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Abstract. Reuse has been pointed out as a promising approach for Ontology
Engineering. Reuse in ontologies allows speeding up the development process
and improves the quality of the resulting ontologies. The use of patterns as an
approach to encourage reuse has been explored in Ontology Engineering. An
Ontology Pattern (OP) captures a solution for a recurring modeling problem.
Very closely related OPs can be arranged in an Ontology Pattern Language
(OPL). An OPL establishes relationships between the patterns and provides a
process guiding the selection and use of them for systematic problem solving.
To make it easier using an OPL, the relationships between the patterns and the
process for navigating them should be represented in a clear and unambiguous
way. A visual notation can be used to provide a visual representation of an OPL,
aiming at improving communication. To facilitate understanding an OPL and
strengthen its use, this visual notation must be cognitively rich. This paper
presents OPL-ML, a visual modeling language for representing OPLs.

Keywords: Ontology Pattern Language � Ontology � Visual notation � Visual
modeling language

1 Introduction

Nowadays, ontology engineers are supported by a wide range of methods and tools.
However, building ontologies is still a difficult task. In this context, an approach that
has gained increasing attention in recent years is the systematic application of ontology
patterns (OPs), which favors the reuse of encoded experiences and promotes the
application of quality solutions already applied to solve similar modeling problems
[1–4]. An OP describes a recurring modeling problem that arises in specific ontology
development contexts, and presents a well-proven solution for this problem [2].
Experiments, such as the ones presented in [5], show that ontology engineers perceive
OPs as useful, and that the quality and usability of the resulting ontologies are
improved.
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As pointed by Blomqvist et al. [3], although the ideas behind OPs are not com-
pletely realized in practice yet, the process is ongoing. As OPs become more mature
and the community collects more and more experience using them, a situation that
already occurs in Software Engineering, where patterns have been studied and applied
for a long time, will emerge in Ontology Engineering. In a pattern-based approach to
Ontology Engineering, several patterns can be combined to derive a new ontology.
Such approach requires the existence of a set of suitable patterns that can be reused in
the development of new ontologies, and a proper methodological support for selecting
and applying these patterns [4]. In this context, we need to record how different patterns
relate to each other in a more abstract level, and thus we need an ontology pattern
representation language [3]. The first steps towards developing such a representation
language have already been undertaken, giving rise to Ontology Pattern Languages
(OPLs) [6, 7]. An OPL is a network of interconnected OPs that provides holistic
support for solving ontology development problems. An OPL contains a set of inter-
related OPs, plus a modeling process guiding on how to use and combine them in a
specific order [6].

To facilitate ontology engineers understanding an OPL, the relationships between
the patterns, as well as the process for navigating them, should be represented in a clear
way. Ideally, such representation should be visual, since visual representations are
effective, by tapping into the capabilities of the human visual system [8].

The use of OPLs is a recent initiative. There are still only few works defining OPLs,
all of them from the same research group: the Ontology and Conceptual Modeling
Research Group (NEMO). This research group has developed the following OPLs [7]:
Software Process OPL (SP-OPL), ISO-based Software Process OPL (ISP-OPL),
Enterprise OPL (E-OPL), Measurement OPL (M-OPL), and Service OPL (S-OPL).
Since these works were done by the same research group, they share commonalities.
All of them use extensions of UML activity diagrams for representing the OPL
modeling processes [7]. However, there are still inconsistencies and problems in such
representations, as we could perceive by applying two experimental studies. Trying to
overcome these problems, we developed OPL-ML, an OPL Modeling Language. For
developing OPL-ML, we rely on the results of a systematic mapping of the literature
that investigated visual notations for Software Pattern Languages. Moreover, OPL-ML
was designed according to the principles of the Physics of Notation (PoN) [8], and
following the design process defined by PoN-S (PoN Systematized) [9].

