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Abstract. This paper proposes a particle swarm optimization method with a
novel strategy for inertia weight. Instead of a commonly used linear inertia weight,
a nonlinear, dynamic changing inertia weight is applied. The new presented
weight is a function of the worst and the best fitness of individuals of a population.
In order to investigate the effectiveness of the proposed strategy tests on a set of
benchmark function were conducted. The results were compared with those
obtained through the LDW-PSO method, EWPSO and the RNW-PSO methods.
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1 Introduction

Particle Swarm Optimization (PSO) is an optimization method modeled on the social
behavior of the group of organisms in their natural environment [1]. Proposed for the
first time by Kennedy and Eberhart in 1995 [2, 3], now belongs to the most frequently
used evolutionary methods. Because of its many advantages such as simplicity, few
parameters to adjust and easy implementation, it has been applied in almost all fields of
science and engineering, where optimization is required [4–9]. A parameter that sig-
nificantly influences the effectiveness of the particle swarm optimization method is
inertia weight. Its role is to control deviation of the particles from their original
direction and keep balance between local and global explorations. An incorrectly
selected value of inertia weight maintains a balance between local and global explo-
ration and can negatively affect the algorithm performance.

A factor of the inertia weight was first proposed and introduced to the PSO method
by Shi and Eberhart [10, 11]. In the subsequent years, a lot of research on inertia weight
have been undertaken. Clerc [12] and Trelea [13] suggested that the inertia weight
should rather be a constant value. She and Eberhart [11, 14] recommended a linear
decreasing inertia weight (LDW). A flexible inertia weight, that can be a positive or
negative real number, was used by Han et al. [15]. In order to avoid some troubles of
the LDW strategy connected with a poor local search ability at the beginning of the
method, and the lack of global search ability at the end of the method, Zhang et al. [16]
proposed a random inertia weight (RNW). PSO with random inertia weight was also
proposed by Niu et al. [17] and Eberhart and She [18]. Three different concepts of
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inertia weight were investigated by Arumugan and Rao [19, 20] and Umapathy et al.
[21] They considered a constant inertia weight (CIW), time-varying inertia weight
(TVIW) and a global-local best inertia weight (GLbestIW) and reported that GLbestIW
outperforms the other methods in terms of high quality solution, consistency, faster
convergence and accuracy. Another approach was developed by Yang et al. [22]. In
their study, the inertia weight depends on two parameters: an aggregation degree factor
and an evolution speed factor, and is different for each individual of the swarm.
A modified inertia weight was also considered by Miao et al. [23]. In this case, weight
is updated by dispersion degree and advance degree factors. Performance of PSO with
nonlinear strategies was examined by Chauhan et al. [24]. The authors examined an
exponential self adaptive (DESIWPSO) and a dynamic (DEDIVPSO) inertia weight
based on Gompertz function and a fine grained inertia weight (FGIWPSO). Another
exponential inertia weight was also developed by Ememipour et al. [25], Borowska
[26] and Ghali et al. [27]. A fuzzy adaptive inertia weight was proposed by Shi and
Eberhart [28]. An approach based on the fuzzy systems was also described in [29–33].

This paper presents a modified PSO method named DWPSO in which a new
strategy for inertia weight was developed. In DWPSO, the values of inertia weight are
dynamically changing and are determined based on fitness function. The proposed
weight is a function of the best and the worst fitness of particles. Moreover, the new
presented method was tested on a set of benchmark function. Then the results were
compared to the RNW-PSO method with a random inertia weight [16], the LDW-PSO
method with a linear decreasing inertia weight, and the nonlinear EWPSO method [26].

2 The PSO Method

The PSO algorithm belongs to the group of optimization methods based on the pop-
ulation. In case of PSO this population is called swarm and consists of individuals
named particles. Each particle is a point of the space of the feasible solutions. The
movement of the particle in this space enables the velocity vector. Initial location and
velocity of the particle are randomly generated at the beginning of the algorithm. The
quality of the particles is evaluated according to the fitness function of the optimization
problem. In each iteration, particles update information about their own best position
(named pbest) found so far. The knowledge about the particle with the best fitness
among all the particles in the whole swarm (named gbest) is also remembered and
updated in every iteration. The change of the velocity and location of the particles is
carried out according to the formula:

Vi ¼ wVi þ c1r1ðpbesti � XiÞþ c2r2ðgbest � XiÞ ð1Þ

Xi ¼ Xi þVi ð2Þ

where Vi = (vi1, vi2, … , viD) is a velocity vector of the particle i in the D-dimensional
search space. Vector Xi = (xi1, xi2, … , xiD) represents a location of the particle
i. Factor w is the inertia weight. Vector pbesti = (pbesti1, pbesti2, … , pbestiD) means a
personal best location of the particle i and gbest = (gbest1, gbest2, … , gbestD) denotes

80 B. Borowska



a location of the particle with the best fitness function among all the particles in the
whole swarm. The variables c1 and c2 are acceleration coefficients. They decide how
strong the particle is influenced by its knowledge about its pbest and gbest value.
Parameters r1 and r2 represent randomly generated numbers between 0 and 1 to
maintain diversity of the population.

