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Transactions on Computational
Collective Intelligence XXVII

Preface

It is my pleasure to present to you the XXVII volume of LNCS Transactions on
Computational Collective Intelligence. In Autumn 2016 (November 25) at the WSB
University in Wroclaw, Poland, there was the second seminar on “Quantitative
Methods of Group Decision-Making.” Thanks to WSB University in Wroclaw, we had
an excellent opportunity to organize and financially support the seminar. This volume
presents post-seminar papers of participants to this seminar. During the seminar, we
listened to and discussed over 18 presentations from 15 universities. The XXVII issue
of TCCI contains 13 high-quality, carefully reviewed papers.

The first paper “Kalai–Smorodinsky Balances for n-Tuples of Interfering Elements”
by David Carfi, Alessia Donato, and Gianfranco Gambarelli is devoted1 to studying a
mathematical game model providing optimal Kalai–Smorodinsky compromise solution
n-tuples, whose components indicate active principle quantities, in a specific non-linear
interfering scenario, with n possible interacting elements. The problem was solved by
using the Carfı’s pay-off analysis method for differentiable pay-off functions and
implementing the Matlab algorithms for the construction and representation of the
pay-off spaces and for the finding of Kalai–Smorodinsky solutions. The core section
of the paper studies the game in the n-dimensional case, by finding the critical zone
of the game in its Cartesian form together with proof of a theorem and a lemma about
the Jacobian determinant of the n-game. In a particular highly symmetrical case, the
analytical solution of the Kalai–Smorodinsky compromise problem is presented too.

In the second paper entitled “Reason vs. Rationality: From Rankings to Tourna-
ments in Individual Choice” by Janusz Kacprzyk, Hannu Nurmi, and Slawomir
Zadrozny, one may find the standard assumption in decision theory, microeconomics,
and social choice that individuals (consumers, voters) are endowed with preferences
that can be expressed as complete and transitive binary relations over alternatives
(bundles of goods, policies, candidates). While this may often be the case, the authors
show by way of toy examples that incomplete and intransitive preference relations are
not only conceivable, but make intuitive sense and they suggest that fuzzy preference
relations and solution concepts based on them are plausible in accommodating those
features that give rise to intransitive and incomplete preferences.

In the third paper, “ANote on Positions and Power of Players in Multicameral Voting
Games,” Marcin Malawski presents a study of a multicameral simple game as an
intersection of a number of simple games played by the same set of players: A coalition
is winning in the multicameral game if and only if it is winning in all the individual
games played. Examples include decision rules in multicameral parliaments where a bill
must be passed in all the houses of the parliament, and voting rules in the European

1 Hereafter description of the papers are directly taken from summaries prepared by their authors.



Union Council where a winning coalition of countries must satisfy two or three inde-
pendent criteria. The presented paper is a preliminary study of relations between the
positions and power indices of players in the “chamber” games and in the multicameral
game obtained as the intersection. The author demonstrates that for any power index
satisfying a number of standard properties, the index of a player in the multicameral
game can be smaller (or greater) than in all the chamber games; this can occur even
when the players are ordered the same way by desirability relations in all the chamber
games. He also observes some counterintuitive effects when comparing the positions
and decisiveness of players. However, as expected, introducing an additional chamber
with all the players equal (a one man–one vote majority game) to a complete simple
game reduces all the differences between the Shapley–Shubik indices of players.

The fourth paper “On Ordering a Set of Degressively Proportional Apportionments”
by Katarzyna Cegielka, Piotr Dniestrzanski, Janusz Lyko, Arkadiusz Maciuk, and
Radoslaw Rudek proposes a solution to the most important problem in a practical
implementation of degressive proportionality, namely, its ambiguity. They introduce an
order relation on a set of degressively proportional allocations. Its main idea is to define
greater allocations such that emerge from others after transferring a certain quantity of
goods from smaller to greater entities contending in distribution. Thus, maximal ele-
ments in this ordering are indicated as the sought-after solution sanctioning boundary
conditions as the only reason for moving away from the fundamental principle of
proportionality. In case of several maximal elements, the choice of one allocation
remains an open issue, but the cardinality of the set from which they make a choice can
be reduced significantly. In the best-known example of application of degressive
proportionality, which is the apportionment of seats in the European Parliament, the
considered set contains a maximal element. Thereby, there exits an allocation that is
nearest to the proportional distribution with respect to transfer relation.

In the fifth paper entitled “Preorders in Simple Games,” Josep Freixas and Montserrat
Pons consider a hierarchy among players in a simple game with total preorder given by
any power index. The desirability relation, which is also a preorder, induces the same
hierarchy as the Banzhaf and the Shapley indices on linear games, i.e., games in which
the desirability relation is total. The desirability relation is a sub-preorder of another
preorder, the weak desirability relation, and the class of weakly linear games, i.e., games
for which the weak desirability relation is total, is larger than the class of linear games.
The weak desirability relation induces the same hierarchy as the Banzhaf and the
Shapley indices on weakly linear games. They define a chain of preorders between the
desirability and the weak desirability preorders. From them they obtain new classes of
totally preordered games between linear and weakly linear games.

In the sixth paper “Sub-coalitional Approach to Values,” Izabella Stach analyzes the
behavioral models of classic values (like the Shapley and Banzhaf values) by con-
sidering the contributions to coalition S as contributions delivered by the players
individually joining such a coalition as it is being formed; i.e., v(S) – v(S\{i}). In this
paper, she proposes another approach to values where these contributions are con-
sidered as given by sets of players: (v(S) – v(S\R)), where S, R are subsets of the set of
all players involved in cooperative game v. Based on this new approach, several
sub-coalitional values are proposed, and some properties of these values are shown.

VI Transactions on Computational Collective Intelligence XXVII



In the seventh paper entitled “The Effect of Brexit on the Balance of Power in the
European Union Council: An Approach Based on Precoalitions,” Jacek Mercik and
David M. Ramsey investigate the change in the balance of power in the European Union
Council due to the United Kingdom leaving. This analysis is based on the concept of
power indices in voting games where natural coalitions, called precoalitions, may occur
between various players (or parties). The precoalitions in these games are assumed to be
formed around the six largest member states (after Brexit, the five largest), where each
of the remaining member states joins the precoalition based around the large member
state which is the most similar according to the subject of the vote. They consider
adaptations of three classic indices: the Shapley–Shubik, Banzhaf–Penrose, and John-
ston indices based on the concept of a consistent share function (also called quotient
index). This approach can be interpreted as a two-level process of distributing power. At
the upper level, power is distributed among precoalitions. At the lower level, power is
distributed amongst the members of each precoalition. One of the conclusions of the
research is that removing the UK from the voting game means that the power indices of
small countries actually decrease. This seems somewhat surprising as the voting pro-
cedure in the EU council was designed to be robust to changes in the number and size of
member states. This conclusion does not correspond to a general result, but does indicate
the difficulty of defining voting rules which are robust to changes in the set of players.

The eighth paper entitled “Comparison of Voting Methods Used in Some Classical
Music Competitions” by Honorata Sosnowska is devoted to a comparison of the rules
of voting in the last two main Polish classical music competitions: the XVIIth Chopin
Piano Competition and the XVth Wieniawski Violin Competition. Weak and strong
points of rules are analyzed. The rules are also compared with rules used in the
previous editions of the competitions. The author concludes that the changes resulted in
the simplification of rules.

In the ninth paper “Determinants of the Perception of Opportunity” by Aleksandra
Sus, the determinants of the perception of opportunity are analyzed. Contemporary
strategic management has accepted the category of opportunity, although it cannot be
reflected in the organization’s plans and strategies. Alertness, proactivity, social net-
works, and knowledge resources are the categories that come up most often when
discussing opportunity perception as one of the determinants of entrepreneurial
activity. In reality, they are the result of both behavioral and cognitive processes. The
purpose of the article is to identify the primary factors that predetermine the idiosyn-
crasy of how opportunity is perceived by various persons, such as creativity, intuition,
and divergent thinking. The article presents opportunity value chains. The article also
discusses the process of group decision-making in terms of opportunity.

The tenth paper entitled “Free-Riding in Common Facility Sharing” is authored by
Federica Briata and Vito Fragnelli. The paper deals with the free-riding situations that
may arise from sharing maintenance costs of a facility among its potential users. The
non-users may ask for a check to assess who the users are, but they have to pay
the related cost; consequently, a non-user may not ask for the check, with the hope that
the other non-users ask and pay for it. In this paper, they provide incentives for asking
for the check, without suffering a higher cost.

The 11th paper is the joint work of Natalie van der Wal, Daniel Formolo, Mark A.
Robinson, Michael Minkov, and Tibor Bosse. The paper is entitled “Simulating Crowd
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Evacuation with Sociocultural, Cognitive, and Emotional Elements.” In this research,
the effects of culture, cognitions, and emotions on crisis management and prevention
are analyzed. An agent-based crowd evacuation simulation model was created, named
IMPACT, to study the evacuation process from a transport hub. To extend previous
research, various sociocultural, cognitive, and emotional factors were modeled,
including: language, gender, familiarity with the environment, emotional contagion,
prosocial behavior, falls, group decision-making, and compliance. The IMPACT model
was validated against data from an evacuation drill using the existing EXODUS
evacuation model. Results show that on all measures, the IMPACT model is within or
close to the prescribed boundaries, thereby establishing its validity. Structured simu-
lations with the validated model revealed important findings, including: the effect of
doors as bottlenecks, social contagion speeding up evacuation time, falling behavior
not affecting evacuation time significantly, and traveling in groups being more bene-
ficial for evacuation time than traveling alone.

The 12th paper “Group Approximation of Task Duration and Time Buffers in
Scrum” is written by Barbara Gładysz and Andrzej Pawlicki. Expansion of modern IT
technologies, which took place in the past few years, caused a significant increase in
software projects. These projects are quite often complex ventures burdened with high
risk. Nowadays, a large number of software projects is managed using the Scrum
framework. In Scrum, where people form self-organizing team, group decisions
became an essential element of the project, which plays an important role in creating
time approximation or in managing potential risks. This paper focuses on group
decisions, temporal aspects of estimation, and risk management in the Scrum project. In
the article they present a conceptual model of the extension of the Scrum framework by
risk management processes and project time estimation. The proposed model contains
time buffers based on mixture probability distribution, which improve the Scrum
framework in terms of group estimation.

Traditionally, the last paper is an invited paper, and in this volume it is entitled
“Extending Estimation of Distribution Algorithms with Agent-based Computing
Inspirations” authored by Aleksander Byrski, Marek Kisiel-Dorohinicki, and Norbert
Tusinski. In their paper, several extensions of a successful EDA-type algorithm,
namely, COMMAop, inspired by the paradigm of agent-based computing (EMAS) are
presented. The proposed algorithms leveraging notions connected with EMAS, such as
reproduction and death, or even the population decomposition, turn out to be better
than the original algorithm. The evidence for this is presented at the end of the paper,
utilizing QAP problems by Eric Taillard as benchmarks.

I would like to thank all the authors for their valuable contributions to this issue and
all reviewers for their feedback, which helped to keep the papers of high quality. My
very special thanks go to Prof. Ngoc-Thanh Nguyen, who encouraged us to prepare this
volume, and to Dr. Bernadetta Maleszka, who helped us publish this issues in due time
and in good order.

May 2017 Jacek Mercik
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Kalai-Smorodinsky Balances for N-Tuples
of Interfering Elements

David Carf̀ı1, Alessia Donato2(B), and Gianfranco Gambarelli3

1 University of California at Riverside, UCRiverside, Riverside, USA
dcarfi@unime.it, davidcarfi@gmail.com

2 University of Messina, Messina, Italy
donatoalessia89@gmail.com

3 University of Bergamo, Bergamo, Italy
gianfranco.gambarelli@unibg.it

Abstract. The study proposed here builds up a game model (with asso-
ciated algorithms) in a specific non-linear interfering scenario, with n
possible interacting elements. Our examination provides optimal Kalai-
Smorodinsky compromise solution n-tuples, for the game, whose compo-
nents indicate active principle quantity percentages. We solve the prob-
lem by using the Carf̀ı’s payoff analysis method for differentiable payoff
functions. Moreover we implement Matlab algorithms for the construc-
tion and representation of the payoff spaces and for the finding of Kalai-
Smorodinsky solutions. The software for the determination of graphs
are adopted, but not presented here explicitly. The core section of the
paper, completely studies the game in the n-dimensional case, by finding
the critical zone of the game in its Cartesian form. At this aim, we need
to prove a theorem and a lemma about the Jacobian determinant of the
n-game. In the same section, we write down the intersection of the critical
zone and the Kalai-Smorodinsky straight-line. In the Appendix 1 we solve
the problem in closed form for the 2 dimensional case and numerically for
n > 2. Our methods works also for games with non-convex payoff space.
Finally, in a particular highly symmetrical case, we solve analytically the
Kalai-Smorodinsky compromise problem in all cases. We provide some
applications of the obtained results, particularly to economic problems.

Keywords: Antagonistic elements · Interfering elements · Optimal
dosage · Synergies · Complete study of differentiable game · Kalai-
Smorodinsky solutions

1 Introduction

The paper deals with a balance problem for n interfering elements, proposing a
version of Kalai-Smorodinsky solution, by modeling the interaction (interference)
using a particular class of normal form games in which each player dispose of
two pure strategies. Moreover, for each player one strategy strictly dominates the

c© Springer International Publishing AG 2017
N.T. Nguyen et al. (Eds.): TCCI XXVII, LNCS 10480, pp. 1–27, 2017.
https://doi.org/10.1007/978-3-319-70647-4_1



2 D. Carf̀ı et al.

other, so the game necessarily has a unique Nash equilibrium. When this equilib-
rium is not Pareto optimal (leading to an applicative significant case) it makes
sense to select some strictly better point from the Pareto frontier. One plau-
sible solution is that offered by the Kalai-Smorodinsky method as presented in
the paper, with the equilibrium constituting the “disagreement point”. Since this
solution results necessarily from playing mixed strategies, finding these strategies
is also of some interest from the mathematical point of view, not only from an
economic and applicative point of view. An analytic method for detecting them
by finding critical points of the payoff (vector) function is presented, together
with explicit formulae for the Kalai-Smorodinsky solution derived from it.

1.1 Structure of the Paper

The paper is organized as follows.

– In Sect. 2, we present the model.
– In Sect. 3, we develop our proposed model (by using the Carf̀ı’s payoff analysis

method for differentiable payoff functions) in dimension 2, studying the game
in the finite strategy case and in the infinite strategy case. In particular, we
consider elements interfering positively and negatively. Then we solve the
problem in closed analytical form for

a + b < 1,

by a Kalai-Smorodinsky type compromise solution.
– In Sect. 4, the core section of the paper, we completely study the game in the

n-dimensional case, by finding the critical zone of the game in its Cartesian
form. We write down the intersection of the critical zone and the Kalai-
Smorodinsky straight-line and we solve numerically the problem, for

a + b < 1.

In a particular highly symmetrical case, we solve analytically the Kalai-
Smorodinsky compromise problem.

– In Sects. 5, 6 and 7, we discuss possible applications of the proposed model
and we present the conclusions and the conclusive remarks of the paper.

– In Appendix 1, algorithms for determining solutions are provided, together
with softwares and examples for the case n = 2, n = 10.

– In Appendix 2, we present the necessary preliminaries and notations about
game theory which are not supposed to be known to the reader.

2 The Model

In this paper, we consider a model of strategic interaction for n different factors
(elements), which we consider as interfering elements (i.e. drugs, anticryptogam-
ics, investments, commodities and so on) and related effects resulting from their
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use (e.g., curing diseases, killing parasites, gains, commodity demand and so on),
following a precise law of interaction. This law of interaction states that if no
elements are used, then all the effects are null and if a single element is employed
in the optimal using dosage alone, then the level of the relative effect is 1, while
the level of the effect for the others is null. The general model, we consider
here, is represented by an n-player differentiable general sum game. Indicating
by q ∈ [0, 1]n the n-percentage profile defined as follows q = (q1, q2, . . . , qn), we
can write the payoff function of the game by the n-vector

f(q) =

(
qj − (1 − aj)

n∏
i=1

qi

)n

j=1

,

for every q belonging to the hypercube [0, 1]n.

2.1 Applicative Motivations

Often decisions in different situations and contexts need to consider the joined
effects of various elements that might interfere with each other. For example, in
Industrial Economics the demand of an asset may be influenced by the supply of
other assets, with synergic or antagonistic effects or with a convex combination
of the two extreme scenarios. The same situation might happen in Public Eco-
nomics, where different economic policies may create mutual interference. Anal-
ogously, in Medicine with drugs whose combined administration might produce
extra damages or synergies. Other examples occur in Agriculture, Zootechnics
and so on. When it appears necessary to intervene in such situations, there exists
sometimes a primary interest for one effect rather than others.

A previous model by Carf̀ı et al. [9], calculates the quantities of two ele-
ments that interfere with each other, optimizing the required ratio of the effects
and taking into account the minimum quantities to be allocated. That former
model can be applicable to the case of two elements smoothly interfering, or
better, interfering in a differentiable fashion. Indeed, the main theorem we use
in that paper in order to construct the analytic game theory model requires
and adopts differentiability assumptions. Such a differentiable methods allows
to obtain, exactly, the compromise solution vector in a best compromise setting
within a differentiable but not necessarily convex decision problem. Neverthe-
less, the extension to the case of payoff functions which are discontinuous or not
differentiable on a finite subset of a strategy space, appears possible with some
technicalities.

Here we go deeply inside the previous two dimensional case in order to clarify
our techniques and some aspects and to prepare the field to the n-dimensional
case, that constitutes the core of this paper. The compromise solution, that is
the solution of our decision problem, are determined, fixed the dimension of the
problem, by an original algorithm which can be applied with the chosen com-
putational precision. The algorithm was written with the applicative software
Matlab, obviously based on the analytical methods proposed by Carf̀ı in [7]. In
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the algorithm we concentrate upon the determination of a Kalai-Smorodinsky
type compromise solution.

3 The Mathematical Model: 2-Dimensional Case

To better understand the meaning of our model, we analyze - for simplicity - the
two-dimensional case.We distinguish the finite case and the infinite case. In the
finite case the game is represented by a bi-matrix

M =
(

A′ D′

B′ C ′

)
=
(

(0, 0) (0, 1)
(1, 0) (a, b)

)
,

whose elements correspond to the effects of the profile strategies A, B, C, D
shown in Fig. 1. Every profile strategy indicates a pair of quantity percentages
of the two elements respectively used. In the finite case, the possible values of
each element are 0 or 1 (0 means that we don’t use the corresponding element
and 1 means that we use 100% of the element required quantity for its scope).

Fig. 1. Bi-strategy space of the finite game M .

In particular, the profile strategy C = (1, 1), representing the use of a percentage
quantity 100% for both elements, appears important because it is the unique
Nash equilibrium of the game. The effect of the Nash equilibrium is, by definition,
a couple (a, b). The effects a and b are positive real numbers. Moreover, we
observe that:

– if a, b < 1, then the interaction can be considered antagonistic;
– if a, b > 1, then the interaction can be considered synergic;
– if a, b = 1, then the interaction can be considered neutral;
– if a > 1 and b ≤ 1, the interaction helps the action of the first element while

depressing (or leaving unchanged) the action of the second element.

The payoff space of that finite game, according to the value of a + b, can be
distinguished in three cases (see Fig. 2).
In the infinite game the bi-strategy space is represented by the square

E × F = [0, 1] × [0, 1] ,

see Fig. 3.
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Fig. 2. Payoff space of the finite game with a + b � 1.

Fig. 3. Bi-strategy space for infinite game f .

3.1 Payoff Functions

Our payoff function in the general case will be the mixed extension of the finite
game

f : E × F → R
2,

expressing the levels of the effects, when the bi-percentage profile (p, q) is
employed, with p chosen in E = [0, 1] and q chosen in F = [0, 1]. The effect
function (payoff function) is indeed defined on the bi-percentage space E × F =
[0, 1]2, by the two components

f1(p, q) = p(1 − q) + apq = p − (1 − a)pq,

f2(p, q) = q(1 − p) + bpq = q − (1 − b)pq,

for every percentage profile (p, q). The above very specific payoff function of the
game is so defined by

f(p, q) = (p − a′pq, q − b′pq) = (p(1 − a′q), q(1 − b′p)), (1)

where
a′ = 1 − a, b′ = 1 − b

are the complements with respect to 1 of a and b, respectively.
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3.2 Critical Zone of the Game

The Jacobian matrix of the function f at the bistrategy (p, q) is

Jf (p, q) =
(

1 − (1 − a)q −(1 − a)p
−(1 − b)q 1 − (1 − b)p

)
=
(

1 − a′q −a′p
−b′q 1 − b′p

)
.

The Jacobian determinant at (p, q) is

det Jf (p, q) = (1 − a′q)(1 − b′p) − a′b′pq

= 1 − a′q − b′p.

It vanishes upon the line r of equation

a′q + b′p = 1. (2)

This line r intersects the bi-strategic space E × F = [0, 1]2 iff

a/b′ ≤ 1

that is, iff
a + b ≤ 1.

In particular, that line is reduced to a point C for

a + b = 1.

The end points of this segment are the points

H = (a/b′, 1) K = (1, b/a′)

(note that the relation a/b′ ≤ 1 is equivalent to the relation b/a′ ≤ 1). Conse-
quently, the critical zone of the game is the segment [H,K], and its first and
second projections are, respectively, the interval

[a/b′, 1]

and the interval
[b/a′, 1]

(see for example in Fig. 4 a bi-strategy space of the game f for fixed values of a
and b). If a/b′ > 1, that is

a + b > 1,

the critical zone of the game is void.
We show in Figs. 5, 6 and 7 the payoff spaces in the three cases, for fixed

values of a and b. Recalling that, for

a + b < 1

we need to transform the critical zone together with the sides of bi-strategic
square, while in other cases we need to transform only the four sides of bi-
strategic square, because the critical zone is void or a single point belonging to
the boundary of the square.
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Fig. 4. Bi-strategy space of game f with a = 0.4 and b = 0.3.

Fig. 5. Payoff space of game f with a = 0.4 and b = 0.3.

Fig. 6. Payoff space of game f with a = 0.3 and b = 0.7.

Fig. 7. Payoff space of game f with a = 0.9 and b = 0.8.
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As we can observe in Figs. 5, 6 and 7:

– for
a + b < 1,

the point C ′ remains inside the payoff space, so we can search for a best
compromise point in the transformed critical zone (see Fig. 5);

– for
a + b = 1,

although we find infinitely many indifferent Pareto points, constituting the
diagonal [D′, B′], we find a unique compromise point C ′ (see Fig. 6);

– for
a + b > 1,

the compromise solution is again the payoff C ′, corresponding to the Nash
equilibrium (see Fig. 7).

We note that our best compromise derives from the application of a classic Kalai-
Smorodinsky method using the Nash payoff as a threat point of the decision
problem.

3.3 Kalai-Smorodinsky Solution

As we noted above, we need to find a compromise solution for the case

a + b < 1.

We decide to use the Kalai-Smorodinsky method and seek the solution directly
in the bi-strategy space E × F . The payoff functions are

f1(p, q) = p(1 − q) + apq = p − (1 − a)pq,
f2(p, q) = q(1 − p) + bpq = q − (1 − b)pq,

(3)

for every percentage profile (p, q).
We consider, in the payoff space f(E × F ), the line passing through the Nash
point C ′ = (a, b) and the supremum point (1, 1) of the payoff space. In parametric
form, using (X,Y ) as coordinates for the payoff universe, we can write:

(X,Y ) = (a, b) + t(1 − a, 1 − b),

with t belonging to the real line, that is{
X = a + t(1 − a),
Y = b + t(1 − b). (4)

We f -transfer the Eq. 4 (regardind the payoff space) in the bi-strategy space, by
replacing on to the coordinates (X,Y ) the corresponding expressions 3. So we
get: {

f1(p, q) = p − (1 − a)pq = a + t(1 − a),
f2(p, q) = q − (1 − b)pq = b + t(1 − b).
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From the first above equation we obtain

pq =
p − a

1 − a
− t,

and then, by using the second equation, we obtain

q = b +
1 − b

1 − a
(p − a), (5)

that is the Cartesian equation of the Kalai-Smorodinsky straight-line in the by-
strategy space. Now, we find - in the bi-strategy space E × F - the intersection
point between the critical zone of the game 2 and the straight line 5⎧⎨

⎩
q(a − 1) + p(b − 1) + 1 = 0

q = b +
1 − b

1 − a
(p − a).

From the system we obtain the solution with coordinates (see Appendix 1)

p∗ = −a − b + 1
2b − 2

,

q∗ = −b − a + 1
2a − 2

.

That intersection point is the solution of the game by Kalai-Smorodinsky
method. The point S = (p∗, q∗) belongs to the space E × F , when the para-
meter pair (a, b) varies in the open triangle with vertices (0, 0), (1, 0) and (0, 1).

Remark 1. We observe that the above Kalai-Smorodinsky straightline

(X,Y ) = (a, b) + t(1 − a, 1 − b),

in the payoff space appears transformed by the inverse relation f−1, of the payoff
vector function, on to the straightline

q = b +
1 − b

1 − a
(p − a),

contained in the bi-strategy space.

3.4 Numerical Sample

For a = 0.05 and b = 0.1, we obtain (see Fig. 8):

p∗ = 0.5278,

q∗ = 0.5526.

In payoff space the effects are represented by (see Fig. 9):

f1(p∗, q∗) = p∗ − (1 − a)p∗q∗ ⇒ f1(p∗, q∗) = 0.2507,

f2(p∗, q∗) = q∗ − (1 − b)p∗q∗ ⇒ f2(p∗, q∗) = 0.2901.



10 D. Carf̀ı et al.

Fig. 8. Kalai-Smorodinsky solution in bi-strategy space for a = 0.05 and b = 0.1.

Fig. 9. Kalai-Smorodinsky solution in payoff space for a = 0.05 and b = 0.1.

4 n-Dimensional Study

By means of the Kalai-Smorodinsky method we can study the general game with
n interfering elements.

4.1 Payoff Functions of the n-dimensional Game

Indicating by q ∈ R
n the n-percentage profile defined as follows

q = (q1, q2, . . . , qn),

we can write the payoff functions, in the n-dimensional case, in the following
fashion:

f1(q) = q1 −(1 − a1)
∏n

i=1 qi,

f2(q) = q2 −(1 − a2)
∏n

i=1 qi,

...
fn(q) = qn −(1 − an)

∏n
i=1 qi,

for every q belonging to the hypercube En. So that, the payoff function of the
game is compactly defined by n-vector

f(q) =

(
qj − (1 − aj)

n∏
i=1

qi

)n

j=1

, (6)

for every q belonging to the hypercube En.
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4.2 Jacobian Matrix of the Game

In order to find the critical zone of the game (f,>), we need to calculate the
Jacobian matrix of the function f at any point q, that is the matrix

Jf (q) =

⎛
⎜⎜⎜⎝

∂1f1(q) . . . ∂nf1(q)
∂1f2(q) . . . ∂nf2(q)

...
...

...
∂1fn(q) . . . ∂nfn(q)

⎞
⎟⎟⎟⎠ ,

for every q belonging to the strategy space En. Let us calculate the derivative
∂jfj , for every positive integer j ≤ n. We easily obtain

∂jfj(q) = 1 +

⎛
⎝ n∏

i=1,i �=j

qi

⎞
⎠ (aj − 1),

for every q belonging to the strategy space En and for every positive integer
j ≤ n. Let us calculate the derivative ∂kfj , with k �= j. We obtain

∂kfj(q) =

⎛
⎝ n∏

i=1,i �=k

qi

⎞
⎠ (aj − 1),

for every q belonging to the strategy space En and for every positive integers
j, k ≤ n, with k �= j. In general, the derivative ∂kfj , is

∂kfj(q) = δkj +

⎛
⎝ n∏

i=1,i �=k

qi

⎞
⎠ (aj − 1),

for every q belonging to the strategy space En and for every positive integers
j, k ≤ n, where δ represents the Kronecker delta.
More conveniently, we consider the following n-vectors:

– firstly, the vector
a′ := (a′

i)
n
i=1,

where
a′
i := 1 − ai

for every positive integer i ≤ n;
– secondly, the vector

v :=

⎛
⎝ n∏

i=1,i �=j

qi

⎞
⎠

n

j=1

,

in other terms, the component vj of the vector v is defined as the product
n∏

i=1,i �=j

qi,

for every positive integer j ≤ n.
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With the above convenient notations, we can finally write down the expression
of the Jacobian matrix as follows:

Jf (q) =
(
∂kfj(q)

)n
j,k=1

=
(
δkj − vka

′
j

)n
j,k=1

,

that is
Jf (q) =

[
ej − vja

′
]n
j=1

,

which is the matrix whose j-th column is the vector

ej − vja
′,

where the vector ej represents the j-th vector of the canonical basis e of Rn and
vja

′ is simply the product of the scalar vj times the vector a′.

4.3 The Jacobian Determinant

Now we can forwardly calculate the Jacobian determinant in two particular
cases, n = 2, n = 3. We put

bi := −a′
i = (ai − 1).

For n = 2, we obtain

Jf (q) =
(

b1q2 + 1 b1q1
b2q2 b2q1 + 1

)
=
(

b1v1 + 1 b1v2
b2v1 b2v2 + 1

)
,

and

det Jf (q) = b1q2 + b2q1 + 1
= b1v1 + b2v2 + 1
= 1 + (b|v)2,

where (b|v)2 represents the Euclidean scalar product of b times v in dimension
2. For n = 3, we obtain

Jf (q) =

⎛
⎝ b1q2q3 + 1 b1q1q3 b1q1q2

b2q2q3 b2q1q3 + 1 b2q1q2
b3q2q3 b3q1q3 b3q1q2 + 1

⎞
⎠

=

⎛
⎝ b1v1 + 1 b1v2 b1v3

b2v1 b2v2 + 1 b2v3
b3v1 b3v2 b3v3 + 1

⎞
⎠ ,

and

det Jf (q) = b1q2q3 + b2q1q3 + b3q1q2 + 1
= b1v1 + b2v2 + b3v3 + 1
= 1 + (b|v)3.
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More difficultly, we can calculate the determinant for the 4-dimensional case.
We obtain

Jf (q) =

⎛
⎜⎜⎝

b1q2q3q4 + 1 b1q1q3q4 b1q1q2q4 b1q1q2q3
b2q2q3q4 b2q1q3q4 + 1 b2q1q2q4 b2q1q2q3
b3q2q3q4 b3q1q3q4 b3q1q2q4 + 1 b3q1q2q3
b4q2q3q4 b4q1q3q4 b4q1q2q4 b4q1q2q3 + 1

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

b1v1 + 1 b1v2 b1v3 b1v4
b2v1 b2v2 + 1 b2v3 b2v4
b3v1 b3v2 b3v3 + 1 b3v4
b4v1 b4v2 b4v3 b4v4 + 1

⎞
⎟⎟⎠ ,

and

det Jf (q) = b1q2q3q4 + b2q1q3q4 + b3q1q2q4 + b4q1q2q3 + 1
= b1v1 + b2v2 + b3v3 + b4v4 + 1
= 1 + (b|v)4.

For the geneal case we claim the following result (presented also in [8]).

Theorem 1. Let (f,>) be the game determined by the strategy space

En = [0, 1]n

and payoff function defined by

f(q) =

(
qj − (1 − aj)

n∏
i=1

qi

)n

j=1

,

for every q belonging to En. Then, fixed q belonging to En, the Jacobian matrix
of the function f at q is the column-defined matrix

Jf (q) =
[
ej − vja

′
]n
j=1

,

where

– the vector ej represents the j-th vector of the canonical basis e of Rn;
– vja

′ is the product of the scalar vj times the vector a′;
– the vector a′ shows its i-th component as follows

a′
i := 1 − ai,

for every positive integer i ≤ n;

– the vector

v :=

⎛
⎝ n∏

i=1,i �=j

qi

⎞
⎠

n

j=1
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has the component vj defined as the product

vj =
n∏

i=1,i �=j

qi,

for every positive integer j ≤ n.

Moreover, the determinant of the Jacobian matrix is

det Jf (q) = 1 + (−a′|v),

where (−a′|v) is the Euclidean scalr product of −a′ times v.

Proof. The first part of the Theorem 1 (regarding the Jacobian matrix) has been
already proven in the previous Subsect. 4.2. For what concerns the determinant
part, the result follows immediately from the below Lemma1, by understanding
the vector b of the lemma in such a way that

Jf (q) = (vjb + ej)nj=1

with

b =

⎡
⎢⎢⎢⎣

−a′
1

−a′
2

...
−a′

n

⎤
⎥⎥⎥⎦ ; vj =

n∏
i�=j i=1

qi; ej = (δij)ni=1.

Now, we state and prove the fundamental lemma for the above Theorem1.

Lemma 1. Let b, v be two vectors in R
n and let

Λn(b, v) := det [ej + vjb]nj=1,

that is the determinant of the matrix

[ej + vjb]nj=1,

whose j-th column is the vector

ej + vjb,

where the vector ej represents the j-th vector of the canonical basis e of Rn and
vjb is the product of the scalar vj times the vector b. Then, we obtain

Λn(b, v) = 1 + (b|v)n,

where

(b|v)n =
n∑

i=1

bivi

is the Euclidean scalar product of b times v.
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Proof. Let
Λn(b, v) := Δ[ej + vjb]nj=1,

for every positive integer n be the determinants in our analysis, we shall prove
our Lemma 1 by recursion on n. The case for n = 2 is trivially true. Fixed a
positive integer n, let us assume the relation true for the case n− 1, we deduce:

Λn(b, v) = Δ
(
v1b + e1, v2b + e2, . . . , vnb + en

)
(7)

= Δ
(
v1b, v2b + e2, . . . , vnb + en

)
+ Δ
(
e1, v2b + e2, . . . , vnb + en

)
.

We need to calculate the above two determinants. For what concerns the second
one, we read

Δ
(
e1, v2b + e2, . . . , vnb + en

)
= Λn−1(b∗, v∗) = 1 +

n∑
i=2

vibi,

where:

– the vectors b∗, v∗ belong to the (n− 1)-Euclidean space and are defined to be
the sections of the vectors b, v respectively, by suppressing the first compo-
nents of both vectors b, v;

– the first equality holds true by the Laplace theorem for the expansion of a
determinant;

– the second equality holds true by recursion assumption.

Coming back to the principal formula 7 we finally obtain:

Λn(b, v) = Δ
(
v1b + e1, v2b + e2, . . . , vnb + en

)
= Δ
(
v1b, v2b + e2, . . . , vnb + en

)
+ Λn−1(b∗, v∗)

= Δ
(
v1b, v2b, v3b + e3, . . . , vnb + en

)
+Δ
(
v1b, e2, v3b + e3, . . . , vnb + en

)
+ Λn−1(b∗, v∗)

= v1v2Δ
(
b, b, v3b + e3, . . . , vnb + en

)
+Δ
(
v1b, e2, v3b, v4b + e4, . . . , vnb + en

)
+Δ
(
v1b, e2, e3, v4b + e4, . . . , vnb + en

)
+ Λn−1(b∗, v∗)

= 0 + v1v3Δ
(
b, e2, b, v4b + e4, . . . , vnb + en

)
+Δ
(
v1b, e2, e3, v4b + e4, . . . , vnb + en

)
+ Λn−1(b∗, v∗)

= 0 + 0 + . . . + 0 + Δ
(
v1b, e2, e3, e4, . . . , en

)
+ Λn−1(b∗, v∗)

= v1b1 + Λn−1(b∗, v∗)

= v1b1 + 1 +
n∑

i=2

vibi

= 1 + (v|b)n,
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where:

– the determinants

Δ
(
v1b, v2b, v3b + e3, . . . , vnb + en

)
= v1v2Δ

(
b, b, v3b + e3, . . . , vnb + en

)
,

Δ
(
v1b, e2, v3b, v4b+ e4, . . . , vnb+ en

)
= v1v3Δ

(
b, e2, b, v4b+ e4, . . . , vnb+ en

)
,

and so on are all vanishing because each of them shows two proportional
columns;

– on the other hand, the last determinant

Δ
(
v1b, e2, e3, e4, . . . , en

)
equals v1b1 because it is the determinant of a low triangular matrix, specifi-
cally the below matrix ⎛

⎜⎜⎜⎜⎜⎝

v1b1 0 0 . . . 0
v1b2 1 0 . . . 0
v1b3 0 1 . . . 0

...
...

...
. . .

...
v1bn 0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎠ .

So that, the proof is complete.

4.4 Critical Zone

The equation of the critical zone is

det Jf (q) = 0

that is

1 +
n∑

i=1

⎛
⎝ n∏

j=1,j �=i

qj

⎞
⎠ (ai − 1) = 0. (8)

In this way, we obtain the equation of a hyper-surface representing the critical
zone of the game. We could prove that a part of the above critical zone is a
subset of the maximal Pareto boundary. That information would be useful and
necessary to find the Kalai-Smorodinsky solution but we shall follow another
way to solve the Kalai decision problem.

4.5 Kalai-Smorodinsky Solution

We write the parametric equations of the straight line connecting, in the n
dimensional strategy space, the point a, of components (a1, a2, . . . , an), with the
payoff supremum point (1, 1, . . . , 1). We get:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
X1 = a1 + t(1 − a1),
X2 = a2 + t(1 − a2),

...
Xn = an + t(1 − an).

(9)
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where X = (X1, . . . , Xn) represents the generic vector payoff of the Kalai-
Smorodinsky straight-line. The corresponding locus in the strategy space, inverse
image of the straight-line by f , has parametric equations:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
f1(q) = a1 + t(1 − a1),
f2(q) = a2 + t(1 − a2),

...
fn(q) = an + t(1 − an).

(10)

By replacing the expressions of f1(q), . . ., fn(q), given in 6, we obtain:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q1 − (1 − a1)
∏n

i=1 qi = a1 + t(1 − a1),
q2 − (1 − a2)

∏n
i=1 qi = a2 + t(1 − a2),

...
qn − (1 − an)

∏n
i=1 qi = an + t(1 − an).

(11)

From the first equation of 11 we obtain
n∏

i=1

qi =
q1 − a1

1 − a1
− t.

So that, by eliminating the parameter t, the Eq. 11 are reduced to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q1 = q1

q2 = a2 +
1 − a2

1 − a1
(q1 − a1)

q3 = a3 +
1 − a3

1 − a1
(q1 − a1)

...

qn = an +
1 − an

1 − a1
(q1 − a1),

(12)

which are the Cartesian equations of the inverse image of the Kalai-Smorodinsky
straight-line.

In order to find the Kalai-Smorodinsky solution S, finally, we shall intersect
the above locus with the critical zone of the game: we substitute the expressions
12 in the Eq. 8 (representing the critical zone) and we find an equation of degree
n − 1 in the argument q1. If we succeed in finding a q1, by substitution in 12 we
get the entire percentage profile q∗ representing the strategy Kalai-Smorodinsky
solution of the problem.

By the vector q∗, we immediately find the effectiveness payoff f(q∗) by 6.

4.6 Symmetric Interference

In this subsection, we examine a particular case, relevant in the applications, of
symmetric interference among the interacting elements, that is the case in which
the vector a shows all the components equal to a particular value ā,

a = (ā, ā, . . . , ā).
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In this case, we obtain the solution in closed analytical form

q∗ = (q̄∗, q̄∗, . . . , q̄∗),

with
q̄∗ =

1
n−1
√

n(1 − ā)
.

5 Applications

5.1 An Application to Economics

The problem of finding the optimal quantities of goods to be produced in a
certain economy is well established in literature. The circumstance that the
demand for certain goods might be influenced by interaction with the demand
for other goods often plays a part in this problem. In some cases, a firm needs to
decide the production quantities of a product that can partially or completely
substitute other products (substitutability). In other cases, the effects of various
products may be synergic (complementary).

Let us consider, as a case of other nature, (cannibalization), the case of a
company producing two particular commodities (whose quantities are denoted
by q1 and q2), but which has just developed a new commodity ((whose quantity
is denoted by q3), the demand for which might negatively influence the demands
for q1 and q2. Let fi(q1, q2, q3) be the expected market payoff for the i-th product,
given the hypothesis in which quantities q1, q2 and q3 of the products are sold.
The decision regarding the quantities of the third product to sell depends on the
willingness to sacrifice part of the demand for the first two ones. This willingness
to cannibalize some products depends on various factors, examples being the
future market situation of the three products and a possible company desire
to place the third one at a strategic advantage in an emerging market. For
a detailed analysis of the factors influencing the willingness to cannibalize see
[5,27,28]. With the problem defined in these terms, the company can calculate
the optimal quantities to produce, applying the method here provided.

5.2 Further Applications

As studied by Carf̀ı et al. [9], this model can be used even in other sectors. For
instance, in Public Economics to calibrate differing economic policies that are
interfering with each other. There exist also other applications outside economics.
In Medicine, the balance of interfering drugs is usually performed by successive
approximations, keeping the patient monitored. Thus the decision on the first
dose is particularly delicate. Using this model, it is possible to establish the
optimal dosages in relation to the desired ratios between improvements in the
patient’s health with respect to various diseases, taking into account the minimal
needed quantity for each medicine.
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5.3 Literature Review

In this paper, we shall refer to a wide variety of literature. First of all, we
shall consider some papers on the complete study of differentiable games and
related mathematical backgrounds, introduced and applied to economic theories
since 2008 by Carf̀ı (see [6,7,19]) and by Carf̀ı et al. (see [1,4,20–26]). Specific
applications of the previous methodologies, also strictly related to the present
model, have been illustrated by Carf̀ı and Musolino in [10–18]. Other important
applications of the complete examination methodology were introduced by Carf̀ı
and coauthors: ([1,4,9,21–26]).

Finally, we observe that the standard literature on game theory does not
present algorithms devoted to the graphical representation and computation of
the payoff spaces, but essentially devoted to the determination of Nash equilibria,
their stabilities and their approximations.

6 Conclusive Remarks: Features of the Model

We desire to observe some conclusive remarks about our model.

– The model proposed here allows to calculate the optimal quantity percentages
of n elements that interfere with each other.

– Our differentiable methods allows to obtain, exactly, the compromise solu-
tion vector, in a Kalai-Smorodinsky setting, within a differentiable but not
necessarily convex decision problem.

– The extension to the case of payoff functions which are discontinuous or not
differentiable on a finite subset of a strategy space, appears possible by fixing
few technicalities.

– In our model we go deeply inside the previous two dimensional case, in order
to clarify our techniques and some aspects and to prepare the field to the
n-dimensional case, that constitutes the core of this paper.

– The compromise solution, that is the solution of our decision problem, is
determined, fixed the dimension of the problem, by an original algorithm
which can be applied with the chosen computational precision.

– The algorithm was written with the applicative software Matlab, obviously
based on the analytical methods proposed by Carf̀ı in [7].

7 Conclusions

The study proposed here:

– builds up a specific mathematical game model for n interacting elements;
– provides algorithms associated with the model;
– shows the optimal Kalai-Smorodinsky compromise solution n-tuples of active

principle quantity percentages in the game;
– examines a non-linear scenario with n possible interacting elements;
– the core section of the paper, completely studies the game in n-dimensions;
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– we find the critical zone of the game in its Cartesian form;
– we prove a theorem and a lemma about the Jacobian determinant of the

n-game;
– we write down the intersection of the critical zone and the Kalai-Smorodinsky

straight-line and we solve numerically the problem in every concave case;
– in a particular highly symmetrical case, we solve analytically the Kalai-

Smorodinsky compromise problem.

We solve the problem by using;

– the Carf̀ı’s payoff analysis method for differentiable payoff functions;
– algorithms for the finding of Kalai-Smorodinsky solutions;
– softwares for the determination of graphs in the two dimensional case.

Appendix 1: The Algorithm

Here the Matlab command list follows.

Kalai-Smorodinsky Solution in 2 Dimension

syms ( ‘ p ’ , ‘ q ’ , ‘ a ’ , ‘ b ’ )
f 1 = p∗(1−q)+ a∗p∗q ;
f 2 = q∗(1−p)+b∗p∗q ;
f = [ f 1 ; f 2 ] ;
v = [ p q ] ;
J = ja cob i an ( f , v )
D = de t ( J )
R = b+((1−b )./(1 −a ) ) . ∗ ( p−a)−q
K = s o l v e (D,R, p , q )
p = K. p
q = K. q

which provides:

J =
[ a∗q − q + 1 , a∗p − p ]
[ b∗q − q , b∗p − p + 1 ]

D = a∗q − q − p + b∗p + 1

R = b − q − ( ( a − p )∗ ( b − 1) )/ ( a − 1)

K =
p : [ 1 x1 sym ]
q : [ 1 x1 sym ]
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p = −(a − b + 1)/(2∗ b − 2)

q = −(b − a + 1)/(2∗ a − 2)

Numerical Sample in the Case n = 10

a1 = 0 ;
a2 = 0 . 0 1 ;
a3 = 0 . 0 3 ;
a4 = 0 . 032 ;
a5 = 0 . 034 ;
a6 = 0 . 0 4 ;
a7 = 0 . 041 ;
a8 = 0 . 043 ;
a9 = 0 . 048 ;
a10 = 0 . 3 ;

syms ( ‘ q1 ’ , ‘ q2 ’ , ‘ q3 ’ , ‘ q4 ’ , ‘ q5 ’ , ‘ q6 ’ , ‘ q7 ’ , ‘ q8 ’ , ‘ q9 ’ , ‘ q10 ’ )
f 1 = q1 −(1−a1 )∗ q1∗ q2∗ q3∗ q4∗ q5∗ q6∗ q7∗ q8∗ q9∗ q10 ;
f 2 = q2 −(1−a2 )∗ q1∗ q2∗ q3∗ q4∗ q5∗ q6∗ q7∗ q8∗ q9∗ q10 ;
f 3 = q3 −(1−a3 )∗ q1∗ q2∗ q3∗ q4∗ q5∗ q6∗ q7∗ q8∗ q9∗ q10 ;
f 4 = q4 −(1−a4 )∗ q1∗ q2∗ q3∗ q4∗ q5∗ q6∗ q7∗ q8∗ q9∗ q10 ;
f 5 = q5 −(1−a5 )∗ q1∗ q2∗ q3∗ q4∗ q5∗ q6∗ q7∗ q8∗ q9∗ q10 ;
f 6 = q6 −(1−a6 )∗ q1∗ q2∗ q3∗ q4∗ q5∗ q6∗ q7∗ q8∗ q9∗ q10 ;
f 7 = q7 −(1−a7 )∗ q1∗ q2∗ q3∗ q4∗ q5∗ q6∗ q7∗ q8∗ q9∗ q10 ;
f 8 = q8 −(1−a8 )∗ q1∗ q2∗ q3∗ q4∗ q5∗ q6∗ q7∗ q8∗ q9∗ q10 ;
f 9 = q9 −(1−a9 )∗ q1∗ q2∗ q3∗ q4∗ q5∗ q6∗ q7∗ q8∗ q9∗ q10 ;
f10 = q10 −(1−a10 )∗ q1∗ q2∗ q3∗ q4∗ q5∗ q6∗ q7∗ q8∗ q9∗ q10 ;

f = [ f 1 ; f 2 ; f 3 ; f 4 ; f 5 ; f 6 ; f 7 ; f 8 ; f 9 ; f10 ] ;
v = [ q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 ] ;
J = ja cob i an ( f , v ) ;
D = de t ( J ) ;
k = D;

A = subs ( k , q2 , ( a2+(1−a2)/(1−a1 )∗ ( q1−a1 ) ) ) ;
B = subs (A, q3 , ( a3+(1−a3)/(1−a1 )∗ ( q1−a1 ) ) ) ;
C = subs (B, q4 , ( a4+(1−a4)/(1−a1 )∗ ( q1−a1 ) ) ) ;
E = subs (C, q5 , ( a5+(1−a5)/(1−a1 )∗ ( q1−a1 ) ) ) ;
F = subs (E, q6 , ( a6+(1−a6)/(1−a1 )∗ ( q1−a1 ) ) ) ;
G = subs (F, q7 , ( a7+(1−a7)/(1−a1 )∗ ( q1−a1 ) ) ) ;
H = subs (G, q8 , ( a8+(1−a8)/(1−a1 )∗ ( q1−a1 ) ) ) ;
I = subs (H, q9 , ( a9+(1−a9)/(1−a1 )∗ ( q1−a1 ) ) ) ;
L = subs ( I , q10 , ( a10+(1−a10 )/(1−a1 )∗ ( q1−a1 ) ) ) ;
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K = so l v e (L , q1 )

q1 = K(1)
q2 = a2+(1−a2)/(1−a1 )∗ (K(1)−a1 )
q3 = a3+(1−a3)/(1−a1 )∗ (K(1)−a1 )
q4 = a4+(1−a4)/(1−a1 )∗ (K(1)−a1 )
q5 = a5+(1−a5)/(1−a1 )∗ (K(1)−a1 )
q6 = a6+(1−a6)/(1−a1 )∗ (K(1)−a1 )
q7 = a7+(1−a7)/(1−a1 )∗ (K(1)−a1 )
q8 = a8+(1−a8)/(1−a1 )∗ (K(1)−a1 )
q9 = a9+(1−a9)/(1−a1 )∗ (K(1)−a1 )
q10 = a10+(1−a10 )/(1−a1 )∗ (K(1)−a1 )

f 1 = q1 −(1−a1 )∗ q1∗ q2∗ q3∗ q4∗ q5∗ q6∗ q7∗ q8∗ q9∗ q10
f2 = q2 −(1−a2 )∗ q1∗ q2∗ q3∗ q4∗ q5∗ q6∗ q7∗ q8∗ q9∗ q10
f3 = q3 −(1−a3 )∗ q1∗ q2∗ q3∗ q4∗ q5∗ q6∗ q7∗ q8∗ q9∗ q10
f4 = q4 −(1−a4 )∗ q1∗ q2∗ q3∗ q4∗ q5∗ q6∗ q7∗ q8∗ q9∗ q10
f5 = q5 −(1−a5 )∗ q1∗ q2∗ q3∗ q4∗ q5∗ q6∗ q7∗ q8∗ q9∗ q10
f6 = q6 −(1−a6 )∗ q1∗ q2∗ q3∗ q4∗ q5∗ q6∗ q7∗ q8∗ q9∗ q10
f7 = q7 −(1−a7 )∗ q1∗ q2∗ q3∗ q4∗ q5∗ q6∗ q7∗ q8∗ q9∗ q10
f8 = q8 −(1−a8 )∗ q1∗ q2∗ q3∗ q4∗ q5∗ q6∗ q7∗ q8∗ q9∗ q10
f9 = q9 −(1−a9 )∗ q1∗ q2∗ q3∗ q4∗ q5∗ q6∗ q7∗ q8∗ q9∗ q10
f10 = q10 −(1−a10 )∗ q1∗ q2∗ q3∗ q4∗ q5∗ q6∗ q7∗ q8∗ q9∗ q10

which provides:

K =
0.7659

0.7119∗ i − 0.4900
− 0.2802∗ i − 0.8617
− 0.7119∗ i − 0.4900

0.8120∗ i + 0.0753
0.0753 − 0.8120∗ i

− 0.5308∗ i + 0.5705
0.5308∗ i + 0.5705
0.2802∗ i − 0.8617

q1 = 0.7659
q2 = 0.7682
q3 = 0.7729
q4 = 0.7734
q5 = 0.7739
q6 = 0.7753
q7 = 0.7755
q8 = 0.7760
q9 = 0.7771
q10 = 0.8361
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f 1 = 0.6834
f2 = 0.6865
f3 =0.6929
f4 = 0.6935
f5 = 0.6941
f6 = 0.6960
f7 = 0.6964
f8 = 0.6970
f9 = 0.6986
f10 = 0.7784

Appendix 2: Differentiable Games and Pareto Boundary

In this paper we use a general method introduced by one of the authors in [7]
and referred in literature as Complete Study of a Differentiable Game. Indeed,
in the great part of the current Game Theory literature, the study of a game
in normal form consists essentially in the determination of the Nash equilibria
(in mixed strategies) and in the analysis of their stability properties (see for
instance [2,3,29,30]). This approach cannot provide a complete and global view
of the game and of all its possible feasible solutions. Indeed, to figure out how
the game determines the interaction among the players, a deeper knowledge of
at least the payoff space of the game appears not only useful but mandatory. For
instance, it appears of the greatest interest to know the positions of the payoff
profiles corresponding to the Nash equilibria in the whole of the payoff space
of the game and the knowledge of these relative locations requires the knowl-
edge of the entire payoff space. The need of better knowing the general shape
of the payoff profile space becomes inevitable, when the problem to solve in the
game reveals a bargaining one, at least at the level of the maximal boundary of
the payoff space: in fact, the exact determination of bargaining solutions (com-
promise solutions) needs the analytical determination of the maximal Pareto
boundary. In the paper [7], Carf̀ı presented a general method to find an explicit
expression of the topological boundary of the payoff space of the game. In that
paper Carf̀ı followed the way shown in [6], in order to construct the theoretical
bases for Decisions in Economics and Finance by means of algebraic, topological
and differentiable structures.

