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Abstract. A rapid assessment of Environmental Quality Criteria and proba-
bility of Ecological Risk without special toxicometric experimenting is an actual
problem in environmental science. The article presents a statistical prediction
methodology of approximated no-effect concentrations (NOEC) and modelling
of Species Sensitivity Distribution (SSD) based on the field observation data.
We use values of species abundance of tested community, which were located
on a set of sites of region under study with wide variation range of polluting
substances concentration. Statistical processing includes the following sequence
stages: (1) calculation of distances matrix in multidimensional species’ space
between each pair sites; (2) nonmetric multidimensional scaling (NMDS) is
applied to reduce a 2-dimensional plot matrix of sites and species projections;
(3) the analyzed contamination mediafactors are interpreted as an ecological
gradient in species compositions and construction of the additional ordination
axes; (4) generalized additive models (GAM) are build and 3D smoothing
surfaces of spatial distribution of pollutant’s concentration on ordination plot are
fitted; (5) using the fitted models predicted values of PV ecological maxima and
the upper boundary values of TV confidence intervals of each species for each
single compounds are found; (6) obtained data are used for SSDs modelling.
The methodology has been supported by results of bioindication for commu-
nities of microscopic fungi of soil samples from the former uranium mining
province (Kyrgyzstan). Threshold values of six soil contamination indicators
that ensure a pre-given admissible probability of environmental risk have been
determined.
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1 Introduction

Contemporary methods of environmental risk assessment are based on the detection of
critical impact levels, which are interpreted as a starting point of decrease in ecosystem
stability, therefore disappearance of the basic structural components of biocenoze or
destruction of functional communications begins [1, 2]. The basic way of hazardous
concentration estimation of technogenic pollution with reference to real populations in
environment where active experiment cannot be realized, is practical use of available
laboratory-derived toxicity values for surrogates of species. The problems of correct
extrapolation of toxic effect are distinctions in taxonomic structure, specific life-cycle
stages, levels of the biological organizations, set of accompanying physical and chemical
parameters of media, type of exposure temporal regimen, spatial characteristics [3].

Analysis of Species Sensitivity Distribution (SSD) is one of the statistical extrap-
olation methods of laboratory data on different natural environments [4–8]. The SSD
curve approximates from a panel of available acute or chronic toxicity values (as a rule,
LC50), or other effect measures for different species with respect to a particular
chemical and interpreted as an integral function of some theoretical distribution of
probability. It was originally developed for the risk assessment of single substances
through the setting of thresholds: a hazardous concentration affecting p % of species
(HCp, i.e. either p-th % quantile of received distribution), or the fraction of species
potentially affected by a certain concentration [5]. For example, if the threshold con-
centration is assumed as HC5, it means that it is hazardous (lethal) for 5% of the most
sensitive species and neutral for the rest, i.e. the zero-hypothesis about absence of
harmful exposure is accepted at 95%-s’ level. Probabilistic environmental risk
assessment can be generally presented as a distribution ratio of the exposure (observed)
and sensitivity (predicted on SSDs) concentration of pollutants [9, 10].

From the beginning of the use of SSDs the importance and difficulty of laboratory-
to-field extrapolation and possible bias of risk assessment, caused by these reasons, has
been discussed [3, 11]. The most important differences include a whole range of phe-
nomena: bioavailability, spatial and temporal variance in field exposures, genetic or
phenotypic adaptation and etc. SSDs, as a matter of fact, in any way does not use the
information on ecology of communities (interspecific interactions, trophic communica-
tions, habitat factors, or the specific importance of keystone species and functional
groups).

Another source of bias caused by data selection is that the species used for toxicity
testing are not a random sample from the community of species to be protected [12] or
in general with it not to coincide [13]. Often there is only the very narrow range of
species tested relative to communities potentially exposed [14]. For example, micro-
mycete and microbial communities in soil are almost inevitably under represented of
toxic values when SSDs are intended to include them. Massive laboratory-derived
determination of toxicometric indicators (NOEC, EC50) for diverse ecotoxicants and
with respect to multiple soil biota types is not actually feasible.

