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Foreword

More and more multimedia systems use emotions as a factor in their practical
applications. They try to recognize emotions in all forms of content in which
humans are emotionally involved—in other words, in texts, music, or films. An
example of such solutions is giant music libraries available via the Internet with
music search systems using various criteria. Emotions turned out to be one of the
more attractive and novel criteria for searching them. Just searching for composi-
tions by title, composer and/or genre was not enough, and adding emotions as an
option improved the attractiveness and usefulness of the search systems.

To be able to index music files in terms of emotions, they first have to be
identified. Music emotion recognition (MER) is an interdisciplinary problem that
affects such fields as signal processing, machine learning, psychology, music the-
ory, and practice. MER requires researchers to be familiar with various distant
fields, which on one hand is a complex task and on the other tremendously exciting.

This book presents particular issues that pertain to the creation of a music
emotion detection system, such as: deciding on an emotion model, creating ground
truth data, extracting and selecting features, and constructing a prediction model.
The author focused on content-based MER, i.e., on analyzing the structures con-
tained in music files and finding a relationship with emotions. He focused on
examining audio as well as MIDI files and for each presented the relevant feature
sets that describe them.

In this work, MER is presented as a classification and regression problem, which
is closely connected with the selected emotion model: categorical and dimensional,
respectively. Taking into consideration the way humans perceive emotions, the
author decided to focus on perceived emotions in music and not felt emotions.
During training data construction, he takes advantage of musicians’ knowledge who
expressed their opinions on the emotions they observed within musical excerpts.
The author takes the reader through the specific stages of the emotion recognition
system construction and presents the path from music files to the emotion maps
created from them, which visualize emotion distribution over time. The book also
puts forth practical applications of automatic emotion detection that were tested
experimentally.
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Emotions in music are very much connected with humans; we could say that
they have a very human nature. They accompany man while composing, per-
forming, or listening to music. Let us hope that computer systems evaluating
emotions will not replace humans in creating them, but will only aid us in better
understanding their relationship with music.

This book can be seen as a source of information for scientists, academicians,
teachers, and students involved in constructing automatic emotion detection sys-
tems, as well as musicologists studying and analyzing musical compositions.
Additionally, it can serve as an inspiration for other similar experiments conducted
with the aim of analyzing emotion distribution in music.

Zbigniew W. Ras
Professor & KDD Lab Director

University of North Carolina Charlotte, USA
Professor, Polish-Japanese Academy of Information

Technology PJAIT
Warsaw, Poland
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Preface

This book presents the most important issues with automated systems for music
emotion recognition. These problems include emotion representation, annotation of
music excerpts, feature extraction, and machine learning. The book concentrates on
presenting content-based analysis of music files, which automatically analyzes the
structures of a music file and annotates this file with the perceived emotions.
Emotion detection in MIDI and audio files is presented.

In the experiments, the categorical and dimensional approaches were used, while
for music file annotation, the knowledge and expertise of music experts with a
university music education. The built automatic emotion detection systems enable
the indexing and subsequent searching of music databases according to emotion.
The obtained emotion maps of musical compositions provide new knowledge about
the distribution of emotions in music and can be used to compare the distribution of
emotions in different compositions as well as for emotional comparison of different
interpretations of one composition.

Białystok, Poland Jacek Grekow
May 2017
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Chapter 1
Introduction

1.1 Motivation

Music and emotions have always been interwoven. Would we still listen to music
if it didn’t affect us emotionally? Would a composer create music without wanting
to express emotions? Emotion is one of the main elements considered when people
listen to music as well as when they create it.

Through the development of computer technology, particularly machine learning
and content analysis, automatic emotion detection inmusic files has become possible.
Once taught to recognize emotions, computers can exceed human capabilities in
the quantity and accuracy of performed analyses of compositions. More and more
frequently, systems that search Internet music databases have been adding the select
an emotion option to the basic search parameters, which include such things as title,
composer, genre, etc.

As a professional musician, I have always been fascinated with expressing emo-
tions through music. Also, analysis of musical compositions taking emotions into
account provides us with interesting new insights into their construction. How did,
Beethoven, for example, shape the emotions of his compositions so that they are
now considered masterpieces? How do the compositions of one composer differ
emotionally from another? Why do some compositions affect us with a whole range
of emotions while others only one? Can the way an emotion is shaped over time
in a musical composition be seen and visualized? These are the questions I tried to
answer in this work.

The aim of this book is to present the stages of building automated systems for
music emotion recognition. This includes conducting experiments on various music
file formats and using different approaches, in the direction of creating emotionmaps
ofmusical pieces. Another objective is to indicate some uses for the obtained emotion
maps, in the form of systems detecting patterns in the course of emotions or systems
for comparing musical pieces, taking into account the shaping of the emotions.

© Springer International Publishing AG 2018
J. Grekow, From Content-Based Music Emotion Recognition to Emotion
Maps of Musical Pieces, Studies in Computational Intelligence 747,
https://doi.org/10.1007/978-3-319-70609-2_1
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2 1 Introduction

This book presents the particular stages of my research on emotion detection
in music. At first, I studied emotions in MIDI files using the categorical approach,
which was connected with creating my own MIDI features for detecting emotions.
Then, I conducted experiments on recognizing emotion classes in audio files with
features extracted using audio analysis tools tailored toMusic Information Retrieval.
The next stage was applying the dimensional approach to studying audio files and the
creation of emotion maps on the arousal-valence emotion plane, which visualized
the emotional structure of musical pieces over time. The results of the last stages
introduce new, and nowhere before presented by other authors, research on com-
paring different performances of the same composition using emotion tracking, and
finding performances that aremore and less similar. The applications of the presented
emotion maps of music files can vary widely, and this work does not exhaust them
all, but just initiates them.

1.2 Organization of This Book

This book is divided into three parts. Part I focuses on representations of emotions in
music as well the process of creating music data sets. The content presented in this
part is intensively used in the remaining two parts, devoted to emotion detection in
MIDI files in Part II and emotion detection in audio files in Part III.

In Chap.2, I explain two popular approaches used do describe emotions, categori-
cal and dimensional.Differentmodels based on a discrete number of classes aswell as
models specifying emotion type using an axis on the emotional space are presented.
The selected emotion models discussed here, which include four basic emotions—
happy, angry, sad and relaxed—in the categorical approach and Russell’s model in
the dimensional, were then used in later experiments.

InChap.3, I present the process of creating ground truth data for emotion detection
in MIDI and audio files. The process of music file annotation by music experts with
a university music education is described. The collected ground truth is used in the
remaining chapters.

Chapter 4 opens Part II, which focuses on emotion detection in MIDI files. This
chapter presents a set of features extracted from MIDI files, assembled into four
groups: rhythm, harmony, harmony-rhythm, and dynamic. It also introduces feature
calculationmethods and their potential to individually discriminate between emotion
categories.

Chapter 5 puts forward emotion detection in classical music pieces in MIDI for-
mat; a hierarchical categorical model of emotions consisting of two levels was used.
During feature selection, the most useful MIDI features were found for building a
classifier recognizing four emotions.

Chapter 6 is the first chapter of Part III, which presents issues connected with
emotion detection in audio files. This chapter focuses on some of the most relevant
audio features for emotion detection in music files. These features were divided into
three groups: timbre, rhythm, and tonal. Their meaning is presented and an analysis

http://dx.doi.org/10.1007/978-3-319-70609-2_2
http://dx.doi.org/10.1007/978-3-319-70609-2_3
http://dx.doi.org/10.1007/978-3-319-70609-2_4
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1.2 Organization of This Book 3

of the distribution of their values for audio excerpts labeled using four basic emotions
was carried out.

In Chap.7, I conducted experiments for detecting emotions in audio files using
the categorical approach. I built classifiers for different combinations of feature sets,
enabling distinguishing the most useful ones for individual emotions. The result of
emotion tracking in music files is emotion maps, which visualize the distribution of
four emotions over time.

Chapter 8 proposes a system for the analysis of emotions contained within radio
broadcasts, which is a practical application of the categorical approach for emotion
detection in audio files from the previous chapter. The obtained results provide a
new, interesting view of the emotional content of radio station broadcasts.

Chapter 9 focuses on building emotion maps of musical compositions using the
dimensional approach. Emotion recognition was treated as a regression problem,
and a two-dimensional valence-arousal model was used to measure emotions. I also
examined the influence of different audio feature sets—low-level, rhythm, tonal, and
their combination—on arousal and valence prediction. On the basis of the created
emotion maps, I propose selected features to analyze and compare musical compo-
sitions taking into account changes in arousal and valence over time.

Chapter 10 describes the final, most complex system for comparative analysis of
musical performances by using emotion tracking. It is an example of applying the
dimensional approach for emotion detection in audio files. Here, we discover which
performances of the same composition are more similar and which are quite distant
in terms of the shaping of arousal and valence over time.

http://dx.doi.org/10.1007/978-3-319-70609-2_7
http://dx.doi.org/10.1007/978-3-319-70609-2_8
http://dx.doi.org/10.1007/978-3-319-70609-2_9
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Chapter 2
Representations of Emotions

2.1 Perception of Emotions

Emotions are a dominant element in music, and they are the reason people listen to
music so often. We can ask ourselves the question: What can be the possible per-
ception of emotions while listening to music? The psychologist Gabrielsson in his
work [25] made a distinction between emotion perception into perceived and felt
(induced) emotions. In the case of the former, we can perceive emotional expression
in music without necessarily being affected ourselves; while in the latter, we have
an actual emotional response to the music. Perceived emotion is the emotion recog-
nized in the music, and induced emotion is the emotion experienced by the listener.
Perceived and felt emotions are two alternatives that were the focus of psychology
papers, such as those by Juslin and Laukka [48] and by Vuoskoski [108].

In our own work analyzing music recordings, we consider perceived emotion in
music. During our experiments, experts with a universitymusic educationwere asked
to describe the emotions they perceived in music fragments and their opinions were
then used to build a model of emotion prediction in music recordings.

2.2 Categorical Approach

Music emotion detection studies are mainly based on two popular approaches: cat-
egorical or dimensional. In the first, emotions are described with a discrete number
of classes, affective adjectives, and in the second emotions are identified by axes. In
the categorical approach, there are many concepts about class quantity and grouping
methods. One of the first psychology papers that focused on finding and group-
ing terms pertaining to emotions was by Hevner [42]. As a result of the conducted
experiment, there was a list of 66 adjectives arranged into eight groups distributed
on a circle (Fig. 2.1). Adjectives inside a group are close to each other, the nature of

© Springer International Publishing AG 2018
J. Grekow, From Content-Based Music Emotion Recognition to Emotion
Maps of Musical Pieces, Studies in Computational Intelligence 747,
https://doi.org/10.1007/978-3-319-70609-2_2
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Fig. 2.1 Hevner’s adjectives arranged in eight groups [42]

adjacent groups is evolving, and opposite groups on the circle are the furthest apart by
emotion. Hevner’s model was then modified by Farnsworth [23] and Schubert [97],
who decreased the number of adjectives to 50 and 46, grouped them into nine groups.

Another interesting and important concept of finding the category of an emotion
is the concept of basic emotion presented by Ekman [21, 22], which was developed
for facial expression. Ekman describes features that enable differentiating basic emo-
tions, which are:

• happiness,
• sadness,
• anger,
• fear,
• disgust,
• and surprise.

Ekman conducted experiments proving that facial expressions of basic emotions
are cross-cultural. Johnson-Laird and Oatley [47] presented a somewhat smaller
group of basic emotions: happiness, sadness, anger, fear, and disgust.
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In the community ofMusic Information Retrieval Evaluation eXchange (MIREX)
for automatic music mood classification, five mood clusters were used for song
categorization [43]:

• Cluster 1 (passionate, rousing, confident, boisterous, rowdy);
• Cluster 2 (rollicking, cheerful, fun, sweet, amiable/good natured);
• Cluster 3 (literate, poignant, wistful, bittersweet, autumnal, brooding);
• Cluster 4 (humorous, silly, campy, quirky, whimsical, witty, wry);
• Cluster 5 (aggressive, fiery, tense/anxious, intense, volatile, visceral).

Hu et al. in [44] indicates, however, that the clusters might not be optimal and
noticed some semantic overlap; similar findings were noted by Chen et al. [14].
The research carried out by Laurier et al. [55, 56] indicates deficiencies in this
categorization, for example: experiments found that Cluster 1 and Cluster 5 are quite
similar.

A popular emotion set used to categorize emotions in music turned out to be a
collection consisting of 4 classes: happy, angry, sad, and relaxed. It corresponds to
the four quarters of Russell’s model [88], which were formed by dividing a plane by
two perpendicular axes: arousal and valence. These values clearly define a point on
the plane corresponding to a specific emotion and locate it on one of four quarters
of Russell’s model. The basic classes of emotions are assigned to the quarters as
follows:

• happy—arousal high, valence high;
• angry—arousal high, valence low;
• sad—arousal low, valence low;
• relaxed—arousal low, valence high.

The selection of four categories of emotions also refers to the theory of basic
emotions presented by Ekman [21]. The four categories are representatives of the
main emotions from each of the quarters.

A significant disadvantage of the categorical approach is that the number of emo-
tions and their shades perceived in music is much richer than the limited number
of categories of emotions. The categorical approach has poorer resolution, by using
the categories, we simplify the description of emotions in music, which facilitates
understanding the character of the emotions and provides only a general overview
of the emotions in music. One category contains an entire set of various shades of
emotions. The smaller the number of groups in the categorical approach, the greater
the simplification.

In this work, a set of four basic emotions: happy, angry, sad and relaxed, corre-
sponding to the four quarters of Russell’s model, were used for the analysis of music
recordings using the categorical approach.
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2.3 Dimensional Approach

In the dimensional approach, emotions are identified on the basis of their location in
a space with a small number of emotional dimensions. In this way, the emotion of a
song is represented as a point on an emotion space.

The two-dimensional circumplex model of emotion, which uses the two dimen-
sions of arousal and valence, was presented by Russell in [88]. Arousal could be high
or low and valence positive or negative (Fig. 2.2). In this model, all emotions can be
understood as changing values of valence and arousal.

A variant of Russell’s model is Thayer’s model [103], in which the author sug-
gested that two basic dimensions of describing emotions are two separate arousal
dimensions: energetic arousal and tense arousal. In Thayer’s model, valence could be
explained as varying combinations of energetic arousal and tense arousal. Figure2.3
is a visual presentation of the two models.

An example of a model where an emotion is described using three dimen-
sions is Mehrabian and Russell’s Pleasure-Arousal-Dominance (PAD) model [67],
which was originally constructed to measure a person’s emotional reaction to the
environment. The three basic dimensions of emotions and their descriptions are:
pleasure—positive and negative affective states; arousal—energy and stimulation
level; dominance—a sense of control or freedom to act.

Fig. 2.2 Russell’s circumplex model [88]
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Fig. 2.3 Dimensional
models of emotions with
common basic emotion
categories overlaid. In
Russell’s model, the axes are
indicated by a solid line; in
Thayer’s model, the axes are
indicated by a dotted line
[20]

Experiments on automatic emotion prediction in music files using the PAD
(Pleasure-Arousal-Dominance) and PA (Pleasure-Arousal) models were conducted
by MacDorman et al. [64]. During file indexing, the authors noticed a significant
correlation between the values of arousal and dominance. Ultimately, they decided
to abandon the dominance dimension and use the Pleasure-Arousal model, because
the results indicate that the dominance dimension was not informative for music.

A comparison of the discrete and dimensional models of emotion in music is
presented by Eerola and Vuoskoski in [20], who used in their experiments five dis-
crete emotions (anger, fear, sadness, happiness, and tenderness) and three bipolar
dimensions (valence, energy arousal, and tension arousal). Linear mapping tech-
niques between the discrete and dimensional models revealed a high correspondence
along two central dimensions (valence and arousal). They concluded that the three
dimensions could be reduced to two without significantly reducing the goodness of
fit.

2.4 Summary

In our own work analyzing music recordings, we consider perceived emotion in
music. Two approaches, categorical and dimensional, were used in emotion detec-
tion experiments. Using the categorical approach, a set of four basic emotions—
happy, angry, sad and relaxed—were used. Using the dimensional approach, Rus-
sell’s model—the most universal and least complicated to apply—was used. The
four quarters of Russell’s model correspond to four categories of emotions used in
the categorical approach, which combines these two approaches to a certain degree.
The categorical approach is more general and simplified in describing emotions, and
the dimensional approach is more detailed and able to detect shades of emotions.



Chapter 3
Human Annotation

3.1 Introduction

Human annotation of music files is done in order to collect ground truth data, which
will then be used to build an automatic emotion detectionmodel. Annotationmethods
can be divided into two categories: expert-based and subject-based. Expert-based
methods take advantage of music experts, musicians, people who work with music
every day and most often play a musical instrument professionally. Music experts
were used to determine music files in [39, 63, 104, 113]. Subject-based methods use
people not connected professionally to music, non-musicians, and was employed
in [2, 44, 51, 52, 64, 77, 105]. Subject-based methods also include a method of
emotion tag collection directly from music websites such as Last.fm. This method
was used in [54, 89, 116]. Due to the fact that survey respondents’ answers can be
somewhat subjective, the responses are often averaged.

In this paper, we used the expert-based method; we surveyed the opinions of five
music experts, who are professionally involvedwithmusic every day, on the collected
music samples. Each annotator annotated all music excerpts in the data set.

3.2 Length of a Musical Segment

An important element before carrying out annotation of music samples is to decide
on the appropriate length of a musical fragment. The selected segment of a specific
length will then undergo human annotation and audio features will be extracted. So
what length should the indexed samples be or what is the shortest segment length
necessary for an expert to be able to identify the emotion of a given fragment?

Many papers on automatic emotion detection have assumed a segment length of
20–30s [44, 57, 63, 80, 104, 113]. These papers pertain to one static music emotion
recognition, which assumes the emotion in a given segment does not change. Papers
focusing on analyzing changes in emotions over time often use segments that are 1 s
long [4, 51, 96, 119].

© Springer International Publishing AG 2018
J. Grekow, From Content-Based Music Emotion Recognition to Emotion
Maps of Musical Pieces, Studies in Computational Intelligence 747,
https://doi.org/10.1007/978-3-319-70609-2_3
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Selecting the appropriate segment length for emotion detection is quite impor-
tant. On the one hand, a segment of a selected length is used during annotation
by listeners—experts. On the other hand, it is used to extract audio features by a
computer and to build an automatic emotion detection system. If to build training
samples, we used a given length (i.e. a length of 6 s) of a musical segment, and on
their basis we built emotion prediction models, prediction of new samples should
also be of the same length, in our case 6 s.

The shorter a segment, the more detailed analysis of emotions is possible. Also,
the shorter a segment, the more homogeneous the emotional content of the segment.
On the other hand, a musical segment should not be too short during annotation since
this will prevent a listener—expert from precisely identifying the emotion. Humans
need time to determine the perceived emotion in music.

Bachorik et al. [5] investigated the length of time required for participants to
initiate emotional responses to musical samples from a variety of genres by monitor-
ing their real-time continuous ratings of emotional content and the arousal level of
the music excerpts. On average, participants required 8 s of music before initiating
emotional judgments.

Use of 6 s by Pampalk et al. [72] proved to be enough to build a system for content-
based organization andvisualization ofmusic archives. Fromselected pieces ofmusic
in raw audio format, a geographicmapwas createdwhere islands representedmusical
genres or styles.

Use of a segment shorter than 6s hinders emotion detection by a listener [76,
111]. It enables differentiating two basic emotions, if a given fragment is happy or
sad, but it prevents recognizing shades of emotions.

A segment with a duration of 6 s was used byMacdorman et al. [64] for automatic
emotion prediction of song excerpts. At first 30-second segments were used, but
due to the fact that pleasure and arousal typically change with musical progression,
the segments were shortened to 6 s. The authors analyzed how pleasure and arousal
ratings relate to the pitch, rhythm, and loudness of the song excerpts.

Xiao et al. [115] investigated the best segment duration for music mood analysis.
Four versions of music data sets with a duration of clips of 4, 8, 16 and 32s were
tested. The results indicate that analyses of emotions in music should be based on
shorter segments, no longer than 16s, and the best performance was achieved by a
segment length of 8 and 16s.

In the report of the Emotion inMusic task organized within theMediaEval bench-
marking campaign, Aljanaki et al. [4] noticed problems with too short excerpts. The
very short length of the annotated segments (0.5–1s) allowed only capturing changes
in dynamics and timbre. Simultaneously, it caused difficulty with capturing features
pertaining to harmony and melody, which occur on a larger time scale.

In our experiment, the samples undergoing annotation were 6 s, which is the
shortest possible length, determined experimentally, at which experts with a univer-
sity music education could detect emotions for a given segment. A short segment
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Table 3.1 Amount of examples of different genres of music

Genre Amount of examples

Classical 67

Jazz 42

Blues 26

Country 50

Disco 27

Hip-hop 15

Metal 18

Pop 21

Reggae 22

Rock 36

All 324

ensures that the emotional homogeneity of a segment is much more probable. Dur-
ing the annotation, the experts sometimes provided their replies before 6 s were up,
which suggests that a trained expert is able to identify an emotion before the end of
6 s.

3.3 Audio Music Data

3.3.1 Data Set

The data set that was annotated by themusic experts consisted of 6-second fragments
of different genres of music: classical, jazz, blues, country, disco, hip-hop, metal,
pop, reggae, and rock. The tracks were all 22050Hz, mono 16-bit audio files in .wav
format. The training data were taken from the generally accessible data collection
project MARSYAS.1 The author selected samples and shortened them to the first 6 s,
and as a result the data set consisted of 324 samples.

The amount of examples of different genres of music is presented in Table3.1;
the list of samples used in our experiments can be found on the web.2

1http://marsyas.info/downloads/datasets.html.
2http://aragorn.pb.bialystok.pl/~grekowj/HomePage/EmoDataSet.

http://marsyas.info/downloads/datasets.html
http://aragorn.pb.bialystok.pl/~grekowj/HomePage/EmoDataSet
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3.3.2 Music Experts

Data annotation was done by five music experts with a university music education3

(Expert 1–5), which included the author of this book. The experts, aged 28–48 years,
are active musicians, playing on one of the following instruments: piano, clarinet,
percussion, accordion, double bass. With their many years of experience, they are
tied with various styles of music, such as: classical, jazz, blues, pop, rock, disco,
punk.

3.3.3 Annotation Process

Before the annotation process, the music experts were introduced to Russell’s model,
with quarters corresponding to four basic emotions on the arousal and valence axes.
Next, a 15-minute training was conducted during which the annotators listened to
composition fragments and marked values on the arousal and valence axes. The
meanings of arousal and valence were explained and differences between perceived
emotion and felt emotion were discussed. In our experiment, the music experts’ task
was to identify perceived emotions only.

