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Abstract. In this research, the effects of culture, cognitions, and emotions on
crisis management and prevention are analysed. An agent-based crowd evacu-
ation simulation model was created, named IMPACT, to study the evacuation
process from a transport hub. To extend previous research, various
socio-cultural, cognitive, and emotional factors were modelled, including: lan-
guage, gender, familiarity with the environment, emotional contagion, prosocial
behaviour, falls, group decision making, and compliance. The IMPACT model
was validated against data from an evacuation drill using the existing EXODUS
evacuation model. Results show that on all measures, the IMPACT model is
within or close to the prescribed boundaries, thereby establishing its validity.
Structured simulations with the validated model revealed important findings,
including: the effect of doors as bottlenecks, social contagion speeding up
evacuation time, falling behaviour not affecting evacuation time significantly,
and travelling in groups being more beneficial for evacuation time than travel-
ling alone. This research has important practical applications for crowd man-
agement professionals, including transport hub operators, first responders, and
risk assessors.
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1 Introduction

Crisis management and prevention involves preparing for many different emergency
situations. This research focuses on studying the socio-cultural, cognitive, and emo-
tional factors influencing an evacuation from a building, such as a transport hub. This is
important, because few crisis managers and risk assessment professionals currently deal
with these factors and their resulting behaviours. Accordingly, this research developed
and validated a crowd evacuation simulation model that includes socio-cultural, cog-
nitive, and emotional factors in order to simulate what-if scenarios. Consequently, it
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will help transport hub operators, crisis managers, risk assessment professionals, and
policy makers understand human behaviour, deal with socio-cultural crowd diversity,
and ultimately save lives.

Faster evacuation from public buildings during emergencies saves more lives.
Observations of actual emergencies show that people tend to be slow to respond to
evacuation alarms (taking up to 10 min) and take the familiar route out instead of the
nearest exit [4, 7, 14, 21, 23, 30]. These risky behaviours stem from being unfamiliar
with the environment, not seeing immediate signs of danger, and following others’
(unsafe) behaviour, leading to preventable deaths in many disasters. For instance, in the
Station Nightclub fire, in Rhode Island in 2003, the majority of people tried to escape
back through the familiar main entrance, leading to falls, crushing, and 100 deaths.
Many of the 56 deaths in the Bradford City Stadium fire in 1985 could have been
prevented if response time to the fire had been faster [3], and similarly slow responses
were found among occupants of the World Trade Center towers during the 9/11 terror
attacks in New York City [23]. In recent emergencies, some people have even remained
in dangerous areas to film events with their smartphones instead of escaping (Nice
Boulevard, 14/07/2016; Westgate Shopping Centre, Nairobi, 21/9/2013).

Current crowd evacuation models simulate how crowds move through built envi-
ronments [9], enabling ethical tests of how to improve crowd movements in emergency
evacuations. In addition to informing how to build safer buildings, computer models
can identify safer behaviours in existing buildings. For example, it is well-documented
that not running leads to faster evacuations due to fewer falls and less congestion at the
exit [17, 36]. However, traditional computer models of evacuations have been criticized
for being unrealistic, because they treat people as ‘moving particles’ with identical
characteristics [9, 36]. Such models wrongly assume that all people will respond to
alarms without delay, know their way, and take the nearest exit. As noted above,
however, each of these assumptions has been proven wrong [4, 7, 14, 21, 23, 30].

The aim of this research, therefore, is to develop and validate an evacuation sim-
ulation model that includes socio-cultural, cognitive, and emotional factors, to address
the need for crowd models to incorporate more realistic human behaviours. To do so,
the model developed here draws on insights from social and cross-cultural psychology,
interviews with crisis management experts, and is based on scientific findings and
literature. Furthermore, the model is validated against data from an evacuation drill
related to the existing EXODUS evacuation model [13, 26]. It is intended that this
model will help transport hub operators, crisis managers, risk assessment professionals,
and policy makers understand human behaviour, deal with socio-cultural crowd
diversity, and ultimately save lives.

The paper is organised as follows. First, the background literature on crowd
evacuation models is reviewed and the current approach is introduced in Sect. 1.1. In
Sect. 2, the formal model is presented, followed by the validation and simulation
results in Sect. 3. The work is then summarised and discussed in Sect. 4.

1.1 Background Evacuation Models

There are many different approaches for crowd evacuation simulations, of which Zheng
et al. [48] describe seven: (1) cellular automata, (2) lattice gas, (3) social force, (4) fluid
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dynamics, (5) agent-based, (6) game theory, and (7) animal experiments. In micro-
scopic models (e.g. cellular automata, lattice gas, social force, agent-based models), the
pedestrian is modelled as a particle. However, in macroscopic models (e.g. fluid
dynamic models), a crowd of pedestrians is modelled as a fluid. In conclusion, Zheng
et al. [48] concluded that in further research, evacuation models should: (1) combine
different approaches, and (2) incorporate psychological and physiological elements.
Our IMPACT model addresses both of these recommendations.

Moreover, Templeton et al. [39] conclude that current crowd simulations do not
include psychological factors and therefore cannot accurately simulate the collective
behaviour that has been found in extensive empirical research on crowd events.
Specifically, they argue that crowd members should be able to identify with other
people in crowd simulations to form psychological sub-groups known as in-groups.
This is critical for evacuation models, as research indicates that people are more likely
to help fellow in-group members during emergencies [8]. Accordingly, our IMPACT
model also incorporates social identity.

Most of the evacuation models that Santos and Aguirre [36] reviewed do not model
social dimensions, such as group decision making, but focus more on physical con-
straints and factors such as walking speed, walkways, and stairways, to find the optimal
crowd flow for the evacuation process. Agents are rational in these simulations: they
can find the optimal escape route, avoid physical obstructions and, in some models,
even overtake another person obstructing them. However, even though these models do
include parameters like gender, age, individual walking speeds, and different body
dimensions, they still lack socially interactive characteristics such as the monitoring of
others. Again, to address this, our IMPACT model incorporates such social processes.

Santos and Aguirre [36] also reviewed the incorporation of social and psycho-
logical factors into evacuation simulation models, noting their inclusion in three
models: (1) FIRESCAP, (2) EXODUS, and (3) Multi-Agent Simulation for Crisis
Management (MASCM). EXODUS includes 22 social psychological attributes and
characteristics for each agent, including age, sex, running speed, dead/alive, and
familiarity with the building. Agents can also perform tasks before evacuating the
building, such as picking up a purse or searching for a lost child. Still, the agents in
EXODUS cannot have micro-level social interactions that would create a collective
understanding of the situation for the group. However, MASCM does include social
interaction with so-called ‘evacuation leaders’ who can communicate (‘please follow
me’) and start to walk along the evacuation route, or find an evacuee, or wait for an
evacuee to approach them. Finally, FIRESCAP implements the social theory of ‘col-
lective flight from a perceived threat’. The egress is a result of a socially-structured
decision making process guided by norms, roles, and role relations.

From this literature review, it can be concluded that the ideal simulation approach
for realistic crowd evacuation models should seek to develop sub-models that include
an active, ‘investigative’, socially-embedded agent that assesses the state of other
people and defines the situation collaboratively. Essentially, then, group dynamics must
be considered, and our IMPACT model aims to address this.
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1.2 Current Approach

Based on the lack of psychological and socio-cultural factors in existing evacuation
models, we created our IMPACT evacuation model based on an earlier model called
ASCRIBE [2]. This allows for the social contagion of emotional and mental states, and
enables group decision making and other social dynamics [1, 2]. The ASCRIBE model
has outperformed other models in reproducing real crowd panic scenes and was
extended here with many psychological and socio-cultural factors – such as familiarity,
falls, and prosocial behaviour – and applied to a specific evacuation scenario [41]. The
evacuation dynamics were modelled using agent-based belief-desire-intention
(BDI) and network-oriented modelling approaches [32, 40]. A first version of the
IMPACT model was introduced in [43] and the further-developed and validated model
was introduced in [12]. The final version of the IMPACT model presented here has
now been fully refined and certain characteristics have been updated. We introduce it
here with its most important findings. The updates concern speed, falls, compliance
levels, egress flowrate, observation distance, helping behaviour, and cultural divisions,
and these are based on psychological and socio-cultural research as described below.

1.3 Background Psychological and Socio-Cultural Factors
in the IMPACT Model

Overview. Although the computer simulation of crowd behaviour has been ongoing
for several decades, most existing models are still founded on erroneous assumptions of
human behaviour and movement as linear, logical, and driven primarily by the laws of
physics [4]. A key reason for this has been the disciplinary division in crowd behaviour
research. Modellers engaged in crowd simulation are typically drawn from technical
fields, such as computer science and engineering, while psychologists and other social
scientists who study crowd behaviour do not generally use computer simulation
methods [18]. Consequently, only truly interdisciplinary research can effectively sim-
ulate crowd behaviour, particularly in emergencies, in complex systems comprising
both social and technical elements [5]. To address these issues in our IMPACT model,
alongside the conventional features of traditional crowd simulation models we have
included additional psychological and socio-cultural elements. For instance, at an
individual level, we have simulated the effect of people’s socio-cultural characteristics
such as age, gender, and nationality on their behaviour (e.g. based on the national
cultural clusters in [35]) in emergencies; while, at a group level, we have simulated
social processes such as social identity [8] and emotional contagion [1, 2].

Speed. The walking speeds varied for each demographic group (children, adult males,
adult females, elderly males, elderly females) and were based on the observational
work of Willis et al. [46], ranging from 1.12 m/s to 1.58 m/s. We calculated running
speeds by multiplying the walking speed for each demographic group by three – to
account for the luggage, belongings, and clothes that people wear while travelling – to
yield speeds between 3.36 m/s and 4.75 m/s. Moreover, a crowd congestion factor was
added that reduces the speed according to the number of agents within the same square
metre: � 4 people (no speed reduction), 5 people (62.5% reduction), 6 people (75%),
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7 people (82.5%), 8 people (95%). These speed adjustments were based on research by
Still [38], where 8 is the maximum number of people per square metre and 4 the
number of people at which speed reduces.

