Chapter 9
Music Emotion Maps in the Arousal-Valence
Space

9.1 Introduction

Emotions are a dominant element in music, and they are the reason people listen
to music so often [81]. Systems searching musical compositions on Internet data-
bases more and more often add an option of selecting emotions to the basic search
parameters, such as title, composer, genre, etc. [40, 85].

The emotional content of music is not always constant, and even in classical music
or jazz changes often. Analysis of emotions contained in music over time is a very
interesting aspect of studying the content of music. It can provide new knowledge on
how the composer emotionally shaped the music or why we like some compositions
more than others.

9.2 Related Work

Music emotion recognition concentrates on static or dynamic changes over time.
Static music emotion recognition uses excerpts from 15 to 30 seconds and omits
changes in emotions over time. It assumes the emotion in a given segment does not
change. A regression approach and static emotion recognition was presented in [60,
109, 119].

Dynamic music emotion recognition analyzes changes in emotions over time.
Methods for detecting emotions using a sliding window are presented in [32, 34, 51,
63, 96, 119]. Deng and Leung [16] proposed multiple dynamic textures to model
emotion dynamics over time. To find similar sequence patterns of musical emo-
tions, they used subsequence dynamic time warping for matching emotion dynamics.
Aljanaki et al. [3] investigated how well structural segmentation explains emotion
segmentation. They evaluated different unsupervised segmentation methods on the
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task of emotion segmentation. Imbrasaite et al. [46] and Schmidt et al. [95] used
Continuous Conditional Random Fields for dimensional emotion tracking.

In our study, we used dynamic music emotion recognition with a sliding window.
We experimentally selected a segment length of 6 sec. as the shortest period of time
after which a music expert can recognize an emotion.

The elements of music that affect the emotions are timbre, dynamics, rhythm, and
harmony. One of the most important steps during building a system for automatic
emotion detection is feature extraction from audio files. The quality of these features
and connecting them with elements of music such as rhythm, harmony, melody and
dynamics, shaping a listener’s emotional perception of music, have a significant
effect on the effectiveness of the built prediction models.

Most papers, however, focus on studying features using a classification model
[35, 36, 73, 90, 100]. Music emotion recognition combining standard and melodic
features extracted from audio was presented by Panda et al. in [73]. Song et al. [100]
explored the relationship between musical features extracted by MIRtoolbox [53] and
emotions. They compared the emotion prediction results for four sets of features:
dynamic, rhythm, harmony, and spectral. Baume et al. [6] evaluated different types
of audio features using a five-dimensional support vector regressor in order to find
the combination that produces the best performance.

9.3 Music Data

The data set that was used in this experiment consisted of 324 six-second fragments
of different genres of music: classical, jazz, blues, country, disco, hip-hop, metal,
pop, reggae, and rock. The tracks were all 22050 Hz mono 16-bit audio files in .wav
format. The data set has been described in detail in Chap. 3 Sect. 3.3.

During the annotation of music samples, we used Russell’s two-dimensional
valence-arousal (V-A) model to measure emotions in music [88]. The model con-
sists of two independent dimensions of valence (horizontal axis) and arousal (vertical
axis). The annotation process of music files has been described in Chap. 3 Sect. 3.3.3.
The amount of examples in the quarters on the A-V emotion plane is presented in
TableO.1.

Table 9.1 Amount of examples in quarters on A-V emotion plane

Quarter abbreviation Arousal-Valence Amount of examples
Q1 High-High 93
Q2 High-Low 70
Q3 Low-Low 80
Q4 Low-High 81
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9.4 Feature Extraction

For feature extraction, we used Essentia [8] and Marsyas [106], which are tools
for audio analysis and audio-based music information retrieval. Marsyas framework
has been described in Chap.6 Sect.6.2.2. Essentia extractors have been described in
Chap. 6 Sect.6.2.1.

The previously prepared, labeled by A-V values, music data set served as
input data for tools used for feature extraction. The obtained lengths of feature vec-
tors, dependent on the package used, were as follows: Marsyas—124 features, and
Essentia—3530 features.