This paper aims at presenting OPL-ML, and is organized as follows: Sect. 2 dis-
cusses patterns, OPs, pattern languages and OPLs; Sect. 3 discusses the Design Science
[10] methodological approach we followed to develop OPL-ML; Sect. 4 presents
OPL-ML; Sect. 5 discusses a preliminary evaluation of OPL-ML; Sect. 6 concerns
related works, and Sect. 7 presents our final considerations.

2 From (Ontology) Patterns to (Ontology) Pattern Languages

Patterns are vehicles for encapsulating design knowledge, and have proven to be
beneficial in several areas. “Design knowledge” here is employed in a general sense,
meaning design in different areas, such as Architecture and Software Engineering (SE).
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In SE, for instance, patterns have been studied and applied for a long time, and there are
several types of patterns, such as analysis patterns, design patterns and idioms. The
main principle behind patterns is not having to reinvent the wheel.

Ontology Patterns (OPs) follow the same idea: capturing a well-proven solution for
a recurring modeling problem that arises in ontology development contexts. There are
also several types of OPs, such as [2]: content patterns (foundational and
domain-related patterns), design patterns (logical and reasoning patterns), and idioms.

Patterns, in general, can exist only to the extent that they are supported by other
patterns. There is a need to describe the context of larger problems that can be solved
by combining patterns, and to address issues that arise when patterns are used in
combination. This context can be provided by what in Software Engineering has been
termed a Pattern Language (PL) [11]. According to Schmidt et al. [11], the trend in the
SE patterns community is towards defining pattern languages, rather than stand-alone
patterns. We have advocated that this approach should also be followed in Ontology
Engineering, by defining Ontology Pattern Languages (OPLs). An OPL aims to put
together a set of very closely related ontology patterns (OPs), in a system of patterns
that provides, besides the OPs themselves, a process describing how to navigate, select
and apply them in a consistent way. The term “pattern language” was borrowed from
Software Engineering (SE). However, it is important to say that we are not talking
about a language properly speaking. In “pattern language”, the term “language” is, in
fact, a misnomer, given that a pattern language does not typically define per se a
grammar with an explicit associated mapping to a semantic domain [6].

The use of OPLs is a recent initiative. At the best of our knowledge, all existing
OPLs were developed by the same research group and use extensions of UML activity
diagram for representing the OPL processes [7]. However, there are still inconsistencies
and problems in such representations. Thus, to help developing new OPLs, it is
essential to solve these problems and to provide a well-defined modeling language for
representing OPLs. The use of PLs in SE is not new. Thus, aiming to get knowledge
about visual notations for PLs, we carried out a systematic mapping to investigate
visual notations used to represent software PLs. A systematic mapping provides an
overview of a research area, and helps identify gaps that can be addressed in future
research [12].

In our systematic mapping, we searched seven digital libraries, namely: Scopus
(www.scopus.com), Engineering Village (www.engineeringvillage.com), ACM (dl.
acm.org), IEEE Xplore (ieeexplore.ieee.org), Springer (link.springer.com), Science-
Direct (www.sciencedirect.com) and Web of Science (www.webofknowledge.com).
We identified 54 software-related PLs represented by visual notations and we inves-
tigated them. Next, we summarize some results and perceptions gotten from the study.

Different elements are addressed in PLs. We identified 13 different elements,
namely: pattern, pattern group, pattern subgroup, flow, mandatory flow, alternative
flow, parallel outputs, parallel inputs, structural relation, optional relation, and variant
patterns. Many different representations for the same element were found. For instance,
we found seven different symbols for representing patterns and nine for pattern groups.
Several PLs include only few elements (e.g., pattern and flow). We noticed that in most
cases, PLs use less elements than necessary. Consequently, elements meaning is
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overloaded and their symbols tend to be cognitively poor. As a result, due to lack of
clarity, it is often difficult to understand the PL.

