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Abstract We generalize the notion of a differential dimension polynomial of a
prime differential ideal to that of a characterizable differential ideal. Its computation
is algorithmic, its degree and leading coefficient remain differential birational
invariants, and it decides equality of characterizable differential ideals contained
in each other.
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1 Introduction

Many systems of differential equations do not admit closed form solutions or
any other finite representation of all solutions. Hence, such systems cannot be
solved symbolically. Despite this, increasingly good and efficient heuristics to find
solutions symbolically have been developed and are implemented in computer
algebra systems [4, 5]. Of course, such algorithms can at best produce the subset
that admits a closed form of the full set of solutions. Given such a set of closed
form solutions returned by a computer algebra system, the natural question remains
whether this set is a complete solution set (cf. Example 5.4).

Classical measures, e.g. the Cartan characters [3] and Einstein’s strength [7],
describe the size of such solution sets. However, they have a drawback: one can
easily find two systems S1 and S2 of differential equations such that the solution
set of S1 is a proper subset of the solution set of S2, but these two solution sets
have identical measures (cf. Example 5.3). In particular, if S1 is given by a solver of
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differential equations, these measures cannot detect whether this is the full set S2 of
solutions.

Kolchin introduced the differential dimension polynomial to solve this problem
for solution sets of systems of differential equations corresponding to prime
differential ideals [12–15]. This polynomial generalizes the Cartan characters and
strength by counting the number of freely choosable power series coefficients
of an analytical solution. Recently, Levin generalized the differential dimension
polynomial to describe certain subsets of the full solution set of a prime differential
ideal [18].

Even though decomposing the radical differential ideal generated by a set of
differential equations into prime differential ideals is theoretically possible, it is
expensive in practice (cf. [2, §6.2]). Thus, there is a lack of practical methods which
decide whether a subset of the solution set of a system of differential equations is
a proper subset. This paper solves this problem for greater generality than solution
sets of prime differential ideals. It generalizes the differential dimension polynomial
to characterizable differential ideals and thereby gives a necessary condition for
completeness of solution sets. Such ideals can be described by differential regular
chains, and there exist reasonably fast algorithms that decompose a differential ideal
into such ideals [1, 2].

To formulate the main theorem, we give some preliminary definitions; the
missing definitions are given in Sect. 2. Denote by FfUg a differential polynomial
ring in m differential indeterminates for n commuting derivations over a differential
field F of characteristic zero. For a differential ideal I in FfUg let I�` WD I\FfUg�`,
where FfUg�` is the subring of FfUg of elements of order at most `. We define the
differential dimension function using the Krull dimension as

˝I W Z�0 7! Z�0 W ` 7! dim.FfUg�`=I�`/ .

By the following theorem, this function is eventually polynomial for large `

if I is characterizable. Such polynomials mapping Z to Z are called numerical
polynomials, and there exists a natural total order � on them.

Theorem 1.1 Let I � FfUg be a characterizable differential ideal.
1. There exists a unique numerical polynomial !I.`/ 2 QŒ`�, called differential

dimension polynomial, with !I.`/ D ˝I.`/ for sufficiently big ` 2 Z�0.
2. 0 � !I.`/ � m

�
`Cn
n

�
for all ` 2 Z�0. In particular, dI WD deg`.!I/ � n.

3. When writing !I.`/ D Pn
iD0 ai

�
`Ci
i

�
with ai 2 Z for all i 2 f0; : : : ; ng, the degree

dI and the coefficients ai for i � dI are differential birational invariants, i.e., they
are well-defined on the isomorphism class of total quotient ring of FfUg=I.

4. The coefficient an is the differential dimension of FfUg=I, as defined below.
Let I � J � FfUg be another characterizable differential ideal.
5. Then !J � !I .
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Assume !I D !J , and let S respectively S0 be differential regular chains with respect
to an orderly differential ranking < that describe I respectively J.

6. The sets of leaders of S and S0 coincide, and
7. I D J if and only if degx.Sx/ D degx.S

0
x/ for all leaders x of S, where Sx is the

unique element in S of leader x.

