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Abstract. The article deals with the issues of handling uncertainties in the
problems of modeling and forecasting dynamic systems within the framework of
the dynamic planning methodology. To analyze and take into account possible
structural, statistical and parametric uncertainties, the Kalman filter, various
methods for calculating missing data, numerous methods for estimating the
model parameters and the Bayesian approach to programming are used. The
questions of an estimation of quality of predicted decisions are considered.
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1 Introduction

Analysis of dynamic processes in the planning and decision-making procedures is an
urgent problem not only for financial organizations and companies but for all industrial
enterprises, small and medium business, investment and insurance companies etc. This
problem is solved by using dynamic programming methodology. Dynamic planning
(DP) could be defined as the process of estimation by an enterprise of its current state on the
market in comparison with other competing enterprises, and determining the further goals
as well as sequences of actions and resources that are necessary for reaching the goals
stated. This process of planning is performed continuously (or quasi-continuously) with
acquiring new information (knowledge) about market, technologies, forecast estimates of
necessary variables and situations. All this knowledge is used for correcting of actions and
activities of the enterprise and supporting its competitiveness with flow of time.
Formally DP could be represented in the form:

DP = {Xo,G,R,D(¢), K, T,F, AD(¢), AR (1)},

Where X is initial state of an enterprise; G are the goals stated by the enterprise
management; R are resources that are necessary for reaching the goals stated. D(z) is a
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sequence of actions that should be performed on the interval of planning; K is a new
knowledge about environment; T are new technologies. F are results of forecasting and
foresight; AD(¢) are corrections that are to be performed for reaching the goals; AR(¢) are
necessary extra resources. One of the main problems that are to be solved within the DP
paradigm is high quality forecasting of relevant processes.

Adequate models of the process and the forecasts generated with them help to take
into consideration a set of various influencing factors and make objective planning
managerial decisions. Another purpose of the studies is in estimating possible risks
using forecasts of volatility. There are several types of processes that could be
described with mathematical models in the form of appropriately constructed equations
or probability distributions. Among them are the processes with deterministic and
stochastic trends, and heteroscedastic processes. As of today the following mathe-
matical models are widely used for describing nonlinear dynamics of processes relevant
to planning: linear and nonlinear regression (logit and probit, polynomials, splines),
autoregressive integrated moving average (ARIMA) models, autoregressive condi-
tionally heteroscedastic models (ARCH), generalized ARCH (GARCH), dynamic
Bayesian networks, support vector machine (SVM) approach, neural networks and
neuro-fuzzy techniques as well as combinations of the approaches mentioned [1-5].

All types of mathematical modeling usually need to cope with various kinds of
uncertainties related to statistical data, structure of the process under study and its
model, parameter uncertainty, and uncertainties relevant to the models and forecasts
quality. Reasoning and decision making are very often performed with leaving many
facts unknown or rather vaguely represented in processing of data and expert estimates.
To avoid or to take into consideration the uncertainties and improve this way quality of
the final result (processes forecasts and the planning decisions based upon them) it is
necessary to construct appropriate computer based decision support systems (DSS) for
solving multiple specific problems.

Selection and application of a specific model for process description and forecasts
estimation depends on application area, availability of statistical data, qualification of
personnel, who work on the data analysis problems, and availability of appropriate
applied software. Better results for estimation of processes forecasts is usually achieved
with application of ideologically different techniques combined in the frames of one
computer system. Such approach to solving the problems of quality forecasts estima-
tion can be implemented in the frames of modern decision support systems (DSS). DSS
today is a powerful instrument for supporting user’s (managerial) decision making as
far as it combines a set of appropriately selected data and expert estimates processing
procedures aiming to reach final result of high quality: objective high quality alter-
natives for a decision making person (DMP). Development of a DSS is based on
modern theory and techniques of system analysis, data processing systems, estimation
and optimization theories, mathematical and statistical modeling and forecasting,
decision making theory as well as many other results of theory and practice of pro-
cessing data and expert estimates [6—8].