3 The Proposed DWPSO Algorithm

The proposed DWPSO algorithm is a variant of the particle swarm optimization
method in which the new strategy for determination of inertia weight was introduced.
In DWPSO a commonly used linear weight was omitted and replaced with an expo-
nential inertia weight. In the proposed approach, the inertia weight is changing
dynamically based on a fitness of the particles in the swarm. In each iteration, the
particles of the swarm move in the search space according to Eqs. 1–2. After evaluating
the quality of the new location of the particles, the individuals with the best and the
worst fitness are found and recorded. Then, on their basis, the new value of the weight
is counted. The new weight is represented by a nonlinear function of the best and the
worst fitness of the particles. In each iteration, a different inertia weight is calculated
and applied for the whole swarm. The proposed strategy has been defined as follows:

dw ¼ ððgbest � fmax=2Þ�1=ðð� ln½fmin�ÞÞÞ=105fh ð3Þ

wðtþ 1Þ ¼ wðtÞ � dwðtÞ ð4Þ

where fmax and fmin are the values of maximal and minimal fitness in the current
iteration, respectively. Factor fh is a randomly generated number in the range [0, 1].

4 Results

The simulation tests of the DWPSO method with proposed strategy was carried out on
a set of nonlinear benchmark functions depicted in Table 1.

Table 1. Optimization test functions

Function Formula Minimum Range of x

Sphere
f1 ¼

Pn

i¼1
x2i

0 (−100, 100)

Rosenbrock
f3 ¼

Pn�1

i¼1
½100 xiþ 1 � x2i

� �2 þðxi � 1Þ2 0 (−30, 30)

Ackley
f4 ¼ �20 exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Pn

i¼1
x2i

s !

� exp 1
n

Pn

i¼1
cosð2pxiÞ

� �

þ 20þ e
0 (−32, 32)

Rastrigin
f5 ¼

Pn

i¼1
ðx2i � 10 cos 2pxið Þþ 10Þ 0 (−5.12, 5.12)

Griewank
f6 ¼ 1

4000

Pn

i¼1
x2i �

Qn

i¼1
cos xiffi

i
p
� �

þ 1
0 (−600, 600)
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The results of the tests were compared with the performance of PSO with a random
number inertia weight (RNWPSO), LDW-PSO with a linear decreasing weight as well
as EWPSO with an exponential inertia weight.

The DWPSO algorithm started with the inertia weight of 0.7 and was changing
according to the formula 3−4. The acceleration coefficients c1, c2 used for executed
computation were set to 1.6. The simulations were performed with four dimension sizes
D = 10, 20 and 30 for N = 20, 40, 60 and 80 particles in the swarm respectively. Each
experiment was run 50 times. In all cases, the iteration number was 1000.

The exemplary results of the tests performed for 20, 40 and 80 particles of the
swarm are illustrated in Tables 2, 3 and 4. The presented values were averaged over 50
trials.

Table 2. Performance of the LDW-PSO, RNW-PSO, EWPSO and DWPSO algorithms for
Rosenbrock function

Population
size

Dimension Algorithm LDW-PSO RNW-PSO EWPSO DWPSO

20 10 Mean 4.0933e+001 1.8401e+001 1.5489e+001 4.9787e+000
St. Dev. 2.8127e+001 2.3554e+001 2.0147e+001 6.0743e+000
Min 4.3607e+000 8.0913e−001 2.2132e−001 1.5060e−001

20 Mean 8.3192e+001 1.9984e+002 7.2504e+001 5.0429e+001
St. Dev. 4.5308e+001 2.8759e+002 1.3315e+002 4.1276e+001
Min 1.5216e+001 1.5318e+001 9.0325e−001 2.1551e+000

30 Mean 1.3507e+002 4.2856e+002 1.7210e+002 7.2359e+001
St. Dev. 1.5563e+002 5.3721e+002 1.5334e+002 5.5085e+001
Min 2.3142e+001 2.9608e+001 2.3512e+001 9.3401e+000

40 10 Mean 2.5379e+001 1.7240e+001 1.4231e+001 4.1631e+000
St. Dev. 1.7455e+001 3.2178e+001 5.3622e+000 9.1435e+000
Min 2.8927e−002 1.0806e+000 1.4523e−002 4.8498e−002

