
Tropical Moduli Spaces of Stable Maps
to a Curve

Andreas Gathmann, Hannah Markwig, and Dennis Ochse

Abstract We construct moduli spaces of rational covers of an arbitrary smooth
tropical curve in R

r as tropical varieties. They are contained in the balanced fan
parametrizing tropical stable maps of the appropriate degree to R

r. The weights of
the top-dimensional polyhedra are given in terms of certain lattice indices and local
Hurwitz numbers.
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1 Introduction

Tropical enumerative geometry has developed from interesting applications fol-
lowing so-called correspondence theorems which settle the equality of certain
enumerative numbers in algebraic geometry to their tropical counterparts [22].
There is an ongoing effort to put the striking similarities between algebro-geometric
and tropical enumerative geometry onto a more solid ground.

Modern enumerative algebraic geometry is based on the moduli spaces
Mg;n.X; ˇ/ of n-pointed stable maps of genus g and class ˇ to a smooth projective
variety X [15], together with their virtual fundamental classes [3, 4] that resolve
the issues arising when these spaces are not of the expected dimension. Hence a
key ingredient for the further development of tropical enumerative geometry is the
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construction of tropical analogues of these concepts. If g D 0 and X is a toric
variety, corresponding to rational tropical curves in R

r , such tropical spaces have
been constructed as balanced fans in [17]. In this case, ideas relating to virtual
fundamental classes are not needed, and the intersection theory of the resulting
spaces recovers the correspondence theorems for rational tropical curves in R

r [19].
For more general target spaces, we run into the same problems as in algebraic

geometry: the naively defined spaces of tropical curves in a tropical variety are
usually not of the expected dimension, maybe not even pure-dimensional. However,
as there is no general theory of virtual fundamental classes in tropical geometry
yet, the tropical approach to this problem is different: right from the start we have
to construct the moduli spaces as balanced polyhedral complexes of the expected
dimension—which necessarily means that they are not just the spaces of maps from
a tropical curve to the given target. From an algebro-geometric point of view, one
could say that this constructs the moduli space and its virtual fundamental class
at the same time, with the additional benefit that (in accordance with the general
philosophy of tropical intersection theory) we actually obtain a virtual cycle and not
just a cycle class.

A general approach how this idea might be realized has been presented in [16].
Here, we will restrict ourselves to the case when g D 0 and the target is a smooth
(rational) tropical curve L in R

r. The resulting moduli spaces M0;n.L; ˙/ (where ˙

is a degree of tropical curves as in Definition 2.4) then describe rational covers of a
rational smooth tropical curve.

Tropical covers and tropical Hurwitz numbers (i.e. enumerative numbers count-
ing covers with prescribed properties [5, 10]) are useful e.g. for the study of the
structural behavior of Hurwitz numbers [11] and in the tropical enumeration of
Zeuthen numbers [6]. Spaces of tropical (admissible) covers have been studied
in [12] as tropicalizations of corresponding algebro-geometric spaces, in terms
of a tropicalization map on the Berkovich analytification. The space of tropical
covers of R has been described in [13] as tropicalization of the open part of a
suitable space of relative stable maps (whose compactification is then realized as
a tropical compactification defined by the tropical moduli space). The present work
complements this point of view by fixing a rational smooth tropical curve L � R

r,
restricting to genus 0 covers, and embedding the abstract polyhedral subcomplex of
the abstract cone complex described in [12] as a balanced polyhedral subcomplex.
In this way, we make these moduli spaces accessible to the current state of the art of
tropical intersection theory.

As mentioned above, to construct the moduli spaces M0;n.L; ˙/ we cannot just
take the subset of M0;n.R

r; ˙/ consisting of all stable maps whose image lies in
L, as this would yield a non-pure subcomplex with strata of too big dimension.
Instead, we have to incorporate the so-called Riemann-Hurwitz condition (see
Definition 3.2), which implies the algebraic realizability of the corresponding
maps. For an example, let L � R

2 be the standard tropical line, let ˙ be the
degree consisting of the directions .�1; 0/; .�1; 0/; .0; �1/; .0; �1/; .2; 2/, and set
n D 0. A fan curve in L of this degree—in fact representing the origin of the fan
M0;0.L; ˙/—is shown in picture (a) below. It is given by a map from an abstract
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star curve with 5 ends to L, with the directions and weights on the ends as indicated
in the picture.
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Possible resolutions of this curve in L are shown in (b), (c), and (d). However,
case (b) is excluded in M0;0.L; ˙/ as its central vertex violates the Riemann-
Hurwitz condition: it would correspond to an algebraic degree-2 cover of the
projective line by itself with three ramification points of order 2, which does not
exist. In contrast, the combinatorial types (c) and (d) are allowed, and represent two
rays in M0;0.L; ˙/ since they describe 1-dimensional families of curves. They both
have a similar type obtained by symmetry: in (c) the bounded weight-2 edge could
also be on the horizontal edge of L, and in (d) there are two choices how to group the
weight-1 ends. In total, this means that M0;0.L; ˙/ is a 1-dimensional fan with four
rays. The weights that we will construct on these rays incorporate the triple Hurwitz
numbers corresponding to the local degrees of the maps at each point mapping to
the vertex of L; they all turn out to be 1 here. In this example, it is then easy to
check explicitly that M0;0.L; ˙/ � M0;0.R

2; ˙/ Š M0;5 � R
2 is indeed balanced.

Our main result on the moduli spaces M0;n.L; ˙/ is that this construction works in
general:

Theorem 1.1 Let L be a smooth tropical curve in R
r and ˙ a degree of tropical

stable maps to L (see Definitions 2.4 and 3.3). Then the space M0;n.L; ˙/

(with weights defined in terms of local Hurwitz numbers) is a balanced weighted
polyhedral subcomplex ofM0;n.R

r; ˙/ of pure dimension

j˙ j � deg.˙/ �
� X

W2L
.val.W/ � 2/

�
� 2:

We expect that M0;n.L; ˙/ is in fact the tropicalization of (relevant parts) of the
corresponding algebro-geometric moduli space.

Theorem 1.1 is proved in two major steps: the first being the treatment of
1-dimensional moduli spaces of the form above (see Theorem 4.3), and the
second the generalization to arbitrary dimension. For the generalization to arbitrary
dimension, we use a general gluing construction for tropical moduli spaces which
was developed by the first and last author in [16] and has further applications to
other target spaces.

This paper is organized as follows. In Sect. 2 we review the necessary prelim-
inaries. The tropical moduli spaces M0;n.L; ˙/ are then defined in Sect. 3. More
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precisely, we define their structure as a polyhedral subcomplex of M0;n.R
r; ˙/

in Sect. 3.1, and the weights of their maximal cells in Sect. 3.2. The definition of
the weights relies on the gluing construction of [16], which we therefore review in
Sect. 3.2, together with the main result of [16] allowing a gluing construction of
tropical moduli spaces under some requirements. In our case, these requirements
are satisfied if all one-dimensional tropical moduli spaces M0;n.L; ˙/ are balanced
fans. We prove this fact in Sect. 4 (see Theorem 4.3). Theorem 1.1 is then an
immediate consequence of the foundational work on the gluing construction in [16].

