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Abstract Optimal distribution of thickness in the class of polynomial functions for
rotating axisymmetric disks with respect to the mixed creep rupture time are found.
Two effects lead to damage: reduction of transversal dimensions and growth ofmicro-
cracks are simultaneously taken into account. The former requires the finite strain
analysis, the latter is described by the Kachanov’s evolution equation. Behaviour of
thematerial is described by nonlinearNorton’s law, generalized forCauchy true stress
and logarithmic strain, and the shape change law in the form of similarity of Cauchy
true stress and logarithmic strain deviators. For optimal shapes, changes of geometry
of the disk and continuity function are presented. The theoretical considerations
based on the perception of the structural components as some highlighted objects
with defined properties are presented.
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1 Introduction

For over 300 years, the optimal design problems of structural elements have been an
object of interest for scientist from all over theworld. It is an interdisciplinary domain
combining not only mechanics and physics, but also theory of optimal design and IT.
Each science domainmentioned earlier has a direct influence on the results of optimal
design. Technical progress achieved in advanced technology increases growth of
demands for effective tools in the range of strength of materials. Scientific research
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stimulates a development in this domain offering new technological opportunities
making their application beneficial for industry.

The problem of structural optimization under creep conditions is a relatively
young subject and offers a wide scope of investigations. Operational loadings of
structural elements are usually long-lasting, quite often acting at elevated temper-
atures promoting large permanent deformation. Creep deformation is defined as a
process carried out at long-lasting loadings at elevated temperature, during which
the values of stress and strain caused by structural loadings undergo change in time.
This problem is of special significance in many branches of industry, beginning
from energetics (steam boilers, turbine blades), thermal power plants (pipelines)
in chemical industry, defense industry (military equipment) to space research. A
general approach to the creep problem, especially in multi-axial stress state was pre-
sented byMartin and Leckie [29], Hayhurst [19] and Betten [1]. Contemporary creep
research is carried out for already used materials as well as for new ones such as:
composites [15, 22], graded materials [25, 26, 44], intermetallic [2, 24] and many
others. Among many new possible criteria of optimization, such as stiffness after
given time, stress relaxation, one of the most important seems to be time to creep
rupture. A broad presentation of various objective functions with division on time-
dependent and time-independent was given by Życzkowski [45, 46]. Most papers
on optimal structural design are based on the brittle creep rupture theory proposed
by Kachanov (small deformation theory). It was due to its relative simplicity - the-
ory based on principle rigidification. Optimal solutions with respect to brittle creep
rupture often coincide with uniform strength structures. In such a way the optimal
solutions have been found by: Rysz [34] for cylinders; by Ganczarski and Skrzypek
[11] for prestressed disks; Gunneskov [17] for rotating disks. In the work published
by Hoff [20], the moment of failure of a bar under tension is defined as the one
at which the cross-sectional area becomes zero as a result of quasiviscous flow. It
was shown that the calculated results are in a good agreement with the experimental
data [5, 13, 14, 27, 28, 30]. Applications of the ductile rupture theory, proposed
by Hoff in optimization problems are rather scarce, because they require the finite
deformation theory. First time it was used by Szuwalski [36] for optimization of
bars under nonuniform tension. Some problems of prismatic tension rods were dis-
cussed by Pedersen [32, 33] and Shimanovskii and Shalinskii [35]. Their approach
introduces not only physical nonlinearities, connected with creep law, but also geo-
metrical ones, resulting from the finite deformation theory. Additional time factor
and presence of body forces depending on the spatial coordinate complicate analysis
of the problem. The optimal full disks with respect to ductile creep rupture time
were found by Szuwalski [36, 37]. The first attempts to find a solution for annular
disks were made by Szuwalski and Ustrzycka [39–41]. Earlier, some problems of
optimal design for annular rotating disks were discussed by Farshi and Bidabadi
[9]. Analytical solutions for the elastic-plastic stress distribution in rotating annular
disks were obtained by Çğallioğlu et al. [3], Gun [16] and Golub [12]. The ductile
creep rupture analysis for the elastoplastic disks was carried by Dems and Mróz [4],
Ahmet and Erslan [6], Jahed et al. [21] and Golub et al. [14]. Modifications of the
Hoff’s model was proposed by Golub and Teteruk [13]. The influence of boundary
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conditions on optimal shape was investigated by Pedersen [33] and later by Szuwal-
ski and Ustrzycka [38]. The elastic–plastic analysis of rotating disks was presented
by Vivio and Vullo [42, 43], Eraslan [6–8], Gamer [10], Guven [18] and Orcan and
Eraslan [31]. Hoff’s definition of rupture - reduction of transversal dimensions of
structures to zero (infinite large strains) has certain limitations. It predicts, contrary
to observations, that creep does not result in damage of structure. Also, his scheme
does not explain fractures at small strains (brittle rupture) and the change of charac-
ter of rupture (from ductile to brittle). Application of mixed rupture theory proposed
by Kachanov [23] takes into account both: geometrical changes - diminishing of
transversal dimensions resulting from large deformation and growth of microcracks.
Theory of shape optimization was proposed currently by Szuwalski and Ustrzycka
for bars under nonuniform tension (2012) and rotating full disk (2013). Problems
of structural optimization under creep conditions show specific features. The consti-
tutive equations are often strongly nonlinear. Additional time factor causes that all
differential equations describing process are the partial ones. Such problems require
the finite strain approach, i.e. resignation of the rigidification theorem and analysis
of already deformed body using Cauchy true stress and logarithmic strain. The ana-
lytical equations describing the shapes of axisymmetric rotating discs, optimal with
respect tomixed time rupture, are derived. The numerical procedure for solving these
equations is proposed and same final results are presented in the form of diagrams.
The problems of optimal shape are difficult, but important in view of metal structures
working at elevated temperatures.

