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Abstract In smart structural applications, multi-layered piezocomposite plates are
very common for the study of active control applications. In this paper a finite ele-
ment formulation is presented to model the static and dynamic response of laminated
composite plates containing integrated piezoelectric sensors and actuators subjected
to electrical and mechanical loadings. The formulation is based on a third order
shear deformation theory and Hamilton’s principle. A nine-noded C0 plate element
is implemented for the analysis. The element was developed to include stiffness and
the electromechanical coupling of the piezoelectric sensor/actuator layers. The elec-
tric potential is assumed to vary linearly through the thickness for each piezoelectric
sublayer. The model is validated by comparing with existing results documented
in the literature. A displacement and optimal LQR control algorithm is used for
the active control of the static deflection and of the dynamic response of the plates
with surface bonded piezoelectric sensors and actuators layers or patches. The main
aspects of the application of the present model are discussed through a set of numer-
ical examples.
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1 Introduction

Smart composite structures have attracted a great deal of attention in the last few
decades due to their significant potential applicability in various industrial and
research areas. Piezocomposites constitute a significant class of smart structures and
have been studied extensively. Dealing with smart composite structures requires the
possibility ofmodelling and simulation of their behavior. Stress and strain distribution
within a multilayer composite may require careful approximation that deviates from
classical thin plate theories. This is mainly due to the higher contribution of shear
and the effect of weak points like glue layers and interfaces. It is widely accepted that
higher-order shear deformation theory (HSDT) is essentially required for the accu-
rate modelling of thick plates. If one uses the classical plate theory for modelling
of thick laminated structures made of advanced composites (e.g. graphite/epoxy,
boron/epoxy) whose elastic to shear modulus ratios are very large, the errors in
deflections, stresses, natural frequencies and buckling loads become higher. Reddy
[1] also showed that HSDT improves the in-plane response even in the case of thin
laminated composite structure. Thus, if the substrate of a smart structure is amultilay-
ered laminated composite structure, one should consider the effect of transverse shear
deformation to obtain an accurate response. A variety of higher order lamination the-
ories has been proposed in order to improve the transverse shear stress calculation.
Kant and Manjunatha [2] developed a nine-node finite element (FE) having seven
degrees of freedom per node to perform free vibration analysis of unsymmetrically
laminated multilayered plates. Goswami [3] presented a simple C0 FE formulation
for nine-node FEwith six degrees of freedombased onHSDT. Lee andKim [4] devel-
oped a four-node laminated plate element by using a higher order shear deformation
theory and assumed strains to perform the FE analysis of laminated composite plate
structures.

The recent advances in smart structures have prompted interest in more accurate
modelling and simulation of their coupled electro-mechanical behavior for active
control applications. FE models for piezoelectric composite beams and plates have
been reported in Refs. [5]–[12]. Ray et al. [13] developed a two-dimensional eight-
noded isoparametric finite element for modelling the distributed coupled electrome-
chanical behavior of smart structures using higher-order displacement theory. In
Ref. [14] a higher-order, shear-flexible piezolaminatedC1 QUAD 8multi-layer com-
posite plate finite element with 48 elastic degrees of freedom per element and 9 elec-
tric degrees of freedom per element per piezoelectric layer has been presented for the
analysis of multi-layer smart composite structures. The electric potential is assumed
to vary quadratically over the thickness, following [15], representing the potential
induced due to bending deformation more accurately, by interpolating using nodal
mid-plane electric potentials and one electric degree of freedom representing the
potential difference between the top and bottom surfaces of the piezoelectric layer.
Phung–Van et al. [16] presented a simple and effective formulation to investigate
static, free vibration and dynamic control of piezoelectric composite plates inte-
grated with sensors and actuators, based on isogeometric analysis and higher order
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shear deformation theory. Recently, the static behavior of a laminated composite flat
panel, surface bonded with and without piezoelectric and/or magnetostrictive layers,
have been analyzed in [17]. The plate has been modeled in the framework of the
HSDT mid-plane kinematics discretised using suitable FEM with sixteen degrees of
freedom.

Additionally, several other analytical and numerical methods [18–20] are promis-
ing to solve various piezoelectric structures.

The objective of this work is to develop a finite element model for active control of
multilayer piezocomposite plates using higher order shear deformation displacement
theory. The core elastic part of the smart plate is a laminate made of several plies
with different material orientations. The plate is integrated with piezoelectric layers
or patches polarized in the thickness direction. The overall structure is considered as
a laminated plate with the integrated piezoelectric and sensor layers as the bounding
plies of the laminated plate. In order to create a flexible model, suitable for both
classical (statics, dynamics, control) as well as advanced applications (delamination,
damage, consideration of glue material), a nine-node quadrilateral finite element is
developed. The formulation is based on the third order shear deformation theory
that accounts for parabolic distribution of the transverse shear strains through the
thickness of the plate and rotary inertial effects [2] and has been extended to incor-
porate the piezoelectric sensors and actuators layers. To illustrate the accuracy of
the present finite element model, a comparison of results with published ones is pre-
sented. Moreover, the shape control and active vibration suppression of a cantilever
composite plate are studied, in order to demonstrate some of the capabilities of the
model.

