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Abstract Recent progress in continuum dislocation dynamics (CDD) has been
achieved through the construction of a local density approximation for the dislo-
cation energy and the derivation of constitutive laws for the average dislocation
velocity by means of variational methods from irreversible thermodynamics. Indi-
vidual dislocations are driven by the Peach–Koehler-force which is likewise derived
from a variational principle. This poses the question if we may expect that the aver-
aged dislocation state expressed through the CDD density variables is driven by a
variational gradient of the average energy, as is assumed in irreversible thermody-
namics. In the current contributionwe do not answer this questions, but rather present
the mathematical framework within which the evolution of discrete dislocations is
literally understood as a gradient descent. The suggested framework is that of de
Rham currents and differential forms. We briefly sketch why we believe the results
to be useful for formulating CDD theory as a gradient flow.

1 Introduction

During the last two decades crystal plasticity revealed itself as an area which poses
great challenges in the discrete to continuum transition from individual dislocations
to continuum dislocation formulations. One important line among others in this field
is the program of continuum dislocation dynamics (CDD) pursued by the author and
co-workers [12]. The original problem solved by CDD is the definition of sufficiently
rich dislocation density measures capable of describing the evolution of a dislocation
system in a kinematically closed form [14]. At least for single glide situations we
regard this problem as solved since the introduction of a hierarchy of dislocation
alignment tensors and their evolution equations [10] – even though the latter require
closure assumptions in order to arrive at useful crystal plasticity theories [23]. But
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the achieved kinematic consistency has to be accompanied by a kinetic theory in
order turn CDD into a crystal plasticity materials law.

Regarding a kinetic closure we currently regard energetic approaches as most
promising. The energetic approach assumes that the energy of a dislocation system
may be expressed by an energy functional depending on the CDD density variables.
The evolution of the density variables, which are naturally formulated in terms of
an average dislocation speed, are then derived in the spirit of irreversible thermody-
namics from a variational derivative of the energy with respect to the evolution of
the CDD variables [11]. This reasoning has been substantiated by the derivation of
a local density approximation for the dislocation energy in terms of CDD variables,
which (the derivation) bears strong analogies to quantum mechanics [26]. In the
current contribution we are interested in the complementary question to energetic
modelling in CDD, namely how the single dislocation evolution presents itself as a
gradient descent.

Dislocations are well known to move in response to the so-called Peach–Koehler
force. The Peach–Koehler force on dislocations is a prototypical configurational
force ante verbum. In the original paper, Peach and Koehler [25] derived the force as
the negative variational derivative of the ‘interaction energy with [the] stress field’.
The dislocation mobility turns this force per length into a dislocation (segment)
velocity. This means that discrete dislocation simulations, which employ the Peach–
Koehler force, perform a gradient descent in energy space of some form.With regard
to constitutive modeling in CDD this raises two questions: (i) What is a proper
mathematical space in which the motion due to the Peach–Koehler force on single
dislocations may actually be viewed as a ‘gradient descent’? – Where we expect the
(variational) gradient to be obtained from a Gâteaux differential. (ii) Can we expect
the gradient structure of the evolution equation to be conserved upon (ensemble)
averaging? In the current contribution we focus on the first question (i) and only
briefly discuss how the answer to the first question may affect reasoning on the
second one.

The paper is structured as follows: in Sect. 2 we introduce the notions of (vector
valued) differential forms and currents. In Sect. 3 we describe the differential calcu-
lus on currents from the perspective of variational theory. Subsequently, we briefly
discuss the energetics of dislocations in Sect. 4. The key result is obtained in Sect. 5
where we introduce a metric structure which turns the equation of overdamped dis-
location motion into a gradient descent in a space of one-dimensional vector valued
currents. Finally we briefly summarize the results and give a cursory outlook on
challenges in kinetic modeling of CDD in Sect. 6.

2 Mathematical Preliminaries

We focus on the case of interacting dislocation lines in an infinite crystal and employ
the assumptions of small deformations and linear elasticity. Despite our restriction
to small deformations, we will distinguish upper and lower indices in the sequel.
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Consequently,we usually employ the original Einstein summation convention,where
automatic contraction is restricted to pairs of like upper and lower indices. We think
it is important to distinguish vector spaces and their dual spaces in the current context
both locally and globally – even if the standard metric is available for mutual iden-
tification. As will be discussed in Sect. 5, we regard the viscous drag of dislocation
motion as the origin of a physical metric of dislocation theory, which supersedes the
standard metric.