2 Optimal Design of Full Disks with Respect to Mixed
Creep Rupture Time

2.1 Mathematical Model of Disk with Respect to the Mixed
Creep Rupture Time

The problem of optimal shape of rotating full disk is investigated with respect to
mixed creep rupture time under complex stress state. Microcracking and diminish-
ing of transversal dimensions from the beginning of creep process is assumed. Such
an approach introduces not only physical nonlinearities, connected with creep law
(usually Norton’s law), but also geometrical ones, resulting from the finite deforma-
tion theory. Additional time factor leads to an increase of model complexity. The
whole creep process must be analyzed from its beginning up to rupture. The concept
of the mathematical description of mixed creep rupture requires examination of the
entire process, taking into account geometrical changes. The problem is solved in
material coordinates (Lagrangian description) and all parameters in the initial state,
for time equal to zero, are denoted by capital letters, while current values of these
parameters by the same small letters. Due to axial symmetry, all quantities will be
functions of two independent variables: radius R and time t . The disk rotates with
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Fig. 1 Element of the deformed disk

Fig. 2 Deformed element of the disk

constant angular velocityω and the body forces connected with ownmass of the disk
are taken into account, Fig. 1.

Arbitrarily chosen small element of the disk, limited previously by two cylindrical
surfaces of radii R and R + dR, and two planes forming the angle after deformation
are shown in Fig. 2. The internal equilibrium condition for plane stress state takes
the form

1

hr ′
∂

∂R
(hσr ) + σr − σϑ

r
+ γ

g
ω2r = 0 (1)

where:σr - current value of radial stress andσϑ current value of circumferential stress,
h - current thickness, γ - specific weight of material and g - acceleration of gravity,
r

′
- derivative of spatial coordinate r with respect to material one R. Assumption of

incompressibility leads to
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HRdR = hrdr (2)

where R stands for the material coordinate of the discussed point, while r for the spa-
tial one, H for initial, and h for current thickness of the disk. Finite strain components
require logarithmic measure of deformation

εr = ln
∂r

∂R
= ln r ′, εϑ = ln

r

R
, εz = ln

h

H
(3)

where a prime denotes the derivative with respect to the material coordinate, and
their rates denoted by overdots

ε̇r = ṙ ′

r ′ , ε̇ϑ = ṙ

r
, ε̇z = ḣ

h
(4)

Here, physical relation in the form of deviators similarity of true Cauchy stress Dσ

and logarithmic strain rate Dε̇ is adopted

Dε̇ = 3

2

ε̇e

σe
Dσ (5)

where σe denotes the effective stress, according to the Huber–Mises–Hencky hypoth-
esis generalized to the true Cauchy stress

σe =
{
1

2

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2
]} 1

2

(6)

and, respectively, ε̇e is the effective strain rate

ε̇e =
√
2

3

{[
(ε̇1 − ε̇2)

2 + (ε̇2 − ε̇3)
2 + (ε̇3 − ε̇1)

2
]} 1

2 (7)

The material of the disk fulfills Norton’s creep law:

ε̇e = kσ n
e (8)

Finally, taking Eq. (8) leads to the following expressions

ε̇1 = 3

2
kσ n−1

e (σ1 − σm)

ε̇2 = 3

2
kσ n−1

e (σ2 − σm)

ε̇3 = 3

2
kσ n−1

e (σ3 − σm) (9)
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where

σm = 1

3
(σ1 + σ2 + σ3) (10)

stands for the mean true Cauchy stress. The following compatibility equation results
from definitions of logarithmic strain, cf. Eq. (3)

εr = εϑ + ln

(
1 + R

∂εϑ

∂R

)
(11)

which, after derivation with respect to time, takes the form

ε̇r − ε̇ϑ = R ∂ε̇ϑ

∂R

1 + R ∂εϑ

∂R

(12)

Substitution of the first two Eqs. (9) and (3) makes it possible to rewrite this equation
in the form of the relation between stress components. Compatibility condition after
some rearrangements takes the form

σ
′
r

[
(n − 1) (2σr − σϑ) (2σϑ − σr ) − 2σ 2

e

] +

+ σ
′
ϑ

[
(n − 1) (2σϑ − σr )

2 + 4σ 4
e

] = 6σ 2
e
r

′

r
(σr − σϑ) (13)

The shape change law assumed in the form of similarity of the true Cauchy stress
and logarithmic strain velocity deviators leads to

ṙ

r
= 1

2
kσ n−1

e (2σϑ − σr ) (14)

To find the mixed rupture time, the evolution equation proposed by Kachanov will
be applied

∂�

∂t
= −D

[σe

�

]m
(15)

in which D and m are material constants. Continuity function � is defined by the
ratio of effective cross-sectional area ae to the total area a

� = ae
a

(16)

Contrary to the brittle rupture theory, σe denotes here the effective true Cauchy stress
- related to the current cross-section a (geometrical changes are taken into account).
Damage is characterized by the continuity function 0 � � � 1. At the initial state
(no damage): � = 1, as time goes on, it decreases. Rupture occurs when the con-
tinuity function reaches a critical value � = 0. The internal equilibrium condition
Eq. (1) incompressibility condition Eq. (2), compatibility condition, in the form of
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the relation between stresses Eq. (13), the shape change law Eq. (14) and evolution
equation Eq. (15) form the set of five equations with five unknowns: true Cauchy
stress σr and σϑ , spatial coordinate r , current thickness of the disk h, and continuity
function �.