Preliminaries and Notations

Here we reconsider, for convenience of the reader, the study conducted in the
paper [23]. In order to help the reader and increase the level of readability of the
paper, we recall some notations and definitions about n-player games in normal-
form, presented yet in [1,7]. Although the below definition seems, at a first sight,
different from the standard one (presented, for example, in [29]), we desire to
note that it is substantially the same; on the other hand, the definition in this
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new form underlines that a normal-form game is nothing but a vector-valued
function and that any possible exam or solution of a normal-form games attains,
indeed, to this functional nature.

Definition 1 (definition of a game in normal form). Let E = (Ei)ni=1

be an ordered family of non-empty sets. We call n-person game in normal-
form, upon the support E, each function f : ×E → R

n, where ×E denotes
the Cartesian product ×n

i=1Ei of the family E. The set Ei is called the strategy
set of player i, for every index i of the family E, and the product ×E is called
the strategy profile space, or the n-strategy space, of the game.

Remark 2. First of all we recall a standard form definition of normal-form game.

Definition 2. A strategic game consists of a system (N,E, f), where:

1. a finite set N (the set of players) of cardinality n is canonically identified
with the set of the first n positive integers;

2. E is an ordered family of nonempty sets, E = (Ei)i∈N , where, for each player
i in N, the nonempty set Ei is the set of actions available to player i;

3. f is an ordered family of real functions f = (fi)i∈N , where, for each player i
in N , the function fi : ×E → R is the utility function of player i (inducing a
preference relation on the Cartesian product ×E := ×j∈NEj (the preference
relation of player i on the whole strategy space).

Well, it is quite clear that the above system (N,E, f) is nothing but a redun-
dant form of the family f itself, which we prefer to consider in its vector-valued
functional nature

f : ×j∈NEj → R
n : x �→ (fi(x))i∈N .

Terminology. Together with the previous definition of game in normal form, we
need to introduce some terminologies:

– the set {i}ni=1 of the first n positive integers is said the set of players of the
game;

– each element of the Cartesian product ×E is said a strategy profile, or n-
strategy, of the game;

– the image of the function f , i.e., the set f(×E) of all real n-vectors of type
f(x), with x in the strategy profile space ×E, is called the n-payoff space, or
simply the payoff space, of the game f .

Moreover, we recall the definition of Pareto boundary whose main properties
have been presented in [6]. By the way, the maximal boundary of a subset T of
the Euclidean space R

n is the set of those s ∈ T which are not strictly less than
any other element of T .

Definition 3 (Pareto boundary). The Pareto maximal boundary of a game
f is the subset of the n-strategy space of those n-strategies x such that the corre-
sponding payoff f(x) is maximal in the n-payoff space, with respect to the usual
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order of the euclidean n-space R
n. If S denotes the strategy space ×E, we shall

denote the maximal boundary of the n-payoff space by ∂f(S) and the maximal
boundary of the game by ∂f (S) or by ∂(f). In other terms, the maximal bound-
ary ∂f (S) of the game is the reciprocal (inverse) image (by the function f) of the
maximal boundary of the payoff space f(S). We shall use analogous terminologies
and notations for the minimal Pareto boundary.

Remark 3 (on the definition of Pareto boundary). Also in the case of this defi-
nition, essentially the definition of maximal (Pareto) boundary is the standard
one, unless perhaps the name Pareto: it is nothing more that the set of maximal
elements in the standard pre-order set sense, that is the set of all elements that
are not strictly less than other elements of the set itself. The only circumstance
to point out is that the natural pre-order of the strategy set ×E is that induced
by the standard point-wise order of the image f(S) by means of the function f ,
that is the reciprocal image (Bourbaki’s term for inverse image) of the point-wise
order on f(S) via f .

The Method for C1 Games. In this paper, we deal with normal-form game
f defined on the product of n compact and non-degenerate intervals of the real
line, and such that f is the restriction to the n-strategy space of a C1 function
defined on an open set of Rn containing the n-strategy space S (which, in this
case, is a compact infinite part of the n-space R

n). Details can be found in
[7,20,21] but in the following we recall some basic notions.

Topological Boundary. The key theorem of our method is the following one,
we invite the reader to pay much attention to the topologies used below.

Theorem 2. Let f be a C1 function defined upon an open set O of the euclidean
space R

n and with values in R
n. Then, for every part S of the open set O, the

topological boundary of the image of S by the function f , in the topological
space f(O) (i.e. with respect to the relativization of the Euclidean topology to
f(O)) is contained in the union

f(∂OS) ∪ f(C),

that is
∂f(O)f(S) ⊆ f(∂OS) ∪ f(C),

where:

1. C is the critical set of the function f in S (that is the set of all points x of S
such that the Jacobian matrix Jf (x) is not invertible);

2. ∂OS is the topological boundary of S in O (with respect to the relative topology
of O).

We strongly invite the reader to see the definitions and remarks about and
around Theorem 2 in [7,20,21,23].
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Abstract. The standard assumption in decision theory, microeconomics
and social choice is that individuals (consumers, voters) are endowed
with preferences that can be expressed as complete and transitive binary
relations over alternatives (bundles of goods, policies, candidates). While
this may often be the case, we show by way of toy examples that incom-
plete and intransitive preference relations are not only conceivable, but
make intuitive sense. We then suggest that fuzzy preference relations and
solution concepts based on them are plausible in accommodating those
features that give rise to intransitive and incomplete preferences. Tracing
the history of those solutions leads to the works of Zermelo in 1920’s.

1 Introduction

A basic concept in decision theory is that of rationality. While no decision the-
orist would maintain that all human behaviour is rational, most of them would
probably argue that rational behaviour provides a useful benchmark for evalu-
ating and explaining any kind of behaviour. In particular, if observed behaviour
is found to agree with the dictates of rationality, no further explanation is typi-
cally needed for it. It is behaviours that exhibit deviations from rationality that
require explanation. But what is then rational behaviour? The most precise def-
inition – due to Savage (1954) – is based on a simple choice situation involving
two alternatives, say, A and B. Suppose that the individual making the choice
has a strict preference over these two so that he/she (hereinafter he) strictly
prefers A to B. Choice behaviour is then called rational if it always, that is, with
probability 1, results in A being chosen (see also Harsanyi 1977). Of course,
we may encounter situations where the individual is physically prevented from
choosing A or by making him believe that A is not really available or that by
taking some new aspects of the situation into account, he does not prefer A to B
or something similar. These kinds of considerations are, however, irrelevant since
by suggesting that A is not available, the situation is no longer one involving a
choice. Similarly, if the individual is led to believe that he is actually preferring
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B to A, the “original” preference no longer holds. So, we may argue that the
definition holds at least as far as preference-based rationality is concerned. In this
setting it is quite straight-forward and trivial to argue that rational behaviour
aims at utility maximization since by assigning a larger utility value to A than
to B, we guarantee that preferences coincide with utility maximization.

Things get more complicated when the alternative set is expanded. The stan-
dard way to proceed is to impose conditions on preference relations that guaran-
tee that acting in accordance with preferences amounts to maximizing utilities.
In other words, one looks for properties that the preferences have to possess
in order for the choices made according to those preferences to be equivalent
to utility maximization by the chooser. In fact, the theory of choice under cer-
tainty, risk and uncertainty focuses precisely on those conditions. The standard
representation theorem (see e.g. Harsanyi 1977, 31) states that if the individual
is endowed with a continuous, complete and transitive weak preference relation
over the alternatives, then his choice behaviour – if it conforms with his prefer-
ences – can be represented as utility maximizing.1 In the following sections we
shall consider each one of these properties of preference relations in turn and
discuss their plausibility. Our aim is to show that under relatively general cir-
cumstances each one of them can be questioned. We shall thereafter endeavour
to show that fuzzy binary preference relations could provide a useful starting
point for modelling reason-based behaviour and a more plausible benchmark
than the traditional preference-based rationality.

2 Transitivity Assumption

It is common to assume that preferences are revealed by choices. This is, in fact,
stated in the definition of preference. In the world of empirical observations it
may, however, happen that a person may, for one reason or another, occasionally
choose B even though his preference is for A over B. It would, then, be more
plausible to translate the preference of A over B into a probability statement
according to which the probability of A being chosen by the person is larger than
the probability that B is chosen. Starting from this somewhat milder probability
definition of preference, we shall now consider the transitivity property. May
(1954) suggests that the appropriate definition of preference-based choice is one
that – in addition to choice probability – includes the alternative set considered
as well as the description of the experimental setting. In this framework the
preference for A over B is expressed as the following probability statement:

p(A|A,B,E) > p(B|A,B,E)

Here E denotes the experimental setup.
Suppose now that A is preferred to B and B is preferred to C. I.e.

p(A|A,B,E) > p(B|A,B,E) (1)
1 The weak preference of A over B means that A is regarded as at least as desirable

as B. Thus the weak preference relation is not asymmetric, while the strong one is.
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p(B|B,C,E) > p(C|B,C,E) (2)

Now, transitivity would require that Eqs. 1 and 2 imply that

p(A|A,C,E) > p(C|A,C,E) (3)

It is, however, difficult to associate this implication with rationality, since the
alternative sets considered are different in each Equation: in Eq. 1 it is {A,B}, in
Eq. 2 it is {B,C} and in Eq. 3 it is {A,C}. What May (1954, 2) argues is “that
transitivity does not follow from this empirical [probabilistic] interpretation of
preference, but must be established, if at all, by empirical observation.” This
point on which we completely agree leaves, however, open the possibility that
transitivity would be normatively compelling (even if empirically contestable).
Our position is stronger here: while we agree that there are circumstances where
transitivity seems normatively plausible2, there are others where it is not. Hence,
defining rationality so that transitivity of preferences is a necessary part of it, is
not acceptable in our view.

The reason is rather straight-forward. The grounds for preferring A over B
might well be different from those used in ranking B ahead of C. Hence, it
is purely contingent whether these or other grounds are used in preferring C
to A or vice versa. Alternatively, the decision maker may use several criteria
of “performance” of alternatives. Each of these may result in a complete and
transitive relation over alternatives, but when forming the overall preference
relation on the basis of these rankings, the decision maker may well end up with
an intransitive relation. Consider a fictitious example.

Three universities A, B and C are being compared along three criteria:
(i) research output (scholarly publications), (ii) teaching output (degrees), (iii)
external impact (expert assignments, media visibility, R&D projects, etc.)

Publications Teaching External impact

A B C

B C A

C A B

Assuming that each criterion is of roughly equal importance, it is natural
to form the overall preference relation between the universities on the basis of
the majority rule: which one of any two universities is ranked higher than the
other by a majority of criteria is preferred to the latter. In the present example
this leads to a cycle: A � B � C � A � . . .. Hence, intransitive individual
preference relations can be made intelligible by multiple criterion setting and
majority principle (cf. Fishburn 1970; Bar-Hillel and Margalit 1988).

2 E.g. in preferences over monetary payoffs.
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3 Completeness Assumption

The completeness of weak preference relation entails that for any pair (A,B) of
alternatives either A is preferred to B or vice versa or both. Stated in another
way, completeness means that it cannot be the case that A is not preferred to B
and B is not preferred to A. In the following we show that there is nothing unnat-
ural or irrational in situations where there are grounds for saying that neither A
is preferred to B nor B is preferred to A. Perhaps the simplest way to show this
is via a phenomenon known as Ostrogorski’s paradox. It refers to the ambiguity
in determining the popular preference among two alternatives (Daudt and Rae
1978). In the following we recast this paradox in an individual decision-making
setting. The nominating individual is to make a choice between two alternatives
A and B, e.g. applicants to the chair of economics in a university. Three types
of merits are deemed of primary importance for this office, viz. research merits,
teaching skills and ability to attract external funding to the university. The nom-
inating individual received advice from three other individuals: one representing
the peers (i.e. other economics professors), one representing the students of eco-
nomics and one representing the university administration. The following table
indicates the preferred applicant of each representative on each area of merit.
Thus, e.g. applicant A has a preferable research record according to the peers
than applicant B. Similarly, the representative of the administration deems B
preferable in each merit area.3

Merit area Research Teaching Funding potential Row choice

Advisor 1 A B A A

Advisor 2 A A B A

Advisor 3 B B B B

Column

Choice A B B ?

Suppose now that the nominating individual forms his preference in a neutral
and anonymous manner, i.e. each merit area and each advisor is considered
equally important. It would then appear natural that whichever applicant is
deemed more suitable by more advisors than its competitor, is preferable in the
respective merit area. Similarly, whichever candidate is more suitable than his
competitor in more merit areas, is regarded as preferable by each advisor. Under
these assumptions the nominating individual faces a quandary: if the aggregation
of valuations is first done over columns – i.e. each advisor’s overall preference
is determined first – and then over rows – i.e. picking the applicant regarded
more appropriate by the majority of advisors – the outcome is that B cannot be
3 All preferences underlying the table are assumed to be strict. The composition of the

advisory body may raise some eyebrows. So, instead of these particular categories
of advisors, one may simply think of a body that consists of three peers.
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preferred to A. If the aggregations is performed in the opposite order – first over
rows and then over columns – the outcome is that A cannot be preferred to B.
Hence, the preference relation over {A,B} is not complete.

It should be observed that there is nothing arbitrary or irrational in the above
example. The use of expert information (advisors) or other evaluation criteria in
assessing applicants would seem quite natural way to proceed. Also, the task to
be performed by the successful applicant often has several aspects (merit areas)
to it. Similarly, the use of majority principle in determining the “winners” of
aggregation is quite reasonable, certainly not counterintuitive.

4 Continuity Assumption

Continuity axiom states that both the inferior and superior sets for any given
alternative are closed (Harsanyi 1977, 31). To elaborate this a little, consider a
set X of alternatives and an element x in it. Let now x1, x2, . . ., a sequence of
alternatives converging to x0, have the property that for each xi in the sequence,
x �j xi. In other words, individual j prefers x to each element of the sequence.
Then, continuity requires that x �j x0 as well. Similarly, continuity requires
that the sequence has the property that if xi �j x for each xi in the sequence,
then x0 �j x as well. The above pertains to infinite sequences. In finite ones,
continuity requires that small changes in the alternatives are accompanied with
small changes in their desirability.

Let us now see how continuity assumption translates into multiple-criterion
settings. We shall take advantage of Baigent (1987) fundamental result in social
choice theory. This result has subsequently been augmented, modified and gen-
eralized by Eckert and Lane (2002), Baigent and Eckert (2004), as well as by
Baigent and Klamler (2004). We shall, however, largely make use of the early
version (Baigent 1987). It states the following.

Theorem 1. Anonymity and respect for unanimity of a social choice function
cannot be reconciled with proximity preservation.

Proximity preservation is a property defined for social choice functions. It
amounts to the requirement that choices made in profiles more close to each
other ought to be closer to each other than those made in profiles less close
to each other. Profiles – it will be recalled – are n-tuples of preference rank-
ings over the set of alternatives (n being the number of individuals). What this
requirement intuitively means is that if we make a small modification in the
preference rankings, the change in the outcome of the social choice function
should be smaller than if we make a larger modification. Anonymity, in turn,
requires that relabelling of the individuals does not change the choice outcomes.
In multi-criterion setting anonymity means that permuting the criteria does not
change the outcome of evaluation. Respect for unanimity is satisfied whenever
the choice function agrees with a preference ranking held by all individuals, i.e.
if x �j y for all individuals j, then this will also be the social ranking between
x and y. In multi-criterion environment this amounts to the requirement that
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if all criteria suggest the same ranking of alternatives, then this ranking should
also be the outcome.

To illustrate the incompatibility exhibited by Baigent’s theorem, let us turn
again to the fictitious example of nominating the chair of economics. Suppose
that there are two applicants A and B. Moreover, only two criteria are being
used by the nominating authority: research merits (R) and teaching record (T).4

To simplify things, assume that only strict preferences are possible, i.e. each
criterion produces a strict ranking of the applicants. Four different configurations
of rankings (i.e. profiles) (S1, . . . , S4) are now possible:

S1 S2 S3 S4

R T R T R T R T
A A B B B A A B
B B A A A B B A

Let us denote the rankings in various configurations Smi where m is the number
of the configuration and i the criterion. We consider two types of metrics: one
that is defined on pairs of rankings and one defined on configurations. The former
is denoted by dr an the latter by dS . The number of criteria is N . The metrics
are related as follows:

dS(Sm, Sj) =
∑

i∈N

dr(Smi, Sji).

In other words, the distance between two configurations is the sum of distances
between the pairs of rankings of the first, second, etc. criterion.

Take now two configurations, S1 and S3, from the above list and express their
distance using metric dS as follows:

dS(S1, S3) = dr(S11, S31) + dr(S12, S32).

Since, S12 = S32 = A � B, and hence the latter summand equals zero, this
reduces to:

dS(S1, S3) = dr(S11, S31) = dr((A � B), (B � A)).

Taking now the distance between S3 and S4, we get:

dS(S3, S4) = dr(S31, S41) + dr(S32, S42).

Both summands are equal since by definition:

dr((B � A), (A � B)) =

dr((A � B), (B � A)).

Thus,
4 The argument is a slight modification of Baigent’s (1987, 163) illustration.
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dS(S3, S4) = 2 × dr((A � B), (B � A)).

In terms of dS , then, S3 is closer to S1 than to S4. This makes sense intuitively.
We now turn to procedures used in aggregating the information on criterion-

wise rankings into an overall evaluation or choice. Let us denote the aggregation
procedure by g. We make two intuitively plausible restrictions on choice pro-
cedures, viz. that they are anonymous and respect unanimity. In our example,
anonymity requires that whatever is the choice in S3 is also the choice in S4

since these two profiles can be reduced to each other by relabelling the crite-
ria. Unanimity, in turn, requires that g(S1) = A, while g(S2) = B. Therefore,
either g(S3) �= g(S1) or g(S3) �= g(S2). Assume the former. It then follows that
dr(g(S3), g(S1)) > 0. Recalling the implication of anonymity, we now have:

dr(g(S3), g(S1)) > 0 = dr(g(S3), g(S4)).

In other words, even though S3 is closer to S1 than to S4, the choice made
in S3 is closer to - indeed identical with - that made in S4. This argument rests
on the assumption that g(S3) �= g(S1). Similar argument can, however, easily be
made for the alternative assumption, viz. that g(S3) �= g(S2).

The example shows that small mistakes or errors in criterion measurements
are not necessarily accompanied with small changes in evaluation outcomes.
Indeed, if the true criterion rankings are those of S3, then a mistaken report
on criterion 1’s leads to profile S1, while mistakes on both criteria lead to S4.
Yet, the outcome ensuing from S1 is further away from the outcome resulting
from S3 than the outcome that would have resulted had more – indeed both
– criteria been erroneously measured whereupon S4 would have emerged. This
shows that measurement mistakes do make a difference. It should be emphasized
that the violation of proximity preservation occurs in a wide variety of aggrega-
tion systems, viz. those that satisfy anonymity and unanimity. This result is not
dependent on any particular metric with respect to which the distances between
profiles and outcomes are measured. Expressed in another way the result states
that in nearly all reasonable aggregation systems it is possible that a small num-
ber of measurement errors has greater impact on evaluation outcomes than a
big number of errors.

The theorem – when interpreted in the multiple-criterion choice context –
does not challenge completeness or transitivity of individual preferences, but calls
into question the continuity of preferences, i.e. their representation by smooth
utility functions.

5 Invoking Reasons

The upshot of the preceding is that all assumptions underlying the utility max-
imization theory can be questioned, not only from the descriptive accuracy but
also from the normative point of view. The deviations from the assumptions
described above are not unreasonable or irrational. In fact, it can be argued that
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they are just the opposite, viz. based on reasons for having opinions (cf. Dietrich
and List 2013). Incompleteness of preference relations as exhibited by Ostro-
gorski’s paradox is a result of a systematic comparison of alternatives using
a set of criteria and a set of aspects or dimensions or purposes (“functions”)
that the alternatives are associated with. There is a reason for the incomplete-
ness: simple majority rule gives different results when row-column aggregation
or column-row aggregation is resorted to. The simple majority rule is not the
sole culprit: the paradox can occur with super-majority rules as well. The point
is that one can build a plausible argument for the incompleteness under some
circumstances.

The same goes for intransitivity. The argument is, however, somewhat dif-
ferent in invoking reasons for having a given binary preference: the reason for
preferring A to B may differ from the one for putting B ahead of C and this,
in turn, may differ from the basis for preferring A to C or vice versa. As May
(1954) pointed out, the basic sets from which choices are made are different in
each of these three cases.

The eventual failure on continuity rests on yet another consideration. By
Baigent’s theorem any rule that is anonymous (does not discriminate for or
against alternatives) and respects unanimity (in agreeing with the ranking that
is identical on all criteria) can lead to discontinuities. One could argue that any
reasonable rule is prone to discontinuous utility representations.

To reiterate: the grounds for deviating from the assumptions of utility max-
imization are normative, not just descriptive. In other words, it makes perfect
sense to have preferences that deviate from the assumptions. The question now
arises: are there alternatives to these assumptions that could be used in ana-
lyzing individual choice behavior? In what follows we shall argue that there are
and, moreover, these alternatives provide adequate foundations for institutional
design.

6 Dealing with Incomplete, Intransitive and
Discontinuous Preferences

The most natural way of handling intransitive preference relations is to start
from complete relations and look for methods to aggregate them. This approach
has a long history. The most important of the early pioneers is Ernst Zermelo
(1929). The starting point is the concept of tournament, i.e. a complete and
asymmetric relation. With a finite (and small) number k of alternatives this can
conveniently be represented as a k × k matrix where the element aij on the ith
row and jth column equals 1 whenever ith alternative is preferred to the jth
one. Otherwise, the element equals 0.

Given an individual preference tournament we might be interested in forming
a ranking that would preserve the essential features of the tournament, while at
the same time augmenting it so that a complete and transitive relation emerges.
The latter might be necessary e.g. for aggregating individual preference infor-
mation to end up with a social ranking or choice. By the fundamental result of
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Edward Szpilrajn (1930) every partial order – that is a asymmetric and transitive
relation – has a linear extension. In other words, if the individual gives a prefer-
ence relation that is asymmetric (strict preferences only) and transitive, but not
complete (not all pairs of alternatives are comparable), then preference rankings
can be constructed that preserve those aspects provided by the individual. The
problem is that the resulting rankings are rarely unique. In fact, if x and y are
two non-comparable alternatives in the relation given by the individual, there
are rankings in which x � y and rankings in which y � x (Dushnik and Miller
1941). Thus, there seems to be no general way of extending a partial order into
a unique linear one.

However, it can be argued that tournaments put less structure into individual
preferences than partial orders.5 After all, they are complete and asymmetric, not
necessarily transitive. Over past decades many ways of translating tournaments
into rankings have been suggested. The usual way – called scoring method by
Rubinstein (1980) – is the straight-forward summing of row entries in the tour-
nament matrix whereby one ends up with si =

∑
j aij for each alternative i.

The ranking over the alternatives is then determined by the order of scores. The
resulting ranking is, of course, weak since several alternatives may receive the
same score.

The scoring method may, however, lead to an outcome ranking where a higher
rank is given to an alternative that is deemed inferior to one or several of the
lower ranked ones. Several methods to avoid this problem has been suggested.
Thus, for example, Goddard’s (1983) proposal is to choose those rankings that
minimize the number of times a binary preference between any two alternatives
is upset (i.e. reversed) in the outcome ranking.6 Upon closer inspection this pro-
posal turns out to be similar to Kemeny’s (1959) rule. Viewed as a social choice
function this rule has a host of desirable properties (see, e.g. Nurmi 2012, 257).
It is, however, intended for finding the “closest” social ranking for any given
set of individual rankings over several alternatives. A function that – given a
set of individual preference tournaments – looks for the collective one that is
closest to the individual tournaments in a specific sense is – regrettably nowa-
days largely forgotten – Slater’s (1961) rule. It seems identical to the rule that
Goddard advocates. It works, as was already stated, on the basis of individual
tournaments, i.e. complete and asymmetric relations. It then generates all k!
complete and transitive relations (strict rankings) that can be obtained from
the k alternatives and converts them into tournament matrices. Each of these
generated matrices is then a candidate for the collective preference tournament
(i.e. the winning tournament). The winning tournament has the distinction that
it is closest to the individual tournaments in the sense that it requires the min-
imum number of changes from 0 to 1 or vice versa in individual opinions to be
unanimously adopted.

5 Admittedly, this claim rests on a specific intuitive concept of structure.
6 Goddard is not the first one to suggest this method. For earlier discussions, see

Kendall (1955) and Brunk (1960).
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The principle of Slater’s rule can, of course, be used in individual decision
making as well. To wit, given an individual preference tournament one generates
the tournaments corresponding to all k! preference rankings involving the same
number of alternatives. One then determines whether the individual tournament
coincides with one of them. If it does, then this gives us the ranking we are looking
for. Otherwise one determines which of the generated tournaments is closest to
the individual’s. The closest one indicates the ranking. It may happen that there
are several equally close tournaments and thus there may be several “solutions”.

Zermelo’s (1929) approach to tournaments is based on observations of chess
playing contests which often take the form of a tournament.7 Each player plays
against every other player several times. The outcome of each game is either
a victory of one player or a tie. We assume that the games are independent
binomial trials so that the probability of player i beating player j is pij . Zermelo
then introduces the concept Spielstärke, playing strength, denoted by Vi, that
determines the winning probability as follows:

pij =
Vi

Vi + Vj
.

The order of the Vi values is the ranking of the players in terms of playing
strength. Apparently player i is ranked no lower than player j if and only if
pij ≥ 1/2, i.e. players with greater strength defeat contestants with smaller
strength more often than not. Now, given the matrix A of results, i.e. a k × k
matrix of 0’s and 1’s denoting losses and victories of the alternatives represented
by the rows, Zermelo defines maximum likelihood estimates, denoted by vi, for
the playing strengths of players. Consider any k vector of strengths v. One can
associate with it the probability that the observed matrix A is the result of the
tournament when the strengths are distributed according to v. The probability
is the following:

p(v) =
∏

i,j

(
vi

vi + vj
).

and this is what is to be maximized. Conditions under which a unique maxi-
mizing vector of strengths can be found are discussed by Zermelo and found to
be rather general. A particularly noteworthy property of the Zermelo rankings
is that they always coincide with the rankings in terms of scores defined above.
So, were one interested in rankings only, the easy way to find them is simply
to compute the scores. However, the vi values give us more information about
the players than just their order of strength; it also reveals how much stronger
player i is when compared with player j.

7 The differences between Zermelo’s and Goddard’s approaches are cogently analyzed
by Stob (1985). Much of what is said in this and the next paragraph is based on
Stob’s brief note.
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Leaving aside now the game context and looking at Zermelo’s method from
the point of view of fuzzy systems, it is not difficult to envision a new inter-
pretation whereby the outcome matrix expresses the individual’s choice between
pairs of alternatives. The values Vi and their estimates vi can be viewed as values
of desirability of alternatives. A ranking based on desirability of alternatives is
certainly a worthy goal of inquiry and Zermelo’s approach gives us plausible way
to achieve it.8

The above remarks pertain to situations where we are given an individual
preference tournament and, for one reason or another, are looking for a ranking
that would best approximate it. It is, however, quite easy to envision situa-
tions where no ranking at all is required, but rather choice of a subset of “best
alternatives”. These kinds of situations have been dealt with elsewhere (see Aiz-
erman and Aleskerov 1995; Nurmi and Kacprzyk 1991; Kacprzyk and Nurmi
2000; Kacprzyk et al. 2008, 2009).

7 Concluding Remarks

We have attempted to show above that there are quite plausible reasons for
individuals to deviate from the behavior dictated by preference-based utility
maximization theory. Indeed, behavior based on reasons would seem to be par-
ticularly prone to these kinds of deviations. Rankings being the basic concept
underlying the maximization theory, our main conclusion is that alternatives
to ranking assumption already exist. One of these, individual preference tour-
nament, has been discussed at some length above. Of particular interest is the
re-discovery of Zermelo’s approach to tournaments since it provides a natural
link between directly observable pairwise choices and the underlying fuzzy notion
of desirability. It thus provides a method for estimating fuzzy preference degrees
for observational data.
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Abstract. A multicameral simple game is an intersection of a number
of simple games played by the same set of players: a coalition is winning
in the multicameral game if and only if it is winning in all the indi-
vidual games played. Examples include decision rules in multicameral
parliaments where a bill must be passed in all the houses of the parlia-
ment, and voting rules in the European Union Council where a winning
coalition of countries must satisfy two or three independent criteria. This
paper is a preliminary study of relations between the positions and power
indices of players in the “chamber” games and in the multicameral game
obtained as the intersection. We demonstrate that for any power index
satisfying a number of standard properties, the index of a player in the
multicameral game can be smaller (or greater) than in all the chamber
games; this can occur even when the players are ordered the same way
by desirability relations in all the chamber games. We also observe some
counterintuitive effects when comparing the positions and decisiveness of
players. However, as expected, introducing an additional chamber with
all the players equal (a one man - one vote majority game) to a com-
plete simple game reduces all the differences between the Shapley-Shubik
indices of players.

Keywords: Simple games · Multicameral voting · Complete games ·
Power indices · Reducing power inequalities

1 Introduction and Prerequisites

Multicameral voting systems are ubiquitous in contemporary politics. On the one
hand, multicameral (usually bicameral) voting is almost standard in parliaments.
Voters are formally individual MPs. However, because of the existence of political
parties and of party discipline during votes, it is usual to treat parties, each
having a number of representatives (= votes) in each chamber of the parliament,
as voters (players)1; a bill is passed if and when it is accepted by the required
majorities of votes in each chamber. In game theoretic language, the same players
– i.e., parties – play different weighted voting games in different houses of the
parliament and the final outcome of the game is determined by the outcomes
1 Of course, if some independent MPs are present, they also are voters.
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of all these voting games. On the other hand, in recent decades multicameral
voting has appeared in a different setting in which the “chambers” and the
representatives of players are virtual but the rules determining the group decision
are exactly the same and thus can be described by multicameral voting as well.
This is the case of voting systems in the European Union Council (formerly, the
Council of Ministers). Both under the Treaty of Nice and under the Lisbon Treaty
currently in force, a group of countries must fulfill a number of independent
criteria to enforce a joint decision. First, it must constitute a (qualified) majority
of the member countries, and second, it must represent a (qualified) majority
of the EU population. Additionally, under the Nice Treaty a third weighted
majority voting game was designed by assigning “political” weights to each state
and a threshold necessary for a coalition to become winning. Thus, we have had
a tricameral voting system and now we have a bicameral one2. In one chamber
each player – country – has one vote, in another the number of votes a country
possesses is proportional to its population, and in the third one, according to the
Treaty of Nice, the weights of each country were stipulated. Of course, no voting
in particular houses takes place, but if it comes to voting by the countries, the
decision is reached as if it took place.

Notice that, in contrast to parliaments, the EU voting rules did not evolve
naturally but have been designed and approved with the explicit purpose of
assigning to each country an amount of “power” acceptable to all EU member
states. This raises a question of whether, and how, adding another chamber with
specific weights of voters to an existing voting system can influence the voters’
positions in the system and, more specifically, their power. This paper collects
some observations and statements on this subject.

It is standard today to analyse voting power in the terminology of cooperative
games, and such an approach will also be used in this paper. In particular,
we shall speak of players instead of voters, having in mind that players are
parties or countries. Thus, let N = {1, 2, . . . , n} be a finite set of players and
let v be the characteristic function – any real function defined on the set of all
coalitions, i.e. all subsets of N , such that v(∅) = 0. The pair (N, v) is an n-person
cooperative game. Since n will normally be fixed in this paper, we shall identify
any cooperative game by its characteristic function, and usually write simply v
instead of (N, v).

An important subclass of cooperative games are weighted majority vot-
ing games (WMV games). An n-person WMV game is described by a system
[μ ; λ1, λ2, . . . , λn] of n + 1 real numbers such that ∀i λi > 0 and 0 < μ ≤ ΛN =

n∑

j=1

λj . The components λi are weights of the players, and μ is the required

2 Actually, the Lisbon voting system slightly differs from the bicameral one described
above because of an additional clause requiring every blocking coalition to consist
of at least four member states – i.e., making each group of at least 25 states (in
the EU-28) winning regardless of its population share. However, this modification is
indeed minor; in the EU-28, it only affects the status of 9 out of 3276 such groups
of countries.



42 M. Malawski

majority (quota); it is often assumed (in accordance with the term “majority”)
that μ > ΛN

2 . The system [μ ; λ1, λ2, . . . , λn] defines a weighted majority voting
game (N, v) with the characteristic function given by

v(S) =

{
1 when

∑
j∈S λj ≥ μ

0 when
∑

j∈S λj < μ
.

We shall also denote this game by [μ ; λ1, λ2, . . . , λn]. Clearly, many different
weights/quota systems define the same game (i.e. with the same characteristic
function); also, one can always select a system where all the weights and quota
are integers.

In particular, in a one man - one vote majority voting game all the players’
weights are equal to one and so v(S) = 1 if and only if S consists of no less than
μ players. The n-person one man - one vote MVG with quota μ will be denoted
by mn,μ.

Majority voting games, on the other hand, belong to a broader important
subclass of cooperative games – simple games. A game (N, v) is a simple game
if its characteristic function satisfies

1. for every coalition S ⊆ N v(S) = 0 or v(S) = 1,
2. v(N) = 1,
3. if S ⊆ T , then v(S) ≤ v(T ) (monotonicity).

Thus, in a simple game w, winning coalitions are those belonging to w−1(1),
and losing coalitions – those in w−1(0). A coalition is minimal winning in w if
it is winning in w but all its proper subsets are losing. For a given simple game
w, let us denote the sets of winning, losing and minimal winning coalitions in
w by W(w), L(w) and MW(w), respectively. It is obvious that any one of the
sets W(v), L(v) uniquely determines the game v, and it is easily proved that the
same is true for the set MW(v). We shall denote by Pn the set of all n-person

simple games, and by P∗ =
∞⋃

n=1

Pn the set of all simple games with a finite

number of players.
It is obvious that there are simple games which are not (weighted) majority

voting games, i.e., their characteristic function does not admit representation
by any weights system λ and quota μ. The reason is that a weights system
naturally orders the players according to their “strength”: the greater a player’s
weight, the more he can contribute to coalitions. In practice, however, it can
happen that one coalition finds it more worthwhile to incorporate player i than
player j but another coalition’s preference is the opposite. For instance, in a
parliament consisting of two chambers a party (or coalition) having a majority
in the upper house but short of a majority in the lower house by just one vote
finds an additional independent MP in the lower house useful but one in the
upper house useless, while a coalition with a majority in the lower house but
not in the upper house will see it exactly the opposite way. We thus see that a
“bicameral” simple game sometimes cannot be described as a WMV game.
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Formally, a simple game (N, v) is a multicameral voting game if it is the
intersection (minimum) of at least two weighted majority voting games with the
same sets of players. An intersection of two simple games (N, y) and (N, z) is
another simple game (N, y ∧ z) defined by

(y ∧ z) (S) = y(S) · z(S) = min (y(S), z(S)) ∀S ∈ N ,

and a simple game (N, v) is k-cameral if it is of the form

v = v1 ∧ v2 ∧ . . . ∧ vk

where vj = [μj ; λ1,j , λ2,j , . . . , λn,j ] for j = 1, 2, . . . k , that is, all the games
v1, v2, . . . , vk are weighted majority voting games. The interpretation is obvious:
a coalition S is winning in the game v if and only if it has the required majority in
each of the WMV games v1, v2, . . . , vk. These games can be viewed as separate
chambers in which each player 1, 2, . . . , n has some representation. (Obviously,
this representation can be null – this is the case for an independent MP in one
of the chambers or for a party which has no MPs in some chamber).

It is important to stress that this notion of multicamerality differs from that
studied by Felsenthal, Machover and Zwicker [3] who use this term for the situa-
tion in which the sets of players in each of the “houses” (weighted voting games)
are disjoint. Their notion can be interpreted as a very special case of each player
(party, country, ...) having representatives only in one chamber and, needless
to say, is of very limited practical importance. It would describe, for instance,
voting in the EU under a rule requiring both the majority of “old” members and
the majority of “new” members to vote for a motion for it to be accepted by the
Union.

A well-known theorem (see e.g. Taylor and Zwicker [6]) says that every simple
game is a multicameral voting game. However, the practical use of this result is
also limited because the proof requires a large number k of “chambers” – for an
arbitrary simple game v, it can be as large as #MW(v), much larger than the
number of players. A non-trivial open problem is finding the minimal number of
WMV games in the multicameral representation of any given simple game.

2 Desirability and Positions of Players in Multicameral
Games

In this section we discuss the relations between players’ rôles, or positions, in
the games played in individual chambers and in the multicameral game obtained
as the intersection of these games. We shall sometimes use the term “chamber
games” for the games v1, v2, . . . , vk whose intersection v = v1 ∧ v2 ∧ . . .∧ vk will
be discussed.

Let us first consider minimal winning coalitions.

Observation 1. Let v = v1 ∧ v2 ∧ . . . ∧ vk where v1, v2, . . . , vk are any simple
games on the same set of players (not necessarily WMV games). Then
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1.

MW(v) ⊇
k⋃

i=1

⎛

⎝MW(vi) ∩
⋂

j �=i

W(vj)

⎞

⎠

2. The inclusion can be strict: MW(v) \ ⋃k
i=1 MW(vi) �= ∅

3. If MW(v)\⋃k
i=1 MW(vi) �= ∅ and v1, v2, . . . , vk are WMV games, then there

exist two players i , j such that in some chamber games vl , vm (1 ≤ l,m ≤ k)
λi,l > λj,l and λi,m < λj,m.

Proof of 3. Let the coalition T be minimal winning in the game v1 ∧ v2 but
neither in v1 nor in v2. However, T must be winning in both v1 and v2. This
means that there exist players i, j ∈ T such that T \ {i} is winning in v1 and
T \ {j} in v2. These players must be distinct since otherwise T \ {i} = T \ {j}
would be winning in v1 ∧ v2, in contradiction with the assumption that T is
minimal winning. Thus, T \ {i} is losing in v2 and T \ {j} in v1, which in the
case of WMV games implies that λi,1 < λj,1 and λi,2 > λj,2.

Example 1. Take n = 5 and v1 = [12 ; 5, 5, 2, 2, 2], v2 = [12 ; 2, 2, 5, 5, 2]. Then
v = v1 ∧ v2 = [11 ; 3, 3, 3, 3, 1] and so there is only one coalition in MW(v),
namely S = {1, 2, 3, 4}, but it is neither minimal winning in v1 nor in v2.

The position of a player in a simple game is best described by his decisiveness.
Player i is decisive in coalition T in the simple game w if and only if w(T ) = 1
and w(T \ {i}) = 0, i.e. if the winning coalition T becomes losing when i leaves
it. For a weighted majority voting game w = [μ ; λ1, λ2, . . . , λn] this is equivalent
to two inequalities λT =

∑

j∈T

λj ≥ μ and λT −λi < μ. We shall denote by D(i, w)

the set of all coalitions in which i is decisive (in the game w). Intuitively, the
larger the set D(i, w), the stronger is the position of player i in w.

The following simple yet useful result shows how a player’s decisiveness in
the chamber games translates to decisiveness in the bicameral game.

Proposition 1. When v1, v2 are two simple games and v = v1 ∧ v2, then for
every player i

(a) D(i, v1) ∩ D(i, v2) ⊆ D(i, v) ⊆ D(i, v1) ∪ D(i, v2),
(b) both inclusions in (a) can be strict,
(c) D(i, v) = (D(i, v1) ∩ W(v2)) ∪ (W(v1) ∩ D(i, v2)).

The proofs are quite straightforward and are omitted.
A weakest possible position of a player is that of a null player who is not

decisive in any coalition, and the strongest one is being a dictator who is decisive
in all the coalitions to which he belongs. Formally, in a simple game w,

player i is a null player ⇔ D(i, w) = ∅ ⇔ ∀T⊆N w(T ) = w(T ∪ {i}),
player i is a dictator ⇔ ∀T⊆N (w(T ) = 1 ⇔ i ∈ T )

⇔ w({i}) = 1 and w(N \ {i}) = 0.
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Games with dictators are of relatively little interest because if there is a
dictator in a simple game, then all the other players are null players and the
game is uniquely determined. A slightly weaker position than the dictator’s is
that of a veto player who must belong to all winning coalitions (and thus is
decisive in each of them). In a simple game w,

player i is a veto player ⇔ ∀T⊆N (w(T ) = 1 ⇒ i ∈ T ) ⇔ i ∈ ⋂ W(v).

The following observations summarize the relations between dictators, veto play-
ers and null players in chamber games and in their intersection.

Observation 2. Let v = v1 ∧ v2 ∧ . . . ∧ vk where v1, v2, . . . , vk are any simple
games (again, not necessarily WMV games). Then

1. If player i is a dictator in some of the games v1, . . . , vk, then i is a veto player
in v.

2. If i is dictator in v, then i is also a dictator in some3 of the games v1, . . . , vk.

The proofs are obvious, using the definition of y ∧ z and the characterization of
a dictator player by (w({i}) = 1 and w(N \ {i}) = 0).

Observation 3. Let v1, v2, . . . , vk and v be as in Observation 2. Then

1. Player i is a veto player in v ⇔ i is a veto player in at least one of the games
v1, . . . , vk.

2. If i is a null player in all the games v1, v2, . . . vk, then i is a null player in v.
3. A null player in v may be non-null in all the games v1, v2, . . . vk.

Proof of 1. and 2. To prove the “only if” implication in 1., assume that i is not
a veto player in any of the games v1, . . . , vk. Then, for each game vj , there exists
a coalition Sj ∈ W(vj) such that i �∈ Sj . The coalition S = S1 ∪ S2 ∪ . . . ∪ Sk is
winning in v and does not contain player i, so i is not a veto player in v. The
“if” part of 1. and 2. are straightforward corollaries from the definition of y ∧ z.

Example 2. In the games v1, v2 and v of Example 1, player 5 is non-null in both
v1 and v2 (being decisive in the 3-person coalition with two largest players) but
is (the only) null player in v.

The positions of all the other players who are neither null nor veto players
are in-between – they are all “stronger” (more decisive) that any null player
and “weaker” than any veto player. Among themselves, they also can be often
compared according to their decisiveness. We shall say that in a simple game
(N,w) player i is
3 In general, it is not true that a dictator in v must be a dictator in every chamber

game: to see it, take v1 – the game in which player 1 is a dictator and v2 – the
game in which winning coalitions are exactly those containing player 1 or players 2
and 3. Then v = v1 ∧ v2 = v1 but clearly 1 is not a dictator in v2. However, the
above stronger implication holds when all the chamber games are assumed to be
superadditive, i.e. do not contain two disjoint winning coalitions.
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not weaker than player j ⇔ ∀T ��i,j w(T ∪ i) ≥ w(T ∪ j);
stronger than player j ⇔ ∀T ��i,j w(T ∪ i) ≥ w(T ∪ j)

and ∃T ��:i,j : w(T ∪ i) > w(T ∪ j).

This will be denoted by i �w j (i not weaker than j in w) and i �w j (i stronger
than j in w). The relation �w is the desirability relation introduced and studied
by Isbell [4]; the relation �w is the strict part of �w.

A simple game w is complete (Carreras and Freixas [2]) if its desirability
relation is complete, i.e. if for each pair of players i, j ∈ N at least one of i �w j
and j �w i is true. Obviously, all weighted majority voting games are complete,
but there are complete simple games which are not WMV games, and this is
precisely the effect of “multicamerality”. For instance, both the Nice game and
the Lisbon game in the EU Council are complete but cannot be represented as
single WMV games.

Concerning the connections between desirability relations in chamber games
and in their intersection, it turns out that being “not weaker” is inherited from
chamber games to the bicameral game, but being “stronger” is not.

Observation 4. Let v1, v2 be two simple games and let v = v1 ∧ v2. Then

1. If i �v1 j and i �v2 j , then also i �v j .
2. It is not true that ((i �v1 j and i �v2 j) ⇒ i �v j)).

Proof. To prove 1., assume the contrary: let i �v1 j and i �v2 j but not i �v j.
Then there must exist a coalition T ⊂ N such that i, j �∈ T , v(T∪i) = 0 and v(T∪
j) = 1. This means that the coalition T ∪ j is winning in both chamber games
v1 and v2, and T ∪ i is losing in at least one of these games, which contradicts
i �v1 j or i �v2 j. 2. is demonstrated by the following counterexample, obtained
as a slight modification of Example 1 by adding a null player 6 in both games
v1 and v2.

Example 3. Take n = 6, v1 = [16 ; 7, 7, 2, 2, 2, 1], v2 = [16 ; 2, 2, 7, 7, 2, 1] .
In both these games player 6 is null and player 5 is non-null, so 5 �v1 6 and
5 �v2 6. But both 5 and 6 are null players in v = v1 ∧ v2 = [34 ; 9, 9, 9, 9, 4, 2]
and so it is not true that 5 �v 6.

Remark 1. We have observed a number of “paradoxes” in multicameral games:
minimal winning coalitions in the multicameral game which are not minimal
winning in any of the chamber games, players that are non-null in all the cham-
ber games but null in the multicameral game, and two players being of equal
“strength” in the bicameral game despite one being stronger than the other in
both chamber games. On the other hand, all the examples in this section relied
on incompatible orderings of players in the chambers – one player having greater
weight than the other in one house but smaller in another house. It is therefore of
interest to check whether the above “paradoxes” indeed result from incompatible
orderings.
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We shall say that two simple games (N, v1) and (N, v2) have incompatible
orderings of players if there exists a pair of players i, j ∈ N such that

i �v1 j and j �v2 i .

In weighted voting games this amounts to the following (essential) inequalities
regarding weights:

λi,1 > λj,1 and λi,2 < λj,2.

If two complete simple games v1 and v2 do not have incompatible orderings of
players, we say that they have compatible orderings4. Notice that the compat-
ibility of orderings does not imply perfect concordance of desirability relations:
for instance, the equal desirability of all players (∀i, j (i �= j ⇒ i �w j)) is
compatible with any complete ordering of players.

Proposition 2. Let v = v1∧v2 with v1 and v2 being two complete simple games
with compatible orderings of players. Then every minimal winning coalition in
the bicameral game v is minimal winning in at least one of the games v1 , v2.

Proof. It was shown in the proof of Observation 1, part 3. that if the set MW(v)\
(MW(v1) ∪ MW(v2)) is nonempty, then for every coalition T in this set there
exist two distinct players i, j ∈ T such that T \ i is winning in v1 and losing in
v2, and T \ j is winning in v2 and losing in v1. This means that neither j �v1 i
nor i �v2 j. But if the games v1 and v2 are complete, then this is equivalent to
i �v1 j and j �v2 i, implying incompatible orderings of players in v1 and v2.

However, other paradoxes of players’ positions and “strength” can occur even
when the chamber games are complete and the orderings of players are compat-
ible. Examples 4 and 5 below demonstrate this for an even more restrictive case
when the chamber games are weighted majority voting games with the same
orderings of players’ weights.

Example 4. Take n = 4, v1 = [8 ; 7, 4, 2, 1] and v2 = [6 ; 4, 3, 2, 1]. Player 4 is non-
null both in v1 (being decisive in coalition with player 1) and in v2 (decisive in
coalition with players 2 and 3). However, in the game v1∧v2 = [8 ; 5, 3, 3, 1] player
4 does not belong to any minimal winning coalition (MW(v1 ∧ v2) = {12, 13})
and so is a null player. Notice that the desirability relations in both chamber
games are not just compatible but perfectly concordant: 1 � 2 ≈ 3 � 4.

Example 5. n = 6 , v1 = [29 ; 20, 8, 6, 5, 4, 2], v2 = [20 ; 9, 7, 6, 5, 2, 1].
Clearly, the orderings of players in both chamber games are compatible as results
from the orderings of their weights. Moreover, in both games player 5 is stronger
than player 6:

D(5, v1) = {125, 135, 145},D(6, v1) = {126} and
D(5, v2) = {2345, 23456},D(6, v2) = ∅.

4 If v1 and v2 are not complete, the lack of incompatibilities as defined above need
not have any meaningful consequences because the players can be incomparable.
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However, in the bicameral game v we have 6 �v 5 because both 5 and 6 are null
players. This game is given by MW(v) = {123, 124, 134} so it can be represented
e.g. as v = [15 ; 8, 4, 4, 4, 1, 1].

We thus see that, even if players’ rôles and desirability in chamber games
are compatible, these rôles and desirability can behave in a different way in
the multicameral game. Even when the chamber games are WMV games with
the same orderings of numbers of seats, a player who is non-null in all the
chambers can become null in the multicameral game, and a player i with less
seats in all the chambers than another player j – indeed, weaker than j in all
the chambers – can become as strong as j in the multicameral game (although
reverting the ordering is not possible, as noted in Observation 4.1.). This suggests
that numerical measures of players’ power in the multicameral game can also
differ from their counterparts in the chamber games. We explore this topic in
the next section.

3 Comparing Power Indices

Power indices are numerical measures of players’ “strength” in simple games,
widely applied in political science and in analyses of group decisions. Usually,
though not always, they are derived somehow from the players’ decisiveness. In
this section we show that multicameral voting also leads to some counterintuitive
effects in the behaviour of power indices.

Formally, a power index is any function p : P∗ →
∞⋃

n=1

Δn such that

∀n p(Pn) ⊂ Δn (where Δn = {x = (x1, . . . , xn) : x1, . . . , xn ≥ 0 ,∑n
j=1 xj = 1} is the n-dimensional probabilistic simplex), with the following

null player property:

(∀U w(U ∪ i) = w(U)) ⇒ pi(w) = 0 .

Thus, for every n, p assigns to each n-person simple game (N, v) a probabilistic
n-vector p(v) = (p1(v), . . . pn(v)) such that for every null player i in v, pi(v) = 0.
The components pj(v) are the power indices of the players and are intended to
measure their power in the game v. While assuming the null player property is
standard (a null player has no power), imposing normalization – i.e. the require-
ment that for every simple game (N, v)

∑n
j=1 pj(v) = 1 – is also common but

not universal in the literature since some authors also apply “absolute” (= non-
normalized) power indices.
Some other reasonable properties intuitively expected from a power index are:

Non-null player property: D(i, w) �= ∅ ⇒ pi(w) > 0.
Equal treatment property: (i �w j and j �w i) ⇒ pi(w) = pj(w).
Local monotonicity: i �w j ⇒ pi(w) ≥ pj(w).
Local strict monotonicity: i �w j ⇒ pi(w) > pj(w).
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All these properties point at players’ decisiveness as a basis for defining power
indices, and indeed most classical indices use it in some way. This holds, in
particular, for the two by far most commonly used indices – the Shapley-Shubik
index and the Banzhaf index.

The Shapley-Shubik index (Shapley value) [5] φ is defined by the formula

φi(N,w) =
∑

T∈D(i,w)

n!
(t − 1)!(n − t)!

where t = #T . The Banzhaf index [1] b is given by bi(N,w) =
d(i, w)∑n

j=1 d(j, w)
,

where d(i, w) = #D(i, w) is the number of player i’s swings in the game w.
It is well-known and straightforward to check that both these indices are

locally monotonic and locally strictly monotonic, and have the non-null player
and equal treatment properties.

What are the relations between the power indices of players in the chamber
games and in the resulting multicameral voting game? The observations made
in Sect. 2 suggest that some negative results should be expected. Indeed, it turns
out that the indices of a player in the chamber games do not provide bounds for
his index in the multicameral game; moreover, this holds for any index satisfying
some natural conditions.

Proposition 3. No power index p having the non-null player property fulfils the
inequality

∀v1,v2∈Pn
∀i=1,2,...,n pi(v1 ∧ v2) ≥ min (pi(v1), pi(v2)) .

This is a simple corollary from Observation 3.3. Moreover, Example 4 in the pre-
ceding section demonstrates that Proposition 3 also remains true when strenght-
ened by replacing Pn in its formulation by the smaller class of weighted majority
voting games with the same desirability relation among players.

Proposition 4. No locally strictly monotonic power index p with the equal treat-
ment property fulfils the inequality

∀v1,v2∈Pn
∀i=1,2,...,n pi(v1 ∧ v2) ≤ max (pi(v1), pi(v2)) .

The proof is by means of an example.