This theorem can be slightly strengthened, as I � J and !I D !J already
imply degx.Sx/ � degx.S

0
x/ for all leader x of S (cf. Lemma 3.5). Thus I D J if

and only if
Q

x degx.Sx/ D Q
x degx.S

0
x/. It would be interesting to have a version

of Theorem 1.1, where this product is an intrinsic value, similar to the leading
differential degree [9].

The importance of characterisable differential ideals and their connection to
differential dimension polynomials appear in [6, §3.2], building on Lazard’s lemma
[2]. In particular, the invariance conditions were implicitly observed. To the best of
the author’s knowledge, testing equality by means of invariants does not appear in
the literature. Testing equality of differential ideals is connected to Ritt’s problem
of finding a minimal prime decomposition of differential ideals.1

Recently, the author introduced the differential counting polynomial [16, 17].
It gives a more detailed description of the set of solutions than the differential
dimension polynomial, in fact so detailed that it seems not to be computable
algorithmically. In particular, it provides a necessary criterion of completeness of
solution sets, whereas the differential counting polynomial only provides a sufficient
criterion. The intention of this paper is a compromise of giving a description of the
size of the set of solutions that is detailed enough to be applicable to many problems,
but that is still algorithmically computable.

A more detailed description of the content of this paper in the language of simple
systems is a part of the author’s thesis [17].

Section 3 proves Theorem 1.1, Sect. 4 discusses the computation of the differen-
tial dimension polynomial, and Sect. 5 gives examples.

1It is easy to test equality of two prime differential ideals given by a characteristic set (cf. exercise
1 in [14, §IV.10]). However, the unsolved Ritt problem states that there is no algorithm known to
find a minimal decomposition of a differential ideal given by a set of generators into prime ideals
given by characteristic sets [20], [14, §IV.9]. Under mild conditions, Ritt’s problem is equivalent
to several other problems, among them (1) deciding whether a differential ideal given by a set
of generators is prime, (2) finding a set of generators of a prime differential ideal given by a
characteristic set, and (3) given the characteristic sets of two prime differential ideals I1 and I2
determine whether I1 � I2 [10].
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2 Preliminaries

2.1 Squarefree Regular Chains

Let F be a field of characteristic zero, F its algebraic closure, and R WD FŒy1; : : : ; yn�
a polynomial ring. We fix the total order, called ranking, y1 < y2 < : : : < yn on
fy1; : : : ; yng. The <-greatest variable ld.p/ occurring in p 2 R n F is called the
leader of p. The coefficient ini.p/ of the highest power of ld.p/ in p is called the
initial of p. We denote the separant @p

@ ld.p/
of p by sep.p/.

Let S � R n F be finite. Define ld.S/ WD fld.p/jp 2 Sg and similarly ini.S/

and sep.S/. The set S is called triangular if j ld.S/j D jSj; in this case denote by
Sx 2 S the unique polynomial with ld.Sx/ D x for x 2 ld.S/. We call the ideal
I .S/ WD hSi W ini.S/1 � R the ideal associated to S. Let S<x WD fp 2 Sj ld.p/ < xg
for each x 2 fy1; : : : ; yng. The set S is called a squarefree regular chain if it is
triangular and neither ini.Sx/ is a zero divisor moduloI .S<x/ nor sep.Sx/ is a zero
divisor moduloI .S/ for each x 2 ld.S/.

Proposition 2.1 ([11, Prop. 5.8])) Let S be a squarefree regular chain in R and
1 � i � n. ThenI .S<yi/ \FŒy1; : : : ; yi�1� D I .S/ \FŒy1; : : : ; yi�1�. Furthermore,
if p 2 FŒy1; : : : ; yi�1� is not a zero-divisor modulo I .S<yi/, then p is not a zero-
divisor moduloI .S/.

Note that the last sentence follows easily using that the zero divisors (and zero)
are the union of the associated primed, cf. [8, Thm. 3.1].

Theorem 2.2 (Lazard’s lemma, [11, Thm. 4.4, Coro. 7.3, Thm. 7.5], [2, Thm. 1])
Let S be a squarefree regular chain in R. ThenI .S/ is a radical ideal in R, and the
set fy1; : : : ; yng n ld.S/ forms a transcendence basis for every associated prime of
I .S/. Let such an associated prime I .S0/ be given by a squarefree regular chain
S0. Then ld.S/ D ld.S0/ and, in particular, R=I .S/ is equidimensional of dimension
n � jSj.