1

hr ′
∂

∂R
(hσr ) + σr − σϑ

r
+ γ

g
ω2r = 0

σ
′
ϑ =

6σ 2
e (σr − σϑ)

r
′

r
− σ

′
r

[
(n − 1) (2σr + σϑ) (2σϑ + σr ) − 2σ 2

e

]
[
(n − 1) (2σr + σϑ)2 + 4σ 2

e

] (17)

ṙ

r
= 1

2
kσ n−1

e (2σϑ − σr )

HRdR = hrdr

∂�

∂t
= −D

[σe

�

]m

Initially, the disk remains undeformed, therefore, the initial conditions take the
form

r (R, 0) = R, h (R, 0) = H (R) (18)

The boundary conditions on the disk axis are as follows

r (0, t) = 0, ṙ (0, t) = 0 (19)

σr (0, t) = σϑ (0, t) (20)

Further, it is assumed that the traction at the external edge of the disk results from the
constantmassM = const. uniformly distributed throughout thewhole creep process.
The total radial force at the external radius is equal to

Nr (R0) = Mω2r (R0, t) (21)

and the radial stress is equal to the tensile pressure

σr (R0) = p = Nr (R0)

2πr (R0) h (R0)
= Mω2

2πh (R0)
(22)

The set of five equations Eq. (17) allows to specify the mixed creep rupture time. It
is the time after which the rupture criterion adopted in the following form is fulfilled
at least in one place

∃R : (R ∈ 〈0, R0〉 ∧ �∈ 〈1, 0〉 ∧�|tm∗ →0) (23)
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Theoretically, according to the Kachanov’s proposal, time after which the continuity
function diminishes to zero is the time of mixed rupture t (m)∗ .

A parametric optimization, where the initial shape is defined by polynomial func-
tion, was applied. Let us consider an optimality criterion in the form

(∃!H (R) ∈ f ) t∗|V=const. −→ max (24)

where functions f : R −→ R, R −→ b0 + b1R + b2R2 + · · · + bi Ri , for all argu-
ments R ∈ 〈A, B〉, i ∈ N\ {0} (i is a non-negative integer) and bi ∈ R are constant
for a given and fixed volume of the structure. The latter can be treated as a limitation.
The initial profile of a full disk is sought in the class of polynomial functions.

2.2 Numerical Solutions

For the sake of numerical calculations, dimensionless quantities are introduced. Both
material and spatial coordinates are related to the initial external radius R0

R̂ = R

R0
, r̂ = r

R0
(25)

The thickness of the disk is related to themean thickness hm of the full disk of volume
V and radius R0

hm = V

πR2
0

(26)

Dimensionless thicknesses of the initial and current disk related to themean thickness
Eq. (26), are respectively

Ĥ = πR2
0

V
H, ĥ = πR2

0

V
h (27)

Dimensionless stress is referred to stress calculated using a rigidification theorem in
the motionless full plane disk subject to tension with uniform pressure p Eq. (22)

s = Mω2

2πhm
= Mω2R2

0

2V
(28)

Radial loading at radius R0 of the rotating disk results from mass M uniformly
distributed on the external edge

σr (r) = p = Mω2

2πh (R0)
(29)
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Finally, the dimensionless stress is equal to

σ̂i = 2V

Mω2R2
0

,∀i = {r, ϑ} . (30)

Consequently, the dimensionless time is defined

t̂ = t

t (d)
0

(31)

where: t (d)
0 stands for the time of ductile rupture for full plane disk. To evaluate the

time of ductile rupture for full plane disk, the equation resulting from Eq. (9) may be
used

ε̇z = ḣ

h
= 3

2
kσ n−1

e (σz − σm) (32)

where the effective stress reads

σe = σr = σϑ = p (33)

and the mean stress can be written as

σm = 2

3
p (34)

Applying the above equations to Eq. (22) leads to the relationship

1

h

dh

dt
= −k

(
Mω2

2πh

)n

(35)

which describes a change of thickness in time. The initial condition takes form

h (t = 0) = hm (36)

The condition of ductile rupture h→0 enables calculation of the time of ductile
rupture t (d)

0

t (d)
0 = 1

nk

(
Mω2

2πhm

)n = 1

nksn
(37)

Finally, the dimensionless time Eq. (31) is defined

t̂ = nksnt (38)
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To avoid a large number of material constants in numerical calculations, the new
parameter 
 is introduced. This parameter is equal to the ratio of the brittle rupture
time to the ductile rupture time for the prismatic bar subject to uniform tension under
the initial stress s Eq. (28)


