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Abstract In contrast to classical elasticity, the micropolar continuum theory allows
to describe materials with significant microstructural effects, such as particulate,
granular and porous composites. Such materials show a size effect and have often
a spatially varying distribution of mechanical properties. This contribution focuses
on the establishment of the interaction integral (I-integral) for decoupling the force
stress intensity factors (FSIFs) and couple stress intensity factors (CSIFs) of a crack
in functionally graded micropolar material (FGMM). The I-integral is derived from
the J-integral by superimposing an auxiliary field on the actual field. The auxiliary
field is examined using three different definitions including the constant-constitutive-
tensor (CCT) formulation, the non-equilibrium (NE) formulation and the incompat-
ibility (IC) formulation. The NE and IC formulations are more appropriate than the
CCT formulation because the I-integral using the CCT formulation involves strain
gradients and curvature gradients, which may cause loss of accuracy in numerical
calculations. Furthermore, we introduce the patched extended finite element method
(patched-XFEM), which replaces crack-tip enrichment functions from the XFEM by
a local refined mesh to improve the numerical precision. The I-integral in combina-
tion with the patched-XFEM is employed to examine numerically the influence of
material parameters on the FSIFs and CSIFs.
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1 Introduction

The micropolar continuum theory is preferable to describe materials where micro-
structural effects are significant, such as particulate, granular and porous compos-
ites, whereas the classical continuum theory does not enable it. A current overview
about micropolar continuum theory can be found in [1–3]. The micropolar contin-
uum concept was first proposed by Cosserat and Cosserat [4], who introduced three
rotational degrees of freedom, in addition to translational degrees of freedom. The
micropolar continuum did not receive much attention until the elaborate studies of
Eringen [5, 6], who introduced a general theory of a microelastic continuum. Cowin
[7] used an internal length to describe the size effect and the coupling number N to
characterize a continuous transition from classical elasticity to micropolar elasticity.
The size effect was first observed by researchers [8–12] in foam and porous mate-
rials. The experiments [11, 12] showed that the porous specimens behaved much
stiffer than expected from classical elasticity under torsion of slender cylinders and
under bending of plates and beams, but size effects were not observed in tension.
In particular, the micropolar elastic theory accurately fits the experimental data for
the effective stiffness of bone samples from the osteon to the whole bone [12, 13].
Moreover, many natural porous materials show a spatially gradation of the mechani-
cal properties tomatch an optimal design. Nevertheless, issues of fracture and fatigue
have to be considered to maintain high strength and durability.

Through analyzing a crack in an infinite two-dimensional (2D) micropolar
medium, researchers [14, 15] found that both force stresses and couple stresses
near a crack tip have an r−1/2 singularity. They proposed to use the force stress
intensity factors (FSIFs) and couple stress intensity factors (CSIFs) to characterize
the crack-tip fields. Paul and Sridharan [16, 17] analyzed the influence of themicrop-
olar constitutive material parameters on the FSIFs and CSIFs for penny-shaped and
Griffith cracks in a micropolar medium. They found that both the mode-I FSIF and
the CSIF depend on the internal length parameter as well as the coupling number
N . Sridharan [18] analyzed an insulated penny-shaped crack in micropolar media
under uniform heat-flow loading. He found that the mode-II FSIF depends on the
intrinsic length parameter and the coupling number N , and that its value remains
higher than those obtained from the classical continuum theory. Diegele et al. [19]
provided the near-tip asymptotic field solutions for a mixed-mode crack in a 2D
isotropic micropolar solid. They showed that aside from two FSIFs and one CSIF
characterizing the singular terms, two constant force stresses and one constant couple
stress are involved in the expressions of force stresses and couple stresses, respec-
tively. Recently, a number of research works on fracture of micropolar materials have
been carried out in theoretical [20–25] and numerical approaches including the finite
element method (FEM) [26, 27] the boundary element method (BEM) [28, 29] and
the extended finite element method (XFEM) [30, 31].

In practical numerical calculations, only few methods are effective to extract the
crack-tip fracture parameters for micropolar elasticity. Jaric [32] proposed a path-
independent J-integral that equals the crack-tip energy release rate. However, the
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mixed-mode FSIFs and CSIFs cannot be decoupled from the J-integral. An effective
approach to decouple the mode-I FSIF, the mode-II FSIF and the in-plane CSIF is
the I-integral [33], which is derived from the J-integral based on the superposition
of the actual field and an auxiliary field. The I-integral was first proposed by Stern et
al. [34] for classical elastic media. As the auxiliary field can be designed freely, the
I-integral allows not only to decouple the mixed-mode SIFs, but also to extract the
crack-tipT-stress [35]. The I-integralwas developed for functionally gradedmaterials
(FGMs) [36, 37] which is a category of nonhomogeneous materials with properties
varying continuously with location. Compared to the analytical models for FGMs
[38, 39], the I-integral is easily implemented in practical fracture analyses. The merit
of the I-integral is demonstrated in crack analyses of FGMs, bi-materials, and fiber-
reinforced composites [40–45]. Recently, Yu et al. [33] developed the I-integral for
extracting the FSIFs and CSIFs of micropolar materials and proved that the I-integral
is domain-independent for interfaces.

The present contribution aims to discuss the validity of the I-integral for func-
tionally graded micropolar materials (FGMMs) through the selection of different
applicable auxiliary fields. The outline is as follows. Section2 briefly introduces
the micropolar elastic theory and the linear elastic fracture theory for FGMMs.
Section3 discusses three applicable auxiliary fields and derives the domain forms of
the I-integral. Section4 introduces briefly the patched XFEM. Several examples are
provided in Sect. 5 to verify the validity of the auxiliary fields. Finally, a summary
is given in Sect. 6.

2 Fracture Mechanics of FGMMs

2.1 Governing Equations for Micropolar Elasticity

In the micropolar continuum theory, each material point has six degrees of freedom,
including three displacement components and three micro-rotation components. For
a centrosymmetric isotropic micropolar solid without body forces and body couples,
the governing equations are as follows [46]:

• Kinematic equations:

εi j = u j,i − ei jkφk (1)

χi j = φ j,i

where u j and φk are the components of displacement and micro-rotation vectors,
respectively, εi j and χi j are the components of microstrain and curvature tensors,
respectively, and ei jk is the permutation tensor. The subscripts i, j, k and l range
from (1) to (3), and the repetition of a subscript in a term denotes a summation
with respect to that index over its range. A comma denotes a partial derivative.
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• Equilibrium equations (without body forces and body couples):

σ j i, j = 0 (2)

m ji, j + ei jkσ jk = 0

• Constitutive equations:

σi j = Ai jklεkl = λεkkδi j + (μ + κ)εi j + με j i (3)

mi j = Bi jklχkl = αχkkδi j + γχi j + βχ j i

where σi j andmi j are the force stress and couple stress tensors, respectively, λ and
μ are Lamé’s constants, and κ , α, β and γ are the micropolar material parame-
ters. The stress is also expressed by the macrostrain tensor ei j = (ui, j + u j,i )/2
and the macrorotation vector rk = eklmum,l/2 as σi j = λekkδi j + (2μ + κ)ei j +
κei jk(rk − φk). For micropolar elasticity, the shear modulus G, Young’s modulus
E and Poisson’s ratio ν are given by [20]:

G = μ + κ

2
, ν = λ

2λ + 2G
, E = 2G(1 + ν) (4)

In addition, the characteristic length in torsion lt , and the characteristic length in
bending, lb and the coupling number N given by [20]

lt =
√

β + γ

2G
, lb =

√
γ

4G
, N =

√
κ

2G + κ
(5)

are used to describe the micropolar materials. Due to the existence of two internal
characteristic lengths, the micropolar theory is capable to predict size effects. The
coupling number N satisfies the relation 0 ≤ N ≤ 1, where N = 0 corresponds
to the classical elastic theory and N = 1 the couple stress theory. The micropolar
constants satisfy the following inequalities [1, 46–48]:

3λ + 2G ≥ 0, G ≥ 0, κ ≥ 0 (6)

3α + β + γ ≥ 0, −γ ≤ β ≤ γ

2.2 Crack-Tip Asymptotic Fields in FGMMs

Let’s consider a 2D functionally graded micropolar body occupying the space R
with a crack as shown in Fig. 1. Only in-plane displacement components u1, u2 and
micro-rotation component φ3 are non-zero, and thus the governing equations are
simplified to:
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Fig. 1 A two-dimensional
functionally graded
micropolar solid with an
inclined crack

εi j = u j,i − ei j3φ3, χi3 = φ3,i (7)

σ j i, j = 0, mi3,i + ei j3σi j = 0 (8)

σi j = Ai jkl(x)εkl , mi3 = γ (x)χi3 (9)

The material parameters Ai jkl(x) (i, j, k, l = 1, 2) and γ (x) are spatially continuous
and piecewise differentiable in domain R. The boundary conditions are given by

ui = ūi on ∂Ru, σi j ni = t̄ j on ∂Rσ (10)

φ3 = φ̄3 on ∂Rφ, mi3ni = m̄3 on ∂Rm

where ∂R = ∂Ru + ∂Rσ = ∂Rφ + ∂Rm is the boundary of R, t̄i and m̄3 are the
force traction and the couple traction, respectively, on the boundary, ūi and φ̄3 are
the displacement and the micro-rotation, respectively, prescribed on the boundary,
and ni is the unit outward normal vector to the boundary.

In a small circular region Rε around the crack tip, the dependence of material
parameters on coordinates x = xi ei in FGMMs Ai jkl(x) and γ (x) can be expressed
in a Taylor series expansion as

Ai jkl(r, θ) = A0
i jkl + r A(1)

i jkl(θ) + r2

2
A(2)
i jkl(θ) + . . . ≡ A0

i jkl + Ãi jkl (11)

γ (r, θ) = γ0 + rγ (1)(θ) + r2

2
γ (2)(θ) + . . . ≡ γ0 + γ̃
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where A0
i jkl and γ0 are the local material constants evaluated at the crack tip, A(n)

i jkl(θ)

and γ (n)(θ) are angular functions with n = 1, 2, . . .. Ãi jkl ∼ O(r) and γ̃ ∼ O(r)
are higher order terms of material parameters. Substituting Eq. (11) into Eqs. (7)–(9)
yields

(A0
i jkl + Ãi jkl)(ul,k j − ekl3φ3, j ) + Ãi jkl, j (ul,k − ekl3φ3) = 0, (12)

(γ0 + γ̃ )φ3,i i + γ̃,iφ3,i + ei j3(A
0
i jkl + Ãi jkl)(ul,k − ekl3φ3) = 0

Following Ref. [19], we assume that

ui (r, θ) = u(0)
i (θ)r s + u(1)

i (θ)r s+1/2 + u(2)
i (θ)r s+1 + . . . , (13)

φ3(r, θ) = φ
(0)
3 (θ)r s + φ

(1)
3 (θ)r s+1/2 + φ

(2)
3 (θ)r s+1 + . . .

where the superscript s is an unspecified positive number. If the region Rε is suf-
ficiently small, the influence of higher-order terms of material constants can be
ignored. Keeping the singular terms of O(r s−2) and O(r s−3/2) and ignoring higher-
order terms, one can simplify (12) as

A0
i jklul,k j = 0, γ0φ3,i i = 0 (14)

The expressions in Eq. (14) are identical to those for a homogeneousmicropolar solid
with material constants evaluated at the crack tip in FGMMs. Adopting the solution
process given in Ref. [19], one obtains the result that in the vicinity of the crack
tip, both the displacement and micro-rotation have a r1/2-singularity. The terms u(0)

i ,
u(1)
i , φ(0)

3 and φ
(1)
3 are identical to those given by Diegele et al. [19] for homogeneous

micropolar materials, while the terms u(n)
i and φ

(n)
3 (n ≥ 2) for FGMMs are different

from those in [19] due to the nonhomogeneity of material property. Therefore, for
the generalized plane strain condition, the expressions of ui and φ3 are given by

u1 = [
KI f

I
1 (θ) + KI I f

I I
1 (θ)

]√ r

2π
(15)

+
(
kI

1 − ν0

2G0
cos θ + kI I

2G0 + κ0

4G0κ0
sin θ

)
r + O(r3/2 ) + . . .

u2 = [
KI f

I
2 (θ) + KI I f

I I
2 (θ)

]√ r

2π

−
(
kI

ν0

2G0
sin θ + kI I

2G0 − κ0

4G0κ0
cos θ

)
r + O(r3/2 ) + . . .

φ3 = L3

γ0

√
2r

π
sin

θ

2
+ l3

γ0
r cos θ + O(r3/2 ) + . . . (16)
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The crack-tip force stresses and couple stresses are expressed as

σi j = 1√
2πr

[
KI g

I
i j (θ) + KI I g

I I
i j (θ)

]
(17)

+ (
kI δi1δ j1 + kI I δi1δ j2

)+ O(r1/2 ) + . . .

mi3 = L3√
2πr

(
−δi1 sin

θ

2
+ δi2 cos

θ

2

)
+ l3δi1 + O(r1/2 ) + . . . (18)

where KI = lim
r→0

{√2πr σ22|θ=0}, KI I = lim
r→0

{√2πr σ21|θ=0} and L3 = lim
r→0

{√2πr

m23|θ=0} are the mode-I FSIF, mode-II FSIF and in-plane CSIF, respectively. The
coefficients kI , kI I , and l3 represent constant stress terms due to crack opening,
crack sliding and in-plane micro-rotation, respectively. It can be observed that both
the normal stress σ11 and the shear stress σ12 have a constant term. This is different
from the classical fracture mechanics, where only the normal stress σ11 = T has a
constant term. The angular functions f Ii , f