20 Mean 5.7344e+001 5.6102e+001 4.7376e+001 4.0605e+001
St. Dev. 5.3637e+001 4.9630e+001 4.8744e+001 6.4665e+001
Min 6.1431+000 5.7073e+000 1.9198e+000 1.5801e−001

30 Mean 7.1917e+001 6.9343e+001 6.7008e+001 5.2569e+001
St. Dev. 1.4425e+002 3.5032e+001 7.5692e+001 2.9028e+001
Min 1.1633e+001 1.0225e+001 6.8376e+000 2.5110e+000

80 10 Mean 1.8261e+001 1.5728e+001 1.2415e+001 5.5479e+000
St. Dev. 2.9027e+001 2.3569e+001 2.2178e+001 1.8712e+001
Min 1.2415e−001 2.8725e−003 9.4684e−003 2.2647e−002

20 Mean 4.4502e+001 3.3485e+001 2.2570e+001 2.0819e+001
St. Dev. 3.2417e+001 2.7279e+001 2.9342e+001 3.0246e+001
Min 1.5655e−001 5.2635e−001 1.5904e−005 1.5185e+000

30 Mean 6.6138e+001 4.2504e+001 3.9453e+001 3.8589e+001
St. Dev. 1.3050e+002 3.2997e+001 2.6149e+001 3.4396e+001
Min 9.5624e−001 1.1682e+001 1.2736e+001 1.3776e−002

82 B. Borowska



Table 3. Performance of the LDW-PSO, RNW-PSO, EWPSO and DWPSO algorithms for
Rastrigin function

Population
size

Dimension Algorithm LDW-PSO RNW-PSO EWPSO DWPSO

20 10 Mean 6.4812e+000 6.3174e+000 6.1075e+000 7.7109e+000
St. Dev. 4.5160e+000 7.2541e+000 4.1338e+000 4.8600e+000
Min 3.3097e+000 3.0705e+000 9.9775e−001 9.9496e−001

20 Mean 4.5202e+001 5.3877e+001 4.3706e+001 3.7609e+001
St. Dev. 1.6925e+001 1.6786e+001 1.4537e+001 1.2697e+001
Min 2.2130e+001 3.1973e+001 2.5166e+001 1.9899e+001

30 Mean 8.1753e+001 8.8445e+001 8.3524e+001 7.1985e+001
St. Dev. 2.2488e+001 2.9007e+001 2.4530e+001 2.1340e+001
Min 4.5357e+001 6.2319e+001 3.8712e+001 4.5768e+001

40 10 Mean 4.3519e+000 4.3854e+000 4.1303e+000 4.7657e+000
St. Dev. 3.9689e+000 2.2077e+000 3.6194e+000 3.1695e+000
Min 1.0526e+000 2.8343e+000 1.2376e+000 1.9899e+000

20 Mean 3.6697e+001 3.4463e+001 3.1793e+001 2.3779e+001
St. Dev. 1.1455e+001 9.0821e+000 1.3508e+001 7.9528e+000
Min 1.1243e+001 1.5354e+001 1.9487e+001 2.9849e+000

30 Mean 7.3137e+001 7.2862e+001 6.7972e+001 6.3329e+001
St. Dev. 3.3256e+001 2.0617e+001 2.5146e+001 1.8331e+001
Min 3.6972e+001 4.1565e+001 3.3887e+001 2.7859e+001

80 10 Mean 2.7314e+000 2.5931e+000 2.4145e+000 2.5801e+000
St. Dev. 4.3898e+000 2.8769e+000 1.8860e+000 2.2603e+000
Min 9.7515e−001 9.9004e−001 9.7073e−001 0.0000e+000

20 Mean 3.1305e+001 3.0798e+001 2.8712e+001 2.1292e+001
St. Dev. 9.4789e+000 9.7543e+000 1.1676e+001 8.4036e+000
Min 1.6002e+001 1.6200e+001 1.0841e+001 8.9546e+000

30 Mean 5.7351e+001 5.5917e+001 5.5712e+001 5.3379e+001
St. Dev. 1.6879e+001 1.7884e+001 1.6234e+001 1.2905e+001
Min 4.3125e+001 3.3266e+001 3.6258e+001 2.9849e+001

Table 4. Performance of the LDW-PSO, RNW-PSO, EWPSO and DWPSO algorithms for
Griewank function

Population
size

Dimension Algorithm LDW-PSO RNW-PSO EWPSO DWPSO

20 10 Mean value 9.3627e−002 1.3901e−001 8.1573e−002 8.2364e−002
St. Dev. 7.9415e−002 4.8233e−002 3.5967e−002 5.5734e−002
Min 2.0163e−002 3.0994e−002 1.3029e−002 9.8573e−003

20 Mean value 5.8212e−002 5.6745e−002 4.3195e−002 3.1448e−002
St. Dev. 6.4934e−002 4.2267e−002 2.7830e−002 2.9442e−002
Min 2.0407e−005 00000e+000 00000e+000 0.0000e+000

30 Mean value 1.9235e−001 4.1733e−000 1.7908e−001 6.6079e−002
St. Dev. 2.7506e−001 3.7786e−000 2.6839e−001 1.2421e−001
Min 2.9618e−009 1.3545e−001 1.1424e−005 3.4376e−010

(continued)
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The average best fitness in the following iterations for both DWPSO, EWPSO,
RNW-PSO algorithms and LDW-PSO model for 40 particles (swarm size) and 30
dimensions is illustrated in Figs. 1, 2, 3 and 4. The vertical coordinates indicate the
average best fitness in a logarithmic scale.

