
Chapter 3
A Novel Hybrid Artificial Bee Colony
with Monarch Butterfly Optimization for Global
Optimization Problems

Waheed Ali H.M. Ghanem and Aman Jantan

3.1 Introduction

There are a lot of problems in the real world that involve a set of potential solutions,
from which the one with the best quality is termed as the optimal solution, and the
method of searching for such a solution is known as mathematical optimization. The
quality of solutions is represented by the ability to maximize or minimize a certain
function, called the objective function, while the pool of possible solutions that can
satisfy the required objective is called the search space. One can traverse all possible
solutions, examine the result of the objective function in each case, and select the
best solution. However, many real problems are intractable using this exhaustive
search strategy. In these problems, the search space expands exponentially with
the input size, and exact optimization algorithms are impractical. The historical
alternative in such situations is to resort to heuristics, similar to simple rules
of thumb that humans would utilize in a search process. Heuristic algorithms
implement such heuristics to explore the otherwise prohibitively large search space,
but they do not guarantee finding the actual optimal solution, since not all areas of
the space are examined. However, a close solution to the optimal is returned, which
is “good enough” for the problem at hand.
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The next step would be to generalize those heuristics in higher-level algorithmic
frameworks that are problem independent and that provide strategies to develop
heuristic optimization algorithms. The latter are known as metaheuristics [1]. Early
metaheuristics were based on the concept of evolution, where the best solutions
among a set of candidate solutions are selected in successive iterations, and new
solution are generated by applying genetic operators such as crossover and mutation
to the parent solutions.

Similar to and including evolutionary algorithms, many metaheuristics were
based on a metaphor, inspired by some physical or biological processes. Many
recent metaheuristics mimic the biological swarms in performing their activities, in
particular, the important tasks of foraging, preying, and migration. Popular examples
of developed metaheuristic algorithms in this category include particle swarm
optimization (PSO) [2], which is inspired by the movement of swarms of birds
or fishes; ant colony optimization (ACO) [3, 4], which is inspired by the foraging
behavior of ants, where ants looking for food sources in parallel employ the concept
of pheromone to indicate the quality of the found solutions; and artificial bee colony
(ABC) algorithm, inspired by the intelligent foraging behavior of honeybees [5, 6].

The idea of deriving metaheuristics from natural-based metaphors proved so
appealing that much more of such algorithms have been and continue to be
developed. A few more examples include cuckoo search (CS) [7, 8], biogeography-
based optimization (BBO) [9], animal migration optimization (AMO) [10], chicken
swarm optimization (CSO) [11], grey wolf optimization (GWO) [12], krill herd
(KH) [13], and monarch butterfly optimization (MBO) [14], which is inspired by the
migration behavior of monarch butterfly. The bat algorithm (BA) [15] also belongs
to the metaheuristics that are based on animal behavior, inspired by the echolocation
behavior of bats in nature. On the other hand, several metaphor-based metaheuristics
are derived from physical phenomena such as simulated annealing (SA) [16] which
is inspired by the annealing process of a crystalline solid.

The aforementioned metaheuristics are classified as stochastic optimization tech-
niques. To avoid searching the whole solution space, they include a randomization
component to explore new solution areas. Though these random operators are
essential, they can introduce two types of problems. First, if the randomization is too
strong, the metaheuristic algorithm might keep moving between candidate solutions,
loosely examining each localized region and failing to exploit promising solutions
and find the best solution. Second, if the search process is too localized, exploiting
the first found good solutions very well but failing to explore more regions, the
algorithm might indeed miss the real optimal solution (called the global optimum)
and trap into some local optima.

The perfect balance between exploitation and exploration is essential to all meta-
heuristics. In fact, it is whether and how this balance is achieved that distinguishes
most metaheuristics from each other and forms a source of new attempts to improve
existing algorithms, possibly by hybridizing ideas from more than one metaheuristic
strategy [18].
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In this paper, we follow this path and introduce a new hybrid metaheuristic that
augments the popular ABC algorithm with a feature from the MBO algorithm so
as to make the correct balance between randomization of local search and global
search.

The rest of this article is organized as follows. Section 3.2 describes the proposed
HAM method, while Sect. 3.3 explains the setup of experimental evaluation. Section
3.4 presents and discusses the obtained results, and finally Sect. 3.5 concludes the
paper.

