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Abstract. The paper presents learning algorithms for a multidimensional
adaptive growing neuro-fuzzy system with optimization of a neuron ensemble in
every cascade. A building block for this architecture is a multidimensional
neo-fuzzy neuron. The demonstrated system is distinguished from the
well-recognized cascade systems in its ability to handle multidimensional data
sequences in an online fashion, which makes it possible to treat non-stationary
stochastic and chaotic data with the demanded accuracy. The most important
privilege of the considered hybrid neuro-fuzzy system is its trait to accomplish a
procedure of parallel computation for a data stream based on peculiar elements
with upgraded approximating properties. The developed system turns out to be
rather easy from the effectuation standpoint; it holds a high processing speed and
approximating features. Compared to acclaimed countertypes, the developed
system guarantees computational simpleness and owns both filtering and
tracking aptitudes. The proposed system, which is ultimately a growing
(evolving) system of computational intelligence, assures processing the
incoming data in an online fashion just unlike the rest of conventional systems.
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1 Introduction

A great combination of different neuro-fuzzy systems is of considerable use nowadays
for a large variety of data processing problems. This fact should be highlighted by a
number of preferences that neuro-fuzzy systems hold over other existing methods, and
that comes from their abilities to get trained as well as their universal approximating
capacities.

A degree of the training procedure may be refined by adapting both a network’s set
of synaptic weights and its topology [1–8]. This notion is the ground rules for evolving
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(growing) systems of computational intelligence [9–11]. It stands to mention that
probably one of the most prosperous actualizations of this attitude is
cascade-correlation neural networks [12–14] by reason of their high level of efficacy
and learning simplicity for both a network scheme and for synaptic weights. In general
terms, such sort of a network gets underway with a rather simple architecture con-
taining an ensemble of neurons to be trained irrespectively (a case of the first cascade).
Every neuron in an ensemble can possess various activation functions as well as
learning procedures. Nodes (neurons) in the ensemble do not intercommunicate while
they are being learnt.

Eventually, when all the elements in the ensemble of the first cascade have had their
weights adapted, the best neuron in relation to a learning criterion builds up the first
cascade, and its synaptic weights are not able of being configured any longer. In the
next place, the second cascade is commonly formed by means of akin neurons in the
training ensemble. The sole difference is that neurons to be learnt in the ensemble of the
second cascade own an additional input (and consequently an additional synaptic
weight) which proves to be an output of the first cascade. In similar fashion to the first
cascade, the second one withdraws all elements except a single one, which gives the
best performance. Its synaptic weights should be fixed afterwards. Nodes in the third
cascade hold two additional inputs, namely the outputs of the first and second cascades.
The growing network keeps on adding new cascades to its topology until it gains the
required quality of the results received over the given training set.

By way of evading multi-epoch learning [15–23], various kinds of neurons
(preferably their outputs should depend in a linear manner on synaptic weights) may be
utilized as the network’s elements. This could give the opportunity to exploit some
optimal in speed learning algorithms and handle data as it arrives to the network. In the
meantime, if the system is being trained in an online manner, it looks impossible to
detect the best neuron in the ensemble. While handling non-stationary data objects, one
node in a training ensemble may be confirmed to be the best element for one part of the
training data sample (but it cannot be selected as the best one for the other parts). It may
be recommended that all the units should be abandoned in the training ensemble, and
some specific optimization method (selected in agreement with a general quality cri-
terion for the network) is meant to be used for estimation of an output of the cascade.

It will be observed that the widely recognized cascade neural networks bring into
action a non-linear mapping Rn ! R1, which means that a common cascade neural
network is a system with a single output. By contrast, many problems solved by means
of neuro-fuzzy systems demand a multidimensional mapping Rn ! Rg to be executed,
that finally accounts for the fact that a number of elements to be trained in every
cascade is g times more by contrast to a common neural network, which makes this sort
of a system too ponderous. Hence, it seems relevant to operate a specific multidi-
mensional neuron’s topology as the cascade network’s unit with multiple outputs
instead of traditional.

