a

shared representation, its SCA leakage will be (in average) independent of the
secrets as long as no function (e.g., combinatorial circuit) operates on all n
shares.

Due to the underlying Boolean construction, application of a linear function

L(.) over the shares is straightforward since L(x) =
n⊕

i=1

L(xi). All the difficulties

belong to implementing non-linear functions over such a shared representation.
This concept has been applied in hardware implementation of AES (mainly with
n = 2) with no success [16,39,41,46] until the Threshold Implementation (TI) –
based on sound mathematical foundations – has been introduced in [45], which
defines minimum number shares n ≥ t + 1 with t the algebraic degree of the
underlying non-linear function. For simplicity (and as our case study is based
on) we focus on quadratic Boolean functions, i.e., t = 2, and minimum number
of shares n = 3. Suppose that the TI of the non-linear function y = F(x) is
desired, i.e., (y1,y2,y3) = F∗(x1,x2,x3), where

y1 ⊕ y2 ⊕ y3 = F(x1 ⊕ x2 ⊕ x3).

Indeed, each output share yi∈{1,2,3} is provided by a component function
F i(., .) which receives only two input shares. In other words, one input share
is definitely missing in every component function. This, which is a require-
ment defined by TI as non-completeness, supports the aforementioned concept
that “no function (e.g., combinatorial circuit) operates on all n shares”, and
implies the given formula n ≥ t + 1. Therefore, three component functions(F1

(
x2,x3

)
,F2

(
x3,x1

)
,F3

(
x1,x2

))
form the shared output (y1,y2,y3).
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Uniformity. In order to fulfill the above-given statement that “having access
to t < n does not reveal any information about x”, the shares need to follow a
uniform distribution. For simplicity suppose that n = 2, and the shares (x1,x2)
represent secret x. If the distribution of x1 has a bias (i.e., not uniform) which is
known to the adversary, he can observe the distribution of x2 = x⊕x1 and guess
x. Hence, the security of the entire masking schemes1 relies on the uniformity
of the masks. More precisely, when x1 = m, x2 = x ⊕ m, and m is taken from
a randomness source (e.g., a PRNG), the distribution of m should be uniform
(or let say with full entropy).

The same holds for higher-order masking, i.e., n > 2. However, not only the
distribution of every share but also the joint distribution of every t < n shares is
important. In case of F∗(., ., .) as a TI of a bijective function F(.), the uniformity
property of TI is fulfilled if F∗(., ., .) forms a bijection. Otherwise, the security of
such an implementation cannot be guaranteed. Note that fulfilling the uniformity
property of TI constructions is amongst its most difficult challenges, and it has
been the core topic of several articles like [3,9,12,45,48]. Alternatively, the shares
can be remasked at the end of every non-uniform shared non-linear function
(see [8,42]), which requires a source to provide fresh randomness at every clock
cycle. Along the same line, another type of masking in hardware (which reduces
the number of shares) has been developed in [23,52], which (almost always) needs
fresh randomness to fulfill the uniformity.

We should emphasize that the above given expressions illustrate only the
first-order TI of bijective quadratic functions. For the other cases including
higher-order TI we refer the interested reader to the original articles [9,12,45].

3 Technique

As explained in former section – by means of TI – it is possible to realize hardware
cryptographic devices secure against certain SCA attacks. Our goal is to provide
a certain situation that an SCA-secure device becomes insecure while it still
operates correctly. Such a dynamic transition from secure to insecure should
be available and known only to the Trojan attacker. To this end, we target
the uniformity property of a secure TI construction. More precisely, we plan to
construct a secure and uniform TI design which becomes non-uniform (and hence
insecure) at particular environmental conditions. In order to trigger the Trojan
(or let say to provide such a particular environmental conditions) for example
we select higher clock frequency than the device maximum operation frequency,
or lower power supply than the device nominal supply voltage. It should not be
forgotten that under such conditions the underlying device should still maintain
its correct functionality.

To realize such a scenario – inspired from the stealthy parametric Trojan intro-
duced in [21] – we intentionally lengthen certain paths of a combinatorial circuit.
This is done in such a way that – by increasing the device clock frequency or low-
ering its supply voltage – such paths become faulty earlier than the other paths.
1 Except those which are based on low-entropy masking [17,37].
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We would achieve our goal if (i) the faults cancel each others’ effect, i.e., the func-
tionality of the design is not altered, and (ii) the design does not fulfill the unifor-
mity property anymore.

In order to explain our technique – for simplicity without loss of generality
– we focus on a 3-share TI construction. As explained in Sect. 2.2 – ignoring
the uniformity – achieving a non-complete shared function F∗(., ., .) of a given
quadratic function F(.) is straightforward. Focusing on one output bit of F(x),
and representing x by s input bits 〈xs, . . . , x1〉, we can write

Fi(〈xs, . . . , x1〉) =k0 ⊕ k1x1 ⊕ k2x2 ⊕ . . . ⊕ ksxs⊕
k1,2x1x2 ⊕ k1,3x1x3 ⊕ . . . ⊕ ks−1,sxs−1xs.

The coefficients k0, . . . , ks−1,s ∈ {0, 1} form the Algebraic Normal Form (ANF)
of the quadratic function Fi : {0, 1}s → {0, 1}. By replacing every input bit xi

by the sum of three corresponding shares x1
i ⊕ x2

i ⊕ x3
i , the remaining task is

just to split the terms in the ANF to three categories in such a way that each
category is independent of one share. This can be done by a method denoted by
direct sharing [12] as

– F1
i (., .) contains the linear terms x2

i and the quadratic terms x2
ix

2
j and x2

ix
3
j .

– F2
i (., .) contains the linear terms x3

i and the quadratic terms x3
ix

3
j and x3

ix
1
j .

– F3
i (., .) contains the linear terms x1

i and the quadratic terms x1
ix

1
j and x1

ix
2
j .

The same is independently applied on each output bit of F(.) and all three
component functions F1

(
x2,x3

)
, F2

(
x3,x1

)
, F3

(
x1,x2

)
are constructed that

fulfill the non-completeness, but nothing about its uniformity can be said.
There are indeed two different ways to obtain a uniform TI construction:

– If s (the underlying function size) is small, i.e., s ≤ 5, it can be found that F(.)
is affine equivalent to which s-bit class. More precisely, there is a quadratic
class Q which can represent F as A′ ◦ Q ◦ A (see [13] for an algorithm to
find A and A′ given F and Q). A classification of such classes for s = 3 and
s = 4 are shown in [12] and for s = 5 in [15]. Since the number of existing
quadratic classes are restricted, it can exhaustively be searched to find their
uniform TI. Note that while for many quadratic classes the direct sharing
(explained above) can reach to a uniform TI, for some quadratic classes no
uniform TI exists unless the class is represented by a composition of two
other quadratic classes [12]. Supposing that Q∗(., ., .) is a uniform TI of Q(.),
applying the affine functions A′ and A accordingly on each input and output
of the component function Q∗ would give a uniform TI of F(.):

F1(x2,x3) = A′ ◦ Q1
(A (

x2
)
,A (

x3
))

,

F2(x3,x1) = A′ ◦ Q2
(A (

x3
)
,A (

x1
))

,

F3(x1,x2) = A′ ◦ Q3
(A (

x1
)
,A (

x2
))

.

This scenario has been followed in several works, e.g., [6,11,43,44,54].
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x f

x f

x f

C

C

y

y

y

Fig. 1. Exemplary TI construction with a correction term C.

– Having a non-uniform TI construction, e.g., obtained by direct sharing, we can
add correction terms to the component functions in such a way that the cor-
rectness and non-completeness properties are not altered, but the uniformity
may be achieved. For example, the linear terms x2

i and/or the quadratic terms
x2
ix

2
j as correction terms can be added to the same output bit of both compo-

nent functions F1
(
x2,x3

)
and F3

(
x1,x2

)
. Addition of any correction term

changes the uniformity of the design. Hence, by repeating this process – up to
examining all possible correction terms and their combination, which is not
feasible for large functions – a uniform construction might be obtained. Such
a process has been conducted in [7,48] to construct uniform TI of PRESENT
and Keccak non-linear functions.
We should here refer to a similar approach called remasking [12,42] where
– instead of correction terms – fresh randomness is added to the output of
the component functions to make the outputs uniform. In this case, obvi-
ously a certain number of fresh mask bits are required at every clock cycle
(see [10,42]).

Our technique is based on the second scheme explained above. If we make the
paths related to the correction terms the longest path, by increasing the clock
frequency such paths are the first whose delay are violated. As illustrated, each
correction term must be added to two component functions (see Fig. 1). The
paths must be very carefully altered in such a way that the path delay of both
instances of the targeted correction term are the longest in the entire design and
relatively the same. Hence, at a particular clock frequency both instances of the
correction terms are not correctly calculated while all other parts of the design
are fault free. This enables the design to still work properly, i.e., it generates
correct ciphertext assuming that the underlying design realizes an encryption
function. It means that the design operates like an alternative design where
no correction terms exists. Hence, the uniformity of the TI construction is not
fulfilled and SCA leakage can be exploited. To this end, we should keep a margin
between (i) the path delay of the correction terms and (ii) the critical path delay
of the rest of the circuit, i.e., that of the circuit without correction terms. This
margin guarantees that at a certain high clock frequency the correction terms are
canceled out but the critical path delay of the remaining circuit is not violated.
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We would like to emphasize that in an implementation of a cipher once one
of the TI functions generates non-uniform output (by violating the delay of
correction terms), the uniformity is not maintained in the next TI functions and
it leads to first-order leakage in all further rounds. If the uniformity is achieved
by remasking (e.g., in [24]), the above-expressed technique can have the same
effect by making the XOR with fresh mask the longest path. Hence, violating
its delay in one TI function would make its output non-uniform, but the fresh
randomness may make the further rounds of the cipher again uniform.

2 134

Clock period
1
2
3
4

fault-free, uniform
unstable
fault-free, non-uniform
faulty

Fig. 2. Status of the design with Trojan at different clock frequencies.

Based on Fig. 2, which shows a corresponding timing diagram, the device
status can be categorized into four states:

– at a low clock frequency (denoted by ) the device operates fault free and
maintains the uniformity,

– by increasing the clock frequency (in the period), the circuit first starts
to become unstable, when indeed the correction terms do not fully cancel
each others’ effect, and the hold time and/or setup time of the registers are
violated,

– by more increasing the clock frequency (in the period), the delay of both
instances of the correction term are violated and the circuit operates fault
free, but does not maintain the uniformity, and

– by even more increasing the clock frequency (marked by ), the clock period
becomes smaller than the critical path delay of the rest of the circuit, and
the device does not operate correctly.

The aforementioned margin defines the length of the period, which is of
crucial importance. If it is very wide, the maximum operation frequency of the
resulting circuit is obviously reduced, and the likelihood of the inserted Trojan
to be detected by an evaluator is increased.

Correct functionality of the circuit is requited to enable the device being
operated in the field. Otherwise, the faulty outputs might be detected (e.g.,
in a communication protocol) and the device may stop operating and prevent
collecting SCA traces.



764 M. Ender et al.

4 Application

In order to show an application of our technique, we focus on a first-order TI
design of PRESENT cipher [14] as a case study. The PRESENT Sbox is 4-bit
cubic bijection S: C56B90AD3EF84712. Hence, its first-order TI needs at least n =
4 shares. Alternatively, it can be decomposed to two quadratic bijections S: F ◦G
enabling the minimum number of shares n = 3 at the cost of having extra register
between F∗ and G∗ (i.e., TI of F and G). As shown in [12], S is affine equivalent to
class C266: 0123468A5BCFED97, which can be decomposed to quadratic bijections
with uniform TI. The works reported in [44,54,55] have followed this scenario
and represented the PRESENT Sbox as S: A′′ ◦ Q′ ◦ A′ ◦ Q ◦ A, with many
possibilities for the affine functions A′′, A′, A and the quadratic classes Q′ and
Q whose uniform TI can be obtained by direct sharing (see Sect. 3).

However, the first TI of PRESENT has been introduced in [48], where
the authors have decomposed the Sbox by G: 7E92B04D5CA1836F and
F : 08B7A31C46F9ED52. They have accordingly provided uniform TI of each of
such 4-bit quadratic bijections. We focus on this decomposition, and select
G as the target where our Trojan is implemented. Compared to all other
related works, we first try to find a non-uniform TI of G(.), and we later
make it uniform by means of correction terms. We start with the ANF of
G(〈d, c, b, a〉) = 〈g3, g2, g1, g0〉:

g0 = 1 ⊕ a ⊕ dc ⊕ db ⊕ cb, g2 = 1 ⊕ c ⊕ b,

g1 = 1 ⊕ d ⊕ b ⊕ ca ⊕ ba, g3 = c ⊕ b ⊕ a.

