
Evolving Secret Sharing: Dynamic Thresholds
and Robustness

Ilan Komargodski1(B) and Anat Paskin-Cherniavsky2

1 Cornell Tech, New York, USA
komargodski@cornell.edu

2 Department of Computer Science, Ariel University, Ariel, Israel
anatpc@ariel.ac.il

Abstract. Threshold secret sharing schemes enable a dealer to share a
secret among n parties such that only subsets of parties of cardinality at
least k = k(n) can reconstruct the secret. Komargodski, Naor and Yogev
(TCC 2016-B) proposed an efficient scheme for sharing a secret among
an unbounded number of parties such that only subsets of k parties can
recover the secret, where k is any fixed constant. This access structure is
known as k-threshold. They left open the possibility of an efficient scheme
for the dynamic threshold access structure, in which the qualified sets are
of increasing size as the number of parties increases. We resolve this open
problem and present a construction in which the share size of the t-th
party is O(t4 · log t) bits.

Furthermore, we show how to generically translate any scheme for
k-threshold into a scheme which is robust, where a shared secret can
be recovered even if some parties hand-in incorrect shares. This answers
another open problem of Komargodski et al. Our construction is based on
the construction of robust (classical) secret sharing schemes of Cramer et
al. (EUROCRYPT 2008) using algebraic manipulation detection codes.

1 Introduction

Secret sharing schemes, introduced by Shamir [17] and Blakley [5], are methods
that enable a dealer, that holds a secret piece of information, to distribute this
secret among n parties such that predefined qualified subsets can reconstruct
the secret, while others learn nothing about it. The monotone collection of qual-
ified subsets is known as an access structure. Secret sharing schemes are a basic
primitive and have found numerous applications in cryptography and distrib-
uted computing; see the extensive survey of Beimel [2] and the book of Cramer
et al. [9]. Any access structure admits a secret sharing scheme but the share size
could be as large as O(2n), the maximal number of possible qualified sets [12].

This paper incorporates the manuscript of Paskin-Cherniavsky [15].
I. Komargodski—Supported in part by Elaine Shi’s Packard Foundation Fellowship.
Part of this work done while being a Ph.D student at the Weizmann Institute of
Science, supported in part by grants from the Israel Science Foundation and by a
Levzion Fellowship.

c© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part II, LNCS 10678, pp. 379–393, 2017.
https://doi.org/10.1007/978-3-319-70503-3_12

380 I. Komargodski and A. Paskin-Cherniavsky

A significant goal in secret sharing is thus to minimize the share size, namely,
the amount of information distributed to the parties.1

Almost all known secret sharing schemes assume that the number of parties
n and the access structure are known in advance. However, in many scenarios
these assumptions have a cost: First, the eventual set might turn out to be much
smaller than n. Second, the access structure may change with time, forcing the
dealer to re-share its secret. In a recent work, Komargodski et al. [14] initiated
the study of secret sharing schemes for the case where the set of parties is not
known in advanced and could potentially be infinite (or even more generally
the access structure may change). Specifically, parties arrive one by one and
whenever a party arrives there is no communication to the parties that have
already received shares, i.e. the dealer distributes a share only to the new party.
In the most general case, a qualified subset is revealed to the dealer only when the
last party in that subset arrives. In special cases, the dealer knows the access
structure to begin with, just does not have an upper bound on the number
of parties. We assume that the changes to the access structure are monotone,
namely, parties are only added and qualified sets remain qualified as more and
more parties join. We call this an evolving access structure.

When designing a secret sharing scheme for an evolving access structure, the
goal is to minimize the share size of the tth party arriving as a function of t.
Komargodski et al. showed that any evolving access structure can be realized
albeit the share size of the tth party is 2t−1. Then, they consider the evolving k-
threshold access structure for k ∈ N, where at any point in time any k parties can
reconstruct the secret but no k − 1 parties can learn anything about the secret
and showed an efficient scheme for it in which the share size of the tth party is
bounded by roughly k · log t bits (see Theorem 2.5 for a precise statement). Their
scheme was shown to be optimal in terms of share size for k = 2.

One of the main open problems left open by their work was to construct an
efficient secret sharing scheme for the evolving majority access structure in which
qualified subsets are the ones which form a majority of the present parties at
some point in time. More precisely, a set of k parties with indices i1 < . . . < ik
is qualified if and only if there exists an index j ∈ [k] such that

|{i1, . . . , ij}| ≥ 1
2

· ij .

The 1/2 threshold above is arbitrary and could be replaced with any other
constant in (0, 1) or even with a sequence of growing threshold k1 ≤ k2 ≤ . . .
such that the qualified sets at time t are those sets of cardinality at least kt. We
resolve this open problem and construct a secret sharing scheme for this evolving
majority access structure in which the share size of the tth party is O(t4 · log t)
bits. Our scheme is linear in the sense that reconstruction is done by applying a
linear function on the shares [1, Sect. 4.1]. This property is desirable since it is
useful in applications such as secure multiparty computation [3,8].

1 Whether having exponentially large shares is necessary is a major open problem.
The best lower bound known to date is (almost) linear by Csirmaz [11].

