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Abstract. One of the key tasks of mobile robotics is navigation, which for
Outdoor-type robots is exacerbated by the functioning in an environment with a
priori of unknown characteristics of underlying surfaces. In this paper, for the
first time, the learning navigation system for mobile robot based on the group
method of data handling (GMDH) is presented. The paper presents the results of
training of models both for evaluating the robot’s pose (coordinates and angular
orientation) in heterogeneous environment and classification of the type of
underlying surfaces. In addition to the direct readings of the on-board sensors,
additional parameters (reflecting how the robot perceives the surface terrame-
chanics) were introduced to train the models. The results of testing of the
obtained models demonstrate their performance in an essentially heterogeneous
environment, when areas of the underlying surfaces are comparable with the
robot’s dimensions. This testifies the operability of developed GMDH-based
learning system for mobile robot navigation.
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1 Introduction

Despite the rapid development of mobile robotics, the development of an intelligent
control system remains one of the main challenges in the creation of autonomous
robotic systems.

One of the key tasks is the navigation, which can be divided into 2 parts: the
estimation of the current position (coordinates and angular orientation) of the robot in
the working space and the development of control actions on the actuators to
sequentially achieve all the intermediate robot positions along the planned trajectory. In
this case, the solution of the second part of the problem is impossible without solving
of the first. In some cases, the evaluation of the robot position in the environment can
be carried out only by means of on-board inertial system, because global positioning
systems (GPS) may be not exist (planetary rovers), may be inaccessible (fire fighting
robots, autonomous mining vehicles) or suppressed by electronic countermeasures
equipment (combat robots).
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For outdoor-type mobile robots, this problem is exacerbated by the natural con-
ditions of the environment which is characterized by the a priori unknown of an
environment model, the heterogeneous characteristics of surfaces to be traversed, and
the difficulty of determining the features of the robot-terrain interaction based on
on-board sensor readings.

There are a great number of papers on this subject [1–9]. In a first approximation
the four main approaches can be identified for solving navigation problem in a
heterogeneous environment (Table 1).

There is currently no generally accepted dominant methodology at present, and
each research group is trying to solve the problem in its own way. The authors of this
work believe that one of the most promising paths is to construct non-physical models
using the advantages of the inductive modeling approach.

The basic method of the inductive modeling approach is Group Method of Data
Handling (GMDH). To date, the most complete overview of the use of GMDH in
robotics is shown in the work [12]. This method was already used by the authors to
solve the problem of evaluating the robot’s pose in homogeneous and heterogeneous
environments and demonstrated an acceptable result [10, 11].

2 The Advantages of GMDH for Finding Dependencies
Based on the Analysis of Sensor Readings

A number of field experiments were carried out in order to determine the interaction
between the robot’s propulsion system and the underlying surface of various types
based on on-board sensor readings.

Table 1. The man ways to solve the problem of a mobile robot’s navigation in a heterogeneous
environment

Approach to models
construction

Classification of the underlying surface type
Used Not used

Detection and analysis of a
physical patterns of
robot-terrain interaction

S. Khaleghian and S.
Taheri [9]
Sensors: 3-axis and
1-exis accelerometers,
encoders
Method: Fuzzy logic

L. Ojeda et al. [7]
Iagnemma K. et al. [8]
Sensors: encoders, gyroscopes,
accelerometers [8] + current
sensors [7]
Method: Wheel slip analysis

Construction of non-physical
models by means of machine
learning

DuPont E.M. et al. [6]
Sensors: 3-axis
gyroscope, 3-axis
accelerometer
Method: Probabilistic
neural network

A.A. Andrakhanov [10, 11]
Sensors: encoders, motor current
sensors
Method: Twice Multilayered
Modified Polynomial Neural Network
with active neurons
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A serial-produced mobile platform Festo Robotino was used as the mobile robot.
Experiments were carried out at a specially designed testing ground consisting of 28
modules with different terramechanical characteristics (Fig. 1a). The testing ground
was designed in such a way that the terramechanical interaction of its areas with Festo
Robotino’s wheel system was correspond in terms of quality with the level of ter-
ramechanical interaction of the outdoor robot with the areas of the natural environment.
Figure 1b shows the robot’s test motions (along a square and a triangle path) with the
same motor speed setpoints under conditions of a homogeneous (an ideal flat surface)
and heterogeneous (Testing Ground) environment. Holonomic character of robot
movements is provided due to 3 wheels of omnidirectional type, located at an angle of
120° with respect to each other (Fig. 1c).