2 Preliminaries

2.1 Background on Tropical Varieties and Intersection Theory

To fix notation, we quickly review notions of tropical intersection theory. Some of
our constructions involve partially open versions of tropical varieties, i.e. varieties
containing polyhedra that are open at some faces. We adapt the usual conventions
to this situation. For a more detailed survey of the relevant preliminaries, see [16,
section 2.1].

We let � be a lattice in an r-dimensional real vector space V . A (partially open)
(rational) polyhedron in V is a finite intersection of (open or) closed affine half-
spaces given by (strict or) non-strict inequalities whose linear parts are given by
elements in the dual of �. We denote by V� the linear space obtained by shifting the
affine span of � to the origin and define �� WD V� \ �. A face � � � (also written
as � < � if it is proper) is a non-empty subset of � that can be obtained by changing
some of the defining non-strict inequalities into equalities. If dim � D dim � � 1

we call � a facet of � . In this case we denote by u�=� 2 �� =�� the primitive
normal vector of � relative to � , i.e. the unique generator of �� =�� lying in the half-
line of � in V� =V� Š R. The well-known notion of a (pure-dimensional) weighted
polyhedral complex X (formed by cells � as above, and with integer weights on
maximal cells), its dimension and support are easily adapted to the case of partially
open polyhedral complexes. Such a (partially open) weighted polyhedral complex
.X; !/ is called a (partially open) tropical variety (or cycle, if negative weights
occur) if it satisfies the balancing condition, i.e. for each cell � of codimension 1

we have

X
� W�>�

!.�/ � u�=� D 0 2 V=V� :

For intersection-theoretic purposes, the exact polyhedral complex structure is often
not important, and we fix it only up to refinements respecting the weights.

Example 2.1 (Smooth Curves) Let V D R
q. We let Lq1 denote the 1-dimensional

tropical variety containing the origin and rays spanned by �ei (where ei denotes
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the canonical basis vectors) and �e0 WD P
ei, with all weights one. This is the

tropicalization of a general line over the Puiseux series with constant coefficient
equations [14, proposition 2.5 and theorem 4.1]. A one-dimensional tropical variety
L � R

r with all weights one is called a rational smooth curve if its underlying
polyhedral complex is rational (i.e. combinatorially a tree), and if it locally at each
vertex equals Lq1 up to a unimodular transformation, i.e. up to an isomorphism of
vector spaces which is also an isomorphism of the underlying lattices [1].

Some of our constructions involve quotients X=W of partially open tropical
varieties X by a lineality space W. We say that a vector subspace W of V is a
lineality space for X if for all � 2 X and x 2 � the intersection � \ .x C L/ is open
in x C L and equal to jXj \ .x C L/. Note that for the case of a closed polyhedral
complex this generalizes the usual notion of a lineality space (which is commonly
the maximal subspace with this property). For more details on such quotients, see
[16, section 2.2].

A morphism between (partially open) tropical cycles X and Y is a map f W jXj !
jYj which is locally affine linear, with the linear part induced by a map between the
underlying lattices [2, definition 7.1]. A rational function on a tropical variety X is
a continuous function ' W jXj ! R that is affine linear on each cell, and whose
linear part is integer, i.e. in the dual of the lattice. We associate a divisor ' � X to a
rational function; a cycle of codimension 1 in X support on the cells at which ' is
not locally linear [2, construction 3.3]. Multiple intersection products '1 � � � � �'m �X
are commutative by Allermann and Rau [2, proposition 3.7].

Remark 2.2 (Weights of Intersections as Lattice Indices) Often, the weight of a cell
of a multiple intersection product can be computed locally in terms of a lattice index.
To do this, we write locally 'i D maxfhi; 0g for linearly independent integer linear
functions h1; : : : ; hm, and let H be a matrix representing the integer linear map � !
Z
m W x 7! .h1.x/; : : : ; hm.x//. Then the local weight of '1 � : : : � 'm � X equals the

greatest common divisor of the maximal minors of H [21, lemma 5.1].

Rational functions can be pulled back along a morphism f W X ! Y to rational
functions f �.'/ D ' ı f on X. We can push forward a subvariety Z of X to a
subvariety f�.Z/ of Y � �0 ˝ZR [2, proposition 4.6 and corollary 7.4]: For suitable
refinements of the polyhedral structures of X and Y, we obtain f .�/ 2 Y for all
� 2 X, and define the weight of the push-forward to be

!f�.Z/.�
0/ WD

X
�

!X.�/ � j�0
� 0=f .�� /j;

where the sum goes over all top-dimensional cells � 2 Z with f .�/ D � 0. In the
partially open case, we will restrict ourselves to injective morphisms in order to
avoid problems with overlapping cells with different boundary behavior.
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2.2 Tropical Moduli Spaces of Curves

An (abstract) N-marked rational tropical curve is a tuple .�; x1; : : : ; xN/, where �

is a metric tree with N unbounded edges labeled x1; : : : ; xN (also called marked
ends) that have infinite length, and such that the valence of each vertex is at least
3. The set of all N-marked tropical curves is denoted M0;N . It follows from [25,
theorem 3.4], [23, section 2], or [17, theorem 3.7] that M0;N can be embedded as
a tropical variety via the distance map, more precisely, as a balanced, simplicial,
.N � 3/-dimensional fan whose top-dimensional cones all have weight one. The
distance map sends a tropical curve to the vector of distances of its ends in R.N2/.
We mod out an N-dimensional lineality space UN , identifying vectors corresponding
to trees whose metrics only differ on the ends. For a tree with only one bounded edge
of length one, the ends with markings I � f1; : : : ;Ng, 1 < jIj < N � 1, on one side
and the ends with markings Ic on the other, we denote the equivalence class of its
image under the distance map in R.N2/=UN by vI . The vectors vI generate the rays of
M0;N and the lattice we fix for R.N2/=UN .

For local computations, we sometimes use a finite index set I instead of
f1; : : : ;Ng as labels for the markings, and denote the corresponding moduli spaces
by M0;I . Also, we can modify the definition above by assigning bounded lengths
in R>0 to the ends, corresponding to not taking the quotient by UN . In this case we
obtain a partially open moduli space which we will denote by M 0

0;N . There is then
a map M 0

0;N ! M0;N forgetting the lengths of the bounded ends, which is just the
quotient by UN .

