How to Construct a Leakage-Resilient
(Stateless) Trusted Party

Daniel Genkin2, Yuval Ishai®*, and Mor Weiss®(®)

1 University of Pennsylvania, Philadelphia, USA
danielg3@cis.upenn.edu
2 University of Maryland, College Park, USA
3 Technion, Haifa, Israel
yuvali@cs.technion.ac.il
4 UCLA, Los Angeles, USA
5 Northeastern University, Boston, USA
m.weiss@northeastern.onmicrosoft.com

Abstract. Trusted parties and devices are commonly used in the real
world to securely perform computations on secret inputs. However, their
security can often be compromised by side-channel attacks in which the
adversary obtains partial leakage on intermediate computation values.
This gives rise to the following natural question: To what extent can one
protect the trusted party against leakage?

Our goal is to design a hardware device T' that allows m > 1 parties
to securely evaluate a function f(z1,...,2Zm) of their inputs by feeding
T with encoded inputs that are obtained using local secret randomness.
Security should hold even in the presence of an active adversary that can
corrupt a subset of parties and obtain restricted leakage on the internal
computations in T'.

We design hardware devices T in this setting both for zero-knowledge
proofs and for general multi-party computations. Our constructions can
unconditionally resist either AC® leakage or a strong form of “only
computation leaks” (OCL) leakage that captures realistic side-channel
attacks, providing different tradeoffs between efficiency and security.

Keywords: Leakage-resilience - Secure multiparty computation - Alge-
braic manipulation detection + AMD Circuits.

1 Introduction

There is a long and successful line of work on protecting general computations
against partial information leakage. Originating from the works on general secure
multiparty computation (MPC) [4,11,22,37], the question has been “scaled
down” to the domain of protecting circuits against local probing attacks [26] and
then extended to different types of global information leakage [7-10,13,15,16,23—
25,28,31,32,34].

© International Association for Cryptologic Research 2017

Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part II, LNCS 10678, pp. 209-244, 2017.
https://doi.org/10.1007/978-3-319-70503-3_7

210 D. Genkin et al.

Most of the works along this line consider the challenging goal of protecting
computations against continual leakage. In a general instance of this problem,
a desired ideal functionality is specified by a stateful circuit C, which maps the
current input and state to the current output and the next state. The input and
output are considered to be public whereas the state is secret. The goal is to
securely realize the functionality C' by a leakage-resilient randomized circuit C.
The circuit C is initialized with some randomized encoding § of an initial secret
state s. The computation can then proceed in a virtually unlimited number
of rounds, where in each round C' receives an input, produces an output, and
replaces the old encoding of the secret state by a fresh encoding of a new state.

The correctness goal is to ensure that C [3] has the same input-output func-
tionality as C[s]. The security goal is defined with respect to a class £ of leakage
functions £, where each function ¢ returns some partial information on the val-
ues of the internal wires of C'. The adversary may adaptively choose a different
function ¢ € L in each round. The security goal is to ensure that whatever
the adversary learns by interacting with C [3] and by additionally observing the
leakage, it can simulate by interacting with C[s] without obtaining any leakage.

While general solutions to the above problem are known for broad classes
of leakage functions L, they leave much to be desired. Some rely on leak-free
hardware components [15,16,23,28,32]. Others make a heavy use of public-key
cryptography [7,10,23,25,28] or even indistinguishability obfuscation [25]. Other
issues include the need for internal fresh randomness in each round, big computa-
tional overhead that grows super-linearly with the amount of tolerable leakage,
complex and subtle analysis, and poor concrete parameters. All of the above
works suffer from at least some of these limitations.

In this work we take a step back, and study a simpler stateless variant of
the problem, where both C' and C are stateless circuits. The goal is to replace
an ideal computation of C(z) by a functionally equivalent but leakage-resilient
computation C (). Here x is a secret input which is randomly encoded into an
encoded input Z to protect it against leakage. Solutions for the above continuous
leakage model can be easily specialized to the stateless model by considering a
single round where the input is used as the initial secret state. This stateless
variant of the problem has been considered before [25,26,32], but mainly as an
intermediate step and not as an end goal.

Our work is motivated by the observation that this simpler setting, which
is relevant to many real-world scenarios, does not only offer an opportunity to
get around the limitations of previous solutions, but also poses new challenges
that were not addressed before. For instance, can correctness be guaranteed even
when the input encoding & is invalid, in the sense that the output corresponds to
some valid input 7 Can the solutions be extended to the case where the encoded
inputs for C are contributed by several, mutually distrusting, parties? To further
motivate these questions, we put them in the context of natural applications.

Protecting a trusted party. We consider the goal of protecting (stateless) trusted
parties against leakage. Trusted Parties (TPs) are commonly used to perform
computations that involve secret inputs. They are already widely deployed in

How to Construct a Leakage-Resilient (Stateless) Trusted Party 211

payment terminals and access control readers, and will be even more so in
future Trusted Platform Modules. TPs have several advantages over distrib-
uted protocols for secure multiparty computation (MPC) [4,11,22,37]. First,
they avoid the expensive interaction typically required by MPC protocols. Sec-
ond, they are very light-weight and allow the computational complexity of the
other (untrusted) parties to be independent of the complexity of the compu-
tation being performed. Finally, TPs may offer unconditional security against
computationally unbounded adversaries.

An important special case which is a major focus of this work is that of a
hardware implementation of zero-knowledge (ZK) proofs, a fundamental prim-
itive for identification and a useful building block for cryptographic protocol
design. Informally, a ZK hardware takes a statement and witness from a prover,
and outputs the verified statement, or rej, to a verifier. While there are effi-
cient ZK protocols without hardware (including non-interactive zero-knowledge
protocols (NIZKs) [21,35], or succinct non-interactive arguments of knowledge
(SNARKs) [5]), such protocols do not (and cannot) have the last two features
of TP-based solutions.

A primary concern when using trusted hardware are so-called “side-channel”
attacks which allow the adversary to obtain leakage on the internal computa-
tions of the device (e.g., through measuring its running time [30], power con-
sumption [29], or the electromagnetic radiation it emits [33]). Such attacks were
shown to have devastating effects on security. As discussed above, a large body
of works attempted to incorporate the information obtained through such leak-
age into the security model, and develop schemes that are provably secure in
these models. More specifically, these works have focused on designing leakage-
resilient circuit compilers (LRCCS) that, informally, compile any circuit C' into
its leakage-resilient version C, where C withstands side-channel attacks in the
sense that these reveal nothing about the (properly encoded) input . However,
all of the schemes obtained in these works suffer from some of the limitations
discussed above. In particular, none considers the questions of invalid encodings
provided by malicious parties or combining encoded inputs that originate from
mutually distrusting parties. These questions arise naturally in the context of
ZK and in other contexts where TPs are used.

1.1 Owur Contribution

Our main goal is to study the feasibility and efficiency of protecting TPs against
general classes of leakage, without leak-free hardware or trusted setup. Eliminat-
ing the leak-free hardware unconditionally [24], or under computational assump-
tions [13,34] has been a major research goal. However, in contrast to earlier
works, we consider here the easier case of realizing a stateless TP in the presence
of one-time leakage.

We model the TP as a leaky (but otherwise trusted) hardware device 7
that is used by m > 1 parties to execute a multiparty computation task. More
specifically, in this setting each party locally encodes its input and feeds the
encoded input into the device, that evaluates a boolean (or arithmetic) circuit

212 D. Genkin et al.

on the encoded inputs, and returns the output. This computation should preserve
the secrecy of the inputs, as well as the correctness of the output, in the presence
of a computationally-unbounded adversary that corrupts a subset of the parties,
and additionally obtains leakage on the internals of the device. (Notice that
the secrecy requirement necessitates some encoding of the inputs, otherwise we
cannot protect even against a probing attack on a single bit.)

We note that the stateless hardware should be reusable on an arbitrary num-
ber of different inputs. Thus, we cannot take previous leakage-secure computa-
tion protocols that employ correlated randomness (such as the ones from [15,16])
and embed this randomness into the hardware. Indeed, we consider the internals
of the hardware as being public, since any secret internal embedded values can
be leaked over multiple invocations.

The model has several different variants, depending on whether the adversary
is passive (i.e., only sees the inputs of corrupted parties and obtains leakage on
the internals of the TP) or active (namely, it may also cause corrupted parties to
provide the TP with ill-formed “encoded” inputs that may not correspond to any
inputs for the original computation); whether there is a single party providing
input to the TP (as in the ZK example described below) or multiple parties;
whether the TP is deterministic or randomized (namely, has randomness gates
that generate uniformly-random bits); and finally, whether the output of the TP
is encoded or not (in the latter, one cannot protect the privacy of the output
even when the adversary only obtains leakage on the internals of the TP without
corrupting any parties, whereas in the former the outputs will remain private in
this case). We focus on the variant with an active adversary, and a randomized
TP with encoded outputs. We consider both the single-party and multi-party
setting. In the ZK setting, we also construct deterministic TPs (at the expense
of somewhat increasing the complexity of the prover and verifier).

The leakage model. We consider an extended version of the “only computation
leaks” (OCL) model of Micali and Reyzin [31], also known as “OCL+” [6].
Informally, in this context, the wires of the circuit C' are partitioned into a “left
component” Cp and a rlght component” Chr. Leakage functions correspond to
bounded-communication 2-party protocols between c T, C r, Where the output of
the leakage function is the transcript of the protocol when the views of C’L, Cr
consist of the internal values of the wires of these two “components”. Following
the terminology of Goyal et al. [25], we refer to this model as bounded commu-
nication leakage (BCL). The model is formalized in the next definition.

Definition 1 (t~-BCL [25]). Let t € N be a leakage bound parameter. We say
that a deterministic 2-party protocol is t-bounded if its communication com-
plexity is at most t. Given a t-bounded protocol 11, we define the t-bounded-
communication leakage (t--BCL) function fri associated with 11, that given the
views of the two parties, outputs the transcript of II. The class Ly con-
sists of all t-BCL functions fr1 associated with t-bounded protocols I, namely:
Lhor = {fu : Il is t — bounded}.

How to Construct a Leakage-Resilient (Stateless) Trusted Party 213

We say that a size-s circuit C is +-BCL resilient if there exists a partition
P = {s1,82} of the wires of C, such that the circuit resists any t-BCL function
fn for a protocol 1 that respects the partition P.

We note that BCL is broad enough to capture several realistic leakage attacks
such as the sum of all circuit wires over the integers, as well as linear functions
over the wires of the circuit. This captures several realistic attacks on hard-
ware devices, where a single electromagnetic probe measures involuntary leakage
which can be approximated by a linear function of the wires of the circuit.

1.2 Owur Results

We construct TPs for both ZK proofs, and general MPC, which simultaneously
achieve many of the desired features described above: they resist a wide class of
leakage functions (BCL), without using any leak-free components, and are quite
appealing from the perspective of asymptotic efficiency, since the complexity
of the parties is independent of the size of the computation. Our constructions
combine ideas and results from previous works on leakage-resilient circuits, with
several new ideas, as discussed in Sect. 1.3.

TPs for ZK. In the context of ZK, the hardware device enables the verification of
NP-statements of the form “(x,w) € R” for an NP-relation R. That is, the prover
provides (z,w) as input to the device, which computes the function f (z,w) =
(2, R (z,w)). Since the device is leaky, the prover is unwilling to provide its secret
witness w to the device “in the clear”. Instead, the prover prepares in advance a
“leak-free” encoding w of w, which it stores on a small isolated device (such as
a smartcard or USB drive). It then provides (z,w) as input to the leaky device
(e.g., by plugging in his smartcard) which outputs the public verification out-
come. We say that the hardware device is an L-secure ZK circuit if it resists leak-
age from £ with negligible error. We construct £4; -secure ZK circuits for NP:

Theorem 1 (Leakage-secure ZK circuit). For any leakage bound t € N,
statistical security parameter o € N, and length parameter n € N, any NP-
relation R = R (x,w) with verification circuit of size s, depth d, and n inputs has
an L4 -secure ZK circuit Cr that outputs the outcome of verification, where
Ly, is the family of all t-BCL functions. Moreover, to prove that (z,w) € R,

the prover runs in time poly (t,0,n,|w|), and |Cr| = O(s+d(t+o+n)) +
poly (t,o,n).

