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Abstract polyDB is a database for discrete geometric objects independent of a
particular software. The database is accessible via web and an interface from the
software package polymake. It contains various datasets from the area of lattice
polytopes, combinatorial polytopes, matroids and tropical geometry.

In this short note we introduce the structure of the database and explain its use
with a computation of the free sums and certain skew bipyramids among the class
of smooth Fano polytopes in dimension up to 8.
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1 Introduction

In recent years availability of computational classifications of mathematical objects
has proven to be an important and valuable tool to obtain new results, to check new
ideas and to experiment with the objects to obtain insight into their structure and
directions for further research.

We know the full list of smooth Fano polytopes (up to lattice equivalence)
up to dimension 9 by an algorithm of Øbro [33], whose availability within the
software package polymake has been the foundation e.g. for counter-examples
to a conjecture of Batyrev and Selivanova [32] or the classification of simplicial,
terminal, and reflexive polytopes with many vertices by Assarf et al. [5]. Availability
of the same data in Magma [37] lead to the study of the poset of blowups by
Higashitani [16] or the study of reflexive polytopes of higher index by Kasprzyk and
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Nill [24]. The classification of 0=1-polytopes up to dimension 6 by Aichholzer [2]
was used in the study of permutation polytopes by Baumeister et al. [6].

We also know classifications of small oriented matroids by Miyata et al. [12],
polytropes [21, 39], and reflexive polytopes up to dimension 4 by Kreuzer and
Skarke [3, 26]. The symbolic data project by Gräbe et al. [13] aims to collect
data from computer algebra and make it accessible in a structured and searchable
form on their web page. The library MIPLIB by Koch et al. [25] collects discrete
optimization problems for benchmarking of algorithms.

Most of these collections, however, cannot easily be used in a software package.
Sometimes the data is only available in text format or, if searchable via a database,
is connected to a specific software package or lacks a proper interface at all. For
example, the small oriented matroids [12], polytropes [27, 39], or 0=1-polytopes [2]
are available as text files, while access to the small groups library [7] is linked to
GAP [36]. Altman et al. [3] have created a database for the reflexive polytopes up to
dimension 4 computed by Kreuzer and Skarke [26], but it is currently not accessible
at the link given in the paper.

On the other hand, the Graded Rings Database [8] project has a more general
approach and provides data in a format both searchable via a web interface and
accessible via a programmatic interface that can be used in software packages. It
currently has a focus on data from combinatorial commutative algebra and toric
geometry.

The new database polyDB aims to provide searchable data from a wide range
of areas at a permanent location in an application independent format. It allows
download in text format and access from any software package that provides an
interface to the data. It is also searchable via a web interface at db.polymake.org.
Currently, one interface to a software package is implemented, in the software
package polymake [4, 22]. The current collection of data is thus still inspired
by the range of applications of polymake with data from combinatorial geometry,
matroid theory, toric geometry and combinatorial topology.

In the following two sections we explain the concept of the database and
introduce the interface implemented in polymake to access the data. The last
section shows one application of the database and the interface. We will show that in
dimensions up to 8 more than 80% of the smooth Fano polytopes arise from lower
dimensional ones as a free sum of two lower dimensional smooth Fano polytopes
or a certain skew sum construction of a smooth Fano polytope and a simplex. We
give the count of polytopes decomposable in this way in Table 1. With a simple
extension of the scripts one can also obtain the list of possible decompositions for
each polytope.

http://db.polymake.org
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Table 1 Free sums, skew bipyramids and generalized smooth simplex sums among the smooth
Fano polytopes