Patterns can relate to others in different ways. The most common relations in the
investigated PLs are dependency, usage and specialization. Most of the investigated
PLs include dependency relations. Dependency can be understood as a broad relation
and, if more specific relations are not defined, it can be not clear what dependency
really means. For instance, if a pattern A depends on a pattern B, it is not clear if A
depends on B because the solution given by A requires the solution given by B (thus, B
must be applied before A), or because B is part of the solution given by A. In both
cases, A depends on B, however, in the second case the dependency is, more specif-
ically, a composition relation. The investigated PLs often do not explicitly define the
different kinds of relations, making it difficult to understand relations among patterns
and, consequently, to properly select and apply them.

Defining groups is particularly important when defining large and complex PLs.
Groups can be represented in a transparent way (i.e., the patterns in a group are visible)
or as black boxes (i.e., a symbol represents a pattern group and it is not possible to see
the patterns inside it). The use of black boxes allows representing a PL at different
detail levels, contributing to its understanding. 54% of the investigated PLs use groups
to organize patterns. Only one of them use black boxes to organize the PL.

The investigated PLs use different types of models to represent their elements,
providing different views to ease understanding and using the PL. Structural models
present elements (e.g., pattern, patterns group) and their structural relations (e.g.,
dependency, composition). Process (or behavioral) models, in turn, present the possible
paths to be followed to apply the patterns. 92% of the investigated studies present only
one of these models (46% structural model and 46% process model). Only 8% of the
PLs consider both views, half of them using a single (hybrid) model to address
structural and process aspects, making it difficult for users to differentiate them.

Considering the panorama provided by the mapping study results, some gaps in the
visual notations used to represent PLs can be pointed out: (i) lack of a standard visual
notation; (ii) use of cognitively poor notations; (iii) lack of mechanisms to support
patterns selection; and (iv) lack of a complete view of the PL, addressing both struc-
tural and process aspects.

3 Methodological Approach

For developing this work, we followed a Design Science methodological approach [10].
The addressed problem is: How should we represent OPLs such that they become

effective in guiding the use of related OPs to develop new ontologies? The artifact to be
designed is a modeling language for representing OPLs. A first representation already
existed, the one used to represent the first versions of SP-OPL, E-OPL, ISP-OPL and
M-OPL. This representation was an informal extension of the UML activity diagram
(informal in the sense that there was not even a meta-model of it). Moreover, its
application in each OPL was slightly different one from another. Thus, this work started
by evaluating this representation to see whether it is effective in guiding the use of
related OPs to develop new ontologies. A first experiment was accomplished using
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ISP-OPL [13] aiming at evaluating how the guidance provided by ISP-OPL affects the
productivity of ontology engineers when developing domain ontologies for SE
sub-domains, and the quality of the resulting ontologies. Besides, research questions
regarding the visual notation used to represent ISP-OPL were also posed. The exper-
iment took place during the second semester of 2014, as part of the course “Ontologies
for Software Engineering”, an advanced course for graduate students in the Graduate
Program in Informatics at Federal University of Espírito Santo, in Brazil. 19 graduate
students with at least basic knowledge in conceptual modeling participated in the study.
Concerning aspects related to ISP-OPL visual notation, most participants considered
that it was easy to understand the OPL, but they pointed out problems related to some
of the used symbols, and even more problematic, they had difficulties in following the
paths in the OPL process, especially difficulties related to mandatory/optional paths.

Based on the results of this first experiment, we worked on changing some of the
symbols in the visual notation, and on establishing a clearer way to use them. Those
changes in the visual notation were applied in some of the OPLs existing up to that
moment (E-OPL, ISP-OPL and M-OPL). The versions of such OPLs presented in [7]
use this updated notation. Moreover, the updated visual notation was used to engineer
S-OPL [14], and to evaluate it, we accomplished another experiment. In this study,
S-OPL was used by 9 students to develop service ontologies for specific domains. The
study took place as part of the course “Ontology Engineering”, an advanced course for
graduate students in the Graduate Program in Informatics at Federal University of
Espírito Santo, in Brazil. After using S-OPL, the students were asked about benefits
and difficulties of using it. As benefits they pointed out that the use of an OPL con-
tributes to the to the quality of the resulting ontology and to the productivity of the
development process. As main difficulties, they highlighted: (i) the lack of information
about whether, or not, to follow the paths in the OPL process; (ii) difficulties to identify
the OPL main flow; (iii) the lack of explicit flow final nodes, indicating where the
process finishes; and (iv) problems with variant patterns. In parallel with these studies,
we developed the systematic mapping presented in Sect. 2.