Example 6. n = 6 , v1 = [19 ; 5, 5, 5, 5, 3, 3] , v2 = [19 ; 5, 5, 5, 3, 5, 3] , v = v1∧v2.
In the game v the minimal winning coalitions are exactly all the 5-person coali-
tions, that is, v = m6,5 = [5 ; 1, 1, 1, 1, 1, 1]. From the equal treatment property,
p(v) =

(
1
6 , 1

6 , . . . 1
6

)
. On the other hand, local strict monotonicity together with

the equal treatment property imply

p1(v1) = . . . = p4(v1) > p5(v1) = p6(v1), and
p1(v2) = p2(v2) = p3(v2) = p5(v2) > p4(v2) = p6(v2),

so, since p is a normalized index, p1(v1) > 1
6 and p1(v2) > 1

6 , and p6(v1) < 1
6

and p6(v2) < 1
6 . Thus, p6(v1 ∧ v2) > max (p6(v1), p6(v2)).
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Notice that this example again relies on incompatible orderings of players in v1
and v2. We currently do not know whether it can be improved to involve chamber
games with compatible orderings violating the inequality in Proposition 4.

Corollary 1. A player’s power in a weighted multicameral voting game, as mea-
sured by the most canonical indices like the Banzhaf or Shapley-Shubik index, can
be greater (or smaller) than the same player’s power in each of the chambers.

This means, in particular, that some anomalies are possible when multicam-
eral simple games are designed for the purpose of making group decisions. A
player can become worse off (or better off) in terms of a power measure in the
multicameral game than he was in each of the chamber WMV games; the first
possibility is even present when the chamber games have compatible orderings.
This results from the behaviour of decisiveness and desirability, and in general
occurs independently of the power index used. The architects of multicameral
voting systems should take all this into account and carefully compute the play-
ers’ power in their products.

4 Reducing Power Inequalities by Adding a One Man -
One Vote Game

In this section we consider a particular case of a multicameral game in which
in one of the chambers a one man - one vote majority game is played. Since in
this chamber all players are equal, its existence could be expected to mitigate
power inequalities between players arising in other chamber(s)5. We show that
this is true at least when the game played outside this “egalitarian” chamber
is complete and the Shapley-Shubik index is applied to measure the power of
players.

For any simple game (N,w) and any natural number k ≤ n we shall denote

w|k = w ∧ mn,k

where mn,k is the n-person one man - one vote voting game with quota k. Thus,
w|k is derived from w by adding an extra criterion that every winning coalition
must contain at least k players.

Observation 5. The following properties of the games w|k are easy to verify:

1. if k ≤ c(w), where c(w) is the cardinality of the smallest winning coalition in
w, then w|k = w,

5 In particular, we presume that mitigating inequalities (together with pleasing small
countries) was precisely the purpose of including one country - one vote games in
both the Nice and Lisbon treaties. Given Theorem 1 in this section and the fact
that the games played in other “chambers” under voting rules in the EU Council
are complete, this operation definitely achieved its aim.
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2. w|n = mn,n – the unanimity game,
3. T ∈ D(i, w|k) ⇔ i ∈ T, T ∈ W(w) and either (T ∈ D(i, w) and #T > k) or

#T = k.

Theorem 1. Let (N, v) be any complete simple game, and let k, l be any two
integers such that 1 ≤ k < l ≤ n. Then for every pair of players i, j ∈ N

|φj(v|l) − φi(v|l)| ≤ |φj(v|k) − φi(v|k)| ≤ |φj(v) − φi(v|)| .

Proof. It is sufficient to prove that for pairs of neighbouring integers k, k + 1

|φj(v|k+1) − φi(v|k+1)| ≤ |φj(v|k) − φi(v|k)| (1)

and then to apply the obtained inequality repeatedly.
Let us fix two players i and j in v and assume without loss of generality that

i �v j (if neither i �v j nor j �v i, then i ≈v j because v is a complete game,
and all inequalities trivially reduce to equalities).

For any integer t ≤ n denote: Rt = n!
(t−1)!(n−t)! . In this notation, the Shapley-

Shubik index takes the form φi(N, v) =
∑

T∈D(i,v) Rt where t = #T . For brevity,
we assume that all the sums below are taken only over coalitions including player
i. Applying Observation 5.3., we have for any player i

φi(v|k) − φi(v|k+1) =

=
∑

T :t=k,T∈W(v)

Rt+
∑

T :t>k,T∈D(i,v)

Rt−
⎛

⎝
∑

T :t=k+1,T∈W(v)

Rt+
∑

T :t>k+1,T∈D(i,v)

Rt

⎞

⎠

=
∑

T :t=k,T∈W(v)

Rk +
∑

T :t=k+1,T∈D(i,v)

Rk+1 −
∑

T :t=k+1,T∈W(v)

Rk+1

= Rk ωi,k − Rk+1 νi,k+1

where
ωi,k = #{U : i ∈ U, #U = k and U ∈ W(v)}

and
νi,k+1 = #{U : i ∈ U, #U = k + 1 and U ∈ W(v) \ D(i, v)}.

Similarly, φj(v|k) − φj(v|k+1) = Rk ωj,k − Rk+1 νj,k+1. Now it is not difficult to
see that if i �v j, then for any integer k ≤ n

ωi,k ≥ ωj,k and νi,k ≤ νj,k

– a stronger player belongs to at least as many winning coalitions of a given size
as a weaker one, and to at most as many winning coalitions of a given size in
which he is not decisive as a weaker one (these remain winning also if he leaves).
Thus, φi(v|k) − φi(v|k+1) ≥ φj(v|k) − φj(v|k+1) and so

φi(v|k) − φj(v|k) ≥ φi(v|k+1) − φj(v|k+1).
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Both differences in the above must be nonnegative since i �v|k j in all games v|k.
This proves (1). Moreover, φi(v|n) = φj(v|n) since v|n = mn,n, and φi(v|c(v)) >
φj(v|c(v)) since v|c(v) = v, i �v j, and the Shapley-Shubik index is locally strictly
monotonic. This implies that for some k the inequality must be strict. ��
Remark 2. The same argument can be repeated when a player’s Shapley-Shubik
index is replaced by his number of swings, d(i, w). This, however, does not imply
an analogue to Theorem 1 for the Banzhaf index because of the normalization
involved in its computation. We suspect that in some cases adding a chamber
with a one man - one vote game might increase differences between Banzhaf
indices of some players but we do not have a counterexample.

Remark 3. Another interesting open problem is whether Theorem 1 is also true
in the more general case when the game v is not complete. Such a result would be
attractive because it would imply that adding a chamber with all players equal
is a universal tool mitigating power inequalities between players. We believe that
this may be true but have no proof; in any case, the method used in our proof
of Theorem 1 does not work for incomplete games.
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Abstract. The most important problem in a practical implementation
of degressive proportionality is its ambiguity. Therefore, we introduce an
order relation on a set of degressively proportional allocations. Its main
idea is to define greater allocations such that emerge from other after
transferring a certain quantity of goods from smaller to greater entities
contending in distribution. Thus, maximal elements in this ordering are
indicated as the sought-after solution sanctioning boundary conditions
as the only reason of moving away from the fundamental principle of
proportionality. In case of several maximal elements the choice of one
allocation remains an open issue, but the cardinality of the set from
which we make a choice can be reduced significantly. In the best-known
example of application of degressive proportionality, which is the appor-
tionment of seats in the European Parliament, the considered set contains
a maximal element. Thereby, there exits an allocation that is nearest to
the proportional distribution with respect to transfer relation.

Keywords: Allocation · Degressive proportionality · Transfer order

1 Introduction

A problem of fair distribution is approached by several disciplines of science in
different perspectives. The issue is of interest to philosophers, sociologists, math-
ematicians, politicians and economists, since there is no unambiguous answer to
the question of fairness of a distribution. The answer depends on many factors,
with cultural environment in the first place. The concept of fairness in Europe
has been formed by Aristotelian principle of proportionality. According to this
principle each entity participating in distribution of goods should be allocated a
quantity proportional to the value of the entity (participants). The value of enti-
ties can be perceived in many ways. In the area of electing political representation
it is typically the number of population in an electoral district. When deciding
on various issues in joint-stock companies it is capital holdings evidenced by the
number of shares owned by shareholders. When determining taxes it is either
income or wealth of a given entity.

c© Springer International Publishing AG 2017
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A rule of proportional allocation however, is not perceived, even in Europe,
as the unique solution to the problem of a fair distribution. In particular, its
application can be disapproved when the values of participants differ a lot. In
such a case the large value of entities can take unfair advantage and be criticized
as socially unjust. This problem can be solved by assuming that the entities with
greater value reduce their demands for the benefit of entities with smaller value.
Thus a classical proportion is distorted for the sake of increasing the portions
allocated to those participants whose proportional shares are smallest, at the
cost of those with greater shares.

One possible implementation of the mentioned idea is a degressively pro-
portional rule stating that a greater participants cannot be allocated less than a
smaller participants, but the quotient of the amount of a good to the participants
value cannot increase with the increase of their value.

Definition 1. A positive vector of shares S = (s1, s2, . . . , sn) is degressively
proportional with respect to positive, nondecreasing sequence of values (demands,
claims) P = (p1, p2, . . . , pn) if s1 ≤ s2 ≤ . . . ≤ sn and p1/s1 ≤ p2/s2 ≤ . . . ≤
pn/sn.

Let us also introduce: s1 = m, sn = M ,
∑n

i=1 si = H. These three equalities
will be henceforth called boundary conditions. In case of degressively propor-
tional allocation they determine the upper and lower bounds for the quantities
of goods allocated to participants, and the total quantity of goods.

The most important problem in a practical implementation of degressive
proportionality is its ambiguity. Even if we determine the total quantity of an
allocated good H, the number of vectors that are degressively proportional with
respect to a given sequence of claims can be infinite; an outcome certainly dif-
ferent from the unambiguous solution provided by the rule of proportional allo-
cation. Ambiguity of proportional distribution (allocation) emerges once we dis-
tribute indivisible goods, because indivisibility requires si to be expressed as
natural numbers, thus rounding is necessary, which can be understood in many
ways ([7]). In case of divisible goods a sequence of quota Q = (q1, q2, . . . , qn),
qi = piH∑n

i=1 pj
, is a unique solution satisfying the rule of proportional distribution.

In this paper, we consider only degressively proportional apportionments in
whole numbers with boundary conditions. The problem of ambiguous solutions
however is not made simpler. Assuming that s1 = m, sn = M and

∑n
i=1 si = H,

we only ensure that the set

DP (P,m,M,H) =
{

(s1, s2, . . . , sn) : s1 = m ≤ s2 ≤ . . . sn = M,

p1
s1

≤ p2
s2

≤ . . .
pn
sn

,
n∑

i=1

si = H
}

of all vectors with natural elements, that are degressively proportional with
respect to a vector (p1, p2, . . . , pn), has a finite number of elements. The number
of elements in this set can be arbitrarily large; therefore we have to select one
out of many possible allocations.
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A natural way to obtain uniqueness is by reference to a fundamental principle
of distribution, i.e. to proportional allocation. Considering the boundary condi-
tions one can assume that they are the only factors, which lead to a degressively
proportional distribution, and that is why one should seek a solution in the set
DP (P,m,M,H) that is nearest to the sequence of quota generated by propor-
tional distribution. In addition, after the boundary conditions are determined,
an actual solution can be anticipated. In view of the practice where the bound-
ary conditions are often negotiated among participants, we should consider this
interpretation as leading to a compromise.

Allocation of seats in the European Parliament is a practical implementation
of division consistent with this idea. The rule itself is stated in the Treaty of
Lisbon: “The European Parliament shall be composed of representatives of the
Union’s citizens. They shall not exceed seven hundred and fifty in number, plus
the President. Representation of citizens shall be degressively proportional, with a
minimum threshold of six members per Member State. No Member State shall be
allocated more than ninety-six seats” ([9]). The resolution issued by the European
Parliament in 2007 specifies among other that “the minimum and maximum
numbers set by the Treaty must be fully utilised to ensure that the allocation
of seats in the European Parliament reflects as closely as possible the range
of populations of the Member States” ([5]). A natural interpretation of these
words shows that legislators propose to determine an allocation that is nearest
to proportional as a result of degressively proportional approach with boundary
conditions m = 6, M = 96, H = 751.

Now we need to formally comprehend nearness of a division with respect to a
proportional distribution. The literature includes at least two groups of proposals
to solve this problem. First, the application of known methods of proportional
allocation exemplified by the Cambridge Compromise ([2,3]) and maxprop ([1]).
Second, the application of elements of operation research that seek an optimum
on the set DP (P,m,M,H) with respect to some criterion (see [6,8]).

In this paper, we propose an approach to finding a solution that differs sig-
nificantly from the above mentioned. We introduce an order relation on the set
DP (P,m,M,H), which is consistent with required proportionality. The main
idea of this ordering is to define greater allocations, i.e. such that emerge from
other after transferring a certain quantity of goods from smaller to greater enti-
ties contending in distribution. Maximal elements in this ordering are indicated
as the sought-after solution thus sanctioning boundary conditions as the only rea-
son of moving away from the fundamental principle of proportionality. Maximal
allocations in this ordering have the property that entities with greater values
minimally reduce their claims subject to constraints imposed by the definition
of the set DP (P,m,M,H).

2 Transfer Order

Boundary conditions can be the reason why all elements of the set
DP (P,m,M,H) are distant from the proportional distribution. The more
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distant the values of m and M are from the quota allocated to the smallest
( p1H∑n

i=1 pi
) and greatest ( pnH∑n

i=1 pi
) participant, the more remarkable such outcome

is.

Example 1. For given P = (10, 20, 50, 70), H = 15, m = 2, M = 5 a
proportional distribution is assured by the vector (1, 2, 5, 7). On the other
hand, a set of all degressively proportional distributions has two elements:
DP

(
(10, 20, 50, 70), 2, 5, 15

)
= {(2, 4, 4, 5), (2, 3, 5, 5)}.

The three greatest participants in Example 1 are allocated at least the quan-
tity of goods in each degressively proportional distribution as under proportional
distribution. This happens, of course, at the expense of the subsequent, fourth,
greatest contender. The size of this loss and also the gain of the entity with
the smallest value are defined by the boundary conditions m = 2 and M = 5.
The two remaining participants can receive either four units of good each or the
smaller one – three units, and the greater – five. Therefore a question arises as to
which allocation is nearer to the proportional distribution. It is easily seen that
in case of the first solution s2 = 2q2 holds, i.e. the second participants is allocated
twice its proportional share, whereas s3 < q3, which implies that this participant
does not benefit if we change the allocation rule from proportional to degres-
sively proportional. We also have S∗ = S + (0,−1, 1, 0), where S = (2, 4, 4, 5)
and S∗ = (2, 3, 5, 5). These relationships can be interpreted accordingly that the
allocation S∗ means we take one unit of a distributed good from the second and
give it to the third participant. Thus it is a transfer of good from a smaller to a
greater one. If we wish to come near a proportional allocation as much as pos-
sible, the principle of degressively proportional apportionment requires that we
transfer as many units of goods as possible from entities with smaller values to
entities with greater values. The following two definitions formalize this concept.

Definition 2. The set of positive transfers is defined as

TR+ =
{

(t1, t2, . . . , tn) :
n∑

i=1

ti = 0,

k∑

i=1

ti ≤ 0 for k = 1, . . . , n
}

,

whereas its elements are called transfers.

Definition 3. A positive transfer relation on a nonempty set DP (P,m,M,H)
is called a relation ≤TR+ such that

S ≤TR+ S∗ ⇐⇒ (∃T ∈ TR+, S∗ = S + T ).

The relationship
∑n

i=1 ti = 0 (in Definition 2) ensures that the vectors S and
S∗ (in Definition 3) have the equal sums of their elements, hence they represent
the allocations of the same quantity of goods. The relationship

∑k
i=1 ti ≤ 0

shows the direction of transfers – from smaller to greater entities. It follows
from Definition 1 that undervaluation of entities (under degressively proportional
distribution) does not decrease along with the increase of their sizes. Thus, if we
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want to obtain the allocation, which is nearest to the proportional, the transfer
of goods in this direction is right.

Henceforth, instead of a positive transfer relation, we shall briefly refer to a
transfer relation. With the data from Example 1 we have S∗ = S + T , where
T = (0,−1, 1, 0) ∈ TR+, hence S ≤TR+ S∗ holds.

A transfer relation can be employed to comparisons of degressively propor-
tional distributions with respect to their nearness to the proportional distribu-
tion. It is a result of the following proposition.

Proposition 1. Relation ≤TR+ is a partial order relation.

Proof. Reflexivity. For each S ∈ DP (P,m,M,H) holds S = S + θn, where
θn = (0, 0, . . . , 0), thus we have S ≤TR+ S.

Antisymmetry. Let S ≤TR+ S∗ and S∗ ≤TR+ S, then S∗ = S + T1 and
S = S∗ + T2 hold for certain T1, T2 ∈ TR+. Hence we have S = S + T1, or T1 =
−T2. As the elements of vectors T1 and T2 are non-positive, then T1 = T2 = θn
must hold, thereby S = S∗.

Transitivity. Let S ≤TR+ S∗ and S∗ ≤TR+ S∗∗, then there exist such
T1, T2 ∈ TR+ that S∗ = S + T1 and S∗∗ = S∗ + T2 hold. Therefore, we have
S∗∗ = S + (T1 + T2). Let T1 = (t1,1, t1,2, . . . , t1,n) and T2 = (t2,1, t2,2, . . . , t2,n)
and we need to show that T1 + T2 ∈ TR+. Since

∑n
i=1 t1,i = 0,

∑k
i=1 t1,i ≤ 0

and
∑n

i=1 t2,i = 0,
∑k

i=1 t2,i ≤ 0 hold for k = 1, . . . , n, then we have
∑n

i=1(t1,i +
t2,i) = 0 and

∑k
i=1(t1,i + t2,i) ≤ 0, which means that T1 + T2 ∈ TR+. Hence we

obtain S ≤TR+ S∗∗. ��
Relation ≤TR+ orders the set of degressively proportional apportionments.

As a consequence of the previous analysis, if S ≤TR+ S∗ holds, then we acknowl-
edge that S∗ is nearer to the proportional allocation than S. On the other
hand, relation ≤TR+ does not linearly order a set of degressively proportional
distributions.

Proposition 2. Transfer relation is not a linear order.

Proof. It is shown by a counterexample. There is given a set DP (P,m,M,H),
where P = (100, 200, 350, 350, 560, 840, 945), m = 2, M = 9 and H = 40. On this
basis, we have DP (P,m,M,H) = {A,B,C,D}, where A = (2, 3, 5, 5, 8, 8, 9),
B = (2, 4, 5, 5, 6, 9, 9), C = (2, 3, 5, 5, 7, 9, 9) and D = (2, 4, 5, 5, 7, 8, 9). The
corresponding Hasse diagram is given in Fig. 1.

Allocations A and B are incomparable under relation ≤TR+ , since A − B =
T = (0,−1, 0, 0, 2,−1, 0) and

∑5
i=1 = 1 > 0. ��

As a consequence of Proposition 2, the degressively proportional allocations
from the given partially ordered set (poset)

(
DP (P,m,M,H),≤TR+

)
can be

incomparable in some cases. Thus, we are not able to determine which relation
from incomparable ones is nearer to the proportional allocation. But we are
interested precisely in such allocation, which is the nearest one to the propor-
tional allocation (with respect to a transfer order). If it exists, it is the greatest
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Fig. 1. A Hasse diagram for A = (2, 3, 5, 5, 8, 8, 9), B = (2, 4, 5, 5, 6, 9, 9),
C = (2, 3, 5, 5, 7, 9, 9) and D = (2, 4, 5, 5, 7, 8, 9)

element of the poset
(
DP (P,m,M,H),≤TR+

)
that will be called a Transfer

Order Allocation (TOA). Proposition 3 shows that the greatest element may
not exist.

Proposition 3. There exist P , m, M , H for which a poset (DP (P,m,M,H),
≤TR+) does not contain the greatest element.

Proof. We prove the proposition by a counterexample. Given the set
DP (P,m,M,H), where P = (100, 200, 466, 466, 931, 1165), m = 2, M = 10,
H = 35, we have DP (P,m,M,H) = {A,B}, where A = (2, 3, 6, 6, 8, 10) and
B = (2, 4, 5, 5, 9, 10). Note that A − B = T = (0,−1, 1, 1,−1, 0), therefore, we
have

∑2
i=1 ti = −1 and

∑4
i=1 ti = 1 > 0, which means that T is not a transfer

(see Definition 2). On the other hand, for B − A = T ′ = (0, 1,−1,−1, 1, 0), we
have

∑2
i=1 t′i = 1, which is not a transfer. Therefore, allocations A and B are

incomparable under the relation ≤TR+ , thereby the existence of two maximal
elements results in the lack of the greatest element. A related Hasse diagram is
given in Fig. 2. ��

Fig. 2. An example of a Hasse diagram without the greatest element for
A = (2, 3, 6, 6, 8, 10) and B = (2, 4, 5, 5, 9, 10)

When the greatest element does not exist, the transfer order does not unam-
biguously point to the allocation from the set DP (P,m,M,H) as the nearest
one to the proportional distribution. However, if the greatest element exists, it
is easily obtained by Proposition 4. Before expressing this proposition, we shall
prove the following lemma.
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Lemma 1. The greatest element in the poset (DP (P,m,M,H),≤AL), where
≤AL is an antilexicographic order, is the maximal element in the poset
(DP (P,m,M,H),≤TR+).

Proof. Let us assume the opposite that S is not a maximal element in the set
DP (P,m,M,H) with transfer order. Then there exists such element S∗ that
S ≤TR+ S∗ holds. This means that there exists such transfer T that S∗ =
S + T holds. It follows then from Definition 2 that S∗ is also greater than S
under antilexicographic order, hence S is not the greatest element in the set
DP (P,m,M,H) under antilexicographic order. ��
Proposition 4. If there exists a greatest element in the set DP (P,m,M,H)
with transfer order, then it is also the greatest element in the same set with
antilexicographic order.

Proof. It results directly from Lemma 1. ��

3 Case Study

The acts of law, which introduce and regulate the distribution of seats in
the European Parliament, determine the set DP (P, 6, 96, 751), where P =
(p1, p2, . . . , pn) is the vector of populations of the Member States. There are
751 seats, which are distributed among 28 states in a degressively manner, with
the least populated country receiving 6 seats and the most populated – 96 seats.
Obviously, as a result of the assumed boundary conditions countries with less
population are allocated more seats than under proportional allocation, and
countries with more population are given fewer seats than under proportional
scheme. For example, proportional allocation would assign no more than one seat
to small countries such as Malta, Luxembourg or Cyprus, while Germany would
be assigned at least 120 seats. However the smallest country and the greatest
country are allocated precisely 6 and 96 seats respectively, the numbers of seats
for remaining states are not determined uniquely. What is more, with data on
populations in 2012 (employed to determine the composition of the European
Parliament in the current term of 2014–2019), the set DP (P, 6, 96, 751) has car-
dinality more than 5 million (see [6]). Undoubtedly therefore, a rule must be
indicated that will allow the choice of a specific allocation.

It turns out that the set DP (P, 6, 96, 751) contains the greatest element with
respect to transfer order, i.e. the transfer order proposed in the previous section
allows finding the allocation that is nearest to the proportional one. This alloca-
tion denoted by TOA and presented in column 9 of Table 1 reduces the underval-
uation, imposed by the definition of the set DP (P,m,M,H), of most populated
countries for the benefit of less populated countries compared to proportional
allocation. Thus in contrast to other presented allocations, TOA gives more
populated countries more seats. Therefore it ensures both the satisfaction of
postulates of parliamentarians requiring the best possible representation of dif-
ferences in populations of the Member States as well as the compliance with
current regulations.
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Table 1. Examples of the allocations of seats in the European Parliament

# Country Population
[in
thousands]

Current Cambridge
Compromise

LaRSA TOA

i pi si pi/si si pi/si si si pi/si

1 2 3 4 5 6 7 8 9 10

1 Malta 416.11 6 2.48 6 2.48 6 6 2.48

2 Luxembourg 524.85 6 3.12 6 3.12 6 6 3.12

3 Cyprus 862.01 6 5.13 7 4.40 6 6 5.13

4 Estonia 1339.66 6 7.97 7 6.84 6 6 7.97

5 Latvia 2041.76 8 9.12 8 9.12 6 6 12.15

6 Slovenia 2055.50 8 9.18 8 9.18 6 6 12.24

7 Lithuania 3007.76 11 9.77 9 11.94 7 7 15.35

8 Croatia 4398.15 11 14.28 11 14.28 10 10 15.71

9 Ireland 4582.77 11 14.88 11 14.88 10 10 16.37

10 Finland 5401.27 13 14.84 12 16.08 11 11 17.54

11 Slovakia 5404.32 13 14.85 12 16.08 11 11 17.55

12 Denmark 5580.52 13 15.33 12 16.61 11 11 18.12

13 Bulgaria 7327.22 17 15.39 14 18.69 14 14 18.69

14 Austria 8443.02 19 15.87 16 18.85 16 16 18.85

15 Sweden 9482.86 19 17.82 17 19.92 17 17 19.92

16 Hungary 9957.73 21 16.93 17 20.92 17 17 20.92

17 Czech Rep 10505.45 21 17.87 18 20.84 17 17 22.07

18 Portugal 10541.84 21 17.93 18 20.92 17 17 22.15

19 Belgium 11041.27 21 18.78 19 20.75 17 17 23.20

20 Greece 11290.94 21 19.20 19 21.22 17 17 23.72

21 Netherlands 16730.35 26 22.98 25 23.90 24 24 24.90

22 Romania 21355.85 32 23.83 31 24.60 30 30 25.42

23 Poland 38538.45 51 26.99 51 26.99 54 54 25.49

24 Spain 46196.28 54 30.55 60 27.50 64 64 25.78

25 Italy 60820.76 73 29.76 78 27.85 83 83 26.17

26 UK 62989.55 73 30.82 80 28.12 85 85 26.47

27 France 65397.91 74 31.56 83 28.14 87 87 26.85

28 Germany 81843.74 96 30.45 96 30.45 96 96 30.45

Total 508077.9 751 751 751 751

Table 1 presents several selected allocations. Columns 4 and 5 contain num-
bers of seats allocated to countries for the current term of the European Parlia-
ment in 2014–2019. Bold entries in column 5 indicate violations of the degres-
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sive proportionality principle. Nevertheless, the parliamentarians agreed to the
incompliance of this solution with currently binding law (see [4]).

Column 6 shows the distribution in compliance with the Cambridge Com-
promise ([2]), which is determined by the rule si = max{5 + 	pi/a
}, where a
constant a is set to ensure that the total of all distributed seats equals 751 (for
example a ∈ [839.94, 844.30] for data from 2012). This distribution, similarly
as current allocation, violates the principle of degressive proportionality (bold
entries in column 7). This incompliance results from the design of the procedure
that can return an allocation, which is not an element of the set DP (P, 6, 96, 751)
(for more details see [2]). The allocations presented in columns 8 and 9 are free
of that flaw.

Column 8 contains the allocation generated by LaRSA algorithm ([6]), which
consists in searching the set DP (P, 6, 96, 751) and selecting the allocation that
minimizes the sum of squared distances form the proportional allocation, i.e.∑n

i=1

(
piH/

∑n
j=1 pj

) → min .Column 9 contains the TOA, the greatest element
of the set DP (P, 6, 96, 751) with transfer order. By Proposition 4, this allocation
is also the greatest element in the set DP (P, 6, 96, 751) with antilexicographic
order. As we can see, the LaRSA and TOA allocations are identical. However
that is not necessarily the case. There are some examples showing that the
allocations generated by those methods are different. In case of the European
Parliament though, the equality of those two allocations additionally supports
the idea of coming closer to the proportional allocation by means of transfer
of seats. Obviously both approaches ensure that the degressively proportional
allocation is obtained, because they are selected from the set DP (P, 6, 96, 751).

4 Conclusions

A transfer relation orders a given set of degressively proportional allocations.
Except for cases when it is not a linear order, the relation makes it possible to
specify which allocation is nearer to the proportional distribution, and partic-
ularly to determine the maximal elements, i.e. such that no other distribution
is better. If there is a greatest element in the given set DP (P,m,M,H) with
transfer order, we assume that this is the optimal allocation. In addition, there
is an alternative method to find it – by Proposition 4 it is the greatest element in
the set DP (P,m,M,H) with antilexicographic order. In case of several maximal
elements the choice of one distribution remains an open issue, but the cardinal-
ity of the set from which we make a choice can be reduced significantly. In the
best-known example of application of degressive proportionality, i.e. the appor-
tionment of seats in the European Parliament, the set DP (P,m,M,H) contains
a maximal element. In other words, there exits an allocation that is nearest to
the proportional distribution with respect to transfer relation.
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Abstract. Any power index defines a total preorder in a simple game
and, thus, induces a hierarchy among its players. The desirability rela-
tion, which is also a preorder, induces the same hierarchy as the Banzhaf
and the Shapley indices on linear games, i.e., games in which the desir-
ability relation is total. The desirability relation is a sub–preorder of
another preorder, the weak desirability relation, and the class of weakly
linear games, i.e., games for which the weak desirability relation is total,
is larger than the class of linear games. The weak desirability relation
induces the same hierarchy as the Banzhaf and the Shapley indices on
weakly linear games. In this paper, we define a chain of preorders between
the desirability and the weak desirability preorders. From them we obtain
new classes of totally preordered games between linear and weakly linear
games.

Keywords: Simple game · Power index · Preorder · Desirability · Weak
desirability · Linear game · Weakly linear game

1 Introduction

Any power index considered in a simple game induces a total preorder on the set
of players, and, thus, a hierarchy among them. Two power indices which induce
the same hierarchy in a simple game are said to be ordinally equivalent in it.
In this paper we refer to three power indices: the Shapley–Shubik index (SS,
henceforth) [14,15], the Penrose–Banzhaf–Coleman index (PBC, henceforth) [1,
4,12] and the Johnston index [11]. It is known [5,13] that the PBC, the SS and
the Johnston power indices are ordinally equivalent in linear games, and that
the common induced hierarchy is the one given by the desirability relation.

In [3] weakly linear games were introduced and it was proved that all regular
semivalues (i.e., semivalues with positive coefficients for the marginal contribu-
tions, see [2,3]) are ordinally equivalent for this kind of games, and that the
common induced hierarchy is the one given by the weak desirability relation. As
every linear simple games is weakly linear, and both the PBC and the SS power
indices are regular semivalues, this work extends and generalizes the former ones
in relation with these two indices. The ordinal equivalence of the SS, the PBC
and the Johnston indices in a class larger than linear games but smaller than
weakly linear games was proved in [7].
c© Springer International Publishing AG 2017
N.T. Nguyen et al. (Eds.): TCCI XXVII, LNCS 10480, pp. 63–73, 2017.
https://doi.org/10.1007/978-3-319-70647-4_5
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In this paper, a chain of families of simple games, between linear and weakly
linear games, are defined and some of their properties are studied. In all these
classes of simple games, the Banzhaf and the Shapley–Shubik indices are ordi-
nally equivalent. The smallest family in this chain is the class of linear games
and the largest one is the class of weakly linear games. A somehow similar work
was developed in [16] by defining a chain of classes of simple games between
weighted simple games and linear simple games.

The paper is organized as follows. Basic definitions and preliminary results
are included in Sect. 2. Section 3 contains new characterizations of the desirability
and the weak desirability relations. In Sect. 4 the m–desirability relations are
defined and some of their properties are studied. Some Conclusions end the
paper in Sect. 5.

2 Definitions and Preliminaries

In the sequel, N = {1, 2, . . . , n} denote a fixed but otherwise arbitrary finite set
of players. Any subset S ⊆ N is a coalition. A simple game v (in N , omitted
hereafter) is a cooperative game, i.e., a function v : 2N → R with v(∅) = 0, such
that: (a) v(S) = 0 or 1 for any coalition S,1 (b) v is monotonic, i.e., v(S) ≤ v(T )
whenever S ⊂ T , and (c) v(N) = 1. Either the family of winning coalitions
W = W(v) = {S ⊆ N : v(S) = 1} or the subfamily of minimal winning
coalitions Wm = Wm(v) = {S ∈ W : T ⊂ S ⇒ T /∈ W} determines a simple
game.

Given a simple game v, let us consider, for each i ∈ N , and for every integer
h with 1 ≤ h ≤ n, some important subsets of N :

Pi = {S ⊆ N : i ∈ S} and Pi(h) = {S ∈ Pi : |S| = h}.

Pi is the set of coalitions S that contain i, while Pi(h) is the subset of such
coalitions having cardinality h.

Wi = {S ∈ W : i ∈ S} and Wi(h) = {S ∈ Wi : |S| = h}.

Wi is the set of winning coalitions S that contain i, while Wi(h) is the subset of
such coalitions having cardinality h.

Ci = {S ∈ Wi : S \ {i} /∈ W} and Ci(h) = {S ∈ Ci : |S| = h}.

Ci is the set of winning coalitions S that are crucial for i, while Ci(h) is the
subset of such coalitions having cardinality h. It is obvious that

Ci(h) ⊆ Wi(h) ⊆ Pi(h).

Notice that for h = 1 the set Pi(1) only contains the singleton {i}, Wi(1) =
Ci(1) and {i} ∈ Ci(1) ⇔ {i} ∈ W. On the other extreme, for h = n the set Pi(n)
only contains the total set N , Wi(n) = Pi(n) and N ∈ Ci(n) ⇔ N \ {i} /∈ W.

1 For a detailed discussion of some issues raised by allowing abstentions, see Felsenthal
and Machover [6] and for several levels of approval in input and output, see Freixas
and Zwicker [9].
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Definition 1. The desirability relation ([10])
Let v be a simple game and i, j ∈ N . Then

i �D j ⇔ {S ∪ {j} ∈ W ⇒ S ∪ {i} ∈ W } for any S ⊆ N\{i, j},
i �D j ⇔ i �D j and j �/ D i,
i ≈D j ⇔ i �D j and j �D i.

It is well known that �D is a preordering. The relation �D (resp., �D) is called
the desirability (resp., strict desirability) relation, and ≈D is the equi–desirability
relation.

Definition 2. Linear game2

A simple game v is linear whenever the desirability relation �D is complete.

Definition 3. The weak desirability relation ([3])
Let v be a simple game and i, j ∈ N . Then

i �d j ⇔ |Ci(h)| ≥ |Cj(h)| for any h with 1 ≤ h ≤ n,
i �d j ⇔ i �d j and j �/ d i,
i ≈d j ⇔ i �d j and j �d i.

Then �d is a preordering called the weak desirability relation. The relation �d is
the strict weak desirability relation and ≈d is the weak equi–desirability relation.

In [5] it is proved that the desirability relation is a sub–preordering of the
weak desirability relation, that is to say, for any i, j ∈ N , i �D j implies i �d j
and i �D j implies i �d j.

Definition 4. Weakly linear game ([3])
A simple game v is weakly linear whenever the weak desirability relation �d is
complete.

As stated in [3], the completeness of the desirability relation �D implies the
completeness of the weak desirability relation �d so that all linear games are
also weakly linear.

Moreover, if v is a linear simple game then v is weakly linear and the desir-
ability relation �D and the weak desirability relation �d coincide.

3 Other Characterizations of the Desirability
and the Weak Desirability Relations

Given two different elements i, j ∈ N we can establish a function

ϕji : Pj → Pi

2 Linear games are also called complete, ordered or directed games in the literature,
see Taylor and Zwicker [16] for references on these names.
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defined by:

ϕji(S) =
{

S if i ∈ S
(S \ {j}) ∪ {i} if i /∈ S

It is not difficult to see that ϕji is bijective and its inverse is ϕij . Notice that,
for any S ∈ Pj its image ϕji(S) always contain S \ {j}.

In the following subsections we study the restrictions of ϕji to Wj(h) and to
Cj(h). We will see that we can characterize the relations i �D j and i �d j by
using these restrictions.

3.1 The Restriction of ϕji to Wj(h)

It is clear that, for any S ∈ Wj(h), ϕji(S) ∈ Pi(h), but it is not always true
(except for h = n) that ϕji(S) ∈ Wi(h). The following proposition gives a
characterization of this fact.

Proposition 1. Let v be a simple game, i and j be different elements in N and
h be an integer with 1 ≤ h < n. Then,

ϕji(Wj(h)) ⊆ Wi(h) ⇔
⎧⎨
⎩

S ∪ {j} ∈ W ⇒ S ∪ {i} ∈ W

for any S ⊆ N\{i, j} with |S| = h − 1.

Proof:
Assume that ϕji(Wj(h)) ⊆ Wi(h), and let S ⊆ N\{i, j} be such that S∪{j} ∈ W
and |S| = h − 1. Taking T = S ∪ {j} it is T ∈ Wj(h) and, thus, ϕji(T ) ∈ W by
hypothesis. But, since i /∈ T , it is ϕji(T ) = (T\{j}) ∪ {i} = S ∪ {i}. This proves
that S ∪ {i} ∈ W.
Conversely, assume the hypothesis and let S ∈ Wj(h). To prove that ϕji(S) ∈
Wi(h) we only need to see that ϕji(S) ∈ W. There are two possibilities: a) If
i ∈ S then ϕji(S) = S and, obviously, ϕji(S) ∈ W. b) If i /∈ S then ϕji(S) =
(S \ {j}) ∪ {i}. Now, taking T = S \ {j} it is T ⊆ N\{i, j}, |T | = h − 1 and
T ∪ {j} = S ∈ W, thus, T ∪ {i} = ϕji(S) ∈ W. �

Proposition 2. Let v be a simple game, i and j be different elements in N .
Then,

i �D j ⇔ ϕji(Wj(h)) ⊆ Wi(h) for any integer h with 1 ≤ h ≤ n

i ≈D j ⇔ ϕji(Wj(h)) = Wi(h) for any integer h with 1 ≤ h ≤ n.

Proof:
From Definition 1 it is i �D j if and only if S ∪ {j} ∈ W ⇒ S ∪ {i} ∈ W for
any S ⊆ N\{i, j}. Since |S| ≤ n − 2, from Proposition 1 this last assertion is
satisfied if and only if ϕji(Wj(h)) ⊆ Wi(h) for any h with 1 ≤ h ≤ n − 1. But
it is always true that ϕji(Wj(n)) ⊆ Wi(n) and this proves the first part. The
second part is an obvious consequence of the first one. �
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3.2 The Restriction of ϕji to Cj(h)

Proposition 3. Let v be a simple game, i and j be different elements in N and
h be an integer with 1 < h ≤ n. Then,

ϕji(Cj(h)) ⊆ Ci(h) ⇔
⎧⎨
⎩

ϕji(Wj(h)) ⊆ Wi(h)

ϕji(Wj(h − 1)) ⊆ Wi(h − 1).

Proof:
(i) Assume that ϕji(Cj(h)) ⊆ Ci(h). To prove that ϕji(Wj(h)) ⊆ Wi(h) consider
S ∈ Wj(h). If S \ {j} /∈ W then S ∈ Cj(h) and, by the hypothesis, ϕji(S) ∈
Ci(h) ⊆ Wi(h). Otherwise, if S \ {j} ∈ W then ϕji(S) ∈ W because of the
monotonicity of v taking into account that ϕji(S) ⊇ S \ {j}. Thus, in either
case, ϕji(S) ∈ Wi(h).
To prove that ϕji(Wj(h−1)) ⊆ Wi(h−1) consider S ∈ Wj(h−1). If i ∈ S then,
obviously, ϕji(S) = S ∈ W. Otherwise, if i /∈ S then ϕji(S) = (S \ {j}) ∪ {i}.
If ϕji(S) /∈ W it would be S ∪ {i} ∈ Cj(h) because |S ∪ {i}| = h − 1, S ∪ {i} ∈
W, by monotonicity, and (S ∪ {i})\{j} = ϕji(S) /∈ W. Thus, by hypothesis,
ϕji(S∪{i}) ∈ Ci(h). But, since ϕji(S∪{i}) = (S∪{i}), by monotonicity it would
be S /∈ W which is a contradiction. Thus, in either case, ϕji(S) ∈ Wi(h − 1).
(ii) Conversely, assume that ϕji(Wj(h)) ⊆ Wi(h) and ϕji(Wj(h − 1)) ⊆ Wi(h −
1), and consider S ∈ Cj(h). To prove that ϕji(S) ∈ Ci(h) we only need to prove
that ϕji(S) \ {i} /∈ W, because by the hypothesis ϕji(S) ∈ Wi(h). If i /∈ S then
ϕji(S) = (S \{j})∪{i} and, thus, ϕji(S)\{i} = S \{j} /∈ W by the hypothesis.
Otherwise, if i ∈ S then ϕji(S) = S. In this case, if ϕji(S) \ {i} ∈ W it would
be ϕji(S) \ {i} ∈ Wj(h − 1) because ϕji(S)\{i, j} /∈ W (by monotonicity, since
(ϕji(S)\{j} /∈ W). Thus, by the hypothesis, ϕji(S)(ϕji(S) \ {i}) ∈ Wi(h − 1).
But ϕji(S)(ϕji(S) \ {i}) = ϕji(S) \ {i} /∈ W, which is a contradiction. �
Proposition 4. Let v be a simple game, i and j be different elements in N and
h be an integer with 1 < h < n. Then,

S ∪ {j} ∈ W ⇒ S ∪ {i} ∈ W

for any S ⊆ N\{i, j} with h − 2 ≤ |S| ≤ h − 1

⎫⎬
⎭ ⇔ ϕji(Cj(h)) ⊆ Ci(h).

Proof:
The property “S ∪ {j} ∈ W ⇒ S ∪ {i} ∈ W for any S ⊆ N\{i, j} with h − 2 ≤
|S| ≤ h − 1” is equivalent to “ϕji(Wj(h)) ⊆ Wi(h) and ϕji(Wj(h − 1)) ⊆
Wi(h − 1)” from Proposition 1, and, from Proposition 3, this is equivalent to
ϕji(Cj(h)) ⊆ Ci(h). �
Corollary 1. Let v be a simple game, i and j be different elements in N and h
be an integer with 1 < h < n. Then,

S ∪ {j} ∈ W ⇒ S ∪ {i} ∈ W

for any S ⊆ N\{i, j} with h − 2 ≤ |S| ≤ h − 1

⎫⎬
⎭ ⇒ |Cj(h)| ≤ |Ci(h)|.
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Corollary 2. Let v be a simple game, i and j be different elements in N and h
be an integer with 1 < h < n. Then,

ϕji(Cj(h − 1)) ⊆ Ci(h − 1)

ϕji(Cj(h + 1)) ⊆ Ci(h + 1)

⎫⎬
⎭ ⇒ ϕji(Cj(h)) ⊆ Ci(h).

Proof:
From Proposition 4, ϕji(Cj(h − 1)) ⊆ Ci(h − 1) implies that S ∪ {j} ∈ W ⇒
S ∪ {i} ∈ W for any S ⊆ N\{i, j} with |S| = h − 2. Similarly, ϕji(Cj(h + 1)) ⊆
Ci(h + 1) implies that S ∪ {j} ∈ W ⇒ S ∪ {i} ∈ W for any S ⊆ N\{i, j} with
|S| = h−1. And the two conditions together are equivalent to ϕji(Cj(h)) ⊆ Ci(h),
again from Proposition 4. �

Proposition 5. Let v be a simple game, i and j be different elements in N .
Then,

i �D j ⇔ ϕji(Cj(h)) ⊆ Ci(h) for any integer h with 1 ≤ h ≤ n

i ≈D j ⇔ ϕji(Cj(h)) = Ci(h) for any integer h with 1 ≤ h ≤ n.

Proof:
From Proposition 2 it is i �D j if and only if ϕji(Wj(h)) ⊆ Wi(h) for any h with
1 ≤ h ≤ n. From Proposition 3, this is satisfied if and only if ϕji(Cj(h)) ⊆ Ci(h)
for any h with 1 < h ≤ n. And, taking into account that Wk(1) = Ck(1) for any
k ∈ N , the first part is proved. The second part is an obvious consequence of
the first one. �

Proposition 6. Let v be a simple game, i and j be different elements in N .Then
the following assertions are equivalent:

(i) ϕji(Cj(n)) ⊆ Ci(n)
(ii) |Cj(n)| ≤ |Ci(n)|
(iii) ϕji(Wj(n − 1)) ⊆ Wi(n − 1)
(iv) N \ {i} ∈ W ⇒ N \ {j} ∈ W
Proposition 7. Let v be a simple game, i and j be different elements in N .Then
the following assertions are equivalent:

(i) ϕji(Cj(1)) ⊆ Ci(1)
(ii) |Cj(1))| ≤ |Ci(1)|
(iii) {j} ∈ W ⇒ {i} ∈ W

4 The m–desirability relations

We are going to introduce a collection of new preorders in N .
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Definition 5. Let v be a simple game and i, j ∈ N .
For any integer m with 1 ≤ m ≤ n we define:

i �m j ⇔
{ |Cj(h)| ≤ |Ci(h)| for any h with m ≤ h ≤ n, and

ϕji(Cj(h)) ⊆ Ci(h) for any h with 1 ≤ h < m.

i �m j ⇔ i �m j and j �/ m i,

i ≈m j ⇔ i �m j and j �m i.

Then �m is called the m–desirability relation. The relation �m is the strict m–
desirability relation and ≈m is the m–equi–desirability relation.

Notice that, using Proposition 4, the second part of the definition of the
m–desirability relation can be reformulated in the following way:

Remark 1. For any m with 1 < m ≤ n it is

⎧⎨
⎩

ϕji(Cj(h)) ⊆ Ci(h)

for any h with 1 ≤ h < m

⎫⎬
⎭ ⇔

⎧⎨
⎩

S ∪ {j} ∈ W ⇒ S ∪ {i} ∈ W

for any S ⊆ N\{i, j} with |S| ≤ m − 2

⎫⎬
⎭

The following proposition states that the desirability relation and the weak
desirability relation are particular cases of m-desirability relations, and that
different values of m can give the same m–desirability relation.

Proposition 8. Let v be a simple game and i, j ∈ N . Then,

i �d j ⇔ i �2 j ⇔ i �1 j.

i �D j ⇔ i �n j ⇔ i �n−1 j.

Proof:
From Definition 5, it is clear that i �1 j if and only if |Cj(h)| ≤ |Ci(h)| for

any h with 1 ≤ h ≤ n and, from Definition 5, this is equivalent to i �d j . On
the other hand, i �2 j if and only if |Cj(h)| ≤ |Ci(h)| for any h with 2 ≤ h ≤ n
and ϕji(Cj(1)) ⊆ Ci(1). But this last condition is equivalent to |Cj(1)| ≤ |Ci(1)|
and, thus, i �2 j ⇔ i �d j .

Similarly, from Definition 5, i �n j if and only if |Cj(n)| ≤ |Ci(n)| and
ϕji(Cj(h)) ⊆ Ci(h) for any h with 1 ≤ h < n. But it is clear that |Cj(n)| ≤ |Ci(n)|
if and only if ϕji(Cj(n)) ⊆ Ci(n) and, using Proposition 5, i �n j ⇔ i �D j .
Finally, i �n−1 j if and only if |Cj(n)| ≤ |Ci(n)|, |Cj(n − 1)| ≤ |Ci(n − 1)| and
ϕji(Cj(h)) ⊆ Ci(h) for any h with 1 ≤ h < n−1. From Proposition 5 it is obvious
that i �D j ⇒ i �n−1 j . Conversely, if i �n−1 j , since |Cj(n)| ≤ |Ci(n)| is
equivalent to ϕji(Cj(n)) ⊆ Ci(n), applying Corollary 2 for h = n − 1 we get
ϕji(Cj(n − 1)) ⊆ Ci(n − 1) and, thus, i �n−1 j ⇒ i �D j . �
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Proposition 9. Let v be a simple game. Then, for any m with 1 ≤ m ≤ n, the
m–desirability relation is a preorder in N .

Proof:
It is already known that the desirability relation and the weak desirability rela-
tion are preorders, so that we can assume 2 < m < n − 1. To prove that the
m–desirability relation is transitive, let i, j, k be different elements in N such
that i �m j �m k. It is clear that |Ci(h)| ≥ |Cj(h)| ≥ |Ck(h)| for any h with
m ≤ h ≤ n, and thus |Ci(h)| ≥ |Ck(h)| for any h with m ≤ h ≤ n. To prove that
ϕki(Ck(h)) ⊆ Ci(h) for any h with 1 ≤ h < m we will see, using Remark 1, that
S ∪ {k} ∈ W ⇒ S ∪ {i} ∈ W, for any S ⊆ N\{i, k} with |S| ≤ m − 2. Thus,
suppose that S ⊆ N \ {i, k} is such that |S| ≤ m − 2 and S ∪ {k} ∈ W. There
are two possibilities:

If j �∈ S it is S ⊆ N \{j, k} and, since j �m k, |S| ≤ m−2 and S ∪{k} ∈ W,
we have S ∪ {j} ∈ W. But it is also true that S ⊆ N \ {i, j} and, since i �m j,
we have S ∪ {i} ∈ W.

If j ∈ S, let S
′
= S \ {j}. Then S

′ ∪ {k} ⊆ N \ {i, j} and S
′ ∪ {k} ∪ {j} =

S ∪{k} ∈ W. Since i �m j and |S′ ∪{k}| = |S| ≤ m−2, it is S
′ ∪{k}∪{i} ∈ W.

But S
′ ∪ {i} ⊆ N \ {j, k} and, since j �m k and |S′ ∪ {i}| = |S| ≤ m − 2, we

have S
′ ∪ {i} ∪ {j} = S ∪ {i} ∈ W. �

Proposition 10. Let v be a simple game and i, j ∈ N . Let m, p be two integers
with 1 < m < p < n. Then,

i �p j ⇒ i �m j

i �p j ⇒ i �m j

Proof:
Assume that i �p j. To prove that i �m j, we only need to see that |Ci(h)| ≥
|Cj(h)| when m ≤ h < p, because the other cases are immediate consequence
of the hypothesis. But, since ϕji(Cj(h)) ⊆ Ci(h) for any h with 1 ≤ h < p, in
particular it is |Ci(h)| ≥ |Cj(h)| when m ≤ h < p.
Assume now that i �p j, that is to say, i �p j and j �/ p i, and we will prove
that j �/ m i. The fact that i �p j includes two possibilities:
(a) There is some h with p ≤ h ≤ n such that |Ci(h)| > |Cj(h)|. Since h ≥ p
implies h ≥ m, it is clear in this case that j �/ m i.
(b) There is some h with 1 ≤ h < p such that ϕij(Ci(h)) � Cj(h). This fact
directly proves that j �/ m i if h < m. If m ≤ h < p we will see that |Cj(h)| <
|Ci(h)| and this also proves that j �/ m i. In effect, notice that ϕji(Cj(h)) � Ci(h),
because i �p j implies ϕji(Cj(h)) ⊆ Ci(h) and if ϕji(Cj(h)) = Ci(h) it would
be ϕij(ϕji(Cj(h))) = Cj(h) = ϕij(Ci(h)) in contradiction with the hypothesis.
Thus, |ϕji(Cj(h))| = |Cj(h)| < |Ci(h)|. �

The former proposition shows that the m–desirability relations form a chain
of preorders on the set N of players. Taking into account Propositions 8 and 10
we can write, for any two elements i, j ∈ N :

i �D j ⇔ i �n j ⇔ i �n−1 j ⇒ i �n−2 j ⇒ · · · ⇒ i �3 j ⇒ i �2 j ⇔ i �1 j ⇔ i �d j
i �D j ⇔ i �n j ⇔ i �n−1 j ⇒ i �n−2 j ⇒ · · · ⇒ i �3 j ⇒ i �2 j ⇔ i �1 j ⇔ i �d j
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Notice, in particular, that all m–desirability relations coincide for n ≤ 3,
and that for n = 4 they coincide either with the desirability or with the weak–
desirability relation. As a consequence of this fact the m–desirability relations
only appear as new preorders for n ≥ 5.

In the following example all the m-desirability relations are shown.

Example 1. Let N = {1, 2, 3, 4, 5, 6, 7, 8, 9} and Wm = {{1, 2}, {3, 4, 5},
{6, 7, 8, 9}}

1 ≈D 2 3 ≈D 4 ≈D 5 6 ≈D 7 ≈D 8 ≈D 9
1 ≈7 2 3 ≈7 4 ≈7 5 6 ≈7 7 ≈7 8 ≈7 9
1 ≈6 2 3 ≈6 4 ≈6 5 6 ≈6 7 ≈6 8 ≈6 9
1 ≈5 2 3 ≈5 4 ≈5 5 6 ≈5 7 ≈5 8 ≈5 9
1 ≈4 2 3 ≈4 4 ≈4 5 �4 6 ≈4 7 ≈4 8 ≈4 9
1 ≈3 2 �3 3 ≈3 4 ≈3 5 �3 6 ≈3 7 ≈3 8 ≈3 9
1 ≈d 2 �d 3 ≈d 4 ≈d 5 �d 6 ≈d 7 ≈d 8 ≈d 9

For any integer m with 1 ≤ m ≤ n we can define the concept of m–linear
game:

Definition 6. m–linear game
A simple game v is m–linear whenever the m–desirability relation �m is com-
plete. The set of m–linear simple games will be denoted by L(m).