Dimension 2 3 4 5 6 7 8

Smooth Fano polytopes 5 18 124 866 7622 72,256 749,892

Free sums 1 5 28 176 1361 11,760 112,285

Skew bipyramids 1 9 57 489 4323 43,777 466,770
sg simplex-1 sums 2 13 66 556 4700 47,076 495,092

sg simplex-2 sums 1 3 31 232 2403 25,157 284,249

sg simplex-3 sums – 1 4 52 515 6635 83,730

sg simplex-4 sums – – 1 5 81 961 14,598

sg simplex-5 sums – – – 1 6 114 1609

sg simplex-6 sums – – – – 1 7 155

sg simplex-7 sums – – – – – 1 8

sg simplex-8 sums – – – – – – 1

Total sg simplex sums 3 16 93 708 6283 61,961 657,380

Total decomposable 3 16 96 712 6346 62,331 660,792

The rows denoted by sg simplex-n sums for n between 1 and 8 count the simplex sums with a
simplex of dimension n. The row denoted by total sg simplex sums gives the number of different
generalized smooth simplex sums with a simplex of any dimension. The row total decomposable
counts the number of different polytopes among the free sums and the smooth generalized simplex
sums

2 polyDB

In this section we briefly introduce the structure of the database polyDB and the
data sets already contained in it.

The database polyDB for discrete geometric objects is based on the open
source NoSQL database MongoDB [31]. It has been set up at db.polymake.org.
The database stores its data as plain JSON documents grouped into collections
and databases (To avoid confusion with this and the abstract database polyDB
we will refer to this technical term introduced by MongoDB as a collection group).
We use this to group collections from the same area of discrete geometry into a
common collection group. E.g., the collection group Objects in Tropical Geometry
currently contains two collections of such objects, the small tropical oriented
matroids classified by Horn [17] and the polytropes classified by Kulas [27] and
Tran [39]. polyDB stores data in a plain JSON format independent of any particular
software package. See Fig. 1 for an example of an entry in the collection of smooth
reflexive polytopes.

Each document contains one special entry polyDB (besides its _id, which is
required by MongoDB). Apart form this all other entries and their tags can be chosen
freely depending on the data. The entry polyDB may specify format restrictions for
the data and import or export specifications for various software packages, separated
by subfields naming the software. This section may contain, e.g., information on
the required version, authors of the data, and the method to load the data into the

https://db.polymake.org
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{
"_id" : "F.2D.3",
"DIM":2,
"FACETS" : [[1,0,1],[1,0,-1],[1,1,0],[1,-1,-1],[1,-1,0]],
"VERTICES":[[1,-1,-1],[1,-1,1],[1,0,1],[1,1,0],[1,1,-1]],
"F_VECTOR" : [5,5],
"EHRHART_POLYNOMIAL_COEFF":["1","7/2","7/2"],
"H_STAR_VECTOR":[1,5,1],
"CENTROID":["1","-2/21","-2/21"],
"N_LATTICE_POINTS":8,
"NORMAL" : "true",
"VERY_AMPLE" : "true",
"LATTICE_VOLUME":7,
"polyDB" : {

[...]
}

}

Fig. 1 An entry in the collection of smooth Fano polytopes. Naming of the fields is in this example
taken from standard properties of objects in polymake. However, there are no restrictions on field
names

particular software package. Each collection group also has a separate collection
type_information that specifies the format of an entry in a collection and allows
to store information applicable to all data sets in this collection, e.g., methods
for import and export of the data. The web interface at db.polymake.org allows
independent and searchable access to all data sets in polyDB.

There are currently five collections, grouped into four collection groups con-
tained in polyDB. We give a brief introduction to each of the collections.

• The collection group Lattice Polytopes has the collection Smooth Reflexive
Polytopes that contains low dimensional smooth reflexive polytopes based on
the algorithm of Øbro [33]. Øbro used his algorithm to compute the data up to
dimension 8. Later, dimension 9 was computed with an improved implementation
of the algorithm by Lorenz and the author. There are 9;060;505 such polytopes.

• The collection group Objects in Tropical Geometry has two collections. The
collection Tropical Oriented Matroids contains a list of 71 known non-realizable
tropical oriented matroids. This data was provided by Horn [17]. The col-
lection Full-dimensional Polytropes in TP3 contains all 1013 polytropes in
3-dimensional tropical projective space. The collection was generated by Con-
stantin Fischer from data of Joswig and Kulas [21] and Tran [39]. See [20] for a
description.