We also construct a variant of the ZK circuit that allows one to “trade”
efficiency of the prover and verifier with the randomness used by the ZK circuit:

Theorem 2 (Deterministic leakage-secure ZK circuit). For any leakage
bound t € N, statistical security parameter o € N, and length parameter n € N,
any NP-relation R = R (x,w) with verification circuit of size s, depth d, and
n inputs has a deterministic L4y -secure ZK circuit Cr. Moreover, |Cr| =

O(s+d(t+o+n))+ poly(t,o,n), to prove that (z,w) € R, the prover runs

in time O (s+d(t+ o +mn)) + poly (t,0,n,|w|), and the verifier runs in time
poly (¢,0,n).

214 D. Genkin et al.

General MPC. We consider hardware devices that allow the evaluation of general
functions in both the single-party setting, and the multiparty setting with m > 2.
More specifically, we construct m-party LRCCs that given a circuit C' that takes
inputs from m parties, output a circuit C that operates on encoded inputs and
outputs. Informally, we say the m-party LRCC is (L, €)-secure if the evaluation
of C guarantees (except with probability €) privacy of the honest parties’ inputs,
and correctness of the output, in the presence of an adversary that may actively
corrupt a strict subset of parties, and obtain leakage from £ on the internals of
the device. We construct m-party LRCCs that are secure against t-BCL:

Theorem 3 (Leakage-secure m-party LRCC). For any leakage bound t €
N, statistical security parameter o € N, input and output length parame-
ters n,k € N, and size and depth parameters s,d € N, any m-party func-
tion f : ({0,1}")™ — {0,1}* computable by a circuit of size s and depth
d has an m-party (L4, €)-secure LRCC, where LYo is the family of all
t-BCL functions, and € = negl (o). Moreover, the leakage-secure circuit has size
0] (s+d(t+ ologm)) +m - poly (t,0,logm, k), its input encodings can be com-
puted in time 0 (n) + poly (t,0,logm, k), and its outputs can be decoded in time
O (m-k(t+ologm +k)).

1.3 Our Techniques

1.3.1 Leakage-Resilient Zero-Knowledge

Recall that the leaky ZK device allows a prover P to prove claims of the form
“(x,w) € R” for some NP-relation R. We model the device as a stateless boolean
(or more generally, arithmetic) circuit C. Though C' cannot be assumed to with-
stand leakage, using an LRCC it can be transformed into a leakage-resilient
circuit C. Informally, an LRCC is associated with a function class £ (the leakage
class), a (randomized) input encoding scheme E, and a (deterministic) output
decoder Decoyt. The LRCC compiles a circuit C' into a (public) circuit C that
emulates C' over encoded inputs and outputs. C resists leakage from L in the
sense that for any input z for C, and any ¢ € L, the output of £ on the wire
values of C , when evaluated on E (z), can be efficiently simulated given only the
description of C.

Our starting point in constructing leakage-resilient ZK hardware is the recent
result of Goyal et al. [25], who use MPC protocols to protect computation against
BCL leakage. More specifically, they design information-theoretically secure pro-
tocols in the OT-hybrid model that allow a user, aided by a pair of “honest-but-
curious” servers, to compute a function of her input while preserving the privacy
of the input and output even under BCL leakage on the internals of the servers.
We observe that when these server programs are implemented as circuits (in
particular, the OT calls are implemented by constant-sized sub-circuits), this
construction gives an LRCC that resists BCL leakage.

In the context of designing leakage-resilient TPs, the main advantage of this
construction over previous information-theoretically secure LRCCs that resist

How to Construct a Leakage-Resilient (Stateless) Trusted Party 215

similar leakage classes [15,16,32] is that [25] does not use any leak-free compo-
nents. More specifically, these LRCCs use the leak-free components (or leak-
free preprocessing in [23]) to generate “masks”, which are structured random
bits that are used to mask the internal computations in C’, thus guaranteeing
leakage-resilience.

These leak-free components could be eliminated if the parties include the
masks as part of their input encoding. However, this raises three issues. First,
in some constructions (e.g. [15,16,32]) the number of masks is proportional to
the size of C‘, so the running time of the parties would not be independent
of the computation size (which defeats the purpose of delegating most of the
computation to the TP). Second, in the multi-party setting, it is not clear how
to combine the masks provided by different parties into a single set of masks to be
used in C’, such that these masks are unknown to each one of the parties, which
is crucial for the leakage-resilience property to hold. (We show in [36] how to do
so for the LRCC of [16] which resists AC? leakage, but this construction has the
efficiency shortcomings mentioned above.) Finally, even with a single party, these
constructions totally break when the party provides “ill-formed” masks (namely,
masks that do not have the required structure), since correctness is guaranteed
only when the masks have the required structure. This is not only a theoretical
concern, but rather an actual one. To see why, consider the ZK setting. If the
prover provides the masks to the device then it has a way of choosing (ill-
formed) masks that flip the output gate, thus causing the device to accept false
NP statements. Alternative “solutions” also fail: the device cannot verify that
the masks provided by the prover are well-formed, since the aforementioned
constructions crucially rely on the fact that the leakage-resilience simulator can
use ill-formed masks; and the verifier cannot provide the masks, since leakage-
resilience relies on the leakage function not knowing the masks.

Though using the LRCC of [25] eliminates all these issues, it has one short-
coming;: its leakage-resilience simulator is inefficient. In the context of ZK hard-
ware, this gives witness-indistinguishability, namely the guarantee that a mali-
cious verifier that can leak on the internals of the ZK hardware cannot distinguish
between executions on the same statement z with different witnesses w, w’. This
falls short of our desired security guarantee that leakage reveals no information
about the witness. (In particular, notice that if a statement = has only one wit-
ness then witness-indistinguishability provides no security.) We note that this
weaker security guarantee is inherent to the construction of [25].

To achieve efficient simulation, we leverage the fact that the construction
of [25] operates over encodings that resist BCL leakage. We observe that one can
obtain simulation-based security if the encodings at the output of C are decoded
using a circuit Cpec that “tolerates” BCL leakage, in the sense that such leakage
on its entire wire values can be simulated given only (related) BCL leakage on
the inputs and outputs of the circuit [7]. Indeed, the simulator can evaluate C on
an arbitrary (non-satisfying) “witness” (thus generating the entire wire values
of C, and in particular allowing the simulator to compute any leakage on them),
and then simulate leakage on the internals of Cpec by computing (related) leakage

216 D. Genkin et al.

on its inputs (namely, the outputs of C) and output (which is (z,1)). Since the
outputs of €' resist BCL leakage, this is indistinguishable from the leakage on
the internal wires of C CDec when C is evaluated on an actual witness. We note
that the decoding circuit Cpec can be constructed using the LRCC of [15], which
by a recent result of Bitansky et al. [8] is leakage-tolerant against BCL leakage.

Though this construction achieves efficient simulation, it is no longer sound.
Indeed, soundness crucially relies on the fact that Cpec emulates Cpec (which
decodes the output of C’) Recall that in current LRCC constructions that offer
information-theoretic security against wide leakage classes (e.g., [15,16,32]), the
correctness of the computation crucially relies on the fact that the masks (which
are provided as part of the input encoding) have the “correct” structure. Con-
sequently, by providing Cpec with ill -formed masks, a malicious prover P* can
arbitrarily modify the functionality emulated by C’Dec, and in particular, may
flip the output of Cpec, causing the device to accept z ¢ Lr.! Recall that the
device cannot verify that the masks are well-formed, since this would violate
leakage-resilience.

To overcome this, we observe that when C’Dec is generated using the LRCC of
Dziembowski and Faust [15], the effect of ill-formed masks on the computation
in Cpec is equivalent to adding a vector of fixed (but possibly different) field
elements to the wires of Cpec. Such attacks are called “additive attacks”, and
one can use AMD circuits [17-19] to protect against them. Informally, AMD cir-
cuits are randomized circuits that offer the best possible security under additive
attacks, in the sense that the effect of every additive attack that may apply to
all internal wires of the circuit can be simulated by an ideal attack that applies
only to its inputs and outputs.

Thus, by replacing Cpec with an AMD circuit Cf, before applying the LRCC,
the effect of ill-formed encoded inputs is further restricted to an additive attack
on the inputs and output of Cpec. Finally, to protect the inputs and outputs
of Cp,. from additive attacks, we use the AMD code of [12]. (We note that
encoding the inputs and outputs of CJ,.. using AMD codes is inherent to any
AMD-based construction, otherwise a malicious prover P* can use ill-formed
encoded inputs to élljec to flip the output.) As we show in Sect. 4, the resultant
construction satisfies the properties of Theorem 1. To obtain the deterministic
circuit of Theorem 2, we have the prover provide (as part of its input encoding)
the randomness used by the C component (which was generated using the LRCC
of [25]), and the verifier provides the randomness used by the AMD circuit in
éDec. (We note that the prover cannot provide this randomness, since the security
of AMD circuits crucially relies on their randomness being independent of the
additive attack. Therefore, if the prover provides the randomness for the AMD
circuit, a malicious prover may correlate the randomness used by the AMD
circuit with the additive attack, rendering the AMD circuit useless.)

! We note that “ill-formed” encodings do not pose a problem for stateful circuits
(intuitively, the compiled circuit can use the secret state to overcome the influence
of ill-formed masks). However, we are interested in stateless circuits.

How to Construct a Leakage-Resilient (Stateless) Trusted Party 217

1.3.2 General Leakage-Resilient Computation

Recall that the setting consists of m > 1 parties that utilize a leaky, but otherwise
trusted, device to compute a joint function of their inputs; while protecting
the privacy of the inputs, and the correctness of the output, against an active
adversary that corrupts a subset of the parties, and may also obtain leakage
on the internals of the device. More specifically, we construct m-party LRCCs
that given a (boolean or arithmetic) circuit C' with m inputs, output a circuit
C that operates on encoded inputs and outputs. (Recall that encoded outputs
are needed to guarantee privacy against adversaries that do not corrupt any
parties.) As in other LRCCs, the circuit compiler is associated with an input
encoder Enc, and an output decoder Dec (used to encode the inputs to, and the
output of, C’, respectively).

The multiparty setting introduces an additional complication which did not
arise in the ZK setting. Recall that the leakage-resilience property of C crucially
relies on the fact that its internal computations are randomized using masks
which are unknown to the leakage function. As already discussed in Sect.1.3.1,
to avoid the need for leak-free hardware we let the participating parties provide
these masks. Consequently, the adversary (who also chooses the leakage function)
knows the identity of the masks provided by all corrupted parties. We note that
this issue occurs even in the passive setting, in which parties are guaranteed
to honestly encode their inputs. This raises the following question: how can
we preserve the leakage-resilience property when the leakage function “knows” a
subset of the masks?

Our solution is to first replace the circuit C' with a circuit C’ that computes
an m-out-of-m additive secret sharing of the output of C'. We then construct the
leakage-resilient version C’ of C’ using the LRCC of [25], which outputs encod-
ings of the secret shares which C’ computes. Then, each encoding is refreshed
in a leakage-resilient manner. (This is similar to using a leakage-resilient version
of the decoder in the ZK setting of Sect.1.3.1.) More specifically, let Ciefresh be
a circuit that given an encoding of some value v outputs a fresh encoding of v.
Similar to the construction of ZK circuits in Sect. 1.3.1, we replace Clefresh With
an AMD circuit Cl,.q, that emulates Chefresh but operates on AMD encodings.
Finally, we compile C/,., using the LRCC of [15] into a leakage-resilient cir-
cuit Clefeen, Which (as discussed in Sect.1.3.1) has the additional feature that
ill-formed masks are detected. We use m copies of CA’r/efresh to refresh the m secret
shares, where the ¢’th copy is associated with the i’th party, who provides (as
part of its input encoding) the masks needed for the computation of the i’th copy.
Finally, the decoder Dec decodes the secret shares, and uses them to reconstruct
the output.

Having the leakage-resilience circuit generate (encodings of) secret-shares of
the output, instead of (an encoding of) the output itself guarantees leakage-
resilience even when the adversary corrupts parties and learns the masks which
they provide for the computation. At a very high level, this holds because even
if the adversary learns (through the leakage, and knowledge of the masks) the

entire wire values of the copies of C/ ., associated with corrupted parties, these

218 D. Genkin et al.

only reveal information about the secret shares which these copies operate on.
Therefore, the secrecy of the secret-sharing scheme guarantees that no informa-
tion is revealed about the actual output, or inputs, of the computation. Thus,
we obtain Theorem 3. (The analysis is in fact much more complex, see Sect.6
for the construction and its analysis.)