After this training and after teaching the experts about the applied terminology,
they began annotating the musical segments. The annotation was carried out using
a web application with a database specifically created for this purpose by the author
of this book (Fig. 3.1). The application was built using Java Enterprise Edition,
Java Server Faces, Server Glassfish, and the MySQL database. The web applica-
tion enables access to the formulas indexing music files through a web browser, and
the collected annotations were saved in the database.

Each annotator annotated all records in the data set, which had a positive effect
on the quality of the received data [4]. The process was synchronized, as a sample
was played for the whole group of experts simultaneously. After each sample was
played, the experts had several seconds to make a decision, i.e. select values on the
arousal and valence axes, and then the next composition was played.

The annotation process was repeated after the first round of annotation of all
compositions was completed. The second annotation round enabled the experts to
check and correct their responses. During the first round, it can be assumed that the
music experts weren’t completely trained in identifying valence and arousal values,
while during the second round, they had the possibility of correcting their initial
responses. The corrections weren’t major, but nevertheless they occurred. Repeating
the annotation process was beneficial because the experts were able to verify their
responses; they had a second chance to make a decision and the possibility to change
their response. During the second round of annotation, corrections mainly involved
the first several samples from the first round. The closer to the end of the second

3We would like to thank the following music experts for indexing music files: Wojciech Bron-
akowski, Mateusz Bielski, Wojciech Mickiewicz, Jan Mlejnek.
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Fig. 3.1 View of the web application for labeling—survey for emotion labeling

round, the less corrections were being made. This indicates that the initial responses
were not always correct, but the further into the indexing process the more correct
the responses, which then did not need correction. There was a 30-minute break
between the first and the second rounds of annotation. Despite the inconvenience, all
annotators agreed with the validity of repeating the indexing process, since they were
able to clarify their responses. Aljanaki et al. [4] also noted lower indexing quality
at the beginning of their experiment; therefore, repeating the annotation process has
a positive effect on the quality of the obtained data.

3.3.4 Results

As a result of the annotation by five music experts (Expert 1–5), we obtained data
describing 324 fragments. Each fragment received five opinions, which is a total of
1620 of all annotations.

Figure3.2 presents the 324 response, illustrated on the Arousal-Valence plane,
from Expert 1. Each point represents one music excerpt, and its location on the plane
is described by the arousal and valence values provided by Expert 1 for a given
composition. As can be seen from the graph, responses can be found in all quarters
of the A–V emotion model.
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Fig. 3.2 Responses on the A–V emotion plane from Expert 1

Figure3.3 presents the 324 responses from Experts 2–5. In all cases, there are
responses in all quarters of the A–V emotion model, although the spread of point
locations differ slightly.

Data collected from the five music experts were averaged; Fig. 3.4 presents the
averaged responses for 324 compositions. Each point, with coordinates comprised
of averaged values of arousal and valence, represents one music excerpt.

To check if in our music data valence and arousal dimensions are correlated, the
Pearson correlation coefficient was calculated [13]. The obtained value r = −0.03
indicates that arousal and valence values are not correlated, and the music data are a
good spread in the quarters on the A–V emotion plane. This is an important element
according to the conclusions formulated by Aljanaki et al. in [4].

The values provided by the experts on the arousal and valence axes were in
the range [−10, 10]. The mean of all collected values for arousal was: −0.16, and
the mean for valence: 0.11. Both values are close to zero, which indicates a good
distribution of samples on both sides of the valence and arousal axes. The mean
standard deviation of the obtained responses from five experts on the arousal axis
was 1.63, and on the valence axis 1.46. Both values are of a similar order and
constitute about 8% of the entire range of values on the axes.

Considering the internal consistency of the collected data, Cronbachs α [15] for
arousal and valence achieved high values of 0.94 and 0.86, respectively. From these
values we can conclude that the agreement of the experts’ opinions was greater for
labeling arousal values than valence. Valence is usually more difficult to recognize,
and here the experts’ replies differed slightly more than in the case of arousal.
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Fig. 3.3 Responses on the A–V emotion plane from Experts 2–5

Fig. 3.4 Averaged values of responses from five music experts on the A–V emotion plane
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Table 3.2 Amount of examples in quarters on the A–V emotion plane

Quarter
abbreviation

Arousal-Valence Basic emotion Emotion label Amount of
examples

Q1 High-High happy e1 93

Q2 High-Low angry e2 70

Q3 Low-Low sad e3 80

Q4 Low-High relaxed e4 81

The amount of examples in the quarters on the A–V emotion plane is presented
in Table3.2. The arousal and valence values identify belonging to a given quarter of
the model and emotion class simultaneously.

3.4 MIDI Music Data

3.4.1 Data Set

In this work, emotion detection experiments were conducted on audio files as well as
MIDI files. For emotion detection experiments in MIDI files, we prepared a separate
database with 83 compositions of classical music, which contains compositions by
such eminent composers as:

• Franz Schubert (1797–1828),
• Ludwig van Beethoven (1770–1827),
• Felix Mendelssohn Bartholdy (1809–1847),
• Frédéric Chopin (1810–1849),
• Robert Schumann (1810–1856),
• Edvard Grieg (1843–1907),
• Isaac Albniz (1860–1909).

All compositions were piano-based; this way we rejected the aspect of studying
the effect of various instruments on the perceived emotions. From the collected
compositions, we extracted 350 six-second segments, an average of four fragments
from each composition, which differed in tempo, volume, complexity, harmony, and
dynamics.

The 350 music excerpts were annotated by five music experts with a university
music education, people who have professional experience in playing and listening
to music. To label emotions in MIDI files, we used a hierarchical model of emotions.
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3.4.2 Hierarchical Emotion Model

The model we chose is based on Russell’s circumplex model (Fig. 3.5). Following
the example of this model, we created a hierarchical model of emotions consisting
of two levels, L1 and L2.

The first level contains four categories of emotions that correspond to the four
quarters of Russell’s model (Table3.3). In the first group (e1), pieces of music can
be found that convey positive emotions and have a quite rapid tempo, are happy
and arousing (excited, happy, pleased). In the second group (e2), the tempo of the
pieces is fast, but the emotions are more negative, expressing annoying, angry, and
nervous. In the third group (e3) are pieces that have a negative valence and low
arousal, expressing sad, bored, and sleepy. In the last group (e4) are pieces that have
low arousal and positive valence and express calm, peaceful, and relaxed.

Fig. 3.5 Hierarchical model of emotions based on Russell’s circumplex model

Table 3.3 Description of emotion categories in L1, the first level

Abbreviation Description Arousal-Valence

e1 happy High-High

e2 angry High-Low

e3 sad Low-Low

e4 relaxed Low-High



22 3 Human Annotation

Table 3.4 Description of emotion categories in L2, the second level

Abbreviation Description Abbreviation Description

e11 pleased e31 sad

e12 happy e32 bored

e13 excited e33 sleepy

e21 annoying e41 calm

e22 angry e42 peaceful

e23 nervous e43 relaxed

The second level is related to the first, and ismade up of twelve sub-emotions, three
emotions for each emotion contained in the first level (Table3.4). In our hierarchical
model of emotions, we have four categories in level L1 and twelve categories in level
L2. The emotion categories in L1 are a generalization of the more detailed emotions
in L2. Category names in L1 are also found in L2, for example, the entire group e1
in level L1 has been described by the adjective happy, and it includes the emotions
excited, happy, and pleased in level L2.

3.4.3 Annotation Process

Six-second music samples were listened to and then labeled with one of the emo-
tions of the second level (L2). Labeling with an emotion from the second level (L2)
automatically indicated the parent emotion from the first level (L1). For example, if
an expert selected emotion e13 (excited) from level L2, this meant they also selected
emotion e1 (happy) from level L1. Thus, the samples were labeled with emotions
from two levels of the hierarchical model. The short 6-second length of each segment
ensured that the studied music fragments were relatively homogeneous emotionally,
which allowed labeling a segment with one emotion. Each annotator annotated all
records in the data set.

3.4.4 Results

The data collected from the fivemusic experts were averaged by selecting an emotion
that occurred the most often among the experts’ responses. The amount of obtained
examples labeled by emotions on the first level is presented in Table3.5, and those
labeled by emotions on the second level are presented in Table3.6.

Considering the internal consistency of the collected data, Cronbachs α [15]
obtained a value of 0.90 for data in level L1. Cronbachs α for collected data in
level L2 obtained a value of 0.88, which means it was lower than for level L1. This
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Table 3.5 Amount of MIDI examples labeled by emotions from the first level (L1)

Emotion abbreviation Emotion Amount of examples

e1 happy 89

e2 angry 105

e3 sad 79

e4 relaxed 77

Table 3.6 Amount of MIDI examples labeled by emotions from the second level (L2)

Emotion abbreviation Emotion Amount of examples

e11 pleased 39

e12 happy 36

e13 excited 14

e21 annoying 35

e22 angry 36

e23 nervous 34

e31 sad 37

e32 bored 23

e33 sleepy 19

e41 calm 19

e42 peaceful 15

e43 relaxed 43

is logical since we have more categories at level L2 as well as more differences in
experts’ opinions.

3.5 Summary

In this chapter, we presented two music data sets, audio and MIDI, that underwent
annotation by music experts. We used specifically written web applications to collect
data, which facilitated indexing musical compositions by many experts simultane-
ously. Each annotator annotated all records in the data set, and data collected from
the music experts were averaged. The obtained music data are a good spread in the
quarters of Russell’s emotion plane.

The collected labeled audio music excerpts will serve as ground truth data during
automatic emotion detection using the categorical (Chaps. 7 and 8) and dimensional
(Chaps. 9 and 10) approaches. In the dimensional approach, we will use the collected
arousal and valence values. In the categorical approach, we will use the four emotion
classes corresponding to the four quarters of Russell’s model: happy, angry, sad, and
relaxed. The audio music excerpts labeled by four emotion classes will also be used

http://dx.doi.org/10.1007/978-3-319-70609-2_7
http://dx.doi.org/10.1007/978-3-319-70609-2_8
http://dx.doi.org/10.1007/978-3-319-70609-2_9
http://dx.doi.org/10.1007/978-3-319-70609-2_10
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for initial assessment of the usefulness of the designed audio features in Chap.6
Sect. 6.3. The collected labeled music MIDI excerpts will serve as ground truth data
during categorical hierarchical emotion detection in MIDI files in Chap. 5 as well
as for initial assessment of the usefulness of the designed MIDI features in Chap.4
Sect. 4.3.

http://dx.doi.org/10.1007/978-3-319-70609-2_6
http://dx.doi.org/10.1007/978-3-319-70609-2_5
http://dx.doi.org/10.1007/978-3-319-70609-2_4
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Chapter 4
MIDI Features

4.1 Introduction

In order to detect emotions inMIDImusic files, we first need to perform an extraction
ofMIDI features that represent themusical content comprising the emotional content
ofmusic. InMIDI format [87]musical data is stored symbolically, containing higher-
level abstractions, such as the pitch of each note, the instrument played, and the start
and stop times of each note. In MIDI files, musical information is represented in
a fundamentally different way than in audio files, which store an approximation of
the sound waves produced by musical instruments. MIDI files store specific sounds,
their beginnings and endings at indicated times, and thus we have direct access to
the sounds played.

Symbolic data of musical information in MIDI files is much more familiar for
musicians and musicologists than information contained in audio files. Musicians
analyzing, discussing and playing music use the pitch and volume of sound, which
is information that is already contained in MIDI files. The entirety of musicology
knowledge pertaining to musical compositions, gathered over the centuries of the
development of music, can be used to analyze files with symbolic data.

Features, which directly refer to rhythm, tempo, and harmony, extracted from
MIDI files have a specific meaning for humans. It is easier to extract high-level
musical features from MIDI files than from audio files.

Other formats that also store musical information as symbolic data include, for
example, MusicXML [29] and Humdrum [45]. Of course, sheet music written by a
composer is also a symbolic recording of music. We chose MIDI as the format for
the studied music files due to its popularity and relatively large number of musical
compositions available in this format. The presented features extracted from MIDI
files could also be extracted from other formats that record symbolic data of musical
information.

© Springer International Publishing AG 2018
J. Grekow, From Content-Based Music Emotion Recognition to Emotion
Maps of Musical Pieces, Studies in Computational Intelligence 747,
https://doi.org/10.1007/978-3-319-70609-2_4
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4.2 MIDI Features Tools

There are analysis tools tailored for Music Information Retrieval (MIR) that spe-
cialize in extracting music information from MIDI files, such as jSymbolic, MIDI
Toolbox, orMelismaMusicAnalyzer. jSymbolic [66] software allows users to extract
160 features from aMIDI file; it is an open-source Java implementation and can save
features in the ARFF format. In jSymbolic, a number of intermediate representations
are prepared, including beat histograms, pitch histograms, histograms based on the
instruments present, melodic interval histograms, vertical interval histograms, and
chord type histograms. The extracted features can be divided into the following seven
categories: instrumentation, texture, rhythm, dynamics, pitch statistics, melody, and
chords.

The MIDI Toolbox [19] is a set of functions for analyzing and visualizing MIDI
files in the MATLAB computing environment. It includes filtering functions, ana-
lytical tools relating to melodic contour, similarity, meter-finding, key-finding, and
segmentation. The MIDI Toolbox contains cognitive analytic techniques that are
suitable for context-dependent musical analysis.

The Melisma Music Analyzer [102] is a system for analyzing and extracting
information frommusic. MIDI files can be used as the analyzer’s input. TheMelisma
systemconsists of severalmodules, dedicated to suchoperations as:metrical analysis,
grouping notes into phrases, separating the melody from the accompaniment lines,
harmonic analysis, and key analysis.

4.3 Description of MIDI Features

We suggest the set of features presented below for emotion detection in MIDI files.
The created features were divided into four groups: rhythm, harmony, harmony-
rhythm, and dynamic. Harmony and harmony-rhythm are our own solutions that we
created while studying the dissonance of simultaneously occurring sounds.

In addition to a description of the features, there are visualizations of their dis-
tributions in files labeled with four emotions (e1—happy, e2—angry, e3—sad, e4—
relaxed). The collected music MIDI data labeled by music experts was presented in
Chap.3 Sect. 3.4.

The proposed features were used exclusively for describing classical music files,
and the instruments used in the MIDI files were limited to the piano. This way the
aspect of instrument type was eschewed, and rhythm, harmony, and dynamics were
the main focus.

Each segment extracted from the MIDI file was described using a features vector
calculated in MATLAB. We designed a collection of 63 features, which describe a
given segment taking into account such musical elements as harmony, rhythm, and
dynamics.

http://dx.doi.org/10.1007/978-3-319-70609-2_3
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Fig. 4.1 Beat histogram for
fragment of F. Chopin Etude
Op. 10, No. 5

4.3.1 Rhythm Features

4.3.1.1 Beat Histogram

Rhythm features represent the rhythmic regularity in a given segment of music. Most
of these features were obtained from the beat histogram, which was acquired from
autocorrelation calculations [107].

autocorrelation[lag] = 1

N

N−1∑

n=0

x[n]x[n− lag] (4.1)

where n is the input sample index (in MIDI ticks), N is the total number of MIDI
ticks in a segment, and lag is the delay in MIDI ticks (0 < lag < N). The value of
x[n] is the velocity of Note On MIDI events.

The histogram was transformed so that each bin corresponded to a periodicity
unit of beats per minute (BPM). The histogram values were normalized in relation to
the highest value (magnitude) of the most frequent beat—the beat with the highest
bar (Fig. 4.1).

The figures contain two beat histograms of two compositions by Frédéric Chopin.
One of them is a segment from Etude Op.10 No.5 (Fig. 4.1) and the second from
Preludium C minor Op.28, No.20 (Fig. 4.2). Etude is a relatively fast-paced compo-
sition with several dominating pulses. From the example of the image in Fig. 4.1, it is
apparent that the First Strongest Rhythmic Pulse (SRP1) has a value of 240 BPM, the
Second Strongest Rhythmic Pulse (SRP2) 60 BPM, and the Third Strongest Rhyth-
mic Pulse (SRP3) 120 BPM. The contrast to this histogram is the histogram obtained
for Prelude (Fig. 4.2). One main pulse (SRP1) of 40 BPM dominates, which is the
result of the slow and uniform rhythm of this piece.
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Fig. 4.2 Beat histogram for
fragment of F. Chopin
Prelude in C minor Op. 28,
No. 20

4.3.1.2 List of Rhythm Features

Rhythmic features extracted from a segment of music are presented in Table4.1.
These features describe the strongest pulses in the piece (beats with the highest
magnitude in the beat histogram), the relations between them, and their quantity in
the beat histogram. The list also contains features describing the duration of notes
and the number of notes per second in a musical segment.

4.3.1.3 Selected Rhythm Features and Labeled Emotions

In order to visualize the usefulness of theMIDI rhythm features for emotiondetection,
we present a spread of values of three selected features, for excerpts labeled bymusic
experts with four emotions (Figs. 4.3, 4.4 and 4.5).

When we observe the value distribution of the First Strongest Rhythmic Pulse
(SRP1) (Fig. 4.3), we notice that the spread of the median values for excerpts labeled
with emotions e1 (happy) and e2 (angry) have higher values than excerpts labeled
with emotions e3 (sad) and e4 (relaxed). SRP1 is connected with the composition’s
tempo; a higher tempo results in higher SRP1 values. Also from a musical point of
view, musical fragments with sad and relaxed emotions will have a slower pulse,
which is confirmed by the presented lower SRP1 values in the box plot below.

From the box plot of Relatively Strong Pulses 30 (RSP30) (Fig. 4.4), we can see
that the music excerpts labeled with emotions from the higher quarters of Russell’s
model of emotions (e1, e2) have higher median values than those from the lower
quarters (e3, e4). Also the spread (the space between the first and third quartiles) for
excerpts labeled as e2 (angry) is higher than for excerpts labeled with other emotions.
The lowest RSP30 values are for emotion e3 (sad). The higher RSP30 values for
excerpts labeled with emotions e1 (happy) and e2 (angry) indicate that the fragments
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Table 4.1 Main rhythmic features

Feature Description

First Strongest Rhythmic Pulse (SRP1) The beats with the highest magnitude in the
beat histogram

Second Strongest Rhythmic Pulse (SRP2)

Third Strongest Rhythmic Pulse (SRP3)

Ratios of the Strongest Rhythmic Pulses The First Strongest Rhythmic Pulse divided by
the Second Strongest Rhythmic Pulse:
SRP1/SRP2

Ratios of the Magnitude of the Strongest
Rhythmic Pulses

Magnitude of the SRP1 divided by magnitude
of the SRP2:
Magnitude(SRP1)/Magnitude(SRP1)

Relatively Strong Pulses 50 (RSP50) The number of pulses with magnitude greater
than 50% (30%, 10%) of magnitude of the
SRP1

Relatively Strong Pulses 30 (RSP30)

Relatively Strong Pulses 10 (RSP10)

Note Density Average number of notes per second

Average Note Duration Average duration of notes in seconds

Standard Deviation of Note Duration Standard deviation of note duration in seconds

Fig. 4.3 Box plot of the first
Strongest Rhythmic Pulse
(SRP1) feature for MIDI
data set labeled with four
emotions e1–e4

have more varied strong pulses than excerpts labeled with emotions e3 (sad) and
e4 (relaxed), which usually have less pulses competing with each other, which is
completely logical from a musical point of view. From the high RSP30 values in
fragments labeled as e2 (angry), we can conclude that a too great number of strong
pulses elicits negative emotions in a listener. Extreme median values for emotions
e2 and e3, very high for e2, very low for e3, and simultaneously the in-between
values of segments with dominating emotions e1 and e4, suggest the usefulness of
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Fig. 4.4 Box plot of the
Relatively Strong Pulses 30
(RSP30) feature for MIDI
data set labeled with four
emotions e1–e4

Fig. 4.5 Box plot of the
Average Note Duration
feature for MIDI data set
labeled with four emotions
e1–e4

this feature to differentiate emotions on the valence axis, between the left and the
right quarters of Russell’s model. The usefulness of RSP30 was confirmed during
the feature selection process while building classifiers (Chap.5 Sect. 5.5.1.2).

When we observe the value distribution of the Average Note Duration feature
(Fig. 4.5), we notice higher median values and a higher spread for excerpts labeled
with emotions e3 (sad) and e4 (relaxed). The slower tempo of sad and relaxedmusic is
connected with a longer duration of the played notes. Excerpts labeled with emotions
e1 (happy) and e2 (angry) have clearly lower values. This confirms that the Average
Note Duration feature could be useful for differentiating emotions on the arousal
axis, between e1, e2 and e3, e4.

http://dx.doi.org/10.1007/978-3-319-70609-2_5
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4.3.2 Harmony Features

Harmony, along with rhythm and dynamics, is one of the main elements of music
upon which emotion in music is dependent. Harmony features reflect dissonance and
consonance of harmony of sounds. They are based on my previous work, where I
presented visualizations of harmony [30, 31, 33, 37].

To calculate the harmony parameters, we used the frequency ratio of simultane-
ously occurring sounds (Table4.2). A given consonance (interval, chord, polyphone)
comprises of simultaneously resonant sounds, the frequency ratio of which can be
noted as follows:

NR1 : NR2 : . . . : NRk (4.2)

where k is the number of sounds comprising the consonance. NRi is taken from the
just intonation tuning system, where the frequencies of the scale notes are related to
one another by simple numeric ratios.

4.3.2.1 Chord Degree of Dissonance

From the frequency ratios, we calculated the AkD parameter, which mirrors the
degree of dissonance in a single chord:

AkD = LCM(NR1,NR2, . . . ,NRk) (4.3)

where k is the number of sounds in a given sample. In the case when k = 1, then
AkD = 1. LCM means Least Common Multiple. The higher its value, the more
dissonant the consonance; when the AkD value is lower, the consonance is more
consonant—more pleasant for the ear.

From the sequence of consonance samples collected from a musical segment
(Fig. 4.7), the array AkDS can be defined as:

AkDS = (AkD1,AkD2, . . . ,AkDp) (4.4)

where p is the number of samples collected from a given segment.

Table 4.2 Example
consonance sound frequency
ratios

Number of sounds Musical notes Consonance sound
frequency ratios

2 C1 : G1 2 : 3
3 C1 : E1 : G1 4 : 5 : 6
4 C1 : E1 : G1 : B�1 25 : 30 : 36 : 45
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4.3.2.2 Mean of Frequency Ratio of Sounds in Chord

From the frequency ratios of simultaneously occurring sounds, we also calculated
the AkM parameter:

AkM = mean(NR1,NR2, . . . ,NRk) (4.5)

where k is the number of sounds in a given sample.
From the sequence ofAkM from amusical segment, the arrayAkMS can be defined

as:
AkMS = (AkM1,AkM2, . . . ,AkMp) (4.6)

where p is the number of samples collected from a given segment.