One possible sharing of y = G(x) can be represented by
(
y1,y2,y3

)
=(G1

(
x2,x3

)
,G2

(
x3,x1

)
,G3

(
x1,x2

))
as

y10 = 1 ⊕ a2 ⊕ d2c3 ⊕ d3c2 ⊕ d2b3 ⊕ d3b2 ⊕ c2b3 ⊕ c3b2 ⊕ d2c2 ⊕ d2b2 ⊕ c2b2,

y11 = 1 ⊕ b2 ⊕ d3 ⊕ c2a3 ⊕ c3a2 ⊕ b2a3 ⊕ b3a2 ⊕ c2a2 ⊕ b2a2,

y12 = 1 ⊕ c2 ⊕ b2, y13 = c2 ⊕ b2 ⊕ a2,

y20 = a3 ⊕ d3c3 ⊕ d1c3 ⊕ d3c1 ⊕ d3b3 ⊕ d1b3 ⊕ d3b1 ⊕ c3b3 ⊕ c1b3 ⊕ c3b1,

y21 = b3 ⊕ d1 ⊕ c1a3 ⊕ c3a1 ⊕ b1a3 ⊕ b3a1 ⊕ c3a3 ⊕ b3a3,

y22 = c3 ⊕ b3, y23 = c3 ⊕ b3 ⊕ a3,

y30 = a1 ⊕ d1c1 ⊕ d1c2 ⊕ d2c1 ⊕ d1b1 ⊕ d1b2 ⊕ d2b1 ⊕ c1b1 ⊕ c1b2 ⊕ c2b1,

y31 = b1 ⊕ d2 ⊕ c1a2 ⊕ c2a1 ⊕ b1a2 ⊕ b2a1 ⊕ c1a1 ⊕ b1a1,

y32 = c1 ⊕ b1, y33 = c1 ⊕ b1 ⊕ a1,

with xi∈{1,2,3} = 〈di, ci, bi, ai〉. This is not a uniform sharing of G(.), and by
searching through possible correction terms we found three correction terms c1b1,
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c2b2, and c3b3 to be added to the second bit of the above-expressed component
functions, that lead us to a uniform TI construction. More precisely, by defining

C1(x2,x3) = c2b2 ⊕ c3b3,

C2(x3,x1) = c1b1 ⊕ c3b3,

C3(x1,x2) = c1b1 ⊕ c2b2,

and adding them respectively to y11 , y
2
1 , and y31 , the resulting TI construction

becomes uniform. If any of such correction terms is omitted, the uniformity is
not maintained. In the following we focus on a single correction term c2b2 which
should be added to G1(., .) and G3(., .). Note that for the sake of completeness a
uniform sharing of F is given in AppendixA.

4.1 Inserting the Trojan

We realize the Trojan functionality by path delay fault model [58], without
modifying the logic circuit. The Trojan is triggered by violating the delay of the
combinatorial logic paths that pass through the targeted correction terms c2b2.
It is indeed a parametric Trojan, which does not require any additional logic.
The Trojan is inserted by modifying a few gates during manufacturing, so that
their delay increase and add up to the path delay faults.

Given in [21], the underlying method to create a triggerable and stealthy
delay-based Trojan consists of two phases: path selection and delay distrib-
ution. In the first phase, a set of uniquely-sensitized paths are found that
passes through a combinatorial circuit from primary inputs to the primary out-
puts. Controllability and observability metrics are used to guide the selection of
which gates to include in the path to make sure that the path(s) are uniquely
sensitized2. Furthermore, a SAT-based check is performed to make sure that
the path remains sensitizable each time a gate is selected to be added to the
path. After a set of uniquely-sensitized paths is selected, the overall delay of
the path(s) must be increased so that a delay fault occurs when the path is
sensitized. However, any delay added to the gates of the selected path may also
cause delay faults on intersecting paths, which would cause undesirable errors
and affect the functionality of the circuit. The delay distribution phase addresses
this problem by smartly choosing delays for each gate of the selected path to
minimize the number of faults caused by intersecting paths. At the same time,
the approach ensures that the overall path delay is sufficient for the selected
paths to make it faulty.

ASIC Platforms. In an ASIC platform, such Trojans are introduce by slightly
modifications on the sub-transistor level so that the parameters of a few transis-
tors of the design are changed. To increase the delays of transistors in stealthy

2 It means that the selected paths are the only ones in the circuit whose critical delay
can be violated.
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ways, there are many possible ways in practice. However, such Trojan is very diffi-
cult to be detected by e.g., functional testing, visual inspection, and side-channel
profiling, because not a single transistor is removed or added to the design and
the changes to the individual gates are minor. Also, full reverse-engineering of
the IC would unlikely reveal the presence of the malicious manipulation in the
design. Furthermore, this Trojan would not present at higher abstraction lev-
els and hence cannot be detected at those levels, because the actual Trojan is
inserted at the sub-transistor level.

A path delay fault in a design is sensitized by a sequence of (at least two)
consecutive input vectors on consecutive clock cycles. Its reason is charging/dis-
charging of output capacitances of gates of the path. The delay of each gate is
determined by its speed in charging or discharging of its output capacitance.
Therefore, if the state of the capacitances of gates (belonging to the targeted
path) is not changed (i.e., the capacitances do not charge or discharge), the
effect of the path delay fault cannot be propagated along the path. Therefore,
to trigger the path delay fault, the consecutive input vectors should change the
state of the capacitances of the targeted path.

There are several stealthy ways to change slightly the parameters of transis-
tors of a gate and make it slower in charging/discharging its output capacitance
(load capacitance). Exemplary, we list three methods below.

Decrease the Width. Usually a standard cell library has different drive strengths
for each logic gate type, which correspond to various transistor widths. Current of
a transistor is linearly proportional to the transistor width, therefore a transistor
with smaller width is slower to charge its load capacitance. One way to increase
the delay of a gate is to substitute it with its weaker version in the library
which has smaller width, or to create a custom version of the gate with a narrow
width, if the lower level information of the gate is available in the library (e.g.,
SPICE model). The problem here is that an inspector who test the IC optically,
may detect the gate downsizing depending on how much the geometry has been
changed.

Raise the Threshold. A common way of increasing delay of a gate is to increase
the threshold voltage of its transistors by body biasing or doping manipulation.
Using high and low threshold voltages at the same time in a design (i.e., Dual-Vt
design) is very common approach and provides for designer to have more options
to satisfy the speed goals of the design. Devices with low threshold voltage are
fast and used where delay is critical; devices with high threshold voltage are slow
and used where power consumption is important. Body biasing can change the
threshold voltage and hence the delay of a gate through changing the voltage
between body and source of the transistor [29]. A reverse body bias in which
body is at lower voltage than the source, increases the threshold voltage and
makes the device slow. In general, transistors with high threshold voltage will
response later when an input switches, and conduct less current. Therefore, the
load capacitances of the transistors will be charged or discharged more slowly.
Dopant manipulation and body biasing, are both very difficult to detect.
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Increase the Gate Length. Gate length biasing can increase delay of a gate by
reducing the current of its transistors [26]. The likelihood of detection of this
kind of manipulation depends on the degree of the modification.

FPGA Platforms. In case of the FPGAs, the combinatorial circuits are real-
ized by Look-Up Tables (LUT), in currently-available Xilinx FPGAs, by 6-to-1
or 5-to-2 LUTs and in former generations by 4-to-1 LUTs. The delay of the
LUTs cannot be changed by the end users; alternatively we offer the following
techniques to make certain paths longer.

Through Switch Boxes. The routings in FPGA devices are made by configuring
the switch boxes. Since the switch boxes are made by active components realizing
logical switches, a signal which passes through many switch boxes has a longer
delay compared to a short signal. Therefore, given a fully placed-and-routed
design we can modify the routings by lengthening the selected signals. This
is for example feasible by means of Vivado Design Suite as a standard tool
provided by Xilinx for recent FPGA families and FPGA Editor for the older
generations. It is in fact needs a high level of expertise, and cannot be done
at HDL level. Interestingly, the resulting circuit would not have any additional
resource consumption, i.e., the number of utilized LUTs, FFs and Slices, hence
hard to detect particularly if the utilization reports are compared.

Through Route-Thrus LUTs. Alternatively, the LUTs can be configured as log-
ical buffer. This, which is called route-thrus, is a usual technique applied by
Xilinx tools to enable routing of non-straightforward routes. Inserting a route-
thrus LUT into any path, makes its delay longer. Hence, another feasible way
to insert Trojans by delay path fault is to introduce as many as required route-
thrus LUTs into the targeted path. It should be noted that the malicious design
would have more LUT utilization compared to the original design, and it may
increase the chance of being detected by a Trojan inspector. However, none of
such extra LUTs realizes a logic, and all of them are seen as route-thrus LUTs
which are very often (almost in any design) inserted by the FPGA vendor’s
place-and-route tools. Compared to the previous method, this can be done at
HDL level (by hard instantiating route-thrus LUTs).

Focusing on our target, i.e., correction term c2b2 in G1(., .) and G3(., .), by
applying the above-explained procedure, we found the situation which enables
introducing delay path fault into such routes:

– Considering Fig. 1, the XOR gate which receives the F1 and C output should
be the last gate in the combinatorial circuit generating y11 , i.e., the second bit
of G1(., .). The same holds for y31 , i.e., the second bit of G3(., .).

– The only paths which should be lengthened are both instances of c2b2. There-
fore, in case of the FPGA platform we followed both above-explained methods
to lengthen such paths, i.e., between (i) the output of the LUT generating
c2b2 and (ii) the input of the aforementioned final XOR gate.
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We have easily applied the second method (through route-thrus LUTs) at
the HDL level by instantiating a couple of LUTs as buffer between the selected
path. More detailed results with respect to the number of required route-thrus
LUTs and the achieved frequencies to trigger the Trojan are shown in next
Sect. 5. For the first method (through switch boxes) – since our target platform
is a Spartan-6 FPGA – we made use of FPGA Editor to manually modify the
selected routes (see Appendix C for two routes of a signal with different length).
We should emphasize that this approach is possible if the correction term c2b2

is realized by a unique LUT (can be forced at HDL level by hard instantiating
or placing such a module in a deeper hierarchy). Otherwise, the logic generating
c2b2 might be merged with other logic into a LUT, which avoids having a separate
path between c2b2 and a LUT that realizes the final XOR gate.

5 Practical Results

5.1 Design Architecture

We made use of the above-explained malicious PRESENT TI Sbox in a design
with full encryption functionality. The underlying design is similar to the
Profile 2 of [48], where only one instance of the Sbox is implemented. The nib-
bles are serially shifted through the state register as well as through the Sbox
module while the PLayer is performed in parallel in one clock cycle. Following
its underlying first-order TI, the 64-bit plaintext is provided by three shares,
i.e., second-order Boolean masking, while the 80-bit key is not shared (similar
to that of [10,48]). Figure 3 shows an overview of the design architecture, which
needs 527 clock cycles for a full encryption after the plaintext and key are serially
shifted into the state (resp. key) registers.

We should here emphasize that the underlying TI construction is a first-order
masking, which can provably provide security against first-order SCA attacks.
However, higher-order attacks are expected to exploit the leakage, but they
are sensitive to noise [50] since accurately estimating higher-order statistical

Fig. 3. Design architecture of the PRESENT TI as the case study.
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moments needs huge amount of samples compared to lower-order moments. It is
indeed widely known that such masking schemes should be combined with hid-
ing techniques (to reduce the SNR) to practically harden (hopefully disable) the
higher-order attacks. As an example we can refer to [44], where a TI construc-
tion is implemented by a power-equalization technique. We instead integrated a
noise generator module into our target FPGA to increase the noise and hence
decrease the SNR. The details of the integrated noise generator module is given
in AppendixB. Note that without such a noise generator module, our design
would be vulnerable to higher-order attacks and no Trojan would be required
to reveal the secret. Therefore, the existence of such a hiding countermeasure to
make higher-order attacks practically hard is essential.

The design is implemented on a Spartan-6 FPGA board SAKURA-G, as a
platform for SCA evaluations [1]. In order to supply the PRESENT core with
a high clock frequency, a Digital Clock Manager (DCM) has been instantiated
in the target FPGA to multiply the incoming clock by a factor of 8. The exter-
nal clock was provided by a laboratory adjustable signal generator to enable
evaluating the design under different high clock frequencies.

Table 1 shows the resource utilization (excluding the noise generator) as well
as the achieved margins for the clock frequency considering (i) the original
design, (ii) malicious design made by through switch boxes method and (iii)
malicious design made by through route-thrus LUTs technique. It is noticeable
that the first malicious design does not change the utilization figures at all since
lengthening the routes are done only through the switch boxes (see AppendixC).
Using the second method – in order to achieve the same frequency margins –
we added 4 route-thru LUTs (at the HDL level) to each path of the targeted
correction term. This led to 8 extra LUT utilization and 4 more Slices; we would
like to mention that the combinatorial circuit of the entire TI Sbox (both G∗

F∗) would fit into 29 LUTs (excluding the route-thru ones).
Regarding the frequency ranges, shown in Table 1, it can be seen that the

maximum clock frequency of the malicious design is decreased from 219.2 MHz

Table 1. Performance figure of our PRESENT-80 encryption designs.
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to 196 MHz, i.e., around 10% reduction. However, both and periods are
very narrow, that makes it hard to be detected either by a Trojan inspector or
by an SCA evaluator.