Falls. The number of falls in the initial model seemed unrealistically high during
structured simulations. So, we manually tuned the value to a more realistic level by
visually inspecting the movement patterns during many different settings. This resulted
in a new rule: if there are more than 4 people in the same square metre as the agent and
if he is running faster than 3 m/s, then there is a 5% chance of a fall for each new
movement.

Compliance. In the current version, the probability of compliance is based on data
from Reininger et al.’s [33] study of gender differences in hurricane evacuation,
modified for different age groups using data from Soto et al.’s [37] personality study.
The model has 6 compliance values according to the category of the agent: male or
female, and child, adult, or elderly. The precise levels can be found in Sect. 2.

Egress flowrate at each exit. The maximum flowrate is 6 people per exit per second
(p/m/s), based on guidelines from Still [38] indicating an egress flowrate of 82
people/metre/minute (p/m/m), equivalent to 1.37 p/m/s, then multiplied by 4 (as doors
are 4 m wide) to indicate 5.47 people per exit door per second.

Observation distance. Public distance (space in which social interactions are still
possible, extending the personal and formal social interaction space) is 12–25 feet (3.7–
7.6 m), in relation to public speaking to large groups, while no social interaction is
possible over 25 feet [15], though this might not take shouting into account. Consid-
ering the size of the environment that was implemented in the model (e.g. a square
room of 20 � 20 m), it was decided to keep the observation distance (i.e. the maxi-
mum distance at which staff instructions could be understood) at 5 m rather than 10.
Otherwise, at 10 m, the passengers could observe everything in the building from the
centre and the important effects of social contagion would be downplayed in the
simulations.

Helping. The probabilities of helping others during the emergency evacuation were
modelled as a function of the characteristics of helpers and fallers. This was based
on research indicating that, in emergencies: (a) men are most likely to help others,
(b) women, children, and older adults are most likely to receive help [10], and
(c) people are more likely to help members with a shared identity [8]. The precise
probabilities can be found in Sect. 2.1.

Culture. In the model, the passengers are divided into different clusters of culturally
similar nationalities based on previous research [35]. Data concerning the percentage
of English speakers for each country in each cluster were then obtained, where
available, from multiple verified and official sources compiled by Wikipedia [45]. We
then calculated a weighted average percentage of English speakers in each cluster –
using the population sizes of each cluster’s constituent countries – and these were the
values used in the simulation model to determine the percentage of passengers from
each cluster who could understand an English instruction by a staff member or public
announcement. The precise probabilities can be found in Sect. 2.1.
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Group decision making. Like in previous work [1, 2], group decision making is
based on findings from social neuroscience to make a biologically plausible human-like
model. Decision making is modelled as both an individual process called somatic
marking and a social group process based on mirroring of cognitive and emotional
states [6, 34]. Damasio’s somatic marking hypothesis is a theory of decision making
which provides a central role to emotions felt [6]. Each decision option induces a
feeling to mark that option. In social neuroscience, neural mechanisms have been
discovered that account for mutual mirroring effects between mental states of different
people. For example, when one expresses an emotion in a smile, another person can
observe this smile which automatically triggers preparation neurons (called mirror
neurons) for smiling within this other person and consequently generates the same
emotion. Similarly, mirroring of intentions and beliefs can be considered. This is called
emotional contagion (for emotions alone) or social contagion (for emotional and mental
states) in this work.

2 Model

2.1 Formal Model

Figure 1 gives an overview of the formal model, showing the four modules of each
passenger and how they interact. The passenger has individual characteristics – such as
age, gender, familiarity, and group membership – which influence their interactions.
For example, familiarity influences the choice of exit (people-environment interaction),
while age, gender, and group membership influence the pro-social behaviour
(people-people interactions). The full details of these four modules, their constituent

Fig. 1. Agent modules in the IMPACT evacuation model

144 C.N. van der Wal et al.



concepts, and their dynamic relationships are shown in Fig. 2, using the same coloured
key as Fig. 1 for the modules.

Below, all the formal rules of the proposed model are presented in the form of
mathematical formulas representing all dynamic relationships between all concepts
from Fig. 2. Creating the formal model in this way, using mainly difference equations,
is based on the network oriented modelling approach [40].

Firstly, the following environmental states have the value 0 (‘off’) or 1 (‘on’).
These are ‘inputs’ of the model and vary over time. For example, the fire_alarm is ‘on’
after three minutes of the simulation and the public_announcement is ‘on’ one minute
after the fire_alarm is ‘on’.

crowd congestion location tð Þ; fire location tð Þ; alarm tð Þ; staff instructions tð Þ;
public announcementðtÞ ð1Þ

The aggregated impacts of others on agent x, for the levels of the belief that the
situation is dangerous and the levels of fear, are calculated as a weighted sum at every
time step, based on previous work [1, 2]:

others belief dangerousxðtÞ ¼ ssumkðxy1x � belief dangerousy1; . . .;xkx�
belief dangerouskÞ ¼ ssumkðxy1x � belief dangerousy1 þ . . .þxkx�
belief dangerouskÞ ¼

Py1

k
xy1x�belief dangerousy1ðtÞPy1

k
xy1x

:
ð2Þ

Fig. 2. Dynamic relationships between concepts in the IMPACT evacuation model
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others fearxðtÞ ¼ ssumk xy1x � feary1; . . .;xkx � feark
� � ¼ ssumkðxy1x � feary1 þ . . .þ

xkx � fearkÞ ¼
Py1

k
xy1x�feary1ðtÞPy1

k
xy1x

:
ð3Þ

whereby k ¼ Py1
k xy1x

All observations of events or other passengers are calculated as stated below. The
observation_fire becomes 1 if the passenger is within a distance of 5 m, representing the
observation distance which is adjustable by the modeller, based on [15], see Sect. 1.3.
When the fire alarm sounds, then 50% of the time the passenger will observe this alarm
and this, in turn, will change the passenger’s belief_dangerous to 1. This represents the
risk-taking passengers have, as not all passengers react quickly to a fire alarm [21, 23, 30].
Note that, for example, for observation_others_fear(t) = others_fear(t) a simplification of
the real world has been made to model the values to match each other instantaneously
instead of with a delay, as further detail was not necessary in the model.

observation fire(t) = 1 if ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x2Þ2 þðy1 � y2Þ2

q
� 5Þ else 0; where by agent location(t) ¼

ðx1 y2Þ and fire location(tÞ ¼ ðx2 y2Þ:
ð4Þ

P observation alarm tð Þ ¼ 1 j alarm tð Þ ¼ 1ð Þ ¼ 0:5: ð5Þ

observation others belief dangerous tð Þ ¼ others belief dangerous tð Þ;
observation others fear tð Þ ¼ others fear tð Þ;

observation staff instr tð Þ ¼ staff instructions tð Þ;
observation pa tð Þ ¼ public announcement tð Þ ð6Þ

If there is a fire at the same location as the passenger, then the passenger dies. Die(t)
has a binary value of 0 (‘not dead’) or 1 (‘dead’). This strict rule was chosen as more
detail was not necessary for the goal of this model. We chose not to model the effect of
the fire and smoke, like the heat and toxicity in the room, so we could purely focus on the
human behavioural effects in the simulations not combined with the effects of the fire.

die tð Þ ¼ 1 if fire location ¼¼ agent locationð Þ else 0 : ð7Þ

Each passenger has an initial speed based on his/her age and gender, based on [38,
46], see Sect. 1.3.

At t = 0:

� If ageþ gender ¼ female adult then basic speed ¼ 0:9þ rand 0; 0:5ð Þ:
� If ageþ gender ¼ male adult then basic speed ¼ 1þ rand 0; 0:5ð Þ:
� If ageþ gender ¼ child then basic speed ¼ 0:5þ rand 0; 0:5ð Þ:
� If ageþ gender ¼ female elderly then basic speed ¼ 0:9þ rand 0; 0:5ð Þ:
� If ageþ gender ¼ male elderly then basic speed ¼ 0:9þ rand 0; 0:5ð Þ:
� If group membership ¼ 1; then speed ¼ min basic speeds of other membersð Þ
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þ 0:4 � ðmax basic speeds of other membersð Þ � min basic speeds of other membersð Þ:
� If group membership ¼ 0; then speed ¼ basic speed: ð8Þ

Whereby: rand is a random number, min = minimum, and max = maximum.
Each passenger has an initial compliance level based on his/her age and gender,

based on [33, 37], see Sect. 1.3.
At t = 0:

� If ageþ gender ¼ male child then compliance ¼ 0:89:

� If ageþ gender ¼ female child then compliance ¼ 0:89:

� If ageþ gender ¼ male adult then compliance ¼ 0:89:

� If ageþ gender ¼ female adult then compliance ¼ 0:94:

� If ageþ gender ¼ male elderly then compliance ¼ 0:92:

� If ageþ gender ¼ female elderly then compliance ¼ 0:97:

ð9Þ

Each passenger has a 5% chance (i.e., a 0.05 probability) of falling when there is
crowd congestion at their location, as explained in Sect. 1.3. Fall(t) has a binary value
of 0 (‘not fallen’) or 1 (‘fallen’).