Therefore actual problem is search of the approaches that would enable a rapid
assessment of the soil environmental condition basing merely on field observation data
without special toxicometric experimenting.
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The factorial ecology considers ways of statistical fitting of function of distribution
of an abundance of any specie on a gradient of change of studied factors of environ-
ment, such as the maintenance of chemical substances, availability of resources etc.
[15–18]. The simplest models of such dependences known as Species Response
Curves, estimate three major parametres: optimum position, its amplitude and width of
the response – see Fig. 1. The optimum defines preferable value PV of the factor where
the specie can be found with the greatest probability, that is, localization of peak of
distribution. Tolerance is connected with ability of population of a species to live and
reproduce posterity in not optimum environment. The tolerant interval estimates a
factor range in which the basic indicators of physiological activity or abundance of
population can be remained or restored. Its TV right boundary value actually corre-
sponds to maximum NOEC inefficient concentration, and any exposure exceeding this
threshold, are considered as the hazardous. However basic difference of these esti-
mations of ecological parametres from toxicity values LD5 consists that they consider
all set of conditions of a concrete habitat.

In this article we propose an SSD alternative which takes into consideration
absence of toxicological values by species of studied community, and uses in the
analysis only raw data of field researches from a limited number of observation points.
We consider possibility to utilize ordination procedures and multidimensional
smoothing models for the estimation of a preferable PV and tolerance TV values for
each species. Additionally, we propose a probabilistic risk of decrease of taxonomic

Fig. 1. Curve of distribution of abundance Palpomyia sp. on a gradient of salinity of water in
inflows of the lake Elton. PV – preferable value of salinity; the grey fills in a range of tolerance
with right boundary value TV; toxicological indicators LC5, LC50, LC100 are presented roughly.
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richness estimation that links the modeled species distribution with the variability of
environmental exposure conditions. The applicability of the proposed methods is
elucidated in a case study on response for communities of microscopic fungi based on
assessment of environmental risk of soil contamination from past uraniferous ore
production.

2 Materials and Methods

2.1 Data Set for Illustration

Comprehensive studies of soil contamination were performed in the area of Kadzhi-Sai
settlement (Kyrgyzstan), where low uranium concentration ore deposits were devel-
oped back in 1947–1965. Sampling from top soil layers took place in May, 2014 from
sites located both in the territory of uranium mine tailings, and in rather clean areas
on the slopes of adjoining hills, on the Issyk Kul lake shore, and in Boomsky canyon
(42°08' 48'' N, 77°11' 10'' E).

A level of technogenic impact on the area in terms of two groups of indicators was
analyzed: the activity of three radionuclides (U-238, Ra-226, Pb-210) using spectrometer
Canberra (USA) consisting of a germanium detector HPGe and 16 heavy metals and
other chemical elements content in the top soil horizons using hand-held XRF spec-
trometer DELTA Classic (USA). Total soil contamination with heavy metals (Zc) was
derived using the modified Pollution Load Index (PLI) as the geometric mean [19]:

Zc ¼ nðK1 � K2 � . . . � KnÞ1=n� n� 1ð Þ; ð1Þ

where n is the number of the components, Кi = Ci/ Cib, Cib and Ci is the background
and actual content of the i-th element in the soil. To account for different toxicity of the
elements local PLI-indexes for three classes of hazard were calculated separately: for
high hazard Zc(1) (As, Cr, Pb, Zn), for moderate Zc(2) (Co, Mo, Cu) and low hazard Zc(3)
comprised of background and rare earth elements (Ba, Ti, Fe, Mn, Sr, K, Ca, Rb, Zr).
The summary PLI-index was calculated with allowance for correction factors for
toxicity:

Zc ¼ 1:5 Zcð1Þ þ 1:0 Zcð2Þ þ 0:5 Zcð3Þ ð2Þ

Soil fungi are among the most extensive and diverse groups of organisms used for
the biodiagnostics of an environmental condition of biotopes, for setting environmental
standards, and for environmental risk assessment [20]. The results of bioindication
studies of micromycete communities in the soil sampled from 4 sampling sites with
disturbed habitats and from 3 sites located in relatively clean zones (control) were used
to evaluate ecosystem’s response. Isolation of the cultivated microfungi was performed
by a standard procedure of water soil suspension plating from 1:100 dilutions to the
Czapek agar medium in a 3-fold replication. Frequency (%) of occurrence of each
species was presented as its share in soil subsamples, in which a particular species was
isolated. In total, 41 microfungal species were detected.
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2.2 Statistical Analysis

Statistical processing to assess critical exposure levels and environmental risk with a
preset certainty was conducted in two stages: (1) using ordination methods, the cal-
culation of contamination factors corresponding to maximal abundance of each fungal
species, and (2) approximation of data from the theoretical distribution curve for
probability of species occurrence.

Procedure of multidimensional ordination of communities consists in optimum
projecting of the studied habitats on a plane with latent axes S1 and S2 [16, 21]. An
matrix of frequencies of occurrence with 41 microfungal species from 7 sampling sites
used as input data. The matrix D of distances in multidimensional species’ space
between each pair of the soil samples by the Bray-Curtis formula was calculated [22].

The ordination of microfungal communities was built by the algorithm of non-
metric multidimensional scaling (NMDS). Then a minimum of “stress” D is searched,
which reflects degree of distortion of mutual distances between sites at a reduction from
initial multidimensional space to a 2-dimensional plot [23, 24]. The major advantage of
NMDS method is that it does not require a priori any assumptions about statistical
distribution from the input data in contrast to such approaches as analysis of principal
components [21]. Further, the weighted average coordinates s1 and s2 were estimated
for individual microfungal species on the NMDS projection, which identified their
position relative to sampling sites, and the ordination plot of the species was built.

Environment factors were used for interpretation of ecological gradients in species
compositions along the constructed additional axes which have been added to axes of
unconstrained ordination. The disposition of these vectors on ordination diagram was
defined by model of multiple regression, in which each factor of environment was used
as a response, and coordinates of sites s1 and s2 - as explanatory variable. Significance
of models is tested by permutation procedure.

For any of the analyzed soil contamination factors Y generalized additive model
(GAM) was built and fitted 3D smoothing surfaces in the same ordination plot was
added. Models looked like:

Y ¼ aþ f1 s1ð Þþ f2 s2ð Þþ f3 s1; s2ð Þþ e; ð3Þ

where f1, f2, f3– specially picked functions from the NMDS coordinates s1 and s2 in the
form of smoothing polynoms or penalised splines with k freedom degrees [25]. Pre-
dicted values of ecological maxima PVj ¼ Ŷj corresponding to coordinates of the most
probable position of each j-th species of fungi, j = 1, 2, …, 41, on the NMDS pro-
jection were found from the fitted models. So high Y values were taken as approxi-
mated tolerant threshold for the j-th species, that they were low probable within the
limits of the smoothing GAM model, i.e. the upper boundary values of confidence
intervals TVj ¼ Ŷj þ ta=2SŶj , where ta/2 – quantiles of student’s t-distribution at

a = 95%, SŶj - standard prediction errors of regression.

Further on, the attained empiric distribution of the preferable species value PVj and
tolerance threshold value TVj along the Y-axis of contamination indicator was
approximated by the theoretical distribution of the continuous random variable. A choice
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of the best distribution from a set of possible candidates (normal, log-normal, Weibull,
etc.) and estimation of its parameters were conducted basing on the likelihood function
log maximum. Confidence intervals of the selected cumulative distribution function
F(PV(t)) and F(TV(t)) were estimated by a parametrical bootstrap method [4, 26].

All calculations were performed using vegan package of statistical environment
R v. 3.02 [27].