1.4 Open Problems

Our work leaves several interesting open problems for further research. One is
that of making the TP deterministic, while minimizing the complexity of the
parties. Currently, we can make the TP deterministic, but only at the expense
of making the parties work as hard as the entire original computation. A nat-
ural approach is via derandomization of the LRCC of [25]. Another research
direction is to obtain a better understanding of the leakage classes that can be
handled in this model, and extend the results to the setting of continuous leakage
with stateful circuits. Another question is that of improving the asymptotic and
concrete efficiency of our constructions, by providing better underlying LRCCs,
or better analysis of existing ones. These questions are interesting even in the
simple setting of a single semi-honest party.

1.5 Related Work

Originating from [26], MPC techniques are commonly used as a defense against
side-channel attacks (see [2,3] and references therein). However, except for the
works of [14,26] (discussed below) these techniques either rely on cryptographic
assumptions [13,25], or on structured randomness which is generated by leak-
free hardware, and is used to mask the internal computations [6,8,15,16,23].
To eliminate the leak-free hardware, the parties can provide the structured ran-
domness as part of their input encoding. However, since the correctness of the
computation crucially relies on the randomness having the “correct” structure,
this allows corrupted parties to arbitrarily modify the functionality computed by
the circuit, by providing randomness that does not have the required structure.

The only exception to the above are the works of [14,26], that provide prov-
able information-theoretic security guarantees (without relying on structured
randomness) against probing attacks, and some natural types of “noisy” leak-
age, but fail to protect against other simple types of realistic attacks, such as
the sum of a subset of wires over the integers. (For example, when an AND
gate is implemented using the LRCC of [26], the sum of a subset of wires in the
resultant circuit allows an adversary to distinguish between the case in which
both inputs are 0, and the case in which one of them is 1.)

2 Preliminaries

Let F be a finite field, and ¥ be a finite alphabet (i.e., a set of symbols).
For a function f over X", we use supp (f) to denote the image of f, namely

How to Construct a Leakage-Resilient (Stateless) Trusted Party 219

supp (f) = {f(z) : x € ¥"}. For an NP-relation R = R (z,w), we denote
Lzr ={z : Jw,(z,w) € R}. Vectors will be denoted by boldface letters (e.g., a).
If D is a distribution then X < D, or X € D, denotes sampling X according to
the distribution D. Given two distributions X, Y, SD (X,Y") denotes the statisti-
cal distance between X and Y. For a natural n, negl (n) denotes a function that
is negligible in n. For a function family £, we sometimes use the term “leakage
family £”, or “leakage class £”. In the following, n usually denotes the input
length, k usually denotes the output length, d, s denote depth and size, respec-
tively (e.g., of circuits, as defined below), and m is used to denote the number
of parties.

Circuits. We consider boolean circuits C' over the set X = {x1,---,z,} of
variables. C' is a directed acyclic graph whose vertices are called gates and whose
edges are called wires. The wires of C' are labeled with functions over X. Every
gate in C of in-degree 0 has out-degree 1 and is either labeled by a variable from
X and referred to as an input gate; or is labeled by a constant « € {0,1} and
referred to as a const, gate. Following [16], all other gates are labeled by one of
the operations A, V, =, @, where A, V, @ vertices have fan-in 2 and fan-out 1; and
= has fan-in and fan-out 1. We write C : {0,1}" — {0,1}* to indicate that C is
a boolean circuit with n inputs and k£ outputs. The size of a circuit C, denoted
|C|, is the number of wires in C, together with input and output gates.

We also consider arithmetic circuits C' over a finite field F and the set X.
Similarly to the boolean case, C has input and constant gates, and all other gates
are labeled by one of the following functions 4+, —, x which are the addition,
subtraction, and multiplication operations of the field. We write C : F* — F*
to indicate that C' is an arithmetic circuit over F with n inputs and k outputs.
Notice that boolean circuits can be viewed as arithmetic circuits over the binary
field in a natural way. Therefore, we sometimes describe boolean circuits using
the operations +, —, X instead of @, -, A, V.

Additive Attacks. Following the terminology of [17], an additive attack A
affects the evaluation of a circuit C as follows. For every wire connecting gates
a and b in C, a value specified by the attack A is added to the output of a
and then the derived value is used for the computation of b. Similarly, for every
output gate, a value specified by A is added to the value of this output. Note
that an additive attack on C'is a fixed vector of (possibly different) field elements
which is independent from the inputs and internal values of C. We denote the
evaluation of C' under additive attack A by CA.

At a high level, an additively-secure implementation of a function f is a
circuit which evaluates f, and guarantees the “best” possible security against
additive attacks, in the sense that any additive attack on it is equivalent (up to a
small statistical distance) to an additive attack on the inputs and outputs of f.
Formally,

Definition 2 (Additively-secure implementation [18]). Let € > 0. A ran-
domized circuit C : F* — F* s an e-additively-secure implementation of a
function f :F" — F* if the following holds.

220 D. Genkin et al.

— Completeness. For every x € F", Pr[C (z) = f (z)] = 1.

~ Additive-attack security. For any additive attack A there exist a™ €
F", and a distribution APt over F*, such that for every x € F”,
SD(CA (x), f (x+a™) + AM) <e.

We also consider the notion of an additively-secure circuit compiler, which is a
single PPT algorithm that compiles a given circuit C into its additively-secure
implementation.

Definition 3 (Additively-secure circuit compiler). Let n € N be an input
length parameter, k € N be an output length parameter, and e (n) : N — RT.
Let Comp be a PPT algorithm that on input a circuit C : F* — F*, outputs a
circuit C. Comp is an € (n)-additively-secure circuit compiler over F if for every
circuit C' : F™ — F* that computes a function fo, C is an ¢ (n)-additively-secure
implementation of fc.

We will need the following theorem.

Theorem 4 [19]. Let n be an input length parameter, and € (n) : N — R* be a
statistical error function. Then there exists an € (n)-additively-secure circuit com-
piler Comp over Fy. Moreover, on input a depth-d boolean circuit C : {0,1}" —

{0,1}*, Comp outputs a circuit C such that |C| = |C| - polylog (|C’|,10g ﬁ) +

poly (n,k;,d, log i) . Furthermore, there exists a PPT algorithm Alg that on

e(n)
input C, €(n), and an additive attack A, outputs a vector a™ € {0,1}", and
a distribution A°"* over {0,1}*, such that for any x € {0,1}" it holds that
SD(CA(x), C(x + al") + A°) < e (n).

Encoding schemes. An encoding scheme E over alphabet ¥ is a pair (Enc, Dec)
of algorithms, where the encoding algorithm Enc is a PPT algorithm that given
a message r € X" outputs an encoding & € X" for some 7 = 7 (n); and the
decoding algorithm Dec is a deterministic algorithm, that given an Z of length
7 in the image of Enc, outputs an « € ¥". Moreover, Pr[Dec (Enc(z)) =z] =1
for every x € X". It would sometimes be convenient to explicitly describe the
randomness used by Enc, in which case we think of Enc as a deterministic function
Enc (z;7) of its input «, and random input r. Following [27], we say that a vector
v € X" is well-formed if v € Enc (0™).

Parameterized encoding schemes. We consider encoding schemes in which
the encoding and decoding algorithms are given an additional input 1¢, which
is used as a security parameter. Concretely, the encoding length depends also
on t (and not only on n), i.e., i = n(n,t), and for every t the resultant
scheme is an encoding scheme (in particular, for every x € X" and every
t € N, Pr[Dec (Enc(z,1%),1") = z] = 1). We call such schemes parameterized.
For n,t € N, a vector v € £ is well-formed if v € Enc (0, 1*). Furthermore,
we sometimes consider encoding schemes that take a pair of security parameters
1, 1%, (¢}, is used in cases when the encoding scheme employs an “internal”

How to Construct a Leakage-Resilient (Stateless) Trusted Party 221

encoding scheme, and is used in the internal scheme.) In such cases, the encod-
ing length depends on n,t, ¢y, and the resultant scheme should be an encoding
scheme for every ¢, ¢, € N. We will usually omit the term “parameterized”, and
use “encoding scheme” to describe both parameterized and non-parameterized
encoding schemes.

Next, we define leakage-indistinguishable encoding schemes.

Definition 4 (Leakage-indistinguishability of functions and encod-
ings, [27]). Let D, D’ be finite sets, Lp = {¢ : D — D'} be a family of leakage
functions, and € > 0. We say that two distributions X,Y over D are (Lp,¢)-
leakage-indistinguishable, if for any function £ € Lp, SD (¢ (X),£(Y)) <e€. In
case Lp consists of functions over a union of domains, we say that X, Y over D
are (Lp,€)-leakage-indistinguishable if SD (¢ (X),£(Y)) < € for every function
{ € L with domain D.

Let L be a family of leakage functions. We say that a randomized function
[X" = X™ s (L, €)-leakage-indistinguishable if for every x,y € X", the dis-
tributions f (x), f (y) are (L, €)-leakage-indistinguishable. We say that an encod-
ing scheme E = (Enc, Dec) is (L, €)-leakage-indistinguishable if for every large
enough t € N, Enc (-, 1%) is (L, €)-leakage indistinguishable.

Algebraic Manipulation Detection (AMD) Encoding Schemes. Infor-
mally, an AMD encoding scheme is an encoding scheme which guarantees that
additive attacks on codewords are detected by the decoder (except with small
probability), where the decoder outputs (in addition to the decoded output) also
a flag indicating whether an additive attack was detected. Formally,

Definition 5 (AMD encoding scheme, [12,18]). Let F be a finite field, n € N
be an input length parameter, t € N be a security parameter, and € (n,t) : NxN —
R*. An (n,t, e (n,t))-algebraic manipulation detection (AMD) encoding scheme
(Enc, Dec) over F is an encoding scheme with the following guarantees.

~ Perfect completeness. For every x € F", Pr[Dec(Enc(x,1%),1%) =
(0,x)] = 1.

~ Additive soundness. For every 0"("Y) #£ a € F*™Y and every x € F”,
Pr[Dec (Enc (x,1%) + a,1") ¢ ERR] < € (n,t) where ERR = (F\ {0}) x F", and

the probability is over the randomness of Enc.

We will use the following theorem from the full version of [18].
Theorem 5 (AMD encoding scheme, [18]). Let F be a finite field, and
n,t € N. Then there exists an (n,t, |]F|_t> -AMD encoding scheme (Enc, Dec)

with encodings of length i (n,t) = O (n+t). Moreover, encoding and decoding
of length-n inputs with parameter t can be performed by circuits of size O (n +t).

2.1 Leakage-Resilient Circuit Compilers (LRCCs)

In this section we define the notion of a leakage-resilient circuit compiler. This
notion, and its variants defined in later sections, will be extensively used in this
work.

222 D. Genkin et al.

Definition 6 (Circuit compiler with abort). We say that a triplet
(Comp, E, Decoyt) is a circuit compiler with abort if:

— E = (Enc, Dec) is an encoding scheme, where Enc on input x € F", and 1%, 1tn,
outputs a vector & of length i for some i = 1 (n, t,t,).

— Comp is a polynomial-time algorithm that given an arithmetic circuit C' over
F, and 1t, outputs an arithmetic circuit C.

— Decout is a deterministic decoding algorithm associated with a length function
fout : N — N that on input & € Frow(") outputs (f,z) € F x F".

We require that (Comp, E, Decoyt) satisfy the following correctness with abort
property: there exists a negligible function € (t) = negl (t) such that for any arith-

metic circuit C, and input x for C, Pr [Decout (C’ (55)) =(0,C (m))} >1—€(t),
where & « Enc (z,1%,1/°).

Informally, a circuit compiler is leakage resilient for a class £ of functions if
for every “not too large” circuit C, and every input x for C, the wire values of
the compiled circuit C, when evaluated on a random encoding of x, can be
simulated given only the description of C'; and functions in £ cannot distinguish
between the actual and simulated wire values.

Notation 6. For a Circuit C, a function ¢ : FI¢l — F™ for some natural m,
and an input x for C, [C, z] denotes the wire values of C when evaluated on z,
and £ [C, z] denotes the output of £ on [C, z].

Definition 7 (LRCC). Let t € N be a security parameter, and F be a finite
field. For a function class L, € (t) : N — RT, and a size function S(n) : N — N,
we say that (Comp, E, Decoyt) s an (L, € (t),S (n))-LRCC if there exists a PPT
algorithm Sim such that the following holds. For all sufficiently large t, every
arithmetic circuit C' over F of input length n and size at most S (n), every £ € L

of input length |C|, and every x € F*, we have SD (6 [Sim (C,1%)],¢ {CAEQ?D <

€(t), where & — Enc (z,1t,11°).
If the above holds with an inefficient simulator Sim, then we say that
(Comp, E) is an (L,€e(t),S (n))-relaxed LRCC.