The paper considers the problem analysis, accounting and handling of uncertainties for
solving the problems of modeling and estimating forecasts for selected types of dynamic
processes with the possibility for application of alternative data processing techniques,
modeling and estimation of parameters and states for the processes under study.
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2 Problem Formulation

The purpose of the study is as follows: (1) analysis of uncertainty types characteristic
for model building and forecasting dynamic processes; (2) selection of techniques for
taking into consideration of the uncertainties; (3) selection of mathematical modeling
and forecasting techniques for nonstationary heteroscedastic processes.

3 Coping with Uncertainties

All types of mathematical modeling with the use of statistical experimental data usually
need to consider various kinds of uncertainties caused by data, informational structure
of a process under study and its model, parameter uncertainty, and uncertainties rele-
vant to the quality of models and forecasts. In many cases a researcher has to cope with
the following basic types of uncertainties: structural, statistical and parametric. Struc-
tural uncertainties are encountered in the cases when structure of the process under
study (and respectively its model) is unknown or not clearly enough defined (known
partially). For example, when the functional approach to model constructing is applied
usually we do not know object (or a process) structure, it is estimated with appropriate
model structure estimation techniques: correlation analysis, estimation of mutual
information, estimation of lags, testing for nonlinearity and nonstationarity, identifi-
cation of external disturbances etc. Uncertainty could also be introduced by an expert
who is studying the process and provides its estimates for model structure, parameter
restrictions, selection of computational procedures etc. The sequence of actions nec-
essary for identification, processing and taking into consideration of uncertainties could
be formulated as follows: — identification and reduction of data uncertainty; — model
structure and parameters estimation; — reduction of uncertainties related to the model
structure and parameters estimation; — reduction of uncertainties relevant to expert
estimates; — estimation of forecasts and reduction of respective uncertainties; — selec-
tion of the best final result. All the tasks mentioned above are usually solved
sequentially (in an adaptive loop) with appropriately designed and implemented DSS.

We consider uncertainties as the factors that influence negatively the whole process
of mathematical model constructing, forecasts and possible risk estimating and gen-
erating of alternative decisions. They are inherent to the process being studied due to
incomplete or noise corrupted data, complex stochastic external influences, incom-
pleteness or inexactness of our knowledge regarding the objects (systems) structure,
incorrect application of computational procedures etc. The uncertainties very often
appear due to incompleteness of data, noisy measurements or they are invoked by
sophisticated stochastic external disturbances with complex unknown probability dis-
tributions, poor estimates of model structure or by a wrong selection of parameter
estimation procedure. The problem of uncertainties identification is solved with
application of special statistical tests and visual studying of available data.

As far as we usually work with stochastic data, correct application of existing
statistical techniques provides a possibility for approximate estimation of a system (and
its model) structure. To find “the best” model structure it is recommended to apply
adaptive estimation schemes that provide automatic search in a pre-defined range of
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model structures and parameters (model order, time lags, and possible nonlinearities). It
is often possible to perform the search in the class of regression type models with the
use of information criterion of the following type [2]:

N log (FPE) = N log (Vy(8)) + N log (j\j—ji), (1)

where 0 is a vector of model parameters estimates; N is a power of time series used;

FPE is final prediction error term; Vy(0) is determined by the sum of squared errors;
p is a number of model parameters. The value of the criteria (1) is asymptotically
equivalent to the Akaike information criterion with N — ©0. As the amount of data, N,
may be limited, then an alternative, the minimum description length (MDL) criterion

log (N)

MDL = log (Vy(0)) +p N

could be hired to find the model that adequately represents available data with the
minimum amount of available information.

There are several possibilities for adaptive model structure estimation: (1) applica-
tion of statistical criteria for detecting possible nonlinearities and the type of nonsta-
tionarity (integrated or heteroskedastic process); (2) analysis of partial autocorrelation
for determining autoregression order; (3) automatic estimation of the exogeneous
variable lag (detection of leading indicators); (4) automatic analysis of residual prop-
erties; (5) analysis of data distribution type and its use for selecting correct model
estimation method; (6) adaptive model parameter estimation with hiring extra data;
(7) optimal selection of weighting coefficients for exponential smoothing, nearest
neighbor and other techniques. The development and use of a specific adaptation
scheme depends on volume and quality of data, specific problem statement, require-
ments to forecast estimates etc.