 = t (K )
pr

t (H)
pr

= nksn

(m + 1)Dsm
(39)

The parameter 
 contains four material constants: n and k in Norton’s law Eq. (8),
m and D in evolution equation Eq. (15). In some way, it describes sensitivity of
material to the damage type: brittle or ductile. The mathematical model of mixed
creep rupture is finally described by the system of five partial differential equations
in the dimensionless form

σ̂
′
r = r̂

′

r̂

(
σ̂r − σ̂ϑ

) − 2r̂ r̂
′
μ − ĥ

′

ĥ
σ̂r

σ̂
′
ϑ =

6σ̂ 2
e

(
σ̂r − σ̂ϑ

) r̂ ′

r̂
− σ̂

′
r

[
(n − 1)

(
5σ̂r σ̂ϑ − 2σ̂ 2

r − 2σ̂ 2
ϑ

) − 2σ̂ 2
e

]
(n − 1)

(
2σ̂ϑ − σ̂r

)2 + 4σ̂ ′
e

dr̂

dt̂
= r̂

2n

(
σ̂ 2
r + σ̂ 2

ϑ − σ̂r σ̂ϑ

) n−1
2

(
2σ̂ϑ − σ̂r

)
(40)

ĥ = Ĥ R̂

r̂ ′ r̂

∂�

∂ t̂
= −1

(m + 1) 


[
σ̂e

�

]m

where μ is the ratio of disk’s own mass to the mass distributed at the external radius

μ = γ V

gM
(41)

The above equations set Eq. (40) contains five unknowns: true Cauchy stress com-
ponents σr and σϑ , current thickness h, spatial radial coordinate r and continuity
function �. The initial conditions Eq. (18) can be expressed in the following dimen-
sionless form

r̂
(
R̂, 0

)
= R̂, ĥ

(
R̂, 0

)
= Ĥ

(
R̂
)

(42)

while the boundary conditions Eqs. (19) and (20) can be described by

r̂
(
0, t̂

) = 0, ˆ̇r (
0, t̂

) = 0, σ̂r
(
0, t̂

) = σ̂ϑ

(
0, t̂

)
(43)
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The condition at external radius Eq. (22), where the mass M is distributed, may be
written in the dimensionless form

σ̂r
(
1, t̂

) = 1

ĥ

(
1, t̂

)
(44)

The function Ĥ(R̂) describing the initial profile of the disk is expressed by the
fourth equation in set Eq. (40) and by the initial conditions Eq. (42). It is necessary
to know this function in order to solve the set Eq. (40). Since this function is being
sought in the optimisation process, a parametric optimisation is applied. We are
looking for the best possible function Ĥ(R̂), leading to the longest lifetime under
the mixed rupture in the class of polynomial functions assumed. In order to perform
an optimisation procedure, the rupture and optimality criteria are introduced. We
must follow the whole creep process step by step for each new initial geometry of
the disk up to the moment of fulfilling of rupture criterion in order to establish the
mixed creep rupture time. The numerical algorithm consists of two blocks, which
are sequentially activated (Fig. 3).

In the first block, the stress distribution is found for a given geometry of disk.
It requires integration of two first equations of set Eq. (54) and initial conditions
Eq. (56). A width of the disk was divided initially into fifty parts of equal length.
The program assigns a procedure using the fourth order Runge–Kutta method. The
values of stresses in the middle of disk must be assumed in such a way that the result
of integration satisfies the boundary condition Eq. (58) for a given accuracy. To this
aim, the recurrential procedure must be applied, because initial values of stress at the
external edge of the disk are unknown. In this way, the distribution of true Cauchy
stress components with help of the evolution equation may be found (the last one
in the set Eq. (54). This makes it possible to establish the distribution of continuity
function �. Subsequently, the rupture criterion is checked, and a new geometry of
the disk is calculated.

In the second block, for already known distribution of stress the integration with
respect to time is made, and the new geometry of the disk is calculated. The third
equation in set Eq. (54) is integrated with respect to time using Euler’s method. The
time step varies, at the beginning of the creep process it may be larger (slow geometry
changes), it must be small for time close to the rupture time, since process accelerates
significantly. The new spatial coordinates of the knot points are found (third equation
in set Eq. (54), after that the current thickness h is calculated from the incompress-
ibility condition (fourth equation in set Eq. (54). In this way, the new geometry of
deformed disk is found, stress distribution may be calculated repeating the procedure
of part I. All time steps are summarized giving the total time of the work for a given
disk. The calculations are carried out until the mixed rupture condition is satisfied,
i.e. the continuity function reaches the critical value 0.001. As a consequence, the
creep process can be treated as finished and the time to mixed rupture determined.

Among the results obtained for many initial shapes of the disk described by the
assumed polynomial function one can indicate the best solution leading to the longest
time to mixed creep rupture. This is the optimal disk.
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Fig. 3 Numerical algorithm for the finite creep deformation analysis and optimization procedure

For the arbitrary chosen initial geometry: Ĥ(R̂) = 0.8 − R̂ + 2.1R̂2, an influence
of parameters m and 
 on time to the mixed rupture t (m) can be investigated (see
Fig. 4).