Fig. 1 Geometry of the smart piezocomposite plate
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2 Governing Equations

Consider a piezocomposite plate structure consisting of several layers, including
piezoelectric layers, as shown in Fig. 1. All layers are perfectly bonded. The plate
has length a, width b, total thickness h and consists of N layers with the principal
material coordinates of the k -th lamina oriented at an angle θk to the laminate
coordinate x . The xy plane coincide with the midplane of the plate, with the z-axis
being normal to themidplane. The piezoelectric layers are much thinner than the host
structure and they have poling direction along z-axis. For simplicity of the notation,
all the layers of the laminate will be considered as piezoelectric. Elastic layers are
then obtained by making their piezoelectric constants vanish.

2.1 Mechanical Displacement and Strains

The mechanical behaviour of the structure is modelled by the 3rd order displacement
theory developed by Kant et al. [2] as follows

u1(x, y, z, t) = u(x, y, t) + zθx (x, y, t) + z3θ∗
x (x, y, t)

u2(x, y, z, t) = v(x, y, t) + zθy(x, y, t) + z3θ∗
y (x, y, t)

u3(x, y, z, t) = w(x, y, t) (1)

where, u1, u2, u3 are the displacements at any point of the plate along the (x, y, z)
coordinates, u, v, w are the displacements associated with a point on the mid-plane
of the plate and θx , θy are the normal rotations about the y and x -axes, respectively.
The functions θ∗

x , θ
∗
y are the higher order terms of Taylor series expansion defined at

the mid-surface.
The in-plane strains are thus expressed by the following equation

{εb} = {εxx , εyy, γxy}T = {εb0} + z{k} + z3{k∗} (2)

where

{ε0b} =
{

∂u

∂x
,
∂v

∂y
,

(
∂u

∂y
+ ∂v

∂x

)}T

, {k} =
{

∂θx

∂x
,
∂θy

∂y
,

(
∂θx

∂y
+ ∂θy

∂x

)}T

,

{k∗} =
{

∂θ∗
x

∂x
,
∂θ∗

y

∂y
,

(
∂θ∗

x

∂y
+ ∂θ∗

y

∂x

)}T

,

The transverse shear strains are given by

{εs} = {γyz, γxy}T = {ε0s} + z2{ks} (3)
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where

{ε0s} = {
ψx , ψy

}T =
{
θy + ∂w

∂y
, θx + ∂w

∂x

}T

, {ks} = {
ψ∗

x , ψ
∗
y

}T = {
3θ∗

y , 3θ
∗
x

}T
.

2.2 Constitutive Equations of Piezoelectric Lamina

The linear constitutive equations for the k -th piezoelectric lamina with reference to
its principal axes are given by:

{σ̂ }k = [Q̄]k{ε̂} − [ē]Tk {E}k
{D̂}k = [ē]k{ε̂} + [ξ̄ ]k{E}k (4)

where {σ̂ },{ε̂}, {D̂} and {E} are stress, strain, electric displacement and electric
field vector, respectively. [Q̄], [ē] and [ξ̄ ] are plane-stress reduced stiffness coeffi-
cients, the piezoelectric coefficients and the permittivity constant matrices, respec-
tively. In the above equations, a superscript T denotes the transpose of a matrix.
Equation (4a) describes the inverse piezoelectric effect and Eq. (4b) describes the
direct piezoelectric effect. Next, we assume that the piezoelectric material exhibits
orthorhombic 2mm symmetry. After transforming Eq. (4) to the global coordinate
system (x, y, z) and separating the bending and shear related variables, the consti-
tutive Eq. (4) becomes

{σb} = [Qb]{εb} − [eb]T {E}
{σs} = [Qs]{εs} − [es]T {E}
{D} = [eb]{εb} + [es]{εs} + [ξ ]{E} (5)

where {σb} = {σxx , σyy, τxy}T , {σs} = {τyz, τxz}T and

[Qb]k =
⎡
⎣Q11 Q12 Q16

Q21 Q22 Q26

Q16 Q26 Q66

⎤
⎦ , [Qs]=

[
Q44 Q45

Q45 Q55

]