The adaptive estimation schemes also help to cope with the model parameters
uncertainties. New data are used to re-compute model parameter estimates that cor-
respond to possible changes in the object under study. In the cases when model is
nonlinear alternative parameter estimation techniques (say, MCMC) could be hired to
compute alternative (though admissible) sets of parameters and to select the most
suitable of them using statistical quality criteria.

3.1 Processing Some Types of Stochastic Uncertainties

While performing practical modeling very often statistical characteristics (covariance
matrix) of stochastic external disturbances and measurement noise (errors) are unknown.
To eliminate this uncertainty optimal filtering algorithms are usually applied that pro-
vide for a possibility of simultaneous estimation of object (system) states and the
covariance matrices. One of the possibilities to solve the problem is optimal Kalman
filter. Kalman filter is used to find optimal estimates of system states on the bases of the
system model represented in a convenient state space form as follows:
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x(k) = A(k,k — 1)x(k — 1) + B(k, k — Du(k — 1) + w(k) (2)

where x(k) is n-dimensional vector of system states; k = 0,1,2,... is discrete time;
u(k — 1) is m — dimensional vector of deterministic control variables; w(k) is n -
dimensional vector of external random disturbances; A(k, k — 1) is (n X m) - matrix of
system dynamics; is B(k, k — 1) (n x m) matrix of control coefficients. The double
argument (k, kK — /) means that the variable or parameter is used at the moment k, but
its value is based on the former (earlier) data processing including moment (k — I).
Usually the matrices A and B are written with one argument like, A(k) and B(k), to
simplify the text. Besides the main task, optimal state estimation, Kalman filter can be
used to solve the following problems: computing of short-term forecasts, estimation of
unknown model parameters including statistics of external disturbances and mea-
surement errors (adaptive extended Kalman filter), estimation of state vector compo-
nents that cannot be measured directly, and fusion of data coming from various external
sources.

Obviously stationary system model is described with constant parameters like A,
and B. As far as matrix A is a link between two consequent system states, it is also
called state transition matrix. Discrete time k£ and continuous time ¢ are linked to each
other via data sampling time: T, : t = k T. In the classic problem statement for optimal
filtering the vector sequence of external disturbances w(k) is supposed to be zero mean
white Gaussian noise with covariance matrix Q, i.e. the noise statistics are as follows:

Elw(k)] =0, Vk; E[w(k)w' ()] = Q(k)dy,

Oa
1
covariance (n X n) matrix. The diagonal elements of the matrix are variances for the
components of disturbance vector w(k). Initial system state X is supposed to be known
and the measurement equation for vector z(k) of output variables is described by the
equation:

i f;, Q(k) is positively defined

)

where Jy; is Kronecker delta-function: dx; = {

2(k) = H(k)x(k) + v(k), 3)

where H(k) is (r x n) observation (coefficients) matrix; v(k) is r-dimensional vector of
measurement noise with statistics: E[v(k)] = 0, E[v(k)v’ (j)] = R(k)dy;,

where R(k) is (r x r) positively defined measurement noise covariance matrix, the
diagonal elements of which represent variances of additive noise for each measurable
variable. The noise of measurements is also supposed to be zero mean white noise
sequence that is not correlated with external disturbance w(k) and initial system state.
For the system (2), (3) with state vector x(k) it is necessary to find optimal state
estimate X(k) at arbitrary moment k as a linear combination of estimate x(k — 1) at the
previous moment (k — 1) and the last measurement available, z(k). The estimate of
state vector X(k) is computed as optimal one with minimizing the expectation of the
sum of squared errors, i.e.:
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E[(%(k) —x(k))" (X(k) — x(K))] = min, (4)
where x(k) is an exact value of state vector that can be found as deterministic part of
the state Eq. (2); K is optimal matrix gain that is determined as a result of minimizing
quadratic criterion (4).