2.2 Gadget-Based Leakage-Resilient Circuit Compilers

In this section we describe gadget-based LRCCs [15,16,26], which are the basis
of all our constructions. We choose to describe the operation of these compilers
over a finite field F, but the description naturally adjusts to the boolean case
as well. At a high level, given a circuit C, a gadget-based LRCC replaces every
wire in C' with a bundle of wires, which carry an encoding of the wire value, and
every gate with a sub-circuit that emulates the operation of the gate on encoded
inputs. More specifically:

Gadgets. A bundle is a sequence of field elements, encoding a field element
according to some encoding scheme E; and a gadget is a circuit which oper-
ates on bundles and emulates the operation of the corresponding gate in C.

How to Construct a Leakage-Resilient (Stateless) Trusted Party 223

A gadget has both standard inputs, that represent the wires in the original cir-
cuit, and masking inputs (so-called “masks”), that are used to achieve privacy.
More formally, a gadget emulates a specific boolean or arithmetic operation on
the standard inputs, and outputs a bundle encoding the correct output. Every
gadget G is associated with a set Mg of “well-formed” masking input bundles
(e.g., in the LRCC of [16], M¢ consists of sets of 0-encodings). For every stan-
dard input z, on input a bundle x encoding z, and any masking input bundles
m € Mg, the output of the gadget GG should be consistent with the operation
on z. For example, if G computes multiplication, then for every standard input
x = (x1,22), for every bundle encoding x = (x1,x2) of = according to E, and
for every masking input bundles m € Mg, G (x,m) is a bundle encoding 1 X 3
according to E. Because the encoding schemes we use have the property that the
encoding function is onto its range, we may think of the masking input bundles
m as encoding some set mask of values. The internal computations in the gadget
will remain private as long as its masking input bundles are a uniformly random
encoding of mask, regardless of the actual value of mask.

Gadget-based LRCCs. In our constructions, the compiled circuit C is
obtained from a circuit C' by replacing every wire with a bundle, and every
gate with the corresponding gadget. Recall that the gadgets also have masking
inputs (which in previous works [15,16] were generated by leak-free hardware).
These are provided as part of the encoded input of C', in the following way.
E = (Enc, Dec) uses an “inner” encoding scheme E™ = (Enc'™, Dec'), where Enc
uses Enc™ to encode the inputs of C, concatenated with 0% for a “sufficiently
large” ¢, (these 0-encodings will be the masking inputs of the gadgets, that are
used to achieve privacy); and Dec uses Dec™ to decode its input, and discards
the last t), symbols.

3 LRCCs Used in this Work

In this section we review the various LRCC constructions used in this work.

3.1 The LRCC of [25]

We use a slight modification of the LRCC of Goyal et al. [25], which we describe in
this section. Their construction uses small-bias encodings over o, namely encod-
ings for which linear distinguishers obtain only a small distinguishing advantage
between encodings of 0 and 1. Formally:

Definition 8 (Small-bias encoding schemes). Let € € (0,1), and (Enc, Dec)
be an encoding scheme over Fo with encodings of length n. We say that
(Enc,Dec) is e-biased if for every x € Fa, and every O # S C [7],
|Pr[Ps (Enc(z)) = 1] — Pr[Ps (Enc(z)) = 0]| < €, where Ps(z) = ®;cs2i, and
the probability is over the randomness of Enc.

224 D. Genkin et al.

At a high level, given a circuit C' (which, without loss of generality, contains
only NAND gates), its leakage-resilient version is constructed in three steps: first,
C is compiled into a parity resilient circuit Cgy, which emulates the operation of
C on small-bias encodings of its inputs, and resists leakage from the class of all
parity function (namely, all functions that output the parity of a subset of wires).
Cg is constructed using a single constant-size gadget G that operates over the
small-bias encoding. Second, a GMW-style 2-party protocol 7 is constructed,
which emulates Cyg (gate-by-gate) on additive secret shares of the input, and
outputs additive secret shares of the output. 7 uses an oracle to the functionality
computed by the gadget G. In the final step, each oracle call to G is replaced with
a constant number of OT calls, and the resultant 2-party protocol is converted
into a boolean circuit, in which the OT calls are implemented using a constant
number of gates.? The resultant circuit C’ operates on encoded inputs, and
returns encoded outputs. More specifically, the encoding scheme first encodes
each input bit using the small-bias encoding, then additively secret shares these
encodings into two shares.

The reason we need to modify the compiler is the small-bias encoding
it uses. The LRCC can use any small-bias encoding, and [25] construct a
robust gadget G, that can emulate any constant-sized boolean function, over
inputs and outputs encoded according to any constant-sized small-bias encod-
ing (the inputs and outputs may actually be encoded using different encoding
schemes). However, the specific encoding used in [25] is insufficient for our needs.

More specifically, we need an encoding scheme (Enc :{0,1} x {0,1}¢ — {0,1}¢,

Dec : {0,1}¢ — {0, 1}2) (for some natural constants ¢, ¢’)? satisfying the follow-

ing two properties for some constant € > 0.

— Property (1): (Enc,Dec) is e-biased, and [supp(Enc(0;:))] = |[supp
(Enc (1;))]. ,

— Property (2): For every 0 # A € {0,1}¢, and every b € {0,1}, Pr,c (0,1}«
[Enc (b;r) ® A € supp (Enc (1@ ;)] <e.

The first property is needed for the leakage-resilience property of the LRCC
of [25]. The second property implies that with constant probability, additive
attacks on encodings are “harmless”, in the sense that they either do not change
the encoded value, or result in an invalid encoding. The reason that the second
property is needed will become clear in Sect. 4.1.

Since the encoding scheme used in [25] does not possess property (2), we
replace it with an encoding that does.* As noted in [25], a probabilistic argu-
ment implies that for a large enough constant ¢, and ¢’ = 2¢, most encoding

2 We note that the conversion from protocol to circuit is not explicitly described in [25].

3 Dec returns a pair of bits of which one is a flag indicating whether decoding failed.
This is necessary since for ¢’ > ¢+ 1, not all possible inputs to Dec are valid encoding.

4 To improve efficiency of our construction by a factor of 2, one could use the encoding
of [25] (in which ¢ = ¢+ 1) throughout the circuit, and only use our new encoding
for the outputs of the circuit. However, to simplify the construction we choose to
use the same encoding throughout the circuit.

How to Construct a Leakage-Resilient (Stateless) Trusted Party 225

schemes with a 1:1 Enc satisfy property (1). A similar argument shows that
most encoding schemes posses property (2). Therefore, there exists an encoding
scheme (Enc® : {0,1} x {0,1}¢ — {0,1}?¢, Dec® : {0,1}%¢ — {0,1}?) with both
properties. (Moreover, one can find an explicit description of this scheme, since
¢ is constant.) Since G is a generic gadget, that can be used to emulate any
function over any encoding, we can replace the encoding scheme of [25] with
(Enc@, Dec®).
We are now ready to define the encoding used by the LRCC of [25].

Construction 1. The encoding scheme (Enc over Fo 1is

defined as follows:

GIMSS GIMSS
, Dec)

~ for every x € Fy, Enc™5S (1, 1%)

e Generates x',--- ,x' «— Enc® (z).

e Picks z",z'* € F2°* uniformly at random subject to the constraint that
b @l = (z1,~~~ ,xt).

— DecCMSS . p2et o F2t B2 on input (x*, z®) operates as follows:

o Computes ¢ = 2" ®x", and denotes € = (:171, e ,xt). (Intuitively, =", z*
are interpreted as random secret shares of x, and x consists of t copies of
encodings, according to Enc®, of a bit b.)

o For every 1 <i <t, let (f;,z;) = Dec® (z'). (This step decodes each of
the t copies of b.)

o If there exist 1 < 41,40 < t such that fi, # 0, or z;, # x;,, then sets
f = 1. Otherwise, sets f = 0. (This step checks that all copies of b are
consistent, and that no flag is set, otherwise the decoder sets a flag f.)

e Qutputs (ﬁxl).

We will need the fact that every additive attack on encodings generated
by Constructionl is either “harmless” (in the sense that it does not change
the encoded value), or causes a decoding failure. This is formalized in the next
lemma.

Lemma 1. Let t € N be a security parameter. Then for every 0 # A € F3¢t,
and for every x € Fo,

Pr [DecGIMSS (EncGIMSS (z,1%) + A) ¢ {(0,z), ERR}} = negl (¢).

Proof. Let 0 # A = (AL Af) e F3* x F3, and let (x% x%) <
Enc®™55 (2, 1%). Then on input (y5,y") = (x5, x%) + (AF, Af), the decoder
DecIMSS firgt computes

x'= (2", 2")=yleyt=x"ex"eo Al e A"

and then for every 1 < i < ¢, computes (fi,2}) « Dec® (:vi, 1t). We consider
two possible cases.

226 D. Genkin et al.

First, if AL@ AT = 0, then x’ = x"' @ x’, namely the additive attack cancels
out, and so the output of Dec®™5% would be (0, z) (with probability 1) by the
correctness of the scheme.

Second, assume that AY @ AR # 0 and Dec®™5% (x @ A, 1) # (0,2). We
show that in this case Dec®™58 outputs ERR except with negligible probability.
Recall that Enc® has the property that for every 0 # A’, and every z € F,
Pr [Enc® (z) @ A’ € supp (Enc® (2))] < € for some constant € € (0,1), where
the probability is over the randomness used by Enc® to generate the encoding.
Consequently, for every 1 < i < t, Pr[Dec® (z) = (0,z)] < e. Since DecGIMSS
outputs (0,Z) only if all ¥ decoded to &, and each of these ¢ copies was gen-
erated using fresh, independent randomness in Enc®, this happens only with
probability € = negl (¢).

The final modification we need is in the gadget G. Notice that unlike the
semi-honest setting considered in [25], in our setting the parties provide the
inputs to the leakage-resilient circuit, where a malicious party may provide inputs
that are not properly encoded, and therefore do not correspond to any input
for the original circuit. (We note that the inputs are the only encodings that
may be invalid, since G is guaranteed to always output valid encodings.) To
guarantee correctness of the computation even in this case, the encoded inputs
should induce inputs to the original circuit. Therefore, we have G interpret invalid
encodings as encoding the all-zeros string. More specifically, given encodings z, 3,
G operates as follows: decodes &, ¢ to obtain x,y, where if decoding failed then
x,y are set to the all-zero strings; computes z = NAND (z,y); and outputs a
fresh encoding of z.

Combining the aforementioned modifications, we have the following.

Construction 2 (LRCC, [25]). Let ¢ € N and € € (0,1) be constants,
t.tin € N be security parameters, and n € N be an input length parame-
ter. Let (Encea : Fy x F§ — F3¢, Dec® : F3¢ — IFQ) be an encoding scheme sat-
isfying properties (1) and (2) described above. (We also use Enc® Dec® to
denote the natural extension of encoding and decoding to bit strings, where
every bit is encoded or decoded separately.) The relazed LRCC with abort

(CompGIMSS, EQIMSS Decgﬁwss) is defined as follows.

— The input encoding scheme EE{IMSS = (Encfﬁnv{ss7 DecﬁIMSS) is defined as

follows:
o for every r € Fo, EncﬁIMSS (x,10n) = (arL,a;R,r) where ', % are a
random _additive secret sharing of Enc® (x), and r €g F4".
° DecﬁIMSS (((wL, wR) , 7') ,1“”) computes (f,x) = Decg (:BL + :I:R), and
outputs x.
— The output decoding algorithm Dec§IMSS : Fpt2¢ 5 Frt-2c L B+l on input
(mL, mR) = ((:L’lL, e ,mﬁ) , (:1:{", e ,:Bff)) operates as follows:
e For every 1 < i <n, computes (f;,z;) = DecGIMSS ((wf, scf%) , 1t) (where
Dec™SS s the decoder from Construction 1).
o If there exist 1 < i < n such that f; # 0, outputs (1,0™). Otherwise,

outputs (faxlv e ,l'n).

