
Can We Access a Database Both Locally
and Privately?

Elette Boyle1(B), Yuval Ishai2,3, Rafael Pass4, and Mary Wootters5

1 IDC Herzliya, Herzliya, Israel
elette.boyle@idc.ac.il
2 Technion, Haifa, Israel

yuvali@cs.technion.ac.il
3 UCLA, Los Angeles, USA

4 Cornell University, Ithaca, USA
rafael@cs.cornell.edu

5 Stanford University, Stanford, USA
marykw@stanford.edu

Abstract. We consider the following strong variant of private informa-
tion retrieval (PIR). There is a large database x that we want to make
publicly available. To this end, we post an encoding X of x together with
a short public key pk in a publicly accessible repository. The goal is to
allow any client who comes along to retrieve a chosen bit xi by reading a
small number of bits from X, whose positions may be randomly chosen
based on i and pk, such that even an adversary who can fully observe
the access to X does not learn information about i.

Towards solving this problem, we study a weaker secret key variant
where the data is encoded and accessed by the same party. This primitive,
that we call an oblivious locally decodable code (OLDC), is independently
motivated by applications such as searchable symmetric encryption. We
reduce the public-key variant of PIR to OLDC using an ideal form of
obfuscation that can be instantiated heuristically with existing indistin-
guishability obfuscation candidates, or alternatively implemented with
small and stateless tamper-proof hardware.

Finally, a central contribution of our work is the first proposal of an
OLDC candidate. Our candidate is based on a secretly permuted Reed-
Muller code. We analyze the security of this candidate against several
natural attacks and leave its further study to future work.

1 Introduction

A private information retrieval (PIR) protocol allows a client to retrieve an item
from a remote database while hiding which item is retrieved even from the servers
storing the database. PIR has been studied both in a multi-server setting, where
security should only hold against non-colluding servers [9,10], and in a single-
server setting [27]. In both settings, the main focus of the large body of work on
PIR has been on minimizing the communication complexity.

c© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part II, LNCS 10678, pp. 662–693, 2017.
https://doi.org/10.1007/978-3-319-70503-3_22

Can We Access a Database Both Locally and Privately? 663

Improving the computational complexity of PIR turned out to be much more
challenging. If no preprocessing of the database is allowed, the computational
complexity of the servers must be at least linear in the database size [4]. While
preprocessing was shown to be helpful in the multi-server setting [4], the exis-
tence of sublinear-time single-server PIR protocols has been a longstanding open
question, with no negative results or (even heuristic) candidate solutions.

In this work we consider the following strong variant of sublinear-time PIR
that we call public-key PIR (pk-PIR). Suppose we want to allow efficient and
privacy-preserving access to a large database x ∈ {0, 1}n. To this end, we encode
x into a (possibly bigger) database X = (X1, . . . , XN) and post X together with
a short public key pk in a publicly accessible repository. We want to allow any
client who comes along to retrieve a chosen bit xi by reading a small number of
bits from X (sublinear in n), where the positions of these bits may be randomly
chosen based on i and pk. (Note that X can be over any alphabet, but the total
number of bits read by the decoder should be o(n).) More concretely, there is a
randomized decoder that given i and pk picks a small set I ⊂ [N] of positions
to be read, and using XI , pk, and its secret randomness recovers xi.

We would like to achieve the following strong security guarantee: even an
adversary who knows pk and can fully observe the access to X, including both the
positions I and the contents XI of symbols being read, does not learn information
about i. Since we are interested in efficient solutions that transfer less than n
bits of information, one should settle for computational (rather than information-
theoretic) security against computationally bounded observers [10].

Our notion of pk-PIR can be viewed as a variant of single-server PIR with
preprocessing [4] (see Sect. 1.1 for a detailed discussion). It can also be viewed as
a variant of oblivious RAM (ORAM) [19] which is weaker in that it only supports
“read” operations, but is qualitatively stronger in that the same encrypted data-
base can be repeatedly used without being updated. Unlike the standard notion
of ORAM, pk-PIR can support a virtually unlimited number of accesses by an
arbitrary number of stateless clients who do not trust each other. An efficient
realization of pk-PIR can be extremely useful for enabling privacy-preserving
public access to a large static database.

Main tool: OLDC. We reduce pk-PIR to the design of a new primitive that
we call an oblivious locally decodable code (OLDC). Intuitively, OLDC can be
thought of as a simpler secret-key variant of pk-PIR. An OLDC encoder ran-
domly maps the database x into an encoded database X by using a short secret
key sk. The decoder may use sk to determine the set I of symbols of X it reads
and also for recovering xi from XI , where the same key sk can be used for poly-
nomially many invocations of the decoder. As in pk-PIR (and standard LDC),
we require the decoder to have sublinear locality, namely to read o(n) bits of X.
There are two significant differences in the notion of security. First, the observer
does not have access to the secret key sk used for decoding. Second, it does not
even have access to the contents of the symbols XI . All the observer can see is
the positions I of the symbols being read.

664 E. Boyle et al.

On the non-triviality of OLDC. The relaxed security goal makes OLDC con-
ceivably easier to realize than pk-PIR. However, whether such OLDC exists is
still far from obvious. In fact, one might be tempted to try to prove that OLDC
is just too strong to exist. In AppendixA we argue that ruling out the existence
of OLDC is unlikely, as it would require proving strong data structure lower
bounds that seem beyond the reach of current techniques.

On the other hand, there is also no hope to prove the existence of OLDC
unconditionally; in fact, we prove that any OLDC implies a one-way function.
Another source of non-triviality comes from the following general property of
OLDC. With overwhelming probability over the choice of sk, the encoder and
(probabilistic) decoder defined by sk should satisfy the following requirement: the
probability that a given codeword symbol is read by the decoder is essentially
independent of the query index i. Using known results, this means that any
OLDC can be easily converted into a closely related “smooth code”1 [24], or
even into a standard LDC that allows for local decoding in the presence of a
constant fraction of errors [26]. Since there is only a handful of known smooth
code and LDC constructions, this severely limits the pool of potential OLDC
candidates.

On the usefulness of OLDC. Unlike standard notions of PIR (but similarly to
ORAM), OLDC does not apply to the case of publicly accessible data, in the
sense that a client who has the key to access the encoded data can learn the
queries i of others who access the same encoded data. However, OLDC can still
be useful in many application scenarios. For instance, by applying an OLDC on
top of a data structure (e.g., one supporting near-neighbor searches), one can
implement general forms of searchable symmetric encryption [13,36], avoiding
the access pattern leakage of current practical approaches without the need to
update the encoded data as in an ORAM-based approach.

From OLDC to pk-PIR. Before describing our candidate OLDC construction, we
explain the transformation from OLDC to pk-PIR. Conceptually, the transfor-
mation is similar to an obfuscation-based construction of public-key encryption
from secret-key encryption. The idea is to have the pk-PIR encoder produce an
encrypted and authenticated version of the symbols of the OLDC encoding X,
and emulate the OLDC decoder by obfuscating the code for generating I from i
and pk together with the code for recovering xi from XI . An additional authen-
tication mechanism is needed to ensure that the decoder is indeed fed with XI

for the same I it generated.
Unlike the simpler case of encryption [34], here we cannot instantiate the

construction using indistinguishability obfuscation (iO). Instead, we need to
rely on an ideal “virtual black-box” obfuscation primitive [3]. This primitive
can be heuristically instantiated using existing iO candidates (e.g., the ones
from [14,15]) or provably instantiated by relying on ideal multi-linear maps [2].

1 A smooth code supports a local decoding procedure in which each codeword symbol
is read with roughly the same probability.

Can We Access a Database Both Locally and Privately? 665

Alternatively, the decoder can be implemented directly by using small and state-
less tamper-proof hardware or a secure co-processor. The latter setting does not
seem to trivialize the problem, and can potentially provide an implementable
variant of our construction that is not curbed by the inefficiency of current
software-based obfuscation methods.

An OLDC candidate. A central contribution of our work is the first proposal of
an OLDC candidate, which we describe below. The encoding is just a secretly
permuted version of a standard locally decodable code obtained from Reed-
Muller codes (cf. [24]): the secret key defines a (pseudo-)random permutation,
and the encoder applies a Reed-Muller encoding to x and then permutes the
result according to the permutation defined by the secret key. The parameters
are chosen such that decoding is done by probing O(λ · nε) (permuted) points
along a degree-λ curve, where λ is a security parameter and ε > 0 can be an
arbitrarily small constant that determines the (polynomial) storage overhead.
Decoding is done via interpolation, where it is crucial that the interpolation
points be kept secret to defeat a simple linearization attack we describe.

Assuming the security of this OLDC candidate, we get pk-PIR based on ideal
obfuscation and one-way functions, where the client reads poly(λ) · nε bits for
an arbitrarily small constant ε > 0. As noted above, ideal obfuscation can be
heuristically replaced by existing iO candidates, leading to an explicit candi-
date construction of pk-PIR. Alternatively, it can be implemented by small and
stateless tamper-proof hardware.

Roughly speaking, the security of our OLDC candidate reduces to an
intractability assumption defined by a“randomized puzzle” obtained by first
sampling polynomially many random low-degree curves (where each curve has
a different color), and then randomly shuffling the pieces of the puzzle, i.e., the
colored points of the space. The assumption is that it is hard to distinguish the
shuffled pieces of the puzzle from pieces of a similar puzzle where the low-degree
curves are replaced by high-degree curves, or even by totally random functions.
Note that unlike standard physical puzzles, or computational puzzles that are
motivated by problems such as DNA sequencing, the local independence prop-
erty of random low-degree curves ensures that there is no local information to
help determine whether two pieces are likely to fit next to each other.

Being unable to reduce the security of our OLDC candidate to any well
studied assumption, we establish its plausible security by showing that it defeats
several relevant types of attacks. This may be an inevitable state of affairs,
as it is often the case in cryptography that ambitious new goals call for new
assumptions. On the other hand, we show that several weaker variants of the
construction can be broken by linearization attacks. This includes variants in
which the global permutation is replaced by one that randomly permutes only
one of the coordinates in the space.

Finally, it is useful to note that other ad-hoc pseudorandomness assumptions
related to specific classes of efficiently decodable codes have successfully
withstood the test of time. This includes the conjectured pseudorandom-
ness of noisy Reed-Solomon codes [31] (despite early attacks on a specialized

666 E. Boyle et al.

variant [6,7]) and assumptions related to unbroken instances of the McEliece
cryptosystem [28] (despite some broken variants [35]). In contrast, several
attempts to base single-server PIR or public-key encryption on noisy Reed-
Muller or Reed-Solomon codes have been irreparably broken [5,11,12,25]. Our
OLDC candidate does not fit in the latter category, since neither the OLDC
primitive nor our concrete intractability assumption seem to imply single-server
PIR or even public-key encryption.