[eb] =
⎡
⎣ 0 0 0

0 0 0
e31 e32 e36

⎤
⎦ , [es]=

⎡
⎣e14 e15e25 e25

0 0

⎤
⎦ , [ξ ] =

⎡
⎣ξ11 ξ12 0

ξ21 ξ22 0
0 0 ξ33

⎤
⎦ (6)

In Eq. (6), Qkl , ekl and ξkl are the transformed reduced elastic, piezoelectric and
permittivity constants of the kth lamina, respectively. The detailed expressions for
transformed material constants can be obtained from [21]. For non-piezoelectric
layer the material constants ekl and ξkl should be zero.
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2.3 Electric Field

It is assumed that the electric field acts in the thickness direction. Also, this paper
considers piezoelectric elements with electrodes on the top and bottom surfaces and
poled in the thickness direction. Thus, for most of the typical piezoelectric laminate
structures with relatively small thickness of the piezolayers in comparison to the
overall laminate thickness, the electric field inside the k-th piezoelectric layer can be
expressed as

{E}k = [Bφ]pkφ pk (7)

where

[Bφ]pk = [
0 0 − 1

h pk

]

and h pk , φ pk are the thickness and the difference of electric potential between the
electrodes covering the surface on each side of the piezoelectric layer pk . It should
be noted that such formulation gives one electric degree of freedom per layer per
element of the electric field.

2.4 Finite Element Formulation

It is well known that the analytical solutions of laminated composite structure bonded
with and without functional materials are very tough due to their material and geo-
metrical complexities. However, FEM has been proved to be a robust numerical tool
for such kind of complex analysis. In this present study, the smart plate model has
been discretized using a nine nodded isoparametric quadrilateral Lagrangian element
with seven degrees of freedom (DOF) per node. The element is developed to include
the stiffness and the electromechanical coupling of the piezoelectric sensor/actuator
layers. The generalized displacement vector for any point within a typical element e
may be expressed as:

{ū(x, y, t)} ≡ {u, v, w, θx , θy, θ
∗
x , θ

∗
y }T = [Nu]{d}e =

9∑
i=1

(Ni [I ]7×7{di }e) (8)

where {di }e = {ui , vi , wi , θxi , θyi , θ
∗
xi , θ

∗
yi }T corresponding to the i-th node of the

element and Ni are the shape functions.
Substituting (8) into Eqs. (2) and (3) gives:

{ε(x, y, t)} = [B]{d}e =
9∑

i=1

([Bi ]{di }e) (9)
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or equivalent:

{ε̄} =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{εb0}
{k}
{k∗}
{εs0}
{ks}

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎣

[Bb]
[Bk]
[Bk∗ ]
[Bs]
[Bks]

⎤
⎥⎥⎥⎥⎦ {d}e =

9∑
i=1

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

[Bb]i
[Bk]i
[Bk∗ ]i
[Bs]i
[Bks]i

⎤
⎥⎥⎥⎥⎦ {di }e

⎞
⎟⎟⎟⎟⎠

where

[Bb]i =
⎡
⎣∂x 0 0 0 0 0 0
0 ∂y 0 0 0 0 0
∂y ∂x 0 0 0 0 0

⎤
⎦ Ni , [Bk]i =

⎡
⎣0 0 0 ∂x 0 0 0
0 0 0 0 ∂y 0 0
0 0 0 ∂y ∂x 0 0

⎤
⎦ Ni

[Bk∗ ]i =
⎡
⎣0 0 0 0 0 ∂x 0
0 0 0 0 0 0 ∂y
0 0 0 0 0 ∂y ∂x

⎤
⎦ Ni , [Bs]i =

[
0 0 ∂x 1 0 0 0
0 0 ∂y 0 1 0 0

]
Ni

[Bks ]i =
[
0 0 0 0 0 3 0
0 0 0 0 0 0 3

]
Ni

and ∂x = ∂
∂x , ∂y = ∂

∂y .
In general, piezocomposite structures may comprise more than one piezoelectric

layer, e.g. a number of Npe piezoelectric layers. Therefore, electrical quantities are
observed layerwise, and in the finite element model they are given in the condensed
form of vectors {E}e and {φ}e defined on the element level.