3.2 Proposed HAM Algorithm

This section introduces the HAM algorithm, which is based on the standard artificial
bee colony algorithm [5, 6] and monarch butterfly optimization algorithm [14].
The ABC algorithm was proposed by Karaboga for optimizing numerical problems
in 2005, and several developments were based on this algorithm [19–21]. The
MBO algorithm was proposed by Gai-Ge, Suash, and Zhihua in 2015. It is a new
nature-inspired metaheuristic optimization algorithm that works by simplifying and
idealizing the migration behavior of monarch butterfly individuals between two
distinct lands, namely, northern USA (Land1) and southern Canada (Land2). For
more details about the two algorithms, please refer to [5, 14].

The exploitation and exploration concepts are undoubtedly considered exceed-
ingly important characteristics in metaheuristic algorithms. In fact, the best meta-
heuristic algorithm is the one that strikes a balance between these two mechanisms,
as a consequence of enhancing the solving of (low- and high-dimensional) opti-
mization problems. The mechanism of exploitation is based on current knowledge
to seek better solutions, while the mechanism of exploration is based on searching
the entire area of the problem for an optimal solution.

Particularly, by analyzing the standard MBO algorithm, it could be noticed it has
an effective capability of exploring the search space; nevertheless, it does possess
a weak ability to exploit the search space due to the intermittent use of Levy flight
by the updating operators which in turn drives the algorithm to large random steps
or moves. On the other hand, the ABC algorithm has the capability of exploring the
search space, as well as it has a decent capability in finding the local optima through
the employee and onlooker phases. So these two phases in ABC algorithm classed
as a local search process. The ABC algorithm is mostly dependent on selecting
the solutions that improve the local search. While the global search in the ABC
algorithm is implemented through the scout phase, which leads to reducing the
speed convergence during the search process.

The main idea of the hybrid proposed algorithm is based on two ameliorations:
firstly, the main objective in modifying the MBO algorithm improves the exploita-
tion versus exploration balance, by modifying the butterfly adjusting operator
in order to increase the search diversity and balance the insufficiency of ABC
algorithm in global search efficacy. Algorithm 1 shows the amended version of



30 W.A.H.M. Ghanem and A. Jantan

the operator. The second enhancement is done by replacing the modified butterfly
adjusting operator of MBO with the employee phase of ABC algorithm. The
enhanced operator is called the “employee bee adjusting operator,” and the resulting
modified phase is called the “employee bee adjusting phase.”

The main objective of the employee bee adjusting phase is to update all the
solutions in the bee population, whereas each solution is a D-dimensional vector.
While the initialization phase is used to define all the variables that would be
defined in the standard ABC algorithm and assign them suitable values. Although
the HAM algorithm is essentially founded on all the parameters of the original ABC
algorithm, it uses three new control variables: limit1, limit2, and the maximum walk
step variable Smax; these three variables are used in the employee bee adjusting
phase.

Algorithm 1: Employee bee adjusting phase

Begin
Fori D 1 toSNdo
Calculate the walk stepdxby Equation (1);
Calculate the weighting factor by Equation (2);
Forj D 1 toDdo
Ifrand � limit1then
Generate thejthelement by Equation (3);
Else
Randomly select a food Source (r) by Equation (4);
Ifrand < limit2then
Generate thejthelement by Equation (5);
Else
Generate thejthelement by Equation (6);
Ifrand <BARthen
Generate thejthelement by Equation (7);
End if
End if
End if
End forj
Evaluate the fitness value of the candidate solution xi.
Apply a greedy selection process betweenxiandxbest
If solution xi does not improve,trialiDtrialiC 1,
OtherwisetrialiD 0.
End fori
End

In Algorithm 1 above, each employee bee of the employee bee adjusting phase
has been assigned to an independent food source whereby it generates a new solution
either by a new mutation operators or through Levy flight. The mutation operators
are based on the two control variables: limit1 and limit2. The focal point of limt1
and limit2 is to fine-tune the exportation versus exploitation through improving the
global search diversity. As shown in Algorithm 1, the first step is to use the Levy
flight to compute a walking step “dx” for the ith bee by Eq. 3.1, and then it uses the
Eq. 3.2 to compute the weighting factor “/,” where t is the current generation and
Smax represents the max walk step that a bee individual can move in one step. Then,
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the Algorithm 1 uses Eq. 3.3 to update the solution element, when (rand � limit1),
for each element j of the D dimensions.