It is clear from Fig. 1b that the areas of the testing ground have a significant impact
on the nature of the robot’s movement. In order to maximize the transparency between
sensor readings and the nature of the robot’s motion, we decided to assign only the
simplest robot motions and only the homogeneous areas of the testing ground consisting
of modules of the same type. Using the simplest driving setpoints makes it possible to
eliminate the features of the robot’s kinematics and propulsion system, which in turn
allows it to make complex motions (curvilinear motion with rotational motion) without
being affected by the features of the environment. Moving in a homogeneous local area
eliminates the comlex influence of different local areas on the robot behavior because on
the testing ground the each wheel interacts with its local area (Fig. 1a).

Five types of local surfaces, which were different in terms of terramechanics, were
selected by expertise, as well as four of the simplest movements setpoints: three
translational motion, without rotational component (along the X-axis, along the Y-axis,
in the XY plane at the same X- and Y-axis speeds) and rotational motion without
translational component, all motions mentioned in relation to the robot’s local coor-
dinate system (Fig. 1c). The speed of the translational motion was set to be 100 mm/s
(for both the X- and Y-axes), and that of rotational motion was 24, 48 and 96 (deg/s).

Fig. 1. (a) Testing Ground appearance and the robot; (b) Trajectories for test motions (along a
square and a triangle path) in homogeneous (upper) and heterogeneous (lower) environments;
(c) arrangement of wheels in Robotino’s omni-drive system [13] (X, Y, u – Robotino’s local
coordinate system)
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Sensor data subject to analysis included: {N} = {N1, N2, N3} – a set of incremental
encoders values, {x} = {x1, x2, x3} – values of the speeds of motors, {I} = {I1, I2,
I3} – values of the motors consumption currents, {g} = {gx, gy, gz} – angular velocity
values in relation to the X, Y and Z axes (Z-axis is perpendicular to XY-plane),
{a} = {ax, ay, az} – a set of acceleration values along the X, Y and Z axes.

Figure 2 shows the readings of three sensors when the robot traverses over five
different underlying surfaces.

Fig. 2. Sensor readings during the robot’s movement over different surfaces (horizontal axis for
all graphics is the time axis in milliseconds)
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The analysis shows that, on the one hand, the sensor data are correlated to the type
of underlying surface and the nature of the robot movement on this surface. On the
other hand, the correlation is ambiguous.

For example, the average values of currents in the first motor (I1) demonstrate the
laboriousness of overcoming the area (Fig. 2a and g), on the one hand, while on the
other hand, these values may be close despite the fact that the surfaces may have
different terramechanical characteristics (Fig. 2a and j). In addition, there are other
features in the sensor data, which reflect the interaction of the robot with a surface of a
particular type. In particular, the gyroscope data along the Z-axis (gz), shown in Fig. 2b
and h, clearly show the periodic behavior and the curve shape when moving over a
particular surface. However, these may not be shown in the sensor data (Fig. 2k).
A similar trend is observed in accelerometer readings (ay): the features may manifest
themselves (Fig. 2i), though not always (Fig. 2l and f).

Inasmuch as there are unique data properties for different subsets of sensors, it is
necessary to derive models on their basis by using machine learning and data mining
techniques. In our opinion, one promising tool for evaluating the surface type and the
coordinates using sensor readings is the inductive approach.

The advantages of GMDH (as a method of inductive modeling) for the afore-
mentioned research topics and developments are shown in Table 2. This method
provides maximal flexibility at the stage of model construction both in handling the
parameters of data sample (the method of dividing the sample into the training and the
test parts, sorting by the dispersion of the output variable, etc.) and the training
algorithm parameters (for neural algorithms, it means selecting the maximum degree of
a partial description of a neuron, the number of selectable neurons in the layer, the
maximum number of layers in the network, etc.).