How to Construct a Leakage-Resilient (Stateless) Trusted Party 227

— Let r € N denote the number of random inputs used by each gadget G. Then

CompGIMSS, on input 1* and a circuit C : F* — F* containing s NAND gates,

outputs a circuit CG™SS ; Fden x IF;(SH'k) — Fi¢kt generated as follows:

o Let C' : F2em x Fhs — F3¢F denote the circuit in which every gate of
C' is replaced with the gadget G of [25] that emulates a NAND gate over
encodings generated by Enc®. The random inputs used by the gadgets in
C' are taken from the second input to C' (each random input is used only
once).

o Let C" : F2em x T TR F2ekt denote the circuit obtained from C' by
adding after each output gadget of C' (namely each gadget whose output is
an output of C') t gadgets G emulating the identity function. As in C’, the
random inputs used by the gadgets in C"" are taken from the second input
to C". (This step encodes each output bit using the repetition code.)

e Let m denote a 2-party GMW-style protocol in the OT-hybrid model which
emulates C" gadget-by-gadget on inputs encoded according to EncCIMSS
(i.e., on additive shares of encodings according to Enc®). Then CS™MSS s
the circuit obtained from m by implementing the programs of the parties as
a circuit, where each OT call with inputs (xg,x1),b is implemented using
the following constant-sized circuit: OT ((wg,21),b) = (20 A b) & (z1 Ab).
(The wires of this circuit are divided between the parties as follows: the
input wires xo, 1 are assigned to the OT sender; whereas the wires corre-
sponding to b, b, the outputs of the A gates, and the output of the & gate,
are assigned to the OT receiver.%)

Goyal et al. [25] show that Construction 2 resists BCL (Definition 1):

Theorem 7 (Implicit in [25]). For every leakage-bound t € N, input and out-
put lengths n, k € N, and size bound s € N, there exists an (Lhqp,,27, s)-relazed
LRCC with abort, where Lk, is the family of all t-BCL functions. Moreover,
on input a size-s, depth d circuit C : {0,1}" — {0,1}*, the leakage-resilient cir-
cuit CO™SS has size O (s + td + t2), the input encoder EncﬁIMSS can be imple-

mented by a circuit of size 6(71 +1), and the output decoder Decgﬂwss can be

implemented by a circuit of size 9] (t2 + tk‘) 7

® This step, which we add to the LRCC of [25], is used to reduce the decoding error
when the LRCC is used to construct leakage-secure ZK circuits in Sect. 4.1. We note
that this modification preserves the parity-resilience property since it is equivalent
to duplicating each output of C t times before transforming it into C’.

Notice that this division of the wires preserves the leakage-resilience guarantee of [25].
Indeed, in [25] the view of the OT sender contains the input wires xo, z1, whereas the
view of the OT receiver contains the input wire b and the output of the OT (i.e., the
output of the @ gate). Notice that b and the outputs of the A gates are computable
from b and the OT output, so the view of the OT receiver contains exactly the same
information in [25] and in our implementation of their protocol.

The output decoder in the original construction of [25] has size O (¢ + k), the decoder
of Construction 2 is larger due to the modified encoding we use, which replaces each
encoded output bit with ¢ copies.

-

228 D. Genkin et al.

3.2 The Leakage-Tolerant Circuit-Compiler of [15]

In this section we describe the Leakage-Tolerant Circuit-Compiler (LTCC)
obtained from [15] through the transformation of [8]. Informally, the LRCC
of Dziembowski and Faust [15], denoted DF-LRCC, is a gadget-based LRCC
which uses the inner-product encoding scheme that encodes a value x as a pair
of vectors whose inner-product is x:

Definition 9 (Inner product encoding scheme). Let F be a finite field, and
n € N be an input length parameter. The inner product encoding scheme Ejp =
(Encip, Decip) over F is a parameterized encoding scheme defined as follows:

— For every input x = (x1,---,x,) € F", and security parameter t € N,
Encip (z,1%) = ((yf,y{%) o ,(y#yff)), where for every 1 < i < n, yF yf
are random in (F\ {0})" subject to the constraint that (y*, yF) = x;.

— For every t € N, and every ((ylL,yff) AR ,(yﬁ,yf)) € F? Decp ((ylL,

y{%) P 7(y£ay§)) = (<yfay{2>a 7<y£7y§>)

More specifically, the DF-LRCC is an LRCC variant in which the compiled
circuit takes un-encoded inputs, as well as masking inputs that are used in
the gadgets. The construction uses 4 gadgets: a refresh gadget which emulates
the identity function, and is used to generate fresh encodings of the wires; a
generalized-multiplication gadget which emulates the function f. (z,y) = ¢—x x
y, for a constant ¢ € F; a multiplication by a constant gadget that emulates the
function f.(z) = ¢ x z, for a constant ¢ € F; and an addition by a constant
gadget that emulates the function f.(z) = ¢+ x, for a constant ¢ € F. (The
field operations X, -+, — can be implemented using a constant number of these
gadgets.) For completeness, these gadgets are described in Appendix A. We will
only need the following property of these gadgets: the effect of evaluating a
gadget with ill-formed masking inputs is equivalent to an additive attack on the
gate that the gadget emulates (this is formalized in Lemma 3).

As explained in Sect. 1.3.1, we use a leakage-tolerant variant of the DF-LRCC.
Roughly speaking, a leakage-tolerant circuit operates on un-encoded inputs and
outputs (the input encoding function simply returns the inputs, concatenated
with masking inputs), where any leakage on the computation can be simulated
by related leakage on the inputs and outputs alone. (Leakage on the inputs and
outputs is unavoidable since these are provided to the circuit “in the clear”.)
Formally,

Definition 10 (LTCC (for BCL)). Let t,e(t),S(n) be as in Definition 7,
let n,k € N be input and output length parameters (respectively), and let
Lo be the family of t-BCL functions. We say that a pair (Comp,E) is an
(Lhap, € (1), S (n))-leakage-tolerant circuit-compiler (LTCC) if Comp, E have the
syntax of Definition 6, and satisfy the following properties for some negligible
function € (t) = negl (t):

— Correctness. For any arithmetic circuit C, and input x for C,

Pr|C(2) = C(x)} > 1—€(t), where & — Enc (=, 1%,11¢1).

How to Construct a Leakage-Resilient (Stateless) Trusted Party 229

— (Oblivious) leakage-tolerance. There exists a partition P = ((n1,n2),
(k1,k2)) of input and output lengths, and a PPT algorithm Sim such that the
following holds for all sufficiently large t € N, all n,k € N, every arithmetic
circuit C : B — F* of size at most S (n), and every { € Ly, of input length
|C|. Sim is given C, and outputs a view translation circuit 7 = (73, 72) such
that for every (x1,xq) € F™ x Fn2,

SD (4(71 (21,C (21, 22),) s Tz (w2, C (1, 72),)) , £ [é, (@1,:@2)]) <e(t)

where C (21, 22) = (C (21,72), , C (21, 72),) € FF x FF2,

We use a recent result of Bitansky et al. [8], that show a general transforma-
tion from LRCCs with a strong simulation guarantee against OCL, to LTCCs.
Recently, Dachman-Soled et al. [13] observed that the DF-LRCC has this strong
simulation property, namely the transformation can be applied directly to the
DF-LRCC.® The final LTCC will use the following circuit C*R—DPF:

Definition 11. Let t € N be a security parameter, and let v = r (t) denote the
mazximal length of masking inputs used by a gadget of Construction 6. For an

arithmetic circuit C : F* — F* containing + and x gates, defined the circuit
CLR-DF . pn+r(t)-(n+|Cl) _, Fk 4 follows:

. n In t Cl+n
- The input (z = (21, -+ ,2,),m) € F" x (supp (EncDF (0,1))) of

CMR=DF s interpreted as an input x for C, and a collection m of masking

inputs for gadgets.

— Every gate of C is replaced with the corresponding gadget (as defined in
Construction 6), and gadgets corresponding to output gates are followed by
decoding sub-circuits (computing the decoding algorithm Decip of the inner
product encoding of Definition 9). The masking inputs used in the gadgets are
taken from m (every masking input in m is used at most once).

— Following each input gate x;, an encoding sub-circuit (with some fized, arbi-
trary randomness hard-wired into it) is added, computing the inner-product
encoding of x;.

- A refresh gadget is added following every encoding sub-circuit, where the
masking inputs used in the gadgets are taken from m.

We now describe the LTCC of [15]. To simplify the notations and construc-
tions, we define the LTCC only for circuits operating on pairs of inputs.

Construction 3 (LTCC, [15] and [8]). Let t,t;, € N, and n € N be an input
length parameter. Let S : N* — N be a length function whose value is set below.

The LTCC (CompDF, EDF> is defined as follows:

8 We note that though Bitansky et al. [8] construct leakage-tolerant circuits based on
the DF-LRCC, since they are interested in obtaining UC-security against continuous
leakage, they use a more complex variant of the LRCC. We prefer to use the DF-
LRCC directly, since it suffices for our needs, and gives a much simpler construction.

230 D. Genkin et al.

- EPF = <EncDF7 DecDF), where:

2t
e For every x € F", EncPF (2,1t 1%) = <x, (Enc'D"F (0, 1t)) I), where

k
(EncBF (0, lt)) denotes k random and independent evaluations of

Encp (0,1%).

o Dec”" ((x,m), 1%, 100) = 2.

— Comp®Y, on input an arithmetic circuit C : F"t x F"r — F* outputs the
circuit CPF : F2ratni+StnenmlCl _ FE copstructed as follows:

e Construct a circuit C; : F™"® x F"® — F"R that evaluates the function
fi1(x,y) = x+y. Denote s1 = |C1]|, and let C] be the circuit obtained from
Cy by the transformation of Definition 11. (Notice that if y is uniformly
random then C| outputs a one-time pad encryption of x.)

o Construct the circuit Cy : FPL1r x F*& — F* such that Co ((2,¢),y) =
C(c+y,z). Denote so = |Csl, and let CY be the circuit obtained from Cs
by the transformation of Definition 11. (Notice that if ¢ is a one-time pad
encryption of some value x with pad y, then C) emulates C' on x and z.)

o Let r =1 (t) denote the total length of masking inputs used by a gadget of
Construction 6. Then S =S (t,nr,ng, |C|) =7 (t)-(s1 + s2 + ng + 4ng).
(Notice that S is the number of masking inputs used in C; and CY.)

o OPY (1,y,2) = Cy(2,(C (z,y)),y). (Intuitively, CPY first uses C} to
encrypt x with pad y, and then evaluates Ch on the encryption output by
C1, z and pad y.)

We note that the correctness error of the LTCC of Theorem 3.2 might be
abused by malicious parties (e.g., a malicious ZK prover in Sect.4.1, or mali-
cious parties in Sect. 6) to violate the correctness of the computation, which we
overcome by checking whether a correctness error occurred, as described in the
following remark.

Remark 1 (Dealing with gadget failures). We will actually use a modified version
of Construction 3, in which CP¥ also computes an error flag, indicating whether
the computation failed in one of its gadget (i.e., failed in all ¢t copies of the
gadget, see Remark 3). More specifically, each of the two parties implementing
the gadget computes in the clear a flag indicating whether its encoding of the
output is a valid encoding (i.e., all entries are non-zero), and each party locally
combines the flags it generated for all the gadgets. This additional computation
is needed since malicious parties (e.g., a malicious prover in the leakage-secure
ZK circuit of Construction4) may not choose the masking inputs at random,
and might generate them in a “smart” way which will always cause gadgets to
fail.

We note that thought these flags are generated in the clear, they do not
violate the leakage-tolerance property of Construction3. The reason is these
flags are generated locally (by each of the parties), and so could be generated
by the leakage function from the simulated wire values which the LT simulator
(of Definition 10) generates. This observation gives a reduction from any ¢-BCL

How to Construct a Leakage-Resilient (Stateless) Trusted Party 231

function on the modified circuit to a ¢-BCL function on the original circuit, and
so when using Construction3 as a building block, we will implicitly disregard
these additional wires (remembering that any leakage on the modified circuit with
the flags can be generated by related leakage on the original circuit). Finally, we
note that in an honest execution the flag is set only with negligible probability
(and so the fact that the flag is computed in the clear does not violate leakage-
resilience).

Remark 2. To combine Construction3 with Construction2, we assume that
Construction 3 is implemented using a boolean circuit (implementing group oper-
ations via operations over Fy) that operates over a standard basis.

Dziembowski and Faust (Corollary 2 in the full version of [15]) show that the
DF-LRCC resists OCL leakage, which by the result of [8] implies the existence
of an LTCC against such leakage. Combined with Lemma 2 below (which shows
a relation between OCL and BCL), we have the following:

Theorem 8 ([15] and [8], and Lemma 2). Let t € N be a leakage bound, and
n,k € N be input and output length parameters. Then for every polynomial p (t)
there exist a finite field F of size Q(t), and a negligible function e (t) = negl (t)
for which there exists an (E%];CL, e(t),p (t))—LTCC, where t = 0.16t log, [F| —

1 —log, |F|, and LL; is the family of all t-BCL functions.