I I
i , gI

i , and gI I
i for the generalized plane

strain condition are given by [33]:

f I1 = S0
4G0

[
(5 − 4ν0) cos

θ

2
− cos

3θ

2

]
− ν0

G0
cos

θ

2
(19)

f I2 = S0
4G0

[
(3 − 4ν0) sin

θ

2
− sin

3θ

2

]
+ 1 − ν0

G0
sin

θ

2

f I I1 = S0
4G0

[
(5 − 4ν0) sin

θ

2
+ sin

3θ

2

]
+ 1 − ν0

G0
sin

θ

2
(20)

f I I2 = S0
4G0

[
(4ν0 − 3) cos

θ

2
− cos

3θ

2

]
+ ν0

G0
cos

θ

2

gI
11 = S0

4

(
3 cos

θ

2
+ cos

5θ

2

)
, gI

12 = S0
4

(
3 sin

θ

2
+ sin

5θ

2

)
− sin

θ

2
(21)

gI
21 = S0

4

(
− sin

θ

2
+ sin

5θ

2

)
, gI

22 = S0
4

(
cos

θ

2
− cos

5θ

2

)
+ cos

θ

2

gI I
11 = S0

4

(
−3 sin

θ

2
− sin

5θ

2

)
− sin

θ

2
, gI I

12 = S0
4

(
3 cos

θ

2
+ cos

5θ

2

)
(22)

gI I
21 = S0

4

(
− cos

θ

2
+ cos

5θ

2

)
+ cos

θ

2
, gI I

22 = S0
4

(
− sin

θ

2
+ sin

5θ

2

)
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The micropolar constant S0 is defined by

S0 = 1 − 2(1 − ν0)N 2
0

1 + 2(1 − ν0)N 2
0

(23)

where N0 = √
κ0/(2G0 + κ0) is the coupling number evaluated at the crack tip.

The constant S0 satisfies the relation 1
1.5−ν0

− 1 ≤ S0 ≤ 1 due to 0 ≤ N0 ≤ 1. It can

be observed that the above angular functions f Ii , f I Ii , gI
i , and gI I

i degenerate to
the corresponding functions of classical elastic theory for N0 = 0 and to the couple
stress theory for N0 = 1 [20]. For the generalized plane stress condition, Poisson’s
ratio in the above expressions must be replaced with ν0/(1 + ν0). Researchers [49,
50] found that the nature of the near tip displacement for FGMs is precisely the same
as for homogeneous materials (the form of the terms proportional to r1/2 and r in the
displacement expression for FGMs is identical to that for homogeneous materials).
It is also the case for the near tip displacement and micro-rotation of FGMMs.

3 Interaction Integral (I-integral)

The J-integral for a micropolar material is given by [51]

J = lim
Γε→0

∫
Γε

[
1

2
(σ jkε jk + m j3χ j3)δi1 − σi j u j,1 − mi3φ3,1

]
nidΓ , (24)

where Γε is an integral contour around the crack tip, as shown in Fig. 2. Superimpos-
ing an auxiliary field (uauxi , φaux

3 ) on the actual field (ui , φ3) of the considered crack
problem leads to a new state for which the J-integral is given by

J (S) = lim
Γε→0

∫
Γε

⎧⎨
⎩

1
2 [(σ jk + σ aux

jk )(ε jk + εauxjk ) + (m j3 + maux
j3 )(χ j3 + χaux

j3 )]δi1
−(σi j + σ aux

i j )(u j,1 + uauxj,1 ) − (mi3 + maux
i3 )(φ3,1 + φaux

3,1 )

⎫⎬
⎭ ni dΓ

(25)

Fig. 2 Integral paths around
the crack tip
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Expanding the J-integral and extracting the cross terms, one obtains the I-integral
[33]

I = lim
Γε→0

∫
Γε

⎡
⎣

1
2 (σ

aux
jk ε jk + σ jkε

aux
jk + maux

j3 χ j3 + m j3χ
aux
j3 )δi1

−σ aux
i j u j,1 − σi j uauxj,1 − maux

i3 φ3,1 − mi3φ
aux
3,1

⎤
⎦ nidΓ (26)

The auxiliary field must be defined prior to the computation of the I-integral.

3.1 Three Formulations of the Auxiliary Field

Kim and Paulino [37] proposed three formulations of the auxiliary field for func-
tionally graded materials, i.e. a constant-constitutive-tensor (CCT) formulation, a
nonequilibrium (NE) formulation and an incompatibility (IC) formulation. Rao and
Kuna [52, 53] showed the validity of these three definitions for functionally graded
piezoelectric and magnetoelectroelastic materials. Similarly, three formulations are
defined for FGMMs here. All of these three formulations adopt the same definitions
for the auxiliary displacement and micro-rotation, i.e.

uauxi = [
Kaux

I f Ii (θ) + Kaux
I I f I Ii (θ)

]√ r

2π

φaux
3 = Laux

3

γ0

√
2r

π
sin

θ

2
, (27)

where Kaux
I , Kaux

I I and Laux
3 are the auxiliary mode-I FSIF, mode-II FSIF and

in-plane CSIF, respectively. The angular functions f Ii and f I Ii are identical to those
in Eqs. (19) and (20). However, different formulations are used to define the auxiliary
force stress, couple stress, microstrain and curvature, i.e.

• CCT formulation

εauxi j = uauxj,i , χaux
i3 = φaux

3,i (28)

σ aux
i j = A0

i jklε
aux
kl , maux

i3 = γ0χ
aux
i3 (29)

In the CCT formulation, all auxiliary variables are the asymptotic analytical solu-
tions of a crack in an infinite homogeneous micropolar plate. Here, the material
constants in the auxiliary constitutive Eq. (29) are different from those in the actual
constitutive Eq. (3). As a result, the auxiliary field satisfies the equilibrium equa-
tions σ aux

i j,i = 0 and maux
i3,i = 0, but violates the relations σ aux

i j �= Ai jkl(x)εauxkl and
maux

i3 �= γ (x)χaux
i3 for any coordinate apart from the crack tip.
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• NE formulation

εauxi j = uauxj,i , χaux
i3 = φaux

3,i (30)

σ aux
i j = Ai jklε

aux
kl , maux

i3 = γχaux
i3 (31)

In the NE formulation, the auxiliary force stress and couple stress are not the
asymptotic analytical solutions of a crack in a homogeneous micropolar plate, but
defined using the actual material properties of FGMMs. As a result, the auxiliary
field does not satisfy the equilibrium equations, i.e. σ aux

i j,i �= 0 and maux
i3,i �= 0.

• IC formulation

σ aux
i j = A0

i jklu
aux
l,k , maux

i3 = γ0φ
aux
3,i (32)

εauxi j = A−1
i jklσ

aux
kl , χaux

i3 = γ −1maux
i3 (33)

In the IC formulation, the auxiliary force stress and couple stress are the asymptotic
analytical solutions of a crack in a homogeneous micropolar plate so that σ aux

i j,i = 0
and maux

i3,i = 0, whereas the auxiliary strain and curvature are defined using the
actual material properties which results in εauxi j �= uauxj,i and χaux

i3 �= φaux
3,i .

For homogeneous materials, all of the above three formulations coincide with each
other, whereas none of the above three formulations satisfies all three governing
relations for FGMMs, i.e. the constitutive, equilibrium and compatibility equations.

