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Abstract The optimum design of a thick laminated anisotropic plate in order to reg-
ulate its dynamic response is studied. The optimization problem consists in estab-
lishing the ply orientation of each layer for which the fundamental frequency is
maximized, minimized or forced to reach a prescribed value. The evaluation of
the objective function requires the solution of the dynamic bending problem of a
thick laminated plate which is solved using the Analog Equation Method (AEM) in
conjunction with the Boundary Element Method (BEM). A nonlinear optimization
problem is formulated and the optimum solution is obtained through the sequential
quadratic programming algorithm. Several plate optimization problems have been
studied giving realistic and meaningful optimum designs.

1 Introduction

Laminated plates made of various layers of anisotropic materials exhibit certain sig-
nificant advantages over singled layer plates. For this reason they are extensively
used in various engineering structures, like buildings, ship, aircrafts and space struc-
tures. Laminated plates give the designers the opportunity to optimize their response
according to structural requirements. By changing the material principal directions
of each layer, the number of the layers, their thickness or their sequence we can
minimize the weight of the structure, maximize the buckling load, regulate natural
frequencies or minimize the deflection of the plate.
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Frequency regulation is of great importance in structures under dynamic exci-
tation. By regulating (minimizing, maximizing or specifying) the fundamental or
higher order natural frequencies, we can avoid the destructive consequences of var-
ious dynamic phenomena, like resonance and flutter instability.

The frequency optimization of thin and thick laminated plates has been studied by
many researchers. Most of them investigate frequency optimization by maximizing
the fundamental frequency using as design variables the fiber orientation and the
thickness of each layer. Narita [1, 2], Apalak et al. [3] and Ghashochi [4] study
frequency maximization of thin laminated plates using the Finite Element Method
(FEM). Houmat [5] study frequency maximization assuming that fiber orientation
may be position dependent within a layer of a thin plate.

Many researchers have shown that shear effects cannot be neglected even in thin
laminated anisotropic plates, which are made of modern materials with increased
ratio of Young to shear modulus [6]. Fares et al. [7] investigate optimal design of
laminated plates using various plate theories. They optimize the dynamic response
of the plate using as design variables the fiber orientation and the thickness of the
layers. They concluded thatMindlin plate theory give results close to higher order the-
ories in case of moderate thick laminated plates. Frequency optimization of Mindlin
laminated plates has been studied by many researchers using FEM and gradient
optimization methods [8–10]. Some researchers minimize the weight of the plate
under a frequency constraint using as design variables the fiber orientation of each
layer [11–13]. Modern evolutionary optimization methods have been also used in
frequency optimization of thick laminated plates [14–16].

In this paper we consider the problem of frequency regulation of a thick laminated
plate made of various orthotropic layers. The plate may have arbitrary geometry and
is subjected to any type of boundary conditions. The optimization problem consists
in determining the angle of the material principal direction of each layer (ply ori-
entation) for which the plate fundamental frequency is optimized, i.e., it becomes
minimum, maximum or reaches certain specified value between the extrema. The
optimization problem is subjected to upper and lower bounds on ply orientation. The
evaluation of the objective function (fundamental frequency) requires the solution of
the free vibration problem of an anisotropic thick plate, which is described by a sys-
tem of three coupled hyperbolic partial differential equations (PDE) of second order.
Following the principle of the analog equation [17], the original systemof equations is
substituted by three uncoupled quasi-static Poisson’s equation under fictitious loads.
The Poisson’s equations are solved using the conventional BEM [18] with constant
boundary elements and linear triangular elements for domain discretization. The
optimization problem is solved using sequential quadratic programming algorithm
by a ready to use Matlab function. Several optimization problems for plates of vari-
ous shapes and boundary conditions have been analyzed, yielding thus realistic and
meaningful optimum designs.
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Fig. 1 Laminated thick plate

2 Statement of the Problem

2.1 Optimization Problem

We consider a thick elastic plate made of L orthotropic layers of uniform thick-
ness occupying the two-dimensional multiply connected domain � in the xy-plane
with the boundary � = ∪i=K

i=0 �i (Fig. 1). The nonintersecting curves �i (i = 0, 1,
2, . . . , K )may be piecewise smooth. The principal axes (x ,

k y
)
k (k = 1, 2, . . . , L) of

the k-lamina may be inclined at an angle θk with respect to global coordinate system
(Fig. 1). The plate may be simply supported, clamped or free along the boundary. The
objective function of the problem is the fundamental frequency, which is obtained
from the solution of the free vibration problem in absence of damping.