Theorem 8 relies on the next lemma (whose proof appears in Appendix A)
which states that security against so-called “only computation leaks” (OCL)
implies security against BCL. (One can also show that 2¢t-BCL implies resilience
against --OCL.) Recall that in the context of OCL, the wires of the leakage-
resilient circuit C are divided according to some partition P, into two “parts”
CL, Cr. The input encodings of C' are also divided into two parts, e.g., an encod-
ing ¥ is divided into Zy, (which is the input of Cr) and ZTr (which constitutes

the input to 63) The adversary can (adaptively) pick functions f{,---, TfL,
and ff, .- ,f,}fR for some ny,nr € N, where the combined output lengths of
fE, fE (and ff,---, fR) is at most t. In the execution of C on Z, the

adversary is given fr [GL,@} ,1 < i < np and fF {@R,ER} , 1 < i < ng,
and chooses the next leakage functions based on previous leakage. The out-
put of the leakage is taken to be the combined outputs of all leakage functions
it #L, - ,}fR. We say that a circuit is (L, €)-leakage-resilient with

relation to the partition P = (C'L, éR) , if the real-world output of the OCL func-

tions can be efficiently simulated (given only the description of the circuit, and
its outputs if C computes the outputs in the clear), and the statistical distance
between the actual and simulated wire values is at most . (We refer the reader
to, e.g., [15] for a more formal definition of OCL.) We note that we allow the
adversary to leak on the two components of the computation in an arbitrary
order, a notion which is sometimes referred to as “OCL+".

232 D. Genkin et al.

Lemma 2 (OCL+-resilience implies BCL-resilience). Let € € (0,1) be
an error bound, t € N be a leakage bound, and C be a boolean circuit. If C
is (LEaL, €)-leakage-resilient with relation to partition P, then C is also (L,€)-
leakage-resilient for the family L of all t-BCL functions with relation to the same
partition P.

The following property of Construction 3 will be used to guarantee correctness
of our constructions in the presence of malicious parties (see Appendix A for the
proof).

Lemma 3 (Ill-formed masking inputs correspond to additive attacks).
Let S : N* — N be the length function from Definition 11. Then Construction 3
has the following property. For every circuit C : F*"t x F"r — F* every secu-
rity parameter t € N, and every m € FSnenmlCD - there exists an additive
attack Am on C such that for every x € F"LT"R and every & = (x,m) it holds
that CPF (&) = CAn (x). Moreover, there exists a PPT algorithm Alg such that
Alg (m) = Ap.

4 Leakage-Secure Zero-Knowledge

In this section we describe our leakage-secure zero-knowledge circuits. At a high
level, an L-secure ZK circuit for a family £ of functions is a randomized algorithm
Gen that given an error parameter €, and an input length n, outputs a randomized
prover input encoder Encp, and a circuit T'. T takes an input from a prover P,
and returns output to a verifier V, and is used by P to convince V that x € Lg.
T guarantees soundness, and zero-knowledge even when V' obtains leakage from
L on the internals of T

Definition 12 (L-secure ZK circuit). Let R = R (z,w) be an NP-relation,
L be a family of functions, and € > 0 be an error parameter. We say that Gen is
an L-secure zero-knowledge (ZK) circuit if the following holds.

- Syntax. Gen is a deterministic algorithm that has input ¢, 1™, runs in time
poly (n,log (1/€)), and outputs (Encp,T) defined as follows. Encp is a ran-
domized circuit that on input (x,w) such that |x| = n (x is the input, and
w is the witness) outputs the prover input y for T'; and T is a randomized
circuit that takes input y and returns z € {0, 1}

— Correctness. For every e > 0, every n € N, and every (x,w) € R such that
|x] = n, Pr[T (Encp (z,w)) = (x,1)] > 1 — ¢, where (Encp,T) « Gen (¢,1"),
and the probability is over the randomness used by Encp,T.

- Soundness. For every (possibly malicious, possibly unbounded) prover P*,
every € > 0, every n € N, and any x ¢ Lg such that |z|] = n,
Pr [T (P*(z)) = (z,1)] < ¢, where (Encp,T) «— Gen (¢,1"), and the proba-
bility is over the randomness used by P*,T.

- L-Zero-knowledge. For (z,w) € R we define the following experiments.

How to Construct a Leakage-Resilient (Stateless) Trusted Party 233

e For a (possibly malicious, possibly unbounded) verifier V*, define the
experiment Realy« Gen (¢, w, €) where V* has input x, €, and chooses a leak-
age function £ € L, and Realy« gen (z,w,€) = (T' (Encp (x,w)),¢[T,Encp
(x,w)]), where (Encp,T) «— Gen (¢,1™), and [T,y] denotes the wires of T
when evaluated on y.

e For a simulator algorithm Sim that has input x,e, and one-time ora-
cle access to £, the experiment |dealsim r (x,w,€) is defined as follows:
ldealsim r (x, w,€) = Sim* (e,x), where Sim* (e,x) is the output of Sim,
given one-time oracle access to L.

We say that Gen has L-zero-knowledge (L-ZK) if for every (possibly mali-
cious, possibly unbounded) verifier V* there exists a simulator Sim such that
for every e > 0, every n € N, and every (x,w) € R such that |x| = n,
SD (Realy+ Gen (%, w, €) , Idealsim = (z,w,€)) < e.

4.1 The Leakage-Secure ZK Circuit

We now construct the leakage-secure ZK circuit by combining the LRCC

(CompGIMSS, EGIMSS, Decgﬂﬁss) of Theorem 7 with the LTCC (compDF, EDF)

of Theorem 8.

At a high level, we compile the verification circuit Cg of an NP-relation R
using Com pGIMSS, where the prover provides the encoded input and witness for
the compiled circuit Cr. Cr has encoded outputs, and only guarantees that BCL
leakage cannot distinguish between the executions on two different witnesses. To
achieve full-fledged ZK, we use CompPY to decode the outputs of Cx. Recall
that circuits compiled with Comp®" have masking inputs, and moreover, their
leakage-tolerance property crucially relies on the fact that the masks are unknown
to the leakage function. Therefore, these masking inputs must be provided by the
prover as part of the input encoding (which is generated using Encp). However,
since the correctness of the computation is guaranteed only when the masking
inputs are well-formed, a malicious prover P* can violate soundness by providing
ill-formed masking inputs (which were not drawn according to the “right” distri-
bution), and thus modify the computed functionality, and potentially cause the
circuit to accept « ¢ Lg. As discussed in Sect. 3.2, the effect of ill-formed mask-
ing inputs corresponds to applying an additive attack on the original decoding
circuit, so we can protect against such attacks by first replacing the decoding
circuit with an AMD circuit.

Construction 4 (Leakage-secure ZK circuit). Let n € N be an input
length parameter, t € N be a security parameter, and ¢ € N be a constant. Let
R = R (xz,w) be an NP-relation, with verification circuit Cr of size s = |Cgr|.
The leakage-secure ZK circuit uses the following building blocks (where any field
operations are implemented via bit operations).

~ The LRCC (Comp®™S8 pGIMSS _ (EncﬁIMSS,DecﬁIMSS) ,Decglﬂv{ss) of

Theorem 7 (Construction 2), and its underlying small-bias encoding scheme
(Enc® : Fy x F§ — F3¢, Dec® : F3¢ — F3).

234 D. Genkin et al.

- The LTCC <CompDF7 EDF) of Theorem 8 (Construction 3) over a field F =
Q(t), and its underlying encoding scheme EPyp = (Encgp, Decgp).

— The additively-secure circuit compiler Comp% of Theorem 4.
— The AMD encoding scheme (Encamd7 Decamd) of Theorem 5, with encodings

of length 1™ (n, t).
On input 1", 1%, Gen outputs (Encp,T) defined as follows.

— For every input x € {0,1}", and witness w, Encp (x,w) = (Encaiuss
((z,w),1%) ,Enciy (0%°,1%)) for a parameter s' whose value is set below.

— Let ny, be a bound on the maximal witness length for inputs of length n. T
is obtained by concatenating the decoding component T" to the verification
component C” (namely, applying T" to the outputs of C"') which are defined
next.

1. The werification component C". Define C' : Fyt™ — Fitl gs
C' (z,w) = (x,Cr (z,w)). Let C} denote the circuit that emulates C’,
but replaces each output bit with (the bit string representation of) the bit
as an element of F. Then C” = Comp“™35 ().

2. The decoding component.

e Construct the circuit C*™d : F2et-(n+1) _ FA*™ 0410 4ot operates
as follows:
x Decodes its input using Decgﬂwss to obtain the output (f,x,z).
x If f =1, 2 ¢ {0,1}", or z # 1, then C®™ sets 2/ = 0. Other-
wise, it sets 2’ = 1.
« Generates e — Enc®™ ((z, 2'),1%), and outputs e.
e Generate C*™ = Comp®® (Camd).

e Generate T' = Comp’¥ (CA'amd). Let s’ denote the number of masking

inputs used in T".
e Construct the circuit T" that on input y, operates as follows:
x Computes (fr, fr,€) =T’ (y). (Recall that fr, fr are flags indi-
cating whether a gadget of T' has failed.)
« Computes (f,x,z) = Dec®™ (e, 1), where f,z € F and x € F".
If f = fo = fr=0 2z € {0,1}", and z = 1 then T' outputs
(z,1). Otherwise, it outputs 0"+1.

We show in the full version [20] that Construction4 is a leakage-secure ZK
circuit, proving Theorems1 and 2 (for Theorem 1, we have the prover provide
the masking inputs used for the computation in C”, while the verifier provides
the randomness used in T").

5 Multiparty LRCCs: Definition

In this section we define the notion of multiparty LRCCs, a generalization of
leakage-secure ZK circuits to evaluation of general functions with m > 1 parties.
We first formalize the notion of secure computation with a single piece of trusted

How to Construct a Leakage-Resilient (Stateless) Trusted Party 235

(but leaky) hardware device, where security with abort holds in the presence of
adversaries that corrupt a subset of parties, and obtain leakage (from a pre-
defined leakage class) on the internals of the device. This raises the following
points.

1. The output should include a flag signaling whether there was an abort.

2. Leakage on the wires of the device should reveal nothing about the internal
computations, or the inputs of the honest parties, other than what can be
computed from the output. This necessitates randomized computation.

3. The inputs should be encoded, otherwise leakage on the input wires may
reveal information that cannot be computed from the outputs. This should
be contrasted with the ZK setting, in which z is assumed to be public, and so
when all parties are honest the output is (z, 1) and can therefore be computed
in the clear.

To guarantee that an adversary that only obtains leakage on the internals of
the device (but does not corrupt any parties) learns nothing about the inputs
or internal computations, the outputs must be encoded. Therefore, the device,
which is implemented as a circuit, is associated with an input encoding algorithm
Enc, and an output decoding algorithm Dec. The above discussion is formalized
in the next definition.

Definition 13 (Secure function implementation). Let meN, f:({0,1}™)™
— {0,1}* be an m-argument function, L be a family of leakage functions, and
€ > 0. We say that (Enc,C, Dec) is an m-party (L, €)-secure implementation of
[if it satisfies the following requirements.

- Syntax:
e Enc : {0,1}" — {0,1}" is a randomized function, called the input
encoder.

o C: ({0,1}")™ — {0, 1}’jc is a randomized circuit.
e Dec : {0,1}* — {0,1}**! is a deterministic function called the output
decoder.
- Correctness. For every x1,--- ,x,, € {0,1}",

Pr [Dec (C (Enc(x1), - ,Enc(zp))) = (0, f (z1, - ,zm))] > 1 —e.

— Security. For every adversary A there exists a simulator Sim such that for
every input (z1,- ,xm) € ({0,1}™)™, and every leakage function { € L,
SD (Real, Ideal) < €, where Real, Ideal are defined as follows.

Real:

o A picks a set B C [m] of corrupted parties, and (possibly ill-formed)
encoded inputs z; € {0,1}" for every i € B.

o For every uncorrupted party j ¢ B, let m; = Enc (z;).

o IfB 0 then z = (C (2, -+ ,x,,),Dec(C(z},---,x},))), otherwise z is
empty. (Intuitively, z represents the information A has about the output
of C. If B =10 then A learns nothing.)

e Real = (B, {2}},.5,¢[C, (z},--+ ,a],)], 2).