From the above results it is clear that L(n) = L(n − 1) coincides with the
set of linear games, L(1) = L(2) is the set of weakly linear games, and

L(n) = L(n − 1) ⊆ L(n − 2) ⊆ · · · ⊆ L(3) ⊆ L(2) = L(1).

Thus, a linear game belongs to L(m) for all m (1 ≤ m ≤ n), and for any weakly
linear (but not linear) game v there exist some m0 (2 ≤ m0 < n − 1) such that
v /∈ L(m) for any m > m0 and v ∈ L(m) for any m ≤ m0. In the game of
Example 1 it is n = 9 and m0 = 3. In the next example we show a weakly linear
game which does not belong to any other class of m–linear games (in this case
it is n = 5 and m0 = 4).

Example 2. Let N = {1, 2, 3, 4, 5} and let v be the game defined by

Wm = {{1, 2}, {1, 3}, {2, 4}}.
This game is not linear (does not belong to L(5) = L(4)) because the desirability
relation only gives:

1 �D 3 and 2 �D 4 �D 5.

Clearly, v is weakly linear (it belongs to L(1) = L(2)) with

1 ≈d 2 �d 3 ≈d 4 �d 5.

But this game it is not 3–linear (it does not belong to L(3)) because {1, 3} ∈ W
and {2, 3} /∈ W implies 2 �/ 3 1, and, similarly, {2, 4} ∈ W and {1, 4} /∈ W
implies 1 �/ 3 2.
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5 Conclusions

In this paper, a chain of classes of simple games is defined. In all of them, the
PBC and the SS indices rank players in the same way, i.e., they are ordinally
equivalent. The smallest class in the chain is the class of linear games and the
largest one is the class of weakly linear games. We think that these classes will
have an interesting role in future works. We can mention two open questions:
a) For n ≥ 6 it is known that all possible hierarchies are achievable in weakly
linear games [8] but not all of them are achievable in linear games. Which is the
smallest class L(m) such that all hierarchies are already achievable in this class?
b) It is known that the Johnston index is ordinally equivalent to PBC and SS
indices in linear games but not in weakly linear games. Which is the largest class
L(m) in which Johnston index is ordinally equivalent to PBC and SS indices?
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tiveness (MINECO) and from the European Union (FEDER funds).

References

1. Banzhaf, J.F.: Weighted voting doesn’t work: a mathematical analysis. Rutgers
Law Rev. 19(2), 317–343 (1965)

2. Carreras, F., Freixas, J.: Some theoretical reasons for using regular semivalues. In:
De Swart, H. (ed.) Proceedings of the International Conference on Logic, Game
Theory and Social Choice, LGS, Tilburg, The Netherlands, pp. 140–154 (1999)

3. Carreras, F., Freixas, J.: On ordinal equivalence of power measures given by regular
semivalues. Math. Soc. Sci. 55(2), 221–234 (2008)

4. Coleman, J.S.: Control of collectivities and the power of a collectivity to act. In:
Lieberman, B. (ed.) Social Choice, pp. 269–300. Gordon and Breach, New York
(1971)

5. Diffo Lambo, L., Moulen, J.: Ordinal equivalence of power notions in voting games.
Theor. Decis. 53(4), 313–325 (2002)

6. Felsenthal, D.S., Machover, M.: The Measurament of Voting Power: Theory and
Practice, Problems and Paradoxes. Edward Elgar, Cheltenham (1998)

7. Freixas, J., Marciniak, D., Pons, M.: On the ordinal equivalence of the Johnston,
Banzhaf and Shapley power indices. Eur. J. Oper. Res. 216(2), 367–375 (2012)

8. Freixas, J., Pons, M.: Hierarchies achievable in simple games. Theor. Decis. 68(4),
393–404 (2010)

9. Freixas, J., Zwicker, W.S.: Weighted voting, abstention, and multiple levels of
approval. Soc. Choice Welfare 21(3), 399–431 (2003)

10. Isbell, J.R.: A class of simple games. Duke Math. J. 25(3), 423–439 (1958)
11. Johnston, R.J.: On the measurement of power: some reactions to Laver. Environ.

Plann. A 10(8), 907–914 (1978)
12. Penrose, L.S.: The elementary statistics of majority voting. J. Roy. Stat. Soc.

109(1), 53–57 (1946)
13. Roy, S.: The ordinal equivalence of the jhonston index and the established notions

of power. In: Econophisics and Economics of Games, Social Choices and Quanti-
tative Techniques, pp. 372–380. Nex Economics Windows, Part II (2010)



Preorders in Simple Games 73

14. Shapley, L.S.: A value for n-person games. In: Tucker, A.W., Kuhn, H.W. (eds.)
Contributions to the Theory of Games II, pp. 307–317. Princeton University Press,
Princeton (1953)

15. Shapley, L.S., Shubik, M.: A method for evaluating the distribution of power in a
committee system. Am. Polit. Sci. Rev. 48(3), 787–792 (1954)

16. Taylor, A.D., Zwicker, W.S.: Simple games: desirability relations, trading, and
pseudoweightings. Princeton University Press, New Jersey (1999)



Sub-Coalitional Approach to Values

Izabella Stach(&)

Faculty of Management, AGH University of Science and Technology,
Krakow, Poland

istach@zarz.agh.edu.pl

Abstract. The behavioral models of classical values (like the Shapley and
Banzhaf values) consider the contributions to coalition S as contributions
delivered by the players individually joining such a coalition as it is being
formed; i.e., v(S) – v(S \ {i}). In this paper, we propose another approach to
values where these contributions are considered as given by sets of players:
(v(S) – v(S \ R)), where S, R are subsets of the set of all players involved in
cooperative game v. Based on this new approach, several sub-coalitional values
are proposed, and some properties of these values are shown.

Keywords: Coalition formation � Cooperative games � Sub-coalitional values �
Values

1 Introduction

The bargaining model that leads to some game values consists of the formation of a
grand coalition through the successive addition of players to an initially unitary
coalition; see, for example, [1]. The value that comes out depends on the way in which
coalitions are treated from the point of view of combinatorics (permutations of the
value Shapley [2], combinations of the value Banzhaf [3], and so on). These models do
not take into account the possibility of joining a pre-constituted group of players in
order to form a coalition, as often happens in various situations in politics, finance, and
so on. The values considered in this work (we call them sub-coalitional values) admit
this possibility. In particular, we discuss some properties of these sub-coalitional
values.

This paper is organized as follows. Section 2 presents notations and preliminary
definitions that refer to games in characteristic form and values. Section 3 presents
definitions of some classical values. Section 4 presents the sub-coalition approach to
values. Section 5 is dedicated to concluding remarks and further developments.

2 Preliminaries

In this section, we introduce notations and definitions that refer to cooperative games
and values.

A game in characteristic function form represents situations where some players
(companies, buyers, sellers, parties, shareholders, countries, and so on) can attain
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common advantages by forming coalitions. Classical market games for economies with
private goods are an example of this game. Let N = {1, 2,…, n} be a finite set of
players. A cooperative game is a pair (N, v) where v: 2N ! R, the characteristic
function, is a real-valued function defined on the subsets of N (called coalitions) such
that vð;Þ ¼ 0. Cooperative game v is called superadditive if vðS[ TÞ� vðSÞþ vðTÞ
holds for all S; T�N. By GN, we denote all n-person superadditive cooperative games
on N. If, for player i 2 N, the following condition holds vðS[figÞ ¼ vðfsgÞ for all
S�N, then he is called a dummy player. Given two games v ; �w 2 GN , and two
parameters c; d� 0, their linear combination c � v þ d � wð Þ is defined by
c � v þ d � wð ÞðSÞ ¼ c � vðSÞ þ d � wðSÞ for all S�N.

A value is a mapping w : GN ! Rn that assigns vector wðvÞ ¼ w1ðvÞ;ð
w2ðvÞ; . . . ;wnðvÞÞ to each cooperative game v. Component wiðvÞ is called an individual
value of player i 2 N in v.

Regarding values, some frequent conditions are imposed. Here, we recall only the
following properties:

• Individual rationality. Value w fulfils the individual rationality postulate if, for all
i 2 N, the following condition holds: wðfigÞ� vðfigÞ.

• Efficiency. Value w fulfills the efficiency property if
P
i2N

wiðvÞ ¼ vðNÞ for all v 2 GN .

Generally, this property states that the power of grand coalition N is totally dis-
tributed among the players in game v.

• Dummy player. Value w satisfies the dummy player property if, for each S�Nnfig
and all v 2 GN , vðS[figÞ ¼ vðSÞþ vðfigÞ implies wiðvÞ ¼ vðfigÞ. Informally, this
property states that player i (who does not contribute to any coalition) has a measure
of power equal to vðfigÞ.

• Symmetry. If, for all v 2 GN and for each i 2 N and each permutation p : N ! N
wiðvÞ ¼ wpðiÞðpðvÞÞ where pðvÞðSÞ ¼ vðp�1ðSÞÞ, then we said that value w satisfies
the symmetry property. This property is also called the anonymity property.
Informally, this property states that the “symmetric” players should have equal
power.

• Linearity. A value satisfies the linearity property if, for every games v and w and
c[ 0; the following conditions hold: wðvþwÞ ¼ wðvÞþwðwÞ and wðcvÞ ¼ cwðvÞ.
Let us define the ordered partition of N (|N| = n). A ordered partition of set N into

k parts (i.e., blocks of players or coalitions) where 2 � k � n is any permutation of
k nonempty subsets S of N such that every element of N belongs to one and only one of
the subsets. Equivalently, permutation p = (S1,…, Sk), is a partition of N if:

(1) no element of p = (S1,…, Sk) is empty (i.e., Si 6¼ ; for all 1� i� k);
(2) the union of the elements of p is equal to N (i.e., S1 [ S2 [ . . .[ Sk ¼ N);
(3) the intersection of any two elements of p is empty (i.e., the elements of p are

pairwise disjoint: Si \ Sj ¼ ; for i 6¼ j and i; j 2 f1; 2; . . .; kg).
Note that the definition of the ordered partition present above is a bit different than

the definition of a partition in the combinatorial theory. Here, we define an ordered
partition like a permutation of subsets; and in the combinatorial theory, a partition is
any collection of subsets satisfying the three conditions mentioned above; see, for
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example, [4]. For example, with N = {1, 2}, we have one partition of N: {{1}, {2}}
and two different ordered partitions: ({1}, {2}) and ({2}, {1}).

Let PkðNÞ be the set of all ordered partitions of N into k subsets (blocks, coalitions)
and P(N) be the set of all possible ordered partitions of N. When the number of players
of N is equal to |N| = n, then we havePðNÞ ¼ P2ðNÞ [ . . .[PnðNÞ. Thus, the number
of all possible ordered partitions of N is equal to

PðNÞj j ¼
Xn
k¼2

PkðNÞj j:

Let us note that jPkðNÞj ¼ k!Sðn; kÞ, where Sðn; kÞ ¼ 1
k!

Pk
j¼0

ð�1Þ j k
j

� �
ðk � jÞn is

the Stirling number of the second kind (see, for instance, [5]). As for j ¼ k and
n� 2ðk � jÞn ¼ 0, we can write

jPkðNÞj ¼
Xk�1

j¼0

ð�1Þ j k
j

� �
ðk � jÞn

and

PðNÞj j ¼
Xn
k¼2

Xk�1

j¼0

�1ð Þ j k
j

� �
ðk � jÞn:

Note that, for n� 2, the number of all classical partitions of set N is equal to

Xn
k¼2

1
k!

Xk�1

j¼0

�1ð Þ j k
j

� �
ðk � jÞn:

3 Classical Values

In this section, we recall the definitions of the Banzhaf, Shapley, and Tijs values. The
values considered here are based on marginal contributions that are brought by indi-
vidual players.

Henceforth, if not stated otherwise, all of the games considered are superadditive
cooperative games.

3.1 The Banzhaf Value

Let v 2 GN and i 2 N. The absolute Banzhaf value, b, introduced by Banzhaf [3], is
given by:
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biðvÞ ¼
1

2n�1

X
S�N

vðSÞ � vðSnfigÞð Þ:

The normalized Banzhaf value, b’, is define as:

b0iðvÞ ¼
vðNÞP

j2N

P
S�N

vðSÞ � vðSnfjgÞð Þ
X
S�N

vðSÞ � vðSnfigÞð Þ:

See also [6].

3.2 The Shapley Value

Let v 2 GN and i 2 N. The Shapley value is defined as follows:

riðvÞ ¼
X
S�N

ðs� 1Þ!ðn� sÞ!
n!

vðSÞ � vðSnfigð Þ

where s ¼ jSj is the cardinality of coalition S.
In 1953, Shapley proved that the value given by the formula above is the unique

value that satisfies four axioms: efficiency, dummy player, linearity, and symmetry (see
[2] and [7]).

3.3 The Tijs Value

Tijs proposed the s-value in [8] for a particular class of cooperative games called
quasi-balanced games. In [9], Driessen and Tijs extended the s-value to all cooperative
games. This extension does not possess all of the properties of the s-value defined for
quasi-balanced games. However, in this paper we consider only the s-value defined
in [8]. Before giving the formula of the Tijs value, we need several notations.

The upper vector bv ¼ ðbv1; bv2; . . .; bvnÞ 2 Rn and gap function gv : 2N ! R of
game v 2 GN are defined, respectively, as:

bvi ¼ vðNÞ � vðNnfigÞ for all i 2 N

gvðSÞ ¼
X
j2S

bvj � vðSÞ for all S�N:

Each component bvi of the upper vector is called the marginal contribution of player
i, with respect to grand coalition N. Note that bvi � vðfigÞ for all i 2 N and superad-
ditive game v.

Let qvi ¼ min
S3i

gvðSÞ for all i 2 N; then, vector qv ¼ ðqv1; qv2; . . .; qvnÞ 2 Rn is called

the concession vector. The class of quasi-balanced n-person games, Qv
B, is defined as:
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Qv
B ¼ fv 2 GN : gvðSÞ� 0 for all S�N and

X
j2N

qvj � gvðNÞg:

The Tijs value (s-value) for any quasi-balanced game v 2 Qv
B is defined as:

sðvÞ ¼
bv if gvðNÞ ¼ 0

bv � gvðNÞP
j2N

qvj
qv if gvðNÞ[ 0

8<
:

When gvðNÞ ¼ 0, each player i receives his marginal contribution; while, if
gvðNÞ[ 0 (which equivalently means that it is impossible for each player to receive at
least his marginal contribution), then each player i forgoes his share:

gvðNÞP
j2N

qvj
qvi :

In 1987, Tijs axiomatized his value; see [10]. For more about s-value, see also [11].

4 New Approach to Values

In cooperative games, when the grand coalition N will be formed, the problem arises
with the sharing of total winnings v(N) among the players.

Among the models able to represent such a payoff distribution over the players, the
first was the Shapley value. The concept of “value” suggested by Shapley in [2]
resulted in a breakthrough in the theory of cooperative games, as earlier attempts to
solve cooperative games did not ensure the existence and uniqueness of the solution.
The Shapley value abandoned the classical methods based on dominance in favor of a
suitable model of bargaining founded in a system of axioms (efficiency, symmetry,
dummy player, and linearity).

The Shapley model assumes that construction of grand coalition N is realized
through the successive addition of players, one by one, in a randomly chosen order to
the coalition that is being formed. Each player i gets his marginal contribution which he
contributes to the coalition S; i.e., amount vðSÞ � vðSnfigÞ, opportunely weighted.
Subsequently, Shapley’s fourth axiom becomes a point of discussion, and this
encouraged many authors to invent other values (based on diverse axiomatic
assumptions and/or bargaining models) that are able to describe other types of real
situations with a common structure:

wiðvÞ ¼ a
X
S�N

b vðSÞ � vðSnfigÞð Þ

where a and b are opportune parameters of the combinatorial character depending on
the order in which the player joined S; see Table 1.

78 I. Stach



The previous model of values considers contributions to coalition S during its for-
mation as supplied by players individually joined to such a coalition: vðSÞ � vðSnfigÞ.
In this work, we suggest an approach to the values based on sub-coalition, where these
contributions are considered as given by sets R of players: vðSÞ � vðSnRÞ. Such as
“pictorial” example of the construction of a mosaic or puzzle that can be realized by the
successive addition of singular pieces or just-constructed blocks of the whole picture;
see Figs. 1, 2, and 3.

Table 1. Coefficients a and b in formulae of classical values

Value a b

The Shapley value 1=n
1
�

n� 1
s� 1

� �

The absolute Banzhaf value 1
�
2n�1 1

The normalized Banzhaf value vðNÞP
j2N

P
S�N

vðSÞ�vðSnfjgÞð Þ
1

Fig. 1. Grand coalition formed

Fig. 2. Formation of grand coalition by successive addition of singular players
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A Leading Example
Let us consider a three-person cooperative game in the following characteristic form:

vð;Þ ¼ 0; vðf1gÞ ¼ 1; vðf2gÞ ¼ vðf3gÞ ¼ 0

vðf1; 2gÞ ¼ 4; vðf1; 3gÞ ¼ 3; vðf2; 3gÞ ¼ 2

vðf1; 2; 3gÞ ¼ 5:

In the case of the Shapley value, the negotiation takes place as follows. Initially,
Player 2 will appeal to Player 1 and ask him to join his coalition. The contribution that
“2” brings to the new coalition is, thus, calculated. If “1” plays alone and wins
v({1}) = 1, while the coalition recently formed between 1 and 2 wins v({1, 2}) = 4;
therefore, the contribution of Player 2 is equal to vðf1; 2gÞ � vðf1g ¼ 4� 1 ¼ 3. If
Player 3 now offers to join the coalition already formed {1, 2}, the contribution that he
brings to the new coalition is: vðf1; 2; 3gÞ � vðf1; 2g ¼ 5� 4 ¼ 1. This situation is
represented in the first row of Table 2. The sequence of additions, however, could take
place otherwise for example, Player 3 is first added to 1, then 2 is added to {1, 3}; in
this case, the distribution is shown in the second row of Table 2.

Let us consider all of the possible sequences of the grand coalition formation as
equally probable. Then, for each player, the Shapley value can be calculated as his/her
expected payoff corresponding to the contribution s/he made to the various coalitions
multiplied by the probability that s/he is in a “pivotal” position, which is being added to
an already-formed coalition. In our case, this probability is 1/6 for each player; so, the
Shapley value distributes the overall payoff as follows: 15/6, 9/6, and 1 to Players 1, 2,
and 3, respectively.

As indicated above, the proposed model describes situations where the formation of
the grand coalition takes place with additions not only of individual players but also of
pre-established groups, in their turn formed with the same mechanism. Based on this
approach, we propose new values that we will call the SC-values (Sub-coalition
marginal Contributions values).

Fig. 3. Formation of grand coalition by successive addition of blocks of players
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A big problem is how to divide marginal contributions among the members of
sub-coalitions R. For the games with only two players, there is no problem, as the
possible sub-coalitions are sets of singular players. The problem instead arises for
games with more than two players.

This topic of sharing marginal contributions to the coalitions formed by players
joining in random order in cooperative games was just touched by Malawski in [12].
He introduced the so-called procedural values, considering different procedures under
which the players can only share their marginal contributions with their predecessors in
the ordering. All procedural values satisfy efficiency, symmetry, and linearity prop-
erties. Furthermore, it has been shown that, along with two monotonicity postulates,
these properties characterize the class of procedural values.

The various method of sharing the marginal contribution among the members of a
sub-coalition once applied leads to different sub-coalitional values. In order to share a
sub-coalitional marginal contribution, we have to consider a subgame composed of the
members of sub-coalition.

4.1 SC-Values Base on the Ordered Partitions of N

If the order in which the players join a coalition is important (like in the Shapley value)
and we decide to divide the marginal contribution of members of a sub-coalition
equally, we receive an SC-value that we will call the egalitarian SC-Shapley value. If
any player takes his marginal contribution in each coalition that he belongs, and the rest
(which is never negative in the superadditive cooperative games) is divided equally, we
obtain the SC-value that we call the Harsanyi-Nash SC-Shapley value.

Let us consider equiprobable all of the grand coalition formation sequences. In the
leading example, the first six options (shown in the first six rows of Table 3) reproduce
exactly what were seen for the value of Shapley (see Table 2). The other options are
added by a new bargaining method.

Table 3 shows how many different possibilities there are to form grand coalition
N in the leading example. In a general case, if the number of players of N is equal to
|N| = n, the number of possibilities to form a grand coalition is equal to the number of

Table 2. Shapley value calculation

Formation of grand
coalition

Marginal contribution of
players to coalitions
1 2 3

1 {1}{2}{3} 1 3 1
2 {1}{3}{2} 1 2 2
3 {2}{1}{3} 4 0 1
4 {2}{3}{1} 3 0 2
5 {3}{1}{2} 3 2 0
6 {3}{2}{1} 3 2 0
Totals 15 9 6
The Shapley value 2.5 = 15/6 1.5 = 9/6 1 = 6/6
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all possible ordered partitions of N. Thus, in the leading example, we have PðNÞj j ¼
P3
k¼2

Pk�1

j¼0
�1ð Þ j k

j

� �
ðk � jÞ3 ¼ 12 possible formations of grand coalition N ¼ f1; 2; 3g;

see Sect. 2.
The SC-values defined in this way (i.e., the egalitarian SC-Shapley and

Harsanyi-Nash SC-Shapley values) satisfy the symmetry and efficiency properties and
do not satisfy the dummy player condition; see the example of the game given in
Table 4. Furthermore, in comparing with the Shapley value, the individual rationality
condition is lost in the case of the egalitarian SC-Shapley value and preserved by the
SC-Harsanyi-Nash value; see the example of the game in Table 5.

Table 3. Scheme of calculation of egalitarian SC-Shapley value in leading example

Formation of grand
coalition

Marginal contribution of players to coalitions
1 2 3

1 {1}{2}{3} 1 3 1
2 {1}{3}{2} 1 2 2
3 {2}{1}{3} 4 0 1
4 {2}{3}{1} 3 0 2
5 {3}{1}{2} 3 2 0
6 {3}{2}{1} 3 2 0
7 {1}{2, 3} 1 2 2
8 {2, 3}{1} 3 1 1
9 {2}{1, 3} 2.5 0 2.5
10 {1, 3}{2} 1.5 2 1.5
11 {3}{1, 2} 2.5 2.5 0
12 {1, 2}{3} 2 2 1
Totals 27.5 18.5 14
The egalitarian
SC-Shapley value

55
24 � 2:29 37

24 � 1:54 28
24 � 1:17

Table 4. SC-values and classical values in example of game with dummy player 3

Game: vðf1gÞ ¼ vðf1 ; 3gÞ ¼ 1; vðf2gÞ ¼ vðf3gÞ ¼ 0;
vðf2; 3gÞ ¼ 0; vðf1; 2gÞ ¼ vðNÞ ¼ 4

Players power
1 2 3

The Shapley, two Banzhaf, and Tijs values 2.500 1.500 0.000
The egalitarian SC-Shapley value 2.208 1.458 0.333
The Harsanyi-Nash SC-Shapley value 2.375 1.375 0.250
The normalized SC-Banzhaf value 2.011 1.474 0.514
The SC-Banzhaf value 3.000 1.875 0.875
The SC-Tijs value 2.250 1.375 0.375

82 I. Stach



4.2 SC-Values Base on the Partitions of N

In case the order of pre-constituted sub-coalitions is not important in the formation of a
grand coalition, we propose the SC-Banzhaf and SC-Tijs values. For these values, the
number of possible formation of the grand coalition is equal to the number of all
possible partitions of grand coalition N. So, taking into account the leading example
where we have three players (n ¼ 3), the number of all possible constructions of the

grand coalition is equal to
Pn
k¼2

1
k!

Pk�1

j¼0
�1ð Þ j k

j

� �
ðk � jÞn ¼ 4; see Table 6 and Sect. 2.

Let us first introduce the SC-Banzhaf and normalized SC-Banzhaf values. The
normalized SC-Banzhaf value is defined as follows. In the first step, the marginal
contribution of sub-coalition R is calculated simply from the following formula:
vðNÞ � vðNnRÞ. In Step 2, if R is not a singular player, the marginal contribution is
shared among the members following the Banzhaf value and characteristic function of
original game v. In Step 3, we sum up all marginal contributions for each player and
opportunely weigh the results in order to obtain the efficient value. More precisely, let
us consider Case 3 in Table 6. Here, the marginal contribution of Player 2 is equal to
vðNÞ � vðf1; 3gÞ ¼ 5� 3 ¼ 2 and the marginal contribution of sub-coalition {1, 3} is
equal to: vðNÞ � vðf2gÞ ¼ 5. Now, we have to share 5 among Players 1 and 3. So we
have a two-person subgame v0 with v0ðN 0Þ ¼ 5, grand coalition N 0 ¼ f1; 3g, and
v0ðSÞ ¼ vðSÞ for all S � N 0. To share the winnings of this subgame between Players 1
and 3, we calculate the players’ marginal contributions to this sub-coalition using the
characteristic function of the original game (in our case, v0ðN 0Þ � vðN 0nfigÞ ¼
5� vðf1; 3gnfigÞ for i = 1, 3) and then we opportunely weighted the result (i.e.
multiplying by the normalization factor (K) which is obtain as division of v0ðN 0Þ by the
sum of contributions for all members of v0; in our case K = 5/9) and received the
following split of winnings: 25/9, 20/9 for Players 1 and 3, respectively; see Table 6.

Analogously, we define the SC-Banzhaf value. The difference lies in the sharing of
the marginal contributions of sub-coalitions R. Here, we applied the Banzhaf idea in the
sub-games, so the weighted coefficient is equal to 2jN

0j. In the case of the SC-Banzhaf
value and the leading example, we obtain the following distribution of power: 2.75,
1.75, and 1.25 for Players 1, 2, and 3, respectively. By the way, this is the same
distribution as the Banzhaf value given in this example.

Generally, the SC-Tijs value is also similarly defined as the SC-Banzhaf values.
However, we share the winnings of the sub-coalitions in the subgames following the

Table 5. SC-values and classical values in example of game with dictator player 1

Game: vðf1gÞ ¼ vðf1 ; 2gÞ ¼ vðf1 ; 3gÞ ¼ vðNÞ ¼ 1;
vðf2gÞ ¼ vðf3gÞ ¼ vðf2; 3gÞ ¼ 0

Players power
1 2 3

r; b; b0; s, the Harsanyi-Nash SC-Shapley, normalized
Banzhaf value, and SC-Tijs values

1 0 0

The egalitarian SC-Shapley value 10/12 1/12 1/12
The SC-Banzhaf value 0.75 0 0
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Tijs value and original characteristic game. More precisely; in the first step, we cal-
culate the Tijs value for each of the possible cases of forming grand coalition
N. However, note that we have to treat sub-coalitions R as singular players in the cases
of forming a grand coalition like that of the 2nd, 3rd, and 4th row in Table 6. Then, in
the second step in each subgame v0, we again apply the Tijs value in order to share the
marginal contribution of the sub-coalition. Note that the characteristic function of a
subgame is defined as follows: grand coalition N 0 ¼ R, v0ðN 0Þ is equal to the marginal
contribution of R (i.e., the Tijs value of R assigned in the previous step) and v0ðSÞ ¼
vðSÞ for all S � R ¼ N 0. Finally, we sum up the results obtained for each player and
properly normalized to vðNÞ; i.e., we divide them by the number of all possible for-
mations of grand coalition N. Taking into account the leading example as well as the
Tijs and SC-Tijs values, we receive the following distributions of power for Players 1,
2, and 3: (8/3, 5/3, 2/3) and (119/48, 71/48, 50/48), respectively.

The SC-values based on combinations like the normalized SC-Banzhaf and SC-Tijs
values, thanks to their construction, preserve the symmetry and efficiency properties.
However, they lose the dummy player property; see the example of the game given in
Table 4. The SC Banzhaf value is not efficient and does not satisfy the individual
rationality (see the example in Table 5) nor the dummy properties (see the example in
Table 4), but it fulfills the symmetry property.

5 Concluding Remarks

In general, the bargaining models of the classical values consider the contributions to
the coalition in the formation as supplied by players individually joined to such a
coalition: vðSÞ � vðSnfigÞð Þ. In this work, we proposed an approach to values based on
sub-coalitions where these contributions are considered as given by sets of players:
vðSÞ � vðSnRÞð Þ. With this approach, we proposed several sub-coalitional values like
the egalitarian SC-Shapley, Harsanyi-Nash SC-Shapley, SC-Banzhaf, and Tijs values
(see Sect. 4). Of course, this approach opens up many problems; in particular, the
determination of the formula for the new modified values and their axiomatic deriva-
tions. Such problems will be the subject of a forthcoming article.

Table 6. Scheme of calculation of normalized SC-Banzhaf value in leading example

Formation of grand
coalition

Marginal contribution of players to coalitions
1 2 3

1 {1}{2}{3} 3 2 1
2 {1}{2, 3} 3 2 2
3 {2}{1, 3} 25/9 2 20/9
4 {3}{1, 2} 25/9 20/9 1
Totals 104/9 74/9 56/9
Normalized
SC-Banzhaf value

260
117 � 2:22 185

117 � 1:58 140
117 � 1:20
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A further development is to apply the sub-coalitional bargaining model to other
values like the Public Good value [13] or Public Help value [14], for example.

Very relevant are the models taking into account the coalition structure: situations
where not all coalitions are equally probable (see [15]). Several authors have applied
suitable modifications to values taking this notion into account. Amongst the more
well-known articles, we should mention the work undertaken by Owen in [16], Derks
and Peters in [17], Amer and Carreras in [18], and Malawski in [19]. One further
development is to consider the SC-values in the context of games with a priori unions.

One of the possible applications of sub-coalitional values is to calculate the power
of the players in situations like those described in [20]. This means to calculate the
power of the countries in the European Union when the countries are aggregated in
groups: any group around one lead country.

Finally, another interesting development of this research regards the connection
between the results already achieved by Grabisch and Roubens [21]. They introduced
the interaction index that has several interesting points in common with the proposal
presented in this paper.
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Abstract. This article anlayses the change in the balance of power
in the European Union Council due to the United Kingdom leaving
(referred to as Brexit). This analysis is based on the concept of power
indices in voting games where natural coalitions, called pre-coalitions,
occur between various players (or parties). The pre-coalitions in these
games are assumed to be formed around the six largest member states
(after Brexit, the five largest), where each of the remaining member states
joins the pre-coalition based around the large member state which is the
most similar according to the subject of the vote. This is illustrated by an
example. We consider adaptations of three classical indices: the Shapley-
Shubik, Banzhaf-Penrose and Johnston indices based on the concept of
a consistent share function (also called quotient index). This approach
can be interpreted as a two-level process of distributing power. At the
upper level, power is distributed amongst pre-coalitions. At the lower
level, power is distributed amongst the members of each pre-coalition.
One of the conclusions of the research is that removing the UK from the
voting game means that the power indices of small countries actually
decrease. This seems somewhat surprising as the voting procedure in the
EU council was designed to be robust to changes in the number and
size of member states. This conclusion does not correspond to a general
result, but does indicate the difficulty of defining voting rules which are
robust to changes in the set of players.

Keywords: Voting games · Power indices · Coalitions · European Union
Council

1 Introduction

Shapley and Shubik (1954) were the first to explicitly define what they called
a power index in a voting game (a form of cooperative game). The power of
player (voter) i is measured by the probability that, when the players enter
a coalition in random order, player i swings the coalition from being a losing
c© Springer International Publishing AG 2017
N.T. Nguyen et al. (Eds.): TCCI XXVII, LNCS 10480, pp. 87–107, 2017.
https://doi.org/10.1007/978-3-319-70647-4_7
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coalition to a winning coalition. Banzhaf proposed a power index based on the
number of vulnerable coalitions in which player i is critical (i.e. when player i
leaves such a coalition, it changes from a winning coalition to a losing one). It
was later recognized that the derivation of this index is identical to the analysis
of voting systems presented by Penrose (1946), although he did not call his
solution a power index. The so-called Banzhaf-Penrose index was then adapted
by Johnston (1978) to take into account the fact that the smaller the number of
critical players belonging to a vulnerable coalition, the greater the power wielded
by each critical player.

One problem with these classical measures of power is that they do not take
into account the characteristics of players, i.e. they assume that players do not
have preferences regarding who they form coalitions with. Myerson (1977) and
Owen (1986) consider models in which the voters are positioned on a graph
and form coalitions with neighbours before forming coalitions with more distant
players.

Another possible approach is to consider voting games in which there exist
natural pre-coalitions of similar voters. This is a natural approach when there
are a reasonably large number of players (parties) involved in a political vote.
In such a case, the existence of such pre-coalitions would greatly reduce the
negotiating costs. Owen presented adaptions of the Shapley-Shubik value (Owen
1977) and of the Banzhaf-Penrose value (Owen 1982) for games in which natural
coalitions exist. These results were generalised by Alonso-Meijide and Fiestras-
Janeiro (2002) and the monotonicity properties of such indices were considered
by Alonso-Meijide et al. (2009). In that paper, the authors used the concept of
a quotient index, based on the idea of consistency introduced by Van den Brink
and Van der Laan (2001), and note that the indices defined by Owen are of this
form. The values of such indices can be calculated by splitting the full game into
two levels. The upper level is the voting game played between the pre-coalitions,
in which the weight of a pre-coalition is given by the sum of the weights of
the members of the pre-coalition. The lower level is given by a set of induced
subgames played between the members of a pre-coalition. The power indices for
the games played at both levels can be calculated using classical methods. The
solution of the game played at the upper level measures the power of the pre-
coalitions. By taking the appropriate weighted average of the vector of power
indices in the relevant subgames played within a pre-coalition, we can measure
the power of a player within a pre-coalition. The power index of a player is
then given by the product of the power index of its pre-coalition and the power
index describing the influence of a player within its own pre-coalition. We use the
indices proposed by Owen (1977, 1982), together with the appropriately adapted
version of the Johnston index (Johnston 1978).

It might seem that such an approach would complicate the calculation of
power indices. However, the time required to solve a game is exponential in the
number of players. Hence, by solving the game in this way, the calculation time
is much reduced, since the games considered involve significantly fewer players
than the full game. We apply this approach to solving the voting game played
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by the EU council according to the Treaty of Lisbon rules, both before and after
Brexit (games with 28 and 27 players, respectively). The power indices were
derived by full enumeration using a program written by the authors in the R
package. In addition, we used the “ipnice” program available at www.warwick.
ac.uk/∼ecaae which calculates the Banzhaf index for voting games based on
two weight vectors. This algorithm calculates the power indices using generating
functions, which greatly speeds up the calculation (see Leech 2003). The results
obtained using this algorithm agreed with the results we obtained for the Banzhaf
value based on full enumeration.

Since a very powerful player is leaving the EU, a political union with huge
economic and social influence, it is interesting to those researching in the politi-
cal, social and economic sciences to understand how the balance of power within
the union will change. In this article, we look in particular at the effect that
the UK leaving the EU will have on decision making with regard to the eco-
nomic sphere. Similar analyses could be made with regard to other issues, such
as agriculture or the environment, given data describing the appropriate factors.

Due to the varying population sizes of the member states and the nature of
the voting procedures adopted in the EU, such procedures have been a natural
source for researchers as a tool for developing fair voting systems when players
have naturally different weights (Bertini et al. 2005 and Turnovec 2009). Mercik
et al. (2004) consider the interaction of national and partisan (party political)
interests in such voting procedures. Malawski (2004) considers the allocation of
payoffs (power) in the framework of simple games, which strictly include the set
of majority voting games. For a more general overview of power indices and their
application to voting systems see Gambarelli and Stach (2009) and Bertini et al.
(2013).

It should also be noted that as a result of the workshop on “Quantita-
tive Methods of Group Decision Making”, to which this book is dedicated, the
authors discovered that Gianfranco Gambarelli and Izabella Stach (2017) have
been working independently on an approach to defining power indices of co-
operative games with given pre-coalitions (appearing also in this volume).

The article is arranged as follows: Sect. 2 describes the rules of voting in the
EU council as prescribed by the Treaty of Lisbon, together with the three classi-
cal measures of power which will be applied here. Section 3 describes how the pre-
coalitions are defined. The derivation of the power indices of the pre-coalitions in
the voting game (the external index) is considered in Sect. 4. Section 5 presents
the derivation of the power index for individual players within a pre-coalition
(the internal index). The relation between the approach presented here and the
general concept of quotient indices is given in Sect. 6. Numerical results for the
voting game played by the members of the EU council are presented in Sect. 7.
The final section gives some conclusions and directions for future research.

www.warwick.ac.uk/~ecaae
www.warwick.ac.uk/~ecaae
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2 Voting Procedure in the EU Council and Classical
Power Indices

This analysis is based on the rules introduced by the Lisbon Treaty in order
to reflect possible changes in the membership of the EU and the populations
of individual states (see Kóczy 2012 and http://www.consilium.europa.eu/en/
council-eu/voting-system/). In order for a vote to be passed, the following two
conditions must be satisfied:

1. 55% of the member states must be in favour (i.e. at present, 16 of 28 states,
after Brexit, 15 of 27 states). It should be noted that in special cases 72% of
the countries must be in favour, but this variant is not considered here.

2. The states voting for a proposition should represent at least 65% of the EU
population, with the additional condition that to block a proposition any
coalition representing at least 35% of the population must contain at least
four states.

The present members of the EU and their percentage share of the EU pop-
ulation (both pre- and post-Brexit) are given in Table 1. These percentages are
calculated based on the populations as of 1st Jan, 2015 according to Eurostat
(http://ec.europa.eu/eurostat/data/database).

In terms of the set of winning coalitions, the condition that at least four
states are required to block a proposition only relates to the six largest states,
since any coalition of three countries representing at least 35% of the EU popu-
lation must contain three of these states. These six states (Germany, France, the

Table 1. Member states of the EU and their relative population sizes (pre- and post-
Brexit)

Country % Pop. (pre) % Pop. (post) Country % Pop. (pre) % Pop. (post)

1. Germany 15.96 18.29 15. Austria 1.69 1.94

2. France 13.06 14.97 16. Bulgaria 1.42 1.63

3. UK 12.74 n.a 17. Denmark 1.11 1.27

4. Italy 11.96 13.71 18. Finland 1.08 1.24

5. Spain 9.14 10.47 19. Slovakia 1.07 1.23

6. Poland 7.48 8.57 20. Ireland 0.91 1.04

7. Romania 3.91 4.48 21. Croatia 0.83 0.95

8. Netherlands 3.33 3.82 22. Lithuania 0.57 0.65

9. Belgium 2.22 2.54 23. Slovenia 0.41 0.47

10. Greece 2.13 2.44 24. Latvia 0.39 0.45

11. Czech Rep. 2.07 2.37 25. Estonia 0.26 0.30

12. Portugal 2.04 2.34 26. Cyprus 0.17 0.19

13. Hungary 1.94 2.22 27. Luxembourg 0.11 0.13

14. Sweden 1.92 2.20 28. Malta 0.08 0.09

http://www.consilium.europa.eu/en/council-eu/voting-system/
http://www.consilium.europa.eu/en/council-eu/voting-system/
http://ec.europa.eu/eurostat/data/database


The Effect of Brexit on the Balance of Power in the EU Council 91

United Kingdom, Italy, Spain and Poland) are significantly larger (according to
population) than the others. In addition, the only such coalition that does not
contain Germany is the coalition formed by France, the United Kingdom and
Italy, the second to fourth largest countries. Hence, this condition seems to be
aimed at reducing the power of the six largest nations, especially Germany.

We now consider three classical power indices. Let N be the set of all players
(countries) and S denote the set of players in a coalition. Also, we denote the
total number of players by n and the number of players in coalition S by s. The
characteristic function v is defined on the space of coalitions, such that v(S) = 1
when coalition S is winning and otherwise v(S) = 0. A winning coalition S is
said to be vulnerable, if there exists at least one member of that coalition who
can turn it into a losing coalition by leaving S. Such a member is called critical.

We consider the following three power indices:

1. The Shapley-Shubik index:

φi(v) =
∑

S⊆N\{i}

s!(n − s − 1)!
n!

[v(S ∪ {i}) − v(S)], (1)

where φi(v) is the Shapley-Shubik index for player i based on the voting game
with characteristic function v (Shapley and Shubik 1954). In intuitive terms,
this is the probability that by entering a coalition, it is player i who turns it
from a losing coalition to a winning coalition when players enter coalitions in
a random order. Thus, it is a measure of the power to implement a decision.

2. The normalized Banzhaf-Penrose (BP) index (Penrose 1946 and Banzhaf
1965) is obtained by dividing the number of coalitions for which player i is
critical by the sum of these numbers over the set of players. Hence, the sum
of the normalized values is 1, as is the sum of the Shapley-Shubik indices.
If βi(v) is the number of coalitions for which i is critical and βi(v) is the
normalized BP index, then

βi(v) =
∑

S⊆N\{i}
v(S ∪ {i}) − v(S); βi(v) =

βi(v)∑n
i=1 βi(v)

. (2)

The normalized BP index is interpreted as the power of a player to block a
decision.

3. The Johnston power index (Johnston 1978) is an adaptation of the Banzhaf
index. It is obtained by weighting each coalition for which player i is critical
by the reciprocal of the number of players who are critical in that coalition.
As such, it remains a measure of the power to block a decision, while giving
more weight to players who are more likely to be either the only player able
to block a decision or one of a small number of such members. If γi(v) is the
non-normalized Johnston power index and γi(v) is the normalized value, then

γi(v) =
∑

S⊆N\{i}

v(S ∪ {i}) − v(S)
c(S ∪ {i})

; γi(v) =
γi(v)∑n
i=1 γi(v)

, (3)
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where c(S) denotes the number of critical players in the coalition S. It should
be noted that here we sum over the set of coalitions in which player i is critical.
It follows that for such sets c(S) ≥ 1 and hence the sum is well-defined.

Note that these indices are various weighted sums based on the set of coali-
tions for which a given player (country) is critical. This fact is crucial to the
method described in Sect. 5 to derive how power is split within a pre-coalition.

3 Defining Pre-coalitions

When the number of players is large, unless the negotiation process has some
form of structure, then it seems likely that the costs of negotiation would increase
more rapidly than the benefits to be obtained by each player being able to voice
their own opinion. This is illustrated by the concept of liberum veto used in the
Polish-Lithuanian parliament in the 17th Century, which lead to institutional
paralysation (Rohác̆ 2008) and, on the other hand, the common practice of
party discipline in modern parliaments. In the case of the EU under its present
regulations, it seems reasonable to assume that smaller countries would seek
to align themselves with larger countries who have similar goals to them, since
otherwise they could not achieve the amount of support according to population
in order to pass favourable legislation. On the other hand, larger states need the
support of a large number of states, so naturally look to build alliances with
smaller countries with similar aims. For this reason, we consider a model in
which pre-coalitions are formed around the six largest member states (Germany,
France, the UK, Italy, Spain and Poland) according to the similarity of countries’
economic situations and then these pre-coalitions are assumed to negotiate to
form larger coalitions. These six countries are chosen for the following reasons:

1. They are significantly larger than any of the other EU member states.
2. They represent a wide variety of viewpoints, as well as economic, historic and

political positions, within the EU.

The economic factors considered are as follows:

1. GDP growth (as a percentage).
2. GDP per capita (in terms of purchasing power).
3. Debt (as a percentage of GDP).
4. Trade surplus (as a percentage of GDP).
5. Inflation (as a percentage).
6. Unemployment rate.
7. Consumption (in terms of purchasing power).
8. Classification of individual consumption by purpose (COICOP). This is an

indicator of the structure of consumption and is negatively correlated with
wealth.
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It should be noted that this choice of variables is subjective (one could, for
example, add government spending as a proportion of GDP). However, the data
are used for illustrative purposes and the resulting partition of member states
according to their economic situation seems reasonable and reflects many of the
natural inclinations of countries to align themselves (in particular, the tendency
of the post-communist countries to group together and the close ties between
France and Germany, although the ties between these two countries are more
multi-dimensional). Of course, such an approach is only appropriate for motions
which are predominantly economic in nature. When considering reforms to the
Common Agricultural Policy, one should use data relevant to agriculture (e.g.
percentage employed in agriculture, percentage of GDP produced by agricul-
ture, level of EU agricultural subsidies). Similar approaches could be defined for
motions related to e.g. the environment or immigration policy.

Since these variables are not all measured in the same units, they are individ-
ually standardized by subtracting the relevant mean and then dividing by the
standard deviation. The Euclidean distance between two countries according
to these standardized data was used as a measure of dissimilarity (the matrix
of these distances is given as an appendix). As stated above, it was assumed
that the pre-coalitions formed around the six largest countries (after Brexit, the
five largest countries remaining). The smaller countries joined the pre-coalition
based around the country which was economically most similar to it. This is a
somewhat simplistic approach and in the future we wish to investigate proba-
bilistic models where the probability that smaller countries join a particular pre-
coalition depends on the distance to the country around which that pre-coalition
is formed. In the voting game played pre-Brexit, the six pre-coalitions formed
according to this approach, together with their weights according to the voting
procedure, are given in Table 2. Table 3 gives the weights of the pre-coalitions
in the voting game played post-Brexit. For convenience, each pre-coalition will
be referred to according to the largest country in the pre-coalition. It should
be noted that based on these pre-coalitions, the voting rule which states that
at least four states are required to block a rule will no longer have any effect,
since any coalition including three of the six largest states will also include other
states.

4 Determining the Power Indices of the Pre-coalitions

In order to determine the appropriate power index of a pre-coalition, we consider
the voting games defined when the pre-coalitions are treated as single players.
Each of the indices can be calculated by determining the set of vulnerable coali-
tions, and calculating the appropriate sum over this set. Tables 4 and 5 give the
set of vulnerable coalitions and the corresponding sets of critical players for the
pre-Brexit and post-Brexit games, respectively. In addition, these tables present
the number of permutations corresponding to a given pre-coalition turning a
coalition from being losing to being winning (i.e. being the “swing” party) when
pre-coalitions come together in a random order. It should be noted that each
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Table 2. Pre-coalitions in the pre-Brexit voting game along with their weights. Post-
Brexit, Ireland joins the pre-coalition formed around France.

Pre-coalition 1 Pre-coalition 2 Pre-coalition 3 Pre-coalition 4

Germany France United Kingdom Italy

Sweden Netherlands Ireland Portugal

Austria Belgium Cyprus

Denmark Finland

Luxembourg

No. of countries 5 4 2 3

% of EU population 20.79 19.69 13.65 14.10

Pre-coalition 5 Pre-coalition 6

Spain Poland

Greece Romania Lithuania

Croatia Czech Rep. Slovenia

Hungary Latvia

Bulgaria Estonia

Slovakia Malta

No. of countries 3 11

% of EU population 12.10 19.60

Table 3. The weights of the pre-coalitions in the post-Brexit game.

Largest country Germany France Italy Spain Poland

No. of countries 5 5 3 3 11

% of EU population 23.83 23.61 16.24 13.86 22.46

possible permutation of the pre-coalitions defines a well defined combination of
vulnerable coalition (the first winning coalition formed) and swing player (who
is a critical player in that coalition). For example, when the Polish pre-coalition
is the swing player in the pre-Brexit game and the coalition formed is {D, F, UK,
Pol}, Poland must be the fourth pre-coalition in the permutation, any of the six
possible orderings of Germany, France and the UK in the first three positions is
possible, combined with the two possible orderings of Italy and Spain in the final
two positions. Hence, there are 12 permutations corresponding to the vulnerable
coalition {D, F, UK, Pol} where Poland is the swing player.

The power indices for these two games can be directly calculated based on
the information given in Tables 4 and 5. In order to calculate the Shapley-Shubik
value, we calculate the number of permutations in which a pre-coalition is the
swing player by summing the number of permutations for which a pre-coalition
is critical and then dividing by the total number of permutations of the pre-
coalitions, n!, where n is the number of pre-coalitions. The BP index is cal-
culated by counting the number of coalitions in which a given pre-coalition
is critical and dividing it by the sum of the number of critical players over
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Table 4. Vulnerable coalitions in the pre-Brexit game and the set of critical pre-
coalitions in each case: D - Germany, F - France, UK - United Kingdom, It - Italy, Es
- Spain, Pol - Poland

Vulnerable coalition Critical players Permutations/critical player

{D, F, UK, Pol} {D, F, UK, Pol} 12

{D, F, It, Pol} {D, F, It, Pol} 12

{D, UK, It, Pol} {D, UK, It, Pol} 12

{F, UK, It, Pol} {F, UK, It, Pol} 12

{D, F, Es Pol} {D, F, Es, Pol} 12

{F, UK, Es, Pol} {F, UK, Es, Pol} 12

{D, It, Es, Pol} {D, It, Es, Pol} 12

{F, It, Es, Pol} {F, It, Es, Pol} 12

{D, F, UK, It, Es} {D, F, UK, It, Es} 24

{D, F, UK, It, Pol} {Pol} 24

{D, F, UK, Es Pol} {Pol} 24

{D, F, It, Es, Pol} {Pol} 24

{D, UK, It, Es, Pol} {D, Pol} 24

{F, UK, It, Es, Pol} {F, Pol} 24

Table 5. Vulnerable coalitions in the post-Brexit game and the set of critical pre-
coalitions in each case.

Vulnerable coalition Critical players Permutations/critical player

{D, F, Pol} {D, F, Pol} 4

{D, F, It, Es} {D, F, It, Es} 6

{D, F, It, Pol} {D, F, It, Pol} 6

{D, F, Es, Pol} {D, F, Es, Pol} 6

{D, It, Es, Pol} {D, It, Es, Pol} 6

{F, It, Es, Pol} {F, It, Es, Pol} 6

all the vulnerable coalitions. The Johnston index is obtained by dividing the
sum of the reciprocals of the number of critical players over the set of coalitions
in which a given pre-coalition is critical by the total number of vulnerable coali-
tions. These indices are given in Tables 6 and 7 for the pre-Brexit and post-Brexit
games, respectively.

It should be noted that the Polish pre-coalition is particularly powerful in the
pre-Brexit game. This is due to the fact that any coalition of two pre-coalitions
which includes Poland is a blocking coalition (since the number of countries
involved is always large enough to block a motion) and the only other blocking
coalition of two pre-coalitions is formed by Germany and France (which repre-
sents more than 35% of the EU population).
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Table 6. Power indices of the pre-coalitions in the pre-Brexit game.

Germany France UK Italy Spain Poland

Shapley 10/60 10/60 7/60 7/60 7/60 19/60

BP 4/24 4/24 3/24 3/24 3/24 7/24

Johnston 44/300 44/300 29/300 29/300 29/300 125/300

Table 7. Power indices of the pre-coalitions in the post-Brexit game.

Germany France Italy Spain Poland

Shapley 14/60 14/60 9/60 9/60 14/60

BP 5/21 5/21 3/21 3/21 5/21

Johnston 2/8 2/8 1/8 1/8 2/8

5 Determining the Power of a Member State Within
a Pre-coalition

In order to determine the power of each member state in these two games, it is
necessary to determine the power of a member state within a pre-coalition. This
is done by considering subgames corresponding to each vulnerable coalition. Sup-
pose pre-coalition i is critical in a given coalition. Then in order to calculate the
power, in the corresponding subgame, of a member state within a pre-coalition,
we assume that all the members of all the other pre-coalitions in the vulnerable
coalition vote for a motion, while all the members of the pre-coalitions outside
of the vulnerable coalition vote against the motion. This assumption leads to an
induced subgame played by the members of pre-coalition i in which a specified
number of member states must vote for the motion and these states must repre-
sent a defined proportion of the EU population. For example, in the post-Brexit
game, the German pre-coalition can play the five subgames described in Table 8
corresponding to the five coalitions in which the German pre-coalition is critical.
These are described in Table 8. For example, in the subgame corresponding to
the coalition {D, F, Pol}, it is assumed that all the countries in the French and
Polish pre-coalitions vote for the proposition (a total of 16 countries representing
46.07% of the EU population), while the countries in the Italian and Spanish
pre-coalitions are assumed to vote against the proposition. It follows that the
member states in the German pre-coalition play a subgame in which in order to
pass a proposition, it is simply necessary that the countries in the German pre-
coalition voting for the proposition must represent 18.93% of the EU population
(so that the 65% threshold is exceeded). The power indices for these subgames
can be calculated using standard methods (e.g. using the approach described in
the previous section).

In order to calculate the power indices of the member states within pre-
coalition i, it is necessary to calculate the appropriate weighted average of the
indices derived for the subgames played by pre-coalition i. In the case of calcu-
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Table 8. Power indices of the pre-coalitions in the post-Brexit game.