3.2 Numerical Calculation of the I-Integral

For practical calculations, the infinitesimal contour integral Eq. (26) must be con-
verted into an equivalent domain integral. A traction-free crack is considered for
which the crack-face boundary conditions are

niσi j = 0, nimi j = 0, on Γ +
C and Γ −

C (34)

where Γ +
C and Γ −

C represent the top and bottom faces of a crack, respectively. As
shown in Fig. 2,we convert the I-integral into an equivalent domain integral byGauss’
theorem as

I =
∫
A

∂

∂xi

⎧⎨
⎩
⎡
⎣ σ aux

i j u j,1 + σi j uauxj,1 + maux
i3 φ3,1 + mi3φ

aux
3,1

− 1
2 (σ

aux
jk ε jk + σ jkε

aux
jk + maux

j3 χ j3 + m j3χ
aux
j3 )δi1

⎤
⎦w

⎫⎬
⎭ d A (35)
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where a smooth weighting function w is introduced with values varying from 1 on
Γε to 0 on ΓB . Applying the auxiliary fields defined above, one can simplify the
I-integral as follows:

• I-integral using the CCT formulation

I =
∫
A

⎡
⎣ σ aux

i j u j,1 + σi j uauxj,1 − 1
2 (σ

aux
jk ε jk + σ jkε

aux
jk )δi1

+maux
i3 φ3,1 + mi3φ

aux
3,1 − 1

2 (m
aux
j3 χ j3 + m j3χ

aux
j3 )δi1

⎤
⎦w,i d A

+
∫
A

[
(σ aux

12 − σ aux
21 )φ3,1 − (σ12 − σ21)φ

aux
3,1

]
wdA

+ 1

2

∫
A

⎡
⎣ (Ai jkl − A0

i jkl)(εi jε
aux
kl,1 − εauxi j εkl,1) − Ai jkl,1εi jε

aux
kl

+(γ − γ0)(χi3χ
aux
i3,1 − χaux

i3 χi3,1) − γ,1χi3χ
aux
i3

⎤
⎦w dA (36)

• I-integral using the NE formulation

I =
∫
A

⎛
⎝ σ aux

i j u j,1 + σi j uauxj,1 − σ jkε
aux
jk δi1

+maux
i3 φ3,1 + mi3φ

aux
3,1 − m j3χ

aux
j3 δi1

⎞
⎠w,i d A

+
∫
A

[
(σ aux

12 − σ aux
21 )φ3,1 − (σ12 − σ21)φ

aux
3,1

]
wdA

+
∫
A

(
σ aux
i j,i u j,1 − Ai jkl,1εi jε

aux
kl + maux

i3,i φ3,1 − γ,1χi3χ
aux
i3

)
w dA (37)

• I-integral using the IC formulation

I =
∫
A

⎛
⎝ σ aux

i j u j,1 + σi j uauxj,1 − σ aux
jk ε jkδi1

+maux
i3 φ3,1 + mi3φ

aux
3,1 − maux

j3 χ j3δi1

⎞
⎠w,i d A

+
∫
A

[
(σ aux

12 − σ aux
21 )φ3,1 − (σ12 − σ21)φ

aux
3,1

]
wdA

+
∫
A

{
[(A0

i jkl)
−1 − A−1

i jkl]σi jσ
aux
kl,1 + (γ −1

0 − γ −1)mi3m
aux
i3,1

}
w dA (38)

It can be observed that each of the above three domain forms of the I-integral contains
three parts, whereby the third integral caused by material nonhomogeneity vanishes
for homogeneous micropolar materials. The I-integral using the CCT formulation
Eq. (36) contains strain gradient (εkl,1), curvature gradient (χi3,1) and material prop-
erty gradient (Ai jkl,1 and γ,1). The I-integral using the NE formulation Eq. (37) con-
tains neither strain gradient nor curvature gradient, but contains material property
gradient. The I-integral using the IC formulation Eq. (38) contains none of them.
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Since the I-integral using the CCT formulation contains strain and curvature gradi-
ents, its numerical computation will lose accuracy. Therefore, the NE and IC formu-
lations are more appropriate than the CCT formulations for FGMMs. In addition,
the I-integral using the IC formulation is effective for micropolar composites due to
its domain-independence for interfaces [19].

3.3 Extraction of the FSIFs and CSIFs

In order to derive the relations between the I-integral and the intensity factors, we take
the integral path Γε along a circle of radius r . Substituting dΓ = rdθ into Eq. (26)
yields

I = lim
r→0

∫ π

−π

⎡
⎣

1
2 (σ

aux
jk ε jk + σ jkε

aux
jk + maux

j3 χ j3 + m j3χ
aux
j3 )δi1

−σ aux
i j u j,1 − σi j uauxj,1 − maux

i3 φ3,1 − mi3φ
aux
3,1

⎤
⎦ nirdθ . (39)

In a small region Rε around the crack tip, the material constants A−1
i jkl and γ −1 can

be expressed using a Taylor series expansion as

A−1
i jkl(r, θ) = (A0

i jkl)
−1 + r

∂A−1
i jkl

∂r (θ) + r2

2

∂2A−1
i jkl

∂r2 (θ) + . . . .

γ −1(r, θ) = γ −1
0 + r ∂γ −1

∂r (θ) + r2

2
∂2γ −1

∂r2 (θ) + . . . .

(40)

As r → 0, only the singular terms in the expansions of σi j , mi3, u j,i , φ3,i , εauxi j and
χaux
i3 contribute to the I-integral. Substituting Eq. (40), the actual and auxiliary fields

into Eq. (39) yields

I = 1 + S0
E ′

0
(KI K

aux
I + KI I K

aux
I I ) + L3Laux

3

γ0
(41)

where

E ′
0 =

{
E0 (plane stress)
E0

1−ν2
0
(plane strain) (42)

Taking the vector [Kaux
I , Kaux

I I , Laux
3 ] sequentially to be [1, 0, 0], [0, 1, 0] and

[0, 0, 1], one can compute the corresponding I-integrals I (KI ), I (KI I ) and I (L3), so
that the FSIFs and CSIFs can be solved according to the relations

KI = E ′
0

1 + S0
I (KI ), KI I = E ′

0

1 + S0
I (KI I ), L I = γ0 I

(L3). (43)
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4 Patched XFEM for Micropolar Materials

Through embedding local solutions of boundary-value problems into the finite ele-
ment approximation, the extended finite element method (XFEM) [54] allows cracks
and material interfaces to be tackled independently of the mesh. The XFEM can
greatly facilitate the modeling process, especially for crack propagation problems.
Recently, the XFEM has been developed for micropolar elasticity [30, 31], too. The
displacement approximation in the XFEM usually contains the standard finite ele-
ment shape functions, the enrichment for crack faces and the enrichment for crack
tips. The enrichment for crack faces is only a function of position, whereas the
enrichment for crack tips is dependent on material constitutive equation. The use
of the crack-tip enrichment is mainly used to improve the numerical accuracy. If
the finite element mesh is sufficiently fine and the I-integrals are applied, it is not
necessary to use the crack-tip enrichment functions. For FGMMs, we herein adopt
the displacement and micro-rotation approximations as