3 Results

3.1 Multivariate Analysis of Data

The observed variability of the species structure of micromycete communities is
associated basically with the gradient of the environmental conditions change in the
area under study. The ordination graph in Fig. 2a testifies to rather clear differentiation
of the sampling sites: soil samples from the uranium mine tailings (2 and 3) and from
the natural reserve in Boomsky canyon (14) occupied extreme positions on the main
axis S1 of the nonmetric projection. Variability of the microbiota structure in other
habitats with an intermediate contamination level was determined by the second
ordination axis S2.

Provided coefficients of correlation between the soil contamination indicators and
the coordinates s1 and s2 on the ordination axis are calculated, it is possible to plot
additional axes of physical gradients reflecting the nature and power of each factor’s
impact. The arrows of factor loads shown in Fig. 1a are approximately close both in
direction and in length, so soil contamination factors in the studied region are likely to
form an interconnected and multicollinearity complex. The best correlation (R2 = 0.83,
p = 0.022) was noted between a variation of the fungal communities structure (by
frequency of occurrence of the found out species) and the concentration of cobalt
(Co, mg/kg) in soil, - see surface smoothing by the GAM model in Fig. 2a.

The ordination of microfungi species groups (Fig. 2b) is closely connected with the
ordination of habitats. If a species is only encountered in one sample, its position on the
graph coincides with a point corresponding to a sampling site. Otherwise the species
position is determined by weighted average coordinates of its possible several habitats.
We believe, that it is a point of an “ecological optimum”, where species occurrence
most probably.

If a 3D smoothing surface (3) is built for any of the analyzed soil contamination
factors it is easy to calculate a preferable values PVj and thresholds of tolerance TVj for
points of an optimum of each jth species, which can be used further for modelling of
probabilistic distribution of sensitivity. For some species on Fig. 2b the calculated
values are resulted in Table 1.

3.2 Statistical Distribution of Species Occurrence

Further calculations were performed for soil contamination indicators presented in
Fig. 2. With the use of preferable values PVj for 41 microfungal taxas, the parameters
of the Species ecological Maxima Distribution (SMD) were estimated on the scale of
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Fig. 2. Ordination of nonmetric multidimensional scaling data: (a) sampling sites (2, 3, 5 – a
dump, 8 – a residential area of settlement Kadzhi-Saj, 12, 13 - the Issyk Kul lake shoreline, 14 –

Boomsky canyon); (b) microfungal species (for some codes see Table 1). The arrows denote
additional axes of physical gradients: index Zc, U-238 and Ra-226 radionuclide activity in soil,
and the Co, Cr and Zn content. Grey isoclines show the cobalt content (2A) and Saet’s index
Zc (2B) calculated using the additive model.
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each analyzed factor. Similarly with use of thresholds of tolerance TVj the Species
Sensitivity Distribution (SSD) were fitted. In all cases, the highest-likelihood approx-
imations followed the log-normal distribution law.

Exemplary SMD and SSD curves are shown in Fig. 3 where it is possible to see how
the response of microfungal communities is varying under the impact of different factors.
The occurrence distribution over radionuclide activity and cobalt content scales is rather
regular whereas the sensitivity in relation to other heavy metals and to the PLI-index Zc
(2) has a more contrastive nature. Of general pattern is considerable reduction of the
specific richness and diversity of soil microfungal communities under the impact of
heavy metals. However, in Fig. 3, it is easy to single out groups of the species possessing
elevated resistance to some pollution forms unusual for normal conditions.

Table 1. Coordinates s1-s2 on ordination plot (Fig. 2(b), preferable value PV of the
concentration of cobalt (mg/kg soil), standard error of model and the right borders of a tolerant
interval TV for some species of micromycete in soils of the former uranium-producing province

Codes Species of fungi s1 s2 PV
(Co)

Error TV
(Co)

AcrCh Acremonium charticola (Lindau) W. Gams 0.52 0.04 107.9 19.06 146.0
FusOx Fusarium oxysporum Schlecht −0.28 0.28 133.6 16.25 166.1
AltAl Alternaria alternata (Fr.) Keissl 1.25 0.16 124.8 33.97 192.7
PenJa Penicillium janczewskii K.M. Zalessky −0.02 0.62 137.4 37.82 213.1
TriHa Trichoderma harzianum Rifai −0.58 −0.02 183.7 17.41 218.5
UloCo Ulocladium consortiale (Thüm.)