Thus after the discretization of the structure, the differences of electric potentials
of all piezoelectric layers across the thickness of the element can be expressed as:

{φ}e = {φ1, φ2, . . . , φNpe}T (10)

where Npe is the number of the piezoelectric layers of the eth element. The electric
field distribution can be written as:

{E}e = [Bφ]{φ}e
where [Bφ] = diag([Bφ]1, [Bφ]2, . . . , [Bφ]N pe) is the electric field-electric potential
matrix, which has a diagonal form since the difference of electric potentials of a
piezo-layer affects the electric field only of the very same layer.
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2.5 Variational Principle

This formulation will be based on the Hamilton variational principle in which the
strain potential energy, kinetic energy and work are considered for the entire struc-
ture. Since we are dealing with the piezoelectric continuum, the Lagrangian will be
properly adapted in order to include the contribution from the electrical field besides
the contribution from the mechanical field. The most general form of this variational
principle is stated as:

T∫
0

(δT − δU + δW ) dt (11)

where T is the total kinetic energy, U is the total strain energy and W is the work
done by the loads.
The strain energy of a piezocomposite element is given by:

U = 1

2

∫
Ve

({εb}T {σb} + {εs}T {σs}) dV

= 1

2

∫
Ve

({εb0}T [Qb]{εb0} + {εb0}T z[Qb]{k} + {εb0}T z3[Qb]{k∗}

+{k}T z[Qb]{εb0} + {k}T z2[Qb]{k} + {k}T z4[Qb]{k∗}
+{k∗}T z3[Qb]{εb0} + {k∗}T z4[Qb]{k} + {k∗}T z6[Qb]{k∗}
+{εs0}T [Qs]{εs0} + {εs0}T z2[Qs]{ks}
+{ks}T z2[Qs]{εs0} + {ks}T z4[Qs]{ks}
−{εb0}T [eb]T {E} − {k}T z[eb]T {E} − {k∗}T z3[eb]T {E}
−{εs0}T [es]T {E} − {ks}T z[es]T {E}) dV

= 1

2

∫
Ve

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

{εb0}
{k}
{k∗}
{εs0}
{ks}

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎣

[Qb] z[Qb] z3[Qb] 0 0
z[Qb] z2[Qb] z4[Qb] 0 0
z3[Qb] z4[Qb] z6[Qb] 0 0

0 0 0 [Qs] z2[Qs]
0 0 0 z2[Qs] z4[Qs]

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

{εb0}
{k}
{k∗}
{εs0}
{ks}

⎤
⎥⎥⎥⎥⎦ dV
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−1

2

∫
Ve

⎡
⎢⎢⎢⎢⎣

{εb0}
{k}
{k∗}
{εs0}
{ks}

⎤
⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎣

[εb]T
z[εb]T
z3[εb]T
[εs]T
z2[εs]T

⎤
⎥⎥⎥⎥⎦ {E}dV

= 1

2

∫
Ve

({ε̄}T [D(z)]{ε̄} − {ε̄}T [E (z)]{E})dV (12)

where Ve is the volume of an element. Substituting for {εb0}, {k}, {k∗}, {εs0}, {ks} and
{E} in Eq. (12), U can be written as:

U = 1

2
{d}Te [Kuu]e{d}e − 1

2
{d}Te [Kuφ]e{φ}e (13)

where

[Kuu]e =
N∑

k=1

⎡
⎣∫
Vk

([B]T [D(z)]k[B]dVk

⎤
⎦

[Kuφ]e =
⎡
⎢⎣
∫
Vp1

[B]T [E (z)]p1[Bφ]p1dVp1

∫
Vp2

[B]T [E (z)]p2 [Bφ]p2dVp2 . . .

. . .

∫
VpNe

[B]T [E (z)]pNe [Bφ]pNe dVpNe

⎤
⎥⎦

and Vk is the volume of the k-th layer, Vpk is the volume of the pk-th piezoelectric
layer inside an element and N is the number of lamina.
The element kinetic energy is given by:

T = 1

2

N∑
i=1

∫
Vk

ρk
[{u̇1}2 + {u̇1}2 + {u̇1}2

]
dVk (14)

where ρk is the density of the k-th layer. Substituting the displacements relations (1),
Eq. (14) becomes:

T = 1

2

N∑
i=1

∫
Vk

ρk[u̇2 + 2zu̇θ̇x + 2z3u̇θ̇∗
x + v̇2 + 2zv̇θ̇y + 2z3v̇θ̇∗

y + ẇ2

+z2θ̇2
x + 2z4θ̇x θ̇

∗
x + z6(θ̇∗

x )
2 + z2θ̇2

y + 2z4θ̇y θ̇
∗
y + z6(θ̇∗

y )
2]dVk



374 G. Tairidis et al.

= 1

2

N∑
k=1

∫
Vk

ρk

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u
v

w

θx
θ∗
x

θy
θ∗
y

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

T ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 z 0 z3 0
0 1 0 0 z 0 z3

0 0 1 0 0 0 0
z 0 0 z2 0 z4 0
0 z 0 0 z2 0 z4

z3 0 0 z4 0 z6 0
0 z3 0 0 z4 0 z6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u
v

w

θx
θ∗
x

θy
θ∗
y

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

dV

= 1

2

N∑
k=1

∫
Vk

{ ˙̄u}T [I (z)]k{ ˙̄u}dV (15)

Substituting Eq. (8) in the relation (15), one obtains:

T = 1

2
{ḋ}Te [M]e{ḋ}e (16)

where

[M]e =
∫
Ae

N∑
k=1

zk∫
zk−1

[N ]T [I (z)]k[N ]dzdA

where Ae is the area of the element and zk−1, zk are the z coordinates of laminates
corresponding to the top and bottom surface of the k-th layer.