Future directions. The problem considered in this work is a rare remaining exam-
ple for a major “feasibility” goal in cryptography that is not clearly impossible
to achieve, and yet is not readily solved by using an ideal form of obfuscation
and standard cryptographic assumptions. The main question we leave open is
that of further evaluating the security of our OLDC candidate, either by showing
it insecure or by reducing its security (or the security of another candidate) to
a well studied assumption. There is of course a third possibility that the candi-
date will survive the test of time and become “well studied” without a security
reduction to an earlier assumption. A second natural open question is to obtain
a construction of pk-PIR from OLDC via iO. Some evidence against this is given
by the fact that single-server PIR cannot be based on iO and one-way functions
using standard proof techniques [1]. Finally, it would be very interesting to come
up with a direct candidate construction of pk-PIR that does not rely on any form
of general-purpose obfuscation.

1.1 Related Work

Sublinear-time PIR. The question of PIR with sublinear server computation
was first studied in [4]. The main model considered in [4] is that of PIR with
polynomial-time preprocessing. This model allows each server to apply a one-
time, polynomial-time preprocessing to the database in order to enable faster
processing of queries.

Our notion of pk-PIR can be seen as a variant of the single-server model
from [4] (Definition 2) with the following differences. Our model is more restric-
tive in that it does not allow the client to send a query which is answered by
the server. This has the advantage of not requiring the data to be stored on a
single computer—the encoded database can be dispersed over the network, or
written “up in the sky” or on the pages of a book, and can be accessed by clients
directly. By default, we also restrict the decoder to be non-adaptive (given the
public key), whereas the general version of the model from [4] can use multiple
rounds of interaction. On the other hand, our model is more liberal in that it
allows the encoding of the database to be randomized. This randomization is
essential for our solutions, even in the secret-key case of OLDC.

The results of [4] on PIR with preprocessing include a weak lower bound
on the tradeoff between storage and server computation, positive results in the
multi-server model, and a barrier to proving strong negative results for single-
server solutions with adaptive queries (see AppendixA). They also obtain pos-
itive results for sublinear-time PIR in alternative models, including the case

Can We Access a Database Both Locally and Privately? 667

of amortizing the computational work required for processing multiple queries
simultaneously and protocols with single-use preprocessing. The question of
reducing the amortized computational cost of multi-query PIR was subsequently
studied in [21,22].

Other notions of keyed LDC. A very different notion of LDC with (private or
public) keys was considered in [20,33]. The goal of these works is to make use of
the keys towards improving the efficiency of LDCs, rather than hide the access
pattern.

1.2 Independent Work

The problem we consider has been independently studied by Canetti et al. [8].
The two works consider the same problem of sublinear-time PIR with preprocess-
ing and propose similar candidate solutions based on secretly permuted Reed-
Muller codes. The notion of OLDC (resp., pk-PIR) from the present work cor-
responds to the notion of designated-client (resp., public-client) doubly-efficient
PIR from [8]. (In this work we make the additional restriction of non-adaptive
queries.) We provide an overview of the main differences between the two works
below.

The main contributions of [8] beyond those of this work include: (1) A dif-
ferent variant of the designated-client (OLDC) candidate in which the curve
evaluation points used by the decoder are fixed (or made public) but some of
the points on the curve are replaced by random noise. A combination of random
noise with secret evaluation points is also proposed as a potentially more conser-
vative candidate. (2) A search-to-decision reduction for a restricted case of the
above fixed-evaluation-point variant, where the location of the noise elements is
the same for all queries. (3) An efficient variant of the designated client scheme,
that is secure in the bounded-query case assuming one way functions.

The main contributions of this work beyond those of [8] include: (1) A gen-
eral transformation from (designated-client) OLDC to (public-client) pk-PIR by
applying VBB obfuscation to the query generation algorithm and an authenti-
cated version of the decoding algorithm. This yields an explicit candidate con-
struction of pk-PIR. (2) Two types of barriers: A “data structures barrier,”
suggesting that even a very strong form of pk-PIR, with deterministic encoder
and non-adaptive queries, would be difficult to unconditionally rule out; and an
“LDC barrier,” showing that OLDC implies traditional LDC, effectively impos-
ing a limitation on the space of possible candidates. (3) Ruling out (under stan-
dard assumptions) a natural “learning” approach for generically breaking con-
structions based on secret linear codes, by using the power of span programs.
(4) A proof that any OLDC implies a one-way function.

2 Preliminaries

Notation. The security parameter is denoted by λ. A function ν : N → N is said
to be negligible if for every positive polynomial p(·) and all sufficiently large λ it

668 E. Boyle et al.

holds that ν(λ) < 1/p(λ). We use [n] to denote the set {1, . . . , n}. We use d ← D
to denote the process of sampling d from the distribution D or, if D is a set, a
uniform choice from it. We denote by SN the symmetric group on N elements.

2.1 Standard Cryptographic Tools

We refer the reader to, e.g. [17] for treatment of standard cryptographic prim-
itives, including pseudorandom function (PRF) families (Gen,Eval), pseudoran-
dom permutations PRP, semantically secure symmetric-key encryption schemes
(Gen,Enc,Dec), and message authentication codes (Gen,Tag,Verify).

2.2 Virtual Black-Box Obfuscation

Intuitively, a program obfuscator serves to “scramble” a program, hiding imple-
mentation details, while preserving its input/output functionality. The notion
of Virtual Black-Box (VBB) obfuscation was first formally studied by [3]. We
consider a notion with auxiliary input.

Definition 1 (VBB Obfuscator [3]). Let C = {Cn}n∈N be a family of
polynomial-size circuits, where Cn is a set of boolean circuits operating on inputs
of length n. And let O be a PPT algorithm, which takes as input an input length
n ∈ N, a circuit C ∈ Cn, a security parameter 1λ, and outputs a boolean circuit
O(C) (not necessarily in C). O is a virtual black-box (VBB) obfuscator for the
circuit family C if there exists a negligible function ν such that:

1. (Preserving Functionality): For every n ∈ N, and every C ∈ Cn, and every
x ∈ {0, 1}n, with all but ν(λ) probability over the coins of O, we have
(O(C, 1n, 1λ))(x) = C(x).

2. (Polynomial Slowdown): There exists a polynomial p(·) such that for every
n, λ ∈ N and C ∈ C, the circuit O(C, 1n, 1λ) is of size at most p(|C|, n, λ).

3. (Virtual Black-Box): For every (non-uniform) polynomial-size adversary A,
there exists a (non-uniform) polynomial-size simulator S such that, for every
n ∈ N every C ∈ Cn and every auxiliary input z,

∣
∣
∣ Pr[C̃ ← O(C, 1λ, 1n); b ← A(C̃, z) : b = 1]

− Pr[b ← SC(1|C|, 1n, 1λ, z) : b = 1]
∣
∣
∣ ≤ ν(λ).

3 Oblivious LDC and Public-Key PIR

In this section, we formally introduce the notions of oblivious locally decodable
codes and public-key private information retrieval. For simplicity, we consider a
database x consisting of n bits.

Can We Access a Database Both Locally and Privately? 669

3.1 Oblivious LDC

A standard locally decodable code (LDC) is an error-correcting code that simul-
taneously offers resilience to errors and a local decoding procedure, which can
recover any message bit xi with good success probability by probing few, ran-
domly selected, bits of the encoding. Intuitively, an oblivious LDC (OLDC) is an
LDC with the additional property that the sets of symbols being read computa-
tionally do not reveal the respective queried indices i. Unlike the standard goal
of LDCs, we do not explicitly require any error correction capability, but such
a capability is in some sense implied by our security requirement (see Remark 2
below).

Note that Oblivious LDC is a “secret-key” notion of public-key PIR, where
to generate valid queries one must hold the secret key sk that was used within
the encoding procedure. As in other secret key primitives, we need to ensure
that the same sk can be used to hide any polynomial number of queries.

Definition 2 (Oblivious LDC). An Oblivious LDC is a tuple of PPT algo-
rithms (G,E,Q,D) with the following syntax:

G(1λ) is a probabilistic key generation algorithm, which takes as input a security
parameter 1λ and outputs a secret sampling key sk.

E(1λ, sk, x) is a probabilistic encoder, which takes as input a security parameter
1λ, secret key sk, and database x = (x1, . . . , xn) with xi ∈ {0, 1}, and outputs
X = (X1, ...,XN) with Xi ∈ {0, 1}L.

Q(1λ, 1n, i, sk; r) is a probabilistic query sampler which takes as input: a security
parameter 1λ, database size 1n, index i ∈ [n], secret key sk, and randomness
r used within the query generation, and outputs a list of q indices I ∈ [N]q.

D(1λ, 1n, i,XI , sk, r) is a deterministic decoder. It takes as input: a security
parameter 1λ, database size 1n, an index i ∈ [n], a vector of q queried data-
base symbols XI ∈ ({0, 1}L)q, secret key sk, and secret randomness r used
within the corresponding execution of Q. The output of D is a decoded data-
base symbol (presumably xi).

The algorithms (G,E,Q,D) should satisfy the following correctness, non-triviality
and security guarantees:

Correctness: Honest execution of G,E,Q,D, successfully returns the requested
data items. That is, for every x = (x1, . . . , xn) and every i ∈ [n],

Pr
[

sk ← G(1λ);X ← E(1λ, sk, x); I ← Q(1λ, 1n, i, sk; r);

x′
i = D

(

1λ, 1n, i,XI , sk, r
)

: x′
i = xi

]

= 1.

Non-triviality: There exists ε > 0 such that for every λ, and all sufficiently
large n, the number of queried bits satisfies Lq < n1−ε.

Security: No efficient adversary can distinguish the memory accesses dictated
by Q on input query index i0 and i1, for a randomly sampled sk. Namely,

670 E. Boyle et al.

for every non-uniform PPT adversary A, there exists a negligible function ν
such that the distinguishing advantage of A in the following game is bounded
by ν(λ):
1. sk ← G(1λ): The challenger samples a secret key sk.
2. (i0, i1, aux) ← AQsk(·)(1λ): A selects a challenge index pair i0 �= i1 ∈

[n], and auxiliary information aux, given oracle access to the randomized
functionality Qsk(·), which on input i ∈ [n] outputs a list of indices I ∈
[N]q sampled as I ← Q(1λ, 1n, i, sk).

3. b ← {0, 1}; I∗ ← Q(1λ, 1n, ib, sk): The challenger selects a random bit
and generates a sample query for the chosen index ib.

4. b′ ← AQsk(·)(aux, I∗): A outputs a guess for b, given the challenge I∗, and
continued oracle access to Qsk(·) as defined above.

5. A’s advantage in the challenge game is defined as Pr[b′ = b] − 1/2, over
the randomness of the challenger (and A).

Remark 1. The above security definition is specified for a single challenge query.
However, since security holds also given access to the query (“encrypt”) oracle,
then by a straightforward hybrid argument, this definition directly implies com-
putational indistinguishability for any polynomial number of queries, analogous
to semantic security of symmetric-key encryption.