Based on the findings of both the two experiments and the mapping, we decided to
develop a modeling language for representing OPLs, called OPL-ML. In such
endeavor, we started developing a meta-model, as its abstract syntax. Next, we relied
on the principles of the Physics of Notations (PoN) [8] for designing a cognitively
effective visual notation, and we followed the design process established in the
PoN-Systematized (PoN-S) approach [9] to develop its concrete syntax. After devel-
oping OPL-ML, we used it to reengineer S-OPL and evaluated it through an experi-
mental study. Aspects regarding the use of PoN-S to develop OPL-ML are discussed in
[9], and are out of the scope of this paper. Here, our focus is on OPL-ML, which is
presented next.

4 OPL-ML: Ontology Pattern Language Modeling Language

According to [15], a visual language consists of a set of graphical symbols (visual
vocabulary), a set of compositional rules for forming valid expressions (visual gram-
mar), and semantic definitions for each symbol (visual semantics). The set of symbols
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and compositional rules together form the visual (concrete) syntax. Graphical symbols
are used to represent semantic constructs, typically defined by a meta-model. An
expression in a visual notation is a diagram. Diagrams are composed of instances of
graphical symbols, arranged according to the rules of the visual grammar. In this paper,
we focus on the visual syntax of OPL-ML, and the meta-model that defines its con-
structs, which is shown in Fig. 1.

An OPL comprises both a structural model and a process. The OPL Structural
Model focuses on patterns and pattern groups. It is composed of OPL Structural
Elements, which can be of two types: Pattern and Pattern Group. A Pattern represents
an OP, while a Pattern Group is a way of grouping related OPs and other pattern
groups. Thus, a Pattern Group is composed of OPL Structural Elements. A special
type of pattern group is the Variant Pattern Group, which is a set of patterns that solve
the same problem, but each in a different way. Only one pattern from a Variant Pattern
Group can be used at a time. Patterns that compose a Variant Pattern Group are
variants of each other. Patterns can be composed of other patterns, and can specialize
other patterns. Patterns may also depend on other patterns, i.e., for applying a pattern,
another must be applied first. An OPL shall represent dependencies between patterns or
between a Pattern Group and a Pattern. The requires relationship captures this
dependency. Finally, a Pattern may require the application of a pattern from a Variant
Pattern Group.

Table 1 shows the concrete syntax for representing the elements of the OPL struc-
tural model. It is important to say that meta-model elements shown in gray in Fig. 1 do
not require a symbol, and thus are not in Table 1. Patterns are represented by rectangles,
which is the most common symbol used for representing patterns in SE pattern lan-
guages. Pattern Groups are represented by figures closed by blue straight solid lines
(solid polygons). For representing Variant Pattern Groups, the same notion was applied,
but now using red dashed lines. For allowing managing complexity in large diagrams, a

Fig. 1. OPL-ML meta-model.
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black box representation is also provided for pattern groups. These alternative forms are
represented by means of rectangles decorated by a rake-style icon ( ), indicating that this
element is detailed in another diagram. This icon is used in UML to represent that an
element represented by the decorated construct encapsulates further elements. Finally,
regarding relationships, the dependency relations requires and requires a pattern of,
both are represented by an arrow from the dependant to the dependee. For differentiating
between them, arrows representing the requires association are symbolized with solid
lines, in contrast to the dashed lines for the requires a pattern of association. This
decision is in line with the one of representing Pattern Groups using solid lines, and
Variant Pattern Groups using dashed lines. Pattern composition and pattern special-
ization are represented by the same symbols used in UML for aggregation and spe-
cialization, respectively.