The
 parameter Eq. (53) characterizes sensitivity of amaterial to a type of rupture
Fig. 4. As the 
 parameter increases, the material sensitivity to cracking decreases
and geometrical variation decideswhen time to rupture is achieved.Above the critical
value of 
 parameter, the material can be treated as destroyed due to diminishing
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Fig. 4 Influence of
parameters m and 
 on time
to mixed rupture t (m)

of transversal dimensions, and as a consequence, time to rupture is equal to that for
ductile rupture obtained.

2.3 Optimal Solutions

2.3.1 Uniparametric Optimization

Firstly, the optimal solutions for the problem of rotating full disk with respect to
mixed creep rupture time are sought in the class of linear functions:

Ĥ
(
R̂, u0, u1

)
= u0 + u1 R̂ (45)

Parameters u0 and u1 (uniparametric optimisation), which optimal values are sought,
are linked together by the condition of given volume V :

u1 = 3

2
(1 − u0) (46)

Parameter u0 is treated as a free steering one (uniparametric optimisation). Values
of it are limited by the condition of nonnegative thickness at the external edge:

Ĥ (1) > 1→1 ≤ u0 ≤ 3 (47)

An influence of two important parameters is investigated: μ as the ratio of own mass
of the disk to mass uniformly distributed at the external edge, and 
 ratio of the
brittle rupture time and ductile rupture time of the prismatic bar subject to uniform
tension under the stress expressed by Eq. (28).
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Table 1 Profiles of optimal disks for n = 3 and m = 2 and for three different values of parameter

 and μ


 = 0.3 
 = 0.8 
 = 3

μ = 0.1 Ĥ(R̂) = 1.12–0.15R̂ Ĥ(R̂) = 0.69–0.45R̂ Ĥ(R̂) = 1.09–0.15R̂

μ = 1 Ĥ(R̂) = 1.21–0.33R̂ Ĥ(R̂) = 1.42–0.61R̂ Ĥ(R̂) = 1.91–1.35R̂

μ = 10 Ĥ(R̂) = 2.01–1.52R̂ Ĥ(R̂) = 2.09–1.65R̂ Ĥ(R̂) = 2.1–1.65R̂

Fig. 5 Profiles of the optimal disks for n = 3 andm = 2 and for three different values of parameter



Profiles of optimal disks for uniparametric optimization are shown in Table1 as
a function of the parameter μ for three different values of parameter 
.

The solutions strongly depend on the ratio 
 and μ (Fig. 5). When the mass M
is very large in comparison to the disk’s own mass (small values of μ), optimal
disks are close to flat ones. For larger values of parameter 
 (ductile materials), the
thickness of optimal disks in the vicinity of external edge grows. For larger values of
parametersμ (small massM at the external radius), themass of the disk is distributed
as close to the rotation axis as possible.
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2.3.2 Biparametric Optimization

Better results may be obtained for disks, that initial shape is defined by quadratic
function:

Ĥ
(
R̂, b0, b1, b2

)
= b0 + b1 R̂ + b2 R̂2, b2 
= 0 (48)

In the case of quadratic functions, three parameters are considered. Finding the
optimal values for these parameters takes much more time than for the uniparametric
optimization. From three parameters in this function, only two of themmay be treated
as free ones, the third one results from the given volume of disk:

V̂ =
∫ 1

0
2π

(
b0 + b1 R̂ + b2 R̂

2
)
R̂d R̂ = π (49)

Including Eq. (49), one can obtain the following formula:

b2 = 2 − 2b0 − 4

3
b1 (50)

In the process of biparametric optimization, we look for such parameters b0 and
b1, that give the longest values of the time to ductile creep rupture. Some limitations
may be imposed on these parameters. One may expect that for the rotating disk with
centrifugal forces, its thickness should diminish with an increase of radius (although
sometimes this limitation may be violated). It leads to:

d Ĥ(R̂)

d R̂
≤ 0 −→ b0 < 2 − 1

3
b1 (51)

Obviously, the thickness at the external radius (and on the whole width of the disk)
must be positive, that means:

Ĥ(1) > 0 −→ b0 < 1 − 5

12
b1 (52)

Finally, in the plane of free parameters b0 and b1, the search range at the beginning of
numerical calculation will be restricted to the triangle area designated by continuous
lines shown in Fig. 6.

Profiles of optimal disks for the biparametric optimization are shown in Fig. 7.
For smaller parameter μ (the own mass almost neglected), the growth of thickness
at the external edge was observed. The optimal solutions have minimum inside the
disk width.

The larger thickness at the external edge works as some kind of reinforcement,
which slows down the creep process, and thanks to it, the time to mixed rupture may
be longer. For larger parameter 
 (brittle materials), this effect is weaker.
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Fig. 6 Range of the expected b0 and b1 optimal parameters for n = 6, β = 0.5, μ = 1

Fig. 7 Optimal shapes of the disks for biparametric optimisation
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Fig. 8 Time to mixed rupture for the disks with optimal biparametric shapes in terms of μ and 


Fig. 9 Creep process for selected time intervals

The time to mixed rupture for optimal shapes of the disks with the same volume,
as a function of the parameters μ and 
 for biparametric optimisation is shown
in Fig. 8. The longest time to mixed creep rupture for optimal disks is observed for
larger parameter
 (brittlematerials) and smallerμ (the ownmass almost neglected).
Increase of μ, for all kind of materials (brittle and ductile) leads to decrease of the
lifetime of the full disks. Changes of a profile for the optimal disk are shown in Fig. 9a,
while in Fig. 9b the corresponding distribution of the continuity function is illustrated
for the same time intervals. The results are presented for optimal disks using the
following parameters: μ = 0.1,n = 3,
 = 3, where an initial shape is described
by function Ĥ(R̂) = 2 − 3R̂ + 2R̂2. It was observed, that despite the strengthening
of the external edge of the disk, the rupture criterion for the continuity function is
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fulfilled. Inside the disk the values of function are quite large. This effect is only
achieved for the disks of initial profile described by the quadratic function Eq. (48).