2.2 Differential Algebra

Let F be a differential field of characteristic zero with pairwise commuting
derivations � D f@1; : : : ; @ng. Let U WD fu.1/; : : : ; u.m/g be a set of differential
indeterminates and define u.j/

� WD @�u.j/ for @� WD @
�1

1 : : : @
�n
n , � D .�1; : : : ; �n/ 2

.Z�0/
n. For any set S let fSg� WD f@�sjs 2 S; � 2 .Z�0/

ng. The differential polyno-
mial ring FfUg is the infinitely generated polynomial ring in the indeterminates
fUg�. The derivations @i W F ! F extend to @i W FfUg ! FfUg by setting
@i@

�1

1 : : : @
�n
n u.j/ D @

�1

1 : : : @
�iC1
i : : : @

�n
n u.j/ (1 � i � n, 1 � j � m) via additivity

and Leibniz rule. We denote the differential ideal generated by p1; : : : ; pt 2 FfUg
by hp1; : : : ; pti�.
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A ranking of the differential polynomial ring FfUg is a total ordering < on the
set fUg� satisfying additional properties (cf. e.g. [14, p. 75]). A ranking < is called
orderly if j�j < j�0j implies u.j/

� < u.j0/
�0 , where j�j WD �1 C : : : C �n. In what

follows, we fix an orderly ranking < on FfUg. The concepts of leader, initial and
separant carry over to elements in the polynomial ring FfUg.

Let R be a residue class ring of a differential polynomial ring by a differential
ideal. A differential transcendence basis fp1; : : : ; pdg � R is a maximal set such thatSd

iD1fpig� is algebraically independent over F. The differential dimension of R is
the corresponding cardinality d.

A finite set S � FfUg n F is called (weakly) triangular if ld.p/ is not a derivative
of ld.p/ for all p; q 2 S, p 6D q. Define S<x and Sx as in the algebraic case. We
call I .S/ WD hSi� W .ini.S/ [ sep.S//1 � FfUg the differential ideal associated
to S. The set S is called coherent if the �-polynomials of S are reduced to zero
with respect to S [21], and it is called a differential regular chain if it is triangular,
coherent, and if neither ini.Sx/ is a zero divisormoduloI .S<x/ nor sep.Sx/ is a zero-
divisor moduleI .S/ for each x 2 ld.S/. An ideal I .S/ is called characterizable if
S is a differential regular chain.

Let S be a differential regular chain in FfUg, ` 2 Z�0, and L WD f@�yjy 2
ld.S/g \ FfUg�` be the set of derivatives of leaders of elements in S of order
at most `. For each x 2 L there exists a �Œx� 2 Z

n�0 and a pŒx� 2 S such that
ld.@�Œx�pŒx�/ D x. Define an algebraic triangular set associated to S as S�` WD
f@�Œx�pŒx�jx 2 Lg. Although S�` depends on the choice of �Œx� and pŒx�, it has
properties independent of the choice.

Lemma 2.3 (Rosenfeld’s Lemma) Let S be a differential regular chain in FfUg,
` 2 Z�0, and< orderly. Then S�` is a squarefree regular chain andIFfUg�`

.S�`/ D
I .S/�`.

The idea is due to [21]. For a detailed proof cf. [17, Lemma 1.93].

2.3 Numerical Polynomials

Numerical polynomials are elements in the free Z-module
n�

`Ck
k

� 2 QŒ`�
ˇ
ˇ
ˇ

0 � k � n
o
, i.e., rational polynomials that map an integer to an integer. They

are totally ordered by p � q if p.`/ � q.`/ for all ` sufficiently large. Then p � q if
and only if either p D q or there is a j 2 f0; : : : ; dg such that ak D bk for all k > j
and aj < bj, where p D Pd

kD0 ak
�

`Ck
k

�
and q D Pd

kD0 bk
�

`Ck
k

�
.
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3 Proofs

3.1 Proof of Existence and Elementary Properties

We prove Theorem 1.1.(1), (2), (4), and (5). Therefore, let I � J � FfUg be
characterizable differential ideals, S be a differential regular chain with respect to
an orderly differential ranking < with I .S/ D I, and ` 2 Z�0 be sufficiently big.