Table 2. The benefits of GMDH in addressing the navigation problem

The problem of navigation in a
heterogeneous environment

The GMDH advantages

A variety of tools is necessary to generate
methods for evaluating coordinates and
determining the underlying surface type. For
instance, in the well-known paper [6], the
technical solution contained operations of
extracting the most significant features
(principal component analysis), interpolation
(fundamental splines), clustering
(Eigen-transformation), and classification
(probabilistic neural network)

The method includes a wide range of
algorithms for predicting, classifying,
clustering, identifying and data mining
The unified methodological basis for the
aforementioned spectrum of algorithms
contributes to the standardization of the
system’s program modules

(continued)
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In addition, GMDH provides great opportunities in analyzing dependencies found
during the training phase: which sensor readings are used for the model’s output as the
input variables; with what degrees and/or coefficients these variables are included in the
model; how often these variables are chosen by the neural network algorithm when
constructing a neural network structure from layer to layer sequentially, etc.

In order to ensure maximum access to these features and the advantages of GMDH,
the authors have decided to develop a navigational training system on its basis.

3 Navigation Learning System

3.1 Description of the System

The system architecture is represented in Fig. 3 (only the basic connections between
the modules are shown).

Table 2. (continued)

The problem of navigation in a
heterogeneous environment

The GMDH advantages

There are no simple and obvious correlations
between sensor readings and the
terramechanical properties of the underlying
surfaces

The most effective input variables (with
respect to some quality criterion) are selected
automatically from the set of variables
available to the system, and relationships in
data are interpreted
The resulting dependencies have an analytical
form (it is also typical for the GMDH-type
neural networks), which enhances the
capabilities for analysis and makes it possible
to interpret the results

The number of local areas that affect the
robot motion in different ways can be
arbitrary large. Therefore, it is necessary that
the functional dependences derived by the
onboard computing system should be
generalizable for other areas that have not yet
been traversed

The resulting dependencies have a
generalizing ability because an external
criterion of model quality is used (evaluation
of model parameters and selection of model
structure are performed using independent
data subsamples)

Considering that the size of local areas may
be relatively small, it is important that the
methods used to derive models be able to
work with short data samples
In some cases (for instance, the time limit for
making a decision, limited learning time, as
well as energy costs, and so on), it makes
sense to collect a relatively small number of
samples even if the size of areas is significant

For short, inaccurate, or noisy data, an
optimal nonphysical model can be found,
whose accuracy is higher and structure is
simpler than the structure of a complete
physical model [14]
Finding a solution within a limited training
time is guaranteed. The system can calculate
the training time before training algorithm run
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The navigation learning system (NLS) consists of the following modules:

• The Learning Subsystem that implements computational intelligence algorithms
within a framework of the inductive modeling approach.

• The Database which is necessary for collecting and storing sensor data as well as
learning results.

• The Test subsystem which is required to test the hardware of the system (sensors
and actuators of the robot, unit for determining coordinates and angular orientation)
and the learning subsystem. The hardware test is based on comparing the stored
data (sensor readings, the coordinates and angular orientation values) and the data
obtained as a result of the robot’s test movements. Testing of the learning subsystem
is done by models training on test data samples and comparing the obtained results
with the stored results.

• The Analysis subsystem which analyzes the previous results of models training in
order to determine the influence of different subsets of input variables, the variants
of splitting a data sample, the quality criteria and the algorithm parameters on the
quality of obtained models.

• The Operator interface that provides the operator’s access to data samples, as well
as to the results of testing, training and analysis.

Fig. 3. The navigation learning system architecture
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The hardware which is external in relation to NLS includes the on-board sensors
and actuators of the Festo Robotino platform, the additional unit of inertial sensors
(three-axis gyroscope and three-axis accelerometer) and the Full HD camera to obtain
the coordinates and angular orientation of the robot.

This system was used for training and testing models in all the experiments
mentioned below.

3.2 The Models Training Algorithm

Twice-Multilayered Modified Polynomial Neural Network with Active Neurons
(TMMPNN) algorithm makes it possible to find the optimal network structure (from
the view of the external criterion) and partial descriptions of neurons automatically (in
the self-organization mode). The concept of twice-multilayered polynomial neural
network algorithm was first proposed by A.G. Ivakhnenko and J.A. Muller [15].