Evolving Secret Sharing: Dynamic Thresholds and Robustness 381

Another question left open in [14] was to construct robust secret sharing
schemes for evolving access structures. In the setting described so far, secret
sharing schemes assume the parties are honest and upon reconstruction provide
their correct shares. However, in most cryptographic settings it is often the case
that we need to handle malicious parties that manipulate their shares. For this,
the strengthened notion of robust secret sharing was proposed by Ben-Or and
Rabin [16]. This notion requires that the shared secret can be recovered even if
some parties hand-in incorrect shares.

In the original construction of Ben-Or and Rabin each party authenticates
the share of every other party using a MAC having unforgeability security 2−λ

(the reconstruction procedure checks that the majority of the tags are verified).
When the number of parties is unbounded, it is unclear how to implement such
a solution as the first party has to authenticate all future parties (which is
an unbounded number). Several follow-up constructions of robust secret shar-
ing schemes with smaller shares [4,6], rely on the same high-level idea of par-
ties authenticating share of other parties (in a pairwise manner) and thus seem
unsuitable for our setting.

We observe that a different line of works on robust secret sharing, ones based
on algebraic manipulation detection (AMD) codes [7,10] can be adapted to the
evolving setting. We thus present an efficient robust secret sharing scheme for the
evolving k-threshold access structure such that as long as an adversary corrupts
at most k − 1 parties, from any set of 2k − 1 parties, one can recover the secret.
The failure probability of our reconstruction procedure is 2−λ and the share size
is bounded by roughly k · log t + λ bits.

2 Preliminaries

For an integer n ∈ N we denote by [n] the set {1, . . . , n}. We denote by log
the base 2 logarithm and assume that log 0 = −∞. For a set X we denote by
x ← X the process of sampling a value x from the uniform distribution over X .
A function neg : N → R

+ is negligible if for every constant c > 0 there exists an
integer Nc such that neg(λ) < λ−c for all λ > Nc.

We start by briefly recalling the standard setting of (perfect) secret sharing.
Let Pn = {1, . . . , n} be a set of n parties. A collection of subsets A ⊆ 2Pn is
monotone if for every B ∈ A, and B ⊆ C it holds that C ∈ A.

Definition 2.1 (Access structure). An access structure A ⊆ 2Pn is a
monotone collection of subsets. Subsets in A are called qualified and subsets
not in A are called unqualified.

A secret sharing scheme involves a dealer who has a secret, a set of n par-
ties, and an access structure A. A secret sharing scheme for A is a method by
which the dealer distributes shares to the parties such that any subset in A can
reconstruct the secret from its shares, while any subset not in A cannot reveal
any information on the secret.

382 I. Komargodski and A. Paskin-Cherniavsky

Definition 2.2. A secret sharing scheme S for an access structure A consists
of a pair of algorithms (SHARE,RECON). SHARE is a probabilistic procedure
that gets as input a secret s (from a domain of secrets S such that |S| ≥ 2) and
a number n, and generates n shares Π

(s)
1 , . . . , Π

(s)
n . RECON is a deterministic

procedure that gets as input the shares of a subset B and outputs a string. The
requirements are:

1. Correctness: For every secret s ∈ S and every qualified set B ∈ A, it holds
that

Pr[RECON({Π
(s)
i }i∈B , B) = s] = 1,

where the probability is over the randomness of the sharing procedure.
2. Security: For every unqualified set B /∈ A and every two different secrets

s1, s2 ∈ S, it holds that the distributions ({Π
(s1)
i }i∈B) and ({Π

(s2)
i }i∈B) are

identical.

The share size of a scheme S, denoted by SS(S), is the maximum number of bits
each party holds in the worst case over all parties and all secrets. For an access
structure A we denote by SS(A) the minimum of SS(S) over all schemes S for
the access structure A.

Linear schemes. An important subclass of secret sharing schemes are linear
schemes. In such a scheme the secret is viewed as an element of a finite field, and
the shares are obtained by applying a linear mapping to the secret and several
independent random field elements. Equivalently, a linear scheme is defined by
requiring that each qualified set reconstructs the secret by applying a linear
function to its shares [1, Sect. 4.1]. We denote by lin-SS(A) the minimum value
of SS(S) over all linear schemes S for the access structure A.

2.1 Evolving Secret Sharing

We recall the notion of an evolving access structure and the corresponding notion
of secret sharing defined by [14]. Roughly speaking, these definitions capture the
scenario in which the access structure is not fully known to the sharing procedure
at once but is rather revealed in an online manner. Concretely, parties arrive one
by one and, in the most general case, a qualified subset is revealed only when all
parties in that subset are present (in special cases the access structure is known
to begin with, but there is no upper bound on the number of parties). To make
sense of sharing a secret with respect to such a sequence of access structures, we
require that the changes to the access structure are monotone, namely, parties
are only added and qualified sets remain qualified.

Definition 2.3 (Evolving access structure). An evolving access structures
A ⊆ 2N is a (possibly infinite) monotone collection of subsets of the natural
numbers such that for any t ∈ N, the collection of subsets At � A ∩ [t] is an
access structure (as in Definition 2.1).

Evolving Secret Sharing: Dynamic Thresholds and Robustness 383

Below we give a generalization of the definition of a standard secret sharing
scheme (see Definition 2.2) to apply for evolving access structures as in [14].
Intuitively, in this setting, at any point t ∈ N in time, there is an access structure
At which defines the qualifies and unqualified subsets of parties.