Vulnerable coalition No. of countries
required

% of EU population
required

Weight

{D, F, Pol} 0 18.93 4

{D, F, It, Es} 4 11.29 6

{D, F, Es, Pol} 0 5.07 6

{D, It, Es, Pol} 0 12.44 6

{D, F, It, Pol} 0 2.69 6

lating either the BP index or the Johnston index, the vulnerable coalitions are
equally weighted. Hence, to calculate the appropriate power index for a mem-
ber state within pre-coalition i, we simply average the power indices over the
appropriate subgames. In the case of the Shapley-Shubik index, the weight of
a subgame is assumed to be proportional to the number of permutations of
pre-coalitions corresponding to that subgame, i.e. the permutations correspond-
ing to pre-coalition i being a swing player (the derivation of these weights was
described in the previous section). Hence, since the sum of the weights must be
equal to one, the weights of the first subgame described above is 1/7 and the
weights of the remaining subgames are all equal to 3/14.

The power index of a member state in the game as a whole is obtained by
multiplying the appropriate power of that member state within its pre-coalition
(the internal index) by the same power index of the pre-coalition in the game
with defined pre-coalitions (the external index). Any such index satisfies the
efficiency condition, since the sum of the values of any power index over the
member states is by definition equal to one. For example, the Shapley-Shubik
index for Germany in the five games listed above are 3/4, 2/5, 3/4, 1 and 1/2,
respectively. It follows that the Shapley-Shubik index for Germany within its
pre-coalition is given by

vi,S
D =

1
7

× 3
4

+
3
14

(
2
5

+
3
4

+ 1 +
1
2
) =

27
40

,

where the superscripts indicate that this is the internal Shapley power index
and the subscript indicates the country. Hence, the Shapley-Shubik index for
Germany in the full game with pre-coalitions is given by

vS
D = ve,S

D vi,S
D =

7
30

× 27
40

=
63
400

.

6 Relation to the General Concept of Quotient Indices

We consider here the relation of the indices considered above to the indices
introduced by Owen (1977, 1977) for cooperative games played by the set of
players N with defined pre-coalitions C = {C1, C2, . . . Ck}, where ∪k

i=1Ci = N
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and K = {1, 2, . . . k}. Based on Alonso-Meijide et al. (2009) and assuming that
player i, 1 ≤ i ≤ n, belongs to coalition Cj , 1 ≤ j ≤ k, the form of an index
from the set of quotient indices can be written in the following form:

gi(v, C) =
∑

R⊆C\Cj

pu
R,j

∑

T⊆Cj\i

p�
T,i[v(QR ∪ T ∪ i) − v(QR ∪ T )], (4)

where gi(v, C) is the power index for player i in the voting game with value
function v when the set of pre-coalitions is given by C, R denotes a coalition
of pre-coalitions, QR denotes the set of players in such a coalition, T is a set
of players within pre-coalition Cj , pu

R,j is an appropriately defined weight at
the upper (external) level, i.e. the voting game played between pre-coalitions
and p�

T,i is an appropriately defined weight at the lower (internal) level, i.e. the
voting game played within a pre-coalition. According to this sum, the power of an
individual player comes from the scenarios in which that player is a critical player
in its pre-coalition in an appropriately defined internal voting game given that
the pre-coalition is critical in the external voting game. Due to the fact that the
weights can be split as a quotient into internal and external terms, the internal
sum in Eq. (4) can be interpreted as a power index in the internal subgame. In
the case of the index based on the Shapley-Shubik index, (see Owen 1977)

p�
T,i =

t!(cj − t − 1)!
cj !

, pu
R,j =

r!(k − r − 1)!
k!

,

where t is the number of players in T , cj is the number of players in pre-coalition
cj , r is the number of pre-coalitions in the set R of pre-coalitions. It follows that
the internal sum defines the Shapley-Shubik index of player i in an appropriately
defined subgame given that the coalition Cj is critical. Note that the sum of these
indices for each such subgame is by definition one. Hence, it follows that

∑

i∈Cj

gi(v, C) ≡ gCj
(v, C) =

∑

R⊆C\Cj

pu
R,j [v(QR ∪ Cj) − v(QR)], (5)

where gCj
(v, C) is the power of pre-coaliton Cj in the voting game. It thus follows

that the external index defined in Sect. 4 can be interpreted as the Shapley-
Shubik of the pre-coalition in the external game.

Finally, it should be noted that the overall index weights the coalitions in
which the pre-coalition Cj is critical according to the number of permutations
where the pre-coalition Cj is critical. It follows that to define the appropriate
power index of a player within a pre-coalition, the corresponding weighting of
the powers in the subgames must be carried out, as described in the previous
section. In conclusion, the overall power index for a player corresponding to
the Shapley-Shubik index can be interpreted as the product of the two indices
describing internal and external power.

With regard to the index based on the BP index, the story is slightly differ-
ent. Based on Alonso-Meijide (2009), the internal and external weights are given
by p�

T,i = 21−k and pu
R,j = 21−cj . In this case, the indices are not normalised



The Effect of Brexit on the Balance of Power in the EU Council 99

(i.e. they do not sum to one), but at each stage of the summation, the coalitions
are equally weighted. It follows that the index defined in this paper is an appro-
priately normalised version of the index proposed by Owen (1982). Arguing in
a similar way, the Johnston index is an appropriately normalised version of the
original index defined for voting games without pre-coalitions. In the case of
each of these three indices, when the pre-coalitions are individual players, these
indices reduce to the standard normalised indices.

7 Numerical Results

A program was written in the R package to evaluate power indices by complete
enumeration for a voting game based on two weight vectors. One problem with
this approach is that the complexity of this calculation is exponential in the
number of players (there are 2n possible coalitions). For example, the complete
enumeration of the three classical indices for the pre-Brexit game (with 28 play-
ers) took around 36 h on a laptop (4 MB RAM, Intel Core i3), while the indices
for games with 11 players (i.e. the greatest number of players in a subgame con-
sidered here) were calculated essentially immediately. For this reason, although
programs to calculate power indices based on voting games with pre-coalitions
are more complex to write, the computing time required to calculate the appro-
priate power indices is hugely reduced. Table 9 gives the values for the pre-Brexit
voting game. The first value is the index calculated according to the classical
index. The value in brackets corresponds to the voting game based on the pre-
coalitions described in Sect. 3. Table 10 gives the corresponding values for the
post-Brexit game.

Comparing the power of the countries according to the classical indices, each
of them indicates that the power of small countries is relatively large in propor-
tion to their share of the EU population, particularly the Banzhaf index. This
is in agreement with the observations of Alonso-Meijide et al. (2009). The John-
ston index ascribes a particularly high power to Germany, the largest country.
It should be noted that the difference between the populations of Germany and
France (the second largest country) is greater than the population of the major-
ity of member states. As a result, Germany will be a critical player when there
are a relatively small number of critical players more often than any of the other
countries and this is reflected in the Johnston index.

Comparing the values of the classical indices pre-Brexit and post-Brexit, it
is surprising that the power of the smallest countries decreases due to the UK
leaving (although this fall is only marginal). This might be explained by the fact
that after Brexit, according to the Lisbon treaty, the support of only 15 of the
27 member states is required to pass a motion (a lower proportion than pre-
Brexit). The stipulation requiring support of member states representing 65%
of the population of the member states remains unchanged. Hence, the size of
a country seems to be becomes relatively more important in comparison to the
voting weight resulting from simply being a member state. This is particularly
visible in the case of the Johnston index, where the values of the index of the 19
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Table 9. Power indices for the pre-Brexit voting game scaled to sum to 100. The
first value is the classical index. The value in brackets is based on the pre-coalitions
described in Sect. 3

Country Pre-coaltion % pop. Shapley-Shubik BP Johnston

1. Germany Germany 15.96 14.43 (11.83) 10.21 (11.46) 21.96 (10.41)

2. France France 13.06 11.25 (9.44) 8.46 (9.76) 12.34 (8.86)

3. UK UK 12.74 10.93 (9.17) 8.27 (10.42) 11.71 (8.06)

4. Italy Italy 11.96 10.17 (7.22) 7.85 (8.19) 10.61 (6.44)

5. Spain Spain 9.14 7.53 (5.56) 6.21 (6.25) 7.16 (4.83)

6. Poland Poland 7.48 6.32 (6.65) 5.08 (6.12) 5.04 (11.51)

7. Romania Poland 3.91 3.75 (4.74) 3.79 (4.19) 2.94 (6.61)

8. Netherlands France 3.33 3.28 (2.78) 3.48 (2.67) 2.49 (2.22)

9. Belgium France 2.22 2.42 (2.78) 2.90 (2.67) 1.74 (2.22)

10. Greece Spain 2.13 2.36 (3.89) 2.86 (4.17) 1.69 (3.22)

11. Czech Rep. Poland 2.07 2.31 (3.42) 2.82 (3.31) 1.65 (4.30)

12. Portugal Italy 2.04 2.29 (3.06) 2.81 (3.19) 1.64 (2.42)

13. Hungary Poland 1.94 2.21 (3.35) 2.76 (3.22) 1.59 (4.14)

14. Sweden Germany 1.92 2.20 (1.83) 2.75 (2.05) 1.58 (1.70)

15. Austria Germany 1.69 2.03 (1.83) 2.63 (2.05) 1.48 (1.70)

16. Bulgaria Poland 1.42 1.83 (2.81) 2.49 (2.79) 1.37 (3.49)

17. Denmark Germany 1.11 1.60 (0.58) 2.33 (0.56) 1.25 (0.43)

18. Finland France 1.08 1.58 (1.67) 2.31 (1.56) 1.24 (1.38)

19. Slovakia Poland 1.07 1.58 (2.35) 2.31 (2.43) 1.24 (3.00)

20. Ireland UK 0.91 1.46 (2.50) 2.22 (2.08) 1.18 (1.61)

21. Croatia Spain 0.83 1.40 (2.22) 2.18 (2.08) 1.16 (1.61)

22. Lithuania Poland 0.57 1.21 (1.95) 2.05 (1.77) 1.07 (2.15)

23. Slovenia Poland 0.41 1.10 (1.69) 1.96 (1.48) 1.03 (1.77)

24. Latvia Poland 0.39 1.09 (1.68) 1.95 (1.47) 1.02 (1.75)

25. Estonia Poland 0.26 1.00 (1.59) 1.89 (1.36) 0.99 (1.67)

26. Cyprus Italy 0.17 0.93 (1.39) 1.84 (1.11) 0.96 (0.81)

27. Luxembourg Germany 0.11 0.89 (0.58) 1.81 (0.56) 0.94 (0.43)

28. Malta Poland 0.08 0.87 (1.44) 1.79 (1.03) 0.94 (1.30)

smallest countries actually fall as a result of Brexit. In general, how the removal
of a player affects the power indices of the least powerful players will depend on
the exact form of the voting game and the player who leaves. The power of the
smallest countries can increase or decrease, as can be seen from the following
game: Suppose there are 4 states, whose populations are in the ratio 2:2:2:1.
Consider a voting game where a winning coalition must contain the majority
of the states and represent at least 65% of the total population. It is simple to
show that any coalition of three states is a minimal winning coalition. Hence,
any normalized index describing the power of the smallest state must be equal to
1/4. However, when one of the large states is removed from the game, the small
state is never critical (i.e. has zero power). However, if only 55% of the total
population need to be represented, then the game is reduced to one in which



The Effect of Brexit on the Balance of Power in the EU Council 101

Table 10. Power indices for the post-Brexit voting game scaled to sum to 100. The
first value is the classical index. The value in brackets is based on the pre-coalitions
described in Sect. 3

Country Pre-coalition % pop. Shapley-Shubik BP Johnston

1. Germany Germany 18.29 17.32 (15.75) 11.92 (14.34) 24.45 (18.16)

2. France France 14.97 13.28 (13.36) 9.98 (12.39) 15.41 (14.31)

3. Italy Italy 13.71 12.03 (13.33) 9.18 (12.38) 13.05 (11.11)

4. Spain Spain 10.47 9.00 (8.33) 7.66 (7.30) 9.38 (7.64)

5. Poland Poland 8.57 6.99 (7.43) 6.54 (7.47) 7.32 (11.08)

6. Romania Poland 4.48 4.00 (3.70) 4.01 (3.74) 3.11 (4.28)

7. Netherlands France 3.82 3.52 (4.75) 3.68 (5.61) 2.62 (5.64)

8. Belgium France 2.54 2.60 (2.94) 3.02 (3.15) 1.74 (2.91)

9. Greece Spain 2.44 2.53 (3.33) 2.97 (3.49) 1.68 (2.43)

10. Czech Rep. Poland 2.37 2.47 (2.44) 2.93 (2.79) 1.64 (2.49)

11. Portugal Italy 2.34 2.45 (0.83) 2.91 (0.95) 1.63 (0.69)

12. Hungary Poland 2.22 2.37 (2.36) 2.85 (2.67) 1.57 (2.34)

13. Sweden Germany 2.20 2.35 (2.28) 2.84 (2.75) 1.56 (2.03)

14. Austria Germany 1.94 2.17 (2.28) 2.70 (2.75) 1.45 (2.03)

15. Bulgaria Poland 1.63 1.94 (1.90) 2.54 (2.08) 1.33 (1.70)

16. Denmark Germany 1.27 1.68 (2.28) 2.35 (2.75) 1.19 (2.03)

17. Finland France 1.24 1.66 (1.28) 2.33 (1.57) 1.18 (1.24)

18. Slovakia Poland 1.23 1.65 (1.50) 2.32 (1.65) 1.17 (1.25)

19. Ireland France 1.04 1.52 (1.00) 2.22 (1.09) 1.11 (0.91)

20. Croatia Spain 0.95 1.45 (3.33) 2.17 (3.49) 1.08 (2.43)

21. Lithuania Poland 0.65 1.24 (1.01) 2.01 (1.02) 0.99 (0.59)

22. Slovenia Poland 0.47 1.11 (0.89) 1.92 (0.77) 0.94 (0.40)

23. Latvia Poland 0.45 1.09 (0.86) 1.91 (0.74) 0.94 (0.39)

24. Estonia Poland 0.30 0.98 (0.72) 1.82 (0.59) 0.89 (0.31)

25. Cyprus Italy 0.19 0.91 (0.83) 1.76 (0.95) 0.87 (0.69)

26. Luxembourg Germany 0.13 0.86 (0.75) 1.73 (0.84) 0.85 (0.75)

27. Malta Poland 0.09 0.87 (0.52) 1.71 (0.30) 0.84 (0.17)

only a simple majority is required (both before and after the removal of a large
state). In this case, any normalized power index for the small state must increase
from 1/4 to 1/3.

Now we compare the classical indices with those obtained on the basis of pre-
coalitions. It is clear that the power of a particular member state depends on
both the power of the pre-coalition that it is a member of and its position within
that pre-coalition. For example, in the pre-Brexit game the pre-coalition formed
around Poland has a very strong position, since it can form a blocking coalition
with any other pre-coalition. The only other pair of pre-coalitions that can form
a blocking coalition are the ones formed around Germany and France. As a result
of this, the values of the Shapley-Shubik index and, in particular, the Johnston
index of all the members of the Polish pre-coalition (mostly small countries) are
clearly greater for the model based on pre-coalitions. There does not seem to be
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Table 11. Economic distance between member states
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any systematic tendency of the pre-coalition approach to increase or decrease
the values of the Shapley-Shubik and Johnston power indices of small countries,
since in the post-Brexit game the pre-coalition formed around Poland no longer
has such a strong position relative to the other coalitions and the values of the
power indices in this case are more comparable to the classical values. On the
other hand, the fact that the values of the BP index for the smallest countries in
the pre-coalition formed around Poland are lower than according to the classical
value seems to indicate that the introduction of pre-coalitions seems to generally
decrease the value of the BP index for small countries (hence making these values
more similar to the Shapley-Shubik and Johnston values). Considering small
countries from other pre-coalitions seems to support this conclusion, although
there are some exceptions (see below).

Even taking into consideration the bargaining position of a pre-coalition, the
bargaining position of a country within a pre-coalition can have a significant
impact on the value of its power indices in the full voting game. When there
are a relatively large number of players, since power indices involve averaging
over a very large number of possible coalitions, the power of a country will be
very strongly associated with its size. However, when only a small number of
countries play the subgames which define the distribution of power within a pre-
coalition, then it is very possible that one country can have essentially the same
bargaining position as a clearly smaller country. This results from the specific
form of the subgames played. Denmark seems to be a very good example of this
phenomenon. In the pre-Brexit game, when considering the winning coalitions in
all of the possible subgames played by the pre-coalition formed around Germany,
the positions of Denmark and Luxembourg are interchangeable, even though
Denmark has a population ten times the size of Luxembourg. Hence, the values of
Denmark’s power indices in these games are very low. However, in the post-Brexit
game, Denmark’s position in the subgames played by the pre-coalition formed
around Germany is interchangeable with the position of Austria, or even Sweden,
whose population is nearly twice the size. Hence, the values of Denmark’s power
indices in the post-Brexit game are greater than would be expected from its
size. Portugal is another very good example of this effect. However, in this case,
the values of Portugal’s power indices in the post-Brexit game are smaller than
would be expected from its size.

Note that the monotonicity of values is preserved when comparing the power
of pre-coalitions (a pre-coalition cannot have a smaller power index than another
pre-coalition containing at most the same number of countries and represent-
ing at most the same population) and within pre-coalitions (a country cannot
have a smaller power index than another member of the same pre-coalition with
a smaller population). However, when comparing countries from different pre-
coalitions, monotonicity is not preserved (as noted by Alonso-Meijide et al. 2009).
For example, in the pre-Brexit game, the values of Denmark’s power indices are
exceeded by all of the other countries except for Luxembourg. On the other hand,
in the post-Brexit game, the values of Denmark’s power indices are significantly
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greater than those of Portugal, a country with a population more than twice the
size of Denmark’s.

8 Conclusion and Future Research

This article has described a method of deriving power indices in voting games
with a given set of pre-coalitions by adapting the definition of three classical
power indices: the Shapley-Shubik, Banzhaf-Penrose and Johnston indices. These
concepts are illustrated by the voting game played by the EU Council and defined
in the Treaty of Lisbon, where member states are the players and pre-coalitions
are groups of similar states. The values of the power indices of the pre-coalitions
(the external index) is derived by treating the voting game as a game played by
these pre-coalitions, where the weight of a pre-coalition is given by the sum of
the weights of the member states in that pre-coalition. The value of each of the
power indices for a member state within a pre-coalition is derived by appropriate
summing over the set of coalitions in which that pre-coalition is critical.

The value of a power index of a player within in pre-coalition i (the internal
index) is given by a weighted sum of indices based on the subgames induced by
the set of coalitions in which pre-coalition i is critical. In each of these induced
subgames, it is assumed that the other pre-coalitions within the vulnerable coali-
tion vote for the motion and the pre-coalitions outside of the vulnerable coalition
vote against the motion. This induces a voting game played within pre-coalition
i. In the framework of the EU Council, in such a subgame a defined number of
member states from pre-coalition i representing a given proportion of the EU
population must support the bill, in order for the bill to be passed.

The value of the power index of an individual player is defined to be the
product of the power index of a player within a pre-coalition (the internal index)
and the power of the pre-coalition in the full game (the external index). It follows
directly that such an index satisfies the property of efficiency (i.e. the sum of the
power indices of the individual players is equal to one). However, such an index
does not satisfy the condition of monotonicity, i.e. when player j has a greater
voting weight than player k, then the value of the power index of player k may
be greater. It would be interesting to check what other desirable properties of
power indices are (or are not) satisfied. For example, the indices defined here
possess the following symmetry properties: (i) if two players with the same voting
weights belong to the same pre-coalition, the values of their power indices are
equal, (ii) interchanging two players with the same voting weights who belong to
different pre-coalitions will simply lead to interchanging the values of the power
indices of these two players (in both cases without changing the power indices
of the remaining players).

In terms of the effect of Brexit on the balance of power in the EU council, on
the basis of the three classical power indices considered, it is somewhat surprising
that the power of the smallest countries falls. This seems to be due to the fact
that, according to the rules defined in the Lisbon treaty, a smaller percentage of
the individual member states is required to pass a motion, while the percentage of
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the EU population that these member states must represent remains the same.
Hence, population size becomes more important relatively to simply being a
member state. However, as argued above, this is certainly not a general result
for such games.

It is interesting to note that in the pre-Brexit game a strong pre-coalition
based around Poland (which is composed almost entirely of relatively new mem-
bers of the EU in Central Europe) would be a very strong player in the EU
council. In practice, such a large coalition would not be a monolith. Also, France
and Germany are relatively close in economic terms and tend to co-operate
strongly in EU politics (see Kauppi and Widgrén 2007). The model considered
here assumes that a member state joins the pre-coalition formed around the large
member state which is most similar to it. Also, these pre-coalitions are equally
likely to cooperate with any of the other pre-coalitions. A more realistic model
would assume that member states are more likely, but not guaranteed, to join
the pre-coalition based around the most similar large member state and that
pre-coalitions are more likely to enlarge themselves by forming coalitions with
pre-coalitions which are most similar to them. Such assumptions would indicate
that France is a more powerful player than found here, since it occupies a central
position, both economically and politically.

Since the UK is a somewhat isolated (or independent) player in the EU coun-
cil (both in practice and in accordance with our model), Brexit is unlikely to lead
to any major rearrangement of natural coalitions within the EU. On the other
hand, the fact that such a large country is leaving the EU might have a signif-
icant impact on the balance of power within the EU council. According to the
model presented here, the pre-coalition formed around Poland will lose power,
since France (or Germany) can now form a blocking coalition with any other
pre-coalition. However, since France and Germany have tended to co-operate
together, it is likely that Poland’s power in the pre-Brexit game is exaggerated.

Although these EU voting rules were devised to take into account the possi-
bility that the number of member states will change, it is particularly interesting
to note that, even so, given changes in the membership can have rather system-
atic effects on the balance of power. In the case of Brexit, it is unsurprising that
the power indices of the largest countries increase (since there are less players),
but it is surprising that the power of the smallest countries seems to fall. These
changes are subtle and depend on the precise nature of the voting rules and
which players leave (or join). In the case of the EU, one of the rules states that
at least 55% of the member states should favour a motion. However, in practice,
the percentage of states that need to support a bill will depend on the number of
member states. For example, before Brexit this percentage was 57.14% (16 out
of 28), after Brexit, it is only 55.56% (15 out of 27). This indicates that more
research is required to investigate voting rules which are robust to changes in
membership, while still being practical to use.

Although the UK will leave the EU, it is quite possible that there will eventu-
ally be an agreement that the UK will participate in the European free market
(in a similar manner to Norway and Switzerland). Due to the UK’s size and
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economic power (particularly in the financial sector), it is likely that the UK
will play an important role in developing trade policy, while relinquishing power
in the fields of social and federal policy. One area of future research might be to
model the level of engagement of a particular country, for example with the aid
of a fuzzy variable.
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Abstract. A comparison of the rules of voting in the last two main Polish
classical music competitions: the XVIIth Chopin Piano Competition and the
XVth Wieniawski Violin Competition. Weak and strong points of rules are
analyzed. The rules are also compared to rules used in the previous editions of
the competitions. We conclude that the changes resulted in the simplification of
rules.
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1 Introduction

There are a lot of voting methods. They have different properties and are used in different
situations. The outline of voting methods may be found in [1] or (in Polish) in [2].
Arrow’s theorem and related topics show that there is no single method possessing “the
best” properties [3]. Moreover, Gibbard and Satterthwaite’s theorem [4, 5] shows that a
strategical manipulability is almost always possible. There are special situations when
experts assess competing projects or persons. In these situations usually some specific
voting methods are used. Sometimes they are very complicated (see [6]), sometimes are
constructed in a simpleway. In some competitions a special computer program is used (the
XIVth International Thaikovsky Competition, 2013 von Cliburn Piano Competition,
2013 Cleveland Piano Competition –Mc Bain’s program). There are some papers about
voting methods used in sport [2, 7–10] and in music [2, 6]. The aim of this paper is to
analyze voting methods used in some classical music competitions and discover the
direction of changes.

In this paper I compare voting methods used in the last two main Polish classical
music competitions, the XVIIth International Fryderyk Chopin Piano Competition and
the XVth International Henryk Wieniawski Violin Competition. I also compare rules of
voting in these competitions with the rules used in previous editions. I decided to deal
with the main Polish classical music competitions as this allowed a possibility to
interview the organizers and read about the competitions in the local media. Rules of
voting of Jury in XVIIth Chopin Piano Competition may be found on the Internet [11].
The rules of voting in the XIVth and XVth Wieniawski Violin Competitions are
unpublished and were obtained for scientific purpose of writing this paper only.

The voting rules used in the XVIIth Chopin Competition and the XVth Wieniawski
Competition are presented in Sects. 2 and 6 respectively. The social choice properties
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of voting methods are analyzed in Sects. 3 and 7. The jurors’ voting are analyzed in
Sects. 4 and 8. Weak and strong points of these rules are discussed in Sects. 5 and 9.
The rules are also compared to rules used in the previous competitions (Sects. 6 and
10). The paper ends with conclusions.

2 The XVIIth International Fryderyk Chopin Piano
Competition

The XVIIth International Fryderyk Chopin Piano Competition took place between
October 2–23, 2015. There were 78 competitors and 17 jurors. The competition con-
sisted of 3 stages and a final. The rules stated that 40 competitors pass from stage I to II
(in fact it was 43), 20 from stage II to III and no more than 10 to the final.

The following system of voting of jury was used. In stages I, II, III a double system
was used. The system consists of Yes – No system and point system. The term “Yes –
No” is used as a name for some modifications of the approval voting method. The
approval voting method was introduced by Brams and Fisburn [12]. Using this method
voters can choose as many alternatives as they want, 0, 1, 2, 3, even for all. In case of
this competition jurors may assign “Yes” or “No” to as many candidates as they wish.
The alternative approved by the greatest number of voters wins. In many competitions
the method is called a Yes – No voting method. The Yes – No system is the main
voting system in the XVIIth Chopin Piano Competition. The point system with scale 1–
25 points (25 points – the best) plays an auxiliary role. It decides about the results
should the Yes – No system fail. There is a possibility of discussion. Jurors know only
anonymous results. Names of competitors may be known in stage III, but in that case
there may only be a difference between the final list and the list constructed by the Yes
– No voting on places 9–12.

When point system is applied, a problem of outliers arises. Some single very high
or very low assessments may cause result expectably high or low. Some procedures of
correction of outliers are used. In this competition outliers are reduced to the mean
plus/minus a given deviation. There is computed an arithmetic mean m of all points.
Results greater than m + a or lower than m − a are reduced to m + a and m − a re-
spectively. The deviation is a = 3 in stage I and a = 2 in stages II and III. Then, the
arithmetic mean of such corrected numbers of points is computed and it is the main
result for a competitor. The competitor with the highest mean wins.

Jurors do not assess competitors who are their students (to be a “student” was
defined in detail in the jury rules of voting). In case of Yes-No voting the percentage of
“Yes” votes is computed and the competitor with the highest percentage wins. In case
of the point system means are computed by dividing by the lowest number of jurors.

Only point system is used in the final. The scale is 1–10 (10 points – the best) and
jurors prepare a ranking (weak order) of competitors distributing 55 points in such a
way that only one competitor can get 10 points. Other number of points may be used
many times. The correcting procedure used in the previous stages is also used with
deviation a = 2. Jurors do not vote for their students. Then, a list is made based on the
sum of points. The list is voted and must be accepted by majority 2/3 of voters.
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If the list is not accepted, a very complicated final procedure is implemented. Let us
see the respective part of the rules of jury [11].

“If the proposed verdict fails to receive such an approval, the Jurors will vote to
award each main prize in writing, beginning with first prize. The order of voting will be
determined by the aforesaid list, showing the averages of the scores. If a majority of the
Jurors authorized to vote (those to whom the “S” relationship does not apply) votes in
favor of awarding the prize concerned to the pianist according to the list, the prize will
be awarded, and the Jury will vote to award the next prize. In the opposite case an
analogous vote will be held to award this prize to the next pianist on the list. If a
majority of the authorized Jurors votes “Yes”, the prize will be awarded. In the opposite
case, the Jurors will decide by an open vote whether to award this prize at all. If the
Jurors decide not to award this particular prize, they will move on to a discussion and a
vote on awarding.

If the procedure described above fails to identify the winner of a particular prize,
and the Jury decides that this prize should be awarded, the Jurors will follow another
procedure concerning the prize in question. Each Juror will write the name of his/her
candidate for this prize on a card. In this case a Juror will be allowed to indicate his/her
“student” but should also write the letter “S” and his/her vote will not be counted. The
prize will be awarded to the candidate for whom more than half of the present,
authorized Jurors (those to whom the “S” relationship does not apply) cast their votes.
If the first vote fails to produce the winner of a prize, after the results are disclosed
successive rounds of voting by ballot will be held for the persons indicated in the first
round to eliminate the candidates who receive the lowest number of votes, until the
desired result is achieved. In the event that only two candidates are left and neither
receives the votes of a majority of the present, authorized Jurors, the Jury will decide by
an open vote whether to award this prize to two pianists on an equal basis or not to
award it at all.”

The construction is very complicated and the procedure is difficult to use. As we
show in Sect. 5, the construction may not work in case of some jurors’ preferences.

3 Social Choice Properties of Voting in the Chopin Piano
Competition

I shall analyze the point system and the final procedure. Yes – No system, as the
approval voting method, has well known properties (see [13]) as unanimity, inde-
pendence of irrelevant alternatives, strategic manipulability.

3.1 Point System

Let us study the impact of deviation a which is different in stage I than in the other
stages and final. In Table 1 a case of two competitors (A and B) and three jurors (J1, J2,
J3) is studied. I get different results for deviation a ¼ 2 than for deviation a ¼ 3.
Assessments of jurors are presented in rows.

Let us also see that the correcting procedure may cause lack of monotonicity
(a ¼ 2).
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Let us analyze independence of irrelevant alternatives. Jurors assess competitors A
and B, and C and D. Their assessments for A and B, and C and D are in the same order.
Independence of irrelevant alternatives holds if social decision for A and B, and C and
D are also in the same order for all individual preferences. In Table 2 there is presented
an example of individual preferences which shows that the independence of irrelevant
alternatives does not hold. Assessments of jurors are presented in rows.

Now, let us study whether the unanimity is preserved by the group decision.
I denote the finite set of jurors by J. I denote juror i’s assessments of competitors A and
B before correcting procedure by ai, bi, respectively. The assessments after the cor-
recting procedure are denoted by a0i; b

0
i. Arithmetic mean of ai is denoted by m(A), of bi

by m(B). The following lemma holds.

Lemma 1. If for all jurors i in J ai > bi then for all deviations a[ 0 i a0i [ b0i.

Proof. ai > bi,, so I have, m(A) > m(B). If m(B) + a < m(A) − a I get b0i �m Bð Þþ
a\m Að Þ � a� a0i anda

0
i [ b0i. Let us study a casem(A) − a � m(B) + a.Let us suppose

that there exists I in J such that b0i � a0i. I consider the following cases for b
0
i.

Table 1. Impact of size of a deviation

Juror A B A0

a ¼ 3

B0 A00

a ¼ 2

B00

J1 19 20 19 20 19 20
J2 16 15 16 15.6 17 16.6
J3 22 21 22 21 21 20.6
Sum 57 56 57 56.6 57 57.2
Mean 19 18.6
Result A[B A0 [B0 B00 [A00

Table 2. Independence of irrelevant alternatives

Juror (i) A B A0; a ¼ 2 B0 A00; a ¼ 3 B00

J1 21 18 21 18.3 21 18
J2 13 20 17 20 16 20
J3 23 23 21 22.3 22 23
Sum 57 61 59 60.6 59 61
Mean 19 20.3
Result B[A B0 [A0 B0 [A00

Juror (ii) C D C0; a ¼ 2 D0 C00; a ¼ 3 D00

J1 21 18 21 18 21 18
J2 16 17 17.6 17 16.6 17
J3 22 22 21.6 21 22 22
Sum 59 57 60.2 56 59.6 57
Mean 19.6 19
Result C[D C0 [D0 C00 [D00
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1. b0i\m Bð Þ � a; b0i [m Bð Þþ a; impossible by construction of a0i; b
0
i.

2. m Bð Þ � a� b0i\m Að Þ � a.Thena0i � b0i\m Að Þ � a, impossiblebyconstructionofa0i.
3. m Að Þ � a� b0i �m Bð Þþ a. Then b0i ¼ bi; ai ¼ a0i, impossible by ai [ bi and b0i � a0i.
4. m Bð Þþ a\b0i �m Að Þþ a. Impossible by construction of b0i. □

It follows Lemma 1 that m A0ð Þ[m B0ð Þ and unanimity is preserved.

3.2 Final Procedure

I consider 6 pianists and 18 jurors divided into 3 groups of 6 jurors with the same
assessments. The final procedure may not lead to final results. The example is presented
in Table 3 and is based on the Condorcet paradox. Assessments of groups of jurors are
presented in columns.

Means of points given to first 9 pianists are the same and the final procedure does
not work. If I change the number of jurors in group II from 6 to 5, the whole procedure
is needed to obtain the final results and pianists A, B, C win. The time consistency of
jurors’ preferences is assumed.

4 Jurors Voting in the Chopin Piano Competition

Jurors voting in the Chopin Piano Competition may be found on the Internet [14–17].
Analysis of voting shows that jurors preferred not strictly defined conditions of voting.
They did use approval voting opportunities, as the number of votes “Yes” is often
greater than the limit of persons in the next stage. Jurors wanted a connection between
the point system and Yes-No system. They defined a border, but it was a fuzzy border
of points and jurors’ votes “Yes” or “No” in stages I, II, III (source [15]). For example
juror Adam Harasiewicz in stage III voted “No” for Kozak with 20 points and “Yes”
for Lu, also with 20 points. The limit of persons passing to the next stage was also

Table 3. Failure of the final procedure

Number Pianist I group
6 jurors

II group
6 jurors

III group
6 jurors

Mean

1 A 9 3 5 5.66
2 B 9 3 5 5.66
3 C 9 3 5 5.66
4. D 5 9 3 5.66
5. E 5 9 3 5.66
6. F 5 9 3 5.66
7. G 3 5 9 5.66
8. H 3 5 9 5.66
9. I 3 5 9 5.66
10. J 1 1 1 1
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fuzzy. It was stated in the rules that the number of competitors in stage II was to be no
more than 40, while in reality there were 43. Jurors often used ties, even in the final
where according to the rules a ranking of competitors was required. One of the jurors,
Martha Argerich, awarded 2 competitors with 9 points, 1 with 6 points, 3 with 5 points
and 4 competitors with 4 points. There was a possibility to vote strategically in the
final, where jurors had 55 points to distribute among the competitors. So, they might
increase the number of points for their best competitors in order to give them higher
position. Such situation was not observed. Some of the jurors used less than 55 points.
The scale of the point system was 1–25 in stages I, II, III and 1–10 in the final. Finalists
collected high assessments in the previous stages, usually higher than 20. In the final
the highest assessment was 10. It was a mental scale obstacle for jurors to award the
best competitors with less points than they collected in preceding stages [18]. The
problem is connected with some scale problems (see [19]).

5 Weak and Strong Points of Rules of Voting in the Chopin
Piano Competition

The strong points of the rule of voting of Chopin Piano Competition seem to be these
regulations which allow discussions and do not require strict solutions. Especially the
possibility of discussion, approval voting method without additional restrictions and
strict connections to the point system are the strong points of the voting rules. The final
procedure, which is very complicated and for some jurors’ preferences may not lead to
final results is a weak point of the rule. The correcting procedure makes strategic voting
less probable when the point system is used which is also an advantage of the rules.
Although, strategic voting is possible in the final during the distribution of 55 points
(not observed).

6 Comparison the Voting Rules of the XVIIth Chopin Piano
Competition and the XVIth Chopin Piano Competition

The XVIth International Fryderyk Chopin Piano Competition took place in 2010. There
were 13 jurors and 78 competitors. Properties of voting rules are described in [6]. The
double system of voting was used: Yes – No system and point system. In fact, Yes-No
System was strictly directed by the point system. There were no fuzzy borders between
the number of points given by a juror and their “Yes” vote. A very complicated
correcting procedure was used, based on reduction and elimination of outliers. In some
cases such a procedure might lead to a situation where the voting system would not
work. Moreover, for some preferences of jurors unanimity was not preserved. In the
XVIIth Chopin Piano Competition connections between the Yes-No system and the
point system were weaker. A quite different correcting procedure was introduced. The
procedure was based on reducing outliers and did not lead to wrong social choice
properties. More questions were subject to discussion.
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7 The XVth International Henryk Wieniawski Violin
Competition

The XVth International Henryk Wieniawski Violin Competition took place between
October 8 and 23, 2016. There were 48 competitors and 12 jurors. In stage IV there
were 13 jurors, however the chairman decided not to vote because one of the com-
petitors was his student. The competition consisted of 4 stages. According to the rules
no more than 24 competitors may pass to the IInd stage, 12 to the IIIrd, and 6 to the
IVth. There was a possibility of increasing this number in case equal number of “Yes”
votes in stages I and II was obtained by more competitors.

In stages I, II, III Yes – No system was used but contrary to the Chopin Piano Com-
petition it was an approval voting method with some restrictions. Jurors voted “Yes” or
“No” but the number of votes “Yes” had to be not greater than the number of competitors
allowed to the next stage. Jurors who were teachers of competitors did not vote for them.
Replacing a vote of a teacher Jury added an additional vote in accordancewithmajority of
votes of the Jury. In case of a tie the Chairman’s vote decided. Then the competitors were
ordered from the highest to the lowest number of “Yes” votes. The competitor with the
highest number of “Yes”voteswas the best. Jurors also used a point system (scale 1–25). It
played only an additional role, individual for each juror. Points were not aggregated into a
jury decision, so no correcting procedure was needed. The results of use the point system
were not archived, so there is no possibility of knowing them.

In stage IV, the final, a kind of Borda count was applied. The jurors ordered the
competitors from the first place to the last one without ties. They did not assess by
points but assigned places, so there was not a mental scale obstacle which occurred in
the Chopin Piano Competition. The Chairman, vice-chairman and director of the
competition assigned to each place a number of points equal to the number of place.
Then the competitors were ordered with the increasing number of points. The com-
petitor with the lowest number of points was the best. There was a difference in
assigning places in reality and in the rules of competition. There rules stated that 6
points were to be assigned to the first place, 5 to the second, and finally 1 to the sixth
[20]. It did not change properties of the voting system.

8 Social Choice Properties of the Wieniawski Violin
Competition

The methods used by jury in the Wieniawski Violin Competition are well-known and
very often used methods. Their properties are widely known (see e.g. [1, 4]).

9 Jurors Voting in the Wieniawski Violin Competition

Jurors voting in the XVth Wieniawski Violin Competition can be found on the Internet
[21–24]. Jurors used some possibilities of Yes-No voting. Some of them did not use all
their “Yes” votes (e.g. Vengerov, Bryla in the II stage). The possibility of increasing
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number of competitors passing to the next stage was used, even in the IIIrd stage,
which was not expected in the rules. The voting system did not form outliers, so no
correcting procedure was needed. In spite of this, there are some suspicions that jurors
voted strategically in stage IV promoting one of the competitors ([25], in Polish).
Cluster analysis provides some confirmation of this theory [26].

10 Weak and Strong Points of Wieniawski Violin
Competition

A strong point of the rule of voting in XVth Wieniawski Violin Competition is the
simple system of voting. Jurors did not have to know their full preferences in stages I,
II, III, where they voted using the restricted Yes – No system. No problem of outliers
appeared in any stage. Assignment of places, not points, in stage IV did not lead to the
mental problem of scale (a more limited scale in the last stage than in the previous
ones).

The upper limit for number of “Yes” votes in stages I, II, III can be viewed a weak
point. Jurors had to calculate their votes, in case of stage I, 24 votes. Another weak
point is the use of the Borda count in stage IV. It needs full (strong) order of com-
petitors which may difficult for jurors (as was seen in the Chopin Piano Competition,
some jurors like ties). Moreover, the Borda count may be prone to manipulation.

11 Comparison of Voting Rules of XIVth
and XVthWieniawski Violin Competitions

The XIVth International Henryk Wieniawski Violin Competition took place in October
2011. There were 13–14 jurors and 53 competitors. The competition consisted of 3
stages and a final. In stages I, II and III each juror could award a competitor with at
most 75 points, and up to 50 points in the final. The final result was a sum of points
from all four stages. An elimination procedure was used. The highest assessment and
the lowest assessment were eliminated. The assessments were not reduced. Table 4
demonstrates that this method may lead to different results than elimination. Jurors (J1,
J2, J3) assessments are presented in columns. We see that violinist B (with significantly
lower sum of points wins after the use the elimination procedure.

Table 4. Non-monotonicity of the voting method used in the XIVth Wieniawski Violin
Competition

Violinist J1 J2 J3 Sum Sum after elimination the lowest
and highest assessments

A 10 5 3 18 5
B 7 6 1 14 6
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Lemma 2. Voting method used in the XIVth Wieniawski Violin Competition pre-
serves unanimity.

Proof. Let violinist A get assessment x1,…,xk and violinist B y1,…,yk such that xi > yi
for all i. Let x1 = Min(x1,…,xk), xk = Max(x1,…,xk), ym = Min (y1,…,yk), yn = Max
(y1,…,yk). We have y1, x1 � xm, yk � yn < xn and after elimination of x1, xk, ym, yn
the sum of other x’s is greater than the sum of other y’s. □

An example situation for which independence of irrelevant alternatives does not
hold is presented in Table 5. There are four jurors J1, J2, J3, J4. Their assessments are
presented in columns. All jurors assess violinists A and B and C and D in the same
order but the pianists are differently ordered by the group decisions.

The above shows that the voting method used in the XIVth Wieniawski Violin
Competition was more complicated than the one used in the XVth Wieniawski Violin
Competition. The construction of both methods is quite different. The first is based on
the point system, the second on the approval voting method and the Borda count. The
method used in the XVth Wieniawski Violin Competition was chosen from many
projects [20]. The organizers were looking to find “the best” system. As we know from
Arrow’s theorem and related topics this is impossible.

12 Conclusions

I analyzed the voting methods used in two main international classical music com-
petitions which took place in Poland. In both cases the methods used in the last
competitions were simpler than in the previous editions. Especially, less complicated
methods of reducing impact of outliers are used (even a method which does not create
outliers). Jurors used the advantages of the methods in their votes. When it was pos-
sible, they used ties. It seems that weak orders of competitors are more comfortable for
jurors than strict orders. Simpler methods seem to be better, as they allow the jurors to
anticipate results of their decisions.
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Abstract. Contemporary strategic management has accepted the category of
opportunity, although it cannot be reflected in the organization’s plans and
strategies. Alertness, proactivity, social networks and knowledge resources are
the categories that come up most often when discussing opportunity perception
as one of the determinants of entrepreneurial activity. In reality, they are the
result of both behavioral and cognitive processes. The purpose of the article is to
identify the primary factors that predetermine the idiosyncrasy of how oppor-
tunity is perceived by various persons, such as creativity, intuition, and diver-
gent thinking. The article presents opportunity value chain, paraphrases the
order of M.E. Porter’s value chain and the A. Koestler’s concept of ‘bisocia-
tion’. The article also discusses the process of group decision making in terms of
opportunity.
The article has been based on a study of the subject’s literature, but the

conclusions provide important directions that are utilitarian in nature.

Keywords: Opportunity � Chance � Opportunity perception � Intuition �
Creativity � Groups in the organization

1 Introduction

From the viewpoint of strategic management, opportunity is a phenomenon that cannot
be included in the strategic plan, as its occurrence cannot be planned by definition
(although one can prepare oneself for such a situation, for example, by creating a
redundancy of resources [13] or organizational slack), is unique, and its perception
depends on the skills (of persons involved in an organization’s activities in the fields of
identifying, discovering, or noticing opportunities. So, the prerequisite for the process
of opportunity perception is a thorough knowledge of a company’s distinctiveness,
regardless of the position occupied in it. There is no doubt about it that seeing the same
phenomenon in different ways by various people is related to the nature of man and his
individual characteristics. The idiosyncrasy of opportunity applies not only to the very
phenomenon of opportunity, but also to its value. To some, certain situations will be of
little value, to others, they may be a priority [22].

When reviewing the literature regarding entrepreneurship (both in general and in
detail – strategic entrepreneurship), one may feel some cognitive dissonance caused by
imbalance in the analysis of factors determining the process of opportunity perception
(which, after all, precedes its utilization), which is most probably attributable to
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orientation of its operationalization, leaving behavioral elements for sciences such as
behavioral or social psychology.

It seems, however, that the cognitive aspects of the idiosyncrasy of opportunity
should not be left without comment, especially as far as management science is con-
cerned. So, how to analyze the factors determining the functioning of contemporary
organizations (opportunities) without having detailed knowledge of how to solicit
them? The purpose of this article is to give a better understanding of this subject, and
the amorphousness of opportunity categories has provoked the structure of the
publication.

The article consists of fourth parts. The first one provides an introduction into the
problems of opportunity in strategic management. opportunity categories were con-
ceptualized in an opportunity versus chance array, including threads of threats and
situations indifferent to the organization. The second part of the paper aims at giving a
better understanding of the auxiliary mechanisms underlying the process of opportunity
management (key actions in the opportunity chain), which, in turn, result from
behavioral factors, described in third part. The last section described determinants of
group decision making in terms of opportunities, which is very substantial field but
rarely communicated.

The considerations are theoretical, but the conclusions are utilitarian directions,
which can have a significant effect on the functioning of contemporary organizations.

2 Opportunity Or Chance?

The encyclopedic description of the category of ‘opportunity’ defines it as a favorable
system of circumstances leading to chances or possibilities, but also as a stroke of luck,
which can be caught or lost [24]. Chance, in turn, has a broader meaning because [163]:

i. it is a phenomenon that does not result from existing cause-and-effect relationships
(sic!),

ii. it is based on pointless, impersonal and unexplainable phenomena such as luck,
coincidence, and destiny.

The German die Chance (chance) is used as the opposite of risk, whereas opportunity
(German: die Gelengenheit) stresses the positive effects of a situation, without high-
lighting the related risk. Both meanings are rather positive in nature, unlike the English
word ‘chance’, which can assume various forms, depending on the circumstances: there
is a chance of achieving profit, but it can also involve loss [18].

R. Krupski has made an attempt to standardize terminology, giving ‘chance’ a high
or low likelihood of success and ‘opportunity’ a tone of the occurrence of a certain
event related to favorable conditions, rather without grading the potential advantage
[14]. If a chance comes up, the category of threat has to be taken into account. And
what if an opportunity turns out to be neither a chance nor a threat? Is it a neutral
situation of no significance to the organization?

It is doubtful whether there can be any situations that occur in the environment of
the organization which have no effect on the latter. According to social network
analysis methodology, in addition to active factors, one can distinguish passive, critical,
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and idle, but never indifferent factors. Active factors have a very high effect on other
elements, but are not subject to any influences; passive factors have little effect on
others, but are subject to influences. Idle factors, in turn, have little effect on elements,
but are also hardly subject to influences [28] (Fig. 1).

Following the track of the relationship ‘entrepreneurship – opportunity’, however,
it should be made clear that these two elements are inseparable. For M. Bratnicki,
chance is one of the eight key distinguishing features of entrepreneurship, which can be
defined as discrepancy in an observed, constantly changing landscape and time image
that has not been noticed and used by others. Such a gap can be filled by companies by
providing their customers with certain values. No perfect chance exists because various
parties can use it in different ways [2]. Subjectivity in differentiating between chances
and threats is also emphasized by K. Obłój: ‘…a true chance and threat are like yin and
yang, a ripple on water, or entanglement of good and evil. Evaluation of an ambiguous
event or trend in terms of chance or threat is usually a matter of perspective, but not an
objective assessment’ [16]. This is also stressed by S. Shane and S. Venkataraman,
according to whom opportunity perception is subjective, but opportunities themselves
constitute an objective phenomenon [22].

The priority of opportunity perception is key to the success of entrepreneurs, which
is stressed by I.M. Kirzner in his papers, and the introduction of disproportions in
knowledge resources on the market is a major source of opportunities [9]. According to
P.F. Drucker, one of the prerequisites for entrepreneurial management is the organi-
zation’s ability to perceive changes in terms of opportunities, but not threats, which
consequently changes the way of its functioning toward rerum novarum cupidus (that
is, being eager for novelties) [4]. Opportunities reside both inside the organization and
in its environment. According to I. Peiris, M. Akoorie and P. Sanh, opportunities are
about existing and future customers, profits, and savings [17], while the internal forms
of opportunity can be new products, services, means of production, and organizational
methods, the existence of which brings higher profits than manufacturing costs [21].
And it is exactly the task of today’s entrepreneurial strategic management to integrate
dynamically the company’s interior and environment, with the common denominator
of such actions being opportunities.

The second section is discussed the opportunity value chain as a description of
main and auxiliary actions which are critical in the process of opportunity perception.

Fig. 1. Forms of opportunity Source: own work.

120 A. Sus



3 Opportunity Value Chain

To paraphrase the order of M.E. Porter’s value chain, auxiliary mechanisms that
support the process of opportunity perception and main actions have been defined by
studying the subject’s literature (Fig. 2).

The auxiliary actions have been recognized to include mechanisms that support the
process of opportunity perception, that is, alertness, broadly understood knowledge
resources, proactivity, and social networks. Alertness is the category introduced by I.M.
Kirzner in 1973 and defined as openness to opportunities that are available but have
been ignored so far. Opportunities are searched for without deliberately selecting
techniques for scanning the environment. The prerequisite for being alert is a creative
attitude to existing opportunity sources [7], whereas existing cognitive maps are the
mechanism that inhibits opportunity perception.

Knowledge is utilized by the organizations in various forms and different ways.
Pre-existing, historical knowledge of actions taken by the organization and the industry
is significant to opportunity perception. The idiosyncrasy of pre-existing knowledge
creates the so-called knowledge corridors, which enable an individual to identify
specific opportunities [21]. According to S. Shane, there are three major dimensions of
pre-existing knowledge which are key to the process of opportunity perception, and
namely: pre-existing knowledge of markets, of the way in which services are provided
on them, and of problems encountered by customers. In addition, the author stresses the
need to draw attention, in the context of creating new products or services, to new
information on technologies used [21]. The relationship between a higher level of
pre-existing knowledge and the identification of a greater number of (more innovative)
opportunities has been empirically confirmed by D.A. Shepherd and D.E. Detienne [23].
Knowledge also involves the use of one’s own professional experience, which, the
deeper it is, the more extensive final effects, including social networks, generates. When
entering the issues of informal relations, on which social networks are also based, it is
worth noticing that not so perception of opportunities as their utilization is by far easier
when the decision maker has a well-established position in a relation. How easier can
new orders can be solicited for the company when its owner is considered to be an
honest and conscientious man who is readily recommended to other organizations?
Building social networks furthers proactivity, that is, the ability to see cause-and-effect
relationships between specific phenomena. It is important not only to respond to

Fig. 2. Opportunity value chain Source: own work.
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situations that are visible and understandable to the organization at a given time, but to
anticipate changes that are consequences of such situations. In this setting, also the skills
of noticing the weight of relational resources become significant.

Main actions, in turn, are stages of the process of perceiving opportunities that are
discovered or created by the company. Four major phases of this process have been
identified by studying the subject’s literature, namely:

i. Discovery/creation of opportunities; as mentioned above, it is the stage around
which a heated discussion is held on the subject’s literature; it seems, however,
that, regardless of whether opportunities are identified or created by the entre-
preneur, the most important is the value related to their utilization and the
entrepreneur’s individual predispositions, which predetermine the effectiveness of
this stage;

ii. Orchestration of resources, that is, efficient management of resources, which
involves the processes of acquiring and selling them, maintaining certain redun-
dancies and an appropriate structure, and being alert to capture moments in which
such slack has to be released or withdrawn; W. Czakon names orchestration of
resources as one of the five elements of relational skills, that is, those that are a
strategic distinguisher of cooperating businesses, which, due to the patterns they
follow through common utilization of resources, achieve better results than
competitors [3].

iii. Realization of opportunities, which can assume the form of new products, ser-
vices, or experiences,

iv. Assessment of adaptation to the market.

The concept of M.E. Porter’s value chain is a certain simplification of the opportunity
management procedure. They were rather used to visualize those mechanisms that are
auxiliary, but are necessary for opportunity perception and the main stages of the
opportunity utilization process (here, in turn, with an inclination toward the classic
management functions). The analogy and effects of the discussed process in the form of
new products, services or experiences have also enabled indication of an element that is
omitted in the literature on entrepreneurship, and namely opportunity marketing.