5.2 SCA Evaluations

Measurement Setup. For SCA evaluations we collected power consumption
traces (at the Vdd path) of the target FPGA by means of a digital oscilloscope
at sampling rate of 1 GS/s. It might be thought that when the target design
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Fig. 4. PRNG off, clock 168 MHz (Trojan not triggered), (top) a sample power trace,
t-test results (right) with 100,000 traces, (left) absolute maximum over the number of
traces.
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Fig. 5. PRNG on, clock 168 MHz (Trojan not triggered), t-test results (right) with
100,000,000 traces, (left) absolute maximum over the number of traces.

runs at a high frequency >150 MHz, such a sampling rate does not suffice to
capture all leaking information. However, power consumption traces are already
filtered due to the PCB, shunt resistor, measurement setup, etc. Hence, higher
sampling rate for such a setting does not improve the attack efficiency3, and often
the bandwidth of the oscilloscope is even manually limited for noise reduction
purposes (see [49]).

Methodology. In order to examine the SCA resistance of our design(s) in
both settings, i.e., whether the inserted Trojan is triggered or not, we conducted
two evaluation schemes. We first performed non-specific t-test (fixed versus ran-
dom) [22,56] to examine the existence of detectable leakage. Later in case where
the Trojan is triggered, we also conduct key-recovery attacks.

It should be mentioned that both of our malicious designs (see Table 1) oper-
ate similarly. It means that when the Trojan is triggered, the evaluation of both
designs led to the same results. Therefore, below we exemplary show the result
of the one formed by through route-thrus LUTs.
3 It is not the case for EM-based analyses.
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Fig. 6. PRNG on, clock 216 MHz (Trojan triggered), (top) a sample power trace, t-test
results (right) with 100,000,000 traces, (left) absolute maximum over the number of
traces.

To validate the setup, we start with a non-specific t-test when the PRNG of
the target design (used to share the plaintext for the TI PRESENT encryption) is
turned off, i.e., generating always zero instead of random numbers. To this end,
we collected 100,000 traces when the design is operated at 168 MHz, i.e., the
Trojan is not triggered. We followed the concept given in [56] for the collection
of traces belonging to fixed and random inputs. The result of the t-test (up to
third-order) is shown in Fig. 4, confirming the validity of the setup and the
developed evaluation tools.
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Fig. 7. PRNG on, clock 216 MHz (Trojan triggered), 50,000,000 traces, DPA attack
result targeting a key nibble based on an Sbox output bit at the first round.

To repeat the same process when the PRNG is turned on, i.e., the masks for
initial sharing of the plaintext are uniformly distributed, we collected 100,000,000
traces for non-specific t-test evaluations. In this case, the device still operates at
168 MHz, i.e., the Trojan is not triggered. The corresponding results are shown in
Fig. 5. Although the underlying design is a realization of a first-order secure TI,
it can be seen from the presented results that second- and third-order leakages
are also not detectable. As stated before, this is due to the integration of the
noise generator module which affects the detectability of higher-order leakages
(see Appendix B).

As the last step, the same scenario is repeated when the clock frequency is
increased to 216 MHz, where the design is in the period, i.e., with correct
functionality and without uniformity. Similar to the previous experiment, we
collected 100,000,000 traces for a non-specific t-test, whose results are shown in
Fig. 6. As shown by the graphics, there is detectable leakage through all statis-
tical moments but with lower t-statistics compared to the case with PRNG off.
Therefore, we have also examine the feasibility of key recovery attacks. To this
end, we made use of those collected traces which are associated with random
inputs, i.e., around 50,000,000 traces of the last non-specific t-test. We con-
ducted several different CPA and DPA attacks considering intermediate values
of the underlying PRESENT encryption function. The most successful attack
was recognized as classical DPA attacks [33] targeting a key nibble by predicting
an Sbox output bit at the first round of the encryption. As an example, Fig. 7
presents an exemplary corresponding result.

6 Conclusions

In this work it is shown how to insert a parametric hardware Trojan with very
low overhead into SCA-resistance designs. The presented Trojan is capable of
being integrated into both ASIC and FPGA platforms. Since it does not add
any logic into the design (particularly its resource utilization in FPGAs can be
null), the chance of being detected is expected to be very low. Compared to the
original design, its only footprint is around 10% decrease in the maximum clock
frequency.



774 M. Ender et al.

We have shown that by increasing the clock frequency, the malicious thresh-
old implementation design starts leaking exploitable information through side
channels. Hence, the Trojan adversary can trigger the Trojan and make use of
the exploitable leakage, while the design can pass SCA evaluations when the
Trojan is not triggered. More precisely, suppose that the maximum clock fre-
quency of the malicious device is 196 MHz. Hence, in an evaluation lab its SCA
leakage will not be examined at 200 MHz because the device does not operate
correctly. However, the Trojan adversary runs the device at 216 MHz and the
SCA leakage becomes exploitable. To the best of our knowledge, compared to the
previous works in the areas of side-channel hardware Trojans, our construction
is the only one which is applied on a provably-secure SCA countermeasure, and
is parametric with very low overhead.

A raising question is whether a control over the clock frequency by the Trojan
adversary is a practical assumption. Such a control is usually available in FPGA
designs since they are mainly externally clocked, and internally multiplied by
PLL or DCM. In ASIC or embedded designs, the clock is more often generated
internally, hence no control. Nevertheless, by decreasing the supply voltage the
same effect can be seen. It can also be criticized that when the attacker has
control over the clock, fault-injection attacks by clock glitch can also be a threat.
As a message of this paper, overclocking and – at the same time – power supply
reduction should be internally monitored to avoid such an SCA-based Trojan
being activated. Related to this topic we should refer to [20], where the difficulties
of embedding a “clock frequency monitor” in presence of supply voltage changes
are shown.

Acknowledgments. The work was partially funded through grants ERC Advanced
695022 and NSF CNS-1421352.

A Uniform TI of F
Considering y = F(x) and xi∈{1,2,3} = 〈di, ci, bi, ai〉 – derived by direct sharing
– we present one of its uniform sharing

(
y1,y2,y3

)
=

(F1
(
x2,x3

)
,F2

(
x3,x1

)
,

F3
(
x1,x2

))
as

y10 = b2 ⊕ c2a2 ⊕ c2a3 ⊕ c3a2,

y11 = c2 ⊕ b2 ⊕ d2a2 ⊕ d2a3 ⊕ d3a2,

y12 = d2 ⊕ b2a2 ⊕ b2a3 ⊕ b3a2,

y13 = c2 ⊕ b2 ⊕ a2 ⊕ d2a2 ⊕ d2a3 ⊕ d3a2,

y20 = b3 ⊕ c3a3 ⊕ c1a3 ⊕ c3a1,

y21 = c3 ⊕ b3 ⊕ d3a3 ⊕ d1a3 ⊕ d3a1,

y22 = d3 ⊕ b3a3 ⊕ b1a3 ⊕ b3a1,

y23 = c3 ⊕ b3 ⊕ a3 ⊕ d3a3 ⊕ d1a3 ⊕ d3a1,
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y30 = b1 ⊕ c1a1 ⊕ c1a2 ⊕ c2a1,

y31 = c1 ⊕ b1 ⊕ d1a1 ⊕ d1a2 ⊕ d2a1,

y32 = d1 ⊕ b1a1 ⊕ b1a2 ⊕ b2a1,

y33 = c1 ⊕ b1 ⊕ a1 ⊕ d1a1 ⊕ d1a2 ⊕ d2a1.

B Noise Generator

We have built a noise generator as an independent module, i.e., it does not have
any connection to the target PRESENT design and operates independently. We
followed one the concepts introduced in [25]. As shown by Fig. 8, it is made
as a combination of a ring oscillator, an LFSR, and several shift registers. The
actual power is consumed by the shift registers. Every shift register instantiates
a SRLC32E primitive, which is a 32-bit shift register within a single LUT inside a
SLICEM. The shift registers are initialized with the consecutive values of 01. Every
shift register’s output is feedback to its input and shifted by one at every clock
cycle when enabled. Thus, every shift operation toggles the entire bits inside the
registers, which maximizes the power consumption of the shift register.

The ring oscillator, made of 31 inverter LUTs, acts as the clock source inside
the noise module for both the LFSR and the shift registers. The LFSR realizes
the irreducible polynomial x19+x18+x17+x14+1 to generate a pseudo-random
clock enable signal for the shift registers.

We instantiated 4×8 instances of the shift register LUTs, fitting into 8 Slices.
The ring oscillator required 17 Slices (as stated, made of 31 inverters), and the
LFSR fits into 2 Slices, made by 1 LUT for the feedback function, 2 FFs and
2 shift register LUTs. Overall, the entire independent noise generator module
required 27 Slices.

LFSR 1010 · · · · 10

1010 · · · · 10

·······

en

en

Fig. 8. Block diagram of the noise generator.

C Different Routings in FPGA

See Fig. 9.
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Fig. 9. Two routes of the same signal in a Spartan-6 FPGA, manually performed by
FPGA Editor.
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of all 3 × 3 and 4 × 4 S-boxes. In: Prouff, E., Schaumont, P. (eds.) CHES 2012.
LNCS, vol. 7428, pp. 76–91. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-33027-8 5

12. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Tokareva, N., Vitkup, V.: Threshold
implementations of small S-boxes. Cryptogr. Commun. 7(1), 3–33 (2015)

13. Biryukov, A., De Cannière, C., Braeken, A., Preneel, B.: A toolbox for cryptanaly-
sis: linear and affine equivalence algorithms. In: Biham, E. (ed.) EUROCRYPT
2003. LNCS, vol. 2656, pp. 33–50. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-39200-9 3

14. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 31

15. Bozilov, D., Bilgin, B., Sahin, H.A.: A note on 5-bit quadratic permutations’ clas-
sification. IACR Trans. Symmetric Cryptol. 2017(1), 398–404 (2017)

http://satoh.cs.uec.ac.jp/SAKURA/index.html
http://satoh.cs.uec.ac.jp/SAKURA/index.html
https://doi.org/10.1007/978-3-642-40349-1_12
https://doi.org/10.1007/978-3-642-40349-1_12
https://doi.org/10.1007/978-3-319-69453-5_5
https://doi.org/10.1007/978-3-540-85174-5_13
https://doi.org/10.1007/978-3-540-85174-5_13
https://doi.org/10.1007/978-3-642-40349-1_9
https://doi.org/10.1007/978-3-319-08302-5_13
https://doi.org/10.1007/978-3-319-06734-6_17
https://doi.org/10.1007/978-3-662-45608-8_18
https://doi.org/10.1007/978-3-662-45608-8_18
https://doi.org/10.1007/978-3-642-33027-8_5
https://doi.org/10.1007/978-3-642-33027-8_5
https://doi.org/10.1007/3-540-39200-9_3
https://doi.org/10.1007/3-540-39200-9_3
https://doi.org/10.1007/978-3-540-74735-2_31


778 M. Ender et al.

16. Canright, D., Batina, L.: A very compact “perfectly masked” S-box for AES.
In: Bellovin, S.M., Gennaro, R., Keromytis, A., Yung, M. (eds.) ACNS 2008.
LNCS, vol. 5037, pp. 446–459. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-68914-0 27

17. Carlet, C., Danger, J.-L., Guilley, S., Maghrebi, H.: Leakage squeezing of order two.
In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 120–
139. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34931-7 8

18. Chakraborty, R.S., Narasimhan, S., Bhunia, S.: Hardware Trojan: threats and
emerging solutions. In: HLDVT 2009, pp. 166–171. IEEE Computer Society (2009)

19. Chakraborty, R.S., Wolff, F., Paul, S., Papachristou, C., Bhunia, S.: MERO : a
statistical approach for hardware Trojan detection. In: Clavier, C., Gaj, K. (eds.)
CHES 2009. LNCS, vol. 5747, pp. 396–410. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-04138-9 28

20. Endo, S., Li, Y., Homma, N., Sakiyama, K., Ohta, K., Fujimoto, D., Nagata, M.,
Katashita, T., Danger, J., Aoki, T.: A silicon-level countermeasure against fault
sensitivity analysis and its evaluation. IEEE Trans. VLSI Syst. 23(8), 1429–1438
(2015)

21. Ghandali, S., Becker, G.T., Holcomb, D., Paar, C.: A Design methodology for
stealthy parametric Trojans and its application to bug attacks. In: Gierlichs, B.,
Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 625–647. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-53140-2 30

22. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for side
channel resistance validation. In: NIST Non-invasive Attack Testing Workshop
(2011). http://csrc.nist.gov/news events/non-invasive-attack-testing-workshop/
papers/08 Goodwill.pdf

23. Gross, H., Mangard, S., Korak, T.: An efficient side-channel protected AES imple-
mentation with arbitrary protection order. In: Handschuh, H. (ed.) CT-RSA 2017.
LNCS, vol. 10159, pp. 95–112. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-52153-4 6

24. Groß, H., Wenger, E., Dobraunig, C., Ehrenhöfer, C.: Suit up! - made-to-measure
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36. Lin, L., Kasper, M., Güneysu, T., Paar, C., Burleson, W.: Trojan side-channels:
lightweight hardware Trojans through side-channel engineering. In: Clavier, C.,
Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 382–395. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-04138-9 27