For every subset I � f1; : : : ;Ng of cardinality at least three, there is a forgetful
map ftI W M0;N ! M0;jIj which maps .�; x1; : : : ; xN/ to the tree where we remove
all ends xi with labels i … I (and possibly straighten 2-valent vertices). Forgetful
maps are morphisms by Gathmann et al. [17, proposition 3.9]. In coordinates, we
project to distances of ends in I.

Lemma 2.3 A vector x in R.N2/=UN is zero if and only if ftI.x/ D 0 for all I �
f1; : : : ;Ng with jIj D 4.

Proof As ftI is linear, the “only if” direction is obvious. For the other direction,
denote the standard basis vectors of R.N2/ by eij for i < j. Let Qx D P

i<j �ijeij 2 R.N2/

be a representative of x. For any I with jIj D 4, the assumption ftI.x/ D 0 means
that the projection

P
i;j2IIi<j �ijeij is in U4. By definition of U4, it follows that there

is a vector � 2 R
I such that �ij D �i C �j for all i < j in I, and thus that �ik C �jl D

�ij C �kl if I D fi; j; k; lg.
But this means that for all i D 1; : : : ;N the assignment

�i WD 1

2
.�ij C �ik � �jk/ for arbitrary j; k ¤ i
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is well-defined, because if m is another index we have

1

2
.�ij C �ik � �jk/ D 1

2
.�im C �ik � �mk/ C 1

2
.�ij � �im C �mk � �jk/

D 1

2
.�im C �ik � �mk/:

As the definition of �i also implies that �ij D �i C �j for all i < j, we conclude that
Qx 2 UN , and hence x D 0.

Definition 2.4 (Tropical Stable Maps) Let n 2 N and N � n. Consider a tuple
.�; x1; : : : ; xN ; h/, where .�; x1; : : : ; xN/ is an N-marked abstract rational tropical
curve and h W � ! R

r is a continuous map that is integer linear on each edge.
For an edge e starting at a vertex V of � , we denote the tangent vector of hje at
V by v.e;V/ 2 Z

r and call it the direction of e at V . If e is an end and V its only
neighboring vertex we write v.e;V/ also as v.e/ for simplicity.

We say that .�; x1; : : : ; xN ; h/ is an n-marked (rational) tropical stable map to
R

r, also called a (parameterized) n-marked curve in Rr [17, definition 4.1], if

• h satisfies the balancing condition
P

e3V v.e;V/ D 0 at each vertex V of � ;
• v.xi/ D 0 for i D 1; : : : ; n (i.e. each of the first n ends is contracted by h),

whereas v.xi/ ¤ 0 for i > n (i.e. the remaining N � n ends are “non-contracted
ends”).

Two n-marked tropical stable maps .�; x1; : : : ; xN ; h/ and . Q� ; Qx1; : : : ; QxN ; Qh/ in R
r

are isomorphic (and will from now on be identified) if there is an isomorphism ' of
the underlying N-marked abstract curves such that Qh ı ' D h.

The degree of an n-marked tropical stable map is the N-tuple

˙ D .v.x1/; : : : ; v.xN// 2 .Zr/N

of directions of its ends, including the zero directions at the first n ends. Its
combinatorial type is given by the data of the combinatorial type of the underlying
abstract marked tropical curve .�; x1; : : : ; xN/ (i.e. where we drop the metrization
data) together with the directions of all its edges.

The space of all n-marked rational tropical stable maps of a given degree ˙ in
R

r is denoted by M0;n.R
r; ˙/.

Since n equals the number of zero-entries in ˙ and thus can be deduced from ˙ ,
we sometimes drop the subscript and write only M0.R

r; ˙/. While all N ends come
with markings x1; : : : ; xN , only the ends with markings x1; : : : ; xn are contracted (i.e.
have zero direction) and are thus highlighted in the notation.

Remark 2.5 (M0;n.R
r; ˙/ as a Tropical Variety) We assume n � 1. Then by

Gathmann et al. [17, proposition 4.7], M0;n.R
r; ˙/ is a tropical variety, identified

with M0;N � R
r via the map

M0;n.R
r; ˙/ ! M0;N � R

r; .�; x1; : : : ; xN ; h/ 7! ..�; x1; : : : ; xN/; h.x1//
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which forgets h, but records the image h.x1/ of a root vertex. It thus inherits the fan
structure of M0;N . In particular, it can be embedded via this map into R.N2/=UN �R

r .
When we work with an element of M0;n.R

r; ˙/ in coordinates, we usually give its

coordinates in R.N2/�R
r, i.e. its image under the distance map and the position of the

root vertex. If n D 0 it is still possible to find suitable coordinates for M0;n.R
r; ˙/

as M0;N � R
r, not by evaluating a marked end but by evaluating for example a

barycenter [24, construction 1.2.21].

For each i D 1; : : : ; n, we have the evaluation map

evi W M0;n.R
r; ˙/ ! R

r

assigning to a tropical stable map .�; x1; : : : ; xn; h/ the position h.xi/ of its i-th
marked end. It is shown in [17, proposition 4.8] that these maps are morphisms
of tropical fans.

As above, we will also allow curves in R
r where some of the non-contracted ends

are bounded, and write the corresponding moduli spaces as M 0
0;n.R

r; ˙/.
In the following, we will compute several intersection products in cells of tropical

moduli spaces. Since we are often interested in a local situation, we can restrict to
curves of a given combinatorial type ˛. Local coordinates for the cell of curves
of type ˛ are given by the coordinates of the root vertex and the lengths of each
bounded edge. The map sending a unit vector in these local coordinates to a vector
vI as above is a unimodular transformation to the vector space spanned by the
corresponding cell in the moduli space. Therefore we can compute lattice indices
also in these local coordinates.

3 The Polyhedral Complex M0;n.L;˙/ and Its Gluing
Weights

For the whole section, let L � R
r be a smooth tropical curve as in Example 2.1, and

let ˙ be the degree of a tropical n-marked stable map to R
r. We want to define a

moduli space M0;n.L; ˙/ of tropical n-marked stable maps to L as a tropical variety.
Let us first construct this space as a polyhedral complex, and then define its weights
in the next subsection.

3.1 The Polyhedral Complex M0;n.L;˙/

We have already mentioned that not all stable maps with image in L will be allowed
inM0;n.L; ˙/. Instead, we have to impose the so-called Riemann-Hurwitz condition
that we introduce now. As we will see in Construction 3.11, it corresponds to a local
realizability condition.
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Notation 3.1 (Covering Degrees) Let .�; x1; : : : ; xN ; h/ 2 M0;n.R
r; ˙/ satisfy

h.� / � L as sets. As L is irreducible we have h�.� / D d � L for some integer
d (which depends only on ˙). We call d the covering degree of the stable map and
denote it by deg.˙/.