Thus, the filter is constructed to compute optimal state vector X(k) in conditions of
influence of external random system disturbances and measurement noise. Here one of
possible uncertainties arises when we don’t know estimates of covariance matrices Q
and R. To solve the problem an adaptive Kalman filter is to be constructed that allows to
compute estimates of QandR simultaneously with the state vector X(k). Another choice

is in constructing separate algorithm for computing the values of Q and R. A convenient
statistical algorithm for estimating the covariance matrices was proposed [11]:

R= 3 [Bi+ A" (B~ Ba)(A ),
Q=B,—~R—ARA",
where By = E{[z(k) — Az(k—1)] [z(k) — Az(k—1)]"}; B, = E{[z(k) —

2a(k - 2)] [2(k) — A2 (k=2)]"}.

The matrices Q and R are used in the optimal filtering procedure as follows:

S(k) = AP(k — 1)A" + Q,

A(k) = S(k)[S(k) +R]";
P(k):[liA(k)] ()7 k:()vlvzv"'a

where S(k) and P(k) are prior and posterior covariance matrices of estimates errors
respectively; the symbol “#” denotes pseudo-inverse; AT means matrix transposition;
A(k) is a matrix of intermediate covariance results. The algorithm was successfully
applied to the covariance estimating in many practical applications. The computation
experiments showed that the values of A(k) become stationary after about 20-25
periods of time (sampling periods) in a scalar case, though this figure is growing
substantially with the growth of dimensionality of the system under study. It was also
determined that the parameter estimators are very sensitive to the initial conditions of
the system. The initial conditions should differ from zero enough to provide stability
for the estimates generated.

Other appropriate instruments for taking into consideration the uncertainties are
fuzzy logic, neuro-fuzzy models, Bayesian networks, appropriate types of distributions
etc. Some of statistical data uncertainties such as missing measurements, extreme
values and high level jumps of stochastic origin could be processed with appropriately
selected statistical procedures. There exists a number of data imputation schemes that
help to complete the sets of the data collected. For example, very often missing
measurements for time series could be generated with appropriately selected distri-
butions or in the form of short term forecasts. Appropriate processing of jumps and



72 P. Bidyuk et al.

extreme values helps with adjusting data nonstationarity and to estimate correctly the
probability distribution for the stochastic processes under study.

3.2 Processing Data with Missing Observations (Data Are in the Form
of Time Series)

As of today for the data in the time series form the most suitable imputation techniques
are as follows: simple averaging when it is possible (when only a few values are
missing); generation of forecast estimates with the model constructed using available
measurements; generation of missing estimates from distributions the form and
parameters of which are again determined using available part of data and expert
estimates; the use of optimization techniques, say appropriate forms of EM-algorithms
(expectation maximization); exponential smoothing etc. It should also be mentioned
that optimal Kalman filter can also be used for imputation of missing data because it
contains “internal” forecasting function that provides a possibility for generating
quality short-term forecasts [12]. Besides, it has a feature of fusion the data coming
from various external sources and improving this way the quality of state vector and its
forecasts.

Further reduction of this uncertainty is possible thanks to application of several
forecasting techniques to the same problem with subsequent combining of separate
forecasts using appropriate weighting coefficients. The best results of combining the
forecasts is achieved when variances of forecasting errors for different forecasting
techniques do not differ substantially (at any rate the orders of the variances should be
the same).

3.3 Coping with Uncertainties of Model Parameters Estimates

Usually uncertainties of model parameter estimates such as bias and inconsistency
result from low informative data, or data do not correspond to normal distribution, what
is required in a case of LS application for parameter estimation. This situation may also
take place in a case of multicollinearity of independent variables and substantial
influence of process nonlinearity that for some reason has not been taken into account
when model was constructed. When power of the data sample is not satisfactory for
model construction it could be expanded by applying special techniques, or simulation
is hired, or special model building techniques, such as group method for data handling
(GMDH), are applied. Very often GMDH produces results of acceptable quality with
rather short samples. If data do not correspond to normal distribution, then ML tech-
nique could be used or appropriate Monte Carlo procedures for Markov Chains
(MCMC) [13]. The last techniques could be applied with quite acceptable computa-
tional expenses when the number of parameters is not large.