In the current Section we introduce differential forms, vector valued differential
forms, currents, and vector valued currents in a very condensed way, which, hope-
fully allows the reader to follow the subsequent theory. For thorough introductions
to differential forms we refer to standard text books, e.g. [5, 21]. More details on
vector valued differential forms may be found in [9, 15]. For the notion of currents
we recommend [2], for their application to dislocations and the vector valued case
we refer to [9, 13]. Note that we leave out all functional analytic or measure theoretic
complexities.

Basic notation and differential forms

As we deal with small deformation theory, we regard the crystal as a Euclidean
manifold with standard coordinates x1, x2, x3. The according basis vectors of the
tangent space are denotedwith ∂i and the dual basis one-forms of the co-tangent space
are denoted with dxi . Differential forms are purely covariant and fully antisymmetric
tensors, which are non-trivial in the three-dimensional case only for degrees 0,1,2,
and 3. The wedge-product ∧ is used to combine two differential forms of order p
and q to a differential form of order p + q. For details on the calculus of differential
forms see [5, 21] and many other introductory book in differential geometry. We
just recall a few salient features of and operators defined on differential forms. One
important feature is that differential p-forms may be integrated over p-dimensional
oriented submanifolds Sp, ∫

Sp

α p, (1)

without assigning a standard ‘volume (surface or line) element’ to the submanifold.
Furthermore, the exterior derivative d is defined independent of both Riemannian
metrics and connections and maps differential p-forms to differential p + 1-forms.
The generalized Stokes theorem on differential forms reads

∫
Sp+1

dα p =
∫

∂Sp+1
α p. (2)

The interior multiplication ιXα p with a vector field X turns a differential p-form into
a differential (p − 1)-form. The Lie-derivative LX along a vector field X , which
keeps the degree of a differential form fixed, is defined by Cartan’s magic formula,

LXα = ιXdα + dιXα. (3)
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Vector valued differential forms

In general, vector valued differential forms take values in some vector bundle (which
includes, e.g., tensor bundles) over the crystal manifold [17]. In the current paper
this will be either the tangent bundle or the co-tangent bundle (see [9, 15] for more
detailed introductions of this special case). In the sequel we will reserve the term
vector valued differential form usually for those taking values in the tangent bundle
while we speak of one-form valued differential forms in the latter case. In local
coordinates a vector valued p-form is of the form

P = 1

p! P
j

i1···i p dxi1 ∧ · · · ∧ dxip ⊗ ∂ j , (4)

while a one-form valued p-form appears as

Q = 1

p!Qi1···i p jdx
i1 ∧ · · · ∧ dxip ⊗ dx j . (5)

Vector valued differential forms (in the general sense) only allow for an integral
calculus if the vector bundle is a trivial bundle and a trivialization is fixed. However,
we do not explicitly integrate vector valued differential forms in the sequel, but
restrict integration to differential forms arising from a generalized dotted wedge
product ∧̇, taking a vector valued and a one-form valued form (or vice versa) to a
usual differential form through1

P p∧̇Qq := 1

p!q! P
j

i1···i p Qip+1···i p+q j
dxi1 ∧ · · · ∧ dxip ∧ dxip+1 ∧ · · · ∧ dxip+q (6)

Qq∧̇P p := (−1)pq P p∧̇Qq . (7)

The generalization of the exterior derivative to vector valued differential forms
requires the consideration of a connection ∇ on the vector bundle and is denoted
with d∇ . In the Euclidean case, the connection is of course the standard connection
with vanishing connection coefficients. The generalized exterior derivative of vector
valued and one-form valued differential forms satisfies the product rule

d
(
P p∧̇Q

) = d∇ P p∧̇Q + (−1)p P p∧̇d∇Q. (8)

The interior multiplication ιX applies in the usual fashion to the differential form
part of the vector and one-form valued differential forms. We define a generalized
Lie-derivative on vector and one-form valued differential forms through [9]

L ∇
X = ιXd

∇α + d∇ ιXα. (9)

1Note that in [9] there is a mistake in the anti-symmetry condition below, where the exponent of
−1 is erroneously given as p and not pq.
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Currents