236 D. Genkin et al.

Ideal:

e Sim picks a set B C [m] of corrupted parties and receives their inputs
{zi},cg- Sim then chooses effective inputs w; € {0,1}" for every i € B,
and if B # 0 obtains f (wy--- ,wy,), where w; = x; for every j ¢ B.

e Sim chooses b € {0,1}. (Intuitively, b indicates whether to abort the com-
putation.)

e IfB#D and b =0, set y = (0, f (wy, - ,wm)), if B#D and b =1, set
y = (1,0%), and if B =0 then y is empty.

o Let (VV, {x;}ieB) denote the output of Sim, where W contains a bit for
each wire of C, and z}; € {0,1}" for every i € B. Denote the restriction
of W to the output wires by Wout-

o IfB+#0, let z = (Wou, y). Otherwise, z is empty.

o Ideal = (B, {z}};c5. L (W), 2).

We say that (Enc,C,Dec) is a passive-secure implementation of f if the
security property holds with the following modifications: (1) A does not choose
x},i € B, and instead, x; — Enc(x;) for every i € B; and (2) Sim always chooses
b=0.

We now define an m-party LRCC which, informally, is an asymptotic version
of Definition 13.

Definition 14 (m-party circuit). Let m € N. We say that a boolean circuit C
s an m-party circuit if its input can be partitioned into m equal-length strings,
i.e., C: ({0,13")™ — {0,1}* for some n,k € N.

Definition 15 (Multiparty LRCCs and passive-secure multiparty
LRCCs). Let m € N, L be a family of leakage functions, S (n) be a size func-
tion, and € (n) : N — R*. Let Comp be a PPT algorithm that on input m, and
an m-party circuit C : ({0,1}")™ — {0,1}*, outputs a circuit C.

We say that (Enc, Comp, Dec) is an m-party (L, € (n),S (n))-leakage-resilient
circuit compiler (m-party LRCC, or multiparty LRCC) if there exists a PPT
simulator Sim such that for all sufficiently large n’s, and every m-party circuit
C : ({0,1}")™ — {0,1}* of size at most S(n) that computes a function fc,
(Enc,CA'7 Dec) is an (L,e(n))-secure implementation of fo, where the security

property holds with simulator Sim that is given the description of C, and has
black-box access to the adversary. We say that (Enc, Comp, Dec) is a passively-

secure m-party (L£,e(n),S (n))-LRCC if (Enc, C, Dec) is an (L, € (n))-passively-
secure implementation of fc, where security holds with simulator Sim.

Remark 1. Definitions 13-15 naturally extend to the arithmetic setting in
which C' is an arithmetic circuit over a finite field F. When discussing the arith-
metic setting, we explicitly state the field over which we are working (e.g., we
use “multiparty LRCC over F” to denote that the multiparty LRCC' is in the
arithmetic setting with field F).

How to Construct a Leakage-Resilient (Stateless) Trusted Party 237

6 A Multiparty LRCC

In this section we construct a multiparty LRCC that withstands active adver-
saries. The high-level idea of the construction is as follows. Given an m-party
protocol C, we first replace it with a circuit C"?"® that emulates C' but outputs
a secret-sharing of the outputs, then compile C*"?"® using the LRCC of [25].
We then refresh each of the shares using a circuit Cpec.. However, to guarantee
leakage-resilience, and correctness of the computation in the presence of actively-
corrupted parties, we first replace the circuit Cpec with its additively-secure ver-
sion Cf., then compile Cf,,. using the LTCC of [15] to obtain a leakage-tolerant
circuit él’jec. We use m copies of é,gec, where the i’th copy refreshes the i’th secret
share, using masking inputs provided by the ¢’th party. Each party provides, as
its input encoding to the device, both a leakage-resilient encoding of its input,
and the masking inputs needed for the computation in Cpec. The output decoder
decodes each of the secret shares, and reconstructs the output from the shares
(unless it detects that one of the parties provided ill-formed masking inputs, in
which case the computation aborts). This is formalized in the next construction.

Construction 5 (Multiparty LRCC). Let m € N denote the number of par-
ties, t € N be a security parameter, n € N be an input length parameter, k € N
be an output length parameter, and ¢ € N be a constant. The m-party LRCC
uses the following building blocks:

- The LRCC (Comp®™SS, EINSS — (Enci™SS, DeciMSS) DecGt'™S) of
Theorem 7 (Construction 2), where the outputs of the leakage-resilient cir-
cuit are encoded by the encoding scheme (EncGIMSS Fy — F%Ct, Decaruvss :
F3ct — IF%)

- The LTCC (CompDF, EDF) of Theorem 8 (Construction 3) over a field F =

Q(t), and its underlying encoding scheme EN. = (EncIISF, DecIDnF) that out-

puts encodings of length AP (n,t).
— The additively-secure circuit compiler Compadd of Theorem 4.

The m-party LRCC (Enc, Comp, Dec) is defined as follows.

— For every n,t,t,, € N and every z € F" Enc(z, 1t 1) =
(EncfilMSS (z,1t,1%) Encpt (0, lt)>.

~ For everyy = ((fL. fRov") .-+ (f Fiy™)) € (F2+2tc(k+1))m, Dec (y, 1%)
computes (fl,zz) = Decgﬁ/lss (yi, lt). Iffi=fh=fi=0foralll<i<m
then Dec outputs (0, Dy zi), otherwise it outputs (1,0]“). (Intuitively, each
triplet (fz, f}%,yi) consists of a pair of flags output by the LTCC, indicating
whether the computation in one of its gadgets failed; and an encoding of a
flag, concatenated with an additive secret share of the output.)

— Comp on input m € N, and an m-party circuit C : (F*)"™ — F*:

1. Constructs the circuit C*"a : (F")™ — F™F that operates as follows:

238 D. Genkin et al.

e FEvaluates C on inputs x1, -+ ,%ym to obtain the output y =
C(x1, ,Tm)-

o Generates y1, -+ ,Yym-1 €r F¥, and sets y,, = y @ E:’:llyl
(Y1, ,Ym are random additive secret shares of y.)

e For every 1 <i < m, generates y, by replacing each bit of y; with (the
bit string representation of) the bit as an element of F.
e Outputs (v}, - ,y..).
Comput];s C”(y——1 Compéﬁg/’SS (Cshare).
. Construct the circuit CPec : FAct(k+1) _ pdet(h+1) that operates as follows:
e Decodes its input using Decg’gli\4SS to obtain a flag f € Fo and output
z € Fk,
o If f =1, sets 2/ = 0F, otherwise 2’ = z.
e Generates e — Encaiuss ((f, 2'),1%), and outputs e.
Generate C*™ = Comp®® (CP=).

Generate C" = Comp™¥ (éamd).
Outputs the circuit C obtained by concatenating a copy of C" to each of

the m outputs of C'. (We note that the i'th copy of C" takes its masking
inputs from the encoding of the i’th input to C.)

o o

SAEEESA

The next theorem (whose proof appears in the full version [20]) states that
Construction 5 is a multiparty LRCC.

Theorem 9 (Multiparty LRCC). Let n,k € N be input and output length
parameters, S (n) : N — N be a size function, €(n),e (n) : N — (0,1) be error
functions, t € N be a leakage bound, let ¢ € N be a constant, and let m € N
denote the number of parties. Let L denote the family of all t-BCL functions. If:

- (CompGIMSS,Enc,C,fIMSS7Dec8ﬂvISS) is an (L,¢e,8 (n)+ 2m)-relazed LRCC

with abort, where for security parameter t, Decgﬂ\/lss, Encaivss can be evalu-
ated using circuits of size sS™SS (¢),

~ Comp™ s an ¢ (n)-additively-secure circuit compiler over F, where there
exist: (1) B : N — N such that for any circuit C', Comp®® (C) has size at
most B (|C|); and (2) a PPT algorithm Alg’ that given an additive attack A
outputs the ideal attack (ai"7 AO”t) (whose existence follows from the additive-
attack security property of Definition 3), and

- (CompDF, EDF) s an (L, €, B (23GIMSS (t) + ck))—LTC’C.

Then Construction 5 is an m-party (L, (2m + 1)e(n) + € (n) + negl (t), S (n))-
LRCC.

Moreover, if on input a circuit of size s, CompGIMSS, CompDF output circuits
of size 3G™SS () and sP¥ (s), respectively, then on input a circuit C of size

s, the compiler of Construction 5 outputs a circuit C of size 39MSS (5 4 2m) +
sPF (B (25C™SS (¢) + ck)).

In the full version, we use Theorem 9 to prove Theorem 3. We also provide a
(somewhat) more efficient MPCC construction for passive corruptions.

How to Construct a Leakage-Resilient (Stateless) Trusted Party 239

Acknowledgments. This work was supported in part by the 2017-2018 Rothschild
Postdoctoral Fellowship; by the Warren Center for Network and Data Sciences; by
the financial assistance award TONANB15H328 from the U.S. Department of Com-
merce, National Institute of Standards and Technology; and by the Defense Advanced
Research Project Agency (DARPA) under Contract #FA8650-16-C-7622. The second
author was supported in part by NSF-BSF grant 2015782, BSF grant 2012366, ISF
grant 1709/14, ERC grant 742754, DARPA/ARL SAFEWARE award, NSF Frontier
Award 1413955, NSF grants 1619348, 1228984, 1136174, and 1065276, a Xerox Fac-
ulty Research Award, a Google Faculty Research Award, an equipment grant from
Intel, and an Okawa Foundation Research Grant. This material is based upon work
supported by the DARPA through the ARL under Contract W911NF-15-C-0205. The
views expressed are those of the authors and do not reflect the official policy or position
of the DoD, the NSF, or the U.S. Government. This work was supported in part by
NSF grants CNS-1314722, CNS-1413964.

A Gadgets for the LRCC of [15]

In this section we describe the gadgets used in the LRCC of [15], and prove
Lemmas?2 and 3.

Construction 6 (Gadgets for an LRCC, [15]). Let F be a finite field, and
Ep = (Encip,Decip) denote the inner product encoding over F of Definition 9.
FEach gadget consists of a left component C*, and a right component C® that
are connected to each other. We use the term “X is sent from component Y to
component Z” to denote that the value X computed in component Y 1is the input
to some sub-computation performed in component Z.

1. Refresh gadget: inputs (aL,aR) € Encp(a, 1t2) for a € F, and mask-
ing inputs (('r’L’l,T'L’Q) , ('I’R’l,'r’R’Q)) € EncBF(O, ltz); outputs (aL’,aR') €
EI‘]C|p(6L7 1t2).

(a) CL generates b € F such that b; = (aF)
and sends b to CTt.

(b) CE computes ¢ € F* such that c; = b; x rf"l for every 1 < i < t2.

(¢) C® computes al¥ = al* + c.

(d) CF generates d € F** such that d; = (af"%')f1 X TZR’Q for every 1 <4 < t2,
and sends d to C*.

(e) CL computes e € Ft* such that e =d; X 'r'iL’2 for every 1 <14 < t2.

(f) Ct computes a’ = a* + e.

2. Multiplication by constant gadget: inputs constant ¢ € F \ {0}, and

(aL, a,R) € Encip (a,1%) for a € F; output (bL, bR) € Encip (¢ x a,1%).

(a) C* computes bF = ¢ x al for every 1 <i <t.

(b) C® sets b* = a'.

1)
X TZ-L’I for every 1 < i < t2,

9 This refresh gadget is a simpler construction than the original gadget of [15], due
to [1].

240 D. Genkin et al.

3. Addition by constant gadget: inputs constant ¢ € F, and (a*,a") €
Encip (a,1%) for a € F; output (bL, bR> € Encip (¢ + a, 1).
(a) CL sets b* = al, and sends o to CF.
(b) CF sets b™ = alt + ((af)_l X ¢, 0, ,0).

4. Generalized multiplication gadget: inputs a constant ¢ € F,
(a*,a®) € Encp (a, 1t),(bL,bR) € Encp (b,1%) for a,b € F, and mask-

ing inputs ((T’L’l, 'r’L’Q) , (rR’l, T’RQ)) € EncBF (0,1%); output (cL, cR) €
Encip (¢ —a x b, 1%).