Definition 2.4 (Secret sharing for evolving access structures). Let A =
{At}t∈N be an evolving access structure. Let S be a domain of secrets, where
|S| ≥ 2. A secret sharing scheme S for A and S consists of a pair of algorithms
(SHARE,RECON). The probabilistic sharing procedure SHARE and the determin-
istic reconstruction procedure RECON satisfy the following requirements:

1. SHARE(s, {Π
(s)
1 , . . . , Π

(s)
t−1}) gets as input a secret s ∈ S and the secret shares

of parties 1, . . . , t−1. It outputs a share for the tth party. For t ∈ N and secret
shares Π

(s)
1 , . . . , Π

(s)
t−1 generated for parties {1, . . . , t − 1}, respectively, we let

Π
(s)
t ← SHARE(s, {Π

(s)
1 , . . . , Π

(s)
t−1})

be the secret share of party t.
We abuse notation and sometimes denote by Π

(s)
t the random variable that

corresponds to the secret share of party t generated as above.
2. Correctness: For every secret s ∈ S and every t ∈ N, every qualified subset

in At can reconstruct the secret. That is, for s ∈ S, t ∈ N, and B ∈ At, it
holds that

Pr
[
RECON({Π

(s)
i }i∈B , B) = s

]
= 1,

where the probability is over the randomness of the sharing procedure.
3. Secrecy: For every t ∈ N, every unqualified subset B /∈ At, and every two

secret s1, s2 ∈ S, the distribution of the secret shares of parties in B gener-
ated with secret s1 and the distribution of the shares of parties in B gener-
ated with secret s2 are identical. Namely, the distributions ({Π

(s1)
i }i∈B) and

({Π
(s2)
i }i∈B) are identical.

The share size of the tth party in a scheme for an evolving access structure
is max |Πt|, namely the number of bits party t holds in the worst case over all
secrets and previous assignments.2

In [14] it was shown how to construct a secret sharing scheme for any evolving
access structure. This scheme results, for party t, with a share of size exponential
in t. They further showed that in many special cases one can do much better. For
example, in the evolving k-threshold access structure which contains all subsets
of size k (where k is known), they gave a scheme in which the share size depends
logarithmically on t.

2 This means that the share size is bounded, which is almost always the case. An
exception is the scheme (for rational secret sharing) of Kol and Naor [13] in which
the share size does not have a fixed upper bound.

384 I. Komargodski and A. Paskin-Cherniavsky

Theorem 2.5 [14]. There is a secret sharing scheme for sharing a 1-bit secret
for any evolving access structure in which for every t ∈ N the share size of the
tth party is 2t−1.

For the special case of the evolving k-threshold access structure for a fixed
k ∈ N, there is a secret sharing scheme for sharing an �-bit secret such that for
every t ∈ N the share size of the tth party is (k − 1) · log t + poly(k, �) · o(log t).

On choosing the access structure adaptively. One can also consider a
stronger definition in which At is chosen at time t (rather than ahead of time)
as long as the sequence of access structures A = {A1, . . . ,At} is evolving. In
this variant, the SHARE and RECON procedures get the access structure At

as an additional parameter. An illustrative example where At is known ahead
of time is the evolving k-threshold access structure mentioned above. (In this
case k is fixed and is independent of t.) We will consider (in Sect. 3) a natural
generalization in which there is a sequence of growing thresholds k1 < k2 . . . that
say how many parties should be present as a function of the indices of the present
parties themselves. This sequence of thresholds does not have to be known in
advance.

2.2 Algebraic Manipulation Detection Codes

In our robust evolving secret sharing scheme we will use algebraic manipula-
tion codes [10]. Originally, they were used to transform standard secret sharing
schemes into robust ones.

Definition 2.6. An (S,G, δ)-AMD code is a probabilistic encoding map E : S →
G for a set S of size S and a group G of size G together with a deterministic
decoding function D : ZG → [S] ∪ {⊥} such that D(E(s)) = s with probability 1
for every s ∈ [S]. Furthermore, for any s ∈ [S] and Δ ∈ ZG it holds that

Pr
E

[D(E(s) + Δ) /∈ {s,⊥}] ≤ δ.

The AMD code is called systematic if S is a group, the encoding is of the
form E : S → S ×G1×G2 and E(s) has the form (s, x, f(x, s)) for some function
f and x ∈R G1. The decoding function of a systematic AMD code is given by
D(s′, x′, σ′) = s′ if σ′ = f(s′, x′) and ⊥ otherwise.

Theorem 2.7 [10]. Let F be a field of size q and characteristic p, and let d be
an integer such that d + 2 is not divisible by p. There exists a construction of
a systematic (qd, qd+2, (d + 1)/q)-AMD code. The encoding function maps F

d to
F

d × F × F.

To achieve error parameter γ, and input domain S we will instantiate the
above scheme with G = F

t
2, d = 1 where t = log S + γ + O(1). We refer to this

construction as AMDS,γ .