E.G. Simmons
−0.30 −0.36 215.9 18.87 253.6

AcrMu Acremonium murorum (Corda) W. Gams −0.82 0.43 183.2 35.71 254.7
PsePa Pseudogymnoascus pannorum (Link) Minnis

and D.L. Lindner
−0.85 0.04 211.3 23.67 258.7

StaCh Stachybotrys chartarum (Ehrenb.) S. Hughes −0.89 −0.33 287.9 34.29 356.5
VerTe Verticillium tenerum Nees 0.20 −0.84 311.6 40.70 392.9

Table 2. Critical values of soil contamination indicators for various environmental risk levels
(p %), calculated from the SMD and SSD curves (Fig. 3)

Indicator Observed values
(min � max)

Preferable
values PC15

Hazardous values
HC5 HC10 HC15

Cobalt Co, mg/kg 110 � 261 130.3 141.3 160.0 176.5
Chromium Cr, mg/kg 15 � 362 20.6 24.0 37.5 53.4
Zink Zn, mg/kg 11 � 382 11.3 12.1 22.31 36.2
PLI-index Zc 1.12 � 20 1.94 3.5 5.2 7.1
U-238 activity, Bk/kg 24 � 145 34.8 64.5 75.3 85.1
Ra-226 activity,
Bk/kg

24 � 134 34.4 81.2 91.9 101.4
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Fig. 3. Curves of log-normal distribution of probability of microfungal species maxima
occurrence (SMD) and species sensitivity distribution at hazardous concentrations (SSD) on the
scale of soil contamination indicators: 3A- U-238 radioactivity, Bk/kg, 3B– chromium content,
mg/kg. CI – lower and upper curves enveloping the 95% confidence interval of SMD
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If we take to arbitrary critical probabilities, e.g. p = {5, 10, 16, 20 and 50%}, using
cumulative distribution curves SMD and SSD, it is possible to estimate a set of iso-
effective values of, accordingly, preferable PCp and hazardous for microfungal com-
munities HCp concentrations of the exposure factor (for examples see Fig. 3).

4 Discussion

Models of species sensitivity distributions (SSDs) were developed to derive criteria for
the protection of biological entities in contaminated media. Assessment endpoints will
vary depending on the protection goals and corresponds to a certain level of conser-
vatism. Hence, it is necessary to define the relationship of the SSDs to sense of the
setting of thresholds HCp, given the input data. The acute LC50 values are based on
mortality or equivalent effects (i.e., immobilization) on half of exposed organisms. At
the ecosystems level at use SSDs it means, that at hazardous concentration HCp in p %
populations 50% of organisms will be lost approximately. The use of the SMD-curve
determines a point of beginning of deviations from optimum of habitat conditions for p
% of species and creates more stringent limitations to the estimation of critical con-
centrations. Assessment endpoints on the basis of thresholds of tolerance TV or no
effective values NOEC, will occupy intermediate position (see Table 2) and make
sense ``mild ecological hazardous'' for p % of populations as the probability of their
resistance remains high.

To bring assessment endpoints into accord to the protection goals with reference to
a concrete situation, the selection of values of the uncertainty factors (UF) and pro-
tection levels p is carried out [3–5]. Exist ambiguous opinions on what proportions p of
the community or taxon as trigger values that should be considered as critically haz-
ardous for an ecosystem [28]. Another uncertainty is the ambiguity of determining a
share of maximum effect of impact p. This is usually done with account both of
statistical “elasticity” of rated indicators and of a degree of researcher’s responsibility
for a conclusion (i.e. usually is a result of political compromise, instead of a science
problem). Taking into account sense of thresholds of tolerance TV and ecological
characteristics of tested community and media (micromicetes in soil), we believe that it
is reasonable to be guided on p-values of 15%, which is in the precision region of
ecotoxicologic methods [29].