P fall tð Þ ¼ 1jcrowd congestion location ¼¼ agent locationð Þ ¼ 0:05: ð10Þ

Each passenger has a belief about how dangerous the situation is. This belief has a
value between 0 (‘minimum danger’) and 1 (‘maximum danger’). The belief will
increase to 1 when a fire or alarm is sensed. The beliefs of other passengers can
decrease or increase the passenger’s own belief, based on mirroring/contagion mech-
anisms as described in Sect. 1.3, based on previous research [1, 2]. The passenger’s
fear level influences his belief (somatic marking): if the amount of fear is higher than
the belief, it will increase the belief, and if the amount of fear is lower than the belief, it
will decrease the belief. The belief is also based on the passenger’s belief from the
previous time-step (persistence). The equations are presented in both difference and
differential equation format to show how, hereafter, every difference equation can be
translated into a differential equation.

belief dangerousðtþDtÞ ¼ belief dangerous tð Þþ g � ðmaxðxsensing � fire tð Þ;xsensing�
alarmðtÞ;xpersisting � belief dangerous tð Þ; sum xaffectivebiasing�fear tð Þþ aggbeliefsxðtÞ

xaffectivebiasing þ 1

� �
Þ�

belief dangerousðtÞÞ � Dt:
ð11Þ

dbelief dangerous
dt ¼ g � ðmaxðxsensing � fire tð Þ;xsensing � alarmðtÞ;xpersisting�

belief dangerous tð Þ; sum xaffectivebiasing�fear tð Þþ aggbeliefsx tð Þ
xaffectivebiasing þ 1

� �
� belief dangerousðtÞÞ :

ð12Þ
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whereby; aggbeliefsx tð Þ ¼ ssumkðxy1x � belief dangerousy1ðtÞ; . . .;xkx�
belief dangerouskðtÞÞ ¼ ssumkðxy1x � belief dangerousy1ðtÞþ . . .þxkx�
belief dangerouskðtÞÞ ¼

Py1

k
xy1x�belief dangerousy1ðtÞPy1

k
xy1x

:

k ¼ Py1
k xy1x

The amount of fear a passenger feels is based on the fear level of the previous
time-step (persistence), the levels of intentions to evacuate (amplifying fear) or walk
randomly (decreasing fear), the other passengers’ levels of fear (emotional contagion),
and the staff instructions or public announcements they observe (decreasing fear).
These processes are based on mirroring/contagion mechanisms as described in
Sect. 1.3, based on previous research [1, 2]. The fear value ranges from a minimum of
0 (‘no fear’) to a maximum of 1 (‘maximum fear’).

fear tþDtð Þ ¼ fear tð Þþ g � ðmax ðxpersisting�fear tð Þ; alogisticðaggfears tð Þ;
xamplifyingfeeling � desireevacuate tð Þ;xinhibitingfeeling � desirewalkrand tð Þ;xdecreasingfear

� observationstafinstr tð Þ ;xdecreasingfear � observationpa tð ÞÞÞ � fearðtÞÞ � Dt: ð13Þ

whereby, aggfears(t) is calculated similarly as aggbeliefsx(t) (see Eq. 12) and
alogisticrs V1; . . .;Vkð Þ ¼ ð 1

1þ e�r V1 þ ...þVk�sð ÞÞ � 1
1þ ersÞð1þ e�rsÞ.

The desire to evacuate value ranges from 0 (‘minimal desire’) to 1 (‘maximal
desire’). It is amplified by the level of compliance, the passenger’s belief of how
dangerous the situation is (cognitive responding), the passenger’s level of fear (somatic
marking), and staff instructions or public announcements to evacuate. The somatic
marking and cognitive responding are processes based on mirroring/contagion mech-
anisms as described in Sect. 1.3, based on previous research [1, 2].

desire evacuateðtþDtÞ ¼ desire evacuateðtÞþ g � ððcompliance�
ðmaxðxamplifyingevacuation � belief dangerousðtÞ;xamplifyingevacuation�
fear tð Þ;xamplifyingevacuation � observation staff instr tð Þ;xamplifyingevacuation�
observation paðtÞÞÞÞ � desire evacuateðtÞÞ � Dt:

ð14Þ

Whereby,

ssumkðx1 � V1 tð Þ; . . .;xk � Vk; Þ ¼ ssumkðx1 � V1 tð Þ; . . .;xk � Vk; Þ ¼
P1

k
x1�V1ðtÞP1

k
x1

; k ¼ P1
k x1.

The value of the desire to walk randomly ranges from 0 (‘minimal desire’) to 1
(‘maximal desire’). It is inhibited by the level of compliance, the passenger’s belief of
how dangerous the situation is (cognitive responding), the passenger’s level of fear
(somatic marking), and staff instructions or public announcements to evacuate. The
somatic marking and cognitive responding are processes based on mirroring/contagion
mechanisms as described in Sect. 1.3, based on previous research [1, 2].
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desire walkrandðtþDtÞ ¼ desire walkrandðtÞþ g � ðcompliance � ð1�
maxðxinhibitingwalkrand � belief dangerousðtÞ;xinhibitingwalkrand�
fear tð Þ;xinhibitingwalkrand � observation staff instr tð Þ;xinhibitingwalkrand �
observation paðtÞÞ � desire walkrandðtÞÞ � Dt:

ð15Þ

The intention to evacuate value ranges from 0 (‘minimal intention’) to 1 (‘maximal
intention’), and so too does the intention to walk randomly value. To decide whether
the desire to evacuate or walk randomly is larger, a logistic function is used, and this
outcome is then multiplied by the desire to walk randomly. This, in turn, is multiplied
by (1-fall(t)) to make sure it is only a value larger than 0 when the passenger has not
fallen. When the passenger has fallen, the value will become 0, then the passenger
cannot actually walk randomly or evacuate.

intention evacuate tþDtð Þ ¼ intention evacuate tð Þþ g � ðð1� fallðtÞÞ�
desire evacuate tð Þ � logisticððxamplifyingintention � desire evacuate tð Þ;
xinhibitingintention � desire walkrand tð ÞÞ � Dt:

ð16Þ

intention walkrand tþDtð Þ ¼ intention walkrandðtÞþ g � ðð1� fall(t))�
desire evacuate ðtÞ � logisticððxinhibitingintention � desire evacuate ðtÞ;
xamplifyingintention � desire walkrandðtÞÞ � Dt:

ð17Þ

whereby: logisticr;sðV1; . . .;VkÞ ¼ 1
1þe�rðV1 þ ...þVk�sÞ.

The action movetoexit is a combination of the speed of the passenger and his target
(i.e. the location/exit he moves towards). The value of the intention to evacuate
influences the speed of moving to the exit. The familiarity, observation of staff
instructions, and the public announcement all influence the choice of exit [4, 14].

If familiarity ¼ 1 OR observation staffinstructions ¼ 1 OR observation pa ¼ 1ð Þ then
action movetoexit tð Þ ¼ target ¼ nearest exitð Þ AND ðspeed ¼ intention evacuate tð Þ�
speedÞ else action movetoexit tð Þ ¼ target ¼ entranceð Þ AND ðspeed ¼
intention evacuate tð Þ � speedÞ: ð18Þ

The action walkrandom is a combination of the speed and heading of the agent in
the environment. The value of intention_walkrand is multiplied by the maximum speed
of the agent.

action walkrand tð Þ ¼ heading ¼ randomð Þ AND ðintention walkrand � speedÞ : ð19Þ

The action help_other is calculated as stated below, based on previous research
[8, 10], as described in Sect. 1.3.

When

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x2Þ2 þðy1 � y2Þ2

q
� 5: ð20Þ
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whereby agent_location(t) = (x1 y2) and agent_location of other passenger(t) = (x2 y2)
and other passenger fall(t) = 1, then the chance of helping depends on the age + gender
of the helper and the fallen passenger and whether they share a social identity
(in-group) or not (out-group). The overall probability of helping is shown in Table 1.

The expressions of fear and the passenger’s belief of the situation are modelled in a
simple way, where the values match each other instantaneously instead of with a delay,
as further detail was not necessary in the model.

express belief dangerous tð Þ ¼ belief dangerous tð Þ; express fear tð Þ ¼ fear tð Þ ð21Þ

2.2 Pseudo-code and Model Overview

The model was implemented in the NetLogo multi-agent language [25]. To do so, the
formal model presented in the previous section was transformed into multiple IF THEN
rules. An example of how these rules were translated into NetLogo code is shown
below, taking Formula 18 (see previous section) as an example. It is shown that for
each agent in the model the heading (direction) is set as a random number between 0
and 360 (degrees), and then based on the age and gender of the agent a speed is also set.
Then, for the action to walk randomly, the level of the intention is multiplied by the
speed.

Table 1. Probabilities of helping a fallen passenger

Helper
passenger

Social
identity

Fallen passenger
Male
child

Male
adult

Male
elderly

Female
child

Female
adult

Female
elderly

Male
adult

In-group 0.30 0.15 0.30 0.40 0.30 0.40

Male
elderly

In-group 0.15 0.08 0.15 0.20 0.15 0.20

Male
adult

Out-group 0.25 0.13 0.25 0.34 0.25 0.34

Male
elderly

Out-group 0.13 0.06 0.13 0.17 0.13 0.17

Female
adult

In-group 0.15 0.08 0.15 0.20 0.15 0.20

Female
elderly

In-group 0.08 0.04 0.08 0.10 0.08 0.10

Female
adult

Out-group 0.13 0.06 0.13 0.17 0.13 0.17

Female
elderly

Out-group 0.06 0.03 0.06 0.08 0.06 0.08
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Figure 3 shows the activity diagram of the created simulator focusing on the
internal model. The system updates internal states and actions of each agent. After that,
it updates the environment, considering the actions of the agents, and finalizes the cycle
by updating the statistics. The simulation stops when all agents are either evacuated or
dead. At any moment, the user can change the parameters available on the interface and
influence the environment or agents.

3 Validation and Structured Simulation Results

3.1 Validation Results: IMPACT Model Versus EXODUS Benchmark

Our IMPACT model has been compared with a benchmark to establish its validity. In
[12] the validation process and results have been explained and discussed already, and
a summary is provided here. The EXODUS model [26] was selected as a benchmark

Fig. 3. Activity diagram overview of the IMPACT crowd evacuation model
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for the IMPACT model, as it is accepted by specialists in this area as realistic [26]. The
environment selected is called SGVDS1, a complex ship environment composed of
three floors, with different escape routes to the four assembly areas [13] (Fig. 4).

A validation experiment was conducted comparing three versions of the IMPACT
model with the benchmark of the EXODUS model (see Table 2 for the experimental
design). The IMPACT model covers more aspects than the benchmark EXODUS
model, however, so some of the IMPACT model’s variables were fixed to enable a fair
comparison:

Fig. 4. Scenario of the software simulation.

Table 2. Results of the validation protocol for the overall arrival times.