T
(a) CL generates at x t Matriz L = a® (bL) = (al x bJL)i,je[t]' We inter-
pret L as a length-t> vector.
T
(b) CF enerates a t x t Matriz R = al* (bR) = (af x bf)w_e[t]. We inter-

pret R as a length-t> vector.
(c) CE,CT evaluate the Refresh gadget with inputs L, R, and masking inputs
(('r'L’l, 7’L’2) , (rR’l, rR*Z)), to obtain L', R’ (which are length-t> vectors).
(d) Ct sends L, L}, L}, to CF.
(e) C® computes d = ((Ljyy, -+ Li2), (Rig1, -, Rj2)).
() CF computes ¢ = ~ (R, Ry + (1) (e = d) 0, ,0).
(9) CF computes ¢& = (L}, -+, L}).

Remark 3 (Amplifying correctness). The execution in each gadget can fail (if the
generated encodings are not valid inner-product encodings). However, [15] show
that for |F| = Q(t), if each computation step is implemented using ¢ copies of
the corresponding gadget (and the output of the computation step is set to the
output of the first gadget whose output is valid), then each computation step
succeeds except with negl (t) probability. In what follows, we implicitly assume
that each computation step is implemented using this amplification technique
over t gadgets.

We now prove Lemmas 2 and 3.

Proof (of Lemma 2 (sketch)). Let £ be a t-BCL function that corresponds to a
two party protocol II, defined in relation to partition P. Let NextMsg; , NextMsg
be the next-message functions defining the messages the parties send, given their
current view, and assume without loss of generality that the left party sends the
first message in the protocol. Let (Z 1, Zg) be the input on which C' is evaluated,
and denote Wy, = @L,EL}, and Wgr = éR,FE\R] .

To generate the transcript of II, the adversary operates as follows. First, it
picks f'(2) = NextMsg; (2). Then, given ff (W), which is the first message
that the left party sends in II, it picks f{? to be the function which NextMsg 5
computes, conditioned on the event that f (Wy) was the first message which
the right party received, and sends f{¥, to be evaluated on Wg. The adversary
continues in this way until all messages of II have been computed. Since II is

How to Construct a Leakage-Resilient (Stateless) Trusted Party 241

t-bounded, then in particular each of the two participating parties sends at most
t bits, namely the leakage functions we have defined leak at most ¢ bits on each
of Wp, Wg. Therefore, the t-OCL resilience of C' guarantees that the leakage
can be efficiently simulated, up to statistical distance e.

Proof (of Lemma 3). We analyze the effect of ill-formed masking inputs m in
the gadgets of Construction 6, and show that they correspond to applying an
additive attack on the underlying gate.

— Refresh gadget. Denote m = (r®1 rf1) 4 (rl2 pR:2) (which, if the masking
inputs are ill-formed, may not be 0). Then the output of the gadget encodes

L1 R/ : L R/ 2 Lr
the value (a™,a™). We analyze this value. (a™,a™) = 3", a;’,a}’ which,
by the definition of a®,a’ is equal to

t2
Z(af‘qLei) a +cz ZaLaR+Zez a +c; +Za C;
i=1
2 t2
_a—l-Zeiaf%'—&—Zachl
i=1 i=1

which, by the definition of c, e, is equal to

—1

aJrz() R2 ZLQ R/Jrza (!) leTzR’l _ a+<rL,17rR,1>+<rL,2’rR,2>

which is equal to a +m. Moreover, notice that m can be efficiently computed
from rt rB1 pl2 pB2 by computing (r®1, rfot) 4 (pl02 pR2),

— Generalized multiplication gadget. Denote m = (r©1, rfo1) 4 (r£:2 pft:2),
The output of the gadget encodes the value (c”, cf?) = Zf (kR Wthh by
the definition of c¥, c¥, is equal to

t t 2
I (—R/1 + () (c—d)> +3 L (~R) ==Y LiRi—d=c-S LR —m
=2 i=1 1=1

which is equal to c—a x b—m (the rightmost equality follows from the analysis
of the refresh gadget).

— Multiplication and addition by constant gadgets. Notice that these
gadget do not use any masking inputs, and so the computation in these gad-
gets is always correct (corresponds to computation under the all-zeros attack).

References

1. Andrychowicz, M.: Efficient refreshing protocol for leakage-resilient storage based
on the inner-product extractor. arXiv preprint arXiv:1209.4820 (2012)

2. Andrychowicz, M., Dziembowski, S., Faust, S.: Circuit compilers with O(1/log(n))
leakage rate. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 586—615. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49896-5_21

http://arxiv.org/abs/1209.4820
http://dx.doi.org/10.1007/978-3-662-49896-5_21

242

10.

11.

12.

13.

14.

15.

16.

D. Genkin et al.

Battistello, A., Coron, J.-S., Prouff, E., Zeitoun, R.: Horizontal side-channel attacks
and countermeasures on the ISW masking scheme. In: Gierlichs, B., Poschmann,
AY. (eds.) CHES 2016. LNCS, vol. 9813, pp. 23-39. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-53140-2_2

Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In:
STOC 1988, pp. 1-10. ACM (1988)

Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: From extractable collision resis-
tance to succinct non-interactive arguments of knowledge, and back again. In: ITCS
2012, pp. 326-349 (2012)

Bitansky, N., Canetti, R., Goldwasser, S., Halevi, S., Kalai, Y.T., Rothblum, G.N.:
Program obfuscation with leaky hardware. In: Lee, D.H., Wang, X. (eds.) ASI-
ACRYPT 2011. LNCS, vol. 7073, pp. 722-739. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-25385-0-39

Bitansky, N., Canetti, R., Halevi, S.: Leakage-tolerant interactive protocols. In:
Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 266-284. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-28914-9_15

Bitansky, N., Dachman-Soled, D., Lin, H.: Leakage-tolerant computation with
input-independent preprocessing. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8617, pp. 146-163. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44381-1_9

Boyle, E., Garg, S., Jain, A., Kalai, Y.T., Sahai, A.: Secure computation against
adaptive auxiliary information. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013. LNCS, vol. 8042, pp. 316-334. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40041-4_18

Boyle, E., Goldwasser, S., Jain, A., Kalai, Y.T.: Multiparty computation secure
against continual memory leakage. In: STOC 2012, pp. 1235-1254 (2012)

Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: FOCS 1988, pp. 11-19 (1988)

Cramer, R., Dodis, Y., Fehr, S., Padré, C., Wichs, D.: Detection of algebraic manip-
ulation with applications to robust secret sharing and fuzzy extractors. In: Smart,
N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 471-488. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78967-3_27

Dachman-Soled, D., Liu, F.-H., Zhou, H.-S.: Leakage-resilient circuits revisited —
optimal number of computing components without leak-free hardware. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 131-158. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46803-6_5

Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing
attacks to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 423-440. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-55220-5_24

Dziembowski, S., Faust, S.: Leakage-resilient circuits without computational
assumptions. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 230-247.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-28914-9_13

Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.: Protecting cir-
cuits from leakage: the computationally-bounded and noisy cases. In: Gilbert, H.
(ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 135-156. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-13190-5_7

http://dx.doi.org/10.1007/978-3-662-53140-2_2
http://dx.doi.org/10.1007/978-3-642-25385-0_39
http://dx.doi.org/10.1007/978-3-642-25385-0_39
http://dx.doi.org/10.1007/978-3-642-28914-9_15
http://dx.doi.org/10.1007/978-3-662-44381-1_9
http://dx.doi.org/10.1007/978-3-662-44381-1_9
http://dx.doi.org/10.1007/978-3-642-40041-4_18
http://dx.doi.org/10.1007/978-3-642-40041-4_18
http://dx.doi.org/10.1007/978-3-540-78967-3_27
http://dx.doi.org/10.1007/978-3-662-46803-6_5
http://dx.doi.org/10.1007/978-3-642-55220-5_24
http://dx.doi.org/10.1007/978-3-642-55220-5_24
http://dx.doi.org/10.1007/978-3-642-28914-9_13
http://dx.doi.org/10.1007/978-3-642-13190-5_7

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

How to Construct a Leakage-Resilient (Stateless) Trusted Party 243

Genkin, D., Ishai, Y., Polychroniadou, A.: Efficient multi-party computation: from
passive to active security via secure SIMD circuits. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 721-741. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-48000-7_35

Genkin, D., Ishai, Y., Prabhakaran, M., Sahai, A., Tromer, E.: Circuits resilient
to additive attacks with applications to secure computation. In: STOC 2014, pp.
495-504 (2014)

Genkin, D., Ishai, Y., Weiss, M.: Binary AMD circuits from secure multiparty
computation. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 336—
366. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53641-4_14

Genkin, D., Ishai, Y., Weiss, M.: How to construct a leakage-resilient (stateless)
trusted party. JACR Cryptology ePrint Archive (2017). http://eprint.iacr.org/
2017/926

Goldreich, O.: The Foundations of Cryptography - Volume 1, Basic Techniques.
Cambridge University Press, Cambridge (2001)

Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: STOC 1987, pp. 218-229.
ACM (1987)

Goldwasser, S., Rothblum, G.N.: Securing computation against continuous leak-
age. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 59-79. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-14623-7_4

Goldwasser, S., Rothblum, G.N.: How to compute in the presence of leakage. In:
FOCS 2012, pp. 31-40 (2012)

Goyal, V., Ishai, Y., Maji, H.K., Sahai, A., Sherstov, A.A.: Bounded-
communication leakage resilience via parity-resilient circuits. In: FOCS 2016, pp.
1-10 (2016)

Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463-481.
Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4_27

Ishai, Y., Weiss, M., Yang, G.: Making the best of a leaky situation: zero-
knowledge PCPs from leakage-resilient circuits. In: Kushilevitz, E., Malkin, T.
(eds.) TCC 2016. LNCS, vol. 9563, pp. 3-32. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-49099-0_1

Juma, A., Vahlis, Y.: Protecting cryptographic keys against continual leakage. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 41-58. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-14623-7_3

Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388-397. Springer, Heidelberg (1999). doi:10.
1007/3-540-48405-1_25

Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104-113. Springer, Heidelberg (1996). doi:10.1007/3-540-68697-5-9

Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC
2004. LNCS, vol. 2951, pp. 278-296. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24638-1_16

Miles, E., Viola, E.: Shielding circuits with groups. In: STOC 2013, pp. 251-260
2013

é),uisq)uater, J.-J., Samyde, D.: Electromagnetic analysis (EMA): measures and
counter-measures for smart cards. In: Attali, 1., Jensen, T. (eds.) E-smart
2001. LNCS, vol. 2140, pp. 200-210. Springer, Heidelberg (2001). doi:10.1007/
3-540-45418-7_17

http://dx.doi.org/10.1007/978-3-662-48000-7_35
http://dx.doi.org/10.1007/978-3-662-53641-4_14
http://eprint.iacr.org/2017/926
http://eprint.iacr.org/2017/926
http://dx.doi.org/10.1007/978-3-642-14623-7_4
http://dx.doi.org/10.1007/978-3-540-45146-4_27
http://dx.doi.org/10.1007/978-3-662-49099-0_1
http://dx.doi.org/10.1007/978-3-662-49099-0_1
http://dx.doi.org/10.1007/978-3-642-14623-7_3
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1007/978-3-540-24638-1_16
http://dx.doi.org/10.1007/978-3-540-24638-1_16
http://dx.doi.org/10.1007/3-540-45418-7_17
http://dx.doi.org/10.1007/3-540-45418-7_17

244 D. Genkin et al.

34. Rothblum, G.N.: How to compute under AC° leakage without secure hardware. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 552-569.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5_32

35. Santis, A., Micali, S., Persiano, G.: Non-interactive zero-knowledge proof systems.
In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 52-72. Springer,
Heidelberg (1988). doi:10.1007/3-540-48184-2_5

36. Weiss, M.: Secure computation and probabilistic checking. Ph.D. thesis (2016)

37. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS
1986, pp. 162-167 (1986)

http://dx.doi.org/10.1007/978-3-642-32009-5_32
http://dx.doi.org/10.1007/3-540-48184-2_5

	How to Construct a Leakage-Resilient (Stateless) Trusted Party
	1 Introduction
	1.1 Our Contribution
	1.2 Our Results
	1.3 Our Techniques
	1.4 Open Problems
	1.5 Related Work

	2 Preliminaries
	2.1 Leakage-Resilient Circuit Compilers (LRCCs)
	2.2 Gadget-Based Leakage-Resilient Circuit Compilers

	3 LRCCs Used in this Work
	3.1 The LRCC of [25]
	3.2 The Leakage-Tolerant Circuit-Compiler of [15]

	4 Leakage-Secure Zero-Knowledge
	4.1 The Leakage-Secure ZK Circuit

	5 Multiparty LRCCs: Definition
	6 A Multiparty LRCC
	A Gadgets for the LRCC of
	References