For a vertex V of � , the local degree ˙V at V is the collection of the directions
of its adjacent edges, labeled in an arbitrary way starting with the zero directions.
We let NV D j˙V j and nV the number of zero directions in ˙V (which may come
from marked ends or contracted bounded edges). The local covering degree will be
denoted dV D deg.˙V /.

Definition 3.2 (Riemann-Hurwitz Number) Let .�; x1; : : : ; xN ; h/ 2 M0;n.R
r;

˙/ satisfy h.� / � L. We define the Riemann-Hurwitz number of a vertex V of
� with image W D h.V/ as

RH.V/ D NV � nV � dV � .val.W/ � 2/ � 2

(where valW D 2 if W lies in the interior of an edge of L). Note that it depends only
on the combinatorial type of the stable map.

The Riemann-Hurwitz number gives a realizability condition for tropical stable
maps to smooth curves. It appears e.g. in [5, definition 2.2], [9, proposition 2.4],
[12, section 3.2.2], and [7, definition 3.11].

Definition 3.3 (M0;n.L; ˙/ as a Polyhedral Complex) Let ˛ be a combinatorial
type of tropical stable maps in M0;n.R

r; ˙/. We denote the subset of maps
.�; x1 : : : ; xN ; h/ of type ˛ and satisfying h.� / � L by M .˛/; this is easily seen to
be a partially open polyhedron. Let M0;n.L; ˙/ be the set of all such cells M .˛/

with RH.V/ � 0 for all vertices V in ˛; this is a polyhedral complex [8].

Note that this definition of M0;n.L; ˙/ formally differs from the one used in
[16] in order to make it compatible with the literature mentioned above. In [16,
definition 3.8], more cells are included a priori, but they obtain weight zero in the
gluing construction of Sect. 3.2.

Remark 3.4 (Dimension of M0;n.L; ˙/) By an easy generalization of [8,
lemma 2.14], it follows that M0;n.L; ˙/ is pure of dimension j˙ j � deg.˙/ �P

W2L.val.W/ � 2/ � 2. The maximal cells correspond to combinatorial types such
that

• each vertex mapping to a vertex of L satisfies RH.V/ D 0,
• each vertex mapping to an edge of L is 3-valent, and
• no edge is contracted to a vertex.

More precisely, we have:

Lemma 3.5 (Dimension of Cells of M0;n.L; ˙/) Let ˛ be a combinatorial type
in M0;n.L; ˙/. The dimension of the corresponding cell M .˛/ equals the number
of vertices mapping to edges of L plus the number of bounded edges mapping to
vertices of L.
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Intuitively, this holds true since we can independently vary the length of each
bounded edge mapping to a vertex without leaving the cell of a combinatorial type,
as well as the lengths of edges adjacent to a vertex mapping to an edge, in the
appropriate way that “moves” the vertex along the edge.

3.2 The Gluing Construction for Moduli Spaces

In this section, we want to equip M0;n.L; ˙/ with weights satisfying the balancing
condition, to make it a tropical variety. To do this, we review the general technique
developed in [16], adapted to the case when the target of the stable maps is a smooth
curve. The idea is to construct the tropical moduli spaces by a gluing procedure from
local moduli spaces for the vertices. This construction depends on a condition: all
vertices appearing in a combinatorial type of the moduli space are required to be
“good”. We start by repeating the relevant definitions in the case of smooth curves.

Notation 3.6 (Links of Vertices) Let .�; x1; : : : ; xn; h/ 2 M0;n.L; ˙/, and let V be
a vertex of � . We denote by LV the link of L around h.V/. Generalizing the notation
of Example 2.1, we denote a point by L0

0, so that LV is (an affine shift of a unimodular
transformation of) Lqr � R

s, where r C s D 1 and q D 0 if r D 0. Hence we have
.r; s/ D .1; 0/ if V maps to a vertex of L (of valence q C 1), and .r; s/ D .0; 1/ if V
maps to an edge. Note that there is an associated local moduli space M0.LV ; ˙V /.

Definition 3.7 (Resolution Dimension) For a tropical stable map .�; x1; : : : ; xn; h/

2 M0;n.L; ˙/, let V be a vertex of � with image W D h.V/ 2 L. As in Notation 3.6,
we have LV Š Lqr �R

s with r C s D 1 and q D 0 if r D 0. Treating again a point on
an edge of L as a 2-valent vertex, we define the resolution dimension of V as

rdim.V/ D NV � dV � .val.W/ � 2/ C r � 3

and the classification number as

cV D NV C r 2 N:

Remark 3.8 (Dimension of Local Moduli Spaces) By the dimension formula, we
see that the local moduli space at V has dimension dimM0.LV ; ˙V / D rdim.V/Cs,
where again LV Š Lqr �R

s. As this moduli space has an s-dimensional lineality space
coming from shifting the curves along R

s, the resolution dimension of V is just the
dimension of the local moduli space at V modulo its lineality space.

Remark 3.9 (Dimension of M0;n.L; ˙/ in Terms of Resolution Dimensions) Let ˛

be a combinatorial type in M0;n.L; ˙/, and assume that ˛ has s vertices mapping to
an edge in L (i.e. so that the corresponding link is L0

0 �R). Adding up the resolution
dimensions of all vertices in ˛, we obtain by Remark 3.4

X
V

rdim.V/ C s D dimM0;n.L; ˙/:
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Remark 3.10 Note that rdim.V/ and RH.V/ are very similar: in fact, rdim.V/ is just
RH.V/ with additional contributions

(a) nV of the number of contracted edges at V , and
(b) �1 if V maps to an edge of L.

In particular, the condition RH.V/ � 0 of Definition 3.3 also implies rdim.V/ � 0

(otherwise we would have RH.V/ D 0 and rdim.V/ D �1, i.e. V maps to an edge,
NV D 2, and nV D 0, which is a contradiction since we do not allow 2-valent
vertices).

The reason to introduce the numbers of Definition 3.7 is that they are used in the
recursive definition of good vertices and the weights of M0;n.L; ˙/ below. For this
construction we start with the case of resolution dimension 0 and pass to the general
case by gluing. The initial case is obtained by passing to the corresponding situation
in algebraic geometry and considering (algebraic) Hurwitz numbers.

Construction 3.11 (Algebraic Moduli Spaces for a Vertex) Let V be a vertex
of a combinatorial type in M0;n.L; ˙/ such that LV Š Lq1. Up to unimodular
transformation, ˙V D .ı1; : : : ; ıNV / is a degree of tropical stable maps to R

q with
ends in the directions of Lq1. We decompose f1; : : : ;NVg into a partition �0; : : : ; �q

and �, where

�i D f jjıj D �mjei for some mj 2 N>0g

and � D f jjıj D 0g. This also uniquely defines the values mj as the weights of the
edges adjacent to V .