The OPL Process comprises a set of actions devoted to select and apply the patterns,
and the control nodes that allow defining a workflow to navigate between the patterns.
The part of OPL-ML meta-model describing the OPL Process is an extension of a subset
of the UML’s meta-model regarding activity diagrams [16], and its concrete syntax is
based on the UML notation for activity diagrams. This benefits users who are familiar
with this notation. In Fig. 1, classes from the UML’s meta-model are shown in white.

An OPL Process is a subtype of (UML::) Activity specifying a behavior regarding
the application of OPs. This behavior is specified as a workflow connecting Pattern
Application Actions by means of Control Flows to other Pattern Application Actions
and Control Nodes. A Pattern Application Action is an (UML::) Action concerning a
pattern application, i.e. this action node refers to the application of a specific OP. For

Table 1. Symbols of the visual notation for OPL structural models.

Element Symbol 

Pattern 

Pattern Group (expanded format) 

Pattern Group (black box format) 

Variant Pattern Group (expanded format) 

Variant Pattern Group (black box format) 

Relation “requires” 

Relation “requires a pattern of” 

Composition relation 

Specialization relation 
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allowing modeling the workflow of the OPL Process, the following Control Nodes can
be used: Entry Point, End Point, Decision Node, Fork Node, and Join Node.

An Entry Node is a control node that acts as a starting point for executing the OPL
Process. It is a subtype of (UML::) Initial Node, and as such, shall not have any
incoming Control Flows. However, there is an important difference between Entry
Point and (UML::) Initial Node: in a UML activity diagram, if an activity has more than
one initial node, then invoking the activity starts multiple concurrent control flows, one
for each initial node [OMG, 2015]; in an OPL, if its OPL Process has more than one
Entry Point, this indicates that one and only one of the Entry Points should be selected as
the starting point. An End Point, like its super-type (UML::) Final Node, indicates a
point at which the workflow stops. Thus, it shall not have outgoing Control Flows.

A Decision Node is a control node that chooses one between the outgoing Control
Flows. It is a subtype of (UML::) Decision Node, but it presents a slightly different
semantics. OPL-ML’s Decision Node shall have at least one incoming Control Flow,
and more than one outgoing Control Flow. Guard conditions shall be specified to help
decide which Control Flow to follow. UML’s Decision Node, in turn, does not admit
multiple incoming Control Flows. We decided to admit multiple incoming Control
Flows in OPL-ML to not need to include UML’s Merge Node in OPL-ML meta-model.
As a consequence, the diagrams built using OPL-ML tend to become simpler.

Fork Node and Join Node are subtypes of their homonymous counterparts in
UML’s meta-model, and preserve the same semantics. Fork Node is a control node that
splits a flow into multiple concurrent flows. It shall have exactly one incoming Control
Flow and multiple outgoing Control Flows, which must be followed. Join Node is a
control node that synchronizes multiple flows. It shall have exactly one outgoing
Control Flow but may have multiple incoming Control Flows.

Like patterns, Patterns Application Actions can be grouped. A Pattern Application
Action Group groups a set of Patterns Application Actions, plus the Control Flows and
Control Nodes establishing the workflow inside the action group. Thus Pattern
Application Action Group is a subtype of (UML::) Activity Group, and as such, may be
composed by other Pattern Application Action Groups. A Pattern Application Action
Group should refer to a Pattern Group in the OPL Structural Model. When a Pattern
Application Action Group refers to a Variant Pattern Group, then it is said a Variant
Pattern Application Action Group. A Variant Pattern Application Action Group cap-
tures alternative Pattern Application Actions to be accomplished. Only one of them can
be selected. Thus, Variant Pattern Application Action Groups do not represent
workflows, and they do not admit Control Flows and Control Nodes inside them.