3.4 Dealing with Model Structure Uncertainties

When considering mathematical models it is convenient to use proposed here a unified
notion of a model structure which we define as follows: S = {r,p,m,n,d,w,l}, where
r is model dimensionality (number of equations); p is model order (maximum order of
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differential or difference equation in a model); m is a number of independent variables
in the right hand side of a model; n is a nonlinearity and its type; d is a lag or output
reaction delay time; is stochastic external disturbance and its type; [ are possible
restrictions for the variables and/or parameters. When using DSS, the model structure
should practically always be estimated using data. It means that elements of the model
structure accept almost always only approximate values. When a model is constructed
for forecasting we build several candidates and select the best one of them with a set
model quality statistics. Generally we could define the following techniques to fight
structural uncertainties: gradual improvement of model order (AR(p) or ARMA(p, q))
applying adaptive approach to modeling and automatic search for the “best” structure
using complex statistical quality criteria; adaptive estimation (improvement) of input
delay time (lag) and data distribution type with its parameters; describing detected
process nonlinearities with alternative analytical forms with subsequent estimation of
model adequacy and forecast quality. As another example of complex statistical model
adequacy and forecast quality criterion could be the following:

> (k)
k=1

J=|1-R*|+oln

+ |2 — DW|+ fIn(1 + MAPE) + U — min,

i

where R? is a determination coefficient; DW is Durbin-Watson statistic; MAPE is mean
absolute percentage error for forecasts;

N N

ST (k) = 32 [y(k) — $(k)]* is sum of squared model errors; U is Theil coeffi-

k=1 k=1
cient that measures forecasting characteristic of a model; o, f are appropriately selected
weighting coefficients; 0; is parameter vector for the i-th candidate model. A criterion
of this type is used for automatic selection of the best candidate model. The criterion
also allows operation of DSS in the automatic adaptive mode. Obviously, other forms
of the complex criteria are possible. While constructing the criterion it is important not
to overweigh separate members in the right hand side.

3.5 Coping with Uncertainties of a Level (Amplitude) Type

The use of random (i.e. with random amplitude or a level) and/or non-measurable
variables leads to necessity of hiring fuzzy sets for describing such situations. The
variable with random amplitude can be described with some probability distribution if
the measurements are available or they come for analysis in acceptable time span.
However, some variables cannot be measured (registered) in principle, say amount of
shadow capital that “disappears” every month in offshore, or amount of shadow salaries
paid at some company, or a technology parameter that cannot be measures on-line due
to absence of appropriate gauge. In such situations we could assign to the variable a set
of possible values in the linguistic form as follows: capital amount = {very low, low,
medium, high, very high}. There exists a complete necessary set of mathematical
operations to be applied to such fuzzy variables. Finally fuzzy value could be trans-
formed into usual exact form using known techniques.
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3.6 Processing Probabilistic Uncertainties

To fight probabilistic uncertainties it is possible to hire Bayesian approach that helps to
construct models in the form of conditional distributions for the sets of random vari-
ables. Usually such models represent the process (under study) variables themselves,
stochastic disturbances and measurement errors or noise. The problem of distribution
type identification also arises in regression modeling. Each probability distribution is
characterized by a set of specific values that random variable could take and the
probabilities for these values. The problem is in the distribution type identification and
estimating its parameters. The probabilistic uncertainty (will some event happen or not)
could be solved with various models of Bayesian type. This approach is known as
Bayesian programming or paradigm. The generalized structure of the Bayesian pro-
gram includes the following steps: (1) problem description and statement with putting
the question regarding estimation of conditional probability in the form: p (X;|D, Kn),
where X; - is the main (goal) variable or event; the probability p should be found as a
result of application of some probabilistic inference procedure; (2) statistical (experi-
mental) data D and knowledge K,, are to be used for estimating model and parameters
of specific type; (3) selected and applied probabilistic inference technique should give
an answer to the question put above; (4) analysis of quality of the final result. The steps
given above are to some extent “standard” regarding model constructing and com-
puting probabilistic inference using statistical data available. This sequence of actions
is naturally consistent with the methods of cyclic structural and parametric model
adaptation to the new data and operating modes (and possibly expert estimates).