Remark 2 (Relation to LDC). Analogous to PIR, OLDCs are a close relative
to standard LDCs, whose focus is on local recoverability of data given symbol
errors or erasures. Indeed, the OLDC security requirement implies that with
overwhelming probability over the choice of sk, the encoder and (probabilistic)
decoder defined by sk must read any given codeword symbol with probability
essentially independent of the queried index i. This property holds directly for
information theoretic PIR; for OLDC, the security guarantees are only computa-
tional, but such a probability disparity would constitute an efficient distinguisher
(and thus cannot exist). Thus, in a similar fashion to the PIR-implies-LDC
construction, a simple modification to the OLDC (by dropping “low-weight”
symbols and duplicating “high-weight” ones) then yields a related smooth code
(i.e., with a local decoding procedure where each codeword symbol is read with
roughly equal probability); see “Smooth encodings and PIR” in [24]. This in
turn directly yields an LDC correctable against erasures, or against errors in a
low but nontrivial error regime, and can further be transformed into a standard
LDC that allows for local decoding in the presence of a constant fraction of
errors [26]. This means that future OLDC candidates inherently must come out
of LDC techniques.

We prove that within the nontrivial regime of parameters, OLDC necessarily
implies the existence of one-way functions. Interestingly, several straightforward
approaches toward this assertion are not valid. In particular, one cannot make
a direct use of an OLDC to devise a symmetric-key encryption scheme, since
correctness of OLDC decoding is only guaranteed given the randomness used to
generate the query indices, and indistinguishability of OLDC query index sets

Can We Access a Database Both Locally and Privately? 671

is only guaranteed when the corresponding codeword symbols themselves are
unknown. The proof considers two distributions: One with a list of query sets
Iri

for random query indices ri together with the real indices ri, and the second
with a similar list of query sets Iri

together with uncorrelated random indices r′
i.

Note that we must necessarily make use of the fact that the OLDC decoder can
make many queries, as bounded-query OLDC exists unconditionally (e.g., using
a k-wise independent functions).

Proposition 1 (OLDC Implies OWF). Suppose OLDC exists. Then one-
way functions must exist.

Proof. Let (G,E,Q,D) be an OLDC with parameters as above. We demonstrate
two distributions which are (by OLDC security) computationally indistinguish-
able, but are (by OLDC correctness) statistically far [16]. Consider the following
pair of distributions, for a parameter � ∈ N:

D1(1λ, �) :=

⎧

⎨

⎩

(

(Ir1 , r1), . . . , (Ir�
, r�)

)

:
sk ← G(1λ);

r1, . . . , r� ← [n]�;
∀i ∈ [�], Iri

← Q(1λ, 1n, ri, sk)

⎫

⎬

⎭

D2(1λ, �) :=

⎧

⎪⎪⎨

⎪⎪⎩

(

(Ir1 , r
′
1), . . . , (Ir�

, r′
�)

)

:

sk ← G(1λ);
r1, . . . , r� ← [n]�;
r′
1, . . . , r

′
� ← [n]�;

∀i ∈ [�], Iri
← Q(1λ, 1n, ri, sk)

⎫

⎪⎪⎬

⎪⎪⎭

.

OLDC security directly dictates that D1(1λ, �),D2(1λ, �) are computationally
indistinguishable for any polynomial � = �(λ). We now argue that for appropriate
choice of � they must be statistically far.

To do so, we first consider an intermediate step, roughly corresponding to
the above distributions together with the secret key sk. Given sk, the OLDC
decoding correctness will require the distributions to be statistically far (by the
impossibility of information theoretic PIR). This does not yet suffice for our final
goal, as given sk the distributions are no longer computationally close. However,
with some amplification this will enable us to prove that the distributions remain
statistically far even when sk is removed.

For any sk in the support of G(1sk), consider a related pair of distributions
Dsk

1 ,Dsk
2 sampled as

Dsk
1 :=

{

(sk, (Ir, r)) :
r ← [n];

Ir ← Q(1λ, 1n, r, sk)

}

.

Dsk
2 :=

{

(sk, (Ir, r
′)) :

r, r′ ← [n];
Ir ← Q(1λ, 1n, r, sk)

}

.

For any ensemble of keys {skλ}λ in the support of G, the statistical distance
between Dskλ

1 and Dskλ
2 must be non-negligible, as the contrary would imply the

existence of information theoretically secure 1-server PIR with server-to-client
communication sublinear in n:

672 E. Boyle et al.

– To query index i ∈ [n], the client samples (sk, (Ir, r)) ← Dskλ
1 (where the

execution of Q takes randomness rand) and sends the tuple (sk, (Ir, r − i)) to
the server.

– On input (sk, (I, r′)), the server responds by OLDC-encoding the r′-shifted
database (i.e., x′ where x′

j = xj+r′ (mod n) ∀j ∈ [n]) as X ← E(1λ, sk, x′), and
sending the codeword symbols XI .

– To decode, the client executes xi = D(1λ, 1n, i,XI , sk, rand).

Correctness and communication complexity follow from OLDC decoding and
non-triviality. Note that the desired xi will be be mapped to position r via the
(r− i) shift. Statistical privacy of the PIR holds by the statistical indistinguisha-
bility of D′

1 and D′
2 (by implying an index-i query (sk, (Ir, r + i)) is statistically

close to (sk, (Ir, r
′ + i)), which is the query distribution for a random index).

As the final step, we show that if we consider several such (Ir, r) query pairs,
then non-negligible statistical distance must be maintained even when we remove
sk from the distribution (at which point we can no longer use OLDC correctness
arguments directly). Intuitively, this must hold, otherwise omitting sk would
yield a secret-key encryption scheme with information theoretic security.

More formally, since the sampling of (Ir, r) and (Ir, r
′) are independent con-

ditioned on a given value of sk, we may directly amplify the (non-negligible)
statistical distance of Dskλ

1 and Dskλ
2 to be 1 − ν(λ) for negligible function ν by

including a sufficiently large polynomial number �1(λ) of sample pairs (Iri
, ri) or

(Iri
, r′

i), respectively (as in D1(1λ) and D2(1λ) above), together with sk. In par-
ticular, for any choice of {skλ}λ, one can reliably transmit a bit (with possibly
inefficient decoding) b ∈ {0, 1} by sending a sample

(

skλ, (Ir1 , r1), . . . , (Ir�1(λ) , r�1(λ))
)

if b = 0, or
(

skλ, (Ir1 , r
′
1), . . . , (Ir�1(λ) , r

′
�1(λ)

)
)

if b = 1,

(where this notation is shorthand for the distributions described above). This is
preserved for the larger value �∗(λ) = 2|skλ|�1(λ), enabling reliable transmission
of 2|skλ| bits of information. Further, it is maintined over a random choice of
skλ ← G(1λ).

Now, suppose that for this choice of �∗ the original pair of distributions
D1(1λ, �∗(λ)),D2(1λ, �∗(λ)) are statistically close. These distributions corre-
spond directly to the �∗(λ)-sample distributions above (which enable transmis-
sion of 2|skλ| bits) but with sk omitted. That is, we have just demonstrated an
information theoretically secure symmetric-key encryption scheme for messages
of length greater than twice the key size |skλ|, a contradiction to Shannon’s
impossibility. Thus, assuming OLDC it must be that D1(1λ, �∗(λ)),D2(1λ, �∗(λ))
are computationally indistinguishable but statistically far.

3.2 Public-Key PIR

Definition 3 (pk-PIR). A Public-Key PIR (with preprocessing) is a tuple of
PPT algorithms (Gen,Encode,Query,Decode) acting on a size-n database with
the following syntax:

Can We Access a Database Both Locally and Privately? 673

Gen(1λ): On input the security parameter, Gen outputs a secret encoding key sk
and a public sampling key pk.

Encode(1λ, sk, x): On input a secret encoding key and database x ∈ {0, 1}n,
Encode outputs a compiled database X ∈ ({0, 1}L)N .

Query(pk, i): On input the public key and index i ∈ [n], the algorithm Query
outputs a sample-specific decoding key ski and a list of indices I ∈ [N]q for
some q.

Decode(ski,XI): On input a query-specific decoding key ski (as generated by
Query) and values XI ∈ ({0, 1}L)q, the algorithm outputs a decoded value
x′ ∈ {0, 1}.

The algorithms (Gen,Encode,Query,Decode) should satisfy the following correct-
ness and security guarantees:

Correctness: Honest execution of Gen,Encode,Query, and Decode successfully
recovers requested data items. That is, for every i ∈ [n],

Pr
[

(sk, pk) ← Gen(1λ);X ← Encode(1λ, sk, x);

(ski, I) ← Query(pk, i);x′
i = Decode

(

ski,XI

)

: x′
i = xi

]

= 1.

Non-triviality: There exists ε > 0 such that for every λ, and all sufficiently
large n, the number of queried bits satisfies Lq < n1−ε.

Security: No efficient adversary, given access to a public key and encoded data-
base, can distinguish the memory accesses dictated by Query on input query
index i0 and i1. Namely, for every non-uniform PPT adversary A, there exists
a negligible function ν such that the distinguishing advantage of A in the fol-
lowing game is bounded by ν(λ):

1. (x, aux) ← A(1λ): A selects a database x ∈ {0, 1}n and auxiliary infor-
mation aux.

2. (sk, pk) ← Gen(1λ); X ← Encode(1λ, sk, x): The challenger samples a key
pair and encodes the database x.

3. (i0, i1, aux′) ← A(pk,X, aux): A selects a challenge index pair i0 �= i1 ∈
[n].

4. b ← {0, 1}; (ski, I
∗) ← Query(pk, ib): The challenger selects a random bit

and generates a sample query (and key ski) for the chosen index ib.
5. b′ ← A(aux′, I∗): A outputs a guess for b, given the challenge index list I∗.
6. A’s advantage in the challenge game is defined as Pr[b′ = b] − 1/2, over

the randomness of the challenger (and A).

Remark 3. As with OLDCs, the pk-PIR security definition is specified for a
single challenge query, but extends via a straightforward hybrid argument for
any polynomial number of queries (this time analogous to semantic security of
public-key encryption).

674 E. Boyle et al.

4 Oblivious LDC Candidate

We propose an approach for constructing Oblivious LDCs via Reed-Muller codes.
At a high level, we use the standard LDC based on Reed-Muller codes (with a
constant number of variables m and query complexity Õ(n1/m)), except that we
randomly permute the codeword symbols. A more explicit description follows.

Let F be a finite field and let d,m ∈ N with dλ + 1 < |F|. We consider
an (m, d)-Reed-Muller code over F, namely the code defined by m-variate poly-
nomials of degree ≤ d over F. The codeword corresponding to a polynomial p
consists of the values of p on all points in F

m. We use a secret (pseudo-random)
permutation over F

m to order the codeword symbols (e.g., [30]). To decode the
value of the polynomial p at a target point α ∈ F

m, the decoder picks a random
degree-λ parameterized curve beginning at α, and recovers p(α) by reading the
values of p on a random sequence of dλ + 1 distinct parameter values along the
curve (excluding the initial parameter value).

We formally describe the construction below, viewing the number of variables
m and degree bound d as parameters that determine the database size n.

Construction 1 ((m, d) RM-Based Oblivious LDC Candidate). Let n =
(
m+d

d

)

. Fix a canonical set of n points in F
m in general position, denoted by

αi for i ∈ [n]. Let N = |F|m, and fix a correspondence between a ∈ F
m and

ja ∈ [N]. Consider the following tuple of PPT algorithms.

G(1λ): Sample a key describing a pseudorandom permutation π ∈ SN , via π ←
PRP(1λ). Output sk = π.