The modification is that the generation of partial descriptions on each layer (starting
from the 2nd) involves not only the outputs of neurons of the previous layer, but also
the input variables. Thus, such modification provides an opportunity to avoid losing
important input variables on the first and subsequent layers of the network. The
structure of the modified polynomial neural network is shown in Fig. 4 [12]:

Fig. 4. Twice-multilayered modified GMDH-type polynomial neural network
(x1; x2; xi; xj; xn�1; xn are input variables; F1

k ðxi; xjÞ are partial descriptions of k-th selected
neuron of the 1st layer; FR�1

d ;FR�1
k ;FR�1

q ;FR�1
w are partial descriptions of neurons of the layer

(R–1); OUTR
a ;OUT

R
n ;OUT

R
u ;OUT

R
z are partial descriptions of selected neurons of the output

layer)
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Since this algorithm was described in detail in earlier papers [10, 12] and its
software implementation was published on the CD to the book [12], we will discuss
only the main points related to the settings of this algorithm in the following
experiments.

The classic combinatorial algorithm of GMDH [16] is used to search for partial
descriptions of neurons. In this case, two-input neurons were used limited by the
maximum polynomial degree 2 of the partial description:

Fl
k xi; xj
� � ¼ a0 þ a1 � xi þ a2 � xj þ a3 � x2i þ a4 � x2j þ a5 � xi � xj ð1Þ

The regularity criterion was used as an external criterion for the selection of partial
descriptions of neurons:

CR ¼ 1
NB

XNB

i¼1

fi � yið Þ2 ð2Þ

where NB is the number of rows of the testing data sample; fi is the output of the model
for row i; yi is the output value for row i of the data sample.

In case of network structure construction the regularity criterion was also used as an
external criterion for the selection of the best neurons of a layer. The external layer
criterion (the arithmetic mean value of the regularity criteria of the best neurons in a
given layer), the limit of maximal network capacity (maximal number of lay-
ers � number of selected best neurons in a layer) and the additional stopping criterion
(an improvement in the value for the external layer criterion should be more than e from
layer to layer) were used as stopping criteria of the expansion of network layers.

The algorithm, criteria and settings described were also used for the training of a
surface type classifier. When using a trained classifier, the threshold condition is
applied to the network output: «1» if the network output is greater than or equal to 0.5,
and «0» otherwise.

3.3 Forming Sets of Input Variables for Models Training

In Sect. 2, it was shown that it was difficult to estimate the coordinates of the robot’s
position and the type of the underlying surfaces directly from the sensor readings. In
the paper [17], parameters reflecting how the robot sense the terramechanics of a
surface based on sensor readings were introduced. In this work, we also introduced
additional parameters of such type to increase the number of relevant variables on the
training stage.

The three parameters that characterize the displacement in a given local area are the
robot’s velocities in its local coordinate system:

Vx

Vy

X

0
@

1
A ¼ R �

� 2
3 cos a� hð Þ 2

3 sin að Þ 2
3 cos aþ hð Þ

� 2
3 sin a� hð Þ � 2

3 cos að Þ 2
3 sin aþ hð Þ

1
3�L

1
3�L

1
3�L

0
@

1
A �

x1

x2

x3

0
@

1
A ð3Þ
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where Vx, Vy is the velocity along the X and Y axes of the robot’s local coordinate
system; X is the angular rotation velocity of the robot in the local coordinate system;
x1, x2, x3 are the angular speeds of wheels (associated with the speeds of the motors
through the 1:16 gear ratio); L is the distance from the center of the robot to the wheel
(125 mm); R is the wheel radius (40 mm); a is the robot orientation angle; h is the
wheel orientation angle (30°).

The kinematics Eq. (3) was also used by the authors to obtain the parameters of the
laboriousness of translational and rotational motion of the robot:

Ix
Iy
Iu

0
@

1
A ¼ R �

� 2
3 cos a� hð Þ 2

3 sin að Þ 2
3 cos aþ hð Þ

� 2
3 sin a� hð Þ � 2

3 cos að Þ 2
3 sin aþ hð Þ

1
3

1
3

1
3

0
@

1
A �

I1
I2
I3

0
@

1
A ð4Þ

where Ix, Iy are the values of the currents that characterize the laboriousness of the
robot’s movement along the X and Y axes of the local coordinate system; Iu is the
value of the current which characterizes the laboriousness of the robot’s angular
rotation in the local coordinate system; I1, I2, I3 are the consumption currents of motors.