The method of NOECs prediction and distribution of sensitivity of species on the
basis of the field data and spatial models proposed by us is not the competitor to
classical SSD. Use of available toxicity values is necessary and it is desirable, as the
comparative analysis of results of modelling by various methods reduces uncertainty of
assessmented endpoints. We will notice also a decrease in the specific richness is far
from being a unique indicator for setting norms and standards in environmental reg-
ulations. Among the like is reduction of functional diversity or productivity, a
switchover of the dominant species complex, etc. For decision-making it is important to
have all accessible complex of the information on the response экocиcтeмы in a
gradient of influencing factors.
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There are two reasons for regarding the cutoff values in Table 2 as tentative. First,
ecological sense of NOEC in our case is identical to a finding of tolerant limits TV of
existence of each species. Here again for a approximate estimation of the right toler-
ance boundary concerning an optimum we suggest to take advantage of confidential
statisticans of smoothing model. Whether more correct estimation of tolerant ranges of
occurrence of species is possible?

Theoretically, the TV estimation method has been only proposed for the normal or
log-normal response (species abundance or occurrence) distribution on the exposure
concentration scale (Oksanen et al., 2001). In more general case a finding of ecological
optimum and tolerance ranges of occurrence is possible with the use of generalized
regression models for each of species [30, 31]. However this would require several tens
of measurements in identical ecosystem conditions. The wide range of a variation of
concentration of polluting substance is necessary in any case.

Second, a limiting pollutant was not allocated, a combinatorics of cooperative impact
from a mixture of toxicants was not considered, and also influence of accompanying
parametres of environment, such as soil characteristics, was not analyzed. Problems
connected with prediction of the potentially affected fraction of species and consequently
for the risk assessment of chemical mixtures can be at least partially solved by various
approaches [7]. Therefore we will notice only, that underestimated in comparison with
environmental quality standards (for example, 100 mg/kg of the zinc) values of con-
centrations, presented to Table 2, we explain effect of additivity in a mix of components.

Let’s pay attention to special circumstance, that the arrangement of points of sites
on ordination plot in Fig. 2 is formal depends only on distances between them in
multidimensional space of species. In turn, the configuration of points of species is
defined by the sum of their statistical distributions under the influence of multiple
stressors, uniting except influence analyzed pollutants, the combinations of other not
considered factors of environment, including properties of soils [29, 32]. Hence, the
prediction of preferable values PVj for everyone individual stressor is carried out by the
method described above against and taking into account influence of all of the others.
Thus, rather than eliminating or minimizing extraneous variance, sources of variance
may be explicitly acknowledged as part of the our SSD methodology.

Ultimately, one more problem of exposure rating is associated with high spatial
heterogeneity of technogenic soil contamination, what, undoubtedly, tells on the
number, abundance and distribution of fungal species [33, 34]. The redistribution of
concentrations under precipitation impact within a microrelief, a relative height of sites,
spotty nature of pollution, variability of the “assimilation capacity”, biological activity
of soil, etc. strongly influence bioindication results as a whole. Spatial interpolation of
pointwise observations in geographical coordinates with a view to compensate for
random fluctuations can be carried out by means of kriging models. We propose to
perform smoothing surface modelling after the initial data projection onto a plane with
latent axes directly related to the species structure of the community under study – that
is to put aside natural spatial coordinates. In this case, the nonmetric multidimensional
scaling method enables modelling of even and steady smoothing surfaces.
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5 Conclusion

The modelling of Species Sensitivity Distribution allow to establish the critical
(threshold) values of toxicant concentrations in the soils by using only field data
without special toxicometric experimentation. In this work threshold values of six soil
pollutants have been determined based on the analysis of the structure of micromycete
communities of soil samples from the former uranium mining province (Kyrgyzstan).
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