dxk D levy
�
xt

j

�
(3.1)

/ D Smax=t2 (3.2)

xtC1
i;j D xt

best;j (3.3)

xtC1
i;j represents the location of the solution i, the jth element of solution xi at

generation t C 1, while xt
best;j represents the best location among the food sources,

the jth element of xbest at generation t, so far with respect to the ith bee. On the other
hand, if (rand < limit1) then another set of updates are performed. First, a random
food source (equivalent to a random solution or bee) is selected from the current
population using Eq. 3.4. Then, depending on whether a randomly generated value
is smaller than limit2, Eq. 3.5 is used to update the solution elements, as follows:

r D round
��

SN� rand
� C 0:5

�
(3.4)

xtC1
i;j D xt

r;j C 0:5�rand� �
xt

worst;j � xt
r2;j � xt

best;j

�
(3.5)

xtC1
i;j represents the location of the solution i, the jth element of solution xi at

generation t C 1. xt
best;j represents the best location among the food sources, the

jth element of xbest at generation t. And xt
worst;j signifies the worst location among the

food sources, the jth element of xworst at generation t. xt
r;j represents the location of

the solution r calculated by Eq. 3.4, the jth element of xr at generation t. The t in Eq.
3.5 is the current generation number.

On the other hand, if the randomly generated value was bigger than limit2, the
solution elements are updated by Eq. 3.6, where xtC1

i;j is the jth element of solution
xi at generation t C 1, which represents the location of the solution i; xt

best;j is the jth

element of xbest at generation t, which represents the best location among the food
sources so far; xt

worst;j is the jth element of xworst at generation t, which represents the
worst location among the food sources so far, while xt

r;j is the jth element of xr at
generation t, which represents the location of the solution r calculated by Eq. 3.4.

xtC1
i;j D xt

r;j C 0:5�rand� �
xt

best;j � xt
r3;j � xt

worst;j

�
(3.6)

The HAM algorithm also used the Levy flight function but with a smaller probability
of execution to reduce its impact on the exploitation process. Assuming the
execution path has already passed the tests of limit1 and limit2 control variables,
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then the algorithm performs another random check against the BAR parameter, right
after the update by Eq. 3.6 to further change the value of xtC1

i;j occasionally by the
amount / � (dxk � 0.5), as per Eq. 3.7.

xtC1
i;j D xtC1

i;j C / � .dxk � 0:5/ (3.7)

Finally, the employee bee adjusting phase tests the limits of the newly created
solution to make sure it is within the permissible limits for the optimization problem,
and after that it evaluates the fitness value that is produced by the new solution and
uses the greedy selection process between the best and the new solutions to select
the better one. In the case that the resulted solutions are not improved, then a trial
counter is increased by one. The HAM algorithm relies on the implementation of
the original ABC algorithm without any change, which can be found in [22].

3.3 Experimental Evaluation

In this section, we lay out the experimental setup through which we have evaluated
the proposed algorithm, HAM.

3.3.1 General Setup

3.3.1.1 Hardware and Software Implementation

All the experiments have been conducted on a laptop with an Intel Core i5
2.4 GHz processor and RAM 8 GB. The proposed HAM algorithm is a software
implementation based on the implementation of ABC and MBO. The software
implementation tests were carried out in MATLAB R2009b (V7.9.0.529) on a
windows 7 box.

3.3.1.2 Parameters

For fair comparison purposes, we set all common control parameters to the same
values. This includes mounting the dimensionality of search space to 10 and the
population size to 50 for all methods. And here below, we present the parameters
for all methods in this work.