4.3.2.3 Multiplication of Frequency Ratio of Sounds in Chord

From the frequency ratios of simultaneously occurring sounds, we also calculated
the AkI parameter:

AkI = NR1 · NR2 · . . . · NRk (4.7)

where k is the number of sounds in a given sample.
From the sequence of AkI from a musical segment, the array AkIS can be defined

as:
AkIS = (AkI1,AkI2, . . . ,AkIp) (4.8)

where p is the number of samples collected from a given segment.

4.3.2.4 Process of Sample Collection from a Segment

Themoments of sample collection from amusical segment have been defined accord-
ing to two criteria. The first is the collection of samples at every eighth (Fig. 4.6), and
the second is the collection of samples at every new chord in a segment (Fig. 4.7).

A sequence of AkD samples, collected at every eighth in a segment from Etude
Op. 10, No. 5 by F. Chopin is presented in Fig. 4.8 and from Prelude in C minor Op.
28, No. 20 in Fig. 4.9.

These compositions differ in the types of chords and their frequency of change
(Prelude is slow and majestic, while Etude is quite happy and fast). These differ-
ences reflect changes in the AkD values, seen on the graphs as zigzags for Etude
and a flowing line for Prelude. Figure4.8 shows a certain recurrence of dissonance
arrangements of chords (chords 4–8 and 20–24).
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Fig. 4.6 Process of sample
collection from a segment at
every eighth

Fig. 4.7 Process of sample
collection from a segment at
every new chord in a
segment

Fig. 4.8 AkD for fragment
of F. Chopin Etude Op. 10
No. 5
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Fig. 4.9 AkD for fragment
of F. Chopin Prelude in C
minor Op. 28, No. 20

4.3.2.5 The List of Harmony Features

Harmony features describe the degree of dissonance in harmony in a given segment
(Table4.3). The statistical features were calculated from sequences AkDS , AkMS and
AkIS , which describe the frequency ratios of sounds in chords.

4.3.2.6 Selected Harmony Features and Labeled Emotions

Figure4.10 presents the spread of values of the Size of AkDS feature for excerpts
labeled by music experts with four emotions. In this case, it is the Size of AkDS

collected at every new chord in a segment. From the box plot we can see that the
amount of new chords in music excerpts labeled with emotions e2 and e1 is much
higher than for e3 and e4. Also the spread and median value of the amount of new
chords in angry (e2) excerpts is higher than for excerpts labeled with other emotions
(e1, e3, e4).

Figure4.11 presents the spread of values of the Second AkDS Percentage (the per-
centage share of the secondmost frequent value in AkDS) feature for excerpts labeled
bymusic experts with four emotions. The median value of this feature in e3 (sad) and
e4 (relaxed) excerpts is a little higher than for e1 (happy) and e2 (angry) excerpts. In
this case, we can see that it is not always possible to draw clear conclusions from the
spread of values. Nevertheless, we can see that the spreads do not completely overlap
and quite possibly in combination with other features the Second AkDS Percentage
could be useful. The usefulness of the Second AkDS Percentage was confirmed in
the feature selection process while building classifiers (Chap.5 Sect. 5.5.1.2).

http://dx.doi.org/10.1007/978-3-319-70609-2_5
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Table 4.3 Main harmony features

Feature Description

Average AkDS Average of values in array AkDS

Standard Deviation of AkDS Standard deviation of values in array AkDS

Median AkDS Median value of array AkDS

Size of AkDS Number of samples in array AkDS

Numerical Integration of AkDS Approximate integral of values in array AkDS

First Max AkDS First maximal value in array AkDS

Second Max AkDS Second maximal value in array AkDS

Third Max AkDS Third maximal value in array AkDS

Average of First 3 Max AkDS Average of first 3 max values in array AkDS

First AkDS First most frequent value in array AkDS

Second AkDS Second most frequent value in array AkDS

Third AkDS Third most frequent value in array AkDS

First AkDS Percentage Percentage share of the first most frequent
value in AkDS

Second AkDS Percentage Percentage share of the second most frequent
value in AkDS

Third AkDS Percentage Percentage share of the third most frequent
value in AkDS

Average AkMS Average of values in array AkMS

Standard Deviation of AkMS Standard deviation of values in array AkMS

Median AkMS Median value of array AkMS

Numerical Integration of AkMS Approximate integral of values in array AkMS

Average AkIS Average of values in array AkIS
Standard Deviation of AkIS Standard deviation of values in array AkIS
Median AkIS Median value of array AkIS
Numerical Integration of AkIS Approximate integral of values in array AkIS

Fig. 4.10 Box plot of the
Size of AkDS feature for
MIDI data set labeled with
four emotions e1–e4
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Fig. 4.11 Box plot of the
Second AkDS Percentage
feature for MIDI data set
labeled with four emotions
e1–e4

4.3.3 Harmony-Rhythm Features

The moment of appearance of a given accent, chord, dissonance, etc. in the bar is
of great significance. The most important and significant parameters were obtained
taking into account rhythm parameters. We created a special group of harmony fea-
tures connected with rythm features, which describe the moments in which harmony
features are extracted.

4.3.3.1 Process of Sample Collection from a Segment

We created an AkDB data table, which comprises of AkD samples collected from
musical segments at moments of the Strongest Pulses (beginnings of bars, repeating
accents that dominate in a given fragment). All values from the beat histogram that
were more than 50% of the First Strongest Rhythmic Pulse in a beat histogram were
accepted as the Strongest Pulses (Sect. 4.3.1).

AkDB data table is defined as:

AkDB = (AkD1,AkD2, . . . ,AkDb) (4.9)

where b is the number of collected samples at moments of the Strongest Pulses.
The moments of sample collection from a segment using information about the

moments of the Strongest Pulses is presented in Fig. 4.12.
Statistical features from AkDB were calculated, just as with AkDS (Table4.3). The

same pertained to features obtained from AkMB and AkIB.
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Fig. 4.12 Process of sample
collection from a segment at
the moments of the Strongest
Pulses

Fig. 4.13 Box plot of the
First AkDB Percentage
feature for MIDI data set
labeled with four emotions
e1–e4

4.3.3.2 Selected Harmony-Rhythm Features and Labeled Emotions

Figures4.13 and 4.14 present a spread of values of two selected features for excerpts
labeled by music experts with four emotions.

From the box plot of the First AkDB Percentage (Fig. 4.13), we can see that the
music excerpts labeled with emotions from the left quarters of Russell’s model of
emotions (e2, e3) have higher spread values than those from the right quarters (e1,
e4). The First AkDB Percentage feature could be useful for differentiating emotions
on the valence axis, between e2 (angry), e3 (sad) and e1 (happy), e4 (relaxed).

When we observe the value distribution of the Numerical Integration of the AkMB

feature for files labeled with four emotions (Fig. 4.14), we notice the higher median
values for excerpts labeled with emotion e2 (angry) and the lowest median values
for emotion e3 (sad). The Numerical Integration of AkMB feature could be useful for
differentiating emotions on both axes of valence and arousal.
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Fig. 4.14 Box plot of the
Numerical Integration of
AkMB feature for MIDI data
set labeled with four
emotions e1–e4

Table 4.4 Main dynamic
features

Feature Description

Average loudness Average of loudness levels of
all notes

Standard deviation of
loudness

Standard deviation of
loudness levels of all notes

4.3.4 Dynamic Features

Dynamic features are based on the intensity of sound, the length of the sounds, and
their variability in a segment (Table4.4). The loudness levels of notes were taken
from MIDI events Note On.

4.4 Conclusions

We presented features created for emotion detection in MIDI files divided into four
groups: rhythm, harmony, harmony-rhythm, and dynamic features. Harmony and
harmony-rhythm are our own solutions. We presented their potential to individu-
ally discriminate between emotion categories. Analysis of the value distribution of
selected features for MIDI excerpts labeled with four basic emotions suggests that
some features are more useful for detecting emotions on the valence axis while oth-
ers are more effective for differentiating emotions on the arousal axis. The ultimate
usefulness of MIDI features will be confirmed in the feature selection process while
building classifiers (Chap.5 Sect. 5.5.1.2).

In the presented set, there are no features pertaining to the timbre of sound. In the
studied MIDI set, we only studied piano compositions. We intentionally introduced

http://dx.doi.org/10.1007/978-3-319-70609-2_5
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this simplification to be able to focus more on which notes are being played and not
the tone.

In the future, development and finding new melodic features could be an interest-
ing enhancement of the presented set. Melodic features selecting the main melody
and describing its course in time could certainly contribute to even better differenti-
ation of emotions in music excerpts.



Chapter 5
Hierarchical Emotion Detection in MIDI
Files

5.1 Introduction

In our research, we concentrated on emotion detection in MIDI files [87] containing
symbolic representation of music (key, structure, chords, instrument). The means of
representation of music content in MIDI files is much closer to the description that
is used by musicians, composers, and musicologists. To describe music, they use
key, tempo, scale, sounds, etc. This way, we avoid the difficult stage of extracting
separate notes, tracks, and instruments from audio files; and we can concentrate on
the deciding element, which is the music content.

Listening to music is a particularly emotional activity. People need a variety of
emotions, and music is perfectly suited to provide it to them. However, it turns out
that musical compositions do not contain one type of emotion, e.g. only positive or
only negative. During the course of one composition, these emotions can take on a
variety of shades and change several times with varying intensity.

Apart from emotion detection, this chapter presents a strategy for the analysis of
emotions contained within musical compositions. We present a method for tracking
changing emotions during the course of a musical piece. The collected data allowed
determining the dominant emotion in the musical compositions, presenting emotion
histograms, and constructingmaps visualizing the distribution of emotions over time.

5.2 Related Work

There are few papers dedicated to emotion detection in MIDI files; most focus on
emotion detection in audio files [49, 118]. In addition to studies on emotion detection,
there are papers on modifying MIDI file parameters with the aim of obtaining a
specified emotion.

© Springer International Publishing AG 2018
J. Grekow, From Content-Based Music Emotion Recognition to Emotion
Maps of Musical Pieces, Studies in Computational Intelligence 747,
https://doi.org/10.1007/978-3-319-70609-2_5
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Wang et al. in [71] applied a hierarchical model for emotion detection. Emotion
groups were created on the basis of Thayer’s model and contained 2 emotions at the
first level and 6 emotions at the second. The features used to build classifiers referred
to pitch, intervals, tempo, instrument type, meter, and tonality.

Emotion detection inMIDI files can also be found in thework ofDiPaola andArya
[17], who combined the emotional content of a piece with visualization elements.
They used the detected emotion for animating a 3-D face. The features used referred
to rhythm, volume, timbre, articulation, melody, and tonality.

Lin et al. [60] examinedmusic emotion regression performance using audio, lyric,
and MIDI features. Two sets of MIDI files were used: the first set was converted
from audio files, and the second set was obtained from the Internet and musical
score conversion. They found that the MIDI features performed better than the audio
features.

A connection betweenMIDI files and emotion was presented in [9], where a com-
puter program was used to produce performances with different emotional expres-
sions. The program used a set of rules characteristic for each emotion (fear, anger,
happiness, sadness, solemnity, tenderness), which were used to modify such para-
meters of MIDI files as tempo, sound level, articulation, tone onsets and delays.

Livingstone andBrown [61] proposed a dynamicmusic environment, whereMIDI
music tracks adjusted in real-time to the emotion in the computer games. Music
emotion rules, which connect 8 emotion categories to musical elements such as
mode, tempo, loudness, harmonic complexity and articulation, were collected and
implemented.

Moriguchi et al. [69] proposed a system for controlling the degrees of emotions
in MIDI files. Parameters such as timbre, tempo, number of performance tracks, and
loudness of a given excerpt were used to modify the expressed emotion in the music
when played back to the listener.

5.3 MIDI Music Data

The data set that was used in the conducted experiments consisted of 350 six-second
MIDI excerpts and was described in detail in Chap. 3 Sect. 33.4. The hierarchical
emotion model we used (Fig. 5.1) was based on Russell’s circumplex model, and
consisted of emotion categories on two levels, L1 and L2. The first level (L1) contains
4 categories, while the second level (L2) is related to the first, and is made up of 12
sub-emotions, 3 emotions for each emotion contained in the first level.

Data annotationwas done by fivemusic experts with a universitymusic education.
The amount of obtained examples labeled by emotions on the first level are presented
in Table5.1, and those labeled by emotions on the second level are presented in
Table5.2.

http://dx.doi.org/10.1007/978-3-319-70609-2_3
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Fig. 5.1 Hierarchical model of emotions based on Russell’s circumplex model

Table 5.1 Amount of MIDI examples labeled by emotions from the first level (L1)

Emotion abbreviation Emotion Amount of examples

e1 happy 89

e2 angry 105

e3 sad 79

e4 relaxed 77

5.4 Feature Extraction

We used our own software (written by the author) for feature extraction. 63 MIDI
features were obtained for each 6-second labeled MIDI excerpt, and the extracted
MIDI features were divided into four groups: rhythm, harmony, harmony-rhythm,
and dynamic, and were described in Chap.4 Sect. 4.3.

http://dx.doi.org/10.1007/978-3-319-70609-2_4
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Table 5.2 Amount of MIDI examples labeled by emotions from the second level (L2)

Emotion abbreviation Emotion Amount of examples

e11 pleased 39

e12 happy 36

e13 excited 14

e21 annoying 35

e22 angry 36

e23 nervous 34

e31 sad 37

e32 bored 23

e33 sleepy 19

e41 calm 19

e42 peaceful 15

e43 relaxed 43

5.5 Construction of Classifiers

5.5.1 First Level Classifiers

5.5.1.1 One Classifier Recognizing Four Emotions

The classifier on the first level should be able to recognize the 4 categories of emotions
that correspond to the four quarters ofRussell’smodel: happy, angry, sad, and relaxed.
From the music samples labeled by music experts and the extracted MIDI features,
we created ARFF files that were the input data for the algorithms building classifiers.

We built classifiers for emotion detection using the following algorithms: J48,
BayesNet, K-nn, SMO. J48 implements the C4.5 decision tree [82], BayesNet is an
implementation of the Bayesian network classifier [41], K-nn represents K-nearest
neighbours classifier [1], and SMO implements sequential minimal optimization
algorithm for training a support vector classifier [78].

The classification results were calculated using a cross validation evaluation
CV-10. The highest accuracy among all tested algorithms was obtained for the J48
algorithm (Table5.3).

Table 5.3 Accuracy of classifiers obtained for first level (L1) classifiers

Classifier(%) J48 BayesNet K-nn SMO

Accuracy after attribute selection 76.00 70.28 74.28 66.85

Accuracy after attribute selection 82.00 70.00 81.42 73.42
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Table 5.4 Confusion matrix obtained for the J48 algorithm

Predicted class

e1 e2 e3 e4

Actual class e1 66 17 1 5

e2 18 83 3 1

e3 0 0 71 8

e4 2 2 6 67

Classifier accuracy for algorithm J48 improved to 82.00% after applying attribute
selection (attribute evaluator: Wrapper Subset Evaluator [50], search method: Best
First [117]).

From the confusion matrix (Table5.4) obtained during classifier evaluation, we
can conclude that usually fewer mistakes are made between the top (e1, e2) and bot-
tom (e3, e4) quadrants of Russell’s model. At the same time, errors in differentiating
emotions on the valence axis, between emotions e1 and e2, and between e3 and e4
are significantly more frequent.

The most important features for the detection of emotions on the first level (L1),
selected from a rich set of features, presented in Chap.4 Sect. 4.3, were:

• Size of AkDS at every eighth (H),
• Median AkDS at every eighth (H),
• Size of AkDS at every new chord in a segment (H),
• Second Max AkDB at every eighth (HR),
• Numerical Integration of AkMB (HR),
• Median Ak IB (HR),
• First Strongest Rhythmic Pulse—SRP1 (R),

where H, HR, and R represent feature group abbreviations: harmony (H), harmony-
rhythm (HR), and rhythm (R).

The selected features are mainly harmony and harmony-rhythm features. They
present the statistics collected from a sequence of values as Chord Degree of
Dissonance (AkD). Harmony-rhythm features pertain to statistics collected from
sequences of parameters AkD, AkM , Ak I , which describe the frequency ratios in
chords, collected from musical segments at moments of the Strongest Pulses. They
confirm the usefulness of the created features. In the selected features, we have repre-
sentatives of all groups except for dynamic features, which in most likelihood were
covered by other features. The First Strongest Rhythmic Pulse (the beat with the
highest magnitude in the beat histogram) is also an important feature, which is a
logical explanation of the effect of rhythm on the detected emotion.

http://dx.doi.org/10.1007/978-3-319-70609-2_4
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Table 5.5 Accuracy obtained for High-Low Arousal and High-Low Valence classifiers using J48

Classifier High-Low High-Low

Accuracy (%) 97.42 82.57

5.5.1.2 Two Classifiers Recognizing Emotions on the Arousal
and Valence Axes

To find which of the MIDI features are better suited for emotion differentiation on
the arousal and valence axes from Russell’s emotion model, we build two additional
classifiers. The first one (High-LowArousal) had the task of differentiating emotions
from the top part of the semicircle of the model (e1, e2) from emotions from the
bottom part of the semicircle (e3, e4). The second one (High-Low Valence) had to
differentiate emotions from the left part of the semicircle (e2, e3) from emotions on
the right part of the semicircle (e1, e4).

The classifiers were built using the J48 algorithm, which was the winner during
building one classifier for the four emotions of L1. The classification results were
calculated using a cross validation evaluation CV-10. For attribute selection we used
attribute Wrapper Subset Evaluator and search method Best First. The accuracy
obtained for the J48 algorithm after using attribute selection is presented in Table5.5.

The high accuracy for the High-LowArousal classifier (97.42%) indicates that the
classifier, using the collected MIDI features, differentiates emotions in the top half
from the bottomhalf of themodelwell. A slightlyworse result (82.57%)was obtained
for the High-Low Valence classifier, which confirms that recognizing emotions on
the valence axis is more difficult than on the arousal axis.

Table5.6 presents the most important features for detecting emotions on the
arousal and valence axes. Both sets have selected rhythm features (R) describing
the number of strong pulses (Relatively Strong Pulses) obtained from the beat his-
togram. We can also see the usefulness of features pertaining to the duration of notes
(Note Duration) or number of notes per second (Note Density). It is interesting that in
the feature set for the detection of High-Low Valence we only have harmony-rhythm
features (HR) and not harmony features (H). We found that statistics from harmony
features collected from musical segments at moments of the Strongest Pulses are
more useful for detecting High-Low Valence than harmony features collected at
every eighth (H). During High-Low Arousal detection, most harmony features (H)
collected at every eighth note were enough.
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Table 5.6 Selected features used for building High-LowArousal and High-LowValence classifiers

Classifier Selected features

High-Low Arousal Size of AkDS at every eighth (H)

First AkDS at every eighth (H)

Second AkDS Percentage at every eighth (H)

Third AkDS at every eighth (H)

Second AkDB Percentage (HR)

Relatively Strong Pulses 10 (RSP10) (R)

Average Note Duration (R)

Standard Deviation of Note Duration (R)

High-Low Valence Numerical Integration of AkDB (HR)

First AkDB Percentage (HR)

Average of First 3 Max AkDB (HR)

Median AkMB (HR)

Average Ak IB (HR)

Relatively Strong Pulses 30 (RSP30) (R)

Note Density (R)

5.5.2 Second Level Classifiers

5.5.2.1 One Classifier Recognizing Twelve Emotions

While building the second level classifiers, we first decided to build a classifier that
would differentiate 12 sub-emotions. We built classifiers for emotion detection using
the following algorithms: J48, BayesNet, K-nn, SMO. The classification results were
calculated using a cross validation evaluation CV-10.

Once again, we obtained the best accuracy for the studied algorithms with J48,
with a value of 65.14% (Table5.7); although the accuracy was lower by 17% points
than the accuracy of the classifier detecting 4 emotions on the first level (L1). In
the case of detecting 12 sub-emotions, the classifier is clearly less accurate, which
is connected with the greater number of classes with the same number of features.
Also, the quality of data labeling by the experts at level L2 is generally lower than
for level L1, which may also lower the results.

Table 5.7 Accuracy of classifiers obtained for second level (L2) classifiers

Classifier(%) J48 BayesNet K-nn SMO

Accuracy before attribute selection 60.00 56.00 54.28 52.28

Accuracy after attribute selection 65.14 58.00 63.55 60.00
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Table 5.8 Four classifiers for the second level (L2)

Name of classifier Detected emotions of second level

CL21 e11, e12, e13

CL22 e21, e22, e23

CL23 e31, e32, e33

CL24 e41, e42, e43

Table 5.9 Accuracy of classifiers obtained for 4 second level (L2) classifiers

Name of classifier(%) CL21 CL22 CL23 CL24

Before attribute selection 76.40 74.42 70.88 80.51

After attribute selection 84.76 84.76 84.81 93.50

5.5.2.2 Four Classifiers Recognizing Sub-emotions

In order to improve emotion detection accuracy on the second level (L2), we decided
to build 4 classifiers, one for each quarter of Russell’s emotion model (Table5.8).
Each of the classifiers specializes in detecting 3 sub-emotions for the respective
quarter, CL21—detects emotions in the first quarter, CL22 in the second, CL23 in
the third, and CL24 in the fourth.

To create the specific classifiers for level L2, we used samples from a given
category. In other words, to build classifier CL21 for emotions e11, e12, and e12
we only used sampled labeled as e1 at level L1. We did the same for the remaining
classifiers, CL22, CL23, and CL24.

Thus, we obtained 4 classifiers specializing in detecting sub-emotions at level L2.
To build the classifiers, we used algorithm J48, which was the winner when we built
classifiers at levels L1 and L2. The obtained accuracy for each classifier before and
after attribute selection is presented in Table5.9.

Notice the clear improvement in accuracy (84.74–93.50%) compared with the
accuracy obtained for the classifier detecting 12 emotions at level L2 (65.14%). These
results confirm the usefulness of the classifiers and that 4 classifiers specializing in
detecting 3 sub-emotions for each quarter of the model detect emotions better than
one classifier detecting all 12 emotions.