37. Maghrebi, H., Guilley, S., Danger, J.-L.: Leakage Squeezing countermeasure against
high-order attacks. In: Ardagna, C.A., Zhou, J. (eds.) WISTP 2011. LNCS,
vol. 6633, pp. 208–223. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-21040-2 14

38. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the
Secrets of Smart Cards. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-0-387-38162-6

39. Mangard, S., Pramstaller, N., Oswald, E.: Successfully attacking masked AES hard-
ware implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 157–171. Springer, Heidelberg (2005). https://doi.org/10.1007/11545262 12

40. Moradi, A., Kirschbaum, M., Eisenbarth, T., Paar, C.: Masked dual-rail precharge
logic encounters state-of-the-art power analysis methods. IEEE Trans. VLSI Syst.
20(9), 1578–1589 (2012). https://doi.org/10.1109/TVLSI.2011.2160375

41. Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-enhanced power analysis
collision attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 125–139. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-15031-9 9

42. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20465-4 6

43. Moradi, A., Schneider, T.: Side-channel analysis protection and low-latency in
action – case study of PRINCE and Midori. In: Cheon, J.H., Takagi, T. (eds.)
ASIACRYPT 2016. LNCS, vol. 10031, pp. 517–547. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6 19

44. Moradi, A., Wild, A.: Assessment of hiding the higher-order leakages in hardware
– what are the achievements versus overheads? In: Güneysu, T., Handschuh, H.
(eds.) CHES 2015. LNCS, vol. 9293, pp. 453–474. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48324-4 23
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Abstract. Cryptographic implementations are vulnerable to Side Chan-
nel Analysis (SCA), where an adversary exploits physical phenomena
such as the power consumption to reveal sensitive information. One of the
most widely studied countermeasures against SCA are masking schemes.
A masking scheme randomizes intermediate values thereby making phys-
ical leakage from the device harder to exploit. Central to any masking
scheme is the use of randomness, on which the security of any masked
algorithm heavily relies. But since randomness is very costly to pro-
duce in practice, it is an important question whether we can reduce the
amount of randomness needed while still guaranteeing standard secu-
rity properties such as t-probing security introduced by Ishai, Sahai and
Wagner (CRYPTO 2003). In this work we study the question whether
internal randomness can be re-used by several gadgets, thereby reducing
the total amount of randomness needed. We provide new techniques for
masking algorithms that significantly reduce the amount of randomness
and achieve better overall efficiency than known constructions for values
of t that are most relevant for practical settings.

1 Introduction

Masking schemes are one of the most common countermeasures against physi-
cal side-channel attacks, and have been studied intensively in the last years by
the cryptographic community (see, e.g., [7,9,10,12,15,17,18] and many more).
Masking schemes prevent harmful physical side-channel leakage by concealing
all sensitive information by encoding the computation carried out on the device.
The most widely studied masking scheme is the Boolean masking [7,15], which
encodes each intermediate value produced by the computation using an n-out-of-
n secret sharing. That is, a bit b is mapped to a bit string (b1, . . . , bn) such that
bi is random subject to the constraint that

∑
i bi = b (where the sum is taken in

the binary field). To mask computation, the designer of a masking scheme then
has to develop masked operations (so-called gadgets) that enable to compute
with encodings in a secure way. The security of masking schemes is typically
analyzed by carrying out a security proof in the t-probing model [15], where an
adversary that learns up to t intermediate values gains no information about the
underlying encoded secret values.
c© International Association for Cryptologic Research 2017
T. Takagi and T. Peyrin (Eds.): ASIACRYPT 2017, Part I, LNCS 10624, pp. 781–810, 2017.
https://doi.org/10.1007/978-3-319-70694-8_27
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While due to the linearity of the encoding function protecting linear oper-
ations is easy, the main challenge is to develop secure masked non-linear oper-
ations, and in particular a masked version of the multiplication operation. To
this end, the masked multiplication algorithm internally requires additional ran-
domness to securely carry out the non-linear operation in the masked domain.
Indeed, it was shown by Belaid et al. [4] that any t-probing secure masked
multiplication requires internally O(t) fresh randomness. Notice that complex
cryptographic algorithms typically consists of many non-linear operations that
need to be masked, and hence the amount of randomness needed to protect the
entire computation grows not only with the probing parameter t, but also with
the number of operations that are used by the algorithm. Concretely, the most
common schemes for masking the non-linear operation require O(t2) randoms,
and algorithms such as a masked AES typically require hundreds of masked
multiplication operations.

Unfortunately, the generation and usage of randomness is very costly in prac-
tice, and typically requires to run a TRNG or PRNG. In fact, generating the
randomness and shipping it to the place where it is needed is one of the main
challenge when masking schemes are implemented in practice. There are two
possibilities in which we can save randomness when masking algorithms. The
first method is in spirit of the work of Belaid et al. [4] who design masked
non-linear operations that require less randomness. However, as discussed above
there are natural lower bounds on the amount of randomness needed to securely
mask the non-linear operation (in fact, the best known efficient masked multi-
plication still requires O(t2) randomness). Moreover, such an approach does not
scale well, when the number of non-linear operations increases. Indeed, in most
practical cases the security parameter t is relatively small (typically less than
10), while most relevant cryptographic algorithms require many non-linear oper-
ations. An alternative approach is to amortize randomness by re-using it over
several masked operations. This is the approach that we explore in this work,
which despite being a promising approach has gained only very little attention
in the literature so far.

On amortizing randomness. At first sight, it may seem simple to let masked
operations share the same randomness. However, there are two technical chal-
lenges that need to be addressed to make this idea work. First, we need to
ensure that when randomness is re-used between multiple operations it does not
cancel out accidentally during the masked computation. As an illustrative exam-
ple suppose two secret bits a and b are masked using the same randomness r.
That is, a is encoded as (a + r, r) and b is encoded as (b + r, r) (these may, for
instance, be outputs of a masked multiplication). Now, if at some point during
the computation the algorithm computes the sum of these two encodings, then
the randomness cancels out, and the sensitive information a+ b can be attacked
(i.e., it is not protect by any random mask). While this issue already occurs
when t = 1, i.e., the adversary only learns one intermediate value, the situation
gets much more complex when t grows and we want to reduce randomness
between multiple masked operations. In this case, we must guarantee that the
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computation happening in the algorithm does not cancel out the randomness,
but also we need to ensure that any set of t intermediate values produced by the
masked algorithm does not allow the adversary to cancel out the (potentially
shared) randomness. Our main contribution is to initiate the study of mask-
ing schemes where multiple gadgets share randomness, and show that despite
the above challenges amortizing randomness over multiple operations is possible
and can lead in certain cases to significantly more efficient masked schemes. We
provide a more detailed description of our main contributions in the next section.

1.1 Our Contributions

Re-using randomness for t > 1. We start by considering the more challenging
case when t > 1, i.e., when the adversary is allowed to learn multiple intermediate
values. As a first contribution we propose a new security notion of gadgets that
we call t–SCR which allows multiple gadgets (or blocks of gadgets) to securely
re-use randomness. We provide a composition result for our new notion and show
sufficient requirements for constructing gadgets that satisfy our new notion. To
this end, we rely on ideas that have been introduced in the context of threshold
implementations [6].

Finding blocks of gadgets for re-using randomness. Our technique for sharing
randomness between multiple gadgets requires to structure a potentially complex
algorithm into so-called blocks, where the individual gadgets in these blocks share
their randomness. We devise a simple tool that depending on the structure of
the algorithm identifies blocks which can securely share randomness. Our tool
follows a naive brute-force approach, and we leave it as an important question
for future work to develop more efficient tools for identifying blocks of gadgets
that are suitable for re-using randomness.

Re-using randomness for t = 1. We design a new scheme that achieves security
against one adversarial probe and requires only 2 randoms for arbitrary com-
plex masked algorithms. Notice that since randomness can cancel out when it is
re-used such a scheme needs to be designed with care, and the security analysis
cannot rely on a compositional approach such as the 1-SNI property [2].1 Addi-
tionally, we provide a counterexample that securing arbitrary computation with
only one random is not possible if one aims for a general countermeasure.

Implementation results. We finally complete our analysis with a case study by
applying our new countermeasures to masking the AES algorithm. Our analy-
sis shows that for orders up to t = 5 (resp. t = 7 for a less efficient TRNG)
we can not only significantly reduce the amount of randomness needed, but
also improve on efficiency. We also argue that if we could not use a dedicated
TRNG (which would be the case for most inexpensive embedded devices), then

1 The compositional approach of Barthe et al. [2] requires that all gadgets use inde-
pendent randomness.
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our new countermeasure would outperform state-of-the-art solutions even up to
t = 21. We leave it as an important question for future research to design efficient
masking schemes with shared randomness when t > 21.

1.2 Related Work

Despite being a major practical bottleneck, there has been surprisingly little
work on minimizing the amount of randomness in masking schemes. We already
mentioned the work of Belaid et al. [4], which aim on reducing the amount of
randoms needed in a masked multiplication. Besides giving lower bounds on the
minimal amount needed to protect a masked multiplication, the authors also
give new constructions that reduce the concrete amount of randomness needed
for a masked multiplication. However, the best known construction still requires
randomness that is quadratic in the security parameter. Another approach for
reducing the randomness complexity of first-order threshold implementations of
Keccak was also investigated in [5].

From a practical point of view, the concept of “recycled” randomness was
briefly explored in [1]. The authors practically evaluated the influence of reusing
some of the masks on their case studies and concluded that in some cases the
security was reduced. However, these results do not negatively reflect on our
methodology as their reuse of randomness lacked a formal proof of security.

From a theoretical point of view it is known that any circuit can be masked
using polynomial in t randoms (and hence the amount of randoms needed is
independent from the size of the algorithm that we want to protect). This ques-
tion was studied by Ishai et al. [14]. The constructions proposed in these works
rely on bipartite expander graphs and are mainly of interests as feasibility results
(i.e., they become meaningful when t is very large), while in our work we focus
on the practically more relevant case when t takes small values.

Finally, we want to conclude by mentioning that while re-using randoms
is not a problem for showing security in the t-probing model, and hence for
security with respect to standard side-channel attacks, it may result in schemes
that are easier to attack by so-called horizontal attacks [3]. Our work opens up
new research directions for exploring such new attack vectors.

2 Preliminaries

In this section we recall basic security notions and models that we consider in
this work. In the following we will use bold and lower case to indicate vectors
and bold and upper case for matrices.

2.1 Private Circuits

The concept of private circuits was introduced in the seminal work of Ishai et al.
[15]. We start by giving the definition of deterministic and randomized circuit, as
provided by Ishai et al. A deterministic circuit C is a direct acyclic graph whose
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vertices are Boolean gates and whose edges are wires. A randomized circuit is
a circuit augmented with random-bit gates. A random-bit gate is a gate with
fan-in 0 that produces a random bit and sends it along its output wire; the
bit is selected uniformly and independently. As pointed out in [14], a t-private
circuit is a randomized circuit which transforms a randomly encoded input into
a randomly encoded output while providing the guarantee that the joint values
of any t wires reveal nothing about the input. More formally a private circuit is
defined as follows.

Definition 1 (Private circuit [14]). A private circuit for f : Fmi
2 → F

mo
2 is

defined by a triple (I, C,O), where

– I : Fmi
2 → F

m̂i
2 is a randomized input encoder;

– C is a randomized Boolean circuit with input in F
m̂i
2 , output in F

m̂o
2 and

uniform randomness r ∈ F
n
2 ;

– O : Fm̂o
2 → F

mo
2 is an output decoder.

C is said to be a t-private implementation of f with encoder I and decoder O if
the following requirements hold:

– Correctness: For any input w ∈ F
mi
2 we have Pr[O(C(I(w), ρ)) = f(w)] = 1,

where the probability is over the randomness of I and ρ;
– Privacy : For any w,w′ ∈ Fmi

and any set P of t wires (also called probes)
in C, the distributions CP(I(w), ρ) and CP(I(w′), ρ) are identical, where CP
denotes the set of t values on the wires from P (also called intermediate
values).

The goal of a t-limited attacker, i.e. an attacker who can probe at most t wires,
is then to find a set of probes P and two values w,w′ ∈ F

mi
2 such that the

distributions CP(I(w), ρ) and CP(I(w′), ρ) are not the same.
Privacy of a circuit is defined by showing the existence of a simulator, which

can simulate the adversary’s observations without having access to any internal
values of the circuit.