Lemma 2.3 implies I�` D I .S�`/ and Theorem 2.2 states that the dimension
dim.FfUg�`=I�`/ can be read off from the number of polynomials in S�`, which
only depends on ld.S/. Thus, to prove Theorem 1.1.(1) and 1.1.(2) we may assume
S D ld.S/. In this case I .S/ is a prime differential ideal, and hence the statements
follow from Kolchin’s original theorem [14, §II.12].

For the proof of Theorem 1.1.(4) note that the transcendence bases of all
associated primes of I .S/ are equal by Theorem 2.2, and for each of these
associated prime the claim follows from Kolchin’s original theorem.

To prove Theorem 1.1.(5) note that I � J implies I�` � J�` for all ` � 0.
In particular, the map from FfUg�`=I�` to FfUg�`=J�` is surjective and, thus,
dim.FfUg�`=I�`/ � dim.FfUg�`=J�`/. �

3.2 Invariance Proof

The differential polynomial ring FfUg is filtered by the finitely generatedF-algebras
FfUg�`. This filtration induces a filtration on FfUg=I for a differential ideal I.
To prove the invariance statement in Theorem 1.1.(3) we show that this filtration
extends to K.FfUg=I/ if I is characterizable, where K denotes the total quotient ring.
Thereby, standard techniques of filtrations can be adapted from Kolchin’s proof.

Example 3.1 Consider � D f@tg, U D fu; vg, and I WD hu0 � v1i�. Then u0 is not
a zero-divisor in FfUg�0=I�0 Š FŒu0; v0�, but u0 � v1 D 0 in FfUg=I. So, even
though the inclusion ˛ W FfUg�0=I�0 ,! FfUg�1=I�1 is injective, the image of
this map under the total quotient ring functor K is no longer injective, as K.˛/ W
K.FfUg�0=I�0/ ! K.FfUg�1=I�1/ D K.FŒu0; v0; u1; v1�=hu0 � v1i/ maps u0 to
zero, as zero divisors become zero in the total quotient ring, cf. e.g. [8, Prop. 2.1].

Lemma 3.2 Let I � FfUg be a characterizable differential ideal and ` 2 Z�0.
Then, FfUg�`=I�` ,! FfUg�`C1=I�`C1 induces an inclusion

K.FfUg�`=I�`/ ,! K.FfUg�`C1=I�`C1/ .

Proof Any non-zero-divisor in FfUg�`=I�` is a non-zero-divisor when considered
in FfUg�`C1=I�`C1 (cf. Proposition 2.1), and thus a unit in K.FfUg�`C1=I�`C1/.
Hence, FfUg�`=I�` ! K.FfUg�`C1=I�`C1/ factors over K.FfUg�`=I�`/ by the
universal property of localizations. This induces a map � W K.FfUg�`=I�`/ !
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K.FfUg�`C1=I�`C1/. Now, ker � \ .FfUg�`=I�`/ is zero, since it is the kernel of
the composition FfUg�`=I�` ,! FfUg�`C1=I�`C1 ,! K.FfUg�`C1=I�`C1/ of
monomorphisms. By [8, Prop. 2.2] there is an injection2 from the set of ideals in
K.FfUg�`=I�`/ into the set of ideals in FfUg�`=I�`. This implies ker � D 0. �

This filtration is well-behaved under differential isomorphisms.

Lemma 3.3 Let I � FfUg and J � FfVg be characterizable differential ideals. Let
' W K.FfUg=I/ ! K.FfVg=J/ be a differential isomorphism. Then there exists an
`0 2 Z�0 such that

'.K.FfUg�`=I�`// � K.FfVg�`C`0=J�`C`0/ .