• The collection group Special Polytopes has the collection Faces of Birkhoff
Polytopes which contains all 5371 combinatorial types of faces up to dimension
8 of the Birkhoff polytope in any dimension [34].

http://db.polymake.org
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• The collection group Matroids has the collection Matroids on at most 12

elements. This collection contains all 32;401;446 small matroids as computed
by Miyata et al. [11, 12, 30].

Further collections are in preparation.

3 The polymake Interface to polyDB

The initiative for polyDB was started in 2013 by Silke Horn and the author as an
extension for the software package polymake [19] with associated database. With
the latest version 3.1 of polymake [38], released in March 2017, the interface to
the database has been turned into a bundled extension for polymake that is directly
delivered with the software and the database has been set up as an independent
project.

However, the software package polymake currently provides the only interface
for import of data into the database and methods to access and use it for com-
putations. Given a search query, i.e. a list of restrictions on the properties of an
object, MongoDB allows the retrieval of a single object satisfying the query, an
array with all objects satisfying the query or a cursor that returns objects from the
result set one after another. All three methods are also implemented in polymake.
The implementation is based on the perl MongoDB driver [1]. With

polytope > db_info();
DATABASE: LatticePolytopes
This database contains various classes of lattice polytopes.

Collection: SmoothReflexive
A complete collection of smooth reflexive lattice polytopes

in dimensions up to 9, up to lattice equivalence. [...]

we can query which collection groups are available. The collection group and
collection we want to use for our search are then specified with the keywords db and
collection in any access function. The query itself is given as a perl hash. The
query is not processed by polymake but directly handed over to MongoDB, so it
allows all queries specified in the MongoDB query language. A specification of the
full query language and its use from within perl can be found in the documentation
of MongoDB [31] and the perl driver for it [1].

Here is an example returning an array of results.

polytope > $parray=db_query({"DIM"=>3, "N_FACETS"=>5},
polytope(2) > db=>"LatticePolytopes",
polytope(3) > collection=>"SmoothReflexive");
polytope > print $parray->size;
4

This shows that there are four polytopes in the collection SmoothReflexive that have
dimension 3 and 5 facets. Using a loop over this array or a database cursor we can
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check properties of each object returned. For example

polytope > $cursor=db_cursor({"DIM"=>3, "N_FACETS"=>5},
polytope(2) > db=>"LatticePolytopes",
polytope(3) > collection=>"SmoothReflexive");
polytope > while ( !$cursor->at_end() ) {
polytope(2) > $p=$cursor->next();
polytope(3) > print $p->N_LATTICE_POINTS, " ";
polytope(4) > }
34 30 31 30

defines a cursor over the collection SmoothReflexive successively returning all
polytopes that satisfy the restrictions given in the query, i.e., that have five facets
in dimension 3. Here it tells us that among the four polytopes found above, two
have 30, one has 31 and one has 34 lattice points.

4 Decomposing Smooth Fano Polytopes

We illustrate the use of polyDB and its interface to polymake with a computation
that uses the collection SmoothReflexive in the collection group LatticePolytopes to
compute decompositions of smooth Fano polytopes in dimensions 1 to 8. With our
computations we start a new statistics that counts how many of the smooth Fano
polytopes can be generated from lower dimensional smooth Fano polytopes with
some simple known polytope construction method that preserves both smoothness
and reflexiveness of the polytope. We consider three methods in this paper and
determine how many of the smooth Fano polytopes in these dimensions are

• free sums of two smooth Fano polytopes
• a smooth skew bipyramid over a smooth Fano polytope as defined in [5], or
• a generalized simplex sum of a smooth Fano polytope with a smooth simplex.

This new construction method will be defined below.

All smooth skew bipyramids and many of the free sums are also generalized smooth
simplex sums. We will also provide the total number of smooth Fano polytopes that
can be decomposed with at least one of these constructions. The results are collected
in Table 1.