Condition Benchmark Experimental
condition 1

Experimental
condition 2

Experimental
condition 3

Explanation Exodus
SGVDS1
data

No Social
Contagion.
Response time
and Speed taken
from the
benchmark

No Social
Contagion.
Response times
and Speed
calculated by the
model itself

Social Contagion
activated.
Response times
and Speed
calculated by the
model itself

FET 585 (s) 498.6 (s) 543.4 (s) 516.6 (s)
TAT 0 14.77 7.11 11.69
ERD 0 0.568171 0.575657 0.565754
EPC 0 0.724621 0.731295 0.731634
SC 0 0.522105 0.423135 0.451471
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• Familiarity: it was assumed that everybody was not familiar with the environment.
• Relationship: it was assumed that all passengers were unrelated.
• Social contagion: this was ‘on’ or ‘off’, depending on the experimental condition

(see Table 2).
• The passenger’s speed: in experimental condition 1 the speeds indicated in [13]

were used. In experimental conditions 2 and 3, the speed was calculated by the
IMPACT model.

• Groups and Helping: these were not considered in any experimental condition.

The outcome measures of the validation experiment are: (1) Final Evacuation Time
(FET); (2) the percentage difference between the predicted and Total Assembly Time
(TAT); (3) the curve differences between the predicted and expected arrivals to the
Assembly Areas (exits). This last measurement is calculated based on Euclidean
Relative Difference (ERD), Euclidean Projection Coefficient (EPC), and Secant Cosine
(SC). In [13] it is stated that a ‘good’ TAT should be below 40, which is true for all
experimental conditions here. For ERD, all experimental conditions are over, but close
to, the expected boundary that is � 0.45, while for EPC, the results stay within the
expected boundaries of 0.6 � EPC � 1.4. For SC, the values are below the boundary
0.6, but close to the acceptance threshold. See Table 2 for all the results. In Fig. 5
below, the assembly curves of the benchmark and the three IMPACT versions (the
three experimental conditions) are shown. These results show that on all measures, the
IMPACT model is within or close to the prescribed boundaries, thereby establishing its
validity.

Fig. 5. Total arrival time pattern for one simulation run of EXODUS benchmark and IMPACT
experimental conditions 1, 2 and 3.
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3.2 Simulation Experiments Setup

Number of Repetitions. To determine the number of repetitions for each combination
of factor and level, an evacuation scenario with the most variability was run 100 times.
First, the cumulative averages and variances in evacuation time were inspected to
detect the threshold number of repetitions at which evacuation time stabilised. Second,
Eq. 22 below was used to find the minimum number of repetitions (56) to guarantee
that the error in the outcome results is within 5% of the maximum error with a 95%
confidence level. Then, 60 repetitions of each variation were run and the results pre-
sented in this Section represent the average of these 60 runs.

n� 100 � Z � s=r � �x½ �2¼ 56:61599 ! 60 samples ð22Þ

Whereby,

Z ¼ confidence interval of 95%; s ¼ standard deviation; 53:4287
r ¼ maximum error of 5% �x ¼ evacuation time average of 100 samples

Outcome measures and emergence. There are three outcome measures for each
simulation experiment: (1) evacuation time, (2) total falls, and (3) response time. The
evacuation time was measured as the number of seconds from the onset of the fire until
all (living) passengers have evacuated. The number of falls was measured cumulatively
(all falls in total in one simulation run). The individual response time was measured as
the time between the onset of the fire until the passenger develops the intention to move
to the exit. The reported response time is the average of all individual’s response times.

Besides these outcome measures, emergence is of interest in the analyses. Emer-
gence is the spontaneous establishment of a qualitatively new behaviour through
non-linear interactions of many objects or subjects [17]. In other words, it is a beha-
viour observed at the group level, which cannot be directly explained from the indi-
vidual behavioural rules. This could lead to unexpected findings in our simulation
experiments, because the hypotheses are formulated based on individual behavioural
rules, since a priori you do not always know what group level behaviour will occur.
There are important crowd movement phenomena related to evacuation situations
known from the literature, such as herding, the faster-is-slower-effect, and collective
intelligence [16, 17]. Herding refers to a situation that is unclear and causes individuals
to follow each other instead of taking the optimal route [16]. The faster-is-slower-effect
refers to when, in evacuation situations, certain processes take longer at high speed; so,
waiting can sometimes help competing people (competing for space) and speed up the
average progress [17]. Collective intelligence, as Helbing and Johansson name it, is
emergent functional behaviour of a large number of people resulting from interactions
of individuals instead of individual reasoning [17].

We hope our model will create these emergent phenomena, as that would prove our
model can create self-organisation [9]. Self-organisation can be defined as the
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spontaneous establishment of qualitatively new behaviour through non-linear interac-
tion of many objects or subjects without the intervention of external influences.
However, we do not expect our model to show emergent lane formation and the zipper
effect [9]. Lane formation is a process where a number of lanes of varying width form
dynamically at a corner; however, the passengers in our model do not have to go
around a corner towards the exit.

Other evacuation modellers have studied behavioural and environmental effects on
evacuation time as well. For example, in [20], it was found that the optimal evacuation
time needs a combination of herding behaviour and the use of environmental knowl-
edge (about the location of exits). In [47] it was found that when exits are placed
symmetrically in a room, the evacuation time is shortest. It was also found that
including social elements in the model (finding your group member before exiting,
exiting through the entrance, and not wanting to stop but keep moving towards the exit)
can make a more robust and realistic model. In [44] the social force model (Helbing
social force) was implemented in a cellular automata model to simulate evacuation
from a room with one exit. Arching, clogging, and the faster-is-slower-effects were
found, showing that the three social forces (repulsion, friction, and attraction) can be
basic reasons for complex behaviours emerging from evacuations. Also, changing the
width of the door can have a large effect on evacuation time. In [11] it is shown that the
crowd density around a person has an impact on that person’s speed and that this is an
exponential relationship, with more surrounding people reducing the person’s speed. In
[22] it is shown that evacuation time is not only based on the distance from the exit but
also on effects such as the crowd density around the people evacuating and exit choice
behaviour. In [27, 28] the social force model was applied. It was found that the wider
the doors, the less faster-is-slower-effect there is, because there will be less congestion
at the door. Also, the repulsive and dissipative forces seem to have the largest effects on
the faster-is-slower-effect. In [19] a lattice gas model of people escaping a smoke filled
room was created to replicate the findings of an experiment in which blindfolded
students had to find the exit. It was found that adding exits did not shorten evacuation
time, but that the evacuation process was based on herding behaviour (following the
acoustics). Based on these findings from others, we expect the evacuation time to
increase as crowd density increases in our model.

Basic settings simulation experiments. Simulation experiments with different factors
and levels were designed to answer different research questions introduced in the
following sections. The agent environment chosen for the simulations was a square
(20 � 20 m) layout of a building with four exits (top, down, left, right; main exit =
down). All environmental and personal factors such as width of the doors, gender, age,
and level of compliance were kept constant across simulations. Only the factors and
levels stated in each experimental setup in the following sections were systematically
varied. The settings that were kept similar, except the few parameters that are struc-
turally changed to answer the current research question, are shown in Table 3 below.
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3.3 Simulation Results: Effect of Falls

Table 4 shows the design of the simulation experiment to determine the effect of falling
on evacuation time, total falls, and the average response time. The total number of
simulation runs is based on the number of factors and levels, and number of repetitions
per combination of factor and level, resulting in 3 � 2 � 60 = 360 simulation runs
here. The hypotheses were: (1) when falling behaviour is ‘on’, evacuation time will be
slower than when there are no falls (because it will take extra time to fall and stand
back up); (2) when falling behaviour is ‘on’, falls will happen, but no falls will happen
when this feature is turned ‘off’; (3) there will be no difference in response times for
falling ‘on’ versus ‘off’ (as response time precedes evacuation movement).

Evacuation time. The results are shown in Fig. 6. As expected, the higher the crowd
density, the slower the evacuation time. Unexpectedly, though, the evacuation time

Table 3. Basic parameter settings for the simulation experiments.

Parameter Setting

Familiarity 50% (i.e. 50% of passengers are familiar with the environment)
Helping Off
Falls On
Contagion model On
Percentage children 15 (based on [29])
Percentage elderly 15 (based on [29])
Percentage people
travelling alone

50

Group ratios 33-33-34 (we assume an equal distribution for group sizes)
Percentage females 50%
Fire location Random location, but always 3 m away from an exit and present

from the 1st second
Cultural cluster
distribution

Equal division of all passengers over all 11 clusters (9.09% of
passengers per cluster)

Length of fall (before
standing up)

30 s

Start fire alarm 180 s after the fire starts
Start public
announcement

20 s after the fire alarm starts

Table 4. Factors and levels in the simulation experiment for falls.

Factor
Crowd Density Falls

Level 1 Low On
Level 2 Medium Off
Level 3 High
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decreases when falls occur, compared to no falls (see Fig. 6, top left), which is the
opposite of what was expected. However, this can be explained due to the fact that the
evacuation of the fallen agents is delayed, thereby reducing the overall crowd con-
gestion at exits. Essentially, then, a more phased evacuation takes place, which takes
less time. In other words, this could be explained by the faster-is-slower-effect [17].
This effect reflects the observation that certain processes (in evacuation situations,
production, traffic dynamics, or logistics) take more time if performed at high speed. In
other words, waiting can often help to coordinate the activities of several competing
units and thus speed up the overall progress. In our case, falling seems to have similar
effects to waiting and speeds up the overall evacuation.

To find out if these effects could be significant, statistical analyses were performed
on the data. A 2 � 3 independent ANOVA was performed on the evacuation time with
Falls (with or without) and Crowd Density (low, medium, and high) as between factors.
The main effect of Crowd Density was significant, F(2, 354) = 12.96, p < .001, and the
main effect of Falls was approaching significance, F(1, 354) = 3.72, p = .055, but the
interaction effect of Falls � Crowd Density was not significant, F(2, 354) = 1.23, n.s.
Post hoc tests with Tukey HSD corrections showed that only high Crowd Density
differs significantly from low and medium Crowd Density, but low and medium Crowd
Density do not differ significantly: high-low, p < .001; high-medium, p < .001;
low-medium, n.s. In conclusion, then, evacuation time seems to significantly increase
for high crowd density versus low or medium crowd density, and a trend is visible for
slower evacuation time without falls versus with falls.