Nevertheless, the considerations to date do not provide an answer to what causes
that only some entrepreneurs use the auxiliary mechanisms for opportunity perception?
Extremely important for the answer that question is to focused on heuristics that
entrepreneurs use – this is the goal of the third section of the article.

4 Heuristic Determinants of Opportunity Perception

G.E. Hills’s and G.T. Lumpkin’s research shows that creativity is key to the process of
opportunity perception, both declared by respondents (more than 50% of entrepreneurs
and their representatives. The test sample consisted of 53 entrepreneurs and their 165
representatives in organizations with an annual income of more than 3 million U.S.
dollars and an employment of 2 to 1,100 persons) and in their subjective
self-evaluation. Creativity is the feature that has predetermined their successes, and
intuition and life optimism its main elements [6]. But at which stage of opportunity
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management? Of their perception or utilization, or perhaps of auxiliary mechanisms?
According to the model shown in Fig. 3, entrepreneurial creativity is the result of
associative and bisociative thinking within recognized social networks, alertness,
pre-existing experience, and experience.

The theories of association are based on thinking through analogy, creation of
effects through associations of two pieces of information that exist independent of each
other. A. Koestler has introduced the concept of ‘bisociation’ to make a clear dis-
tinction between routine thinking skills M1 (perfectly logical) and act of creativity M2
(unexpected and surprising) [11] (Fig. 4).

The occurrence of situation L (also analyzed opportunities) results in a simulta-
neous vibration and intermingling of two different wavelengths – hence the name of the
theory – causing instability between feelings (emotions) and reason (prudence). When
this mechanism is translated into opportunity management processes, a conclusion can
be made about the relationships between the idiosyncrasy of opportunities and the
wavelength of non-linear thinking. The longer this wavelength is, the later the aspects
of logical thinking, which, by definition, eliminate elements of creativity such as
instinct, emotions, and fantasy, become important.

In 2002 D. Kahneman and A. Tversky won the Nobel Prize for economics. His
works assume that human decisions are not based on logic, but irrational actions
(Kahneman 2002, Prize Lecture, prepared jointly with A. Tversky). The results of
heuristic research also indicate that the greatest business successes are attained by
entrepreneurs who feature high innovativeness in action and tend to use heuristics in

Fig. 3. Model of entrepreneurial creativity Source: based on: [11]

Fig. 4. Matrices of linear and lateral thinking in the bisociation model Source: [11]
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their decision-making processes. These heuristics provide important clues about how to
act in times when analyses lose their validity already when they are being done [25]
and the author’s own observations):

1. Intuitive decision making; following one’s own opinion and rejecting expert
judgments are immanent features of entrepreneurs who enjoy spectacular successes.

2. Focus on the company’s growth and elimination of those actions and decisions that
do not lead to it.

3. Emotional attachment to the organization. The company is not just work, it is the
entrepreneur’s ‘second home’ to which the entrepreneur dedicates their time and
energy.

Orientation to profit only is also disputable. As already mentioned above, the entre-
preneur is guided rather by the will to grow, and only afterward by profit (which is not
always a natural consequence of the company’s growth).

4. Orientation to people, who are not only employees for the entrepreneur. They are
also fellow decision makers and partners. Entrepreneurs are not opportunists.

5. Acting according to one’s own vision. And here it should be agreed with Profes-
sor R. Krupski’s opinion that opportunity is filtered by nothing but vision.

Based on analysis of the subject’s literature, available research results and the
author’s own observations, it can be ventured to claim that in the process of oppor-
tunity perception entrepreneurs found their actions on heuristic processes. This means
that mechanisms related to rather subconscious than strictly rational functioning should
underlie all opportunity management processes. These mechanisms also predetermine
the idiosyncrasy of both opportunities and their value. Only afterward do processes
based on cognitive mechanisms take place, which trigger existing patterns that enable
entrepreneurs to join the dots. Or they occur simultaneously, in accordance with the
theory of bisociation.

The next very interesting feature in the area of the perception of opportunity is fact
that its determinants in the literature are always analyzed via organizations, but not
viewed through the individuals or groups. In the fourth section of the article attention
was focused on the determinants of group decision making in terms of opportunities.

5 Determinants of Group Decision Making in Terms
of Opportunities

E. Schein defines a group as any number of people who: (a) are connected by interactions,
(b) psychologically self-aware (c) they perceive themselves as a group and (d) have a
common goal, expressed in the type of activity and expected performance standards
thereof. Achieving the goal can involve solving an organizational problem, taking a
business decision, as well as sharing information and formulating new ideas [12]. In
addition, the existence of the group is contingent on creating a structure consisting of
group positions, the hierarchy of power, a sociometric system and communication ties
between the members of the group [15].
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Analyzing the differences in the identification and exploitation of opportunities by
the members of the group should particularly involve the perception of potential risks.
Membership in the group has substantial advantages, which also pose a threat to the
effective use of opportunities. The group minimizes the dangers of loneliness, people
become stronger and more confident, and their self-esteem grows. The need of
belonging is satisfied, and things that used to be impossible or difficult to achieve
individually, become possible through interactions between members of the group [20].
This can radically change the perception of opportunity, and improve the chances of
new, emerging situations being perceived as such. This is relatively risky, because the
organizational culture becomes focused on making entrepreneurial decisions. Conse-
quently there is competition between the members of the group, which can potentially
lead to erroneous assessment of opportunities. In such situations the leader of the group
plays an important role and ensures the right balance between the benefits and negative
consequences of group functioning in the opportunity focused environment.

The category which determines the group decision-making in terms of opportunity
is the composition of the group, that is, the mutual connections of its members and the
level of motivation to stay in the group. The more close-knit the group is, the more
effectively its members implement the objectives and achieve greater results in the
identification and exploitation of opportunities.

This is possible by: (a) reducing the size of the group, (b) increasing the time spent
together (without interfering with the free time, due to possible conflicts), (c) encour-
aging competition with other groups, or (d) rewarding the whole group rather than its
individual members [20].

In terms of opportunity the size of the group is an important determinant of its
effectiveness. This, in turn, depends on the tasks that have been put before the group to
carry out, and variables such as personality traits of group members and characteristics
of its leader.

When fast reaction is needed, a small group (3–4 members) may be fully effective.
Such groups are easier to control, and are characterized by greater coherence. There is
also a smaller risk of conflicts. The drawback of such a small group could be the lack of
specific skills and competences [12].

The survival of the group depends on the creation of relationships between its
members. In the case of triads, or groups of three, there are several possible relationships
between their members, such as coalitions of two people against one, or conflicts. In this
case, the third member of the group can play the role of a mediator, whose task is to avert
conflict. A triad is more stable than a couple, but less stable than a large group. With the
increase in size of the group ties between its members become blurred [15].

Social idleness may be a significant threat to large groups, especially in the case of
teams focused of opportunity. In such a situation a reduction of the size of the group
should be considered to make it possible to measure the amount of work that individual
members contribute [20].

To sum up, there are certain differentiators that determine the effectiveness of the
group in the identification and exploitation of opportunities, but a properly constructed
collective decision-making unit allows to achieve many benefits for the organization.
As the saying goes “two heads are better than one”, the group allows for creation of
many different possible solutions to the problem, and consequently there is a much
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greater probability of identifying unforeseen developments in the environment of the
organization (opportunities). Teamwork releases energy and fosters creativity, which in
turn allows to use a wider range of knowledge and experience. However, groups can
also favor hasty solutions, and rash decisions resulting from various arrangements/
agreements between the group members. In addition, a dominating member can
undermine group effort (false unanimity), while strong members can influence others
and lead to wrong solution to the problem. In the group there is a high risk of
occurrence of conflicts that can not only impede performance of the group but also, in
the long term, influence the ability to perceive opportunity. Too long time that mem-
bers spend on communication (too much talk, too little action) also reduces the quality
of group decision.

In the case of decisions taken in groups, the presence and influence of other people
can radically influence the process of identification and taking advantage of an
opportunity. Definitely less significance can be attributed to heuristics, and rational
decision-making characteristics prevail.

6 Summary

As previously mentioned, contemporary strategic management has accepted the cate-
gory of opportunity. Increasingly more companies even retain certain margins of
various resources, which they can use in case of opportunity. The question should be
asked, however: why do not organizations have so advanced ‘opportunity’ procedures
as they do in case of crises? Is this caused by the pejorative nature of crises? What
makes organizations not 100% prepared for an opportunity to come up? It is disputable,
after all, whether it is possible at all to get prepared for opportunities? Especially in the
context of their irrational foundations. In the said work The Art Of Creation, A.
Koestler writes: ‘Everyone can ride a bicycle, but no one knows how to do it’ [11]. It is
similar with opportunities. Providing a better understanding of mechanisms responsible
for their utilization and idiosyncratic perception is, in fact, only a mere description of a
certain existing condition. It is doubtful, however, whether it is possible to learn how to
become an entrepreneur. In particular, considering the complexity levels of factors that
predetermine their idiosyncrasy and, above all, their original, that is, unconscious
character (as seen by Z. Freud).
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Abstract. We deal with the free-riding situations that may arise from
sharing maintenance cost of a facility among its potential users. The
non-users may ask for a check to assess who the users are, but they have
to pay the related cost; consequently, a non-user may not ask for the
check, with the hope that the other non-users ask and pay for it. In this
paper, we provide incentives for asking for the check, without suffering
a higher cost

Keywords: Free-riding · Mechanism · Fairness · Quorum

1 Introduction

In Briata [1] a non-cooperative game theoretical approach is introduced for man-
aging the sharing cost of a facility available to several potential users; if someone
actually does not use it, the trivial equal sharing of the maintenance cost of the
facility is unfair because the non-users are charged for a service they do not
exploit; in order to increase the fairness, the non-users have the possibility of
asking that a check for establishing who the users are is made, but they have
to pay its cost; the solutions of the game may be unfair and cause free-riding
situations that may arise when non-users pay for the cost of users and when a
non-user decides not to ask for the check, with the hope that the other non-users
ask and pay for it. In this paper, we deal with these free-riding situations provid-
ing incentives for asking for the check, without increasing the cost. In particular,
the situation analyzed in [1] is how to share the maintenance cost of a printer
available to all the members of a Department. The easiest solution to the prob-
lem of cost division is equally sharing it among all the members, especially when
no further information is available, but the users behave as free-riders w.r.t.
the non-users. It is fairer to consider the actual users and the intensity of their
use. It is common knowledge who the users are, but it is necessary an external
intervention (supervision or some device) to verify who the users are and an
additional cost has to be paid. This may be viewed as an information cost. Bri-
ata disregards the intensity of use of the facility, assuming that the maintenance
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cost and the check cost are fixed and known to all the agents; moreover, they
are comparable, e.g. they refer to the same period of time. The cost for getting
the information was already considered in Moretti and Patrone [4] in a coop-
erative situation, leading to TU games with information cost, or TUIC games,
that is a family of cost games with an additional cost to get the information
about each coalition. Briata introduces the naming procedure: each player may
name the facility, that is may ask for the assessment of who are the players that
actually use the printer. In order to make or not the check, she assumes that
the facility has to be named by at least one player, leading to Naming Games,
or by a majority of the players, leading to Majority Decision Games. In a more
general setting, we may suppose that the check is made if and only if the number
of check requests is larger than a given threshold, and, in this case, the cost is
equally paid by the players who asked for it, while the costs for the use of the
facility is divided among the users only; otherwise, no check is made and all the
players equally share the maintenance cost. As we already said, this situation is
exposed to free-riding behavior of the users, if the check is not made, or of the
non-users, if the check is made.

In a non-cooperative setting the main aim of each player is to minimize the
amount s/he has to pay at the expense of fairness; so, for each user not to ask for
the check is the best choice whatever the other agents do (dominant strategy);
in fact, if the check is made, there is a reduction of the number of players among
which the maintenance cost is divided, moreover the agents that asked for the
check have to pay a quota of the related cost. The situation is more complicated
for a non-user; in this case, the amount that has to be paid, depends not only
on the choices of the other agents, that is normal in a game theoretic approach,
but also on the maintenance cost, the check cost and the number of users and
non-users; note that these data may be known or not. At a first glance, it may
seem that the cost incurred by a non-user is the equal share of the maintenance
cost among all the agents when the check is not done, while it is the equal share
of the check cost among all the non-users when the check is done. This is not
necessarily true. In fact, even when the share of the check cost is lower than the
share of the maintenance cost, a non-user may not ask for the check in order
to save money, hoping that the request and the payment of the check is up to
other agents, incurring the risk that the check is not done, in other words we
face a second free-riding problem. The non-users have a larger incentive for the
free-riding behavior, the smaller is the number of agents required to obtain the
check and the larger is its cost.

In this paper, we have two aims and we analyze both the situations in a non-
cooperative setting. First, we look for reducing the advantage of a free-riding
behavior of both the users and the non-users, modifying the rules for making
the check and the rules for sharing the maintenance cost and the check cost;
second, we want to improve the fairness of the cost allocation problem, looking
for a game that, on the one hand, provides incentives to check also the intensity
of use of the facility, and on the other hand, assigns to each agent a quota of the
total cost that is satisfactory for as many agents as possible.
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The paper is organized as follows. In Sect. 2 we provide the basic notion and
notations of Game Theory; in Sect. 3 the models introduced in [1] are shortly
outlined, referring to a new example; Sect. 4 re-analyzes the model in [1] in
a non-cooperative setting defining two mechanisms that reduce the free-riding
behavior of the agents; more precisely, in Subsect. 4.1, we refer to a check that
allows only to distinguish among users and non-users, then in Subsect. 4.2, we
suppose that the check may provide information about the intensity of usage of
the facility; Sect. 5 concludes.

2 Basic Definitions and Notations

In this section, we introduce some standard terminology and some notations,
for convenience. Since we are facing a cost allocation problem, we represent the
situation by a cost game. Let N = {1, 2, ..., n} be the finite set of players; we
denote the cost game in strategic form by (X1,X2, . . . , Xn, c1, c2, . . . , cn) where
Xi is the non-empty set of strategies of player i ∈ N and ci :

∏

k∈N

Xk −→ R is

the cost function of player i ∈ N , i.e. ci(x1, x2, . . . , xn) represents the amount
that player i ∈ N has to pay when the strategy profile (x1, x2, . . . , xn) is chosen.

We denote by X−i the set
∏

k �=i

Xk, by x−i an element of X−i, and by (yi, x−i)

the element of
∏

i∈N

Xi obtained from (x1, x2, . . . , xn) replacing the strategy xi of

player i with yi.

Definition 1. Given a cost game in strategic form (X1,X2, . . . , Xn,
c1, c2, . . . , cn), the strategy xi ∈ Xi strongly dominates the strategy yi ∈ Xi

for player i ∈ N , if for each x−i ∈ X−i

ci(xi, x−i) < ci(yi, x−i).

The strategy xi ∈ Xi weakly dominates the strategy yi ∈ Xi for player i, if for
each x−i ∈ X−i

ci(xi, x−i) ≤ ci(yi, x−i)

and there exists a strategy x̄−i ∈ X−i such that

ci(xi, x̄−i) < ci(yi, x̄−i).

The strategy xi ∈ Xi is strongly dominant for player i, if xi strongly dominates
every strategy yi ∈ Xi with xi �= yi, while the strategy xi ∈ Xi is strongly
dominated if there exists a strategy yi which strongly dominates it.

When the players cannot subscribe binding agreements we have a non-
cooperative game. The most important solution for a non-cooperative game is
the Nash equilibrium [6], that for a cost game is defined as follows.

Definition 2. Given a cost game in strategic form (X1,X2, . . . , Xn, c1,
c2, . . . , cn), the strategy profile (x∗

i , x
∗
−i) is a Nash equilibrium iff

ci(x∗
i , x

∗
−i) ≤ ci(xi, x

∗
−i), ∀ xi ∈ Xi,∀ i ∈ N
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In other words, a strategy profile is a Nash equilibrium if and only if no player
has an advantage in unilaterally deviating from it.

We consider a finite set of players N = {1, 2, . . . , n}, which can use a facility.
Let M ⊆ N be the set of the players not using the facility. Assuming that
M �= N is non-restrictive. Let C > 0 be the maintenance cost that we assume
given, let χ > 0 be the check cost, that is the cost to make the set of users of
the facility verifiable, and let t be the threshold for obtaining the check. Each
agent has two strategies, A and N , where A stands for asking for check and N
for not asking for check. For a user, the strategy A is strongly dominated by the
strategy N , as s/he has to pay a larger quota of the printer cost, plus a quota of
the check. Removing strictly dominated strategies, i.e. all the agents in the set
of users N \ M choose the strategy N , the remaining players in the set M are
symmetric and the resulting game is a binary one, so it has at least one Nash
equilibrium (for the proof, see [1]).

3 Recalls

In this section we recall via an example the main features of the games presented
in Briata [1] and defined in a non-cooperative setting, addressing to the paper
for further details.

Example 1. Let N = {1, 2, 3, 4, 5},M = {1, 2, 3} and t = 2. As the users
choose the dominant strategy N , and the non-users are symmetric, there are
four meaningful situations:

a. no agent asks for the check;
b. one non-user asks for the check and it is not made;
c. two non-users ask for the check and obtain it;
d. three non-users ask for the check and obtain it.

The choices of players in N and their costs are summarized in the following
table, for the different cases.

case choice individual cost
non-users users non-users users

a N N N N N C
5

C
5

C
5

C
5

C
5

b A N N N N C
5

C
5

C
5

C
5

C
5

c A A N N N χ
2

χ
2 0 C

2
C
2

d A A A N N χ
3

χ
3

χ
3

C
2

C
2

In cases a. and b. all the agents pay
C

5
each; in case c. the two non-users that

ask for the check pay
χ

2
each, the third non-user pays nothing and the two users

pay
C

2
each; in case c. the three non-users pay

χ

3
each and the two users pay

C

2
each.
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We may remark that case a. always corresponds to a Nash equilibrium,
because if only one agent switches from N to A the situation is the same as
t = 2, and that case d. never corresponds to a Nash equilibrium because each
non-user may improve her/his payoff not asking for the check and paying noth-
ing profiting that the two other non-users asked for the check; case b. corresponds

to a Nash equilibrium when
χ

2
≥ C

5
, and case c. corresponds to a Nash equilib-

rium when
χ

2
≤ C

5
(note that for

χ

2
=

C

5
both cases b. and c. lead to a Nash

equilibrium). Summarizing, we have:

1.
C

5
≥ χ

2
The non-users may obtain an advantage if the check is made; if only one
non-user does not ask for it, s/he pays nothing (free-riding);

2.
χ

2
>

C

5
>

χ

3
The non-users obtain an advantage when the check is made only when all of
them ask for the check; if only one non-user does not ask for it, s/he pays
nothing (free-riding) and the other two pay more (inefficiency);

3.
χ

3
≥ C

5
Not to ask for the check is a weakly dominant strategy for the non-users.

If the threshold were t = 1, the number of Nash equilibria decreases, since case
a. is no longer a Nash equilibrium if χ < C

5 .

The previous results may be generalized for all N,M, t, C and χ.

In the following section, we propose a mechanism that allows avoiding both
free-riding and inefficiency.

4 The Non-cooperative Approach

In this section, we reconsider the model in [1] with a twofold objective: reduc-
ing the free-riding behavior and increasing the profitability of the check. In
Subsect. 4.1, we introduce two mechanisms in order to make less profitable the
free-riding behavior; in Subsect. 4.2, we extend the situations in which the agents
prefer asking for the check, adding the condition that the result is not only a
list of who the users are, but also how much they used the facility. The idea
of mechanism design, known also as reverse Game Theory because it provides
incentives in order to make easier to reach desired objectives, was developed,
among the others, by Vickrey [8], Hurwicz [2], Myerson [5], Roth [7] Maskin [3],
all awarded with the Sveriges Riksbank Prize in Economic Sciences in Memory
of Alfred Nobel.
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4.1 The Quorum

From the previous section, it is clear that the check quota to be paid by a non-
user can be greater than the quota of the maintenance cost as a consequence
of free-riding. In this case the check very probably is not made (see case c. in
Example 1 when χ

2 > C
5 ). In fact, strategy A is convenient in order to avoid

the free-riding behavior of the users, but check cost can be too expensive if the
number of users who ask for it is too scant. The idea of choosing an adequate
threshold for making the check guarantees that it is made only if it is non-
disadvantageous.

For this reason, we introduce the quorum q, i.e. the minimum number of
agents that has to ask for the check accounting the cost C, the cost χ and the
total number of agents n:

q = min
p∈N>

{

p :
χ

p
≤ C

n

}

.

Mechanism 1. Fix the threshold equal to the quorum.

Using Mechanism 1, if the quorum is reached, each agent who asked for the
check pays no more than the equal share of the maintenance cost C, otherwise
s/he pays the equal share of C. For instance, in Example 1, if χ

2 > C
5 then q > 2.

But there is still the problem that the non-users may have a free-riding behavior,
as the following example shows.

Example 2. Let N = {1, 2, 3, 4},M = {1, 2}, C = 12, χ = 2; in this case q = 1,
i.e. one agent is sufficient for obtaining the check. Suppose that the agents in the
set Q ⊆ N ask for the check and let us denote by xQ the corresponding allocation
of the cost C and eventually of the cost χ when the check is made. Consider the
possible situations:

a. no agent asks for the check: x∅ = (3, 3, 3, 3);
b. agent 1 asks for the check and obtains it: x{1} = (2, 0, 6, 6);
c. agent 2 asks for the check and obtains it: x{2} = (0, 2, 6, 6);
d. agents 1 and 2 ask for the check and obtain it: x{1,2} = (1, 1, 6, 6).

Comparing cases b., c. and d., the non-users may have an advantage from not
asking for the check, with the risk that the exit is a., with an unfair solution.

A simple way to avoid the free-riding behavior is the following.

Mechanism 2. Only who asks for the check pays the equal share of the check
cost.

Remark 1. Applying Mechanism 2, the non-users that do not ask for the check
pay a quota of the maintenance cost, whose amount is C

n if the check is not
obtained and C

|N\Q| if it is obtained; on the other hand, Mechanism 1 guarantees
that non-users that ask for the check do not pay more than C

n . Under Mechanisms
1 and 2, strategy A is weakly dominant for non-users, even if they ignore the
number m of non-users and the cost χ.
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Applying Mechanism 2 to the previous example, we obtain the following
situations.

Example 3 (Example 2, with Mechanism 2). The new allocations in cases
b and c are x{1} = (2, 4, 4, 4) and x{2} = (4, 2, 4, 4), respectively, i.e. the non-user
that does not ask for the check pays more than without the check.

Example 4 (Example 2 revised). Suppose that χ = 7; in this case q = 3, i.e.
the non-users cannot obtain the check and the solution is anyhow x = (3, 3, 3, 3).

Nevertheless, it is possible to extend the situations in which the check is made.
The idea is to take into account the level of usage of the facility, supposing that
it is available after the check.

4.2 Intensity of Usage

By Mechanisms 1 and 2 we have solved free-riding problems, but there is no
guarantee that the quorum is reached. Obviously there are unfair situations that
we cannot remove, such as the game with few non-users versus an expensive check
cost and a cheap maintenance cost (see Example 4). In order to further reduce
free-riding behaviors and increase fairness (here we think of check as fairness),
we assume that each agent knows how much s/he used the facility and may
calculate how much s/he has to pay at all, i.e. considering both maintenance
and check costs.

More precisely, we suppose that when the check is made a division rule γ :
R −→ R

n
≥, γ(C) = (γ1(C), γ2(C), . . . , γn(C)), provides the non-negative amount

γi(C) assigned to agent i ∈ N1. Then, the agents who asked for the check pay
an equal share of the check cost χ plus the quota assigned by the division rule γ,
while the other agents equally share the remaining part of the cost C, according
to Mechanism 2.

We require that a fair division rule γ satisfies the following properties:

– efficiency,
∑

i∈N γi = C, i.e. the whole cost C is assigned;
– weak monotonicity w.r.t. the level of usage, i.e. whenever the level of usage

of the facility is strictly higher for agent i than for agent j then γi ≥ γj for
each C;

– equal treatment of equal users, i.e. whenever the level of usage of the facility
is the same for agents i and j then γi = γj for each C;

– weak monotonicity w.r.t. the cost C, i.e. given two different situations (e.g.
two different periods) whose costs are C and C ′, respectively, with C > C ′,
then γi(C) ≥ γi(C ′) for every i ∈ N .

Remark 2

– The equal division of C satisfies the properties above, i.e. the following app-
roach generalizes the previous models.

1 When no confusion arises, we write γ instead of γ(C).
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– No agent receives money for using the facility, whatever the level of usage.
– We do not require that γi = 0 if agent i does not use the facility; this may

represent a fee for having the possibility of using the facility, even if the agent
presently did not used it.

Of course, there exist other fair division rules; on the other hand, the function
γ should be not too much complex, in such a way that the agents may calculate
the amount that they have to pay if the check is made. The underlying idea is
that we enlarge the information available to the agents, so that also the users
with a low level of usage that will be charged with a low share of the maintenance
costs may become interested in asking for the check. For instance, we may think
of assigning different slots of intensity of usage, e.g. low usage (up to a first
threshold), medium usage (up to a larger threshold), high usage (over the larger
threshold) and sharing the costs according to the slots. Another intuitive division
rule assigns to the agents an amount proportional to the actual usage, e.g. if the
facility is a printer each agent pays an amount proportional to the number of
pages s/he printed. More sophisticated rules can be used, possibly accounting
also the right of usage.

We stress that, according to Mechanism 2, only the agents that asked for the
check may profit of it, otherwise the free-riding behavior of a user at low level
may show up again; it will be made clearer in Example 5.

The division rule γ makes the request for the check non-disadvantageous for
agent i ∈ N \ M if

χ

|M ∪ {i}| + γi ≤ C

n
. (1)

Condition (1) descends from the following reasoning: after the introduction
of Mechanisms 1 and 2 all the agents in the set M ask for the check, so if agent
i ∈ N \ M asks for the check then the cost χ is divided among at least |M | + 1
agents (other users may have the same interest in asking for the check but the
information on the level of usage could not be common knowledge, differently
from the information on who the users are), so if adding the individual quota
of the maintenance cost γi the total is not larger than the equal sharing of
the maintenance cost, it is convenient to ask for the check. In other words, the
intensity of usage makes strategy N no longer dominant for the users.

Example 5. Let N = {1, 2, 3, 4, 5},M = {1, 2}, C = 30, χ = 11; in this case
q = 2, so the two agents in M obtain the check, and the final allocation is
x{1,2} = (0, 0, 10, 10, 10). Now, suppose that agent 3 uses the facility at a low
level, agent 4 uses the facility at a medium level, and agent 5 uses the facility at
a high level; let the division rule of the cost C be such that γ(C) = (0, 0, 1, 6, 23).
In this case agent 3 satisfies Condition (1), so s/he may have an advantage
from the check even if s/he is a user; in fact, asking for the check s/he pays at
most 4.666 = 11

3 + 1; according to Mechanism 2 the remaining part of the cost
C is equally shared among agents 4 and 5, so the final allocation is x{1,2,3} =
(3.666, 3.666, 4.666, 14.5, 14.5), i.e. all the agents that ask for the check profit
from it.
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Remark 3. Note that in Example 5 agent 4 does not satisfies Condition (1) as
χ
3 + γ4 > C

5 ; on the other hand, when Q = {1, 2} agent 4 pays 10, that is more
than what s/he would have paid asking for the check jointly with agents 1 and 2,
i.e. 9.666 = 11

3 + 6.

In view of the previous remark, we can revise Condition (1) as follows.
The division rule γ makes the request for the check non-disadvantageous for

agent i ∈ N \ M if

χ

|M ∪ {i}| + γi ≤ C

|N \ M | and q ≤ |M |. (2)

Differently from Condition (1), in the case of Condition (2) we compare two
more homogeneous situations; in fact, suppose that all the agents in M and
another agent i ∈ N \ M ask for the check obtaining it, then the left hand side
corresponds to the cost for agent i ∈ N \ M when all the agents in M and
her/himself ask for the check obtaining it (if other users ask for the check, the
cost for agent i may be lower), while the right hand side corresponds to the cost
for agent i ∈ N \ M when all the agents in M ask for the check obtaining it,
so that the cost C is equally shared only among the users (if other users ask for
the check, the cost for agent i may be higher).

Example 6 (Example 5, with Condition (2)). Agents 1 and 2 are non-
users, and agents 3 and 4 satisfy Condition (2), so all of them ask for the check
and the allocation is x{1,2,3,4} = (2.75, 2.75, 3.75, 8.75, 23). Note that, according
to Condition (2), agents 3 and 4 expected to pay 4.666 and 9.666, respectively.

We remark that the agents have the information for computing the value of
q and compare it with the cardinality of the set of non-users M , but they may
be not aware if the quorum is reached when it is larger than |M | and/or other
agents in N \ M asked for the check.

5 Concluding Remarks

In this paper, we reconsidered the problem in [1] focusing our attention on the
free-riding behaviors that users and non-users may have. The free-riding of the
users is faced in [1] via the naming procedure, offering the non-users the possibil-
ity of a check that certify who the users are. This procedure does not completely
eliminates the free-riding of the users because the non-users may be afraid that
they may pay more if the cost of the check is high and there are not enough
requests so that the cost is shared among few agents; moreover, it is possible
that non-users may behave as free-riders as they may not ask for the check
with the hope that others non-users ask and pay for the check. Two suitable
mechanisms were introduced in order to make the strategy “ask for the check”
weakly dominant for the non-users. Then, we considered the possibility that the
check provides also information on the level at which the facility is used by each
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agent. In this way, the strategy “not to ask for the check” is no longer dominant
for those agents whose level of usage is sufficiently low; consequently, there is a
larger number of situations in which the check is made, increasing the fairness
of the cost sharing.

We want to remark that the enlargement of the possibilities of check may
induce a new behavior for the users; in fact, since the total payment is C + χ
with the check and C otherwise, the users at high level may propose to the other
agents a kind of manipulation of the division of the maintenance cost, in such a
way that it results advantageous for all the agents, especially when the cost of
the check is high.

Of course, our proposal may be improved because the situation could be more
complex, as in the following example.

Example 7 (Example 5 revised). Suppose that χ = 16, so the solution is
x{1,2,3} = (5.333, 5.333, 6.333, 14.5, 14.5), i.e. agent 3 pays more asking for the
check than otherwise. On the other hand, it is easy to notice that the first three
agents pay in total 17 = χ+γ3 = 16+1 if the check is made and 18 = C

n ·3 = 6 ·3
otherwise. So, it is advantageous to ask for the check but a division of the cost
χ different from the simple equal share among the agents that ask for the check
is necessary.

This is a classical cost allocation problem that can be solved via a cooperative
game with transferable utility; we will consider this new setting in a forthcoming
research.
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Abstract. In this research, the effects of culture, cognitions, and emotions on
crisis management and prevention are analysed. An agent-based crowd evacu-
ation simulation model was created, named IMPACT, to study the evacuation
process from a transport hub. To extend previous research, various
socio-cultural, cognitive, and emotional factors were modelled, including: lan-
guage, gender, familiarity with the environment, emotional contagion, prosocial
behaviour, falls, group decision making, and compliance. The IMPACT model
was validated against data from an evacuation drill using the existing EXODUS
evacuation model. Results show that on all measures, the IMPACT model is
within or close to the prescribed boundaries, thereby establishing its validity.
Structured simulations with the validated model revealed important findings,
including: the effect of doors as bottlenecks, social contagion speeding up
evacuation time, falling behaviour not affecting evacuation time significantly,
and travelling in groups being more beneficial for evacuation time than travel-
ling alone. This research has important practical applications for crowd man-
agement professionals, including transport hub operators, first responders, and
risk assessors.

Keywords: Crowd behaviour � Crowd management � Crowd simulation �
Evacuation � Emotional contagion � Social dynamics � Culture � Cognition �
Group-decision making

1 Introduction

Crisis management and prevention involves preparing for many different emergency
situations. This research focuses on studying the socio-cultural, cognitive, and emo-
tional factors influencing an evacuation from a building, such as a transport hub. This is
important, because few crisis managers and risk assessment professionals currently deal
with these factors and their resulting behaviours. Accordingly, this research developed
and validated a crowd evacuation simulation model that includes socio-cultural, cog-
nitive, and emotional factors in order to simulate what-if scenarios. Consequently, it
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will help transport hub operators, crisis managers, risk assessment professionals, and
policy makers understand human behaviour, deal with socio-cultural crowd diversity,
and ultimately save lives.

Faster evacuation from public buildings during emergencies saves more lives.
Observations of actual emergencies show that people tend to be slow to respond to
evacuation alarms (taking up to 10 min) and take the familiar route out instead of the
nearest exit [4, 7, 14, 21, 23, 30]. These risky behaviours stem from being unfamiliar
with the environment, not seeing immediate signs of danger, and following others’
(unsafe) behaviour, leading to preventable deaths in many disasters. For instance, in the
Station Nightclub fire, in Rhode Island in 2003, the majority of people tried to escape
back through the familiar main entrance, leading to falls, crushing, and 100 deaths.
Many of the 56 deaths in the Bradford City Stadium fire in 1985 could have been
prevented if response time to the fire had been faster [3], and similarly slow responses
were found among occupants of the World Trade Center towers during the 9/11 terror
attacks in New York City [23]. In recent emergencies, some people have even remained
in dangerous areas to film events with their smartphones instead of escaping (Nice
Boulevard, 14/07/2016; Westgate Shopping Centre, Nairobi, 21/9/2013).

Current crowd evacuation models simulate how crowds move through built envi-
ronments [9], enabling ethical tests of how to improve crowd movements in emergency
evacuations. In addition to informing how to build safer buildings, computer models
can identify safer behaviours in existing buildings. For example, it is well-documented
that not running leads to faster evacuations due to fewer falls and less congestion at the
exit [17, 36]. However, traditional computer models of evacuations have been criticized
for being unrealistic, because they treat people as ‘moving particles’ with identical
characteristics [9, 36]. Such models wrongly assume that all people will respond to
alarms without delay, know their way, and take the nearest exit. As noted above,
however, each of these assumptions has been proven wrong [4, 7, 14, 21, 23, 30].

The aim of this research, therefore, is to develop and validate an evacuation sim-
ulation model that includes socio-cultural, cognitive, and emotional factors, to address
the need for crowd models to incorporate more realistic human behaviours. To do so,
the model developed here draws on insights from social and cross-cultural psychology,
interviews with crisis management experts, and is based on scientific findings and
literature. Furthermore, the model is validated against data from an evacuation drill
related to the existing EXODUS evacuation model [13, 26]. It is intended that this
model will help transport hub operators, crisis managers, risk assessment professionals,
and policy makers understand human behaviour, deal with socio-cultural crowd
diversity, and ultimately save lives.

The paper is organised as follows. First, the background literature on crowd
evacuation models is reviewed and the current approach is introduced in Sect. 1.1. In
Sect. 2, the formal model is presented, followed by the validation and simulation
results in Sect. 3. The work is then summarised and discussed in Sect. 4.

1.1 Background Evacuation Models

There are many different approaches for crowd evacuation simulations, of which Zheng
et al. [48] describe seven: (1) cellular automata, (2) lattice gas, (3) social force, (4) fluid
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dynamics, (5) agent-based, (6) game theory, and (7) animal experiments. In micro-
scopic models (e.g. cellular automata, lattice gas, social force, agent-based models), the
pedestrian is modelled as a particle. However, in macroscopic models (e.g. fluid
dynamic models), a crowd of pedestrians is modelled as a fluid. In conclusion, Zheng
et al. [48] concluded that in further research, evacuation models should: (1) combine
different approaches, and (2) incorporate psychological and physiological elements.
Our IMPACT model addresses both of these recommendations.

Moreover, Templeton et al. [39] conclude that current crowd simulations do not
include psychological factors and therefore cannot accurately simulate the collective
behaviour that has been found in extensive empirical research on crowd events.
Specifically, they argue that crowd members should be able to identify with other
people in crowd simulations to form psychological sub-groups known as in-groups.
This is critical for evacuation models, as research indicates that people are more likely
to help fellow in-group members during emergencies [8]. Accordingly, our IMPACT
model also incorporates social identity.

Most of the evacuation models that Santos and Aguirre [36] reviewed do not model
social dimensions, such as group decision making, but focus more on physical con-
straints and factors such as walking speed, walkways, and stairways, to find the optimal
crowd flow for the evacuation process. Agents are rational in these simulations: they
can find the optimal escape route, avoid physical obstructions and, in some models,
even overtake another person obstructing them. However, even though these models do
include parameters like gender, age, individual walking speeds, and different body
dimensions, they still lack socially interactive characteristics such as the monitoring of
others. Again, to address this, our IMPACT model incorporates such social processes.

Santos and Aguirre [36] also reviewed the incorporation of social and psycho-
logical factors into evacuation simulation models, noting their inclusion in three
models: (1) FIRESCAP, (2) EXODUS, and (3) Multi-Agent Simulation for Crisis
Management (MASCM). EXODUS includes 22 social psychological attributes and
characteristics for each agent, including age, sex, running speed, dead/alive, and
familiarity with the building. Agents can also perform tasks before evacuating the
building, such as picking up a purse or searching for a lost child. Still, the agents in
EXODUS cannot have micro-level social interactions that would create a collective
understanding of the situation for the group. However, MASCM does include social
interaction with so-called ‘evacuation leaders’ who can communicate (‘please follow
me’) and start to walk along the evacuation route, or find an evacuee, or wait for an
evacuee to approach them. Finally, FIRESCAP implements the social theory of ‘col-
lective flight from a perceived threat’. The egress is a result of a socially-structured
decision making process guided by norms, roles, and role relations.

From this literature review, it can be concluded that the ideal simulation approach
for realistic crowd evacuation models should seek to develop sub-models that include
an active, ‘investigative’, socially-embedded agent that assesses the state of other
people and defines the situation collaboratively. Essentially, then, group dynamics must
be considered, and our IMPACT model aims to address this.
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1.2 Current Approach

Based on the lack of psychological and socio-cultural factors in existing evacuation
models, we created our IMPACT evacuation model based on an earlier model called
ASCRIBE [2]. This allows for the social contagion of emotional and mental states, and
enables group decision making and other social dynamics [1, 2]. The ASCRIBE model
has outperformed other models in reproducing real crowd panic scenes and was
extended here with many psychological and socio-cultural factors – such as familiarity,
falls, and prosocial behaviour – and applied to a specific evacuation scenario [41]. The
evacuation dynamics were modelled using agent-based belief-desire-intention
(BDI) and network-oriented modelling approaches [32, 40]. A first version of the
IMPACT model was introduced in [43] and the further-developed and validated model
was introduced in [12]. The final version of the IMPACT model presented here has
now been fully refined and certain characteristics have been updated. We introduce it
here with its most important findings. The updates concern speed, falls, compliance
levels, egress flowrate, observation distance, helping behaviour, and cultural divisions,
and these are based on psychological and socio-cultural research as described below.

1.3 Background Psychological and Socio-Cultural Factors
in the IMPACT Model

Overview. Although the computer simulation of crowd behaviour has been ongoing
for several decades, most existing models are still founded on erroneous assumptions of
human behaviour and movement as linear, logical, and driven primarily by the laws of
physics [4]. A key reason for this has been the disciplinary division in crowd behaviour
research. Modellers engaged in crowd simulation are typically drawn from technical
fields, such as computer science and engineering, while psychologists and other social
scientists who study crowd behaviour do not generally use computer simulation
methods [18]. Consequently, only truly interdisciplinary research can effectively sim-
ulate crowd behaviour, particularly in emergencies, in complex systems comprising
both social and technical elements [5]. To address these issues in our IMPACT model,
alongside the conventional features of traditional crowd simulation models we have
included additional psychological and socio-cultural elements. For instance, at an
individual level, we have simulated the effect of people’s socio-cultural characteristics
such as age, gender, and nationality on their behaviour (e.g. based on the national
cultural clusters in [35]) in emergencies; while, at a group level, we have simulated
social processes such as social identity [8] and emotional contagion [1, 2].

Speed. The walking speeds varied for each demographic group (children, adult males,
adult females, elderly males, elderly females) and were based on the observational
work of Willis et al. [46], ranging from 1.12 m/s to 1.58 m/s. We calculated running
speeds by multiplying the walking speed for each demographic group by three – to
account for the luggage, belongings, and clothes that people wear while travelling – to
yield speeds between 3.36 m/s and 4.75 m/s. Moreover, a crowd congestion factor was
added that reduces the speed according to the number of agents within the same square
metre: � 4 people (no speed reduction), 5 people (62.5% reduction), 6 people (75%),
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7 people (82.5%), 8 people (95%). These speed adjustments were based on research by
Still [38], where 8 is the maximum number of people per square metre and 4 the
number of people at which speed reduces.

Falls. The number of falls in the initial model seemed unrealistically high during
structured simulations. So, we manually tuned the value to a more realistic level by
visually inspecting the movement patterns during many different settings. This resulted
in a new rule: if there are more than 4 people in the same square metre as the agent and
if he is running faster than 3 m/s, then there is a 5% chance of a fall for each new
movement.

Compliance. In the current version, the probability of compliance is based on data
from Reininger et al.’s [33] study of gender differences in hurricane evacuation,
modified for different age groups using data from Soto et al.’s [37] personality study.
The model has 6 compliance values according to the category of the agent: male or
female, and child, adult, or elderly. The precise levels can be found in Sect. 2.

Egress flowrate at each exit. The maximum flowrate is 6 people per exit per second
(p/m/s), based on guidelines from Still [38] indicating an egress flowrate of 82
people/metre/minute (p/m/m), equivalent to 1.37 p/m/s, then multiplied by 4 (as doors
are 4 m wide) to indicate 5.47 people per exit door per second.

Observation distance. Public distance (space in which social interactions are still
possible, extending the personal and formal social interaction space) is 12–25 feet (3.7–
7.6 m), in relation to public speaking to large groups, while no social interaction is
possible over 25 feet [15], though this might not take shouting into account. Consid-
ering the size of the environment that was implemented in the model (e.g. a square
room of 20 � 20 m), it was decided to keep the observation distance (i.e. the maxi-
mum distance at which staff instructions could be understood) at 5 m rather than 10.
Otherwise, at 10 m, the passengers could observe everything in the building from the
centre and the important effects of social contagion would be downplayed in the
simulations.

Helping. The probabilities of helping others during the emergency evacuation were
modelled as a function of the characteristics of helpers and fallers. This was based
on research indicating that, in emergencies: (a) men are most likely to help others,
(b) women, children, and older adults are most likely to receive help [10], and
(c) people are more likely to help members with a shared identity [8]. The precise
probabilities can be found in Sect. 2.1.

Culture. In the model, the passengers are divided into different clusters of culturally
similar nationalities based on previous research [35]. Data concerning the percentage
of English speakers for each country in each cluster were then obtained, where
available, from multiple verified and official sources compiled by Wikipedia [45]. We
then calculated a weighted average percentage of English speakers in each cluster –
using the population sizes of each cluster’s constituent countries – and these were the
values used in the simulation model to determine the percentage of passengers from
each cluster who could understand an English instruction by a staff member or public
announcement. The precise probabilities can be found in Sect. 2.1.
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Group decision making. Like in previous work [1, 2], group decision making is
based on findings from social neuroscience to make a biologically plausible human-like
model. Decision making is modelled as both an individual process called somatic
marking and a social group process based on mirroring of cognitive and emotional
states [6, 34]. Damasio’s somatic marking hypothesis is a theory of decision making
which provides a central role to emotions felt [6]. Each decision option induces a
feeling to mark that option. In social neuroscience, neural mechanisms have been
discovered that account for mutual mirroring effects between mental states of different
people. For example, when one expresses an emotion in a smile, another person can
observe this smile which automatically triggers preparation neurons (called mirror
neurons) for smiling within this other person and consequently generates the same
emotion. Similarly, mirroring of intentions and beliefs can be considered. This is called
emotional contagion (for emotions alone) or social contagion (for emotional and mental
states) in this work.

2 Model

2.1 Formal Model

Figure 1 gives an overview of the formal model, showing the four modules of each
passenger and how they interact. The passenger has individual characteristics – such as
age, gender, familiarity, and group membership – which influence their interactions.
For example, familiarity influences the choice of exit (people-environment interaction),
while age, gender, and group membership influence the pro-social behaviour
(people-people interactions). The full details of these four modules, their constituent

Fig. 1. Agent modules in the IMPACT evacuation model
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concepts, and their dynamic relationships are shown in Fig. 2, using the same coloured
key as Fig. 1 for the modules.

Below, all the formal rules of the proposed model are presented in the form of
mathematical formulas representing all dynamic relationships between all concepts
from Fig. 2. Creating the formal model in this way, using mainly difference equations,
is based on the network oriented modelling approach [40].

Firstly, the following environmental states have the value 0 (‘off’) or 1 (‘on’).
These are ‘inputs’ of the model and vary over time. For example, the fire_alarm is ‘on’
after three minutes of the simulation and the public_announcement is ‘on’ one minute
after the fire_alarm is ‘on’.

crowd congestion location tð Þ; fire location tð Þ; alarm tð Þ; staff instructions tð Þ;
public announcementðtÞ ð1Þ

The aggregated impacts of others on agent x, for the levels of the belief that the
situation is dangerous and the levels of fear, are calculated as a weighted sum at every
time step, based on previous work [1, 2]:

others belief dangerousxðtÞ ¼ ssumkðxy1x � belief dangerousy1; . . .;xkx�
belief dangerouskÞ ¼ ssumkðxy1x � belief dangerousy1 þ . . .þxkx�
belief dangerouskÞ ¼

Py1

k
xy1x�belief dangerousy1ðtÞPy1

k
xy1x

:
ð2Þ

Fig. 2. Dynamic relationships between concepts in the IMPACT evacuation model
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others fearxðtÞ ¼ ssumk xy1x � feary1; . . .;xkx � feark
� � ¼ ssumkðxy1x � feary1 þ . . .þ

xkx � fearkÞ ¼
Py1

k
xy1x�feary1ðtÞPy1

k
xy1x

:
ð3Þ

whereby k ¼ Py1
k xy1x

All observations of events or other passengers are calculated as stated below. The
observation_fire becomes 1 if the passenger is within a distance of 5 m, representing the
observation distance which is adjustable by the modeller, based on [15], see Sect. 1.3.
When the fire alarm sounds, then 50% of the time the passenger will observe this alarm
and this, in turn, will change the passenger’s belief_dangerous to 1. This represents the
risk-taking passengers have, as not all passengers react quickly to a fire alarm [21, 23, 30].
Note that, for example, for observation_others_fear(t) = others_fear(t) a simplification of
the real world has been made to model the values to match each other instantaneously
instead of with a delay, as further detail was not necessary in the model.

observation fire(t) = 1 if ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x2Þ2 þðy1 � y2Þ2

q
� 5Þ else 0; where by agent location(t) ¼

ðx1 y2Þ and fire location(tÞ ¼ ðx2 y2Þ:
ð4Þ

P observation alarm tð Þ ¼ 1 j alarm tð Þ ¼ 1ð Þ ¼ 0:5: ð5Þ

observation others belief dangerous tð Þ ¼ others belief dangerous tð Þ;
observation others fear tð Þ ¼ others fear tð Þ;

observation staff instr tð Þ ¼ staff instructions tð Þ;
observation pa tð Þ ¼ public announcement tð Þ ð6Þ

If there is a fire at the same location as the passenger, then the passenger dies. Die(t)
has a binary value of 0 (‘not dead’) or 1 (‘dead’). This strict rule was chosen as more
detail was not necessary for the goal of this model. We chose not to model the effect of
the fire and smoke, like the heat and toxicity in the room, so we could purely focus on the
human behavioural effects in the simulations not combined with the effects of the fire.

die tð Þ ¼ 1 if fire location ¼¼ agent locationð Þ else 0 : ð7Þ

Each passenger has an initial speed based on his/her age and gender, based on [38,
46], see Sect. 1.3.

At t = 0:

� If ageþ gender ¼ female adult then basic speed ¼ 0:9þ rand 0; 0:5ð Þ:
� If ageþ gender ¼ male adult then basic speed ¼ 1þ rand 0; 0:5ð Þ:
� If ageþ gender ¼ child then basic speed ¼ 0:5þ rand 0; 0:5ð Þ:
� If ageþ gender ¼ female elderly then basic speed ¼ 0:9þ rand 0; 0:5ð Þ:
� If ageþ gender ¼ male elderly then basic speed ¼ 0:9þ rand 0; 0:5ð Þ:
� If group membership ¼ 1; then speed ¼ min basic speeds of other membersð Þ
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þ 0:4 � ðmax basic speeds of other membersð Þ � min basic speeds of other membersð Þ:
� If group membership ¼ 0; then speed ¼ basic speed: ð8Þ

Whereby: rand is a random number, min = minimum, and max = maximum.
Each passenger has an initial compliance level based on his/her age and gender,

based on [33, 37], see Sect. 1.3.
At t = 0:

� If ageþ gender ¼ male child then compliance ¼ 0:89:

� If ageþ gender ¼ female child then compliance ¼ 0:89:

� If ageþ gender ¼ male adult then compliance ¼ 0:89:

� If ageþ gender ¼ female adult then compliance ¼ 0:94:

� If ageþ gender ¼ male elderly then compliance ¼ 0:92:

� If ageþ gender ¼ female elderly then compliance ¼ 0:97:

ð9Þ

Each passenger has a 5% chance (i.e., a 0.05 probability) of falling when there is
crowd congestion at their location, as explained in Sect. 1.3. Fall(t) has a binary value
of 0 (‘not fallen’) or 1 (‘fallen’).

P fall tð Þ ¼ 1jcrowd congestion location ¼¼ agent locationð Þ ¼ 0:05: ð10Þ

Each passenger has a belief about how dangerous the situation is. This belief has a
value between 0 (‘minimum danger’) and 1 (‘maximum danger’). The belief will
increase to 1 when a fire or alarm is sensed. The beliefs of other passengers can
decrease or increase the passenger’s own belief, based on mirroring/contagion mech-
anisms as described in Sect. 1.3, based on previous research [1, 2]. The passenger’s
fear level influences his belief (somatic marking): if the amount of fear is higher than
the belief, it will increase the belief, and if the amount of fear is lower than the belief, it
will decrease the belief. The belief is also based on the passenger’s belief from the
previous time-step (persistence). The equations are presented in both difference and
differential equation format to show how, hereafter, every difference equation can be
translated into a differential equation.

belief dangerousðtþDtÞ ¼ belief dangerous tð Þþ g � ðmaxðxsensing � fire tð Þ;xsensing�
alarmðtÞ;xpersisting � belief dangerous tð Þ; sum xaffectivebiasing�fear tð Þþ aggbeliefsxðtÞ

xaffectivebiasing þ 1

� �
Þ�

belief dangerousðtÞÞ � Dt:
ð11Þ

dbelief dangerous
dt ¼ g � ðmaxðxsensing � fire tð Þ;xsensing � alarmðtÞ;xpersisting�

belief dangerous tð Þ; sum xaffectivebiasing�fear tð Þþ aggbeliefsx tð Þ
xaffectivebiasing þ 1

� �
� belief dangerousðtÞÞ :

ð12Þ
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whereby; aggbeliefsx tð Þ ¼ ssumkðxy1x � belief dangerousy1ðtÞ; . . .;xkx�
belief dangerouskðtÞÞ ¼ ssumkðxy1x � belief dangerousy1ðtÞþ . . .þxkx�
belief dangerouskðtÞÞ ¼

Py1

k
xy1x�belief dangerousy1ðtÞPy1

k
xy1x

:

k ¼ Py1
k xy1x

The amount of fear a passenger feels is based on the fear level of the previous
time-step (persistence), the levels of intentions to evacuate (amplifying fear) or walk
randomly (decreasing fear), the other passengers’ levels of fear (emotional contagion),
and the staff instructions or public announcements they observe (decreasing fear).
These processes are based on mirroring/contagion mechanisms as described in
Sect. 1.3, based on previous research [1, 2]. The fear value ranges from a minimum of
0 (‘no fear’) to a maximum of 1 (‘maximum fear’).

fear tþDtð Þ ¼ fear tð Þþ g � ðmax ðxpersisting�fear tð Þ; alogisticðaggfears tð Þ;
xamplifyingfeeling � desireevacuate tð Þ;xinhibitingfeeling � desirewalkrand tð Þ;xdecreasingfear

� observationstafinstr tð Þ ;xdecreasingfear � observationpa tð ÞÞÞ � fearðtÞÞ � Dt: ð13Þ

whereby, aggfears(t) is calculated similarly as aggbeliefsx(t) (see Eq. 12) and
alogisticrs V1; . . .;Vkð Þ ¼ ð 1

1þ e�r V1 þ ...þVk�sð ÞÞ � 1
1þ ersÞð1þ e�rsÞ.