E(1λ, sk, x):
1. For message x = (x1, . . . , xn) ∈ F

n, define the corresponding m-variable
d-degree polynomial Px ∈ F[Z1, . . . , Zm] as the low-degree interpolation
of evaluations Px(αi) = xi. Denote the resulting codeword by X ′ ∈ F

N

indexed by points a ∈ F
m (recall N = |F|m), given componentwise as

the evaluations of Px at every point in F
m: i.e., ∀a ∈ F

m, take X ′[a] :=
Px(a).

2. Permute the indices of X ′ via π. That is, let X = (X ′
π(1), . . . , X

′
π(N)).

3. Output X.
Q(1λ, 1n, i, sk; r):

1. Parse sk = π ∈ SN .
2. Sample a random degree-λ parametric curve C = {(p1(t), . . . , pm(t)) : t ∈

F} ⊂ F
m that intersects the ith distinguished point αi ∈ F

m, for queried
index i ∈ [n]. Concretely, C is defined by letting ph be a random univariate
polynomial of degree ≤ λ such that ph(0) = (αi)h.

3. Select a random sequence (t0, . . . , tdλ) ∈ F
dλ+1 of dλ + 1 distinct nozero

parameter values, using the randomness r. For each � = 0, . . . , dλ, let
b� = (p1(t�), . . . , pm(t�)) ∈ F

m be the corresponding point on C, and let
jb�

∈ [N] be the associated index.
4. Output I = (π(jb0), . . . , π(jbdλ

)) ∈ [N]dλ (i.e., the list of π-permuted
indices) as the list of query indices.

Can We Access a Database Both Locally and Privately? 675

D(1λ, 1n, i,XI , sk, r):
1. Parse XI = (X0, . . . , Xdλ), sk = π the pseudorandom permutation, and

r = (t0, . . . , tdλ).
2. The choice of parameter evaluation points t1, . . . , tdλ determines a

corresponding list of Lagrange polynomial interpolation coefficients
c0, . . . , cdλ ∈ F.

3. Output the linear combination x′
i =

∑dλ
�=0 c�X� ∈ F.

Choice of parameters. Viewing the number of variables m ≥ 2 as constant,
the code dimension is Θ(dm). We can therefore encode x ∈ {0, 1}n by letting
d = O(n1/m) and |F| = O(dλ). The code length is now |F|m = O(λm · n) and
the number of queries used for local decoding is dλ + 1 = O(λ · n1/m).

Consider the Oblivious LDC security game for the candidate construction
above. The challenger samples a random secret permutation π of the points in
F

m (corresponding to [N]). The adversary is given oracle access to the query-
generation algorithm Qsk. In this case, the index set I ← Qsk(i) corresponds to a
collection of π-permuted points in the space F

m which (before the permutation)
were an oversampling of a low-degree curve in F

m.
Security of the candidate would say that, given access to polynomial many

samples of this type for desired query indices i, an efficient adversary still cannot
discern a fresh query index sample for some i0 from i1. In particular, it must
be the case that he cannot learn the secret permutation given access to these
samples.

We treat the security of the proposed scheme with respect to the following
conjecture. Roughly, it states that a permuted “puzzle” of colored low-degree
curves in m-dimensional space F

m is computationally indistinguishable from the
same number of colored points selected at random from F

m.

Conjecture 1 (Permuted Low-Degree Polynomials). Let m ∈ N be a dimension
parameter and d = dm(n) the minimal integer for which n ≥ (

m+d
d

)

. For every
efficient non-uniform A = (A1,A2) there exists a negligible ν such that

Pr

⎡

⎣

(1n, 1|F|, aux) ← A1(1λ);
π ← S(Fm); b ← {0, 1};

b′ ← ASampb(π,·)
2 (1n, aux)

: b′ = b

⎤

⎦ ≤ 1/2 + ν(λ),

where F is a finite field satisfying |F| > dλ+1, and for any π ∈ S(Fm) and v ∈ F
m,

the probabilistic algorithm Sampb(π, v) does the following:

– If b = 0:
1. Select m random degree-λ polynomials p1, . . . , pm ← F[Z] where ∀i ∈

[m], pi(0) = vi. This determines a curve in F
m, given by the points

{(p1(t), . . . , pm(t)) : t ∈ F}.
2. Sample dλ + 1 distinct random points on this curve, defined by nonzero

parameters t0, . . . , tdλ ← F.

676 E. Boyle et al.

3. Output these points (in order), but with each point permuted by π : Fm →
F

m. That is,

(

π
(

p1(ti), . . . , pm(ti)
))dλ

i=0
∈ (Fm)dλ+1.

– If b = 1: Output dλ + 1 random points in F
m: (w0, . . . , wdλ) ← (Fm)dλ+1.

Proposition 2. Suppose that Conjecture 1 holds for dimension m ≥ 2. Then
Construction 1 is a secure Oblivious LDC with communication complexity
λm · Õ(n1/m).

Proof. The complexity is derived in “Choice of parameters” above. For the secu-
rity of the OLDC it suffices to prove a version of Conjecture 1 with the following
changes. In the first step A1 picks a pair of points (v0, v1). After the second step,
A2 is given a single instance of Samp0(π, vb). Finally, the third step is modified so
that Samp0 is used instead of Sampb. Conjecture 1 implies that for both choices
of b, the view of A2 is indistinguishable from a random and independent set of
points. Hence, the advantage of A2 in guessing b is negligible.

We remark that we choose to present the simplest proposed candidate in this
style whose security is plausible. One may consider several natural more complex
extensions, such as including additional “distractor” indices in the query list I
whose values will be ignored within the decoding. Such inclusion will correspond
to introduction of error symbols within the permuted codeword.

4.1 Generalized and Toy Versions of Conjecture

We explore both a generalization and a specific instance of the Permuted Low-
Degree Polynomials conjecture above.

Generalization: Permuted Puzzles. As discussed in the Introduction, our
main conjecture is a particular instance of a broader class of distinguishing tasks
of “permuted puzzles.” We think of a puzzle as describing: (1) a distribution of
structured functions from F

m to some range R (e.g., the class of pixel maps
defining images of dogs), and (2) a corresponding distribution of unstructured
functions (e.g., the class of all pixel maps with the same general color balance).
The corresponding Permuted Puzzle Conjecture considers a random secret per-
mutation π of the “puzzle pieces” (i.e., the input space F

m), and states that
one cannot efficiently distinguish between an arbitrary polynomial collection of
permuted samples from Structured from permuted samples from Unstructured,
where each sample is permuted with the same π.

Definition 4 (Puzzle). We refer to an m-dimensional puzzle over F

with range R as defined by a pair of efficiently samplable distributions
(Structured,Unstructured), each over the class of functions {f : Fm → R}.

Can We Access a Database Both Locally and Privately? 677

Conjecture 2 (Permuted Puzzle Conjecture). The Permuted Puzzle Conjecture
with respect to the m-dimensional puzzle (Structured,Unstructured) states that
for every efficient non-uniform A, there exists a negligible ν such that

∣
∣
∣ Pr[π ← PRP(1λ); b′ ← AOπ(struct)(1λ) : b′ = 1]

− Pr[π ← PRP(1λ); b′ ← AOπ(unstruct)(1λ) : b′ = 1]
∣
∣
∣ ≤ ν(λ),

where Oπ is an oracle that takes as input b ∈ {struct, unstruct} and performs the
following:

– If b = struct: Sample f ← Structured, output f ◦ π.
– If b = unstruct: Sample f ← Unstructured, output f ◦ π.

For example, the Permuted Low-Degree Polynomials Conjecture 1 is a par-
ticular case of the permuted puzzle conjecture, where Structured consists of func-
tions f : Fm → {0, 1} which evaluate to 1 precisely on (dλ+1) points on a degree-
λ parametric curve, and Unstructured consists of all functions Fm → {0, 1} which
have (dλ + 1) nonzero outputs (but in an arbitrary placement).

Specific Instance: Toy Conjecture. To encourage investigation of the core
Permuted Low-Degree Polynomials conjecture, we put forth a simple toy variant,
which constitutes an easier version of the simplest parameter setting. In partic-
ular, it considers the case of dimension m = 2, and takes the first-coordinate
polynomial to be the identity function: that is, including the value of the curve
parameter explicitly. This variant brings the problem closer to typical settings
of coding theory, and may thus be a useful starting point toward addressing
coding-based cryptanalytic attacks. We pursue this strategy in the discussion of
cryptanalysis in Sect. 4.2 below.

Conjecture 3 (Toy Conjecture). Let |F| ≈ λ2. Let p1, . . . , pm be random degree-
λ polynomials over F, for m = λ100. Let q1, . . . , qm be random functions from F

to F.
Then the following two distributions are computationally indistinguishable,

over the choice of random permutation π ← SF×F over F × F. Here, elements of
each set Si or Ti appear in canonical sorted order (not ordered by x ∈ F).

1. Permuted low-degree polynomials: (S1, . . . , Sm), for Si = {π(x, pi(x)) :
x ∈ F}.

2. Permuted random functions: (T1, . . . , Tm), for Ti = {π(x, qi(x)) : x ∈ F}.

4.2 Discussion on Cryptanalysis

We briefly address a selection of relevant cryptanalytic techniques with respect
to the candidate construction, as well as attacks on simplified versions of the
construction. We focus on the Toy Conjecture 3 (i.e., m = 2 dimensions, where
the first-coordinate polynomial is the identity function), as an attack on the
primary conjecture is necessarily also an attack on this easier version.

678 E. Boyle et al.

Permuting Individual Coordinates. To develop intuition, we first consider weaker
(i.e., easier to break) variants of the Toy Conjecture, and show that these are
not secure. In these variants, instead of choosing the permutation π from the
entire space SF×F, we sample from a restricted class that permutes one or both
coordinates of F × F independently. In particular:

1. Permute only second coordinate: π ← id × SF. In this case, the permuted
low-degree curves are given as sets of points

{

(t, π2(p(t)))
} ⊆ F × F.

This weakened version is not secure. The exposure of the parameter values
t themselves in the clear reveals a linear constraint on the corresponding sec-
ond coordinate symbols, corresponding to Lagrange interpolation where the
coefficients are known. As discussed and generalized in the second category of
Linearization attacks below, this enables an adversary with sufficiently many
samples to learn the preimages of π.

2. Permute only first coordinate: π ← SF × id. In this case, the permuted low-
degree curves are given as sets of points

{

(π1(t), p(t))
} ⊆ F × F.

This weakened version is also not secure. One can view this as the problem
of distinguishing “noisy”Reed-Solomon codewords from uniformly random
vectors in F

|F|, where the “noise” is a permutation of the codeword symbols.
Since the resulting “noisy”codewords are still codewords in a linear code,
they are contained in some low-dimensional subspace. Thus, the adversary
may simply check the dimension of the span of sufficiently many samples to
determine whether the structured or unstructured case holds.