In (4), the consumption currents of motors have the same sign, which is determined
by the direction of the wheel rotation, as for the speeds of motors in (3). Unlike (3),
R and L values are not used in (4) because, firstly, they are not related to a geometric
transformation of the current vectors. Secondly, the dimension of the output quantities
and their physical meaning will be inconsistent with each other, which is unacceptable.
Thirdly, these values influence only the amplitude of the output values, which is not
important for GMDH, since the TMMPNN algorithm independently selects necessary
weighting coefficients. The preliminary analysis showed an appropriate separability for
all five types of surfaces used in the experiments in case of use of parameters – Ix, Iy, Iu
(Fig. 5b, c and d).

Another parameter used, which characterizes the interaction of the robot with the
surface, is IR – the total consumption current of motors:

IR ¼ I1j j þ I2j j þ I3j j ð5Þ

As can be seen in Fig. 5a, the mean value of this parameter varies for different types
of surfaces, which makes it a useful variable both for classifying the surface type and
for estimating the coordinates and angular orientation. Since the robot arrives to dif-
ferent coordinates on different surfaces with the same motor velocities setpoints, the
coordinate estimation can be related to this parameter.

In addition to the aforementioned absolute parameters, the following relative
parameters were also introduced:

Tx ¼ Vx

Ix
; Ty ¼ Vy

Iy
; Tu ¼ X

Iu
; Tz ¼ gz

Iu
; T�

x ¼ V�
x � Vx

Ix
; T�

y ¼ V�
y � Vy

Iy
;

T�
u ¼ X� � X

Iu
; T�

z ¼ X� � gz
Iu

ð6Þ
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The values Vx, Vy, and X are calculated using actual wheel speeds values, based on
(3), while Ix, Iy, and Iu are calculated using the current sensors values based on (4). The
values Vx

*, Vy
*, and X* are the setpoints of the robot’s movement velocities in the local

coordinate system.
It should be noted that the dimension of relative parameters has the physical

interpretation as a unit of the translational/rotational movement on a particular surface
for the expended current impulse, which is normalized to the same type and direction of
movement. In the case of a difference in the numerator between the setpoint and the
real velocity, the physical interpretation changes into: by how many millimeters/
degrees the actual displacement/rotation of the robot on the surface will differ from the
setpoint value after one current impulse.

Thus, while implementing inductive modeling, three sets of input variables were
used:

• {V1} = {{N},{x},{I},{g},{a}} are values obtained directly from the robot’s
sensors;

• {V2} = {Vx, Vy, X, Ix, Iy, Iu, IR} are absolute parameters obtained by means of
mathematical transformations of values measured by sensors;

Fig. 5. Analysis of the relevance of the parameters (the setpoints of the robot’s movement
velocities in the format – [Vx

* (mm/s), Vy
* (mm/s), X* (deg/s)]: (a) [0; 100; 0]; (b) [100; 100; 0];

(c) [0; 100; 0]; (d) [0; 0; 24])
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• V3f g ¼ Tx; Ty; Tu; Tz; T�
x ; T

�
y ; T

�
u; T

�
z

n o
are relative parameters obtained by means

of algebraic relations between values of the second and the first sets.

The purpose of the experiments series was:

• Determination of the obtained models accuracy for robot pose evaluation taking
into account three sets of parameters;

• Estimation of the relevance of each set of parameters for the constructing of robot
pose estimation models;

• Determination of the accuracy of the underlying surface type classification taking
into account three sets of parameters;

• Estimation of the relevance of each set of parameters for constructing classifiers of
the surface type;

• Testing the obtained models during robot movement in an essentially heterogeneous
environment, when dimensions of both the surfaces and the robot are comparable.

4 Results of Experiments

4.1 Results of Models Training

All experiments were carried out on five selected types (see Fig. 2) of surfaces using
the Festo Robotino mobile platform. There were 30 robot launches lasting 4 s with the
following combinations of robot movement setpoints (in the format [DX/Dt (mm/s),
DY/Dt (mm/s), Du/Dt (deg/s)]): [100,0,0], [0,100,0], [100,100,0], [0,0,24], [0,0,48],
[0,0,96]. Data sample was formed by dividing of the sensor readings into half-second
intervals, sensor values was averaged for these intervals (except values of {N}, the
increment of values per half-second intervals were calculated for this case). Thus, for
each robot launch four examples were included into the training data sample, four –
into the testing data sample.