Evolving Secret Sharing: Dynamic Thresholds and Robustness 385

3 A Scheme for Dynamic Threshold

In this section we present a secret sharing scheme for the evolving dynamic
threshold access structure. This access structure is parametrized by a sequence
of threshold values k1 ≤ k2 ≤ . . . such that at time t the qualified sets are
those of cardinality at least kt. The condition that kt ≤ kt+1 is necessary for
the monotonicity of the sequence of access structures, namely for the sequence
of access structures to be a valid evolving structure.

Definition 3.1 (Dynamic threshold). The dynamic threshold access struc-
ture is parametrized by a (possibly infinite) sequence of number k1 ≤ k2 ≤
For any t ∈ N, the set At of qualified sets at time t contains all those sets of
cardinality at least kt.

Of particular interest is the following special case of dynamic threshold access
structures in which the threshold at any point in time is a fixed function. Specif-
ically, the function that we focus on is the one in which in time t the qualified
sets are those of cardinality at least γ · t for fixed γ ∈ (0, 1).

Definition 3.2 (γ-dynamic threshold). For a parameter γ ∈ (0, 1), the γ-
dynamic threshold access structure is the above dynamic threshold access struc-
tures with sequence of numbers γ · 1, γ · 2, That is, k parties i1 < · · · < ik is
qualified iff there exists an index j ∈ [k] such that |{i1, . . . , ij}| ≥ γ · ij.

The main result of this section is summarized in the following theorem:

Theorem 3.3. For any sequence of threshold values {kt}t∈N that define a
dynamic threshold access structures, there exists a secret sharing scheme for
sharing a 1-bit secret in which the share size of the t-th party is bounded by
O(t4 · log t) bits.

High level idea. The main idea is to represent the access structure as an
infinite decision tree where the nodes in layer i are labeled by xi. Turning such
an infinite decision tree into an evolving secret sharing scheme can be done
essentially generically via an evolving secret sharing scheme for undirected st-
connectivity. This was done somewhat implicitly in [14] so we omit details here,
but we just mention that the eventual share size is proportional to the tree size.
Thus, using this naively gives us not very efficient schemes. In particular, for the
dynamic threshold scheme it gives a scheme with exponential share size.

To improve this we observe that this decision tree can be “squashed” such
that now each layer is labeled by a sequence of variables xi, . . . , xj and not just
xi. We call such a sequence a generation. Now, since every layer is labeled by a
sequence of variables, we define each edge to be some monotone Boolean function
of the variables in the generation. This operation potentially reduces the number
of edges in the tree. If, in addition, this monotone function is simple enough (i.e.
there is an efficient secret sharing scheme for it), this will eventually reduce the
share size of our construction. Indeed, we can share the secret according to the
new decision tree (with the squashed layers) to a virtual set of (much fewer)

386 I. Komargodski and A. Paskin-Cherniavsky

parties that correspond to the squashed sets and then re-sharing those shares
via a secret sharing scheme among the parties inside a generation.

In the case of dynamic majority, each edge between two generation is labeled
by the number of parties in the generation that arrived. This is the only informa-
tion we need to remember for each generation in our structure. Now, if enough
parties come so that we can reconstruct the secret, the decision tree must con-
tain a path that leads to an accepting node (and vice versa). Luckily, this access
structure (that counts how many parties arrived from a specific generation) can
be implemented very efficiently using Shamir’s scheme.

It remains to explain how we set the size of a generation. If we set it too low,
then we do not save much in the decision tree size. If we set it too high, then we
have a lot of parties in each generation and the first party in that generation will
have to pay too much. The exact choice really depends on the access structure in
hand, but it turns out that for the dynamic threshold case, the optimal setting
of generation size is so that it increases in a specific polynomial rate, namely,
the i-th generation size is square of the (i − 1)-th generation size.

The above overview was slightly over-simplified and the actual construction
requires some more care. In particular, we present the scheme directly and not
as a composition of many schemes as it does not require familiarity with the st-
connectivity scheme, and it allows us to prove its security directly via induction.

Proof. We begin by recalling Shamir’s scheme [17] which will be heavily used
in our scheme. Shamir’s scheme is a scheme for sharing a 1-bit secret s among
n parties for the k-out-of-n access structure (which contains all subsets of car-
dinality at least k). The share size in his scheme is log q bits, where q > n is a
prime number (or a power of a prime). We denote this scheme by Shamir(n, k, s).
Note that in the cases where k = 1 or k = n, there are more efficient schemes:
for k = 1, each party gets the secret and for k = n, each party gets a random
value conditioned on their XOR being the secret. In these cases, the share size
is a single bit (and it is, in particular, independent of n).

We assign to each arriving party t ∈ N a generation GenOf(t). The size
of generation i is doubly exponential, namely, GenSz(i) = 22

i

. Thus, the t-th
party is part of the �log log t
-th generation (at most) which includes at most t2

parties. The first party in generation g is
∑g

i=1 GenSz(i) =
∑g

i=1 22
i

. The state
of the dealer after generation g ends consists of strings sA, where A ranges over
all tuples (c0, . . . , cg) such that ci ∈ [22

i

]. In other words, the dealer maintains
a string sA for each A = (c0, . . . , cg) ∈ [GenSz(0)] × . . . × [GenSz(g)], where
GenSz(i) = 22

i

. The number ci, in some sense, represents the number of parties
present from generation i.