Total number of falls. As expected, both the total falls and average falls per person
increase as the crowd density increases, for two reasons. First, the more agents there are
in the environment, the less room there is to move and so more falling occurs. Second,
the more agents there are in the environment, the higher the chances of individuals
falling which will increase the average rate (see Fig. 6, bottom row). A 2 � 3 inde-
pendent ANOVA was performed on the Total Falls with Falls (with or without) and
Crowd Density (low, medium, and high) as between factors. The main effects of Falls
and Crowd Density and the interaction effect of Falls � Crowd Density were

Fig. 6. Effect of falls on evacuation time, falls, and response time.
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significant: F(2, 354) = 5612.60, p < .001; F(1, 354) = 11306.25, p < .001; F(2,
354) = 5612.60, p < .001, respectively. Post hoc tests with Tukey HSD corrections
showed that each level of Crowd Density differs significantly from each other level:
high-low, p < .001; high-medium, p < .001; low-medium, p < .001.

Response time. As expected, response time increases as crowd density increases and
no significant differences were found in response time for falling behaviour ‘on’ versus
‘off’. Statistical analyses confirm these findings. A 2 � 3 independent ANOVA was
performed on the response time with Falls (with or without) and Crowd Density (low,
medium, and high) as between factors. The main effect of Crowd Density was sig-
nificant, F(2, 354) = 4773.30, p < .001. There was no main effect of Falls, F(1,
354) = .012, n.s., and no interaction effect of Falls � Crowd Density, F(2,354) = .681,
n.s. Post hoc tests with Tukey HSD corrections show that each level of Crowd Density
differs significantly from the other two: low-medium, p < .001; medium-high,
p < .001; low-high, p < .001.

3.4 Simulation Results: Helping Behaviour

Table 5 shows the design of the simulation experiment to determine the effect of
helping behaviour on evacuation time, falls, and response time, resulting in
3 � 2 � 60 = 360 simulation runs here. The hypotheses were: (1) when people help
others, the evacuation time is longer than when people do not help (because the helpers
will take more time to evacuate; although only a small effect is expected); (2) when
passengers help others, the number of falls will increase (because the helpers next to the
fallen passengers create more obstacles; although only a small effect is expected);
(3) no difference is expected in response times for helping ‘on’ versus ‘off’ (because the
decision to evacuate precedes helping).

Evacuation time. The results are shown in Fig. 7. As expected, evacuation time
increases as crowd density increases. However, unexpectedly, helping behaviour seems
to reduce evacuation time for high crowd density environments slightly, but not for low
to medium crowd density. This could be explained by those helping delaying their
evacuation slightly and forming less congestion overall, like a phased evacuation, as
happened with the falls. Essentially, people will evacuate one after another (sequen-
tially) which creates less congestion at the doors (see Fig. 7, left). Again, this could be
explained with the faster-is-slower-effect, mentioned in the explanation of falls,
reducing the average evacuation time [17]. When analysing these effects statistically,

Table 5. Factors and levels in the simulation experiment for crowd density and helping.

Factor
Crowd Density Helping

Level 1 Low On
Level 2 Medium Off
Level 3 High
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though, only the main effect of crowd density is significant and not the effect of
helping. A 2 � 3 independent ANOVA was performed on the response time with
Helping (with or without) and Crowd Density (low, medium, and high) as between
factors. The main effect of Crowd Density was significant, F(2, 354) = 22.87,
p < .001. However, there was no main effect of helping, F(1, 354) = .119, n.s., and no
interaction effect of Falls � Crowd Density, F(2, 354) = 1.37, n.s. Post hoc tests with
Tukey HSD corrections show that only high Crowd Density differs significantly from
low and medium Crowd Density, and low and medium Crowd Density do not differ
significantly: high-low, p < .001; high-medium, p < .001; low-medium, n.s.

Total number of falls. The number of falls naturally increases as the crowd density
increases. This increase seems similar for helping behaviour ‘on’ and ‘off’, but the
difference is actually significant when tested statistically (see Fig. 7, middle). A 2 � 3
independent ANOVA was performed on the total Falls with Helping (with or without)
and Crowd Density (low, medium, and high) as between factors. The main effects of
Crowd Density, F(2, 354) = 22.87, p < .001, and Helping were significant, F(1,
354) = 8.45, p < .01, as was the interaction effect of Helping � Crowd Density, F(2,
354) = 5.52, p < .01. Post hoc tests with Tukey HSD corrections show each level of
Crowd Density differs significantly from each other: low-medium, p < .001;
medium-high, p < .001; low-high, p < .001. In conclusion, the number of falls
increases both when crowd density increases and also without helping.

Response time. As expected, no differences are observed in the average response
times for helping behaviour ‘on’ and ‘off’, only an effect of crowd density which
statistical analyses confirm. A 2 � 3 independent ANOVA was performed on the
Response Time with Helping (with or without) and Crowd Density (low, medium and
high) as between factors. The main effect of Crowd Density was significant, F(2,
354) = 5162.73, p < .001, while neither the main effect of Helping, F(1, 354) = .416,
n.s., or the interaction effect of Helping � Crowd Density were significant, F(2,
354) = .798, n.s. Post hoc tests with Tukey HSD corrections show each level of Crowd
Density differs significantly from each other: low-medium, p < .001; medium-high,
p < .001; low-high, p < .001 (see Fig. 7, right).

Fig. 7. Effect of helping behaviour on evacuation time, falls, and response time.
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3.5 Experimental Results: Social Contagion and Familiarity

Table 6 shows the experimental design of the simulation experiment to determine the
effect of social contagion and familiarity on evacuation time, falls, and response time,
resulting in 3 � 3 � 2 � 60 = 1080 simulation runs here. The hypotheses were:
(1) evacuation time will be faster with social contagion than without (because people
will still find out from others there is a fire, even when not observed personally);
(2) when crowd density increases, there will be more falls; (3) when there is social
contagion, there will be fewer falls (because without it, more people will find out the
situation is dangerous through the fire alarm, which means more people will evacuate
simultaneously, thereby falling more); (4) response time will be faster with social
contagion than without (because people who do not observe the fire themselves are
informed faster by others); (5) response time will be faster the more familiar people are
with the environment (because taking the nearest exit in combination with social
contagion will speed up the response time, spreading the ‘news’ faster than when
people all take the same exit); and finally (6) the higher the crowd density, the slower
the response time.

Evacuation time. The results are shown in Fig. 8. As expected, with social contagion
there is a decrease in evacuation time compared to without, and the more familiar
people are with the environment, the faster their evacuation time (see Fig. 8, top row),
which statistical analyses confirmed. The social contagion of mental and emotional
states is a form of collective group decision making or collective intelligence [17]. It is
also related to herding, as individuals are ‘infected’ with other’s decisions and follow
them when their own intentions are not as strong as those of others around them. [16].
A 2 � 3 independent ANOVA was performed on Evacuation Time with Social
Contagion (with or without) and Crowd Density (low, medium, and high) as between
factors. The main effects of Crowd Density and Social Contagion and the interaction
effect of Social Contagion � Crowd Density were significant: F(2, 354) = 133.81,
p < .001; F(1, 354) = 237.76, p < .001; F(2, 354) = 4.35, p < .05, respectively. Post
hoc tests with Tukey HSD corrections show each level of Crowd Density differs
significantly from each other: low-medium, p < .05; medium-high, p < .001; low-high,
p < .001. A 3 � 3 independent ANOVA was performed on the Evacuation Time with
Familiarity (0%, 50%, or 100%) and Crowd Density (low, medium, and high) as
between factors. The main effects of Crowd Density and Familiarity and the interaction
effect of Familiarity � Crowd Density were significant: F(2, 354) = 125.83; p < .001,
F(1, 354) = 23.16, p < .001; F(2, 354) = 31.10, p < .001, respectively. Post hoc tests

Table 6. Factors and levels in the simulation experiment for social contagion and familiarity

Factor
Crowd Density Familiarity Social Contagion

Level 1 Low 0% On
Level 2 Medium 50% Off
Level 3 High 100%
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with Tukey HSD corrections show each level of Crowd Density differs significantly
from each other: low-medium, p < .05; medium-high, p < .001; low-high, p < .001.
For Familiarity, only 0% familiarity differs significantly from 50% and 100%, but not
50% from 100%: 0%–50% p < .05; 50%–100% n.s.; 0%–100% p < .05.

Fig. 8. Effects of social contagion (left column) and familiarity (right column) on evacuation
time, response time, and falls.
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Total number of falls. As expected, the number of falls is lower with social contagion
than without. This can be explained by people starting to evacuate earlier, spreading the
evacuation across the simulation time. Consequently, there are fewer collisions among
passengers, which result in fewer falls. Familiarity shows the same effect: the more
familiar the crowd members are with the environment, the more distributed among the
exits they are, which consequently leads to fewer collisions and falls (see Fig. 8,
bottom row). Statistical analyses confirmed these interpretations. A 2 � 3 independent
ANOVA was performed on the Total Falls with Social Contagion (with or without) and
Crowd Density (low, medium, and high) as between factors. The main effects of Crowd
Density and Social Contagion and the interaction effect of Social Contagion � Crowd
Density were significant: F(2, 354) = 732.98, p < .001; F(1, 354) = 11.88, p < .01; F
(2, 354) = 3.42, p < .05. Post hoc tests with Tukey HSD corrections show each level of
Crowd Density differs significantly from each other: low-medium, p < .001;
medium-high, p < .001; low-high, p < .001. A 3 � 3 independent ANOVA was per-
formed on the Total Falls with Familiarity (0%, 50%, or 100%) and Crowd Density
(low, medium, and high) as between factors. The main effects of Crowd Density and
Familiarity and the interaction effect of Familiarity � Crowd Density were significant:
F(2, 354) = 17290.13; p < .001; F(1, 354) = 6227.45, p < .001; F(2, 354) = 3062.52,
p < .001. Post hoc tests with Tukey HSD corrections show each level of Crowd
Density and Familiarity differs significantly from each other: low-medium, p < .001;
medium-high, p < .001; low-high, p < .001; 0%–50%, p < .001; 50%–100%,
p < .001; 0%–100%, p < .001.