Theoptimizationproblemconsists in determining the anglesθk (k = 1, 2, . . . , L)

for which the fundamental frequency becomes maximum or minimum or takes a cer-
tain specified value between them. Thus, the evaluation of the objective function
requires the solution of the dynamic bending problem of an anisotropic thick plate.

2.2 The Equation of Motion of a Thick Laminated
Anisotropic Plate

The Mindlin plate theory [19] is adopted to approximate the response of the thick
plate. According to this theory the displacement field is given as

u(x, y, z) = zφx(x, y), v(x, y, z) = zφy(x, y), w(x, y, z) = w(x, y)
(1a, b, c)

where w is the transverse deflection of the middle surface of the plate and φx ,φy its
rotations about y and x axis, respectively.

The constitutive equations of the k = 1, 2, . . . , L layer, which is made of an
orthotropic material, are given as
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where Ci j are the elastic constants of the orthotropic material as transformed from
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where Ks is the shear correction factor.
By taking the first variation of the total potential of the plate [17], we obtain the

equations of motion of the plate in terms of the stress resultants

∂Mx

∂x
− ∂Mxy

∂y
− Qx = I2φ̈x (6a)

∂Myx

∂x
+ ∂My

∂y
− Qy = I2φ̈y (6b)

∂Qx

∂x
+ ∂Qy

∂y
= I1ẅ (6c)

where I1, I2

I1 =
∫ h/2

−h/2
ρ(z)dz, I2 =

∫ h/2

−h/2
z2ρ(z)dz (7a,b)

with ρ(z) being the density variation through the thickness. Note that the twisting
moments Mxy, Myx are positive when they have the direction of the outward normal
to the cross section [17].

The associated boundary and initial conditions are:

α1w + α2Qn = α3 (8a)

β1φn + β2Mn = β3 (8b)
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γ1φt + γ2Mnt = γ3 (8c)

w(x, y, 0) = g(1)
1 (x, y), ẇ(x, y, 0) = g(1)

2 (x, y) (8d)

φx (x, y, 0) = g(2)
1 (x, y), φ̇x (x, y, 0) = g(2)

2 (x, y) (8e)

φy(x, y, 0) = g(3)
1 (x, y), φ̇y(x, y, 0) = g(3)

2 (x, y) (8f)

where

Qn = Qxnx + Qyny, Mn = Mxn
2
x + Myn

2
y + 2nxnyMyx (9a,b)

Mnt = Mxy(n
2
x − n2y) + nxny(Mx − My) (9c)

φn = nxφx + nyφy, φt = −nyφx + nxφy (9d,e)

with nx and ny being the direction cosines of the normal to the boundary (Fig. 1).
It is not necessary to specify the functions g(i)

1 (x, y), g(i)
2 (x, y), (i = 1, 2, 3) of the

initial conditions Eq. (8d), (8e), (8f), since we are interested on the evaluation of the
natural frequencies of the plate.

All types of boundary conditions can be derived from Eqs. (8a), (8b), (8c) by
appropriate selection of the parameters αi ,βi , γi (i = 1, 2, 3). Thus an edge is:

(i) clamped for α1 = β1 = γ1 = 1 and α2 = β2 = γ2 = 0, α3 = β3 = γ3 = 0
(ii) simply supported of type I (hard) for α1 = β2 = γ1 = 1 and α2 = β1 = γ2 =

α3 = β3 = γ3 = 0,
(iii) simply supported of type II (soft) for α1 = β2 = γ2 = 1 and α2 = β1 = γ1 =

α3 = β3 = γ3 = 0
(iv) free for α2 = β2 = γ2 = 1 and α1 = β1 = γ1 = α3 = β3 = γ3 = 0.