For the ith party in the gth generation, denote by IdxOf(G, i) the overall index
of this party since the beginning of time. Denote by s the secret to be shared
and set s(0) = s. When the (g + 1)-th generation begins, the dealer does the
following for every (c0, . . . , cg) ∈ [GenSz(0)] × . . . × [GenSz(g)]:

1. For each party i ∈ [GenSz(g + 1)] do:
(a) Share the secret s(c0,...,cg) via a (kIdxOf(G+1,i) − ∑g

i=1 ci)-out-of-i to get
shares Π1, . . . , Πi.

(b) For each j ∈ [i], give share Πj to the jth party in the generation.

Evolving Secret Sharing: Dynamic Thresholds and Robustness 387

2. For each cg+1 ∈ [GenSz(g + 1)]
(a) Sample r(c0,...,cg+1) ← {0, 1} uniformly at random.
(b) Share r(c0,...,cg+1) via a cg-ouf-of-GenSz(g + 1) scheme among the parties

of the (g + 1)th generation.
(c) Set s(c0,...,cg+1) = s(c0,...,cg) ⊕ r(c0,...,cg+1).

For correctness we observe that if ci parties arrive from generation i for
every i ∈ [g + 1], then by the correctness of Shamir’s scheme they can recover
r(c0), r(c0,c1) and all the way through r(c0,...,cg). Assume that the present set
is qualified while the most recent party is the i-th party in generation g + 1.
Moreover, assume that from the (g + 1)th generation there are � parties present
from the first i parties. Since the set is qualified,

∑g
i=0 ci + � ≥ kIdxOf(G+1,i).

Thus, the set of parties can further recover s(c0,...,cg) (again, by the correctness
of Shamir’s scheme). The latter is s(c0,...,cg) = s(c0,...,cg−1)⊕r(c0,...,cg), from which
we can recover s(c0,...,cg−1) (since we know r(c0,...,cg)). Continuing in this manner,
we can compute s(c0,...,cg−2) and then s(c0,...,cg−3) until we recover s(0) which is
equal to the secret we shared.

For security we need to show that an unqualified set has no information
regarding s, the secret that was shared. The proof is by induction on the number
of generations. Assume that the scheme is secure for parties coming from g
generations and we will show that it is secure for parties coming from the first
g+1 generations. The base case follows immediately from the security of Shamir’s
scheme. Let the dealer share the secret among the parties in the first generation.
Now, we observe that what the dealer does in the remaining sharing procedure
is to share GenSz(0) secrets among the remaining g generations with slightly
modified access structures. That is, it shares the secret s(i) for i ∈ [GenSz(0)]
according to the sequence of dynamic thresholds k1−i, k2−i, . . . ,. We claim that
the remaining satisfies one of two cases: (1) it is unqualified in the new access
structure and therefore its shares are independent of s(i), or (2) it is qualified so
can learn s(i) but in this case it won’t be able to recover the masking of s (by the
security Shamir’s scheme). The third option where it is both qualified and can
learn the masking of s cannot occur since the set is unqualified to begin with.

Now, we apply the induction hypothesis and get that the shares held by
the adversary according to each of these schemes are independent of the secret.
Moreover, the sharing is done independently among these access structures and
therefore the combination of all of these shares is independent of the secret.

The share size. The share size of a party in generation g consists of two
parts corresponding to the above two Shamir sharing procedures. The first part,
stemming from Item 1 above, is of size at most

g∏
j=1

GenSz(j) · log(GenSz(g)) =
g∏

j=1

22
j · 2g = 2

∑g
j=1 2j · 2g ≤ 22

g+1 · 2g.

388 I. Komargodski and A. Paskin-Cherniavsky

The second part, stemming from Item 2 above, is (again) of size at most

g∏
j=1

GenSz(j) · log(GenSz(g)) ≤ 22
g+1 · 2g.

In total, the share size is bounded by 22
g+1 ·2g ·2. The t-th party is in generation

g = �log log t
 which means that its share size is bounded by 4t4 · log t. �

On our generation size. The choice of parameters where generation sizes
grows as GenSz(g + 1) = (GenSz(g))2 were carefully chosen to obtain optimal
share complexity. The “generation-like” schemes of [14] were always growing by
a linear factor and such choice in our case results with an inefficient scheme in
which shares are of super-polynomial size. Specifically, our goal is to minimize
the value of the product:

g∏
j=1

GenSz(j) · log(GenSz(g)).

Choosing generations of linearly growing size gives that GenSz(j) is roughly 2j

(which is indeed small for the t-th party which is in generation roughly log t)
but there are now logarithmically many terms in the product which results with
super-polynomial share size. A further inspection gives that our choice of the
constant 2 in the exponent gives the best share size.

On sharing longer secrets. The above scheme can be generalized to sup-
port sharing of longer secrets more efficiently than sharing it bit by bit.
Roughly speaking, this follows since Shamir’s threshold scheme can be used
to share a secret longer than 1 bit without increasing the share size. More pre-
cisely, Shamir’s scheme allows to share a secret of length � with shares of size
max{�, log q} (where q > n is a prime number as above and n is the number
of parties among which we share the secret). So, even for long secrets, for large
enough party index t ∈ N, we will apply Shamir’s scheme on a very large set such
that max{�, log q} = log q and therefore the analysis from above will hold. For
parties with low index (where max{�, log q} = �) we do pay a price proportional
to � in the share size.