Response time. As expected, response time increases as crowd density increases and
with social contagion the increase is lower than without social contagion. Similarly, the
more familiar people are with their environment, the less the response time increases as
crowd density increases. This is explained by familiarity distributing people over the
available exits, which helps to convey the fear and belief of danger with social con-
tagion to others who start to evacuate early (see Fig. 8, middle row). Statistical analyses
confirmed the two main effects of crowd density and social contagion. A 2 � 3
independent ANOVA was performed on Response Time with Social Contagion (with
or without) and Crowd Density (low, medium, and high) as between factors. The main
effects of Crowd Density, F(2, 354) = 410.46, p < .001, and Social Contagion were
significant, F(1, 354) = 4.46, p < .05, while the interaction effect of Social Conta-
gion � Crowd Density was not significant, F(2, 354) = 1.16, n.s. Post hoc tests with
Tukey HSD corrections show each level of Crowd Density differs significantly from
each other: low-medium, p < .001; medium-high, p < .001; low-high, p < .001.
A 3 � 3 independent ANOVA was performed on Response Time with Familiarity
(0%, 50%, or 100%) and Crowd Density (low, medium, and high) as between factors.
The main effects of Crowd Density and Familiarity and the interaction effect of
Familiarity � Crowd Density were significant: F(2, 354) = 11785.94, p < .001; F(1,
354) = 10311.63, p < .001; F(2, 354) = 2334.88, p < .001, respectively. Post hoc tests
with Tukey HSD corrections show each level of Crowd Density and Familiarity differs
significantly from each other: low-medium, p < .001; medium-high, p < .001;
low-high, p < .001; 0%–50%, p < .001; 50%–100%, p < .001; 0%–100%, p < .001.
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3.6 Groups

Table 7 shows the design of the simulation experiment to determine the effect of group
size on evacuation time, falls, and response time, resulting in 3 � 4 � 60 = 720
simulation runs. The hypotheses were: (1) the more people who travel alone, the faster
the evacuation time (because people will move faster by themselves); (2) the bigger the
groups, the slower the evacuation time (although this is expected to be a small effect);
(3) the more people who travel alone, the fewer falls (because groups form more
congestion; although this is expected to be a small effect); (4) the larger the groups, the
more falls (because of more congestion); (5) the more people who travel alone, the
faster the response time (because people can evacuate faster); and (6) the bigger the
groups, the slower the response time (although this is expected to be a small effect).

Evacuation time. The results are shown in Figs. 9 and 10. As expected, as crowd
density increases, evacuation time becomes slower. Unexpectedly, though, it seems
that people travelling alone and in groups of three are slower to evacuate than groups of
two and four. Indeed, groups of four evacuate the fastest and people travelling alone are
actually slowest (Fig. 9). Statistical analysis confirms this interpretation. A 4 � 3
independent ANOVA was performed on Evacuation Time with Group Size (1, 2, 3,
and 4) and Crowd Density (low, medium, and high) as between factors. The main
effects of Crowd Density and Group Size, and the interaction effect of Group Size �
Crowd Density were significant: F(2, 354) = 22643.44, p < .001; F(3, 354) = 137.15,
p < .001; F(6, 354) = 3.70, p < .001. Post hoc tests with Tukey HSD corrections show

Table 7. Factors and levels in the simulation experiment for groups

Factor
Crowd Density Travelling Alone

Level 1 Low 100%
Level 2 Medium 0% (only groups of 2 adults)
Level 3 High 0% (only groups of 3 adults)
Level 4 0% (only groups of 4 adults)

Fig. 9. Effects of groups on evacuation time, falls, and response time.
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that only high Crowd Density differs significantly from low and medium Crowd
Density: high-low, p < .001; high-medium, p < .001; low-medium, n.s. For Group
Size, these tests show that a lone person does not differ from groups of 3, and groups of
2 do not differ from groups of 4; however, all others differ significantly from each
other: 1–2, p < .001; 1–3, n.s.; 1–4, p < .001; 2–3, p < .01; 2–4, n.s. In conclusion,
evacuation time increases when crowd density increases and decreases for groups of 4
and 2 versus groups of 3 or 1.

This is unexpected and seems to not be an effect of speed, because all group sizes
have the same number of falls. Therefore, it does not seem to be a
faster-is-slower-effect [17]. When inspecting the average speed during simulations, it
was confirmed that they did not differ for group sizes. Also, the outcome measures did
not differ significantly for different numbers of children and elderly, which could
influence the average speeds of the groups. However, what could explain groups of four
being faster than people travelling alone is social contagion in combination with
moving through space. With social contagion, or collective intelligence, groups can
‘infect’ each other faster with emotions and beliefs, compared to people travelling
alone, which is beneficial for evacuation time. Moving through space is implemented
with a maximum of 8 passengers per patch (square metre), meaning lone passengers
and groups of 2 and 4 can always use a patch to its maximum capacity, but groups of 3
can only fit a maximum of two groups (6 passengers) per patch at one time step. This
means groups of 3 are a little disadvantaged, since groups of 1, 2, and 4 can always
move around in space with maximum capacity. That could explain why groups of three
and people alone are slowest and groups of 2 and 4 are fastest. We have tested this by
running similar simulation experiments like this one, but then (1) without social con-
tagion, and (2) with a maximum capacity of 6 people per square metre. The expectation
is that (1) without contagion, groups of 3 will be slowest versus groups of 1, 2 and 4,
and (2) with a maximum capacity of 6 people per square metre, groups of 4 will be
slowest compared to people travelling alone and groups of 2 and 3. As expected,
without social contagion, groups of 3 are slowest in evacuation time (see Fig. 10). No
effects of falls and response time were observed in this experiment. Unexpectedly,

Fig. 10. Effects of groups on evacuation time with a maximum travel capacity of six people per
m2 (left) and without social contagion (right).
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groups of 3 are not the fastest with a maximum capacity of 6 per square metre, but
again the slowest. This means that social contagion is only part of the explanation for
groups being slower to evacuate than people travelling alone. We cannot find more
explanations for this in the literature because (1) the impact of groups on crowd
dynamics is still largely unknown [24, 31], and (2) we have not modelled group
formations, such as in [24], that could influence the crowd dynamics. We have chosen
to model a group as moving through space as a ‘square’ group, with all members
moving from patch (square metre) to patch simultaneously. So, group formations are no
explanation either. However, social contagion is part of the effect of groups of 2 and 4
being faster than people travelling alone or in groups of 3.

Total number of falls. As crowd density increases, the number of falls increase;
although no significant differences were found between group sizes, as expected.
Statistical analysis confirmed this interpretation of the graph. A 4 � 3 independent
ANOVA was performed on Total Falls with Group Size (1, 2, 3, and 4) and Crowd
Density (low, medium, and high) as between factors. The main effect of Crowd Density
was significant, F(2, 354) = 24048.28, p < .001, but the main effect of Group Size, F
(3, 354) = 1.39, n.s., and the interaction effect of Group Size � Crowd Density were
not significant, F(6, 354) = 1.93, n.s. Post hoc tests with Tukey HSD corrections show
that each level of Crowd Density differs significantly from each other: low-medium,
p < .001; medium-high, p < .001; low-high, p < .001.

Response time. As crowd density increases, response time increases. Although no
significant differences between group sizes were expected, statistical analysis showed
that groups of 2 and 4 are faster in their response time than groups of 1 and 3. This
seems plausible as it is similar with the evacuation time, which both can be explained
by the social contagion effects. A 4 � 3 independent ANOVA was performed on
Response Time with Group Size (1, 2, 3, and 4) and Crowd Density (low, medium, and
high) as between factors. The main effects of Crowd Density, F(2, 354) = 9634.55,
p < .001, and Group Size were significant, F(3, 354) = 43.73, p < .001, and the
interaction effect of Group Size � Crowd Density was not, F(6, 354) = .467, n.s. Post
hoc tests with Tukey HSD corrections show that each level of Crowd Density differs
significantly from each other: low-medium, p < .001; medium-high, p < .001;
low-high, p < .001; and group size 1 and 3 do not differ significantly, while the other
group sizes do: 1–2, p < .001; 1–3, n.s.; 1–4, p < .001; 2–3, p < .001; 2–4, p < .001;
3–4, p < .001. Taking all these results into account, it seems that social contagion is the
biggest cause for the group effects.

3.7 Age

Table 8 shows the design of the simulation experiment, resulting in 3 � 2 � 60 = 360
simulation runs here. The hypotheses were: (1) elderly people have slower evacuation
times, compared to adults (because elderly people move slower); (2) there will be no
differences in number of falls between adults and elderly people; (3) there will be no
differences in response time between adults and elderly people.
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Evacuation time. The results are shown in Fig. 11. As crowd density increases, so
does evacuation time. As expected, elderly people seem to be slower in evacuating than
adults, most likely due to their slower movement. In this experiment, all passengers are
elderly or adults exclusively, so the exact same effects are there with the elderly as with
adults. For instance, there is no faster-is-slower-effect [17] here for age, because that
would require differences in speed within the same simulation run. So, in this case,
faster speed does mean faster evacuation. Here, the faster-is-slower-effect was present
for the adults by themselves, but as a result of falls, again. However, the elderly did not
fall based on their slower speeds, which in turn prevented a faster-is-slower-effect for
them based on falls (see Fig. 11). Indeed, statistical analysis showed there was an effect
of age. A 2 � 3 independent ANOVA was performed on Evacuation Time with Age
(adult, elder) and Crowd Density (low, medium, and high) as between factors. Both the
main effects of Crowd Density, F(2, 354) = 35.40, p < .001, and Age were significant,
F(1, 354) = 3.20, p < .001, but the interaction effect of Age � Crowd Density was not
significant, F(2, 354) = .359, n.s. Post hoc tests with Tukey HSD corrections show that
each level of Crowd Density differs significantly from each other level: low-medium,
p < .001; medium-high, p < .001; low-high, p < .001.