The desire to evacuate value ranges from 0 (‘minimal desire’) to 1 (‘maximal
desire’). It is amplified by the level of compliance, the passenger’s belief of how
dangerous the situation is (cognitive responding), the passenger’s level of fear (somatic
marking), and staff instructions or public announcements to evacuate. The somatic
marking and cognitive responding are processes based on mirroring/contagion mech-
anisms as described in Sect. 1.3, based on previous research [1, 2].

desire evacuateðtþDtÞ ¼ desire evacuateðtÞþ g � ððcompliance�
ðmaxðxamplifyingevacuation � belief dangerousðtÞ;xamplifyingevacuation�
fear tð Þ;xamplifyingevacuation � observation staff instr tð Þ;xamplifyingevacuation�
observation paðtÞÞÞÞ � desire evacuateðtÞÞ � Dt:

ð14Þ

Whereby,

ssumkðx1 � V1 tð Þ; . . .;xk � Vk; Þ ¼ ssumkðx1 � V1 tð Þ; . . .;xk � Vk; Þ ¼
P1

k
x1�V1ðtÞP1

k
x1

; k ¼ P1
k x1.

The value of the desire to walk randomly ranges from 0 (‘minimal desire’) to 1
(‘maximal desire’). It is inhibited by the level of compliance, the passenger’s belief of
how dangerous the situation is (cognitive responding), the passenger’s level of fear
(somatic marking), and staff instructions or public announcements to evacuate. The
somatic marking and cognitive responding are processes based on mirroring/contagion
mechanisms as described in Sect. 1.3, based on previous research [1, 2].
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desire walkrandðtþDtÞ ¼ desire walkrandðtÞþ g � ðcompliance � ð1�
maxðxinhibitingwalkrand � belief dangerousðtÞ;xinhibitingwalkrand�
fear tð Þ;xinhibitingwalkrand � observation staff instr tð Þ;xinhibitingwalkrand �
observation paðtÞÞ � desire walkrandðtÞÞ � Dt:

ð15Þ

The intention to evacuate value ranges from 0 (‘minimal intention’) to 1 (‘maximal
intention’), and so too does the intention to walk randomly value. To decide whether
the desire to evacuate or walk randomly is larger, a logistic function is used, and this
outcome is then multiplied by the desire to walk randomly. This, in turn, is multiplied
by (1-fall(t)) to make sure it is only a value larger than 0 when the passenger has not
fallen. When the passenger has fallen, the value will become 0, then the passenger
cannot actually walk randomly or evacuate.

intention evacuate tþDtð Þ ¼ intention evacuate tð Þþ g � ðð1� fallðtÞÞ�
desire evacuate tð Þ � logisticððxamplifyingintention � desire evacuate tð Þ;
xinhibitingintention � desire walkrand tð ÞÞ � Dt:

ð16Þ

intention walkrand tþDtð Þ ¼ intention walkrandðtÞþ g � ðð1� fall(t))�
desire evacuate ðtÞ � logisticððxinhibitingintention � desire evacuate ðtÞ;
xamplifyingintention � desire walkrandðtÞÞ � Dt:

ð17Þ

whereby: logisticr;sðV1; . . .;VkÞ ¼ 1
1þe�rðV1 þ ...þVk�sÞ.

The action movetoexit is a combination of the speed of the passenger and his target
(i.e. the location/exit he moves towards). The value of the intention to evacuate
influences the speed of moving to the exit. The familiarity, observation of staff
instructions, and the public announcement all influence the choice of exit [4, 14].

If familiarity ¼ 1 OR observation staffinstructions ¼ 1 OR observation pa ¼ 1ð Þ then
action movetoexit tð Þ ¼ target ¼ nearest exitð Þ AND ðspeed ¼ intention evacuate tð Þ�
speedÞ else action movetoexit tð Þ ¼ target ¼ entranceð Þ AND ðspeed ¼
intention evacuate tð Þ � speedÞ: ð18Þ

The action walkrandom is a combination of the speed and heading of the agent in
the environment. The value of intention_walkrand is multiplied by the maximum speed
of the agent.

action walkrand tð Þ ¼ heading ¼ randomð Þ AND ðintention walkrand � speedÞ : ð19Þ

The action help_other is calculated as stated below, based on previous research
[8, 10], as described in Sect. 1.3.

When

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x2Þ2 þðy1 � y2Þ2

q
� 5: ð20Þ
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whereby agent_location(t) = (x1 y2) and agent_location of other passenger(t) = (x2 y2)
and other passenger fall(t) = 1, then the chance of helping depends on the age + gender
of the helper and the fallen passenger and whether they share a social identity
(in-group) or not (out-group). The overall probability of helping is shown in Table 1.

The expressions of fear and the passenger’s belief of the situation are modelled in a
simple way, where the values match each other instantaneously instead of with a delay,
as further detail was not necessary in the model.

express belief dangerous tð Þ ¼ belief dangerous tð Þ; express fear tð Þ ¼ fear tð Þ ð21Þ

2.2 Pseudo-code and Model Overview

The model was implemented in the NetLogo multi-agent language [25]. To do so, the
formal model presented in the previous section was transformed into multiple IF THEN
rules. An example of how these rules were translated into NetLogo code is shown
below, taking Formula 18 (see previous section) as an example. It is shown that for
each agent in the model the heading (direction) is set as a random number between 0
and 360 (degrees), and then based on the age and gender of the agent a speed is also set.
Then, for the action to walk randomly, the level of the intention is multiplied by the
speed.

Table 1. Probabilities of helping a fallen passenger

Helper
passenger

Social
identity

Fallen passenger
Male
child

Male
adult

Male
elderly

Female
child

Female
adult

Female
elderly

Male
adult

In-group 0.30 0.15 0.30 0.40 0.30 0.40

Male
elderly

In-group 0.15 0.08 0.15 0.20 0.15 0.20

Male
adult

Out-group 0.25 0.13 0.25 0.34 0.25 0.34

Male
elderly

Out-group 0.13 0.06 0.13 0.17 0.13 0.17

Female
adult

In-group 0.15 0.08 0.15 0.20 0.15 0.20

Female
elderly

In-group 0.08 0.04 0.08 0.10 0.08 0.10

Female
adult

Out-group 0.13 0.06 0.13 0.17 0.13 0.17

Female
elderly

Out-group 0.06 0.03 0.06 0.08 0.06 0.08
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Figure 3 shows the activity diagram of the created simulator focusing on the
internal model. The system updates internal states and actions of each agent. After that,
it updates the environment, considering the actions of the agents, and finalizes the cycle
by updating the statistics. The simulation stops when all agents are either evacuated or
dead. At any moment, the user can change the parameters available on the interface and
influence the environment or agents.

3 Validation and Structured Simulation Results

3.1 Validation Results: IMPACT Model Versus EXODUS Benchmark

Our IMPACT model has been compared with a benchmark to establish its validity. In
[12] the validation process and results have been explained and discussed already, and
a summary is provided here. The EXODUS model [26] was selected as a benchmark

Fig. 3. Activity diagram overview of the IMPACT crowd evacuation model
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for the IMPACT model, as it is accepted by specialists in this area as realistic [26]. The
environment selected is called SGVDS1, a complex ship environment composed of
three floors, with different escape routes to the four assembly areas [13] (Fig. 4).

A validation experiment was conducted comparing three versions of the IMPACT
model with the benchmark of the EXODUS model (see Table 2 for the experimental
design). The IMPACT model covers more aspects than the benchmark EXODUS
model, however, so some of the IMPACT model’s variables were fixed to enable a fair
comparison:

Fig. 4. Scenario of the software simulation.

Table 2. Results of the validation protocol for the overall arrival times.

Condition Benchmark Experimental
condition 1

Experimental
condition 2

Experimental
condition 3

Explanation Exodus
SGVDS1
data

No Social
Contagion.
Response time
and Speed taken
from the
benchmark

No Social
Contagion.
Response times
and Speed
calculated by the
model itself

Social Contagion
activated.
Response times
and Speed
calculated by the
model itself

FET 585 (s) 498.6 (s) 543.4 (s) 516.6 (s)
TAT 0 14.77 7.11 11.69
ERD 0 0.568171 0.575657 0.565754
EPC 0 0.724621 0.731295 0.731634
SC 0 0.522105 0.423135 0.451471
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• Familiarity: it was assumed that everybody was not familiar with the environment.
• Relationship: it was assumed that all passengers were unrelated.
• Social contagion: this was ‘on’ or ‘off’, depending on the experimental condition

(see Table 2).
• The passenger’s speed: in experimental condition 1 the speeds indicated in [13]

were used. In experimental conditions 2 and 3, the speed was calculated by the
IMPACT model.

• Groups and Helping: these were not considered in any experimental condition.

The outcome measures of the validation experiment are: (1) Final Evacuation Time
(FET); (2) the percentage difference between the predicted and Total Assembly Time
(TAT); (3) the curve differences between the predicted and expected arrivals to the
Assembly Areas (exits). This last measurement is calculated based on Euclidean
Relative Difference (ERD), Euclidean Projection Coefficient (EPC), and Secant Cosine
(SC). In [13] it is stated that a ‘good’ TAT should be below 40, which is true for all
experimental conditions here. For ERD, all experimental conditions are over, but close
to, the expected boundary that is � 0.45, while for EPC, the results stay within the
expected boundaries of 0.6 � EPC � 1.4. For SC, the values are below the boundary
0.6, but close to the acceptance threshold. See Table 2 for all the results. In Fig. 5
below, the assembly curves of the benchmark and the three IMPACT versions (the
three experimental conditions) are shown. These results show that on all measures, the
IMPACT model is within or close to the prescribed boundaries, thereby establishing its
validity.

Fig. 5. Total arrival time pattern for one simulation run of EXODUS benchmark and IMPACT
experimental conditions 1, 2 and 3.
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3.2 Simulation Experiments Setup

Number of Repetitions. To determine the number of repetitions for each combination
of factor and level, an evacuation scenario with the most variability was run 100 times.
First, the cumulative averages and variances in evacuation time were inspected to
detect the threshold number of repetitions at which evacuation time stabilised. Second,
Eq. 22 below was used to find the minimum number of repetitions (56) to guarantee
that the error in the outcome results is within 5% of the maximum error with a 95%
confidence level. Then, 60 repetitions of each variation were run and the results pre-
sented in this Section represent the average of these 60 runs.

n� 100 � Z � s=r � �x½ �2¼ 56:61599 ! 60 samples ð22Þ

Whereby,

Z ¼ confidence interval of 95%; s ¼ standard deviation; 53:4287
r ¼ maximum error of 5% �x ¼ evacuation time average of 100 samples

Outcome measures and emergence. There are three outcome measures for each
simulation experiment: (1) evacuation time, (2) total falls, and (3) response time. The
evacuation time was measured as the number of seconds from the onset of the fire until
all (living) passengers have evacuated. The number of falls was measured cumulatively
(all falls in total in one simulation run). The individual response time was measured as
the time between the onset of the fire until the passenger develops the intention to move
to the exit. The reported response time is the average of all individual’s response times.

Besides these outcome measures, emergence is of interest in the analyses. Emer-
gence is the spontaneous establishment of a qualitatively new behaviour through
non-linear interactions of many objects or subjects [17]. In other words, it is a beha-
viour observed at the group level, which cannot be directly explained from the indi-
vidual behavioural rules. This could lead to unexpected findings in our simulation
experiments, because the hypotheses are formulated based on individual behavioural
rules, since a priori you do not always know what group level behaviour will occur.
There are important crowd movement phenomena related to evacuation situations
known from the literature, such as herding, the faster-is-slower-effect, and collective
intelligence [16, 17]. Herding refers to a situation that is unclear and causes individuals
to follow each other instead of taking the optimal route [16]. The faster-is-slower-effect
refers to when, in evacuation situations, certain processes take longer at high speed; so,
waiting can sometimes help competing people (competing for space) and speed up the
average progress [17]. Collective intelligence, as Helbing and Johansson name it, is
emergent functional behaviour of a large number of people resulting from interactions
of individuals instead of individual reasoning [17].

We hope our model will create these emergent phenomena, as that would prove our
model can create self-organisation [9]. Self-organisation can be defined as the
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spontaneous establishment of qualitatively new behaviour through non-linear interac-
tion of many objects or subjects without the intervention of external influences.
However, we do not expect our model to show emergent lane formation and the zipper
effect [9]. Lane formation is a process where a number of lanes of varying width form
dynamically at a corner; however, the passengers in our model do not have to go
around a corner towards the exit.

Other evacuation modellers have studied behavioural and environmental effects on
evacuation time as well. For example, in [20], it was found that the optimal evacuation
time needs a combination of herding behaviour and the use of environmental knowl-
edge (about the location of exits). In [47] it was found that when exits are placed
symmetrically in a room, the evacuation time is shortest. It was also found that
including social elements in the model (finding your group member before exiting,
exiting through the entrance, and not wanting to stop but keep moving towards the exit)
can make a more robust and realistic model. In [44] the social force model (Helbing
social force) was implemented in a cellular automata model to simulate evacuation
from a room with one exit. Arching, clogging, and the faster-is-slower-effects were
found, showing that the three social forces (repulsion, friction, and attraction) can be
basic reasons for complex behaviours emerging from evacuations. Also, changing the
width of the door can have a large effect on evacuation time. In [11] it is shown that the
crowd density around a person has an impact on that person’s speed and that this is an
exponential relationship, with more surrounding people reducing the person’s speed. In
[22] it is shown that evacuation time is not only based on the distance from the exit but
also on effects such as the crowd density around the people evacuating and exit choice
behaviour. In [27, 28] the social force model was applied. It was found that the wider
the doors, the less faster-is-slower-effect there is, because there will be less congestion
at the door. Also, the repulsive and dissipative forces seem to have the largest effects on
the faster-is-slower-effect. In [19] a lattice gas model of people escaping a smoke filled
room was created to replicate the findings of an experiment in which blindfolded
students had to find the exit. It was found that adding exits did not shorten evacuation
time, but that the evacuation process was based on herding behaviour (following the
acoustics). Based on these findings from others, we expect the evacuation time to
increase as crowd density increases in our model.

Basic settings simulation experiments. Simulation experiments with different factors
and levels were designed to answer different research questions introduced in the
following sections. The agent environment chosen for the simulations was a square
(20 � 20 m) layout of a building with four exits (top, down, left, right; main exit =
down). All environmental and personal factors such as width of the doors, gender, age,
and level of compliance were kept constant across simulations. Only the factors and
levels stated in each experimental setup in the following sections were systematically
varied. The settings that were kept similar, except the few parameters that are struc-
turally changed to answer the current research question, are shown in Table 3 below.
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3.3 Simulation Results: Effect of Falls

Table 4 shows the design of the simulation experiment to determine the effect of falling
on evacuation time, total falls, and the average response time. The total number of
simulation runs is based on the number of factors and levels, and number of repetitions
per combination of factor and level, resulting in 3 � 2 � 60 = 360 simulation runs
here. The hypotheses were: (1) when falling behaviour is ‘on’, evacuation time will be
slower than when there are no falls (because it will take extra time to fall and stand
back up); (2) when falling behaviour is ‘on’, falls will happen, but no falls will happen
when this feature is turned ‘off’; (3) there will be no difference in response times for
falling ‘on’ versus ‘off’ (as response time precedes evacuation movement).

Evacuation time. The results are shown in Fig. 6. As expected, the higher the crowd
density, the slower the evacuation time. Unexpectedly, though, the evacuation time

Table 3. Basic parameter settings for the simulation experiments.

Parameter Setting

Familiarity 50% (i.e. 50% of passengers are familiar with the environment)
Helping Off
Falls On
Contagion model On
Percentage children 15 (based on [29])
Percentage elderly 15 (based on [29])
Percentage people
travelling alone

50

Group ratios 33-33-34 (we assume an equal distribution for group sizes)
Percentage females 50%
Fire location Random location, but always 3 m away from an exit and present

from the 1st second
Cultural cluster
distribution

Equal division of all passengers over all 11 clusters (9.09% of
passengers per cluster)

Length of fall (before
standing up)

30 s

Start fire alarm 180 s after the fire starts
Start public
announcement

20 s after the fire alarm starts

Table 4. Factors and levels in the simulation experiment for falls.

Factor
Crowd Density Falls

Level 1 Low On
Level 2 Medium Off
Level 3 High
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decreases when falls occur, compared to no falls (see Fig. 6, top left), which is the
opposite of what was expected. However, this can be explained due to the fact that the
evacuation of the fallen agents is delayed, thereby reducing the overall crowd con-
gestion at exits. Essentially, then, a more phased evacuation takes place, which takes
less time. In other words, this could be explained by the faster-is-slower-effect [17].
This effect reflects the observation that certain processes (in evacuation situations,
production, traffic dynamics, or logistics) take more time if performed at high speed. In
other words, waiting can often help to coordinate the activities of several competing
units and thus speed up the overall progress. In our case, falling seems to have similar
effects to waiting and speeds up the overall evacuation.

To find out if these effects could be significant, statistical analyses were performed
on the data. A 2 � 3 independent ANOVA was performed on the evacuation time with
Falls (with or without) and Crowd Density (low, medium, and high) as between factors.
The main effect of Crowd Density was significant, F(2, 354) = 12.96, p < .001, and the
main effect of Falls was approaching significance, F(1, 354) = 3.72, p = .055, but the
interaction effect of Falls � Crowd Density was not significant, F(2, 354) = 1.23, n.s.
Post hoc tests with Tukey HSD corrections showed that only high Crowd Density
differs significantly from low and medium Crowd Density, but low and medium Crowd
Density do not differ significantly: high-low, p < .001; high-medium, p < .001;
low-medium, n.s. In conclusion, then, evacuation time seems to significantly increase
for high crowd density versus low or medium crowd density, and a trend is visible for
slower evacuation time without falls versus with falls.

Total number of falls. As expected, both the total falls and average falls per person
increase as the crowd density increases, for two reasons. First, the more agents there are
in the environment, the less room there is to move and so more falling occurs. Second,
the more agents there are in the environment, the higher the chances of individuals
falling which will increase the average rate (see Fig. 6, bottom row). A 2 � 3 inde-
pendent ANOVA was performed on the Total Falls with Falls (with or without) and
Crowd Density (low, medium, and high) as between factors. The main effects of Falls
and Crowd Density and the interaction effect of Falls � Crowd Density were

Fig. 6. Effect of falls on evacuation time, falls, and response time.
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significant: F(2, 354) = 5612.60, p < .001; F(1, 354) = 11306.25, p < .001; F(2,
354) = 5612.60, p < .001, respectively. Post hoc tests with Tukey HSD corrections
showed that each level of Crowd Density differs significantly from each other level:
high-low, p < .001; high-medium, p < .001; low-medium, p < .001.

Response time. As expected, response time increases as crowd density increases and
no significant differences were found in response time for falling behaviour ‘on’ versus
‘off’. Statistical analyses confirm these findings. A 2 � 3 independent ANOVA was
performed on the response time with Falls (with or without) and Crowd Density (low,
medium, and high) as between factors. The main effect of Crowd Density was sig-
nificant, F(2, 354) = 4773.30, p < .001. There was no main effect of Falls, F(1,
354) = .012, n.s., and no interaction effect of Falls � Crowd Density, F(2,354) = .681,
n.s. Post hoc tests with Tukey HSD corrections show that each level of Crowd Density
differs significantly from the other two: low-medium, p < .001; medium-high,
p < .001; low-high, p < .001.

3.4 Simulation Results: Helping Behaviour

Table 5 shows the design of the simulation experiment to determine the effect of
helping behaviour on evacuation time, falls, and response time, resulting in
3 � 2 � 60 = 360 simulation runs here. The hypotheses were: (1) when people help
others, the evacuation time is longer than when people do not help (because the helpers
will take more time to evacuate; although only a small effect is expected); (2) when
passengers help others, the number of falls will increase (because the helpers next to the
fallen passengers create more obstacles; although only a small effect is expected);
(3) no difference is expected in response times for helping ‘on’ versus ‘off’ (because the
decision to evacuate precedes helping).

Evacuation time. The results are shown in Fig. 7. As expected, evacuation time
increases as crowd density increases. However, unexpectedly, helping behaviour seems
to reduce evacuation time for high crowd density environments slightly, but not for low
to medium crowd density. This could be explained by those helping delaying their
evacuation slightly and forming less congestion overall, like a phased evacuation, as
happened with the falls. Essentially, people will evacuate one after another (sequen-
tially) which creates less congestion at the doors (see Fig. 7, left). Again, this could be
explained with the faster-is-slower-effect, mentioned in the explanation of falls,
reducing the average evacuation time [17]. When analysing these effects statistically,

Table 5. Factors and levels in the simulation experiment for crowd density and helping.

Factor
Crowd Density Helping

Level 1 Low On
Level 2 Medium Off
Level 3 High
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though, only the main effect of crowd density is significant and not the effect of
helping. A 2 � 3 independent ANOVA was performed on the response time with
Helping (with or without) and Crowd Density (low, medium, and high) as between
factors. The main effect of Crowd Density was significant, F(2, 354) = 22.87,
p < .001. However, there was no main effect of helping, F(1, 354) = .119, n.s., and no
interaction effect of Falls � Crowd Density, F(2, 354) = 1.37, n.s. Post hoc tests with
Tukey HSD corrections show that only high Crowd Density differs significantly from
low and medium Crowd Density, and low and medium Crowd Density do not differ
significantly: high-low, p < .001; high-medium, p < .001; low-medium, n.s.

Total number of falls. The number of falls naturally increases as the crowd density
increases. This increase seems similar for helping behaviour ‘on’ and ‘off’, but the
difference is actually significant when tested statistically (see Fig. 7, middle). A 2 � 3
independent ANOVA was performed on the total Falls with Helping (with or without)
and Crowd Density (low, medium, and high) as between factors. The main effects of
Crowd Density, F(2, 354) = 22.87, p < .001, and Helping were significant, F(1,
354) = 8.45, p < .01, as was the interaction effect of Helping � Crowd Density, F(2,
354) = 5.52, p < .01. Post hoc tests with Tukey HSD corrections show each level of
Crowd Density differs significantly from each other: low-medium, p < .001;
medium-high, p < .001; low-high, p < .001. In conclusion, the number of falls
increases both when crowd density increases and also without helping.

Response time. As expected, no differences are observed in the average response
times for helping behaviour ‘on’ and ‘off’, only an effect of crowd density which
statistical analyses confirm. A 2 � 3 independent ANOVA was performed on the
Response Time with Helping (with or without) and Crowd Density (low, medium and
high) as between factors. The main effect of Crowd Density was significant, F(2,
354) = 5162.73, p < .001, while neither the main effect of Helping, F(1, 354) = .416,
n.s., or the interaction effect of Helping � Crowd Density were significant, F(2,
354) = .798, n.s. Post hoc tests with Tukey HSD corrections show each level of Crowd
Density differs significantly from each other: low-medium, p < .001; medium-high,
p < .001; low-high, p < .001 (see Fig. 7, right).

Fig. 7. Effect of helping behaviour on evacuation time, falls, and response time.
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3.5 Experimental Results: Social Contagion and Familiarity

Table 6 shows the experimental design of the simulation experiment to determine the
effect of social contagion and familiarity on evacuation time, falls, and response time,
resulting in 3 � 3 � 2 � 60 = 1080 simulation runs here. The hypotheses were:
(1) evacuation time will be faster with social contagion than without (because people
will still find out from others there is a fire, even when not observed personally);
(2) when crowd density increases, there will be more falls; (3) when there is social
contagion, there will be fewer falls (because without it, more people will find out the
situation is dangerous through the fire alarm, which means more people will evacuate
simultaneously, thereby falling more); (4) response time will be faster with social
contagion than without (because people who do not observe the fire themselves are
informed faster by others); (5) response time will be faster the more familiar people are
with the environment (because taking the nearest exit in combination with social
contagion will speed up the response time, spreading the ‘news’ faster than when
people all take the same exit); and finally (6) the higher the crowd density, the slower
the response time.

Evacuation time. The results are shown in Fig. 8. As expected, with social contagion
there is a decrease in evacuation time compared to without, and the more familiar
people are with the environment, the faster their evacuation time (see Fig. 8, top row),
which statistical analyses confirmed. The social contagion of mental and emotional
states is a form of collective group decision making or collective intelligence [17]. It is
also related to herding, as individuals are ‘infected’ with other’s decisions and follow
them when their own intentions are not as strong as those of others around them. [16].
A 2 � 3 independent ANOVA was performed on Evacuation Time with Social
Contagion (with or without) and Crowd Density (low, medium, and high) as between
factors. The main effects of Crowd Density and Social Contagion and the interaction
effect of Social Contagion � Crowd Density were significant: F(2, 354) = 133.81,
p < .001; F(1, 354) = 237.76, p < .001; F(2, 354) = 4.35, p < .05, respectively. Post
hoc tests with Tukey HSD corrections show each level of Crowd Density differs
significantly from each other: low-medium, p < .05; medium-high, p < .001; low-high,
p < .001. A 3 � 3 independent ANOVA was performed on the Evacuation Time with
Familiarity (0%, 50%, or 100%) and Crowd Density (low, medium, and high) as
between factors. The main effects of Crowd Density and Familiarity and the interaction
effect of Familiarity � Crowd Density were significant: F(2, 354) = 125.83; p < .001,
F(1, 354) = 23.16, p < .001; F(2, 354) = 31.10, p < .001, respectively. Post hoc tests

Table 6. Factors and levels in the simulation experiment for social contagion and familiarity

Factor
Crowd Density Familiarity Social Contagion

Level 1 Low 0% On
Level 2 Medium 50% Off
Level 3 High 100%
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with Tukey HSD corrections show each level of Crowd Density differs significantly
from each other: low-medium, p < .05; medium-high, p < .001; low-high, p < .001.
For Familiarity, only 0% familiarity differs significantly from 50% and 100%, but not
50% from 100%: 0%–50% p < .05; 50%–100% n.s.; 0%–100% p < .05.

Fig. 8. Effects of social contagion (left column) and familiarity (right column) on evacuation
time, response time, and falls.
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Total number of falls. As expected, the number of falls is lower with social contagion
than without. This can be explained by people starting to evacuate earlier, spreading the
evacuation across the simulation time. Consequently, there are fewer collisions among
passengers, which result in fewer falls. Familiarity shows the same effect: the more
familiar the crowd members are with the environment, the more distributed among the
exits they are, which consequently leads to fewer collisions and falls (see Fig. 8,
bottom row). Statistical analyses confirmed these interpretations. A 2 � 3 independent
ANOVA was performed on the Total Falls with Social Contagion (with or without) and
Crowd Density (low, medium, and high) as between factors. The main effects of Crowd
Density and Social Contagion and the interaction effect of Social Contagion � Crowd
Density were significant: F(2, 354) = 732.98, p < .001; F(1, 354) = 11.88, p < .01; F
(2, 354) = 3.42, p < .05. Post hoc tests with Tukey HSD corrections show each level of
Crowd Density differs significantly from each other: low-medium, p < .001;
medium-high, p < .001; low-high, p < .001. A 3 � 3 independent ANOVA was per-
formed on the Total Falls with Familiarity (0%, 50%, or 100%) and Crowd Density
(low, medium, and high) as between factors. The main effects of Crowd Density and
Familiarity and the interaction effect of Familiarity � Crowd Density were significant:
F(2, 354) = 17290.13; p < .001; F(1, 354) = 6227.45, p < .001; F(2, 354) = 3062.52,
p < .001. Post hoc tests with Tukey HSD corrections show each level of Crowd
Density and Familiarity differs significantly from each other: low-medium, p < .001;
medium-high, p < .001; low-high, p < .001; 0%–50%, p < .001; 50%–100%,
p < .001; 0%–100%, p < .001.

Response time. As expected, response time increases as crowd density increases and
with social contagion the increase is lower than without social contagion. Similarly, the
more familiar people are with their environment, the less the response time increases as
crowd density increases. This is explained by familiarity distributing people over the
available exits, which helps to convey the fear and belief of danger with social con-
tagion to others who start to evacuate early (see Fig. 8, middle row). Statistical analyses
confirmed the two main effects of crowd density and social contagion. A 2 � 3
independent ANOVA was performed on Response Time with Social Contagion (with
or without) and Crowd Density (low, medium, and high) as between factors. The main
effects of Crowd Density, F(2, 354) = 410.46, p < .001, and Social Contagion were
significant, F(1, 354) = 4.46, p < .05, while the interaction effect of Social Conta-
gion � Crowd Density was not significant, F(2, 354) = 1.16, n.s. Post hoc tests with
Tukey HSD corrections show each level of Crowd Density differs significantly from
each other: low-medium, p < .001; medium-high, p < .001; low-high, p < .001.
A 3 � 3 independent ANOVA was performed on Response Time with Familiarity
(0%, 50%, or 100%) and Crowd Density (low, medium, and high) as between factors.
The main effects of Crowd Density and Familiarity and the interaction effect of
Familiarity � Crowd Density were significant: F(2, 354) = 11785.94, p < .001; F(1,
354) = 10311.63, p < .001; F(2, 354) = 2334.88, p < .001, respectively. Post hoc tests
with Tukey HSD corrections show each level of Crowd Density and Familiarity differs
significantly from each other: low-medium, p < .001; medium-high, p < .001;
low-high, p < .001; 0%–50%, p < .001; 50%–100%, p < .001; 0%–100%, p < .001.
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3.6 Groups

Table 7 shows the design of the simulation experiment to determine the effect of group
size on evacuation time, falls, and response time, resulting in 3 � 4 � 60 = 720
simulation runs. The hypotheses were: (1) the more people who travel alone, the faster
the evacuation time (because people will move faster by themselves); (2) the bigger the
groups, the slower the evacuation time (although this is expected to be a small effect);
(3) the more people who travel alone, the fewer falls (because groups form more
congestion; although this is expected to be a small effect); (4) the larger the groups, the
more falls (because of more congestion); (5) the more people who travel alone, the
faster the response time (because people can evacuate faster); and (6) the bigger the
groups, the slower the response time (although this is expected to be a small effect).

Evacuation time. The results are shown in Figs. 9 and 10. As expected, as crowd
density increases, evacuation time becomes slower. Unexpectedly, though, it seems
that people travelling alone and in groups of three are slower to evacuate than groups of
two and four. Indeed, groups of four evacuate the fastest and people travelling alone are
actually slowest (Fig. 9). Statistical analysis confirms this interpretation. A 4 � 3
independent ANOVA was performed on Evacuation Time with Group Size (1, 2, 3,
and 4) and Crowd Density (low, medium, and high) as between factors. The main
effects of Crowd Density and Group Size, and the interaction effect of Group Size �
Crowd Density were significant: F(2, 354) = 22643.44, p < .001; F(3, 354) = 137.15,
p < .001; F(6, 354) = 3.70, p < .001. Post hoc tests with Tukey HSD corrections show

Table 7. Factors and levels in the simulation experiment for groups

Factor
Crowd Density Travelling Alone

Level 1 Low 100%
Level 2 Medium 0% (only groups of 2 adults)
Level 3 High 0% (only groups of 3 adults)
Level 4 0% (only groups of 4 adults)

Fig. 9. Effects of groups on evacuation time, falls, and response time.
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that only high Crowd Density differs significantly from low and medium Crowd
Density: high-low, p < .001; high-medium, p < .001; low-medium, n.s. For Group
Size, these tests show that a lone person does not differ from groups of 3, and groups of
2 do not differ from groups of 4; however, all others differ significantly from each
other: 1–2, p < .001; 1–3, n.s.; 1–4, p < .001; 2–3, p < .01; 2–4, n.s. In conclusion,
evacuation time increases when crowd density increases and decreases for groups of 4
and 2 versus groups of 3 or 1.

This is unexpected and seems to not be an effect of speed, because all group sizes
have the same number of falls. Therefore, it does not seem to be a
faster-is-slower-effect [17]. When inspecting the average speed during simulations, it
was confirmed that they did not differ for group sizes. Also, the outcome measures did
not differ significantly for different numbers of children and elderly, which could
influence the average speeds of the groups. However, what could explain groups of four
being faster than people travelling alone is social contagion in combination with
moving through space. With social contagion, or collective intelligence, groups can
‘infect’ each other faster with emotions and beliefs, compared to people travelling
alone, which is beneficial for evacuation time. Moving through space is implemented
with a maximum of 8 passengers per patch (square metre), meaning lone passengers
and groups of 2 and 4 can always use a patch to its maximum capacity, but groups of 3
can only fit a maximum of two groups (6 passengers) per patch at one time step. This
means groups of 3 are a little disadvantaged, since groups of 1, 2, and 4 can always
move around in space with maximum capacity. That could explain why groups of three
and people alone are slowest and groups of 2 and 4 are fastest. We have tested this by
running similar simulation experiments like this one, but then (1) without social con-
tagion, and (2) with a maximum capacity of 6 people per square metre. The expectation
is that (1) without contagion, groups of 3 will be slowest versus groups of 1, 2 and 4,
and (2) with a maximum capacity of 6 people per square metre, groups of 4 will be
slowest compared to people travelling alone and groups of 2 and 3. As expected,
without social contagion, groups of 3 are slowest in evacuation time (see Fig. 10). No
effects of falls and response time were observed in this experiment. Unexpectedly,

Fig. 10. Effects of groups on evacuation time with a maximum travel capacity of six people per
m2 (left) and without social contagion (right).
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groups of 3 are not the fastest with a maximum capacity of 6 per square metre, but
again the slowest. This means that social contagion is only part of the explanation for
groups being slower to evacuate than people travelling alone. We cannot find more
explanations for this in the literature because (1) the impact of groups on crowd
dynamics is still largely unknown [24, 31], and (2) we have not modelled group
formations, such as in [24], that could influence the crowd dynamics. We have chosen
to model a group as moving through space as a ‘square’ group, with all members
moving from patch (square metre) to patch simultaneously. So, group formations are no
explanation either. However, social contagion is part of the effect of groups of 2 and 4
being faster than people travelling alone or in groups of 3.

Total number of falls. As crowd density increases, the number of falls increase;
although no significant differences were found between group sizes, as expected.
Statistical analysis confirmed this interpretation of the graph. A 4 � 3 independent
ANOVA was performed on Total Falls with Group Size (1, 2, 3, and 4) and Crowd
Density (low, medium, and high) as between factors. The main effect of Crowd Density
was significant, F(2, 354) = 24048.28, p < .001, but the main effect of Group Size, F
(3, 354) = 1.39, n.s., and the interaction effect of Group Size � Crowd Density were
not significant, F(6, 354) = 1.93, n.s. Post hoc tests with Tukey HSD corrections show
that each level of Crowd Density differs significantly from each other: low-medium,
p < .001; medium-high, p < .001; low-high, p < .001.

Response time. As crowd density increases, response time increases. Although no
significant differences between group sizes were expected, statistical analysis showed
that groups of 2 and 4 are faster in their response time than groups of 1 and 3. This
seems plausible as it is similar with the evacuation time, which both can be explained
by the social contagion effects. A 4 � 3 independent ANOVA was performed on
Response Time with Group Size (1, 2, 3, and 4) and Crowd Density (low, medium, and
high) as between factors. The main effects of Crowd Density, F(2, 354) = 9634.55,
p < .001, and Group Size were significant, F(3, 354) = 43.73, p < .001, and the
interaction effect of Group Size � Crowd Density was not, F(6, 354) = .467, n.s. Post
hoc tests with Tukey HSD corrections show that each level of Crowd Density differs
significantly from each other: low-medium, p < .001; medium-high, p < .001;
low-high, p < .001; and group size 1 and 3 do not differ significantly, while the other
group sizes do: 1–2, p < .001; 1–3, n.s.; 1–4, p < .001; 2–3, p < .001; 2–4, p < .001;
3–4, p < .001. Taking all these results into account, it seems that social contagion is the
biggest cause for the group effects.

3.7 Age

Table 8 shows the design of the simulation experiment, resulting in 3 � 2 � 60 = 360
simulation runs here. The hypotheses were: (1) elderly people have slower evacuation
times, compared to adults (because elderly people move slower); (2) there will be no
differences in number of falls between adults and elderly people; (3) there will be no
differences in response time between adults and elderly people.
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Evacuation time. The results are shown in Fig. 11. As crowd density increases, so
does evacuation time. As expected, elderly people seem to be slower in evacuating than
adults, most likely due to their slower movement. In this experiment, all passengers are
elderly or adults exclusively, so the exact same effects are there with the elderly as with
adults. For instance, there is no faster-is-slower-effect [17] here for age, because that
would require differences in speed within the same simulation run. So, in this case,
faster speed does mean faster evacuation. Here, the faster-is-slower-effect was present
for the adults by themselves, but as a result of falls, again. However, the elderly did not
fall based on their slower speeds, which in turn prevented a faster-is-slower-effect for
them based on falls (see Fig. 11). Indeed, statistical analysis showed there was an effect
of age. A 2 � 3 independent ANOVA was performed on Evacuation Time with Age
(adult, elder) and Crowd Density (low, medium, and high) as between factors. Both the
main effects of Crowd Density, F(2, 354) = 35.40, p < .001, and Age were significant,
F(1, 354) = 3.20, p < .001, but the interaction effect of Age � Crowd Density was not
significant, F(2, 354) = .359, n.s. Post hoc tests with Tukey HSD corrections show that
each level of Crowd Density differs significantly from each other level: low-medium,
p < .001; medium-high, p < .001; low-high, p < .001.

Total number of falls. As expected, as crowd density increases, the number of falls
increases. Unexpectedly and very interestingly, elderly people have no falls and the
falls of the adults increase as crowd density increases. No falls for elderly people seems
unrealistic in real life, however, because elderly people should be more prone to falling
than adults. The explanation for this finding is based on how falls are implemented in
this model. Currently, they are based on the speed of the passengers and their age is not
taken into account, so this could be improved in a future version on the IMPACT
model. Discounting age, based on speed alone it makes sense that passengers who

Table 8. Factors and levels in the simulation experiment for age

Factor
Crowd Density Age

Level 1 Low Travelling alone 100% adults
Level 2 Medium Travelling alone 100% elderly
Level 3 High

Fig. 11. Effects of age (speed) on evacuation time, falls, and response time
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move slower have fewer falls (see Fig. 11). Statistical analysis confirmed these inter-
pretations of the graphs. A 2 � 3 independent ANOVA was performed on Total Falls
with Age (adult, elder) and Crowd Density (low, medium, and high) as between
factors. The main effects of Crowd Density, F(2, 354) = 13245.73, p < .001, and Age
were significant, F(1, 354) = 26056.94, p < .001, and the interaction effect of Age �
Crowd Density was also significant, F(2, 354) = 13245.73, p < .001. Post hoc tests
with Tukey HSD corrections show that each level of Crowd Density differs signifi-
cantly from each other level: low-medium, p < .001; medium-high, p < .001;
low-high, p < .001.

Response time. As expected, as crowd density increases, response time becomes
slower. Also, as expected, the response time does not differ significantly between the
elderly and adults (see Fig. 11). Statistical analysis confirmed this interpretation of the
graph. A 2 � 3 independent ANOVA was performed on Response Time with Age
(adult, elder) and Crowd Density (low, medium, and high) as between factors. The
main effect of Crowd Density was significant, F(2, 354) = 5507.43, p < .001; how-
ever, the main effect of Age, F(1, 354) = 2.52, n.s., and the interaction effect of
Age � Crowd Density were not significant, F(2,354) = .03, n.s. Post hoc tests with
Tukey HSD corrections show that each level of Crowd Density differs significantly
from each other level: low-medium, p < .001; medium-high, p < .001; low-high,
p < .001.

3.8 Compliance

Table 9 shows the design of the simulation experiment to determine the effect of
compliance on evacuation time, number of falls, and response time, resulting in
3 � 2 � 60 = 360 simulation runs here. The hypotheses were: (1) evacuation time is
faster for 100% compliance than 0% compliance; (2) more falls will happen with 100%
compliance compared with 0% (because people will evacuate faster resulting in
crowding and so more falls); (3) response time will be faster for 100% compliance
compared to 0% (because people will decide to evacuate faster). This simulation
experiment was also run for adults and the elderly, both female and male. With the
current parameter settings, no significant differences between females and males or
adults and the elderly were found, meaning that the difference in the current compliance
level settings for gender and age do not create differences in the actions (see Sect. 2.1
for these settings). Therefore, to find the effect of the compliance parameter, this
experiment was set up comparing a low with a high level. For a maximum effect of
compliance, levels 1 and 0 were preferred, but the simulation does not run with

Table 9. Factors and Levels in the Simulation Experiment for Compliance

Factor
Crowd Density Compliance

Level 1 Low Compliance level 0.1 (only male adults)
Level 2 Medium Compliance level 1 (only male adults)
Level 3 High
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compliance set to 0, since the passengers will not move then. Compliance set to 0.001
or 0.01 resulted in one simulation run taking multiple days. With the value of 0.1 there
is still a large effect of compliance to be seen and the simulation runs were practically
feasible to run, so this level was selected for the experiment.

Evacuation time. Results are shown in Fig. 12. As expected, as crowd density
increases, evacuation time increases, and high compliance results in faster evacuation
time than low compliance. A 2 � 3 independent ANOVA was performed on Evacu-
ation Time with Compliance (low, high) and Crowd Density (low, medium, and high)
as between factors. The main effects of Crowd Density and Compliance and the
interaction effect of Compliance � Crowd Density were all significant: F(2, 354)
= 33.75, p < .001; F(1, 354) = 3092.49, p < .001; F(2,354) = 6.65, p < .001,
respectively. Post hoc tests with Tukey HSD corrections show that each level of Crowd
Density differs significantly from each other level: low-medium, p < .01;
medium-high, p < .001; low-high, p < .001.

Total number of falls. As expected, more falls happen as crowd density increases and
when there is high compliance versus low compliance. No falls happened in the low
compliance simulation runs, though, which can be explained by the slower speed that is
a result of low compliance. A 2 � 3 independent ANOVAwas performed on Total Falls
with Compliance (low, high) and Crowd Density (low, medium, and high) as between
factors. The main effects of Crowd Density and Compliance and the interaction effect of
Compliance � Crowd Density were all significant: F(2, 354) = 13110.60, p < .001; F
(1, 354) = 25825.15, p < .001; F(2,354) = 13110.60, p < .001, respectively. Post hoc
tests with Tukey HSD corrections show that each level of Crowd Density differs sig-
nificantly from each other level: low-medium, p < .001; medium-high, p < .001;
low-high, p < .001.

Response time. Response times for male adults are shown in Fig. 12, which do not
significantly differ from female adults and the elderly, as expected, and show a similar
pattern for a high compliance level. The response time for the low compliance level did
not register in the simulations; that is why the response time for male adults with a
compliance level of 0.89 are shown and analysed. An independent one-way ANOVA
was performed on the Response Time of male adults with Crowd Density (low,

Fig. 12. Effects of compliance on evacuation time, falls, and response time.
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medium, and high) as a between factor. The main effect of Crowd Density was sig-
nificant, F(2, 717) = 397678.37, p < .001. Post hoc tests with Tukey HSD corrections
show that each level of Crowd Density differs significantly from each other level:
low-medium, p < .001; medium-high, p < .001; low-high, p < .001.

3.9 Environment

Table 10 shows the design of the simulation experiment to determine the effect of room
type on evacuation time, falls, and response time, resulting in 3 � 6 � 60 = 1080
simulation runs here. The hypotheses were: (1) evacuation time increases faster in the
rectangular room than the square room (because people take more time to reach the
exits); (2) the number of falls is higher in the rectangular room (because people use
more steps to reach the exits); (3) response time is slowest in the rectangular room
(because in larger rooms there is less chance of observing the fire).

Evacuation time. Results are shown in Fig. 13. As expected, evacuation time
increases as crowd density increases, although this only happened for high crowd
density and not low and medium densities (see Fig. 13, left). Statistical tests confirm
this interpretation of the graph. A 2 � 3 independent ANOVA was performed on
Evacuation Time with Room Type (square or rectangle) and Crowd Density (low,
medium, and high) as between factors. The main effects of Crowd Density and Room
Type and the interaction effect of Room Type � Crowd Density were all significant:
F(2, 354) = 104.97, p < .001; F(1, 354) = 443.17, p < .001; F(2,354) = 35.07,
p < .001, respectively. Post hoc tests with Tukey HSD corrections show that high

Table 10. Factors and Levels in the Simulation Experiment for Environment

Factor
Crowd Density Room type

Level 1 Low Type 1 (square, 20 � 20 m)
Level 2 Medium Type 2 (rectangle 20 � 40 m)
Level 3 High

Fig. 13. Effects of room type on evacuation time, falls, and response time.
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Crowd Density differs significantly from low and medium, but low and medium do not
differ significantly: low-medium, n.s.; medium-high, p < .001; low-high, p < .001.

Total number of falls. As crowd density increases, so do the number of falls. The
number of falls also increase faster in the larger room than in the smaller room.

Table 11. Effects of Socio-Cultural, Cognitive, and Emotional Elements on Evacuation Time

Model
element

Variations Average
evacuation
time
(seconds)

Difference
from
benchmark
(seconds)

Relative
difference from
benchmark
(percentage)

Falls Off (benchmark) 324.31
On 293.51 −30.8 −9.5%

Helping
behaviour

Off (benchmark) 302.57
On 298.86 −3.71 −1.2%

Social
Contagion

Off (benchmark) 396.12
On 317.27 −78.85 −20.0%**

Familiarity 0% of passengers
familiar with
environment
(benchmark)

412.47

50% of passengers
familiar with
environment

385.38 −27.09 −6.6%***

100% of passengers
familiar with
environment

381.52 −30.95 −7.5%***

Groups People travelling
alone (benchmark)

311.29

Groups of two 282.95 −28.37 −9.1%***
Groups of three 303.87 −7.42 −2.4%***
Groups of four 217.79 −93.5 −30.0%***

Age All adults
(benchmark)

307.6

All elderly people 316.83 +9.23 +3.0%***
Compliance High compliance

(1.0) (benchmark)
301.17

Low compliance
(0.1)

856.03 +554.86 +184.2%***

Environment Small square room
(20 � 20 m)
(benchmark)

313.07

Big rectangle room
(20 � 40 m)

530.86 +217.79 +705.0%***

Significant main effect: **p < .01, ***p < .001.
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Note that the increase in falls is not due to more space in the rectangular room and
more space to move (faster) towards the exits, as the crowd densities are kept the same
relative to the total square metres of the room. Rather, a longer pathway (more steps
towards the exit) increases the chance of falling (see Fig. 13, middle). Statistical
analysis confirms this interpretation of the graph. A 2 � 3 independent ANOVA was
performed on Total Falls with Room Type (square or rectangle) and Crowd Density
(low, medium, and high) as between factors. The main effects of Crowd Density and
Room Type and the interaction effect of Room Type � Crowd Density were all sig-
nificant: F(2, 354) = 2100.66, p < .001; F(1, 354) = 1524.03, p < .001; F(2, 354) =
893.53, p < .001. Post hoc tests with Tukey HSD corrections show that each level of
Crowd Density differs significantly from each other level: low-medium, p < .001;
medium-high, p < .001; low-high, p < .001.

Response time. As expected, the response time is slower in the rectangular room than
in the square room and also increases as crowd density increases (see Fig. 13, right).
Statistical analysis confirms this interpretation of the graph. A 2 � 3 independent
ANOVA was performed on Response Time with Room Type (square or rectangle) and
Crowd Density (low, medium, and high) as between factors. The main effects of Crowd
Density and Room Type and the interaction effect of Room Type � Crowd Density
were all significant: F(2, 354) = 5648.72, p < .001; F(1, 354) = 11279.66, p < .001; F
(2, 354) = 1003.42, p < .001, respectively. Post hoc tests with Tukey HSD corrections
show that each level of Crowd Density differs significantly from each other level:
low-medium, p < .001; medium-high, p < .001; low-high, p < .001.

3.10 Comparing Results: Influence of Socio-Cultural, Cognitive,
and Emotional Elements

In this section, the effects of the socio-cultural, cognitive, and emotional elements in the
model will be compared to identify how much each element influences the total
evacuation time. In this way, the added value of each element can be interpreted. Of
course, this is in the case of the empty environment studied in the simulation experi-
ments, where only the human behaviour is studied during evacuation. In real life, the
effects of the socio-cultural, cognitive, and emotional elements will be combined with
environmental influences, such as obstacles, stairs, corridors, lanes, and pathways.
Table 11, above, shows the effects of each model element (e.g. falling, helping, social
contagion) on the total evacuation time in seconds and is expressed as a percentage of
relative difference compared to the benchmark. The relative differences of each model
element range from reducing the total evacuation time by 30% to increasing it by
705%. Most notable are the decreases in evacuation time caused by social contagion of
20%, familiarity of between 6.6% and 7.5%, and travelling in groups of between 2.4%
and 30%. Compliance and environment type also have a very large effect on the
evacuation time – increasing it by 184.2% and 705%, respectively – but these two
effects are harder to compare in size with the others in the table, because the parameter
settings of compliance and the sizes of the environment types made the effect very
large. The other effects are comparable, though, because the human behaviour all takes
place in the same environment and the settings chosen are realistic. In conclusion, the
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socio-cultural, cognitive, and emotional elements that can be compared – falling,
helping, social contagion, familiarity with environment, group sizes, and age – have an
effect on evacuation time between decreasing it by 30% to increasing it by 3%.

4 Conclusion and Discussion

The aim of this research was to create and validate an evacuation simulation that
includes socio-cultural, cognitive, and emotional factors in response to the need for
more realistic crowd models that incorporate psychological and social factors. The
development of the model drew on insights from social and cross-cultural psychology,
interviews with crisis management experts, and was based on scientific findings and
literature. The model was validated against data from an evacuation drill simulated by
the existing EXODUS evacuation model [13, 26]. Our IMPACT model was compared
with this benchmark on multiple outcome measures and results showed that, on all
measures, the IMPACT model was within or close to the prescribed boundaries,
thereby establishing its validity.

Next, multiple simulation experiments were run to answer research questions
concerning the effects of the socio-cultural, cognitive, and emotional elements in the
model on evacuation time, total number of falls, and response time. Important findings
are that emergent effects, such as the faster-is-slower-effect [17], were found in our
results in new forms: as effects of falling, helping, social contagion, and familiarity with
the environment. For instance, both falling behaviour and helping (in high crowd
density) led to faster evacuation times. The explanation is that falling and helping
create a more phased evacuation – as the delays they cause effectively stagger the
evacuation and reduce congestion – that results in a faster overall process. Moreover, as
expected, social contagion also creates faster evacuation times, because information
about the need to evacuate spreads faster than without social contagion. It also
unexpectedly led to less falls, which again can be explained by the
faster-is-slower-effect. Again, like with falls and helping, people are more phased in
their evacuation, meaning less congestion at the bottlenecks (the exits) and therefore
less falls. Furthermore, the more people are familiar with the environment: (1) the faster
the evacuation time, (2) the fewer the falls, and (3) the faster the response time. These
results are a combination of a phased evacuation (meaning less congestion and fewer
falls, and therefore a faster-is-slower-effect resulting in faster evacuation time), less
congestion (more people spread through the environment going to the nearest exits
instead of all taking the same exit, meaning fewer falls), and social contagion (the
decision to evacuate can spread faster, meaning faster response times and evacuation
times). Groups also showed an interesting effect. The current model suggests it is
actually faster to evacuate in groups than alone. This was not based on speed, and
therefore not a faster-is-slower-effect, but partly based on social contagion (collective
intelligence and herding). The impact of groups on crowd dynamics is still largely
unknown [24] and we have not modelled group formations, such as in [24], that could
influence the crowd dynamics. Rather, we had chosen to model a group as moving
through space as a ‘square’ group, with all members moving from patch (square metre)
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to patch simultaneously. The effect of group formations would therefore need further
research with the current model.

The faster-is-slower-effect was not found when comparing age groups, however, as
the elderly evacuated more slowly than adults although moving more slowly. The
reason for the faster-is-slower-effect not being present here for age is that it would
require differences in speed within the same simulation run. In this model, however, all
passengers within a simulation were either exclusively fast (adults) or slow (elderly
people), which meant that faster speed means faster evacuation here. For adults by
themselves the faster-is-slower-effect was present, but then as a result of falls. The
elderly did not fall due to their slower speeds, which in turn prevented a
faster-is-slower-effect when looking at falls instead of speed. The elderly did not fall
once in the simulation which is not realistic in real life, since elderly people are more
prone to falling. The current implementation of falling is based on speed alone and
therefore needs to be improved to also take age into account. With a high level of
compliance, people evacuate faster than with a low level of compliance, as expected.
The current settings of compliance levels do not make enough differentiation between
different ages and genders to have an effect. The simulation experiment showed that the
compliance parameter can have an effect, but not with the current model settings. It
needs to be decided if this parameter can be omitted or if new parameter settings for
different ages and genders can be calculated from new data. Finally, in the smaller
square room (20 � 20 m), evacuation was faster than in the larger rectangular room
(20 � 40 m). Also, in the smaller square room there were fewer falls and a faster
average response time than expected. Essentially, taking more steps towards the exit
means more chance of falling.