9.5 Regressor Training

We built regressors for predicting arousal and valence using the WEKA package
[114]. For training and testing, the following regression algorithms were used:
SMOreg, REPTree, M5P. SMOreg algorithm [99] implements the support vector
machine for regression. REPTree algorithm [41] builds a regression tree using vari-
ance and prunes it using reduced-error pruning. M5P implements base routines for
generating M5 Model trees and rules [83, 110].

Before constructing regressors, arousal and valence annotations were scaled
between [—0.5, 0.5]. We evaluated the performance of regression using the tenfold
cross validation technique (CV-10).

The highest values for determination coefficient (R?) were obtained using SMOreg
(implementation of the support vector machine for regression) [99]. After applying
attribute selection (attribute evaluator: Wrapper Subset Evaluator [50], search method:
Best First [117]), we obtained R?> = 0.79, for arousal and R?> = 0.58 for valence.
Mean absolute error reached values M AE = 0.09 for arousal and MAE = 0.10 for
valence (Table9.2).

Predicting arousal is a much easier task for regressors than valence in both cases
of extracted features (Essentia, Marsays) and values predicted for arousal are more
precise. R? for arousal were comparable (0.79 and 0.73), but features which describe
valence were much better using Essentia for audio analysis. The obtained R> = 0.58
for valence are much higher than R?> = 0.25 using Marsyas features. In Essentia,

Table 9.2 R? and M AE obtained for SMOreg

Essentia Marsyas

Arousal Valence Arousal Valence

R? MAE | R? MAE | R? MAE | R? MAE
Before attribute selection| 0.48 0.18 0.27 0.17 0.63 0.13 0.15 0.16
After attribute selection | 0.79 0.09 0.58 0.10 0.73 0.11 0.25 0.14



http://dx.doi.org/10.1007/978-3-319-70609-2_6
http://dx.doi.org/10.1007/978-3-319-70609-2_6

98 9 Music Emotion Maps in the Arousal-Valence Space

tonal and rhythm features greatly improve prediction of valence. These features are
not available in Marsyas and thus Essentia obtains better results.

One can notice the significant role of the attribute selection phase, which generally
improves prediction results. Marsyas features before attribute selection outperform
Essentia features for arousal detection. R> = 0.63 and M AE = 0.13 by Marsyas are
better results than R? = 0.48 and M AE = 0.18 by Essentia. However, after selecting
the most important attribute, Essentia turns out to be the winner with R? = 0.79 and
MAE = 0.09.

9.6 Evaluation of Different Combinations of Feature Sets

During this experiment, we evaluated the effect of various combinations of Essentia
feature sets—low-level (L), thythm (R), tonal (T)—on the performance obtained for
SMOreg algorithm. We evaluated the performance of regression using the tenfold
cross validation technique (CV-10). We also used attribute selection with Wrapper
Subset Evaluator and search method Best First.

The obtained results, presented in Table9.3, indicate that the use of all groups
(low-level, rhythm, tonal) of features resulted in the best performance or equal to
best performance by combining feature sets. The best results have been marked in
bold. Detection of arousal using the set L+R (low-level, rhythm features) has equal
results as using all groups. Detection of valence using the set L+T (low-level, tonal
features) has only little worse results than using all groups.

The use of individual feature sets L, R or T did not achieve better results than their
combinations. Worse results were obtained when using only tonal features for arousal
(R?> = 0.53 and MAE = 0.14) and only rhythm features for valence (R> = 0.15
and MAE = 0.15).

Combining feature sets L+R (low-level and rhythm features) improved regres-
sor results in the case of arousal. Combining feature sets L+T (low-level and tonal
features) improved regressor results in the case of valence.

Table 9.3 RZ and M AE for arousal and valence obtained for combinations of feature sets

Feature set Arousal Valence
R? MAE R? MAE

L 0.74 0.10 0.49 0.12
R 0.68 0.11 0.15 0.15
T 0.53 0.14 0.48 0.12
L+R 0.79 0.09 0.40 0.12
L+T 0.74 0.10 0.56 0.10
R+T 0.74 0.11 0.52 0.11
All (L+R+T) 0.79 0.09 0.58 0.10
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In summary, we can conclude that low-level features are very important in the
prediction of both arousal and valence. Additionally, rhythm features are important
for arousal detection, and tonal features help a lot for detecting valence. The use of
only individual feature sets L, R or T does not give good results.