By developing the OPL Process meta-model as an extension of the UML’s
meta-model for activity diagrams, we could use the same concrete syntax for most of
its elements, namely: Pattern Application Action (UML::Action), Control Flow (UML::
Control Flow), Entry Point (UML::Initial Node), End Point (UML::Final Node),
Decision Node (UML::Decision Node), Fork Node (UML::Fork Node), and Join Node
(UML::Join Node). See these notations in [OMG, 2015]. Only for groups we decided
to make some extensions also in the concrete syntax.

Like in the case of the Structural Model, we decided to provide two ways to
represent groups: one as a black box, and the other in an expanded format. In the black
box representation, Pattern Application Action Groups are represented as UML::Call
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Behavior Actions with the adornment for calling activities, the rake-style symbol ( )
[16]. Besides, we suggest setting blue to the border line as a redundant coding [8].
Variant Pattern Application Action Groups are represented by the same symbol, but
with red dashed lines. In the expanded format, Pattern Application Action Groups are
represented by means of closed regions delimited by blue straight lines, with rounded
corners; while Variant Pattern Application Action Groups are represented by means of
closed regions delimited by red dashed lines, with rounded corners. Table 2 shows the
concrete syntax for representing (Variant) Pattern Application Action Groups.

5 OPL-ML Evaluation

To preliminary evaluate OPL-ML, we used it to reengineer the Service OPL (S-OPL)
[14]. Next, we discuss the main changes made during the S-OPL reengineering and
present some S-OPL fragments. The full specifications of the first and the current
version of S-OPL are available at https://nemo.inf.ufes.br/projects/opl/s-opl/.

(i) Separation of structural and behavior aspects: as previously discussed, different
models should be used to address structural and behavioral aspects of an OPL.
S-OPL was represented only by a process model. Thus, we created a structural
model for S-OPL. Figure 2 shows a fragment of the defined structural model.

(ii) Complexity management: for managing complexity, we added to S-OPL a
general behavior model (Fig. 3) in which patterns groups are presented in the
black box format, providing a clearer view of the whole process.

(iii) Creation of a main mandatory flow: in the S-OPL old version, the process
flow was defined mainly by optional flows (only some flows were mandatory).
Thus, when developing an ontology, the ontology engineer could stop following
the process at any point (except when there were mandatory flows to follow).
According to OPL-ML, a process must be followed from an entry point to an
end point. Considering that, we reengineered the S-OPL process creating a main

Table 2. Symbols of the visual notation for groups of pattern application actions.

Element Symbol 
Pattern Application Action Group (black box 

format)

Pattern Application Action Group (expanded 
format)

Variant Pattern Application Action Group 
(black box format) 

Variant Application Action Group (expanded 
format)
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flow to be followed according to the ontology engineer decisions until s/he
reaches an end point.

For creating the main flow, decision nodes were used to indicate optional flows.
Decision nodes make it clear that a decision must be taken by the engineer and that one
(and only one) of the output flows must be followed. Moreover, we changed the fork
node semantics. In the S-OPL old version, outputs of fork nodes were optional flows.
According to OPL-ML, outputs of fork nodes are mandatory flows, i.e., when fol-
lowing the input flow of a fork node, all its output flows must be followed. In order to
not interrupt the process main flow, we used joint nodes to converge the output flows
into a single one that take up the main flow. Finally, aiming to improve the process
flow, we made some changes in patterns grouping. Figure 4 shows a fragment of the

Fig. 2. Structural model of the service negotiation and agreement group.

Fig. 3. S-OPL process model (general view).

Fig. 4. Fragment of the old version of S-OPL process model.
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old version of the process model defined for the Service Negotiation and Agreement
group. Figure 5 presents the corresponding reengineered model.