Standard Decoding Attacks. Coding-theoretic attacks are a natural attempt to
refute the Toy Conjecture 3; as above, the attacker’s task is similar to the task of
distinguishing “noisy” Reed-Solomon codewords from uniformly random vectors.
As noted above, when the “noise”is a permutation acting on either coordinate
independently, the linearity of the underlying code provides an attack. Simi-
larly, if the “noise” did not include a permutation, and only included standard
coding-theoretic noise (that is, if Si were of the form {(x, pi(x)+ei(x)) : x ∈ F}
for a sparse ei(x)), then standard decoding algorithms (for example Reed-
Solomon list-decoding, or the multi-dimensional extension of Coppersmith and
Sudan [11]) might apply. However, because the noise takes the form of a permu-
tation, it is not at all clear how to apply such techniques in this setting.

Similarly, an attacker might hope to adapt attacks on instantiations of the
McEliece cryptosystem [28] with Reed-Solomon codes in the place of Goppa
codes, since these attacks are aimed at distinguishing a permutation applied to
a Reed-Solomon generator matrix from uniformly random; such attacks might
apply directly in the setting where the Si are of the form {(π(x), pi(x)+ ei(x)) :
x ∈ F}. However, there are two reasons that these sorts of attacks are not directly
applicable to the general Toy Conjecture 3. First, the permuation acts on the
entire space F×F, rather than just on the first coordinate. Second, these attacks
require knowledge of the public key—the scrambled generator matrix—and in
the Oblivious LDC setting the attacker is not privy to this information.

Can We Access a Database Both Locally and Privately? 679

Linearization Attacks. Generalizing the discussion above on permuting individ-
ual coordinates, linearization-style attacks can be used to break any version of
the above candidate construction satisfying the following simplified properties:

1. Encoding is linear & public:
In this case, each encoded database entry Xj corresponds to a known linear
combination of the original database entries xj , i.e. to a known n-dimensional
coefficient vector c(j) ∈ F

n for which Xj =
∑n

i=1 c
(j)
i xi. In this case we can

assume without loss of generality that the decoder is also linear. Indeed, for
a random database x, a set of linear combinations of xj can be used to infer
a given target xi with better than 1/2 success probability if and only if it
spans xi. Given a query set I ∈ [N]q, we can simply determine whether a
given basis vector ei lies in the span of the vectors c(j) corresponding to the
queried locations. By correctness and linearity of the decoder, this must be
the case for the true queried index i. But, since the number of queries q < n/2,
this cannot be the case for most indices i′ �= i.

In particular, this means that if Encode is a linear procedure, then it must
utilize secret randomness. In our candidate construction, this is achieved by
use of the secret permutation π. Namely, Encode corresponds to implement-
ing a fixed public linear Reed-Muller encoding procedure composed with a
random permutation matrix.

2. Decoding is linear & public, encoding is linear:
In this case, even if the encoding is randomized and secret, but the decoding is
linear and public, we can launch a simple linearization attack. As above, linear
encoding means each encoded symbol Xj corresponds to some n-dimensional
coefficient vector c(j) ∈ F

n (for which Xj =
∑n

i=1 c
(j)
i xi). Define nN lin-

earization variables, corresponding to the unknown values of {c
(j)
i }i∈[n],j∈[N].

Plugging in the known linear decoding function, each received query sample
I ∈ [N]q on input i ∈ [n] (whose data value xi is known) yields a fresh linear
constraint on these variables.

In particular, this means that a simplified version of our candidate con-
struction in which the dλ + 1 parameter values t0, . . . , tdλ ∈ F are fixed (and
public) would be broken, as well as the simplified variant discussed in “Per-
muting Individual Coordinates” above where the parameter values are ran-
dom but public. We avoid this issue in our proposed candidate by sampling a
random set of such values for each query, and passing this information along
to the decoder (but not revealing it directly). In effect, each distinct sub-
set of parameter values induces a distinct linear function for the decoding,
corresponding to the different value of Lagrange interpolation coefficients.

Generic Learning Approach. Assuming the existence of pseudorandom functions
in NC1 [18,32] (a mild assumption that follows from most standard crypto-
graphic assumptions), we can rule out the following hypothetical generic attack
that applies to constructions based on permuted linear LDCs. The generic
attack views every symbol of X as a hidden vector which specifies some linear
combination of x. By repeatedly invoking the decoder on index i, one can get

680 E. Boyle et al.

polynomially many samples of sets of hidden vectors which span a given target
vector t. If this information could be used to learn the hidden vectors, or even
just distinguish between samples that span t and ones that do not, this would
give rise to a distinguishing attack.

However, the existence of pseudorandom functions in NC1, together with
the fact that span programs [23] can efficiently simulate NC1 functions, imply
that an attack as above cannot work in general. For simplicity we restrict the
attention to the case where t is the unit vector e1 and the field size is fixed.

Proposition 3. Suppose there is a pseudorandom function in NC1. Then, for
any finite field F, there are PPT algorithms (Gen,Query) such that Gen(1λ), on
a security parameter λ, outputs a secret key sk and a matrix M ∈ F

N×n, and
Query(sk, b) outputs a row index set Ib ⊆ [N], and the following conditions hold.

– For the pair (M, I1) obtained by running Gen(1λ) and then Query(sk, 1), the
set of I1-rows of M spans the unit vector e1 ∈ F

n except with neg(λ) failure
probability.

– For the pair (M, I0) obtained by running Gen(1λ) and then Query(sk, 0), the
set of I0-rows of M does not span e1 except with neg(λ) failure probability.

– For any polynomial p(λ), the distribution ensembles {(I10 , . . . , I
p(λ)
0)}λ and

{(I11 , . . . , I
p(λ)
1)}λ are computationally indistinguishable, where (I1b , . . . ,

I
p(λ)
b)λ is obtained by letting (sk,M) ← Gen(1λ) and then Ij

b ← Query(sk, b)
for j = 1, . . . , p(λ).

Proof. Let Gen(1λ) generate a boolean formula F of size N computing a PRF
described by a secret evaluation key sk on an input x ∈ {0, 1}λ. (The existence
of polynomial-time Gen follows from the existence of a PRF in NC1.) Using the
known simulation of formulas by span programs [23], one can efficiently construct
2λ matrices Mi,0,Mi,1 over F, 1 ≤ i ≤ λ, each with n ≤ N columns and a total
of N rows, such that F (x) = 1 if and only if the unit vector e1 ∈ F

n is spanned
by the rows of the λ matrices Mi,xi

. The matrix M output by Gen is the matrix
whose rows contain all rows of Mi,b in order.

The algorithm Query(sk, b) samples a random x such that F (x) = b, and
outputs the index set Ib of the rows of Mi,xi

as rows of M . Since F = Fsk is
a PRF, F (x) = b holds for roughly a half of the inputs, and so such an x can
be sampled with negligible failure probability by trying λ random candidates.
Finally, since F is indistinguishable from a random function, polynomially many
samples of inputs x for which F (x) = 0 are indistinguishable from polynomially
many samples of inputs x for which F (x) = 1. Since the row indices in Ib are
determined by the input, this implies the required indistinguishability condition.

Overall, while there are certainly some simplified variants of the Toy Con-
jecture 3 that are not secure, it seems that the stated version is not immediately
susceptible to natural attack strategies. We hope that this Toy Conjecture will
be the subject of further study (either with the goal of refuting or confirming
it), as this will lead to a better understanding of our core Permuted Low-Degree
Polynomials Conjecture.

Can We Access a Database Both Locally and Privately? 681

5 Oblivious LDC to Public-Key PIR

We demonstrate a general transformation from any Oblivious LDC to a construc-
tion of Public-Key PIR, assuming virtual black-box program obfuscation. Recall
the core differences between the two primitives are: (1) querying an OLDC (and
decoding the retrieved values) requires the secret encoding key, and (2) OLDC
security holds only if the codeword remains private. The transformation uses
obfuscation to safely enable public querying and decoding (without revealing sk
directly). The codeword will be published in encrypted form, and the obfuscated
program will additionally contain the decryption key. Finally, to protect against
malicious decoding queries, all queries generated by the obfuscated program will
be authenticated by a MAC, which will be verified before answering.

Theorem 2. Suppose Oblivious LDCs exist. Then, assuming one-way func-
tions, there exists a secure Public-Key PIR in the virtual black-box obfuscation
hybrid model.

Proof. We present a general transformation from any oblivious LDC (G,E,Q,D)
to a public-key PIR scheme (Gen,Encode,Query,Decode) in Construction 3,
assuming the following tools (each of which, aside from VBB obfuscation itself,
are implied by one-way functions):

– Let O be a VBB circuit obfuscator secure with auxiliary input.
– Let (GenSKE,Enc,Dec) be a semantically secure symmetric encryption scheme.
– Let (GenMAC,Tag,Verify) be a secure deterministic MAC.2

– Let (GenPRF,EvalPRF) be a pseudorandom function family.

Construction 3 (pk-PIR from Oblivious LDC)

Gen(1λ, x):
1. Sample P ← Samp(1λ), defined as follows:

– Sample an oblivious LDC key skLDC ← G(1λ).
– Sample a SKE key skSKE ← GenSKE(1λ).
– Sample a MAC key skMAC ← GenMAC(1λ).
– Sample a PRF key k ← GenPRF(1λ).
– Let P be as in Fig. 1, with skLDC, skSKE, skMAC, k hardcoded.

2. Obfuscate the program as P̃ ← O(P, 1λ, 1n).
3. Output sk := (skLDC, skSKE, skMAC, k) and pk := P̃ .

Encode(1λ, sk, x):
1. Encode x using the oblivious LDC: i.e., X ′′ ← E(1λ, skLDC, x).
2. Encrypt each item in the encoded database (using skSKE from above):

For j = 1, . . . , N , let X ′
j ← EncskSKE(X

′′
j).

3. MAC each item in the encrypted database (using skMAC from above):
For j = 1, . . . , N , compute tagj = Tag(skMAC, (j,X ′

j)), and define Xj =
(X ′

j , tagj).
4. Output the database X = (X1, . . . , XN).

2 Note that a pseudorandom function can also be used directly for this purpose; how-
ever, we use separate notation for clarity to emphasize the two uses.

682 E. Boyle et al.

Query(pk, i): Sample randomness r ← {0, 1}λ. Evaluate (I, c, tagQ) =
P̃ (“query”, i, r). Output ski = (c, tagQ) and query index set I.

Decode(ski,XI): Parse ski = (c, tagQ). Output v = P̃ (“decode”,
(i, I, c, tagQ,XI)).

Public Key Program P
Hardcoded: Oblivious LDC key skLDC, SKE key skSKE, MAC key skMAC, PRF key k.

– Input (“query”, i, r):
1. Let (r1, r2) = EvalPRF(0, i, r). This will serve as the randomness.
2. Let I = Q(1λ, 1n, i, skLDC; r1). Sample the LDC query set, using randomness r1.
3. Let c = EncskSKE(r1; r2). Encrypt the randomness r1 (using randomness r2).
4. Let tagQ = MACskMAC(i, I, c).
5. Output (I, c, tagQ).

– Input (“decode”, (i, I, c, tagQ, (dataCTj , tagj)j∈I)):

1. Test 1
?
= Verify(skMAC, (i, I, c), tagQ). That is, verify the query MAC tag.

2. For each j ∈ I:

(a) Test 1
?
= Verify(skMAC, (j, dataCTj), tagj). That is, verify the submitted

MAC on message (j, dataCT) consisting of the index and submitted en-
crypted data value.