Substituting Eqs. (4) and (5) in Eq. (6) we obtain the equations of motion in terms
of the displacements

D11φx,xx + 2D16φx,xy + D66φx,yy + D16φy,xx + (D12 + D66)φy,xy

+D26φy,yy − A55(φx + w,x ) − A45(φy + w,y ) = I2φ̈x

(10a)

D66φy,xx + 2D26φy,xy + D22φy,yy + D16φx,xx + (D12 + D66)φx,xy

+D26φx,yy − A45(φx + w,x ) − A44(φy + w,y ) = I2φ̈y

(10b)

A55(φx,x + wxx ) + A45(φx,y + φy,x + 2wxy) − A44(φy,y + w,yy ) = I1ẅ (10c)
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2.3 Evaluation of the Objective Function

The initial-boundary value problem of Eqs. (8) and (10) is solved using the AEM
[17]. Since the governing Eq. (11) represents a system of three coupled second order
PDEs with respect to spatial coordinates, the analog equations are:

∇2w = b1(x, y, t), ∇2φx = b2(x, y, t), ∇2φy = b3(x, y, t) (11a, b, c)

where b1, b2 and b3 are time dependent fictitious sources, unknown in the first
instance. Equations (11a,b,c) are quasi-static equations, that is the time appears as a
parameter, or in other words the equations are instantaneous elliptic. Their solution
is given in integral form as [18]

εw(x, t) =
∫

�

u∗b1(y)d�y −
∫

�

(u∗w,n −u,∗n w)dsξ (12a)

εφx (x, t) =
∫

�

u∗b2(y)d�y −
∫

�

(u∗φx ,n −u,∗n φx )dsξ (12b)

εφy(x, t) =
∫

�

u∗b3(y)d�y −
∫

�

(u∗φy,n −u,∗n φy)dsξ (12c)

in which x ∈ � ∪ �, y ∈ �, ξ ∈ �; u∗ = ln r/2π is the fundamental solution of
the Poisson’s equation, i.e., Eq. (11a); r = ‖y − x‖ in domain integrals and r =
‖ξ − x‖ in boundary integrals; ε is the free termcoefficient (ε = 1 if x ∈ �, ε = a/2π
if x ∈ �and ε = 0 if x /∈ � ∪ �; a is the interior angle between the tangents of
boundary at point x; ε = 1/2 for points where the boundary is smooth (Fig. 2a)). The
subscript in the differentials, i.e., d�y and dsξ , denotes the pointwith respect towhich
the integration is performed. Eq. (12) are solved numerically using the BEM. The
boundary integrals are approximated using N constant boundary elements, whereas
the domain integrals are approximated using linear triangular elements resulting
in total M domain nodal points (Fig. 2b). The domain discretization is performed
automatically using the Delaunay triangulation. Since the fictitious source is not
defined on the boundary, the nodal points of the triangles adjacent to the boundary
are not placed on the vertices of the tringle but on their sides (Fig. 2c). A detailed
description of integration procedure is found in [17].

Thus, after discretization and application of Eqs. (12a)–(12c) at the N boundary
nodal points we obtain

H

⎧
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⎩

w
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φy

⎫
⎬
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⎧
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⎩
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⎫
⎬

⎭
= G

⎧
⎨

⎩

w,n
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φy,n

⎫
⎬

⎭
(13)

where H,G are 3N × 3N known matrices originating from the integration of the
kernel functions on the boundary elements and A is an 3N × 3M coefficient matrix



Optimum Design of Thick Laminated Anisotropic Plates via … 229

(a)

(c)

(b)

Fig. 2 a BEM notation; b boundary and domain discretization; c triangle adjacent to the boundary
(l jm , lim side lengths, 0 < κ < 1)

originating from the integration of the kernel function on the domain elements;
b1(t),b2(t),b3(t) are vectors containing the values of the fictitious loads at the M
domain points at instant t . Applying the boundary conditions, Eqs. (8a), (8b), (8c),
at the N boundary nodal points and using Eqs. (9d,e) we obtain
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The tangential derivatives of φx,t ,φy,t , which appear in the boundary conditions,
are expressed in terms of φx ,φy using a finite difference scheme. Equations (13)
and (14) constitute a system of 6N algebraic equations which can be solved for the
boundary quantities w,φx ,φy, w,n,φx,n,φy,n . Substituting the boundary quantities
in the discretized counterpart of Eqs. (12) we obtain the displacementsw,φx ,φy and
their derivatives at the M domain nodal points in terms of the fictitious loads

w,pq (t) = W(1)
,pqb1(t) + W(2)