According to the description in [15], the input encoder I maps every input
value x into n binary values (r1, . . . , rn) called shares or mask, where the first
n−1 values are chosen at random and rn = x⊕r1⊕· · ·⊕rn−1. On the other hand,
the output decoder O takes the n bits y1, . . . , yn produced by the circuit and
decodes the values in y = y1 ⊕· · ·⊕yn. In its internal working a private circuit is
composed by gadgets, namely transformed gates which perform functions which
take as input a set of masked inputs and output a set of masked outputs. In
particular, we distinguish between linear operations (e.g. XOR), which can be
performed by applying the operation to each share separately, and non-linear
functions (e.g. AND), which process all the shares together and make use of
additional random bits. A particular case of randomized gadget is the refreshing
gadget, which takes as input the sharing of a value x and outputs randomized
sharing of the same x. Another interesting gadget is the multiplicative one, which
takes as input two values, say a and b shared in (a1, . . . , an) and (b1, . . . , bn), and
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outputs a value c shared in (c1, . . . , cn) such that
⊕n

i=1 ci = a · b. We indicate
in particular with g(x, r) a gadget which takes as input a value x and internally
uses a vector r of random bits, where r is of the form (r1, . . . , rn) and each ri
is the vector of the random bits involved in the computation of the i-th output
share. For example, referring to Algorithm3, r1 is the vector (r13, r1, r8, r7). In
the rest of the paper, if not needed otherwise, we will mainly specify a gadget
with only its random component r, so it will be indicated as g(r). Moreover we
suppose that all the gadgets g(r) are such that every intermediate value used in
the computation of the i-th output share contains only random bits in ri.

The following definitions and lemma from [2] formalize t-probing security
with the notion of t-Non Interference and show that this is also equivalent to
the concept of simulatability.

Definition 2 ((S, Ω)-Simulatability, (S, Ω)-Non Interference). Let g be a
gadget with m inputs (a(1), . . . , a(m)) each composed by n shares and Ω be a set
of t adversary’s observations. Let S = (S1, . . . ,Sm) be such that Si ⊆ {1, . . . , n}
and |Si| ≤ t for all i.

1. The gadget g is called (S, Ω)-simulatable (or (S, Ω)–SIM) if there exists a
simulator which, by using only (a(1), . . . , a(m))|S = (a(1)

|S1
, . . . , a

(m)
|Sm

) can sim-

ulate the adversary’s view, where a
(k)
|Sj

:= (a(k)
i )i∈Sj

.
2. The gadget g is called (S, Ω)-Non Interfering (or (S, Ω)–NI) if for any s0, s1 ∈

(Fm
2 )n such that s0|S = s1|S the adversary’s views of g respectively on input

s0 and s1 are identical, i.e. g(s0)|Ω = g(s1)|Ω .

In the rest of the paper, when we will talk about simulatability of a gadget we
will implicitly mean that for every observation set Ω with |Ω| ≤ t, where t is
the security order, there exists a set S as in Definition 2 such that the gadget is
(S, Ω)–SIM.

Lemma 1. For every gadget g with m inputs, set S = (S1, . . . ,Sm), with Si ⊆
{1, . . . , n} and |Si| ≤ t, and observation set Ω, with |Ω| ≤ t, g is (S, Ω)–SIM if
and only if g is (S, Ω)–NI, with respect to the same sets (S, Ω).

Definition 3 (t–NI). A gadget g is t-non-interfering (t–NI) if and only if for
every observation set Ω, with |Ω| ≤ t, there exists a set S, with |S| ≤ t, such
that g is (S, Ω)–NI.

When applied to composed circuits, the definition of t–NI is not enough to guar-
antee the privacy of the entire circuit. Indeed, the notion of t–NI is not sufficient
to argue about secure composition of gadgets. In [2], Barthe et al. introduced
the notion of t−Strong Non-Interference (t–SNI), which allows for guaranteeing
a secure composition of gadgets.

Definition 4 (t−Strong Non-Interference). An algorithm A is t−Strong
Non-Interferent (t–SNI) if and only if for any set of t1 probes on intermediate
values and every set of t2 probes on output shares with t1 + t2 ≤ t, the totality
of the probes can be simulated by only t1 shares of each input.
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Informally, it means that the simulator can simulate the adversary’s view, using
a number of shares of the inputs that is independent from the number of probed
output wires. An example of t–SNI multiplication algorithm is the famous ISW
scheme in Algorithm 1, introduced in [15] and proven to be t–SNI in [2], and
a t–SNI refreshing scheme is Algorithm 2, introduced in [10] by Duc et al. and
proven to be t–SNI by Barthe et al. in [2].

Algorithm 1. ISW multiplication algorithm with n ≥ 2 shares.
Input: shares (ai)1≤i≤n and (bi)1≤i≤n, such that

⊕
i ai = a and

⊕
i bi = b.

Output: shares (ci)1≤i≤n, such that
⊕

i ci = a · b.
for i = 1 to n do

for j = i + 1 to n do

ri,j
$←− F2n ;

rj,i ← (ri,j + ai � bj) + aj · bi;
end for

end for
for i = 1 to n do

ci ← ai · bi +
∑n

j=1,j �=i ri,j ;
end for

Algorithm 2. Refreshing R
Input: shares (ai)1≤i≤n, such that

⊕
i ai = a; random shares (rij)1≤i≤n,i+1≤j≤n.

Output: shares (ci)1≤i≤n, such that
⊕

i ci = a.

for i = 1 to n do
ci = ai;

end for
for i = 1 to n do

for j = i + 1 to n do
ci = ci + ri,j
cj = cj − ri,j

end for
end for

As pointed out in [9,18], secure multiplication schemes, like ISW, require that
the two masks in input are mutually independent. This condition is satisfied in
two cases: when at least one of the two inputs is taken uniformly at random or
when at least one of the two inputs is refreshed by means of a secure refreshing
using completely fresh and independent randomness, as shown in Algorithm2.
In this paper, whenever we talk about independence of two inputs, we refer to
the mutual independence of the masks, as specified above.
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2.2 Threshold Implementation

As shown in [11,18], the probing model presented in the last section covers
attacks such as the High Order Differential Power Analysis (HO-DPA) attack.
The latter, introduced by Kocher et al. in [16], uses power consumption mea-
surements of a device to extract sensitive information of processed operations.
The following result from [6] specifies the relation between the order of a DPA
attack and the one of a probing attack.

Lemma 2 [6]. The attack order in a Higher-order DPA corresponds to the num-
ber of wires that are probed in the circuit (per unmasked bit).

Threshold Implementation (TI) schemes are a t−order countermeasure against
DPA attacks. It is based on secret sharing and multi party computation, and in
addition takes into account physical effects such as glitches.

In order to implement a Boolean function f : Fmi
2 → F

mo
2 , every input value

x has to be split into n shares (x1, . . . , xn) such that x = x1 ⊕ · · · ⊕ xn, using
the same procedure seen in private circuits. We denote with C is the output
distribution f(X), where X is the distribution of the encoding of an input x. The
function f is then shared in a vector of functions f1, . . . , fn, called component
functions, which must satisfy the following properties:

1. Correctness: f(x) =
⊕n

i=1 fi(x1, . . . , xn).
2. t− Non-Completeness: any combination of up to t component functions fi

of f must be independent of at least one input share xi.
3. Uniformity: the probability Pr(C = c|c =

⊕n
i=1 ci) is a fixed constant for

every c, where c denotes the vector of the output shares.

The last property requires that the distribution of the output is always a random
sharing of the output, and can be easily satisfied by refreshing the output shares.

TI schemes are strongly related to private circuits. First, they solve a similar
problem of formalizing privacy against a t-limited attacker and moreover, as
shown in [17], the TI algorithm for multiplication is equivalent to the scheme
proposed by ISW.

We additionally point out that the TI aforementioned properties imply sim-
ulatability of the circuit. Indeed, if a function f satisfies properties 1 and 2, then
an adversary who probes t or fewer wires will get information from all but at
least one input share. Therefore, the gadget g implementing such a function is
t–NI and due to Lemma 1 is simulatable.

3 Probing Security with Common Randomness

In this section we analyze privacy of a particular set of gadgets g1, . . . , gd having
independent inputs, in which the random component is substituted by a set
of bits r = (r1, . . . , rl) taken at random, but reused by each of the gadgets
g1, . . . , gd. In particular, we introduce a new security definition, which formalizes
the conditions needed in order to guarantee t-probing security in a situation
where randomness is shared among the gadgets.
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Definition 5 (t–SCR). Let r be a set of random bits. We say that the gadgets
g1(r), . . . , gd(r) receiving each m inputs split into n shares are t−secure with
common randomness (t–SCR) if

1. their inputs are mutually independent;
2. for each set Pi of ti probes on gi such that

∑
i ti ≤ t, the probes in Pi can

be simulated by at most n − 1 shares of the input of gi and the simulation is
consistent with the shared random component.

Let us introduce some notation that we will use in the rest of the paper.
With the term block of gadgets we define a sub-circuit composed by gadgets,
with input an encoding of a certain x and output an encoding of y. Since our
analysis focuses on the randomness, when we refer to such a block we only
consider the randomized gadgets. In particular, we indicate a block of gadgets
as G(R) = {g1(r1), . . . , gd(rd)}, where the gi represent the randomized gadgets
in the block and R = (r1, . . . , rd) constitutes the total amount of randomness
used by G. We assume without loss of generality that the input of such a G is
the input of the first randomized gadget g1. Indeed, even if actually the first
gadget of the block was a non-randomized one (i.e. a linear gadget), then this
would change the actual value of the input, but not its properties related to
the independence. We call dimension of a block G the number of randomized
gadgets gi composing the block. In Fig. 1 are represented N blocks of gadgets of
dimension 4 each.

The following lemma gives a simple compositional result for multiple blocks
of gadgets, where each such block uses the same random component R. Slightly
informally speaking, let Gj be multiple sets of gadgets, where all gadgets in Gj

share the same randomness. Then, the lemma below shows that if the gadgets in
Gj are t–SCR, then also the composition of the gadgets in all sets Gj are t–SCR.
We underline that such a block constitutes itself a gadget. For simplicity, we
assume that the blocks of gadgets that we consider in the lemma below all have
the same dimension d. But our analysis can easily be generalized to a setting
where each block has a different dimension.

Lemma 3 (composition of t–SCR gadgets). For every d ∈ N, consider
G1(R) = {g1,1(r1), . . . , g1,d(rd)}, . . . ,GN (R) = {gN,1(r1), . . . , gN,d(rd)} N
blocks of gadgets sharing the same random component R = (r1, . . . , rd) and
masking their input into n shares. Suppose Gi be t–NI for each i = 1, . . . , N . If
for all j = 1 . . . , d the gadgets g1,j(rj), . . . , gN,j(rj) are t–SCR, then the blocks
of gadgets {G1, . . . ,GN} are t–SCR.

Proof. First it is easy to see that, since g1,1, . . . , gN,1 are t–SCR then their
inputs have independent masks and so the same holds for the inputs of blocks
G1, . . . ,GN . Let us next discuss the second property given in the t–SCR defini-
tion. We can prove the statement with an inductive argument on the dimension
of the blocks.

– If d = 1, then by hypothesis {g1,1, . . . , gN,1} are t–SCR and then {G1, . . . ,GN}
are t–SCR.
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Fig. 1. A set of N blocks of gadgets with dimension d = 4 each.

– If d > 1 and {{g1,1, . . . , g1,d−1}, . . . , {gN,1, . . . , gN,d−1}} are t–SCR, then by
hypothesis {g1,d, . . . , gN,d} are t–SCR. Now the following cases hold.

• The probes are placed on the {{g1,1, . . . , g1,d−1}, . . . , {gN,1, . . . , gN,d−1}}:
in this case, by the inductive hypothesis, the adversary’s view is simulat-
able in the sense of Definition 5 of t–SCR.

• The probes are placed on {g1,d, . . . , gN,d}: in this case, since by hypothesis
{g1,d, . . . , gN,d} are t–SCR, the adversary’s view is simulatable in the sense
of Definition 5.

• A set of the probes P is placed on {g1,d, . . . , gN,d} and a set of probes
Q is placed on {{g1,1, . . . , g1,d−1}, . . . , {gN,1, . . . , gN,d−1}}: in this case,
since the probes in P and in Q use different random bits, they can be
simulated independently each other. The simulatability of the probes in
P according to Definition 5 is guaranteed by the t–SCR of {g1,d, . . . , gN,d}
and the simulatability of the probes in Q is guaranteed by the t–SCR of
{{g1,1, . . . , g1,d−1}, . . . , {gN,1, . . . , gN,d−1}}.

Therefore for the inductive step we conclude that for every dimension d of the
blocks Gi, with i = 1, . . . , N , the set {G1, . . . ,GN} is t–SCR. �	

We point out that the t–SCR property itself is not sufficient for guaranteeing
also a sound composition. The reason for this is that t–SCR essentially is only
t–NI. Therefore, when used in combination with other gadgets, a t–SCR scheme
needs additionally to satisfy the t–SNI property. We summarize this observation
in the following theorem which gives a global result for circuits designed in blocks
of gadgets sharing the same randomness.

Theorem 1. Let C be a circuit composed by N blocks of gadgets
G1(R), . . . ,GN (R) where Gi(R) = {gi,1(r1), . . . , gi,d(rd)} for each i = 1, . . . , N
and with inputs masked with n shares and such that the gadgets outside such
blocks are either linear or t–SNI ones. If
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– the outputs of G1, . . . ,GN are independent
– ∀j = 1, . . . , N Gj is t–SNI and
– ∀j = 1, . . . , d g1j , . . . , gNj are t–SCR

then the circuit C is t−probing secure.