Currents are defined as linear functional on spaces of differential forms. In this work
we deal with the basic definition according to de Rham [2], where the arguments
of currents are C∞ differential forms with compact support. De Rham developed
the notion of currents from electrodynamics at the prototype of a current carrying
wire. Such wire may be described as an electrical current (singularly) concentrated
on a one-dimensional manifold. Even though such objects are often described by
integrals over Dirac delta distributions, it is advantageous to regard singularities
along submanifolds as objects of their own right. Currents which are non-trivial only
for differential forms of a given degree p are called p-dimensional currents. This
obviously includes p-dimensional submanifolds Sp which map smooth differential
p-forms α p onto their integral over the submanifold. We denote the current induced
by such submanifold with γSp , which is defined by

γSp

[
α p

] :=
∫
Sp

α p. (10)

Note that we mark the application of a functional to differential forms with brackets
[·]. Delta distributions at a point r are in this sense 0-dimensional currents assigning
to a function f its value at r , i.e.,

γr [ f ] := f (r) . (11)

If the underlying space M is n-dimensional, p-dimensional currents are likewise
said to be of degree n − p. The rational for this notion is that n − p-dimensional
differential forms βn−p define linear functionals on differential p forms as follows,

γβn−p

[
α p

] :=
∫
M

βn−p ∧ α p. (12)

The above examples of currents motivate the following transfer of operations from
manifolds or differential forms to currents. Stokes’ theorem (2) immediately yields
the notion of the boundary of a current ∂ , which is defined through

∂γ [α] := γ [dα] . (13)

The product rule of the exterior differential derivative yields the closely connected
definition

dγ
[
α p

] := (−1)p+1 γ
[
dα p

]
. (14)

The interior multiplication with a vector field X is defined as

ιXγ
[
α p

] := (−1)p+1 γ
[
ιXα p

]
. (15)
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Finally, the Lie derivative of a current in the direction of a vector field is

LXγ
[
α p

] := −γ
[
LXα p

]
. (16)

Currents from moving submanifolds

The Lie derivative of currents plays a special role for currents derived from moving
submanifolds. It seems that the following transport theorem (e.g. found in [5, 21])
lacks a common denomination and is occasionally ‘rediscovered’ [4]. It may be
viewed as a generalization of theReynolds transport theorem todifferential forms.We
directly introduce it in the language of currents. Let N (t) be a moving submanifold,
where themotion of every point is described by a vector field v (t) along themanifold.
Let moreover γN (t) denote the induced current on smooth differential forms, then the
time derivative of the current is given by

∂tγN (t) = −Lv(t)γN (t). (17)

Vector valued currents

We regard vector valued currents as linear functionals acting on one-form valued
differential forms and vice versa. For example, a dislocation line c defines a vector
valued (because of the Burgers vector b) one-dimensional current γcb acting on one-
form-valued one-forms L = L jidx j ⊗ dxi through

γcb [L] =
∫
c
Li j b

jdxi . (18)

The generalized operations on vector valued differential forms transfer to vector
valued currents in full analogy to their original definition on currents, when replacing
the exterior derivative with the connection dependent exterior derivative, that is

d∇γ
[
P p

] := (−1)p+1 γ
[
d∇ P p

]
, (19)

ιXγ
[
P p

] := (−1)p+1 γ
[
ιX P

p
]
, (20)

L ∇
X γ

[
α p

] := −γ
[
L ∇

X α p
]
. (21)

Vector valued currents from moving submanifolds

As a generalization of the second last paragraph imagine a moving submanifold to
which a vector field is appended. A motion of such a current consists additionally
to the spatial vector field v, which moves the base manifold, also of a variation Ẋ of
the vector field X . The latter variation may be split in the sense of a co-variant time
derivative, Ẋ = Xt + ∇vX , where Xt is the variation of the vector field keeping N
fixed, while ∇vX is understood as the covariant derivative of X along the motion
path of each point moving with the flow of v. The according time derivative of the
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induced current was found in [9] as

∂tγNb = −L ∇
v γN X + γN Ẋ (22)

Double forms

In order to deal with interacting dislocations we work with the interaction energy of
two dislocations. The interaction energy will be discussed in detail below. At this
point we only note for motivational purposes, that the interaction energy is obtained
as a double integral over the two dislocation lines. In the terminology employed here,
the kernel of the double integral is a one-form valued double differential form on the
product space of the crystal manifold with itself. When dealing with double forms
on M × M we distinguish the coordinates on the first and second copy of M as xi

and x̄ i . For the first manifold we use the notations introduced above, while for the
latter we employ the vector basis ∂̄i and the co-vector basis dx̄ i . In local coordinates
a double (p, q)-form reads

D p,q = 1

p!q!Di1···i p | j1··· jq dx
i1 ∧ · · · ∧ dxipdx̄ j1 ∧ · · · ∧ dx̄ jq . (23)

Vector and one-form valued double forms are defined accordingly.