3.1 A General Framework

Our scheme is a special case of the following approach that can be used for more
general evolving access structures. These access structures have the property
that (1) parties can be split into generations of growing size, where the size
of generation g is denoted by GenSz(g), (2) within each generation “not too
much” information has to be remembered for the future, and (3) it is possible to
efficiently “combine” all this information from different generations and decide
whether a set is qualified or not.

Evolving Secret Sharing: Dynamic Thresholds and Robustness 389

The access structure at time t ∈ N, denoted by At, is a function of indica-
tor bits representing the presence of each party in the reconstruction process.
Namely, we can think of the function At(x1, . . . , xt) as the indicator function of
the access structure (where each xi indicates whether the ith party is present).
Denote by Xg the set of parties in generation g. Associate with each generation
g, monotone functions Ψg

0
, . . . , Ψg

�g
: {0, 1}Xg → {0, 1} that gets the indicator of

the parties in the generation and output one bit (where �g is a parameter). More-
over, for each (c0, . . . , cg−1) ∈ {0, 1}�0 × . . . × {0, 1}�g−1 , associate a monotone
function Φc0,...,cg−1 : {0, 1}Xg → {0, 1} such that the indicator of a set of parties
x1, . . . , xt (where the generation of party t is g∗) is qualified in At iff

At(x1, . . . , xt) = 1 ⇐⇒ (3.1)
∃c0, . . . , cg∗−1 ∈ [�0] × . . . × [�g∗−1] : Φ

Ψ0
c0

(X0),...,Ψ
g∗−1
cg∗−1

(Xg∗−1)
(Xg∗).

Such an association always exists by setting each Ψ ′
i to be the identity func-

tion that outputs the ith bit (i.e., �g = GenSz(g)) and letting Φc0,...,cg correspond
to At (for the appropriate value of t) where the output of Ψi for each i ∈ [g − 1]
is fixed and only the last generation is not. In some cases, however, there is a
more efficient mapping. For example, in the dynamic threshold considered above,
we set each Ψi to count how many parties come from that generation, namely,
�i = GenSz(i), and the monotone function Φ�0,...,�g , on input x1, . . . , xGenSz(g)

is naturally defined to be the one that checks for each j ∈ [GenSz(g)] whether∑g
i=0 �i +

∑j
i=1 xi is at least as large as the required threshold.

The point in making the above mapping is that now the original access
structure A can be viewed as a composition of many access structures of the form
Ψg

ci and Φco,...,cg . If we choose the generations to be large enough but keep the
�i’s not too large, and moreover have efficient schemes for the above structures,
we can overall have an efficient scheme. We describe this general scheme next.
The state of the dealer after generation g ends consists of strings sA, where A
ranges over all tuples (c0, . . . , cg) such that ci ∈ {0, 1}�i . Denote by s ∈ {0, 1}
the secret to be shared and set s(0) = s. When the (g + 1)-th generation begins,
the dealer does the following for every (c0, . . . , cg) ∈ [�0] × . . . × [�g]:

1. Share the secret s(c0,...,cg) via a Φc0,...,cg among the parties in generation g+1.
2. For each cg+1 ∈ [�g+1]

(a) Sample r(c0,...,cg+1) ← {0, 1} uniformly at random.
(b) Share r(c0,...,cg+1) via a Ψg+1

cg+1
among the parties of generation g + 1.

(c) Set s(c0,...,cg+1) = s(c0,...,cg) ⊕ r(c0,...,cg+1).

The correctness and security of the scheme follows by identity 3.1, similarly
to how we proved correctness and security for the dynamic threshold scheme.
We omit further details here.

The share size of a party in generation g+1 consists of two parts correspond-
ing to the above two Φ and Ψ sharing procedures. We assume that the share size
of each Φc0,...,cg upper bounded by φc0,...,cg and that the share size of each Ψg

cg

390 I. Komargodski and A. Paskin-Cherniavsky

is upper bounded by ψg
cg . The first part, stemming from Item 1 above, is of size

at most
∏

c0∈[�0]

. . .
∏

cg∈[�g]

φc0,...,cg .

The second part, stemming from Item 2 above, is of size at most
∏

c0[�0]

. . .
∏

cg∈[�g]

∏
cg+1∈[�g+1]

ψg
cg .

In total, the share size of party t that resides in generation g is bounded by
the sum of the two terms above.

Instantiations. The above general blueprint captures not only the dynamic
threshold scheme we presented above, but also can be used to capture the scheme
for general access structures and the scheme for k-threshold for constant values
of k of [14]. However, the choice of the generation size is different in each case. In
the general case, the generations are of size 1 (as we cannot gain anything from
squashing since the structure is completely arbitrary), and in the k-threshold
case, the generations are growing in linear rate (linear in k) rather than poly-
nomial in t as we have in the dynamic threshold case.

4 Robust Evolving Secret Sharing

In this section we show how to generically make any k-threshold scheme robust in
the sense that even if some parties hand-in incorrect shares, the correct secret can
be recovered. The formalization of this notion is done by augmenting a standard
secret sharing for evolving access structures with an additional procedure called
R-RECON which gets as input the shares of a set of parties A from which it can
recover the secret. The adversary is allowed to corrupt any set B ⊆ A such that
A\B is still qualified. The aforementioned reconstruction procedure succeeds
with all but 2−λ probability, where λ is a parameter that is fixed during the
sharing procedure.