5.6 Hierarchical Classification

Level L1 and L2 classifiers were used for hierarchical emotion detection in music
files (Fig. 5.2). Emotion detection in music files was done analogous to the used
hierarchical model of emotions with categories on two levels L1 and L2.
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Fig. 5.2 Hierarchical emotion detection in a musical segment

First, a musical segment underwent feature extraction; then, the obtained
features vector representing the musical segment was classified at level L1. One clas-
sifier (Sect. 5.5.1.1) detecting 4 emotions—e1—happy, e2—angry, e3—sad, e3—
relaxed—was used. Next, depending on the results of the first classifier, the appro-
priate level L2 classifier was selected (Sect. 5.5.2.2); its task was to detect 3 sub-
emotions. For example, if at the first level the detected emotion was e1, then at the
second level a classifier detecting sub-emotions for e1, i.e. classifier CL21, was used.
If the result of classification at level L1 was emotion e2, then at level L2 we used
classifier CL22. And so on for the remaining cases. The result of hierarchical clas-
sification of musical segments was the detection of emotions on two levels, L1 and
L2.

5.7 Emotion Tracking in MIDI Files

5.7.1 System Construction

The proposed system for tracking emotions in a musical composition is shown in
Fig. 5.3. It consists of a database of musical compositions, composition segmenta-
tion, hierarchical emotion detection, and the result presentationmodule. The resulting
emotion labels were used to designate the consecutive segments of a musical compo-
sition. The collected data allowed for the analysis of a musical composition in terms
of the emotions contained therein.

When using the system, the user first selects a musical composition from the
database, then cross-indexes it for emotion. Finally, an analysis and visualization of
the obtained results are conducted.
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Fig. 5.3 Construction of the emotion tracking system

5.7.2 Musical Composition Segmentation

Emotions in musical compositions are not constant. In a fragment lasting several
seconds, theremaybe just one emotion or itmay changemany times. The emotion can
change in very different ways over the course of a musical composition lasting only
a few minutes depending on the musical content of the piece. Emotion reflects what
is happening in the musical composition, for example, if the pace of the composition
increases, the emotion changes in the direction of the upper quadrants (e1, e2) of
Russell’s model. If the sounds of the piece begin to be less consonant, the expressed
emotions come from the left lateral quadrants (e2, e3) of Russell’s model.

Some pieces may have many emotional changes (e.g. musical compositions of
varying moods or affecting the listener with a whole range of musical means such as
different pace, variable rhythm, dynamics, etc.), while others may be based on one
unchanging emotion (e.g. musical compositions of uniform structure with a steady
pace, dynamics, and rhythm).

Detection of emotion was conducted in our research on 6-second segments, with
each consecutive segment shifted by 2s; thus, successive segments overlapped at a
2/3 ratio (Fig. 5.4). This allowed exactly tracking and detecting even the slightest

Fig. 5.4 Division of a musical piece into segments
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change of emotion in the examined musical composition. For a musical composition
lasting T = 120 s, N = 60 segments (S1, S2, ..., S59, S60) were analyzed, and for
each L1 and L2 level of emotion detection was performed.

5.8 Results of Emotion Tracking in MIDI Files

The result of tracking emotions of amusical composition are segments with emotions
described on two levels: the higher, more general, L1; and the lower, more detailed,
L2. Analysis of the obtained emotions confirms the assumption that emotions are
not uniform in a musical piece.

5.8.1 Emotion Histograms of Musical Compositions

Emotions can change throughout a musical composition. Some emotions are more
common than others and their type is not always the same. The first method used
for presenting the distribution of emotions in a musical composition is emotion
histograms. Figures5.5 and 5.6 present the emotion histograms of two compositions:
Ludwig van Beethoven’s Sonata No. 23 F minor, Opus 57, part 1 (Appassionata),
and Frédéric Chopin’s Prelude in C minor Op.28, No. 20. On the presented graphs,
the horizontal axis corresponds to the type of emotion, and the height of the bar
indicates how often a specific emotion occurred.

Figure5.5a presents the histogram of L1 level emotions in Beethoven’s Appas-
sionata sonata, in which emotion e2 (angry) occurs in 76% of the segments and is
dominant. The second, most significant, emotion is e1 (happy), which occurs in 20%

Fig. 5.5 Histogram of L1 (a) and L2 (b) level emotions in L.v. Beethoven’s Sonata No. 23 F minor,
Opus 57 (Appassionata), part 1
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Fig. 5.6 Histogram of L1 (a) and L2 (b) level emotions in F. Chopin’s Prelude in C minor Op.28,
No. 20

of the segments. We notice that the occurrence of emotions e4 (relaxed) and e3 (sad)
is very rare in the given composition and occur in about 2% of the segments each.

Figure5.5b presents the histogram of L2 level emotions in Beethoven’s Appas-
sionata sonata. Analyzing it and comparing it with the L1 level histogram (Fig. 5.5a),
we can see in detail how an emotion from level L1 (e2) breaks down into emotions
from level L2: e21 (annoying), e22 (angry), and e23 (nervous). Notice the domina-
tion of emotion e23 (40%). The sub-emotions of the first quarter of Russell’s model
(e1) are e11 (pleased), e12 (happy), and e13 (excited), and they occur in about 7%
of segments each.

The contrast to the presented histograms of Beethoven’s Appassionata (Fig. 5.5)
is the histograms of F. Chopin’s Prelude in C minor Op.28, No. 20 (Fig. 5.6). Not
only is there a different main emotion, its domination is much greater. We can notice
a great domination of the main emotion from level L1, e3 (97%), and the domination
of emotion e31 (94%) from level L2. The occurrence of other emotions is marginal.

Emotional diversity is much richer in Appassionata; there are two main emotions,
e1 and e2, from level L1, with various shades of emotions at level L2. In Prelude,
we have one dominating emotion, e3, from level L1 and one, e31, from level L2. In
other words, there is a lack of diversity in shades of emotions.

5.8.2 Emotion Maps

Another method used to analyze emotions in a musical composition is detailed maps
showing the distribution of emotions for the duration of a piece (Figs. 5.7, 5.8, 5.9
and 5.10). The horizontal axis shows the time in seconds and the vertical axis the
emotions occurring at a given moment.

In Fig. 5.7, presenting a map of L1 level emotions for Beethoven’s Appassionata,
we notice that e2 is dominant throughout the entire piece. From the map, we can see
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Fig. 5.7 Map of L1 level
emotions in L.v. Beethoven’s
Sonata No. 23 F minor, Opus
57 (Appassionata), part 1

Fig. 5.8 Map of L2 level
emotions in L.v. Beethoven’s
Sonata No. 23 F minor, Opus
57 (Appassionata), part 1

when the second most frequent emotion, e1, occurs. The occurrence of emotions e3
and e4 is incidental.

By analyzing the map of L2 level emotions for L.v.Beethoven’s Appassionata
(Fig. 5.8), we can notice the detailed distribution of emotions. The set of occurring
emotions is quite rich. One could make an attempt to find patterns in the presented
map, for example, we noticed the subsequent occurrence of emotions e23, e22, e21
forming falling ‘stairs’ in several moments of the piece: s. 70–100, s. 240–260,
s. 360–390.

The contrast to the presented maps of Beethoven’s Appassionata is the maps of
F. Chopin’s Prelude in C minor Op.28, No. 20 (Figs. 5.9 and 5.10). The dominating
emotion, e3, throughout the entire composition from level L1 is presented in the
form of a horizontal line. A short change in emotions to e4 occurs only in the 44th
second (Fig. 5.9). A similar horizontal line for e31 occurs at level L2 (Fig. 5.10).
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Fig. 5.9 Map of L1 level
emotions in F. Chopin’s
Prelude in C minor Op.28,
No. 20

Fig. 5.10 Map of L2 level
emotions in F. Chopin’s
Prelude in C minor Op.28,
No. 20

Comparing the maps of the two compositions, we can see how much they vary in
their distribution of emotions over time.

5.8.3 Quantity of Changes of Emotion

Because some pieces may have many emotional changes (e.g., songs with varying
moods), while others may be based on a single dominant emotion (e.g. musical
compositions with a steady pace, dynamics and rhythm, etc.), we introduced the
Quantity of Changes of Emotion (QCE) in a musical composition, which is the sum
of the number of changes of emotion in adjacent segments. To make the indicator



5.8 Results of Emotion Tracking in MIDI Files 57

Table 5.10 The dominant emotion and the Quantity of Changes of Emotion (QCE) in a piece

Piece QCE L1 QCE L2 Dominating
emotion in L1
(percentage)

Dominating
emotion in L2
(percentage)

Appassionata, part 1 24.34 39.33 e2 (76%) e23 (40%)

Prelude Op.28, No. 20 5.88 8.82 e3 (97%) e31 (94%)

values independent from the length of the piece, the obtained sum was divided by
the number of N segments.

QCE =
∑N−1

i=1 f (i)

N
∗ 100 (5.1)

f (i) =
{
1, if Emotion(i) �= Emotion(i + 1)
0, if Emotion(i) = Emotion(i + 1)

(5.2)

where i is the number of the segment in the piece, N the number of segments in the
composition, and Emotion(i) represents the emotion of the i segment. The function
f (i) indicateswhether the adjacent segments have a different (value 1) or same (value
0) emotion. The more changes of emotion in a musical composition, the greater the
QCE value.

Table5.10 presents the obtained values for the quantity of changes of emotion
and the dominating emotions for the presented two compositions. We can notice
that the dominant emotion percentages are much higher in the Prelude than in the
Appassionata. Also, the QCE in the Prelude has smaller values than the Appassionata
at both levels L1 and L2. From the obtained results, we can conclude that the Prelude
is more emotionally homogeneous with a greater dominance of individual emotions
and Beethoven’s Appassionata is more diverse emotionally.

The method of creating emotions in a musical piece depends on the composer.
These emotions can be presented in the forms of histograms, maps, or using such
parameters as QCE. A search for parameters describing the emotional distributions
in compositions could be an interesting continuation of this work in the future.

5.9 Conclusions

In this chapter we presented emotion detection in pieces of classical music in the
form of MIDI files. A hierarchical model of emotions consisting of two levels, L1
and L2, was used. A collection of harmony and rhythmMIDI features extracted from
music files allowed for emotion detection with an average of 82% accuracy at level
L1. The built classifiers detecting emotions at level L2, i.e. the sub-emotions of level
L1, achieved accuracy between 84 and 93%. They were built so that they specialize
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in detecting emotions from a selected group of sub-emotions, which improved their
effectiveness.

During feature selection, we found the most useful MIDI features to build a clas-
sifier recognizing four emotions on the first level. We also found the most important
features to distinguish emotions on the arousal and valence axes from Russell’s
emotion model; harmony-rhythm MIDI features proved to be particularly useful for
emotion detection on the valence axis.

A strategy for the analysis of emotions contained within MIDI musical compo-
sitions was presented. We constructed the system for tracking changing emotions
during the course of a musical piece, and the collected data allowed determining the
dominant emotion in the musical compositions, presenting emotion histograms, and
constructing maps visualizing the distribution of emotions in time.

The amount of changes of emotions during a piece may be different; therefore, we
introduced a parameter evaluating the quantity of changes of emotions in a musical
composition. The information obtained about an emotion in a piece made it possi-
ble to analyze the musical compositions, thus providing new knowledge about the
compositions and the method of their emotional development.



Part III
Emotion Detection in Audio Files



Chapter 6
Audio Features

6.1 Introduction

In order to detect emotions in music files, we first need to perform extraction of audio
features that describe/represent the music content comprising the emotional content
of music. Audio features are extracted from audio signals, which can be presented
in the time domain as well as the spectral domain. Extracted features should refer to
those elements ofmusic that affect the creation of emotions: timbre, dynamic, rhythm,
harmony, melody, etc. Describing the rich music content using audio features is not
a simple task, and the currently available feature set is quite rich, although it still
cannot completely describe the complex structure of music on the one hand, nor the
influence of these structural elements on perceived emotions on the other. Very rich
feature sets only come close to complete description of music content; they are a
partial approximation.

6.2 Features from Audio Analysis Tools

Current audio analysis tools tailored for Music Information Retrieval (MIR), such
as Essentia [8], Marsyas [106], jAudio [65], PsySound [11] and MIRtoolbox [53],
contain a number of executable extractors computing music descriptors for an audio
track: spectral, time-domain, rhythmic, and tonal descriptors. Below, we present two
tools, Essentia andMarsyas, which were used for feature extraction in the conducted
experiments described herein.

© Springer International Publishing AG 2018
J. Grekow, From Content-Based Music Emotion Recognition to Emotion
Maps of Musical Pieces, Studies in Computational Intelligence 747,
https://doi.org/10.1007/978-3-319-70609-2_6
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6.2.1 Essentia

Essentia [8] is an open-source C++ library, which was created at Music Technology
Group, Universitat Pompeu Fabra, Barcelona. Essentia (version 2.1beta) contains
a number of executable extractors computing music descriptors for an audio track:
spectral, time-domain, rhythmic, tonal descriptors; and returning the results inYAML
and JSON data formats. Extracted features by Essentia are divided into three groups:
low-level, rhythm, and tonal features (Table6.1).

Essentia also calculates many statistic features: the mean, geometric mean, power
mean, median of an array, and all its moments up to the 5th-order, its energy, and the
root mean square (RMS). To characterize the spectrum, flatness, crest and decrease
of an array are calculated. Variance, skewness, kurtosis of probability distribution,
and a single Gaussian estimate were calculated for the given list of arrays.

Table 6.1 The feature set obtained from Essentia audio analysis tool

Group Features

Low-level Loudness

Timbre features Barkbands

Erbbands

Melbands

Mel Frequency Cepstral Coefficients (MFCC)

Spectral: Complexity, centroid, decrease, crest, flatness, kurtosis,
skewness, spread, flux, rolloff

High frequency content

Pitch salience

Silence rate

Dissonance

Zero crossing rate

Mid-level BPM histogram

Rhythm features Beats loudness

Beats loudness band

Danceability

Onset rate

Mid-level Chords histogram

Tonal features Chords changes rate

Chords number rate

Chords strength

Harmonic pitch class profile,

Key strength

Mode
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Feature sets obtained from Essentia, along with their calculated statistics, can
create large vectors containing more than 500 features. A full list of features is
available on the web.1

6.2.2 Marsyas

Marsyas (Music Analysis, Retrieval and Synthesis for Audio Signals) is an open
source software framework for audio processing software, written by George Tzane-
takis [106]. It is implemented in C++ and retains the ability to output feature extrac-
tion data to ARFF format. With this tool, the following features can be extracted:

• Zero Crossings Rate,
• Spectral Centroid,
• Spectral Flux,
• Spectral Rolloff,
• Mel Frequency Cepstral Coefficients (MFCC)—13 features,
• Chroma—14 features,

- 31 features in total.
For each of these basic features, Marsyas calculates four statistic features:

1. The mean of the mean (calculate mean over the 20 frames, and then calculate the
mean of this statistic over the entire segment);

2. Themean of the standard deviation (calculate the standard deviation of the feature
over 20 frames, and then calculate the mean of these standard deviations over the
entire segment);

3. The standard deviation of the mean (calculate the mean of the feature over 20
frames, and then calculate the standard deviation of these values over the entire
segment);

4. The standard deviation of the standard deviation (calculate the standard deviation
of the feature over 20 frames, and then calculate the standard deviation of these
values over the entire segment).

In this way, we obtained 124 features.

6.3 Selected Audio Features and Labeled Emotions

In this paragraph, we describe selected, relevant features for this emotion classifi-
cation. Visualizations of distributions of these features between four basic emotions
(e1—happy, e2—angry, e3—sad, e4—relaxed) are based on the data set labeled by
music experts (Chap. 3 Sect. 3.3).

1http://essentia.upf.edu/documentation/algorithms_reference.html.

http://dx.doi.org/10.1007/978-3-319-70609-2_3
http://essentia.upf.edu/documentation/algorithms_reference.html
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6.3.1 Timbre Features

6.3.1.1 Mel Frequency Cepstral Coefficients

Mel Frequency Cepstral Coefficients (MFCCs) are often used in audio analysis,
particularly speech research and music classification tasks. The process of creating
MFCC features can be separated into several steps [62, 84]. The first step is to divide
signal frames by applying awindowing function (typicallyHammingwindow). In the
next step, we compute the Fast Fourier Transform for each frame. Because perceived
loudness of a signal is approximately logarithmic, we take the logarithm of the
amplitude spectrum. The phase information is discarded. In the next step, we convert
the spectrum into the perceptual-based Mel spectrum and divide the spectrum into
bands. The linear frequency axis is converted into the Mel scale, and the Mel scale
is divided into equally spaced bands. On the Mel scale, lower frequencies are more
important than higher frequencies. The relation between the frequency domain and
the Mel scale is presented in the following equation:

Fig. 6.1 Box plots of the mean values of the MFCC 2–13 in music excerpts labeled with four
emotions e1–e4
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Fig. 6.2 The mean values of the MFCC 7–13 in music excerpts labeled with four emotions e1–e4

M = 2595 · log10(1 + f

700
) (6.1)

where f is the frequency in Hz, and M is the frequency in the Mel scale.
The energy of the bins of the FFT of each Mel band is summed. Because compo-

nents that represent the energy of each Mel band are highly correlated and to reduce
the number of parameters that describe a frame, a discrete cosine transformation is
applied. Using this transform 13 cepstral coefficients are obtained for each frame.
Coefficient number 1 is not taken into account, because it is proportional to the
energy.

When we observe the value distribution of MFCCs for files labeled with four
emotions (Fig. 6.1), we notice differences in the median values of MFCC No. 2.
For excerpts labeled with emotions e3, e4 (low arousal, Fig. 6.1c, d), this coefficient
has higher values (over 6) than those labeled with emotions e1, e2 (high arousal,
Fig. 6.1a, b). The lowest median value is noticed for excerpts labeled with e2.

When we look closer at the mean values of coefficients with higher numbers,
MFCCs No. 7-13 (Fig. 6.2), we see that for each group of excerpts labeled with
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four emotions, we have different values for each coefficient. We can notice that
coefficients for emotions e3, e4 (low arousal, Fig. 6.2c, d) have more negative values
than for emotions e1, e2 (high arousal, Fig. 6.2a, b). Noticing general differences on
the valence axis (between emotions e1, e4 and e2, e3) is harder, although they are
noticeable.

From observation of mean values of MFCCs, we notice their usefulness in differ-
entiating emotions on the arousal and valence axes, although they would most likely
be more effective at differentiating emotions on the arousal axis.

6.3.1.2 Bark Bands Energy

Bark bands are proposed by Zwicker in [121]. They model an approximation of
the human auditory system and correspond to the first 24 critical bands of hearing.
Below 500Hz the Bark scale is more linear, and above 500Hz this scale is near to
a logarithmic frequency axis. The relation between the frequency domain and the
Bark scale is presented in the following equation:

B = 13 · arctan (0.00076 · f ) + 3.5 · arctan
(

f

7500

)2

(6.2)

where f is the frequency in Hz, and B is the frequency in Bark scale.
By counting the energy of the Bark bands, the linear frequency axis is converted

into the Bark scale, which is divided into equally spaced 24 bands. To obtain energy
in the Bark bands, we compute the Fast Fourier Transform (FFT) for each frame.
This transformation changes the domain from time to frequency. Finally, the energy
of the bins of the FFT of each Bark band is summed.

If we compare the mean energy in Bark bands in excerpts labeled with four
emotions (Fig. 6.3), we will notice that the excerpts labeled with emotions with
high arousal: e1, e2 (Fig. 6.3a, b) differ greatly from excerpts labeled with emotions
with low arousal: e3, e4 (Fig. 6.3c, d). A change in valence does not greatly affect
distribution; distributions of e1 and e2 are similar, and distributions of e3 and e4 are
also similar. Thus, it seems that the energy in Bark bands is good at differentiating
emotions on the arousal axis and not that useful on the valence axis.

6.3.1.3 Spectral Centroid

SpectralCentroid is the “center ofmass” of the spectrumand represents the brightness
of a sound. This feature in defined in Eq.6.3.
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Fig. 6.3 Bar graph of the mean energy in Bark bands in music excerpts labeled with four emotions
e1–e4

SC =

N−1∑
n=0

f (n) · a(n)
N−1∑
n=0

a(n)

(6.3)

where f (n) represents the center frequency of FTT bin number n, and a(n) the
amplitude of that bin.

In Fig. 6.4, the spread (space between the first and third quartiles) for excerpts
labeled as e2 is higher than for excerpts labeled with other emotions. The median
values of spectral centroid enable sorting the four emotions in a descending order,
as follows: e2, e1, e3, e4.
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Fig. 6.4 Box plot of the
spectral centroid mean
values for data set labeled
with four emotions e1–e4

6.3.1.4 Dissonance

Dissonance, also called Harmonic Spectral Deviation in MPEG-7 standard [74, 91],
is the deviation of the amplitude harmonic peaks from the global spectral envelope.
This feature is computed using the formula:

HDEV = 1

H
·
H−1∑
h=0

(a(h) − SE(h)) (6.4)

where H is the total number of harmonics, a(h) is the amplitude of harmonic h, and
SE(h) the amplitude of spectral envelope evaluated at the frequency.

Fig. 6.5 Box plot of
normalized dissonance mean
values for data set labeled
with four emotions e1–e4
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Consonant sounds have more regularly spaced harmonic peaks, the value of
HDEV will be lower; and dissonant sounds have more irregularly spaced harmonic
peaks, the value of HDEV will be higher.

If we compare HDEV distribution for four emotions (Fig. 6.5), we see that musi-
cal examples labeled with e2 (angry) are much more dissonant than other emotions.
Median dissonance is much lower than in examples labeled with other emotions. The
lowest median dissonance values are observed in examples labeled with emotion e4
(relaxed).

6.3.1.5 Zero Crossing Rate

The zero crossing rate (ZCR) represents the rate at which the number sign changes
along a signal. This feature provides an indication of signal noisiness, and is computed
for each frame as follows:

ZCR = 1

2
·

N∑
n=1

|sign(x[n]) − sign(x[n − 1])| (6.5)

where the sign function is equal to 1 for positive arguments and 0 for negative
arguments, x[n] is the input time domain data, and N is the number of samples in the
frame. Because ZCR increases with increased signal noise levels, when using ZCR
for emotion detection it would be ideal if the music files were small or had equal
noisiness in each category.

It is interesting that this simple indicator is quite good at differentiating excerpts
labeled with four basic emotions (Fig. 6.6). Musical examples labeled with emotions
from the higher quarters of Russell’s model (e1, e2) have on average higher median
ZCR than emotions from the lower quarters (e3, e4). Also, the interquartile range

Fig. 6.6 Box plot of
normalized zero crossing
rate mean value for data set
labeled with four emotions
e1–e4
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Fig. 6.7 Box plot of the
normalized danceability
feature for data set labeled
with four emotions e1–e4

(IQR=Q3−Q1), where we have 50% of observations, contains much higher values
for emotions e1 and e2 than e3 and e4.