Double currents

Double currents are linear functionals on spaces of double differential forms. Of
specific importance are products of single currents. Note that the double form D p,q

may (with interchangeable perspective) be viewed as a differential p-form on M
taking values in the vector space (consequently a trivial vector bundle) of q-forms
on M . If a fixed q-dimensional current γ q is applied to the resulting q-form at every
x this yields a real number, and henceforth this composition defines a (real-valued)
differential p-form Dp. For this operation we introduce the following notation

Dp
(
γ q

) := γ q
[
D p,q

]
. (24)

Likewise a p-dimensional current produces a q-form, which we write as

Dq
(
γ p

) := γ p
[
D p,q

]
. (25)

The resulting differential p- or q-form, respectively, may again be used as argument
for a p- or q-dimensional current. We define this composition of two currents as their
product

γ qγ p
[
D p,q

] := γ q
[
Dq

(
γ p

)] = γ p
[
Dp

(
γ q

)]
. (26)

The product is commutative, that is γ pγ q = γ qγ p and it defines a double current
on M . The generalization to vector and one-form valued double currents is obvious.
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3 Variational Methods and the Lie-Derivative of Currents

We discuss the case that a current γN is induced by a submanifold N of the crystal
manifold M . A variation of the submanifold N is assumed to be given by a (vari-
ational) vector field ṽ along the manifold. This likewise induces a variation of the
induced current, which is according to the transport theorem (17) given by

γ̃N = −LṽγN . (27)

It seems worth noting that γ̃N is a tangent vector at γN to the space of currents. We
now regard a functional Fφ

[
γN

]
on currents which is induced by a differential form

φ whose degree equals the dimension of N , such that

Fφ
[
γN

] =
∫
N

φ = γN [φ]. (28)

The Gâteaux differential dFφ (at ‘point’ N ) is a linear operator mapping tangent
vectors γ̃N to scalars. It is defined by

dFφ
[
γ̃N

] = lim
t→0

Fφ
[
γNt (ṽ)

] − Fφ
[
γN

]
t

, (29)

where Nt (ṽ) is the manifold which results from letting each point of N move with
the flow of ṽ for time t . In other words the variational derivative was already given
in the transport theorem (17), such that

dFφ
[
γ̃N

] = −LṽγN [φ] = γN [Lṽφ] . (30)

For the vector valued case we work with the induced current γN X of a submanifold N
with an appended vector field X . The functional FP shall be induced by an according
differential form P which takes values in the dual space to the vector bundle of X ,
such that

FP
[
γN X

] = γN X [P] =
∫
N
P∧̇X. (31)

From the transport theorem for vector valued currents we obtain

dFP
[
γ̃N X

] = −L ∇
ṽ γN X [P] + γN X̃ [P] (32)

where the variational current γ̃N X is induced by the spatial variation ṽ and the variation
of the vector field X̃ = X̃t + ∇ṽ X .
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4 Energetics of Dislocation

As we work consistently with vector valued differential forms, we adopt the under-
standing of [15, 18] that the stress tensor σ is most naturally viewed as a one-form
valued two form

σ = 1

2
σi jk dx

i ∧ dx j ⊗ dxk . (33)

The components of the usual (fully covariant) stress tensor may be obtained (for once
employing the modified Einstein summation convention) through σi j = 1

2εiklσkl j .

The latter relation may be reversed to σi jk = εi jlσlk . We disregard the possibility of
body forces in the sequel, such that the stress tensor is solenoidal, which means it is
closed in differential form formalism, that is d∇σ = 0.