Proof. The proof of the theorem is straightforward. Indeed, Lemma3 implies
that G1, . . . ,GN are t–SCR. Moreover, we point out that the t–SNI of the Gi, for
every i = 1, . . . , N , and the independence of the outputs guarantees a secure
composition

– among the blocks Gi

– of the Gi with other randomized and t–SNI gadgets using fresh randomness
– of the Gi with linear gadgets.

This is sufficient to prove that the circuit C is t probing secure. �	
To sum up, we showed in this section that, under certain conditions, it is possible
to design a circuit which internally reuses the random bits involved and remains
probing secure. Therefore, if used in an appropriate way, this result allows us to
decrease the amount of randomness necessary in order to have a private circuit
(because all the blocks share the same randomness). Nevertheless, we remark
that, when designing such circuits, even if on the one hand the randomness
involved in the gadgets can be completely reused, we require on the other hand
additional refreshing schemes to guarantee the independence of the inputs and
outputs of each block. Notice that independence is needed for ensuring t–SCR
and, as recalled in Sect. 2.1, it is satisfied by refreshing via Algorithm2.

For these reasons, in order to have an actual reduction in the amount of
randomness, it is needed to take a couple of precautions when structuring a
circuit into blocks of gadgets. First of all, it is necessary to construct these
blocks such that the number of the outputs which are inputs of other blocks do
not exceed the number of gadgets in the block; otherwise we would require more
randomness for refreshing than what was saved by the reusing of randomness
within the block. In addition, it is important to find a good trade-off between
the dimension of the blocks and the number of them in the circuit.

More formally speaking if N is the number of randomized gadgets of the
original circuit, NC is the number of gadgets which use the same random bits in
the restructured circuit and NR is the number of new refreshing schemes that we
need to add to it for guaranteeing the independence of the inputs of the blocks,
then the total saving in the randomness of the circuit is given by the difference
N −(NC+NR). To illustrate how this quantity changes according to the different
dimension of the blocks let us take a look at some concrete cases. Suppose for
simplicity that each block of gadget has only one input and one output. If we
divide the circuit into many small blocks, then on the one hand we reuse a small
amount of randomness, and so NC is smaller, on the other hand, since at every
block corresponds one output which needs to be refreshed before being input
of another block, the number of new randomness involved increases, and then
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NR is bigger. Otherwise, if the circuit is designed in few large blocks of gadgets,
then since we have fewer blocks, there are also fewer outputs to be refreshed,
therefore the amount of fresh randomness NR is reduced. On the other hand,
more random bits are needed for refreshing for the common randomness in the
blocks, and so the amount NC increases. A more concrete example can be found
in Figs. 2, 3 and 4, where the same circuit is structured in blocks of gadgets in
two different ways.

C
g1

g2

g3
g4 g5 g6 g7

g9 g10g8

g11

g12

Fig. 2. The original circuit C composed by N = 12 randomized gadgets.

C
g1

g2

g3
g4 g5 g6 g7

g9 g10g8

g11

g12R

R
R

R R

R

G1 G2 G3 G4

Fig. 3. The circuit C′ representing C structured into 4 blocks of gadgets, where
N = 12, NC = 3, NR = 6 and the saving consists of 3 randomized gadgets.

C
g1

g2

g3
g4 g5 g6 g7

g9 g10g8

g11

g12

R

R

G1 G2

Fig. 4. The circuit C′′ representing C structured into 2 blocks of gadgets, where
N = 12, NC = 6, NR = 2 and the saving consists of 4 randomized gadgets.

In Sect. 4, we will present a naive method to restructure a circuit in such a
way that these conditions are satisfied and in order to find an efficient grouping
in blocks of gadgets.
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3.1 A t-SCR Multiplication Scheme

In this subsection, we introduce a multiplication scheme, which can be com-
bined with other gadgets sharing the same randomness and remains t–SCR. In
particular, our multiplication schemes are based on two basic properties (i.e.,⌊
t
2

⌋
-non-completeness and t–SNI) and we discuss how to construct instantia-

tions of our multiplication according to these properties.
First, we construct a multiplication scheme in accordance with

⌊
t
2

⌋
-non-

completeness. This process is similar to finding a
⌊
t
2

⌋
-order TI of the AND-

gate [17] or multiplication [8]. However, for our application we additionally
require that the number of output shares is equal to the number of input
shares. Most higher-order TI avoid this restriction with additional refreshing-
and compression-layers. Since the

⌊
t
2

⌋
-non-completeness should be fulfilled with-

out fresh randomness, we have to construct a
⌊
t
2

⌋
-non-complete Mult : Fn

2 → F
n
2

and cannot rely on compression of the output shares. Unfortunately, this is only
possible for very specific values of n. Due to this minor difference, we cannot
directly use the bounds from the original publications related to higher-order
TI. In the following, we derive an equation for n given an arbitrary t for which
there exist a

⌊
t
2

⌋
-non-complete Mult.

Initially, due to the
⌊
t
2

⌋
-non-completeness the number of shares for which we

can construct a scheme with the above properties is given by
⌊

t

2

⌋

· l + 1 = n (1)

where l denotes the number of input shares which are leaked by each of the
output shares, i.e., even the combination of

⌊
t
2

⌋
output shares is still independent

of one input share. To construct a
⌊
t
2

⌋
-non-complete multiplication, we need to

distribute
(
n
2

)
terms of the form aibj + ajbi over n output shares, i.e., each

output share is made up of the sum of n−1
2 terms. Each of these terms leaks

information about the tuples (ai, aj) and (bi, bj), and we assume the encodings
a and b are independent and randomly chosen. For a given l, the maximum
number of possible terms, which can be combined without leaking about more
than l shares of a or b, is

(
l
2

)
. The remaining aibi are equally distributed over

the output shares without increasing l. By combining these two observations, we
derive the relation

n − 1
2

=
l2 − l

2
. (2)

Based on Eq. (1), the minimum number of shares for
⌊
t
2

⌋
-non-completeness is

n =
⌊
t
2

⌋ · l + 1. We combine this with Eq. (2) and derive

n =
⌊

t

2

⌋2

+
⌊

t

2

⌋

+ 1. (3)

We use Eq. (3) to compute the number of shares for our t–SCR multiplication
scheme with t > 3. For t ≤ 3, the number of shares is bounded by the requirement
for the multiplication to be t–SNI, i.e., n > t.
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To achieve t–SCR, it is necessary to include randomness in the multiplica-
tions. Initially, tn

2 random components ri need to be added for the multiplication
to be t–SNI. A subset of t random components is added to each output share
equally distributed over the sum, and each of these random bits is involved a sec-
ond time in the computation of a single different output share. This ensures the
simulatability of the gadget by using a limited number of input shares as required
by the definition of t–SNI. In particular, the clever distribution of the random
bits allows to simulate the output probes with a random and independent value.
Furthermore, we include additional random elements rxj=1,...,n which only occur
in one output share each and enable a simple simulation of the gadget even in
the presence of shared randomness.

The construction of a t–SCR multiplication scheme following the aforemen-
tioned guidelines is easy for small t. However, finding a distribution of terms that
fulfils

⌊
t
2

⌋
-non-completeness becomes a complex task due to the large number

of possible combinations for increasing t. For t = 4, one possible t–SCR mul-
tiplication is defined in Algorithm3 and it requires n = 7 shares. A complete
description of a multiplication algorithm for higher orders fulfilling the properties
aforementioned can be found in the full version of the paper.

Algorithm 3. Mult for order t = 4 with n = 7 shares.
Input: shares a1, . . . , a7 such that

⊕
ai = a, shares b1, . . . , b7 such that

⊕
bi = b

Output: shares c1, . . . , c7 such that
⊕

ci = a · b
c1 = ((((((((((((rx1 +a1b1)+ r13)+a1b2)+a2b1)+ r1)+a1b3)+a3b1)+ r8)+a2b3)+
a3b2) + r7) + rx1);
c2 = ((((((((((((rx2 +a4b4)+ r14)+a1b4)+a4b1)+ r2)+a1b5)+a5b1)+ r9)+a4b5)+
a5b4) + r1) + rx2);
c3 = ((((((((((((rx3 +a7b7)+ r8)+a1b6)+a6b1)+ r3)+a1b7)+a7b1)+ r10)+a6b7)+
a7b6) + r2) + rx3);
c4 = ((((((((((((rx4 +a2b2)+ r9)+a2b4)+a4b2)+ r4)+a2b6)+a6b2)+ r11)+a4b6)+
a6b4) + r3) + rx4);
c5 = ((((((((((((rx5 +a5b5)+r10)+a2b5)+a5b2)+r5)+a2b7)+a7b2)+r12)+a5b7)+
a7b5) + r4) + rx5);
c6 = ((((((((((((rx6 +a3b3)+r11)+a3b4)+a4b3)+r6)+a3b7)+a7b3)+r13)+a4b7)+
a7b4) + r5) + rx6);
c7 = ((((((((((((rx7 +a6b6)+r12)+a3b5)+a5b3)+r7)+a3b6)+a6b3)+r14)+a5b6)+
a6b5) + r6) + rx7);

Now we present the security analysis of this multiplication scheme and we
show that it can be securely composed with the refreshing scheme in Algorithm 2
in blocks of gadgets sharing the same random component. Due to size constraints,
we only give a sketch of the proof and refer to the full version of the paper for
the complete proof.

Lemma 4. Let Mult1, . . . ,MultN be a set of N multiplication schemes as in
Algorithm3, with outputs c(1), . . . , c(N). Suppose that the maskings of the inputs
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are independent and uniformly chosen and that for k = 1, . . . , N each Multk uses
the same random bits

(
ri

)
i=1,...,tn/2

. Then Mult1, . . . ,MultN are t–SCR and in
particular Mult is t–SNI.

Proof. In the first case, all probes are placed in the same Mult and it is sufficient
to show t–SNI of Mult. We indicate with pl,m the m-th sum of the output cl. We
can classify the probes in the following groups.

(1) aibj + rk =: pl,1
(2) ai, bj , aibj
(3) rk
(4) pl,m + aibj =: q
(5) pl,m + rk =: s
(6) output shares ci

Suppose an adversary corrupts at most t wires w1, . . . , wt. We define two sets
I, J with |I| < n |J | < n such that the values of the wires wh can be perfectly
simulated given the values (ai)i∈I , (bi)i∈J .

The procedure to construct the sets is the following:

1. We first define a set K such that for all the probes containing a random bit
rk, we add k to K.

2. Initially I, J are empty and the wi unassigned.
3. For every wire in the group (1), (2), (4) and (5) add i to I and j to J .

Now we simulate the wires wh using only the values (ai)i∈I and (bi)i∈J .

– For every probe in group (2), then i ∈ I and i ∈ J and the values are perfectly
simulated.

– For every probe in group (3), rk can be simulated as a random and indepen-
dent value.

– For every probe in group (1), if k /∈ K, we can assign a random independent
value to the probe, otherwise, if rk has already been simulated we can simulate
the probe by taking the rk previously simulated, simulating the shares of a and
b by using the needed indices in I and J and performing the inner products
and additions as in the real execution of the algorithm.

– For every probe in group (4) if pl,m was already probed, we can compute q
by using pl,m and the needed indices of a and b in I and J . Otherwise, we
can pick q as a uniform and random value.

– For every probe in group (5), if pl,m was already probed and k ∈ K, we can
compute s by using pl,m and the already simulated rk. Otherwise, we can
pick s as a uniform and random value.

Finally, we simulate the output wires ci in group (6) using only a number of
input shares smaller or equal to the number of internal probes. We have to take
into account two cases.
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– If the attacker has already observed a partial value of the output shares,
we note that by construction, independently of the intermediate elements
probed, at least one of the rk does not enter into the computation of the
probed internal values and so ci can be simulated as a random value.

– If the adversary has observed all the partial sums of ci, then, since these probes
have been previously simulated, the simulator now add these simulated values
for reconstructing the ci.

– If no partial value fo ci has been probed. By definition, at least one of the
rk involved in the computation of ci is not used in any other observed wire.
Therefore, ci can be assigned to a random and independent value.

In the second case, the probes are placed into different Multi. However, the
number of probes in one particular gadget does not exceed

⌊
t
2

⌋
. In this case,

security is given by the
⌊
t
2

⌋
-non-completeness property of our multiplication

schemes.
In the third case, the number of probes for one Multi does exceed

⌊
t
2

⌋
. For

this, we base our proof strategy on the two observations. First, since all Multi
share the same randomness, it is possible to probe the same final output share
ci in two gadgets to remove all random elements and get information about
all the input shares used in the computation of ci. Secondly, a probe in any
intermediate sum of ci is randomized by rxi. Therefore, this probe can always
be simulated as uniform random if not another probe is placed on rxi or on a
different intermediate sum of ci (including in a different Multj). Therefore, any
probe of an intermediate sum of ci can be reduced to a probe of the final output
share ci, since in the latter case one receives information about more or an equal
number of input shares with the same number of probes (i.e., two). Therefore,
to get information about the maximum number of input shares the probes need
to be placed in the same

⌊
t
2

⌋
output shares in two multiplications. Based on the⌊

t
2

⌋
-non-completeness, this can be easily simulated. The remaining probe, given

that t is odd, can be simulated as uniform random, since it is either

– an intermediate sum of an unprobed output share ck. This can be simulated
as uniform random due to the unprobed rxk.