,pqb2(t) + W(3)
,pqb3(t) (15a)

φx ,pq (t) = S(1)
,pqb1(t) + S(2)

,pqb2(t) + S(3)
,pqb3(t) (15b)

φy,pq (t) = V(1)
,pqb1(t) + V(2)

,pqb2(t) + V(3)
,pqb3(t) (15c)
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where p, q = 0, x, y and W(i)
,pq ,S

(i)
,pq ,V

(i)
,pq (i = 1, 2, 3) are M × M known matri-

ces. Finally, collocating the governing Eqs. (10a), (10b), (10c) at theM domain nodal
points and substituting the displacements and their derivatives from Eqs. (15), we
obtain the equations of motion in terms of the fictitious loads b1,b2,b3

Mä + Ka = 0 (16)

where M,K are the 3M × 3M mass matrix and stiffness matrix, respectively; a =
{
b1 b2 b3

}T
is a 3M × 1 vector with the values of the fictitious loads at instant t .

In order to evaluate the natural frequencies of the plate we assume a time harmonic
solution

a(t) = βeiωt (17)

where β is a vector of time independent parameters and ω the frequency of the
vibration. Substituting Eq. (17) in (16) we obtain

(−ω2M + K
)

β = 0 (18)

Equation (18) is an eigenvalue problem which is solved numerically by ready to use
program (Matlab function). The first eigenfrequency is the objective function of the
optimization problem.

2.4 The Optimization Procedure

The frequency optimization problem reads:

maximize ω1 or minimize ω1 or minimize (1 − ω1/ωpr )
2 (19)

under the constraints of lower θl and upper θu bounds

θl < θk < θu (20)

where ω1 = ω1(θ1, θ2, ..., θk) is the fundamental frequency of the plate and ωpr a
prescribed value between the bounds.

The optimization problem is solved with the sequential quadratic programming
(SQP) algorithm usingMatlab function fmincon. Thismethod belongs to the classical
gradient based methods. The optimum solution is regarded as a local optimum. The
global optimum can be obtained by exhaustive search of the design space starting
the optimization procedure from various initial solutions.



Optimum Design of Thick Laminated Anisotropic Plates via … 231

Fig. 3 Rectangular
laminated plate of Example 1

3 Examples

Example 1 As a first example we optimize a rectangular a × b laminated plate with
thickness h = 0.1amadeof two layers of orthotropicmaterialwith stacking sequence
(θ,−θ). The material parameters are: E1 = 132.38GPa, E2 = 10.76GPa, G12 =
G13 = 5.65GPa, G23 = 3.61GPa, ν12 = 0.25. The plate is simply supported (type I)
along the sides x = 0, a while various types of boundary conditions are considered
for the sides y = 0, b, more specifically (Fig. 3):

(i) simply supported at y = 0, b;
(ii) clamped at y = 0 and simply supported at y = b
(iii) clamped at y = 0, b
(iv) free at y = 0 and simply supported at y = b
(v) free at y = 0 and clamped at y = b

The results were obtained using N = 200 boundary elements and M = 181
domain points resulting from 300 triangular elements (Fig. 4). Figure5 presents the
non-dimensional fundamental frequency ω̄1 = ω1a

√
ρ/E2h2 versus angle θ for the

different boundary conditions of the analyzed square plate. The results are compared
with those obtained by Levy-type solution [20] for three angles, i.e., θ = 30, 45, 60.
Table1 presents the optimum value of angle θ for maximum fundamental frequency
for the considered types of boundary conditions of the square plate. Finally, Fig. 6
presents optimum angle θ for maximum fundamental frequency versus aspect ratio
a/b for three different boundary conditions. It is observed that the optimum ply ori-
entation of each lamina tends to be parallel to one of the plate sides as the aspect
ratio increases. Note the notation for the opposite sides: ss = both simply supported;
cc = both clamped; cs = clamped-simply supported; fs = free-simply supported; fc
= free-clamped.