6.3.2 Rhythm Features

6.3.2.1 Danceability

Feature danceability is calculated for the input audio signal; and higher values of this
feature mean that the music is more danceable. The algorithm [101] uses Detrended
Fluctuation Analysis (DFA) proposed by Peng et al. [75].

From the box plot of danceability for four emotions (Fig. 6.7), we can see that the
music excerpts labeled with emotions from the higher quarters of Russell’s model
of emotions (e1, e2) are more danceable than those from the lower quarters (e3, e4).
This means that the danceability feature could be useful for differentiating emotions
on the arousal axis.

6.3.2.2 Onset Rate

Onset represents the occurrence of a new sound (melodic or percussive) in a studied
signal. For a given musical excerpt, the onset rate reflects the number of onsets per
second. In Essentia, the onset detection functions are computed using high frequency
content and complex-domain methods [7, 10].

From the box plot of the onset rate feature for four emotions (Fig. 6.8), we can see
that the mean value of the onset rate is much higher in excerpts labeled with emotions
from the higher quarters of Russell’s model. Note density (onsets) is quite similar for
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Fig. 6.8 Box plot of the
normalized onset rate feature
for data set labeled with four
emotions e1–e4

excerpts labeled with e1 and e2, and is much lower for excerpts labeled with e3 and
e4. This means that the onset rate feature could be useful for differentiating emotions
on the arousal axis.

6.3.3 Tonal Features

6.3.3.1 Mode

Music in West-European culture can generally have two modes: major and minor.
This is connected to the structure of the musical scale on the basis of which a com-
position is built. In the major scale major chords dominate, and in the minor scale
minor chords dominate. The major chord differs from the minor chord only by the
placement of the middle sound of the chord, but the acoustic sounds of the chords
are radically different. The major chord is associated with simplicity, strength, a pos-
itive and pleasant sound; while the minor chord evokes negative, sad, and imperfect
associations.

Gomes [27] proposed a method for obtaining the mode of a musical excerpt. First,
the recorded signal is transformed from time to the spectral domain by FFT. Next,
frequencies between 100Hz and 5000Hz are used to locate spectral peaks. Frequency
deviations of the located spectral peaks are analyzed to find reference frequencies,
which are then used to build a Harmonic Pitch Class Profile (HPCP) vector. This
vector represents the intensities of the twelve semitone pitch classes (notes from A
to G#) found in the musical excerpt. By comparing the HPCP vector to the minor
and the major reference key profiles, the major or minor mode is estimated.

If we compare the estimatedminor andmajormode distributions inmusic excerpts
labeled with four emotions (Fig. 6.9), we notice that we have a large difference
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Fig. 6.9 Bar graph of the normalized amount of the estimated mode in music excerpts labeled with
four emotions e1–e4

between excerpts that differ by the emotion on the valence axis (Fig. 6.9a ↔ b, c ↔
and d). With musical examples labeled with an emotion placed on positive valence
(e1, e4), the estimated major mode is four times more frequent than minor (Fig. 6.9b
and d). With examples placed on negative valence, the amount estimated in minor
mode is only slightly bigger than major (Fig. 6.9a and c). It is a very interesting result
when we compare distributions on the arousal axis, because they are quite similar
(Fig. 6.9b ↔ d and a ↔ c). Summarizing these findings, we can state that the mode
is very helpful in distinguishing emotions on the valence axis and useless on the
arousal axis.

6.3.3.2 Chord Change Rate

The chord change rate is a rough estimator of the number of chord changes per second
in a musical excerpt. To count this feature, chord detection should be performed first.
Using pitch profile classes, the chord detection algorithmcalculates the bestmatching
major or minor chord.
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Fig. 6.10 Box plot of
normalized chord change
rate for data set labeled with
four emotions e1–e4

The chord change rate is particularly useful in distinguishing excerpts labeled
with emotion e2 from others. From the chord change rate distribution (Fig. 6.10) we
see that for excerpts labeled with e2, the median value is higher than for emotions
that are not e2.

6.3.3.3 Key Strength

Key strength is estimated from the Harmonic Pitch Class Profile (HPCP) vector. This
feature represents the strength of the estimated key.

When we compare key strength distributions for four emotions in music excerpts
(Fig. 6.11), we notice that this feature is important for identifying emotions on the

Fig. 6.11 Box plot of
normalized key strength for
data set labeled with four
emotions e1–e4



74 6 Audio Features

valence axis. Musical samples labeled with positive emotions (e1, e4) are differen-
tiated by higher median values of key strength than samples labeled with negative
emotions (e2, e3). The lowest key strength median value is observed for samples
with emotion e3.

6.4 Conclusions

We presented some of the most relevant features, showing their potential to individ-
ually discriminate between categories. Perfunctory analysis of the value distribution
of selected features for audio excerpts labeled with four basic emotions suggests
that some features are more useful for detecting emotions on the valence axis while
others are more effective for differentiating emotions on the arousal axis.

Tonal features demonstrate better properties for distinguishing emotions on the
valence axis (Key Strength, Chord Change Rate, Mode). Rhythm features should
potentially be better at differentiating emotions on the arousal axis (Onset Rate,
Danceability). Although it is difficult to determine to which axis of the model of
emotions timbre features are more predisposed, to change their values between four
emotions (Spectral Centroid, Dissonance), timbre features seem to be useful for
detecting emotions on both axes simultaneously.

However, a rich set of features along with various statistics obtained from audio
analysis tools are kept for automatic emotion detection. Features that are insignificant
independently can be important combined with other features. The decision as to
selecting the most important features while building an emotion prediction model
has been left to the algorithms for feature selection.



Chapter 7
Detection of Four Basic Emotions

7.1 Introduction

One of the most important elements when listening to music is the expressed emo-
tions. The emotions contained in music can alter or deepen the emotional state of
the listener. For example, the Funeral March listened to during a funeral deepens
the emotional state of the departed’s loved ones; while light and relaxing music lis-
tened to at home after a hard day’s work can restore the listener’s good mood. The
elements of music that affect the emotions are timbre, dynamics, rhythm, and har-
mony. Changes in the types of instruments used, the dynamics, rhythm, and harmony
change the emotions found in the music.

In this chapter, we study the quality of the constructed music emotion detection
classifiers using audio features extracted by two different analysis tools: Essentia [8]
and Marsyas [106]. We also decided to study the effect of extracted audio features
on the quality of the constructed music emotion detection classifiers. We selected
features and found sets of features that were the most useful for detecting individual
emotions. We examined the effect of low-level, rhythm and tonal features on the
accuracy of the constructed classifiers.

7.2 Related Work

Studies on emotion detection in music are mainly based on two popular approaches:
categorical or dimensional. In the dimensional approach, emotions are described as
numerical values of valence and arousal. The categorical approach describes emo-
tions with a discrete number of classes – affective adjectives. In this chapter, we used
the categorical approach.

© Springer International Publishing AG 2018
J. Grekow, From Content-Based Music Emotion Recognition to Emotion
Maps of Musical Pieces, Studies in Computational Intelligence 747,
https://doi.org/10.1007/978-3-319-70609-2_7
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One of the first papers on categorical emotion detection was a study by Li and
Ogihara [57], who trained support vector machines (SVM) to classify music into one
of 13 mood categories using a multi-label classification method. A labeled collection
consisted of 499 soundfiles (30-seconds each) from the ambient, classical, fusion, and
jazz genres. They used Marsyas to extract the timbral, rhythmic, and pitch features.
The achieved accuracy was low, at a level of 45%.

Lu et al. [63] examined emotion detection and emotion tracking using inten-
sity, timbre, and rhythm acoustic features. Emotion categories corresponded to the
four quadrants on Thayer’s two-dimensional (Energy-Stress) model [103]. To train,
Gaussian Mixture Models were used on a set of 800 classical music clips (20 s each).
The system of emotion detection achieved an average accuracy of 86%. In addition
to emotion detection, emotion tracking through a music piece was presented, which
divided the music into several segments.

The problem of multi-label classification of emotions in musical recordings was
also presented by Wieczorkowska et al. [113]. The data set contained 875 samples
with a length of 30 s each. For classification, the k-nearest neighbors (k-nn) algorithm
was used.

In the community ofMusic Information Retrieval Evaluation eXchange (MIREX)
for automatic music mood classification, five mood clusters were used for song
categorization [43]. The Audio Mood Classification evaluation task was started for
the first time in 2007. The ground truth set consisted of 600 clips (30 second each),
with 120 in eachmood cluster. The five emotion clusters, whichwere used byMIREX
Audio Mood Classification, have not been frequently used in other music emotion
detection works. Hu et al. in [44] indicates that the clusters might not be optimal and
noticed some semantic overlap.

A popular emotion set used to categorize emotions in music turned out to be a
collection consisting of 4 classes: happy, angry, sad, and relaxed. It corresponds to
the four quadrants of the two-dimensional valence-arousal plane, which was used
by Laurier in [54], where binary classifiers were constructed for each category. A
data set of 1000 songs (30 s each) was divided between 4 categories. Classification
accuracy was from 84% to 98%, and was obtained for the SVM algorithm with
polynomial and linear kernel.

Four emotion classes (happy, angry, sad, relaxed) were also used in the categorical
approach by Song et al. in [100]. The collected ground truth data set consisted of
2904 songs that were labeled with one of the four emotions. The highest accuracy,
53%, was achieved for SVM with polynomial kernel. Song et al. explored the rela-
tionship betweenmusical features extracted byMIRtoolbox [53] and emotions. They
compared the emotion prediction results for four sets of features: dynamic, rhythm,
harmony, and spectral.
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7.3 Music Data

In this research, we use four emotion classes: happy, angry, sad, and relaxed. They
corresponds to the four quarters of Russell’s model [88], which were formed by
dividing a plane by two perpendicular axes: arousal and valence. The basic classes
of emotions are assigned to the quarters as follows:

• happy – arousal high, valence high – Q1;
• angry – arousal high, valence low – Q2;
• sad – arousal low, valence low – Q3;
• relaxed – arousal low, valence high – Q4.

To conduct the study of emotion detection, we prepared two sets of data. One
set was used for building one common classifier for detecting the four emotions,
and the other data set for building four binary classifiers of emotion in music. Both
data sets consisted of 6-second fragments of different genres of music: classical,
jazz, blues, country, disco, hip-hop, metal, pop, reggae, and rock. The tracks were
all 22050Hz mono 16-bit audio files in .wav format. The data set that was used in
this experiment consisted of 324 six-second fragments and was described in detail
in Chap.3 Sect. 3.3.

Data annotationwas done by fivemusic experts with a universitymusic education.
The annotation process of music files with emotion classes was described in Chap.3
Sect. 3.3.3. The amount of examples in the quarters on the A-V emotion plane is
presented in Table7.1.

To build binary classifiers, we prepared the second training data from the first
set, which consisted of four sets of binary data. For example, the data set for binary
classifier e1 consisted of 81 files labeled e1 and 81 files labeled not e1 (27 files each
from e2, e3, e4). Thus, we obtained four binary data sets (consisting of 81 examples
of ’e’ and 81 examples of ’not e’) for four binary classifiers e1, e2, e3, e4. Tomake the
number of examples uniform in the binary data sets for the four classes, the number
of examples labeled e1 was reduced to 81 and the number of those labeled e2 and e3
was reduced to 81.

Table 7.1 Amount of examples in quarters on A-V emotion plane

Basic emotion Emotion
abbreviation

Quarter Arousal-Valence Amount of
examples

Happy e1 Q1 High-High 93

Angry e2 Q2 High-Low 70

Sad e3 Q3 Low-Low 80

Relaxed e4 Q4 Low-High 81

http://dx.doi.org/10.1007/978-3-319-70609-2_3
http://dx.doi.org/10.1007/978-3-319-70609-2_3
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7.4 Feature Extraction

For feature extraction, we used Essentia [8] and Marsyas [106], which are tools for
audio analysis and audio-basedmusic information retrieval. Marsyas framework was
described in Chap.6 Sect. 6.2.2, and Essentia extractors were described in Chap.6
Sect. 6.2.1.

The previously prepared, labeled by emotions, music data set served as input
data for tools used for feature extraction. The obtained lengths of feature vectors,
dependent on the package used, and were as follows: Marsyas – 124 features, and
Essentia – 530 features.

7.5 Results

7.5.1 Construction of One Classifier Recognizing Four
Emotions

We built classifiers for emotion detection using the following algorithms: J48, Ran-
domForest, BayesNet, K-nn, SMO (SVM). The classification results were calculated
using a cross validation evaluation CV-10.

The first important result was that during the construction of the classifier for
2 data sets obtained from Marsyas and Essentia, the highest accuracy among all
tested algorithms was obtained for SMO algorithm [79]. SMO was trained using
polynomial kernel. The second best algorithm was RandomForest.

The best results we obtained using the feature set from Essentia. The results
obtained for SMO algorithm are presented in Table7.2. The classifier accuracy
improved to 64.51% after applying attribute selection (attribute evaluator: Wrap-
per Subset Evaluator [50], search method: Best First [117]). In Essentia, tonal and
rhythm features greatly improve classifier accuracy. These features are not available
in Marsyas and thus Essentia obtains better results.

The confusion matrix (Table7.3), obtained during classifier evaluation, shows
that the most recognized emotions were e2 and e4 (F-measure = 0.68), and the
next emotion was e1 (F-measure = 0.64). The hardest emotion to recognize was e3
(F-measure = 0.59).

Table 7.2 Accuracy obtained for SMO algorithm

Essentia (%) Marsyas (%)

Before attribute selection 62.04 54.01

After attribute selection 64.51 58.02

http://dx.doi.org/10.1007/978-3-319-70609-2_6
http://dx.doi.org/10.1007/978-3-319-70609-2_6
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Table 7.3 Confusion matrix for the best result

Predicted class

e1 e2 e3 e4

Actual class e1 66 10 4 13

e2 21 42 5 2

e3 14 2 42 22

e4 11 0 11 59

From the confusionmatrix, we can conclude that usually fewer mistakes are made
between the top (e1, e2) and bottom (e3, e4) quadrants of Russell’s model. At the
same time, recognition of emotions on the valence axis (positive-negative) is more
difficult.

The most important features, for the detection of four basic emotions, after apply-
ing attribute selection were:

• Dissonance (L),
• Melbands Crest (L),
• Melbands Kurtosis (L),
• Melbands Spread (L),
• Spectral Complexity (L),
• Spectral Energy (L),
• Spectral Kurtosis (L),
• Spectral Spread (L),
• Spectral RMS (L),
• Harmonic Pitch Class Profile Entropy (T),
• Tuning Diatonic Strength (T),

where L and T represent feature group abbreviations: low-level (L), tonal (T).
The results were not satisfactory; classifier accuracy was too low (64.51%). It is

difficult to build a good classifier that differentiates four emotions equally well.

7.5.2 Construction of Binary Classifiers

To improve emotion detection accuracy, we decided to build specialized binary clas-
sifiers for each emotion. A binary classifier algorithm can better analyze data sets
for the presence of a given emotion.

During the construction of the binary classifiers, we tested the following algo-
rithms: J48, RandomForest, BayesNet, IBk (K-nn), and SMO (SVM) on the prepared
binary data. We calculated the classification results using a cross validation evalua-
tion CV-10. In this experiment, we used features extracted from Essentia, which was
selected as the winner in the previous experiment.
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Table 7.4 Classifier accuracy for emotions e1, e2, e3, and e4 obtained for SMO

Classifiers for e1
(%)

Classifiers for e2
(%)

Classifiers for e3
(%)

Classifiers for e4
(%)

Before attribute
selection

75.92 80.24 74.07 72.84

After attribute
selection

87.04 87.65 82.71 87.04

Table 7.5 Selected features used for building binary classifiers

Classifier Selected features Classifier Selected features

e1 Barkbands Kurtosis (L) e3 Melbands Crest (L)

Dissonance (L) Melbands Kurtosis (L)

High Frequency Content (L) Pitch Salience (L)

Spectral Centroid (L) Spectral Energy (L)

Spectral Complexity (L) Spectral Entropy (L)

Spectral Entropy (L) Key Strength (T)

Spectral Strong Peak (L)

Beats Loudness (R)

Chords Strength (T)

Key Strength (T)

Chords Histogram (T)

e2 Barkbands Flatness (L) e4 Barkbands Kurtosis (L)

Melbands Flatness (L) Barkbands Skewness (L)

Silence Rate (L) Barkbands Spread (L)

Spectral Entropy (L) Melbands Crest (L)

Onset Rate (R) Spectral Complexity (L)

Chords Strength (T) Beats Loudness Band Ratio (R)

Harmonic Pitch Class Profile (T)

Once again, we obtained the best results for SMO algorithm, which are presented
in Table7.4. Accuracy improved (7–15%points) for all four classifiers after applying
attribute selection (attribute evaluator: Wrapper Subset Evaluator, search method:
Best First).

The best classifier accuracy was obtained for emotion e2 (87.65%); the results
were also high for e1 and e4 (87.04%). Summarizing, accuracy is higher than 80% for
all emotions,which is a big improvement of accuracy in comparisonwith the previous
experiment, where we used one classifier recognizing four emotions (64.51%).

Table7.5 presents the most important features obtained after feature selection
(attribute evaluator: Wrapper Subset Evaluator, search method: Best First) for each
emotion. Each classifier dedicated to recognizing only one emotion has its own set of
features, different from the rest, consisting of a combination of low-level, rhythm, and
tonal features. We can notice a domination of low-level features. Features describing
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Table 7.6 Classifier accuracy for emotions e1, e2, e3, and e4 obtained for combinations of feature
sets

Feature set Classifiers for e1
(%)

Classifiers for e2
(%)

Classifiers for e3
(%)

Classifiers for e4
(%)

L 79.01 86.42 77.77 85.80

R 76.54 83.33 78.93 77.16

T 75.93 79.63 82.10 77.77

L + R 77.16 89.50 80.25 85.80

L + T 87.04 92.59 82.71 86.42

R + T 87.04 83.95 82.71 75.30

All (L + R + T) 87.04 87.65 82.71 87.04

spectrum occur in all four sets. Features describing energy in the Barkbands of a
spectrum occur in three sets (e1, e2, e4). Features describing energy in the Melbands
of a spectrum occur in three sets (e2, e3, e4). Tonal features, Chord Strength, and
Key Strength are also important since they are included in two sets each.

7.5.3 Evaluation of Different Combinations of Feature Sets

During this experiment, we evaluated the effect of various combinations of feature
sets – low-level (L), rhythm (R), tonal (T) – on classifier accuracy obtained for SMO
algorithm (Table7.6). The best results for each classifier have been marked in bold.

The obtained results indicate that the use of all groups (low-level, rhythm, tonal)
of features resulted in the best accuracy or equal with use of 2 groups of features, in
most cases (e1, e3, e4). The only exception was classifier e2, where using the set L
+ T (low-level, tonal) had better results (92.59%) than using all features – accuracy
87.65%.

The use of individual feature sets L, R or T did not have better results than their
combinations. Combining feature sets L+ T (low-level and tonal features) improved
classifier results in the case of all classifiers (e1 e2, e3 and e4). Combining feature
sets R + T (rhythm and tonal features) improved classifier results in the case of
classifiers e1 and e3.

7.5.4 Emotion Maps

The result of emotion tracking of musical compositions are emotion maps. We used
the best obtained classifier for predicting four emotions to analyze musical compo-
sitions. The compositions were divided into 6-second segments with a 3/4 overlap.
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Fig. 7.1 Emotion map for
the song Let It Be by Paul
McCartney (The Beatles)

Fig. 7.2 Emotion map for
Piano Sonata No. 8 in C
minor, Op. 13 (Pathetique),
2nd movement, by Ludwig
van Beethoven

For each segment, features were extracted and classifiers for emotion detection were
used.

From the created emotion maps, we can find out:

• which emotion or emotions are dominant throughout the entire composition,
• how often changes in emotions occur and in which directions,
• which emotions are shaped and developed during the duration of the composition:
at the beginning, in the middle, and at the end of the piece.

Figures7.1 and 7.2 show emotion maps of two compositions, one for the song
Let It Be by Paul McCartney (The Beatles) and the second, Piano Sonata No. 8
in C minor, Op. 13 (Pathetique), 2nd movement, by Ludwig van Beethoven. The
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horizontal axis shows the time in seconds and the vertical axis the emotion occurring
at a given moment.

From the emotion maps of the presented compositions, we can notice their dia-
metrically different emotional character. In the case of Sonata Pathetique, presented
in Fig. 7.2, the dominating emotion is e4 (relaxed); and in Let It Be, presented in
Fig. 7.1, the dominating emotions are e1 (happy) and e4 (relaxed). Analyzing the
development of emotions over time, we notice that in Let It Be there is a different
emotion at the beginning and a different one at the end of the composition; in the
beginning part of the piece (up until about 90 s.) e4 dominates, and in the end (from
130 s.) e1 dominates, while emotion e3 (sad) occurs sporadically and for a short time
(s. 10, 60, 200). In Sonata Pathetique, emotion e4 dominates throughout the entire
composition, with short changes in the direction of emotion e3 (s. 120, 200).

The presented emotion maps can have various applications. They can be used to
search the database for compositions with a similar or specified distribution of emo-
tions. After extracting parameters describing emotions on a map, we could compare
groups of compositions or even compositions by various composers [32].

The emotion maps of compositions using four basic emotions (happy, angry,
sad and relaxed) are, however, an oversimplification of the many shades of emo-
tions occurring in music. The detailed distribution of emotions over time of the
aforementioned compositions is presented in Chap.9 Sect. 9.8.1, where we used the
Arousal-Valance plane to build emotion maps.

7.6 Conclusions

In this chapter, we presented the detection of four basic emotions in music files. We
built a classifier recognizing four basic emotions, but its accuracywas not satisfactory
(64%).We then built 4 binary classifiers dedicated to each emotion, withmuch higher
accuracy, from 82% to 87%.

We studied the effect of the extracted audio features on the quality of the con-
structed music emotion detection classifiers. We obtained information about which
features are useful in the detection of particular emotions. The use of all three groups
(low-level, rhythm, tonal) of features resulted in the best accuracy or equal with the
use of two groups of features, in most cases of binary classifiers.

As a result of emotion tracking of musical compositions, we constructed emotion
maps visualizing the distribution of emotions over time. Emotion maps provide new
knowledge about the distribution of four emotions in musical compositions and can
be used to search for compositions with a specified distribution of emotions, among
others.

http://dx.doi.org/10.1007/978-3-319-70609-2_9


Chapter 8
Emotion Tracking of Radio Station
Broadcasts

8.1 Introduction

The overwhelming number of media outlets is constantly growing. This also applies
to radio stations available on the Internet, over satellite and air. On the one hand, the
number of opportunities to listen to various radio shows has grown, but on the other,
choosing the right station has become more difficult. Music information retrieval
helps those people who listen to the radio mainly for the music. This technology is
able to make a general detection of the genre, artist, and even emotion.