The interaction energy Ecr
[
γcb

]
is considered as a functional on vector valued

currents in the sense of the last Section. The interaction energy of a dislocation with
a stress field is usually given in terms of the work done to create the according loop
within the stress field. Let S denote a surface swept by the dislocation to create the
loop c = ∂S. The work done in creating the loop is then taken to be given by the
integral of the scalar product of the stress vector on the surface with the Burgers
vector b. In the language of currents this is the application of the vector valued
current induced by the swept surface combined with the Burgers vector Sb to the
stress form, i.e.,

Ecr
[
γcb

] = γSb [σ ] =
∫
S

1

2
σi jk b

kdxi ∧ dx j . (34)

Obviously, this definition only makes sense if this integral does not depended on the
specific surface S whose boundary is the dislocation line c. We will briefly discuss
this independence in Sect. 5.

Interaction energy

In this Section we define the interaction energy of two dislocations via a double inte-
gral over the dislocation lines. The integral kernel in this is in the current terminology
a (each time) one-form valued (1, 1) form

E = Eik| jldx
k ⊗ dxidx̄ l ⊗ dx̄ j . (35)

The total interaction energy E
[
γcb1 , γc

b
2

]
of two dislocations cb1 and cb2 may then be

defined in terms of a double current as

E
[
γcb1 , γc

b
2

]
:= γcb1γc

b
2
[E ] =

∫
c1

∫
c2

Eik| jl b
k
1b

l
2dx

idx̄ j . (36)
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Explicit expressions for the interaction kernel are known since decades for isotropic
elasticity in an infinite medium, e.g. [3, 6, 8]. But only recently, Lazar and Kirchner
[19] presented a closed form expression for the case of anisotropic elasticity, which
reads (once again applying the modified Einstein convention)

Eik| jl = ε jmnClnpqεqriCstkr F
0
tmps, (37)

where the fourth rank tensor F0
tmps derives as a convolution of the elastic greens

function tensor G0
ps,tm and the Greens function of the Laplace operator GΔ as

F0
tmps = −G0

ps,tm ∗ GΔ. (38)

Very recently Lazar and co-workers [20] were able to derive an analogous formula
for gradient elasticity, where only the Green functions have to be exchanged for those
of the underlying gradient elasticity theory. This is possibly the most elegant way of
dealing with the problem of self-energies which are not defined in the classical case
where the integrand is singular on the dislocation line. With this in mind we will
not go in any detail about the modeling of self energies and shall keep the double
integral formulation also for a single dislocation, such that we formally write

E self
[
γcb

] = 1

2
E

[
γcb , γcb

]
, (39)

where the factor 1/2 corrects for double counting.

5 Variational Calculus Applied to Dislocation Energies

As a first application of the general variational formulas presented above we check
the independence of the energy of creation Ecr

[
γcb

]
from the chosen surface S with

∂S = c. Locally, the value of the energy of creation is independent of the surface
S, if the Gâteaux differential vanishes for any variational vector field ṽ0, which
vanishes along the boundary line, ṽ0 ◦ c = 0, thus maintaining ∂S = c. We denote
the according tangent vector in the space of currents with γ̃ 0

Sb . The independence
of the energy from the specific surface is a consequence of the solenoidality of the
stress tensor, as we find

dSb E
cr

[
γ̃ 0
Sb

] =
∫
S
L ∇

ṽ0 σ ∧̇b (40)

=
∫
S
d∇ ιṽ0σ ∧̇b + ιṽ0d

∇σ ∧̇b (41)

=
∫
S
d

(
ιṽ0σ ∧̇b) (42)
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=
∫
c
ιṽ0σ ∧̇b = 0. (43)

In the above calculation we employed the product rule (8), the constancy of the
Burgers vector (ḃ = 0), and the boundary condition ṽ0 ◦ c = 0. All neighboring sur-
faces to S thus yield the same result for the creation energy and this consequently
applies to all surfaces with the same boundary line which may be obtained from S
by a continuous deformation within the crystal. Two surface with the same boundary
line may for example not be continuously (without tearing) transformed into each
other if the volume surrounded by them contains holes or inclusions. If we exclude
the possibility of holes in the matrix2 there is a potential one-form valued one-form
(called the stress function tensor of first kind [19]) φ = φi jdxi ⊗ dx j available such
that σ = d∇φ. The exterior differential turns into a curl-relation in classical vector
calculus. Using this potential wemay directly turn the surface integral for the creation
energy into a line integral along the dislocation by Stokes theorem (using ∇b = 0)