2.3.3 Modified Disk of Uniform Strength

One may expect that disks of uniform initial strength, in which both radial and
circumferential stresses are the same for 0≤ R ≤ B and close to optimumwith respect
to mixed rupture time. Such disks are described by formula:

Ĥus(R̂) = 1

�̂
exp

[
μ

�̂

(
1 − R̂2

)]
(53)

where: �̂ - dimensionless equalized initial stress, calculated under assumption of the
constant volume:

�̂ = μ

ln(1 + μ)
(54)

It may be slightly corrected in order to obtain the longest creep lifetime. Correction
may be adopted in the form of the third degree polynomial function:

Ĥcor = p0 + p2 R̂
2 + p3 R̂

3 (55)

without the linear element. As a consequence, the thickness derivative in the middle
of the disk is equal to zero.

As the correction cannot change the total volume of the bar, only two coefficients
in Eq. (55) may be treated as free, while the third one can be determined from the
constant volume condition:

p3 = −5

2
p0 − 5

4
p2 (56)

An initial shape of the disk was proposed for different values of these parameters
using expression

Ĥ(R̂) = Ĥus(R̂) + Ĥcor (R̂) (57)

and then carrying out integration of the set of equations Eq. (40). Calculations
were carried for μ = 0.1, 
 = 3, exponent in Norton’s law n = 3 and exponent
in Kachanov’s law m = 2. The comparison between the optimal shapes of the uni-
form strength disk and uni- and biparametric optimisation is presented in Fig. 10.

The optimal solution of the disks are presented on the time axis. As expected, the
corrected shape of uniform initial strength disk provides the longest time of mixed
creep rupture. The parabolic disk enlarges this time around 14%. The lifetime of
corrected disk of uniform strength is 70% longer than that of conical disk.
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Fig. 10 Optimal shape of
the corrected uniform initial
strength disks compared to
the uni- and biparametric
optimisation

3 Optimal Design of Annular Disks with Respect to Mixed
Creep Rupture Time

3.1 Mathematical Model of Annular Disk with Respect
the Mixed Creep Rupture Time

The initial shape of rotating annular disk is sought for the given internal and external
radii A and B and given volume V (Fig. 11), ensuring the longest time tomixed creep
rupture. In the case of the annular disk (volume V and initial radii A and B are given)

Fig. 11 Model of the
annular rotating disk
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rotatingwith constant angular velocityω, (the properties of material are known, mass
M is uniformly distributed at the external edge), the optimization problem can be
formulated in the following way:

• for given V , A, B, ω, γ , M
• we look for such H(R, b0, b1, b2) = b0 + b1R + b2R2

• that t (m)∗ −→ max

The problem seems to be of great importance for rotors of jet engines and power
plant turbines working at high temperatures. In such cases the creep effects must
be taken into account. Also, the body forces are of great importance. The axially
symmetric problem (all variables depend on the single material coordinate only, a
radius) is described using material Lagrangean coordinate denoted by capital R.
Corresponding spatial coordinate r may be treated as a measure of deformation. The
external loading of the disk results from centrifugal force acting on the blades of
total mass M put at the external edge of the disk, under assumption that they are
uniformly distributed. Moreover, the body forces connected with the own mass of
the disk are taken into consideration. Both types of loading depend on the spatial
coordinate, and change according to the disk deformation within the creep process.
The mathematical model of mixed creep rupture is finally described by the system
of five partial differential equations in the dimensionless form:

σ̂
′
r = r̂

′

r̂

(
σ̂r − σ̂ϑ

) − 2r̂ r̂
′
μ − ĥ

′

ĥ
σ̂r (58)

σ
′
ϑ =

6σ 2
e (σr − σϑ)

r
′

r
− σ

′
r

[
(n − 1) (2σr + σϑ) (2σϑ + σr ) − 2σ 2

e

]
[
(n − 1) (2σr + σϑ)2 + 4σ 2

e

] (59)

dr̂

dt̂
= r̂

2n

(
σ̂ 2
r + σ̂ 2

ϑ − σ̂r σ̂ϑ

) n−1
2

(
2σ̂ϑ − σ̂r

)
(60)

ĥ = Ĥ R̂

r̂ ′ r̂
(61)

∂�

∂ t̂
= −1

(m + 1) 


[
σ̂e

�

]m

(62)

In the case of annular disk an additional parameter is used:

β = A

B
(63)

where: β is the ratio of internal and external radii. A set of equations Eqs. (58)–(62)
written in the above form is convenient for numerical calculations.
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3.2 Influence of Boundary Conditions

3.2.1 Disk Clamped on a Rigid Shaft

At the beginning of creep process (for t = 0), the disk remains undeformed, therefore,
the initial conditions take the form:

r̂
(
R̂, 0

)
= R̂, ĥ

(
R̂, 0

)
= Ĥ

(
R̂
)