Listening to music is particularly emotional. People need a variety of emotions,
and music is perfectly suited to provide them. Listening to a radio station throughout
the day, whether we want it or not, we are affected by the transmitted emotional
content. In this paper, we focus on emotional analysis of the music presented by
radio stations. During the course of a radio broadcast, these emotions can take on a
variety of shades, change several times with varying intensity. This paper presents a
method of tracking changing emotions during the course of a radio broadcast. The
collected data allowed to determine the dominant emotion in the radio broadcast and
construct maps visualizing the distribution of emotions over time.

There are studies focused on facilitating radio station selection from the over-
whelming number of radio stations. A method for profiling radio stations was
described by Lidy and Rauber [58], who used a technique of Self-organizing Maps
to organize the program coverage of radio stations on a two-dimensional map. This
approach allows profiling the complete program of a radio station.

A study that combines emotion detection and facilitating radio station selection
was presented by Rizk et al. [86], who presented a mobile application that streams
music fromonline radio stations after identifying the user’s emotions. The songs from
online radio stations were classified into emotion classes based on audio features.
The application captured images of the user’s face using a smartphone camera and
classified them into one of three emotions using a classifier on facial geometric
distances and wrinkles.

© Springer International Publishing AG 2018
J. Grekow, From Content-Based Music Emotion Recognition to Emotion
Maps of Musical Pieces, Studies in Computational Intelligence 747,
https://doi.org/10.1007/978-3-319-70609-2_8
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The issue of emotion tracking is not only limited to music. The paper by
Mohammad [68] is an interesting extension of the topic; the author investigated
the development of emotions in literary texts. Yeh et al. [120] tracked the continuous
changes of emotional expressions in Mandarin speech.

8.2 System Construction

The proposed system for tracking emotions in radio station broadcasts is shown in
Fig. 8.1. It is composed of collected audio data, a segmentation module, a feature
extraction module, classifiers, and a result presentation module.

The recorded radio station broadcasts undergo segmentation, and the obtained
fragments are then analyzed in the feature extraction module. The example rep-
resented by vectors composed of extracted features then undergo classification by
a music/speech classifier. Fragments containing music are additionally classified in
terms of emotions. In the last phase, the results are analyzed and visualized in the
result presentation module. The music speech classifier and emotion classifier used
in this process are trained using features obtained from audio samples.

Fig. 8.1 System
construction of emotion
tracking in radio station
broadcasts
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8.3 Music Data

8.3.1 Training Data

To conduct the study of emotion detection of radio stations, we prepared two sets of
training data:

1. Data set used for music/speech discrimination;
2. Data set used for the detection of emotion in music.

The set of training data for music/speech discrimination consisted of 128 files,
including 64 designated as speech and 64 marked as music. The tracks were all
22050Hz mono 16-bit audio files in .wav format. The training data were taken from
the generally accessible data collection for the purposes of music/speech discrimi-
nation from MARSYAS1 project.

The training data set for emotion detection consisted of 324 six-second fragments
of different genres of music: classical, jazz, blues, country, disco, hip-hop, metal,
pop, reggae, and rock. The tracks were all 22050Hz mono 16-bit audio files in .wav
format. The data set has been described in detail in Chap.3 Sect. 3.3. Data annotation
was done by five music experts with a university music education. The annotation
process of music files with emotion classes has been described in Chap.3 Sect. 3.3.

In this research, we use four emotion classes corresponding to the four quarters
of Russell’s model: happy, angry, sad, and relaxed. The amount of examples in the
training data set for emotion detection labeled by emotions are presented in Table8.1.

8.3.2 Recorded Radio Broadcasts

To study changes in emotions, we used recorded broadcasts from4 selected European
radio stations:

• Polish Radio Dwojka (Classical/Culture), recorded on 4.01.2014;
• Polish Radio Trojka (Pop/Rock), recorded on 2.01.2014;
• BBC Radio 3 (Classical), recorded on 25.12.2013;
• ORF OE1 (Information/Culture), recorded on 12.01.2014.

For each station, we recorded 10h beginning at 10 A.M. and converted the record-
ings into 22050Hz mono 16-bit audio files in .wav format. The recorded broadcasts
were segmented into 6-second fragments, for example, we obtained 6000 segments
from one 10h broadcast.

1http://marsyas.info/downloads/datasets.html.

http://dx.doi.org/10.1007/978-3-319-70609-2_3
http://dx.doi.org/10.1007/978-3-319-70609-2_3
http://marsyas.info/downloads/datasets.html
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Table 8.1 Amount of examples labeled by emotions

Basic emotion Emotion abbreviation Amount of examples

Happy e1 93

Angry e2 70

Sad e3 80

Relaxed e4 81

8.4 Feature Extraction

For feature extraction for music/speech discrimination, we used the Marsyas frame-
work for audio processing [106], which has been described in detail in Chap.6
Sect. 6.2.2. For feature extraction for emotion detection, we used the Essentia extrac-
tors [8], which have been described in Chap.6 Sect. 6.2.1.

Essentia has a much richer feature set thanMarsyas and is better suited for feature
extraction for emotion detection. Marsyas, with its modest feature set, is enough for
good music/speech discrimination.

For each 6-second file from the training data, we obtained a representative single
feature vector. The obtained vectors were then used for building classifiers and for
predicting new instances.

8.5 Construction of Classifiers

8.5.1 Music/Speech Classifier

We built two classifiers, one for music/speech discrimination and the second for
emotion detection. During the construction of the classifier for music/speech dis-
crimination, we tested the following algorithms: J48, RandomForest, IBk (K-nn),
BayesNet, SMO (SVM). The classification results were calculated using a cross
validation evaluation CV-10.

The best accuracy (98%) was achieved using SMO algorithm, which is an imple-
mentation of support vector machines (SVM) algorithm (Table8.2). The confusion
matrix for the best music/speech classifier obtained for SMO algorithm is presented
in Table8.3.

Table 8.2 Accuracy and F-measure obtained for tested algorithms

J48 RandomForest BayesNet IBk SMO

Accuracy (%) 89.84 96.09 95.31 96.09 98.44

F-measure 0.89 0.96 0.95 0.96 0.98

http://dx.doi.org/10.1007/978-3-319-70609-2_6
http://dx.doi.org/10.1007/978-3-319-70609-2_6
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Table 8.3 Confusion matrix for music/speech classifier obtained for SMO algorithm

Predicted class

Music Speech

Actual class Music 63 1

Speech 1 63

8.5.2 Classifier for Emotion Detection

We built classifiers for emotion detection using the following algorithms: J48, Ran-
domForest, BayesNet, IBk (K-nn), SMO (SVM). The classification results were
calculated using a cross validation evaluation CV-10.

For emotion detection, we used four binary classifiers dedicated to each emo-
tion. The process of building the binary classifiers for emotion detection has been
presented in Chap.7 Sect. 7.5.2. The best classifier accuracy was obtained for emo-
tion e2 (87.65%), but for e1 and e4 the results were also high (87.04%). The lowest
classifier accuracy was obtained for emotion e3 (82.71%).

From the data obtained during classifier construction, we can clearly see that
music/speech discrimination in audio recordings is a much easier task (98% accu-
racy) than emotion detection (accuracy from 82 to 87%). The reason behind this
is that the audio feature set that can discriminate music from speech is particularly
comprehensive. In the case of emotion detection, the feature set is not yet so ideal.

8.6 Results of Emotion Tracking of Radio Stations

During the analysis of the recorded radio broadcasts, we conducted a two-phase
classification. The recorded radio program was divided into 6-second segments. For
each segment, we extracted a feature vector, whichwas first used to detect if the given
segment is speech or music. If the current segment was music, then we used a second
classifier to predict what type of emotion it contained. For feature extraction, file
segmentation, use of classifiers to predict new instances, and visualization of results,
we wrote a Java application that connected different software products: Marsyas,
Essentia, MATLAB and WEKA package.

The percentages of speech, music, and emotion in music obtained during the
segment classification of 10-hour broadcasts of four radio stations are presented in
Table8.4. On the basis of these results, radio stations can be compared in two ways:
the first is to compare the amount of music and speech in the radio broadcasts, and
the second is to compare the occurrence of individual emotions.

http://dx.doi.org/10.1007/978-3-319-70609-2_7
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Table 8.4 Percentage of speech, music, and emotion in music in 10-hour broadcasts of four radio
stations

PR Dwojka (%) PR Trojka (%) BBC Radio 3 (%) ORF OE1(%)

Speech 59.37 73.35 32.25 69.10

Music 40.63 26.65 67.75 30.90

e1 4.78 4.35 2.43 2.48

e2 5.35 14.43 1.00 0.92

e3 20.27 6.02 56.19 22.53

e4 10.23 1.85 8.13 4.97

e1 in music 11.76 16.32 3.58 8.02

e2 in music 13.16 54.14 1.47 2.98

e3 in music 49.89 22.59 82.93 72.91

e4 in music 25.17 6.94 12.00 16.08

8.6.1 Comparison of Radio Stations

The dominant station in the amount of music presented was BBC Radio 3 (67.75%).
We noted a similar ratio of speech to music in the broadcasts of PR Trojka and
ORF OE1, in both of which speech dominated (73.35% and 69.10%, respectively).
A more balanced amount of speech and music was noted on PR Dwojka (59.37%
and 40.63%, respectively).

Comparing the content of emotions, we can see that PR Trojka clearly differs
from the other radio stations, because the dominant emotion is e2 energetic-negative
(54.14%) and e4 calm-positive occurs the least often (6.94%).

We noted a clear similarity between BBC Radio 3 and ORF OE1, where the
dominant emotion was e3 calm-negative (82.93% and 72.91%, respectively). Also,
the proportions of the other emotions (e1, e2, e4) were similar for these stations.
We could say that emotionally these stations are similar, except that considering the
speech to music ratio, BBC Radio 3 had much more music.

The dominant emotion for PRDwojka was e3, which is somewhat similar to BBC
Radio 3 and ORF OE1. Compared to the other stations, PR Dwojka had the most
(25.17%) e4 calm-positive music.

8.6.2 Emotion Maps of Radio Station Broadcasts

The figures (Figs. 8.2, 8.3, 8.4 and 8.5) present speech and emotion maps for each
radio broadcast. Each point on the map is the value obtained from the classification
of a 6-second segment. These show which emotions occurred at given hours of the
broadcasts.
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Fig. 8.2 Map of speech and music emotion in PR Dwojka 10h broadcast

Fig. 8.3 Map of speech and music emotion in PR Trojka 10h broadcast
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Fig. 8.4 Map of speech and music emotion in BBC Radio 3 10h broadcast

Fig. 8.5 Map of speech and music emotion in ORF OE1 10h broadcast
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For PR Dwojka (Fig. 8.2), there are clear musical segments (1500–2500, 2300–
3900) during which e3 dominated. At the end of the day (4500–6000), emotion
e2 occurs sporadically. It is interesting that e1 and e4 (from right half of Russell’s
model) did not occur in the morning. For PR Trojka (Fig. 8.3), emotion e4 did not
occur in the morning, and e2 and e3 dominated (segments 1200–2800 and 3700–
6000). For BBC Radio 3 (Fig. 8.4), we observed almost a complete lack of energetic
emotions (e1 and e2) in the afternoon (segments after 3200). For ORFOE1 (Fig. 8.5),
e3 dominated up to segment 3600, and then broadcasts without music dominated.
The presented analyses of maps of emotions could be developed by examining the
quantity of changes of emotions or the distribution of daily emotions.

8.7 Conclusions

This chapter presented an example of a system for the analysis of emotions contained
within radio broadcasts. The collected data allowed to determine the dominant emo-
tion in the radio broadcast and present the amount of speech and music. The obtained
results provide a new interesting view of the emotional content of radio stations.

A system for the analysis of emotions contained within radio broadcasts could be
a helpful tool for people planning radio programs enabling them to consciously plan
the emotional distribution in the broadcast music. Another example of applying this
system could be an additional tool for radio station searching.



Chapter 9
Music Emotion Maps in the Arousal-Valence
Space

9.1 Introduction

Emotions are a dominant element in music, and they are the reason people listen
to music so often [81]. Systems searching musical compositions on Internet data-
bases more and more often add an option of selecting emotions to the basic search
parameters, such as title, composer, genre, etc. [40, 85].

The emotional content ofmusic is not always constant, and even in classical music
or jazz changes often. Analysis of emotions contained in music over time is a very
interesting aspect of studying the content of music. It can provide new knowledge on
how the composer emotionally shaped the music or why we like some compositions
more than others.

9.2 Related Work

Music emotion recognition concentrates on static or dynamic changes over time.
Static music emotion recognition uses excerpts from 15 to 30 seconds and omits
changes in emotions over time. It assumes the emotion in a given segment does not
change. A regression approach and static emotion recognition was presented in [60,
109, 119].

Dynamic music emotion recognition analyzes changes in emotions over time.
Methods for detecting emotions using a sliding window are presented in [32, 34, 51,
63, 96, 119]. Deng and Leung [16] proposed multiple dynamic textures to model
emotion dynamics over time. To find similar sequence patterns of musical emo-
tions, they used subsequence dynamic timewarping for matching emotion dynamics.
Aljanaki et al. [3] investigated how well structural segmentation explains emotion
segmentation. They evaluated different unsupervised segmentation methods on the

© Springer International Publishing AG 2018
J. Grekow, From Content-Based Music Emotion Recognition to Emotion
Maps of Musical Pieces, Studies in Computational Intelligence 747,
https://doi.org/10.1007/978-3-319-70609-2_9
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task of emotion segmentation. Imbrasaite et al. [46] and Schmidt et al. [95] used
Continuous Conditional Random Fields for dimensional emotion tracking.

In our study, we used dynamic music emotion recognition with a sliding window.
We experimentally selected a segment length of 6 sec. as the shortest period of time
after which a music expert can recognize an emotion.

The elements of music that affect the emotions are timbre, dynamics, rhythm, and
harmony. One of the most important steps during building a system for automatic
emotion detection is feature extraction from audio files. The quality of these features
and connecting them with elements of music such as rhythm, harmony, melody and
dynamics, shaping a listener’s emotional perception of music, have a significant
effect on the effectiveness of the built prediction models.

Most papers, however, focus on studying features using a classification model
[35, 36, 73, 90, 100]. Music emotion recognition combining standard and melodic
features extracted from audio was presented by Panda et al. in [73]. Song et al. [100]
explored the relationship betweenmusical features extracted byMIRtoolbox [53] and
emotions. They compared the emotion prediction results for four sets of features:
dynamic, rhythm, harmony, and spectral. Baume et al. [6] evaluated different types
of audio features using a five-dimensional support vector regressor in order to find
the combination that produces the best performance.

9.3 Music Data

The data set that was used in this experiment consisted of 324 six-second fragments
of different genres of music: classical, jazz, blues, country, disco, hip-hop, metal,
pop, reggae, and rock. The tracks were all 22050Hz mono 16-bit audio files in .wav
format. The data set has been described in detail in Chap.3 Sect. 3.3.

During the annotation of music samples, we used Russell’s two-dimensional
valence-arousal (V-A) model to measure emotions in music [88]. The model con-
sists of two independent dimensions of valence (horizontal axis) and arousal (vertical
axis). The annotation process of music files has been described in Chap.3 Sect. 3.3.3.
The amount of examples in the quarters on the A-V emotion plane is presented in
Table9.1.

Table 9.1 Amount of examples in quarters on A-V emotion plane

Quarter abbreviation Arousal-Valence Amount of examples

Q1 High-High 93

Q2 High-Low 70

Q3 Low-Low 80

Q4 Low-High 81

http://dx.doi.org/10.1007/978-3-319-70609-2_3
http://dx.doi.org/10.1007/978-3-319-70609-2_3
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9.4 Feature Extraction

For feature extraction, we used Essentia [8] and Marsyas [106], which are tools
for audio analysis and audio-based music information retrieval. Marsyas framework
has been described in Chap.6 Sect. 6.2.2. Essentia extractors have been described in
Chap.6 Sect. 6.2.1.

The previously prepared, labeled by A-V values, music data set served as
input data for tools used for feature extraction. The obtained lengths of feature vec-
tors, dependent on the package used, were as follows: Marsyas—124 features, and
Essentia—530 features.

9.5 Regressor Training

We built regressors for predicting arousal and valence using the WEKA package
[114]. For training and testing, the following regression algorithms were used:
SMOreg, REPTree, M5P. SMOreg algorithm [99] implements the support vector
machine for regression. REPTree algorithm [41] builds a regression tree using vari-
ance and prunes it using reduced-error pruning. M5P implements base routines for
generating M5 Model trees and rules [83, 110].

Before constructing regressors, arousal and valence annotations were scaled
between [−0.5, 0.5]. We evaluated the performance of regression using the tenfold
cross validation technique (CV-10).

Thehighest values for determination coefficient (R2)were obtainedusingSMOreg
(implementation of the support vector machine for regression) [99]. After applying
attribute selection (attribute evaluator:WrapperSubsetEvaluator [50], searchmethod:
Best First [117]), we obtained R2 = 0.79, for arousal and R2 = 0.58 for valence.
Mean absolute error reached values MAE = 0.09 for arousal and MAE = 0.10 for
valence (Table9.2).

Predicting arousal is a much easier task for regressors than valence in both cases
of extracted features (Essentia, Marsays) and values predicted for arousal are more
precise. R2 for arousal were comparable (0.79 and 0.73), but features which describe
valence were much better using Essentia for audio analysis. The obtained R2 = 0.58
for valence are much higher than R2 = 0.25 using Marsyas features. In Essentia,

Table 9.2 R2 and MAE obtained for SMOreg

Essentia Marsyas

Arousal Valence Arousal Valence

R2 MAE R2 MAE R2 MAE R2 MAE

Before attribute selection 0.48 0.18 0.27 0.17 0.63 0.13 0.15 0.16

After attribute selection 0.79 0.09 0.58 0.10 0.73 0.11 0.25 0.14

http://dx.doi.org/10.1007/978-3-319-70609-2_6
http://dx.doi.org/10.1007/978-3-319-70609-2_6
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tonal and rhythm features greatly improve prediction of valence. These features are
not available in Marsyas and thus Essentia obtains better results.

One can notice the significant role of the attribute selection phase, which generally
improves prediction results. Marsyas features before attribute selection outperform
Essentia features for arousal detection. R2 = 0.63 and MAE = 0.13 byMarsyas are
better results than R2 = 0.48 andMAE = 0.18 byEssentia. However, after selecting
the most important attribute, Essentia turns out to be the winner with R2 = 0.79 and
MAE = 0.09.

9.6 Evaluation of Different Combinations of Feature Sets

During this experiment, we evaluated the effect of various combinations of Essentia
feature sets—low-level (L), rhythm (R), tonal (T)—on the performance obtained for
SMOreg algorithm. We evaluated the performance of regression using the tenfold
cross validation technique (CV-10). We also used attribute selection with Wrapper
Subset Evaluator and search method Best First.

The obtained results, presented in Table9.3, indicate that the use of all groups
(low-level, rhythm, tonal) of features resulted in the best performance or equal to
best performance by combining feature sets. The best results have been marked in
bold. Detection of arousal using the set L+R (low-level, rhythm features) has equal
results as using all groups. Detection of valence using the set L+T (low-level, tonal
features) has only little worse results than using all groups.

The use of individual feature sets L, R or T did not achieve better results than their
combinations.Worse results were obtainedwhen using only tonal features for arousal
(R2 = 0.53 and MAE = 0.14) and only rhythm features for valence (R2 = 0.15
and MAE = 0.15).

Combining feature sets L+R (low-level and rhythm features) improved regres-
sor results in the case of arousal. Combining feature sets L+T (low-level and tonal
features) improved regressor results in the case of valence.

Table 9.3 R2 and MAE for arousal and valence obtained for combinations of feature sets

Feature set Arousal Valence

R2 MAE R2 MAE

L 0.74 0.10 0.49 0.12

R 0.68 0.11 0.15 0.15

T 0.53 0.14 0.48 0.12

L+R 0.79 0.09 0.40 0.12

L+T 0.74 0.10 0.56 0.10

R+T 0.74 0.11 0.52 0.11

All (L+R+T) 0.79 0.09 0.58 0.10
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In summary, we can conclude that low-level features are very important in the
prediction of both arousal and valence. Additionally, rhythm features are important
for arousal detection, and tonal features help a lot for detecting valence. The use of
only individual feature sets L, R or T does not give good results.

9.7 Selected Features Dedicated to the Detection of Arousal
and Valence

Table9.4 presents 2 sets of selected features, which using the SMOreg algorithm
obtained the best performance by detecting arousal (Sect. 9.6). Features marked in
bold are in both groups. Notice that after adding tonal features T to group L+R,
some of the features were replaced by others and some remained without changes.
Features found in both groups seem to be particularly useful for detecting arousal.
Different statistics from spectrum and mel bands turned out to be especially useful:
Spectral Energy, Entropy, Flux, Rolloff, Skewness, and Melbands Crest, Kurtosis.
Also, three rhythm features belong to the group of more important features because
both sets contain: Danceability, Onset Rate, Beats Loudness Band Ratio.

Table9.5 presents 2 sets of selected features, which using the SMOreg algorithm
obtained the best performance by detecting valence (Sect. 9.6). Particularly important
low-level features, found in both groups, were: Spectral Energy and Zero Crossing
Rate, as well as Mel Frequency Cepstrum Coefficients (MFCC) and Gammatone
Feature Cepstrum Coefficients (GFCC). Particularly important tonal features, which
describe key, chords and tonality of a musical excerpt were: Chords Strength, Har-
monic Pitch Class Profile Entropy, Key Strength.

Comparing the sets of features dedicated to arousal (Table9.4) and valence
(Table9.5), we notice that there are much more statistics from spectrum and mel
bands in the arousal set than in the valence set. MFCC and GFCC were useful for
detecting valence and were not taken into account for arousal detection.

Features that turned out to be universal, useful for detecting both arousal and
valence, by using all features (L+R+T), are:

• Melbands Kurtosis (L),
• Melbands Skewness (L),
• Spectral Energy (L),
• Beats Loudness Band Ratio (R),
• Chords Strength (T),
• Harmonic Pitch Class Profile (HPCP) Entropy (T),
• Key Strength (T),
• Chords Histogram (T).