To construct an algebraic moduli space for V , fix q C 1 distinct points
P0; : : : ;Pq on the complex projective line P

1. Inside the well-known moduli stack
M0;NV .P1; dV/ of NV -marked degree-dV rational stable maps to P

1, consider the
substack M.˙V / of all smooth stable maps C D .C; x1; : : : ; xNV ; 	/ such that
	�Pi D P

j2�i
mjxj for all i D 0; : : : ; q, i.e. such that the ramification profile of 	

over P0; : : : ;Pq is as specified by ˙V . We denote its closure inside M0;NV .P1; dV/

by M.˙V/, and its boundary by @M.˙V / D M.˙V/ n M.˙V /. Its dimension is

dimM.˙V / D 2dV � 2 C NV � dV � .q C 1/ D rdim.V/:

Construction 3.12 (The Case of Resolution Dimension 0) Let V be a vertex of
a combinatorial type in M0;n.L; ˙/ with rdim.V/ D 0, where LV Š Lqr � R

s as
above. Then dimM0.LV ; ˙V/ Š R

s by Remark 3.8, i.e. the local moduli space at V
consists of only one cell. We make it into a tropical variety by giving it the following
local weight !V , depending on whether V maps to a vertex or to an edge of L.

(a) If LV Š Lq1, the algebraic moduli space M.˙V / of Construction 3.11 has
dimension zero. We define the local weight of V to be !V WD degM.˙V /;
i.e. the number of points in M.˙V/, counted with weight j Aut.	/j�1 as we
work with a stack. This number is also called the (marked) Hurwitz number and
denoted H.˙V/.
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(b) If LV Š L0
0 � R, the dimension condition implies NV D 3. In this case, we set

!V WD 1.

In fact, the second case could be treated similarly to the first one by introducing
a rubber variant of the moduli space M.˙V /. We avoid this formulation for the sake
of simplicity.

Let us now describe the gluing construction that gives the local moduli space
M0.LV ; ˙V/ of a vertex V the structure of a tropical variety if rdim.V/ > 0. In
the following, any combinatorial type occurring in M0.LV ; ˙V / will be called a
resolution of V . For a combinatorial type ˛ occurring in a moduli space we denote
by N .˛/ the “neighborhood of ˛”, i.e. the union of all cells M .ˇ/ whose closure
intersects M .˛/.

Definition 3.13 of a good vertex and the following gluing Construction 3.14
depend on each other and work in a combined recursion on the classification number
of vertices. The following definition of a good vertex thus assumes that good vertices
of lower classification number are already defined recursively. Moreover, for every
combinatorial type ˛ in a local moduli space M0.LV ; ˙V / all of whose vertices have
smaller classification number and are good it assumes that there is a gluing cycle in
the neighborhood N .˛/ from Construction 3.14.

Definition 3.13 (Good Vertices [16, definition 3.13])
Let V be a vertex of a (local) tropical stable map in M0.LV ; ˙V/, so that in

particular rdim.V/ � 0. The vertex V is called good if the following holds:

(a) Every vertex of every resolution ˛ of V in M0.LV ; ˙V/ (which has classification
number smaller than cV by Gathmann and Ochse [16, lemma 3.6]) is good (so
that a gluing cycle is defined on N .˛/ by Construction 3.14).

(b) If rdim.V/ > 0 the maximal types in M0.LV ; ˙V / are resolutions of V . We
let M0.LV ; ˙V / be a weighted polyhedral complex by defining the weights
on maximal cells M .˛/ D N .˛/ using the gluing Construction 3.14. If
rdim.V/ D 0, we equip the unique cell of M0.LV ; ˙V / with the weight of
Construction 3.12. We require that the space M0.LV ; ˙V/ is a tropical cycle
with these weights.

(c) For every resolution ˛ of V in M0.LV ; ˙V/ and every maximal type ˇ such that
M .ˇ/ contains M .˛/ in M0.LV ; ˙V/ (ˇ is then also a resolution of V), the
weight of ˇ is the same in the gluing cycles N .˛/ and N .ˇ/.

In the following review of the gluing construction from [16, construction 3.12],
we omit some of the technical details for the sake of clarity.

Construction 3.14 (The Gluing Construction for a Combinatorial Type ˛) Fix
a (not necessarily maximal) combinatorial type ˛ of curves in M0;n.L; ˙/ and
assume that all its vertices are good. We will construct weights on the maximal
cells of the neighborhood N .˛/ such that this partially open polyhedral complex
becomes a tropical cycle. In particular, if ˛ is already maximal this defines a weight
on M .˛/ D N .˛/.

We cut each bounded edge of ˛ at some point in its interior, and in addition
introduce lengths for all ends. This yields a set of connected components ˛V , each
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containing only one vertex V , edges of directions ˙V , and (now bounded) ends
labeled by an index set IV .

For every such vertex V , consider the local moduli space M0.LV ; ˙V /, which is
a tropical variety since V is good. We introduce lengths on all ends of ˙V , obtaining
a moduli space M 0

0.LV ; ˙V / (of which M0.LV ; ˙V/ is a quotient) as in Sect. 2.2.
Each bounded end i 2 IV is mapped to an edge or vertex of L that we denote by
�i. We consider the open subcomplex of M 0

0.LV ; ˙V/ of all curves for which the
evaluation at i still lies in �i, i.e. the partially open tropical subvariety

MV WD
\
i2IV

ev�1
i .�i/

of M 0
0.LV ; ˙V /.

Now we want to glue these pieces MV back together. Consider a bounded edge
e of ˛ adjacent to two vertices V1.e/ and V2.e/, and denote the two bounded ends
produced by cutting e by i1.e/ 2 IV1.e/ and i2.e/ 2 IV2.e/, where �i1.e/ D �i2.e/ DW �e.
There is a corresponding evaluation map

eve WD .evi1.e/ � evi2.e// W
Y
V

MV �! �e � �e

at the endpoints of these two bounded ends in the factors for V1 and V2. To impose
the condition that these ends fit together to form the edge e we need to pull back the
diagonal 
�e via eve [16, appendix]. We abbreviate all these pull-backs by

ev�.
L/ �
Y
V

MV WD
Y
e

ev�
e 
�e �

Y
V

MV ;

where e runs over all bounded edges e of ˛. By construction, this cycle consists of
stable map pieces that glue back to a stable map in M0;n.L; ˙/. However, it also
carries the superfluous information on the position of the gluing points. To get rid of
this we apply the quotient map q by the lineality space generated by the appropriate
differences of vectors taking care of the lengths of the bounded ends, and by the
vectors taking care of ends which should be unbounded. We finally use a morphism
f identifying a stable map glued from pieces with the corresponding element in
M0;n.L; ˙/, where we use the distance and barycentric coordinates mentioned in
Remark 2.5. Hence we get a partially open tropical cycle

f�q
"

ev�.
L/ �
Y
V

MV

#
in M0;n.L; ˙/:

Its weights on the maximal cells of M0;n.L; ˙/ will be called the gluing weights. It is
easy to see that the gluing morphism f is unimodular and induces a bijection of cells.
In particular, the weight of a maximal cell in f�q

�
ev�.
L/ � Q

V MV
�

is equal to the
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weight of ev�.
L/ �QV MV in the corresponding cell of
Q

V MV . By Remark 2.2, it
can be computed as the greatest common divisor of the maximal minors of a matrix
whose rows represent the differences evi1.e/ � evi2.e/ in local coordinates.