After reengineering S-OPL, aiming to evaluate its new version, we performed a
study involving 6 of the 9 students that participated in the previous study with S-OPL.
The study goal was to evaluate: (i) if an OPL represented by using OPL-ML is easier to
understand, and (ii) if the S-OPL new version is better than the previous one. The study
procedure consisted of two steps. In the first step, the participants received the new
specification of S-OPL and analyzed it. The specification contained the process and
structural models, their descriptions, and the documentation of each pattern (the same
of the previous version). In the second step, they provided feedback about the new
version of S-OPL by filling a questionnaire containing two parts. The first one included
questions about the difficulty for understanding the OPL, especially the different
models representing structural and process aspects, and each one of the OPL symbols.
The possible answers used a Likert Scale: very hard, hard, neutral, easy, and very easy.
The second part concerned comparing the S-OPL new version with the previous one,
considering process clarity and ease of understanding, and support provided by the
structural model. Another questionnaire was applied to capture the participants’ profile,
analyzing their level of education, experience in conceptual modeling, experience in
ontology development, and experience with OPLs. The group of participants has,
mostly, medium experience (from one to three years) in conceptual modeling,
medium/low experience in ontologies development and low experience (less than one
year) with OPLs.

Concerning the OPL mechanism, one participant found it very easy, four found it
easy, and one was neutral. As for the OPL symbols, except by one participant, who
declared that it was difficult to understand variant patterns, all found easy or very easy
to understand the symbols and reported that the notation is clear.

Comparing the S-OPL new version with the previous one, five participants said that
in the new version the process is much clearer and one participant said that it is clearer.
The participants commented that the main flow defined in the process made it easier to
understand the process and follow it. Moreover, all participants found the new version
better than the previous one. They pointed out that the different abstraction levels
contribute to better understand the whole process, turning the process more intuitive

Fig. 5. Fragment of the reengineered S-OPL process model.
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and practical. Finally, five participants said that the structural model made it easier
understand and use S-OPL. One participant said that the structural model made it much
easier understanding and using S-OPL. Participants declared that the model served as a
map to guide users through patterns relations, minimizing the effort spent searching the
OPL textual specification.

The study results showed that an OPL modeled using OPL-ML is easier to
understand. Moreover, the understanding about the OPL improved when compared
with its previous representation. It is worthy noticing that the participants were not
much experienced with ontologies and OPLs. Even so, they found it easy to understand
the OPL. These results can be seen as initial evidences that OPL-ML is suitable for
modeling OPLs. However, there are some limitations that do not allow us to generalize
the results. As main limitations, we can point out: (i) the small number of participants
in the study; (ii) the study was performed in an academic environment; (iii) when
evaluating the new version of S-OPL, the participants had already used the S-OPL
previous version, thus, the acquired knowledge about S-OPL might have influenced the
understanding about its new version.

6 Related Works

As previously discussed, the use of OPLs is recent and the few works defining OPLs
were done by the same research group, the Ontology and Conceptual Modeling
Research Group (NEMO). This research group has proposed five OPLs [7]. In these
OPLs, extensions of UML activity diagrams are used to represent the OPL processes.
When comparing OPL-ML with the visual notation described in [7], the main similarity
is that both represent the OPL process by means of extensions to the UML’s activity
diagram. As for differences, several advances are introduced by OPL-UML.

First, the visual notation described in [7] is limited, being not able to cover all
aspects for properly representing an OPL. OPL-ML clearly defines the language
abstract and concrete syntaxes. The abstract syntax is defined by a meta-model and part
of it extends the UML meta-model for activity diagrams, including constructs not
considered in [7] (e.g., end point). As for the concrete syntax, it was defined by
following a systematic process applying the PoN principles, resulting in a cognitively
rich visual notation.