The described growing cascade neuro-fuzzy system of computational intelligence is
actually an effort to develop a system for handling a data stream that is fed to the
system in an online way and that is in possession of a far smaller amount of parameters
to be set as opposed to other widely recognized analogues.
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2 An Architecture of the Hybrid Growing System

A scheme of the introduced hybrid system is represented in Fig. 1. In fact, it coincides
with architecture of the hybrid evolving neural network with an optimized ensemble in
every cascade group of elements to have been developed in [24–29]. A basic dis-
similarity lies in a type of elements utilized and learning procedures respectively.

A network’s input can be described by a vector signal x kð Þ ¼ x1 kð Þ; x2 kð Þ; . . .;ð
xn kð ÞÞT , where k ¼ 1; 2; . . . stands for either a plurality of observations in the
“object-property” table or an index of the current discrete time. These signals are

moved to inputs of each neuron MN ½m�
j in the system (j ¼ 1; 2; . . .; q denotes a number

of neurons in a training ensemble, m ¼ 1; 2; . . . specifies a cascade’s number). A vector

output ŷ½m�j kð Þ ¼ ŷ½m�j1 kð Þ; ŷ½m�j2 kð Þ; . . .; ŷ½m�jd kð Þ; . . .; ŷ½m�jg kð Þ
� �T

is eventually produced,

d ¼ 1; 2; . . .; g. These outputs are in the next place fed to a generalizing neuron
GMN ½m� to reproduce an optimized vector output ŷ�½m� kð Þ for the cascade m. Just as the
input of the nodes in the first cascade is x kð Þ, elements in the second cascade take g
additional arriving signals for the obtained signal ŷ�½1� kð Þ, neurons in the third cascade
have 2g additional inputs ŷ�½1� kð Þ; ŷ�½2� kð Þ, whilst neurons in the m-th cascade own
m� 1ð Þg additional incoming signals ŷ�½1� kð Þ; ŷ�½2� kð Þ; . . .; ŷ�½m�1� kð Þ. New cascades are
becoming a part of the hybrid system within the learning procedure just as it turns out

Fig. 1. An architecture of the growing neuro-fuzzy system.
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to be clear that an architecture with a current amount of cascades does not provide the
required accuracy.

Since a system signal in a conventional neo-fuzzy neuron [30–32] is governed by
the synaptic weights in a linear manner, any adaptive identification algorithm [33–35]
may actually be applied to learning the network’s neo-fuzzy neurons (like either the
exponentially-weighted least-squares method in a recurrent form

w½m�j
d kþ 1ð Þ ¼ w½m�j

d kð Þþ
P½m�j
d kð Þ yd kþ 1ð Þ � w½m�j

d kð Þ
� �T

l½m�jd kþ 1ð Þ
� �
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d kð Þ �

P½m�j
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8>>>>>>>>>><
>>>>>>>>>>:

ð1Þ

(here yd kþ 1ð Þ; d ¼ 1; 2; . . .; g specifies an external learning signal, 0\a� 1 marks a
forgetting factor) or the gradient learning algorithm with both tracking and filtering
properties [35])

w½m�j
d kþ 1ð Þ ¼ w½m�j

d kð Þþ
yd kþ 1ð Þ � w½m�j

d kð Þ
� �T

l½m�jd kþ 1ð Þ
r½m�jd kþ 1ð Þ

l½m�jd kþ 1ð Þ;

r½m�jd kþ 1ð Þ ¼ ar½m�jd kð Þþ l½m�jd kþ 1ð Þ
��� ���2; 0� a� 1:

8>>>><
>>>>:

ð2Þ

An architecture of a typical neo-fuzzy neuron (Fig. 2) as part of the multidimensional

neuron MN ½1�
g in the cascade system is abundant, since a vector of input signals x kð Þ

(the first cascade) is sent to same-type non-linear synapses NS½1�jdi of the neo-fuzzy

neurons, where each neuron obtains a signal ŷ½1�jd kð Þ; d ¼ 1; 2; . . .; g at its output. As a

result, components of the output vector ŷ½1�j kð Þ ¼ ŷ½1�j1 kð Þ; ŷ½1�j2 kð Þ; . . .; ŷ½1�jg kð Þ
� �T

are

computed irrespectively.
This fact can be missed by introducing a multidimensional neo-fuzzy neuron [36],

whose architecture is shown in Fig. 3 and is a modification of the system proposed in