All models were obtained with help on software that was published on the CD to
the book «GMDH-Methodology and Implementation in C» [12].

In the all experiments, the constraints were used to both the maximum power of
neuron (power – 2) and the network capacity (10 layers x 10 neurons per layer). The
choice of these parameters is due to the experience of our previous experiments,
including in [10, 11]. In particular, it was found that such a limitation on the network
capacity makes it possible to obtain the most stable (in terms of accuracy and bias)
models.

Since the absolute error in the determination of the coordinates used by the computer
vision unit is 1 mm, an additional criterion for stopping the network construction e = 0.1
was given. Data sample was divided into the two equal parts (training and testing).

The results of the experiments are shown in Table 3 (“[Avr]” is the arithmetic mean
error, “Max” is the maximum error, “GM” are denoted (“General Model”) the training
results of model on the combined data sample for all types of the surfaces) and Table 4.
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The best trained models with minimum error are highlighted in bold in Tables 3 and 4.
The average values (“[Avr]”) of the coordinates and angular orientation in Table 3 are
less 1 (mm or deg) on the all types of underlying surfaces for the all subsets of input
variables.

Table 3. Results of models training for robot pose estimation

Value Type Input variable set

{V1} {V2} {V3} {V1}, {V2} {V1}, {V3} {V2}, {V3} All
Max
[Avr]

Max
[Avr]

Max
[Avr]

Max
[Avr]

Max
[Avr]

Max
[Avr]

Max
[Avr]

X, mm 1 3.6 6.0 6.8 4.6 3.6 4.9 4.6
2 10.5 9.3 9.4 10.9 10.5 9.7 10.9
3 5.9 8.1 6.4 6.3 5.9 6.6 6.1
4 2.2 2.1 2.8 2.0 2.3 1.8 2.0
5 7.2 7.2 6.8 6.1 7.2 6.3 6.4
GM 8.7

[2.02]
9.9
[1.7]

12.6
[2.16]

10.5
[1.7]

9.3
[1.8]

10.0
[1.8]

10.3
[1.7]

Y, mm 1 5.1 4.8 6.6 4.8 7.3 4.8 4.8
2 9.0 8.9 8.1 7.7 8.1 8.5 6.5
3 6.1 9.7 29.3 12.2 6.2 8.6 12.2
4 1.5 2.2 2.0 1.9 1.7 2.8 2.0
5 5.5 8.1 9.2 5.8 5.8 9.2 9.2
GM 9.9

[1.7]
15.1
[1.5]

243
[6.6]

9.0
[1.4]

9.9
[1.7]

15.1
[1.5]

9.0
[1.4]

u, deg 1 5.3 6.8 65.2 5.5 5.3 6.8 5.5
2 4.3 5.8 9.0 4.9 4.0 5.8 4.9
3 6.4 5.7 7.6 6.0 6.1 4.9 6.0
4 4.8 9.2 3.3 4.8 4.8 9.2 4.8
5 8.2 7.7 3.6 4.5 5.4 6.5 5.4
GM 14.6

[1.4]
10.3
[1.74]

305
[13.8]

10.6
[1.6]

14.6
[1.4]

11.1
[1.6]

10.6
[1.6]

Table 4. Percentage of correct classification for trained classifiers

Type Input variable set
{V1} {V2} {V3} {V1}, {V2} {V1}, {V3} {V2}, {V3} All

1 81.2 85.0 81.2 86.3 82.5 88.0 82.1
2 96.6 95.7 83.3 97.0 96.2 95.7 97.0
3 86.3 85.0 81.6 84.6 85.0 81.6 86.8
4 97.9 98.7 79.5 97.8 97.9 98.7 98.3
5 78.6 82.1 79.9 79.5 78.2 79.5 80.8
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Insomuch as this neural network is based on the inductive principles of
self-organization of models, the very process of the self-organization of its structure
serves not only as a means of obtaining the final model but also as a tool for analysis.
Thus, based on the selection of appropriate input variables on each layer of the network
by active neurons, we can estimate the contribution of the sensor data to the overall
dependency. The received structures of the GMDH-type neural networks for the best
models of robot pose estimation are shown in Fig. 6.