Second, the OPLs presented in [7] are represented only by a process model.
Structural aspects are not addressed, being difficult for users to identify relations
between the patterns. OPL-ML proposes the use of two different models for repre-
senting an OPL: the structural model, dealing with the OPL structural elements and the
relationships between them; and the process model, addressing the process to be fol-
lowed for selecting and applying the patterns. Separating these views in two types of
models contributes to better understand the OPL and the relationships between its
elements.

Third, OPL-ML allows managing complexity by using models at different
abstraction levels. A general model, using black box formats, can be created to rep-
resent a whole view of the OPL, while detailed models expand the black boxes and
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provide a detailed view of the OPL. By using this resource, large or complex OPLs can
be easier understood. The visual notation described in [7] does not provide this facility.

Finally, by using OPL-ML, a main flow is defined in the OPL process, making it
clear the paths (from beginning to end) to be followed by the ontology engineer
according to his/her decisions. In the OPLs presented in [7], the process does not have a
continuous flow and can be interrupted at any time.

As discussed in Sect. 2, the use of pattern languages (PLs) in Software Engineering
(SE) are much more mature than in Ontology Engineering. This fact motivated us to
use insight from SE PLs to define OPL-ML. However, despite of the use of PLs is
already consolidated in SE, there are still problems regarding their visual representa-
tion. For instance, considering the investigated software-related PLs, only two of them
use different models to address structural and behavioral aspects. In [17], Guerra et al.
propose a PL for organizing the internal structure of metadata-based frameworks,
which is represented by structural and navigation models. In [18], in turn, Zdun pro-
poses a PL for designing aspect languages and aspect composition frameworks. Pat-
terns and relationships between them are addressed by a relationship model, while a
feature model helps patterns selection according to the features to be considered when
designing frameworks. Concerning the structural model, Guerra et al. [17] address only
dependency relationships, while in [18] the types of relationships vary and are not
clear. As for the process model, the navigation model described in [17] presents several
sequences in which patterns can be applied. However, the visual notation is limited,
being not possible, for example, to identify where the process starts or ends and which
paths are mandatory. The feature model presented in [18], although can be helpful to
patterns selection, does not provide a process to be followed. Thus, the sequence in
which the patterns should be applied is not clear.

7 Final Considerations

As pointed by Blomqvist et al. [3], the works already done aiming to provide Ontology
Pattern Languages (OPLs) are the first steps towards developing an ontology pattern
representation language. In this paper, we take a step forward by providing a modeling
language for representing OPLs: OPL-ML. Such language presents as striking features
the following: (i) OPL-ML defines explicitly its abstract syntax by means of a
meta-model; (ii) OPL-ML concrete syntax is designed following Moody’s principles
for designing cognitively effective visual notations [8]; (iii) OPL-ML is designed
considering the results of a systematic mapping on visual notations for representing
Software Engineering pattern languages, and from experimental studies involving the
use of OPLs. We believe that the definition of a visual language for modeling OPLs
amplifies the available resources for ontology engineers to develop OPLs, increasing
productivity and contributing for advances in the area.

OPL-ML was used to reengineer S-OPL, a service OPL proposed in [14]. With
S-OPL new version in hands, we performed a study to get perceptions from the OPL
users. The findings indicate that OPL-ML use is viable and that it is capable of properly
representing OPLs. However, the evaluation carried out by now is limited. Thus, new
studies must be performed aiming to better evaluate OPL-ML. As future studies, we

OPL-ML: A Modeling Language 199



intend to reengineer the OPLs already developed at NEMO, develop new OPLs by
using OPL-ML and evaluate the use of OPL-ML by other people, who can provide new
feedback regarding OPL-ML use and effectiveness.

Besides, we have been working on the development of a supporting tool to aid
ontology engineers in creating OPLs and using them to build ontologies.

Finally, although OPL-ML has been proposed to represent OPLs, we believe that it
can be adapted and used to represent pattern languages in general. In this sense, we
intend to investigate how to generalize OPL-ML, maybe including other elements
typically used in other Software Engineering pattern languages.
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