One of the most popular Bayesian approaches today is created by the models in the
form of static and dynamic Bayesian networks (BN). Bayesian networks are proba-
bilistic and statistical models represented in the form of directed acyclic graphs
(DAG) with vertices as variables of an object (system) under study, and the arcs
showing existing causal relations between the variables. Each variable of BN is
characterized with complete finite set of mutually excluding states. Formally BN could
be represented with the four following components: N = <V, G,P, T >, where V
stands for the set of model variables; G represents directed acyclic graph; P is joint
distribution of probabilities for the graph variables (vertices), V = {Xy,...,X,}; and
T denotes conditional and unconditional probability tables for the graphical model
variables [14, 15]. The relations between the variables are established via expert
estimates or applying special statistical and probabilistic tests to statistical data (when
available) characterizing dynamics of the variables.

The process of constructing BN is generally the same as for models of other types,
say regression models. The set of the model variables should satisfy the Markov
condition that each variable of the network does not depend on all other variables but
for the variable’s parents. In the process of BN constructing first the problem is solved
of computing mutual information values between all variables of the net. Then an
optimal BN structure is searched using acceptable quality criterion, say well-known
minimum description length (MDL) that allows analyzing and improving the graph
(model) structure at each iteration of the learning algorithm applied. Bayesian networks
provide the following advantages for modeling: the model may include qualitative and
quantitative variables simultaneously as well as discrete and continuous ones; number
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of the variables could be very large (thousands); the values for conditional probability
tables could be computed with the use of statistical data and expert estimates; the
methodology of BN constructing is directed towards identification of actual causal
relations between the variables hired what results in high adequacy of the model; the
model is also operable in conditions of missing data.

To reduce an influence of probabilistic and statistical uncertainties on models
quality and the forecasts based upon them it is also possible to use the models in the
form of Bayesian regression based on analysis of actual distributions of model vari-
ables and parameters. Consider a simple two variables regression

y(&)|x(k) = By + Box(k) +u(k), k=0,1,...,n

It is supposed that of random values uy,...,u, are independent and belong, for
example, to normal distribution, {u(k)} ~ N (0, 62); here vector of unknown parame-

ters includes three elements, 6 = (B, B,, Gﬁ)T. The likelihood function for dependent

variable y = (yy,...,y)" and predictor x = (xy,...,x,)" without proportion coeffi-
cient is determined as follows:

Liylx. b1, By, 04) = GlNexp{—z;Z vE) ~ By - BzX(k)}z}
u k=

u 1
Using simplified (non-informative) distributions for the model parameters:

8(B1; B2, 0u) = 81(B1)g2(B2)g3(0u),
g1(By) o const,
82(Ba1) o const,
83(0u) ox 1/oy,

and Bayes theorem it is possible to find joint posterior distribution for the parameters in
the form [16]:

N
BB, By Gul ) o ~—exp | — == 3" (k) — By — Byx(k)?|
k=1

(eXej 20

—00<B,Br<+00, 0<o,<x

Maximum likelihood estimates for the model parameters are determined as follows:

SV (k) — 7] [y(k) — ]
Sy (k) — 3 S0 (k) — 7]

Bl :)7_[325(; Bzz

b
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where x = N1 30 x(k), §=N"'Yr,y(k), with unbiased sample estimate of
variance:

R 1 N - A
Gu =5 =552y D) = By = Byx(k)]
Joint posterior density for the model parameters corresponds to two dimensional
Student distribution:

hi(By, Baly, x) o< {(N —2)s* + N(B, — B+ (BEO_SNBz)z szv:l x(k)?
+ 2B — BBy — B L x(0)

This way we get a possibility for using more exact distributions of models variables
and parameters what helps to enhance model quality. Using new observation x* and
prior information regarding particular model it is possible to determine the forecast
interval for the dependent variable, y*, as follows:

PO 1) = /// LO W By Bay 0By, By, 0)[x, y)dPy. Py, do.