Ecr
[
γcb

] =
∫
S
d∇φ∧̇b =

∫
∂S

φ∧̇b = γcb [φ] . (44)

This formulation is well suited to inspect the result of varying the position of the
dislocation c, as opposed to varying the position of the surface S. In this case we
obtain the Gâteaux differential with regard to a vector field ṽ along the curve, and
find

dcb E
cr

[
γ̃cb

] =
∫
c
L ∇

ṽ φ∧̇b (45)

=
∫
c
d∇ ιṽφ∧̇b + ιṽd

∇φ∧̇b (46)

=
∫
c
ιṽσ ∧̇b. (47)

We expect this differential to be related to the Peach-Koheler force. To see this we
write the one-form in the last integral in index notation and express it through the
classical stress tensor ṽiσi jk b

kdx j = ṽiεi jlσlkbkdx j . When the curve is parametrized
by arc length s and if t denotes the unit tangent to the curve we easily find that

dcb E
cr [γ̃cb] =

∫
c
ṽiεi jlσlkb

kt jds = −
∫
c
ṽi Fi (t, b) ds, (48)

2Regionswithout holes are called non-periphractic byGurtin [7], a termwhich goes back toMaxwell
[22]. In terms of modern topology this means that the second Betti number is zero, such that all
closed two-forms are exact, saying that they may be obtained from some one-form (a potential) by
exterior differentiation.
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with the well-known Peach–Koehler force Fi (t, b) = εil jσlkbkt j . We thus found the
Peach–Koehler force as a representation of the negative Gâteaux differential on the
space of currents. This comes of courses at no surprise, because the Peach–Koehler
force has been derived as a variational derivative of the interaction energy with the
stress field from the outset [25].

However, the abstract Gâteaux differential is essential to understand how, and
with regard to which Riemannian metric on the space of currents, classical equations
of motion for dislocations actually define a gradient descent. We note that a gradient
is a tangent vector as opposed to the differential which is a co-tangent vector. A
Riemannian metric defines a linear way of mapping tangent vectors to co-vectors
and vice versa. The gradient of a function, as opposed to its differential, will thus
depend on the given Riemannian metric. The appropriate metric will as usual in
the theory of gradient flow in dissipative systems be defined from the viscosity.3

In linear overdamped dislocation theory (as usually assumed in discrete dislocation
simulations) the dislocation velocity v is obtained from the Peach–Koehler force by
a mobility tensor Mi j as v = Mi j Fj∂i . Note that the mobility tensor dependents on
the Burgers vector, M = M (b), though we will usually not state this explicitly. The
velocity field then defines a tangent vector −Lvγcb to the space of currents at γcb ,
such that altogether we map the Gâteaux differential dcb Ecr to a tangent (velocity)
vector to the space of currents. Note that such a map would be defined through any
non-linear mobility law as well. However, in the linear case, and if M is additionally
positive definite, the so obtained evolution law may be understood as a gradient
descent in the space of currents.4 The Riemannian metric is defined by the viscosity
tensor Bi j , which is the inverse of the mobility tensor Mi j , i.e., BikMkj = δ

k
i and

Mik Bkj = δ
k
i . We note that this implies Fi = Bi j v j for the velocity defined by the

linear mobility law. The viscosity tensor defines a Riemannian metric on the tangent
space of dislocations with Burgers vector b as follows

gB (−Lvγcb ,−Lwγcb) =
∫
c
vi Bi j (b)w

jds. (49)

With regard to the viscosity metric the gradient of the creation energy gradB
cb E

cr at
γcb is defined as the tangent vector satisfying

gB
(
gradB

cb E
cr,−Lwγcb

) = dcb E
cr [−Lwγcb

]
. (50)

3Compare [24], where Felix Otto puts it as follows: ‘Themerit of the right gradient flow formulation
of a dissipative evolution equation is that it separates energetics and kinetics. The energetics endow
the state spaceMwith a functional E, the kinetics endow the state spacewith aRiemannian geometry
via the metric tensor g.’
4If the mobility is for instance taken to be zero in the climb-direction, Mi j is not positive definite.
In this case the tangent space to dislocations is restricted to variations within the glide plane, such
that only the in-plane component of the Peach–Koehler force matters. If one then assumes M to be
positive definite for vectors in the glide plane, all the following ideas remain valid.
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By inserting vi = Mi j Fj into (49) we immediately verify that