– an unprobed output share ck. This can be also simulated as uniform random,
as by construction there is always at least one random element ri which is
not present in one of the

⌊
t
2

⌋
probed output shares.

For the special case of t < 4, it is possible to avoid the extra rxi per out-
put share. This is based on the limited number of probes. For t = 2, 1-non-
completeness (for the case of one probe in two multiplications) and t–SNI (for
the case of two probes in one multiplication) are sufficient to enable t–SCR. The
same applies to t = 3 as for the last probe there is always one unknown random
ri masking any required intermediate sum. �	

In the following lemma we show that the t–SNI refreshing scheme in Algo-
rithm2 is also t–SCR. Due to size constraints, we again only provide a proof
sketch and refer to the full version of the paper for the complete proof.
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Lemma 5. Let R1, . . . ,RN be a set of N refreshing schemes, as in Algo-
rithm2, with inputs a(1) . . . ,a(N) and outputs c(1) . . . , c(N). Suppose that
(
a
(1)
i

)
i=1,...,n

, . . . ,
(
a
(N)
i

)
i=1,...,n

are independent and randomly chosen maskings
of the input values and for k = 1, . . . , N each Rk uses the same random bits(
ri,j

)
i,j=1,...,n

. Then R1, . . . ,RN are t–SCR.

Proof. Since according to Algorithm2 every output share contains only one sin-
gle share of the input and since the inputs are encoded in n > t shares, it is not
possible to probe all of the input shares of one Ri with t probes. Therefore, the
simulation can be done easily. �	
We remark that, due to the use of n > t + 1 shares in the multiplication algo-
rithm for order t > 3, the refreshing scheme in Algorithm 2 makes use of a not
optimal amount of randomness, since it requires n2

2 random bits. We depict in
Algorithm 4 a more efficient refreshing scheme which uses only t·n

2 random bits.
It essentially consist in multiplying the input value times 1, by means of Algo-
rithm3 as subroutine. It is easy to see that the security of the scheme relies on
the security of the multiplication algorithm Mult, and therefore Algorithm4 is
t–SNI and it can securely share randomness with other multiplication gadgets.

Algorithm 4. Refreshing scheme with optimal amount of randomness
Input: shares a1, . . . , an such that

⊕
ai = a

Output: shares c1, . . . , cn such that
⊕

ci = a

for i = 1 to n do
ui = 1;

end for
if n is even then

un = 0;
end if
(c1, . . . , cn) = Mult(a, (u1, . . . , un));

An example of blocks of gadgets using multiplication and refreshing schemes
is given in Fig. 5, where are depicted two blocks of gadgets of dimension 6 involv-
ing the multiplication scheme Mult and the refreshing R of Algorithm 2 secure
even if sharing the same randomness.

4 A Tool for General Circuits

The results from the previous sections essentially show that it is possible to
transform a circuit C in another circuit C′ performing the same operation, but
using a reduced amount of randomness. To this end, according to Theorem1, it
is sufficient to group the gadgets composing the circuit C in blocks Gi sharing
the same component of random bits and having independent inputs, i.e. values
refreshed by Algorithm 2. As pointed out in Sect. 3, the actual efficiency of this
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Fig. 5. Two blocks of gadgets G1, G2 composed by the same gadgets using the random
components ri with independent inputs x and y

procedure is not straightforward, but it is given by the right trade off between
the dimension of the blocks and the number of extra refreshing schemes needed
in order to guarantee the independence of their inputs.

In the following we give a tool, depicted in Algorithm7, which allows to
perform this partitioning and amortize the randomness complexity of a given
circuit.

A circuit C is represented as a directed graph where the nodes constitute
the randomized gadgets and the edges are input or output wires of the related
gadget, according to the respective direction. In particular, if the same output
wire is used as input several time in different gates, it is represented with a
number of edges equivalent to the number of times it is used. The linear gates
are not represented. The last node is assigned to the label “End” and every
intersection node with parallel branches is marked as “Stop”.

The idea at the basis of our algorithm is quite primitive. We empirically
noticed that for a circuit composed by N randomized gadgets a balanced choice
for the dimension of the blocks of gadgets can be the central divisors (d1 and
d2 in the algorithms) of N , where if for instance N = 12 and then the vector of
its divisors is (1, 2, 3, 4, 6, 12), with central divisors we identify the values 3 and
4. Therefore, we aim at dividing the circuit in d1 blocks of gadgets of dimension
d2 (and vice versa). We start taking the first d1 nodes and we verify that the
number of outputs do not exceed the one of randomized gadgets in the block.
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Indeed, if it would be so, since each output needs to be refreshed before being
input of another block, then the number of reused random bits is inferior to
the one of new random bits which need to be refreshed. In case the condition
is not verified the algorithm adds a new node, i.e. a new randomized gadget,
to the block and check again the property, until it is verified. Then it takes
again the next d1 nodes and repeats the procedure. At last, we compare the
saved randomness respectively when the algorithm tries to divide the circuit in
d1 blocks and in d2 blocks and we output the transformed circuit with the best
amortizing rate.

More technically, at first we give the subroutine in Algorithm5, which chooses
two divisors of a given integer. With V we indicate the vector composed by all
the divisors of a given number N (which in the partitioning algorithm will be
the number of the randomized gadgets of a circuit) and with |V | the length of
V , i.e. the number of its elements.

Algorithm 5. Divisors
Input: positive integer N
Output: divisors d1 and d2

V ← divisors of N (by look up table);
n ← |V |;
if n is even then

i ← n
2
;

else
i ← n−1

2
;

end if
d1 ← V [i];
d2 ← V [i + 1];
return d1, d2

Algorithm 6 constructs a block of gadgets G of dimension at least d, such that
the number of extra refreshing needed does not exceed the number of randomized
gadgets in the block. In the algorithm, the integers m

(j)
o and m

(j)
g represent

respectively the number of output edges and the amount of nodes contained in
the block of gates Gj .

The procedure Partition in Algorithm 7 partitions a circuit C in sub-circuits
Gi followed by a refreshing gate R per each output edge. In the algorithm, O
and M are two vectors such that the j-th position represents respectively the
number of output wires and the amount of nodes of the block Gj . With R
it is indicated the refreshing scheme of Algorithm2. The integers nR and n′

R

count the total number of refreshing gadgets needed in the first and second
partition of C respectively. The integers nG and n′

G count the total number of
gadgets (multiplications and refreshing) which need to refresh the random bits
once in the circuit. The integers nTOT and n′

TOT represent the total amount
of randomness needed, computed as the number of gadgets which need fresh
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Algorithm 6. FindBlock
Input: circuit C performing a function f(x), first node vj of the block, d

Output: block of gates Gi, node v, integers m
(j)
o , i

Gj ← {vj+1, vj+2, . . . , vj+d};
i ← 0;
while m

(j)
o ≥ m

(j)
g do

i ← i + 1;
if vj+d+i �= ”Stop” then

Gj ← Gj ∪ {vj+d+i};
else

end while
return Gj , vj+d+i, m

(j)
o , i − 1;

end if
end while
return Gj , vj+d+i+1, m

(j)
o , i;

random bits once. By comparing these two values, the algorithm decides which
is the best partition in terms of amortized randomness. In particular the notation
O[i] · R means that the block Gi is followed by O[i] refreshing schemes (one per
output edge).

We conclude this section by emphasizing that our algorithm is not designed to
provide the optimal solution (as in finding the grouping which requires the least
amount of randomness). Nevertheless, it can help to decompose an arbitrary
circuit without a regular structure and serve as a starting point for further
optimizations. However, for circuits with an obvious structure (e.g., layers for
symmetric ciphers) which contain easily-exploitable regularities to group the
gadgets, the optimal solutions can be usually found by hand.

5 1-Probing Security with Constant Amount
of Randomness

The first order ISW scheme is not particularly expensive in terms of random-
ness, because it uses only one random bit. Unfortunately, when composed in more
complicated circuits, the randomness involved increases with the size of the cir-
cuit, because we need fresh randomness for each gadget. Our idea is to avoid
injecting new randomness in each multiplication and instead alternatively use
the same random bits in all gadgets. In particular, we aim at providing a lower
bound to the minimum number of bits needed in total to protect any circuit,
and moreover show a matching upper bound, i.e., that it is possible to obtain a
1-probing secure private circuit, which uses only a constant amount of random-
ness. We emphasize that this means that the construction uses randomness that
is independent of the circuit size, and in particular uses only 2 random bits
in total per execution.

We will present a modified version of the usual gadgets for refreshing, multi-
plication and the linear ones, which, in place of injecting new randomness, use a
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Algorithm 7. Partition
Input: circuit C performing a function f(x), N total number of randomized gadgets
Output: circuit C′ performing a function f(x) with a reduced amount of randomness

d1, d2 ← Divisors(N);
i ← 1;
G1, v,O[1],M [1] ← FindBlock(C, v1, d1);
while v �= ”End” do

i ← i + 1;
Gi, v,O[i],M [i] ← FindBlock(C, v, d1)

end while
nR = O[1] + · · · + O[i];
nG = max(M [1], . . . ,M [i]);
nTOT = nR + nG;
k ← 1;
G′
1, v

′,O′[1],M ′[1] ← FindBlock(C, v1, d2);
while v �= ”End” do

k ← k + 1;
G′
i, v

′,O′[k],M ′[k] ← FindBlock(C, v′, d2);
end while
n′
R = O′[1] + · · · + O′[k];

n′
G = max(M ′[1], . . . ,M ′[k]);

n′
TOT = n′

R + n′
G;

if nTOT ≤ n′
TOT then

C′ ← (G1,O[1] · R, . . . , Gi,O[i] · R);
else

C′ ← (G′
1,O

′[1] · R, . . . , G′
i,O

′[k] · R);
end if
return C′

value taken from a set of two bits chosen at the beginning of each evaluation of
the masked algorithm. In particular, we will design these schemes such that they
will produce outputs depending on at most one random bit and such that every
value in the circuit will assume a fixed form. The most crucial change will be
the one at the multiplication and refreshing schemes, which are the randomized
gadgets, and so responsible for the accumulation of randomness. On the other
hand, even tough the gadget for the addition does not use random bits, it will be
subjected at some modifications as well, in order to avoid malicious situations
that the reusing of the same random bits in the circuit can cause. As for the
other linear gadgets, such as the powers .2, .4, etc., they will be not affected by
any change, but will perform as usual share-wise computation.

We proceed by showing step by step the strategy to construct such circuits.
First, we fix a set of bits R = {r0, r1} where r0 and r1 are taken uniformly at
random. The first randomized gadget of the circuit does not need to be substan-
tially modified, because there is no accumulation of randomness to be avoided
yet. The only difference with the usual multiplication and refreshing gadgets is
that, in place of the random component, we need to use one of the random bits
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in R, as shown in Algorithms 8 and 9. Notice that when parts of the operations
are written in parenthesizes, then this means that these operations are executed
first.

Algorithm 8. 1-SecMult case (i)
Input: shares a1, a2 such that a1 ⊕ a2 = a, shares b1, b2 such that b1 ⊕ b2 = b
Output: shares ci depending on a random number rk ∈ R such that c1 ⊕ c2 = a · b,
the value rk

rk
$← R;

c1 ← a1b1 + (a1b2 + rk);
c2 ← a2b1 + (a2b2 − rk);

Algorithm 9. Refreshing case (i)
Input: shares a1, a2 such that a1 ⊕ a2 = a
Output: shares ci depending on the random number rk ∈ R such that c1 ⊕ c2 = a,
the value rk

rk
$← R;

c1 ← a1 + rk;
c2 ← a2 − rk;

Secondly, we analyze the different configurations that an element can take
when not more than one randomized gadget has been executed, i.e. when only
one random bit has been used in the circuit. The categories listed below are then
the different forms that such an element takes if it is respectively the first input
of the circuit, the output of the first refreshing scheme as in Algorithm2 and the
one of the first ISW multiplication scheme as in Algorithm1 between two values
x and y:

(1) a = (a1, a2);
(2) a = (a1 + r, a2 − r), where r is a random bit in R;
(3) a = (x1y1 + x1y2 + r, x2y1 + x2y2 − r), where r is a random bit in R.

This categorization is important because according to the different form of the
values that the second randomized gadget takes in input, the scheme will accu-
mulate randomness in different ways. Therefore, we need to modify the gadgets
by taking into account the various possibilities for the inputs, i.e. distinguish if:

(i) both the inputs are in category (1);
(ii) the first input is as in category (1), i.e. a = (a1, a2), and the second one in

category (2), i.e. b = (b1 + r1, b2 − r1);
(iii) the first input is as in category (1), i.e. a = (a1, a2), and the second one in

category (3), i.e. b = (c1d1 + c1d2 + r1, c2d1 + c2d2 − r1);
(iv) the first input is in category (3), i.e. a = (c1d1 + c1d2 + r0, c2d1 + c2d1 − r0),

and second one in category (2), i.e. b = (b1 + r1, b2 − r1);
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(v) both inputs are in category (2), i.e. a = (a1 + r1, a2 − r1) and b = (b1 +
r0, b2 − r0);

(vi) both inputs values are in category (3), i.e. a = (c1d1 + c1d2 + r1, c2d1 +
c2d2 − r1) and b = (c′

1d
′
1 + c′

1d
′
2 + r0, c

′
2d

′
1 + c′

2d
′
2 − r0).

where for the moment we suppose that the two inputs depend on two different
random bits each, but a more general scenario will be analyzed later. The goal of
the modified gadgets that we will present soon will be not only to reuse the same
random bits, avoiding an accumulation at every execution, but also to produce
outputs in the groups (1), (2) or (3), in order to keep such a configuration of the
wires unchanged throughout the circuit. In this way we guarantee that every wire
depends only on one random bit and that we can use the same multiplication
schemes in the entire circuit. According to this remark we modify the ISW as
depicted in Algorithms 10 and 11.