Proof FfUg=I is a (left) FŒ��-module for every differential ideal I � FfUg, where
FŒ�� is the ring of linear differential operatorswith coefficients in F. The filtration of
FŒ�� by the linear differential operators FŒ���k of order � k is compatible with the
filtration of FfUg in the sense that FŒ���k.FfUg�`=I�`/ � FfUg�`Ck=I�`Ck. Note
that the canonical image of FŒ���`.FfUg�0=I�0/ in FfUg�`=I�` generates the latter
as an F-algebra. Abusing notation, given any F-module M of an F-algebra, denote
by K.M/ the total quotient ring of the F-algebra generated by M. In particular,
K.FŒ���`.FfUg�0=I�0// D K.FfUg�`=I�`/.

There exists an `0 2 Z�0 with '.FfUg�0=I�0/ � K.FfVg�`0=J�`0/, as
FfVg=J D S

`2Z�0
FfVg�`=J�`. Now

'.K.FfUg�`=I�`// D '.K.FŒ���`.FfUg�0=I�0///

D K.FŒ���`'.FfUg�0=I�0//

� K.FŒ���` K.FfVg�`0=J�`0//

� K.FfVg�`C`0=J�`C`0/ �

The Krull-dimension changes when passing to total quotient rings. Instead,
we use dimF.R/ WD maxP2Ass.R/ trdegF.K.R=P// as notion of dimension for
F-algebras R. Then, dim.R/ D dimF.R/ D dimF.K.R// allows to prove the
invariance condition.

Proof of Theorem 1.1.(3) Let ' be as in Lemma 3.3. Then,

K.FfUg�`=I�`/ Š '.K.FfUg�`=I�`// � K.FfVg�`C`0=J�`C`0/

with the `0 2 Z�0 from Lemma 3.3, and thus

dim.FfUg�`=I�`/ D dimF.K.FfUg�`=I�`//

� dimF.K.FfVg�`C`0=J�`C`0//

D dim.FfVg�`C`0=J�`C`0/ .

2The image consists of those ideals which do not contain any zero divisors.
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Thus !I.`/ � !J.`C`0/ and by symmetry !J.`/ � !I.`C`0/. Now, an elementary
argument implies that the degrees and leading coefficients of !I and !J are
the same. �

3.3 Comparison Proof

The proof of Theorem 1.1.(6) and (7) uses two propositions, which relate ideals
and squarefree regular chains. The first proposition is a direct corollary to Lazard’s
Lemma (Theorem 2.2).

Proposition 3.4 Let S; S0 be squarefree regular chains in FŒy1; : : : ; yn� with
I .S/ � I .S0/ and jSj D jS0j. Then ld.S/ D ld.S0/.

The following lemma is used to prove the second proposition. It captures an
obvious property of the pseudo reduction with respect to a squarefree regular chain
S: if a polynomial p can be reduced to zero by S, but ini.p/ cannot be reduced to
zero, then there must be a suitable element in S to reduce the highest power of ld.p/.

Lemma 3.5 Let S be a squarefree regular chain and p 2 FŒy1; : : : ; yn� with ld.p/ D
x, p 2 I .S/, and ini.p/ 62 I .S/. Then S has an element of leader x and degx.Sx/ �
degx.p/.

Proposition 3.6 Let S and S0 be squarefree regular chains in R D FŒy1; : : : ; yn�
with I .S/ � I .S0/ and jSj D jS0j. Then,I .S/ D I .S0/ if and only if degx.Sx/ D
degx.S

0
x/ for all x 2 ld.S/ D ld..S0//.

Proof Let degx.Sx/ D degx.S
0
x/ for all x 2 ld.S/. We show I .S/ � I .S0/ by a

Noetherian induction. The statement is clear for the principle ideals I .S<y2/ and
I .S0

<y2
/. Let p 2 I .S0/ with ld.p/ D yi and degyi.p/ D j. Assume by induction

that q 2 I .S0/ implies q 2 I .S/ for all q with ld.q/ < yi or ld.q/ D yi and
degyi.q/ < j. Without loss of generality ini.p/ 62 I .S0/<yi D I .S/<yi , as otherwise
p has a lower degree in yi or a lower ranking leader when substituting ini.p/ by zero.
Now, Lemma 3.5 implies yi 2 ld.S/ and degyi.p/ � degyi.Syi/. Then,

r WD ini.Syi/ � p � ini.p/ � ydegyi .p/�degyi .Syi /
i � Syi

is in I .S/ if and only if p 2 I .S/ is, but r is of lower degree or of lower ranking
leader than p. The claim follows by induction.