[37]. Its structural units are composite non-linear synapses MNS½1�ji , where each synapse

contains h membership functions l½1�jli and gh tunable synaptic weights w½1�j
dli . In this

way, the multidimensional neo-fuzzy neuron in the first cascade contains ghn synaptic
weights, but only hn membership functions. That’s g times smaller in comparison with
a situation if the cascade is formed of common neo-fuzzy neurons.

Assuming a hn� 1ð Þ – vector of membership functions

l½1�j kð Þ ¼ l½1�j11 x1 kð Þð Þ; l½1�j21 x1 kð Þð Þ;. . .; l½1�jh1 x1 kð Þð Þ;. . .;l½1�jli xi kð Þð Þ;. . .;l½1�jhn xn kð Þð Þ
� �T

and a g� hnð Þ – matrix of synaptic weights
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;

the output signal MN ½1�
j can be written down at the k – th time moment in the form of

ŷ½1�j kð Þ ¼ W ½1�jl½1�j kð Þ: ð3Þ

Learning the multidimensional neo-fuzzy neuron may be carried out applying either
a matrix modification of the exponentially-weighted recurrent least squares method (1)
in the form of

W ½1�j kþ 1ð Þ ¼ W ½1�j kð Þþ y kþ 1ð Þ �W ½1�j kð Þl½1�j kþ 1ð Þ� �
l½1�j kþ 1ð Þ� �T

P½1�j kð Þ
aþ l½1�j kþ 1ð Þð ÞTP½1�j kð Þl½1�j kþ 1ð Þ

;

P½1�j kþ 1ð Þ ¼ 1
a

P½1�j kð Þ � P½1�j kð Þl½1�j kþ 1ð Þ l½1�j kþ 1ð Þ� �T
P½1�j kð Þ

aþ l½1�j kþ 1ð Þð ÞTP½1�j kð Þl½1�j kþ 1ð Þ

 !
; 0\a� 1

8>>>>><
>>>>>:

ð4Þ

Fig. 2. An architecture of the traditional neo-fuzzy neuron.
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or a multidimensional version of the algorithm (2) [38]:

W ½1�j kþ 1ð Þ ¼ W ½1�j kð Þþ y kþ 1ð Þ �W ½1�j kð Þl½1�j kþ 1ð Þ
r½1�j kþ 1ð Þ l½1�j kþ 1ð Þ

� �T
;

r½1�j kþ 1ð Þ ¼ ar½1�j kð Þþ l½1�j kþ 1ð Þ�� ��2; 0� a� 1;

8><
>: ð5Þ

here y kþ 1ð Þ ¼ y1 kþ 1ð Þ; y2 kþ 1ð Þ; . . .; yg kþ 1ð Þð ÞT :
The rest of cascades are trained in a similar fashion, while a vector of membership

functions l½m�j kþ 1ð Þ in the m-th cascade enlarges its dimensionality by m� 1ð Þg
elements which are guided by the preceding cascades’ outputs.

Fig. 3. An architecture of the multidimensional neo-fuzzy neuron.
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3 Output Signals’ Optimization of the Multidimensional
Neo-fuzzy Neuron Ensemble

Outputs generated by the neurons in each ensemble are combined by the corresponding
neuron GN ½m�, whose output accuracy ŷ�½m� kð Þ must be higher than the accuracy of any

output ŷ½m�j kð Þ. This task can be solved through the use of the neural networks’
ensembles approach. Although the well-recognized algorithms are not designated for
operating in an online fashion, in this case one could use the adaptive generalizing
forecasting [39, 40].