− gradB
cb E

cr = −LMi j Fj ∂i γcb , (51)

and consequently
∂tγcb = − gradB

cb E
cr. (52)

From the fact that dislocations evolve by a gradient descent with respect to the metric
gB we also obtain the usual interpretation of the evolution of the energy. The energy
will never increase, the decrease in energy is entirely dissipative, and it is quadratic
in (dislocation) velocity and force,

∂t E
cr

[
γcb

] = −gB
(
gradB

cb E
cr, gradB

cb E
cr
)

(53)

= −
∫
c
vi Bi j v

jds (54)

= −
∫
c
vi Fids. (55)

Dislocation ensembles as interacting particle systems

The derivation of the Peach–Koehler force and the understanding of the usual equa-
tion ofmotion of dislocation lines as a steepest gradient descend in a space of currents
is naturally transferred to the case of dislocations interacting by the interaction energy
E

[
cb1, c

b
2

]
, if theLie-derivative operation is applied to the according coordinates. That

is, for two interacting dislocations, we obtain their evolution as

∂tγcbi = − gradB
cbi
E

[
γcb1 , γc

b
2

]
, for i = 1, 2. (56)

We see that in this abstract form we may view a dislocation ensemble of N disloca-
tions with total energy

E tot =
N∑
i=1

Ecr
[
γcbi

]
+ 1

2

N∑
i=1

N∑
j=1

E
[
γcbi , γc

b
j

]
, (57)

as an interacting ‘particle’ system, where each particle follows a steepest descent
with regard to the viscosity metric gB ,

∂tγcbi = − gradB
cbi
E tot = − gradB

cbi
Ecr −

N∑
j=1

gradB
cbi
E

[
γcbi , γc

b
j

]
. (58)
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6 Summary and Outlook

In the current work we took an abstract approach to dislocation systems, which is
designed for averaging static and dynamic dislocation systems. We consider dislo-
cations as linear functionals on spaces of differential forms, i.e., as vector valued de
Rham currents. A transport theorem for moving manifolds provided us with descrip-
tions of tangent vectors to the space of currents and differentials of functions on
the space of currents. Tangent vectors at a current are induced Lie-derivatives of the
current in the direction of vector fields along the dislocation line. We showed that
the Peach–Koehler force is a representation of the negative Gâteaux differential of
the energy function on the space of currents.Moreover, the overdamped linear viscous
drag law for dislocations as employed in discrete dislocation dynamics simulations
was identified as a gradient flow on the space of currents with regard to a Riemannian
metric induced by the viscosity tensor.

The interpretation of the dislocation evolution in terms of a gradient descent may
not be very surprising. We motivated the current investigation from the underly-
ing question, if the variational methods applied to a recently derived local density
approximation for continuous dislocation systems may be justified from averaging
the discrete case. This question is still open and far beyond the scope of this paper.
But we may sketch in which sense we think the results of the current work will
help understanding the variational approach to constitutive modeling in CDD as a
gradient flow on spaces of differential forms. Like in the discrete case, the salient
question in the continuum case is the definition of the right Riemannian metric on
the density spaces [24]. For particle systems underlying porous media equations, the
distance induced by the appropriate Riemannian metric is known as the Wasserstein
distance (which actually goes back to Kantorovich [16]). The Wasserstein distance
between two (normed) densities may be interpreted as the minimum energy needed
to shift either of the density distributions into the other. The Wasserstein distance
is closely related to the conservation law for densities ρ of point particles, i.e., for
evolution equations of the form ∂tρ = − div (ρv) [1]. If the densities are considered
as differential three-forms ω = ρdV , where dV is the standard volume element,
this evolution equation has the form of a Lie-derivative ∂tω = −Lvω. We note that
the general theory of currents developed in this paper yields that tangent vectors to
point particles interpreted as zero-dimensional currents γp are likewise of the form
−Lvγp, in full analogy to the finding for moving dislocations. We may therefore
hope to generalized the concept of viscous Riemannian metrics and the Wasserstein
distance to the evolution equations of the CDD density variables which have the
structure of generalized conservation laws [10] deriving from Lie-derivatives in the
discrete case.
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