We briefly explain the relevant notions. More background can, e.g., be found in
the book of Ewald [10]. Let P � Rd be a polytope with vertices v1; : : : ; vr 2 Rd,
i.e.,

P WD conv.v1; : : : ; vr/ (1)

is the convex hull of these points and none of the vi can be omitted in the definition.
We assume that P is full dimensional, i.e., the affine hull of P is Rd (otherwise we
can pass to a subspace). A polytope can equally be given as the intersection of a
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finite number of half-spaces in the form

P D f x j Ax � b g (2)

for some A 2 Rs�d and b 2 Rs. We can again assume that no inequality is redundant
in this definition. In this case the rows of A are the facet normals of P. A facet F of
P is the set of all x 2 P that satisfy one of the inequalities in (2) with equality. A face
of P is the common intersection in P of a subset of the facets (this may be empty).
The vertices, which are the faces of dimension 0, are in the common intersection of
at least d facets.

If 0 is strictly contained in the interior of P, then the polar or dual polytope is
defined as

P_ WD f v j hv; xi � 1 for all x 2 P g :

In fact, a finite subset of the inequalities in this definition suffice to define P_ (those
corresponding to the vertices of P), so that P_ is again a polytope. Further, we have
.P_/_ D P.

A lattice � is the integral span of a linearly independent set of vectors in Rn.
Up to a linear transformation we can assume that � is the integer lattice Zd � Rn,
and by passing to a subspace we can assume that n D d. With these assumptions a
polytope P is a lattice polytope if all its vertices are in Zd.

In this case we can assume that both A and b are integral in (2), and that the
greatest common divisor of the entries of each row of A (i.e., of the entries of each
facet normal) is 1. A lattice polytope P is reflexive if P_ is again a lattice polytope.
In this case b D 1 in (2), and for both P and P_ the origin is the unique interior
lattice point. P is smooth if the vertices of any facet of P are a lattice basis of Zd. In
this case 0 is a strictly interior point of P and each facet has exactly d vertices, so
P is simplicial. Moreover, the polar polytope is again a lattice polytope (in the dual
lattice) whose vertices are the facet normals (the rows of A), so P is also reflexive.
Note that in the literature sometimes the polytopes polar to the ones defined here are
called smooth.

It follows from a result of Hensley [15] and Lagarias and Ziegler [28] that
there are only finitely many smooth reflexive polytopes in each dimension up to
lattice equivalence (affine transformations preserving Zd), as reflexive polytopes
have exactly one interior lattice point. See Fig. 2 for the list of such polytopes
in dimension 2. The complete list is contained in polyDB for d � 9 in the
collection SmoothReflexive of the database LatticePolytopes. Note however, that
in the database we follow the above mentioned alternative definition and list the
duals of the ones defined here. Yet, for the purpose of the following constructions
it is easier to work with the definition given above, so we will use that one in the
following. This requires that in the scripts we use for our computations below we
polarize the polytopes obtained from the database. Sometimes this is, however, only
done implicitly. This is saves computation time, as it follows from the design of
polymake that for reflexive polytopes the facets of the polytope are the vertices
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(a) (b) (c) (d) (e)

Fig. 2 The five 2-dimensional smooth Fano polytopes. (a) P6. (b) P5. (c) P4a. (d) P4b. (e) P3

of its dual. Also, as we will see below, most constructions can also be given for the
duals of the polytopes.

We introduce several methods to construct a smooth Fano polytope from smaller
ones. The most well known construction is the free sum of two polytopes P � Ra

and Q � Rb that both contain the origin in their interior. This is the polytope

P ˚ Q WD conv
�˚

.v; 0/ 2 RaCb j v 2 P
� [ ˚

.0;w/ 2 RaCb j w 2 Q
��

:

We can also define this on the dual side. The product of polytopes P and Q is the
polytope

P � Q WD f .x; y/ j x 2 P; y 2 Q g :

Then, if P and Q contain the origin in their interior,

P ˚ Q D .P_ � Q_/_ : (3)

We will use this dual definition for the detection of free sums among the smooth
Fano polytopes. See Fig. 3a for an example.