100 9 Music Emotion Maps in the Arousal-Valence Space

Table 9.4 Selected features used for building the arousal regressor
Features from set L+R+T Features from set L+R

Average Loudness (L) Barkbands Kurtosis (L)

Barkbands Spread (L) Dissonance (L)

Melbands Crest (L) Erbbands Flatness (L)

Melbands Flatness (L) Erbbands Skewness (L)

Melbands Kurtosis (L) Melbands Crest (L)

Melbands Skewness (L) Melbands Kurtosis (L)

Melbands Spread (L) Silence Rate (L)

Spectral Energy (L) Spectral Energy (L)

Spectral Entropy (L) Spectral Entropy (L)

Spectral Flux (L) Spectral Flux (L)

Spectral Kurtosis (L) Spectral Rolloff (L)

Spectral Rolloff (L) Spectral Skewness (L)

Spectral Skewness (L) Beats Count (R)

Beats Per Minute (BPM) Histogram (R) Beats Loudness (R)

BPM of the Most Salient Tempo (R) Danceability (R)

Danceability (R) Onset Rate (R)

Onset Rate (R) Beats Loudness Band Ratio (R)

Beats Loudness Band Ratio (R)

Chords Strength (T)

Harmonic Pitch Class Profile Entropy (T)

Key Strength (T)

Chords Histogram (T)

Table 9.5 Selected features used for building the valence regressor
Features from set L+R+T Features from set L+T

High Frequency Content (L) Melbands Crest (L)

Melbands Kurtosis (L) Melbands Spread (L)

Melbands Skewness (L) Pitch Salience (L)

Spectral Energy (L) Silence Rate (L)

Zero Crossing Rate (L) Spectral Centroid (L)

GFCC (L) Spectral Energy (L)

MFCC (L) Spectral Spread (L)

Beats Loudness (R) Zero Crossing Rate (L)

Onset Rate (R) GFCC (L)

Beats Loudness Band Ratio (R) MFCC (L)

Chords Strength (T) Chords Strength (T)

HPCP Entropy (T) HPCP Entropy (T)

Key Strength (T) Key Strength (T)

Chords Histogram (T) Key Scale (T)
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9.8 Emotion Maps

The result of emotion tracking are emotion maps. We used the best obtained models
for predicting arousal and valence to analyze musical compositions. The composi-
tions were divided into 6-second segments with a 3/4 overlap. For each segment,
features were extracted and models for arousal and valence were used.

The predicted values are presented in the figures in the form of emotion maps.
For each musical composition, the obtained data was presented in 4 different ways:

1. Arousal-Valence over time;
2. Arousal-Valence map;
3. Arousal over time;
4. Valence over time.

Simultaneous observation of the same data in 4 different projections enabled us
to accurately track changes in valence and arousal over time, such as tracking the
location of a prediction on the A-V emotion plane.

9.8.1 Emotion Maps of Two Compositions

Figures9.1 and 9.2 show emotion maps of two compositions, one for the song Let It
Be by Paul McCartney (The Beatles) and the second, Piano Sonata No. 8 in C minor,
Op. 13 (Pathetique), 2nd movement, by Ludwig van Beethoven.

Emotion maps present two different emotional aspects of these compositions.
The first significant difference is distribution on the quarters of the Arousal-Valence
map. In Let It Be (Fig. 9.1b), the emotions of quadrants Q4 and Q1 (high valence
and low-high arousal) dominate. In Sonata Pathetique (Fig. 9.2b), the emotions of
quarter Q4 (low arousal and low valence) dominate with an incidental emergence of
emotions of quarter Q3 (low arousal and low valence).

Another noticeable difference is the distribution of arousal over time. Arousal in
Let It Be (Fig. 9.1c) has a rising tendency over time of the entire song, and varies from
low to high. In Sonata Pathetique (Fig. 9.2c), in the first half (s. 0–160) arousal has
very low values, and in the second half (s. 160–310) arousal increases incidentally
but remains in the low value range.

The third noticeable difference is the distribution of valence over time. Valence
in Let It Be (Fig. 9.1d) remains in the high (positive) range with small fluctuations,
but it is always positive. In Sonata Pathetique (Fig. 9.2d), valence, for the most part,
remains in the high range but it also has several declines (s. 90, 110, 305), which
makes valence more diverse.

Arousal and valence over time were dependent on the music content. Even in a
short fragment of music, these values varied significantly. From the course of arousal
and valence, it appears that Let It Be is a song of a decisively positive nature with
a clear increase in arousal over time, while Sonata Pathetique is mostly calm and
predominantly positive.
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Fig. 9.1 A-V maps for the song Let It Be by Paul McCartney (The Beatles)

Fig. 9.2 A-V maps for Piano Sonata No. 8 in C minor, Op. 13 (Pathetique), 2nd movement, by
Ludwig van Beethoven
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9.8.2 Features Describing Emotion Maps

To analyze and compare changes in arousal and valence over time (time series), we
proposed the following parameters:

1. Mean value of arousal;
2. Mean value of valence;
3. Standard deviation of arousal;
4. Standard deviation of valence;
5. Mean of derivative of arousal;
6. Mean of derivative of valence;
7. Standard deviation of derivative of arousal;
8. Standard deviation of derivative of valence;
9. Quantity of changing sign of arousalQCA—describes howoften arousal changes

between top and bottom quarters of the A-V emotion model;
10. Quantity of changing sign of valence QCV—describes how often valence

changes between left and right quarters of the A-V emotion model;
11. QCE—is the sum of QCA and QCV ;
12. Percentage representation of emotion in 4 quarters (4 parameters).

Analysis of the distribution of emotions over timegives amuchmore accurate view
of the emotional structure of a musical composition. It provides not only information
on which emotions are dominant in a composition, but also how often they change,
and their tendency. The presented list of features is not closed, we will search for
additional features in the future.

9.8.3 Comparison of Musical Compositions

Another experiment was to compare selected well-known Ludwig van Beethoven’s
Sonatas with several of the most famous songs by The Beatles. We used nine musical
compositions from each group for the comparison (Table9.6). This experiment did
not aim to compare all the works of Beethoven and The Beatles, but only to find the
rules and most important features distinguishing these 2 groups.

Each sample was segmented and arousal and valence were detected. Then, 15
features, which were presented in the previous section, were calculated for each
sample. We used the PART algorithm [24] from the WEKA package [114] to find
the decision-making rules differentiating the two groups.

It turned out that the most distinguishing feature for these two groups of musical
compositions was the Standard deviation of valence. It was significantly smaller in
The Beatles’ songs than in Beethoven’s compositions (Fig. 9.3). Standard deviation
of valence reflects how big deviations were from the mean. The results show that in
Beethoven’s compositions valence values were much more varied than in the songs
of The Beatles.
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Table 9.6 List of musical compositions

L. v. Beethoven’s Sonatas The Beatles

Sonata Appassionata, part 1 Hey Jude

Sonata Appassionata, part 2 P.S. I Love You

Sonata Appassionata, part 3 While My Guitar Gently Weeps

Sonata Waldstein, part 1 I’ll Follow The Sun

Sonata Waldstein, part 2 It’s Only Love

Sonata Waldstein, part 3 Yesterday

Sonata Pathetique, part 1 Michelle

Sonata Pathetique, part 2 Girl

Sonata Pathetique, part 3 Let It Be

Fig. 9.3 Box plot of
Standard deviation of
valence in The Beatles’ and
in Beethoven’s compositions

To find another significant feature in the next stage, we removed the characteristic
that we found previously (Standard deviation of valence) from the data set. Another
significant feature was Standard deviation of arousal. In Beethoven’s compositions,
the values of the Standard deviation of arousalweremuch greater than in the Beatles’
songs (Fig. 9.4). This proves the compositions have a greater diversity of tempo and
volume.

In the next analogous stage, the feature we found was Standard deviation of
derivative of arousal. It reflects the magnitude of changes in arousal between the
studied segments. We found higher values of Standard deviation of derivative of
arousal in Beethoven’s compositions (Fig. 9.5).

An example of a feature that is unsuitable for differentiating between two ex-
amined groups of compositions is presented in Fig. 9.6. Overlapping values of the
feature Percentage representation of emotion e4, obtained for compositions by The
Beatles and Beethoven, cause that the usefulness of this feature to differentiate the
way emotions are shaped in the studied groups is small.
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Fig. 9.4 Box plot of
Standard deviation of
arousal in The Beatles’ and
in Beethoven’s compositions

Fig. 9.5 Box plot of
Standard deviation of
derivative of arousal in The
Beatles’ and in Beethoven’s
compositions

Fig. 9.6 Box plot of
Percentage representation of
emotion e4 (relaxed) in The
Beatles’ and in Beethoven’s
compositions
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The interesting thing is that in the group of the most important distinguishing
features we did not find features describing the emotion type (Mean value of arousal,
Mean value of valence, or Percentage representation of emotion in 4 quarters). This
is confirmed by the fact that we cannot assign common emotions to the different
sample groups (Beethoven, The Beatles); in all groups, we have emotions from the
four quadrants of the emotion model.

We can conclude that features that better distinguish between the two groups of
compositions were features pertaining to changes in emotions and their distribution
in the musical compositions.

9.9 Conclusions

In this chapter, we presented the detection of emotions as a problem of regression.
The result of applying regressors are emotion maps of the musical compositions.
Conducting experiments required the construction of regressors, attribute selection,
and analysis of selected musical compositions.

Emotionmaps provide new knowledge about the distribution of emotions inmusi-
cal compositions, and knowledge that had only been available to music experts until
this point. The proposed parameters describing emotions can be used in the construc-
tion of a system that can search for songs with similar emotions. They describe in
more detail the distribution of emotions, their evolution, frequency of changes, etc.

In this chapter, we also studied the usefulness of audio features during emotion
detection. Different feature sets were used to test the performance of built regres-
sion models intended to detect arousal and valence. We examined the influence of
different feature sets—low-level, rhythm, tonal, and their combination—on arousal
and valence prediction. The use of a combination of different types of features sig-
nificantly improved the results compared with using just one group of features. We
found and presented features particularly dedicated to the detection of arousal and
valence separately, as well as features useful in both cases. We can conclude that
low-level features are very important in the prediction of both arousal and valence.
Additionally, rhythm features are important for arousal detection, and tonal features
help a lot for detecting valence.

The obtained results confirm the point of creating new features of middle and
higher levels that describe elements of music such as rhythm, harmony, melody,
and dynamics shaping a listener’s emotional perception of music. These features
can have an affect on improving the effectiveness of automatic emotion detection in
music files.



Chapter 10
Comparative Analysis of Musical
Performances by Using Emotion Tracking
on the Arousal-Valence Plane

10.1 Introduction

Musical compositions differ not only in their musical content, but also their emo-
tional message. Even the same composition, based on one musical notation, can
be performed differently, with each performance differing in the emotional content.
Performing a piece written by a composer, a performer, musician, artist gives it its
own shape—interpretation. We can like some performances more than others.

Emotions are increasingly added to basic search parameters, such as title, com-
poser, genre, etc., of systems searching musical compositions on Internet databases.
Finding pieces with a similar emotional distribution throughout the same composi-
tion is an option that further extends the capabilities of search systems.

In this paper, we present a computer system that enables finding which perfor-
mances of the same composition are closer to each other and which are quite distant
in terms of shaping emotions over time. We analyzed 6 musical works, of which
there were 5 different versions.

10.2 Related Work

For comparative analysis ofmusical performances,weused thedimensional approach
of dynamic music emotion recognition. Emotion recognition was treated as a regres-
sion problem. We used a 2D emotion model proposed by Russell [88], where the
dimensions are represented by arousal and valence. It was used in many works used
in music emotion recognition [96, 119]. Dynamic music emotion recognition ana-
lyzes changes in emotions over time. Methods for detecting emotion using a sliding
window are presented in [38, 51, 63, 96, 119].

Comparisons of multiple performances of the same piece often focused on piano
performances [26, 93]. Tempo and loudness information were the most popular

© Springer International Publishing AG 2018
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characteristics used for performance analysis. They were used to calculate corre-
lations between performances in [93, 94]. In the study [26], tempo and loudness
derived from audio recordings were segmented into musical phrases, and then clus-
teringwas used to find individual features of the pianists’ performances. Four selected
computational models of expressive music performance were reviewed in [112]. In
addition, research on formal characterization of individual performance style, like
performance trajectories and performance alphabets, was presented. A method to
compare orchestra performances by examining a visual spectrogram characteristic
was proposed in [59]. Principal component analysis on synchronized performance
fragments was applied to localize areas of cross-performance variation in time and
frequency. A connection between music performances and emotion was presented in
[9],where a computer program (DirectorMusices)was used to produce performances
with varying emotional expression. The program used a set of rules characteristic for
each emotion (fear, anger, happiness, sadness, solemnity, tenderness), which were
used to modify such parameters of MIDI files as tempo, sound level, articulation,
tone onsets and delays.

10.3 System Construction

The proposed system for comparative analysis of musical performances using emo-
tion tracking is shown in Fig. 10.1. It is composed of collected music training
data, segmentation, feature extraction, regressors, aligning, and a result presentation
module.

The input data are different performances of the same composition, which under-
went segmentation. After the feature extraction process, the prediction of arousal
and valence occurs for subsequent segments, and previously trained regressors are
used for prediction. In the next phase, the valence and arousal values are aligned
in the aligning module, which causes that the same musical fragments of different
performances are compared. The obtained results are sent to the result presentation
module, where the course of arousal and valence over time is presented, scape plots
are constructed, and parameters indicating the most alike compositions are calcu-
lated.

10.4 Music Data for Regressor Training

The data set that was used in this experiment consisted of 324 six-second fragments
and has been described in detail in Chap.3 Sect. 3.3. During the annotation of music
samples,weusedRussell’s two-dimensional valence-arousal (V-A)model tomeasure
emotions in music [88], which consists of two independent dimensions of valence
(horizontal axis) and arousal (vertical axis). The annotation process of music files

http://dx.doi.org/10.1007/978-3-319-70609-2_3
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Fig. 10.1 System construction for comparative analysis of musical performances by using emotion
tracking

Table 10.1 Amount of examples in quarters on the A-V emotion plane

Quarter abbreviation Arousal-Valence Amount of examples

Q1 High-High 93

Q2 High-Low 70

Q3 Low-Low 80

Q4 Low-High 81

has been described in Chap.3 Sect. 3.3.3. The amount of examples in the quarters on
the A-V emotion plane is presented in Table10.1.

The previously prepared, labeled by A-V values, music data set served as input
data for the tool used for feature extraction. For feature extraction, we used a tool for
audio analysis Essentia [8]. The obtained by Essentia length of feature vector was
530 features.

http://dx.doi.org/10.1007/978-3-319-70609-2_3
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10.5 Regressor Training

We built regressors for predicting arousal and valence using the WEKA package
[114]. For training and testing, the following regression algorithms were used:
SMOreg, REPTree, M5P. Before constructing regressors, arousal and valence anno-
tations were scaled between [−0.5, 0.5].

We evaluated the performance of regression using the tenfold cross validation
technique (CV-10). The whole data set was randomly divided into ten parts, nine
of them for training and the remaining one for testing. The learning procedure was
executed a total of 10 times on different training sets. Finally, the 10 error estimates
were averaged to yield an overall error estimate.

The highest values for determination coefficient (R2)were obtained usingSMOreg
(implementation of the support vector machine for regression). After applying
attribute selection (attribute evaluator: Wrapper Subset Evaluator, search method:
Best First), we obtained R2 = 0.79, for arousal and R2 = 0.58 for valence. Mean
absolute error reached valuesMAE = 0.09 for arousal andMAE = 0.10 for valence.
Predicting arousal is a much easier task for regressors than valence and the values
predicted for arousal are more precise.

10.6 Aligning of Audio Recordings

Our task was to compare different performances of the same composition using emo-
tional distribution. Because the musical performances are played at varying tempos,
with various accelerations and decelerations, an alignment of audio recordings is
necessary to compare two performances. This enables comparing the same frag-
ments of different renditions. Without doing an alignment to compare performances
second to second, we would be comparing fragments of varying content. Just adjust-
ing the time of different renditions, for example through stretching or compression
of time, will not synchronize the performances in terms of music content. Only an
exact alignment of the recordings, note by note, guarantees that we are comparing
the same fragments.

We used MATCH [18], a toolkit for accurate automatic alignment of different
renditions of the same piece of music. MATCH is based on a dynamic time warping
algorithm (DTW), which is a technique for aligning time series and has been well
known and used in the speech recognition community [84]. Frames of audio input
data are represented by positive spectral difference vectors, which emphasize note
onsets in the alignment process. They are used in the DTW algorithm’s match cost
function, which uses an Euclidean metric. The path returned by the DTW algorithm,
as result of alignment of two audio files, is used to find the location of the same
musical fragment in both files.

Figures10.2 and 10.3 present, in waveform images, the beginnings of three differ-
ent renditions of the same composition (Prelude in C major, Op.28, No.1 by Frédéric
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Fig. 10.2 Waveform images of three different music performances of Prelude in C major, Op.28,
No.1 by Frédéric Chopin before alignment

Chopin) before and after alignment. Before alignment (Fig. 10.2), the compositions
are placed one after the other and the vertical line indicates the time from the begin-
ning of the composition, but these are different fragments in terms of music content.
After alignment (Fig. 10.3), the vertical line indicates the same fragment in different
performances. We notice the varying locations of the same motif from the beginning
of the composition depending on the rendition, which is connected to the differing
tempos played by different performers. The top first recording is a reference record-
ing and the remaining pieces are compared to it. To present the waveform images of
audio files and to visualize the alignment results, Sonic Visualiser [12] with installed
MATCH Vamp Plugin was used.
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Fig. 10.3 Waveform images of three different music performances of Prelude in C major, Op.28,
No.1 by Frédéric Chopin after alignment

10.7 Analyzed Performances

The collection of analyzed performances consisted of the following compositions by
Frédéric Chopin (1810–1849):

• Prelude in C major, Op.28, No.1;
• Prelude in D major, Op.28, No.5;
• Prelude in F minor, Op.28, No.18;
• Prelude in C minor, Op.28, No.20 (the first 8 bars).

All the analyzed Chopin performances were audio recordings played by 5 famous
pianists:

• Artur Rubinstein recorded in 1946;
• Emil Gilels recorded in 1953;
• Grigory Sokolov recorded in 1990;
• Martha Argerich recorded in 1997;
• Rafał Blechacz recorded in 2007.
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Additionally, we analyzed approximately 1 min long beginnings of 2 symphonies
by Ludwig van Beethoven (1770–1827): Symphony No.5 in C minor, Op.67 (the
first 58 bars) performed by:

• NBC Symphony Orchestra conducted by Arturo Toscanini recorded in 1953;
• Berliner Philharmoniker conducted by Herbert von Karajan recorded in 1982;
• London Philharmonic Orchestra conducted by Horst Stein recorded in 1963;
• New York Philharmonic Orchestra conducted by Leonard Bernstein recorded in
1963;

• Philharmonia Orchestra conducted by Otto Klemperer recorded in 1959;

and Symphony No.3 in E-flat major, Op.55 ‘Eroica’ (the first 46 bars) performed
by:

• NBC Symphony Orchestra conducted by Arturo Toscanini recorded in 1953;
• Berliner Philharmoniker conducted by Herbert von Karajan recorded in 1964;
• La Capella Reial de Catalunya conducted by Jordi Saval recorded in 1994;
• New York Philharmonic Orchestra conducted by Leonard Bernstein recorded in
1967;

• Philharmonia Orchestra conducted by Otto Klemperer recorded in 1959.

We analyzed 6 musical works, with 5 different performances of each. Detailed
results are available on the web.1

10.8 Results

We used the best obtained regression models for predicting arousal and valence of
the musical performances, which were divided into 6 s segments with a 3/4 overlap.
For each segment, features were extracted and models for arousal and valence were
used. As a result, we obtained arousal and valence values for every 1.5 s of a musical
piece.

10.8.1 Influence of Recording Alignment on Emotion Values
of the Compared Segments

During the comparison of different performances of the same composition, it is very
important to compare the same musical fragment of these performances. Thus, we
implemented a module for the alignment of audio recordings in our system. We used
MATCH [18], a toolkit for accurate automatic alignment of different renditions of
the same piece of music. The influence of the alignment process on the obtained

1http://aragorn.pb.bialystok.pl/~grekowj/HomePage/Performances.

http://aragorn.pb.bialystok.pl/~grekowj/HomePage/Performances
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Fig. 10.4 Arousal over time for three different music performances before alignment

Fig. 10.5 Arousal over time for three different music performances after alignment

values is presented in Figs. 10.4 and 10.5, where arousal values over time before and
after alignment are presented (Prelude in C major, Op.28, No.1 by F. Chopin).

Observation of the course of arousal in the performances shows that there
was clearly a similar increase in the value for samples 15–23 in the three
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performances (Fig. 10.4), but it was not well synchronized. The same fragment after
alignment (samples 15–20) shows better synchronization. The three performances
show their maximum in samples 17–18 (Fig. 10.5). The alignment process is also
well illustrated when we compare decreasing arousal values in the performance by
R. Blechacz before (samples 40–50, Fig. 10.4) and after alignment (samples 37–50,
Fig. 10.5). After alignment, the decreasing arousal values of the performance by R.
Blechacz align well to the decreasing arousal values of the performance by E. Gilels.

10.8.2 Performances and Arousal over Time

Due to the limited nature of our research, we have restricted the analysis and presen-
tation of results to 5 different performances of Prelude in C major, Op.28, No.1 by
Frédéric Chopin.

Observation of the course of arousal in the performances (Fig. 10.6) shows that the
performance by G. Sokolov had significantly lower values than the remaining pieces.
The reason for this is that the performance was played at a slower pace and lower
sound intensity. Between samples 15 and 20, there was a clear rise in arousal for all
performances, but the performance by E. Gilels achievedmaximum (Arousal= 0.3).
Also, the performance by E. Gilels is the most dynamically aroused in this fragment.
It is not always easy to detect on the graph which performances are similar. However,
we can notice a convergence of lines betweenA. Rubinstein andG. Sokolov (samples
30–50), and between R. Blechacz and E. Gilels (samples 37–50).

To compare themusical performances, we used the Pearson correlation coefficient
r, whichwas calculated for each pair of performances (Table10.2). Each performance
is represented by a sequence of arousal values. The correlation coefficient ranges from
1 to −1. Value 1 means perfectly correlated sequences, 0 there is no correlation, and
−1 that the sequences are perfectly correlated negatively. A correlation coefficient
between two of the same performances is at maximum equal to 1 and was not taken
into account, i.e. r(X,X) = 1.