Let’s introduce a vector of ensemble inputs for the m-th cascade

ŷ½m� kð Þ ¼ ŷ½m�1 kð Þ; ŷ½m�2 kð Þ; . . .; ŷ½m�q kð Þ
� �T

;

then an optimal output of the neuron GN ½m�, which is intrinsically an adaptive linear
associator [1–8], can be defined as

ŷ�½m� kð Þ ¼
Xq
j¼1

c½m�j ŷ½m�j kð Þ ¼ c½m�T ŷ½m� kð Þ

or with additional constraints on unbiasedness

Xq
j¼1

c m½ �
n ¼ ETc m½ � ¼ 1 ð6Þ

where c m½ � ¼ c m½ �
1 ; c m½ �

2 ; . . .; c m½ �
q

� �T
and E ¼ 1; 1; . . .; 1ð ÞT are q� 1ð Þ – vectors.

The vector of generalization coefficients c½m� can be found with the help of the
Lagrange undetermined multipliers’ method. For this reason, we’ll introduce a k � gð Þ
– matrix of reference signals and a k � gqð Þ – matrix of ensemble’s output signals

Y kð Þ ¼
yT 1ð Þ
yT 2ð Þ
..
.

yT kð Þ

0
BBB@

1
CCCA; Ŷ ½m� kð Þ ¼

ŷ½m�T1 1ð Þ ŷ½m�T2 1ð Þ . . . ŷ½m�Tq 1ð Þ
ŷ½m�T1 2ð Þ ŷ½m�T2 2ð Þ � � � ŷ½m�Tq 2ð Þ

..

. ..
. ..

. ..
.

ŷ½m�T1 kð Þ ŷ½m�T2 kð Þ � � � ŷ½m�Tq kð Þ

0
BBBB@

1
CCCCA;

a k � gð Þ� matrix of innovations

V ½m� kð Þ ¼ Y kð Þ � Ŷ ½m� kð ÞI � c½m�
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and the Lagrange function

L½m� kð Þ ¼ 1
2
Tr V ½m�T kð ÞV ½m� kð Þ
� �

þ k ETc½m� � 1
� �

¼ 1
2
Tr Y kð Þ � Ŷ ½m� kð ÞI � c½m�
� �T

Y kð Þ � Ŷ ½m� kð ÞI � c½m�
� �

þ k ETc½m� � 1
� �

¼ 1
2

Xk
s¼1

y sð Þ � ŷ½m� sð Þc½m��� ��2 þ k ETc½m� � 1
� �

:

ð7Þ

Here I is a g� gð Þ� identity matrix, � is the tensor product symbol, k stands for an
undetermined Lagrange multiplier.

Solving the Karush-Kuhn-Tucker system of equations

rc½m�L
½m� kð Þ ¼

Xk
s¼1

�ŷ½m�T sð Þy sð Þþ ŷ½m�T sð Þŷ½m� sð Þc½m�
� �

þ kE ¼~0;

@L½m� kð Þ
@k

¼ ETc½m� � 1 ¼ 0

8>>><
>>>:

allows obtaining the desired vector of generalization coefficients as follows

c½m� kð Þ ¼ c�½m� kð ÞþP½m� kð Þ 1� ETc�½m� kð Þ
ETP½m� kð ÞE E ð8Þ

where

P½m� kð Þ ¼
Xk
s¼1

ŷ½m�T sð Þŷ½m� sð Þ
 !�1

;

c�½m� kð Þ ¼ P½m� kð Þ
Xk
s¼1

ŷ½m�T sð Þy sð Þ ¼ P½m� kð Þp½m� kð Þ;

8>>>>><
>>>>>:

c�½m� kð Þ is an estimate of the traditional least squares method obtained by the previous k
observations.

In order to research vector properties of the obtained generalization coefficients, we
should make some obvious transformations. Considering that a vector of learning
errors for the neuron GMN ½m� can be written down in the form

e½m� kð Þ ¼ y kð Þ � ŷ�½m� kð Þ ¼ y kð Þ � ŷ½m� kð Þc½m� ¼ e½m� kð Þ
¼ y kð ÞETc½m� � ŷ½m� kð Þc½m� ¼
¼ y kð ÞET � ŷ½m� kð Þ
� �

c½m� ¼ t½m� kð Þc½m�;

the Lagrange function (7) can be also put down in the form
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L½m� kð Þ ¼ 1
2