⎧⎪⎨
⎪⎩
uh1(x)
uh2(x)

φh
3 (x)

⎫⎪⎬
⎪⎭ =

∑
p∈SN

Np(x)

⎧⎪⎨
⎪⎩
u p
1

u p
2

φ
p
3

⎫⎪⎬
⎪⎭+

∑
p∈SH

Np(x)H̄p(x)

⎧⎪⎨
⎪⎩
bp
1

bp
2

bp
3

⎫⎪⎬
⎪⎭ (44)

Here, u p
i , φ

p
3 and bp

i are the nodal displacements, nodal micro-rotation, and the
additional degrees of freedom, respectively. Np(x) is the standard finite element
shape function, H̄p(x) = H(x − x̄) − H(xp − x̄) is the shifted enrichment function
for a crack face, where x, xp and x̄ denote an arbitrary point, the nodal point and the
point on a crack face, respectively. SN and SH are the set of standard nodes and the
set of enriched nodes, respectively. For a n-node element cut by a crack, the nodal
degrees-of-freedom are expressed as

{a} = [
u(1)
1 u(1)

2 φ
(1)
3 ... u(n)

1 u(n)
2 φ

(n)
3

]T
(45)

{b} = [
b(1)
1 b(1)

2 b(1)
3 ... b(n)

1 b(n)
2 b(n)

3

]T

The displacement and micro-rotation are expressed in matrix form as

{
uh

φh
3

}
= [

Na Nb
] { a

b

}
(46)

Here, [Na] = [
N(1)I N(2)I ... N(n)I

]
, [Nb] = [

H̄(1)N(1)I H̄(2)N(2)I ... H̄(n)N(n)I
]
,

and u = [
u1 u2

]T
, where I is an identity matrix of order 3. The strain and curvature

are expressed in matrix form as

{
ε

χ

}
= [

Ba Bb
] { a

b

}
(47)
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Here, {ε} = [ε11 ε12 ε21 ε22]T, {χ} = [χ13 χ23]T, [Ba] = [
B(1) B(2) ... B(n)

]
and

[Bb] = [
H̄(1)B(1) H̄(2)B(2) ... H̄(n)B(n)

]
, where

[Bp] =

⎡
⎢⎢⎢⎢⎢⎢⎣

Np,1 0 0
0 Np,1 −Np

Np,2 0 Np

0 Np,2 0
0 0 Np,1

0 0 Np,2

⎤
⎥⎥⎥⎥⎥⎥⎦

, p = (1), . . . (n)

Substituting Eq. (47) into the weak forms of the governing equations

∫
R

{
δεT δχT

} [C(x)]
{

ε

χ

}
dV =

∫
∂Rσ

{
δuT δφ3

} { t
m3

}
dS , (48)

one obtains the linear equations

[
Ke

aa Ke
ab

Ke
ba Ke

bb

]{
a
b

}
=
{
Fe

0

}
. (49)

Here, C(x) is material matrix of FGMMs, t = [
t1 t2

]T
is the traction vector. The

element stiffness matrices and the nodal force vector for one element e are

[Ke
aa] =

∫
V e

[Ba]T[C(x)][Ba]dV

[Ke
bb] =

∫
V e

[Bb]T[C(x)][Bb]dV (50)

[Ke
ab] =

∫
V e

[Ba]T[C(x)][Bb]dV = [Ke
ba]T

.

{Fe} =
∫
S
[Na]T

{
t
m3

}
dS (51)

For plane strain condition, the material matrix C is expressed as

[C] =

⎡
⎢⎢⎢⎢⎢⎢⎣

λ + 2G 0 0 λ

0 G + κ/2 G − κ/2 0
0 G − κ/2 G + κ/2 0
λ 0 0 λ + 2G

0

0
γ 0
0 γ

⎤
⎥⎥⎥⎥⎥⎥⎦

while for plane stress condition, the parameter λ in the material matrix C should be
replaced with 2Gλ/(2G + λ) .
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In order to achieve satisfactory precision in the region around the crack tip, Yu et
al. [45] proposed to patch a refined mesh on the main mesh. The technique was
referred to as the patched XFEM. When the crack propagates, the patched mesh
goes together with the crack tip. For FGMMs, the nonhomogeneous >>graded<<

element technique [40] is adopted, namely, the material properties at each integration
point are used in the calculation of the above element stiffness matrices.

5 Numerical Examples

In this section, internal and edge cracks are studied sequentially to verify the validity
of different auxiliary fields and to examine the influence of material parameters on
the FSIFs and CSIFs.

5.1 Internal Cracks

Figure3(a) shows an inclined crack of length 2a and angleω located in a square plate
of length 2W subjected to tensile load σapp = σoeηx1 . Young’smodulus varies with x1
according to E = Eoeηx1 , whereas Poisson’s ratio ν, the coupling number N , and the
characteristic length lb remain constant in the entire plate. The data used in numerical
analysis are as follows: σo = 1MPa, Eo = 1GPa, ν = 0.3 and lb = 0.01mm.

Example 1: An Infinite Square Plate with an Inclined Crack
First, the geometric parameters a = 1mm and W = 20mm, the material gradient
parameter η = 0 and the coupling number N = 0.01 are used to model an infinite
homogeneous classical elastic plate, for which the analytical solution of the FSIFs
is given by

KI = σo
√

πa cos2ω (52)

KI I = σo
√

πa sinω cosω

Then, the geometric and material parameters are set to a = 1mm, W = 10mm,
β = 0.5 and N = 0.01 to model a functionally graded classical elastic plate. The
classical elastic plate with such a configuration was investigated by Dolbow and
Gosz [36]. As shown in Fig. 3b, the finite element mesh consists of 1945 eight-node
quadrilateral (Q8) and 24 six-node quarter-point (T6qp) singular elements around
the crack tips, with a total of 1969 elements and 6026 nodes.