Definition 4.1 (Robust evolving secret sharing). A robust secret sharing
scheme R is described by three procedures (SHARE,RECON,R-RECON). The pro-
cedures (SHARE,RECON) form an evolving secret sharing scheme (as in Defin-
ition 2.4) in which the procedure SHARE is augmented with an additional input
1λ for a security parameter λ. The additional procedure R-RECON satisfies the
following requirement:

3 Robust reconstruction: The secret s is shared using SHARE(1λ, s). An
adversary A chooses a time t and two subsets of parties A,B ⊆ [t] such that
(1) B ⊆ A, (2) B is unqualified, and (3) A\B is qualified. The adversary A
is then given the shares of the parties in B, denoted by Πs

B, and it changes
it arbitrarily to get Πs

B
′. Finally, the value of s′ = R-RECON(1λ,Πs

A ∪ Πs
B

′)
is output.

Evolving Secret Sharing: Dynamic Thresholds and Robustness 391

We say that the scheme is λ-robust if for any such adversary A if it holds
that

Pr[s′ �= s] ≤ 2−λ.

The next theorem shows how to obtain a robust secret sharing scheme for
the evolving k-threshold access structure in which qualified sets are those of size
at least k.

Theorem 4.2. Let k ∈ N
+ and λ > 0. Assume there exists a linear evolving

(family of) schemes for k-threshold such that for the domain of secrets S, it is
linear over the field F = F

t
2 (t ≥ log |S|).

Then, there exists an evolving λ-robust secret sharing scheme for the evolving
k-threshold access structure. The overhead in the share for party t is an additive
factor of O(λ + k · log k) bits relatively to the share size of the original scheme
(for a sufficiently large domain S, otherwise the overhead is multiplicative).

We prove the theorem, by adapting the robust (standard) secret sharing
scheme of [10] to the evolving setting. Then, we use the linear scheme of [14] for
the evolving k-threshold access structure and transform it into a robust one.3

The high-level idea of the construction is, instead of sharing the secret itself, to
share an AMD encoding of the secret (see Definition 2.6). Roughly speaking, the
resulting scheme is robust since AMD codes protect information against additive
attacks and our secret sharing scheme is linear.

Proof of Theorem 4.2. Our construction assumes a linear evolving scheme
E = (SHARE,RECON) for a k-threshold access structure and turns it into a
robust evolving scheme for the same structure. We share secrets from domain
S. As an instantiation of the base scheme, we use the construction from [14] for
the evolving k-threshold access structure over a sufficiently large secret space.
The share size for the t-th party in their scheme is roughly σ(t) = k log t bits for
large enough t. Fix a γ′ = (λ + k log k)-AMD code (E,D) for secret domain |S|.
Concretely, we use AMDσ,γ′ .

Our new robust secret sharing scheme is described next:

1. The new sharing procedure SHARE′(1λ,Πs
1 , . . . , Πs

t−1, s) gets as input a
robustness parameter 1λ, the shares of parties 1, . . . , t − 1 and the original
secret s and generates the share for the t-th party as follows. At the begin-
ning of time (before the first party arrives), it computes an AMD encoding
of s, denoted ŝ = E(s), and shares this value using the underlying scheme by
running (in the t-th time step) the procedure SHARE(Πs

1 , . . . , Πs
t−1, ŝ) and

giving the t-th party this value.
3 Observe that the construction from [14] for the evolving k-threshold access structure

are “almost” of the right form. One minor issue is that the field over which the various
instances of Shamir operate grow as more parties arrive. Using extension fields, the
shares can be viewed as a vector of linear combinations over a single field F

t
2 of a

suitable size, and the proof applies in a similar way. Our scheme from Theorem 3.3
has the same property.

392 I. Komargodski and A. Paskin-Cherniavsky

2. The reconstruction procedure RECON′(Πs
B , B) on input the shares of a subset

of parties B applies the original reconstruction procedure of the underlying
scheme RECON(Πs

B , B) to obtain an AMD encoding ŝ. Then, it outputs the
AMD decoding of this value s = D(ŝ).

3. The robust reconstruction procedure R-RECON(1λ,Πs
B , B) on input the

robustness parameter 1λ and the shares of a set of parties B works as follows.
Let B′ denote the set of the first min{2k − 1, |B|} parties in B. Go over all
minterms T ⊆ B′ (sets of size exactly k), and apply the reconstruction pro-
cedure on each of them: ŝT = RECON′(1λ,Πs

T , T). If all ŝT are ⊥, output ⊥.
Otherwise, output the first value which is not ⊥.

Notice that since k is constant, the running time of this procedure is poly-
nomial in its input size.

We proceed with the correctness, security and robustness of the above con-
struction. As the original scheme is an evolving k-threshold scheme, and as the
AMD scheme is perfectly correct the resulting scheme satisfies perfect correct-
ness and privacy. As to robustness, first observe that |B′| ≤ 2k − 1, and it must
contain a qualified subset T ′ in which no party is malicious. Indeed, if B′ = B,
this follows by our guarantee on the choice of the malicious parties the adver-
sary is allowed to make (otherwise, the adversary chose a qualified set which is
illegal). If |B′| = 2k − 1, then the set of honest parties in this subset is of size k,
and is therefore qualified.