Xk
s¼1

c½m�Tt½m� sð Þt½m�T sð Þc½m� þ k ETc½m� � 1
� �

¼ 1
2
c½m�TR½m� kð Þc½m� þ k ETc½m� � 1

� �
and then solving a system of equations

rc½m�L
½m� kð Þ ¼ R½m� kð Þc½m� þ kE ¼~0;

@L½m�

@k
¼ ETc½m� � 1 ¼ 0;

8><
>:

we receive

c½m� kð Þ ¼ R½m� kð Þ
� ��1

E ET R½m� kð Þ
� ��1

E
� ��1

;

k ¼ �2ET R½m� kð Þ
� ��1

E

8>><
>>:

where R½m� kð Þ ¼ Pk
s¼1

t½m� sð Þt½m�T sð Þ ¼ V ½m�T kð ÞV ½m� kð Þ:
The Lagrange function’s value can be easily written down at a saddle point

L� kð Þ ¼ ET R½m� kð Þ
� ��1

E

� ��1

;

analyzing which by the Cauchy-Schwarz inequality, it can be shown that the gener-
alized output signal ŷ�½m� kð Þ is not inferior to accuracy of the best neuron ŷ½m�j kð Þ,
j ¼ 1; 2; . . .; q in an ensemble of output signals.

In order to provide information processing in an online manner, the expression (8)
should be performed in a recurrent form which acquires the view of (by using the
Sherman-Morrison-Woodbery formula)

P m½ � kþ 1ð Þ ¼ P m½ � kð Þ � P m½ � kð Þŷ m½ �T kþ 1ð Þ Iþ ŷ m½ � kþ 1ð ÞP m½ � kð Þŷ m½ �T kþ 1ð Þ
� ��1

� ŷ½m� kþ 1ð ÞP½m� kð Þ ¼ I � P½m� kð Þŷ½m�T kþ 1ð Þŷ½m� kþ 1ð Þ
� ��1

P½m� kð Þ;
p½m� kþ 1ð Þ ¼ p½m� kð Þþ ŷ½m�T kþ 1ð Þy kþ 1ð Þ;
c�½m� kþ 1ð Þ ¼ P½m� kþ 1ð Þp½m� kþ 1ð Þ;
c½m� kþ 1ð Þ ¼ c�½m� kþ 1ð ÞþP½m� kþ 1ð Þ ETP½m� kþ 1ð ÞE

� ��1
1� ETc�½m� kþ 1ð Þ
� �

E:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð9Þ
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Unwieldiness of the algorithm (9), that is in fact the Gauss-Newton optimization
procedure, has to do with inversion of g� gð Þ – matrices at every time moment k. And
when this value g is large enough, it is much easier to use gradient learning algorithms
to tune the weight vector c½m� kð Þ. The learning algorithm can be obtained easily enough
if the Arrow-Hurwitz gradient algorithm is used for a search of the Lagrange function’s
saddle point which takes on the form in this case

c½m� kþ 1ð Þ ¼ c½m� kð Þ � gc kþ 1ð Þrc½m�L
½m� kð Þ;

k kþ 1ð Þ ¼ k kð Þþ gk kþ 1ð Þ @L
½m� kð Þ
@k

8><
>: ð10Þ

or specifically for (10)

c½m� kþ 1ð Þ ¼ c½m� kð Þþ gc kþ 1ð Þ ŷ½m�T kð Þe½m� kð Þ � k kð ÞE
� �

;

k kþ 1ð Þ ¼ k kð Þþ gk kþ 1ð Þ ETc½m� kþ 1ð Þ � 1
� �

8><
>: ð11Þ

where gc kþ 1ð Þ, gk kþ 1ð Þ are some learning rate parameters.
The Arrow-Hurwitz procedure converges to a saddle point of the Lagrange function

when a range of learning rate parameters gc kþ 1ð Þ and gk kþ 1ð Þ is sufficiently wide.
However, one could try to optimize these parameters to reduce training time. For this
purpose, we should write down the expression (10) in the form

ŷ½m� kð Þc½m� kþ 1ð Þ ¼ ŷ½m� kð Þc½m� kð Þ � gc kþ 1ð Þŷ½m� kð Þrc½m�L
½m� kð Þ;

y kð Þ � ŷ½m� kð Þc½m� kþ 1ð Þ ¼ y kð Þ � ŷ½m� kð Þc½m� kð Þþ gc kþ 1ð Þŷ½m� kð Þrc½m�L
½m� kð Þ:

8<
: ð12Þ

A left side of the expression (12) describes an a posteriori error ~e½m� kð Þ, which is
obtained after one cycle of parameters’ tuning, i.e.