A bipyramid over a polytope P is the free sum of P with a segment S containing
the origin in the interior. More generally, we say that Q is a skew bipyramid over P
if Q has the same combinatorial type (the same face lattice) as a bipyramid over P.
The two vertices coming from vertices of S are the two apices of Q.

If P is a smooth d-dimensional Fano polytope then we call the free sum with
the segment Œ�1; 1� the smooth bipyramid over P. Let v be a vertex of P and Nv its
embedding into RdC1 by adding a 0 at the end. Then the smooth skew bipyramid for
vertex v as defined by Assarf et al. [5] is the polytope

SBipyr.P; v/ WD conv .P � f0g [ f�edC1; Nv C edC1g/ :

Figure 3b shows an example of this definition. More generally, we say that Q is a
smooth generalized skew bipyramid over P if Q is a skew bipyramid over P such
that the two apices have lattice distance 1 from P. This class contains all smooth
bipyramids and smooth skew bipyramids. The following proposition is an extension
of Lemmas 1, 2 and 3 of [5]. The proof easily carries over into this more general
setting.
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e3

e1

−e1

e2

(a)

e3e3

−e1

e1+e3

e2

(b)

e1

e2+e3

−e2

−e3

(c)

e1

−e2

e1+e2+e3

−e3

(d)

Fig. 3 Polytope constructions. (a) The free sum of a hexagon and a segment. This is at the same
time also a proper bipyramid over the hexagon. (b) A skew bipyramid of a hexagon. The top apex
has been shifted to e1 Ce3. (c) A generalized simplex sum of a segment and a triangle. (d) Another
generalized simplex sum of a segment with a triangle

Proposition 4.1 Let P and Q be smooth Fano polytopes. Then the free sum P ˚ Q,
the smooth bipyramid and any smooth (generalized) skew bipyramid over P are
again smooth Fano polytopes. ut
We further generalize this construction. Let P � Ra be a smooth Fano polytope
and Q � Rb a smooth Fano simplex (this is unique up to lattice equivalence). Let
v be a vertex of Q. Then R WD P ˚ Q is a smooth Fano polytope and also any
polytope R0 obtained from R by replacing v with a lattice point v0 in the hyperplane
Ra C v � RaCb, as long as R and R0 have the same combinatorial type. This is
again a simple extension of the proposition above. We call those polytopes smooth
generalized simplex sums. Figure 3c, d shows two examples. Observe that any
smooth (generalized skew) bipyramid is a simplex sum.

We can use polymake and polyDB to detect all free sums and smooth
generalized simplex sums among the smooth Fano polytopes. Clearly, these two
constructions overlap in various ways. Any proper bipyramid over all polytope P
is also the free sum of a P with a segment, and polytopes may have more than
one possible decomposition into a free sum. Many of the various possibilities to
place the vertex v0 for a generalized smooth simplex sum are lattice equivalent. Our
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approach to detect all different instances is as follows: For a fixed dimension d we
consider all possible splits of d as a sum of dimensions a and b and compute all free
sums of smooth Fano polytopes in these two dimensions and all simplex sums of an
a-dimensional smooth Fano polytope with a b-dimensional simplex. For each such
polytope we run through the list of d-dimensional smooth Fano polytopes, check
for lattice equivalence and store the name of the polytope we have found. We could
also store the way we obtained it alongside, so that in the end we have a list of all
possible splits for a given d-dimensional smooth Fano polytope.