The total work W is the sum of the work done by the electrical forces WE and
the work done by the mechanical forces Wm . Using constitutive relations, strain dis-
placement and electric field-electric potential relations, the element electrical energy
can be written as:

WE = 1

2

Npe∑
k=1

∫
Vpk

{E}Tk {D}kdV = 1

2

Npe∑
k=1

∫
Vpk

{E}Tk ([eb]k{εb} + [es ]k{εs} + [ξ ]k{E}k)dV

= 1

2
{φ}Te

∫
Vp

[Bφ]T [ξ ][B]dV {d}e + 1

2
{φ}Te

∫
Vp

[Bφ]T [ξ ][Bφ]dV {φ}e

= 1

2
{φ}Te [Kφu ]e{d}e + 1

2
{φ}Te [Kφφ]e{φ}e (17)

where
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[Kφφ]e = diag

⎛
⎜⎝
∫
Vp1

[Bφ]Tp1 [ξ ]p1[Bφ]p1dVp1 ,

∫
Vp2

[Bφ]Tp2 [ξ ]p2 [Bφ]p2dVp2 , . . . ,

. . . ,

∫
VpNe

[Bφ]TpNe [ξ ]pNe [Bφ]pNe dVpNe

⎞
⎟⎠

[Kφu]e = [Kφφ]Te and Vp is the volume of the piezoelectric layer.
The work done by the mechanical forces is given by:

Wm = {ū}T { fc} +
∫
S1

{ū}T { fs}dS +
∫
V

{ū}T { fv}dV −
∫
S2

{E}T { fφ}dS

= {d}Te [N ]T { fc} + {d}Te
∫
S1

[N ]T { fs}dS + {d}Te
∫
V

[N ]T { fv}dV −

− {φ}Te
∫
S2

[Bφ]T { fφ}dS

= {d}Te {Fm}e + {φ}Te {Fφ}e (18)

In Eq. (18), { fc} denotes the concentrated forces intensity, { fs} and { fv} denote the
surface and volume force intensity, respectively and { fφ} denotes the surface charge
density. S1 and S2 are the surface areas where the mechanical forces and electrical
charge are applied, respectively. {Fm}e are the applied mechanical forces at each
element and {Fφ}e are the applied electrical charges at each element.

2.6 Equations of Motion

Using Hamilton s principle (11) the resultant global FE spatial model, governing the
motion and electric charge equilibrium, is given by:

[M]
{
d̈
} + [Kuu] {d} + [

Kuφ

] {φ} = {Fm}[
Kφu

] {d} + [
Kφφ

] {φ} = {
Fφ

}
(19)

where {d} and {φ} are the global mechanical and electrical DoFs vectors, [M] is the
global mass matrix, [Kuu],

[
Kuφ

] = [
Kuφ

]T
and

[
Kφφ

]
are the global mechanical

stiffness, mechanical-electrical coupling stiffness and dielectric stiffness matrices
respectively. {Fm} and {Fφ

}
are the respective global mechanical and electrical load-

ing vectors.
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Next we assume that the electrical DoFs vector in Eq. (19) can be divided into the
actuating and sensing DoFs, {φ}e = {φa, φs}T , where the subscripts a and s denote
the actuating and sensing capabilities. Hence, considering open-circuit electrodes,
and in that case

{
Fφ

} = 0, the non-specified potential differences in (19) can be
statically condensed and the equations of motion and charge equilibrium become:

[M]
{
d̈
} + [

K ∗
uu

] {d} = {Fm} − [
Kuφ

]
a
{φ}a

{φ}s = − [
Kφφ

]−1
s

[
Kφu

]
s
{d} (20)

where
[
K ∗

uu

] = [Kuu] − [
Kuφ

]
s

[
Kφφ

]−1
s

[
Kφu

]
s .

Equation (20) can be used in smart structures applications such as vibration con-
trol, static or dynamic shape control, etc. In shape control applications, the piezoelec-
tric layers are used as actuators. In addition the time-dependent momentum forces
become zero. Thus, all the electrical degrees are considered as known quantities and
the coupled equations (20) reduce to pure mechanical ones:

[Kuu] {d} = {Fm} − {Fel} (21)

where {Fel} = [
Kuφ

] {φ} is the electrical force vector due to the actuation.