(b) Decrypt dataj = DecskSKE(dataCTj).
3. Decrypt r1 = DecskSKE(c).
4. If any MACs did not properly verify, output ⊥.

Otherwise, output D(1λ, 1n, i, (dataj)j∈I , skLDC, r1).

Fig. 1. Query/Decode program whose obfuscation will constitute the pk-PIR public
key.

Suppose, for contradiction, that Construction 3 is not a secure pk-PIR: that
is, that there exists a non-negligible function α and non-uniform polynomial-
time A = (A1,A2,A3) who wins in the pk-PIR security challenge game with
advantage α. We will demonstrate a contradiction via a sequence of related
games.

Game 0. Real pk-PIR security game.

By definition of the pk-PIR security game, we have that A satisfies

Pr
[

(x, aux) ← A1(1λ); (sk, pk) ← Gen(1λ);X ← Encode(1λ, sk, x);

(i0, i1, aux′) ← A2(pk,X, aux); b ← {0, 1}; (skib
, I) ← Query(pk, ib);

b′ ← A3(aux′, I) : b′ = b
]

≥ α. (1)

Can We Access a Database Both Locally and Privately? 683

Game 1. VBB security. In this step, we show that the adversary A must still be
able to successfully distinguish in the pk-PIR security game given only black-
box access to the program P in the place of seeing the actual obfuscated code
pk = P̃ .
Formally, consider Expression (1) above. By the pigeonhole principle applied
over index pairs (i0, i1) ∈ [n2], there must exist a fixed choice of (i∗0, i

∗
1) ∈ [n]2

for which

Pr
[

(x, aux) ← A1(1λ); (sk, pk) ← Gen(1λ);X ← Encode(1λ, sk, x);

(i0, i1, aux′) ← A2(pk,X, aux); b ← {0, 1}; (skib
, I) ← Query(pk, ib);

b′ ← A3(aux′, I) : (b′ = b) ∧ [

(i0, i1) = (i∗0, i
∗
1)

]] ≥ α/n2.

For this choice of (i∗0, i
∗
1) ∈ [n]2, define a new adversary A(i∗

0 ,i∗
1)

= (A1,A2,A′
3)

where A′
3(aux

′, I) outputs A3(aux′, I) if (i0, i1) = (i∗0, i
∗
1) and ⊥ otherwise.

Then

Pr
[

(x, aux) ← A1(1λ); (sk, pk) ← Gen(1λ);X ← Encode(1λ, sk, x);

(i0, i1, aux′) ← A2(pk,X, aux); b ← {0, 1}; (skib
, I) ← Query(pk, ib);

b′ ← A′
3(aux

′, I) : b′ = b
]] ≥ α/n2.

Plugging in the particular procedure for Gen (consisting of sampling (P, sk) ←
Samp(1λ) and then obfuscating P̃ ← O(P, 1λ, 1n), and taking pk := P̃), of
Query (which samples randomness r ← {0, 1}λ and evaluates the obfuscated
program at input (ski, I) = P̃ (“query”, i, r)), and making use of the correctness
of the obfuscator (so that P̃ (“query”, i, r) = P (“query”, i, r)), this implies

Pr
[

(x, aux) ← A1(1λ); (P, sk) ← Samp(1λ); P̃ ← O(P, 1λ, 1n);

X ← Encode(1λ, sk, x); (i0, i1, aux′) ← A2(P̃ ,X, aux); b ← {0, 1}; r ← {0, 1}λ;

(skib
, I) = P (“query”, ib, r); b′ ← A′

3(aux
′, I) : b′ = b

]

≥ α/n2.

For i ∈ [n], define the distribution (P, (aux,X, I)) ← InstSampi(1λ) by:

1. (x, aux) ← A1(1λ).
2. (P, sk) ← Samp(1λ) (where Samp samples keys and takes

sk = (skLDC, skSKE, skMAC, k) as specified in Gen in Construction 3).
3. X ← Encode(1λ, sk, x) (where Encode is specified in Construction 3).
4. r ← {0, 1}λ; (ski, I) = P (“query”, i, r).
5. Output (P, (aux,X, I)).

Then (for the same (i∗0, i
∗
1) ∈ [n]2 as above) we have

Pr
[

b ← {0, 1}; (P, (aux,X, I)) ← InstSampi∗
b
(1λ); P̃ ← O(P, 1λ, 1n);

(i0, i1, aux′) ← A2(P̃ ,X, aux); b′ ← A′
3(aux

′, I) : b′ = b
]

≥ α/n2

684 E. Boyle et al.

Note that while the challenge I is sampled using either i∗0 or i∗1 instead of i0 or
i1 as selected by A, this does not affect the probabilities since A′

3 will anyway
output ⊥ in the case that (i0, i1) �= (i∗0, i

∗
1).

For the same (i∗0, i
∗
1) ∈ [n]2 as above, define the algorithm B(i∗

0 ,i∗
1)

that, on
input an obfuscated program P̃ , and a triple (aux,X, I), executes as follows:

1. Run (i0, i1, aux′) ← A2(P̃ ,X, aux).
2. Output b′ ← A′

3(aux
′, I).

Then, plugging in B(i∗
0 ,i∗

1)
notation to the expression above we have

Pr
[

b ← {0, 1}; (P, (aux,X, I)) ← InstSampi∗
b
(1λ);

P̃ ← O(P, 1λ, 1n); b′ ← B(i∗
0 ,i∗

1)
(P̃ , (aux,X, I)) : b′ = b

]

≥ α/n2.

Now, by the VBB security of the obfuscator O, then for the algorithm B(i∗
0 ,i∗

1)

there exists a corresponding simulator S(i∗
0 ,i∗

1)
such that for every auxiliary

input z = (aux,X, I),

∣
∣
∣ Pr[P̃ ← O(P, 1λ, 1n); b′ ← Baux

(i∗
0 ,i∗

1)
(P̃ , (aux,X, I)) : b′ = 1]

− Pr[b′ ← (S(i∗
0 ,i∗

1)
)P (·)(1|P |, 1n, 1λ, (aux,X, I)) : b′ = 1]

∣
∣
∣ ≤ ν(λ).

Therefore it must be the case that

Pr
[

b ← {0, 1}; (P, (aux,X, I)) ← InstSampi∗
b
(1λ);

b′ ← (S(i∗
0 ,i∗

1)
)P (·)(1|P |, 1n, 1λ, (aux,X, I)) : b′ = b

]

≥ α/n2 − 2ν(λ). (2)

That is, the simulator (S(i∗
0 ,i∗

1)
) wins an analogous pk-PIR challenge (on a fixed

choice of challenge indices (i∗0, i
∗
1)), given only black-box oracle access to the

program P instead of its obfuscated code.
Game 2. MAC security. In this game, we consider the same experiment as

in Eq. (2), but where the simulator S(i∗
0 ,i∗

1)
instead interacts with a modi-

fied (stateful) oracle, PMAC defined below. PMAC acts precisely as P but self
destructs if it ever receives as input a valid MAC tag that was not generated
by the program itself (or appearing in the given encoded database X).

(Stateful) program PMAC:
Hardcoded: Program P , and encoded database X = ((dataCTreal

1 , tagreal1), . . . ,
(dataCTreal

N , tagrealN)).

– Initialize ValidTagList ← ∅.
– For each input (“query”, i, r):

Can We Access a Database Both Locally and Privately? 685

1. Let (I, c, tagQ) = P (“query”, i, r).
2. Add new message-tag pair to the list: ValidTagList ← ValidTagList ∪

{((i, I, c), tagQ)}.
3. Output (I, c, tagQ).

– For each input (“decode”, (i, I, c, tagQ, (dataCTj , tagj)j∈I)):

1. If either of the following holds, set ForgedTag ← 1. Otherwise,
ForgedTag ← 0.

• For some j ∈ I, Verify(skMAC, (j, dataCTj), tagj) = 1 and dataCTj �=
dataCTreal

j .
• Verify(skMAC, (i, I, c), tagQ) = 1 and ((i, I, c), tagQ) /∈ ValidTagList.

2. If ForgedTag = 1: then selfdestruct.
3. Else, output P (“decode”, (i, I, c, tagQ, (dataCTj , tagj)j∈I)).

Claim. For (i∗0, i
∗
1), InstSamp defined in Game 1, and PMAC as above, there exists

a negligible function ν2 for which

Pr
[

b ← {0, 1}; (P, (aux,X, I)) ← InstSampi∗
b
(1λ);

b′ ← (S(i∗
0 ,i∗

1)
)PMAC(·)(1|P |, 1n, 1λ, (aux,X, I)) : b′ = b

]

≥ α/n2 − ν2(λ). (3)

Proof. Follows directly by the security of the MAC. Namely, if the expression
in Eq. (3) differs from that in Eq. (2) by more than a negligible amount, this
would imply that the non-uniform polynomial algorithm S(i∗

0 ,i∗
1)

succeeds with
non-negligible probability in generating a fresh message-tag pair, given black-
box access to the program P . But, such an algorithm can be directly used to
win with non-negligible probability in the MAC security game, since the outputs
of the program P can be simulated given only query access to the algorithms
Tag and Verify for a challenge key.

Game 3. Correctness of SKE and Oblivious LDC. In this step, instead of actu-
ally running the oblivious LDC decoder D on a “decode” request to the pro-
gram, we will respond in one of two ways: (1) if the request is invalid or
includes message-tag pair that was not generated earlier by the program or X
(i.e., the case where PMAC would self-destruct) then output ⊥; (2) otherwise,
the decode request corresponds directly to a previously asked “query” request
for some index i ∈ [n], in which case we will directly output the database
value xi.

(Stateful) program Pcorrect:
Hardcoded: Program P , plaintext database x = x1, . . . , xn, encoded database

X = ((dataCTreal
1 , tagreal1), . . . , (dataCTreal

N , tagrealN)).

– Initialize QueryList ← ∅.
– For each input (“query”, i, r):

1. Let (I, c, tagQ) = P (“query”, i, r).
2. Add new query pair to the list: QueryList ← QueryList∪{((i, I, c), tagQ)}.
3. Output (I, c, tagQ).

686 E. Boyle et al.

– For each input (“decode”, (i, I, c, tagQ, (dataCTj , tagj)j∈I)):
1. If either of the following holds, set ForgedTag ← 1. Otherwise,

ForgedTag ← 0.
• For some j ∈ I, Verify(skMAC, (j, dataCTj), tagj) = 1 and dataCTj �=
dataCTreal

j .
• Verify(skMAC, (i, I, c), tagQ) = 1 and ((i, I, c), tagQ) /∈ QueryList.