Algorithm 10. 1-SecMult case (ii) and (iii)
Input: shares a1, a2 such that a1⊕a2 = a, shares b1, b2 depending on a random number
ri ∈ R such that b1 ⊕ b2 = b, the set R = {r0, r1}, ri
Output: shares ci depending on the random number r1−i such that c1 ⊕ c2 = a · b, the
value r1−i

c1 ← a1b1 + (a1b2 + r1−i);
c2 ← a2b1 + (a2b2 − r1−i);

Algorithm 11. 1-SecMult case (iv), (v) and (vi)
Input: shares a1, a2 depending on the random number ri such that a1 ⊕a2 = a, shares
b1, b2 depending on the random number r1−i satisfying b1 ⊕b2 = b, the set R = {r0, r1}
Output: shares ci depending on the random number r1−i ∈ R satisfying c1 ⊕c2 = a ·b,
the value r1−i

δ ← −r1−i;
δ ← δ + rib1;
δ ← δ + rib2;
c1 ← a1b1 + (a1b2 − δ);
c2 ← a2b1 + (a2b2 + δ);

It is easy to prove that the new multiplication algorithms are such that their
outputs always belong to group (3).

Lemma 6. Let a and b be two input values of Algorithm10 or of Algorithm11.
Then the output value e = a · b is of the form (3).

As specified before, in the previous analysis we supposed to have as input of
the multiplication schemes values depending on different random bits. Since this
is not always the case in practice, we need to introduce a modified refreshing
scheme, which replaces the random bit on which the input depends with the
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other random bit of the set R. The scheme is presented in Algorithm 12 and it
has to be applied to one of the input values of a multiplication scheme every
time that they depend on the same randomness. Algorithm 12 is also useful
before a XOR gadget with inputs depending on the same random bit, because
it avoids that the randomness is canceled out. The proof of correctness is quite

Algorithm 12 Modified refreshing R′

Input: shares a1, a2 such that a1 ⊕ a2 = a depending on a random bit ri, the value ri
Output: shares ci depending on the random number r1−i such that c1 ⊕ c2 = a, the
value r1−i

c1 ← (a1 + r1−i) − ri;
c2 ← (a2 − r1−i) + ri;

straightforward, therefore we provide only an exemplary proof for a value in
category (3).

Lemma 7. Let a be an input value of the form (3) depending on a random bit
ri ∈ R for Algorithm12. Then the output value is of the form (3) and depends
on the random bit r1−i.

Proof. Suppose without loss of generality that the input a depends on the ran-
dom bit r1, so that a = (c1d1 + c1d2 + r0, c2d1 + c2d1 − r0). Then the output
e = R′(a) is:

e1 = (c1d1 + c1d2 + r0 + r1) − r0 = c1d1 + c1d2 + r1

e2 = (c2d1 + c2d1 − r0 − r1) + r0 = c2d1 + c2d1 − r1

completing the proof. �	
Lastly, in Algorithm 13 we define a new scheme for addition, which allows to
have outputs in one of the three categories (1), (2) or (3). Note that thanks to
the use of the refreshing R′, we can avoid having a dependence on the same
random bit in the input of an addition gadget. The proof of correctness is again
quite simple.

Algorithm 13 Modified addition XOR′

Input: shares a1, a2 such that a1 ⊕ a2 = a depending on a random bit ri, shares b1, b2
such that b1 ⊕ b2 = b depending on a random bit r1−i

Output: shares ci depending on a random number rk ∈ R such that c1 ⊕ c2 = a + b,
the value rk

rk
$← R;

c1 ← a1 + b1 − rk;
c2 ← a2 + b2 + rk;
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In conclusion, we notice that by using the schemes above and composing
them according to the instructions just given, we obtain a circuit where each
wire carries a value of a fixed form (i.e. in one of the categories (1), (2) or (3))
and therefore we can always use one of the multiplication schemes given in the
Algorithms 8, 10 and 11 without accumulating randomness and without the risk
of canceling the random bits. Moreover, it is easy to see that all the schemes just
presented are secure against a 1-probing attack.

5.1 Impossibility of the 1-Bit Randomness Case

In the following we show that is impossible in general to have a 1st-order probing
secure circuit, which uses only 1 bit of randomness in total. In particular, we
present a counterexample which breaks the security of a circuit using only one
random bit.

Let us consider c and c′ two outputs of two multiplication schemes between
the values a, b and a′, b′ respectively, and let r be the only random bit which is
used in the entire circuit. Then c and c′ are of the form

{
c1 = a1b1 + a1b2 + r
c2 = a2b1 + a2b2 + r

and
{

c′
1 = a′

1b
′
1 + a′

1b
′
2 + r

c′
2 = a′

2b
′
1 + a′

2b
′
2 + r

.

Suppose now that these two values are inputs of an additive gadget, as in Fig. 6.
Such a gadget could either use no randomness at all and just add the components
each other, or involve in the computation the bit r maintaining the correctness.
In the first case we obtain

{
c′
1 + c1 = a1b1 + a1b2 + a′

1b
′
1 + a′

1b
′
2 = a1b + a′

1b
′

c′
2 + c2 = a2b1 + a2b2 + a′

2b
′
1 + a′

2b
′
2 = a2b + a′

2b
′

and then the randomness r will be completely canceled out, revealing the secret.
In the second case, if we inject in the computation another r, then, in whatever
point of the computation we put it, it will cancel out again one of the two r
revealing one of the secrets during the computation of the output. For example,
we can have

{
c′
1 + c1 = r + a1b1 + a1b2 + r + a′

1b
′
1 + a′

1b
′
2 + r = a1b + a′

1b
′
1 + a′

1b
′
2 + r

c′
2 + c2 = r + a2b1 + a2b2 + r + a′

2b
′
1 + a′

2b
′
2 + r = a2b + a′

2b
′
1 + a′

2b
′
2 + r

.

In view of this counterexample, we can conclude that the minimum number of
random bits needed in order to have a 1st-order private circuit is 2.

6 Case Study: AES

To evaluate the impact of our methodology on the performance of protected
implementations, we implemented AES-128 without and with common random-
ness. In particular, we consider the inversion of each Sbox call (cf. Fig. 5) as
a block of gadgets Gi=1,...,200 using the same random components and each of
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⊕

⊗ ⊗a

b

c c′

a′

b′

Fig. 6. The sum (a ⊗ b) ⊕ (a′ ⊗ b′)

these inversions is followed by a refresh Ri=1,...,200. For the implementation with-
out common randomness, we use the multiplication algorithm from [18] and the
refresh from [10] (cf. Algorithm 2). To enable the use of common randomness,
we replace the multiplication with our t–SCR multiplication, the refresh with
Algorithm 4 for t > 3, and increase the number of shares accordingly. Table 1
summarizes the randomness requirements of both types of refresh and multipli-
cation algorithms for increasing orders.

Table 1. Number of random elements required for the multiplication and refresh algo-
rithms with and without common randomness from t = 1 to t = 11.

t Without common randomness With common randomness

n Multiplication Refresh n Multiplication Refresh

1 2 1 1 2 1 1

2 3 3 3 3 3 3

3 4 6 6 4 6 6

4 5 10 10 7 21 21

5 6 15 15 7 25 25

6 7 21 21 13 52 52

7 8 28 28 13 59 59

8 9 36 36 21 105 105

9 10 45 45 21 116 116

10 11 55 55 31 186 186

11 12 66 66 31 202 202

Both types of protected AES were implemented on an ARM Cortex-M4F
running at 168 MHz using C. The random components were generated using the
TRNG of the evaluation board (STM32F4 DISCOVERY) which generates 32
bits of randomness every 40 clock cycles running in parallel at 48 MHz. To assess
the influence of the TRNG performance on the result, we considered two modes
of operation for the randomness generation. For TRNG32, we use all 32 bits pro-
vided by the TRNG by storing them in a buffer and reading them in 8-bit parts
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when necessary. To simulate a slower TRNG, we also evaluated the performance
of our implementations using TRNG8 which only uses the least significant 8 of the
32 bits resulting in more idle states waiting for the TRNG to generate a fresh
value. We applied the same degree of optimization on both implementations to
allow a fair comparison. While it is possible to achieve better performances using
Assembly (as recently shown by Goudarzi and Rivain in [13]) our implementa-
tions still suffice as a proof of concept. The problem of randomness generation
affects a majority of implementations independent of the degree of optimiza-
tion and can pose a bottleneck, especially if no dedicated TRNG is available.
Therefore, we argue that our performance results can be transferred to other
types of implementations and platforms, and we expect a similar performance
improvement if the run time is not completely independent of the randomness
generation (e.g., pre-computed randomness).

As shown in Table 2, the implementations with common randomness requires
fewer calls to the TRNG for all considered t. Only after t ≥ 22, the randomness
complexity of the additional refreshes Ri=1,...,200 becomes too high. The run-
time benefit of common randomness strongly depends on the performance of the
random number generator. While for the efficient TRNG32 our approach leads to
faster implementations only until t = 5, it is superior until t = 7 for the slower
TRNG82. The dependency on the performance of the randomness generation is
visualized in Fig. 7. For TRNG8, the curve is shifted downwards compared to the
faster generator. In theory, an even slower randomness generator could move the

Table 2. Cycle counts of our AES implementations on an ARM Cortex-M4F with
TRNG32. In addition, we provide the required number of calls to the TRNG for each t.

t Without common randomness With common randomness

n TRNG calls Cycle count n TRNG calls Cycle count

TRNG32 TRNG8 TRNG32 TRNG8

1 2 1,200 112,919 187,519 2 206 70,262 70,196

2 3 3,600 308,600 548,477 3 618 173,490 199,063

3 4 7,200 496,698 1,089,092 4 1,236 309,844 412,887

4 5 12,000 751,670 1,812,213 7 4,326 737,260 1,206,558

5 6 18,000 1,051,323 2,729,052 7 5,150 808,412 1,358,560

6 7 25,200 1,403,243 3,836,006 13 10,712 1,973,885 3,134,628

7 8 33,600 1,779,403 5,125,072 13 12,154 2,147,190 3,467,553

8 9 43,200 2,286,003 6,603,199 21 21,630 4,647,611 7,017,148

9 10 54,000 2,814,435 8,257,996 21 23,896 4,877,985 7,498,022

10 11 66,000 3,459,684 10,096,735 31 38,316 8,282,630 12,467,274

11 12 79,200 4,046,836 12,112,375 31 41,612 8,640,018 13,211,240

2 For t = 1, our implementation with common randomness is faster for TRNG8 than for
TRNG32. This is due to the small number of TRNG calls and the extra logic required
to access the randomness buffer of TRNG32.
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break-even point to after t = 23 for our scenario, i.e., until the implementation
with common randomness requires more TRNG calls.
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Fig. 7. Ratio between the cycle counts of the AES implementations from Table 2 with
and without common randomness for each t.

For the special case of t = 1, we presented a solution (cf. Sect. 5) with con-
stant randomness independent of the circuit size. Following the aforementioned
procedure, we realized an 1-probing secure AES implementation with only two
TRNG calls. Overall, the implementation using the constant randomness scheme
requires more cycles than the one with common randomness, mostly due to
additional operations in the multiplication, addition, and refresh algorithms.
This is especially apparent for the key addition layer which is 40% slower. In
general, however, the approach with constant randomness could lead to better
performances for implementations with many TRNG calls and a slower source
of randomness.

7 Conclusion

Since the number of shares n for our t–SCR multiplication grows in O(t2) and
R requires O(nt) random elements, the practicability our proposed method-
ology becomes limited for increasing t. Nevertheless, our case study showed
that for small t our approach results in significant performance improvement
for the masked implementations. The improvement factor could potentially be
even larger, if we replace our efficient TRNG with a common PRNG. Addition-
ally, an improved R with a smaller randomness complexity, e.g., O(t2), could
lead to better performances even for t ≥ 22 and is an interesting starting point
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for future work. This would be of interest as with time larger security orders
might be required to achieve long-term security.

Another interesting aspect for future work is the automatic application of our
methodology to an arbitrary circuit. While we provide a basic heuristic approach
in Sect. 4, further research might be able to derive an algorithm which finds the
optimal grouping for any given design. This would help to create a compiler
which automatically applies masking to an unprotected architecture in the most
efficient way removing the requirement for a security-literate implementer and
reducing the chance for human error.
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