The control variables that have been set across all experiments of HAM algorithm
are as follows: limit1 is set to 0.8, limit2 is set to 0.5, migration period Peri is set to
1.2, migration ratio p is set to 0.4167, and finally Smax is set to 1.0. Moreover, the
ABC algorithm has had the following parameter settings: limit was set to 100, and
the colony size was set to 100, employed bees D 50 and onlooker bees D 50. Finally,
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Table 3.1 Benchmark functions used for evaluating the proposed algorithm

No. Name Equation Low Up

1 Sphere f .x/ D Pn
iD1x2i �100 100

2 Schwefel 2.22 f .x/ D Pn
iD1 jxij C Qn

iD1 jxij �1.28 1.28

3 Schwefel 1.2 f .x/ D Pn
iD1

�Pi
jD1xj

�2 �5.12 5.12

4 Schwefel 2.21 f .x/ D Pn
iD1 jxij C Qn

iD1 jxij �600 600
5 Schwefel 2.26 f .x/ D �418:983

Pn
iD1

�
xi sin

�pjxij�� �50 50

6 Rosenbrock f .x/ D Pn�1
iD1

h
100

qˇ̌
xi � x2i

ˇ̌ C .1 � xi/
2
i

�100 100

7 Step f .x/ D Pn
iD1 bjxijc 0 3.1416

8 Quartic f .x/ D Pn
iD1ix4i C rand Œ0; 1/ �5 10

the variables for MBO algorithm were fixed as follows: the butterfly adjusting rate
BAR is set to 0.4167, max step Smax is set to 1, the migration period Peri D 1.2, and
the migration ratio p D 0.4167, as per the setup in the original work of MBO [14].

3.3.2 Benchmark Function

This paper uses a set of eight test functions for global numerical optimization. These
functions are listed in Table 3.1 alongside their respective equations and properties.

3.4 Results

Table 3.2 lists the optimization results when applying the eight optimization test
functions to ABC, MBO, and our HAM methods. The listed values are the optimal
values of the objective function achieved by each algorithm after iterating over 50
generations. The mean values in the table are averaged over 20 runs (each run
constitutes 50 iterations) and listed along the standard deviation. The min values,
however, are the best results achieved by each algorithm at all. By the “best result,”
we mean the closest result to the actual optimal value of the function.

It is evident from Table 3.2 that the HAM algorithm can reach a better optimum
on average, at least with respect to the set of benchmark functions used in the
experiments (HAM has better average results in the case of seven out of eight test
functions). For ease of recognition, the best average result is marked with bold font
and shaded in a gray cell. The min values are bold font to identify the absolute best
minimum achieved for each function. Note that this value is meaningful because
it happened that the minimum achieved values by the algorithms for the selected
benchmark functions are closest to the real optimum. With respect to the set of test
functions used in our evaluations, HAM could achieve the best result in six out of
eight cases.
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On another perspective, we also graphed the optimization process of each
algorithm (for each benchmark function) as the value of the so-far best solution
versus the current iteration, which shows the search path in terms of selected best
solution per iteration. The curve of this kind is expected to decline overall at a
slope that reflects the convergence speed of the algorithm (there is no degradation
during the process of any included metaheuristic algorithm, as the best solution is
either improved or kept unchanged at all iterations). Therefore, these graphs can
be called the convergence plots of the algorithms. Because of the large number of
plots, we include hereby representative samples of the convergence plots in Fig. 3.1,
which compares the convergence of HAM with the two most related metaheuristic
techniques: ABC and MBO.

Figures 3.1a–d shows that the HAM algorithm enjoys not only a superior overall
performance in terms of the quality of the found optimal solution but also a faster
convergence especially in the earlier stages. Although the starting points of the
algorithms are close to each other in the plots of the four testing functions in the
figure, the proposed HAM method does not trap into a quick local optimum, unlike
the original ABC and MBO algorithms, for example.

3.5 Conclusion

The proposed algorithm in the article, HAM, is founded on two metaheuristics
algorithms, which are the artificial bee colony and monarch butterfly optimization
algorithms. It is worth to mention that HAM is the first novelty hybrid algorithm
born of these two algorithms. In addition HAM is composite of three phases:
employee bee adjusting phase, onlooker phase, and scout phase. The initial phase
is a modified version of the adjusting operator in MBO algorithm, while the second
and last (onlooker and scout) phases are identical to those original equivalents found
in ABC algorithm.

The crux of HAM development aims at finding a higher convergence speed and
best optimal solutions than its predecessors by enhancing diversification of MBO
that has been used to augment good intensification ability of ABC. In future works,
we intend to utilize HAM algorithm as a neural network trainer as well as to extend
the method for solving multi-objective optimization problems to serve many other
various purposes.

Acknowledgments This work has been funded by Universiti Sains Malaysia, APEX
(308/AIPS/ 415401), and also supported by the Fundamental Research Grant Scheme (FRGS)
203/PKOMP/6711426].
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