2. If ForgedTag = 1: then selfdestruct.
3. If ((i, I, c), tagQ) ∈ QueryList, output xi.
4. Else output ⊥.

Claim. For (i∗0, i
∗
1), InstSamp defined in Game 1, and Pcorrect as above, there exists

a negligible function ν3 for which

Pr
[

b ← {0, 1}; (P, (aux,X, I)) ← InstSampi∗
b
(1λ);

b′ ← (S(i∗
0 ,i∗

1)
)Pcorrect(·)(1|P |, 1n, 1λ, (aux,X, I)) : b′ = b

]

≥ α/n2 − ν3(λ). (4)

Proof. Note that PMAC and Pcorrect identically treat “query” inputs (including an
identical update of respective lists ValidTagList and QueryList). Suppose an input
is received of the form (“decode”, (i, I, c, tagQ, (dataCTj , tagj)j∈I)), for which
ForgedTag = 0 (otherwise, if ForgedTag = 1, both PMAC and Pcorrect self destruct).
In particular, this means two things:

– The triple (I, c, tagQ) was generated as the output of the program on some
input (“query”, i, r). By the definition of the “query” portion of the programs,
this means there exists (r1, r2) for which I = Q(1λ, 1n, i, skLDC; r1) and c =
EncskSKE(r1; r2).

– The input values (dataCTj)j∈I are the true values of the encoded database
at the indices specified by I (i.e., XI). Now, recall that X was generated
(within InstSampi∗

b
, defined in Game 1, where Samp,Encode are defined as

in Fig. 1) by: sampling an oblivious LDC key as skLDC ← G(1λ); encoding x
via the oblivious LDC as X ′′ ← E(1λ, skLDC, x); encrypting each coordinate
of the encoded database as dataCTj ← EncskSKE(X

′′
j) ∀j ∈ [N]; MACing each

encrypted coordinate as tagj ← Tag(skMAC, (j, dataCTj)) ∀j ∈ [N]; and taking
final output values Xj = (dataCTj , tagj) ∀j ∈ [N].

Now, consider the steps of the “decode” portion of PMAC that are replaced
within Pcorrect:

1. For each j ∈ I: Decrypt dataj = DecskSKE(dataCTj).
By correctness of the SKE, we have that dataj = X ′′

j (as defined above) for
each j.

2. Decrypt r1 = DecskSKE(c).
By correctness of the SKE, we have that DecskSKE(c) = r1, for the randomness
value r1 used in Q to generate I.

3. Output D(1λ, 1n, i, (dataj)j∈I , skLDC, r1).
In our notation, this is D(1λ, 1n, i,X ′′

I , skLDC, r1), where I = Q(1λ, 1n, i,
skLDC; r1).
By correctness of decoding for the Oblivious LDC, this value is thus the
queried ith data value, xi.

Can We Access a Database Both Locally and Privately? 687

Therefore, the programs PMAC and Pcorrect are in fact identical. The claim follows.

Game 4. PRF security. We now replace the pseudorandom values (r1, r2) with
truly random values.

(Stateful) program PPRF:
Hardcoded: skLDC, skSKE, skMAC, Plaintext database x = x1, . . . , xn, encoded

database X = ((dataCTreal
1 , tagreal1), . . . , (dataCTreal

N , tagrealN)).

– Initialize QueryList ← ∅.
– Initialize OutputList ← ∅.
– Input (“query”, i, r):

1. If there exists a pair ((“query”, i, r), (I, c, tagQ)) ∈ OutputList, then output
(i, c, tagQ).

2. Else, let (r1, r2) ← {0, 1}λ × {0, 1}λ. (This was previously pseudo-
randomness).

3. Let I = Q(1λ, 1n, i, skLDC; r1).
4. Let c = EncskSKE(r1; r2).
5. Let tagQ = MACskMAC

(i, I, c).
6. Add new query pair to the list: QueryList ← QueryList∪{((i, I, c), tagQ)}.
7. Add new output value to the list:

OutputList ← OutputList ∪ {((“query”, i, r), (I, c, tagQ))}.
8. Output (I, c, tagQ).

– Input (“decode”, (i, I, c, tagQ, (dataCTj , tagj)j∈I)):
Compute and output Pcorrect((“decode”, (i, I, c, tagQ, (dataCTj , tagj)j∈I)), as
in Game 3.

Claim. For (i∗0, i
∗
1), InstSamp defined in Game 1, and PPRF as above, there exists

a negligible function ν4 for which

Pr
[

b ← {0, 1}; (P, (aux,X, I)) ← InstSampi∗
b
(1λ);

b′ ← (S(i∗
0 ,i∗

1)
)PPRF(·)(1|P |, 1n, 1λ, (aux,X, I)) : b′ = b

]

≥ α/n2 − ν4(λ). (5)

Proof. Follows directly by the security of the PRF. Note that Step 1 ensures
consistency if the same input (“query”, i, r) is received more than once.

Game 5. SKE security. We consider a new program PSKE that replaces each
c ← Enc(r1) in PPRF with an encryption of 0, i.e. c ← Enc(0). (Note that
each encryption in PPRF indeed uses true, freshly sampled randomness r2.)
In addition, we modify the InstSamp procedure so that instead of including
encryptions of the encoded database as X, we now simply generate N fresh
encryptions of 0 (and MAC the resulting ciphertexts).

Formally, define the new distribution (P, (aux,X, I)) ← InstSamp
Enc(0)
i (1λ),

for i ∈ [n], by:

688 E. Boyle et al.

1. (x, aux) ← A1(1λ).
2. (P, sk) ← Samp(1λ) (where Samp is defined in Gen in Construction 3).
3. For j = 1, . . . , N :

(a) Sample CT of 0: dataCTj ← EncskSKE(0).
(b) MAC each item: tagj ← Tag(skMAC, (j, dataCTj)).
(c) Let Xj = (dataCTj , tagj).

4. r ← {0, 1}λ; (ski, I) = P (“query”, i, r).
5. Output (P, (aux,X, I)).

(Stateful) program PSKE:
Hardcoded: skLDC, skSKE, skMAC, Plaintext database x = x1, . . . , xn, encoded
database X = ((dataCTreal

1 , tagreal1), . . . , (dataCTreal
N , tagrealN)).

– Initialize QueryList ← ∅.
– Initialize OutputList ← ∅.
– Input (“query”, i, r):

1. If there exists a pair ((“query”, i, r), (I, c, tagQ)) ∈ OutputList, then output
(I, c, tagQ).

2. Let I ← Q(1λ, 1n, i, skLDC).
3. Let c ← EncskSKE(0). (Previously encrypted the randomness used in Q).
4. Let tagQ = MACskMAC

(i, I, c).
5. Add new query pair to the list: QueryList ← QueryList ∪ {(i, I, c)}.
6. Add new output value to the list:

OutputList ← OutputList ∪ {((“query”, i, r), (I, c, tagQ))}
7. Output (I, c, tagQ).

– Input (“decode”, (i, I, c, tagQ, (dataCTj , tagj)j∈I)):
Compute and output Pcorrect((“decode”, (i, I, c, tagQ, (dataCTj , tagj)j∈I)), as
in Game 3.

Claim. For (i∗0, i
∗
1) as in Game 1, and InstSamp

Enc(0)
i , PSKE as above, there exists

a negligible function ν5 for which

Pr
[

b ← {0, 1}; (P, (aux,X, I)) ← InstSamp
Enc(0)
i∗
b

(1λ);

b′ ← (S(i∗
0 ,i∗

1)
)PSKE(·)(1|P |, 1n, 1λ, (aux,X, I)) : b′ = b

]

≥ α/n2 − ν5(λ). (6)

Proof. Follows by the semantic security of the SKE and a standard hybrid argu-
ment.

Game 6. Oblivious LDC security. In our final step, we argue that Eq. (6) cannot
hold for non-negligible α. The reason is because interaction with the program
PSKE can be completely simulated given only access to the challenge oracle
for the Oblivious LDC security game. Therefore, the combined (non-uniform
polynomial-time) adversary which runs the simulator S(i∗

0 ,i∗
1)

and simulates
the answers of its oracle PSKE(·) serves as an Oblivious LDC adversary, who
successfully distinguishes between the challenge I sampled via InstSamp

Enc(0)
i∗
0

from that sampled via InstSamp
Enc(0)
i∗
1

.

Can We Access a Database Both Locally and Privately? 689

Claim. For (i∗0, i
∗
1) as in Game 1, and InstSamp

Enc(0)
i , PSKE as in Game 5, there

exists a negligible function ν6 for which

Pr
[

b ← {0, 1}; (P, (aux,X, I)) ← InstSamp
(Enc(0)
i∗
b

(1λ);

b′ ← (S(i∗
0 ,i∗

1)
)PSKE(·)(1|P |, 1n, 1λ, (aux,X, I)) : b′ = b

]

≤ ν6(λ). (7)

Proof. Suppose, to the contrary, the probability expression in Eq. (7) is equal to
some non-negligible function β(λ).

Consider following the Oblivious LDC adversary BLDC:

1. An Oblivious LDC challenge key is sampled as sk ← G(1λ). BLDC receives
oracle access to Qsk(·) (which on input i ∈ [n] outputs I ← Q(1λ, 1n, i, sk)).

2. BLDC simulates the remaining (non-LDC) items in InstSampEnc(0):
(a) Simulate A1 to obtain (x, aux) ← A1(1λ).
(b) Sample skSKE ← GenSKE(1λ); skMAC ← GenMAC(1λ); and k ← GenPRF(1λ).
(c) For j = 1, . . . , N :

i. Sample CT of 0: dataCTj ← EncskSKE(0).
ii. MAC each item: tagj ← Tag(skMAC, (j, dataCTj)).
iii. Let Xj = (dataCTj , tagj).

3. BLDC selects the Oblivious LDC challenge index pair (i∗0, i
∗
1) ∈ [n]2, and

receives a challenge index sequence I generated as I ← Q(1λ, 1n, i∗b , sk) for
randomly selected b ← {0, 1}.

4. BLDC simulates b′ ← (S(i∗
0i∗

1)
)PSKE(·)(1|P |, 1n, 1λ, (aux,X, I)), for the values of

(aux,X, I) as generated in Step 2.
For each query made by S(i∗

0i∗
1)

to the oracle PSKE(·), BLDC simulates the
response:

– In Step 2 of the computation for an input of the form (“query”, i, r), BLDC

makes a query to its oracle Qsk(·) on the input index i.
– In all other steps, BLDC simulates precisely.

5. BLDC outputs the guess bit b′.

By construction, the advantage of BLDC in the Oblivious LDC security challenge
for (G,E,Q,D) is precisely β. Therefore, it must be the case that β is negligible.

Combining Games 1–6, we have that the original advantage α of the adversary
A in the Public-Key PIR security challenge game must be negligible. That is,
(Gen,Encode,Query,Decode) of Construction 3 is a secure Public-Key PIR. This
concludes the proof of Theorem2.

Combining Proposition 2 and Theorem 2, we obtain the following main
theorem.

Theorem 4. Suppose the Permuted Low-Degree Polynomials Conjecture holds
(Conjecture 1), and one-way functions exist. Then given ideal obfuscation (alter-
natively, a poly(λ)-size, stateless hardware token), there is a pk-PIR scheme with
communication and computation complexity poly(λ) · nε, for every ε > 0.

690 E. Boyle et al.

6 Conclusion and Open Problems

In this work we put forward two new cryptographic primitives: pk-PIR, a public-
key variant of single-server PIR with preprocessing, and OLDC, its secret-key
variant. We propose a candidate implementation for OLDC and reduce pk-PIR
to OLDC via ideal obfuscation. Our work leaves open many interesting directions
for further research. For example:

– Further study the Permuted Low-Degree Polynomials Conjecture and more
general instances of the Permuted Puzzles problem.