9.7 Selected Features Dedicated to the Detection of Arousal
and Valence

Table 9.4 presents 2 sets of selected features, which using the SMOreg algorithm
obtained the best performance by detecting arousal (Sect.9.6). Features marked in
bold are in both groups. Notice that after adding tonal features T to group L+R,
some of the features were replaced by others and some remained without changes.
Features found in both groups seem to be particularly useful for detecting arousal.
Different statistics from spectrum and mel bands turned out to be especially useful:
Spectral Energy, Entropy, Flux, Rolloff, Skewness, and Melbands Crest, Kurtosis.
Also, three rhythm features belong to the group of more important features because
both sets contain: Danceability, Onset Rate, Beats Loudness Band Ratio.

Table 9.5 presents 2 sets of selected features, which using the SMOreg algorithm
obtained the best performance by detecting valence (Sect. 9.6). Particularly important
low-level features, found in both groups, were: Spectral Energy and Zero Crossing
Rate, as well as Mel Frequency Cepstrum Coefficients (MFCC) and Gammatone
Feature Cepstrum Coefficients (GFCC). Particularly important tonal features, which
describe key, chords and tonality of a musical excerpt were: Chords Strength, Har-
monic Pitch Class Profile Entropy, Key Strength.

Comparing the sets of features dedicated to arousal (Table9.4) and valence
(Table9.5), we notice that there are much more statistics from spectrum and mel
bands in the arousal set than in the valence set. MFCC and GFCC were useful for
detecting valence and were not taken into account for arousal detection.

Features that turned out to be universal, useful for detecting both arousal and
valence, by using all features (L+R+T), are:

Melbands Kurtosis (L),

Melbands Skewness (L),

Spectral Energy (L),

Beats Loudness Band Ratio (R),

Chords Strength (T),

Harmonic Pitch Class Profile (HPCP) Entropy (T),
Key Strength (T),

Chords Histogram (T).
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Table 9.4 Selected features used for building the arousal regressor

Features from set L+R+T

Features from set L+R

Average Loudness (L)

Barkbands Kurtosis (L)

Barkbands Spread (L)

Dissonance (L)

Melbands Crest (L)

Erbbands Flatness (L)

Melbands Flatness (L)

Erbbands Skewness (L)

Melbands Kurtosis (L) Melbands Crest (L)
Melbands Skewness (L) Melbands Kurtosis (L)
Melbands Spread (L) Silence Rate (L)
Spectral Energy (L) Spectral Energy (L)
Spectral Entropy (L) Spectral Entropy (L)
Spectral Flux (L) Spectral Flux (L)
Spectral Kurtosis (L) Spectral Rolloff (L)
Spectral Rolloff (L) Spectral Skewness (L)
Spectral Skewness (L) Beats Count (R)

Beats Per Minute (BPM) Histogram (R) Beats Loudness (R)
BPM of the Most Salient Tempo (R) Danceability (R)
Danceability (R) Onset Rate (R)

Onset Rate (R) Beats Loudness Band Ratio (R)
Beats Loudness Band Ratio (R)

Chords Strength (T)

Harmonic Pitch Class Profile Entropy (T)

Key Strength (T)

Chords Histogram (T)

Table 9.5 Selected features used for building the valence regressor

Features from set L+R+T

Features from set L+T

High Frequency Content (L)

Melbands Crest (L)

Melbands Kurtosis (L)

Melbands Spread (L)

Melbands Skewness (L)

Pitch Salience (L)

Spectral Energy (L)

Silence Rate (L)

Zero Crossing Rate (L)

Spectral Centroid (L)

GFCC (L) Spectral Energy (L)
MFCC (L) Spectral Spread (L)
Beats Loudness (R) Zero Crossing Rate (L)
Onset Rate (R) GFCC (L)

Beats Loudness Band Ratio (R) MFCC (L)

Chords Strength (T) Chords Strength (T)
HPCP Entropy (T) HPCP Entropy (T)
Key Strength (T) Key Strength (T)
Chords Histogram (T) Key Scale (T)
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9.8 Emotion Maps

The result of emotion tracking are emotion maps. We used the best obtained models
for predicting arousal and valence to analyze musical compositions. The composi-
tions were divided into 6-second segments with a 3/4 overlap. For each segment,
features were extracted and models for arousal and valence were used.