2.7 Modal Model in Terms of State Space

The application of the active control methods in dynamic structural problem requires
the use of a state space model. Before we obtain this kind of equations, a mode
superposition method is adopted to obtain an approximate reduced-order dynamic
model of the system with uncoupled equations of motion in the modal coordinates.
Hence {d(t)} can be approximated by:

{d} ≈
r∑

i=1

 jη j = [] {η} (22)

where [] = [1,2, · · · ,r ] is the truncatedmodalmatrix and {η} = {η1, η2, · · · ,

ηr } is the modal coordinate vector. Substituting Eq. (22) into Eq. (20) leads to:

{η̈} + [
�2] {η} = []T {Fm} − []T

[
Kuφ

]
α
{φ}α (23)

{φ}s = − [
Kφφ

}−1
s

[
Kuφ

]
s []T {η} (24)

Also, using the modal approach, structural damping can be easily introduced as:

{η̈} + [�] {η̇} + [�] {η} = []T {Fm} − []T
[
Kuφ

]
α
{φ}α (25)
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where [�] is a diagonal modal damping matrix with the generic term 2ξiωi , where ξi
is the modal damping ratio and ωi the undamped natural frequency of the i-th mode.

For control design, the Eqs. (25) and (24) are transformed into state-space form
as follows:

{ẋ} = [A] {x} + [B]
{
uφ

} + { f } (26)

{φ}s = {y} = {C} {x} (27)

where {x} = {η, η̇}T is the state vector, [A] is the system matrix, [B] is the control
matrix, { f } is the disturbance input vector and {

uφ

} = {φ}α is the control input to
the actuator.

These matrices are given by

[A] =
[

[0] [I ][−�2
]
[�]

]
[B] =

[
[0]

− []T
[
Kuφ

]
a

]

{ f } =
[

[0]

[]T {Fm}

]
[C] =

[
− [

Kφφ

]−1
s

[
Kφu

]
s [] [0]

]
(28)

2.8 Control Law

The state-space system Eq. (26) is now applied to the design of an optimal con-
troller. The control algorithm considered here is the linear quadratic regulator (LQR)
controller. The control voltage in this case is given by:

{uφ} = [G]{x} (29)

in which the feedback control gain [G] is obtained so as to minimize the quadratic
cost function of the form:

J = 1

2

∞∫
0

({x}T [Q]{x} + {u}T [R]{u}) dt (30)

subjected to system equation (26). [Q] and [R] are the semi-positive-definite and
positive-definite weighting matrices on the outputs and control inputs, respectively.
In our case higher values in [Q] mean that we demand more vibration suppression
ability from the controller, while larger values in [R] put more interest in limiting
the control effort. Assuming infinite optimization horizon and full state feedback,
the control gain [G] in (29) is given by:

[G] = −[R]−1[B]T [P] (31)
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where [P] is a solution of the Riccati equation.

[A]T [P] + [P][A] − [P][B][R]−1[B]T [P] + [Q] = 0 (32)

An advantage of the linear quadratic formulation of the problem is the linearity of
the control law, which leads to easy analysis and practical implementation. Another
advantage is that the values of the gain and phase margins imply stability, good
disturbance rejection and good tracking.

A computer program has been developed in MATLAB to perform all the nec-
essary computations. Reduced integration technique is adopted to avoid shear and
membrane locking during computation.

3 Numerical Applications

In this section, the formulation and finite element code developed in the present work
is validated with existing results documented in the literature. For static deflection,
a piezoelectric bimorph cantilever beam is considered and for dynamic analysis
a cantilever piezocomposite plate is considered. After the validation work, shape
control and vibration suppression of piezocomposite multilayer plate is investigated.

3.1 Validation Example 1

To validate the static analysis, a piezoelectric bimorph cantilever beam (100 × 5 ×
1mm) constructed of two layers of PVDF bonded together and polarized in oppo-
site directions is considered. The total height or thickness is 0.001 m, the length is
0.1 m and the width is 0.005 m. The cantilever is fixed on the left end and electric
potential is applied such that the top layer is 0.5V and the bottom layer is 0.5 V .
Thematerial properties of the PVDFmaterial are given as: E1 = E2 = 2.0 E9N/m2,
G12 = G13 = G23 = 7.75 E9N/m2 and e31 = 0.046 N/Vm. The bimorph beam is
modelled using five beam elements of equal length. This particular example has
been considered by several researchers (see e.g. [5–7]). The numerical results for
the present method are compared with results from other methods in Table 1. Veley
and Rao [6] used a 2D plane stress element modified with pseudo-nodes to include
the electric potential DOF. Tzou and Ye [7], using triangular shell elements which
have both mechanical (using FOSDT) and electrical DOFs, showed that they pro-
duced better results than the thin solid linear elements used by Tzou [7]. Chee et al.
[10] used a mixed finite element model, which uses Hermitian beam elements with
electric potential incorporated via the layerwise formulation. The present results fit
exactly with those of Chee et al. and has a high correlation with Tzou ’s theoreti-
cal shell solutions and the results of Veley and Rao. This comparison suggests that
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Table 1 Transverse Displacement w (m) of the bimorph beam