As shown in Fig. 3c, the region being comprised of elements totally and partially
enclosed by a circle CI of radius RI is selected to be the integration domain. In
this example, RI = 6he, where he = 0.012 is the radial edge length of an element
at the crack tip. A right-hand Cartesian coordinate frame (x1, x2, x3) is used, which
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(a) Geometry and boundary conditions (b) Finite element mesh

(c) Integral domains determined by a circle CI of radius RI

Fig. 3 A cracked micropolar plate under tension

leads to negative CSIF values for this example. The negative sign in the CSIFs just
denotes the direction and thus, the normalizedCSIFs−L3/L0 are given in the tables.
Tables1 and 2 list the normalized intensity factors KI /K0 , KI I /K0 and −L3/L0

for a homogeneous plate (η = 0) and for a functionally graded plate (η = 0.5),
respectively, where the reference factors K0 = σo

√
πa and L0 = lbK0 are used for

the internal crack. The results show that all three formulations of I-integral generate
the same results for the homogeneous plate. For the functionally graded plate, the IC
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Table 1 Normalized FSIFs and CSIFs at the right tip of a crack in an infinite homogeneous plate
(Example 1: a/W = 0.05, η = 0, N = 0.01, RI /he = 6)

CCT formulation NE formulation IC formulation Analytical
ω

(◦) K I

K0

KI I

K0
− L3

L0

KI

K0

KI I

K0
− L3

L0

KI

K0

KI I

K0
− L3

L0

KI

K0

KI I

K0

0 1.002 0.000 0.006 1.002 0.000 0.006 1.002 0.000 0.006 1.000 0.000

18 0.908 0.293 0.005 0.908 0.293 0.005 0.908 0.293 0.005 0.905 0.294

36 0.656 0.478 0.004 0.656 0.478 0.004 0.656 0.478 0.004 0.655 0.476

54 0.348 0.477 0.002 0.348 0.477 0.002 0.348 0.477 0.002 0.346 0.476

72 0.095 0.295 0.001 0.095 0.295 0.001 0.095 0.295 0.001 0.096 0.294

Table 2 Normalized FSIFs and CSIFs of a crack in a functionally graded plate (Example 1:
a/W = 0.1, η = 0.5, N = 0.01, RI /he = 6)

CCT formulation NE formulation IC formulation Ref. [36]

ω

(◦) K I

K0

KI I

K0
− L3

L0

KI

K0

KI I

K0
− L3

L0

KI

K0

KI I

K0
− L3

L0

KI

K0

KI I

K0

Right tip

0 1.450 −0.001 0.010 1.451 −0.001 0.010 1.451 −0.001 0.010 1.445 0.000

18 1.308 0.348 0.009 1.310 0.348 0.009 1.310 0.348 0.009 1.303 0.353

36 0.936 0.558 0.006 0.937 0.558 0.006 0.937 0.558 0.006 0.930 0.560

54 0.495 0.538 0.003 0.496 0.538 0.003 0.496 0.538 0.003 0.488 0.540

72 0.146 0.316 0.001 0.146 0.316 0.001 0.146 0.316 0.001 0.142 0.316

Left tip

0 0.683 −0.001 0.003 0.682 −0.001 0.003 0.682 −0.001 0.003 0.681 0.000

18 0.627 0.213 0.003 0.626 0.213 0.003 0.626 0.213 0.003 0.623 0.213

36 0.466 0.368 0.002 0.466 0.367 0.002 0.466 0.367 0.002 0.467 0.364

54 0.252 0.398 0.002 0.251 0.398 0.002 0.251 0.398 0.002 0.251 0.396

72 0.060 0.269 0.001 0.060 0.269 0.001 0.060 0.269 0.001 0.062 0.268

formulation and the NE formulation deliver the same results, which have a difference
of less than 1.0% with the results computed using the CCT formulation. All CSIF
values approach zero, which indicates that it is reasonable to use the coupling number
N = 0.01 to simulate a classical elastic plate. The present FSIFs are compared with
the analytical results of Eq. (52) (see Table1) and those published in Ref. [36] (see
Table2). An agreement within 1.0% is shown for all three formulations.

Example 2: A Functionally Graded Plate with an Inclined Crack

The geometric and material parameters are set to a = 1mm, W = 10mm, η = 0.5
and N = 0.01 and N = 0.5 to model a functionally graded micropolar plate. As
shown in Fig. 3c, six integration domains of RI /he = 3, 6, 12, 24, 48 and 96 are used
to compute the FSIFs and CSIFs in order to verify the domain-independence of the
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Table 3 Normalized FSIFs and CSIFs of a crack in a functionally graded plate (Example 2:
a/W = 0.1, η = 0.5, N = 0.01, ω = 18◦)

CCT formulation NE formulation IC formulation

RI

he

K I

K0

KI I

K0
− L3

L0

KI

K0

KI I

K0
− L3

L0

KI

K0

KI I

K0
− L3

L0

Right tip

3 1.309 0.347 0.009 1.310 0.347 0.009 1.310 0.347 0.009

6 1.308 0.348 0.009 1.310 0.348 0.009 1.310 0.348 0.009

12 1.306 0.348 0.009 1.309 0.348 0.009 1.309 0.348 0.009

24 1.304 0.348 0.009 1.309 0.349 0.009 1.309 0.349 0.009

48 1.297 0.348 0.009 1.309 0.349 0.009 1.309 0.349 0.009

96 1.283 0.344 0.009 1.308 0.349 0.009 1.308 0.349 0.009

Dr (%) 2.0 1.1 0.0 0.2 0.6 0.0 0.2 0.6 0.0

Left tip

3 0.627 0.213 0.003 0.626 0.212 0.003 0.626 0.212 0.003

6 0.627 0.213 0.003 0.626 0.213 0.003 0.626 0.213 0.003

12 0.627 0.213 0.003 0.626 0.213 0.003 0.626 0.213 0.003

24 0.630 0.214 0.003 0.626 0.213 0.003 0.626 0.213 0.003

48 0.630 0.215 0.003 0.626 0.213 0.003 0.626 0.213 0.003

96 0.634 0.219 0.003 0.626 0.213 0.003 0.626 0.213 0.003

Dr (%) 1.1 2.8 0.0 0.0 0.5 0.0 0.0 0.5 0.0

I-integrals. The relative deviation Dr = |(Kmax − Kmin)/Kmean | × 100% is used to
estimate the difference of the intensity factors computed using different integration
domains, where Kmax, Kmin and Kmean denote the maximum, minimum and average
values of the intensity factors, respectively.

Tables3 and 4 list the normalized intensity factors for N = 0.01 and N = 0.5,
respectively. The relative deviation Dr for both the NE formulation and the IC for-
mulation does not exceed 1.0%, whereas Dr for the CCT formulation is about 3.0%.
It indicates that the computation of the strain gradient probably causes numerical
inaccuracy in finite element analysis. In addition, a relatively weaker convergence
is observed for the CCT formulation when the size of integration domain increases,
which is in accordance with the discussion for classical FGMs, see [37]. Therefore,
the NE and IC formulations are more appropriate than the CCT formulation for
FGMMs.