The predicted values are presented in the figures in the form of emotion maps.
For each musical composition, the obtained data was presented in 4 different ways:

1. Arousal-Valence over time;
2. Arousal-Valence map;

3. Arousal over time;

4. Valence over time.

Simultaneous observation of the same data in 4 different projections enabled us
to accurately track changes in valence and arousal over time, such as tracking the
location of a prediction on the A-V emotion plane.

9.8.1 Emotion Maps of Two Compositions

Figures 9.1 and 9.2 show emotion maps of two compositions, one for the song Let It
Be by Paul McCartney (The Beatles) and the second, Piano Sonata No. 8 in C minor,
Op. 13 (Pathetique), 2nd movement, by Ludwig van Beethoven.

Emotion maps present two different emotional aspects of these compositions.
The first significant difference is distribution on the quarters of the Arousal-Valence
map. In Let It Be (Fig.9.1b), the emotions of quadrants Q4 and Q1 (high valence
and low-high arousal) dominate. In Sonata Pathetique (Fig.9.2b), the emotions of
quarter Q4 (low arousal and low valence) dominate with an incidental emergence of
emotions of quarter Q3 (low arousal and low valence).

Another noticeable difference is the distribution of arousal over time. Arousal in
Let It Be (Fig.9.1c¢) has arising tendency over time of the entire song, and varies from
low to high. In Sonata Pathetique (Fig.9.2c¢), in the first half (s. 0—-160) arousal has
very low values, and in the second half (s. 160-310) arousal increases incidentally
but remains in the low value range.

The third noticeable difference is the distribution of valence over time. Valence
in Let It Be (Fig.9.1d) remains in the high (positive) range with small fluctuations,
but it is always positive. In Sonata Pathetique (Fig.9.2d), valence, for the most part,
remains in the high range but it also has several declines (s. 90, 110, 305), which
makes valence more diverse.

Arousal and valence over time were dependent on the music content. Even in a
short fragment of music, these values varied significantly. From the course of arousal
and valence, it appears that Let It Be is a song of a decisively positive nature with
a clear increase in arousal over time, while Sonata Pathetique is mostly calm and
predominantly positive.
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a). Arousal-Valence over time (3D)

b). Arousal-Valence map
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Fig. 9.1 A-V maps for the song Let It Be by Paul McCartney (The Beatles)
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Fig. 9.2 A-V maps for Piano Sonata No. 8 in C minor, Op. 13 (Pathetique), 2nd movement, by
Ludwig van Beethoven
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9.8.2 Features Describing Emotion Maps

To analyze and compare changes in arousal and valence over time (time series), we
proposed the following parameters:

. Mean value of arousal,

. Mean value of valence,

. Standard deviation of arousal,

. Standard deviation of valence;

. Mean of derivative of arousal,

. Mean of derivative of valence;

. Standard deviation of derivative of arousal;

. Standard deviation of derivative of valence;

. Quantity of changing sign of arousal QCA—describes how often arousal changes
between top and bottom quarters of the A-V emotion model;

. Quantity of changing sign of valence QCV—describes how often valence
changes between left and right quarters of the A-V emotion model,

11. QCE—is the sum of QCA and QCV;

12. Percentage representation of emotion in 4 quarters (4 parameters).
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Analysis of the distribution of emotions over time gives amuch more accurate view
of the emotional structure of a musical composition. It provides not only information
on which emotions are dominant in a composition, but also how often they change,
and their tendency. The presented list of features is not closed, we will search for
additional features in the future.

9.8.3 Comparison of Musical Compositions

Another experiment was to compare selected well-known Ludwig van Beethoven’s
Sonatas with several of the most famous songs by The Beatles. We used nine musical
compositions from each group for the comparison (Table 9.6). This experiment did
not aim to compare all the works of Beethoven and The Beatles, but only to find the
rules and most important features distinguishing these 2 groups.

Each sample was segmented and arousal and valence were detected. Then, 15
features, which were presented in the previous section, were calculated for each
sample. We used the PART algorithm [24] from the WEKA package [114] to find
the decision-making rules differentiating the two groups.