(64)

Boundary conditions at internal radius may be written:

ĥ
(
β, t̂

) = Ĥ(β, 0), r̂
(
β, t̂

) = β (65)

Since we are looking for the stress distribution, this boundary condition should be
rewritten in terms of stress. Taking advantage of shape change law Eq. (60), the
condition at the internal edge can be written as follows:

˙̂r(β, t̂) = 0 (66)

It leads to relation of stress at the internal edge

σ̂r (β, t̂) = 2σ̂ϑ (β, t̂) (67)

By introduction of dimensionless parameters into the condition at external radius
Eq. (65), where the mass M is distributed:

σ̂r (b)Mω2b2

2V
= Mω2b2

2V ĥ(b)
(68)

one can get a condition at the external radius B in the following form:

σ̂r (1, t) = 1

ĥ(1, t)
(69)

The numerical algorithm consists of three steps:

The first step – for given geometry of the disk, the true Cauchy stress distribution
is established from Eqs. (58) and (59). We don’t know values of stress at the internal
edge of the disk, so it is necessary to assume them arbitrarily, remmembering that
the boundary condition at the external edge of the disk must be fulfilled.

The second step – distribution of the Cauchy stress found in the first step, makes
it possible to establish a new geometry of the disk from Eqs. (60) and (61).

The third step – fromEq. (62) a distribution of continuity function� is calculated.
If its minimum value satisfies the rupture criterion, the creep process is finished –
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Fig. 12 Influence of
parameter 
 on the time to
rupture for the disk clamped
on the shaft

the time to mixed rupture is found. Due to the inability in order to write the objective
function (mixed rupture time) as an explicit function of the optimization parameters
(initial profile of the disk) the parametric optimization is applied (search method).
To establish the range of parameter 
 arbitrary taken the disk described by the
equation Ĥ(R̂) = 0.8 − R̂ + 2.1R̂2, was investigated. The parameter 
 is defined
here identically as for full disks, Eq. (39), where it has significant influence on the
time to rupture. The results are presented in Fig. 12.

By increasing of 
, the time to rupture becomes longer for the disk clamped on
the rigid shaft. This is observed up to the values of 
 equal to 11 approximately. For
higher values of 
, the influence of brittle rupture becomes so small in comparison
to ductile effect, that rupture effects result almost from geometrical variations only.
Time to rupture for 
 ≥ 11 coincides with that for ductile rupture obtained. For
numerical calculations three values 
 = 0.4,
 = 3 and 
 = 10 were taken into
account. Initially, the optimal solution was sought among the conical disks which
initial shape is described by the formula:

Ĥ
(
R̂; u0, u1

)
= u0 + u1 R̂ (70)

Using condition of constant volume leads to:

u1 = 3

2
(1 − u0) (71)

and as a consequence, only one free parameter u0 remains. Optimal solutions for the
disks clamped on the rigid shaft for various 
 are presented in Fig. 13 for β = 0.1
and μ = 0.1.

For 
 = 0.4, the optimal profile of the conical disk becomes almost flat. For
higher 
, the mass moves toward the internal edge. It was expected that the results
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Fig. 13 Optimal profiles of
conical disk clamped on the
rigid shaft, β = 0.1, μ = 0.1

presented earlier can be improved by expanding the class of functions, in which the
optimal solution is sought. In the next step the biparametric optimization was used.

An initial shape is defined by quadratic function:

Ĥ
(
R̂, b0, b1, b2

)
= b0 + b1 R̂ + b2 R̂2, b2 
=0 (72)

From three parameters in this function, only two of themmay be treated as free ones,
the third results from the given volume of disk:

V̂ =
∫ 1

0
2π

(
b0 + b1 R̂ + b2 R̂

2
)
R̂d R̂ = π (73)

in which:

b2 =
2 − 4

3
b1(1 − β3) − 2b0(1 − β2)

1 − β4
(74)

The search process for biparametric optimisation is much more time consumable.
For determined values of b0, the time to mixed rupture is calculated for various b1. In
such away, parameter b1 leading to the longest lifetimemay be found. This procedure
is repeated for subsequent values of b0. Finally, the optimal solution is established
as “maximum maximorum” of all disks investigated (sometimes almost hundred).
Optimal shapes of the disks for biparametric optimisation are shown in Fig. 14.

The optimal shape of disk for 
 = 0.4 is characterized by the large increase of
thickness at the external edge. In spite of larger centrifugal forces, the external edge
works as a kind of reinforcement slowing down the creep process. For larger 
 such
effect does not occur.
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Fig. 14 Optimal shapes of the disks clamped on the rigid shaft, β = 0.5, μ = 0.1

Fig. 15 Time intervals of creep process for β = 0.5, μ = 0.1 and 
 = 3

The creep process of the optimal diskwith initial profile described by the function:

Ĥ
(
R̂
)

= 3.51 − 5R̂ + 2.76R̂2 (75)

is presented in Fig. 15, showing changes of shape (A) and continuity function dis-
tribution (B) in terms of time. A distribution of the continuity function at rupture is
not uniform, criterion of rupture is fulfilled inside the disk at single point. For other
radii the values of function are non-zero and at the internal and external edges they
are quite large. This effect is attributed only to the disks of initial profile described
by the quadratic function, Eq. (72).