We did the computation up to dimension 8. The results are given in Table 1.
The free sums can be obtained with the small scripts given in Fig. 4. The first
script identify_smooth_polytope takes a smooth Fano polytope, iden-
tifies it in the database and returns its name. The identification is based on
the polymake function lattice_isomorphic_smooth_polytopes, that
reduces the check whether two lattice polytopes are lattice isomorphic to a colored
graph isomorphism problem (which is solved using bliss [23] or nauty [29]).
Note that there is also the extension LatticeNormalization [18] to polymake that
computes the lattice normal form of a lattice polytope (see [14] for a definition), but
the reduction to colored graph isomorphism is more efficient for smooth polytopes.
The simpler problem of checking combinatorial isomorphisms (i.e., graph isomor-
phism) can also be done with the polymake-function canonical_hash (also
based on bliss or nauty). The second function all_free_sums_in_dim
computes all possible free sums that lead to a d-dimensional smooth Fano polytope.
As the database contains the polytopes dual to the ones we consider we use (3) and
compute products instead of sums to avoid explicit dualization. For each product
the function calls identify_smooth_polytope to identify it in the database.
The function returns a list of all names (_ids) found in this way. If splitinfo is
set to 1 it also returns all pairs of summands.

For the computation of the smooth generalized simplex sums we used the
function all_skew_simplex_sums_in_dim available at [35]. For each com-
bination of an a-dimensional smooth Fano polytope and a b-dimensional simplex
with d D a C b we compute all possible lattice points for the shifted vertex v0,
construct the polytope and again use identify_smooth_polytope to identify
it in the database. Computation of all possible v0 requires the computation of all
lattice points in the hyperplane Ra C v � RaCb that lead to a lattice polytope
with the same combinatorial type as the proper free sum. This can be reduced to
enumerating lattice points in the interior of a polytope, which is done in polymake
via the interface to Normaliz [9]. As above the function returns a list of ids, and
also all possible decompositions into a simplex sum if splitinfo is set to 1. You
can save the scripts to a file in the current folder and load this into polymake via

polytope> script(<filename>);
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use application "polytope";

sub identify_smooth_fano_in_polydb {
my $p = shift;
my $d = $p->DIM;
my $nlp = new Int($p->N_LATTICE_POINTS);
my $parray=db_query({"DIM"=>$d, "N_VERTICES"=>$p->N_VERTICES, "

N_FACETS"=>$p->N_FACETS,
"N_LATTICE_POINTS"=>$nlp, }, db=>"LatticePolytopes",

collection=>"SmoothReflexive");
foreach my $c ( @$parray ) {
if ( lattice_isomorphic_smooth_polytopes($c,$p) ) { return $c

->name; }
}
die "polytope not found\n";

}

sub all_free_sums_in_dim {
my ($d,%options) = @_;
my $list;
if ( $options{"splitinfo"} ) {
$list = new Map<String,Set<Pair<String,String> > >;

} else {
$list = new Set<String>;

}
my $cur_options = { db=>"LatticePolytopes", collection=>"

SmoothReflexive" };
foreach my $n (1..$d/2) {
my $cur1=db_cursor({"DIM"=>$n}, $cur_options);
while ( !$cur1->at_end() ) {
my $c1 = $cur1->next();
my $cur2=db_cursor({"DIM"=>$d-$n}, $cur_options );
while ( !$cur2->at_end() ) {
my $c2 = $cur2->next();
my $name = identify_smooth_fano_in_polydb(product($c1,$c2))

;
if ( $options{"splitinfo"} ) {
my $split = new Pair<String,String>($c1->name,$c2->name);
$list->{$name} += $split;

} else {
$list += $name;

} } } }
return $list;

}

Fig. 4 A function to detect all free sums among the smooth Fano polytopes. This is a shortened
version of the script given at [35]
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Then the classification, e.g. in dimension 4, is obtained with

polytope > $fs = all_free_sums_in_dim(4);
polytope > print $fs->size;
28
polytope > $sb = all_skew_bipyramids_in_dim(4);
polytope > print $fs->size;
57
polytope > $s = new Set<String>;
polytope > foreach (1..4) {
polytope(2) > $st = skew_simplex_sums_in_dim(4,$_);
polytope(3) > print $st->size, " ";
polytope(4) > $s += $st;
polytope(5) > }
66 31 4 1
polytope > print $s->size;
93
polytope > print (($fs+$s)->size);
96

The scripts containing the functions all_skew_bipyramids_in_dim for
skew bipyramids and skew_simplex_sums_in_dim for generalized smooth
simplex sums are available from [35] and allow to store the possible decompositions.
Note that the computation time for the decompositions grows quickly in the
dimension. While dimension 4 runs in a few minutes on an Intel Xeon E5-4650,
computations in dimension 8 took over a month.