Total number of falls. As expected, as crowd density increases, the number of falls
increases. Unexpectedly and very interestingly, elderly people have no falls and the
falls of the adults increase as crowd density increases. No falls for elderly people seems
unrealistic in real life, however, because elderly people should be more prone to falling
than adults. The explanation for this finding is based on how falls are implemented in
this model. Currently, they are based on the speed of the passengers and their age is not
taken into account, so this could be improved in a future version on the IMPACT
model. Discounting age, based on speed alone it makes sense that passengers who

Table 8. Factors and levels in the simulation experiment for age

Factor
Crowd Density Age

Level 1 Low Travelling alone 100% adults
Level 2 Medium Travelling alone 100% elderly
Level 3 High

Fig. 11. Effects of age (speed) on evacuation time, falls, and response time
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move slower have fewer falls (see Fig. 11). Statistical analysis confirmed these inter-
pretations of the graphs. A 2 � 3 independent ANOVA was performed on Total Falls
with Age (adult, elder) and Crowd Density (low, medium, and high) as between
factors. The main effects of Crowd Density, F(2, 354) = 13245.73, p < .001, and Age
were significant, F(1, 354) = 26056.94, p < .001, and the interaction effect of Age �
Crowd Density was also significant, F(2, 354) = 13245.73, p < .001. Post hoc tests
with Tukey HSD corrections show that each level of Crowd Density differs signifi-
cantly from each other level: low-medium, p < .001; medium-high, p < .001;
low-high, p < .001.

Response time. As expected, as crowd density increases, response time becomes
slower. Also, as expected, the response time does not differ significantly between the
elderly and adults (see Fig. 11). Statistical analysis confirmed this interpretation of the
graph. A 2 � 3 independent ANOVA was performed on Response Time with Age
(adult, elder) and Crowd Density (low, medium, and high) as between factors. The
main effect of Crowd Density was significant, F(2, 354) = 5507.43, p < .001; how-
ever, the main effect of Age, F(1, 354) = 2.52, n.s., and the interaction effect of
Age � Crowd Density were not significant, F(2,354) = .03, n.s. Post hoc tests with
Tukey HSD corrections show that each level of Crowd Density differs significantly
from each other level: low-medium, p < .001; medium-high, p < .001; low-high,
p < .001.

3.8 Compliance

Table 9 shows the design of the simulation experiment to determine the effect of
compliance on evacuation time, number of falls, and response time, resulting in
3 � 2 � 60 = 360 simulation runs here. The hypotheses were: (1) evacuation time is
faster for 100% compliance than 0% compliance; (2) more falls will happen with 100%
compliance compared with 0% (because people will evacuate faster resulting in
crowding and so more falls); (3) response time will be faster for 100% compliance
compared to 0% (because people will decide to evacuate faster). This simulation
experiment was also run for adults and the elderly, both female and male. With the
current parameter settings, no significant differences between females and males or
adults and the elderly were found, meaning that the difference in the current compliance
level settings for gender and age do not create differences in the actions (see Sect. 2.1
for these settings). Therefore, to find the effect of the compliance parameter, this
experiment was set up comparing a low with a high level. For a maximum effect of
compliance, levels 1 and 0 were preferred, but the simulation does not run with

Table 9. Factors and Levels in the Simulation Experiment for Compliance

Factor
Crowd Density Compliance

Level 1 Low Compliance level 0.1 (only male adults)
Level 2 Medium Compliance level 1 (only male adults)
Level 3 High
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compliance set to 0, since the passengers will not move then. Compliance set to 0.001
or 0.01 resulted in one simulation run taking multiple days. With the value of 0.1 there
is still a large effect of compliance to be seen and the simulation runs were practically
feasible to run, so this level was selected for the experiment.

Evacuation time. Results are shown in Fig. 12. As expected, as crowd density
increases, evacuation time increases, and high compliance results in faster evacuation
time than low compliance. A 2 � 3 independent ANOVA was performed on Evacu-
ation Time with Compliance (low, high) and Crowd Density (low, medium, and high)
as between factors. The main effects of Crowd Density and Compliance and the
interaction effect of Compliance � Crowd Density were all significant: F(2, 354)
= 33.75, p < .001; F(1, 354) = 3092.49, p < .001; F(2,354) = 6.65, p < .001,
respectively. Post hoc tests with Tukey HSD corrections show that each level of Crowd
Density differs significantly from each other level: low-medium, p < .01;
medium-high, p < .001; low-high, p < .001.

Total number of falls. As expected, more falls happen as crowd density increases and
when there is high compliance versus low compliance. No falls happened in the low
compliance simulation runs, though, which can be explained by the slower speed that is
a result of low compliance. A 2 � 3 independent ANOVAwas performed on Total Falls
with Compliance (low, high) and Crowd Density (low, medium, and high) as between
factors. The main effects of Crowd Density and Compliance and the interaction effect of
Compliance � Crowd Density were all significant: F(2, 354) = 13110.60, p < .001; F
(1, 354) = 25825.15, p < .001; F(2,354) = 13110.60, p < .001, respectively. Post hoc
tests with Tukey HSD corrections show that each level of Crowd Density differs sig-
nificantly from each other level: low-medium, p < .001; medium-high, p < .001;
low-high, p < .001.

Response time. Response times for male adults are shown in Fig. 12, which do not
significantly differ from female adults and the elderly, as expected, and show a similar
pattern for a high compliance level. The response time for the low compliance level did
not register in the simulations; that is why the response time for male adults with a
compliance level of 0.89 are shown and analysed. An independent one-way ANOVA
was performed on the Response Time of male adults with Crowd Density (low,

Fig. 12. Effects of compliance on evacuation time, falls, and response time.

168 C.N. van der Wal et al.



medium, and high) as a between factor. The main effect of Crowd Density was sig-
nificant, F(2, 717) = 397678.37, p < .001. Post hoc tests with Tukey HSD corrections
show that each level of Crowd Density differs significantly from each other level:
low-medium, p < .001; medium-high, p < .001; low-high, p < .001.

3.9 Environment

Table 10 shows the design of the simulation experiment to determine the effect of room
type on evacuation time, falls, and response time, resulting in 3 � 6 � 60 = 1080
simulation runs here. The hypotheses were: (1) evacuation time increases faster in the
rectangular room than the square room (because people take more time to reach the
exits); (2) the number of falls is higher in the rectangular room (because people use
more steps to reach the exits); (3) response time is slowest in the rectangular room
(because in larger rooms there is less chance of observing the fire).

Evacuation time. Results are shown in Fig. 13. As expected, evacuation time
increases as crowd density increases, although this only happened for high crowd
density and not low and medium densities (see Fig. 13, left). Statistical tests confirm
this interpretation of the graph. A 2 � 3 independent ANOVA was performed on
Evacuation Time with Room Type (square or rectangle) and Crowd Density (low,
medium, and high) as between factors. The main effects of Crowd Density and Room
Type and the interaction effect of Room Type � Crowd Density were all significant:
F(2, 354) = 104.97, p < .001; F(1, 354) = 443.17, p < .001; F(2,354) = 35.07,
p < .001, respectively. Post hoc tests with Tukey HSD corrections show that high

Table 10. Factors and Levels in the Simulation Experiment for Environment

Factor
Crowd Density Room type

Level 1 Low Type 1 (square, 20 � 20 m)
Level 2 Medium Type 2 (rectangle 20 � 40 m)
Level 3 High

Fig. 13. Effects of room type on evacuation time, falls, and response time.
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Crowd Density differs significantly from low and medium, but low and medium do not
differ significantly: low-medium, n.s.; medium-high, p < .001; low-high, p < .001.

Total number of falls. As crowd density increases, so do the number of falls. The
number of falls also increase faster in the larger room than in the smaller room.

Table 11. Effects of Socio-Cultural, Cognitive, and Emotional Elements on Evacuation Time

Model
element

Variations Average
evacuation
time
(seconds)

Difference
from
benchmark
(seconds)

Relative
difference from
benchmark
(percentage)

Falls Off (benchmark) 324.31
On 293.51 −30.8 −9.5%

Helping
behaviour

Off (benchmark) 302.57
On 298.86 −3.71 −1.2%

Social
Contagion

Off (benchmark) 396.12
On 317.27 −78.85 −20.0%**

Familiarity 0% of passengers
familiar with
environment
(benchmark)

412.47

50% of passengers
familiar with
environment

385.38 −27.09 −6.6%***

100% of passengers
familiar with
environment

381.52 −30.95 −7.5%***

Groups People travelling
alone (benchmark)

311.29

Groups of two 282.95 −28.37 −9.1%***
Groups of three 303.87 −7.42 −2.4%***
Groups of four 217.79 −93.5 −30.0%***

Age All adults
(benchmark)

307.6

All elderly people 316.83 +9.23 +3.0%***
Compliance High compliance

(1.0) (benchmark)
301.17

Low compliance
(0.1)

856.03 +554.86 +184.2%***

Environment Small square room
(20 � 20 m)
(benchmark)

313.07

Big rectangle room
(20 � 40 m)

530.86 +217.79 +705.0%***

Significant main effect: **p < .01, ***p < .001.
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Note that the increase in falls is not due to more space in the rectangular room and
more space to move (faster) towards the exits, as the crowd densities are kept the same
relative to the total square metres of the room. Rather, a longer pathway (more steps
towards the exit) increases the chance of falling (see Fig. 13, middle). Statistical
analysis confirms this interpretation of the graph. A 2 � 3 independent ANOVA was
performed on Total Falls with Room Type (square or rectangle) and Crowd Density
(low, medium, and high) as between factors. The main effects of Crowd Density and
Room Type and the interaction effect of Room Type � Crowd Density were all sig-
nificant: F(2, 354) = 2100.66, p < .001; F(1, 354) = 1524.03, p < .001; F(2, 354) =
893.53, p < .001. Post hoc tests with Tukey HSD corrections show that each level of
Crowd Density differs significantly from each other level: low-medium, p < .001;
medium-high, p < .001; low-high, p < .001.