Let I .S/ D I .S0/ and x 2 ld.S/. This implies ini.Sx/ 62 I .S0/, and thus
degx.S

0
x/ � degx.Sx/ by Lemma 3.5. By symmetry degx.S

0
x/ � degx.Sx/, and thus

degx.Sx/ D degx.S
0
x/. �

Proof of Theorem 1.1.(6) and (7) Lemma 2.3 reduces the statements to the alge-
braic case. In this case, Proposition 3.4 implies Theorems 1.1, and 1.1 follows from
Proposition 3.6, because all polynomials in S�` (` 2 Z�0) of degree greater than
one in their respective leader already lie in S. �
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4 Computation of the Differential Dimension Polynomial

To compute the differential dimension polynomial !I .S/ of a characterizable
differential ideal I .S/ � FfUg for a differential regular chain S we may assume
S D ld.S/ (cf. Sect. 3.1). This assumption implies that I .S/ is a prime differential
ideal, and for this case there exist well-known combinatorial algorithms for !I .S/

[15].
Alternatively, the differential dimension polynomial!I .S/ can be read off the set

of equations S of a simple differential system [1]. Such a set S is almost a differential
regular chain, except that weak triangularity is replaced by the Janet decomposition,
which associates a subset of � of cardinality �p to each p 2 S. Then, the differential
dimension polynomial is given by the closed formula

!I .S/.l/ D m

 
n C `

n

!

�
X

p2S

 
�p C ` � ord.ld.p//

�p

!

,

involving only the cardinalities �p and the orders ord.ld.p//.

5 Examples

For each prime differential ideal I there exists a differential regular chain S with
I D I .S/. Thus, the differential dimension polynomial defined in Theorem 1.1
includes the version of Kolchin. However, the following example shows that
Theorem 1.1 is more general.

Example 5.1 Consider U D fu; vg, � D f@tg, p D u2
1 � v, and q D v2

1 � v.
The characterizable differential ideal I WD I .fp; qg/ is not prime, as p � q D
.u1 � v1/.u1 C v1/.

Prime differential ideals I � J are equal if and only if !I D !J by Kolchin’s
theorem. By the following example, this is wrong for characterizable ideals and
any generalization to such ideals needs to consider the degrees of polynomials in a
differential regular chain.

Example 5.2 Consider hu2
0 � u0i� D I .fu2

0 � u0g/ ¨ hu0i� D I .fu0g in Ffug
for j�j D 1. Both differential ideals are characterizable and have the differential
dimension polynomial 0. However, they are not equal.

The next example shows that the Cartan characters and other invariants do not
suffice to prove that two solution sets are unequal.

Example 5.3 For � D f@x; @yg consider the regular chains S1 D fu1;0g and S2 D
fu2;0; u1;1g in Cfug. Then I .S2/ � I .S1/. The strength and first Cartan character
are one and the second Cartan character and differential dimension are zero for both
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ideals (in any order high enough), i.e., these values are the same for both ideals.
However,I .S2/ 6D I .S1/, as !I .S1/.`/ D l C 1 6D l C 2 D !I .S2/.`/.

In the last example, the differential dimension polynomial proves that a symbolic
differential equation solver does not find all solutions.

Example 5.4 Let U D fug and � D f @
@t ;

@
@x g. The viscous BURGERS’ equation

b D u0;2 � u1;0 � 2u0;1 � u0;0 has the differential dimension polynomial 2` C 1.
MAPLE’s pdsolve [19] finds the set

T WD
n
c1 tanh.c1x C c2t C c3/ � c2

2c1

ˇ
ˇ
ˇc1; c2; c3 2 C; c1 6D 0

o

of solutions, which only depends on three parameters. The differential dimension
polynomial shows that the set of solutions is infinite dimensional, and hence T is
only a small subset of all solutions.
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