From these computations we can, e.g., see that we have three different decom-
positions of the dual of the 5-dimensional polytope with index F.5.0116. Its
vertices are the rows of the matrix in Table 2a. We can decompose this into three
different simplex sums. One is over dual of the 3-dimensional polytope P3 with
index F.3D.0112. This is shown in Table 2b, where the shaded part corresponds
to the vertices of P3. The shifted vertex of the triangle is Œ0; 0; �2; 1; 1�. Note that the
vertices are given as obtained by dualization from the database. Hence, the equality

Table 2 Simplex sums leading to the dual of F.5D.0116

0 0 0 0 1
0 0 1 0−1
0 0−1 0 0
0 0 0−1 0
0 0 0 0−1

−1 0 0 0 0
0−1 0 0 0
0 1 0 0 1
1 0 0 1 2

(a) Dual of
F.5D.0116

0 1 1 0 0
−1 0 0 0 0
0 0 1 0 0
0 −1 0 0 0
0 0 −1 0 0
1 0 −1 0 0
0 0 0−1 0
0 0 0 0−1
0 0 −2 1 1

(b) Dual of
F.3D.0112
extended with skew
triangle

−1 0 0 0 0
0 0 0 −1 0
0 1 0 1 0
0 −1 0 0 0
0 0 0 1 0
0 0 −1 0 0
1 0 1 2 0
0 0 0 0−1
0 0 0 −1 1

(c) Dual of
F.4D.0008
extended with
segment

−1 0 0 0 0
0 0 0−1 0
0 1 0−1 0
0 −1 0 0 0
0 0 0 1 0
0 0 −1 0 0
1 0 1 2 0
0 0 0 0−1
0 0 0 1 1

(d) Dual of
F.4D.0019
extended with
segment
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is not directly visible from the vertices, as the two polytopes differ by a lattice
isomorphism. We can check this with polymake.

polytope > $p3_ext = new Polytope(VERTICES=>
polytope(2) > [[1,0,1,1,0,0],[1,-1,0,0,0,0],[1,0,0,1,0,0],
polytope(3) > [1,0,-1,0,0,0],[1,0,0,-1,0,0],[1,1,0,-1,0,0],
polytope(4) > [1,0,0,0,-1,0],[1,0,0,0,0,-1],
polytope(5) > [1,0,0,-2,1,1]]);
polytope > $p5 = new Polytope(VERTICES=>
polytope(2) > [[1,0,0,0,0,1],[1,0,0,1,0,-1],[1,0,0,-1,0,0],
polytope(3) > [1,0,0,0,-1,0],[1,0,0,0,0,-1],[1,-1,0,0,0,0],
polytope(4) > [1,0,-1,0,0,0],[1,0,1,0,0,1],[1,1,0,0,1,2]]);
polytope > print lattice_isomorphic_smooth_polytope(
polytope(2) > polarize($p3_ext),polarize($p5));
1

Here, the variable $p3_ext contains the polytope P3 and $p5 is P5. As above
we need to dualize for the isomorphism check. The check returns 1, which is the
true-value for polymake.

The other two decompositions are over the 4-dimensional polytopes P1
4 and

P2
4 with index F.4D.0008 and F.4D.0019. Those are shown in Table 2c

and d. Again, the vertices of P1
4 and P2

4 are shaded. The shifted vertices of the
1-dimensional simplex are in the last line.

With this simple computation we have seen that over 80% of the smooth Fano
polytopes can be obtained from at least one of the constructions considered here.
Hence, for a structural description of all smooth Fano polytopes it suffices to look
at the remaining less than 20%.
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