Example 3.15 Let L D L2
1 be a tropical line in R

2 and let ˛ be a combinatorial type
of degree-˙ curves in L2

1 as shown below on the left (where the directions of the
edges indicate their images in R

2). Then rdim.V0/ D 0. We assume in addition that
rdim.V1/ D 0.

We cut the unique bounded edge e of weight d1, obtaining two bounded ends
that we denote f and f 0. By the assumption on the resolution dimension, the
local moduli spaces for V0 and V1 consist of only one cell each, and we can
explicitly describe isomorphisms to open polyhedra in some R

k as follows. The
space MV0 is isomorphic to R

2
>0, where one coordinate that we denote by lf

corresponds to the length of the bounded end, and the other that we call xV0 to
the position of the image of V0 on the corresponding ray of L. The space MV1

is R>0 with coordinate lf 0 corresponding to the length of its bounded end. By
Construction 3.12, the weight of MV1 is the Hurwitz number !V1 D H.˙V1 /,
whereas MV0 has weight 1. Using these coordinates, we can pull back the diagonal
of L as ev�

e maxfx � y; 0g D maxfevf � evf 0 ; 0g, where x; y are the coordinates of
L2 on the left ray. By Remark 2.2, the weight of ev� 
L � .MV0 � MV1/ equals the
weight of MV0 � MV1 times the greatest common divisor of the maximal minors of
the matrix

xV0 lf lf 0

evf � evf 0 1 �d1 �d1;

which is 1. Hence the cell corresponding to ˛ in M0.L; ˙/ has weight !˛ D
H.˙V1/. The analogous result holds for L D Lq1 for all q.

Example 3.16 Let L D L2
1 be a tropical line in R

2 again, and let ˛ be the
combinatorial type of degree-˙ curves mapping to L2

1 depicted below, with V1 and
V2 mapping to the vertex of L. As above, we then have rdim.V0/ D 0, and assume
in addition that rdim.V1/ D rdim.V2/ D 0.

We cut the two edges e1 of weight d1 and e2 of weight d2, obtaining four new
bounded ends that we denote by fi and f 0

i for i D 1; 2. As before, each local
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moduli space consists of only one cell. The space MV0 is isomorphic to R
3
>0,

where two coordinates (lf1 and lf2) correspond to the lengths of the bounded ends
and one (xV0) to the position of the image of V0 on the corresponding ray of L.
By Construction 3.12, it is equipped with weight !V0 D 1. Similarly, MVi for
i D 1; 2 is isomorphic to R>0, where the coordinate lf 0

i
is given by the length of

the bounded end, and equipped with the appropriate Hurwitz number !Vi D H.˙Vi/

as weight. As in the previous example, pulling back the diagonal of L2 twice and
using Remark 2.2, we deduce that the weight of ev� 
L � .MV0 �MV1 �MV2/ equals
the weight of MV0 �MV1 �MV2 times the greatest common divisor of the maximal
minors of the matrix

xV0 lf1 lf2 lf 0

1
lf 0

2

evf1 � evf 0

1
1 �d1 0 �d1 0

evf2 � evf 0

2
1 0 �d2 0 �d2;

which is gcd.d1; d2/. Thus the weight of the cell corresponding to ˛ in M0.L; ˙/

equals

!˛ D gcd.d1; d2/ !V0!V1!V2 D gcd.d1; d2/ � H.˙V1 / � H.˙V2 /:

As in Example 3.15, the same result holds for L D Lq1 for all q.

We end this section by stating the main result of [16], together with a lemma
that provides a major simplification for checking the requirements of the following
theorem:

Theorem 3.17 (The Gluing Theorem [16, corollary 3.17]) Assume that all ver-
tices V that can possibly occur in combinatorial types of the moduli space
M0;n.L; ˙/ are good. Then the gluing construction is well-defined for all these
combinatorial types. In particular,M0;n.L; ˙/ is a tropical variety.

Lemma 3.18 (Restriction to Resolution Dimension One [16, corollary 3.18]) If
all vertices V of combinatorial types of M0;n.L; ˙/ with rdim.V/ D 1 are good,
then all vertices are good.
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4 One-Dimensional Moduli Spaces of Rational Covers
of Smooth Tropical Curves

Throughout this section, let V be a vertex of a combinatorial type in M0;n.L; ˙/

with rdim.V/ D 1. Our aim is to show that V is good, so that we can apply
Lemma 3.18 and the gluing Theorem 3.17 to deduce Theorem 1.1. We continue
to use the notation of Sect. 3. Moreover, let IV be the set of labels of the ends in
the local moduli space M0.LV ; ˙V /, so that M0.LV ; ˙V / D M0;IV .LV ; ˙V /. As in
Construction 3.11, let mj 2 N>0 be the weight of the end j 2 IV .

To prove that V is good, we have to show by Definition 3.13 that

(1) every vertex appearing in a non-trivial resolution in M0.LV ; ˙V / is good;
(2) M0.LV ; ˙V / is a tropical variety with the gluing weights; and
(3) for every non-trivial resolution ˛ of V , the weight of each maximal cell in the

neighborhood N .˛/ is the same no matter if we apply the gluing construction
for ˛ or just for this maximal cell.

Assume first that V maps to an edge of L, so that LV Š L0
0 � R. Then rdim.V/ D 1

implies NV D 4, hence the possible resolutions are just the usual resolutions of a
4-valent vertex. Also, any gluing weight is just 1, and the balancing condition is
satisfied—this is just the usual balancing condition of M0;4. It follows that V is
good.

We can thus assume now that V maps to a vertex of L, so that LV Š Lq1. By
Remark 3.8, this means that dimM0.LV ; ˙V/ D 1. In particular, every resolution of
V corresponds already to a maximal cell of the local moduli space, which implies
that condition (3) above is trivially satisfied. Moreover, Lemma 3.5 implies that
every non-trivial resolution of V has at least one vertex mapping to an edge of L, or a
bounded edge contracted to a vertex. In the former case, Remark 3.9 then shows that
all vertices in this resolution must have resolution dimension 0 and are thus good,
and the latter case is an immediate contradiction to Remark 3.4. Hence condition (1)
is always satisfied as well, and it only remains to check the balancing condition (2).