Active neurons first of all choose input parameters taking into account their direct
physical correspondence with the output variable, although the GMDH algorithm
constructs non-physical models. For example:

• In case XGM in Fig. 6 the neurons chosen the values of I1, I3 and N1, N3, which are
directly related to X-coordinate (see Fig. 1c). The ax is also directly related to the
output variable.

• In case YGM the neurons chosen the Vy and N2, which are directly related to Y-
coordinate (see Fig. 1c). The choice of IR is also associated with the Y-variable
evaluation, since, as mentioned above, for each type of surface this parameter has
different values (see Fig. 5a).

Fig. 6. Structures of twice-multilayered modified polynomial neural networks for the some best
trained models (“*” – average value per half-second interval, “Type” – the type of underlying
surface (see Table 3), the networks evaluates X, Y and u in 0.5 s of robot’s movement)

14 A. Andrakhanov and A. Belyaev



At the same time, the choice of some input parameters is not obvious, because the
features of robot-terrain interaction for specific types of surfaces are taken into account
(for example, gy and gz for XType1, gx and T*u for YType2).

Analysis of classifiers shows that in order to construct better models, active neurons
in all cases use the variables of {V2}.

4.2 Results of Testing the Trained Models During the Robot Movement
in a Heterogeneous Environment

This section shows some results of testing of the trained models in an essentially
heterogeneous environment, when the areas of the surfaces are comparable with the
robot’s dimensions. Thus, the test conditions for navigation are much more difficult
than at the training stage. First, at the training stage the robot moved along separate
homogeneous surfaces of several types. But in this test, the effects of not only the
influence but also the mutual influence of the properties of different surfaces on the
robot’s movement appear. Secondly, such transition zones between surfaces (when
different wheels are simultaneously located at different surfaces) appear often during
the movement, which accelerates the accumulation of navigation errors.

The task was to movement along the triangle (lengths of the sides are assigned by
operator) through the surfaces of different types, using only the on-board sensor
readings (without the signal from the global positioning system) and the trained
models. Trained models were used by the robot to determine the achievement of the
vertexes of triangle (with the aim of changing the movement direction) and to correct
the trajectory during the movement. To determine the deviations from the desired
trajectory the outputs of these models were used as a feedback signals instead of GPS
signals. With these deviations, the control signals for the robot motions are generated
by the method of proportional regulation well-known in the automatic control theory.

The purpose of the series of experiments was to determine the performance of the
best trained models (see Table 3) for two cases:

• movement for mentioned above conditions by means of models general to all types
of surfaces (denoted “GM” in Table 3);

• movement under the same conditions using coordinates evaluation models spe-
cialized for a specific type of surface (we denote this models as “MT” (“Model for
Type”)). These models are selected by signal from the corresponding classifier. If
signals from all classifiers are absent or there are signals from several classifiers,
then the coordinates and orientation angle are evaluated by the “GM”-models.

In Fig. 7 shows the final trajectory of the robot along the specified sides of triangle.
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The achievement of the coordinates of the vertices of the triangle was estimated by
means of the best “GM” models for X, Y and u. Also these models were used for
trajectory correction during the robot movement. In this experiment, the length of the
side of triangle was set at 0.5 m. In combination with three different types of surfaces
and the robot’s diameter of 37 cm provides specified conditions for testing the models,
because about half of path the robot moves through the transition zones. For example,
already at points 7 and 12 the robot’s wheels are simultaneously located on two
surfaces: for the first point – both on 3 and 5 types of surfaces, for the second point –
both on 4 and 5 types of surfaces.

In Fig. 8b and d shows the evaluation of the X and Y coordinates by means of both
the specified models (XType3, XType4, XType5, YType3, YType4, YType5) for three types of
surfaces (see Fig. 7) and best general models for all types of surfaces (XGM, YGM). As
XCSV and YCSV are denoted real coordinates of robot movement detected by computer
vision system (see Fig. 3). As can be seen from the curves of XCSV and YCSV, the
movement of the robot is complex (for example, deviations of coordinates for a period
of 15-23 robot’s steps and pause in the movement for a period of 30–57 steps) and is
not rectilinear, which indicates a significant influence of the surfaces on it. It can also
be seen that on separate time intervals, different “MT”-models are more accurate than
general models. At the same time, general models (XGM, YGM) show an acceptable (in
average) result during the overall time of the movement.