Next, we prove that with probability at least 1− 2−λ, the robust reconstruc-
tion procedure R-RECON outputs the shared secret s. By perfect correctness of
the AMD scheme, ŝ′

T ′ = s. It remains to show that for all other minterms T , it
holds that ŝT ∈ {s,⊥} with probability 1 − 2−λ (the proof is similar to the one
in [10], and is included here for completeness). For each T , consider any possible
shift ΔT in the shares chosen by the adversary. This shift naturally corresponds
to an additive shift on the total set of shares used for reconstruction, as thus on
the shared value (since the scheme basic evolving k-threshold scheme is linear).

By the security of the secret sharing scheme, the adversary’s view (i.e. the
shares of the parties he controls) does not depend on ŝ. Thus the distribution
of shifted shares is also independent of the secret ŝ. Now, by the security of the
AMD code, ŝT /∈ {s,⊥} with probability at most 2−λ+k·(log k+1). As there are at
most

(|B′|
k

) ≤ (
2k−1

k

)
possible different sets T (minterms), we can apply a union

bound and get that the probability that this happens for some ŝT is at most

(2k)k · 2−λ+k·(log k+1) = 2k·(log k+1) · 2−λ+k·(log k+1) ≤ 2−λ,

as required. �

Acknowledgments. We thank Amos Beimel and the anonymous reviewers for their
comments and suggestions.

Evolving Secret Sharing: Dynamic Thresholds and Robustness 393

References

1. Beimel, A.: Secure schemes for secret sharing and key distribution. Ph.D. thesis,
Technion - Israel Institute of Technology (1996). http://www.cs.bgu.ac.il/beimel/
Papers/thesis.ps

2. Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., Guo, Z., Ling, S.,
Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp.
11–46. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20901-7 2

3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In: Pro-
ceedings of the 20th Annual ACM Symposium on Theory of Computing, STOC,
pp. 1–10 (1988)

4. Bishop, A., Pastro, V., Rajaraman, R., Wichs, D.: Essentially optimal robust secret
sharing with maximal corruptions. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9665, pp. 58–86. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-49890-3 3

5. Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of the AFIPS
National Computer Conference, vol. 22, pp. 313–317 (1979)

6. Cevallos, A., Fehr, S., Ostrovsky, R., Rabani, Y.: Unconditionally-secure robust
secret sharing with compact shares. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 195–208. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-29011-4 13

7. Cramer, R., Damg̊ard, I., Fehr, S.: On the cost of reconstructing a secret, or VSS
with optimal reconstruction phase. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol.
2139, pp. 503–523. Springer, Heidelberg (2001). doi:10.1007/3-540-44647-8 30

8. Cramer, R., Damg̊ard, I., Maurer, U.: General secure multi-party computation from
any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 316–334. Springer, Heidelberg (2000). doi:10.1007/3-540-45539-6 22

9. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Secure Multiparty Computation and Secret
Sharing. Cambridge University Press, Cambridge (2015)

10. Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of algebraic manip-
ulation with applications to robust secret sharing and fuzzy extractors. In: Smart,
N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 471–488. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78967-3 27

11. Csirmaz, L.: The size of a share must be large. J. Cryptol. 10(4), 223–231 (1997)
12. Ito, M., Saito, A., Nishizeki, T.: Multiple assignment scheme for sharing secret. J.

Cryptol. 6(1), 15–20 (1993)
13. Kol, G., Naor, M.: Games for exchanging information. In: Proceedings of the 40th

Annual ACM Symposium on Theory of Computing, STOC, pp. 423–432 (2008)
14. Komargodski, I., Naor, M., Yogev, E.: How to share a secret, infinitely. In: Hirt, M.,

Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 485–514. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-53644-5 19

15. Paskin-Cherniavsky, A.: How to infinitely share a secret more efficiently. IACR
Cryptol. ePrint Arch. 2016, 1088 (2016)

16. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with
honest majority (extended abstract). In: Proceedings of the 21st Annual ACM
Symposium on Theory of Computing, pp. 73–85 (1989)

17. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

http://www.cs.bgu.ac.il/beimel/Papers/thesis.ps
http://www.cs.bgu.ac.il/beimel/Papers/thesis.ps
http://dx.doi.org/10.1007/978-3-642-20901-7_2
http://dx.doi.org/10.1007/978-3-662-49890-3_3
http://dx.doi.org/10.1007/978-3-662-49890-3_3
http://dx.doi.org/10.1007/978-3-642-29011-4_13
http://dx.doi.org/10.1007/3-540-44647-8_30
http://dx.doi.org/10.1007/3-540-45539-6_22
http://dx.doi.org/10.1007/978-3-540-78967-3_27
http://dx.doi.org/10.1007/978-3-662-53644-5_19

	Evolving Secret Sharing: Dynamic Thresholds and Robustness
	1 Introduction
	2 Preliminaries
	2.1 Evolving Secret Sharing
	2.2 Algebraic Manipulation Detection Codes

	3 A Scheme for Dynamic Threshold
	3.1 A General Framework

	4 Robust Evolving Secret Sharing
	References