Nodes x (m) Present FE-Chee et al.
[10]

Theory-Tzou et al.
[7]

FEM Veley et al.
[6]

1 0.00 0.00 0.00 0.00 0.00

2 0.02 1.380 × 10−8 1.380 × 10−8 1.380 × 10−8 1.380 × 10−8

3 0.04 5.520 × 10−8 5.520 × 10−8 5.520 × 10−8 5.520 × 10−8

4 0.06 1.242 × 10−7 1.242 × 10−7 1.240 × 10−7 1.240 × 10−7

5 0.08 2.208 × 10−7 2.208 × 10−7 2.210 × 10−7 2.210 × 10−7

6 0.10 3.450 × 10−7 3.450 × 10−7 3.450 × 10−7 3.450 × 10−7

the developed finite element code is capable of analyzing cases where piezoelectric
material in the structures is used for actuation.

3.2 Validation Example 2

To validate the dynamic analysis, a cantilever composite plate (20 × 20cm) with
continuous piezoceramic layers bonded to the surface (top and bottom) is con-
sidered (Fig. 2). The stacking sequence the composite is antisymmetric angle-ply
([−45o/45o/ − 45o/45o]). The plate is made of T300/976 graphite-epoxy compos-
ite and the piezoceramic is PZTG1195N. Thematerial properties are given in Table2.
The total thickness of the composite is 1mm and each layer has the same thickness
(0.25mm); the thickness of each PZT is 0.1mm. The plate is modelled using the
present nine-node elements with a mesh size of 6 × 6. The first ten circular frequen-
cies based on the present element are compared with those obtained by Lam et al., [8]
in Table 3. Lam et al. [8] used a rectangular nonconforming plate bending element

Fig. 2 The cantilever piezocomposite plate
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Table 2 Material properties
of T300/976 graphiteepoxy
composites and PZT G1195N
piezoceramics

T300/976 PZT

Young’s moduli (GPa):

E1 150.0 63.0

E2 9.0 63.0

Poisson ratio: 0.3 0.3

Shear moduli (GPa):

G12 7.1 24.2

G23 = G13 2.5 24.2

Density ρ(kgm−3) 1600 7600

Piezoelectric constants (mV−1):

d31 = d32 – 254 ×
10−12

Electrical permittivity (Fm−1):

ξ11 = ξ22 – 15.3 × 10−9

ξ33 – 15.0 × 10−9

Table 3 Natural frequencies
(in Hz) for the
piezocomposite plate

Mode Results of Lam et al. [8] Present

1 21.7558 21.4655

2 64.6483 63.3468

3 130.8456 130.8108

4 185.9157 182.4012

5 221.4875 218.2537

6 382.2130 381.9080

7 407.1130 395.6595

8 415.6272 410.8062

9 482.9578 476.3271

10 669.5056 642.7275

based on classical plate theory. It can be easily observed that the present values are
showing good agreement with the results of Lam et al. and the difference between
the results are within the expected line. The minor difference was expected because
the model of Ref. [8] used low order classical displacement field.

3.3 Shape Control Applications

Having validated the model and finite element method code, we present a numerical
example to demonstrate the use of this code for the simulation of the response of
laminated composite plates with integrated piezoelectric sensor and actuator in active
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Fig. 3 Effect of symmetric
and asymmetric ply
orientation on the deflection
of point A for different
applied voltage

deformations and vibration control. The physical model is the same as in the previous
dynamic study.

First, the static analysis and deformation control of the composite plate are pre-
sented. In the static analysis, all the piezoceramics on the upper and lower surfaces of
the plate are used as actuators. Equal voltages with opposite signs are applied across
the thickness of the upper and lower piezoelectric layer, respectively. Figure3 shows
the corresponding displacements at the tip point A for different applied actuator volt-
ages under different symmetric angle-ply lay up [p/θ/θ/θ/θ/p] and antisymmetric
angle-ply layup [p/θ/θ/θ/θ/p]. It can be concluded from Fig. 3 that there is a linear
relationship between the plate s centerline deflection and the actuator ’s input voltage.
Also, it is observed that with an increase in the angle θ , an increase of tip deflection
is obtained under same applied actuator voltage in both type of layup. However,
deflection is more in case of the symmetric angle-ply lay up than the antisymmetric
angle-ply lay up.