Example 3: Influence of Coupling and Gradation

First, the geometric parameters are set fixed to a = 1mm,W = 10mm andω = 18◦.
We take the coupling number N = 0.01 ∼ 0.99 and gradation factor η = 0 ∼ 0.5 in
order to study their influence on the FSIFs and CSIFs. The IC formulation is used to
compute the FSIFs and CSIFs, which are shown in Fig. 4a, b. Irrespective of whether
the material is homogenous (η = 0) or nonhomogeneous (η = 0.5), all FSIFs and
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Table 4 NormalizedFSIFs andCSIFs of a crack in a functionally gradedmicropolar plate (Example
2: a/W = 0.1, η = 0.5, N = 0.5, ω = 18◦)

CCT formulation NE formulation IC formulation

RI

he

K I

K0

KI I

K0
− L3

L0

KI

K0

KI I

K0
− L3

L0

KI

K0

KI I

K0
− L3

L0

Right tip

3 1.406 0.404 0.805 1.407 0.405 0.806 1.407 0.405 0.806

6 1.405 0.404 0.805 1.407 0.405 0.806 1.407 0.405 0.806

12 1.402 0.404 0.805 1.407 0.405 0.807 1.407 0.405 0.807

24 1.397 0.404 0.805 1.407 0.405 0.807 1.407 0.405 0.807

48 1.386 0.402 0.804 1.406 0.405 0.807 1.406 0.405 0.807

96 1.366 0.397 0.804 1.406 0.406 0.807 1.406 0.406 0.807

Dr (%) 2.9 1.8 0.1 0.1 0.2 0.1 0.1 0.2 0.1

Left tip

3 0.675 0.246 0.385 0.675 0.246 0.385 0.675 0.246 0.385

6 0.676 0.247 0.386 0.675 0.246 0.385 0.675 0.246 0.385

12 0.677 0.247 0.386 0.674 0.246 0.386 0.674 0.246 0.386

24 0.679 0.248 0.386 0.674 0.246 0.386 0.674 0.246 0.386

48 0.682 0.249 0.387 0.674 0.246 0.386 0.674 0.246 0.386

96 0.688 0.253 0.387 0.674 0.246 0.386 0.674 0.246 0.386

Dr (%) 1.9 2.8 0.5 0.1 0.0 0.3 0.1 0.0 0.3

CSIFs at both crack tips increase monotonically as the coupling number N increases.
As shown in Fig. 5a, b, for both N = 0.01 and N = 0.5, all FSIFs and CSIFs at the
right (left) crack tip increase (decrease) monotonically as the gradient parameter η

increases.
Next, the geometric andmaterial parameters are set fixed toW = 10mm,ω = 18◦,

N = 0.5, and η = 0 and 0.5, and the crack length is taken to be a = 1 ∼ 6mm in
order to verify its influence on the normalized intensity factors. For a homogeneous
micropolar plate, as shown in Fig. 6a, all FSIFs and CSIFs at both crack tips increase
as the crack length a increases. Contrary, for a functionally graded micropolar plate
(η = 0.5), as shown in Fig. 6b, all FSIFs andCSIFs at the right (left) crack tip increase
(decrease) monotonically with growing crack length a. This example indicates that
the material property gradient substantially affects the varying trend of the FSIFs
and CSIFs.

5.2 Edge Cracks

As shown inFig. 7, the secondmodel is a rectangular plate of length 2H = 20mmand
widthW = 11mm subjected to tension loading σapp = 100MPa, which contains an
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Fig. 4 Normalized FSIFs
and CSIFs versus the
coupling number N in a a
homogeneous plate of η = 0
and b a functionally graded
plate of η = 0.5 (Example 3)

edge crack of length a and angleω. The finite elementmesh consists of 1293 elements
and 3997 nodes.

Example 4: A Homogeneous Rectangular Plate with a Horizontal Edge Crack

The geometric and material parameters are set as a = 1mm, ω = 0, E = 100GPa
and ν = 0.3 to model a horizontal edge crack in a homogeneous plate. A classical
elastic plate for which the coupling number is set as N = 0.01 and amicropolar plate
of N = 0.85 are investigated. For a classical elastic plate with such a configuration,
the solution of the FSIFs is given in [55] by

Kcl
I = k σapp

√
πa, Kcl

I I = 0 (53)

k = 1.12 − 0.23
a

W
+ 10.55

( a

W

)2 − 21.72
( a

W

)3 + 30.39
( a

W

)4



A J-Interaction Integral to Compute Force Stress … 439

Fig. 5 Normalized FSIFs
and CSIFs versus the
gradient parameter η for the
coupling number a N = 0.01
and b N = 0.5 (Example 3)

The micropolar plate with such a configuration was investigated by Atroshchenko
and Bordas [29]. For both plates, the material parameter lb is taken to be 0.01, 2.55 ×
10−2, 2.55 × 10−1, 2.55 × 10−1/2 and 2.55, sequentially. The FSIFs and CSIFs
are normalized by Kcl

I = 208 MPa mm1/2 and L0 = σappa
√

πa = 177 MPa mm3/2,
respectively.

Table5 lists the normalizedmode-I FSIFs and in-planeCSIFs for a classical elastic
plate (N = 0.01).All three formulations generate the same results for a homogeneous
plate and thus, the normalized intensity factors are only listed once.When comparing
the present results with the reference solution, an agreement within 0.5% is shown.
Table6 lists the normalized mode-I FSIFs and in-plane CSIFs for a micropolar plate
(N = 0.85). The present results agreewithin 1.0%with those inRef. [29]. In addition,
the value of lb affects neither the FSIFs nor the CSIFs when the coupling number N
approaches to zero (see Table5), but affects both the FSIFs and the CSIFs evidently
(see Table6).
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Fig. 6 Normalized FSIFs
and CSIFs versus crack
length a/W in a a
homogeneous plate of η = 0
and b a functionally graded
plate of η = 0.5 (Example 3)

Example 5: A Functionally Graded Plate with an Edge Crack

Here, the crack length is taken to be a = 3mm, while the crack inclination angle
varies from ω = 0◦ to ω = 72◦. The material parameters are set to E = Eo(1 +
x1/W ), ν = 0.3, lb = 0.8mm and N = 0.01, 0.8 and 0.99, where Eo = 100GPa.
Table7 lists the FSIFs and CSIFs normalized by K0 = σapp

√
πa and L0 = lbK0,

respectively. The results show that the normalized FSIFs and CSIFs obtained using
all three I-integral formulations agree within 0.1% with each other.

Example 6: A Functionally Graded Plate with a Horizontal Edge Crack

Next, the crack inclination angle is taken to be ω = 0◦ and the crack length varies
from a = 1mm to a = 8 mm. In order to study the influence of the variation of
material stiffness on the FSIFs and CSIFs, the following three functions are chosen
to define Young’s modulus:



A J-Interaction Integral to Compute Force Stress … 441

Fig. 7 A rectangular plate
with an edge crack under
tension

Table 5 Normalized FSIFs
and CSIFs of an edge crack in
a homogeneous plate
(Example 4:
ω = 0◦, E = 100GPa, ν =
0.3, RI /he = 6)

Present Ref. [55]

N lb KI /Kcl
I −L3/L0 KI /Kcl

I −L3/L0

0.01 0.01 1.0043 0.0001 1.000 0.000

0.01 2.55E-2 1.0042 0.0002 1.000 0.000

0.01 2.55E-1 1.0042 0.0003 1.000 0.000

0.01 2.55E-0.5 1.0042 0.0003 1.000 0.000

0.01 2.55 1.0042 0.0003 1.000 0.000

• Function 1: E = Eo(1 + 4x1/W )

• Function 2: E = Eo[1 + 4(x1/W )2]
• Function 3: E = Eo[1 + 8x1/W − 4(x1/W )2]