Example 2 A rectangular thick laminated plate a × b consisting of four layers of
equal thickness made of orthotropic material is optimized. The elastic parame-
ters are: E1 = 40E2, G12 = G13 = 0.6E2, G23 = 0.5E2, ν12 = 0.25, E2 = 1GPa.
The plate is simply supported (type I) along the boundary. The total thickness
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Fig. 4 Boundary and
domain discretization of
rectangular plate in
Example 1

Fig. 5 Frequency ω̄1 versus
angle θ (0 ≤ θ ≤ 90) for the
various cases of the
boundary conditions in
Example 1

Table 1 Optimum angle θ for maximum fundamental frequency in Example1

Boundary
condition

ss cs cc f s f c

θoptimum 45 55 75 0 0

ω̄1max 13.27 14.53 16.54 9.35 9.46

of the plate is h = 0.1a. Two cases of stacking sequence are studied: symmetric
(θ1, θ2, θ2, θ1) and antisymmetric (θ1, θ2,−θ2,−θ1). The resultswere obtainedusing
N = 200 boundary elements and M = 133 domain points resulting from 212 trian-
gular elements. Figures7 and 8 present the non-dimensional fundamental frequency
ω̄1 = ωa

√
ρ/E2h2 versus angles θ1 and θ2 for symmetric and antisymmetric lam-

inates for the square (a = b) and a rectangular plate (b = a/2), respectively. It is
observed that there are various local optimum solutions for a maximum or mini-
mum fundamental frequency. Tables2 and 3 present the optimum angles θ1 and θ2
for maximum fundamental frequency, starting from different initial values of the
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Fig. 6 Optimumangle θ versus aspect ratio a/b for three different boundary conditions in Example 1

Fig. 7 Frequency ω̄1 versus angle θ1 and θ2 for a symmetric and b antisymmetric square plate in
Example 2

design variables. Finally, Tables4 and 5 present local optimum sets of θ1 and θ2 for
minimum fundamental frequency.
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Fig. 8 Frequency ω̄1 versus angles θ1 and θ2 for a symmetric and b antisymmetric rectangular
plate a × (a/2) in Example 2

Example 3 The laminated cantilever plate of Fig. 9a simulating an airplane wing is
optimized. The plate consists of 5 layers with total thickness h = 0.2m (Fig. 9b). The
face sheets (layers 1 and 5) aremade of isotropicmaterialwith elastic parameters E =
70GPa, ν = 0.333,mass density ρ = 2.7 kNs2/m−4 and thickness hs = 0.01m. The
core with thickness hc = 0.18m consists of three layers of equal thickness made of
orthotropic material in sequence (θ1, θ2, θ3) with elastic parameters E1 = 25E2,
G12 = G13 = 0.5E2, G23 = 0.2E2, E2 = 10GPa, ν12 = 0.25 and mass density ρ =
1.55 kNs2/m−4. The results were obtained with N = 310 boundary elements and
M = 215 internal nodal points resulting from350 linear triangular elements (Fig. 9c).
Tables6 and 7 present the initial and the optimum set of the design variables for the
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Table 2 Optimum angles θ1 and θ2 for maximum fundamental frequency ω̄1 of a square plate in
Example 2

Initial Optimum max ω̄1

θ1 θ2 θ1 θ2

Symmetric −20 20 −45.19 45.10 16.24

20 −20 44.74 −44.99 16.39

20 20 90 45.12 14.01

−20 −20 −90 −45.58 13.90

Antisymmetric 20 20 44.85 44.96 16.39

−20 −20 −45.15 −45.10 16.24

20 −20 44.80 −44.95 16.39

−20 20 −45.15 45.10 16.24

Table 3 Optimum angles θ1 and θ2 for maximum fundamental frequency ω̄1 of a rectangular plate
a × a/2 in Example 2

Initial Optimum max ω̄1

θ1 θ2 θ1 θ2

Symmetric 60 −60 79.01 −64.08 36.31

60 60 90.00 68.93 36.03

−60 60 −80.40 63.72 36.45

Antisymmetric 60 60 84.21 62.74 36.37

60 −40 84.21 62.74 36.37

−40 −40 84.20 62.74 36.37

Table 4 Optimum angles θ1 and θ2 for minimum fundamental frequency ω̄1 of a square plate in
Example 2