For practical applications one would like to know the optimal actuation value with
respect to a given shape control task. A first attempt has been done here by classical
trial and error techniques. After some numerical experiments the more satisfactory
results are shown in Fig. 4.

The centerline deflection under the action of a uniform distributed load of
100Nm−2 for different values of the actuation is shown in Fig. 3. The task has
been the reduction of plate’s deflections due to loading. The results are directly
comparable with that published in paper [8].
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Fig. 4 The centerline
deflection under uniform
load and different actuator
input voltages

3.4 Vibration Control Applications

In order to investigate the active vibration control of the composite plate, the same
structure as in validation example 2 is considered again except that the piezoelectric
layers are not located on the entire top and bottom faces of the plate. In the present
case, only the first six elements near the clamped edge are covered (on the top and
bottom) by piezoelectric patches. In vibration control, the upper piezoceramics serve
as sensors and the lower ones as actuators. The first six modes are used in the modal
space analysis and an initial modal damping ratio for each of the modes is assumed
to be 0.4%. The plate is subjected to a vertical impulse at its tip and the disturbance
in a structure is suppressed by using the linear quadratic regulator (LQR) as a control
measure.

To design the feedback control usingLQR, the appropriate selection of theweight-
ing matrices [Q] and [R] plays a vital role. To estimate the weighting matrices and
provide an insight into weighting matrices on structural response and actuator volt-
age, the effect of [Q] and [R] on vibration response and control voltage is investigated
in the following.

The value of the [Q] matrix is changed as (105, 106, 107) I12×12 in the LQR
procedure given byEqs. (29) and (31),while the value of [R] is kept constant as [R] =
γ I36×36 with γ = 1. One should note that the order of matrix [Q] is determined
according to the number of state variables, {x}, which is defined by the number
of vibration modes considered in the control system. Here, the first six modes the
vibration control is considered. Similarly, the order of matrix [R] is determined
according to the number of actuators of the system. In the present example, each
finite element is assumed to covered by an actuator requiring a dimension of 36 × 36
formatrix [R]. The LQR function inMATLAB is used to find the optimal gain, which
decides the gain based on the system matrix, disturbance matrix and control matrix
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Fig. 5 Effect of the [Q] matrix coefficient on a tip displacement and b applied voltage

Fig. 6 Effect of the [R] matrix coefficient on a tip displacement and b applied voltage

as explained in Eq. (29). Using the determined feedback control, the tip displacement
and the control voltage for the first mode of the smart laminated plate are obtained
as shown in Fig. 5. It is observed that the higher value of [Q] results in lower settling
time but higher applied voltage (Fig. 5).

In another investigation, the coefficientγ of the [R]matrix is changed from1 to3 in
the LQRprocedure, while the value of [Q] is kept constant as [Q] = 105 I12×12. Next,
the feedback gain is determined according to each [R] value. Using the determined
feedback control, the tip displacement and control voltage of the first actuator are
obtained as shown in Fig. 6. It is observed that increasing the value of the [R] matrix
decreases the required electric voltage but, on the other hand, it increases the settling
time.
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4 Conclusion

In this work, a theoretical and FE formulation for the analysis of anisotropic piezo-
composite laminated plates was presented. The formulation was based on the third
order shear deformation theory that accounts for parabolic distribution of the trans-
verse shear strains through the thickness of the plate and rotary inertial effects and has
been extended to incorporate the piezoelectric sensors and actuators layers. To imple-
ment the model, a nine-noded isoparametric element with seven degree of freedom
per node and one electric degree of freedom per element per piezoelectric layer has
been proposed. The element was developed to include stiffness and the electrome-
chanical coupling of the piezoelectric sensor/actuator layers. Numerical experiments
using a computer code, whose algorithm is based on the present finite element model,
produced results that correlated well with other published results. After the valida-
tion work, numerical illustrations have been presented to study shape and vibration
control of a cantilever piezocomposite plate. The effects of laminate configuration
and applied voltage on shape control of the smart system have been investigated in
this simulation study. Finally, the active vibration control performance of the piezo-
composite plate was studied by applying LQR optimal control based on full state
feedback assumption. The effects of weighting matrices on controlled response of
the smart system have also been investigated.

More complicated adaptive fuzzy and neurofuzzy controllers have been recently
studied by the authors [22]–[25] and canbeused for control applications of the created
model. Furthermore, extension to geometric or material nonlinearity is possible,
within classical Newton–Raphson approaches.
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