Comparing all simulation results together, the socio-cultural, cognitive, and emo-
tional elements have an effect from reducing evacuation time by 30% through to
increasing it by 3% when the following model elements are considered: falling,
helping, social contagion, familiarity with environment, group sizes, and age. However,
the parameter settings of compliance and the sizes of the environment types made these
effects very large (increasing evacuation time up to 705%) and are therefore left out in
this comparison. Overall, this demonstrates that including socio-cultural, cognitive, and
emotional elements in evacuation models is both feasible and vital, as they can
influence evacuation time by up to 30%. Of course, this is only based on our experi-
ments in an empty square room, where there is no interaction with environmental
features such as obstacles, corridors, counterflows, stairs, and others. Therefore, this
(maximum) 30% effect on evacuation time should be seen as a ‘pure’ effect of the
socio-cultural, cognitive, and emotional elements in the model, without these additional
environmental influences.

The strengths of this research are the inclusion of psychological and socio-cultural
aspects in the crowd simulation model, based on research literature and support from
stakeholders. Furthermore, the statistical analyses of the experimental results strengthen
the interpretations. The current weaknesses of this work are that not every
socio-cultural, cognitive, and emotional parameter that was identified during the
development of the model is yet implemented to test, such as passengers’ disabilities.
Conversely, though, the more parameters in the model, the more complex it becomes,
and the more difficult it is to analyse and interpret all the results, so there are also
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benefits to this. Furthermore, the results of the simulations cannot be taken for granted
and they will naturally remain estimations. However, because the simulations are based
on sufficient background literature, and research and interaction with stakeholders, we
believe them to be sound estimations. Moreover, the work limits itself to making
predictions about the influence of human behaviour on the evacuation process. All the
socio-cultural, emotional, and cognitive effects were tested in an empty room with four
exits. In real life, these effects would be combined with the influences of the envi-
ronment itself, such as corridors, number of exits, stairs, and obstacles. This research
could therefore be extended by investigating the combined effect of these elements with
the environment, like in [42]. Also, a very important phenomenon – counterflow – was
not modelled here. In the current model, all passengers can always take their own
pathway towards an exit and do not have to cross or overtake others in the simulation.
Therefore, the effects of counterflows are not modelled. Also, it was assumed that when
people fall they can stand up again after a while. In reality, people could be trampled on
or injure themselves and therefore not be able to stand up again. Consequently, the way
we modelled falling behaviour here is just a first step towards studying this effect.
However, it is difficult to model, since there is no research conducted yet (to the
knowledge of the authors) that indicates what the chances of falling are in certain crowd
densities and environments, and also how long it takes to stand back up. Future work
consists of developing the model further to simulate realistic transport hub environ-
ments and extending the pathfinding behaviour with more heuristics.

To conclude, we reiterate three points that summarise our findings and implications:
(1) our model is a realistic evacuation simulation, validated in comparison with an
established model and demonstrating well-known emergent effects, such as the
faster-is-slower-effect; (2) we would recommend that evacuation simulation modellers
include socio-cultural, emotional, and cognitive elements in future models, based on
the substantial effect sizes found here (reducing evacuation time by up to 30%),
especially social contagion; (3) cultural and social diversity can be beneficial to
evacuation as they create more phased evacuations, which create an overall benefit
from the faster-is-slower-effect. Further implications are that transport operators,
emergency managers, and prevention professionals can use these kinds of agent-based
models to predict outcomes and inform decision making when designing systems [5].
These models could also be used to support periodic safety and security risk assess-
ments and mandatory risk assessments when environments or procedures change,
and/or when new communication processes or technologies are implemented. Also,
policy makers could use these models to support the identification of mandatory reg-
ulations and standards with respect to communication for emergency prevention and
management. In conclusion, these are promising developments and the incorporation of
further psychological insights into crowd simulations will help enhance the realism of
these models and the accuracy with which they can predict and prevent crowd disasters.
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Abstract. Expansion of modern IT technologies, which took place last years,
caused a significant increase in software projects. Those projects are quite often
complex venture burdened with high risk. Nowadays, a large number of soft-
ware projects is managed using Scrum framework. In Scrum, where people form
self-organizing team, group decisions became an essential element of the pro-
ject, which plays an important role to create time approximation or to manage
potential risks. This paper focuses on group decisions, temporal aspects of
estimation and risk management in Scrum project. In article we present con-
ceptual model of extension Scrum framework by risk management process in
aspect of project time estimation. Proposed model contains time buffers based
on mixture probability distribution, which improve Scrum framework in terms
of group estimation. We also depict case study which presents time approxi-
mation process which took place in one of a Scrum project.

Keywords: Group decision � Time approximation � Risk management �
Scrum � Agile

1 Introduction

In the 20th century, software projects were managed using traditional waterfall
approach based on i.e. PRINCE2 methodology or PMBOK Guide. Sponsors of the
project demanded huge amount of detailed documentation and expected working
product at the end of a project. At the beginning of 21st century, in 2001, seventeen
software experts decided to discover better way of software development, which had to
be an alternative approach to traditional waterfall project management. Software
experts determined lightweight development method and through this work they cre-
ated Manifesto for Agile Software Development called Agile Manifesto [1]. Software
experts agreed that in project, based on self-organizing and cross-functional teams,
people should work using an incremental, iterative approach, instead of in-depth
planning. Teams should be also open to changing requirements over time and
encourage constant feedback from the end users. Work in accordance with the men-
tioned values was described as four fundamental Agile Manifesto values [1]:

1. Individuals and interactions over processes and tools;
2. Working software over comprehensive documentation;
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3. Customer collaboration over contract negotiation;
4. Responding to change over following a plan.

From the beginning, basic assumption for Agile methodologies was that they are
based on empiricism, iteration programming and observation that client’s requirements
quite often are evaluating during the project. In Agile projects, product is delivered
incrementally from the start of the project, instead of trying to deliver it all at once near
the end.

1.1 Scrum

Nowadays, there are various Agile software development methods. According to
survey placed in 2015 State of Scrum report published by “Scrum Alliance” organi-
zation, Scrum is most popular Agile practice [2]. Nearly all respondents (95%) reported
that Scrum is used as their organization’s Agile approach. The three other most
common are Kanban (43%), Lean (21%) and Extreme Programming (13%), respec-
tively. 54% respondents declared that they use Scrum in combination with other
practices, while 42% reported exclusive use of Scrum. In research, multiple answers
were allowed.

According to Schwaber and Sutherland “Scrum is a framework within which
people can address complex adaptive problems, while productively and creatively
delivering products of the highest possible value” [3]. Schwaber and Sutherland formed
the Scrum process in 1995 when they formalized Scrum in order to present it at the
“Oopsla conference”. Researchers inherited the name Scrum from the 1986 ground-
breaking paper The New Product Development Game presented by Takeuchi and
Nonaka [4]. Authors noticed that in product development, speed and flexibility are
essential and referred to the game of rugby to stress the importance of teams and some
analogies between a team sport like rugby and being successful in the game of new
product development game. The researchers described under the rugby approach, the
product development process emerges from the constant interaction of a hand-picked,
multidisciplinary team whose members work together from the start till the end.
Takeuchi and Nonaka learned, from interviews with organization members, that
leading companies show six characteristics in managing their new product develop-
ment processes:

• Built-in instability;
• Self-organizing project teams;
• Overlapping development phases;
• Multilearning;
• Subtle control;
• Organizational transfer of learning.

Researchers noticed that “these characteristics are like pieces of a jigsaw puzzle.
Each element, by itself, does not bring about speed and flexibility. But taken as a
whole, the characteristics can produce a powerful new set of dynamics that will make a
difference” [4]. Authors realized, that complex products are faster achieved when teams
work as small and self-organizing units of people which can create group estimation of
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project activity times and as a whole unit people may discuss the risks that may occur.
Based on Takeuchi and Nonaka research Sutherland and Schwaber presented the rules
of Scrum by defining values, roles, ceremonies and artifacts.

Regarding the roles The Scrum Guide defines that Scrum Team consists of three
roles.

• Product Owner – customer representative who build and maintain a relationship
with the stakeholders and clearly communicate the business requirements to
Development Team. This person is also responsible for creating, managing and
maintaining the Product Backlog.

• Development Team – cross-functional and self-organized group of people who
deliver the product increment.

• Scrum Master – person who removes impediments to help Development Team
become productive. The person who coach Development Team, Product Owner and
organization to follow the rules of Scrum.

The Scrum Guide defines that there are three artifacts in Scrum.

• Product Backlog – created, managed and maintained by the Product Owner, list of
product requirements, called Product Backlog Items (PBIs). The Product Owner
orders the PBIs according the priority and business intention. PBIs should have the
attributes of order, priority, description and estimation. PBIs which may be
expressed as a User Stories which have the same meaning as requirements, this is
just another term to describe functional specification of the product [5].

• Sprint Backlog – consists of PBIs selected for the Sprint and a plan for delivering
these items. Usually, it consists of tasks, which are the breakdown of PBIs. The
Sprint Backlog is the work that Development Team will do to turn selected PBIs
into a done increment.

• Increment – sum of all the PBIs completed during a Sprint and the value of the
increments of all previous Sprints.

What is important is the fact that all Scrum artifacts should be as clear and simple as
it is possible to maximize transparency so that everybody has mutual understanding of
the artifact.

The Scrum Guide defines the following events.

• Sprint – time-box of one month or less period of time during which Scrum Team is
creating and delivering product increment. Sprint consists of the Sprint Planning,
Daily Scrums, Product Backlog Refinement, Sprint Review, and Sprint Retro-
spective meetings.

• Sprint Planning – every Sprint starts with a Sprint Planning meeting. Development
Team works with the Product Owner to plan the work for the upcoming Sprint.
They collaborate to help Development Team select Product Backlog Items
(requirements) from the Product Backlog for the upcoming Sprint.

• Daily Scrum – a 15-minute time-boxed event for the Development Team. It is an
opportunity to synchronize and inspect the work, adapt plans for the next 24 h and
report obstacles or impediments. Anyone can attend Daily Scrum meeting, but only
Development Team can participate.
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• Product Backlog Refinement – it is the act of adding detail, estimates, and order to
items in the Product Backlog when PBIs are reviewed and revised. “Refinement
usually consumes no more than 10% of the capacity of the Development Team” [3].

• Sprint Review – a meeting which takes place at the end of the Sprint. Development
Team with the Product Owner and stakeholders work together to see what was done
during the Sprint and to update the Product Backlog for the future work.

• Sprint Retrospective – a final meeting in the Sprint. Development Team, Product
Owner and the Scrum Master work together to reflect the previous Sprint i.e. what
went well during the Sprint, what didn’t go so well and what can they do to improve
it. Retrospective meeting provides an opportunity for continuous improvement.

“All events are time-boxed, such that every event has a maximum duration. Once a
Sprint begins, its duration is fixed and cannot be shortened or lengthened” [3].

1.2 Risk Management in Scrum

Large expansion of IT technologies can be observed in recent years which caused a
significant increase in software projects managed using Scrum framework. Singh and
Saxena remarked that nowadays methodologies which are used in IT projects are
changing from traditional waterfall model to Agile approach [6]. Scrum framework
“employs an iterative, incremental approach to optimize predictability and control risk”
[3] so The Scrum Guide does not define formal risk management process. Despite this,
nowadays “lack of risk management in Scrum projects is identified by various authors”
[7]. Tomanek and Juricek underlined typical risk management processes deficiency like
i.e. risk management project time. Researchers noticed that there is a lack of formal risk
management processes in Scrum and proposed conceptual Risk Management model
based on Scrum and PRINCE2 methodology. The authors conducted a survey to find
out the current risk management practices in Agile projects. As a final result of the
paper, the researchers proposed to extend the conceptual framework, based on Scrum
and PRINCE2, by risk management processes.

Reddaiah et al. noticed that project risks can occur in Scrum projects, but Scrum
formally has no risk management process implemented [8]. The authors remarked that
Scrum does not define practices which can identify the reason of risks that may appear
and underlined that Scrum does not guide how to evaluate possible risk impact on the
project and manage the effort which is needed to mitigate the risk. In the study, the
authors suggest a new concept for risk management process by adding to Scrum
framework a new team which can be helpful as the project is characterized with a high
risk factor. A new team would be managed by Scrum Master and its main responsi-
bilities would be risk identification and risk management. The new team would also be
responsible for finding a solution how to project risk can be mitigated immediately.

The successful researchers who raise the risk management in Scrum subject are
Uikey and Suman. The authors presented an authorial framework, called “Risk Based
Scrum Method”, which aims to incorporate risk management processes to improve the
Scrum method [9]. The researchers underlined, that the proposed approach may
increase project planning quality and performance schemes. Uikey and Suman
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recommend concept of the “RBSM” model which may potentially reduce the difficulty
of a Scrum project.

Andrat and Jaswal presented another alternative approach for risk management in
Scrum presented. In the paper [10], the authors noticed that Scrum is the most popular
approach in comparison to other Agile methodologies and highlighted how risk
management process is important in software projects. The researchers underlined that
even in projects managed using Scrum there is a place for further improvements. The
authors precisely explored Scrum framework and proposed their own model which may
be an alternative approach for risk assessment in Scrum.

The purpose of this paper is to analyze temporal aspects of approximation and
review risk management models proposed by various researchers for Scrum frame-
work. Janczura and Kuchta proposed estimation approach based on fuzzy numbers
[11]. Cahierre et al. analyzed time buffers as a tool for stability assurance of the project
schedule and proposed to determine time buffers by experts [12]. Our model contains
time buffers (lower and upper) based on mixture probability distribution, whereby
progress of work may be reviewed and in case of delay number of people on the team
or budget can be increased. In case of faster completion of work product quality can be
increased or managers may assign people to the other projects. In the article, we
propose a model for time estimation which may extend Scrum framework by risk
management process in aspect of project time estimation. The proposed model may
improve group approximation decision in Scrum project for time estimation for
requirements placed in the Product Backlog. At the end of the paper we present the case
study which describes practical adoption of proposed model in Scrum project.

2 Group Approximation of Time in Scrum

In Agile methodologies, it is assumed that the group decisions made by a team are
better than the decisions of individuals. In Scrum projects, group decision, including
approximation, is a very common practice. It is used when there is a need for a variety
of information or broad expertise is required in various fields or there may appear a
significant risk in a project. Group decision has its advantages and as well limitations.
The advantage is that more people can be involved in decision-making, provide more
information and more options to solve the problem. The disadvantage is that more
people can participate in decision-making which may result in prolonged
decision-making process, which can lead to lengthening the time required for analysis
and decision making.

Scrum eliminates traditional technical role such as an architect, as technical deci-
sions are made by collaborative team. In Scrum projects group estimations are com-
monly used by “cross-functional teams who have all competencies needed to
accomplish the work without depending on others not part of the team” [3]. Having all
the necessary competencies it is a prerequisite to achieve time estimation for PBIs by
Development Team, to present work effort for Product Owner and project sponsors.
Group decision making is also one of the key element of Sprint Review meeting agenda
when the entire group: Development Team, Product Owner, Scrum Master and key
stakeholders, collaborates on what to do in the next Sprint.
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Time approximation is a difficult but a very important part of Scrum development
process. Important because Scrum Team is using estimation during the whole project,
not only in one iteration, and estimations may be used as a reference in further Sprints.
All the entries, within the Product Backlog, have to be estimated to allow the Product
Owner to prioritize the entries and to plan Release timeline.

2.1 Scrum Estimation Techniques

Scrum estimation techniques are collaborative and are designed to be fast. Whole
Scrum Team is included in the process of estimating effort of PBIs, so that it is
impossible to blame someone for an incorrect estimate. There are various estimation
methods used in Scrum projects like i.e.: Planning Poker, T-Shirt Sizes, Relative Mass
Valuation, Bucket System or Dot Voting [13].

2.2 Planning Poker

As an example of an approximation method we present Planning Poker, a game often
played by the Scrum Team. Planning Poker as Scrum estimating technique helps to
estimate PBIs complexity. Planning Poker support, in a secure way, to prepare accurate
estimates for PBIs as a fine result before Sprint Planning meeting is held. Planning
Poker is very simple and very effective at the same time. Most Scrum Teams hold a
Planning Poker session shortly after an initial Product Backlog is written. This session
is used to create initial estimates useful in scoping or sizing the Release, because PBIs
will continue to be added throughout the whole Release. Most Scrum Teams find it
helpful to conduct subsequent Scrum estimating and planning session during Sprint
Product Backlog Refinement.

One of the basic rules of the Planning Poker is that each Development Team
member takes place in the game to be sure that all members are able to provide their
own estimation. Product Owner and Scrum Master are not allowed to vote for PBIs to
avoid pressuring (intentionally or otherwise) the Development Team. The Scrum
Master is responsible for facilitating the meeting and keeping it time-boxed. The
Product Owner (usually as a moderator) presents each PBI for Development Team to
be estimated, explains PBI in more detail way (if necessary) and answers the questions,
to give an opportunity to discuss and clarify assumptions.

Each Development Team member gets an identical set of cards with values like: 0,
1, 2, 3, 5, 8, 13, 20, 40 and 100. Cards are used to set value of Story Point for each PBI.
The “0” card means “this functionality requires just a few minutes of work” or “this
story is already done”. There are also two additional cards with coffee cup symbol
(which means: “coffee break”) and a question mark symbol (which means “I have no
idea”). Question mark card should be rare. If this card is used too often, the Scrum
Team needs to discuss the PBI more and try to achieve their better knowledge. When
the estimation begins for each PBI Product Owner, as a moderator, reads the
description and then each Development Team member call one card simultaneously by
turning it over and presenting the estimated value, so that all participants can see one
another’s estimate. What is important, estimation for each PBI should be presented by
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Development Team member at the same time, which can avoid the influence of the
other participants.

If all estimators selected the same value, that becomes the estimate. But due to the
fact that each member of the Development Team has commonly different experience, it
is very unlikely that everyone will come up with the same estimation. So if the
estimates are different (most common situation) people with highest and lowest esti-
mates are allowed to explain their estimate, trying to avoid defending own estimation at
all cost, but rather by trying to provide arguments for presented value. If Development
Team cannot reach an agreement then various techniques may be used. Some of the
teams use average value and some use median value. What is noteworthy is the fact that
median value rejects the extreme values which, due to different Development Team
members’ expertise, can sometimes be best estimated value. Some of researchers say
that average value is not the best estimation method, by saying that median value is
better [14]. Our suggestion is to take into account the estimates of all Development
Team members through the use of mixture probability distribution. Taking into
account, all members of the team rating, allows to determine buffers for time
approximation for Sprint and for whole Release as well.

To sum up, logic behind the Planning Poker is simple and there are many
advantages of the game. Playing Poker is based on the wisdom of crowds, as it is
possible to get the benefit of the Development Team’s collective intelligence. Planning
Poker leads to better estimates because it brings together a group of expert opinions.
Experts form a cross-functional Development Team from all disciplines and they are
better suited to the estimation task than anyone else. Planning Poker technique helps to
avoid the influence of the other participants, that is why this technique forces people to
think independently and tell their numbers simultaneously. What is important: the
game is quick and dynamic which allows to estimate many PBIs in limited time. What
is also important is the fact that Planning Poker game is some kind of escape from
formal meetings and daily duties, so Planning Poker makes the Development Team’s
work more effective and enjoyably what is recommended by The Scrum Guide. In
Planning Poker game everyone gets a chance to speak, there is a chance for group
discussions and averaging individual estimates lead to better estimates.

3 Method for Task Duration and Time Buffers Estimation
in Scrum

Malcolm et al. [15] assume that the time required to carry out a task has a beta
distribution Beta a; b; a; bð Þ on the interval ½a; b� with density function:

f tð Þ ¼ 1
B a; bð Þ

t � að Þa�1 b� tð Þb�1

b� að Þaþb�1 ð1Þ

The expected value, variance of such a random variable are given as follows (for
a[ 1, b[ 1):
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E Tð Þ ¼ abþ ba
aþ b

ð2Þ

D2 Tð Þ ¼ ab b� að Þ2
aþ bð Þ2 aþ bþ 1ð Þ ð3Þ

When aþ b ¼ 6 the kurtosis of the beta distribution is equal to 3 and thus the
distribution is somewhat similar in shape to the normal distribution, see [16] and [17].
In this case expected value and variance are given as follows:

E Tð Þ ¼ 3� ffiffiffi
2

p� �
bþ 3� ffiffiffi

2
p� �

a

6
ð4Þ

D2 Tð Þ ¼ b� a
6

� �2

ð5Þ

These pieces of information are used to construct mixture probability distribution
F tð Þ, expected value E Tð Þ and variance D2 Tð Þ of task durations T , which is the core of
our proposal:

F tð Þ ¼
Xn

i¼1
wiFiðtÞ ð6Þ

E Tð Þ ¼
Xn

i¼1
wiE Tið Þ ð7Þ

D2 Tð Þ ¼
Xn

i¼1
wi E Tið Þ � E Tð Þð Þ2 þD2 Tið Þ
h i

ð8Þ

where:

FiðtÞ – beta distribution on the interval tFi ; t
L
i

� �
,

E Tð Þ ¼ 3þ ffiffi
2

pð ÞtFi þ 3� ffiffi
2

pð ÞtLi
6 ,

D2 Tð Þ ¼ tFi �tLi
6

	 
2
,

tFi tLi
� �

– task duration estimated by i-th Development Team member in the first
round (last round); tFi – could be also the duration which is the most preferable by i-
th Development Team member.

For aþ b ¼ 6 beta distribution is somewhat similar in shape to the normal distri-
bution, we can construct lower and upper buffers for task duration equal to:

3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 Tð Þ

p
ð9Þ
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4 Case Study

Some Scrum Teams use Story Points for estimation and the others use hours, other do a
mix [18], so values assigned to each PBI may be converted from Story Points into
working days, working hours or other commonly agreed time unit. In the case study,
time estimation was made using working hour unit and it was performed for Scrum
web based project in Poland.

Project Scrum Team was engaged in the final work of an ongoing Release.
Development Team was preparing delivered increment for deployment in production
environment. At this moment project sponsors informed that the estimation had to be
done for an upcoming Release which consisted of seven, two weeks long Sprints.
Product Owner gathered list of six requirements from project sponsors and after placing
them in the Product Backlog, asked Development Team, consisting of three members
(Dev 1, Dev 2 and Dev 3), to provide time estimation for each PBI. Every two of six
requirements were marked as critical, high, and medium in accordance to business
needs (see Table 1).

Using Planning Poker game, each member of the Development Team presented his
own time estimation for every PBI (see Table 1) using working day as the unit of time.
Due to the fact that each Development Team member had different experience, esti-
mations varied widely. After the discussion, Development Team members found
consensus and provided common group time approximation.

As we can see, estimation time for the Release is 70.5 working days. Development
Team used time buffers and set the risk margin at the level of –10% and +25% of
estimated time, respectively lower and upper bounds were equal to 63 and 88 working
days. In practice, when during the project it turns out that approximated time was
underestimated usually Product Owner suggests the project sponsors to prolong the
duration of Release or to remove some of the requirements, predominantly tasks with
lowest priority.

Table 1. Development Team’s time estimations for Product Backlog Items.

PBIs Product Backlog Items Priority Time estimation

First round Last round
Dev 1 Dev 2 Dev 3 (Dev 1, Dev 2, Dev 3)

Task no. 1 Critical 21 23 20 21
Task no. 2 Critical 2.5 2.5 2 2.5
Task no. 3 High 11 12 9 11
Task no. 4 High 5.5 7 6 6
Task no. 5 Medium 1 1 1 1
Task no. 6 Medium 28 31 27 29
Total 70.5

Time unit: working days.
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In the presented case study, it occurred that experience which Development Team
gained in previous Release was very useful and Development Team was able to finish
the work earlier than it was estimated, within 60 working days (see Table 2) and also
earlier than assumed lower bound 63 working days for the Release, thereby Devel-
opment Team was able to start work earlier on requirements provided for the next
Release.

Now let’s apply proposed model for estimation time buffers in this case. Like it was
mentioned, Development Team members had various experience, skills and knowledge
of web application which was developed during the project. Dev 1 was a new member
of the team with low technical skills, Dev 2 had some experience in the ongoing project
and also in programming and Dev 3 was the most experienced person, both in the
project and programming. Therefore, in formula for the expected time (Eq. (7)) and the
buffers (Eq. (9)) we assigned the following weights: for Dev 1 – w1 ¼ 0:15, for
Dev 2 – w2 ¼ 0:35, for Dev 3 – w3 ¼ 0:5. The results are presented in Table 2. The
real time of Task no. 6 is smaller than its lower bound, the real times of other tasks are
between their lower and upper bounds (see Table 2). In IT projects, which are realized
in Scrum methodology, task duration is usually not independent. So in the worst case,
lower (upper) bound of Release is a sum of lower (upper) bounds of all task durations
in this Release. In our project, these lower and upper bounds are respectively 58 and 82
working days (see Table 2). As one can see, real time of 60 working days belongs to
the interval of [58, 82] working days. So the estimated buffers, according to the
proposed method, are more detailed and more compatible with the actual realization of
the project than traditional buffers –10%, +25. Especially the upper buffer (+25%) is
overestimated in our opinion.

Methods of estimating the time buffer are, above all, adapted to projects for which it
is possible to derive a critical path or critical chain, e.g.: [19–22]. Mike Cohn [23]
proposed adapting the approach of Reinertsen’s method for estimating the problem of
the planned duration and the time buffer for each task to project management using the

Table 2. Expected times, lower and upper buffers and real times for Product Backlog Items.

PBIs
Product
Backlog
Items

Priority Expected
time
EðTÞ

Lower bound =
EðTÞ � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 Tð Þp�� �� Upper bound =

E Tð Þþ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 Tð Þp�� �� Real

time

Task no. 1 Critical 21 18 24 19
Task no. 2 Critical 2 2 3 2
Task no. 3 High 11 7 14 9
Task no. 4 High 6 5 7 5
Task no. 5 Medium 1 1 1 1
Task no. 6 Medium 29 25 33 24
Total 70 58 82 60

Time unit: working days.

Group Approximation of Task Duration and Time Buffers in Scrum 187



AGILE methodology. Reinertsen proposed that the time buffer for a task should be
estimated on the basis of two parameters: the median (ME) and the 0.90 quantile (Q0:9)
of the distribution of the duration of a task. At the same time, he assumed that the
difference between the estimators of these times is equal to two standard deviations of
the duration of a task. The time buffers for individual tasks and the project as a whole
can be calculated as follows:

The buffer for the i-th task:

bufferi ¼ Q0:90;i �MEi

2
: ð10Þ

The buffer for the project as a whole:

buffer ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

Q0:90;i �MEi

2

� �2
s

ð11Þ

Reinertsen assumed that the duration of the tasks are independent random variables.
In addition, the planned duration of a task is taken to be the median of the duration of
that task and the time buffers for individual tasks and the entire project, defined by
Eqs. (10) and (11) respectively, serve as protection against the project not meeting the
required deadline. Alternatively, the buffer for the entire project can be defined as the
sum of the buffers for the individual tasks buffer ¼ Pn

i¼1
Q0:90;i�MEi

2 , see: [19, 23].
Table 3 presents the results of estimating the duration of the tasks using Reinert-

sen’s method, taking into account time buffers based on estimates given by members of
the Development Team of the analysed project. The actual durations of tasks are shorter
than the lower estimate of the duration of those tasks based on the median (except for
Task 5, which is a short task – assumed to last one day). Comparing the time char-
acterization of the project obtained using Reinertsen’s method with the method pro-
posed in this article, it can be seen that the interval estimates of the duration of the tasks
(lower bound, upper bound) are significantly narrower when Reinertsen’s method is
used (see Tables 2 and 3). Above all, this results from the fact that Reinertsen’s method
assumes that the durations of tasks are independent random variables and that their goal
is to protect against a task, and the project as a whole, not meeting its deadline. In
general, the actual durations of tasks belonged to the corresponding interval calculated
according to the method proposed here. Only Task 6 was completed in a time shorter
than the lower bound of the corresponding interval estimate of the duration.

When the buffer for the project as a whole is obtained by summing the buffers for
the individual tasks, then we obtain analogous results for the characterization of the
duration of the project as a whole.

The method proposed in this article assumes that the duration of a task is very likely
to belong to the interval ( EðTÞ � 3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 Tð Þp

, E Tð Þþ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 Tð Þp

). In accordance with
Chebyshev’s inequality (the 3-sigma rule), the probability of the duration of a task
belonging to this interval is at least 8=9 � 0:9. We can obtain estimators of the expected
duration EðTÞ and variance D2 Tð Þ (Eqs. (7) and (8)) based on estimates given by
individual members of the Development Team. Estimating the quantiles of a mixture of
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distributions (see Eq. (6)) would require numerically intricate calculations. This is not in
line with the assumptions of the SCRUM methodology, which assumes that all the
techniques applied in project management should be simple. In addition, we do not
assume that the durations of tasks in an IT project are independent random variables.
The proposed method also takes into account the possibility of finishing a task more
quickly than the planned duration (equal to the median). In practice, such a time buffer is
applied to IT projects. For example, in the case study the limits on the time buffer were
set to be –10% and +25% in comparison to the planned duration of a task.

Leach in [24] states that for a buffer to fulfil its role, its length should be at least
20% of the planned duration of the project. In our case study, the length of the buffer
defined according to Reinertsen’s method is only about 2% of the planned duration of
the project. On the other hand, the difference between the estimates of the lower and
upper bounds on the expected duration of the project derived using the method pre-
sented here is about 17% of the planned duration of the project.

5 Summary

In the paper, we focused on group decisions, time approximation buffers and risk
management process. We proposed new model for time approximation risk margins
which may be used in Scrum projects – nowadays most popular Agile approach. We
presented the case study where we described how self-organizing Development Team,
based on proposed model, can estimate time effort buffers for project requirements
listed in PBIs form. Used margin, based on proposed model, proved to be correct in
practice. The proposed model is simple and effective and can be used in projects
managed using Scrum framework.
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Abstract. In the paper several extensions of a successful EDA-type
algorithm, namely COMMAop, inspired by the paradigm of agent-based
computing (EMAS) are presented. The proposed algorithms leveraging
notions connected with EMAS, such as reproduction and death, or even
the population decomposition, turn out to be better than the original
algorithm. The evidence for this is presented in the end of the paper,
utilizing QAP problems by Éric Taillard as benchmarks.
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1 Introduction

Tackling difficult optimization problems, often described as black-box [1] ones,
one has to carefully plan the search taking advantage of different aspects of well-
known meta-heuristics (i.e. higher level, general heuristics—algorithms that pro-
vide “good-enough”, maybe not optimal, solutions in reasonable time), in order
to achieve success. In many difficult cases, hybridization of different metaheuris-
tics can bring new quality into the problem solving, thus following well-known no
free lunch theorem [2], it is always a good time for proposing new, but carefully
designed general optimization algorithms [3].

Difficult search problems (such as Travelling Salesman Problem, or Quadratic
Assignment Problem or many others) are usually tackled by different types
of evolutionary algorithms [4]. Particularly efficient results have been obtained
using Estimation of Distribution Algorithms [5]. As evolutionary algorithms are
usually centered around the principle of recombination of solutions by means of
selection and crossover, in EDAs the solutions are sampled from probabilistic dis-
tributions that model features of selected solutions, usually the most promising
ones.

One of successful EDAs is COMMA proposed by Olivier Regnier-Coudert
and John McCall [6,7]. The COMpetitive Mutating Agents (COMMA) algo-
rithm performs exploration and exploitation phases at in parallel by using a
c© Springer International Publishing AG 2017
N.T. Nguyen et al. (Eds.): TCCI XXVII, LNCS 10480, pp. 191–207, 2017.
https://doi.org/10.1007/978-3-319-70647-4_13
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population of agents and assigning different roles to each, in particular using
mostly mutation for generating new individuals with adaptation of its range
coming from the geometric inspirations. Moreover, it is quite easy to see, that
EDAs and in particular COMMA are quite closely related to the agent-based
computing systems, as they leverage some of their notions, as e.g. autonomy in
undertaking the decisions about individual mutations. Thus these algorithms can
be treated as a good starting points for introducing hybrid computing methods.

In this paper these inspirations are drawn from an efficient, agent-based
search and optimization system [8], that was proposed by Krzysztof Cetnarowicz
in 1996 and extended many times since then: Evolutionary Multi-Agent System
(EMAS). This system is composed of agents—pseudo-intelligent, autonomous
objects [9], which are able to make decisions by themselves, based on an interac-
tion with other agents and with environment. As main task is decomposed into
sub-tasks, each of which is entrusted to an agent, EMAS is an effective imple-
mentation of distributed problem solving. To this day, EMAS proved to be much
more efficient than classic evolutionary algorithm and was applied successfully
to different problems—classic benchmarks [10], inverse problems [11] and other
optimization tasks [12,13].

Thus several hybridizations of the COMMAop algorithm are presented and
evaluated in this paper, using selected instances of Quadratic Assignment Prob-
lem. In the next section the general idea of EDAs is presented, and followed by
the description of COMMA and COMMAop. Later the basic notions of evo-
lutionary multi-agent computing are discussed and the proposed extensions for
COMMA, inspired by EMAS are described. Finally the experimental results are
presented and the paper is concluded.

2 Estimation of Distribution Algorithms

Estimation of Distribution Algorithms are universal metaheuristics stemming
from Evolutionary Algorithms. As EAs, they use stochastic sampling of the
solution space in order to produce new individuals (often called agents), how-
ever in the case of EDAs, the probability distribution is usually derived from the
information gathered in the current population, and accordingly adapted [14].
General strategy realized in EDAs can be described as follows: where: popt stands
for a population observed at an iteration t pos is the solution space, posj ∈ pos
is one solution (an agent’s genotype when compared to EA), Step 3 consists in
employing a predefined selection strategy (similar to the ones used in EAs), Step
4 consists in estimating a new probability distribution, based on the informa-
tion gathered in the population of agents, finally in Step 5 a new population is
sampled using the probability distribution determined in Step 4.

Thus EDAs perceive the optimization process as a series of incremental
updates of a certain probabilistic model starting from a model of uniform dis-
tribution and finishing with a model generating solely global extrema (or their
approximation). In an ideal case, the quality of the generated solutions will grow
in time and after certain (hopefully reasonable) number of iterations, the algo-
rithm will generate a global optimum (or its accurate enough approximation).
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Algorithm 1. Pseudo-code of EDA
1: pop ← random generation of agents()
2: while not stop condition() do
3: popSe

t ← select agents(popt−1)
4: Pt(pos) ← P (posj |popSe

t )
5: popt ← Pt(pos)

Different EDAs consist in different versions of the above mentioned steps, how-
ever the general idea remains the same—the strategy of generating new agents
is iteratively adapted in order to increase the quality of the new solutions [15].

3 COMMA Algorithm

One of interesting EDA-type algorithms is COMMA (COMpeting Mutating
Agents) devised by Olivier Regnier-Coudert and John McCall [7]. In this algo-
rithm, the sampling distribution is constructed considering the population of
agents sorted according to their fitness. In this algorithm, for each position posj

in the population pop sorted in descending order for maximization, a mutation
distance dj is set such that for two agents at positions e and f , such as de ≤ df if
e < f . As it may become beneficial to allow low-quality solutions to be accepted,
a probability pj is also set for each posj . Each agent ai is initially assigned a
random solution si. The population is then sorted by fitness. At each generation,
each agent mutates si using the distance disti ∈ [1, dr] defined according to its
position r in the population. This step is equivalent to sampling from a distrib-
ution centered around si whose variance depends on r. If the mutated solution
snew has a better fitness than si, ai replaces si with snew. If snew has a poorer
fitness than si, snew only replaces si with certain probability pr. The pseudocode
of the original COMMA algorithm is as follows. The sampling range is inversely
proportional to the fitness, thus the agents with high fitness values (in relation
to other members of the population) are mutated with lower range than the
individuals with lower fitness values. Thus the whole algorithm exploits around
“good” solutions, at the same time starting exploration around “worse” ones. As
the authors report, the above version of COMMA performed well when learn-
ing Bayesian network structures [6], however in order to enhance the proposed
algorithm, they have significantly improved it by introducing multiple variation
operators, proposing COMMAop algorithm.

4 COMMAop Algorithm

COMMAop starts by random generation of a population pop. Moreover, the
level of alteration ρj,k associated with every possible pair {φj , dk} of operator
and mutation distance is calculated and used to initialize the operator selection
scale α (k ∈ �1, n� and j ∈ [1, nop], where nop is the number of single opera-
tors included in COMMAop. This means that any value k can be considered
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Algorithm 2. Pseudo-code of COMMA [7]
1: Initialize pop of σ agents with random solutions, distance vector d of size σ and

probability vector p of size σ
2: while not stop condition() do
3: sort pop by fitness
4: for each agent ai, i ∈ [0, σ − 1] do
5: get position r of ai in pop
6: Sample new solution snew with fitness fitnew by mutating si with distance

disti selected with uniform probability from [1, dr]
7: if fitnew > fiti then
8: si ← snew

9: else
10: si ← snew with probability pr

for the mutation distance dk for a chosen operator throughout the search. α
is ordered with respect to ρj,k. For non-deterministic operator, whose associ-
ated ρj, k takes its value within a range, the mean ρj,k is used to order α. The
maximum number of generations maxGen is also calculated at this stage from
the maximum number of fitness evaluations and the population size σ. Finally,
the fixedDistance parameter needs to be set. It defines for a given mutation
distance, whether a mutation strictly uses the distance or whether it can also
use any value lower than the distance. This is another approach implemented
in order to reduce the effect of some operators with high associated level of
alteration. Using a fixed distance can be geometrically interpreted as sampling
solutions only from the edge of a distribution, rather than from the whole dis-
tribution when fixedDistance is set to false. Following this initialization step
and at each generation, the population of agents is ordered by fitness and the
rate is updated, that is the rate is decreased at each generation. Each agent
then needs to sample a new solution. This is done according to its position r
in the population. A pair of operator and mutation distance is picked from α
with respect to r, but also considering some variation represented by the lower
and upper bounds r− and r+, with r−, r+ ∈ [0, |α| − 1]. Introducing such varia-
tion ensures that all {φj , dk} pairs can be used to generate solutions during the
search. d(r′) and φ(r′) stand for the mutation distance and the operator at the
r′-th position in α. The pseudocode of the COMMAop algorithm is as follows
[7]: This algorithm extensively described above, became the starting point for
introducing enhancements inspired by the evolutionary multi-agent computing
experiences encountered by the authors during their work up-to-date.

5 Agent-Based Evolutionary Computing

Evolutionary algorithms and similar population-based metaheuristics [3,4] are
very common means of solving difficult, often black-box [1] problems. Classic evo-
lutionary algorithms (see Fig. 1) simplify several mechanisms well-known from
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Algorithm 3. Pseudo-code of COMMAop [7]
1: Initialize pop of σ agents with random solutions
2: Initialize operator selection scale α with pairs {φj , dk} for all selected operators φj

and mutation distances dk

3: Order α by ρ{j, k}
4: Initialize gen ← 0 and maxGen
5: Initialize fixedDistance
6: repeat
7: Sort pop by fitness in descending order
8: rate ← 1 − gen

maxGen+1

9: for each agent ai, i ∈ [0, σ − 1] do
10: r ← position of ai in pop
11: r− ← r·|a|

σ
− rate · |α|

12: if r− < 0 then r− ← 0

13: r+ ← r·|a|
σ

+ rate · |α|
14: if r+ > |α| − 1 then r− ← |α| − 1

15: r′ ← random(r−, r+)
16: if fixedDistance then
17: Sample new solution snew with fitness fitnew by mutating si with oper-

ator φ(r′) and distance d(r′)
18: else
19: Sample new solution snew with fitness fitnew by mutating si with oper-

ator φ(r′) and distance disti selected with uniform probability from (1, d(r′))

20: if fitnew > fiti then si ← snew

21: gen++
22: until stoppingcondition()

the biological evolution, e.g. full synchronization of the reproduction while in bio-
logical systems no such phenomenon occurs. Another example would be lack of
global knowledge in actual biological systems, while in evolutionary algorithms
a single entity manages the whole population and synchronizes the variation
operators etc. In order to try to leverage more natural phenomena in comput-
ing, EMAS was proposed (first in [16], then extended in [12,17] and many other
papers).

EMAS utilizes the totally distributed (uncontrolled globally) phenomena of
death and reproduction for modelling the processes of selection and inheritance
(Fig. 2). Agent in EMAS carries the genotype (each agent has its own) and tries
to survive competing with its neighbors (by executing the evaluation action) and
proliferate (by reproduction leveraging recombination and mutation). Moreover,
an agent may possess some knowledge acquired during its life, which is not inher-
ited, yet controls the actions of the agent (e.g. sexual preferences [13]). Usually
EMAS is implemented in a multi-deme model, similar to parallel evolutionary
algorithm (cf. [18]).

One of the most important aspects of EMAS is distributed mechanism of
selection, based on existing of non-renewable resource that is exchanged between
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Fig. 1. Schematic presentation of Evolutionary Algorithm

the agents (in the process of evaluation—i.e. the better agent takes a certain part
of the resource from the worse one). Later, the amount of the resource owned by
a particular agent, becomes a condition for performing the action of reproduction
(when the resource level is high) or death (when the resource level falls down).
Moreover, the offspring overtakes certain part of the parents’ energy during the
reproduction.

EMAS prove to be an universal optimization tool (moreover, formal proofs
of this feature have been constructed for EMAS and other computing systems,
see, e.g. [19–21]), particularly with less demand on the number of the fitness
function calls than its classic competitors, like PEA.

6 Proposed Extensions of COMMA

EMAS can be perceived as a system belonging to socio-cognitive class, because
of clear inspirations taken from the area of social systems (usually all the agent
systems can be counted to this class), and also cognitive ones (as the agents per-
ceive the other agents, interact with them, can learn from them or get inspired
by them). As elements of socio-cognitive related research have already proven to
be effective in other computing related applications (namely discrete optimiza-
tion using PSO [22] and ACO [23]), the authors have decided to try to enhance
the EDA algorithm (as this class is very successful in solving discrete problems)
with selected socio-cognitive mechanism, striving towards the full hybridization
of EMAS and EDA. This approach seems to be right especially because indi-
vidual adaptation of the mutation of each of agents makes the COMMA algo-
rithms sharing similar paradigm like EMAS—as this can be perceived as certain
autonomy of the agents processed in COMMAop. Therefore full hybridization
of COMMAop and EMAS seems to be a promising idea.
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Fig. 2. Schematic presentation of EMAS

In order to clearly and precisely describe the modifications of the original
algorithm, the pseudocode of the COMMAop is simplified by aggregating steps
visible in Algorithm 4:

Algorithm 4. Simplified pseudo-code of COMMAop [7]
1: Initialization of agents and other parameters
2: repeat
3: Sort population of agents
4: Calculate mutation rates
5: Sampling of new solutions by adaptive mutation
6: until stoppingcondition()

6.1 COMMAop with Population Decomposition

Quite a natural evolution of COMMAop that may be considered following idea
of EMAS and generally Parallel Evolutionary Algorithms concept [18] is the
decomposition of the population that usually brings new quality with regards
to the diversity of the search. Therefore the notion of evolutionary islands is
introduced into the original algorithm, along with a simple migration strategy.
Thus the mutation ranges are computed inside each of the islands. The modified
algorithm can be described as follows (note that in this and the subsequent
pseudocodes the changes introduced w.r.t. the previous version of the algorithm
are displayed in bold): It is easy to see that in the beginning all the populations of
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agents are initialized on each of the islands. Then the migration is realized (with
small probability) and the following step of the original COMMAop algorithm
(cf. Algorithm 4) is realized on each of the islands subsequently.

Algorithm 5. Pseudo-code of COMMAop with population decomposition
1: Initialization of agents and other parameters
2: repeat
3: Migrate agents among the islands with low probability
4: Sort population of agents
5: Calculate mutation rates
6: Sampling of new solutions by adaptive mutation
7: until stoppingcondition()

6.2 COMMAop with Cloning and Death of Agents

Another natural extension of COMMAop inspired by EMAS is introduction
of the resource-based selection-like mechanism that reminds of the distributed
selection in EMAS. The notion of energy is introduced and this value is computed
for all of the agents, an action of energy exchange (similar to the one in EMAS)
is used—the better agent takes a part of the energy from the worse agent—
finally the notion of cloning of the agents is used, for those who exceed a certain
amount of energy, and the notion of death—for those which energy falls down
below a certain level. The pseudocode of this algorithm is as follows: The steps
concerning cloning and mutation are realized on each of the island, along with
the exchange of the energy between the agents.

Algorithm 6. Pseudo-code of COMMAop with cloning and death
1: Initialization of agents and other parameters
2: repeat
3: Migrate agents among the islands with low probability
4: If agent’s energy is higher than certain level: clone the agent in the

population
5: If agent’s energy is lower than certain level: remove agent from the

population
6: Choose two agents and based on their fitness: exchange part of their

energy
7: Sort population of agents
8: Calculate mutation rates
9: Sampling of new solutions by adaptive mutation

10: until stoppingcondition()
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6.3 COMMAop with Crossover

The final extension of COMMAop inspired by EMAS is introduction of the
crossover with mutation (besides the original EDA-style mutation), instead of
the cloning process: Thus the full hybrid of original COMMAop with EMAS-
related notions is attained. Now one should turn to checking of the point of the
whole endeavor.

Algorithm 7. Pseudo-code of COMMAop with crossover
1: Initialization of agents and other parameters
2: repeat
3: Migrate agents among the islands with low probability
4: If agent’s energy is higher than certain level: crossover of the agent

with another one on this island and mutate the offspring
5: If agent’s energy is lower than certain level: remove agent from the population
6: Choose two agents and based on their fitness: exchange part of their energy
7: Sort population of agents
8: Calculate mutation rates
9: Sampling of new solutions by adaptive mutation

10: until stoppingcondition()

7 Experimental Results

This paper tackles Quadratic Assignment Problem (QAP) as a benchmark for
testing the efficacy of the proposed COMMA extensions. The QAP is a combina-
torial optimization problem stated for the first time by Koopmans and Beckman1
in 1957 [24]. It can be described as follows: Given two n × n matrices A = (aij)
and B = (bij), find a permutation minimising:

minπ∈Π(n)f(π) =
n∑

i=1

n∑

j=1

aij · bπiπj
(1)

where Π(n) is the set of permutations of n elements. Shani and Gonzalez have
shown that the problem is NP-hard and that there is no ε-approximation algo-
rithm for the QAP unless P = NP [25]. It is to note that QAP instances of size
larger than 20 are considered intractable and can be solved solely using heuristic
approaches [26].

Three instances were taken from the QAP problems repository by Éric Tail-
lard1, namely taillard15b, taillard20a and taillard20b. Each of the exper-
iments was repeated 10 times and average with standard deviation was shown
along with minimum and maximum values of all repetitions.

1 http://mistic.heig-vd.ch/taillard/problemes.dir/qap.dir/qap.html.

http://mistic.heig-vd.ch/taillard/problemes.dir/qap.dir/qap.html


200 A. Byrski et al.

Fig. 3. Fitness dependent on time for all tested algorithms for the problem taillard15b
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Fig. 3. (continued)

The algorithms tested were:

– Original COMMAOP ,
– COMMAOP with ranking on islands,
– COMMAOP with cloning and dying of the agents,
– COMMAOP with crossover.

All of these algorithms were run for 60 s, the number of the agents equaled 50
and the number of islands (besides COMMAOP ) was 5. The graphs presented
in this paper have minimum and maximum values of all of the runs pointed out.
Moreover on all of the x-axes logarithmic scale was applied.

In Fig. 3 the results of optimization (fitness depending on time) for all the
tested algorithms applied for the problem taillard15b are presented. It is easy to
see that all the modification of the original algorithm surpassed the COMMAop

and produced better optimization result. The best two results were produced
using the modifications with cloning and crossover. Moreover, the dispersion
of the results is significantly lower for all the modifications of the original
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Fig. 4. Fitness dependent on time for all tested algorithms for the problem taillard20a
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Fig. 4. (continued)

COMMAop, therefore it seems that the search using the new versions of this
algorithm is more focused, and the results are more repeatable.

Quite a similar results can be observed for the second tested problem, namely
taillard20a (see Fig. 4). Although the final outcome is not so clearly visible, still
the modifications outrun the original algorithm. Again the cloning algorithm and
the crossover are the best, in this case however the cloning one attains the result
with the best fitness overall. The dispersion is still similar as in the previous
experiment.

Finally the problem taillard20b is considered. In this case the dispersion of
the original algorithm is lower, even lower than the dispersion of the algorithm
with population decomposition (see Fig. 5). Regarding the results, this time all
the outcomes are quite similar, however again the algorithm with cloning prevails
in the end, although it can be fully verified after checking the results shown in
Table 1, where the best overall results were emphasized with bold typeface.
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Fig. 5. Fitness dependent on time for all tested algorithms for the problem taillard20b
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Fig. 5. (continued)

Table 1. Summary of final results attained by the tested algorithms

Algorithm tai15b tai20a tai20b

COMMAOP 51830404.4 722798.6 122927430.5

COMMAOP with ranking 51801686.3 723907.6 122953063.8

COMMAOP with cloning and dying 51777406.6 720977.4 122616065.5

COMMAOP with dual mutation 51773297.2 721495.4 122821966.9

8 Conclusion

In this work the novel modification of one of quite successful EDA-class algo-
rithm, namely COMMAop by Olivier Regnier-Coudert and John McCall were
presented. These modifications were based upon the fact of the closeness of the
original algorithm (and EDAs in general) to the notions of agency—in particu-
lar autonomy in adaptation of mutation range per particular individual. Thus
based on the authors’ expertise in the field of evolutionary multi-agent comput-
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ing, modifications based on introduction of population decomposition, cloning,
crossover and death mechanisms were sketched out. These modifications were
tested against the original algorithm using three QAP benchmark instances pro-
posed by Éric Taillard and freely available on his website.

The obtained results show that such modifications can bring new quality
into EDA research (in this case visible improvement of the results produced by
COMMAop was pointed out). Moreover, the search conducted by the modified
COMMAop algorithms tends to be more focused than the original algorithm.

In future more extensive testing of the introduced algorithms is planning,
along with extension to other discrete and perhaps also continuous problems.
Moreover, as in the case of the hybrid algorithm presented here, certain EMAS
mechanisms were introduced into COMMAop, a completely opposite approach
is also possible and will be conducted: introducing EDA mechanisms into EMAS
(e.g. by designing of a dedicated mutation strategy that will leverage the notions
used in EDA, in other words it should individually adapt the mutation range
based on e.g. agents encountered during the life of the one producing offspring
in the course of the reproduction action).
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Technology Statutory Fund.

References

1. Droste, S., Jansen, T., Wegener, I.: Upper and lower bounds for randomized search
heuristics in black-box optimization. Theor. Comput. Syst. 39, 525–544 (2006)

2. Wolpert, D., Macready, W.: No free lunch theorems for search. Technical report
SFI-TR-02-010, Santa Fe Institute (1995)

3. Talbi, E.G.: Metaheuristics: From Design to Implementation. Wiley, Chichester
(2009)

4. Michalewicz, Z.: Genetic Algorithms Plus Data Structures Equals Evolution Pro-
grams. Springer, New York (1994)

5. Larranaga, P., Lozano, J.: Estimation of Distribution Algorithms: A New Tool for
Evolutionary Computation. Springer, US (2002)

6. Regnier-Coudert, O., McCall, J.: Competing mutating agents for Bayesian network
structure learning. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia,
G., Pavone, M. (eds.) Parallel Problem Solving from Nature - PPSN XII, PPSN
2012. LNCS, vol. 7491, pp. 216–225. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-32937-1 22

7. Regnier-Coudert, O., McCall, J., Ayodele, M.: Geometric-based sampling for per-
mutation optimization. In: Proceedings of the 15th Annual Conference on Genetic
and Evolutionary Computation, GECCO 2013, pp. 399–406. ACM, New York
(2013)

8. Byrski, A.: Agent-Based Metaheuristics in Search and Optimisation. AGH
University of Science and Technology Press, Kraków (2013)

9. Kisiel-Dorohinicki, M., Dobrowolski, G., Nawarecki, E.: Agent populations as com-
putational intelligence. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and
Soft Computing. Advances in Soft Computing, vol. 19, pp. 608–613. Physica, Hei-
delberg (2003). https://doi.org/10.1007/978-3-7908-1902-1 93

https://doi.org/10.1007/978-3-642-32937-1_22
https://doi.org/10.1007/978-3-642-32937-1_22
https://doi.org/10.1007/978-3-7908-1902-1_93


Extending Estimation of Distribution Algorithms 207

10. Byrski, A.: Tuning of agent-based computing. Comput. Sci. 14(3), 491 (2013)
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