Next, since 1 � nV D rdim.V/ � nV D RH.V/ � 0, we can either have nV D 1

and RH.V/ D 0, or nV D 0 and RH.V/ D 1. In the first case, there is one contracted
end, say with the marking 1, adjacent to the vertex. In the possible resolutions, this
contracted end is adjacent to any other of the non-contracted ends, leading to a
generating vector of the form vf1;ig for the corresponding ray in M0.LV ; ˙V /. As
in Example 3.15, we can see that any gluing weight equals H.˙V n f0g/. We havePNV

iD2 vf1;ig D 0 in M0.R
q; ˙V /, and hence the balancing condition is satisfied in

this case.
So the only thing left to be done is to study the remaining case, where we have a

vertex V mapping to a vertex of L, without contracted ends and having rdim.V/ D 1,
and to prove the balancing condition (2) for the 1-dimensional local moduli space
M0;n.L; ˙/ in this situation. We start by listing the possible resolutions of such a
vertex, i.e. the maximal cones of M0;n.L; ˙/.



Tropical Moduli Spaces of Stable Maps to a Curve 303

Construction 4.1 (Resolutions of a Vertex with rdim.V/ D 1) Let V be a vertex
of a combinatorial type in M0;n.L; ˙/. Assume that V maps to LV Š Lq1 and satisfies
rdim.V/ D 1 and nV D 0.

As dimM0.LV ; ˙V / D 1, it follows from Remark 3.4 and Lemma 3.5 that in
each (necessarily maximal) resolution of V , there is one (necessarily 3-valent) vertex
V0 mapping to an edge of Lq1. This vertex can either join two ends or split an end, so
that we obtain the following two types of resolutions:

(I) There is exactly one vertex V1 mapping to the vertex of LV . The vertex V0 is
adjacent to two ends i; j 2 IV and a bounded edge of weight d1 D mi C mj

connecting V0 to V1. The ends in I1 WD IVnfi; jg are adjacent to V1.
Such a type exists for all choices of ends i and j of the same (primitive)

direction.
(II) There are exactly two vertices V1;V2 mapping to the vertex of LV . The vertex

V0 is adjacent to an end i 2 IV and two bounded edges of weights d1; d2 with
d1 Cd2 D mi connecting V0 to V1 and V2, respectively. The two vertices V1 and
V2 are adjacent to ends in I1 and I2, respectively, where I1 [ I2 [ fig D IV .

Such a type exists for all choices of i and all partitions of IVnfig into I1 and
I2 for which there is a stable map with the above conditions.

With the notations of Sect. 2, these types correspond to rays of M0.LV ; ˙V /

generated by the vectors vfi;jg for type I and d2vI1 C d1vI2 for type II (where the
latter does not need to be primitive).

Let us now consider the corresponding algebraic situation, i.e. the 1-dimensional
algebraic moduli space M.˙V / of Construction 3.11. By the Riemann-Hurwitz
condition, a point in the open part M.˙V/ corresponds to a cover with precisely
one simple ramification which is not marked, and whose image does not coincide
with one of the points P0; : : : ;Pq at which we fixed the ramification imposed by
˙V . The boundary points correspond to degenerate covers that we obtain when the
additional branch point runs into a point Ps for s 2 f0; : : : ; qg.

As deformations of covers are always local around special fibers [27, propo-
sition 1.1], we see that a cover in @M.˙V / must have exactly one collapsed
component, which then has exactly three special points. So we have the following
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two types for the curves in the boundary @M.˙V /, which are exactly dual to the
tropical picture above (see [8, proposition 3.12] for a related statement):

Here, C0 is the collapsed component, and Ck for k 2 f1; 2g denotes the at most
two non-collapsed irreducible components. In the type I case, the map 	jC1 has
order d1 WD mi C mj at the singular point of C. In the type II case, the orders d1 and
d2 of 	jC1 and 	jC2 at the singular points of C add up to mi.

To check the balancing condition in the 1-dimensional fan M0.LV ; ˙V /, it
suffices by Lemma 2.3 to consider the situation after applying the various forgetful
maps to M0;4. We will do this first in the algebraic and then in the tropical case.

Lemma 4.2 (The Pull-Back of the Forgetful Map) Let C 2 @M.˙V / be a stable
map in the boundary of the local moduli space of a vertex V as in Construction 4.1.
Consider the forgetful map ftI W M.˙V/ ! M0;I Š P

1 for a choice of four-element
subset I D fi; j; k; lg � IV. Then the multiplicity ordC ft�I .ijjkl/ of the pullback of the
divisor .ijjkl/ on M0;I at C equals

(a) 1 if C is of type I, with xi; xj 2 C0 and xk; xl 2 C1 or vice versa;
(b) d1 if C is of type II, with xi 2 C0, and xj 2 C1 and xk; xl 2 C2 or vice versa;
(c) d1 C d2 if C is of type II, with xi; xj 2 C1 and xk; xl 2 C2 or vice versa.

These are all cases in which we have a non-zero multiplicity.
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Proof Since xi; xj and xk; xl must lie on different components after applying the
forgetful map and C has at least two and at most three components, it is obvious
that we can only have the three cases stated in the lemma. We want to determine
the multiplicity of C in ft�I .ijjkl/ for each case. By Vakil [27, proposition 1.1], we
may replace our family M.˙V/ of curves around C by another family M of curves
étale locally isomorphic to the original ones around the collapsed component. The
following picture illustrates the new curve C after this replacement in each case; the
corresponding families are described below.

Case (a) Let M be the moduli space of all smooth covers .C; xi; xj; xk; xl; 	/ of P1

of degree d1 D mi C mj satisfying

	�0 D mjxj C mixi; 	�1 D d1xk; and 	.xl/ D 1:

On the source curve C Š P
1, we set xi D 0, xj D 1, xk D 1, and xl D .1 W w/ with

w 2 C
� n f1g. Then every element in M can be written as

	.z0 W z1/ D ..z0 � z1/
d1 W �z

mj

0 zmi
1 /

for � 2 C
� satisfying �wmi D .1 � w/d1 . Thus, the 1-dimensional space M is

parameterized by those .�;w/ 2 C
� � .C� n f1g/ with �wmi D .1 � w/d1 . The non-

marked branch point of 	 can be computed to be at P D .dd1

1 W .�1/mim
mj

j mmi
i � �/,

since the equation 	.z0 W z1/ D P has a double root at .mj W �mi/.
Hence, in this family the singular curve C in the picture above corresponds to

the coordinates .�;w/ D .0; 1/. After inserting this point into the family, we obtain
M Š C

� via .�;w/ 7! w. The divisor ft�I .ijjkl/ is given by the functionw�1, which
vanishes to order 1 at C . As C has no automorphisms due to the marked point xl,
we obtain ordC ft�I .ijjkl/ D 1 as claimed.