One may expect that disks of uniform initial strength, in which the radial and
circumferential stress components are equal and independent of the radius, will be
close to the optimal profiles with respect to the mixed rupture time.
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3.2.2 Disk Fastened on the Rigid Shaft, with Changing Thickness
in the Place of Joint

Analysis of the disk fastened to the rigid shaft is carried out in such a way that
enables displacement on the one hand and variation of thickness in this place (e.g.
spline joint) on the other. The boundary and initial conditions are the same as in
Sect. 4.2.1, Eqs. (65), (67) and (69). Only the condition represented by Eq. (66) is
eliminated, what means that thickness of the disk at the joint with the shaft will
diminish throughout the creep process. An influence of the parameter 
 on the
time to rupture of disk fastened to the rigid shaft, with possible change of thickness
was investigated for the annular disk described by the equation Ĥ(R̂) = 0.8 − R̂ +
2.1R̂2. The results are presented in Fig. 16.

Taking advantage of these results the following values of 
 were chosen for
numerical calculations: 
 = 0.4,
 = 3 and 
 = 10. It turned out, that parameter

 has no influence on the optimal shape of conical disk (due to small width of the
disk, Fig. 17), which is described by the equation:

Ĥ
(
R̂
)

= 1.87 − 0.74R̂ (76)

The optimal shapes of disks fastened to the rigid shaft with possible thickness varia-
tion are shown in Fig. 18 for the biparametric optimisation. For 
 = 0.4 and 
 = 3
the optimal shapes of disk have a reinforcement of the external edge (an increase of
the thickness). For larger 
, the effect vanishes.

Figure19 elaborated for the optimal disk:

Ĥ(R̂) = 4.39 − 8R̂ + 5.05R̂2 (77)

shows the time intervals of the optimal profile for the annular disk fastened to the
rigid shaft (Fig. 19a) and the continuity function (Fig. 19b).

Fig. 16 Influence of
parameter 
 on the time to
rupture of disk fastened to
the rigid shaft, with possible
thickness variation in the
place of joint

http://dx.doi.org/10.1007/978-3-319-70563-7_4
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Fig. 17 The optimal shapes
of disks fastened to the rigid
shaft - uniparametric
optimisation,
β = 0.5, μ = 0.1

Fig. 18 The optimal shapes
of disks fastened to the rigid
shaft - biparametric
optimisation,
β = 0.5, μ = 0.1

The geometrical variations of a disk profile are not significant in the creep process.
Due to small width of the disk, the thickness variation at the internal edge is not too
large, although possible.

3.2.3 Disk with Free Inner Edge

Boundary condition at the internal radius is described by the following expression:

σ̂r
(
β, t̂

) = 0 (78)

and at the external radius by the following equations:
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Fig. 19 Time intervals of the optimal profile and the continuity function for β = 0.5, μ = 0.1,

 = 3

Fig. 20 The optimal profiles
of the conical disk with free
internal edge,
β = 0.1, μ = 0.1

σ̂r (1, t) = 1

ĥ(1, t)
(79)

The optimal profiles for the conical disk are plotted in Fig. 20 as a function of param-
eter 
 for the boundary conditions defined.

The optimal profiles for the conical disks with free internal edge are characterized
by significant reduction of thickness at the external radius, even larger than for the
disk clamped to the rigid shaft. The optimal shapes of the free disks are shown in
Fig. 21 for the biparametric optimization.

The reinforcement of the disk external edge is observed for 
 = 0.1. In the case
of 
 = 0.2 and 
 = 0.3 the optimal shapes are characterized by reduction of the
disk thickness toward the external edge. An example of the optimal profiles can be
expressed as follows:

Ĥ
(
R̂
)

= 4.09 − 5.01R̂ + 1.79R̂ (80)
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Fig. 21 The optimal shape for the disk with free internal edge, β = 0.5, μ = 0.1

Fig. 22 Time intervals of the optimal profile for free edge and the continuity function,β = 0.5, μ =
0.1,
 = 0.2

The time intervals of the disk profile and continuity function are shown in Fig. 22a,
b, respectively.

Time intervals of the optimal profile and the continuity function indicate, that the
rupture criterion of the disk is fulfilled at the internal edge, despite of the significant
reinforcement of the thickness at this point.

4 Conclusions

Time-dependent properties of materials make it possible to formulate various prob-
lems of structure optimization under creep conditions. The problemof optimal design
with respect to ductile and mixed creep rupture time turns out to be a very compli-
cated one. In spite of physical nonlinearites (Norton’s creep law), also geometrical
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nonlinearities are introduced, due to necessity of finite deformation theory applica-
tion.Moreover, additional time factor causes that all differential equations describing
process are the partial ones.

All these complications caused, that the parametric optimization was applied –
the initial shape of the disk was described by polynomial function. The best solution
was sought among disks with initial shape described by linear (one free parameter),
or quadratic (two free parameters) functions. Better result, longer times to mixed
creep rupture were obtained for biparametric optimization.

Significant influence on optimal solution of parameter 
 describing sensitivity of
material on brittle, or ductile rupture was observed. Also ratio of own mass of the
disk and mass placed at the external edge μ is of great importance.
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