Initial Optimum min ω̄1

θ1 θ2 θ1 θ2

Symmetric 10 10 −1.01 0.01 13.11

−60 20 −88.72 0.01 13.54

−60 −60 −88.85 −90.00 13.11

Antisymmetric −60 −60 −58.62 −58.35 12.98

60 60 58.51 58.37 12.86

60 −60 90.00 −88.89 13.11

maximum, minimum as well as for a specified value of the fundamental frequency.
Figures10 and 11 present the fundamental frequency versus θ1, θ2 and θ3 (Table8).
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Table 5 Optimum angles θ1 and θ2 for minimum fundamental frequency ω̄1 of rectangular plate
a × a/2 in Example 2

Initial Optimum min ω̄1

θ1 θ2 θ1 θ2

Symmetric 20 20 −1.90 −1.90 17.18

−60 60 −1.89 −1.90 17.18

60 −60 −1.91 −1.92 17.18

Antisymmetric 40 40 −0.56 0.012 17.43

40 −40 −0.56 0.012 17.43

−60 60 −0.56 0.012 17.43

(a)

(c)

(b)

Fig. 9 a Geometry of cantilever plate, b stacking sequence and c boundary and domain discretiza-
tion in Example 3

Table 6 Initial and optimum angles θ1, θ2 and θ3 for maximum fundamental frequency ω1 of the
cantilever plate in Example 3

Initial Optimum maxω1

θ1 θ2 θ3 θ1 θ2 θ3

0 0 0 11.87 11.06 11.76 317.91

60 60 60 11.91 10.84 11.76 317.91

−10 −20 −10 11.93 10.81 11.74 317.91
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Table 7 Initial and optimum angles θ1, θ2 and θ3 for minimum fundamental frequency ω1 of the
cantilever plate in Example 3

Initial Optimum minω1

θ1 θ2 θ3 θ1 θ2 θ3

0 0 0 −89.24 90 −89.94 109.92

0 −30 0 84.47 −67.64 −90.00 108.10

70 70 −20 −90 −69.63 −490 108.48

Fig. 10 Fundamental frequency versus angle θ1 and θ3 for θ2 = 11.060 in Example 3

Fig. 11 Fundamental frequency versus angle θ1 and θ2 for θ3 = 11.760 in Example 3

Table 8 Initial and optimum angles θ1, θ2 and θ3 for specified fundamental frequency ω1 = 250
of the cantilever plate in Example 3

Initial Optimum

θ1 θ2 θ3 θ1 θ2 θ3

0 0 0 −9.73 4.87 −9.88 w=
1 250

20 20 0 31.50 21.25 −25.52

20 0 20 29.54 0.90 29.54
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4 Conclusions

The problem of frequency regulation of a thick laminated plate made of various
orthotropic layers is studied. The plate may have arbitrary geometry and is subjected
to any type of boundary conditions. The optimization problemconsists in determining
the angle of the material principal direction of each layer (ply orientation) for which
the plate fundamental frequency is optimized, i.e., it becomes minimum, maximum
or reaches certain specified value between the extrema. The optimization problem is
subjected to upper and lower bounds on ply orientation. The fundamental frequency
(objective function) is evaluated by the solution of the free vibration problem of
a thick anisotropic plate. This problem is described by a system of three coupled
hyperbolic partial differential equations (PDE) of second order. Using the AEM the
coupled PDEs are converted into three uncoupled quasi-static Poisson’s equations,
which are solved by the conventional BEM with constant boundary elements and
linear triangular elements for domain discretization. The optimization problem is
solved using sequential quadratic programming algorithm by a ready-to-use Matlab
function.

Several optimization problems for plates of various shapes and boundary condi-
tions have been analyzed, yielding realistic and meaningful optimum designs. The
main conclusions of the presented investigation are:

(a) The fundamental frequency of a thick laminated plate can change considerably
(more than 100%) by optimizing the ply orientation of its layers.

(b) The design space includes many local optima and requires exhaustive search,
starting the optimization procedure from various initial points. Otherwise mod-
ern evolutionary methods should be included in the optimization procedure.

(c) In rectangular plates the optimum ply-orientation for maximum fundamental
frequency tends to be parallel to one of its sides as the aspect ratio increases.
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