Another useful Bayesian approach is in hierarchical modeling that is based on a set
of simple conditional distributions comprising one model. The approach is naturally
combined with the theory of computing Bayesian probabilistic inference using modern
computational procedures [17]. The hierarchical models belong to the class of marginal
models where the final result is provided in the form of a distribution P(y), where y is
available data vector. The models are formed from the sequence of conditional dis-
tributions for selected variables including the hidden ones. The hierarchical represen-
tation of parameters usually supposes that data, y, is situated at the lower (first) level,
model parameters (second level) 0 = (0;,i=1,2,...,n), 06;~N(u,1?), determine
distributions of dependent variables y; ~ N (6;,6),i = 1,2,...,n, and parameters {0;}
are determined by the pair, (i, t?), of the third level. Supposing the parameters o” and
12 accept known finite values, and parameter 1 is unknown with the prior m,,, then joint
prior density for (0, 1) could be presented in the form: Ttu( ) I1; ne(e |1), and the prior
for parameter vector 6 will be defined by the integral: p(0) = [ m,(p H 7o (0;|)d .

4 Data, Model and Forecasts Quality Criteria

To achieve reliable high quality final result of risk estimation and forecasting at each
stage of computational hierarchy separate sets of statistical quality criteria have been
used. Data quality control is performed with the following criteria:

— database analysis for missing values using developed logical rules, and imputation
of missed values with appropriately selected techniques;
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— analysis of data for availability of outliers with special statistical tests, and pro-
cessing of outliers to reduce their negative influence on statistical properties of the
data available;

— normalizing of data in the selected range in a case of necessity;

— application of low-order digital filters (usually low-pass filters) for separation of
observations from measurement noise;

— application of optimal (usually Kalman) filters for optimal state estimation and
fighting stochastic uncertainties;

— application of principal component method to achieve desirable level of orthogo-
nalization between the variables selected;

— computing of extra indicators for the use in regression and other models (say,
moving average processes based upon measurements of dependent variables).

It is also useful to test how informative is the data collected. Very formal indicator
for the data being informative is its sample variance. It is considered formally that the
higher is the variance the richer is the data with information. Another criterion is based
on computing derivatives with a polynomial that describes data in the form of a time
series. For example, the equation given below can describe rather complex process with
nonlinear trend and short-term variations imposed on the trend curve:

P
y(k) = ap + Zaiy(k — i) ekt k4. 4 k™ +e(k),

i=1

Where y(k) is basic dependent variable; a;, ¢; are model parameters; k = 0, 1,2, ...1s
discrete time; &(k) is a random process that integrates the influence of external distur-
bances to the process being modeled as well as model structure and parameters errors.
Autoregressive part of model (1) describes the deviations that are imposed on a trend,
and the trend itself is described with the m-th order polynomial of discrete time . In this
case maximum number of derivatives could be m, though in practice actual number of
derivatives is defined by the largest number i of parameter c;, that is statistically sig-
nificant. To select the best model constructed the following statistical criteria are used:
determination coefficient (R%); Durbin-Watson statistic (DW); Fisher F-statistic; Akaike
information criterion (AIC), and residual sum of squares (SSE). The forecasts quality is
estimated with hiring the criteria mentioned above in (1) and (2). To perform automatic
model selection the above mentioned combined criteria (1) could be hired. The power of
the criterion was tested experimentally and proved with a wide set of models and
statistical data. Thus, the three sets of quality criteria are used to insure high quality of
final result.

5 Conclusions

The general methodology was proposed for mathematical modeling and forecasting
dynamics of economic and financial processes that is based on the system analysis
principles. As instrumentation for fighting possible structural, statistic and parametric
uncertainties the following techniques are used: Kalman filter, various missing data
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imputation techniques, multiple methods for model parameter estimation, and Bayesian
programming approach. The issues of estimating the quality of forecasted solutions are

considered.
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