~e½m� kð Þ ¼ e½m� kð Þþ gc kþ 1ð Þŷ½m� kð Þrc½m�L
½m� kð Þ:

Introducing the squared norm of this error

~e½m� kð Þ�� ��2¼ e½m� kð Þ�� ��2 þ 2gc kþ 1ð Þe½m�T kð Þŷ½m� kð Þrc½m�L
½m� kð Þ

þ g2c kþ 1ð Þ ŷ½m� kð Þrc½m�L
½m� kð Þ�� ��2

and minimizing it in gc kþ 1ð Þ, i.e. solving a differential equation

@ ~e½m� kð Þ�� ��2
@gc

¼ 0;
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we come to an optimal value for a learning rate parameter

gc kþ 1ð Þ ¼ � e½m�T kð Þŷ½m� kð Þrc½m�L
½m� kð Þ

ŷ½m� kð Þrc½m�L½m� kð Þk k2
:

Then the algorithms (10) and (11) can be finally put down as follows

rc½m�L kð Þ ¼ � ŷ½m�T kð Þe½m� kð Þ � k kð ÞE
� �

;

c½m� kþ 1ð Þ ¼ c½m� kð Þþ e½m�T kð Þŷ½m� kð Þrc½m�L
½m� kð Þ

ŷ½m� kð Þrc½m�L½m� kð Þk k2
rc½m�L kð Þ;

k kþ 1ð Þ ¼ k kð Þþ gk kþ 1ð Þ ETc½m� kþ 1ð Þ � 1
� �

:

8>>>>>><
>>>>>>:

ð13Þ

The procedure (13) is computationally much easier than (9), and if there are no con-
straints (6) it turns into a multidimensional modification of the Kaczmarz-Widrow-Hoff
algorithm which is widely spread in the problems of ANNs learning.

Elements of a generalization coefficients’ vector can be interpreted as membership
levels, if a constraint on synaptic weights’ non-negativity for the generalizing neuron
GMN ½m� is introduced into the Lagrange function to be optimized, i.e.

Xq
j¼1

~c½m�j ¼ ET~c½m� ¼ 1; 0�~c½m�j � 1 8j ¼ 1; 2; . . .; q: ð14Þ

Introducing the Lagrange function with additional constraints-inequalities

~L½m� kð Þ ¼ 1
2
Tr V ½m�T kð ÞV ½m� kð Þ
� �

þ k ET~c½m� � 1
� �

� qT~c½m�

¼ 1
2
Tr Y kð Þ � Ŷ ½m� kð ÞI � ~c½m�
� �T

Y kð Þ � Ŷ ½m� kð ÞI � ~c½m�
� �

þ k ET~c½m� � 1
� �

� qT~c½m�

¼ 1
2

Xk
s¼1

y sð Þ � ŷ½m� sð Þ~c½m��� ��2 þ k ET~c½m� � 1
� �

� qT~c½m�

(here q is a q� 1ð Þ – vector of non-negative undetermined Lagrange multipliers) and
solving the Karush-Kuhn-Tucker system of equations

r~c½m�
~L½m� kð Þ ¼~0;

@~L½m� kð Þ
@k

¼ 0;

qj 	 0 8j ¼ 1; 2; . . .; q;

8>>><
>>>:
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an analytical solution takes on the form