Case (b) Now let M be the space of those smooth covers .C; xi; xj; xk; xl; 	/ of P1

of degree d D mi such that

	�0 D d1xj C d2xk; 	�1 D dxi; and 	.xl/ D 1
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for fixed d1; d2 with d1 C d2 D d. We set xk D 1, xi D 1, xj D 0, and xl D .1 W w/,
where w 2 C

� n f1g. Then every element of M can be written as

	.z0 W z1/ D .�zd0 W .z0 � z1/d2zd1

1 /;

where � 2 C
� satisfies � D .1 � w/d1wd2 . The non-marked branch point of a cover

	 can be computed to be at P D .� � dd W dd1

1 dd2

2 /, since the equation 	.z0 W z1/ D P
has a double root at .d W d1/.

Again, as in the picture above we want to insert the special fiber C over .�;w/ D
.0; 1/ to obtain the space M. As before, M Š C

� via .�;w/ 7! w, and the divisor
ft�I .ijjkl/ is given by the function w � 1, which vanishes to order 1 at C . Since C
has d1 automorphisms on C1 (which is totally ramified over 0 and 1), we obtain
ordC ft�I .ijjkl/ D d1.

Case (c) In this case, we use the previous computations and the WDVV equations.
Denote by xp the marked point of C on the collapsed component. We consider the
moduli space M which is the closure of all smooth .C; xi; xj; xk; xl; xp; 	/ of degree
d D mp such that

	�0 D d1xi C d2xl; 	�1 D dxp; and 	.xj/ D 	.xk/ D 1

for fixed d1; d2 with d1 C d2 D d. Again, by the Riemann-Hurwitz formula this
is a 1-dimensional space, with one non-marked ramification for a smooth curve in
M. By letting the additional branch point run into 0, 1 and 1, we can see that @M
contains the following reducible curves:

(1) a degree-d1 component with xi; xj connected to a degree-d2 component with
xk; xl via a collapsed component over 1 with xp (this is the curve in the picture
above);

(2) a degree-d1 component with xi; xk connected to a degree-d2 component with
xj; xl via a collapsed component over 1 with xp;

(3) one collapsed component over 0 with xi; xl and one degree-d component with
xj; xk; xp;

(4) one collapsed component over 1 with xj; xk and one degree-d component with
xi; xl; xp.

The non-collapsed components in types (1)–(3) are all completely ramified over
two points. In types (1) and (2), exactly one point with no ramification is marked,
killing the automorphisms. Hence, for each of these types (1) and (2) we have
one corresponding boundary point in M. In type (3), the point xj fixes the
automorphisms, but then we have a choice to mark any preimage of 1 but xj to
be xk. Hence there are d � 1 boundary points corresponding to a cover of type (3).
For type (4), a computation of the corresponding Hurwitz number shows that there
is a unique such cover, so that we have one such boundary point in M.

By the WDVV equations for ftI W M ! M0;4, we have ft�I .ijjkl/ D ft�I .iljkj/. The
left side of this equation is obviously supported on the boundary point of type (1)
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that we are interested in, whereas the right side is supported on all boundary points
of type (3) or (4). The multiplicity of ft�I .iljkj/ is 1 at each such boundary point by
our former computation. As there are d such boundary points, in total we obtain
ordC ft�I .ijjkl/ D d.

Theorem 4.3 (One-Dimensional Moduli Spaces M0.LV ; ˙V /) Let V be a vertex
as in Construction 4.1: mapping to LV Š Lq1 and satisfying rdim.V/ D 1 and nV D
0. Then M0.LV ; ˙V/ with the weights obtained from the gluing Construction 3.14
is a one-dimensional balanced fan. In particular, V is good.

Proof The rays of M0.LV ; ˙V / are given by the combinatorial types ˛ of Construc-
tion 4.1. With the notation used there, we can take as spanning vectors for these
rays u˛ D vfi;jg in a type I case and u˛ D d2vI1 C d1vI2 in a type II case. As
the integer length of these vectors is 1 and gcd.d1; d2/, respectively, it follows from
Examples 3.15 and 3.16 that the gluing weight times the primitive vector in direction
of the ray corresponding to ˛ equals H˛ u˛ , where H˛ denotes the Hurwitz number
of V1 for type I, and the product of the Hurwitz numbers of V1 and V2 for type II.
Hence we have to show that

P
˛ H˛ u˛ D 0.

By Lemma 2.3, it suffices to prove that
P

˛ H˛ ftI.u˛/ D 0 for all four-element
subsets I D fi; j; k; lg of IV . The combinatorial types ˛ for which ftI.u˛/ is a multiple
of vfi;jg are exactly the ones corresponding to the three cases in Lemma 4.2. Due to
the definition of u˛, this multiple is 1, d1, and d1Cd2, respectively, and hence always
equal to ordC ft�I .ijjkl/ for a stable map C of this type. As the number of such stable
maps is exactly H˛, it follows that

P
˛ H˛ ftI.u˛/ contains the vector vfi;jg with a

factor of deg ft�I .ijjkl/. But the same holds for the other two splittings of I, and thus
we conclude as desired that

X
˛

H˛ ftI.u˛/ D deg ft�I .ijjkl/ vfi;jg C deg ft�I .ikjjl/ vfi;kg C deg ft�I .iljjk/ vfi;lg D 0

since these three divisors are linearly equivalent and vfi;jg C vfi;kg C vfi;lg D 0 in
M0;I .

Proof (Proof of Theorem 1.1) Theorem 4.3 together with the arguments at the
beginning of Sect. 4 shows that all vertices V of combinatorial types of M0;n.L; ˙/

with rdim.V/ D 1 are good. By Lemma 3.18 we conclude that all vertices are good.
Hence M0;n.L; ˙/ is a tropical variety by Theorem 3.17, with the weights given in
Constructions 3.12 and 3.14. The claim about the dimension follows from Sect. 3.1.

Remark 4.4 By Lemma 3.18, the case of one-dimensional moduli spaces of tropical
stable maps to a curve represents a main building block for the proof of Theorem 1.1
stating that arbitrary-dimensional moduli spaces of tropical stable maps to a curve
are balanced. It was also a natural starting point for the investigation of the
balancing condition for tropical moduli spaces of stable maps to a curve. In
collaboration with Simon Hampe, the polymake extension a-tint [18, 20] was used
to compute—for a large series of relevant examples—the generating vectors of
rays for such one-dimensional moduli spaces. GAP [26] was used to compute



308 A. Gathmann et al.

conjectural local weights in terms of Hurwitz numbers, and to check the balancing
condition. These experiments with one-dimensional moduli spaces helped us to
form a precise conjecture for the weights. Finally, the computation of a series of
one-dimensional balanced examples led to the proof of the balancing condition in
the one-dimensional case, and thus also in the general case. This work thus heavily
relies on the examples computed with the help of a-tint and GAP.
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