It turned out that the most distinguishing feature for these two groups of musical
compositions was the Standard deviation of valence. It was significantly smaller in
The Beatles’ songs than in Beethoven’s compositions (Fig.9.3). Standard deviation
of valence reflects how big deviations were from the mean. The results show that in
Beethoven’s compositions valence values were much more varied than in the songs
of The Beatles.
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Table 9.6 List of musical compositions

L. v. Beethoven’s Sonatas The Beatles
Sonata Appassionata, part 1 Hey Jude
Sonata Appassionata, part 2 P.S.ILove You
Sonata Appassionata, part 3 While My Guitar Gently Weeps
Sonata Waldstein, part 1 T’1l Follow The Sun
Sonata Waldstein, part 2 It’s Only Love
Sonata Waldstein, part 3 Yesterday
Sonata Pathetique, part 1 Michelle
Sonata Pathetique, part 2 Girl
Sonata Pathetique, part 3 Let It Be
Fig. 9.3 Box plot of Standard deviation of valence
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To find another significant feature in the next stage, we removed the characteristic
that we found previously (Standard deviation of valence) from the data set. Another
significant feature was Standard deviation of arousal. In Beethoven’s compositions,
the values of the Standard deviation of arousal were much greater than in the Beatles’
songs (Fig.9.4). This proves the compositions have a greater diversity of tempo and
volume.

In the next analogous stage, the feature we found was Standard deviation of
derivative of arousal. Tt reflects the magnitude of changes in arousal between the
studied segments. We found higher values of Standard deviation of derivative of
arousal in Beethoven’s compositions (Fig.9.5).

An example of a feature that is unsuitable for differentiating between two ex-
amined groups of compositions is presented in Fig.9.6. Overlapping values of the
feature Percentage representation of emotion e4, obtained for compositions by The
Beatles and Beethoven, cause that the usefulness of this feature to differentiate the
way emotions are shaped in the studied groups is small.
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Fig. 9.4 Box plot of
Standard deviation of
arousal in The Beatles” and
in Beethoven’s compositions

Fig. 9.5 Box plot of
Standard deviation of
derivative of arousal in The
Beatles’ and in Beethoven’s
compositions

Fig. 9.6 Box plot of
Percentage representation of
emotion e4 (relaxed) in The
Beatles’ and in Beethoven’s
compositions
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The interesting thing is that in the group of the most important distinguishing
features we did not find features describing the emotion type (Mean value of arousal,
Mean value of valence, or Percentage representation of emotion in 4 quarters). This
is confirmed by the fact that we cannot assign common emotions to the different
sample groups (Beethoven, The Beatles); in all groups, we have emotions from the
four quadrants of the emotion model.

We can conclude that features that better distinguish between the two groups of
compositions were features pertaining to changes in emotions and their distribution
in the musical compositions.

9.9 Conclusions

In this chapter, we presented the detection of emotions as a problem of regression.
The result of applying regressors are emotion maps of the musical compositions.
Conducting experiments required the construction of regressors, attribute selection,
and analysis of selected musical compositions.

Emotion maps provide new knowledge about the distribution of emotions in musi-
cal compositions, and knowledge that had only been available to music experts until
this point. The proposed parameters describing emotions can be used in the construc-
tion of a system that can search for songs with similar emotions. They describe in
more detail the distribution of emotions, their evolution, frequency of changes, etc.

In this chapter, we also studied the usefulness of audio features during emotion
detection. Different feature sets were used to test the performance of built regres-
sion models intended to detect arousal and valence. We examined the influence of
different feature sets—low-level, rhythm, tonal, and their combination—on arousal
and valence prediction. The use of a combination of different types of features sig-
nificantly improved the results compared with using just one group of features. We
found and presented features particularly dedicated to the detection of arousal and
valence separately, as well as features useful in both cases. We can conclude that
low-level features are very important in the prediction of both arousal and valence.
Additionally, rhythm features are important for arousal detection, and tonal features
help a lot for detecting valence.

The obtained results confirm the point of creating new features of middle and
higher levels that describe elements of music such as rhythm, harmony, melody,
and dynamics shaping a listener’s emotional perception of music. These features
can have an affect on improving the effectiveness of automatic emotion detection in
music files.
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