~c½m� kð Þ ¼ P½m� kð Þ p½m� kð Þ � kEþ q
� �

;

k ¼ ETP½m� kð Þp½m� kð Þ � 1þETP½m� kð Þq
ETP½m� kð ÞE

8>><
>>:

and having used the Arrow-Hurwicz-Uzawa procedure, we obtain a learning algorithm
of the neuron GMN ½m� in the view of

~c½m� kþ 1ð Þ ¼ c�½m� kþ 1ð Þ � P½m� kþ 1ð ÞE
Tc�½m� kþ 1ð Þ � 1þETP½m� kþ 1ð Þq kð Þ

ETP½m� kþ 1ð ÞE E

þP½m� kþ 1ð Þq kð Þ;

q kþ 1ð Þ ¼ Prþ q kð Þ � gq kþ 1ð Þ~c½m� kþ 1ð Þ
� �

:

8>>>>>>><
>>>>>>>:

ð15Þ

The first ratio (15) can be transformed into the form of

~c½m� kþ 1ð Þ ¼ c½m� kþ 1ð Þ � P½m� kþ 1ð ÞE
TP½m� kþ 1ð Þq kð Þ
ETP½m� kþ 1ð ÞE EþP½m� kþ 1ð Þq kð Þ

¼ c½m� kþ 1ð Þþ I � P½m� kþ 1ð ÞEET

ETP½m� kþ 1ð ÞE
� �

P½m� kþ 1ð Þq kð Þ
ð16Þ

where c½m� kþ 1ð Þ is defined by the ratio (8), I � P½m� kþ 1ð ÞEET ETP½m� kþ 1ð ÞE� ��1
� �

is a projector to the hyperplane ~c½m�T kþ 1ð ÞE ¼ 1. It can be easily noticed that the

vectors E and I � P½m� kþ 1ð ÞEET ETP½m� kþ 1ð ÞE� ��1
� �

P½m� kþ 1ð Þq kð Þ are orthogo-

nal, so we can write down the ratios (14) and (15) in a simpler form

~c½m� kþ 1ð Þ ¼ c½m� kþ 1ð Þþ Prc½m�TE¼1 P½m� kþ 1ð Þq kð Þ
� �

;

q kþ 1ð Þ ¼ Prþ q kð Þ � gq kþ 1ð Þ~c½m� kþ 1ð Þ
� �

:

8><
>:

Then the learning algorithm of the generalizing neuron with the constraints (14) finally
takes on the form
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P½m� kþ 1ð Þ ¼ P½m� kð Þ � P½m� kð Þŷ½m�T kþ 1ð Þ Iþ ŷ½m� kþ 1ð ÞP½m� kð Þŷ½m�T kþ 1ð Þ
� ��1

¼ I � P½m� kð Þŷ½m�T kþ 1ð Þŷ½m� kþ 1ð Þ
� ��1

P½m� kð Þ;
p½m� kþ 1ð Þ ¼ p½m� kð Þþ ŷ½m�T kþ 1ð Þy kþ 1ð Þ;
c�½m� kþ 1ð Þ ¼ P½m� kþ 1ð Þp½m� kþ 1ð Þ;
c½m� kþ 1ð Þ ¼ c�½m� kþ 1ð ÞP½m� kþ 1ð Þ ETP½m� kþ 1ð ÞE

� ��1
1� ETc�½m� kþ 1ð Þ
� �

E;

~c½m� kþ 1ð Þ ¼ c½m� kþ 1ð Þ � P½m� kþ 1ð ÞE
TP½m� kþ 1ð Þq kð Þ
ETP½m� kþ 1ð ÞE EþP½m� kþ 1ð Þq kð Þ;

q kþ 1ð Þ ¼ Prþ q kð Þ � gq kþ 1ð Þ~c½m� kþ 1ð Þ
� �

:

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð16Þ

The learning procedure (16) can be considerably simplified similar to the previous one
with the help of the gradient algorithm

~c½m� kþ 1ð Þ ¼ ~c½m� kð Þ � gc kþ 1ð Þr~c½m�
~L½m� kð Þ;

k kþ 1ð Þ ¼ k kð Þþ gk kþ 1ð Þ ET~c½m� kþ 1ð Þ � 1
� �

;

q kþ 1ð Þ ¼ Prþ q kð Þ � gq kþ 1ð Þ~c½m� kþ 1ð Þ
� �

:

8>>><
>>>:

Carrying out transformations similar to the abovementioned ones, we finally obtain

r~c½m�
~L kð Þ ¼ � ŷ½m�T kð Þe½m� kð Þ � k kð ÞEþ q kð Þ

� �
;

~c½m� kþ 1ð Þ ¼ ~c½m� kð Þþ e½m�T kð Þŷ½m� kð Þr~c½m�
~L½m� kð Þ

ŷ½m� kð Þr~c½m�
~L½m� kð Þ�� ��2 r~c½m�

~L½m� kð Þ;

k kþ 1ð Þ ¼ k kð Þþ gk kþ 1ð Þ ET~c½m� kþ 1ð Þ � 1
� �

;

q kþ 1ð Þ ¼ Prþ q kð Þ � gq kþ 1ð Þ~c½m� kþ 1ð Þ
� �

:

8>>>>>>>>>><
>>>>>>>>>>:

ð17Þ

The algorithm (17) comprises the procedure (13) as a particular case.

4 Experimental Results

To illustrate the effectiveness of the suggested adaptive neuro-fuzzy system and its
learning procedures, we have actualized an experimental test by means of handling the
chaotic Lorenz attractor identification. The Lorenz attractor is a fractal structure which
matches the Lorenz oscillator’s behavior. The Lorenz oscillator is a three-dimensional
dynamical system that puts forward a chaotic flow that is also renowned for its lem-
niscate shape. As a matter of fact, a state of the dynamical system (three variables of the
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three-dimensional system) is evolving with the course of time in a complex
non-repeating pattern.

The Lorenz attractor may be exemplified by a differential equation in the form of

_x ¼ r y� xð Þ;
_y ¼ x r � zð Þ � y;

_z ¼ xy� bz:

8><
>: ð18Þ

This system of Eq. (18) can be also put down in the recurrent form

x iþ 1ð Þ ¼ x ið Þþ r y ið Þ � x ið Þð Þdt;
y iþ 1ð Þ ¼ y ið Þþ rx ið Þ � x ið Þz ið Þ � y ið Þð Þdt;
z iþ 1ð Þ ¼ z ið Þþ x ið Þy ið Þ � bz ið Þð Þdt

8><
>: ð19Þ

where parameter values are: r ¼ 10; r ¼ 28; b ¼ 2:66; dt ¼ 0:001.
A data set was acquired with the benefit of (19) which comprises 10000 samples,

where 7000 points establish a training set, and 3000 samples make up a validation set.
In our system, we had 2 cascades containing 2 multidimensional neurons each and

a generalized neuron in each cascade. The first neuron in each cascade involves 2
membership functions. The graphical results are represented in Figs. 4, 5 and 6. One
can basically see the forecasting results for the last cascade in Table 1.

Fig. 4. Identification by means of the Lorenz attractor. The X-component results.
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Fig. 5. Identification by means of the Lorenz attractor. The Y-component results.

Fig. 6. Identification by means of the Lorenz attractor. The Z-component results.
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5 Conclusion

The hybrid growing neuro-fuzzy architecture and its learning algorithms for the mul-
tidimensional growing hybrid cascade neuro-fuzzy system which enables neuron
ensemble optimization in every cascade were considered and introduced in the article.
The most important privilege of the considered hybrid neuro-fuzzy system is its trait to
accomplish a procedure of parallel computation for a data stream based on peculiar
elements with upgraded approximating properties. The developed system turns out to
be rather easy from the effectuation standpoint; it holds a high processing speed and
approximating features. It can be described by a rather high training speed which
makes it possible to process online sequential data. The distinctive feature of the
introduced system is the fact that every cascade is put together by an ensemble of
neurons, and their outputs are joined with the optimization procedure of a specific sort.
Thus, every cascade produces an output signal of the optimal accuracy. The proposed
system, which is ultimately a growing (evolving) system of computational intelligence,
assures processing the incoming data in an online fashion just unlike the rest of con-
ventional systems.
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02015.
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