The results of simulations show that the proposed DWPSO method is more
effective than the other methods investigated in this study. The dynamic strategy for
inertia weight introduced for DWPSO facilitates the algorithm to maintain a diversity
of the individuals in the search space and helps overcome the problem premature
convergence.

Table 4. (continued)

40 10 Mean value 7.6583e−002 7.2025e−002 6.8570e−002 6.9333e−002
St. Dev. 5.9771e−002 4.3162e−002 1.6405e−002 3.7984e−002
Min 6.7088e−003 5.9476e−002 1.8311e−002 2.7037e−002

20 Mean value 5.4734e−002 4.3979e−002 4.0720e−002 2.0134e−002
St. Dev. 5.1682e−002 3.1848e−002 2.8183e−002 1.7913e−002
Min 8.6707e−004 00000e+000 0.0000e+000 6.5454e−003

30 Mean value 3.4395e−002 3.2599e−002 2.4759e−002 1.8896e−002
St. Dev. 4.1504e−002 3.8676e−002 3.5383e−002 1.5956e−002
Min 6.2816e−003 7.9302e−003 3.3418e−013 2.1289e−005

80 10 Mean value 7.2003e−002 6.5499e−002 5.8677e−002 6.2356e−002
St. Dev. 4.1688e−002 5.4212e−002 3.2431e−002 2.2412e−002
Min 5.4053e−003 3.3827e−002 8.5972e−004 2.4603e−002

20 Mean value 2.8475e−002 2.5688e−002 2.0084e−002 1.0083e−002
St. Dev. 1.7142e−002 2.0213e−002 1.5755e−002 1.5652e−002
Min 0.0000e+000 00000e+000 0.0000e+000 0.0000e+000

30 Mean value 2.1659e−002 1.7706e−002 9.5268e−003 8.8063e−003
St. Dev. 1.8374e−002 1.8195e−002 1.5169e−002 1.3302e−002
Min 0.0000e+000 00000e+000 0.0000e+000 0.0000e+000
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Fig. 1. The average best fitness for Rosenbrock30 and the population of 40 particles
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In almost all cases (except D = 10), the average function values found by DWPSO
were lower than the results achieved by LDW-PSO and RNW-PSO, and lower or in
rare cases comparable to those obtained by EWPSO. Moreover, the lowest standard
deviation for DWPSO reported in most cases indicates its better stability compared to
remaining investigated method. Furthermore, the minimum value was also lower in
case of the DWPSO algorithm.. Additionally, in most simulations, DWPSO converged
faster than LDW-PSO, RNW-PSO and EWPSO (Figs. 1, 2, 3 and 4) and only at the
beginning, in the first two hundred iterations, the algorithm converged a bit slower than
EWPSO or RNW-PSO (After first two hundred iterations DWPSO was the fastest).
The RNW-PSO algorithm converged slower than EWPSO but still better than
LDW-PSO.

Different performance of the algorithms have been noticed only for Griewank and
Rastrigin functions and small dimensions. In case of Griewank function with D = 10
dimension size, the DWPSO algorithm performed a bit worse than EWPSO but better
than RNW-PSO and LDW-PSO. For Rastrigin function with D = 10 for 20 and 40
particles, DWPSO achieve worse results than the remaining algorithms even when the
minimum value was lower.

5 Summary

In this study, a modified particle swarm optimization algorithm named DWPSO with a
novel strategy for inertia weight has been proposed. In the considered approach, instead
of a commonly used constant or linear decreasing inertia weight, a dynamically
changing weight was adopted. Values of the inertia weight coefficient depend on fitness
of the individuals of the population. The effectiveness of the proposed strategy was
tested on a set of benchmark test functions. The results of the simulations were
compared with those obtained through the nonlinear EWPSO method, the RNW-PSO
method with a random inertia weight and the LDW-PSO method with a linear
decreasing inertia weight.

The use of the proposed strategy helps maintain diversity of individuals of the
population and performs better than the other investigated methods. Furthermore, the
DWPSO algorithm is also faster and more efficient in avoiding the premature con-
vergence, compared to the other methods.
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