– Can a construction of OLDC be based on standard cryptographic assump-
tions? Alternatively, can it be based on standard assumptions together with
ideal obfuscation?

– Are there OLDC candidates that provide a better tradeoff between storage
overhead and decoding complexity?

– Does a general transformation from OLDC to pk-PIR follow from indistin-
guishability obfuscation?

– Is there a direct candidate construction of pk-PIR that does not rely on any
form of general-purpose obfuscation?

Acknowledgments. We thank David Cash, Ronald Cramer, Venkat Guruswami,
Tancrède Lepoint, Daniel Wichs, and Chaoping Xing for helpful discussions.

This work was done in part while the first three authors were visiting the Simons
Institute for the Theory of Computing, supported by the Simons Foundation and by the
DIMACS/Simons Collaboration in Cryptography through NSF grant #CNS-1523467.
EB was supported in part by ISF grant 1861/16, AFOSR Award FA9550-17-1-0069, and
ERC Grant no. 307952. YI was supported in part by NSF-BSF grant 2015782, BSF
grant 2012366, ISF grant 1709/14, ERC grants 259426 and 742754, DARPA/ARL
SAFEWARE award, NSF Frontier Award 1413955, NSF grants 1619348, 1228984,
1136174, and 1065276, a Xerox Faculty Research Award, a Google Faculty Research
Award, an equipment grant from Intel, and an Okawa Foundation Research Grant.
This material is based upon work supported by the DARPA through the ARL under
Contract W911NF-15-C-0205. RP was supported in part by NSF Award CNS-1561209,
NSF Award CNS-1217821, AFOSR Award FA9550-15-1-0262, a Microsoft Faculty Fel-
lowship, and a Google Faculty Research Award. MW is supported in part by NSF
grant CCF-1657049. The views expressed are those of the authors and do not reflect
the official policy or position of the DoD, the NSF, or the U.S. Government.

A Barriers to Proving Impossibility of OLDC

In this section we argue that ruling out the existence of OLDC is unlikely, as it
would imply data structure lower bounds that seem beyond the reach of current
techniques.

When considering a relaxed notion of OLDC that allows for adaptive decoding
(i.e., decoding proceeds in rounds, where the location of each symbol read by
the decoder may depend on the contents of the previous ones) there is a known
barrier which was already pointed out in [4,29]: proving strong lower bounds in

Can We Access a Database Both Locally and Privately? 691

the adaptive setting requires strong branching program lower bounds. However,
no such connection is known in the non-adaptive case.

We argue that ruling out the existence of OLDC is very unlikely, as it would
require proving strong data structure lower bounds. To be concrete, consider the
following question:

Is it possible to preprocess any circuit C : {0, 1}k → {0, 1} of size k100 into
a data structure D of size poly(k) such that for any input q, C(q) can be
evaluated by non-adaptively probing k10 bits of D?

While this type of “dream data structure” seems extremely unlikely to exist,
ruling it out seems beyond the reach of current techniques.3 Given such a hypo-
thetical data structure, we can take existing single-server PIR protocols (e.g.,
the one from [27]) and just let D be the data structure corresponding to the
circuit Cx that computes the answer given the client’s PIR query. For instance,
for the concrete dream data structure formulated above, we can take an instance
of the protocol from [27] where the queries are of size k, the database is of size
n = k98, and the circuit Cx is of size k100. This would result in an OLDC that
makes k10 � n probes to the encoded database. In fact, this OLDC is stronger
than our default notion in that has a deterministic encoder and does not make
use of any secret key.

References

1. Asharov, G., Segev, G.: Limits on the power of indistinguishability obfuscation
and functional encryption. In: IEEE 56th Annual Symposium on Foundations of
Computer Science, FOCS 2015, Berkeley, CA, USA, 17–20 October 2015, pp. 191–
209 (2015)

2. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-55220-5 13

3. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)

4. Beimel, A., Ishai, Y., Malkin, T.: Reducing the servers computation in private
information retrieval: PIR with preprocessing. In: Bellare, M. (ed.) CRYPTO
2000. LNCS, vol. 1880, pp. 55–73. Springer, Heidelberg (2000). doi:10.1007/
3-540-44598-6 4

5. Bleichenbacher, D., Kiayias, A., Yung, M.: Decoding of interleaved reed solomon
codes over noisy data. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger,
G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 97–108. Springer, Heidelberg (2003).
doi:10.1007/3-540-45061-0 9

6. Bleichenbacher, D., Nguyen, P.Q.: Noisy polynomial interpolation and noisy Chi-
nese remaindering. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp.
53–69. Springer, Heidelberg (2000). doi:10.1007/3-540-45539-6 4

3 We ran this problem by several relevant experts, who were unaware of any negative
results or implications to other well studied problems in complexity theory.

http://dx.doi.org/10.1007/978-3-642-55220-5_13
http://dx.doi.org/10.1007/978-3-642-55220-5_13
http://dx.doi.org/10.1007/3-540-44598-6_4
http://dx.doi.org/10.1007/3-540-44598-6_4
http://dx.doi.org/10.1007/3-540-45061-0_9
http://dx.doi.org/10.1007/3-540-45539-6_4

692 E. Boyle et al.

7. Boneh, D.: Finding smooth integers in short intervals using CRT decoding. J.
Comput. Syst. Sci. 64(4), 768–784 (2002)

8. Canetti, R., Holmgren, J., Richelson, S.: Towards doubly efficient private informa-
tion retrieval. In: TCC 2017. IACR Cryptology ePrint Archive 2017: 568 (2017)

9. Chor, B., Gilboa, N.: Computationally private information retrieval (extended
abstract). In: Proceedings of the Twenty-Ninth Annual ACM Symposium on the
Theory of Computing, El Paso, Texas, USA, 4–6 May 1997, pp. 304–313 (1997)

10. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965–981 (1998). Earlier version in Proceedings of FOCS 2005

11. Coppersmith, D., Sudan, M.: Reconstructing curves in three (and higher) dimen-
sional space from noisy data. In: Proceedings of the 35th Annual ACM Symposium
on Theory of Computing, 9–11 June 2003, San Diego, CA, USA, pp. 136–142 (2003)

12. Coron, J.-S.: Cryptanalysis of a public-key encryption scheme based on the poly-
nomial reconstruction problem. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC
2004. LNCS, vol. 2947, pp. 14–27. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24632-9 2

13. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric
encryption: Improved definitions and efficient constructions. J. Comput. Secur.
19(5), 895–934 (2011)

14. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013)

15. Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure
obfuscation in a weak multilinear map model. In: Hirt, M., Smith, A. (eds.) TCC
2016. LNCS, vol. 9986, pp. 241–268. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53644-5 10

16. Goldreich, O.: A note on computational indistinguishability. Inf. Process. Lett.
34(6), 277–281 (1990)

17. Goldreich, O.: Foundations of Cryptography - Basic Tools. Cambridge University
Press, Cambridge (2001)

18. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM 33(4), 792–807 (1986)

19. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams.
J. ACM 43(3), 431–473 (1996)

20. Hemenway, B., Ostrovsky, R.: Public-key locally-decodable codes. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 126–143. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-85174-5 8

21. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Batch codes and their appli-
cations. In: Proceedings of the 36th Annual ACM Symposium on Theory of Com-
puting, Chicago, IL, USA, 13–16 June 2004, pp. 262–271 (2004)

22. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography from anonymity.
In: Proceedings of 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2006), 21–24 October 2006, Berkeley, California, USA, pp. 239–
248 (2006)

23. Karchmer, M., Wigderson, A.: On span programs. In: Proceedings of the Eight
Annual Structure in Complexity Theory Conference, San Diego, CA, USA, 18–21
May 1993, pp. 102–111 (1993)

24. Katz, J., Trevisan, L.: On the efficiency of local decoding procedures for error-
correcting codes. In: Proceedings of the Thirty-Second Annual ACM Symposium
on Theory of Computing, 21–23 May 2000, Portland, OR, USA, pp. 80–86 (2000)

http://dx.doi.org/10.1007/978-3-540-24632-9_2
http://dx.doi.org/10.1007/978-3-540-24632-9_2
http://dx.doi.org/10.1007/978-3-662-53644-5_10
http://dx.doi.org/10.1007/978-3-662-53644-5_10
http://dx.doi.org/10.1007/978-3-540-85174-5_8

Can We Access a Database Both Locally and Privately? 693

25. Kiayias, A., Yung, M.: Cryptanalyzing the polynomial-reconstruction based public-
key system under optimal parameter choice. In: Lee, P.J. (ed.) ASIACRYPT
2004. LNCS, vol. 3329, pp. 401–416. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-30539-2 28

26. Kopparty, S., Meir, O., Ron-Zewi, N., Saraf, S.: High-rate locally-correctable and
locally-testable codes with sub-polynomial query complexity. In: Proceedings of the
48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016,
Cambridge, MA, USA, 18–21 June 2016, pp. 202–215 (2016)

27. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database,
computationally-private information retrieval. In: FOCS, pp. 364–373 (1997)

28. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Deep
Space Netw. Prog. Rep. 44, 114–116 (1978)

29. Miltersen, P.B., Nisan, N., Safra, S., Wigderson, A.: On data structures and asym-
metric communication complexity. J. Comput. Syst. Sci. 57(1), 37–49 (1998)

30. Morris, B., Rogaway, P., Stegers, T.: How to encipher messages on a small domain.
In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 286–302. Springer, Hei-
delberg (2009). doi:10.1007/978-3-642-03356-8 17

31. Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput. 35(5),
1254–1281 (2006)

32. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. J. ACM 51(2), 231–262 (2004)

33. Ostrovsky, R., Pandey, O., Sahai, A.: Private locally decodable codes. In: Arge, L.,
Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp.
387–398. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73420-8 35

34. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: Symposium on Theory of Computing, STOC 2014, New York,
NY, USA, 31 May–03 June 2014, pp. 475–484 (2014)

35. Sidelnikov, V.M., Shestakov, S.O.: On insecurity of cryptosystems based on gen-
eralized Reed-Solomon codes. Discret. Math. Appl. 2, 439–444 (2009)

36. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: 2000 IEEE Symposium on Security and Privacy, Berkeley, California,
USA, 14–17 May 2000, pp. 44–55 (2000)

http://dx.doi.org/10.1007/978-3-540-30539-2_28
http://dx.doi.org/10.1007/978-3-540-30539-2_28
http://dx.doi.org/10.1007/978-3-642-03356-8_17
http://dx.doi.org/10.1007/978-3-540-73420-8_35

	Can We Access a Database Both Locally and Privately?
	1 Introduction
	1.1 Related Work
	1.2 Independent Work

	2 Preliminaries
	2.1 Standard Cryptographic Tools
	2.2 Virtual Black-Box Obfuscation

	3 Oblivious LDC and Public-Key PIR
	3.1 Oblivious LDC
	3.2 Public-Key PIR

	4 Oblivious LDC Candidate
	4.1 Generalized and Toy Versions of Conjecture
	4.2 Discussion on Cryptanalysis

	5 Oblivious LDC to Public-Key PIR
	6 Conclusion and Open Problems
	A Barriers to Proving Impossibility of OLDC
	References