Response time. As expected, the response time is slower in the rectangular room than
in the square room and also increases as crowd density increases (see Fig. 13, right).
Statistical analysis confirms this interpretation of the graph. A 2 � 3 independent
ANOVA was performed on Response Time with Room Type (square or rectangle) and
Crowd Density (low, medium, and high) as between factors. The main effects of Crowd
Density and Room Type and the interaction effect of Room Type � Crowd Density
were all significant: F(2, 354) = 5648.72, p < .001; F(1, 354) = 11279.66, p < .001; F
(2, 354) = 1003.42, p < .001, respectively. Post hoc tests with Tukey HSD corrections
show that each level of Crowd Density differs significantly from each other level:
low-medium, p < .001; medium-high, p < .001; low-high, p < .001.

3.10 Comparing Results: Influence of Socio-Cultural, Cognitive,
and Emotional Elements

In this section, the effects of the socio-cultural, cognitive, and emotional elements in the
model will be compared to identify how much each element influences the total
evacuation time. In this way, the added value of each element can be interpreted. Of
course, this is in the case of the empty environment studied in the simulation experi-
ments, where only the human behaviour is studied during evacuation. In real life, the
effects of the socio-cultural, cognitive, and emotional elements will be combined with
environmental influences, such as obstacles, stairs, corridors, lanes, and pathways.
Table 11, above, shows the effects of each model element (e.g. falling, helping, social
contagion) on the total evacuation time in seconds and is expressed as a percentage of
relative difference compared to the benchmark. The relative differences of each model
element range from reducing the total evacuation time by 30% to increasing it by
705%. Most notable are the decreases in evacuation time caused by social contagion of
20%, familiarity of between 6.6% and 7.5%, and travelling in groups of between 2.4%
and 30%. Compliance and environment type also have a very large effect on the
evacuation time – increasing it by 184.2% and 705%, respectively – but these two
effects are harder to compare in size with the others in the table, because the parameter
settings of compliance and the sizes of the environment types made the effect very
large. The other effects are comparable, though, because the human behaviour all takes
place in the same environment and the settings chosen are realistic. In conclusion, the
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socio-cultural, cognitive, and emotional elements that can be compared – falling,
helping, social contagion, familiarity with environment, group sizes, and age – have an
effect on evacuation time between decreasing it by 30% to increasing it by 3%.

4 Conclusion and Discussion

The aim of this research was to create and validate an evacuation simulation that
includes socio-cultural, cognitive, and emotional factors in response to the need for
more realistic crowd models that incorporate psychological and social factors. The
development of the model drew on insights from social and cross-cultural psychology,
interviews with crisis management experts, and was based on scientific findings and
literature. The model was validated against data from an evacuation drill simulated by
the existing EXODUS evacuation model [13, 26]. Our IMPACT model was compared
with this benchmark on multiple outcome measures and results showed that, on all
measures, the IMPACT model was within or close to the prescribed boundaries,
thereby establishing its validity.

Next, multiple simulation experiments were run to answer research questions
concerning the effects of the socio-cultural, cognitive, and emotional elements in the
model on evacuation time, total number of falls, and response time. Important findings
are that emergent effects, such as the faster-is-slower-effect [17], were found in our
results in new forms: as effects of falling, helping, social contagion, and familiarity with
the environment. For instance, both falling behaviour and helping (in high crowd
density) led to faster evacuation times. The explanation is that falling and helping
create a more phased evacuation – as the delays they cause effectively stagger the
evacuation and reduce congestion – that results in a faster overall process. Moreover, as
expected, social contagion also creates faster evacuation times, because information
about the need to evacuate spreads faster than without social contagion. It also
unexpectedly led to less falls, which again can be explained by the
faster-is-slower-effect. Again, like with falls and helping, people are more phased in
their evacuation, meaning less congestion at the bottlenecks (the exits) and therefore
less falls. Furthermore, the more people are familiar with the environment: (1) the faster
the evacuation time, (2) the fewer the falls, and (3) the faster the response time. These
results are a combination of a phased evacuation (meaning less congestion and fewer
falls, and therefore a faster-is-slower-effect resulting in faster evacuation time), less
congestion (more people spread through the environment going to the nearest exits
instead of all taking the same exit, meaning fewer falls), and social contagion (the
decision to evacuate can spread faster, meaning faster response times and evacuation
times). Groups also showed an interesting effect. The current model suggests it is
actually faster to evacuate in groups than alone. This was not based on speed, and
therefore not a faster-is-slower-effect, but partly based on social contagion (collective
intelligence and herding). The impact of groups on crowd dynamics is still largely
unknown [24] and we have not modelled group formations, such as in [24], that could
influence the crowd dynamics. Rather, we had chosen to model a group as moving
through space as a ‘square’ group, with all members moving from patch (square metre)
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to patch simultaneously. The effect of group formations would therefore need further
research with the current model.

The faster-is-slower-effect was not found when comparing age groups, however, as
the elderly evacuated more slowly than adults although moving more slowly. The
reason for the faster-is-slower-effect not being present here for age is that it would
require differences in speed within the same simulation run. In this model, however, all
passengers within a simulation were either exclusively fast (adults) or slow (elderly
people), which meant that faster speed means faster evacuation here. For adults by
themselves the faster-is-slower-effect was present, but then as a result of falls. The
elderly did not fall due to their slower speeds, which in turn prevented a
faster-is-slower-effect when looking at falls instead of speed. The elderly did not fall
once in the simulation which is not realistic in real life, since elderly people are more
prone to falling. The current implementation of falling is based on speed alone and
therefore needs to be improved to also take age into account. With a high level of
compliance, people evacuate faster than with a low level of compliance, as expected.
The current settings of compliance levels do not make enough differentiation between
different ages and genders to have an effect. The simulation experiment showed that the
compliance parameter can have an effect, but not with the current model settings. It
needs to be decided if this parameter can be omitted or if new parameter settings for
different ages and genders can be calculated from new data. Finally, in the smaller
square room (20 � 20 m), evacuation was faster than in the larger rectangular room
(20 � 40 m). Also, in the smaller square room there were fewer falls and a faster
average response time than expected. Essentially, taking more steps towards the exit
means more chance of falling.

Comparing all simulation results together, the socio-cultural, cognitive, and emo-
tional elements have an effect from reducing evacuation time by 30% through to
increasing it by 3% when the following model elements are considered: falling,
helping, social contagion, familiarity with environment, group sizes, and age. However,
the parameter settings of compliance and the sizes of the environment types made these
effects very large (increasing evacuation time up to 705%) and are therefore left out in
this comparison. Overall, this demonstrates that including socio-cultural, cognitive, and
emotional elements in evacuation models is both feasible and vital, as they can
influence evacuation time by up to 30%. Of course, this is only based on our experi-
ments in an empty square room, where there is no interaction with environmental
features such as obstacles, corridors, counterflows, stairs, and others. Therefore, this
(maximum) 30% effect on evacuation time should be seen as a ‘pure’ effect of the
socio-cultural, cognitive, and emotional elements in the model, without these additional
environmental influences.

The strengths of this research are the inclusion of psychological and socio-cultural
aspects in the crowd simulation model, based on research literature and support from
stakeholders. Furthermore, the statistical analyses of the experimental results strengthen
the interpretations. The current weaknesses of this work are that not every
socio-cultural, cognitive, and emotional parameter that was identified during the
development of the model is yet implemented to test, such as passengers’ disabilities.
Conversely, though, the more parameters in the model, the more complex it becomes,
and the more difficult it is to analyse and interpret all the results, so there are also
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benefits to this. Furthermore, the results of the simulations cannot be taken for granted
and they will naturally remain estimations. However, because the simulations are based
on sufficient background literature, and research and interaction with stakeholders, we
believe them to be sound estimations. Moreover, the work limits itself to making
predictions about the influence of human behaviour on the evacuation process. All the
socio-cultural, emotional, and cognitive effects were tested in an empty room with four
exits. In real life, these effects would be combined with the influences of the envi-
ronment itself, such as corridors, number of exits, stairs, and obstacles. This research
could therefore be extended by investigating the combined effect of these elements with
the environment, like in [42]. Also, a very important phenomenon – counterflow – was
not modelled here. In the current model, all passengers can always take their own
pathway towards an exit and do not have to cross or overtake others in the simulation.
Therefore, the effects of counterflows are not modelled. Also, it was assumed that when
people fall they can stand up again after a while. In reality, people could be trampled on
or injure themselves and therefore not be able to stand up again. Consequently, the way
we modelled falling behaviour here is just a first step towards studying this effect.
However, it is difficult to model, since there is no research conducted yet (to the
knowledge of the authors) that indicates what the chances of falling are in certain crowd
densities and environments, and also how long it takes to stand back up. Future work
consists of developing the model further to simulate realistic transport hub environ-
ments and extending the pathfinding behaviour with more heuristics.

To conclude, we reiterate three points that summarise our findings and implications:
(1) our model is a realistic evacuation simulation, validated in comparison with an
established model and demonstrating well-known emergent effects, such as the
faster-is-slower-effect; (2) we would recommend that evacuation simulation modellers
include socio-cultural, emotional, and cognitive elements in future models, based on
the substantial effect sizes found here (reducing evacuation time by up to 30%),
especially social contagion; (3) cultural and social diversity can be beneficial to
evacuation as they create more phased evacuations, which create an overall benefit
from the faster-is-slower-effect. Further implications are that transport operators,
emergency managers, and prevention professionals can use these kinds of agent-based
models to predict outcomes and inform decision making when designing systems [5].
These models could also be used to support periodic safety and security risk assess-
ments and mandatory risk assessments when environments or procedures change,
and/or when new communication processes or technologies are implemented. Also,
policy makers could use these models to support the identification of mandatory reg-
ulations and standards with respect to communication for emergency prevention and
management. In conclusion, these are promising developments and the incorporation of
further psychological insights into crowd simulations will help enhance the realism of
these models and the accuracy with which they can predict and prevent crowd disasters.
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