As shown in Fig. 8, Young’s modulus of all three functions increases from Eo at
x1 = 0 to 5Eo at x1 = W , but these slopes are ascending (Function 2) or descending
(Function 3) or constant (Function 1). The other material parameters are set as Eo =
100GPa, ν = 0.3 and lb = 0.8mm. The NE formulation is used to solve the FSIFs
and CSIFs. Figure9a–c show the normalized intensity factors KI /K0 and L3/L0
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Table 6 Normalized FSIFs and CSIFs of an edge crack in a homogeneous micropolar plate
(Example 4: ω = 0◦, E = 100GPa, ν = 0.3, RI /he = 6)

Present Ref. [29]

N lb KI /Kcl
I −L3/L0 KI /Kcl

I −L3/L0

0.85 0.01 1.1856 0.0107 – –

0.85 2.55E-2 1.1783 0.0270 1.1819 0.0270

0.85 2.55E-1 1.0792 0.2111 1.0803 0.2120

0.85 2.55E-0.5 0.9580 0.3675 0.9542 0.3689

0.85 2.55 0.8822 0.4630 0.8836 0.4644

Table 7 Normalized FSIFs and CSIFs of a crack in a functionally graded plate (Example 5:
E = E0(1 + x1/W ), E0 = 100GPa, ν = 0.3, lb = 0.8, RI /he = 6)

CCT formulation NE formulation IC formulation
ω

(◦) KI

K0

KI I

K0
− L3

L0

KI

K0

KI I

K0
− L3

L0

KI

K0

KI I

K0
− L3

L0

N = 0.01

0 1.4510 0.0000 0.0023 1.4511 0.0000 0.0023 1.4511 0.0000 0.0023

18 1.3246 0.2392 0.0020 1.3247 0.2392 0.0020 1.3247 0.2392 0.0020

36 1.0018 0.3753 0.0015 1.0020 0.3752 0.0015 1.0020 0.3752 0.0015

54 0.6117 0.3718 0.0009 0.6118 0.3717 0.0009 0.6118 0.3717 0.0009

72 0.2742 0.2459 0.0004 0.2743 0.2458 0.0004 0.2743 0.2458 0.0004

N = 0.8

0 1.3726 0.0000 0.9382 1.3730 0.0000 0.9385 1.3730 0.0000 0.9385

18 1.2458 0.3263 0.8611 1.2461 0.3264 0.8613 1.2461 0.3264 0.8613

36 0.9172 0.5304 0.6578 0.9173 0.5306 0.6580 0.9173 0.5306 0.6580

54 0.5110 0.5486 0.3958 0.5110 0.5487 0.3959 0.5110 0.5487 0.3959

72 0.1644 0.3853 0.1501 0.1644 0.3853 0.1501 0.1644 0.3853 0.1501

N = 0.99

0 1.4124 0.0000 1.0423 1.4129 0.0000 1.0425 1.4129 0.0000 1.0425

18 1.2851 0.3590 0.9560 1.2855 0.3592 0.9562 1.2855 0.3592 0.9562

36 0.9449 0.5847 0.7272 0.9451 0.5849 0.7274 0.9451 0.5849 0.7274

54 0.5263 0.6067 0.4333 0.5263 0.6069 0.4333 0.5263 0.6069 0.4333

72 0.1679 0.4257 0.1608 0.1679 0.4258 0.1608 0.1679 0.4258 0.1608
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Fig. 8 Young’s modulus E/E0 versus x1/W (Example 6)

Fig. 9 Normalized FSIFs and CSIFs versus crack length a for the coupling number a N = 0.01,
b N = 0.4 and c N = 0.99 (Example 6)
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Fig. 10 Normalized FSIFs
and CSIFs versus the
coupling number N for an
edge crack of length a
a = 3mm and b a = 7mm
(Example 6)

varying with the crack length for N = 0.01, 0.4 and 0.99, respectively, where K0 =
σapp

√
πa and L0 = lbK0. For all of the above three functions, both the mode-I FSIFs

and the CSIFs increase significantly with the increase of the crack length a. The
FSIFs and CSIFs in descending order are KI |Function 2 > KI |Function 1 > KI |Function 3

and L3|Function 2 > L3|Function 1 > L3|Function 3 for a ≤ 3mm, and the inverse order can
be observed for a ≥ 3mm. In other words, Function 3 is better for weakening the
crack-tip force stress and couple stress concentration for a small edge crack, while
Function 2 is better for a large edge crack. The reason is a different gradient of
Young’s modulus. The higher the gradient in front of the crack, the more is the crack
loading released.

Figure10a, b show the normalized intensity factors KI /K0 and L3/L0 vary-
ing with the coupling number N for a = 3mm and a = 7mm, respectively. The
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normalized FSIFs and CSIFs have the same trends for all of the above three func-
tions as the coupling number N increases. With increasing coupling number N , the
normalized FSIFs KI /K0 first decreases and then increases a little for a = 3mm,
while KI /K0 first decreases quickly and then varies slightly for a = 7mm, and the
normalized CSIF L3/L0 increasesmonotonically for both a = 3mmand a = 7mm.

6 Summary and Conclusions

In order to calculate the crack-tip intensity factors for a crack in nonhomogeneous
micropolar materials by the I-integral, three applicable formulations are proposed to
define the auxiliary field, i.e.,

• CCT formulation (violation of the constitutive equations),
• NE formulation (violation of the equilibrium equations),
• IC formulation (violation of the compatibility equations).

Each of these formulations results in a consistent domain form of the I-integral,
in which extra terms naturally appear to compensate for the difference between
homogeneous and nonhomogeneous materials. In details,

• The I-integral using the CCT formulation contains strain gradient, curvature gra-
dient and material property gradient. It is not appropriate for nonhomogeneous
micropolar materials because the strain gradient and curvature gradient may cause
inaccuracy in numerical calculations.

• The I-integral using theNE formulation does not involve any strain gradient or cur-
vature gradient. Therefore, it is reliable for nonhomogeneous micropolar materials
with differentiable properties.

• The I-integral using the IC formulation does not involve any material property
gradient. It is effective for micropolar material with arbitrary continuous or dis-
continuous properties.

In order to compute the various I-integrals numerically for arbitrary two-dimensional
cracked bodies, the patched-XFEM is applied. The patched-XFEM preserves crack
face enrichment functions but renounces crack-tip enrichment functions from the
displacement and micro-rotation approximations. Instead, a refined mesh is patched
on the main mesh around the crack tip to improve the precision of numerical solu-
tion. The I-integral combined with the patched-XFEM is employed to extract the
FSIFs and CSIFs for various internal and edge crack configurations in functionally
graded micropolar plates. Numerical results show that the NE formulation and the
IC formulation give best accuracy for nonhomogeneous micropolar materials, while
the CCT formulation generates larger relative errors for nonhomogeneous micropo-
lar materials. For an internal crack, all FSIFs and CSIFs at both crack tips increase
monotonically when the coupling number increases, and the differences between the
two crack tips are enlarged with increasing gradient parameter. For an edge crack, the
increase of coupling number causes a monotonic growth of CSIF, while the mode-I
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FSIF first decreases and then varies slightly. All these examples demonstrate that
material property functions affect the FSIFs and CSIFs substantially.
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