Figure 8a and c show the errors in determining both X and Y coordinates by the best
“GM”-models (X_ErrorGM, Y_ErrorGM) and the set of specialized models (X_ErrorMT,
Y_ErrorMT) that are selected at the moment the classifier of surface type is triggered
(output is equal “1”) in accordance with the above rule. In general, the trained clas-
sification models demonstrate their operability. However, in addition to its own clas-
sification errors (for example, at the interval 55–75 steps in Fig. 8f), there are errors

Fig. 7. Trajectory of robot movement obtained by means of “GM”-models

16 A. Andrakhanov and A. Belyaev



Fig. 8. Graphs of both outputs and errors for models of evaluating coordinates and for
classification models during the robot movement
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caused by the transition of the robot from one surface to another (for example, at the
interval of 15–20 steps in Fig. 8f and g, two classifiers are triggered simultaneously).

In Fig. 8a, b , c and d all values of output variables for each robot’s step are shown
in robot’s local coordinate system (Fig. 1c).

Based on the results of testing the models, we can conclude the following:

• With the simultaneous contact of the robot wheels with surfaces of different types,
there are classification errors (i.e. errors of selection of “MT”-models) and errors of
“MT”-models. This leads to the fact that the use of general (i.e., averaged for all
types of surfaces) and specified models gives a comparable result.

• In general, all models (both pose estimation and classifications) demonstrate their
performance by an example much more complex than the conditions for their
training. This indicates the operability of developed learning navigation system (in
point of view quality of obtained models) and practical applicability of GMDH to
solving the problem of local navigation of a robot.

It should be noted that the purpose of this section was to test the obtained models,
and not to solve complex questions of developing a system for local navigation. The
focus of this study is the synthesis of models, but to increase the accuracy of the local
navigation system, it is necessary to consider a wider range of issues related more to the
stage of using the obtained models, rather than to the stage of their training. In order to
improve the quality of the obtained trajectory and the accuracy of movement to the
given coordinates, it is necessary to solve the following tasks: synthesis of a better
regulator for robot motion along the desired trajectory; the development of methods to
use the classifiers and “MT”-models according to considered conditions and etc.

In Fig. 8b and d the accuracy both “GM”- and “MT”-models during test motion
correlates with its accuracy on training stage (see Table 3).

5 Conclusion

We have obtained higher accuracy (arithmetic mean error is less) of models for
evaluating the coordinates and angular orientation than in our previous research [10,
11] due to the extension of the input parameters set (only {N}, {x} and {I} were used
in past).

In general case, it is not sufficient to use a certain subset of input parameters to
obtain better models for different outputs (X, Y and u) and underlying surface types.
We recommend using parameters derived from sensor readings (for example, {V2} and
{V3}) to improve the quality of the models. For example, it is interesting to note that
the variables of {V2} were selected by active neurons to train classifiers for each of the
five types of surfaces (also see best training results (highlighted in bold) in Table 4).
Also it should be noted that the physical meaning of the set of parameters {V2} and
{V3} is not associated to this testing ground and this robot, which makes it possible to
use them in other projects on the same subject.

The results of testing of the trained models (both pose estimation and classification)
demonstrate their performance in an essentially heterogeneous environment (the areas
of the surfaces are comparable with the robot’s dimensions). It is important to note that
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the conditions for testing of models were much more complicated than the conditions
for their training. First, during the training there were no transition zones, when dif-
ferent wheels are simultaneously located at different surfaces. Secondly, the movement
in these zones was half of the path. Thirdly, the control actions on the motors were
changed dynamically (during the robot movement in Fig. 7) due to correction of both
the trajectory and the orientation angle (at the training stage, the control actions were
statically assigned from a specified set of motor velocities). As result, the parameters of
robot movement and, as a consequence, the readings of the sensors were significantly
different from those observed at the training stage. Fourthly, the models (both for pose
estimation and classification) were used as a feedback signal for motors control, which
could disturb stability of robot movement along the trajectory. Thus, testing was a very
serious test for bias of models. From this point of view, the results shown in Fig. 8
testify the practical possibility of models training based on GMDH for task of local
navigation in heterogeneous environment.

Future work is the development of methods and algorithms for applying both the
trained models and learning navigation system to construct the local navigation system
based on the readings of on-board sensors (in the absence of a GPS-signals) in
heterogeneous environment.
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