Pearson’s correlation coefficient r between two sequences (x1, x2, ..., xn) and
(y1, y2, ..., yn) of the same length n is defined in Eq.10.1.

r(x, y) =
∑n

i=1 (xi − x)(yi − y)
√∑n

i=1 (xi − x)2
∑n

i=1 (yi − y)2
(10.1)

where xi and yi are values of elements in sequences, x and y are mean values of each
sequence.

Comparing the musical performances in terms of arousal (Table10.2), we see that
the performance by A. Rubinstein was most similar to G. Sokolov (r = 0.80). G.
Sokolov was most similar to A. Rubinstein (r = 0.80) and R. Blechacz (r = 0.83).
The performances by R. Blechacz were similar to those by E. Gilels (r = 0.87) and
G. Sokolov (r = 0.83). M. Argerich’s performance is the least similar to the rest,
although it is closest to E. Gilels (r = 0.74) and R. Blechacz (r = 0.75). From all
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Fig. 10.6 Arousal over time for 5 performances of Prelude in C major, Op.28, No.1 by Frédéric
Chopin

Table 10.2 Correlation coefficient r for arousal calculated for each pair of performances of Prelude
in C major, Op.28, No.1 by F. Chopin

A. Rubinstein E. Gilels G. Sokolov M. Argerich R. Blechacz

A. Rubinstein 1.00 0.74 0.80 0.69 0.75

E. Gilels 0.74 1.00 0.78 0.74 0.87

G. Sokolov 0.80 0.78 1.00 0.67 0.83

M. Argerich 0.69 0.74 0.67 1.00 0.75

R. Blechacz 0.75 0.87 0.83 0.75 1.00

5 performances in terms of arousal, the pieces by G. Sokolov and M. Argerich were
the most different (r = 0.67).

10.8.3 Performances and Valence over Time

Observation of the course of valence in the performances (Fig. 10.7) shows that there
was a similar decrease in this value for samples 15–20 in all performances. There
is a similar line shape, i.e. good correlation, between R. Blechacz and G. Sokolov
(samples 5–20), and between M. Argerich and E. Gilels (samples 35–50).

Table10.3 presents correlation coefficients for valence calculated for each pair
of performances. In terms of valence distribution, G. Sokolov’s performance was
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Fig. 10.7 Valence over time for 5 performances of Prelude in C major, Op.28, No.1 by Frédéric
Chopin

Table 10.3 Correlation coefficient r for valence calculated for each pair of performances of Prelude
in C major, Op.28, No.1 by F. Chopin

A. Rubinstein E. Gilels G. Sokolov M. Argerich R. Blechacz

A. Rubinstein 1.00 0.41 0.82 0.65 0.79

E. Gilels 0.41 1.00 0.41 0.70 0.42

G. Sokolov 0.82 0.41 1.00 0.61 0.81

M. Argerich 0.65 0.70 0.61 1.00 0.70

R. Blechacz 0.79 0.42 0.81 0.70 1.00

similar to A. Rubinstein (r = 0.82) and R. Blechacz (r = 0.81). The performance
by E. Gilels was similar to M. Argerich (r = 0.70), and less similar to G. Sokolov,
A. Rubinstein and R. Blechacz (r = 0.41–0.42).

10.8.4 Performances and Arousal-Valence over Time

Another possibility of comparing performances is to take arousal and valence into
account simultaneously. To compare performances described by two sequences of
values (arousal and valence), these sequences should be joined. In order to join the
two sequences of arousal (Eq.10.2) and valence (Eq.10.3) values of one performance,
standarddeviation and themeanof the two sequences of data should be equivalent.We
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decided to leave arousal values without change and convert valence values (Eq.10.5);
although we could have converted arousal and left valence without a change and this
would not have affected the correlation results. During joining, the sequences of each
feature are interleaved (Eq.10.4).

Sequences for arousal and valence:

A = (a1, a2, a3, ..., an) (10.2)

V = (v1, v2, v3, ..., vn) (10.3)

Result of joining arousal and valence sequence into one sequence AV :

AV = (a1, vnew1, a2, vnew2, a3, vnew3, ..., an, vnewn) (10.4)

Formula for calculating new valence sequence values:

vnewn = a + sda
vn − v

sdv
(10.5)

where sda stands for standard deviation of sequence A, sdv—standard deviation of
sequence V , a—mean value of sequence A, v—mean value of sequence V .

Table10.4 presents the correlation coefficients r for joined arousal and valence,
calculated for each pair of performances. We see that the most similar performances
are byR.Blechacz andG. Sokolov (r = 0.82) and themost different byA.Rubinstein
end E. Gilels (r = 0.58). It can be stated that in terms of arousal and valence
we have two groups of performances. The first group consists of performances by
R. Blechacz, G. Sokolov and A. Rubinstein, and the second group by E. Gilels and
M. Argerich.

Table 10.4 Correlation coefficient r for joined arousal and valence calculated for each pair of
performances of Prelude in C major, Op.28, No.1 by F. Chopin

A. Rubinstein E. Gilels G. Sokolov M. Argerich R. Blechacz

A. Rubinstein 1.00 0.58 0.81 0.67 0.77

E. Gilels 0.58 1.00 0.60 0.72 0.64

G. Sokolov 0.81 0.60 1.00 0.64 0.82

M. Argerich 0.67 0.72 0.64 1.00 0.72

R. Blechacz 0.77 0.64 0.82 0.72 1.00
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Fig. 10.8 Performances of Prelude inCmajor, Op.28, No.1 by Frédéric Chopin on theA-V emotion
plane

10.8.5 Arousal-Valence Trajectory

Figure10.8 presents the trajectories of two different performances (E. Gilels, G.
Sokolov) of Prelude No.1 by Frédéric Chopin on the A-V emotion plane. Including
all 5 performances would have obscured the illustration, therefore we decided to
present two extremely different performances. A square marker on the trajectory
indicates the beginning of a piece.

The trajectories illustrate how the artist moved in the 4 quarters on the Arousal-
Valence emotion plane. Both performances begin and end in quarter Q4 (arousal
low—valence high). The course of the middle part of these two performances varies.
G. Sokolov’s trajectory moves through quarter Q3 (arousal low—valence low), and
E. Gilels’ through quarters Q2 (arousal high—valence low) and Q1 (arousal high—
valence high).

10.8.6 Scape Plot

Comparing musical performances by using correlation coefficient r calculated for
the whole length of a composition is only a general analysis of similarities between
recordings. In order to analyze similarities between the performances in greater detail,
we used scape plotting.
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Fig. 10.9 Method for
creating a scape plot from 5
elements

Scape plot is a plottingmethod that allows presenting analysis results for segments
of varying lengths on one image. Their advantage is that they enable seeing the
entire structure of a composition. Any type of analysis can be used during scape
plot construction. In our case, analysis consisted of assessing correlations between
arousal and valence values of different musical performances.

The scape plotting method was designed by Craig Sapp for structural analysis
of harmony in musical scores [92]. It has also been applied to timbral analysis [98]
and for visualization of the tonal content of polyphonic audio signals [28]. The scape
plots were used to present similarities between tempo and loudness features extracted
from recordings of the same musical composition [93, 94]. Scape plots are also used
for visualizing repetitive structures of music recordings [70].

In this paper, a scape plot is used to present calculated correlations between analo-
gous segments of the examined recordings. A comparison of sequences of emotional
features (arousal and valence) in different performances of the same composition is
a novel application for scape plots.

Figure10.9 presents a method for creating a scape plot to analyze a sample com-
position consisting of 5 elements: a, b, c, d, e. These elements are first examined
separately, and then grouped by sequential pairs: ab, bc, cd, de. Next, 3-element
sequences are created: abc, bcd, cde; followed by 4-element sequences: abcd, bcde;
and finally one sequence consisting of the entire composition: abcde. The obtained
sequences are arranged on a plane in the form of a triangle, where at the base are
the analysis results of examining the shortest sequences and at the top of the triangle
are the results of analyzing the entire length of the composition. In a scape plot, the
horizontal axis represents time in the composition, while the vertical axis represents
the length of the analyzed sequence.

Figure10.10 shows a sample result of creating a scale plot using arousal sequences
for 5 different performances. First, a reference performance is selected for the scape
plot; in this case, it was performance AAA. Then, for each cell in the scape plot, the
arousal correlation between the reference performance and all other performances
is calculated. Finally, the winner, i.e. the performance with the highest correlation
value, is denoted using a color for each cell. Additionally, a percentage content is
calculated for each winning performance.

On the provided example, reference performance AAA is most correlated
with performance BBB when comparing the entire length of the composition, as
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Fig. 10.10 Result of
creating a scape plot by using
arousal correlation between
the reference performance
and 4 other performances

indicated by the top element of BBB in the triangle. This is additionally confirmed
by the percentage of wins, i.e. the area occupied, by performance BBB (59%). Per-
formance CCC is in second place with 27% wins. The placement of the wins for
this performance, bottom left of the scape plot, indicates a similarity with the refer-
ence performance in the first half of the composition. Performances DDD and EEE
showed little similarity (4 and 10% wins) with the reference performance.

10.8.7 Arousalscape

Figure10.11 shows the Arousalscape, a scape plot generated for the arousal value
sequence for 5 different performances of Prelude in Cmajor, Op.28, No.1 by Frédéric
Chopin. The performance by A. Rubinstein was selected as the reference perfor-
mance.

Arousalscape illustrates which performances are the most correlated to
A. Rubinstein, by different lengths of the examined sequences. In the lower lev-
els of the triangle, it is difficult to choose the winner; but in the higher levels of the
triangle, the winner is unequivocal: the performance by G. Sokolov. His area in the
Arousalscape is the biggest and reaches a value of 59%. It is interesting that on the
first half of Prelude, the performance by E. Gilels is themost similar to A. Rubinstein.
The remaining two performances (M. Argerich, R. Blechacz) were covered by the
first twowinners during comparison with the reference performance (A. Rubinstein).
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Fig. 10.11 Arousalscape for
Prelude in C major, Op.28,
No.1, reference
performance: A. Rubinstein

10.8.8 Valencescape

Figure10.12 shows the Valencescape, a scape plot generated for the valence value
sequence for 5 different performances of Prelude in Cmajor, Op.28, No.1 by Frédéric
Chopin. The performance by A. Rubinstein was selected as the reference perfor-
mance.

The situation here is not as unequivocal as for Arousalscape for the same compo-
sition (Sect. 10.8.7). Once again the winner was the performance by G. Sokolov, but
its area on the Valencescape is smaller (49%). The triangle area is ruptured by the

Fig. 10.12 Valencescape for
Prelude in C major, Op.28,
No.1, reference
performance: A. Rubinstein
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Fig. 10.13 AVscape for
Prelude in C major, Op.28,
No.1, reference
performance: A. Rubinstein

color white, which represents the performance byR. Blechacz (35%of the area). This
means that this performance was also well correlated with the reference performance
at many moments.

10.8.9 AVscape

Figure10.13 shows the AVscape, a scape plot generated for sequences of joined
arousal and valence values for 5 different performances of Prelude in Cmajor, Op.28,
No.1 by Frédéric Chopin. The performance by A. Rubinstein was selected as the ref-
erence performance. The definitive winner of the comparisons of correlation values
with various lengths of sequences is the performance by G. Sokolov (67% of the
area), with E. Gilels in second place (17% of the area), and R. Blechacz in third
place (14% of the area). At the beginning of the composition, the reference perfor-
mance by A. Rubinstein is similar to E. Gilels (dark colored left lower part of the
triangle), and in the middle of the composition to R. Blechacz (white space in the
middle lower part of the triangle).

When comparing 5 different performances of one composition, we can create 5
AVscapes, 5 Arousalscapes, and 5 Valencescapes. Each rendition is consecutively
selected as the reference performance and the degree of similarity is visualized in
detail in comparison with the other 4 performances.
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10.9 Evaluation

10.9.1 Parameters Describing the Most Similar Performances

To find the most similar performance to the reference performance, you can use
several indicators that result from the construction of the obtained scape plots [94]:

• Score S0—the most general result indicating the most similar performance. The
winner is the one with the best correlation for the entire sequence, entire length of
time of the composition. On the scape plot, it is the top element of the triangle.

• Score S1—indicates the performance with the biggest area in the scape plot. The
area of wins of a given performance shows its dominance at various lengths of
analyzed sequences. The winner with the best correlation for the entire sequence
(S0) does not always have the largest area, or the largest number of wins on the
scape plot.

• Score S2—the next best similar performance from the scape plot, calculated after
removing the winner S1. If two performances are very similar, then one will always
win and cover the wins of the second. To calculate the S2 score, a new scape plot
is generated without the winner as indicated by S1. It shows the performance with
the biggest area in the newly created scape plot.

Figure10.14 shows the AVscape for Prelude in C minor, Op.28, No.20, reference
performance: M. Argerich. Score S0 in this case is the performance by E. Gilels—the
top cell of the triangle. S1 indicates the performance with the biggest area and that
is the performance by A. Rubinstein (49% of the area).

S2 calculations are presented in Fig. 10.15. The winner S1 from Fig. 10.14 is
removed and the performance with the biggest area (S2) in the newly generated
scape plot is the performance by E. Gilels (81% of the area).

Fig. 10.14 AVscape for
Prelude in C minor, Op.28,
No.20, reference
performance: M. Argerich
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Fig. 10.15 AVscape with
winner S1 removed for
Prelude in C minor, Op.28,
No.20, reference
performance: M. Argerich

10.9.2 Ground Truth for Performing Similarity Assessments
Between Performances

Determining similarities between performers is not an easy task for a human. On the
one hand, specialistmusical knowledge and experience are required of the evaluators.
On the other hand, comparison of even short one-minute performances can cause
much difficulty even for experienced musicians.

We used a similarity matrix form [5 × 5] to collect expert opinions, presented in
Table10.5, which is a symmetric matrix, with the main diagonal values equal to 10.
The experts’ task was to determine which performances of a given performer are the
most similar and which are the least. Each expert had to determine these values in the
form for each composition. Each value described the degree of similarity between
performances. The filled values were subsequent natural numbers in the range of
[1, 9], where 9 meant a very similar performance, and 1 very different. A value of 10
on the diagonal meant that the given performance is maximally similar. Information
on the performer of a given rendition was kept from the evaluators.

Table 10.5 Form for similarity matrix between performances

Performance 1 Performance 2 Performance 3 Performance 4 Performance 5

Performance 1 10

Performance 2 10

Performance 3 10

Performance 4 10

Performance 5 10
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Table 10.6 Compositions and agreement between 3 experts’ opinions

Composition Cronbachs α Avg. Spearman’s ρ

Prelude No.1 0.76 0.51

Prelude No.5 0.73 0.48

Prelude No.18 0.77 0.54

Prelude No.20 0.68 0.42

Symphony No.3 0.95 0.86

Symphony No.5 0.84 0.64

Three music experts with a university music education participated in the exper-
iment. It took approximately 30–40 min to compare 5 one-minute performances of
one composition. This included multiple times of listening to a performance as well
as finding the appropriate numerical values on the similarity matrix, which was not
a trivial task.

After collecting data from the experts, the datawas ranked.Thiswayweeliminated
different individual opinions on the similarity scale and maintained the sequence
of degree of similarity. On different questionnaires, the most similar performances
could have different values—themaximum value on a given questionnaire—but after
ranking the maximum values will always be in first place.

Finally, the obtained values were averaged and rescaled to the range of [1, 9].
Thus we built a similarity matrix obtained from experts. It constituted the ground
truth for similarities for a given composition andwas used to compare with thematrix
of similarity between performances obtained by a computer system.

To check the agreement between three experts’ opinions, Cronbachs α [15] and
average Spearman’s ρ was calculated (Table10.6). Spearman’s ρ was calculated
between each set of two individual opinions, an then the obtained values ware aver-
aged.

The calculated parameter values confirm that the collected data from the experts
are correlated. The positive avg. Spearman’s ρ values (from 0.42 to 0.86) indicate a
clear relation between the experts’ responses, although the greatest concordance was
between the opinions for Symphony No.3 (0.86). With regard to internal consistency
represented by Cronbachs α, the obtained values are good and acceptable.

10.9.3 Evaluation Parameters

To assess the built system, we used a series of parameters comparing the obtained
results with data obtained from music experts.
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10.9.3.1 Spearman’s Rank Correlation Coefficient

The first evaluation parameter we used was Spearman’s rank correlation coefficient
(Spearman’s ρ) [13], which is the Pearson correlation coefficient between ranked
variables. Before calculating correlations, variables are converted to ranks. The rank
correlation coefficient ranges from 1 to−1. A positive ρ indicates a positive relation-
ship between the two variables, while a negative ρ expresses a negative relationship.

The following formula (Eq.10.6) is used to calculate the Spearman rank correla-
tion between n values of two variables Xi, Yi:

ρ = 1 − 6
∑n

i=1 d
2
i

n(n2 − 1)
(10.6)

where di = rg(Xi) − rg(Yi) are the differences between ranks.
In our case, Spearman’s ρ measures how much the similarity values provided

by the computer system and experts have a similar rank. While calculating Spear-
man’sρ between the similaritymatrix obtained from experts and the similaritymatrix
obtained from the computer system, only elements below the main diagonal from the
matrix were taken into account. Matrixes are symmetric; diagonal and upper diag-
onal elements are irrelevant. The greater the obtained Spearman’s rank correlation
coefficient, the closer the system’s results were to the experts’ opinions.

Spearman’s ρ was calculated for the results between the experts’ opinions and
three similarity matrices obtained from the system: arousal similarity matrix ρA,
valence similarity matrix ρV , and arousal-valence similarity matrix ρAV .

10.9.3.2 Maximal Similar Number of Hits

The next parameters evaluated the concordance of the indicators on the similarity
matrix obtained from the experts and the similarity matrix obtained from the system.
We compared indicators of the most similar performers according to the experts
and the system. First, from among the experts’ opinions we found the most similar
performance to the reference performance, and then checked if it was confirmed by
the system. If the indicators from both sides were convergent, we had a hit. The
comparisons were performed for all reference performances, and the result was a
percentage of hits—MSH (maximal similar hits) defined in Eqs. 10.7 and 10.8.

MSH =
∑n

i=1 Hi

n
× 100% (10.7)

Hi =
{
1 ifMSi(EX) = MSi(CS)

0 ifMSi(EX) �= MSi(CS)
(10.8)
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where EX is the similarity matrix obtained from experts, CS is the similarity matrix
obtained from the computer system, MSi() is the most similar performance to the
reference performance i, and n is the number of performances.

CalculatingMSH, we can compare the similaritymatrix obtained from the experts
to the similarity matrix obtained from the system on the basis of different indicators:
S0 or S1 (Sect. 10.9.1).

To check if the searched most similar performance indicated by the experts is in
the top indications by the computer system, we introduced a variant of the previous
parameter—MSH2F (maximal similar hits 2 first). The MSH2F calculation checks
if the most similar performance according to the experts is among the top 2 indicated
by the system. In the case of comparison with the results obtained on the scape plot,
the first 2 most similar performances are indicated by S1 and S2 (MSH2FS1S2 ).

10.9.3.3 Evaluation Results

The obtained results of the evaluation are presented in Table10.7. The first columns
present Spearman’s ρ calculated for the results between the experts’ opinions and
three similarity matrices obtained from the system: arousal-valence similarity matrix
ρAV , arousal similarity matrix ρA, and valence similarity matrix ρV . The positive
Spearman’s ρ values (avg. ρAV = 0.53) indicate a clear relation and accordance
with the experts’ opinions and the computer system’s calculations. Spearman’s ρ

taking into account arousal and valence ρAV obtained better results on average than
Spearman’s ρ for arousal and valence separately (ρA = 0.46, ρV = 0.47).

MSH andMSH2F were calculated between the experts’ opinions and the arousal-
valence similarity matrix. Analyzing the indicators for the most similar performance
according to the experts as well as the system, the average accuracy of the applied
method was 40%when using score S0, and 47% score S1. However, the higher values
of avg.MSH2FS0 and avg.MSH2FS1S2 (80 and 77%) indicate that the results provided
by the experts are in the top results obtained from the system.

Table 10.7 Evaluation parameters for the analyzed compositions

Composition ρAV ρA ρV MSHS0 MSH2FS0 MSHS1 MSH2FS1S2

Prelude No.1 0.52 0.60 0.52 40 80 40 80

Prelude No.5 0.72 0.30 0.61 40 80 40 60

Prelude No.18 0.50 0.69 0.30 80 80 80 100

Prelude No.20 0.55 0.88 0.43 40 100 60 100

Symphony No.3 0.58 −0.12 0.74 20 80 20 80

Symphony No.5 0.34 0.41 0.22 20 60 40 40

Averages 0.53 0.46 0.47 40 80 47 77
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10.10 Conclusions

In this study, we presented a comparative analysis of musical performances by using
emotion tracking. Use of emotions for comparisons is a novel approach, not found in
other hitherto published papers. Values of arousal and valence, predicted by regres-
sors, were used to compare performances.We foundwhich performances of the same
composition are closer to each other and which are quite distant in terms of the shap-
ing of arousal and valence over time. We evaluated the applied approach comparing
the obtained results with the opinions of music experts. The obtained results confirm
the validity of the assumption that tracking and analyzing the values of arousal and
valence over time in different performances of the same composition can be used to
indicate their similarities.

The presented method gives access to knowledge on the shaping of emotions by a
performer, which had previously been available only to music professionals. Finding
pieces with a similar emotional distribution throughout the same composition is an
interesting option that further extends the capabilities of systems searching musical
compositions.
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Cubero, J.C., Raś, Z.W. (eds.) Foundations of Intelligent Systems. Lecture Notes in Computer
Science, vol. 8502, pp. 184–193. Springer International Publishing, Cham (2014)

35. Grekow, J.:Audio features dedicated to the detection of four basic emotions. In: Proceedings of
the Computer Information Systems and Industrial Management: 14th IFIP TC 8 International
Conference, CISIM 2015, Warsaw, Poland, 24–26 September 2015, pp. 583–591. Springer
International Publishing, Cham (2015)

36. Grekow, J.: Emotion detection using feature extraction tools. In: F. Esposito, O. Pivert, M.S.
Hacid, Z.W. Rás, S. Ferilli (eds.) Proceedings of the Foundations of Intelligent Systems: 22nd
International Symposium, ISMIS 2015, Lyon, France, 21–23 October 2015, pp. 267–272.
Springer International Publishing, Cham (2015)



References 133

37. Grekow, J.: Method of transforming music into 4D figures. Prz. Elektrotech. 91(4), 159–162
(2015)

38. Grekow, J.: Music emotion maps in arousal-valence space. In: Proceedings of the Computer
Information Systems and Industrial Management: 15th IFIP TC8 International Conference,
CISIM2016,Vilnius, Lithuania, pp. 697–706. Springer International Publishing,Cham (2016)
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